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A B S T R A C T

With the increasing number and variety of devices being used to access the

World Wide Web, providing a good browsing experience to all users, regardless

of device, is a critical task. To do this, many web developers now use responsive

web design (RWD) to build web pages that provide a bespoke layout tailored

to the specific characteristics of the device in use, normally the viewport width.

However, implementing responsive web pages is an error-prone task, as web

page elements can behave in unpredictable ways as the viewport expands and

contracts. This leads to presentation failures — errors in the visual appearance

of the web page. As well-designed responsive web pages can have an array of

benefits, identifying presentation failures quickly and accurately is an impor-

tant task.

Unfortunately, current approaches to detecting presentation failures in web

pages are insufficient. The huge number of different viewport widths that re-

quire support makes thorough checking of the layout on all devices infeasible.

Furthermore, the current range of developer tools only provide limited support

for testing responsive web pages.

This thesis tackles these problems by making the following contributions. First,

it proposes the responsive layout graph (RLG), a model of the dynamic layout

of modern responsive web pages. Then, it explores how the RLG can be used

to automatically detect potentially unseen side-effects of small changes to the

source code of a web page. Next, it investigates the detection of several common

types of layout failures, leveraging implicit oracle information in place of an

explicit oracle. Experiments showed both the approach for detecting potentially

unseen side-effects and the approach for identifying common types of layout

failure to be highly effective. The manual effort required by the user is further

reduced by an approach that automatically grouped related failures together.

Finally, a case study of 33 real-world responsive layout failures investigates how

difficult such failures are to fix. These approaches have all been implemented

into a software tool, ReDeCheck, which helps web developers create better

responsive web pages.
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1
I N T R O D U C T I O N

The World Wide Web is an integral part of our everyday lives and its influence

continues to grow. Billions of people now use it to communicate with friends

and family, do their shopping or run their business. As the web has developed

over the last twenty years, so has the technology with which one can access it.

Not so long ago, a desktop computer was the only device capable of accessing

the web. Nowadays, multiple different device types are web-enabled, including

“mobile devices” such as smartphones, tablets and even watches. While this

ease of access is hugely convenient for users, it presents a substantial problem

for web developers. Traditionally, they only had to make their web pages us-

able on desktop or laptop computers, which all have similar screen dimensions.

However, all of these new mobile devices have screens of different sizes and

resolutions. The question is, how do developers build “mobile-friendly” web

pages that look good and are easy to browse on all devices?

By default, most mobile devices respond to a non-mobile-friendly web page

by simply shrinking it down until it fits within the screen of the device in use.

This makes many web pages completely unusable, so research has investigated

ways of making web pages mobile-friendly. However, despite early promise,

it soon became apparent that developers had to start developing with mobile-

friendliness in mind. One popular approach was adaptive web design (AWD),

which involved developing multiple different versions of the web site optimised

for different types of device. However, a better approach was soon required

as the number and variety of web-enabled devices continued to grow. This

approach is responsive web design.
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(a) 420 pixels wide (b) 768 pixels wide (c) 1200 pixels wide

Figure 1.1: An example of a responsive web page.

1.1 responsive web design

Responsive web design, or RWD for short, is a hugely popular design approach

for building modern web pages. It was first proposed by Ethan Marcotte in

2010 [95] and has grown in popularity ever since. In 2012, it was listed as the

#2 trend in web design and development and W3C have called it “a must for

tablets and mobile devices” [1].

The key idea underpinning RWD is that developers need only build a single

version of a web page that “responds” to the constraints of the device being

used. It does this by both resizing and rearranging the content, with the aim

of providing an equivalent user experience on all devices. By doing this, RWD

essentially tailors a bespoke layout to every single device, meaning the layout

provided should be the best it can be. This also makes responsive web sites

effectively future-proof, as it simply creates a layout specific to any new device

released onto the market. This is in stark contrast to AWD, which not only does

not provide an optimal layout to every device but also is susceptible to new

devices not working well with any of the pre-existing layouts.

Figure 1.1 presents an example of a responsive web page. At drop-down list and

the main content panels are given narrow widths in a column. At the medium

viewport of part (b), the navigation links have expanded to a single row and

the content panels remain stacked, albeit it with wider widths. Finally, at the

wide viewport width in part (c), the main content panels are made narrower
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again but are displayed side-by-side rather than in a column, making best use

of the increased space.

Responsive web design is based on three main “ingredients”: grid-based layouts,

flexible media and media queries. The first two ensure all the elements on the web

page are displayed at a size suitable for the device in use. Meanwhile, media

queries allow developers to apply different styling rules to the web page de-

pending on the device’s characteristics. When applied correctly, they combine

to produce web pages that provide the optimal browsing experience, regardless

of device.

1.2 the problem : presentation failures in responsive web pages

Unfortunately, due to the innovative nature of RWD, the code required to im-

plement a responsive web page is often quite complex. Many web pages have a

large amount of content and an equally substantial number of styling rules. De-

velopers have to be careful that the correct style rules are applied to the correct

elements at the correct viewport widths. If they aren’t, the web page’s layout

can often behave peculiarly as the viewport expands and contracts, leading to

unwanted aesthetic issues. These are called presentation failures [89, 90] and

they can have serious detrimental effects on a web page.

Identifying these presentation failures and fixing them as quickly as possible

is a critical task for developers. Well designed error-free responsive web pages

have been shown to have positive psychological influences on end users. For

instance, two thirds of surveyed smartphone users said they would be more

likely to make a purchase on a mobile-friendly site [67] and visible failures are

likely to cause users to stop purchasing from a particular site [86]. Furthermore,

studies have observed increased perceived usability [66, 84, 107] and improved

loyalty [40].

Unfortunately, detecting presentation failures in web pages is currently a diffi-

cult task. They often occur at unpredictable and sometimes small numbers of

viewport widths, meaning the web page may not be examined at one of the

faulty widths. Furthermore, as many modern web pages contain large amounts

of content, smaller aesthetic issues can be harder to spot as developers may

instead focus on larger issues.
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The myriad of different devices and screen sizes currently poses a significant

problem, as testing a web page on all possible devices would be extremely

labour-intensive. Therefore, developers and testers frequently employ “spot-

checking”, which involves testing the layout of a web page at a small subset

of viewport widths, often corresponding to popular devices. However, this is

generally insufficient and therefore presentation failures continue to make their

way into production web pages. The current range of techniques and tools avail-

able to developers of responsive web sites also offer only limited support. Like

spot-checking, they are both labour-intensive and error-prone as they require a

user to manually inspect the web page under test to observe any presentation

failures that may be present.

1.3 aims of this thesis

This thesis is concerned with automatically identifying presentation failures

in responsive web pages with minimal effort from the developer. This goal is

comprised of two main aims:

1. Develop a model for representing the dynamic visual nature of modern

responsive web pages.

2. Explore the use of this model as a means of identifying a variety of pre-

sentation failures in real-world web pages.

1.4 organisation and contributions of this thesis

In response to the importance of the problem of presentation failures and the

shortcomings of current testing techniques, this thesis is concerned with de-

veloping automated methods for identifying a variety of presentation issues in

responsive web pages. This section describes the path of research taken through-

out this thesis. Figure 1.2 shows this path visually. The thesis begins with the

identification of the core problem — presentation failures in responsive web

pages— and a discussion of current options for tackling this problem, which

constitutes the literature review in Chapter 2. As Chapter 2 finds that accurate

automatic detection of presentation failures in mobile web applications is an

open, unsolved problem, Chapter 3 introduces and defines the responsive lay-

out graph (RLG), a model of a web page’s dynamic layout across a wide range
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The Problem

Presentation Failures in

Responsive Web Pages

Chapter Three

Modelling Responsive Layout
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Detecting Unseen Layout

Side Effects Of

Small Code Changes
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Detecting Common
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Grouping Related
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Chapter Seven

Root Cause Analysis

of Layout Failures

Figure 1.2: An overview of the research path taken in this thesis.

of viewport widths. As developers can often introduce unintended side-effects

into the layout of a web page, Chapter 4 presents an approach that uses the

RLG as a means of detecting potentially unseen side effects of code changes to

a web page. Chapter 5 then tackles the problem of detecting common types of

mobile presentation failures, such as overlapping or protruding elements, when

an oracle describing the correct layout of the web page is unavailable. Chapter 6

presents a technique to group related failures together. Finally, Chapter 7 inves-

tigates the root causes of the failures detected in Chapter 5.

Chapter 2 : “Literature Review” This chapter reviews the literature relevant to

the problem of detecting presentation failures in mobile web applications. It be-

gins by introducing the mobile web and the challenges it presents to developers

of web sites. Then, it presents the various approaches to developing so called

“mobile-friendly” web applications. Next, the chapter introduces the concept of

presentation failures and explains the nature of testing the appearance of web

applications, before reviewing previous approaches addressing presentation is-
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sues in web pages. Finally, the chapter concludes with a brief review of web

and GUI testing in general.

Chapter 3 : “Modelling Responsive Layout” This chapter presents a model

of a web page’s dynamic responsive layout, called the responsive layout graph

(RLG). Building on concepts introduced by Choudhary et al. in their alignment

graph [123], it models both the changing visibility and relative alignments of

web elements. This is the first model of responsive layout and was published

in the paper “Automatic Detection of Potential Layout Faults Following Changes to

Responsive Web Pages” [149]. The chapter then presents a series of algorithms

that can be used to extract the RLG of a given web page.

The key contributions made in this chapter are:

1. The formal definition of a model of a web page’s responsive layout be-

haviour, called the responsive layout graph (RLG), which describes both

the visibility and relative alignment of the elements on the web page

across a specified range of viewport widths.

2. A series of algorithms to automatically extract the RLG of a web page.

Chapter 4 : “Detecting Potentially Unseen Layout Side Effects of Small Code

Changes” When making small incremental changes to the layout of responsive

web pages, developers can easily introduce unintended layout changes that

detrimentally impact the quality of the web site. Therefore, this chapter presents

a technique that compares the RLGs of two consecutive versions of a web page

to report a list of potentially unseen layout side-effects to the developer.

The chapter then evaluates the approach using 15 responsive web pages, which

were randomly modified by a suite of 8 mutation operators. The experiments

show the proposed technique is highly accurate at detecting these layout changes

and outperforms both manual and automated baseline approaches. They also

show the approach is especially advantageous when detecting “subtle” changes

visible at few viewport widths. Finally, the last experiment investigates the

effectiveness and efficiency trade-offs of the approach and suggests a set of

configuration parameters that should perform well on a wide variety of subject

web pages. An initial, smaller version of this experimental study was published

along with the RLG definition in “Automatic Detection of Potential Layout Faults

Following Changes to Responsive Web Pages” [149], while the full study is currently

under review as part of the journal paper “Automatically Alerting Developers to

the Unseen Side Effects of Incremental Changes to Responsive Web Pages” [148].
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The key contributions of this chapter are:

1. An algorithm for comparing two RLG models which outputs a list of

model differences representing potentially unintended layout issues, which

along with the RLG extraction algorithms described in Chapter 3 has been

implemented into a prototype software tool called ReDeCheck.

2. A code mutation framework for HTML and CSS, targeting rules affecting

web page layout that can be used to create modified versions of a subject

web page.

3. A thorough empirical study evaluating the ability of the proposed ap-

proach to detect potential layout issues following modifications to a re-

sponsive web page and its efficiency.

Chapter 5 : “Detecting Common Types of Responsive Layout Failures” This

chapter first introduces a categorisation of five different types of layout failures

in responsive web pages. It then presents a collection of four algorithms that

query the RLG of the web page under test to detect these failures without

the need for an explicit oracle. The chapter then evaluates the approach on a

corpus of 26 randomly selected responsive web pages, which shows that not

only are layout failures prevalent in real-world web pages, but also that the

proposed approach is highly effective at detecting them. This approach - the

first to identify specific types of responsive layout failure without an explicit

oracle - was published in the paper “ Automated Layout Failure Detection for

Responsive Web Pages without an Explicit Oracle” [147]. The chapter concludes by

describing several small modifications to the RLF identification technique to

improve its accuracy and precision.

The key contributions of this chapter are:

1. A categorisation of five common types of responsive layout failure (RLF)

discoverable without the need for explicit oracles.

2. A collection of four algorithms that automatically analyse the RLG of a

web page in order to detect the five types of RLF. These algorithms have

been implemented as a module of ReDeCheck.

3. An empirical evaluation of 26 randomly selected production web pages,

showing that the RLF types identified are prevalent in live sites and the

algorithms are capable of detecting them and reporting them to the devel-

oper.
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4. Modifications to the RLG model and failure detection algorithms that

reduce the quantity of misleading false positive results reported by the

approach.

Chapter 6 : “Grouping Related Failures Together” As the task of grouping

related responsive layout failures together is currently manual, it can be labou-

rious when many layout failures are identified. This chapter therefore begins by

describing an automated technique for grouping them together, further remov-

ing the burden of effort from the user. While other approaches have grouped

issues in web pages together, this is the first approach that does so with a fo-

cus on responsive layout failures. It then presents with an empirical evaluation

showing that the grouping technique is effective and that human web users

generally agree with both the failures reported and groupings produced by the

approach.

The key contributions of this chapter are:

1. An automated approach for grouping related RLFs together.

2. An empirical evaluation on a large collection of real-world responsive

web pages, showing the effectiveness of the grouping approach, and that

humans generally agree with the reported failures and the clusterings

produced.

Chapter 7 : “A Study of Root Causes of Real-World RLFs”

This chapter presents potential fixes for each of the RLFs detected by the ap-

proach in Chapter 5. These are obtained by identifying the “root cause” of each

failure and then manually modifying the source code of the web page to fix

them. It then presents an evaluation showing the vast majority of failures can

be fixed with very few lines of code and discusses some common mistakes

made by the developers of responsive web pages. This investigative case study

forms the key contribution of the chapter. To the best of my knowledge, it

is the first case study of responsive web pages, as previous studies have fo-

cussed on cross-browser incompatibilities [123] and more general presentation

failures [62].

Chapter 8 : “Conclusions and Future Work” This final chapter summarises the

work presented in this thesis. It then identifies several potential directions for

future research, including approaches for improving the ReDeCheck respon-

sive web testing tool presented in this thesis.
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L I T E R AT U R E R E V I E W

This chapter begins with an introduction to web applications in general. It then

focusses in more detail on the emergence of “mobile-friendly” web applications

which provide a good browsing experience to users on devices of all sizes. It

then goes on to discuss the array of techniques proposed to make desktop-only

web pages more mobile-friendly. Next, it describes various design approaches

for creating web pages which perform well on a wide variety of devices, be-

fore introducing the concept of presentation failures, which are errors in the

appearance of an application. The web page in Figure 2.1 presents an example

of such a failure. It also covers how developers can detect such failures in web

applications.

Figure 2.1: A presentation failure in a web page, where two elements are overlapping.

Next, it reviews the current body of literature aiming to automatically identify

presentation issues in web applications. This review of previous work estab-

lishes a gap in the field concerning the detection of presentation failures in

mobile-friendly web pages, the core problem addressed in this thesis. Finally,
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the chapter concludes with a discussion of research adressing other types of

web application testing, graphical user interface (GUI) testing and mobile ap-

plication testing.

2.1 web applications

Data

Logic

Presentation

Figure 2.2: The three-layer architecture of a web application.

Modern software applications are generally separated into a number of distinct

tiers. This structure is called the n-tier architecture, in which each tier handles a

specific part of the application and is physically separate from the others [23].

Modern web applications typically consist of three tiers and Figure 2.2 presents

this high- level architecture [48]. The bottom tier, the data tier, stores and man-

ages access to the data used by the application. This usually takes the form of a

database management system (DBMS) such as MySQL, MongoDB or PostgreSQL.

Next is the application logic tier, responsible for all the major functionality of

the application. This tier uses an application server and is normally written

in a language such as Java, C#, Ruby or Python. Finally, the presentation tier

is the top-most tier and handles the rendering of the application in the user’s

web browser. In a web application, this takes the form of web pages written in

hypertext markup language (HTML), cascading style sheets (CSS) and JavaScript —

the three core components of modern web pages. HTML describes the struc-

ture of a web page, CSS applies visual styles to that content, and JavaScript

allows developers to make web pages interactive [142, 143]. To explain how the

individual layers interact with one another to form a cohesive application, this

section now presents a simple example.

Let’s consider a user is using an online shopping application and wants to

search for a specific category of products. They input their search query into a
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Data

Logic

Presentation

Database Query Matching Records

Search Request Organised Results

Search Web Page Results Web Page

Figure 2.3: Flow of information in a three-layer architecture.

field on a web page presented to the user by the presentation tier. The input is

then passed to the application logic tier, which converts the input into a search

query and passes it down to the database tier. This tier then executes the query

and returns the list of matching items to the application tier, which formats it.

The presentation tier then creates a web page showing these formatted results.

Finally, the application stack returns this web page to the user’s web browser

which renders it for them to see. This example, shown by Figure 2.3, illustrates

how it is impossible for the presentation tier to communicate directly with the

data tier and that the presentation tier is the only one the user can actually

see and interact with. Instead, all traffic must pass through the logic tier of the

application. This is in contrast to the widely used model-view-controller (MVC)

architecture, in which the communication flow is triangular, with all three tiers

communicating with each other [135]. However, the two approaches are not

mutually exclusive. For instance, many web applications use the three-tier ar-

chitecture for the overall architecture while using MVC in the presentation tier.

As this thesis addresses the problem of presentation issues in web applications,

the remainder of this literature review primarily focusses on topics related to

the presentation tier of the web application stack. Next, it introduces the mobile
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web, the problems associated with building mobile web applications and the

various approaches proposed for doing so.

2.2 the mobile web

The mobile web has existed in a limited form since the early 21st century. Orig-

inally, a “mobile device” was “a handheld device that is made for portability”

with the first mass-market types being traditional mobile phones and personal

data assistants [136]. Its recognized emergence only took place in 2007 with

the launch of the iPhone and other multitouch smartphones. These are phones

with displays which can sense input from multiple points of contact simulta-

neously [137]. It began to grow at an exponential rate with the introduction of

tablet computers such as the iPad in 2010. Both smartphones and tablets pro-

vide a far superior web browsing experience to users than any previous gener-

ation of mobile device. Because of this, developers face an important problem.

How can they make their web pages easily browsable on these next generation

devices?

Initially, when developing the presentation tier of their web applications, the

vast majority of developers simply “shrank down” the desktop version of a

web page to fit the screens of mobile devices. Despite the significant improve-

ments provided by smartphones and other mobile devices for users browsing

the web, the end result was still a very poor user experience. It took consider-

able effort to complete straightforward tasks like navigating around a web site

or browsing its content. This was due mainly to limitations brought about by

the substantial reduction in screen size. These limitations frequently resulted in

severe issues. Firstly, when a mobile browser rendered a desktop site, most if

not all of the text was far too small to be easily readable. This forced the user

to constantly zoom in and out to make the text appear at a reasonable size and

read it comfortably. The reduction in screen size also often resulted in content

overflowing the device’s viewport window. This meant users had to scroll to

access all of the page. Clickable links were also regularly drawn too small and

too close together, as evidenced in a study which found 44% of respondents

found navigation difficult on mobile devices [73]. These behavioural traits may

cause no issue on a desktop when the user had access to a larger screen and a

mouse for navigation. However, browsing on a mobile device requires a user to

use their fingertip. This is a much less precise form of computer interaction and

can often lead to problems. For example, the user could accidentally select the
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wrong link, which is hugely frustrating. It could also be potentially dangerous,

if a user inadvertantly selects a link providing functionality such as a “Buy with

One-Click” feature.

Web sites which provide a good browsing experience to users accessing them

from a mobile device are referred to as mobile-friendly. The issues discussed

above are just three of many prevalent problems when trying to view a non

mobile-friendly web site on a mobile device. To highlight the frequency of

these issues, a survey found 46% of respondents had experienced problems

when viewing a website that was not mobile-friendly [73]. With all of these

issues, it is very surprising to observe the lack of “mobile- readiness” of many

high profile websites. For instance, the work of McCorkindale and Morgoch [98]

found the majority of Fortune 500 companies do not have a mobile-friendly site.

While this may have changed since the study’s publication in 2013, it is still a

fairly alarming statistic. These organisations are likely to have a huge number

of users, many of whom may do the bulk of their browsing on mobile devices.

This begs the question, if so many highly valued multinational companies are

providing their customers with a desktop web site only, what reason is there

for smaller organisations to invest significant time, effort and money into im-

plementing mobile-friendly web sites? The next section presents and discusses

a collection of studies highlighting various reasons.

2.2.1 Why Provide a Mobile-Friendly Web Site?

The motivating factors for web developers to implement mobile-friendly lay-

outs in their web sites are varied. Some are purely business-related, while oth-

ers focus on facets of human psychology. The first and most likely the strongest

motivation is the colossal rise in the amount of web traffic attributed to mobile

devices. Statistics for the mobile share of organic search engine visits in the

United States show mobile usage has almost doubled in the last 4 years, from

27% in the third quarter of 2013 to 53% in the first quarter of 2017 [164]. This

suggests if developers choose not to implement a mobile-friendly layout, they

are in effect alienating more than half of their potential customer base.

Providing a mobile-friendly web site is also vital for search engine optimisa-

tion. This process involves making a web site appear as high as possible on

the list of ranked results supplied to a user by a search engine. Thus, obtain-

ing a high ranking can help to increase the flow of users to a site. An update
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by Google, dubbed “Mobile-geddon” by various media sources [27, 28, 39, 68,

134], now means that when the search originates from a mobile device, the al-

gorithm assigns lower rankings to web sites which are not mobile-friendly. This

effectively gives well designed mobile-friendly sites a rankings boost. This in

turn improves the browsing experience for the user, as they are more likely to

navigate to an easily usable web page. Google’s mobile-friendly testing tool is

responsible for determining these new rankings [35]. It checks several impor-

tant usability criteria to determine if a site is mobile-friendly. These include

whether a user has to zoom to read text or scroll horizontally to view all parts

of the page and whether navigational links are far enough apart to be easily

selectable using a finger tip. Despite considerable publicity regarding the up-

date, many important websites, such as Nintendo, MI5, the European Union

and even the British Monarchy, “failed” this test when Google introduced the

update. They therefore ran the risk of suffering a drop in ranking and a possible

reduction in visitors and business [134]. This likely resulted in a trend of busi-

nesses investing in mobile-friendly web sites in order to restore their ranking

and mitigate the potential losses. For instance, less than a year after the update,

companies including Next, Dyson and the Daily Mail had upgraded their web

sites to ensure they were mobile-friendly [134].

Once the user has navigated to a particular web page, its mobile-friendliness

continues to be an important factor in its success. For instance, a 2012 study of

1,100 adult smartphone users found that 67% of respondents stated they would

be more likely to purchase a product or service if its web site was mobile-

friendly and easy to use [67]. Furthermore, Li et al. [86] found that the presence

of visible failures in the appearance of a web site was likely to cause users to

stop purchasing products from that particular web site. Obviously, this demon-

strates the importance of providing a good user experience, as not doing so can

have severely detrimental economic impacts on the organisation responsible for

the site and its ongoing strategic and financial goals.

There are more psychological effects which should motivate organisations to in-

vest in a mobile-friendly web site. For instance, Hartmann et al. [66] researched

the attractiveness of user interfaces on the web. They found mobile-friendly

layouts caused users to perceive a higher degree of usability. Similarly, a study

by Lee et al. [84] determined the layout of a web page to be the key determi-

nant in its usability. Wu et al. [156] found the layout to be one of the main

factors in the web page’s visual quality, and Michailidou et al. [107] found a

strong correlation between the visual appearance of a web page and the level
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of usability perceived by end users. These studies emphasised the importance

of providing an easily usable layout to users, regardless of the device they are

using. Mbipom et al. [97] also showed pleasing aesthetics to be more accessible

for visually impaired users.

Polished aesthetics in a web page can also lead to higher credibility for the web

page and the organisation to whom it belongs [122]. A web site is often the

first interaction a user has with a company and this impression can be made in

the first few seconds. This can in turn lead to increased company profitability,

especially for e-commerce sites. Good web page layouts can also engender user

loyalty [40], with almost 75% of people saying they would be more likely to

return to a web site if it was mobile-friendly. Furthermore, more than half of

people surveyed by Google in 2012 stated that they would not recommend a

non mobile-friendly site to another web user [67].

In summary, it is clear that implementing a mobile-friendly layout for a web site

can have substantial commercial benefits. The next section therefore reviews the

various approaches to creating such layouts that have been proposed over the

last few years.

2.2.2 Making Web Pages Mobile-Friendly

Considerable research has aimed to improve the user experience of mobile

web browsing by transforming the appearance and behaviour of webpages to

make them mobile-friendly. Before touchscreen smartphones, traditional mo-

bile phones and PDAs suffered from significant problems. When a user tried

to access the web, the reduced screen size hampered their ability to access and

consume content [8]. In fact, Jones et al. [76] observed a drop in effectiveness of

up to 50% when users performed two web-based tasks. This shows how early

mobile devices struggled to provide even a remotely satisfactory user experi-

ence. Addressing the problem clearly required alternative techniques.

One of the first approaches for making a web page easier to browse on a mobile

device was that of Buyukotten et al. in 2001 [24]. It used and evaluated five

different text summarisation techniques to convert web content into “text units”

which easily fit into the screen constraints of mobile devices. A user then had

the ability to hide, partially display, summarise or fully open any of these text

units to access the web page’s content. However, this approach was unable to
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handle images and other media and so rapidly became unsuitable as the web

continued to develop.

As desktop web pages can often contain unnecessary content, several tech-

niques attempted to filter out these pieces of content to provide a better brows-

ing experience. For instance, Baudisch et al. [18] developed an approach which

allowed users to collapse unwanted areas of the web page and then zoom in

to more interesting ones. Lee et al. [83] developed a more advanced approach

that split a web page into “blocks”. It then filtered out blocks deemed to be

irrelevant, before finally reordering the remaining blocks to place those of most

interest to the user as high up on the page as possible. The approach of Xiao

et al. [158] filtered out “noise” from the web page, split the remaining content

into smaller, easier to manage blocks and then structured the blocks in an easily

browsable way. Yin and Lee [160] developed an approach that used a ranking

algorithm to identify the most relevant and important content on a web page.

Their approach then refactored the layout to minimise vertical scrolling and

completely eradicate horizontal scrolling. It also aimed to keep the new version

of the web page as similar as possible to the original. More recently, Ahmadi et

al. proposed a more advanced technique which split webpages into “subpages”

of related content [6]. The user could then browse through them using a series

of navigation menus. The technique utilised both the structure and visual ap-

pearance of the page, but split up the web page by topic and content, rather

than appearance. It began with visual analysis of the page to extract the core

sections of the page, such as the header and the main content area. Complex

DOM-based heuristics then split these sections into smaller subpages. Next, it

generated a navigation system and assigned each subpage a meaningful title to

reflect its content. These titles allowed the user to easily find their way between

the different subpages. The approach removed unnecessary elements and other

clutter to better display the information on the limited screen space available.

This resulted in an overall better design and therefore a better experience for

the user browsing the web page.

More approaches have attempted to split up a web page to increase browsabil-

ity. However, these approaches differ from those above as they did not filter

any unwanted or unneeded content. Chen et al. [30] used a page splitting al-

gorithm to divide the web page into subpages, which would be easier to view

on a mobile device. The main aim was to remove the need for a user to scroll

horizontally to access the page’s content. Xiao et al. [157] employed a similar

technique, using “slicing” to divide a large desktop web page into smaller in-
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dividual pages that would each fit onto the smaller displays of mobile devices.

Xie et al. [159] also used slicing to divide a web page into blocks. However, their

approach analysed the content of each block to decide how best to present the

block to the user. For instance, the approach might summarise some blocks to

save space, but then when a user clicks on the summary link, it would render

the full content in an adapted layout suitable for the device.

Baluja et al. [16] used a technique called segmentation, which splits a large

desktop web page into smaller, more managable areas to create a more mobile-

friendly browser experience. There are usually 9 areas, corresponding to the

phone keys 1-9. When browsing the web page, the user could then select which

section they wished to view. The approach would then render the chosen area,

removing the need for panning and scrolling. However, there is a significant

risk of splitting important content into different segments. To mitigate this, the

authors developed an approach which utilised machine learning to perform

an intelligent segmentation of a web page. Rather than simply splitting the

page into a 3x3 grid of 9 equal segments, their approach used both the DOM

and visual appearance of the site to recursively select two vertical and two

horizontal “cuts”, again producing 9 segments. They also implemented extra

fine-tuning heuristics. For instance, one ensured no segments were too small

to contain any meaningful content. It even reduced the number of generated

segments if the layout of the page was simplistic enough to warrant it.

While the approach functioned well when it was first proposed, the mobile

web has advanced considerably in the last ten years. Therefore, it is unlikely

the approach would function to a similarly high standard nowadays. Further-

more, with the worldwide adoption of touchscreen smartphones, the number

of phones which actually possess 1-9 keys is very small. This further limits the

application of any segmentation technique.

Some research aimed to improve the visualisation of native applications rather

than web pages on mobile devices. Again, the hardware limitations require

a different approach to a desktop computer. For example, Chittaro observed

“technical limitations such as small screen size make it impossible to simply

port visualization applications from desktop computers to mobile devices” [31].

He also highlighted the negative effects on forcing the user to zoom and scroll

around the page, calling it “cognitively complex” and noting it can be difficult

for users as well as highly frustrating.



18 literature review

Each type of data (text, images, etc) can present a different set of challenges to

the developer. Therefore, most research focussed on improving the visualisation

of only a single data type. Oquist [116] introduced rapid serial visual presentation

(RSVP) for displaying text on a small screen. This split up text into small chunks

and displayed them one after the other in the same location. This approach al-

lowed users to read content just as efficiently as they would do on a larger

screen. The RSVP approach was also applied to images by Liu et al [87]. Their

approach attempted to extract potential points of interest for the user, such as

faces, with mixed results. Unfortunately, due to the many different browsers

available on both mobile and desktop devices, realistically applying these tech-

niques is problematic. Modern web sites are inherently different from native

applications and any additional computational effort on either the server-side

or client-side could detract from the user experience further.

2.3 web design methodologies

Despite the promising results of the various web page adaptation approaches

discussed in the previous section, they are poorly suited for the highly com-

plex and interactive web pages now commonplace on the web. Making a web

page usable on devices with differing screen sizes — especially small ones —

requires a different approach. Designing and building web pages from the

ground up with these devices in mind will likely be much better than build-

ing a desktop-only web page and then trying to “collapse” it down to mobile

devices. The two most popular approaches to doing this are adaptive web de-

sign (AWD) [57] and responsive web design (RWD) [95]. This section compares

and contrasts the two methodologies. With the help of an example, it discusses

the specific details, benefits and shortcomings of each. It also introduces the

concept of “mobile-first” web page design.

Figure 2.4 presents an example of a mobile-friendly web page, “Shield”, a

template available open-source under the Creative Commons Attribution 3.0

license. The three screenshots illustrate the dynamic layout of the web page at

three different viewport widths. At 420 pixels, as shown by part (a), the main

content panels are in a single column while the navigation links are in a drop-

down list. At the wider viewport width of 768 pixels in part (b), the single

column layout is still used for the main content, but the navigation links are in

a single row in a navigation bar. Finally, at the widest viewport width shown

by part (c), 1200 pixels, the main content panels have also switched into a single
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(a) 420 pixels (b) 650 pixels

(c) 1200 pixels

Figure 2.4: The BlackTie “Shield” site (http://www.blacktie.co/demo/shield), showing

how the layout of a responsive page adjusts to different viewport widths.

horizontal row. Continuing to display them in a stacked fashion would be an

unnecessary and poor design choice. To describe the foundations of both adap-

tive and responsive web design and demonstrate the implementation of both,

the following sections describe how developers could use each methodology

to create this example web page. The key idea underpinning both approaches

is any user, regardless of the device or web browser with which they choose

to view a web page, should be able to have a smooth and enjoyable browsing

experience.
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2.3.1 Adaptive Web Design

Adaptive web design [57] is based on a process called progressive enhancement,

first proposed by Aaron Gustafson. This originally described a methodology

for designing and developing web sites which would function well on a wide

variety of web browsers (and different versions of those browsers). The latest

browsers received the fully-fledged, most advanced version of the site. Mean-

while, less advanced browsers would receive a simplified version that discarded

the new features not supported by the browser. To better illustrate progressive

enhancement, Gustafson showed how the three main web programming lan-

guages —– HTML, CSS and JavaScript –— could support different versions

of browsers. The full version of the site served to the latest browsers would

contain the latest complex CSS styles and novel JavaScript features. Slightly

older browsers would get a version with some of the newer JavaScript and CSS

functionality removed. Finally, the very oldest browsers would receive an even

simpler version, with just the HTML content and minimal CSS styling. This

meant each user received a version of the site suitable for their hardware and

software environment.

In 2011, Gustafson [57] then applied a similar approach to the problem domain

of supporting a wide range of different devices. Each specific device would

receive the best version of the site, based on the characteristics of that device.

Rather than targeting different browsers, adaptive web design advocates the

creation of versions of a web page that target specific device types. At the

simplest level, the versions could just target the three main device types —–

smartphone, tablet and computer. To provide better support to more devices

a more complex setup could target device types such as small-phone, large-

phone, small-tablet, large-tablet, laptop and widescreen. When a user browses

the web page the server simply detects the characteristics of their device and

presents the most appropriate version.

Suppose a developer wished to implement the three layouts shown by Fig-

ure 2.4 using AWD. They would likely define the main content panel widths

using static width declarations, as shown below:

div {

width: 400px;

}

div {

width: 630px;

}

div {

width: 380px;

}

a) Smartphone version b) Tablet version c) Desktop version
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2.3.2 Responsive Web Design

To address the shortcomings of adaptive web design, Ethan Marcotte first pro-

posed responsive web design (RWD) in 2010 [95]. Despite being introduced at

a similar time as AWD, RWD has generally been the more widely adopted of

the two. It was the #2 trend in web design and development in 2012 [54] and

has enjoyed increased popularity since. W3C have described it as “a must for

tablets and mobile devices” [1].

The key concept underpinning RWD is the creation of a single version of a

web page which “responds to” the viewport constraints of the device in use. By

resizing and rearranging the page’s content, a responsive web page provides

an equivalent user experience regardless of device. According to Marcotte, a

fully responsive design consists of three main “ingredients”: grid-based layouts,

flexible media and media queries. Each one is responsible for and contributes

to a different component of the overall design.

Grid-Based Layouts

To provide a straightforward method for scaling web pages and their contents,

RWD advocates a change in how a developer declares the widths of elements.

The previously described AWD example declared them as static values. In con-

trast, RWD declares widths as a proportion of the element’s container. To make

this concept more understandable and easier to implement, Marcotte visualised

the web page as a grid consisting of 12 columns. Developers then declare each

element’s width to take up a particular number of columns. Figure 2.5 illus-

trates an example of a flexible grid. It labels each element with both the num-

ber of columns it takes up and the relevant CSS width declaration required to

implement it.

Using this guide, it is easy to use a grid-based layout to implement the various

layouts shown in Figure 2.4. For parts (a) and (b), the main content panels

take up the entirety of the viewport width. Therefore, they take up all twelve

columns in the grid and have the declaration width: 100%. Meanwhile, for part

(c), each panel takes up only a third of the overall horizontal space available. In

this case, each one fills only four columns of the grid with the style rule width:

33.3%.

Provided the sizing of all elements follows this concept, the web site should

scale correctly and be usable on a much wider range of devices. No element

will ever be wider than the browser and elements will make the best use of the
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12 - 100%

6 - 50% 6 - 50%

4 - 33.3% 4 - 33.3% 4 - 33.3%

3 - 25% 3 - 25% 3 - 25% 3 - 25%

2 - 16.7% 2 - 16.7% 2 - 16.7% 2 - 16.7% 2 - 16.7% 2 - 16.7%

10 - 83.3% 1 8.3%

7- 58.3% 5- 41.7%

4 - 33.3% 2 - 16.7% 3 - 25% 3 - 25%

Figure 2.5: A flexible grid and its CSS declarations.

available space. This is especially true when on smartphones as there is limited

space. Grid-based layouts go some way to solving the problems associated with

AWD, as each device gets a bespoke layout. Also, the developer no longer has

to worry about whether one of their pre-defined layouts will work well on a

new device.

Flexible Media

Modern web sites generally contain large amounts of media such as images

and videos. It is critical that they also scale and respond in a similar fashion to

the elements in the grid-based layout. Marcotte refers to this concept as flexi-

ble media. By applying rules such as max-width: 100% to the relevant elements,

flexible media forces the image or video to resize itself to fit inside its container

without overflowing. For example, imagine an image with a size of 600×600

and a container with a width of 400 pixels. Making the image flexible would

result in the page rendering it at a size of 400×400 to perfectly fit its container.

Without flexible media, it would expand to its full size, beyond the bounds of

the container. Obviously, this could potentially negatively impact the appear-

ance of the page. When developers implement flexible media in partnership

with grid-based layouts, all elements on a web page should scale correctly in

response to changes in the viewing constraints.
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Media Queries

The third and final ingredient of responsive web design is media queries, a mod-

ule of CSS3. These allow for the querying of the real-world physical attributes

of the device and browser in use. Developers can then use this information to

activate sets of CSS style rules if and only if a specific set of conditions are true.

The current specification supports the querying of a wide variety of attributes,

such as device orientation, aspect ratio and resolution. However, by far the most

commonly used query is the browser window width, using the min-width and

max-width commands. For instance, the two fluid width declarations previously

described must be inside media queries to ensure they are only applied at the

correct ranges of viewport widths, as shown below:

@media(max-width: 1199px) {

div { width: 100%; }

}

@media(min-width: 1200px) {

div { width: 33.3%; }

}

a) Smartphone/tablet version b) Desktop version

The media query in part a) ensures that while the viewport width is narrow,

each of the three content panels span the entire width of their container. The

code in part b) only switches the layout to the three-column style when the

viewport is wide enough i.e., 1200 pixels or wider. This value of 1200 pixels is

an example of a breakpoint. In the context of RWD, a breakpoint is a threshold

where different CSS rules apply to elements on either side of the boundary.

By using breakpoints based on the viewport widths of popular device types,

developers can easily and effectively support a wide range of viewport widths.

2.3.3 Comparing AWD and RWD

There are several advantages to using adaptive web design rather than respon-

sive design. Firstly, adaptive web sites are easier and less complex, as the devel-

oper only has to design for a pre-defined group of devices. Secondly, the server

decides which layout to display, rather than the user’s browser. Therefore, the

server sends only the required resources to the user’s device. This often results

in faster load times for adaptive web sites in comparison to their responsive

counterparts [65]. Finally, suppose an organisation already has a desktop web

site. It is easier for a development team to create alternative versions for smart-

phones and tablets, rather than scrapping the original version and building a
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responsive web site from scratch. This means the organisation can start provid-

ing a mobile-friendly design to their users in a shorter period of time.

While AWD has its benefits, it also suffers from two key shortcomings. The first

is that, for a particular device, there is no guarantee any of the predesigned

layouts will suit the characteristics of the device particularly well. For instance,

imagine a device with a viewport width of 580 pixels. If the server chose to

render the design from part (a), there would be wasted space on either side

of the rendered content, or the content would be "blown up" to correctly fit

the screen. Neither of these outcomes is particularly desirable. Meanwhile, if it

attempted to display part (b)’s layout, the end result could be even more prob-

lematic. There would not be enough room to display the content as intended

and the page would force the user to pan and scroll to access any hidden parts

of the page. The severity of this issue is exacerbated by the number of devices

and, by extension, the number of users it could affect.

The second key problem with adaptive web design is flexibility. If the developer

wished to better accommodate the 540 pixel viewport width, they have two

main options. They could modify one of the existing designs or create a new

one. Their current set of layout presets is not flexible enough to handle the

wide range of possible devices [64]. Furthermore, overarching design changes

are problematic for adaptive web sites. Developers must update each individual

version separately to ensure a consistent look and feel across different devices.

This would obviously be a costly and potentially error-prone task.

The main advantage of responsive design is a well designed and correctly im-

plemented responsive web page will provide an optimal browsing experience

to users across all devices. As each device essentially receives a bespoke lay-

out, the web page sizes and arranges all the elements and content in a manner

that makes the best use of the space available. Another key benefit is the ease

with which a responsive web page accommodates new devices. With AWD, a

developer might worry whether any pre-defined layouts will work well on a

new device. In contrast, a responsive web page simply responds automatically

to the new device. This makes it highly unlikely the developer would need to

do anything. When it comes to maintenance, RWD again has the upper hand

over AWD. The developer only needs to modify and update a single version

of the web page, rather than implementing changes in multiple versions of the

page to ensure consistency.
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Unfortunately, there are a couple of significant issues with responsive web de-

sign. Firstly, as RWD differs quite drastically from more traditional web design,

converting a desktop-only web page to a responsive one can be highly problem-

atic. It is often easier to start from the beginning and implement the responsive

design from the foundations. The fact that this approach obviously carries sig-

nificant costs compounds the initial problem.

Another problem is that responsive web pages can be more complex to build

than adaptive ones. This is because the developer is working with many devices

in mind, rather than just the small selection of devices considered using AWD.

They must also be mindful of how the styles of elements change and how

they interact with each other as the viewport expands and contracts. Failure

to do this correctly can lead to programming errors, which can cause aesthetic

defects on the web page. These errors can further increase the amount of time

and effort required to implement a fully responsive web page.

Finally, probably the most pressing issue with developing responsive web sites

is the lack of understanding of RWD from web developers. Many do not know

how it works, which can result in severe issues during development. For in-

stance, a recent study on HTML and CSS errors [118] found the most serious

errors arose when the developer experiments with a problem they did not pos-

sess the knowledge to solve properly. This is often the case when developers

attempt to build responsive sites. This is further demonstrated by analysing

the StackOverflow programming help forum. When checked, there were over

1 million questions labelled with tags related to responsive web design [162].

This indicates many web developers are still struggling to adapt to building

responsive web sites.

Helping People Build Responsive Web Sites

Many front-end frameworks for responsive design have been released to the

public. These are pre-prepared software solutions using CSS and other web

design technologies to aid developers in creating robust, standards-compliant

web sites. Most, if not all of them, contain at least a grid-based layout system

to help lay out web page elements. Many also provide modules for Javascript,

web typography and icons, among other things. Some though are far more

lightweight and provide little more than a responsive grid and a font. The CSS

provided by the framework can be fully customised by the developers to create

fully responsive and unique web sites. By far the most popular frameworks are

Twitter’s Bootstrap [19] and Zurb’s Foundation [161]. Their attractive aesthetics
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and high levels of usability have helped responsive design grow over the last

few years.

Finally, to further help people create responsive web sites, there are now a va-

riety of online web site building tools available [49]. These help people with

no programming knowledge create attractive responsive web sites by allow-

ing them to “drag and drop” the various components into position on the

page. Among the most popular are Squarespace [26], Weebly [154] and Duda

One [46], which all allow for the creation of great responsive web sites. The

latter even allows a developer to upload their current desktop-only web site as

a starting point and convert it into a mobile-friendly one.

2.3.4 Mobile-First Design

In 2013, when Bootstrap version 3.0 was launched, one of the main announce-

ments was it was a “mobile-first” framework. Traditional web page design uses

a top-down approach, where the developer designs first for desktop devices

and then modifies the web site to fit and function on smaller mobile devices.

Mobile-first design advocates a bottom-up approach. Here, the developer devel-

ops for mobile devices first. They then scale up the layout through tablets, lap-

tops and finally desktops. As an example, the code snippet from Section 2.3.2

would simply be as follows:

div { width: 100%; }

@media(min-width: 1200px) {

div { width: 33.3%; }

}

Here, the default width assigned to the div element is the one for mobile devices

i.e., mobile-first. Only when the viewport width is large enough is a different

width applied.

There are both practical and design benefits to this approach. In terms of de-

sign, beginning on the small screen allows the developer to design for ease of

usability. This approach mitigates the risk of trying to fit too much content onto

a small screen, a common problem when trying to scale down a desktop web

site to display on a mobile device. Mobile-first design also prevents the devel-

oper overwhelming the less powerful hardware of mobile devices. This often

results in slow loading speeds for a site. This is problematic, as the majority
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of web users expect mobile sites to load either as fast, or even faster than their

desktop counterparts. Therefore, if an increase in loading time occurs, it can

have a knock-on commercial impact. For instance, a recent study found 74%

users would leave a site if it took more than 5 seconds to load. In practice, this

could result in a substantial reduction in web traffic [36].

2.4 detecting presentation failures in web pages

This section introduces the general concepts of errors, faults and failures. It

then describes presentation failures, which are issues with a web application’s

appearance. Next, it discusses the array of tools and techniques for detecting

presentation failures. Finally, it identifies mobile web presentation failures as a

currently unaddressed problem domain.

2.4.1 Errors, Faults and Failures

When a developer makes a mistake during the implementation of an applica-

tion, it is called an error [22]. The cause of the error could be a lack of under-

standing of the application’s requirements or perhaps a simple typing error. For

instance, in a web page, a developer might set an element’s width to be 500px

when they actually intended it to be 50px.

If this error causes the program’s actual behaviour to differ from its intended

behaviour, then the error has manifested as a fault [22]. Faults are also some-

times referred to as bugs or defects. In any task, but particularly in software

development, one can classify faults as one of two types; faults of commission or

faults of omission. Faults of commission arise when a developer does something

incorrectly, such as using the wrong method or data type. Faults of omission

are mistakes where the developer did not do something they definitely should

have done. In general, faults of omission are by far the more common of the

two categories. In fact, Robert Glass [53] published research showing around

three out of every four software defects were due to faults of omission. It is im-

portant to note not all errors end up manifesting as faults. They can be located

in areas of the code not executed or not have any effect on the application’s

observable behaviour.
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If one observes the effect of the fault during the execution of the application

and the application requirements are violated, then the fault is exposed as a fail-

ure [22]. Continuing with the example introduced above, if the incorrect width

declaration causes the browser to incorrectly render the faulty element, then it

can be considered a failure. Given they appear in the presentation tier of the

application stack, this thesis refers to these visual failures as presentation failures.

However, just as not all errors lead to faults, not all faults cause failures. In fact,

faults can remain hidden in software for long periods of time, until eventually

the right conditions allow them to be observed.

2.4.2 Strategies of Detecting Failures

During the development of an application, failures are normally detected by

testers. However, once the application is released, end users can also observe

and report failures. In either case, any failures reports go to the developers,

who are responsible for locating and fixing the underlying faults.

Test Cases and Suites

For the task of detecting failures in a piece of software, several options are

available. Perhaps the most common approach is to create and execute test

cases on the software under test. Test cases usually execute a small part of the

program and compare the actual observed behaviour to a pre-programmed

expected output. If the two behaviours match, then the test case has passed.

If not, the test case has failed and highlights the presence of a failure in the

application. When it comes to web application testing, Selenium [130] is a

popular choice of tool for creating and running such test cases. To test a wide

variety of functionality, many test cases are frequently collated in a test suite.

Individual test cases or whole test suites can then be automatically executed.

This removes the effort burden from the human and ensures a consistent testing

procedure. To evaluate the quality of a test suite the notion of coverage is often

used. Any code that is executed by at least one test case is said to have been

covered by the test suite. Intuitively, the higher level of code coverage achieved,

the better the test suite is generally considered to be.

Manual Testing

Sometimes, programming a test case detailing the code to be executed to eval-

uate the software is infeasible. In these scenarios, a widely used alternative is
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manual testing. Here, a human user interacts with the software under test, by

clicking buttons or entering text, for example. However, rather than an auto-

matic comparison between the observed and expected behaviours, the human

decides whether the test case has passed or failed. Despite it’s labour intensive

nature, manual testing can sometimes be a better choice than automated test-

ing. A good example of this is when whether the software passes a test is not a

binary decision. Here, the human tester uses their domain-specific knowledge

to make an informed choice.

A spot check is “a quick examination of a few members of a group instead of

the whole group” [44]. Due to the labour requirements of testing a piece of

software with every conceivable input, developers and testers will often em-

ploy spot-checking. This can maximise the testing benefits while at the same

time, minimising the costs. For example, when trying to detect presentation

failures in a web application, one might perform spot-checking on the most

common browsing environments. This could be particular operating systems,

web browsers or perhaps specific devices.

Mutation Analysis

Mutation analysis allows developers and testers to evaluate the quality of an

existing suite of test cases. Mutation testing involves modifying the program

or software in some small way. Each modified version is called a mutant. The

current test suite is then evaluated by executing the test suite against the newly

created mutant and observing the results. Ideally, the test suite will observe dif-

fering behaviour between the original version of the software and the mutant.

This is commonly known as killing the mutant. Mutation testing normally in-

volves generating a large number of mutants and then assigning a score to the

test suite based on the percentage of mutants it was able to kill. The developers

can then use the results of a phase of mutation testing to modify the test suite.

They could modify existing tests, remove unnecessary ones or add new ones

with the aim of killing more mutants.

The creation of mutants is performed using well defined mutation operators.

These attempt to replicate common programming errors, the specifics of which

will differ between languages and domains. The number of different possible

mutants is potentially infinite. Furthermore, Ammann and Offutt said “the no-

tion of a mutation operator is extremely general” [11]. They also stressed the

key to effective mutation testing was the design of the mutation operators.

Poorly designed operators often leads to ineffective test suites. This problem
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can then have a knock-on impact on the quality of the final software, as there

is a much higher chance of defects remaining undetected.

Unfortunately, implementing mutation analysis is problematic due to two fac-

tors. Firstly, mutation operators are very difficult to apply by hand. Second,

automating the process of mutant generation can be very complicated. Because

of this, mutation analysis is generally an expensive test criterion, despite its

increased effectiveness. It is therefore not as commonly used. Despite this, mu-

tation analysis has found common use in research endeavours as a “gold stan-

dard” during empirical evaluation of new techniques and as a means of obtain-

ing test subjects for a variety of empirical studies [74].

Despite the benefits of using mutation analysis and the huge variety of prob-

lem domains in which it has been employed [117], little work has investigated

mutation analysis of web applications. Praphamontrimong and Offutt [119] im-

plemented a series of mutation operators for HTML and JavaServer Pages (JSP)

code. These targetted various functional aspects of a web page, which were

then used a means of evaluating the effectiveness of a suite of web application

tests. However, the mutation operators presented in this work did not target the

layout of web pages or in fact any aesthetic properties. As part of the evaluation

of their presentation failure detection technique, Mahajan et al. used mutation

of HTML attributes and CSS attributes with the potential to alter the visual

rendering of an element, to automatically introduce presentation failures into

the subject web pages [89, 90].

The Oracle Problem

In software engineering, testers require a way of determining a particular test

has passed or failed. This mechanism is the oracle. First proposed by Howden

and Miller in 1978 [109], the oracle determines whether given a specific test case

input, the observed behaviour of the system matches the expected behaviour.

Actually obtaining this description of correct behaviour is known as the ora-

cle problem [11]. It can be very difficult to solve, and as such oracles can take

many forms. These include documentation, specifications, models describing

the system behaviour, or in some cases a human.

Automatic generation of test oracles is one of the main problems when trying to

detect failures. Achieving it would remove a bottleneck in the current pipeline

and make failure detection quicker, more accurate and more consistent. Barr et

al.’s 2015 survey evidences the importance of oracle automation, analysing a

repository of 694 publications [17]. Their conclusion was despite the wide vari-
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ety of promising techniques proposed over the past 35 years, when no existing

technique is perfectly suitable the human will be responsible for using their

domain-specific knowledge as the final source of oracle guidance.

Testing of the presentation tier of an application must check two main compo-

nents. The first is the functional aspect of the user interface. This can be tested

using test cases that interact with the application and verify it responds in the

expected way. For instance, an automated test case could check “given I have

entered valid log in details, when I click the login button, I should see confirma-

tion I have logged in”. This chapter discusses some previous approaches using

this concept later on. However, when it comes to testing the actual aesthetic

presentation of the application —– “does the login button look right within the

login form?” —– things are far more difficult. Encoding an automated oracle

that can make an accurate and informed decision is hugely problematic. This

is due to the inherently subjective nature of judging the aesthetic properties of

an application’s interface. Presentation testing therefore generally relies on a

human oracle.

A previous study of web applications found that failures in the appearance of

a web page are the second largest category of defects in live web sites, with

only “logic and control flow faults” being more prevalent [56]. Detecting them

accurately and reliably is therefore clearly a vital task. However, despite the

importance of the task, a systematic mapping study of the field conducted

by Garousi et al. [52] found the main focus of the majority of publications

was testing the functionality of applications. Minimal research tested the GUI

components compared to more popular areas such as search-based software

engineering/testing (SBSE/SBST) [63, 100] and mutation testing [74, 117].

Back-to-back Testing

When detecting presentation failures in modern web applications, numerous re-

searchers have chosen to use a version of the web site under test as the oracle [7,

32, 33, 105, 123]. This is due to the inherent difficulties of generating automated

oracles. This process, called differential testing or back-to-back testing [99], involves

executing two different versions of a program and observing any differences in

behaviour between them [141]. Others used graphical mockups of a web page’s

intended appearance [89–91]. Given the lack of test cases generated by these ap-

proaches, calling them testing tools is potentially misleading. Instead, this the-

sis refers to them henceforth as checking tools. Other approaches proposed have

been more similar to traditional test-case based techniques. One used formal
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specifications describing the intended appearance of a web page and compared

them to its actual appearance [61, 62]. Another is a framework for defining the

expected appearance of a web page using human-readable declarations [133].

The next section describes these techniques in more detail.

2.4.3 Tools for Identifying Web Presentation Failures

This section reviews the previous work addressing presentation failures in web

pages. While some target generic presentation failures, others target specific

types of failures. These include internationalisation presentation failures and cross-

browser incompatibilities. Also, while many approaches utilise back-to-back test-

ing, as mentioned previously, other techniques make use of very different kinds

of oracles, such as specification failures. Figure 2.6 illustrates the topology of ap-

proaches and techniques. Grey rounded rectangles represent the different cat-

egories of presentation failures, while blue rectangles represent the individual

techniques and tools. After introducing each type of presentation failure, this

section discusses each specific technique in detail. It presents technical details,

benefits, shortcomings and any relevant empirical results.

Presentation

Failures
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Presentation

Failures

Cross-Browser
Incompatibilities

Specification
Failures

Mobile
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Figure 2.6: A hierarchy of presentation failure detection techniques.

Majahan et al. first proposed an automated method for detecting presentation

failures in 2014 [89]. It used sophisticated image comparisons to detect and then

localise presentation failures. They defined these as visual differences between

the original graphic design illustrating how the web page should look (i.e., the

oracle) and the actual appearance of the produced web page when rendered in

a web browser under the same environmental conditions. The web page under
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test and the oracle image are the two inputs to the approach. Figure 2.7 shows

examples of each.

li[1] li[2] li[3] li[4] li[5]

div[1] div[2] div[3]

div[4] div[5] div[6]

(a) Mockup image oracle (b) Actual web page appearance

Figure 2.7: The inputs to WebSee.

The approach began by obtaining a visual representation of the web page un-

der test. It used a screenshot of the web browser rendering the page, which

it compared to the oracle image. In order to facilitate a fair comparison, the

browser must replicate the environment of the oracle image as faithfully as

possible. Therefore, the approach carefully controlled the image dimensions,

browser window zoom and the size of the browser window itself. Their tech-

nique utilised the ImageMagick library [38] to compare the two images on a

pixel-by- pixel basis. It compared both the colour and saturation of each pixel

pair and reported the x and y coordinates of any pixels that are not identical.

Evaluation of the approach required a set of web pages containing presentation

failures. Therefore, the authors implemented an automated fault-seeding algo-

rithm. This mutated the source code of the web page under test to introduce

a random presentation failure. The technique targetted the visual attributes of

both the HTML and CSS of the web page, such as font-size. It was then used to

generate between 41 and 53 random mutated versions of the four subject web

pages. The approach was shown to be capable of detecting 100% of the presen-

tation failures tested in the experiment, indicating the approach’s potential.

Their approach also aimed to identify the faulty element responsible for each

failure to aid the developer in the debugging process. To do this, their tech-

nique generated a model of the web page under test. In this case they used an

R-Tree [58], a tree data structure widely used to store multi-dimensional data.

The tree stored the individual elements and the bounding boxes assigned to

them when the browser rendered them. For each faulty pixel reported by the

previous phase, the approach traversed the R-Tree to obtain the set of elements

containing that particular pixel. As CSS allows elements to overlap, it is quite

possible that a single pixel will be inside multiple elements. The approach col-
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lated these to form the set of potentially faulty elements. This set was then

reported to the user to help with the debugging of the presentation failure. Re-

sults showed this additional localisation step to be relatively effective, with the

returned element set containing the actual faulty element in 77% of the cases

studied. However, as this set was often quite large, an extensive amount of

manual work on the part of the developer was still required. This reduced the

practical benefits of the approach. The author also noted other shortcomings

such as poor handling of JavaScript and other features of dynamic web sites.

Follow-up research addressed these issues [90]. Firstly, Majahan et al. declared

a pixel-perfect match impractical for real world testing scenarios. The oracle

image and the web page itself may have been created in different environ-

ments. Also, small differences between the two may be “close enough” that

they are not considered to be presentation failures. Because of this, they used

a new computer vision-based algorithm, namely, perceptual image differencing

(PID). This approach introduced the notion of “similarity” into the comparison,

rather than a simple binary match (i.e., pixels are either identical or different).

In its attempt to model a human’s idea of similarity as closely as possible, PID

uses spatial, luminance and colour sensitivity when comparing a pair of pixels.

This allowed the approach to not report subtle differences caused by factors

such as platform differences and coding decisions made during development

as failures.

Another key advancement over the previous work is the introduction of dynamic

regions. These are areas of the web page that the browser renders differently

each time, with no user modification of the web page source code. Common

examples of these are social media widgets. These display only the most recent

posts, and so are subject to frequent change. Automatic advertisements are an-

other example, as they may be different every time a user loads the page. When

running this new approach, the user could specify a collection of dynamic re-

gions to help filter out unnecessary reports.

As with their original work [89], the comparison produces a set of pixel coor-

dinates that the PID algorithm considered to be “perceptually different”. Then,

the approach removed any pixels which fall within any of the specified dy-

namic regions. The technique handled them in a special way, as they were

highly likely to be different in the reference image compared to the oracle im-

age. However, rather than simply reporting the set of difference pixels, the

approach executed an additional step in this first “phase”. It grouped the dif-



2.4 detecting presentation failures in web pages 35

ference pixels into clusters representing the difference presentation failures de-

tected.

The fault localisation approach was also drastically improved. The foundation

of the approach was again the R-tree. This time though, the approach utilised

domain specific heuristics devised through manual analysis of false negative

results to add other potential faulty elements to the result set. For instance,

given an element e is in the faulty element set but its neighbours (eg., parent,

children and sibling elements) are not, then this step added in any missing

elements that could potentially be faulty.

Finally, the approach ranked the set of potentially faulty elements in order of

likelihood to be directly responsible for the failure. This allowed the developer

to immediately focus their attention on the likely source of the issue. This in

turn reduced the amount of time required for the overall debugging process.

The approach used the following four heuristics:

• Contained Elements: if an element’s parent and all of its siblings are in

the faulty set, the parent is more likely to be the cause of the fault.

• Overlapped Elements: if an element has at least one faulty child, but not

all, then the fault is more likely to originate in the child.

• Cascading: any element that was simply displaced, with no change to its

individual appearance, is “more likely to have been moved by the faulty

element than to actually be the faulty element” [90].

• Pixels Ratio: an element with a higher proportion of faulty pixels is more

likely to be the faulty element.

When evaluating whether the dynamic regions contain presentation failures or

not, the approach used one of two different functions, depending on the type

of the dynamic region in question. For instance, if it was a dynamic text region,

then the function checked the CSS properties applied to the elements in the

region matched those defined in the oracle image. The approach then repeated

the previous steps of detection, localisation and ranking to identify and report

presentation failures in the dynamic regions of the page.

The evaluation of this improved technique used a very similar experimental

setup to the previous work. Eight web pages were randomly mutated to intro-

duce presentation failures with a wide variety of visual impacts. The new PID

comparison algorithm was again capable of detecting 100% of the failures in-

troduced. The results also showed the iterative developments had a profound
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impact on the quality of the localisation. For instance, the localisation accuracy

of 77% achieved in [89] was improved to 93% using the new technique. Further

analysis of the results showed the element ranking heuristics were also effec-

tive, with the faulty element ranked in the top five elements in 45% of cases,

and in the top ten in 70%. This meant the developer would likely have the abil-

ity to identify and remedy the fault quickly. Finally, the study compared the

approach’s performance to that of humans performing the detection and locali-

sation tasks manually. The human participants achieved just 76% detection and

36% localisation accuracy, respectively. This is substantially lower than the re-

sults for the proposed approach. The humans also required substantially more

time to perform the tasks than the automated approach.

The authors have released the approach as an open-source tool, WebSee, avail-

able for download and use by the public [91]. Promising early feedback indi-

cates the tool has good potential for real-world use. The tool was then extended

to the problem domain of debugging presentation failures to make it easier for

developers to fix issues by highlighting the most likely “root causes” [88].

Developed by a software team at the BBC, Wraith is a screenshot comparison

tool for responsive web pages [14]. It works by comparing the visual appearance

of two versions of a web page. It then reports any differences to the user in

a gallery, which may potentially be presentation failures. However, the novel

component of the tool is the way in which it obtains the screenshots. Normally,

the images are manually saved and stored so a user can load them at any time.

In contrast, Wraith generates the images “live”. It automatically renders both

the oracle version and test version of the web page in a browser. It then extracts

images of each version and then performs the comparison step. By doing this,

any dynamic content which may change with no user intervention will show

identical content in both versions. If the tool saved one image at an earlier time

and then loaded it, the image comparison process would likely report a high

number of false positives.

A potential usage scenario for the tool is for testing CSS changes in a devel-

opment/sandbox environment against the current live version of a web page.

In this scenario, the developer will easily be able to observe the impacts of the

changes. However, one key downside to the approach is that manual inspection

of the difference images produced is still required. The human must also spend

time determining the root cause of any failures detected. Due to Wraith’s in-

dustrial origins, no official empirical study has been conducted to determine

the effectiveness of the tool. However, the developers of the tool have evaluated
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its performance and recently trialled the tool as part of their regular devel-

opment and testing cycle. They reported a significant reduction in the testing

effort required and fewer bugs remaining undetected.

Other automated screenshot comparison tools have also been developed. For ex-

ample, a developer at Google presented instructions on how to use Puppeteer

(an alternative to Selenium) to gather screenshots of two different versions of a

web page at various viewport widths and automatically compare them. How-

ever, this approach suffers from the same problem, in that if the image compar-

ison reports a difference, a human must still manually inspect the result [45].

Selay et al. [128, 129] also proposed an approach using image comparison to

find presentation failures in web applications. Their approach was similar to

both WebSee and Wraith in that it compared two screenshots; one from a

staging environment and one from the live version. However, the approaches

diverge significantly when one considers the image comparison itself. The au-

thors said comparing on a pixel-by-pixel basis was too labourious and wanted

to streamline the process while still detecting as many issues as possible. Their

approach sampled pixels from the whole set of possible pixels and compared

these to detect issues, substantially reducing the time required to detect issues.

Fighting Layout Bugs is a library for detecting layout bugs in web pages, first

introduced in 2009 [51]. It consists of a suite of detectors, each targetting a

specific category of layout bug. Examples are images with invalid URLs or

pieces of text that are nearly overlapping. Unfortunately, the current iteration of

the tool is insufficient for testing most modern web pages. The limited detectors

are only capable of revealing a small subset of layout issues.

Internationalisation Presentation Failures

Alameer et al. defined a subcategory of presentation failure called internation-

alisation presentation failures (IPFs). These are differences in the appearance of a

web page when a browser renders it in two different languages. This is in con-

trast to Mahajan et al., whose approach compared an oracle screenshot and the

page’s actual appearance. Translations between certain pairs of languages can

often result in strings of vastly different lengths. These strings can introduce

layout issues as various elements on the page expand, contract or even move to

handle the different text.

Rather than using computer vision techniques, the approach instead employed

models based on the visual rendering of the web page to detect the issues. It

paid specific attention to the “visual relationships and relative positioning” of
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Figure 2.8: An example of a Layout Graph.

HTML elements. This model, the layout graph (LG), is a complete graph where

each node representing an HTML element is connected to every other node.

The edges connecting them describe their visual relationship. To help illustrate,

Figure 2.8 presents a simple example. The web page shown by part (a) corre-

sponds to the LG in part (b). As the largest element, A, is the container for the

other three, the respective edges have the “Contains” attribute. Meanwhile, as

B and C are on the same row, the edge between them has the “West” attribute,

while the attributes “Top-Align” and “Bottom-Align” model the fact they are

equal in height.

The approach built the layout graph by first analysing the Document Object

Model (DOM) to identify all of the elements present in the web page. It then

used properties such as each element’s coordinates to determine the relation-

ships between pairs of elements.

The approach detected IPFs by building layout graphs for both versions of the

web page and then comparing them. Differences in the graphs could potentially

represent IPFs the developer should be aware of. Finally, to make the output

reports more beneficial and easier to use, the approach analysed the set of

potentially faulty elements identified in the previous step and ranked them in

descending order of how likely they were to be the offending element.

The authors implemented the whole approach as a prototype tool, Gwali,

and evaluated it on a corpus of 54 web applications selected from a wide va-

riety of sources. They compared it against three other tools; WebSee (previ-

ously described in this section), X-Pert (introduced in Section 2.4.3) and Fight-

ing Layout Bugs. When detecting IPFs, Gwali demonstrated identical 100%

recall to WebSee and X-Pert. It also achieved substantially higher precision
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(91% against 55%), showing the potential of the approach. The evaluation then

showed the localisation techniques applied by Gwali were also effective. They

consistently ranked the actual faulty element in the top five elements reported

to the user, providing further empirical evidence of the tool’s usefulness.

Cross-Browser Inconsistencies

There has been a reasonable body of work in the literature addressing the

problem of cross browser incompatibilities, or XBIs. These are differences in the

functionality or the appearance of a web page when viewed in different web

browsers. While this literature review focusses primarily on visual presentation

failures, this section also describes the components targetting functional XBIs

to give a better overall view of the approaches.

The main motivation for this work was the severe lack of standardisation in

terms of client-side behaviour between different web browsers. These led to

many inconsistencies in the way a web page both looked and appeared across

different browsing environments. XBIs can vary drastically in both nature and

severity. On one end of the spectrum, they can be small cosmetic changes

such as subtle changes in fonts. On the other, they can be critical functional

issues like navigation links not redirecting the browser anywhere. Researchers

stressed trying to detect XBIs manually required a considerable amount of ef-

fort and was also error-prone. This led to the development of the various auto-

mated techniques.

The first major piece of research addressing the problem of XBIs was WebDiff,

an approach proposed by Choudhary et al. It aimed to detect both layout and

functional inconsistencies (although the former was the main focus) and report

them to the user [33]. The amount of manual effort required in order to obtain

any meaningful benefits plagued previous commercial and research tools tar-

getting the problem. Therefore, the authors designed WebDiff from the outset

to be a fully automated technique for XBI detection.

The technique used the previously introduced concept of back-to-back testing,

where the same application is run under different hardware/software environ-

ments with any differences in behaviour likely representing problems. First,

the approach rendered the web page under test in two different browsers. It

ensured the browser characteristics such as the viewport size were the same

in both, to allow a fair comparison. Then, it captured full page screenshots of

the web page in each browser. The DOM was also queried in each browser to

obtain a number of properties related to each element on the web page. These
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included the unique XPath of each element, its coordinates and whether it is

clickable or not.

After completing this data collection phase, the approach employed a two-part

analysis to identify XBIs. The first of these was structural analysis, which com-

pared the collections of DOM nodes extracted from each of the browsers. The

aim was to “match” nodes across different browsers. The approach did this

by computing a measure of similarity between the nodes, using information

such as the tag name, XPath and properties of the elements. It reported any un-

matched nodes at this stage as XBIs. The technique then moved onto the next

stage, visual analysis. Here, it compared the matched nodes in terms of their

actual visual appearance as rendered in the different browsers. Properties such

as the element’s position, size, visibility and appearance were all considered

when determining whether an XBI was evident. Finally, it collated any identi-

fied inconsistencies into a report which was output to the user. They could then

use it to debug and fix any issues found.

The evaluation of the approach used a pool of nine web pages and three popu-

lar browsers, Mozilla Firefox, Google Chrome and Microsoft Internet Explorer.

Overall, WebDiff detected 121 different XBIs, split between positional, size and

general appearance differences. The results also showed a reasonably low false-

positive rate of 17%. The authors deemed this to be an encouraging result, as

given 10 reported XBIs to evaluate and debug, on average more than 8 of them

would be actual XBIs. However, due to the huge number of potential root causes

for each XBI, the debugging and fault-patching processes were still manually

labour-intensive.

Mesbah and Prasad developed CrossT [105], another fully automated solution

for detecting XBIs. The main difference between this work and that of WebDiff

is that CrossT could identify trace-level behavioural inconsistencies as well as

the more visual XBIs identified on individual pages.

The approach focussed more on what they referred to as “functional consis-

tency” issues, which occur when a web site behaves in a different way across

different browsers and platforms. The approach gave the actual look and feel

of the web site a lower priority. It began by exploring the application to build

a navigation model, using CrawlJax (a tool for exploring modern web applica-

tions [104]) to interact with the web page (e.g., by clicking navigation buttons).

It also analysed the DOM after each interaction to identify the different states

of the application. For ease of understanding, the approach split the model into
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two tiers. In the top level, the state graph, each state represented a screen ob-

served by the user. The connections between various states represented the user

actions required to get from one screen to another. The model also recorded the

visual appearance of the application in each state using an abstracted version

of the DOM. This second tier is the screen model.

As with WebDiff, the approach detected XBIs using a pairwise comparison

of navigation models, done in two phases. Firstly, the approach compared the

state models to detect any trace-level XBIs. This comparison also paired match-

ing screens from the two navigation models. The second part then compared

these matched screens via their DOM representation to identify screen-level

XBIs. This process took the two DOM trees and filtered out any known com-

patibility issues in the internal DOM between browsers. They did not represent

actual XBIs and would therefore be false positives. The approach considered

any remaining differences to be real XBIs. The report output by the tool pre-

sented these XBIs to the user in the form of snapshots of the issue in the page

and the highlighting of the offending parts of the screen model.

The technique was empirically evaluated on 5 web sites, using difference com-

binations of Chrome, Firefox and Internet Explorer as the reference and test

browsers. Again, this was a fairly small scale empirical study in terms of the

number of subjects. However, the authors claimed 5 web sites was enough to

obtain reliable and generalisable results. To form baselines to compare against

CrossT, the authors manually inspected the five subject web pages to iden-

tify any trace-level and screen-level differences. The authors also stated that

determining whether reported screen-level XBIs are actual XBIs or not is signif-

icantly more difficult than for trace-level XBIs, due to the subjective nature of

presentation failures.

When detecting trace-level XBIs, the approach was highly effective. It detected

44 true positives with just 2 misleading false positives. For screen- level XBIs,

the false positive rate was higher, but still significantly lower than that of the

baseline comparison technique. This indicated the superiority of the proposed

approach. However, while CrossT detected a large amount of XBIs, it could not

detect them all.

CrossCheck [32] was the result of a collaboration between the authors of Web-

Diff and CrossT. CrossCheck took advantage of the benefits of both while mit-

igating the shortcomings. WebDiff focussed mainly on appearance or “screen-

level” differences and CrossT targetted more functional “trace-level” differ-
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ences. Therefore, the combined approach tried to provide a more rounded tech-

nique for a wide variety of XBIs.

The extracted models and the approach for detecting trace-level functional XBIs

were very similar to those used previously. However, the visual comparison

component of the technique underwent a major change. The DOM differenc-

ing employed by CrossT was rather simplistic for the problem domain. Fur-

thermore, the comparison heuristic used by WebDiff was susceptible to miss-

ing many important visual differences. To address this, the new approach em-

ployed machine learning to provide a more comprehensive XBI detection tech-

nique. It compared each pair of matched screen-element pairs in terms of their

visual appearance and reported them as XBIs if the algorithm found them to

be different. More specifically, rather than the binary techniques used in Web-

Diff and CrossT, CrossCheck used a decision tree classifier. Although this

was less complex than other types of classifier, the results showed it to be very

effective for this problem domain. The classifier considered five features: size dif-

ference ratio (SDR), displacement, area, DOM text difference and χ2 image distance,

which used colours histograms to compare the appearance of the matched ele-

ments. These features were specifically chosen as they frequently represent the

manifestation of actual XBIs, according to the authors’ experience during their

previous work. As with all machine learning approaches, the classifier required

training before it could detect XBIs. To do this, the authors used 10 web pages

not included in the study, that all contained known XBIs. The collections of

screen-element pairs from each web page were then manually labelled as ei-

ther true (represented an XBI) or false (did not), and provided to the classifier

as training data. In total, the authors provided 2,137 labelled examples. 178 of

these were true examples, which should be more than sufficient for the classi-

fier to learn what does and does not constitute a visual XBI. Finally, the reports

produced by the tool were also improved in this new version. It grouped related

cross-browser differences (CBDs) together into clusters representing individual

XBIs. This reduced the manual effort required to fix the detected XBIs.

The evaluation of CrossCheck used a pool of seven web applications. The

results found it capable of detecting a wide variety of cross-browser differences

and clustering those CBDs into the relevant XBIs. When compared to CrossT

and WebDiff, CrossCheck was significantly more effective. It detected 314 true

CBDs compared to 49 for CrossT and 119 for WebDiff. It was also considerably

more precise, demonstrating a 64% false positive rate, compared to 98% and

79% for the other two rival approaches.
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Figure 2.9: An example of an Alignment Graph.

The approach was further enhanced with X-Pert [123]. To begin, the authors

conducted a study of real-world XBIs. They determined several key categories

of XBI; namely, structural, behaviour and content errors. This study also found

structural XBIs to be by far the most common category of XBI. Again, the ap-

proach for detecting behaviour and content XBIs was very similar to that of

CrossCheck. However, for detecting structural XBIs they developed a novel

approach called an alignment graph.

The alignment graph (AG) captured alignment relationships between pairs of

elements on a web page. Web page elements formed the nodes of an AG, while

relationships between pairs of nodes formed directed edges. The AG is inher-

ently similar to the layout graph. Therefore, this section revisits the simple

example from Figure 2.8 to demonstrate how the alignment graph works, as

shown by Figure 2.9. The main difference is that the AG is a tree-based struc-

ture, whereas the LG is a complete graph. Therefore, only elements in specific

types of relationships have edges between them. These edges are of one of two

types. A parent-child relationship exists when one web page element, the parent,

is the direct container of another, the child. This is in contrast to the LG, which

used an attribute to model containment. A sibling relationship exists between

two elements that share the same parent. Using the example, the edges between

A and the other three elements are instances of parent-child relationships. The

figure shows these as solid lines. Sibling edges exist between each combination

of B, C and D and the figure uses dotted lines to show these.

The algorithm for constructing the AG extracts relationships from the DOM of

the page. It uses the co-ordinates of the rectangles of each element to determine

which elements to connect with relationship edges. It then further assigns a set
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of attributes to each relationship. These further describe the nature of the align-

ment between pairs of elements relative to one another. Child elements may be

left-justified (“LJ”), right-justified (“RJ”), or centre-justified (“CJ”) within their

parents. They may also be potentially top-justified (“TJ”), bottom-justified (“BJ”)

or middle-justified (“MJ”). Sibling relationships may represent the first node be-

ing to the left of (“L”) or right of (“R”) the second. In this case, the elements may

be also aligned on their top edges (“TE”) or bottom edges (“BE”). Additionally,

an element may be above (“A”) or below (“B”) its sibling. In this case they may

also align on their left edge (“LE”) or right edge (“RE”). In this regard, the main

difference between the two representations is simply the names assigned to the

attributes, e.g., “North” in the LG and “Above” in the AG.

More formally, Choudhary et al. [124] defined the alignment graph as a 5-tuple

AG = (E ,R, T ,Q,F ). E is set of HTML elements on the web page, which form

nodes in the graph. R ⊆ E × E is the set of relative alignment relationships

that exist between HTML elements on the page. That is, ∀(e1, e2), e1 ∈ E and

e2 ∈ E , e1 is a parent of e2 or e1 and e2 are siblings. Each relationship forms

an edge in the graph, with a single edge being sufficient to represent a sibling

relationship. T = {pc, s} is the set of relationship types (i.e., parent-child and

sibling), while Q = {LJ, RJ, CJ, . . . } is the set of relative alignment attributes

for each relationship. Finally, F : R → T × 2Q is a function that maps each

edge to its relationship type and to a set of relative alignment attributes.

The approach began by generating the alignment graphs of the two web pages.

Then, it compared them and reported any discrepancies to the user as structural

inconsistencies. Results showed the overall technique to be a significant im-

provement over CrossCheck. X-Pert demonstrated both substantially higher

precision and recall. On average, X-Pert achieved 76% precision in comparison

to CrossCheck’s 18%. It also demonstrated a 12% average increase in recall, up

from 83% to 95%. X-Pert also reported a significant reduction in the number

of duplicate reports of XBIs, down from 52 to just 1. This further illustrated the

effectiveness of the approach. According to the authors, one of the main contrib-

utors to this increase in performance was the alignment graph. It is therefore

clear that the alignment graph presents a very useful approach for modelling

the layout of modern web pages.

Semenenko et al. focussed solely on visual XBIs in their tool, Browserbite [126,

131], in a similar fashion to Choudhary et al. with WebDiff. However, their ap-

proach was very different. Rather than primarily using the DOM, Browserbite

is based entirely around image-comparison. The approach was split into three
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key stages; screenshot capture, screenshot comparison and classification. The first

stage captured a full-page screenshot of the web page in each browser. Then,

the approach splits each image into regions of interest (ROIs), based on factors

such as borders in the web page. Next, the approach attempted to match each

ROI from the oracle image to an ROI in the comparison image. This is similar to

previously described approaches that attempted to match individual web page

elements. Browserbite reported any unmatched ROIs as potential incompati-

bilities. Next, the approach took each pair of matched ROIs and computed the

similarity between them. If this similarity fell below a specified threshold, the

approach again reported the ROI pair as a potential XBI.

The original version of Browserbite only performed the first two stages. How-

ever, after performing an initial empirical evaluation, the authors found that in

order to detect a high proportion of actual XBIs, they had to configure Browser-

bite in such a way it reported many false positives. Therefore, they added the

classification module to filter out these false positives and only report true posi-

tives to the user. It did this by employing machine learning. Firstly, the authors

used crowdsourcing to classify 1200 pairs of matched ROIs as either true XBIs

or “non-issues”. Then, they trained a neural network using this labelled data

which analysed a variety of features (e.g., the colour histogram of the images,

the position on the web page and the similarity score) to decide whether a

given mismatched pair represented an XBI or not. The subsequent empirical

evaluation found this approach capable of achieving high levels of both recall

and precision.

WebMate was proposed by Dallmeier et al. and designed to thoroughly and

automatically test complex web applications [41]. It functioned by exploring

the different states of the application, building a usage model as it did so. This

model represented how specific user interactions affected the application state.

As with previous approaches, it used an abstraction of the DOM to represent

the appearance of the application in each state. The authors also implemented

several refinements to handle key issues such as state abstraction and interac-

tive elements. This aimed to make the produced model more usable. It can

perform cross-browser testing by comparing a pair of usage models from two

different browsers and is capable of detecting both functional and aesthetic

XBIs. It reported them to the user in the form of a textual description of the

issue and a pair of screenshots highlighting it in both the reference browser

and the test browser.
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Eaton and Memon proposed Ice [47], one of the first automated techniques for

detecting XBIs in web pages. The approach used an inductive model that rep-

resented how web applications should perform in each configuration (such as

different browsers). This model was based on a collection of previously clas-

sified “good” and “faulty” web pages, which were manually provided by the

user. The model then reported a list of potentially faulty HTML tags that the

developer could use to debug and fix their site. Finally, the user could manually

update the model by adding more instances of good and bad pages to make

it more effective in the future. The evaluation of the approach showed the pro-

posed approach was effective. It also emphasised the scale of the XBI problem,

as ICE found serious XBIs in many popular web applications.

Specification Failures

Halle et al. [61, 62] took a rather different approach to detecting what they

called “layout-based bugs”. They began with a detailed case-study of 35 web

pages containing more than 90 layout-based bugs. They then devised a categori-

sation of layout and behavioural bugs. Examples included misaligned elements,

overlapping elements and elements overflowing out of their container. Next,

they defined a declarative language a developer/tester could use to express the

intended layout of the web page. A key focus was it should be highly readable

and easily understandable for humans. This language, Cornipickle, worked by

first selecting elements on the web page. Then, it verified the actual layout and

appearance of those elements in the browser matched the specified constraints

defined by the user. The authors then showed how Cornipickle was capable

of expressing layout constraints to detect all of the layout bugs identified in the

case study. Figure 2.10 presents a simple example constraint. It defines a group

of navigation links (HTML li elements) should always be in a row. It does this

by checking they all have the same top and bottom coordinates.

For each x in (li)

For each y in (li)

When x is not y

x's top equals y's top

And

x's bottom equals y's bottom

Figure 2.10: An example of Cornipickle’s formal specification.
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They then implemented the approach in a prototype tool of the same name.

This tool verified the web page satisfies all of the defined constraints in real-time

as the user interacted with it. It reports any violated constraints to the user in

the form of highlighted web page elements and error messages. This allows the

user to test the layout at different viewport widths and thus the tool provides

a small level of support for the testing of responsive web design. However, the

approach suffered from one major shortcoming. Its effectiveness was entirely

dependent on the quality of the produced layout specification. A poorly written

specification would not produce good testing results. Furthermore, due to the

logical foundations of the language, using it to declare the intricacies of modern

responsive web pages is likely to be both error-prone and labour-intensive. This

further reduced the usefulness of the approach.

As previously discussed, automated unit testing is a common practice among

software developers. For the problem domain of web page presentation failures,

this type of testing has recently become possible. The Galen framework [133]

gives developers and testers the ability to define the layout of their web site

across multiple resolutions using a simple specification-based syntax.

Figure 2.11 presents a simple example. It shows the two main components of

Galen ’s specification syntax. The first, selection, involves defining the location

of individual elements on the web page. This allows Galen to test their char-

acteristics and layout. Galen can identify elements in three ways; element id,

CSS selectors or XPath. The second component is specification. This involves

detailing the specific features which should apply to each element defined in

the selection phase. This code example presents a width specification for the

menu element. Additionally, it shows how Galen’s syntax can define different

specifications for different categories of device. A user can write separate dec-

larations for mobile and desktop devices, highlighting Galen’s focus on testing

responsive web design.

Given the similarity between the two approaches, one can compare Cornipickle

and Galen. Halle et al. stated that readability and ease of understanding were

high priorities when developing Cornipickle. However, given its logical foun-

dations, there is potentially a steep learning curve for users who perhaps do

not have sufficient background knowledge. In contrast, as Galen is a unit test

framework, it is likely to be easy to use for users with vastly different levels of

experience.
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==== SELECTORS ====

@objects

header id page-header

menu xpath //div[@id='header']/ul

header-logo css #header img

==== SPECIFICATIONS ====

@on mobile

menu:

width: 100% of header/width

@on desktop

menu:

width: 250px

Figure 2.11: An example of Galen’s selection and specification syntax.

Once a developer has defined their specification for the responsive web page,

Galen provides the ability to run the web page against the specification at any

resolution. This allows for testing on the myriad of devices currently in the

market. The framework also generates an informative and easy-to-understand

HTML report detailing any failed tests in the specification. Developers and

testers can then use this to fix any defects in the page.

Unfortunately, like all unit test frameworks, Galen ’s effectiveness is dependent

solely on the quality of the specifications provided. These must be manually

generated, which exacerbates the problem. Given the vast complexity of many

modern responsive web sites, this could prove to be very labour-intensive and

possibly error-prone. Also, the design and layout of the web site can often

change dramatically with each iteration. In this case, one may have to repeat the

entire process. This is because refactoring the original specifications to match

the latest version of the site may actually require more effort than beginning

from scratch.
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2.5 mobile presentation failures

Just as cross-browser incompatibilities can arise from differences in how certain

browsers render a web page, presentation failures can occur on certain sizes of

device. For instance, a browser might render a web page perfectly on a desktop

computer. However, the page may contain presentation failures on devices with

smaller viewports, such as smartphones or tablets. These often stem from the

incorrect implementation of adaptive or responsive web design. This highlights

the problematic and error-prone process of creating mobile-friendly web pages.

Despite the prevalence of mobile devices, there is currently almost no previous

work in the literature addressing the problem of presentation failures in mobile

web applications. Therefore, after describing this previous work, this section

discusses the various problems specific to this problem domain. Then, it revisits

the techniques previously described and explains why they are ill-suited to this

problem. Finally, it presents a variety of tools and techniques used by human

testers to identify mobile presentation failures.

Ryou and Ryu [125] addressed what they called visibility faults (VFs). They de-

fined these as issues where a specific element on a web page demonstrates dif-

fering visibility across different viewport widths. As such, the approach made

an attempt to address responsive design. Like many other approaches, the foun-

dation was a model of the web page. In this case, the authors proposed the UI

State Graph, representing the states of the web page and the transitions between

them. Each state of the graph detailed the visibility of so-called event objects,

which are DOM elements that have at least one event handler (used to trigger

some behaviour) assigned to them. The visibility of each element can be absent,

fully- covered, partially-covered, off-screen or normal). The transitions of the graph

denoted the switch from one application state to another by executing the event

handler of a particular event object.

To detect visibility faults, the approach built the UI state graphs of the web page

at a set of different viewport widths. It then used the assumption that if a partic-

ular event object exists in two different UI state graphs, then its visibility should

be the same in both. The authors defined two subcategories of visibility fault.

The first, inconsistency faults, occur when the visibility of a particular event ob-

ject is different in a pair of graphs. The second, more severe subcategory, covered

errors, occur when the object in question has the visibility “fully-covered” for

one of the two graphs. In these cases, the user cannot click the object and fire its
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event handler, reducing the usability of the web page substantially. Finally, after

detecting any visibility faults present, the approach generated “replay descrip-

tions”. These are sets of instructions on how to recreate the fault for debugging

and fixing purposes.

The approach was implemented into a tool, VFDetector and then evaluated on

35 real-world web pages. Results showed the approach could detect visibility

faults with very high precision (only 9 false positives out of 492 total reports),

suggesting the approach has great potential for addressing this clearly impor-

tant problem. Unfortunately, the approach has a couple of drawbacks. Firstly,

while it does target responsive design, it essentially runs multiple times at dif-

ferent resolutions and so is therefore prone to missing presentation failures

occurring in between the tested viewport widths. Secondly, visibility faults are

only one subcategory of presentation failure and therefore a more comprehen-

sive approach is required to thoroughly check modern responsive web pages.

2.5.1 Difficulties

There are currently several issues hampering effective and efficient checking

and testing of mobile-friendly web sites. The Quality Control Team at Segue

Technologies presented what were, in their view, the main three challenges [163].

The first is the testing environment, which contains such a plethora of different

devices, operating systems and web browsers. This results in a huge number of

different configurations to test a web site on. For instance, in 2015, OpenSignal

reported over 24,000 unique devices running the Android mobile operating

system [2].

The second key challenge is the misleading design of responsive web sites. Testers

may not always know exactly what they should be testing on each device. They

may not know how to verify whether the web site satisfies the defined require-

ments or not. For instance, they may not know the expected layout behaviour

under a particular configuration. This could be attributable to a lack of graph-

ical mockups or written specification. In this scenario, a tester has to make a

subjective decision as to whether presentation failures are present. This is in it-

self a threat to the quality of the testing, as different testers may have differing

opinions on the same web page. This can be problematic as a web page could

easily go live on the web when it contains presentation failures.
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The third and probably most important challenge is the lack of an automation

framework. This means testing on a wide variety of devices is a purely manual

process. Testing on a device by device basis is both time-consuming and error-

prone. In many cases, this leads to insufficient testing, and in some cases, no

proper testing at all. Most of the available technologies and tools discussed

in this section use automation for parts of the testing process. However, they

require considerable manual effort in the rest of the process, which limits their

usefulness in the real world.

These issues are well recognised among web development and testing profes-

sionals, as they have been evident for several years. Furthermore, as more de-

vices come into circulation, the testing environment becomes even more frag-

mented. This is only likely to exacerbate these problems. This suggests that

developing techniques for responsive design testing addressing all three chal-

lenges is a worthwhile objective.

2.5.2 Current Tools and Techniques

If a developer or tester wishes to replicate the browsing environment of end

users as faithfully as possible, the best option is performing the testing directly

on real devices. The tester can evaluate non-aesthetic characteristics such as web

page response times and the touch sensitivity of the device. This is impossible

without testing on the physical device. Furthermore, by inspecting the minutiae

of the responsive design on the exact same hardware configuration as the end

users they can potentially detect issues other testing approaches simply would

not.

Recent advances now allow the automation of interactions with devices, such

as clicks and swipes. However, the burden of actually inspecting the appear-

ance of the web page and verifying its correctness still falls upon the develop-

er/tester. Suppose a developer has to test a fairly simple responsive web page.

Performing manual inspection on even a small number of devices is likely to

be fairly labour-intensive. Doing so on a much more complex web page on a

larger subset of devices would likely be infeasible for a single tester. Even a

small testing team with a limited budget may struggle. This perhaps goes some

way to explaining why responsive web pages often do not undergo thorough

testing.
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In an ideal world, to ensure a responsive web page was fully device and plat-

form agnostic, a developer would test it on all possible hardware and software

configurations. In the real world however, this is completely infeasible, in terms

of both effort and cost. Nowadays, even mid-level devices can cost £500, with

flagship devices often demanding prices approaching £1000. Therefore, testing

requires a degree of prioritisation to ensure the number of devices and plat-

forms tested is manageable.

Despite recent device proliferation, a large proportion of users are concentrated

in a small, select group of devices. This allows people to more easily test web

pages on the browsing environments of the large majority of their user base.

They can also substantially reduce the overall testing workload. For instance,

Khalid et al. investigated the devices used to download the most popular free

Android applications. They found by streamlining testing to focus on just the

most popular 20% of devices, it could cover 80% of the total user base [80]. Mon-

tague and Hogan echoed this advice. They advocated focussing on the devices

producing the bulk of the web traffic while also trying to keep the devices se-

lected as diverse as possible [69]. Obviously, extrapolating these findings from

Android applications to responsive web pages is potentially risky. Responsive

web pages are accessible from any web enabled device rather than just those

running one OS. However, the findings show intelligent testing strategies based

on usage data can reduce testing effort significantly. What’s more, with services

such as Google Analytics [34] this usage data is readily available for anyone to

use.

One potential problem with prioritising test devices based on popularity is

these devices often have similar characteristics. This means the testing may

overlook some device-specific issues occurring on less popular devices. An al-

ternative is to test on devices that all have different characteristics. However,

this can potentially lead to testing occurring only on old or unpopular devices,

which makes the testing not worthwhile. Therefore, Vilkomir et al. proposed

an approach that combined the two [140]. They used combinatorial approaches

which struck a balance between selecting popular devices to detect issues af-

fecting lots of users and selecting additional devices with a diverse array of

characteristics. They performed a pilot study comparing their approach to that

of simply randomly selecting devices. The results showed that their proposed

approach detected more issues than random device selection in the majority of

cases, and in only one case did random device selection perform better.
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Once a developer has selected a set of test devices, two options are available.

Firstly, they could purchase all of the devices and perform all the testing “in-

house”. While this is probably the most convenient option, it is potentially

a very expensive solution even with very few devices. The alternative is to

use a “device lab”, where one can rent a huge array of different devices. This

originally involved the testers travelling to the device lab itself. However, the

recent advent of “device labs in a box” means the testing can again happen

in-house, but without the long term financial commitment of purchasing a set

of devices [82]. For smaller development companies with lower budgets and

fewer web sites to test, this can be a more sensible choice. They can reap the

majority of the benefits of testing on real devices at a substantially lower cost.

If obtaining real devices for testing is not possible, using emulators is a viable

alternative. Emulators allow the developer or tester’s host machine to mimic

the behaviour of a particular system or device. In this scenario, they mimic

the different devices the user wishes to test their web page on. There are sev-

eral options available to a developer. The iOS Simulator allows the user to test

their software on a variety of Apple devices, such as the iPhone and iPad. It

also has the ability to change the software and hardware combinations used.

Unfortunately, it is only usable on Apple machines, so developers and testers

running different operating systems must use alternative solutions. Similarly,

the Android Emulator, included with the Android Software Development Kit

(SDK) [72], allows for testing on a range of Android devices. A very comprehen-

sive emulator, it allows for the simulation of incoming calls, location specifica-

tion, different network speeds and device rotation, among many other features

and interactions.

Third-party services such as BrowserStack [21] provide access to hundreds of

real devices in the cloud. Developers can then pay a subscription fee to use them

for testing purposes. Importantly, BrowserStack recognises the fragmentation of

the mobile device landscape. They use insights gained by analysing the usage

data of 36,000 customers and global market trends to produce three different

“tiers” of device testing. They advocate testing on steadily wider varieties of

popular devices to achieve higher levels of market coverage. This is a similar

approach to Khalid et al. [80], but using actual web-specific usage data rather

than app download data. Even the lowest tier achieved a respectable level of

coverage (40% of viewports and 60% of device sizes). This further indicates the

potential benefits of prioritising the test devices used.
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Most emulators allow for in-depth interaction with the web page under test

and the emulated device. They are therefore well suited for testers who want to

perform a more thorough quality assurance process. They can emulate a huge

variety of devices without the costs associated with actually buying the physical

devices. Finally, they can also be useful for recreating reported bugs or issues

on a particular device or software version. This makes debugging much easier,

especially if the device in question is unavailable to the developer or tester.

Viewport resizers allow a user to resize the effective viewport of the browser to

a certain dimension. The user can then inspect the web page’s appearance for

issues. Some only allow for resizing to the sizes associated with common de-

vices (e.g., Window Resizer [155]). However, others such as ResponsivePX [132]

allow for the fine tuning of the viewport size on a pixel-by-pixel basis, as shown

by Figure 2.12. This can be useful for targetting specific devices and for refining

media queries to improve the overall responsive behaviour. They can be a good

option if specific devices are not required; instead a user can test at common

viewport widths instead. Unfortunately, the manual effort required is large. The

user must regularly resize the browser itself and perform the manual inspection

of the layout. Despite this, most modern browsers now have viewport resizing

functionality built-in. For instance, Firefox has “Responsive Design View” [3]

and Chrome has “Device Mode” [15]. This indicates developers and testers do

find them useful in practice.

Figure 2.12: ResponsivePX, an example of a viewport resizer.

Screenshot tools are essentially simplified viewport resizers. Given a URL, they

render the web page at a number of common resolutions. These often represent
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different categories of device. They therefore allow a developer to obtain a gen-

eral impression of how their site appears on different types of device. However,

they present the web page at only around 5 resolutions. This makes them inca-

pable of providing the levels of coverage required to adequately test a respon-

sive web page. A common example is the online tool developed by Matthew

Kersley [78]. This renders a web page at screen widths of 240px, 320px, 480px,

768px and 1024px, as shown by Figure 2.13. It does not however, give the de-

veloper the option to change the viewport widths tested.

Figure 2.13: Kersley’s Screenshot Tool

2.5.3 Applying Previous Techniques

The techniques of Mahajan et al., are effective for detecting general presenta-

tion failures between a design mockup of a web page and its actual appear-

ance. However, they would unfortunately be very difficult to apply to a mobile

testing scenario, as they operate at a single viewport width only. They would

require design mockups at a very high number of widths, making the approach

massively labour-intensive.

The approaches for detecting internationalisation presentation failures and cross-

browser incompatibilities are also unsuitable. One could modify an approach to

render the web page under test in the same browser at two different viewport

resolutions, rather than in different languages or different browsers. However,

the approach would likely report a large amount of issues. These would how-

ever be deliberate on the part of the developer, as the appearance of the web

page is intentionally different on devices of different sizes.
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Cornipickle allows developers to define the intended layout of a web page.

Unfortunately, the types of presentation failures it targets are generally static

in nature and it does not allow a developer to specify mobile-specific rules.

This makes it unsuitable for detecting failures manifesting at different viewport

widths. Galen on the other hand, is specifically designed for detecting presen-

tation failures in mobile web pages. It allows a user to describe the intended

appearance of the web page under test when viewed on devices of different

sizes. However, the main issue with Galen is its labour-intensive nature. A de-

veloper would have to spend a long time writing the initial specification for the

web page to cover all aspects of its appearance. Not only this, but any changes

to the web page would likely result in lots of failures being erroneously re-

ported. The developer would then have to spend more time modifying the

specification to match the new appearance. This currently limits its real-world

usefulness.

In conclusion, the current literature presents a variety of techniques addressing

the problem of detecting presentation failures in web applications. However,

there is a dearth of applicable techniques for the important problem domain of

mobile web applications. Furthermore, the array of developer tools are insuffi-

cient for accurate and reliable detection of mobile presentation failures. For this

reason, it is the focus of this thesis.

2.6 general web application and gui testing

Before concluding the literature review, this section looks at general web appli-

cation testing research. It also looks at previous testing approaches developed

for other types of graphical user interface (GUI) application.

Automated web testing has, in general, been drastically under-researched. Garousi

et al’s survey [52] evidenced this, as despite covering a decade-long period it

obtained a pool of just 79 publications to survey. However, this number was

the result of applying exclusion criteria. There were initially 147 publications in

the survey. In the five years since, more research has been conducted, but many

key problems in automated web testing remain open.

Because presentation failures are one of the largest categories of failure in web

sites [56], much research has been conducted to try to test and analyse web

sites. Wang et al.’s technique tried to improve the appearance of web appli-

cations [151], but presentation failures still frequently occur even with such
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approaches. Therefore, several papers attempted to address the problem [59,

60, 106, 152, 153]. However, these were not tailored to identify failures in a web

page’s responsive layout. More recent research such as that of Dallmeier [41],

Milani Fard [108] and Wang [150] do not even focus on the page’s appearance,

let alone addressing the specific problems associated with responsive design.

In 2003, Memon et al. proposed an approach called GUI ripping. This generated

a representation of both the appearance and behaviour of an application. The

approach then used this model to automatically create complex test cases which

could test the application [102]. Several models made up the representation of

the GUI. The first of these was the GUI forest, which was a representation of the

windows making up the GUI. However, the GUI forest alone was not enough to

generate test cases. Therefore, the approach next determined the various event

types compatible with each component of the GUI. It then collated these dif-

ferent events in an event flow graph (EFG). Finally, it generated an integration

tree (IT) to model the interactions between the different GUI components. This

allowed for a fuller understanding of the overall behaviour of the application.

The approach traversed the generated EFG and IT models to simulate a real

user. To create test cases it enumerated the different events encountered. To

ensure a satisfactory level of testing, it used coverage criteria to guide the test

generation. Once generated, one could execute the tests against modified ver-

sions of the application. Memon’s DART tool [101] demonstrated this regres-

sion testing, which allowed developers and testers to conduct nightly build

testing. Results showed it to be highly useful for detecting bugs.

The test case generation was substantially improved in 2007 through the use

of usage profiles. These are sequences of events executed on a system by a real-

world end user [20]. The motivation and thought process behind the technique

was as follows. By generating test cases with a high occurrence probability

in the final application, any faults detected are likely to be ones that an end

user would likely experience. The technique involved modifying the event flow

graph from [101, 102] and labelling each edge with a probability table showing

the prior probability and several conditional probabilities of the edge’s event oc-

curring. This resulted in a probabilistic event flow graph (PEFG). This reduced

the overall test suite size required to reach a certain coverage level drastically.

The generated test cases also detected many more faults per test case than other

approaches.
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Faria et al [55] also researched the possibilities of reverse engineering GUI mod-

els for testing purposes. Like Memon, their technique began with the automatic

exploration of the application to generate a model of the GUI. However, their

approach differed considerably from that point on. The model was manually

completed and validated, to ensure it missed no functionality. This also pre-

vented the model from inheriting any bugs in the system. The model was then

used to create an abstract test suite to test the GUI of the complete application.

Unfortunately, the complexity of modern applications caused significant prob-

lems. A disappointingly large amount of the model had to be created manually

(around 50%). This made use of the technique fairly labour intensive.

More recently, Moreira et al. [112, 113] have proposed pattern-based GUI testing

(PBGT), which aimed to provide a more platform or implementation-independent

approach to testing. They provided a language with which developers and

testers could build models of the application under test based on common

UI test patterns, such as user input boxes and login forms. Once complete, the

approach used this model to automatically generate test cases that exercise the

application under test. Initially, work was focussed on web applications, but

more recently the authors have adapted the approach to work on mobile appli-

cations [114].

Research has also investigated the automatic testing of the GUIs of mobile appli-

cations. For instance, Amalfitano et al. [9] extended the GUI ripping technique

and applied it to Android applications. One key difference, however, is the ap-

proach did not generate a model during the exploration of the GUI. Instead, it

generated test cases as it discovered new events and interactions. Amalfitano

et al. also investigated GUI failures caused by changing the orientation of the

mobile device, finding them to be prevalent in a wide variety of popular An-

droid applications [10]. Hu et al. used dynamic analysis and log file analysis

to detect GUI issues [71]. Meanwhile, Mirzaei et al. used symbolic execution —

a means of analysing a program to determine what inputs cause each part of a

program to execute — to perform their Android testing [110].

Moran et al. [79] implemented a technique similar to that of Mahajan et al. [90]

for detecting differences between the mockup image of a mobile applications

and its actual appearance, which they referred to as GUI design violations (DVs).

The authors identified a taxonomy of design violations, with the main cate-

gories being text (eg. font colour and style), resource (eg. incorrect image) and

layout (eg. incorrect size or position). The approach matched the GUI compo-

nents on each screen and then compared them using PID. Then, using the set
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of difference pixels, the approach checked whether the differences constituted

a design violation. Finally, it generated violation reports for the developers and

designers of the web page containing written descriptions of the issue, anno-

tated screenshots and links to the responsible lines of source code. To evaluate

the approach, the authors also developed a “synthetic design violation injection

tool” that modified the code of an application to introduce DVs. Results showed

the approach could detect DVs with extremely high precision and recall. Finally,

an industrial study of real-world developers using the tool implementation of

the approach showed it to have a noticeable positive impact on the workflow,

resulting in applications with better user interfaces.

Fazzini and Orso employed a similar approach to Choudhary et al. when test-

ing mobile applications [50]. Rather than searching for cross-browser incompat-

ibilities, they targetted cross-platform incompatibilities (CPIs). Their approach

crawled a mobile application on a reference platform (device and OS combi-

nation) to build a model of the UI. The approach then converted this model

into a test case, before executing this test case on a series of test platforms and

generated UI models for each. It finally compared the collection of models to

detect any CPIs in the application. The comparison checked for both functional

consistency by matching states across the models, as well as visual consistency

by comparing the actual appearance of elements in the application. Results

showed the approach capable of finding 96 CPIs across 5 applications and 140

different platforms, with minimal misleading false positives.

Meniar et al. [103] proposed a vastly different approach. They utilised the fact

almost every technology ecosystem has a set of guidelines dictating how the

user interface of software applications should look and behave. For instance,

Apple has guidelines for iOS [13], just as Google does for Android [12]. Follow-

ing these guidelines should in theory guarantee a reasonably usable, consistent

and aesthetically pleasing user interface. Meniar et al. proposed the first auto-

mated approach for verifying an application follows these guidelines. The tool,

Cornidroid, checks the appearance of an application in real-time and reports

any violated guidelines to the developer of the application.

Joorabchi and Mesbah proposed an approach for reverse engineering models of

iOS applications [77]. It generated a model of the application, with the individ-

ual UI “states” acting as the nodes of the model. Transitions between them cor-

responded to interactions with the application. Although not yet implemented,

the authors plan to develop an automated test case generation technique using

the reverse-engineered models.
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Researchers have also used image comparison for the purpose of general GUI

testing. One example is Sikuli [29], a unit-testing framework for GUI applica-

tions. Unlike testing tools such as Selenium [130], Sikuli used image compari-

son rather than specific hard-coded “selectors” to identify the various compo-

nents to interact with on the page. It also used image comparison to detect and

verify the expected behaviour. As it was platform independent, users could ap-

ply the approach not only to websites but to native applications too. However,

as each step only tested a small part of the web page, performing complete

testing on the overall application was infeasible.

While these techniques performed well in their own problem domain, very few

of them focussed on the application’s actual appearance. Instead, the majority

of them focus on the functionality of the GUI. Coupled with the environment-

specific nature of the techniques (web applications are very different to desktop

and mobile applications, for example), this makes them unsuitable for address-

ing presentation failures in mobile-friendly web applications.

2.7 concluding remarks

Researchers have proposed many techniques to tackle the problem of detecting

presentation failures in web applications. The foundations of these approaches

have often differed drastically. Some depended on computer vision and im-

age comparison techniques, others on graph-based representations of the ap-

plication under test. A couple were dependent on logic-based formal specifi-

cations. They have also targetted a variety of subcategories of presentational

issues. These include cross-browser incompatibilities and internationalisation

presentation failures.

There has been little to no research conducted attempting to address the is-

sue of mobile presentation failures, especially when it comes to detecting fail-

ures automatically. This is despite the prevalence of “mobile-friendly” web sites.

Furthermore, all of the approaches targetting the orthogonal issues mentioned

above are unsuitable for the problem domain of mobile presentation failures.

Some are far too labour-intensive while others are not equipped to handle the

nature of mobile web applications. Approaches for detecting general presenta-

tion failures that use the rendering of the web page such as WebSee [89–91]

and Wraith [14] require a large number of oracles. They also make no consid-

eration of a web page ’s responsive design. XBI detection approaches such as
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WebDiff [33], CrossT [105], CrossCheck [32] and X-Pert [123, 124] are com-

pletely unsuitable for mobile presentation failures, because a web page ’s layout

may intentionally change at different screen sizes. Finally, specification-based

approaches such as Cornipickle [61, 62] and Galen [133] allow for automatic

detection of presentation issues in web pages. However, their performance is en-

tirely dependent on the quality of the specification. Creating and maintaining

a high quality specification is a highly labourious task.

There is currently no suitable automated approach specifically tailored for the

problem of mobile presentation failures. Because of this, humans generally

check for presentation failures manually. The array of tools available to sup-

port this process are useful, but all suffer from shortcomings. Therefore the

remainder of this thesis addresses this gap in the literature, developing auto-

mated approaches for identifying presentation failures in mobile-friendly web

pages.





3
M O D E L L I N G R E S P O N S I V E L AY O U T

The previous chapter outlined the various existing approaches to detecting pre-

sentation failures in web pages. In particular, it discussed their shortcomings

for the problem domain of mobile-friendly responsive web pages. For instance,

some only operated at a single viewport width rather than considering a range

of viewport widths, as is required by this scenario. Others required a substan-

tial amount of manual effort to use.

To address these issues, this chapter presents the Responsive Layout Graph

(RLG), which models the dynamic responsive layout of a web page across a

series of viewport widths. The RLG takes into account both the changing vis-

ibility and relative alignment of elements, the two main aspects of responsive

web design. The RLG can then form part of a variety of testing techniques, as

demonstrated in later chapters.

To begin, the chapter presents formal definitions of the various components of

the RLG and explains them with the use of a worked example, before defining

and describing the algorithms used to automatically extract the RLG for a given

web page.

The key contributions of this chapter are:

1. The formal definition of a model of a web page’s responsive layout, called

the responsive layout graph, which describes both the visibility and rel-

ative alignment of the elements on the web page across many viewport

widths.

2. A series of algorithms to automatically extract the RLG of a web page.
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3.1 the responsive layout graph

3.1.1 Formal Definition

Given a web pageW containing elements E , two types of layout constraint can

be defined to represent the responsive layout ofW :

Visibility Constraint: A visibility constraint vc, for some node e ∈ E , is a

pair (x1, x2) representing an inclusive range of viewport widths for which n

is present in the DOM of the web page and has properties making it visible

when the web page is rendered in a browser.

The second definition, the alignment constraint draws on the notion of rela-

tive layout first proposed by Choudhary et al. [123] and described in Chap-

ter 2, in particular the concepts of parent-child and sibling relationships between

web page elements, and the set of alignment attributes P, which describe the

specifics of a particular relationship.

Alignment Constraint: Given a pair of RLG nodes e1, e2 ∈ E , an align-

ment constraint ac is a 4-tuple (x1, x2, t, P) representing that between the

inclusive viewport widths of x1 and x2, e1 and e2 are laid out in a relation-

ship of type t, with alignment attributes P, where P ∈ 2Q.

Alignment constraints represent the dynamic nature of responsive web pages,

so multiple alignment constraints describing different layout behaviours can

exist between a single pair of nodes, detailing the changes in their relative

layout caused by the changing viewport.

Please note, in both of the above definitions, x1 represents the lower bound of

the constraint and so the condition x1 ≤ x2 holds for all valid constraints.

Due to the inherent hierarchical nature of web pages, in which the <body> ele-

ment acts as the “root” presentational element of the web page and therefore

contains all other web page elements, the RLG is also hierarchical in nature.

Nodes represent individual web page elements and are arranged in a tree struc-

ture, connected by edges. Visibility constraints are then added to their respec-

tive nodes, while alignment constraints are mapped onto the edges connecting

the nodes whose layout they describe.



3.1 the responsive layout graph 65

body

div[1]

div[2]

(a) Viewport width < 768 pixels

body

img

div[1] div[2] div[3]

(b) Viewport width ≥ 768 pixels

(320, 1400)

body

(320, 1400)

div[2]

(320, 1400)

div[1]

(320, 1400)

div[3]

(768, 1400)

img

(320, 767,

pc, {CJ})

(768, 1400,

pc, {LJ})

(320, 1400,

pc, {CJ})

(320, 767,

pc, {CJ})

(768, 1400,

pc, {RJ})

(768, 1400, pc, {CJ})

(320, 767, s, {A})
(768, 1400, s, {L})

(320, 767, s, {A})
(768, 1400, s, {L})

(320, 767, s, {A})
(768, 1400, s, {L})

(c) Corresponding RLG

Figure 3.1: A wireframe example web page and its RLG.

To explain further, Figure 3.1 presents a simple wireframe responsive web page

at two different viewport widths, along with the RLG representing its layout.

Each web page element in the wireframes is represented by a node in the graph,

in which the labels uniquely identify each element, as the full XPath expres-

sions have been omitted to save space and maintain readibility. The web page

contains five main elements: the body, three content panels, div[1]–div[3], and an

image banner, img. At narrow viewport widths, the web page stacks the content

panels one on top of the other, requiring the user to scroll to access all the con-

tent, while not displaying the img at all due to the space constraints. At wider

viewports, it switches the panels to a side-by-side layout to make better use of

the available space and the banner image is rendered above them, spanning the

entire width of the page.

Figure 3.1 displays the visibility constraints above the node labels for each el-

ement. Generally, wmin and wmax represent the smallest and largest viewport

width sampled by the RLG, which in this example are 320 pixels and 1400 pix-

els, respectively. Therefore, elements visible at every viewport width, such as

div[1], have the visibility constraint (320, 1400). Meanwhile, the img element

only comes into view at wider viewport widths and thus has the visibility con-

straint (768, 1400).

The RLG does have various similarities with previous approaches for mod-

elling the layout of web pages, such as the alignment graph [123] and layout
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graph [7], including the concepts of element containment and relative layout of

neighbouring elements. However, there is one key difference that sets it apart.

The RLG models the entire range of viewport widths at which the web page

might be viewed, while the other two only consider the layout at a single static

viewport width. Theoretically, one could use either of these models multiple

times in order to test at a variety of different viewport widths. However, this

approach would be prone to missing potential presentation failures occurring

inbetween a pair of test widths. For example, one could use the AG/LG at

viewport widths of 320 pixels and 400 pixels. However, if a presentation failure

only occurs between 350 pixels and 370 pixels, neither approach would be able

to detect it. In contrast, by modelling the dynamic layout across a full range of

viewport widths, the RLG can be used to detect presentation failures occurring

at any viewport width that it models.

The directed edges connecting the RLG nodes are each labelled with at least

one alignment constraint, describing the relative layout of the two nodes being

connected by the edge. For instance, there are two alignment constraints on

the edge between div[1] and div[2], (320, 767, s, {A}) and (768, 1400, s, {L}). The

former models the layout between the two elements at narrow viewport widths

(320 pixels – 767 pixels), where div[1] is above (A) div[2], while the second repre-

sents the shift in layout for wider viewports, where div[1] is now to the left of

(L) div[2].

An RLG can be formally defined as a 4-tupleRLG = (E ,R, FVC, FAC). E repre-

sents the complete set of nodes in the graph, one for each web page element vis-

ible on the page at some viewport width.R ⊆ E ×E is the set of edges between

elements for which at least one alignment constraint exists. Next, FVC :E → 2VC

is a function that maps an element to a set of visibility constraints where ∀e ∈ E ,

|FVC(e)| ≥ 1. In other words, each element is mapped to at least one visibility

constraint and is therefore visible on the web page for at least one viewport

width. Similarly, FAC : R → 2AC maps the relationship edges to their sets of

alignment constraints, such that ∀r ∈ R and ∀aca = (xa1, xa2, ta, Pa) ∈ FAC(r)

and ∀acb = (xb1, xb2, tb, Pb) ∈ FAC(r), if aca 6= acb, then xa1 ≥ xb2 ∨ xa2 ≤ xb1.

Put simply, given that the alignment constraints mapped to an edge never have

overlapping bounds, for a particular viewport width, there is at most one align-

ment constraint which holds true.
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Modelling Other Characteristics

The RLG models the two main characteristics of responsive design: visibility

and alignment. There are obviously several other characteristics that the RLG

could model. This section discusses some of these and explains why the RLG

does not model them.

One obvious example is the width of elements, as this is one of the main char-

acteristics that changes in a responsive web page. An initial version of the RLG

modelled the dynamic widths of elements through width constraints [149]. How-

ever, they are no longer present in the formal definition for two main reasons.

Firstly, after conducting initial experiments using the approach presented in

Chapter 4, it was apparent that in scenarios when the only change in the RLG

was a width constraint, there was no observable presentation failure in the web

page. Secondly, a large change in the width of an element will almost certainly

cause a significant change in the relative alignment of nearby elements. There-

fore, the RLG can detect any presentation failures using only visibility and

alignment constraints.

Another alternative was to model the height of elements as well. While brows-

ing a responsive web page, it is immediately apparent the height of elements

may fluidly change as the viewport expands or contracts. However, this is al-

most always due to the browser re-organising content automatically in response

to the new viewport width. The advent of mobile-friendly web sites means a

web page does not generally have a fixed height. Instead, the web page adapts

its height to the device in use. There is then a reasonable assumption that the

user will scroll vertically to access any content further down the page. This as-

sumption has led to many developers no longer implementing web “sites”, in-

stead developing single-page, vertical-scrolling web pages, which have recently

become a more mainstream trend [37].

Other models of the GUI of applications have represented information such as

colour and font size among many others. However, the RLG does not. This is

for two simple reasons. The first is that these characteristics frequently do not

change as the viewport expands and contracts i.e, they are not responsive char-

acteristics. Secondly, the RLG is an abstraction of the actual visual appearance

of the web page under test. As the subsequent sections will describe, the RLG is

obtained using the DOM of the web page, in particular the coordinates of each

element. By doing this, the complex visual appearance of modern web pages

is converted into a simple collection of rectangles in two-dimensional space.
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Algorithm 1 RLG Extraction

1: procedure extractResponsiveLayoutGraph(W , wmin, wmax, wstep)

2: RLG ← initialiseRLG()

3: S ← getSampleWidths(W , wmin, wmax, wstep)

4: D ← collectDOMs(W , S)
5: L ← extractLayoutsFromDOMs(D)
6: VC ← extractVisibilityConstraints(L)
7: for (e, vc) ∈ VC do

8: E ← E ∪ {e}
9: mapVisibilityConstraint(vc, e)

10: end for

11: AC ← extractAlignmentConstraints(L)
12: for (r, ac) ∈ AC do

13: R ← R∪ {r}
14: mapAlignmentConstraint(ac, r)

15: end for

16: return RLG
17: end procedure

Furthermore, the model focusses solely on layout, meaning there is little to be

gained from modelling other visual characteristics such as colour.

3.1.2 Extracting the Responsive Layout Graph

Given a web page under test W , Algorithm 1 can derive the set of HTML

elements E , along with the respective sets of both visibility and alignment con-

straints VC and AC, to form a complete RLG. As well as the web page under

test, the algorithm also takes as input three parameters, wmin, wmax and wstep,

which represent the minimum viewport width, maximum viewport width and

sampling step size, respectively. The first step is to determine the set of widths

S at which to sample the layout of W (line 3). The algorithm then obtains the

DOM of the web page at each width (line 4) and stores it in the set D, before

extracting the web page layouts from those DOMs and storing them in the set

L (line 5). Next, the algorithm analyses the layouts to extract the visibility con-

straints VC (line 6), with the relevant nodes and constraints added to the RLG

(lines 7-10). This process then repeats for the extraction of alignment constraints

AC (line 11). Once the algorithm has added the edges and alignment constraints
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Figure 3.2: The two-part sampling process.
In this diagram, inputs and outputs are shown as parallelograms, automatic processes
are depicted as dark-grey rectangles and entities derived from inputs are light-grey rect-
angles. Rectangles and parallelograms which have numerical values inside them (e.g.,
“400, 460, 520, . . . , 1280, 1340, 1400”) contain viewport widths at which the automated technique
will sample the DOM of the web page under test.

to the model (lines 12-15), it returns the complete RLG. The following sections

now describe each individual step in thorough detail.

Sampling the Web Page

Choosing the viewport widths at which to sample a web page is a difficult task.

This is because each web page is different and may exhibit different respon-

sive layout behaviour. Manually selecting the sample widths would not only be

labourious, but also prone to missing parts of the layout behaviour. One sim-

ple approach would be to sample on either side of each breakpoint defined in

the page’s CSS. Unfortunately, as elements respond to the changing viewport

constraints, layout changes not programmed in the CSS can occur. Breakpoint

boundary sampling would fail to observe these, so the sampling technique im-

plemented in the method getSampleWidths uses a combination of sampling

approaches. Figure 3.2 illustrates this approach which aims to obtain the best

possible sample of the layout.

First, the function takes the web pageW and inspects its HTML code to get the

set of CSS files used to style the page. It then takes each CSS file and finds the

media queries contained within it. Next, it extracts the boundary values of each

query and adds them to the sample width set S . For instance, the media query

@media (min-width: 992px) would add the widths 991 pixels and 992 pixels to S ,

while @media (max-width: 767px) would add 767 pixels and 768 pixels. Then, to

sample the layout changes not defined by explicit breakpoints, the function also

performs a systematic sampling of the web page. This covers the entire sample

range (wmin to wmax), using a step size wstep, as shown by the bottom half of

Figure 3.2. The sample widths chosen from both techniques are then merged

to form the final sample set. This is then used throughout the RLG extraction

process.
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The function extracts the DOM of the web page at each of these widths. This

produces a sequence of pairs D of the form (w, dw), where w is the viewport

width and dw is the DOM of the webpage as captured at w. The set below shows

a general example.

D = 〈(wmin, d1), (wmin + wstep, d2), (wmin + (wstep × 2), d3), . . ., (wn−1, dn−1),

(wmax, dn)〉

Given the media query @media(min-width:768px), a wstep value of 60, and wmin

and wmax values of 320 and 1400, the set D would be:

D = 〈 (320, d1), (380, d2), (440, d3), (500, d4), (560, d5), (620, d6), . . ., (767, dx),

(768, dx+1), . . ., (800, dx+2), (860, dx+3), (1340, dn−1), (1400, dn)〉

Obtaining the Page Layout

At each sample width, the approach extracts and analyses the DOM to extract

the page layout, using the bounding boxes of each element, which have coordi-

nates (x1, y1, x2, y2). To illustrate this process, this section revisits the wireframe

example in Figure 3.1.

Consider the layout shown by part (a-ii) of Figure 3.1, which Figure 3.3(a) re-

peats for ease of reference. The function begins by using the coordinates of each

element to convert the DOM of the web page into an R-tree [58]. This is essen-

tially an abstraction where the size and location of each element is a rectangle

in 2-dimensional space. It then analyses the R-tree to organise the elements into

a tree structure depending on which elements are contained within others. Af-

ter this, it connects the elements with either parent-child or sibling edges. In the

example, parent-child edges exist between body and each of img, div[1], div[2] and

div[3]. Meanwhile, sibling edges exist for each combination of the four smaller

elements as they all share the same parent.

Next, the function inspects the coordinates of each pair of connected nodes to

extract any alignment attributes. Child elements may be left (LJ), right (RJ) or

centre-justified (CJ) within their parents and may also be top (TJ), bottom (BJ) or

middle-justified (MJ). Sibling attributes fall into two categories, positioning and

alignment. Positioning labels describe the location of one element in relation to

the other, while alignment labels describe how the borders of each element align

with each other. If an element is either left-of (L) or right-of (R) its sibling, it

may also align on its top (TE) and/or bottom edge (BE). Similarly, if an element

is above (A) or below (B) its sibling, it may also align on its left (LE) and/or

right edges (RE).
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(a) Example web page
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body→ img pc CJ

body→ div[1] pc LJ
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body→ div[3] pc RJ

div[1]→ div[2] s L, TE, BE

div[2]→ div[3] s L, TE, BE

img→ div[1] s A, LE

(b) The extracted layout

Figure 3.3: An example web page and its extracted layout.

In terms of parent-child alignments, img spans the entire width of body, resulting

in the centre-justified (CJ) attribute. Likewise, div[1], div[2] and div[3] are left,

centre and right justified within body, respectively, hence the LJ, CJ and RJ

attributes. For the sibling edges, div[1] is to the left of div[2] (determined by

observing div[1]’s y2 coordinate is greater than div[2]’s y1 coordinate), hence the

L attribute applied to the relevant edge. The img element is above the other

elements, as img’s x2 coordinate is smaller than the x1 coordinates of the other

elements. It also aligns with div[1] on its left edge, resulting in the attribute set

{A, LE}. The remaining attributes can be calculated through simple comparisons

of the element coordinates.

It is important to note sibling relationships between web page elements are

symmetrical in nature. For instance, two edges representing X is above Y and Y

is below X are intuitively identical. Therefore, for simplicity and efficiency, the

RLG only models one of the two possible edges to define the relationship. It

then checks for the existence of symmetric edges, during the process of extract-

ing alignment constraints defined in Section 3.1.2.

The function extractLayoutsFromDOMs obtains the layout from the DOM

at each viewport width, resulting in a sequence of web page layouts, L. Algo-

rithm 1 then proceeds to extract both visibility and alignment constraints.

Extracting Visibility Constraints

Algorithm 2 shows the process for extracting visibility constraints. It takes the

sequence of web page layouts as input and returns VC, the complete set of

visibility constraints. The algorithm inspects the elements visible in each layout

to determine the visibility constraints.
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Algorithm 2 Visibility Constraint Extraction
1: procedure extractVisibiltyConstraints(L)

2: VC ← {}
3: (wp, lp)← L.pop()
4: for e ∈ lp do
5: VC ← VC ∪ {(e, (wmin,−))}
6: end for
7: while |L| 6= 0 do
8: (wc, lc)← L.pop()
9: Up ← {}, Uc ← {}

10: for ep ∈ lp do
11: if ep ∈ lc then
12: lc ← lc \ {ep}
13: else
14: Up ← Up ∪ {ep}
15: end if
16: end for
17: Uc ← lc
18: for enew ∈ Uc do
19: (winvis, wvis)← binarySearchForLayoutChange(ec, wp, wc, appear)
20: addNewConstraint(enew, (wvis, ⊥), VC)
21: end for
22: for edis ∈ Up do
23: (wvis, winvis)← binarySearchForLayoutChange(edis, wp, wc, disappear)
24: updateConstraint(edis, wvis, VC)
25: end for
26: (wp, lp)← (wc, lc)
27: end while
28: for e ∈ lp do
29: updateConstraint(e, wp, VC)
30: end for
31: return VC
32: end procedure

The algorithm begins with the first layout, corresponding to wmin. Iterating

through the elements found, it initialises visibility constraints for each one

and adds them to the set VC. Each entry in VC is an element-constraint pair

(e, (wa, wd)), where e and (wa, wd) represent the element and the visibility con-

straint, respectively. When first added to VC, these constraints have the value

(wmin,⊥). The x1 value of wmin represents the elements being visible at the first

viewport width sampled. Meanwhile, the x2 value is currently unknown, as

denoted by ⊥. This is because the algorithm has not yet inspected other layouts

to determine if and when the element disappears from the web page. The algo-

rithm then updates VC as it processes each subsequent layout in L, as described

next.

The algorithm then takes lc, the next layout in L, and compares it to the previ-

ous one, lp. This involves trying to match each element in lc to an element in lp,
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Algorithm 3 Binary Search for Layout Change

1: procedure binarySearchForLayoutChange(k, l, u, b)

2: if (u− l > 1) then

3: mid← (l + u)/2

4: dmid ← extractDom(mid)

5: lmid ← generateLayout(dmid)

6: if (k ∈ lmid ∧ b = appear) ∨ (k /∈ lmid ∧ b = disappear) then

7: binarySearchForLayoutChange(k, l, mid, b)

8: else

9: binarySearchForLayoutChange(k, mid, u, b)

10: end if

11: else

12: return (l, u)

13: end if

14: end procedure

using the unique XPath of the elements (lines 9-17). Once the algorithm has at-

tempted to match all the elements, two sets Up and Uc remain. These represent

the unmatched web page elements from lp and lc, respectively. If both Up and

Uc are empty, then the algorithm has matched all the elements and it stops

processing the layout lc. If Uc is not empty, then each element enew ∈ Uc — an el-

ement present in lc but not in lp — has become visible on the web page between

the widths of wp and wc. To determine the exact width at which enew becomes

visible on the page, the algorithm calls the binarySearchForLayoutChange

function (line 19). This function, illustrated by Algorithm 3, begins with the

search bounds of wp and wc and searches for widths winvis, wvis such that enew

is present at wvis but not at winvis. This intuitively makes wvis the appearance

point of enew. After finding the appearance point, Algorithm 2 adds a visibility

constraint for enew to VC with an x1 value of wvis (line 20). For each disappear-

ing element edis ∈ Uc, a similar search is performed. However, this time the

search is for widths wvis, winvis, where wvis represents the final viewport width

at which edis is visible. As seen by the calls on lines 19 and 23, Algorithm 2

passes a parameter with a value of either appear or disappear to set the target of

the binary search. The incomplete visibility constraint for edis is then updated

with an x2 value of edis (line 24).

Algorithm 2 repeats this process until it has inspected all layouts. Finally, it

iterates through each element in the final layout and completes its visibility
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constraint with an x2 value of wmax (lines 28-30). This models the element’s

visibility at the widest viewport represented by the RLG.

Extracting Alignment Constraints

Algorithm 4 shows how the approach extracts alignment constraints. It again

analyses the set of layouts L, inspecting the relative layout of neighbouring

elements. This is in contrast to Algorithm 2, which only investigated which

elements are visible at each viewport width.

As with Algorithm 2, the algorithm begins by taking the first layout. It then cre-

ates partial alignment constraints of the form (wmin, ⊥, t, a) for each observed

layout relationship and adds them to the set AC. Next, it iterates through the

remaining layouts, attempting to find a match in lc for each relationship in lp.

In this case, two relationships match if they are between the same two elements

and have the same type and attributes. As with Algorithm 2, Up and Uc rep-

resent the unmatched relationships from lp and lc, respectively. If either set is

non-empty, the algorithm uses two heuristics to determine the cause of each

unmatched relationship.

Similar Edges: The disappearance of one relationship can often correspond

with the appearance of another at the same viewport width. A common exam-

ple is when a pair of elements change their relative alignment. For instance,

consider the relationship between div[1] and div[2] from Figure 3.1. The disap-

pearance of the above relationship intuitively coincides with the appearance of

the left of one. Therefore, as the elements change from a single-column to a

single-row layout, the attribute sets change from {A} to {L}.

In an attempt to leverage this, Algorithm 4 searches for relationships where

the elements and relationship type are the same, but the attribute sets differ.

Algorithm 5 shows this process in the pairUnmatchedRelationships function.

The algorithm then removes any matching relationships from their respective

sets and adds them to the set of paired edges, P. Next, the algorithm does not

find the appearance point of rc and the disappearance point of rp through two

separate searches. Instead, it finds only the disappearance point of rp, wlast. It

then assumes wlast + 1 is the appearance point of rc, removing the need for

a second binary search. The algorithm then updates the constraint for rp and

creates the new constraint for rc with their respective values.

Appearing/Disappearing Nodes: When an element appears on a web page,

intuitively its alignment relationships also appear at the same time. Algorithm 4
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Algorithm 4 Alignment Constraint Extraction
1: procedure extractAlignmentConstraints(L)

2: AC ← {}
3: (wp, lp)← L.pop()
4: for r ∈ lp do
5: addNewConstraint(r, (wp, ⊥), AC)
6: end for
7: while |L| 6= 0 do
8: (wc, lc)← L.pop()
9: Up, Uc ← matchEdges(lp, lc)

10: if |Up|+ |Uc| 6= 0 then
11: P← pairUnmatchedRelationships(Up, Uc)

12: for (rp, rc) ∈ paired do
13: (wlast, w f irst)← binarySearchForLayoutChange(rp, wp, wc, disappear)
14: updateConstraint(rp, wlast, AC)
15: addNewConstraint(rc, (w f irst, ⊥),AC)
16: end for
17: checkForNodeBasedChanges(Up, Uc, V)
18: for rp ∈ Up do
19: (wvis, winvis)← binarySearchForLayoutChange(rp, wp, wc, disappear)
20: updateConstraint(rp, wdis, AC)
21: end for
22: for rc ∈ Uc do
23: (winvis, wvis)← binarySearchForLayoutChange(rc, wp, wc, appear)
24: addNewConstraint(rc, (wvis, ⊥), AC)
25: end for
26: end if
27: lp ← lc
28: end while
29: for r ∈ lp do
30: updateConstraint(r, wp, AC)
31: end for
32: return AC
33: end procedure

uses this insight to remove the need to search for the appearance or disappear-

ance points of relationships. This reduces the effort required to extract the RLG,

as the algorithm reuses previously extracted layout information rather than

searching for it again. The checkNodeVisibility function shows the approach

taken.

Using Figure 3.1 as an example once again, the alignment relationship between

the body and img elements will intuitively appear at the same viewport width

as the img element: 768 pixels. The algorithm analyses every relationship in

Up and checks the visibility constraints of the two nodes. If either one disap-

pears between wp and wc, then the function assumes the disappearance point of

the node to also be the disappearance point of the relationship. This allows the

completion of the relevant alignment constraint without a costly binary search.
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Algorithm 5 Utility Functions
1: procedure matchEdges(Lp, Lc)

2: Up ← {}, Uc ← {}
3: for rp ∈ lp do
4: if rp ∈ lc then
5: lc ← lc \ {rp}
6: else
7: Up ← Up ∪ {rp}
8: end if
9: end for

10: Uc ← lc
11: return Up, Uc

12: end procedure
13: procedure pairUnmatchedEdges(Up, Uc)

14: P← {}
15: for (n1p, n2p, tp, ap) ∈ Up do
16: for (n1c, n2c, tc, ac) ∈ Uc do
17: if n1p = n1c ∧ n2p = n2c then
18: if (tp 6= tc) ∨ (tp = tc ∧ ap = ac) then
19: P← P ∪ {((n1p, n2p, tp, ap), (n1c, n2c, tc, ac))}
20: end if
21: end if
22: end for
23: end for
24: end procedure
25: procedure checkNodeVisibility(wp, wc)

26: for rp = (n1, n2, t, a) ∈ Up do
27: (x1, x2, t, a)← FAC (rp) where x2 = −
28: (wa1, wd1)← FVC(n1), (wa2, wd2)← FVC(n2))

29: if (wp ≤ wd1 ≤ wc) then
30: (x1, x2, t, a)← (x1, wd1, t, a)
31: else if (wp ≤ wd2 ≤ wc) then
32: (x1, x2, t, a)← (x1, wd2, t, a)
33: end if
34: end for
35: for rc = (n1, n2, t, a) ∈ Uc do
36: (x1, x2, t, a)← FAC (rc) where x2 = −
37: (wa1, wd1)← FVC(n1), (wa2, wd2)← FVC(n2))

38: if (wp ≤ wa1 ≤ wc) then
39: R ← R∪ {(n1, n2)}
40: A ← A∪ {((n1, n2), (wa1,−, t, a))}
41: else if (wp ≤ wa2 ≤ wc) then
42: R ← R∪ {(n1, n2)}
43: A ← A∪ {((n1, n2), (wa2,−, t, a))}
44: end if
45: end for
46: end procedure
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The function then performs a similar analysis of Uc. This time, it checks if the

appearance of a relationship is due to an element’s appearance rather than it’s

disappearance. If so, it creates the relevant alignment constraint with the same

x1 value as that of the appearing element.

If any relationships still remain unmatched, Algorithm 4 performs binary searches

to find the exact viewport widths at which the relationships appear or disap-

pear. It then completes or creates the relevant alignment constraints (lines 20,

24). As with Algorithm 2, it repeats the entire process until it has processed all

the layouts. It then finally takes any relationships still visible and updates their

alignment constraints with an x2 value of wmax.

3.2 concluding remarks

This chapter introduced the responsive layout graph, a model of a web page’s

responsive layout which represents the dynamic reorganisation of content across

a wide range of viewport sizes. It introduced and described the concept of visi-

bility constraints and alignment constraints, which are used to model the main

aspects of responsive design. It then presented an example of a simple RLG to

help illustrate the foundational concepts. Finally, it presented a series of algo-

rithms that extract the RLG of a given web page.





4
D E T E C T I N G P O T E N T I A L LY U N S E E N L AY O U T S I D E

E F F E C T S O F S M A L L C O D E C H A N G E S

The previous chapter introduced the responsive layout graph (RLG) as a way to

model the dynamic layout of a web page. This chapter takes the RLG and uses

it to detect and highlight potentially unseen layout side-effects unintentionally

introduced by developers.

The chapter begins by presenting a usage scenario in which a developer makes

a modification to a web page. They want to ensure they have not introduced any

layout issues, without having to verify the web page’s layout manually. Thus,

this chapter proposes an approach that obtains the RLGs for both the original

and modified web pages. It then compares the two models using a pairwise

matching algorithm to identify any issues. The approach reports any model

differences to the developer as they may represent unintentional layout issues

requiring analysis and attention.

This chapter then presents ReDeCheck (Responsive Design Checker, pronounced

“Ready Check”). This is an implementation of the proposed approach, built

using the Java programming language. It then describes an automated code

mutation technique that creates modified versions of web pages. This aims to

replicate the sorts of changes a developer might make during real-world devel-

opment. This technique uses eight operators that randomly mutated different

HTML and CSS constructs commonly used to define the layout of a responsive

web page.

Using a pool of 15 responsive web pages as subjects, this chapter then evalu-

ates the proposed approach in three experiments. The first investigates whether

ReDeCheck could detect changes introduced through the code modification

technique. It then investigates how ReDeCheck’s performance compared to

both manual and automated techniques. The second experiment investigates
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whether the “subtlety” of the layout change caused by a code modification

affects the detection capability of ReDeCheck and the automated baseline. Fi-

nally, the third experiment investigates the effectiveness and efficiency of Re-

DeCheck under various configurations.

The key contributions of this chapter are:

1. An algorithm for comparing two RLG models. This outputs a list of

model differences representing potentially unintended layout issues. This

change detection approach has been implemented into a software tool

called ReDeCheck.

2. A code mutation technique for HTML and CSS that seeds changes into

code affecting web page layout.

3. A thorough empirical study evaluating the effectiveness and efficiency of

the proposed approach for detecting potential layout issues.

4.1 the problem

Due to the intricate nature of modern responsive web pages, the HTML and

CSS required is often quite complex. Hundreds or even thousands of web page

elements often interact with thousands of CSS declarations to create a fully

responsive layout. Because of this, elements on a web page can respond in

peculiar ways as the viewport conditions change. During development, small

changes to the source code intended for one range of viewport widths (e.g.

those associated with desktop devices) can introduce unintended side-effects to

the responsive layout at other viewport widths. As these side-effects are often

serious aesthetic issues, and given that well-designed responsive web pages can

have wide-ranging positive impacts upon users, detecting them and mitigating

their impact is vital.

Detecting these unseen side-effects in an accurate and timely manner is a very

difficult task for developers. They can manifest at very unpredictable ranges

of viewport widths, sometimes a single viewport width. Manual checking may

therefore fail to inspect the web page at one of the “faulty” viewport widths.

Secondly, modern web pages often contain a lot of information and develop-

ers may only look for “obvious” layout issues. If they do so, they can easily

overlook side-effects with a low visual impact. Finally, the current range of de-

veloper tools for developing and checking responsive web pages provide only
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(a) Original version of a web page

@media (min-width: 768px) {

/* original rule */

li {

width: 140px;

}

/* modified rule */

li {

width: 150px;

}

}

li[1] li[2] li[3] li[4]

li[5]

div[1] div[2]

div[3] div[4]
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(b-i) CSS code (b-ii) Modified version at 800 pixels wide (b-iii) Modified version at 1200 pixels wide

(b) Modified version of a web page showing the result of a layout fault

Figure 4.1: A mock-up of a responsive web page shown at three different resolutions.
(a) The original version of the web page, with li elements making up a list of menu items and
div elements making up content panels. (b) The result of a change to the CSS code (b-i) that
increases the width of the menu items, and is intended to only influence the 1200 pixel viewport
width (b-iii). However, the CSS modification unintentionally causes a layout issue at the 800 pixel
viewport width (b-ii) such that the menu items are now too wide to fit on one line and the last
element (i.e., li[5]) incorrectly wraps to the next line.

limited support. It is therefore clear a reliable, automated approach for identi-

fying unseen layout side-effects would be highly beneficial to web developers.

Figure 4.1 presents a simple example which demonstrates how a small change

to the HTML or CSS of a web page can cause unwanted, detrimental side-

effects to the layout at unpredictable viewport widths. This chapter henceforth

refers to these programming errors as layout faults and their visual manifesta-

tions in the web page as layout failures. Part (a) of the figure shows the layout of

the “original” version of the web page at narrow, medium and wide viewport

widths. Suppose a developer wishes to add icons to the navigation links. Part

(b-i) then presents the code change implemented to increase the width of the

five li elements, as they require more horizontal space. Given the main focus of

this design change is the desktop layout, the developer confirms the presence of

the widened links at a viewport width of 1200 pixels, as shown by part (b-iii) of
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the figure. They then assume their code change had no unintended effects. De-

pending on the viewport widths at which the developer checks the web page,

they may not become aware of the unintended side-effect their modification

introduced. As the viewport narrows, there is no longer enough space for the

web page to display the five links side-by-side and so li[5] wraps onto a second

line. The functionality of the web page has not been detrimentally impacted

by this failure, as li[5] can still be clicked by a user. However, the inconsistent

layout could negatively impact a user’s perception of the page’s quality or their

ability to navigate it. Other layout failures could be more serious, such as two el-

ements overlapping and obscuring some of the web page’s content or making a

navigation element unclickable. These failures would impact both the function-

ality and the aesthetics of the web page and therefore have potentially costly

repercussions.

This motivating example emphasises the problem developers face when incre-

mentally tweaking the responsive design of web pages. Without the use of this

chapter’s automated approach, following each and every code modification

they must manually check thoroughly for any unintended side-effects. Further-

more, as they make more and more changes after introducing a layout failure,

developers may struggle to recall the specific modification responsible for its

introduction. This makes diagnosing and fixing the problem a much more in-

volved task.

4.2 usage scenario

Figure 4.2 shows an envisaged usage scenario which uses the RLG introduced

in Chapter 3 to automatically highlight potentially unseen side-effects in the

layout of a web page following code modifications. To illustrate the various

steps and components, this section links them to the motivating example in

Figure 4.1.

The scenario begins with the current version of the web page, Wcurr, shown

in part (a) of Figure 4.1. Then, the developer implements a code modification,

such as the one shown by part (b-i) of the figure, resulting in the modified

version of the web page, Wnew. Parts (b-ii) and (b-iii) of Figure 4.1 show this

new version. Ordinarily, the developer would manually check Wnew to make

sure no unintended layout behaviour occurs. In this scenario, both versions of
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Figure 4.2: The main usage scenario of this chapter’s approach.
The approach aims to automatically alert developers to the unseen side effects of changes to
a responsive web page. In this diagram, the proposed approach is contained within the dotted
rectangle, inputs and outputs are shown as parallelograms, the decision is depicted as a diamond
and automatic and manual processes are shown as rectangles with and without rounded corners,
respectively.

the web page are instead input into the proposed approach, represented by the

dotted rectangle in Figure 4.2.

The model extraction step of the approach takes Wcurr and Wnew and extracts the

respective RLG models, RLGcurr and RLGnew. Next, the model comparator com-

pares the two models and creates a report detailing the differences between

them. The developer then analyses this report to determine whether any of

the reported differences are unintentional side-effects rather than intended lay-

out changes. They no longer have to resize their web browser and inspect the

web page at each viewport width. This substantially reduces the manual effort

required, but unfortunately does not completely eradicate it. If the developer

decides an issue requires attention, they implement a fix. Then, they rerun the

approach to determine whether the layout issue still persists. Once there are

no side-effects requiring attention, the developer updates Wcurr to Wnew. This is

because any future code modifications require comparison against the latest ver-

sion of the web page. This process repeats until the developer has implemented

all of their code changes and there are no unintended layout side-effects.

4.3 comparing two rlg’s

To alert developers to unseen layout side-effects, the approach requires a com-

parison method. This section therefore presents an algorithm that takes as input

two RLGs and outputs a list of differences between them. A change in the lay-
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out of a web page will generally cause a change in the RLG extracted from it, so

reported differences could be unseen side-effects of a code change. Algorithm 6

presents this comparison approach.

Figure 4.3 presents a snippet of the RLG extracted for the motivating example

in Figure 4.1. The models extracted, RLGcurr and RLGnew for parts (a) and (b) of

the figure are almost identical. The only difference is the alignment constraints

on the edge between li[1] and li[5]. For this edge, RLGcurr contains only one

constraint (shown in black), while RLGnew has two (shown in red). The first

corresponds to li[5] first being below li[1] as it wraps onto a new row. Then, the

second constraint models li[5] reverting back to its intended location to the right

of li[1].

Algorithm 6 begins by attempting to match each node in RLG1 to a node in

RLG2 using the unique XPath of each element (line 2) and reports any un-

matched nodes to the developer (lines 3-8). Then, it compares the visibility

constraints mapped to each pair of matched nodes, e1 from RLG1 and e2 from

RLG2 (lines 9-13). Any differences are reported to the developer as visibility

differences. For instance, if e1 has the visibility constraint (768, 1400) while e2

has the constraint (766, 1400), the approach reports this potential issue to the

developer.

The comparison technique then moves on to matching the alignment constraints

on the edges of RLG1 and RLG2 (lines 14-34). Given an alignment constraint

a1 from RLG1, a full match exists if and only if a constraint a2 from RLG2 ex-

ists on an edge connecting the same two nodes, between the same lower and

upper viewport bounds, with the same relationship type and set of alignment

attributes. This is determined by the containsPerfectMatch function. The

approach then reports any discrepancies as alignment differences, which can be

one of three distinct types. If a constraint has the same relationship type and

alignment attributes, but differing lower or upper bounds (i.e., x1 or x2), then

it is a bounds difference. If the bounds and relationship type match, but the at-

tribute sets are different, then it is an attributes difference. Finally, if the matching

algorithm fails to find a match for either the bounds or the attributes, then the

constraint is completely unmatched. In this case, the algorithm reports the con-

straint in question as a compound difference.

To increase the usability of the model comparison report, the algorithm also

inspects the model differences to determine the viewport widths at which each

layout change is observable. For an attributes difference or compound differ-
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Figure 4.3: The RLG for the web page shown in Figure 4.1
The RLG covers a range of viewport widths between wmin and wmax. To ensure that this RLG is
easy to understand, it omits some elements and constraints; the constraints in red represent the
unseen side effects between the two RLGs by the code change, in which the final li element is
forced to wrap onto a new row. Also, for space reasons, attribute labels are shortened.

ence, it is simply the range of viewport widths covered by the constraint or

constraints. For a bounds difference, it is the symmetric difference of the two

sets of bounds. In other words, the set of viewport widths for which only one

of the two constraints holds.

Revisiting the motivating example in Figure 4.1, this section now presents a

worked example of the comparison algorithm. The RLG example in Figure 4.3

presents detected model differences in red. Every node and their visibility con-

straints are correctly matched by the algorithm. The algorithm also matches all

alignment constraints except the ones mapped to the edge between li[1] and li[5].

In RLG1, this edge contains only one alignment constraint, (768, wmax, s, {L}),
while the corresponding edge in RLG2 has two constraints, (768, 811, s, {A})
and (812, wmax, s, {L}). The algorithm reports a bounds difference for the con-

straints (768, wmax, s, {L}) from RLG1 and (812, wmax, s, {L}) from RLG2 as

they have identical attribute sets. It also reports a compound difference for the

constraint (768, 811, s, {A}) fromRLG2. Given the number of constraints differs

between the two models, it will always fail to match at least one constraint.
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Algorithm 6 RLG Comparison
1: procedure compareRLGs(RLG1, RLG2)

2: M← matchNodes(E1, E2)

3: for all u1 ∈ E1 do
4: reportDifference( unmatched-node, u1)

5: end for
6: for all u2 ∈ E2 do
7: reportDifference( unmatched-node, u2)

8: end for
9: for all (e1, e2) ∈ M do

10: if FVC1 (e1) 6= FVC2 (e2) then
11: reportDifference( visibility, e1, e2)

12: end if
13: end for
14: for all r ∈ R1 do
15: for all ac ∈ FAC1 (r) do
16: per f ectMatch← containsPerfectMatch(FVC2 (r), ac)
17: attributesMatch← containsAttributesMatch(FVC2 (r), ac)
18: boundsMatch← containsBoundsMatch(FVC2 (r), ac)
19: if per f ectMatch 6= null then
20: FAC1 (r)← FAC1 (r)− {ac}
21: FAC2 (r)← FAC2 (r)− {per f ectMatch}
22: else if attributesMatch 6= null then
23: reportDifference( bounds, ac, attributesMatch)
24: else if boundsMatch 6= null then
25: reportDifference( attributes, ac, boundsMatch)
26: end if
27: end for
28: for all u1 ∈ FAC1 (r) do
29: reportDifference( compound, u1)

30: end for
31: for all u2 ∈ FAC2 (r) do
32: reportDifference( compound, u2)

33: end for
34: end for
35: end procedure

The approach collates the final set of differences and their respective width sets

into a report, which it sends to the developer for manual analysis. Figure 4.4

presents a snippet of the report produced for the motivating example. As dis-

cussed in the previous paragraph, it shows how the various types of model

differences are reported to the user. The responsive context given by the report

aims to help guide and direct the manual analysis performed by the user. This

should be beneficial when compared to simply inspecting a web page “blindly”

following a code change.
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Differing bounds for BODY/NAV/UL/LI[1] sibling of BODY/NAV/UL/LI[5] {L}

Oracle : 768 -> w_{max}

Test : 812 -> w_{max}

Unmatched in test: BODY/NAV/UL/LI[1] sibling of BODY/NAV/UL/LI[5] {A}

between 768 -> 811

Figure 4.4: A snippet of a report produced for the example in Figure 4.1.

4.4 empirical evaluation

This section evaluates the approach for detecting potentially unseen side-effects

of code modifications. Using 15 responsive web pages as subjects, it answers the

following research questions:

Research Question One: How accurate is the presented approach at detecting the

various types of changes made to the source code of a responsive web page? How does

it compare to alternative methods?

Research Question Two: How does the “subtlety” of a layout change influence the

effectiveness of the approach?

Research Question Three: How do different configuration parameters affect the

efficiency and effectiveness of the approach?

The next section describes the design of the experiments used to answer the

research questions. Then, the following section presents and discusses the ob-

tained results.

4.4.1 Experimental Design

Subject Web Pages

To answer the research questions, 15 responsively designed web pages were

selected as test subjects. While more web pages could have been selected, 15

subjects is above average when compared to previous empirical evaluations

in this research domain. Also, this evaluation primarily investigates whether

changes to a web page can be detected by this chapter’s approach. Therefore, it

is arguably more important to evaluate on a large and varied number of code

changes, as described in the following sections. To obtain a wide variety of
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web pages, they were selected them from several different sources, such as the

showcases of Twitter Bootstrap [19] and Zurb Foundation [161], two popular

RWD frameworks. Examples were also taken from well-known companies and

collections of examples of good responsive web design (eg., [111]). The subjects

were also selected to represent a variety of different web page sizes, domains

and potential userbases. For instance, some subjects selected were small and

likely to receive minimal web traffic, whereas others were far more complex and

may potentially receive thousands of visits per day. By evaluating the approach

on subjects that vary in terms of all of these characteristics, the results obtained

should be as generalisable as possible.

The 15 subjects selected were: “Aftrnoon”, a web site for a design studio; “An-

nette’s Creations”, an online shop; “Ashton Snook”, the homepage of a visual

designer; “Bootstrap”, the homepage for the popular web design framework;

“Coursera”, the well-known provider of massive open online courses; “Denon”,

a manufacturer of high-end headphones and DJ equipment; “ISSTA 2016”, the

web site for a software testing conference; “Name Mesh”, a site that suggests

suitable web domains; “Pay Demand”, a web site for businesses to compare

rates for credit card processing; “Rebecca Made”, a web developer’s showcase;

“Reserve”, the web site of a mobile application that performs restaurant reserva-

tions; “Responsive Process”, an educational web site about responsive web de-

sign; “Shield”, the site of the responsive template presented in Chapter 2 and

finally, “Treehouse”, a platform for technology training. The web sites come

from a wide variety of application domains. They also demonstrate various de-

velopment styles. Some web pages make use of RWD frameworks while others

use bespoke HTML and CSS code. This diversity helps to ensure the represen-

tativeness of this chapter’s empirical results.

Table 4.1 details the web pages used in the study. Many web developers choose

to apply “minification” to the source code, which removes all unnecessary

white space to decrease the loading times of the web page. Therefore, all source

code must be formatted in an identical fashion to make a fair comparison of

the complexity of the subjects. To do this, the HTML and CSS formatting tools

available at http://www.dirtymarkup.com were used to remove any inconsistencies

in the coding style across subjects. Additionally, the table presents the number

of CSS declarations and blocks (groups of declarations applied to a selected

group of elements) contained within the source code. Finally, the numbers in

parentheses present the number of blocks and declarations actually used by

the web page, i.e., applied to at least one element on the page. It is clear that
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Table 4.1: Responsive web pages used in the empirical study.
In the column headings, “LOC” refers to lines of code. Additionally, a CSS block (i.e., “Blocks”)
is a group of individual declarations (i.e., “Declarations”) applied to a group of HTML elements
through a CSS selector.

HTML CSS

Web Site Name URL LOC DOM Nodes LOC Blocks Declarations

Aftrnoon http://aftrnoon.com 204 112 1370 459 (37) 1003 (98)

Annette’s Creations http://annettescreations.com 235 113 7199 1398 (60) 2383 (179)

Ashton Snook http://www.ashtonsnook.com 407 126 8417 1730 (104) 3218 (293)

BitTorrent http://bittorrent.com 830 356 6198 1140 (158) 1907 (406)

Coursera http://coursera.com 646 472 10829 1958 (83) 4515 (176)

Denon http://denondj.com 281 232 7975 1457 (62) 3244 (189)

Bootstrap http://getbootstrap.com 292 147 8550 1757 (61) 3199 (152)

ISSTA http://issta.cispa.saarland 230 196 8185 1912 (84) 3209 (237)

Name Mesh http://namemesh.com 598 217 2675 2356 (66) 3725 (171)

Pay Demand http://paydemand.com 181 106 10961 2471 (56) 4942 (92)

Rebecca Made http://rebeccamade.com 274 150 3645 1094 (34) 1755 (59)

Reserve http://reserve.com 229 125 6452 1375 (31) 2537 (71)

Responsive Process http://responsiveprocess.com 266 142 956 166 (34) 379 (115)

Shield http://www.blacktie.co/demo/shield 606 336 7637 1747 (98) 2999 (287)

Treehouse http://teamtreehouse.com 1053 406 34951 5958 (111) 12122 (358)

the 15 web pages selected represent a wide range of complexity. In terms of

DOM nodes, the smallest web page contained 106 nodes and the biggest had

472. When considering CSS style sheet size, the number of blocks ranged from

166 to as many as 5,958.

Implementation

To perform this study, the automated approach was implemented as a tool

called ReDeCheck (Responsive Design Checker, pronounced “Ready Check”).

It consists of three core modules, as shown by Figure 4.5. The model extraction

module renders each version of the web page in a web browser, then extracts

the RLG of each. The model comparison module then performs the pairwise

matching procedure detailed in this chapter. Finally, the report generator anal-

yses the model differences and produces the report for the user. For this study,

ReDeCheck used Selenium (v2.53.1) to drive and interact with an instance of

PhantomJS v2.1.1, a headless web browser ideal for use in automated web based

tasks. Selenium allows ReDeCheck to easily resize the browser window and

extract the DOM and thus determine the relative layout of the web page, as ren-

dered in PhantomJS. This study used a standard iMac workstation to run the

experiments. It had 8GB of RAM and was running MacOS Sierra. This shows
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ReDeCheck can run on an “everyday” machine with no high-specification re-

quirements.

W

W′

Model

Extractor

Model

Comparator
Report

Generator

RLG

RLG′

D Report

Figure 4.5: High level structure of ReDeCheck.

Incrementally Modifying a Web Page

The usage scenario for this chapter’s approach requires two consecutive ver-

sions of a web page as input. One contains an incremental code modification

made by the developer. In other words, it focusses on the development stage of

the software lifecycle. Unfortunately, evaluating the approach on real instances

of incremental changes is almost impossible, as obtaining examples of such

changes is highly problematic. For this reason this study used mutation analy-

sis to introduce small code changes into the subject web pages. As discussed in

Chapter 2, previous approaches to mutation analysis of web pages by Prapha-

montripong and Offutt [119] only proposed operators targetting functional as-

pects of HTML and JSP code, while Mahajan et al. [89, 90] did not specifically

target layout attributes. This study needed to mutate the aesthetic properties

of HTML and CSS used to control the appearance and layout of a web page.

Therefore, this section describes an automated technique for introducing small

modifications into a web page. This approach mimics what a developer might

do in practice, and consists of eight mutation operators.

Before running the automated approach, all the HTML and CSS files required

to render each of the fifteen web pages “offline” were downloaded. This then al-

lowed the automated mutation technique to generate modified versions of each

web page. To ensure the empirical results were generalisible, it was important

the mutation analysis approach created a wide variety of code modifications.

Therefore, the eight operators targetted various constructs of both the CSS and

HTML of web pages. Table 4.2 describes each operator and presents “before

and after” code snippets demonstrating examples of the modifications they

generate. The remainder of this section details how each operator works and

discusses the challenges encountered during their implementation.

With the ease of development offered by RWD frameworks such as Bootstrap

and Foundation, nowadays many web developers choose to make use of the
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Table 4.2: Descriptions and examples of the incremental code mutation operators used.
In this table, the HTML or CSS source code in the “Before” column corresponds to an example
of the original version of the web page as it was downloaded, while the “After” column’s code is
that which results from applying the specified operator. Note that the first four operators modify
the HTML of a page while the final four change its CSS.

Operator Name Description Before After

Class Addition Adds a class to an element <div class="col-xs-12"> <div class="col-xs-12 col-sm-6">

Class Deletion Removes a class from an element <div class="col-xs-12 col-sm-6"> <div class="col-sm-6">

Class Exchange Replaces a class with another <div class="col-xs-12 col-sm-6"> <div class="col-xs-12 col-sm-4">

Textual Content Increases/decreases amount of text in an element <h1>Welcome</h1> <h1>Welcome to my page</h1>

Declaration Value Modifies value of a declaration li { width: 100px } li { width: 105px }

Declaration Unit Modifies the unit of a declaration’s value div { width: 50px } div { width: 50% }

Query Expression Modifies the media query’s expression @media (min-width: 640px) @media (max-width: 640px)

Query Breakpoint Modifies the media query’s numeric value @media (min-width: 992px) @media (min-width: 990px)

pre-defined styles. They do this through the application of CSS classes to HTML

elements. These classes cover a full range of styling aspects, such as grid-based

layouts to icons and typography. However, making sure the correct styles are

applied to the correct elements, at the correct viewport widths, is a difficult task.

If not done properly, it can lead to severe layout issues. Because of this, three

operators targetted the assignment of these classes to HTML elements. Firstly,

class addition may, for example, add the class "col-sm-6" to an element, while

class deletion might remove "col-xs-12". The third operator, class exchange, es-

sentially combines the two. For instance, it might replace the classes "col-xs-12

col-sm-6" with "col-xs-12 col-sm-4". The final operator targetting HTML code,

textual content, modifies the text contained within an element. While initially

this operator may not seem to be layout related, in some cases an increase or

decrease in the amount of text inside an element can lead to an element becom-

ing bigger or smaller. This can in turn make it susceptible to layout failures.

While RWD frameworks provide a good starting point, many web developers

choose to customise the pre-defined CSS, or even write their own styles from

scratch. To reflect both of these approaches, the remaining four mutation op-

erators target the CSS of a web page. The first two address the modification

of individual CSS declarations, as shown by the code snippets in Figure 4.6.

The first operator changes a declaration’s value, which can be either numerical

or textual, as shown by part (b) of Figure 4.6. The second changes its unit, as

shown by part (c) of Figure 4.6, but can only do so on certain numerical prop-

erties. The operators modify numerical values at random by a value of ±1− 10.

Therefore, the declaration value operator might change the width of an element

from 50px to 53px. Meanwhile, the declaration unit operator might change a

static width declaration, 50px, to a fluid one, 50%.
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@li {

width: 50px;

}

@li {

width: 53px;

}

@li {

width: 50%;

}

a) Original version b) Value mutation c) Unit mutation

Figure 4.6: Examples of the two mutation operators for CSS declarations.

Rather than targetting single declarations, the remaining two operators change

the way whole groups of style declarations are applied to elements. They do this

by modifying the media queries used to control when to apply the styles. Each

operator focusses on a different part of the media query. As with the declaration

operators, the code snippets in Figure 4.7 show the operators in action. The first

operator, query expression, changes the expression used. For example, changing

min-width to max-width applies the rules at a completely different set of viewport

widths (part b of the figure). The second operator, query breakpoint, then targets

the breakpoint of the query. Increasing it from 768px to 770px again changes

the layout behaviour of the web page (part c of the figure).

@media(min-width: 768px) {

div { width: 400px; }

}

@media(max-width: 768px) {

div { width: 400px; }

}

@media(min-width: 770px) {

div { width: 400px; }

}

a) Original version b) Query mutation c) Breakpoint mutation

Figure 4.7: Examples of the two mutation operators for media queries.

Figure 4.8 shows the overall approach for injecting the code changes. The first

step is a static analysis of the HTML, which identifies the classes applied to

each web page element. It stores these as class modification candidates. It also

identifies the elements containing text and stores them as the set of text candi-

dates. Next, the approach parses and filters the CSS files to extract the set of

CSS candidates. By checking whether the selectors used in each CSS block are

present in the class candidate set, the approach ensures the web page applies

the selected CSS block to at least one element on the page. This mitigates the

risk of equivalent mutants, in which the code modification is inserted into a part

of the CSS not actually used by the web page. These modifications obviously

do not introduce an observable layout change. Additionally, the approach also

prunes the candidate blocks so they only contain the declarations focussing on

layout, such as width, margin and padding. This is because modifying non-layout

properties such as background-color would not impact the web page’s layout,

only its visual appearance. Then, the approach selects a random operator and

a random candidate from the relevant set. It then selects the modification itself
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Figure 4.8: The high-level structure of the automatic code modification approach.

at random, to obtain as wide a variety of layout changes as possible. Finally, it

writes the modified HTML and CSS files to disk, ready for use in the experi-

ments.

Comparison Methods

Due to the lack of previous research on testing responsive web pages, obtain-

ing a baseline against which to compare ReDeCheck is problematic. As de-

scribed in Chapter 2, the main approach used by developers in practice is “spot-

checking”. Therefore, this study compared the proposed technique to two base-

line approaches based upon this technique. The first was performed manually

by three human testers, while the second re-purposed X-Pert, a cross-browser

inconsistency tool first introduced in Chapter 2. Both approaches check the lay-

out of the web pages under test at six different viewport widths. These were

the pre-set widths advocated by two widely used developer tools, Viewport Re-

sizer [139] and Window Resizer [155]. The six chosen widths were 480, 600, 640,

768, 1024 and 1280 pixels. They not only encompass a large variety of respon-

sive layout behaviour, but also represent a range of common devices in popular

usage.

Manual Technique: Henceforth referred to as SpotCheck-Manual, this tech-

nique involves humans comparing the two versions of the web page. At each

selected viewport width, the human checks to see if any layout changes are

evident. For this empirical study, three human participants performed this tech-

nique, namely myself, my supervisor and our collaborator. To mitigate subjec-

tivity in the results, all participants followed the same classification procedure.

We also discussed our individual decisions to reach a consensus on the final

classification.

Automated Technique: As previously discussed, X-Pert— and the alignment

graph (AG) underpinning its layout testing approach — is unsuitable for testing

responsive layout. It only operates at a single viewport resolution and does not

consider responsive design. However, with a small engineering modification,
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Figure 4.9: The manual procedure for determining if a modified web page contains a

layout change.
The individual following this process will ultimately answer yes or no to the question “does the
modified page contain an observable layout change?” In this diagram, a decision is depicted as
a diamond and a rectangle denotes a manual step. This iterative process stops when the person
performing these steps has either examined the web page at all of the chosen viewport widths
and has not found any changes (thus answering no) or, alternatively, identifies the first change
in the page’s layout (thereby responding with yes).

it can compare the layout of two different versions of a web page at the same

resolution in a single browser and report the differences. This is in contrast to its

original approach, where it compares the same web page in different browsers.

This chapter henceforth refers to the implementation of this automated spot-

checking technique as SpotCheck-AG.

Manual Classification

This section presents a manual classification procedure which determines whether

a given version of a web page contains observable layout changes or not, in rela-

tion to the original version. Explicitly defining this process should mitigate any

risks of inconsistency between different humans. The procedure was also used

to verify the correctness of the results of both ReDeCheck and SpotCheck-AG.

For instance, these automated approaches might fail to report actual layout

changes, or incorrectly report layout changes when there are none.
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Figure 4.9 presents a flowchart illustrating the overall process. A human tester

inspects a pair of web pages at a series of viewport widths and checks for layout

changes in the following categories:

1. Visibility: Does the visibility of any element differ between the two versions

of the page? For instance, at a particular viewport width, is an element visible

in one version but hidden in the other?

2. Position: Does the relative layout of two neighbouring elements differ be-

tween the two versions? For example, are two elements rendered side-by-side

in one version but stacked one above the other in the other version?

3. Alignment: Is the alignment of a pair of elements different in the two ver-

sions? For example, given two elements that aligned on their left edges, do they

no longer align in this way?

4. Justification: Is an element no longer justified in the same way within its

container? For instance, was an element initially right-justified but is now left-

justified?

If a human observed a layout change falling into one of these four categories

during the web page inspection, the page contains a layout change. If no layout

change was observed at the first viewport width, then they repeated the process

at the next viewport width, and so on. If, after inspecting all viewport widths,

the human had not found any observable difference between the two versions

of the web page, they concluded that it contained no layout changes.

Methodology

To begin the empirical evaluation, the automated code mutation approach de-

scribed earlier created 30 modified versions of each of the 15 subject web pages.

These 450 modified web pages were then used to answer the three research

questions.

Research Question One: The main focus of this research question was to com-

pare the performances of ReDeCheck, SpotCheck-Manual and SpotCheck-

AG. As the manual analysis required — both for running SpotCheck-Manual

and determining the gold standard for each web page— is quite intensive, the

experiment for this question used a smaller subset of modified pages. I ran-

domly selected four examples from each web page, with special care made to

ensuring each of the eight operators were similarly represented, resulting in a

subset of 60 web pages.
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In this study, ReDeCheck used a step size of 60 pixels and sampled from 400 to

1400 pixels. This ensured it considered a wide range of devices and their associ-

ated viewport widths during the experiments. Additionally, as the six viewport

widths selected for the two baseline approaches fall within the viewport range

tested by ReDeCheck, the comparison between them is a fair one.

Different browsers and operating system produce subtle differences in the

rendering of web pages. Therefore, the manual classification procedure used

screenshots automatically captured by PhantomJS. This ensured a degree of

consistency and allowed for easy replication in any future studies. Also, given

the subjective nature of manual classifications, the three human testers first

performed the procedure individually. They then discussed any web pages for

which there were disagreements to reach a consensus on whether each web

page contained a layout change.

Layout changes can manifest at unpredictable viewport widths, such as those

lying between the ones selected for spot-checking in this study. The results

produced by SpotCheck-Manual therefore cannot reliably constitute a “gold

standard”. Further analysis is required before the results of the three main tech-

niques can be classified as true positive, false positive, true negative or false negative.

This involved taking each modified web page for which SpotCheck-Manual

had returned a negative classification i.e., “does not contain a layout change”.

We (my supervisor, colleague and I) then potentially inspected each page at

every viewport width within the 400 – 1400 pixel sample range. This produced

an accurate gold standard classification. As with SpotCheck-Manual, we dis-

cussed the results as a committee to ensure agreement. For each technique, if it

reported an observable layout change and the gold standard declared the web

page contained one, then the result is a true positive. If no change was observed

then it is a false positive. If a tool reported no change and no change was present,

then the result is a true negative, else it is a false negative.

Research Question Two: Naturally, some layout changes will be harder to de-

tect than others. This can be due to either their visual impact — how significant

the layout change is on the page — or the number of viewport widths at which

the layout change is evident. The visual impact of a modification may have

a significant effect on a human manually checking a web page. It should not

detrimentally impact an automated approach like ReDeCheck or SpotCheck-

AG. The number of viewport widths, however, may impact the ability of au-

tomated tools to detect changes. This question investigated this by comparing

the change detection capability of ReDeCheck and SpotCheck-AG. It used the
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number of viewport widths at which a layout change was observable as a met-

ric of “subtlety”, where the lower the number, the more subtle the change.

Before performing the experiments, an automated approach determined the

subtlety of each modified web page. This approach exhaustively compared the

DOM of the two versions of the web page at every viewport width in the sample

range from RQ1. For each width, given a pair of DOMs (do, dm), the approach

attempted to match each element in do to an element in dm using the element’s

XPath identifier. It then compared the coordinates of each pair of matched ele-

ments. If there were any unmatched elements, or matched elements exhibiting

differing coordinates, then the approach deemed the code modification to have

introduced a layout change to the web page at that viewport width. To obtain

more generalisable results, this research question used the full set of 450 modi-

fied web pages.

After determining the subtlety of a modification on a web page, a value hence-

forth referred to as #DW, the experiment excluded all web pages for which

#DW = 0. These modifications had no impact upon the page’s layout and there-

fore were “equivalent” mutants. The remaining web pages were then grouped

into “buckets” depending on their value of #DW, such as 1, 2-3, 4-5, 6-10, 11-

50, 51-100, 101-300 or more than 500. Intuitively, the fewer viewport widths

at which a layout change is observable, the more subtle it is. The experiment

itself ran both ReDeCheck and SpotCheck-AG on the web pages, observing

and recording whether each detected any layout changes. However, unlike RQ1,

the correctness of the produced results was not verified as the manual effort re-

quired to do so for all web pages like in RQ1 would have been too high. Instead,

given #DW > 0 for a given web page, any layout difference reported by either

ReDeCheck or SpotCheck-AG constituted a correct detection of the injected

layout change.

Research Question Three: In the incremental development scenario pre-

sented in Figure 4.2, it is vital ReDeCheck runs efficiently. This permits a de-

veloper to quickly receive the feedback following their code modifications. If

ReDeCheck is too slow, developers will end up waiting too long and it will not

provide its intended high level of support. Therefore, it is prudent to identify

the optimal parameter configuration under which to run ReDeCheck. Using

the full pool of 450 modified web pages, this question evaluated both the perfor-

mance and efficiency of ReDeCheck using different combinations of sampling

techniques and step sizes.
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The execution time of a tool or technique is often proportional of the worst-

case time complexity of the main algorithm underpinning the technique [81].

As such it is often used as the primary efficiency metric in software engineer-

ing research. Therefore, this question began with an investigation in the context

of ReDeCheck to ascertain how much execution time various components and

processes were responsible for. Analysis of the breakdown of ReDeCheck’s per-

formance discovered the main bottleneck in the tool pipeline was the browser

used to render and interact with the web pages under test. In fact, the actual pro-

cessing and analysis of the extracted DOMs to build the RLGs took an almost

negligible amount of time. Interestingly, this was regardless of the complexity

of the web page under test. Resizing the browser and querying the DOM at

the various viewport widths accounted for the vast majority of the execution

time. A correlation between the complexity of the web page under test and the

execution time was expected, with a web page containing more DOM nodes re-

quiring a longer execution time. Instead, the execution correlated more with the

number of viewport widths sampled by ReDeCheck to extract the RLG. There-

fore, this research question used it as the primary efficiency metric. As with the

previous two questions, the effectiveness metric was the proportion of injected

layout changes correctly detected by ReDeCheck under each configuration.

The set of initial sample widths, S , obtained on line 3 of Algorithm 1, is dictated

by two main parameters. The first of these is the sampling technique. The sam-

pling technique presented in Chapter 3 combines two separate techniques: a

systematic uniform sample and a boundary sample using programmed break-

points. This chapter hereto refers to this approach as ReDeCheck-Combined.

However, the initial published version of this work [149], only used the uni-

form sample as the initial set of sample widths. This question refers to this

approach as ReDeCheck-Interval, and it serves as the baseline for this experi-

ment. Additionally, a brute-force sampling approach, ReDeCheck-Exhaustive,

that samples the web page at every single viewport width within the same

range, was used as a second baseline. This technique is essentially ReDeCheck-

Interval with a step size of 1. Given that ReDeCheck-Exhaustive will sample

all of the responsive layout exhibited by a web page within the specified view-

port range, it will provide an upper bound for the number of layout changes

that the other two competing approaches can detect.

The other controlling parameter is the step size, which controls how large the

increments are in the sampling process. For the experiments in RQ1 and RQ2,

a value of 60 pixels was used as during the development of ReDeCheck it
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was observed to balance effectiveness and efficiency well across a variety of

web pages. However, should a developer want to sample the web page at a

finer granularity, they could use a step size of 10, 20 or 40 pixels, for example.

Furthermore, if they feel the number of layout changes in the web page under

test is small, they could sample less frequently, using a step of 80, 100 or even

150 pixels. This experiment ran ReDeCheck on the pool of mutants with a

variety of both small and large step sizes: 10, 20, 40, 60, 80, 100, 150, 200 and

500 pixels. For each modified page under each configuration, the experiment

recorded the following three pieces of information:

1. Whether ReDeCheck correctly detected the injected layout change.

2. The number of viewport widths ReDeCheck sampled to extract the RLG

of the modified version.

3. The execution time of ReDeCheck.

By evaluating ReDeCheck in terms of these three metrics using the full pool of

450 mutants, the results should provide a useful recommendation of the best

configuration parameters across a wide range of web pages.

Threats to Validity

As with all empirical evaluations, any threats to the validity of the results ob-

tained must be considered and mitigated as much as possible. This section

details the main threats identified and the steps taken to mitigate them.

Generalisability of Web Pages: As with most software engineering studies,

the choice of test subjects is always a threat, as any results obtained may not

generalise to other subjects. To mitigate this, the 15 web pages used in this study

came from different sources and varied in domain and complexity. They also

varied in implementation style, with some utilising popular front-end design

frameworks while others used bespoke CSS.

Tool Implementation: Errors in the implementation of ReDeCheck are also

a significant risk to the validity of the results. Therefore, extensive unit testing

was employed on the main components of the tool to verify the performance

of the tool. Additionally, during the development of the tool, the RLGs ex-

tracted for some subjects and the difference reports produced were manually

analysed to further establish confidence in the tool’s correctness. Finally, Re-

DeCheck makes use of several third-party libraries, such as the JSoup HTML

parser and the JStyleParser library for CSS manipulation. Therefore, these were
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also thoroughly tested to mitigate the risk of errors in these external sources

compromising the empirical results.

Realism of Generated Mutants: Figure 4.2 illustrated a proposed usage

scenario for this chapter’s approach, in which a developer implements a code

change. However, due to the difficulty in obtaining real examples of code mod-

ifications, this chapter’s experiments used an automated code mutation ap-

proach to introduce incremental changes into a web page. This leads to another

threat to validity, because if the changes introduced are not representative of

those made by developers in a real development environment, it could com-

promise the empirical results. While the eight mutation operators certainly did

not insert every type of code modification possible, they focussed on aspects of

HTML and CSS specifically targeting the web page’s layout. Furthermore, by

randomly generating the modifications, the 450 code modifications produced

should represent a wide range of layout changes a developer could implement.

To enable replication and analysis of the experiments in this chapter, both the

mutated web pages and the results are available online [144, 145].

Manual Classification: As previously described, some of the experimental

procedure in this chapter involves humans manually analysing a web page to

determine whether or not a layout change was evident. While the ideal option

would be a consistent automated approach, no such approach exists. Thus, pre-

vious work on detecting presentation issues in web pages performed this task

manually [7, 33, 105, 123]. As the manual analysis was not performed under

controlled conditions, the data may not be representative of the real-world pro-

cedure performed by developers. However, the human participants followed a

fully defined manual procedure designed to match the intuition used by real-

world developers when checking for layout issues. Furthermore, to mitigate

the risk of subjectivity affecting the results, the three participants discussed the

individual decisions as a committee to produce a final classification. Finally,

it is worth noting that the majority of the manual analysis results are solely

anecdotal evidence for the benefits of using ReDeCheck, rather than the main

empirical contribution.

4.4.2 Empirical Results

Research Question One: Table 4.3 presents the results of applying ReDeCheck,

SpotCheck-AG and SpotCheck-Manual to the selected 60 modified web pages.
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Table 4.3: Results summarising how ReDeCheck, SpotCheck-AG and SpotCheck-

Manual detect the incremental code modifications.
In the column headings, each method is represented by its first letter (e.g., “R” stands for “Re-
DeCheck”, “S-AG” denotes the use of SpotCheck-AG and “S-MAN” corresponds to the manual
classification process of SpotCheck-Manual).

Mutation Operator True Positive True Negative False Positive False Negative

R S-AG S-MAN R S-AG S-MAN R S-AG S-MAN R S-AG S-MAN

Rule-Value 4 2 3 0 0 1 1 1 0 0 2 1

MQ-Expression 5 4 5 2 2 2 0 0 0 0 1 0

HTML-Content 9 7 8 0 0 0 0 0 0 0 2 1

Breakpoint-Change 7 5 4 1 1 1 0 0 0 0 2 3

Class-Deletion 6 5 6 2 2 2 0 0 0 0 1 0

Rule-Unit 6 5 5 3 2 3 0 1 0 0 1 1

Class-Exchange 5 5 5 1 0 1 0 1 0 0 0 0

Class-Addition 6 6 6 2 1 2 0 1 0 0 0 0

Total 48 39 42 11 8 12 1 4 0 0 9 6

The results are separated out by mutation operator (one for each row) and then

by classification (one column for true positive, one for true negative etc.). The

results show ReDeCheck correctly identified all 48 layout changes introduced.

SpotCheck-AG and SpotCheck-Manual performed significantly worse, de-

tecting only 39 and 42 changes, respectively. This reduced recall was primarily

due to the layout changes not being visible at any of the viewport widths tested

by SpotCheck-AG and SpotCheck-Manual.

Coupled with this high recall, ReDeCheck also demonstrated a high degree of

precision. It reported just a single misleading false positive result. After investi-

gating this false positive result by manually inspecting the two versions of the

web page, the code modification was found to not have any impact whatsoever

on the visual appearance of the web page. However, it had altered the under-

lying DOM enough to cause a difference in the extracted RLG. This highlights

a potential risk with ReDeCheck, as it uses the DOM rather than the visual

appearance of the web page. However, while SpotCheck-Manual produced

no false positives, SpotCheck-AG reported 4, suggesting the shortcoming of

ReDeCheck is minimal.

Although only performed by three human testers, and not under controlled

conditions, the experiment did highlight the two main problems with manual

web checking. The first of these is its labour intensiveness. When considering

the times observed for each tester, averaged across the 15 web pages, Annette’s

Creations required the least time to test with a shortest observed time of 37

seconds. Meanwhile, Shield took the longest, with one tester taking on average

more than 10 minutes to perform the manual analysis procedure. These results
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are indicative of the general trend observed, in which an increased web page

complexity led to a longer analysis time. Intuitively, this is to be expected, as

larger, more complex web pages contain more individual elements to check. In

some cases, they also require a significant amount of vertical scrolling to view

the whole of the web page due to the layout implemented by the developer.

The two aforementioned test subjects are again excellent examples of this. An-

nette’s Creations requires very little scrolling, even at narrow viewport widths,

as there is so little content displayed on the page. In contrast, Shield — which

the developers designed specifically as a “single-page” web site template — re-

quires a huge amount of scrolling at narrow viewport widths. It even requires a

reasonable amount of scrolling at the widest viewport widths. The results also

showed significant variance in the amount of time required by different testers.

This suggests some developers/testers may require more time than others when

checking in practice. Importantly, it is worth noting that the execution time of

ReDeCheck was lower than even the fastest human during the experiments.

The other main problem highlighted by our experiments was the subjective and

therefore error-prone nature of manual web page checking. As mentioned pre-

viously, each human performed the manual testing individually and then dis-

cussed their decisions as a committee. During this discussion, the three testers

discovered their initial classifications differed for 21 of the 60 modified web

pages. This suggests humans may disagree on what constitutes a layout change.

This emphasises just how subjective and error-prone manual checking can be.

It also provides further empirical support for this chapter’s approach, as a fast,

effective and reliable method for detecting the unseen side-effects of code mod-

ifications would clearly be hugely beneficial to developers in the real world.

Conclusion for RQ1 The results indicate this chapter’s approach can ac-

curately and precisely detect unseen side-effects of code changes, with no

false negatives and just a single false positive result. They also indicate

the proposed approach is superior to both SpotCheck-AG and SpotCheck-

Manual, with higher levels of both recall and precision, highlighting the

shortcomings of spot check-based testing approaches.

Research Question Two: Table 4.4 presents the change detection results for

both ReDeCheck and SpotCheck-AG when executed on the full set of 450 mod-

ified pages. Each row represents one “bucket” and the column #LC represents

the number of injected layout changes placed in each bucket. Subtle mutants are
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Table 4.4: The effectiveness of ReDeCheck and SpotCheck-AG at detecting layout

changes that vary according to how “subtle” they are.
#DW stands for the number of distinct viewport widths at which the layout change is evident;
we say that a fault is less subtle if it is visible at a greater number of viewport widths. The
remainder of the table gives the number of visible layout changes and the number of these that
are detected by ReDeCheck and SpotCheck-AG, respectively.

ReDeCheck SpotCheck-AG

#DW #LC Detected Recall Detected Recall

1 5 5 1 1 0.2

2–3 9 9 1 4 0.4444

4–5 11 8 0.7273 2 0.1818

6–10 11 10 0.9091 9 0.8182

11–50 4 4 1 3 0.75

51–100 5 5 1 3 0.6

101–300 26 22 0.8462 20 0.7692

301–500 29 26 0.8966 24 0.8276

501+ 198 176 0.8889 176 0.8889

Total 298 264 0.8859 242 0.8121

those for which the value of #DW is small, while a large #DW value indicates

a layout change is more “obvious”. The results show ReDeCheck was supe-

rior to SpotCheck-AG for all nine buckets. In some cases, it is by a significant

margin, such as for the 4-5 viewport width bucket. Here, ReDeCheck detects

8 out of the 11 inserted changes, compared to just 2 for SpotCheck-AG. The

results also suggest the number of viewport widths at which a layout change

is evident has little to no impact on the performance of ReDeCheck. It exhibits

consistently high recall across the various buckets. In contrast, the performance

of SpotCheck-AG was fairly inconsistent across buckets. Despite this, the recall

values do generally trend upwards as the value of #DW increases. I expected

this, however, as intuitively the more viewport widths at which a layout change

is observable, the higher probability that one of the selected spot check widths

will allow the tester/technique to observe the change.

For layout changes with a low degree of subtlety — those visible at more than

100 viewport widths — the performances of ReDeCheck and SpotCheck-AG

were comparable, with high levels of recall achieved by both. However, these

mutants would likely be easily detected by a human performing a very simple
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checking process. It is therefore arguable that layout changes visible at few

viewport widths are more important for evaluating the relative performance

of the two techniques. These are the changes human testers are most likely

to miss. For these mutants, ReDeCheck’s superiority over SpotCheck-AG is

particularly pronounced. For instance, consider the layout changes visible at 10

or fewer viewport widths (i.e., the first four buckets). ReDeCheck detected 32

out of these 36 layout changes, for a recall score of 88.9%. These results are very

promising, as they show the proposed approach can accurately detect layout

changes humans would likely miss. For the same set of pages, SpotCheck-AG

failed to identify 20 layout changes, resulting in a substantially lower recall of

44.4%. This lends strong empirical support to this chapter’s proposed approach

of sampling the web page and constructing the RLG to model its layout, rather

than the static viewport inspection advocated by SpotCheck-AG and a range

of other common developer tools.

Conclusion for RQ2 The performance of ReDeCheck does not appear to

be linked to the value of #DW, as it achieved consistently high recall across

the various buckets. The results also suggest spot-checking techniques such

as SpotCheck-AG struggle to detect layout changes that occur at only a

small number of viewport widths. In other words, for subtle mutants the

benefits of using the proposed approach are particularly pronounced.

Research Question Three: Table 4.5 presents the change detection results

for each combination of step size and sampling technique. It also presents

the results on a subject by subject basis. For each step size, the column head-

ings I and C represent the ReDeCheck-Interval and ReDeCheck-Combined

sampling techniques, respectively. The column heading “Changes” presents the

number of layout changes introduced into each subject. The results clearly show

very little variance in the change detection ability of ReDeCheck when using

either ReDeCheck-Interval or ReDeCheck-Combined as the sampling tech-

nique. There are, however, a couple of results of interest. Firstly, for Ashton

Snook and Pay Demand, ReDeCheck-Combined outperformed ReDeCheck-

Interval across all nine step sizes. This suggests the addition of breakpoints

into the initial sample set allowed ReDeCheck to detect more changes. The “un-

intelligent” sampling of ReDeCheck-Interval can miss layout changes occur-

ring inbetween or close to breakpoints. Secondly, ReDeCheck-Interval demon-

strated a reduction in effectiveness as the step size increases for five of the web

pages. In comparison, this only occurred for one subject when using ReDeCheck-
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Table 4.5: ReDeCheck’s effectiveness at detecting layout changes at various step sizes.
In this table, the label “I” stands for the ReDeCheck-Interval method and “C” denotes the use
of ReDeCheck-Combined.

Web Site Name Changes 10px 20px 40px 60px 80px 100px 150px 200px 500px

I C I C I C I C I C I C I C I C I C E

Aftrnoon 15 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

Annette’s Creations 14 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 8 8

Ashton Snook 16 13 14 13 14 12 14 12 14 12 14 12 14 12 14 12 14 11 14 14

BitTorrent 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22

Coursera 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Denon 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

Bootstrap 29 28 28 28 28 28 28 27 28 28 28 27 28 27 28 27 28 26 28 28

ISSTA 19 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 12

Name Mesh 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

Pay Demand 29 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27

Rebecca Made 21 20 20 20 20 19 19 20 20 19 19 20 20 20 20 20 20 20 20 20

Reserve 27 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24

Responsive Process 26 19 19 19 19 19 19 19 19 19 19 19 19 18 19 18 19 17 19 19

Shield 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Treehouse 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Combined. The final interesting result is that of Rebecca Made, where sampling

at either 40 pixels or 80 pixels causes one layout change to be missed. Finally,

the results for ReDeCheck-Exhaustive illustrate no benefit over the other two

approaches, as it detects no additional changes. This provides empirical sup-

port for ReDeCheck’s approach of sampling a web page and searching for the

breakpoints at which the layout changes, rather than sampling at every single

viewport width.

Given the similarity in effectiveness, recommending a set of configuration pa-

rameters becomes easier. Execution time or effort is the sole consideration,

rather than striking a balance between effectiveness and efficiency. This ques-

tion therefore immediately discards ReDeCheck-Exhaustive. It provides no ef-

fectiveness benefit while being substantially more labour-intensive than ReDeCheck-

Interval or ReDeCheck-Combined. For example, execution times for ReDeCheck-

Exhaustive ranged from 89 seconds to 148 seconds, with a mean time of 108

seconds. In contrast, ReDeCheck-Interval and ReDeCheck-Combined exhib-

ited an average execution time of less than 30 seconds for all step sizes in-

vestigated. The brute-force nature of ReDeCheck-Exhaustive is the primary

reason for this. By sampling at all viewport widths — 1001 in this case — with

no regard for page complexity or the number of layout changes exhibited by

the web page, a large amount of computation is wasted. When using the alter-

native techniques, some RLGs required sampling at fewer than 100 viewport
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Figure 4.10: The number of viewport widths sampled by ReDeCheck-Interval and

ReDeCheck-Combined.
The boxplots show the data across all 26 web pages and for the 9 studied step sizes. Light grey
boxes represent ReDeCheck-Interval, while dark grey ones represent ReDeCheck-Combined.

widths: a reduction in effort of over 90%. Furthermore, responsive web design

by nature results in a degree of consistency between similar viewport widths,

as layout changes do not occur very frequently in well designed web pages.

ReDeCheck-Interval and ReDeCheck-Combined can easily capture these lay-

out changes, meaning ReDeCheck-Exhaustive samples at an unnecessarily

fine granularity. Finally, given the iterative development scenario envisaged for

ReDeCheck, users are likely to consider ReDeCheck-Exhaustive far too slow.

The tool would disrupt their workflow every time it checks for unintended side-

effects. This may be a sacrifice they are not willing to make. While ReDeCheck-

Combined and ReDeCheck-Interval do not provide instantaneous feedback

to the developer, the value they provide by highlighting potential unintended

issues should counteract any issues a user may have with waiting a few sec-

onds for the change detection to be performed. Furthermore, in other types of

software development, it is not unusual for a developer to wait a few seconds

after making a code change for a unit test suite to run and provide feedback on

the code modification made.

After discarding ReDeCheck-Exhaustive, this question next compared the re-

maining two sampling techniques. Figure 4.10 presents a box-plot showing the
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Figure 4.11: The percentage difference between the number of sampled viewport

widths for ReDeCheck-Combined and ReDeCheck-Interval.
In this graph, positive values indicate that ReDeCheck-Combined samples fewer viewport
widths than the ReDeCheck-Interval method. Alternatively, a negative value reveals that
ReDeCheck-Combined samples more viewport widths than ReDeCheck-Interval.

distributions of the number of viewport widths sampled using each technique.

As one might expect, using a very small step size such as 10 pixels results in

a much higher number of sampled widths for both techniques. For instance,

the mean values were 176 for ReDeCheck-Interval and 180 for ReDeCheck-

Combined. Using a 20 pixel step size resulted in means of 129 and 130, re-

spectively. There is a clear trend of the number of sampled widths decreasing

as the step size increases. However, the trend reaches a plateau at around the

60 pixel step size. Again, this was expected, as initial experimentation using

ReDeCheck suggested 60 pixels was a sensible step size to balance effective-

ness and efficiency. The most interesting observation was the very close similar-

ity between the two techniques. Prior to the experiments, the expectation was

that ReDeCheck-Combined would require fewer viewport widths to be sam-

pled in order to create the RLG. The addition of the extracted breakpoints into

the initial sample set should theoretically remove the need for many costly bi-

nary searches. There are two likely reasons for this similarity. The first was the

majority of layout changes detected during the sampling process occurred at

widths not programmed in the CSS. This would mean ReDeCheck performed

the binary searches regardless of sampling technique. The second concerned

the cost overhead of also sampling at the breakpoint viewport widths using

ReDeCheck-Combined. It could potentially be so large that any saving ob-

tained only counteracted the initial overhead, rather than producing an overall

benefit.
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When considering the collection of test subjects as a whole, the two sampling

techniques are very similar. However, this question then investigated how the

performance of each varied on a web page by web page basis. Figure 4.11

presents the difference between the number of viewport widths sampled by

each configuration on each web page. In the figure, positive values indicate

ReDeCheck-Combined required fewer viewport widths (i.e., provided an ef-

ficiency improvement). Meanwhile, negative values indicate adding in the ex-

tracted breakpoints made ReDeCheck-Combined less efficient than ReDeCheck-

Interval. The two subjects demonstrating the two polar opposite impacts are

ISSTA and Treehouse. For ISSTA, ReDeCheck-Combined was substantially more

efficient, while for Treehouse ReDeCheck-Combined required much more ef-

fort than ReDeCheck-Interval. Further manual analysis of the subjects re-

vealed ISSTAalmost no layout changes at viewport widths not programmed

as breakpoints in the CSS. This meant ReDeCheck-Combined required much

less effort to extract the RLG. On the other hand, Treehouse contained a large

amount of breakpoints in its CSS. This caused any reduction in binary searches

to be completely overshadowed by the increase in the initial effort overhead.

The remainder of the web pages demonstrated less severe effects, with the ma-

jority demonstrating ReDeCheck-Combined resulted in either equivalent or

marginally increased efficiency.

Next, this question further investigated how ReDeCheck-Interval and ReDeCheck-

Combined sample a web page to extract an RLG. There are two stages to

sampling. These are the initial sample and the subsequent binary searching. Fig-

ure 4.12 shows how many of the total sampled viewport widths are attributable

to the two stages. The dark blue bars represent the initial sample, and the

light blue bar the binary searching. The data is also separated out by both web

page and step size to allow more in-depth analysis of specific results. Along

with ISSTA, subjects such as Aftrnoon, Annette’s Creations, BitTorrent, Cours-

era and Rebecca Made demonstrate the ideal scenario envisioned when devel-

oping the ReDeCheck-Combined sampling technique. For these, the sampling

effort saved due to fewer binary searches more than outweighs the cost of ini-

tially sampling at the extra viewport widths. The figure also emphasises the

aforementioned problem with Treehouse, where the substantially larger dark

blue bars for ReDeCheck-Combined show the cost of adding the breakpoints

to the initial sample. Finally, Ashton Snook, Pay Demand and Shield show how

the saving on binary searches sometimes only allows ReDeCheck-Combined

to achieve efficiency equal to that of ReDeCheck-Interval.
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In the scenarios in which the efficiency of the two techniques is similar, there

is no quantitative evidence to support the choice of one over the other. Us-

ing ReDeCheck-Combined is likely to produce an RLG that better represents

the responsive layout of the web page. Meanwhile, ReDeCheck-Interval has

the potential to miss layout behaviour occurring between consecutive sample

widths. For this reason, the use of ReDeCheck-Combined over ReDeCheck-

Interval is preferable when their efficiencies are equivalent.

Following the observations of the trends illustrated by Figure 4.11 and Fig-

ure 4.12, statistical hypothesis tests were run on the efficiency data for the

two sampling techniques. To begin, the Mann–Whitney U-test compared the

distributions of the two techniques for the nine step sizes investigated. This

non-parametric test was used since the normality of the sample means was not

guaranteed, as required by parametric statistical tests such as the t-test. These

statistical tests served two purposes. The first was to determine if ReDeCheck-

Combined sampled significantly fewer viewport widths than ReDeCheck-Interval.

The second was to determine if different step sizes caused an individual tech-

nique to sample viewport widths in a manner that is statistically significantly

different.

To complement the significance tests, the non-parametric Â12 statistic of Vargha

and Delaney [138] was also employed. This computes effect sizes, which deter-

mine the average probability that one approach “outperforms” another. Fol-

lowing the guidelines of Vargha and Delaney, an effect size was “large” if the

value of Â12 is < 0.29 or > 0.71, “medium” if Â12 is < 0.36 or > 0.64 and

“small” if Â12 is < 0.44 or > 0.56. Values of Â12 close to 0.5 show no practical ef-

fect. This study interprets the effect size values in the following fashion. When

comparing ReDeCheck-Combined and ReDeCheck-Interval, a value near 1

means ReDeCheck-Combined is likely to be more efficient than ReDeCheck-

Interval. Conversely, a value close to 0 indicates ReDeCheck-Interval is bet-

ter. When comparing ReDeCheck’s use of different step sizes, a value near 1

means that the larger step size is preferred, while a value near 0 means that the

smaller step size is better on average.

Part a) of Table 4.6 shows the results for comparing ReDeCheck-Combined and

ReDeCheck-Interval. The p-values show that for eight step sizes there is no

evidence to suggest the techniques demonstrate significantly different efficien-

cies. The only exception to this is 500 pixels. These values are consistent with

the box-plots in Figure 4.10, where there is little difference evident between the

two techniques. The Â12 test results show a small efficiency benefit when using
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Figure 4.12: A breakdown of the number of viewport widths sampled initially, and

then during binary searches to complete the RLG, shown in dark blue and light blue,

respectively.
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Table 4.6: The statistical hypothesis test results.
The left-hand table shows the comparison of ReDeCheck-Combined and ReDeCheck-Interval

at each step size, while the right-hand table shows the comparison of consecutive step sizes
using the ReDeCheck-Combined sampling approach.

Step Size (pixels) p-value Â12

10 0.81991 0.496

20 0.38434 0.517

40 0.29856 0.52

60 0.61107 0.51

80 0.25719 0.522

100 0.06289 0.536

150 0.39921 0.516

200 0.12911 0.529

500 0.00013 0.426

(a) Comparing sampling techniques

Step Size (pixels) p-value Â12

10 vs 20 0 0.751

20 vs 40 0 0.644

40 vs 60 0.03086 0.542

60 vs 80 0.01031 0.549

80 vs 100 0.33473 0.519

100 vs 150 0.11474 0.53

150 vs 200 0.41891 0.516

200 vs 500 0.63447 0.509

(b) Comparing step sizes for ReDeCheck-

Combined

ReDeCheck-Combined, as all but two of the values are above 0.5. However,

none of the effect sizes are large enough to be significant.

After establishing the small efficiency benefit of using ReDeCheck-Combined

over ReDeCheck-Interval, further statistical tests were conducted. These aimed

to establish which step size was the most efficient when using ReDeCheck-

Combined. Part (b) of Table 4.6 presents the results of comparing the distri-

butions for consecutive pairs of step sizes. The results again mirror the trends

shown by Figure 4.10. The tests found very low p-values for the pairs 10 pixels-

20 pixels, 20 pixels-40 pixels, 40 pixels-60 pixels and 60 pixels-80 pixels. These

correspond to the downward trend in the number of sampled viewport widths

as the step size increases. Meanwhile, the values of 0.335 and 0.115 for the pairs

80 pixels-100 pixels and 100 pixels-150 pixels also correspond to the observed

plateau. Interpreting the Â12 values as probabilities, the results show 20 pixels

is highly probable (75.1%) to be more efficient than 10 pixels. Likewise, 40 pix-

els will outperform 20 pixels 64.4% of the time. For the comparisons between

40 pixels-60 pixels and 60 pixels-80 pixels, the respective values of 0.542 and

0.549 indicate the benefits of using the latter step sizes have no significant effect

size, but they are almost classified as small. These results suggest the choice

of 60 pixels over 40 pixels for the experiments in RQ1 and RQ2 was sensible.
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However, they also suggest the previous experiments could potentially have

used 80 pixels instead. Finally, as the values for the comparisons between the

larger step sizes are all near to 0.5, it is clear there was no benefit to using 100

pixels or 150 pixels in place of 60 pixels.

Conclusion for RQ3 For the collection of layout changes used in this

study, the sampling technique and step size used has little impact on the

change detection ability of the approach. ReDeCheck-Combined did how-

ever demonstrate a boost in efficiency over ReDeCheck-Interval. Statisti-

cal analysis also supported the use of 60 pixels as a global step size which

should perform well across a wide variety of web pages.

4.4.3 Discussion

During this chapter’s empirical evaluation, several qualitative benefits were

observed. Firstly and most importantly, the automatic technique removed the

need for a developer to select the viewport widths at which to check the web

page. This selection process has been shown to be error-prone and subject

to missing layout changes. Theoretically, a developer could simply resize the

browser randomly and examine the layout in the hope of observing any layout

issues that may be present. However, this approach is likely be ineffective and

inconsistent. There is no way of telling the viewport widths at which any exist-

ing layout issues are evident. This means many of them could go undetected (as

shown by a later experiment detailed in Chapter 5). The modelling performed

by ReDeCheck is particularly useful, since many observed layout changes man-

ifested at unpredictable viewport widths. These included those not covered by

popular devices or advocated by popular tools and those between the common

breakpoint widths used by both developers and RWD frameworks.

The second key benefit of the approach is the reports provided to the user.

These are likely to be highly useful, providing guidance to developers and

testers when performing more in-depth manual checking of their web sites. As

the RLG models the full responsive layout of a web page, the output of the

approach provides considerably more contextual information than other com-

peting approaches. These only report a simple binary decision as to whether

any changes in a page’s layout have been found. ReDeCheck informs the de-

veloper of where the change occurred (which elements and layout relationships
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changed), how the layout changed and when (at which viewport widths are

the changes observable). As further development of ReDeCheck is undertaken,

these benefits are likely to become more pronounced. For instance, ReDeCheck

could provide an interactive, graphical report highlighting the differing parts

of the RLG. Another option is a screenshot-based approach showing the change

in layout of the modified elements. Either of these improvements could signifi-

cantly increase the usability of the approach.

As previously discussed, the approach failed to detect a small number of the

injected layout changes. However, manual analysis of the offending modifica-

tions found almost all of§ of these false-negative results occurred because the

injected code modification impacted the underlying DOM in such a subtle man-

ner that it did not change the extracted RLG. A tiny shift in the position of an

element, perhaps made by changing its padding or margin by a small amount,

is a common example of this. While the experiment must report these issues

as false-negatives, their visual impact is so small humans would be highly un-

likely to detect them by manually checking the layout of the web page. End

users are even less likely to observe them, suggesting the shortcoming in the

approach is minimal.

Finally, as most modern web sites consist of multiple pages, a tester wishing to

check for layout changes across an entire site would need to run ReDeCheck on

a page-by-page basis. While this task is currently a manual one and may be

cumbersome, the process is fully amenable to automation. Checking the layout

across different web pages within the same web site is vital, as CSS files are

almost always shared between pages to provide a consistent look-and-feel to a

site. Therefore, it is possible a CSS modification which causes no changes on

one page could have a drastic impact on another page.

4.5 concluding remarks

Building upon the responsive layout graph introduced in Chapter 3, this chap-

ter presented an approach for automatically detecting unseen layout side-effects

following small changes to a responsive web page. The approach compared the

RLGs of two versions of a web page to detect any layout changes. The approach

was implemented in a tool named ReDeCheck, and evaluated in the context

of three main research questions. The first of these found that the proposed

approach outperforms both manual and automated spot-checking baselines,
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with a higher number of true positive results and fewer false positive results.

The second question investigated the performance of both the proposed ap-

proach and the automated baseline on layout changes of varying subtlety. The

results showed that while changes with little subtlety produce comparable per-

formance between the two techniques, on “subtle” layout changes the proposed

approach outperforms the automated baseline by a substantial margin. Finally,

the third research question investigated the effectiveness and efficiency of the

approach under a wide variety of different sampling techniques and step sizes.

The results demonstrated that the configuration parameters chosen have very

little impact on the approach’s ability to detect layout changes. Subsequent

experiments then showed that while there are various options regarding the

configuration of ReDeCheck, the ReDeCheck-Combined sampling technique

first presented in Figure 3.2 with a step size of 60 pixels is a sensible choice

which should perform well on a wide variety of web pages.



5
D E T E C T I N G C O M M O N T Y P E S O F R E S P O N S I V E L AY O U T

FA I L U R E S

Chapter 3 introduced the responsive layout graph (RLG) as a way to model a

web page’s responsive layout. Then, Chapter 4 showed how comparing the

RLGs of two versions of a web page can highlight unintended layout side-

effects caused by code modifications to the developer quickly and effectively.

However, this approach suffers from three main problems. Firstly, the devel-

oper is responsible for analysing all of the reported layout differences. They

must decide whether each was intentional or not. This makes the approach still

potentially labour-intensive. Secondly, it is only capable of detecting presenta-

tion failures of a regression nature. This renders it useless if a previous version of

a web page is unavailable. Also, if the previous version is significantly different

to the current one, it would report an overwhelming number of model differ-

ences. Finally, if a failure is present in both versions of a web page, it would not

regard it as a difference. It would therefore not bring it to the attention of the

developer, meaning the failure could continue to manifest in the live version of

the web page.

This chapter addresses these problems by first describing five different types of

responsive layout failure (RLF). These are presentation failures that occur intermit-

tently across the full range of viewport widths at which someone could view

a web page. Two examples are overlapping elements and elements protruding

outside of the visible viewport. This addresses the issue of distinguishing be-

tween intended layout changes and “real” layout failures. Next, this chapter

presents an approach that can detect these failures. To address the oracle prob-

lem (i.e., the previous version of the web page), it does not require an explicit

oracle, such as a previous version of the web page, or a screenshot showing the

intended layout of the web page. Instead, it works by first building the RLG

of just the latest version of the web page under test. Then, a series of algo-
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rithms searches the RLG for patterns signifying the five different types of RLF.

Finally, it reports any identified failures to the developer. This also tackles the

third problem with the previous chapter’s approach. By leveraging implicit or-

acle information rather than an explicit oracle, failures present in both versions

of a web page can be detected. I implemented the approach into the existing

ReDeCheck tool. Users now have the choice of running ReDeCheck in one of

two testing modes: the regression checking approach of Chapter 4 or the common

failure detection approach presented in this chapter.

The approach is then evaluated in three main experiments. The first of these

investigates the effectiveness of the approach at detecting common RLFs in

web pages. Using a corpus of 26 randomly selected responsive web pages, the

results show that these RLFs are prevalent in real-world web pages. The second

experiment compares the proposed approach to several common RWD spot-

checking tools. The final experiment investigates the efficiency of the approach,

as the execution time must be short enough to not detrimentally impact the

productivity of a developer.

Following on from the main empirical evaluation, the chapter concludes by pre-

senting several small modifications to the approach to improve its accuracy and

precision followed by a smaller evaluation to assess the effects of the improve-

ments.

The key contributions of this chapter are:

1. A categorisation of five common types of responsive layout failure (RLF)

discoverable without the need for explicit oracles.

2. A collection of four algorithms that automatically analyse the RLG of a

web page in order to detect the five types of RLF. These algorithms have

been implemented as a module of ReDeCheck.

3. An empirical evaluation of 26 randomly selected production web pages,

showing that the RLF types identified are prevalent in live sites and the

algorithms are capable of detecting them and reporting them to the devel-

oper.

4. Modifications to the RLG model and failure detection algorithms that

reduce the quantity of misleading false positive results reported by the

approach.
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5.1 a categorisation of responsive layout failures

This section defines five distinct types of responsive layout failure (RLF). Each

of these are problematic for developers of responsive web sites and users who

browse them. These failure types were identified primarily through experience

of browsing the web on different types of device and experiencing issues while

doing so, although my knowledge of web development also played a part by al-

lowing me to envision potential failures that could be introduced by modifying

the code of a web page in some way.

Each type of RLF is generally caused by the misapplication of one or more

of the three RWD “ingredients”: grid-based layouts, flexible media and media

queries. For each category of RLF, this section presents a real-world example to

show the visual impact of each failure type on the aesthetics of a web page.

Element Collision

As viewport widths narrow, developers commonly shift horizontally-aligned

elements closer together to cope with the reduced horizontal space. However,

as the viewport contracts further, elements can collide with one another and

their contents begin to overlap. The effects of this can be purely aesthetic,

such as overlaid images. They can also potentially be much more damaging,

if, for example, the overlap obscures crucial text or navigational links. Fig-

ure 5.1 presents an example of this, taken from the web page MidwayMeetup

(www.midwaymeetup.com).

(a) Elements colliding 7 (b) No issue 3

Figure 5.1: An example of an element collision.

At the wider viewport width shown in part (b), the two input forms are dis-

played comfortably side-by-side. As the viewport narrows, the two forms col-

lide and the right-hand form is overlaid above the left-hand one. This renders

the left-most submit button “Add” unclickable, as shown by part (a). This

demonstrates a collision failure affecting both the visual appearance and func-

tionality of a web page. For users browsing this web page on a device where
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the failure manifests, the unclickable button prevents a user from engaging in

the primary function of the web page, making it completely useless.

Element Protrusion

Another key concern for developers of responsive web pages is ensuring that

as the viewport width reduces, the elements on the web page resize to remain

wide enough to contain their contents. Conversely, the contained elements must

remain small enough to fit within their containers. Fluid grid-based layouts and

flexible media aid developers in this task. However, if incorrectly implemented,

elements may protrude outside of their containers into neighbouring areas of

the web page. Figure 5.2 presents an example of an element protrusion from

the web page PDFescape (www.pdfescape.com).

(a) Element protruding 7 (b) No issue 3

Figure 5.2: An example of an element protrusion.

At the wider viewport shown by part (b), the navigation bar at the top of the

page contains a row of links. However, at the narrower viewport width of part

(a), the set of links are too wide to fit alongside the web page logo in the navi-

gation bar. This causes them to protrude out into the main content of the page.

Ordinarily, the effect would be purely aesthetic, as the links would still remain

clickable in their new location. However, in this scenario, the container has the

overflow: hidden CSS property. This hides any overflowing content from view,

meaning the links become not only invisible but also unclickable. This makes

navigation of the page very difficult on devices where this failure manifests.

Viewport Protrusion

When viewport widths narrow, elements may not only protrude out of their

containers, but also outside of the web page’s root presentational element, the

body tag. This means they are rendered outside of the viewable portion of the

page i.e., the viewport. These failures can again be purely aesthetic or in some

cases, detrimental to the page’s functionality.
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(a) Element protruding out of the viewport 7 (b) No issue 3

Figure 5.3: An example of a viewport protrusion.

ConsumerReports (www.consumerreports.org) exhibits a viewport protrusion, as

illustrated by Figure 5.3. At the wider viewport width of part (b), the page

renders the two content tiles containing the featured articles side by side within

the banner. However, at the narrower width of part (a) part of the right-hand

tile has protruded outside of the viewport. This makes access to the headline

content limited. Users do have the option of scrolling horizontally to access

the partially hidden content. However, nowadays many of them expect to only

scroll vertically when browsing a web page. Therefore, many end users may

simply disregard the hidden content.

Small-Range Layouts

As discussed in previous chapters, building responsive web pages is difficult

for developers, with hundreds if not thousands of CSS rules. A series of media

queries activate and deactivate these rules. More than one media query can eval-

uate to true at the same viewport width. For instance, the queries (min-width:

768px) and (max-width: 1023px), will both be activated for viewports between

768 and 1023 pixels. Because of this, the logic controlling which sets of rules to

apply at which viewport widths can quickly become complex. As such, devel-

opers can easily make errors and apply certain rules at unintentional viewport

widths. This is especially true when they mix the use of both the min-width

and max-width queries. Suppose a developer uses the media query (max-width:

768px) to encode the layout for mobile devices, and another (min-width: 768px)

to handle the tablet and desktop layout. Both will evaluate to true at the view-

port width of 768 pixels. Media queries “clashes” such as this can cause unusual

layout behaviour, as two sets of CSS rules apply to some elements when only
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one should be. Due to the small number of viewport widths at which this type

of failure is observable, they can be very difficult to detect manually.

(a) 979 pixels 3 (b) 980 pixels 7 (c) 981 pixels 3

Figure 5.4: An example of a small-range layout.

Figure 5.4 presents an example of a small-range layout from the web page Cloud-

convert (cloudconvert.com). At the narrower viewport width of part (a) and the

wider viewport width shown in part (c), there are no issues with the layout.

However, at the sole viewport width of 980 pixels in part (b), an error in the

CSS media queries causes the page’s navigation bar and banner to overlap, ob-

scuring the company’s logo and slogan.

Wrapping Elements As previously discussed, when elements are not wide

enough to hold their contents, said contents can protrude out of the container.

However, if the container remains “tall” enough, or has CSS properties making

its height flexible, horizontally-aligned elements may instead “wrap” onto a

new row. While not affecting a web page’s functionality, this additional row of

elements is an often undesirable presentational effect.

(a) Element wrapping 7 (b) No issue 3

Figure 5.5: An example of a wrapping failure.

Figure 5.5 presents BugMeNot (bugmenot.com), in which a wrapping failure can

be observed. In part (b) of the figure, the viewport is wide enough for the

browser to render the three form components — the label, input box, and sub-
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mit button — in a single row. However, due to a lack of responsiveness, as the

viewport narrows the submit button wraps onto a second row.

5.2 detecting responsive layout failures without an explicit

oracle

This section now describes an approach for identifying the five types of re-

sponsive layout failure. It begins with a high-level summary of the overall tech-

nique, then it presents the individual algorithms for identifying the different

categories of failure.

Summary of Approach

This chapter’s overall approach begins by automatically extracting the RLG of

the web page under test, as per the approach outlined in Chapter 3. It then

analyses the RLG, searching for specific layout patterns representing respon-

sive layout failures. Finally, it reports these failures to the user via a textual

report and a series of screenshots with the offending elements outlined for easy

identification.

To detect element collision and element protrusion failures, the RLG models an

additional layout attribute “overlapping” on sibling edges, represented by the

label O. Determining this attribute is very simple. A simple check whether the

bounding boxes of the two elements intersect is sufficient.

Detecting Element Collisions

The detection of element collision failures involves first searching for pairs of

elements that are overlapping at one range of viewport widths. The approach

then checks if they are not overlapping at the immediately wider viewport

width, as there is now enough horizontal space for them. Algorithm 7 for-

malises this technique. Figure 5.6 presents a simple wireframe example and

an RLG fragment to demonstrate the algorithm in practice.

The algorithm begins by iterating through all alignment constraints in the RLG.

If it finds one of the sibling type with the overlapping attribute set (line 4), it

investigates it further. Using Figure 5.6 as an example, this stage of the algo-

rithm would find the constraint (320, 767, s, {O}) between img[1] and img[2] as

a constraint of interest. Then, the algorithm obtains the alignment constraint

at the immediately wider viewport width (line 5). If the function finds such a
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img[1] img[2]

(a) ≥ 768 pixels

img[1] img[2]

(b) < 768 pixels

(320, 1400)

body

(320, 1400)

img[1]

(320, 1400)

img[2]

(320, 1400,

pc, {CJ})

(320, 767, s, {O})
(768, 1400, s, {L})

(320, 767,

pc, {. . .})

(c) RLG fragment

Figure 5.6: A wireframe example of an element collision.

Algorithm 7 Detection of element collison & protrusion failures
1: procedure detectCollisionAndProtrusionFailures((E ,R,FVC,FAC))

2: for all r = (e1, e2) ∈ R do
3: for all (amin, amax, t, P) ∈ FAC(r) do
4: if t = s∧O ∈ P then
5: (. . . , Pwider)← alignmentConstraintAt(e1, e2, t, amax+1)

6: if (. . . , Pwider) 6= ⊥∧O 6∈ Pwider then
7: reportFailure(element-collision, {e1, e2}, {(amin, amax)})
8: else
9: a1 ← getAncestorsAt(e1, amax + 1)

10: a2 ← getAncestorsAt(e2, amax + 1)

11: if (e1 ∈ a2) ∨ (e2 ∈ a1) then
12: reportFailure(element-protrusion, {e1, e2}, {(amin, amax)})
13: end if
14: end if
15: end if
16: end for
17: end for
18: end procedure

constraint, the algorithm inspects its attribute set for the overlapping attribute

(line 6). If the attribute is not present, it signifies the elements are no longer

overlapping. In this case, the algorithm reports an element collision failure (line

7). Continuing with the wireframe example, line 6 would obtain the constraint

(768, 1400, s, {L}). As the overlapping attribute is not present, Algorithm 7 re-

ports the first constraint to the user as an element collision failure.

Detecting Element Protrusions

The detection of element protrusions involves querying the RLG in a similar

way to the detection of element collisions. This time, the approach does not

search for a change in alignment attributes between two elements. Instead, it
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div

img

body

(a) ≥ 768 pixels

div

img

body

(b) < 768 pixels

(320, 1400)

body

(320, 1400)

div

(320, 1400)

img

(320, 1400,

pc, {CJ})

(768, 1400, pc, {CJ})
(320, 767, s, {O})

(320, 767,

pc, {. . .})

(c) RLG fragment

Figure 5.7: A wireframe example of an element protrusion.

searches for a change in relationship type. The key insight is as follows. Nor-

mally the two offending elements are in a parent-child relationship, as one

contains the other. However, as the viewport narrows and the “child” starts to

protrude, it begins to overlap with its intended parent. Because the detection

of element protrusions depends on initially finding a pair of overlapping el-

ements, the approach also uses Algorithm 7, continuing from line 8. Here, it

has identified a pair of elements as overlapping, but not because of an element

collision failure.

Figure 5.7 presents a simple wireframe example of an element protrusion fail-

ure. The initial search for overlapping sibling elements would find the con-

straint (320, 767, s, {O}) between the div and img elements. If an element pro-

trusion has occurred, one of the two elements is a child of the other (or some

ancestor of the other), at the immediately wider viewport width. Therefore,

the algorithm inspects the RLG’s alignment constraints, traversing them to ob-

tain the ancestry of the two overlapping elements at the wider viewport width

(lines 9-10). In this case, the constraint (320, 1400, pc, {CJ}) between body and div

means div’s ancestry set is {body}. Similarly, the constraint (768, 1400, pc, {CJ})
between img and div means img’s ancestry is {div}. The algorithm then checks

the ancestry sets. If e1 is an ancestor of e2, or vice versa (line 11), it reports an

element protrusion failure at the viewport widths where the two elements are

overlapping. In this case, when inspecting the ancestry of e2, the algorithm sees

that div is an ancestor of img and therefore reports the protrusion to the user.



124 detecting common types of responsive layout failures

img[2]

img[1]

(a) <480 pixels

img[1] img[2]

(b) 480 ≤ x < 640 pixels

img[1] img[2]

(c) ≥ 640 pixels

(320, 1400)

body

(320, 1400)

img[1]

(320, 1400)

img[2]

(320, 1400, s, {. . .})
(320, 480, pc, {. . .})
(640, 1400, pc, {. . .})

(320, 480, s, {A, LE,RE})
(640, 1400, s, {L,TE,BE})

(d) RLG fragment

Figure 5.8: Example of an viewport overflow failure, and its corresponding RLG frag-

ment.

Detecting Viewport Protrusions

Viewport protrusion failures are essentially element protrusions of the root

HTML element, the body tag. Despite this, the approach used to detect them is

very different. The RLG uses a tree-based structure to organise its constituent

nodes. Therefore, every element generally has a parent node for every view-

port width at which it is visible on the web page. The exception to this rule is

when an element has protruded out of the viewport altogether. Here, it is not

contained by any element and is therefore “parentless”. Additionally, elements

protruding out of the viewport are not classed as siblings of the body element.

While in a web page, the body tag has the html tag as a parent, in the RLG the

html tag is not modelled as the body element is the root presentation element. In

other words, the body is highest element in the tree that represents the appear-

ance of the web page. Because of this, body has no parent, meaning there is no

common, shared parent.

Figure 5.8 presents a simple example. The img[2] element is contained within

the body element at viewport widths of 640 pixels or more. At narrower view-

port widths however, it protrudes out of the viewport’s right-hand side. Finally,

at very narrow viewport widths (less than 480 pixels), a shift to a single-column
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Algorithm 8 Detection of viewport protrusion failures
1: procedure detectViewportProtrusionFailures((E ,R,FVC,FAC))

2: for all e ∈ E where e 6= body do
3: S← ∅

4: for all r = (e1, e2) ∈ R where e2 = e do
5: for all (amin, amax, t, P) ∈ FAC(r) do
6: if t = pc then
7: S← S ∪ {(amin, amax, t, P)}
8: end if
9: end for

10: end for
11: if S 6= ∅ then
12: L← sortByAscendingMinimumRangeValues(S)
13: gmin← wmin

14: while hasNext(L) do
15: (amin, amax, t, P)← next(L)
16: gmax← amin− 1

17: if gmax < gmin then
18: VR← visibleRanges(e, (gmin, gmax))
19: if VR 6= ∅ then
20: reportFailure(viewport-protrusion, {e}, VR)
21: end if
22: end if
23: gmin← amax + 1

24: end while
25: gmax← wmax

26: VR← visibleRanges(e, (gmin, gmax))
27: if VR 6= ∅ then
28: reportFailure(viewport-protrusion, {e}, VR)
29: end if
30: end if
31: end for
32: end procedure

layout means the element is no longer protruding. Algorithm 2 shows the ap-

proach for detecting viewport protrusion failures. It checks that for every view-

port width at which an element is visible on the web page, it is the child of

some other element in the RLG.

The algorithm begins by iterating through every element in the RLG, except

the body element. For each element e, it finds all the parent-child alignment

constraints for which e is the child, and adds them into a set S (lines 3-10). In

this example, when e is img[2], S would contain the constraints (320, 480, pc, {...})
and (640, 1400, pc, {...}). Next, the algorithm only investigates further if S is

non-empty (line 11). If an element protrudes outside of the viewport for every

single viewport width, the developer is likely holding it offscreen intentionally.

In this case, the algorithm should not report any failures. If S is non-empty,

the algorithm sorts its contents into a list L by the function call on line 12. This
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function places them in ascending order based on their lower bound values (i.e.,

amin for an alignment constraint of the form (amin, amax, t, P)). This guarantees

the algorithm will analyse the constraints in consecutive viewport order. If an

element never protrudes out of the viewport, the upper bound of one constraint

will be one pixel less than the lower bound of the succeeding one. The key

insight of the algorithm is that any “gaps” between the bounds of the sorted

alignment constraints — ranges of viewport widths where the element has no

parent in the RLG — where the element is visible must indicate the element

has protruded out of the viewport.

The main loop of the algorithm attempts to find these “gaps”. It begins by iterat-

ing through each alignment constraint in L. For each constraint, it forms a range

(gmin, gmax) modelling the gaps between the current and previous constraints.

Initially, the value of gmin is set to wmin (line 13). It is then updated to be the up-

per bound of the previous alignment constraint +1 (line 23). Meanwhile, gmax

is iteratively set to the lower bound of the current constraint −1 (line 16). For

instance, when analysing the first alignment constraint from Figure 5.8, gmin

and gmax would have values of 320 and 319, respectively. Next, the algorithm

checks whether the current range represents a gap (i.e., gmax > gmin, line 17).

If there is no gap, for example if a constraint finishes at 767 and the next begins

at 768, then gmin and gmax have values of 768 and 767, respectively. In this

case, the algorithm moves on to the next constraint. However, if a gap occurs,

as is the case with the example, Algorithm 8 calls the function visibleRanges.

This returns the ranges of viewport widths between gmin and gmax at which e

is visible (line 18). When the algorithm analyses the second constraint, gmin =

481 and gmax = 639, so it calls visibleRanges.

If the result of calling visibleRanges, VR, is not empty (line 19), then the al-

gorithm reports a viewport protrusion failure for the ranges returned (line 20).

The img[2] element is visible for the entire range at which it has no parent.

Therefore, the algorithm reports a viewport protrusion failure between 481 pix-

els and 639 pixels. The final steps (lines 25-29) perform the same checks as the

main loop, but between the upper bound of the final constraint and the largest

viewport width modelled by the RLG, wmax. This makes sure the element does

not protrude out of the viewport again at wide widths. In this case, there exists

no gap between the final constraint and wmax, so the algorithm takes no further

action.
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div

img[2]

img[1]

(a) < 768 pixels

div

img[1]

img[2]

(b) = 768 pixels
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img[1] img[2]

(c) ≥ 770 pixels

(320, 1400)

div

(320, 1400)

img[1]

(320, 1400)

img[2]

(320, 1400, s, {. . .}) (320, 1400, s, {. . .})

(320, 767, s, {A, LE,RE})
(768, 770, s, {A,R})

(771, 1400, s, {L,TE,BE})

(d) RLG fragment

Figure 5.9: Example of a small-range failure, and its corresponding RLG fragment.

Detecting Small-Range Layouts

To detect small-range layout failures the approach searches through every align-

ment constraint in the RLG and inspects its lower and upper bounds. Algo-

rithm 9 shows this process in detail. Firstly, the algorithm checks to see if the

range of widths falls below a threshold value thres (line 4). In the empirical eval-

uation presented later in this chapter, this value is 5, but the algorithm could

use other values. Next, if it finds a small-range constraint, the algorithm inves-

tigates whether an alignment constraint exists between the same two nodes but

with differing alignment attributes, at both immediately wider and narrower

viewport widths (lines 5-6). If it finds such constraints (line 7), then the algo-

rithm deems the small-range layout to be representing a small-range layout and

reports it to the developer. Using the example presented in Figure 5.9, line 4

identifies the constraint (768, 770, s, {A, R}). Then, the function calls return the

constraints (320, 767, s, {A, LE, RE}) and (771, 1400, s, {L, TE, BE}), respectively.

As the algorithm found both preceding and succeeding constraints, it reports a

small-range layout failure.



128 detecting common types of responsive layout failures

Algorithm 9 Detection of small-range layout failures
1: procedure extractSmallRangeLayouts((E ,R,FVC,FAC))

2: for all r = (e1, e2) ∈ R do
3: for all (amin, amax, t, P) ∈ FAC(r) do
4: if amax− amin ≤ thres then
5: existsNarrower←existsAt(e1,e2,t,amin−1)

6: existsWider←existsAt(e1,e2,t,amax+1)

7: if existsNarrower∧ existsWider then
8: reportFailure(small-range-layout, {e1, e2}, {(amin, amax)})
9: end if

10: end if
11: end for
12: end for
13: end procedure

Detecting Wrapping Elements

To detect wrapping failures, Algorithm 10 analyses the alignment constraints

between neighbouring elements. It infers which ones the web page lays out in

horizontal rows for different viewport ranges. The insight of the approach is

that if an element e is rendered in a row with its neighbours at one viewport

range, but at a narrower viewport width the same row still exists, but no longer

contains e, then a wrapping failure has occurred.

Algorithm 10 analyses each element e in turn. It begins by obtaining the list of

its children C, by inspecting the alignment constraints for which e is the parent

(lines 3-10). Next, the algorithm finds all of the sibling alignment constraints be-

tween the children and adds them into a set, S (lines 11-16). Using Figure 5.10

as an example, when analysing div, C would contain the three li elements. Like-

wise, S would contain the five alignment constraints between them. Then, the

function on line 17 extracts the lower and upper bounds of these constraints. It

then returns a list of viewport ranges L, sorted into ascending order (line 17).

Normally, these ranges simply match the individual bounds of each alignment

constraint. However, as elements rearrange dynamically the ranges often inter-

sect, in which case the intersecting ranges are “spliced”. This creates a series

of ranges such that each viewport width only falls within a single range. For

instance, some of the constraints in the example intersect, so L would contain

two ranges (768− 810) and (811− 1400). Therefore, an alignment constraint can

intuitively be present in multiple viewport ranges. For instance, the constraint

(768, 1400, s, {L}) would be part of both the (768− 810) and (811− 1400) range.

The algorithm then iterates through successive pairs of viewport ranges to de-

tect any wrapping failures present. It achieves this by first determining which

elements in C are children of e for the two viewport ranges in question (lines
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(c) RLG fragment

Figure 5.10: Example of a wrapping failure, and its corresponding RLG fragment. At

narrow viewport widths, elements intended to align next to each other on a single row

wrap to produce a second row.

22-23). It then calls the function getChildrenInRows to work out the relative

layout of those children in each range (24-25). In this function, if a pair of ele-

ments e1, e2 have relative alignment attributes L or R (i.e. one is to the left/right

of the other) and does not have either the attributes A or B, they are in a row. If

the constraint in question did contain A or B, the elements would intuively not

be in a row, as e1 cannot be above/below e2 if they were horizontally aligned.

Finally, if IRc contains at least two elements (i.e., a row exists at that viewport

range), and a wrapped element w is not a member of IRc but is a member of

IRn, then the algorithm reports a wrapping failure (lines 26-30).

As a worked example, when considering the range (768− 810), getChildren-

InRows would return {li[1], li[2]} as IRc. The constraint (768, 1400, s, {L}) clearly

indicates that they are in a row, while the constraint (768, 810, s, {A}) between

li[1] and li[3] shows li[3] is not in that row. Similarly, when considering the wider

range, the constraint (811, 1400, s, {L}) shows that li[3] is now in the row, mean-

ing IRn is the set {li[1], li[2], li[3]}. As IRc and IRn show the presence of a row at

both viewport ranges, with a single element, li[3], not in the row at the narrower

viewport width, the algorithm reports a wrapping failure between 768 pixels

and 810 pixels.
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Algorithm 10 Detection of wrapping failures
1: procedure extractSmallRangeLayouts((E ,R,FVC,FAC))

2: for all e ∈ E do
3: C ← ∅

4: for all r = (e1, e2) ∈ R where e1 = e do
5: for all (amin, amax, t, P) ∈ FAC(r) do
6: if t = pc then
7: C ← C ∪ {e2}

8: end if
9: end for

10: end for
11: S← ∅

12: for all r = (e1, e2) ∈ R where e1 ∈ C ∧ e2 ∈ C do
13: for all (amin, amax, t, P) ∈ FAC(r) where t = s do
14: S← S ∪ (amin, amax, t, P)
15: end for
16: end for
17: L← getChildRangesSortedByAscendingMinimumRangeValues(S)
18: i← 0; len← length(L)
19: while i < len− 1 do
20: (rminc, rmaxc)← L[i]
21: (rminn, rmaxn)← L[i + 1]

22: Cc ← getChildrenInRange(e, C, (rminc, rmaxc))

23: Cn ← getChildrenInRange(e, C, (rminn, rmaxn))

24: IRc ← getChildrenInRows(Cc, (rminc, rmaxc))

25: IRn ← getChildrenInRows(Cn, (rminn, rmaxn))

26: for all c ∈ Cc do
27: if |IRc| ≥ 2∧ c /∈ IRc ∧ c ∈ IRn then
28: reportFailure(wrapping, {e, c}, (rminc, rmaxc))

29: end if
30: end for
31: i← i + 1

32: end while
33: end for
34: end procedure
35:
36: procedure getChildrenInRows(Cr , (rmin, rmax))
37: IR← ∅

38: for all r = (e1, e2) ∈ R where e1 ∈ Cr ∧ e2 ∈ Cr do
39: for all (amin, amax, t, P) ∈ FAC(r) where t = s do
40: if amin ≤ rmin∧ amax ≥ rmax then
41: if L ∈ P∨ R ∈ P∧A /∈ P∧B /∈ P then
42: IR← IR∪ {e1, e2}
43: end if
44: end if
45: end for
46: end for
47: return IR
48: end procedure
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5.3 empirical evaluation

This section evaluates this chapter’s approach in terms of both its ability to

detect responsive layout failures and its efficiency. It uses a collection of 26

responsively designed production web pages, in order to answer the following

three research questions:

Research Question One: How effective are the four RLG analysis algorithms at

detecting responsive layout failures?

Research Question Two: How does the proposed approach compare to spot-checking

approaches commonly used in real-world development?

Research Question Three: How long does the proposed approach take to run?

The remainder of this section presents the experimental design employed in

this study, then the obtained empirical results and a discussion of the main

interesting points.

5.3.1 Experiment Design

Subject Web Pages

It is vital the experimental results are not adversely biased in any way. There-

fore, a random URL generator, randomusefulwebsites.com, was used to select 25

responsively designed web pages. Unfortunately, not all web pages served im-

plemented responsive design. This required a degree of manual analysis to

select only those web pages in the scope of the study. For instance, a web page

exhibiting no responsive behaviour may exhibit layout issues. However, these

failures are not caused by errors in the implementation of a responsive design.

To select only those subjects within the scope of the study, the viewport was

resized while browsing each web page and the layout behaviour observed. If

the web page demonstrated RWD principles (i.e., used grid-based layouts and

media queries), then it was saved for use in the study. As mentioned in Chap-

ter 2, many web pages use RWD frameworks, but it is important to stress that

simply importing such a framework did not guarantee inclusion in the study.

This is because an import does not indicate correct application. This process re-

peated until 25 web pages had been selected. While a larger pool of subject web

pages could potentially have been used, 25 was chosen to obtain a wide enough
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Table 5.1: Web Pages Used in the Empirical Study

Web Site Name URL # HTML Elements # CSS Declarations

3-Minute Journal www.3minutejournal.com 79 3354

Accountkiller www.accountkiller.com/en 343 559

Airbnb www.airbnb.com 1469 5638

BugMeNot bugmenot.com 41 237

Cloudconvert cloudconvert.com 907 2831

ConsumerReports www.consumerreports.org 1037 6295

CoveredCalendar www.coveredcalendar.com 147 5131

Days Old www.daysold.com 65 1033

Dictation dictation.io 194 166

Duolingo www.duolingo.com 816 16929

Honey www.joinhoney.com/install 460 3249

Hotel WiFi Test www.hotelwifitest.com 358 4258

Mailinator www.mailinator.com 279 5086

MidwayMeetup www.midwaymeetup.com 85 2942

Ninite ninite.com 640 2721

PDFescape www.pdfescape.com 176 794

PepFeed www.pepfeed.com 342 4563

Pocket getpocket.com 663 5203

Rainy Mood rainymood.com 88 50

RunPee runpee.com 437 7273

StumbleUpon www.stumbleupon.com 283 8530

Top Documentary Films topdocumentaryfilms.com 410 702

Usersearch usersearch.org 865 1495

What Should I Read Next www.whatshouldireadnext.com/search 111 852

Will My Phone Work willmyphonework.net 781 2022

Zero Dollar Movies zerodollarmovies.com 246 1802

sample of web pages to obtain generalisable results without making the man-

ual effort required to analyse the empirical results unmanageable. A 26th web

page, ConsumerReports, was also added as this subject acted as a motivating

example in a publication of this work [147]. Table 5.1 details the selected web

pages, including their URLs, the number of HTML elements contained within

them, and the number of CSS declarations used to implement their responsive

layout.

Methodology

Implementation: The RLF detection algorithms were implemented into a new

module of ReDeCheck. The tool was also modified to allow users to select

which “mode” of checking ReDeCheck performed. From this point forward,

this thesis refers to the approach presented in Chapter 4 as regression check-
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Regression Checking Common Failure Checking

W W′ W

Model Extractor

Model Comparator Common Failure Detector

Report Generator

RLG RLG′ RLG

D RLFs

Report Report SSS

Figure 5.11: The high-level structure of the ReDeCheck tool. To the left of the dashed

vertical line, the modules support regression checking, to the right, common failure

checking.

ing and the approach described in this chapter as common failure detection. Fig-

ure 5.11 illustrates the updated high-level architecture of ReDeCheck.

The report generator module again produces a single textual report when in

common failure detection mode. However, it also produces a series of anno-

tated screenshots showing each detected RLF with the offending elements high-

lighted in the web page. This should make it easier for a developer to find and

diagnose issues. Figure 5.12 presents an example, where ReDeCheck identifies

a viewport protrusion in Duolingo and outputs the highlighted screenshot to

the developer.

Configuration: ReDeCheck was configured to sample the web page under

test across a viewport range of 320–1400 pixels. This again ensured the RLG

covered devices ranging from small smartphones to large, widescreen desktops.

ReDeCheck was also set by the configuration parameters to render the web

page in the Firefox browser. All the experiments used an iMac with 8GB of

RAM and MacOS 10.12 Sierra as the operating system.

Research Question One: To answer this first research question, each RLF

reported by ReDeCheck was analysed and classified as one of three distinct
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(a) 1298 pixels 3 (b) 983 pixels 7

(c) 1298 pixels (zoomed) 3

(d) ReDeCheck failure report

Figure 5.12: An example report screenshot from ReDeCheck.
The failure is from Duolingo, where a carousel of languages is correctly centered (parts (a) and
(c)), before protruding outside the viewport as the width narrows, obscuring the right-hand
arrow (parts (b) and (d)). Finally, part (e) shows a report, produced by ReDeCheck, highlighting
the failure to the developer using dashed and solid red boxes.

types. True positives (TPs) are failures which reveal clearly evident RLFs when

a user views the web page at one of the reported “faulty” viewport widths. For

instance, the examples presented by Figures 5.1 through 5.5 show examples of

TPs detected as part of this study. In contrast, FPs do not reveal failures of any

kind, either in the visual appearance of the web page or its underlying DOM

structure.

This RQ defines a third category of reported failure, non-observable issues (NOIs),

which lie somewhere between TPs and FPs. They do not manifest visually in

the aesthetics of the web page. Instead they reveal potential issues at the DOM

level, detectable through the use of developer tools such as Firebug [115]. For in-

stance, two elements may overlap/collide at the DOM coordinate level. Due to

certain styling rules, such as transparent edges (i.e., no visible border) or large

amounts of padding, they may present no visible issue to a user when viewing

the web page. Given that they do not manifest visually, NOIs do not represent

serious problems like those classified as TPs. However, as they can highlight

issues which could potentially manifest as TPs at a later time, they are useful to
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developers and are therefore different to FPs. They could be considered similar

to the output of linting tools [75]. These are software tools that point out source

code that might cause potential issues during maintenance or execution on dif-

ferent platforms. NOIs can inform web developers of structural issues or other

factors related to CSS code that may negatively affect ease-of-modification or

the ways in which different web browsers may render pages.

Unfortunately, classifying presentation and layout failures in web pages is a

task that falls on the shoulders of humans (c.f. [7, 33, 105, 123]). Therefore, I

performed the initial classification of all the reported failures. I then reviewed

those classifications with my supervisor. This mitigated any potential subjectiv-

ity stemming from individual perceptions as to what constitutes a true positive,

false positive or non-observable issue. To invite discussion on the nature of

layout failures in web pages, the reasoning behind the final classifications is

available in an online results archive, along with all of the produced failure

reports and screenshots [4].

When applied together, the detection algorithms might report a failure more

than once for different RLF categories. For example, an element collision may

also be a small-range layout. The approach may also report related failures

involving common HTML elements that are likely to emanate from a single

defect in the web page’s source code. To summarize ReDeCheck’s ability to

reveal distinct RLFs, therefore the set of TPs for each page were manually ana-

lyzed to determine the number of discrete, observable failures evident. Further-

more, multiple failure reports may be produced by ReDeCheck for the same

viewport range. In practice, a developer would not need to examine each re-

port individually. Instead, they would view the web page within each distinct

viewport range to check for RLFs, as multiple failures could be visible in the

same viewport range. The results therefore also detail the number of distinct

viewport ranges for all of the failure reports produced by ReDeCheck for each

web page.

Research Question Two: This experiment first involved selecting a series

of spot-checking tools to compare to ReDeCheck. Following a Google search

for “responsive web testing tool”, the top four results were selected. These were

Kersley’s RWD tool [78], Responsinator [120], ResponsiveDesignChecker [121],

and ViewportResizer [139]. The fifth tool selected was the popular integrated

“Responsive Design View” utility of the Firefox browser’s developer tools [3].

These tools advocate checking a web page’s layout at a wide range of viewport

widths, corresponding to the viewport width (in either portrait or landscape
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orientation) of a device in common use. For instance, Kersley’s tool suggests

a developer checks their web page at 4 viewport widths in the 320–1400 pixel

range. ViewportResizer advocates more detailed checking, recommending 12

different widths. In total, the 5 tools suggested checking at 21 different widths.

Finally, this question also investigates the performance of a sixth approach, in

which 21 viewport widths were randomly selected. This random approach tries

to complement the more device-specific widths already chosen.

The spot-checking process itself involved first resizing the Firefox browser to

each advocated viewport width. Then, at each width, whether any of the RLFs

previously detected by ReDeCheck were detectable at that viewport width was

recorded. As with RQ1, the initial findings were then checked as a committee

to ensure correctness.

Research Question Three: The time taken for ReDeCheck to perform its

analysis and produce its report can sometimes be affected by issues such as

the browser load-up and interactiontime. Therefore, the timing experiment con-

sisted of 30 trials for each of the 26 web pages, to mitigate any bias in the

results.

Threats to Validity

As with all empirical evaluations, any threats to the validity of the obtained

results must be considered and mitigated as much as possible by the method-

ology. This section details the main identified threats and the steps taken to

mitigate them.

Generalisability of Web Pages: The choice of test subjects is always a validity

threat, as results may not generalise to other web pages. This was mitigated by

using a random URL generator, randomusefulwebsites.com. The resulting subject

web pages varied drastically in both domain and complexity. For instance, one

of the smallest subjects, Days Old, provided a simple calendar function, while

large applications such as Duolingo provide a fully-fledged online language

learning platform.

Manual Classification: As with the evaluation in Chapter 4, the manual

classification of results presents another threat. However, as no automated ap-

proach for the task currently exists, humans must do the task manually. To mit-

igate the risk of subjectivity affecting the classifications, a committee verified

the initial decisions. The individual failure reports and screenshots produced

by ReDeCheck were also published online, along with the classifications as-
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signed to them. This will allow others in the community to inspect them and

provide any feedback if they so wish.

Spotchecking: Due to the lack of a human study, the spot-checking results

presented as part of RQ2 were not obtained by using real-world developers.

However, given the viewport widths selected are those advocated by commonly

used RWD testing tools, RQ2 should give a good insight into the failure detec-

tion capabilities of manual spotchecking in practice. In fact, given that human

testers can potentially fail to identify layout issues when manually inspecting

web pages, the results in RQ2 are likely to be an upper bound.

Machine related performance bias: Given the time taken for ReDeCheck

to perform its analysis of a web page can vary due to browser load-up and

interaction time, the timing results in RQ3 represent 30 repeat trials on each

subject web page.

Browser Specific Failures: There are often subtle differences in how differ-

ent browsers render web pages. The diverse body of work targetting cross-

browser incompatibilities is clear evidence of this. Therefore, the use of Firefox

in the configuration of ReDeCheck constitutes another validity threat. However,

given Firefox’s popularity and widespread use among not only the web devel-

opment community but the general public as well, the results produced using

Firefox should be representative. However, to ensure any failures detected were

not specific to Firefox, their presence was manually confirmed on both the latest

versions of Safari and Chrome.

Lack of Comparison to Related Approaches: As discussed in Chapter 2,

several approaches to detecting presentational issues have been previously pro-

posed. This study did not compare them to ReDeCheck for a variety of reasons.

Firstly, the 26 web pages in the study were simply downloaded from the live

web. This means they do not come with oracle images or layout specifications,

ruling out tools such as WebSee and Cornipickle. Furthermore, the detailed in-

tentions of the developers of the web pages are unknown. This makes manually

creating such oracles in order to use these tools a threat in itself to the validity

of any results stemming from their use. Finally, techniques for cross-browser in-

compatibility detection are unsuitable as they rely on one browser representing

the “correct” layout. In constrast, the proposed approach uses implicit oracle

information to detect responsive layout failures.

Tool Implementation: Bugs in the implementation of the described approach

present a large risk to the validity of any results. Therefore, as with the version
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Table 5.2: Results for the RLF Detection Approach.
This table records the number of failure reports produced by ReDeCheck. categorized as true
positives (TP), false positives (FP) or non-observable issues (NOI) for each RLF type. The 5 main
column headers represent the 5 failure types: element collision (EC), element protrusion (EP),
viewport protrusion (VP), small-range (SR) and wrapping (W). A “-” indicates that ReDeCheck

produced no reports for a particular page and category. The “Distinct Viewport Ranges” column
records the number of distinct viewport ranges that a developer would need to examine to verify
all of the failure reports produced for a particular web page. The “Distinct RLFs” column gives
the number of TPs (i.e., actual RLFs) detected by ReDeCheck that manual analysis subsequently
revealed to be distinct in a page’s layout.

EC EP VP SR W
Distinct

Viewport

Ranges

Distinct

RLFsWeb Page TP FP NOI TP FP NOI TP FP NOI TP FP NOI TP FP NOI

3-Minute Journal - - 1 - - 2 8 - - - 1 - - - - 12 2

Accountkiller - - - - - - - - - 147 5 - 2 - - 4 3

Airbnb - - 1 - - 4 - - 4 - 2 - 2 - - 9 2

BugMeNot - - - 1 - 3 2 - - - - - 1 - - 7 4

Cloudconvert 1 - - - - - - - - 1 - - - - - 1 1

ConsumerReports - - 7 1 - 3 9 - 3 - 1 - - - - 16 4

CoveredCalendar - - - - - - - - 3 - - - 2 - - 3 2

Days Old - - - - - - - - 1 - - - - - - 1 0

Dictation - - - - - - - - 1 - - - - - - 1 0

Duolingo - - 1 - - - 2 - 2 - 1 - - 2 - 7 1

Honey - - - - - 8 - - 2 - 3 - - - - 8 0

Hotel WiFi Test - - - - - - 1 - - - 2 - - - - 3 1

Mailinator - - 1 - - - - - - - 2 - - - - 2 0

MidwayMeetup 1 - - - - 1 - - 1 - - - - - - 3 1

Ninite - - - - - - - - - - - - 1 1 - 2 1

PDFescape - - - 1 - 5 1 - 3 - - - - - - 8 2

PepFeed 4 - 3 - - 2 1 - 1 2 14 - 1 - - 20 6

Pocket - - 2 - - 3 - - - - 3 - - - - 5 0

Rainy Mood - - - - - - - - - - - - - - - 0 0

RunPee - - - - - - - - - - 5 - - 1 - 6 0

StumbleUpon 1 - - - - - - - - - - - - 1 - 2 1

Top Documentary Films - - 7 - - 4 - - - - 2 - - - - 10 0

Usersearch - - 1 - - - - - - - - - 1 - - 2 1

What Should I Read Next - - - - - - - - 2 - - - - - - 1 0

Will My Phone Work 1 - - - - 1 - - - 2 - - - - - 2 1

Zero Dollar Movies - - - - - - - - - - 2 - - - - 2 0

Total 8 0 24 3 0 36 24 0 23 152 43 0 10 5 0 137 33

of ReDeCheck implemented in Chapter 4, regular automated unit testing of

the individual methods and modules of ReDeCheck was performed. Detailed

manual verification of the results produced using web pages in which I had

manually introduced RLFs was also employed, to establish confidence in the

approach’s implementation.
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5.3.2 Empirical Results

Research Question One: Table 5.2 presents the classification of the failures

reported by the approach, broken down by both web page and failure type. As

the results show, the approach found true positives (i.e., actual RLFs) in 16 of

the 26 web pages in the experiment. Additionally, it found at least one TP of all

five failure types. This suggests the types of failures proposed by this chapter

are prevalent in real-world web pages and that developers of responsive web

pages do indeed struggle to create pages free from layout failures. Interestingly,

ReDeCheck found RLFs in well-known web pages such as Airbnb, Consumer-

Reports and Duolingo. This is particularly compelling for two reasons. Firstly,

these web pages are popular and likely receive a large amount of user traffic.

Therefore, any RLFs could potentially harm the browsing experience of thou-

sands of end users. This in turn could cause significant detrimental impacts

to the respective organisations. Secondly, due to the size of the organisations

in question, the web pages are likely to have undergone a thorough in-house

testing process. In these cases, the checking has failed to detect the presence of

the identified RLFs. This suggests that as well as being prevalent in web pages,

RLFs are also often missed by highly skilled web professionals.

In total, the approach produced 197 true positive failure reports. Following

manual analysis these reduced down to 33 distinct RLFs, as shown by the final

column of Table 5.2. For example, the eight viewport protrusion failures re-

ported for 3-Minute Journal involve neighbouring elements and conflate down

to two distinct RLFs. Accountkiller represents a more exaggerated example, in

which 147 individual small-range failures all relate to a single distinct RLF. In

this instance, the web page contains a large grid of elements with alignment

constraints describing the layout between each pair. For a few viewport widths,

the approach detects a change in layout where the web page does not lay out

the elements in a grid-like manner. This results in a large number of align-

ment constraints that hold true for just a few viewport widths. This causes the

small-range detection algorithm to trigger failure reports for each individual

constraint.

The approach also reported some false positives, the majority of which were

from the small-range detector. Analysis of these FPs revealed that the most

common cause was “coincidental” layout attributes on alignment constraints.

Figure 5.13 presents an example in which the offending element “Mar” (out-

lined in blue) has no CSS attributes dictating its horizontal alignment within
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its parent (outlined in red). However, it has coordinates which the approach

interprets as being centre-justified for a small number of viewport widths.

Figure 5.13: A false positive small-range layout.

The wrapping detection algorithm also reported a small number of FPs, which

were due to one of two things. Firstly, the algorithm could have incorrectly iden-

tifyied a set of elements as being in a row. This caused the wrapping detector to

report a failure when a shift in layout caused one of the elements to no longer

be a part of the row. Alternatively, a legitimate shift in layout could trigger the

reporting of a failure, as illustrated by the example from StumbleUpon in Fig-

ure 5.14. Here, the approach has detected one element (highlighted in red) that

it thinks has wrapped onto a new row from the other elements (highlighted in

blue). However, it is clear that the behaviour shown in Figure 5.14 is intentional

and therefore the developer does not need to be alerted to it.

Figure 5.14: A false positive wrapping failure.

Additionally, the element collision, element protrusion and viewport protru-

sion detection algorithms reported several non-observable issues. While these

did not manifest visually in the appearance of the web page, several of them

represented significant collisions or protrusions at the DOM level. For instance,

large amounts of padding applied to elements often caused DOM-level ele-

ment collisions. Similarly, the CSS property overflow: hidden resulted in several

DOM-level element protrusions. Following future changes to the web page’s

CSS, these failures could transform into visually evident TPs, demonstrating

the importance of reporting them to the developer. Figure 5.15 presents an ex-

ample of an NOI from this study. In part (a), the heading element “Number
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of Users” seems to be correctly displayed within the main content tile. How-

ever, after highlighting the elements in part (b), it becomes clear there is a small

underlying issue. The heading is in fact not centre-justified within the tile and

instead protrudes slightly.

(a) Original (b) Highlighted

Figure 5.15: A non-observable element protrusion.

With the large number of failure reports produced by ReDeCheck for some

web pages, one might think that the manual analysis required to inspect each

failure report would render ReDeCheck very labour-intensive. Instead, a devel-

oper can do so with minimal effort even when several failure reports require

inspection, as the reports often repeat the same viewport ranges. The “Distinct

Viewport Ranges” column in the results table shows this effect. It generally

occurs when different algorithms report the same distinct failure or a single

algorithm reports related elements as individual failures at the same range of

viewport widths. Rather than inspecting each reported failure sequentially, in

practice a developer could inspect the textual report to obtain the distinct view-

port ranges. They could then view the web page at each of those and confirm

any reported failures, as multiple failures could be visible at each viewport

width. This essentially means the human effort investment required for using

ReDeCheck is not correlated with the pure number of reported failures. Instead

the number of distinct viewport ranges representing the failures indicates the

manual effort required. Table 5.2 shows ReDeCheck detected 33 distinct RLFs

and reported failures at 137 distinct viewport ranges. Therefore, on average a

developer would only need to inspect a web page at an average of 4.2 different

viewport widths to observe each distinct RLF. This is particularly compelling as

the potential benefits of detecting TP failures — actual RLFs in the web page—
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more than outweighs the cost of performing the manual analysis. This is espe-

cially true when compared to the alternative of doing everything manually.

Finally, there appears to be no relation between web page complexity and the

number of failures contained within it. For instance, while simple web pages

such as Rainy Mood contain no failures, other small web pages do. As an exam-

ple, BugMeNot evinced four distinct RLFs. Similarly, very large, complex web

pages such as Airbnb contain relatively few failures in comparison to a medium-

complexity web page such as PepFeed (two for Airbnb vs. six for PepFeed). A

likely cause for this could be that as the more complex web pages often be-

long to well-known organisations with large userbases, they would have under-

gone a significantly more thorough checking process. This would likely have

detected many of the RLFs present in the pages, before they went live. In con-

trast, smaller web pages may have only received a small, perhaps insufficient

level of checking. Regardless, as ReDeCheck found RLFs in web pages with

diverse complexities and domains, identifying them in an accurate manner is

clearly an important task.

Conclusion for RQ1 The results show ReDeCheck can accurately detect

RLFs of all five types, detecting 33 distinct failures in total. Furthermore,

given that 16 of the 26 web pages studied contained at least one RLF, the

results also suggest the proposed failure types are prevalent in real-world

responsive web pages.

Research Question Two: Table 5.3 presents the results of the spotcheck testing

procedure, by inspecting the viewport widths advocated by each tool. Firstly, it

is important to note the spot-checking process detected no new failures. This

suggests there were no false negative results for ReDeCheck. This research

question can therefore fairly compare the detection results presented in the

table against those of ReDeCheck in RQ1.

The results show that spot-checking detected substantially fewer RLFs than

ReDeCheck, with recall scores ranging from 66% for Kersley’s and Respon-

sinator to 81% for Firefox RWD View. As the widths tested by these ap-

proaches correspond to those commonly used by popular devices, this shows

ReDeCheck detected actual RLFs occurring at viewport widths which could

affect the browsing experience of a large number of end users. Another key

consideration is that while the spotchecking tools display the web page at the

various widths, the human tester is still responsible for performing the manual
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Table 5.3: Results of the spot-checking process.
The “RLFs Detected” column denoted how many of the 33 RLFs identified in RQ1 were observ-
able using each approach, while the “Recall” column presents this value as a percentage (eg. 22

out of 33 RLFs = 66% recall).

Tool/Method RLFs Detected Recall

Kersley’s 22 66%

Responsinator 22 66%

Responsive Design Checker 23 69%

Viewport Resizer 26 78%

Firefox Responsive Design View 27 81%

Random 24 72%

Detected using at least one tool/method 28 85%

inspection to detect the failures. In constrast, ReDeCheck reduces this manual

effort considerably. This is especially true for tools that advocate checking a

web page’s layout at a large number of viewport widths. For instance, while

Kersley’s tool only tests at 4 viewport widths, ViewportResizer advocates

testing at 12 viewport widths. This makes its usage potentially very labour-

intensive. Finally, even if a human used all five tools in combination with ran-

dom checking, the results show that this approach would still miss five of the

RLFs detected by ReDeCheck.

Conclusion for RQ2 The results show spot-checking detects fewer failures

than ReDeCheck. Across the different tools, between 19 and 34% of failures

went undetected. This highlights the problems with using spot-checking as

failures can often manifest at widths not selected for checking. This result

also provides empirical support for the automated approach presented in

this chapter.

Research Question Three: Figure 5.16 presents the median execution times

recorded for ReDeCheck across the 30 trials on the 26 subject web pages used in

this study. ReDeCheck analysed all but one subject within a median of around

three minutes. Over half of the subjects — 15 in fact — required less than

a minute. This result shows ReDeCheck can accurately detect RLFs quickly

enough to not be detrimental to a web developer’s workflow, as in software

development, large unit test suites can take similar amounts of time to run.

Airbnb required the most time at around 4.5 minutes. However, as shown by

Table 4.1, it is the most complex web page in the study in terms of the number of
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Figure 5.16: Execution times for ReDeCheck

When not obscured due to a small inter-quartile range (IQR), a small circle denotes the median
of the timings across the 30 trials and the upper and lower hinges of the error bars, respectively,
designate the median value added to and subtracted from the IQR of the executing timing data.

elements. Therefore it is likely to require more time as the size of the extracted

RLG will be much larger and the analysis will take longer. Despite this, the

benefits of detecting RLFs, such as the two wrapping failures detected in Airbnb

by ReDeCheck, should more than outweigh the time investment required to

use the approach. The figure shows that increased execution time is the result

of either a) high web page complexity (e.g. Airbnb), b) large number of reported

failures (e.g. Accountkiller and PepFeed) or c) a combination of the two (e.g.

ConsumerReports).

Conclusion for RQ3 The graph shows the approach can detect RLFs

quickly enough to not be disruptive to a developer. ReDeCheck processed

all but one subject in less than 3 minutes, meaning in a real development

scenario, developers can quickly obtain useful feedback on their responsive

web pages.

The results of this evaluation demonstrate the potential of the proposed ap-

proach for identifying RLFs without an oracle. The next section describes a

series of refinements aiming to make the approach more accurate and precise.

5.4 refining the rlf detection approach

The main shortcoming of the original approach proposed in this chapter is

the “noisiness” of the small-range layout failure detector. The empirical eval-

uation found that false positive results were produced by this detector for 13
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of the 26 subject web pages, with a total of 43 false positives. For one extreme

case, PepFeed, the detector reported 14 false positive results, which in practice

would mean a developer analysing the results would likely waste a lot of effort

on these failures that could be better spent debugging other true positives or

non-observable issues. Therefore, this section seeks to refine this detection al-

gorithm so that it demonstrates improved precision with comparable recall to

the original algorithm, i.e., report fewer false positives while reporting a similar

(ideally the same) number of true positives. While this chapter could also have

addressed the small number of false positive results reported by the wrapping

element detector, the fairly high level of precision exhibited by the current al-

gorithm means that modifying the algorithm to filter out the edge cases that

caused the false positives would likely cause “overfitting” and potentially make

the algorithm less generalisable to other web pages.

As the first set of empirical results show, the element collision, element protru-

sion and viewport protrusion detection algorithms produce a number of non-

observable issue reports — 83 in fact. While many of these do not represent

potential underlying issues the developer should be aware of, some of them do,

which is how the study justified presenting them to the developer as a category

separate to false positives. To increase the benefit of these reports to the de-

veloper, one option would be to develop an approach that can determine how

likely a non-observable issue is to represent an important underlying issue, as

these could be reported to the developer before those that are less likely. How-

ever, this option is out of scope of this thesis and is instead listed as a potential

direction of future work, described in more detail in Chapter 8.

5.4.1 RLG Definition Modifications

When analysing the false positive reports generated by the small-range failure

detector, there was one characteristic shared by a large proportion of the fail-

ures. The attributes that changed on the small-range alignment constraint were

often those that a developer often does not explicitly encode in the CSS of a web

page. The vertical alignment of a child element within its parent is probably the

most common example of this. Developers frequently program an element to

be left, centre or right justified to make sure collections of elements are laid out

correctly, but given the constantly changing viewport widths and the dynamic

readjustment that accompanies it, vertical alignment is less of a priority.
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Algorithm 11 Detection of small-range layout failures
1: procedure extractSmallRangeLayouts((E ,R,FVC,FAC))

2: for all r = (e1, e2) ∈ R do
3: for all (amin, amax, t, P) ∈ FAC(r) do
4: if amax− amin ≤ thres then
5: (. . . , Pprev)←existsAt(e1,e2,t,amin−1)

6: (. . . , Pnext)←existsAt(e1,e2,t,amax+1)

7: if (. . . , Pprev) 6= ⊥∧ (. . . , Pnext) 6= ⊥ then
8: if |(Pprev \ P) + (P \ Pprev)| ≥ 2∧ |(Pnext \ P) + (P \ Pnext)| ≥ 2 then
9: reportFailure(small-range-layout, {e1, e2}, {(amin, amax)})

10: end if
11: end if
12: end if
13: end for
14: end for
15: end procedure

Because of this, many of the vertical alignment attributes extracted and as-

signed to constraints in the RLG are coincidental rather than intended by the

developer, making it very unlikely that any small-range layout where such an

attribute is changed is an actual RLF. In an attempt to exploit this insight and

improve accuracy, the RLF detection approach in this section uses a modified

RLG in which no vertical alignment in parent-child relationships is modelled,

leaving only the horizontal alignment attributes.

5.4.2 Improving the Small-Range Detection Algorithm

The modifications made to the small-range layout detection algorithm first pre-

sented in Algorithm 9 are fairly small, but should work in conjunction with

the RLG definition modifications described by the previous section to produce

a significant improvement in the accuracy of the approach. Algorithm 11 illus-

trates the new version of the approach.

The key change is the additional if statement on line 8, which inspects the

three identified alignment constraints, rather than simply reporting a small-

range layout failure if constraints either side of the small-range one are found.

It compares the attributes of the preceeding and succeeding constraints to the

small-range constraint found, in order to determine whether the layout change

described by the constraints is “significant”, or just a coincidental attribute la-

belling that the web developer need not worry about. This is achieved using

the set difference operator to calculate the number of attributes that are different

between the pairs of attribute sets. If both comparisons show at least two at-
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Table 5.4: Additional Web Pages added to the Empirical Study

Web Site Name URL # HTML Elements # CSS Declarations

Eat This Much https://www.eatthismuch.com/ 806 7218

Forvo https://forvo.com/ 583 14438

Google Maps SVP http://www.brianfolts.com/driver/ 267 2832

Hours Of http://www.hoursof.com/ 1257 2601

Khan Academy https://www.khanacademy.org/ 847 3076

Memrise https://www.memrise.com/ 268 2238

Retail Me Not https://www.retailmenot.com/ 1335 1543

Similar Sites https://www.similarsites.com/ 477 5518

Startup Stash http://startupstash.com/ 730 10823

Tiiime http://tiii.me/ 79 535

tributes different, then the algorithm deems the layout change significant and

reports the small-range failure in the same way as before. However, say, for in-

stance, a single attribute had “toggled” in the small-range constraint (attribute

not present before and after, but present for a tiny range of viewport widths),

the updated version of the algorithm would no longer report the failure, mak-

ing the overall approach far more accurate and more usable for end users.

5.4.3 Empirical Evaluation

Subjects: To evaluate the effects of the modifications, this study used two

collections of responsive web pages. The first of these is the collection of 26 sub-

jects obtained from randomusefulwebsites.com earlier in this chapter. The second

contains an additional 10 web pages collected during the initial subject gather-

ing phase but not selected for use in the initial evaluation. These were used to

avoid the approach being overfitted to the initial pool of web pages. Table 5.4

presents the details of these additional web pages.

Results: Table 5.5 presents the classification of the failures reported by the

approach, broken down by both web page and failure type. The first key ob-

servation is that the modifications to the detection approach had a profound

impact on the accuracy of the small-range detector, reducing the number of

false-positive results from 43 to 4. Furthermore, the approach achieved this

with no loss of recall, as all the true positive small-range RLFs found by the

original version of the approach are also detected by the new version, albeit

with some individual true positives no longer reported.
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Table 5.5: Failure Detection Results following the modifications to the approach.

EC EP VP SR W
Distinct

Viewport

Ranges

Distinct

RLFsWeb Page TP FP NOI TP FP NOI TP FP NOI TP FP NOI TP FP NOI

3-Minute Journal - - 1 - - 2 8 - - - - - - - - 11 2

Accountkiller - - - - - - - - - 119 - - 2 - - 3 3

Airbnb - - 1 - - 3 - - 4 - - - 2 - - 6 2

BugMeNot - - - 1 - 3 2 - - - - - 1 - - 7 4

Cloudconvert 1 - - - - - - - - 1 - - - - - 1 1

ConsumerReports - - 7 1 - 3 9 - 3 - - - - - - 15 4

CoveredCalendar - - - - - - - - 3 - - - 2 - - 3 2

Days Old - - - - - - - - 1 - - - - - - 1 0

Dictation - - - - - - - - 1 - - - - - - 1 0

Duolingo - - 1 - - - 2 - 2 - - - - 2 - 6 1

Honey - - - - - 8 - - 2 - - - - - - 9 0

Hotel WiFi Test - - - - - - 1 - - - - - - - - 1 1

Mailinator - - 1 - - - - - - - - - - - - 1 0

MidwayMeetup 1 - - - - 1 - - 1 - - - - - - 3 1

Ninite - - - - - - - - - - - - 1 1 - 2 1

PDFescape - - - 1 - 5 1 - 3 - - - - - - 8 2

PepFeed 4 - 3 - - 2 1 - 1 1 1 - 1 - - 12 6

Pocket - - 2 - - 3 - - - - - - - - - 3 0

Rainy Mood - - - - - - - - - - - - - - - 0 0

RunPee - - - - - - - - - - - - - 1 - 1 0

StumbleUpon 1 - - - - - - - - - - - - 1 - 2 1

Top Documentary Films - - 7 - - 4 - - - - 1 - - - - 9 0

Usersearch - - 1 - - 1 - - - - - - 1 - - 3 1

What Should I Read Next - - - - - - - - 2 - - - - - - 1 0

Will My Phone Work 1 - - - - 1 - - - - - - - - - 2 1

Zero Dollar Movies - - - - - - - - - - - - - - - 0 0

Total 111 33

Given there were no explicit changes to any of the other detection algorithms,

the remainder of the results are also identical to those presented in the previous

chapter. There was no reduction in recall for any of the failure types, but the

changes to the RLG definition appears to have caused a couple of additional

NOI results to have been reported by the element protrusion algorithm. Given

the significant reduction in false positives achieved, these extra reports do not

cause any significant increase in the manual effort required by a user of Re-

DeCheck. In fact, a developer would now need to inspect at an average of just

3.4 distinct viewport ranges to observe each RLF.

Table 5.6 shows the RLF detection results for the additional ten web pages. It

shows that 7 of the 10 web pages contained RLFs identified by ReDeCheck.

Furthermore, the results show that failures of all five types were found in this

secondary pool of subject web pages. This provides further empirical support

not only for the approach used by ReDeCheck to detect RLFs, but also the
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Table 5.6: Failure Detection Results on the additional pool of subjects.

EC EP VP SR W
Distinct

Viewport

Ranges

Distinct

RLFsWeb Page TP FP NOI TP FP NOI TP FP NOI TP FP NOI TP FP NOI

Eat This Much - - 5 1 1 4 1 - 1 - - - - 1 - 10 2

Forvo - - - - - 3 - - - 11 - - 4 - - 8 5

Google Maps SVP - - - 1 - 1 - - - - - - - - - 2 1

Hours Of - - - - - 1 - - 1 - - - - - - 2 0

Khan Academy 1 - - - 1 2 - - 2 - - - - - - 6 1

Memrise - 1 - 1 1 1 - 2 2 - - - - 1 - 6 1

Retail Me Not 2 - - - - 30 - - - - - - - 4 - 11 2

Similar Sites - - - - - 1 3 - 2 - - - - - - 3 3

Startup Stash 1 - 1 1 - 14 - - 1 - - - 1 - - 6 2

Tiiime - - - - - 1 - - - - - - - - - 1 0

Total 4 1 6 4 3 58 3 2 9 11 0 0 5 6 0 55 17

real-world need for such a tool, as developers clearly struggle to implement

responsive web sites that do not suffer from aesthetic issues of some kind.

In total, 27 true positive failures were reported by the approach. Following the

previously outlined manual analysis procedure, these failures conflated down

to 17 distinct RLFs, as shown by the final column of Table 5.6. For instance, three

viewport protrusions reported for Similar Sites all occur at similar viewport

widths and conflate to a single distinct RLF, while the 11 small-range failures

reported for Forvo also stem from a single distinct RLF, in a similar manner to

the Accountkiller failure described in Chapter 5.

In constrast to the rather high proportion of false positives reported by the ini-

tial version of the approach, only twelve false positives were reported by the

updated version of the approach on the new collection of web pages, averaging

to just over one FP per web page. Crucially, not a single FP was reported by

the small-range detection algorithm, suggesting the modifications presented in

this chapter are generalisable to other web pages rather than being “overfitted”

to the initial pool of 26 web pages. The majority of FPs were produced by the

wrapping detector and were caused by genuine layout shifts being interpreted

as failures by the approach; improving this algorithm is a potential avenue of

future work. Eat This Much reported an element protrusion for an element that

the approach determined was protruding outside of its parent, when actually

it was simply overlapping with a "Start a help chat" tab that was intention-

ally rendered at the bottom of the viewport window. Khan Academy evinced a

viewport protrusion where some content was indeed obscured, suggesting the

failure was a true positive, but the consensus among the committee that per-

formed the manual classification was that it was an intended developer effect
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and therefore a false positive. Finally, and perhaps most interestingly, Memrise

reported failures involving an animated cloud that moved about in the banner

of the web page as the user browsed. This caused problems for the approach, as

the element’s location at one viewport width when its layout was extracted was

drastically different to its location at a subsequent viewport width. Future de-

velopment of the approach could potentially investigate methods of identifying

similar elements and dealing with them appropriately.

As with the previous iteration of the approach, there were some non-observable

issues reported by the element collision, element protrusion and viewport pro-

trusion algorithms, with a couple of subject web pages reporting quite a large

number. For instance, in Retail Me Not there were 30 NOIs reported. How-

ever, these were caused by a recurring underlying issue in the CSS of the web

page that caused very similar issues to be reported for many elements. How-

ever, given the number of failures reported, a human using ReDeCheck may

assume that the web page contains a large amount of actual RLFs, so future

work could look at either automatically classifying NOIs as such, or removing

them from the report completely if the approach does not think the developer

needs to know about them.

In this experiment, 17 distinct RLFs were identified while failures were reported

at 55 distinct viewport ranges. Therefore, a user would have to inspect on av-

erage 3.2 distinct viewport widths to observe each of the RLFs found. This is

slightly lower than the mean value of 3.4 observed for the initial set of web

pages, providing further empirical support for the expected real-world usabil-

ity of the approach.

Conclusion The results show the modifications to ReDeCheck produce

a substantial increase in accuracy with no loss of recall. The results also

show that responsive layout failures were prevalent again in the second

set of responsive web pages. They showed ReDeCheck was capable of ac-

curately detecting them, with minimal false positives, especially from the

small-range detector. However, many NOIs were reported for certain web

pages, which reduce the overall usability of the approach.
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5.5 concluding remarks

This chapter began by introducing five distinct types of responsive layout fail-

ure (RLF) that negatively impact the aesthetics of modern web pages. These

were element collision, element protrusion, viewport protrusion, small-range

layouts and wrapping elements. The chapter then went on to present an auto-

mated approach for detecting these RLFs. This approach used four RLG analy-

sis algorithms which required no oracles, instead leveraging implicit oracle in-

formation and searching for patterns representing the failures. I implemented

the approach as a new module of the ReDeCheck tool, which reports any de-

tected failures to the developer via a textual report and annotated screenshots.

This chapter then evaluated the approach using 26 randomly selected respon-

sive web pages of varying complexity from a wide range of domains. The ap-

proach was able to detect a large number of actual RLFs. 16 of the 26 web

pages studied contained at least one failure, with a total of 33 distinct fail-

ures. While the approach did report some false positives and “non-observable

issues”, the overall effort required to use it was easily outweighed by the ben-

efits of finding potentially damaging RLFs. The results also showed that the

approach outperforms a selection of popular spot-checking techniques. Timing

experiments found that the approach operates in a relatively short amount of

time. This makes it feasible for web developers to easily integrate it into their

programming toolbox.

Following on from this evaluation, this chapter presented a series of changes

to the RLF detection approach that aimed to make the approach more precise.

The empirical results showed that the modifications had a positive impact on

the precision of the tool, producing fewer false positives while detecting the

same number of RLFs as before. They also found RLFs to be prevalent in an

additional 10 web pages not seen before, with an extra 15 RLFs identified by

ReDeCheck.





6
G R O U P I N G R E L AT E D FA I L U R E S T O G E T H E R

The previous chapter demonstrated how five distinct categories of responsive

layout failure (RLF) can be detected using the RLG of the web page under

test, leveraging implicit oracles rather than relying on an explicit one. However,

with the proposed approach, the process of determining which reported RLFs

were related to each other, i.e., stemming from the likely same root cause in the

underlying code, was a purely manual process.

This chapter addresses this problem by presenting an automated approach that

uses three metrics of similarity to group failures together to make it easier for

developers to diagnose problems in the web page.

The key contributions of this chapter are:

1. An algorithm that groups related responsive layout failures together.

2. An empirical evaluation on a large collection of real-world responsive

web pages, showing the effectiveness of the approach and that humans

generally agree with the reported failures and the groupings produced.

6.1 grouping individual reports into distinct rlfs

In Chapter 5’s empirical evaluation, the true positive failure reports werenman-

ually investigated in conjunction with my supervisor and grouped into related

failures to ascertain the number of distinct RLFs evident in each web page. How-

ever, a developer is likely to find it more useful if this process is automated, as

they can simply investigate each distinct RLF and all of its constituent individ-

ual failures in order to diagnose and fix any underlying layout faults, rather

than expending effort manually grouping related failures.
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Algorithm 12 Grouping Reports Together
1: procedure groupFailures(F)

2: G ← {}
3: for f ∈ F do
4: highestSimilarity← 0

5: closest← null
6: for g ∈ G do
7: similarity← calculateSimilarity( f , g)
8: if similarity > highestSimilarity ∧ similarity > t then
9: closest← g

10: highestSimilarity← similarity
11: end if
12: end for
13: if closest 6= null then
14: closest← closest ∪ { f }
15: else
16: G ← G ∪ { f }
17: end if
18: end for
19: return G
20: end procedure

6.1.1 Grouping Approach

Algorithm 12 presents the approach for automatically grouping together related

failures. After initialising the set of grouped failures G (line 2), the algorithm

iterates through each detected RLF f and identifies the currently identified

group of failures closest to it. To do this, the algorithm computes the similarity

(line 7) between f and each group of failures, g, currently identified by the

grouping process. If the similarity is greater than the current highest similarity

observed and above a similarity threshold t (line 8), then the values of both

the closest group and the highest similarity are updated (lines 9 and 10). If

a sufficiently similar group is identified in the previous step, f is added to

the relevant group, closest (line 14). However, if a group is not found, f is not

added and instead a new group containing just f is created and added to G
(line 16). Once all the failures have been grouped, the algorithm returns the

final grouping G to the developer.

6.1.2 Computing Similarity

The process for computing the similarity between an individual failure and a

collection of already grouped failures is shown by Algorithm 13. At a high level,
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Algorithm 13 Calculating Similarity Between Failure and Group
1: procedure calculateSimilarity((e, b, t), g)

2: total ← 0

3: for (eg, bg, tg) ∈ g do
4: boundsSim← getBoundsSimilarity(b, bg)

5: typeSim← getTypeSimilarity(t, tg)

6: elementSim← getElementSimilarity(e, eg)

7: total ← total + boundsSim + typeSim + elementSim
8: end for
9: return total/|g|

10: end procedure

Algorithm 13 iterates through each failure in the group g and computes three

measures of similarity before incrementing a similarity total. These measures

were chosen as they represent the individual features of the RLF introduced in

the previous chapter and closely mirror the thought processes used to manually

group RLFs together. The measures used are as follows:

• Bounds - Two RLFs that manifest at similar ranges of viewport widths are

more likely to be related. For instance, a failure occurring between 320

pixels and 400 pixels is more than to be related to one occurring between

350 pixels and 420 pixels than one that is present between the viewport

widths of 1200 pixels and 1400 pixels.

• Type - Two RLFs that are of the same type are more likely to be related,

i.e., two element collisions are more likely to be related than a viewport

protrusion and a wrapping failure.

• Element - Two RLFs involving elements close to each other on the web

page are more likely to be related. For example, an RLF in the web page’s

header is not very likely to be related to an RLF occurring in the web

page’s footer.

Finally, it normalises the total by dividing it by the number of failures contained

within g, essentially computing the average similarity between the failure in

question and the individual failures of g. This ensures groups of different sizes

can be compared to the individual failure in a consistent and fair manner. This

section now goes on to describe how the three separate similarity measures are

computed.

Viewport Similarity

The first metric used by Algorithm 13 is the similarity in the range of viewport

widths at which a pair of failures are observable. Algorithm 14 shows how the
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Algorithm 14 Calculating Viewport Similarity Between Two Failures
1: procedure getBoundsSimilarity((l1, u1), (l2, u2))

2: if l1 = l2 ∧ u1 = u2 then
3: return 1

4: else if l1 = l2 ∨ u1 = u2 then
5: return 0.4

6: else if l2 < u1 < u2 ∨ l1 < u2 < u1 then
7: return 0.2

8: else
9: return 0

10: end if
11: end procedure

various levels of similarity are scored. Firstly, if the two failures have identical

bounds, then the algorithm assigns a similarity score of 1. Next, if either the

lower or upper bounds are identical, then a score of 0.4 is given by the algo-

rithm. Penultimately, if the two viewport ranges intersect, the algorithm gives

a score of 0.2. Finally, if none of the previous conditions are satisfied then the

algorithm simply assigns a value of 0.

Error Type Similarity

When comparing two failures, the type of failure can often provide insight as

to whether the failures are related. Therefore, Table 6.1 shows how the various

combinations of failures types are ranked by the similarity algorithm.

EC EP VP SR W

EC 1 0.3 0 0.4 0

EP - 1 0.5 0.4 0

VP - - 1 0.4 0

SR - - - 1 0.4

W - - - - 1

Table 6.1: Failure Type Similarity
In this table, acronyms are used for the column and row headings. EC represents element col-
lision, EP is element protrusion, VP is viewport protrusion, SR is small-range and finally, W
represents wrapping elements.

Intuitively, if the two failures have the same type, then they have the highest

probability of stemming from the same root cause and therefore are assigned

a similarity score of 1. Due to the similarities between how element collisions

and element protrusions manifest, the combination of the two has a score of 0.3.

However, this is not a frequent occurrence, hence the low similarity measure
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Algorithm 15 Calculating Similarity Between Elements
1: procedure calculateElementSimilarity(e f , eg)

2: total ← 0

3: for n f ∈ e f do
4: for ng ∈ eg do
5: editDistance← getEditDistance(n f , ng)

6: total ← total + editDistance
7: end for
8: end for
9: return total/(|e f | ∗ |eg|)

10: end procedure

assigned. Element protrusions can potentially progress to being viewport pro-

trusions. Through observations of examples, this scenario is more likely than

the previous combination of element collision and protrusion, so this combina-

tion is given a higher similarity measure of 0.5. Finally, as any element collision,

element protrusion, viewport protrusion or wrapping failure can manifest at a

small range of viewport widths, any combination of a small-range with another

failure type is given a score of 0.4. These values were developed through trial

and error on test web pages, so it is possible that different values will lead to

significantly different groupings.

Element Similarity

The final similarity metric used by the grouping algorithm is element similarity,

which represents the idea that faulty elements that are closer to each other on

the web page are more likely to belong to the same distinct RLF than two ele-

ments that are in completely different parts of the page. Algorithm 15 presents

the approach used by the grouping technique for comparing the faulty elements

of two failures (as called by line 6 of Algorithm 13).

Algorithm 15 iterates through the faulty elements from both failures passed

as input, which results in the similarity for every possible combination of ele-

ments being computed. This calculation, performed by the getEditDistance

function on line 5, compares the XPath expressions used to identify the two

elements using the popular Levenshtein distance metric [85]. This calculates

the number of string operations — character additions, deletions and substitu-

tions — required to convert one XPath to the other. For instance, body/div/li[1]

and body/div/li[2] have a Levenshtein distance of 1, as only a single substitu-

tion is required to convert one into the other. To account for XPath expressions

of different lengths, the function returns a percentage rather than a discrete

integer value, as intuitively two XPath expressions of length 50 with an edit

distance of 3 are more similar than a pair of length 10 with the same edit dis-
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tance. The algorithm tracks the sum of these similarities in a variable, total,

which is normalised in the final step (line 9) by dividing it by the number of

element comparisons made i.e., the product of the number of elements in the

two failures.

6.2 empirical evaluation

To evaluate the distinct RLF grouping technique presented in this chapter, this

section applies it to a collection of responsive web pages to answer the following

two research questions.

Research Question One: How effective is the technique for grouping related fail-

ures together?

Research Question Two: Do human users agree with the failures reported and the

distinct RLF groupings produced by the approach?

6.2.1 Experiment Design

Subject Web Pages

The research questions in this study used the same two pools of subject web

pages as Chapter 5. However, it is important to note that the grouping technique

was developed before the final experiment in the previous chapter that used

the extra ten web pages. As such, these additional web pages did not provide

insight into the best way to automatically group the failures, unlike the original

26 subjects. Therefore, the grouping results presented later are not at risk of

“overfitting”.

Methodology

Implementation: The technique for grouping individual reported failures into

distinct RLFs automatically was implemented into the report generator module

of ReDeCheck. This update results in the textual report output by ReDeCheck

showing the failures grouped together, rather than simply listed one after the

other, while the highlighted screenshots were reorganised into a directory struc-

ture reflecting the determined grouping.
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Research Question One: For this question, which evaluates the effectiveness

of the grouping algorithm, the output of ReDeCheck was automatically and

systematically compared against a gold standard. During the previous eval-

uation, all of the failures reported by ReDeCheck were manually analysed

to determine which failures were related. Each true positive reported was as-

signed to a unique “distinct RLF ID”, while all non-observable issues and false

positives were simply assigned the mark ‘-’ to signify they do not belong to

a distinct RLF. For instance, 3-Minute Journal evinced 8 true positive reports

that were manually grouped into 2 distinct RLFs, so the gold standard was

{1,1,2,1,1,1,2,1,-,-,-,-}. The automatic comparison approach compared the pro-

duced grouping to the gold standard, using the following guidelines:

1. All of the failures for each distinct RLF should be placed in the same

group (e.g., the six failures for RLF 1 above were all in a single group).

2. No group should contain failures from multiple distinct RLFs (e.g., one

of the failures from RLF2 was not grouped with the failures for RLF1).

If the comparison approach found no issue with a group, then it marked it as

“correctly grouped”. If not, it was “incorrectly grouped”. A correct group may

contain FPs and NOIs as well as the important TPs. Ideally, it would not, as a

group containing only related TPs is likely to be more beneficial to a developer,

as they will not have to manually determine which failures they need to deal

with. Therefore for each correct group, the comparison also checked whether it

contains any FPs or NOIs. If it does not, then the comparison considers it to be

a “perfect group”.

Research Question Two: To ascertain the extent to which real end users agree

both with the individual failures and overall distinct groupings reported by

ReDeCheck, this research question used a human study.

While many previous software engineering human studies were performed in

controlled environments, the tasks involved in this study did not require this

and were therefore run in a crowdsourced manner. Both postgraduate and un-

dergraduate students were invited to participate in the study. Given the lack of

need for experience in web development, or in fact programming experience of

any kind, prospective participants were not required to complete any kind of

qualification test in order to join the study. Prior to the experiment, participants

were introduced to the five different types of responsive layout failure and how

it is important for developers to detect them. In total, 10 postgraduate students

and 1 undergraduate student took part in the study.
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Figure 6.1: An example response form for part one of the human study.

The experiment itself consisted of two main tasks, with no set time limit so

each participant could complete it in their own time. The first task required

the participants to inspect a series of screenshots and state whether they felt an

RLF was evident. This allowed for the validation of not only the types of layout

failure currently detectable by ReDeCheck but also the manual classifications

made during the previous empirical evaluation. For instance, if the majority of

participants agreed with the failures reported by ReDeCheck that were initally

classified as true positives, then it is clear that ReDeCheck is capable of detect-

ing RLFs that human users actually deem important. Participants responded

with a simple binary “Yes” or “No” decision as to whether they thought the

screenshots showed an RLF, and also had the opportunity to elaborate on their

decision, as shown by Figure 6.1.

To mitigate any bias that could potentially arise from the selection of failures

for the study, an automated selection function was implemented that randomly

selected failures based on probability. Firstly, the approach read in the manual

classifications of all of the failures and stored them into three sets, representing

the three possible classifications. Then, it selected one of the three sets, from

which it randomly selected a failure to add to the study. The selection process

selects true positive failures with a probability of 0.6, and false positives or non-

observable issues with a probability of 0.2 each. While equal probabilities could

have been assigned to each category, the primary purpose of this study was to

evaluate whether humans agree with the actual RLFs detected by ReDeCheck,

so selecting a larger proportion of true positive results is a sensible choice.
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For the second experiment, the participants were asked to inspect a group of

failure screenshots and decide whether they think they were related, allowing

the grouping algorithm presented earlier in this chapter to be evaluated. For

each grouping presented to them, they had the option of selecting “All failures

were related”, “none were related”, or selecting which individual failure in the

grouping was the “odd one out”. Figure 6.2 shows an example of the response

form. As with the previous task, if the majority of participants agreed with the

groupings produced by ReDeCheck, then it provides empirical support for the

overall approach and for the manually curated “distinct RLF groupings”.

Figure 6.2: An example response form for part two of the human study.

As with the failure selection in part one of the human study, an automated

approach was used to randomly select the groupings presented to the partici-

pants. To begin, the approach randomly selected one of the distinct RLFs. Then,

the approach decided whether to keep the grouping as it is, or modify it to cre-

ate an incorrect grouping. It used a probability of 0.7 to stay with the original

grouping, and 0.3 for creating a “mutated” grouping. When this occured, the

approach randomly selected an additional failure that was reported for the web

page in question and added it to the group. If the initial grouping contained

just a single failure, however, the approach added two other reported failures.

This is because presenting a grouping of two failures to the participants makes

it very difficult for them to select the “odd one out”, as technically both failures

could be considered to be the odd one out, which would make analysing their

responses problematic.
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Threats to Validity

Use of students: All of the participants in the study were students, and pre-

vious research has investigated how respective students are when compared to

professionals, especially when used in experiments such as the human study

presented in this chapter [25, 70, 127]. These papers found that in many sce-

narios, students can be used in place of industrial participants and not impact

the validity of the obtained results. This is especially true when performing or

evaluating a new approach that neither the students or professionals have seen

before, or performing relatively small tasks of judgement, such as the tasks

in this study. However, the experiment required no prior knowledge of web

development, or indeed any programming experience whatsoever. It simply in-

vestigated human’s subjective views on the visual appearance of a group of

web pages, therefore their opinions should be generalisable to other web users

with a wide variety of experience.

Failure selection: For the two tasks in the human study, it was possible that

the selection of the individual failures in part one and the groupings of failures

in part two represent a potential validity threat. To mitigate this, they were

randomly selected to obtain as wide a variety of subjects as possible for the

study.

Creation of gold standard: In this evaluation, the gold standards against

which ReDeCheck’s output and the participants in the human study are com-

pared were manually generated. This is obviously a significant threat to the

validity of any obtained results. However, as discussed in Chapter 5, the gold

standard was generated by a committee to mitigate the risk of any subjectivity

bias from individual opinions.

6.2.2 Empirical Results

Research Question One: Table 6.2 shows the results of the implemented

grouping approach when compared to the gold standard. The results show that

the vast majority of failures were correctly grouped by the automated approach.

For some web pages, including Hotel WiFi Test, MidwayMeetup, Ninite and

StumbleUpon, it is actually impossible for the approach to group the failures

incorrectly, according to the rules used by the grouping comparator. For these
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Web Page TPs Reported Distinct RLFs Correct Groups Perfect Groups

3-Minute Journal 8 2 2 2

Accountkiller 121 3 3 1

Airbnb 2 2 0 0

BugMeNot 4 4 4 4

Cloudconvert 2 1 1 1

ConsumerReports 10 4 3 2

CoveredCalendar 2 2 2 2

Duolingo 2 1 1 0

Hotel WiFi Test 1 1 1 1

MidwayMeetup 1 1 1 1

Ninite 1 1 1 1

PDFescape 2 2 2 2

PepFeed 7 6 4 3

StumbleUpon 1 1 1 1

Usersearch 1 1 1 1

Will My Phone Work 1 1 1 1

Eat This Much 2 2 2 0

Forvo 15 5 5 5

Google Maps SVP 1 1 1 1

Khan Academy 1 1 1 1

Memrise 1 1 1 0

Retail Me Not 2 2 2 2

Similar Sites 3 3 1 0

Startup Stash 3 2 2 1

Table 6.2: Grouping results for all web pages containing at least one RLF.

web pages ReDeCheck reported a single TP, and therefore the group cannot be

“missing” any related failures or contain any unrelated TPs.

Because of this, arguably the more important subjects to analyse are those with

multiple TPs and/or multiple distinct RLFs. For some subjects such as Airbnb,

CoveredCalendar and PDFescape, each distinct RLF contained just a single fail-

ure. This provided an easier task for the grouping algorithm as it only has to

keep unrelated TPs apart, rather than grouping related TPs together. However,

for others such as 3-Minute Journal, ConsumerReports and Cloudconvert, some

distinct RLFs were made up of multiple individual failures that the approach

had to group together. For instance, on ConsumerReports, the approach had to

group 7 related failures into a single group while keeping the other 3 failures

corresponding to the 3 remaining RLFs separate. 3-Minute Journal was perhaps
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even more complex, as the 2 distinct RLFs were represented by 6 and 2 indi-

vidual failure reports, respectively. Nevertheless, despite these difficulties, the

results show the grouping approach was highly effective.

The only exceptions were the two RLFs reported for each of Airbnb, PepFeed

and Similar Sites. To investigate the cause of the differences between the group-

ings produced by ReDeCheck and the gold standard, the logs of the grouping

process were analysed, which showed the similarity scores observed for each

failure-group pair. For Airbnb, this revealed that as the two distinct failures

were of the same type (element wrapping), occurred at similar narrow view-

port widths and involved elements that were close together on the web page

and therefore possessed relatively similar XPaths, the grouping approach cal-

culated a similarity score that was sufficiently high to cause the two failures to

be grouped together. For PepFeed, the incorrect grouping was caused by one

of the failures from one distinct RLF to be relatively similar in terms of type,

bounds and elements to another group of failures representing a different dis-

tinct RLF. The failure was then “incorrectly” added to the group, causing the

failures for both distinct RLFs to be regarded as incorrectly grouped. Finally, for

Similar Sites, two of the three viewport protrusions which had been classified

as distinct were placed into a single group by the approach. This was due to the

protruding elements having fairly similar XPath expressions and protruding at

similar viewport widths.

The table also shows the approach achieved “perfect” groupings on the majority

of subjects. In some cases achieving this was straightforward, as the approach

only reported TPs and therefore achieving correct groupings automatically led

to perfect groupings. A good example of this is Accountkiller, where only TPs

from three distinct RLFs were reported and subsequently grouped. For others,

it was more complex due to the NOIs and FPs that the approach had to keep

separate from the key groups. On ConsumerReports, for instance, there were

13 NOIs for the approach to contend with. Despite this, two of the three correct

groups reported by the approach were “perfect”.

Conclusion for RQ1 The results show that the proposed automated group-

ing approach can accurately group failures into distinct RLFs, with only a

couple of incorrectly grouped failures. In the majority of cases, the approach

produced “perfect” groupings, in which only related TPs were present in

the key groups. This is likely to be highly useful to developers as they
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can see the various manifestations of the same root cause error easily and

quickly.

Research Question Two: This section presents the results obtained during

the human study described earlier in this chapter. For reference purposes, the

screenshots provided to the participants in the study are included in an ap-

pendix at the end of this thesis.

Part One

Figure 6.3 shows the participant responses to the ten questions in part 1 of the

study. This section discusses each of the ten questions individually. As each

of the ten RLFs were reported by ReDeCheck and then manually classified,

this section compares the participant majority to the human generated gold

standard, referred to as the expected result. Finally, the section ends by discussing

the results as a whole.

Q1:

Participant Majority: No Failure

Gold Standard: No Failure (failure classified as a NOI)

For this first question, the screenshots showed a NOI in which a button pro-

truded out of the viewport very slightly. The results showed that only 2 par-

ticipants reported a failure for this question, highlighting the subtlety of the

failure. It also emphasises the ability of ReDeCheck to detect issues with a low

visual impact. One of the two people who reported a failure actually reported a

failure in a different section of the web page. Interestingly, one person observed

the failure but answered “No” as they stated it “looks a little odd” but did not

consider it a failure.

Q2:

Participant Majority: No Failure

Gold Standard: No Failure (failure classified as a NOI)

This screenshot contained an invisible element collision that the previous chap-

ter classified as a NOI. All but one participant therefore correctly said there

were no RLFs present in the web page. Interestingly however, one person said

there was a wrapping failure evident, but did not say where.
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Q3:

Participant Majority: No Failure

Gold Standard: No Failure (failure classified as a NOI)

This question presents a small element protrusion NOI to the participants. The

majority (8 of 11) of participants reported no failure, but three people reported

an element collision in a different part of the web page. The potential failure

was therefore analysed to determine why ReDeCheck had not reported it. It

turns out the “overlapping” elements were always in a parent-child relation-

ship and therefore were never reported as a collision failure. This was caused

by the child element being rendered in the right-hand side padding of the par-

ent element and then being forced closer to the main content as the viewport

narrowed.

Q4:

Participant Majority: Failure Present

Gold Standard: Failure Present (failure classified as a TP)

This question presented a screenshot obviously containing an RLF, causing all

eleven participants to report an issue. Interestingly, some participants simply

commented on the general “ugly” or “weird” layout presented, but only one

participant actually mentioned the specific element protrusion failure reported

by ReDeCheck. This is however understandable, as the protruding element’s

parent has no visible border while the other neighbouring elements exhibit

layout behaviour more likely to attract the attention of an end user.

Q5:

Participant Majority: Failure Present

Gold Standard: Failure Present (failure classified as a TP)

This screenshot showcased a fairly obvious wrapping failure, in which a whole

section of the web page’s footer wrapped onto a new line. 8 of the 11 partic-

ipants correctly stated there was a failure on the web page. The other 3 par-

ticipants deemed the wrapping behaviour to be acceptable or even intended

behaviour. For instance, one said “the last menu wraps to the next line success-

fully for the lower resolution”, suggesting there is some subjectivity when it

comes to what constitutes a wrapping failure.
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Figure 6.3: Responses for Part One.

Q6:

Participant Majority: Failure Present

Gold Standard: Failure Present (failure classified as a TP)

This question presented a web page demonstrating a slightly unusual grid-

based layout for a small range of viewport widths. However, at the specific

viewport width of the RLF, there is nothing “blatantly” incorrect about the

layout. The results are therefore perhaps unsurprising, with some 8 people

reporting RLFs and 3 not. Of the 8 who reported an RLF, 4 reported an RLF

in a different part of the page, suggesting they considered the rest of the web

page to be error-free. My analysis found that this other RLF was not detected by

ReDeCheck as it’s visual appearance was not reflected in the underlying DOM

structure used by ReDeCheck. The results also emphasised the advantage of

ReDeCheck sampling the web page across a wide range of viewport widths.
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By inspecting at just individual viewport widths like in this study, some RLFs

can be missed.

Q7:

Participant Majority: Failure Present

Gold Standard: Failure Present (failure classified as a TP)

For this question, the screenshots presented a clearly evident wrapping failure.

All but one participant stated there was a failure present. The one participant

who did not justified their decision by the fact that all the same information

was available on the “faulty” web page. Given the rather obvious nature of the

failure, it comes as little surprise that almost all participants reported it as a

failure.

Q8:

Participant Majority: Failure Present

Gold Standard: Failure Present (failure classified as a TP)

This question presented the participants a screenshot showing the header of a

web page overlapping with the main content. Given the large visual impact of

the failure and it’s location right at the top of the web page, it is no surprise

that all participants reported the failure.

Q9:

Participant Majority: No Failure

Gold Standard: Failure Present (failure classified as a TP)

For this question, the screenshots showed some navigation links wrapping onto

multiple rows for a small number of widths as the viewport narrows. However,

as the screenshots did not show the layout immediately either side of this small

range layout, it is more likely participants would view it as a wrapping failure

instead. The majority of the participants stated the wrapping was correct be-

haviour as there were so many links there was no way of avoiding it. However,

4 participants decided that the wrapping was a failure. This suggests failures of

this type can be quite subjective. They generally involve no loss of functionality,

but some people feel they compromise the aesthetics of the web page. This sub-

jectivity could depend on which elements wrap. For example, if a navigation

link right at the top of the web page wrapped, most people would likely agree
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that it is an RLF. In contrast, failures such as this one, where the wrapping

occurs in the footer, are perhaps less likely to be considered failures.

Q10:

Participant Majority: No Failure

Gold Standard: Failure Present (failure classified as a TP)

This question presented a failure in which the navigation links protruded out

of the header. However, due to certain CSS rules, they disappeared completely

from view and were unclickable. The results were rather interesting. Firstly,

only 4 participants reported a failure, while the other 7 said there was no failure.

This highlights the subtlety of the failure and showcases ReDeCheck’s ability

to identify important RLFs that human testers are likely to miss. Quite interest-

ingly, one participant observed the disappearance of the navigation links but

stated there was no RLF, with their justification stating they “assumed that the

loss of the top menu was intentional”.

Part One Summary

Table 6.3 shows a summary of the results for part one of the study, including

the manual classification assigned to each failure, the expected result and par-

ticipant majorities. For the 7 questions presenting screenshots containing TPs,

i.e. actual RLFs, a majority of the participants reported failures on 5 of them. In

most cases, the majorities were large. In fact, the smallest majority was still 5,

from an 8-3 vote in favour of an RLF (questions 5 and 6). The results suggest

humans strongly agree with the TP RLFs reported by ReDeCheck in the previ-

ous chapter. This is especially true for RLFs with a large visual impact, where

a sizeable or possibly important part of the web page is involved in the failure.

Three of the questions (1, 2 and 3) presented screenshots containing no RLFs.

On all of these, the majority of the participants reported no failure present. This

is to be expected. FPs represent correct layout bahaviour incorrectly reported

as failures and NOIs have no visible manifestation, existing purely at the DOM

level.

Obviously, this study only used 10 of the many RLFs reported by ReDeCheck

in the previous experiment. For instance, only 6 of the 50 TP RLFs were used,

so the results may not necessarily generalise to the remainder of the reported

RLFs. However, the selected failures were randomly chosen and demonstrated

a variety of failure types and classifications. Therefore, the results obtained

should be generalisable.
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Question Classification Participant Majority Expected Result

1 NOI No Failure No Failure

2 NOI No Failure No Failure

3 NOI No Failure No Failure

4 TP Failure Present Failure Present

5 TP Failure Present Failure Present

6 TP Failure Present Failure Present

7 TP Failure Present Failure Present

8 TP Failure Present Failure Present

9 TP No Failure Failure Present

10 TP No Failure Failure Present

Table 6.3: Summary of the results for part one of the study.

Part Two

In this section, each question is again discussed individually before the results

as a whole are presented. For each question, the participant majority is com-

pared to the human generated expected result and the output of ReDeCheck’s

automated grouping technique.

Q1:

Participant Majority: All Related

Expected Result: All Related

ReDeCheck Result: All Related

This grouping contained a collection of viewport protrusion failures that all

involved similar elements at similar viewport widths. During RQ1, we had

manually grouped these six failures as all pertaining to the same distinct RLF.

ReDeCheck’s automated grouping approach had also grouped them together.

Therefore, it is unsurprising that all but one of the participants said all the

reported RLFs were related.
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Q2:

Participant Majority: Two is the Odd One Out

Expected Result: None Related/Two is the Odd One Out

ReDeCheck Result: Two is the Odd One Out

This grouping presented one TP and two NOIs to the participants. The two

NOIs (RLFs 1 and 3) are very similar in nature, both being element protrusions

occurring at the same viewport widths and involving similar elements. There-

fore, some participants could consider them related and state that RLF 2 is the

odd one out. In fact, this was the decision ReDeCheck made. However, given

the elements are not actually the same, some may deem none of the RLFs to be

related. Figure 6.4 shows the vast majority (9 of 11) correctly reported RLF 2 as

the odd one out. However, interestingly two people said all three were related.

This was because they both misinterpreted the two element protrusions as ele-

ment collisions and reported the three RLFs as related because they were all of

the same type.

Q3:

Participant Majority: Three is the Odd One Out

Expected Result: None Related/Three is the Odd One Out

ReDeCheck Result: None Related

Question 3 presented the participants with an NOI element protrusion, an FP

viewport protrusion and a TP element collision. However, the screenshot for

RLF 3 (the element collision) appears to be an NOI. It is only when the viewport

narrows further that it becomes apparent that it is in fact a TP. This likely im-

pacted people’s judgement, and a more illustrative screenshot may have helped

the participants make a more informed decision. RLFs 1 and 3 both involve the

same element in the web page’s footer, which likely led the majority of partici-

pants to report RLF 2 as the odd one out. ReDeCheck reported all three failures

as unrelated.

Q4:

Participant Majority: Three is the Odd One Out

Expected Result: None Related

ReDeCheck Result: None Related
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This question presented three RLFs, a viewport protrusion, a wrapping and an

element collision, each of which we initially classified as distinct. ReDeCheck

also determined all three failures to be distinct and unrelated. However, as RLFs

1 and 2 involved the same faulty elements, the majority (7 of 11) reported them

as related. This is despite the fact the two RLFs are of different types and occur

at quite different viewport widths. 3 of the participants reported the expected

answer that all of them were unrelated. Finally, one person actually reported

RLF 1 as the odd one out, because the element wrapping and element collision

failures manifested in similar ways and were therefore in their opinion related,

even though they involved completely different elements.

Q5:

Participant Majority: None Related

Expected Result: None Related/Three is the Odd One Out

ReDeCheck Result: None Related

This question presents two NOIs and a single TP wrapping failure to the partic-

ipants. The two NOIs involved different elements and were of different types.

However, they did both manifest at the same viewport width. Therefore, I ex-

pected the majority of participants to select either “None related” (ReDeCheck

reported this decision) or “RLF 3 is the odd one out”. The results show that

these combine to produce a large majority, as 5 people selected “None related”

and 2 selected “Three”. 3 people said all three RLFs were related because “all

of these images look correct” and “I don’t think any of them display any layout

faults”. These reasons are unexpected, because even if a human thought not

of the screenshots showed RLFs, the fact they all involve different parts of the

web page at different viewport widths should mean humans regard them as

unrelated.

Q6:

Participant Majority: All Related

Expected Result: Three is the Odd One Out

ReDeCheck Result: Three is the Odd One Out

This question presented three TP viewport protrusions, two of which we orig-

inally grouped together while keeping the other (RLF 3) in a different group.

ReDeCheck also kept RLF 3 separate from the other two. However, the vast ma-

jority of participants said all three RLFs were related. This is understandable,
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Figure 6.4: Responses for Part Two.

given that the failures are all the same type and involve the same elements.

Only one person reported RLF 3 as the odd one out, while two people reported

RLF 1 as the odd one out, with their reasons suggesting they may have misin-

terpreted the images presented to them.

Q7:

Participant Majority: None Related/Two is the Odd One Out

Expected Result: None Related/Two is the Odd One Out

ReDeCheck Result: Two is the Odd One Out

Question 7 involved two NOI viewport protrusions at wide viewport widths

and one TP wrapping RLF (RLF 2) at narrow viewport widths. Therefore, the

obvious answer is either “None related” or “RLF 2 is the odd one out”, which

is the decision ReDeCheck made. Figure 6.4 shows the vast majority of partici-

pants agreed, with 6 saying “None related” and 3 saying “RLF 2”. Interestingly,
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two people said all the RLFs were related. One gave the reason “All of these

look correct” while the other said “I don’t think any of the highlighted images

in the three RLFs are properly centralised to be within the middle of the page”.

These reasons fail to provide much useful information as to why they answered

“All related”.

Q8:

Participant Majority: All Related

Expected Result: None Related

ReDeCheck Result: None Related

Here, the study presented three TP RLFs to the participants; one wrapping,

one viewport protrusion and an element protrusion. Both the manual grouping

and ReDeCheck’s automated approach classified all three RLFs as unrelated

to each other. However, as the wrapping and viewport protrusion (RLFs 1 and

2) involve the same element, 4 of the participants stated they were related and

marked RLF 3 as the odd one out. Similarly, as all three failures involved form

input boxes, albeit in different parts of the web page, 5 people said all three

were related. This is particularly interesting, as both the two most popular deci-

sions among the participants contrast with the gold standard and ReDeCheck’s

grouping.

Q9:

Participant Majority: Three is the Odd One Out

Expected Result: None Related/Three is the Odd One Out

ReDeCheck Result: None Related

For this question, the three screenshots presented two NOIs and a TP. The two

NOIs were an element collision and element protrusion involving very similar

elements while the TP was a wrapping failure in a completely different part

of the web page. Therefore, the expected result was for participants to either

state RLF 3 (the wrapping) is the odd one out or none of the RLFs are related.

ReDeCheck determined the failures were all unrelated. The results show the

participants agreed with the expected human generated decision. 6 stated RLF

3 was unrelated to the other two, while a further 2 people said they were all

unrelated to each other.
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Q10:

Participant Majority: One is the Odd One Out

Expected Result: Two is the Odd One Out

ReDeCheck Result: Two is the Odd One Out

For the final question, the study presented eight TP viewport protrusions to the

participants. 7 of these showed various elements in one section of the web page

protruding, while RLF 2 showed the banner at the top of the page protruding.

Therefore, manual grouping and ReDeCheck grouped 7 of them together, with

RLF 2 being the odd one out. However, Figure 6.4 shows there was a wide vari-

ety of answers given by the participants. The leading answer was RLF 1 being

the odd one out. Revisiting the screenshots and analysing participant’s justifi-

cations, it is clear why 4 people gave this answer. RLF 1 shows an element that

has first protruding out of its parent, and then protruded out of the viewport.

Two people did state RLF 2 was the odd one out, giving the same reasons that

both the manual grouping and ReDeCheck gave for their decisions. Two peo-

ple said they were all related as they were all of the same type, suggesting error

type was the main determinant in their decision. Finally, two people and one

person said the odd one out was RLF 4 and RLF 5, respectively.

Part Two Summary

Question Participant Majority Expected Result (Human) ReDeCheck

1 All Related All Related All Related

2 Two is Odd None/Two is Odd Two is Odd

3 Three is Odd None/Three is Odd None Related

4 Three is Odd None Related None Related

5 None Related None/Three is Odd None Related

6 All Related Three is Odd Three is Odd

7 None/Two is Odd None/Two is Odd Two is Odd

8 All Related None Related None Related

9 Three is Odd None/Three is Odd None Related

10 One is Odd Two is Odd Two is Odd

Table 6.4: Summary of the results for part two of the study.

The participants agreed with the manual groupings for 6 of the 10 groupings

presented (questions 1, 2, 3, 5, 7 and 9). For instance, in Question 1 they correctly

stated that all of the presented RLFs were related. Similarly, in 5 cases they

correctly selected the “odd failure out” or marked all the RLFs presented as
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The handout was useful I understood the task for Part One I understood the task for Part Two

Strongly disagree Disagree Neither Agree Strongly agree

Figure 6.5: Responses for Exit Survey.

unrelated. The participants matched the grouping produced by ReDeCheck in

4 out of these 6 scenarios, with the exceptions being questions 3 and 9. However,

in both of these questions, both “None related” and “Three is Odd” were correct

answers (i.e. the expected result), so while the participants and ReDeCheck

disagreed on their decision, they both produced the expected result.

There were four instances (questions 4, 6, 8 and 10) where the participant major-

ity was different to both the manually created gold standard and the groupings

produced by ReDeCheck. However, in these cases, the feedback given by the

participants helped to explain why they made the decisions they did. Chap-

ter 7 goes on to investigate the root causes of these RLFs to determine which

decision was correct. This will highlight any potential shortcomings with the

automated grouping approach presented earlier in this chapter.

Exit Survey

Figure 6.5 presents the results of the exit survey filled in by the participants.

It breaks the results down into the three individual questions. The first graph

shows participants strongly agreed that the handout was very useful to them,

suggesting it did an excellent job of introducing them to responsive layout

failures and why they are important to identify.

Next, the feedback shows all but one participant understood the task for part

one of the study. The majority of these stated that they “strongly agreed”, sug-

gesting the results for part one should be reliable as the decisions were based

on a good understanding of the problem.
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Finally, the third bar graph shows that for part two, the majority of partici-

pants understood the task they were asked to perform. However, only 1 person

stated that they “strongly agreed” with the statement, while 3 said they “neither

agreed nor disagreed”. This suggests the second task was in general a less clear

than the first one, which could impact the reliability of the results. For instance,

some of the reasons given for a particular answer suggested some participants

did not fully understand what was meant by two RLFs being “related”. This

therefore means their answers may not be an accurate representation of their

opinions. Also, the results could also simply show the subjectivity of humans

when asked to give their opinions on the aesthetics of a web page. As the ex-

periment in this chapter was only a pilot study, any future studies will involve

substantially more participants and will use the additional feedback provided

to improve the study, with particular attention being to ensuring the partici-

pants understand the notion of related failures. Despite this, the results still

suggest the results discussed for part two of the study should again be reliable.

Conclusion for RQ2 The results show that humans agree with the RLFs

reported by ReDeCheck, reporting the expected classification in 5 of the 7

scenarios. When presented with screenshots containing either NOIs or FPs,

the majority of participants correctly stated there was no RLF present.

The results also show humans agreed with the expected groupings in 6

of the 10 scenarios and agreed with ReDeCheck in 4 of those 6 examples.

Further analysis of the RLFs in the next chapter will reveal which of the

groupings produced was correct.

Finally, the feedback from the exit survey suggests the majority of partici-

pants understood the tasks presented to them, meaning the obtained results

should be reliable.

6.3 concluding remarks

This chapter described an approach that automatically groups RLFs that are

related and likely to share the same root cause. The approach used the concepts

of element similarity, viewport similarity and failure type similarity to group

the failures. By implementing this technique into ReDeCheck, it should reduce
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the effort required from the user, as this task was performed manually in the

previous chapter.

Next, the chapter evaluated the automated grouping approach. It used both

sets of responsive web pages from Chapter 5, which contained 26 and 10 web

pages, respectively. The grouping approach was shown to be highly effective.

Only 7 RLFs were incorrectly grouped, and the vast majority of groupings were

“perfect”, meaning groups containing TPs contained only TPs.

Finally, the chapter presented a human study investigating human opinion on

both the RLFs reported by ReDeCheck and the groupings it produced. Using a

pool of 11 computer science students, the study found humans agreed with the

majority of RLFs reported by ReDeCheck. They also showed that they generally

agreed with the manual groupings (6 out of 10 instances) and agreed with the

groupings produced by ReDeCheck in 4 of those 6 instances.
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A S T U D Y O F T H E R O O T C A U S E S O F R E A L - W O R L D R L F S

Chapter 5 investigated responsive layout failures in real-world web pages and

found them to be prevalent, with over half of the web pages evincing RLFs.

This chapter investigates these RLFs further by implementing potential patches

for each failure. By identifying the underlying faults, i.e., the programming

mistakes made by the developers of the web pages, this chapter investigates

how difficult fixing RLFs is for developers, as well as further evaluating the

distinct RLF groupings produced in Chapters 5 and 6. This empirical evaluation

forms the key contribution of this chapter.

7.1 study design

This chapter evaluates the root causes and potential fixes implemented in this

study in the context of two research questions:

Research Question One: How accurate were the distinct RLF groups of related

failures identified in Chapter 5?

Research Question Two: How complex are the patches required to fix the responsive

layout failures?

Subjects

This study used the initial pool of 26 responsive web pages from Chapter 5. As

shown by that chapter, these web pages contained a total of 33 distinct RLFs,

with a wide variety of failure types evident.

Methodology

For this study, the fault fixing process needed to be as consistent as possible

across the different RLFs and web pages. Therefore, a simple, methodical ap-
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proach was devised which I followed as closely as possible. It began by iden-

tifying the specific faulty elements in the source code. Then, domain-specific

knowledge was used to inspect particular CSS rules that could be responsible

for the failure. This approach was more efficient than exhaustively inspecting

each CSS rule applied to the elements. For instance, if an element had wrapped

onto a new row, the fault probably involved width or margin rules. Likewise,

if a failure occurred at the same viewport width as a significant shift in layout,

the fault could be in one of the media query breakpoints.

Once the potential root cause had been identified, a fix was attempted. In some

cases, this was done directly in the browser via Firefox developer tools. This

utility allows modification of the CSS rules applied to an element to quickly

see whether changing a particular rule had a positive impact on the web page

layout. However, in most cases the developer tools were simply used to identify

the location of the problematic source code. The potential fix was then imple-

mented in the source code and the web page reloaded in the browser. If the

failure persisted, the current “fix” was evaluated using domain knowledge to

see if it was an improvement. If it was, then further changes were implemented

to try and create a full fix. If not, the code was reverted back to its original state

and the process began again from the beginning.

Once the failure no longer manifested in the web page, ReDeCheck was run

on the “fixed” version of the web page. This acted as a sanity check of sorts,

to make sure that the failure was successfully fixed at all viewport widths and

no new failures had been introduced. To invite discussion on the fixes, they are

publicly available. The fixed versions of the web pages are available in the same

GitHub repository as the faulty ones [146]. The thought processes behind the

fixes are also available as think-aloud screen recordings [5].

Threats to Validity

While this study was not evaluating a novel approach, there were still some

validity threats that had to be mitigated.

Inconsistency in Fixing Process: As the study aimed to compare the differ-

ent fixes in term of their relative complexities, it is important that the process

followed to implement the fixes was consistent. Therefore, an approach was

outlined prior to starting the fixing experiment, which was then followed as

closely as possible for each RLF. Finally, the study was conducted in a “think-

aloud” manner, in which each step and decision taken was explained in real-
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time. These recordings are available online for analysis by other researchers or

industry professionals [5].

Correctness of Fixes: Using the outlined fault fixing procedure, the fixes

implemented should be the most suitable and “correct” ones for each failure.

However, other developers may disagree with these fixes as web page aesthetics

are subjective, as previously discussed in Chapter 2. Therefore, the fixes are

publicly available for scrutiny and discussion [146].

7.2 patching the failures

This section describes the fixes for each failure identified in Chapter 5. For

each one, a figure illustrates the modified code along with “before” and “after”

screenshots of the web pages.

7.2.1 Element Collision Failures

Cloudconvert

At the single viewport width of 980px, an error in the media queries controlling

the switch between the mobile and desktop layouts results in the header bar and

the main content banner overlapping. Given the failure occurs at the breakpoint

at which the web page ’s header toggles between it’s “mobile” and “desktop”

versions, intuitively the root cause of the failure was likely to be the breakpoint

values of the media queries controlling the offending elements.

The debugging process identified two faulty media queries with the condition

(max-width: 980px). These meant at a viewport width of 980 pixels, part of the

web page was using the desktop layout (triggered with a (min-width: 980px)

media query) while the remainder was still using the mobile/tablet design. By

changing both conditions to be (max-width: 979px), the failure was rectified.

Figure 7.1 shows both the CSS code and visual appearance of the web page

before and after the patch.

MidwayMeetup

When the viewport is wide enough, two small forms are displayed side-by-

side. However, as the viewport narrows, the responsive layout does not adjust

and the two forms begin to overlap. Initially, this obscures only part of one of
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@media (max-width: 980px)

and (min-width: 768px) {

/* tablet layout */

}

@media (min-width: 980px) {

/* desktop layout */

}

(a) Code before patch

@media (max-width: 979px)

and (min-width: 768px) {

/* tablet layout */

}

@media (min-width: 980px) {

/* desktop layout */

}

(b) Code after patch

(c) Before patch (d) After patch

Figure 7.1: Fixing the Cloudconvert element collision failure.

the submit buttons. But, as the viewport gets continually narrower the effects

become more pronounced. Eventually, the entire button becomes covered and

unclickable. This is a very severe failure as the obscured button controls the

primary functionality of the web page. This essentially renders the page unus-

able on devices where the failure is at its worst. Intuitively, the root cause of

the failure is likely to be one or both of the forms not responding adequately

as the viewport narrows.

The debugging process found that the left hand form was the offending ele-

ment. Its static width caused it to collide with the other form as the viewport

narrowed. Therefore, the applied patch implemented a fluid width for the left-

hand form elements. This ensured they are never too wide and hence never

collide with the other form, while remaining usable at all viewport widths. The

patch began with a media query which only applies its rules at wider viewports

(min-width: 768px). Then, the CSS property max-width: 100% was added to the

form element. This made sure it’s width never becomes wider than that of its

parent and it scales better as the viewport resizes. Finally, the input box was

given a fluid width of 65%. This ensures it resizes in proportion with the whole

form, while still leaving enough space to fit alongside the blue form submit

button. Figure 7.2 illustrates the web page both before and after the patch.

PepFeed

When the viewport is wide enough, the page renders the three content panels

side by side. At very narrow widths, it stacks them into a single column. How-

ever, in between these widths two of the panels overlap, obscuring some of



7.2 patching the failures 183

(a) Before patch

@media (min-width: 768px) {

.input-large {

max-width: 65%;

}

}

(b) Added code (c) After patch

Figure 7.2: Fixing the MidwayMeetup element collision failure.

the content. Prior to the debugging, it appeared likely the root cause of failure

would be one or more of the three offending content panels.

Debugging of the failure found the issue to be an incorrect media query. This

gave the elements static widths intended for the “desktop” layout when the

viewport was as narrow as 415 pixels. Originally, three similar element collision

failures had been classified as distinct. However, during debugging it became

apparent they were due to incongruous shifts in the three numbered content

panels as the viewport expanded and contracted, stemming from the single

incorrect media query. The patch was very simple, with a simple change from

(max-width: 414px) to (max-width: 767px). This ensured the elements remained

in the single column layout until there was sufficient horizontal space to switch

to a single row layout. Figure 7.3 illustrates the effects of the patch.

(a) Before patch

@media (max-width: 414px) {

/* mobile layout */

}

@media (max-width: 767px) {

/* mobile layout */

}

(b) Code before and after patch (c) After patch

Figure 7.3: Fixing the PepFeed element collision failure at narrow widths.

After implementing the patch, another RLF thought to be distinct turned out to

have been fixed as well. This was a viewport protrusion failure occurring just

below the colliding tiles. Therefore, it was revealed that there were in fact 4 sup-

posedly distinct RLFs that actually all shared the same root cause. However, the

wrapping failure in the protruding element still occurred following this patch.

This is especially interesting, as these RLFs were present in the human study

from Chapter 6. Here, the majority of participants said the viewport protrusion
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and the wrapping failure were related as they involved the same element, and

the collision shown in Figure 7.3 (a) was the “odd one out”. This root cause

analysis reveals that the wrapping failure was actually the odd one out and the

other two shared a root cause. Unsurprisingly, not a single participant reported

this. It suggests there is potentially a shortcoming in the grouping approach as

it does not analyse the underlying HTML and CSS code when grouping the

failures.

The web page also exhibited an element collision failure at much wider view-

port widths. When the viewport is wide such as on a desktop, the page ren-

dered the four content panels in a row. However, in between these widths one

of the panels shifts onto a new row and two of the panels overlap, again ob-

scuring some of the content. Naturally, the root cause is again likely to be in

the CSS controlling the offending elements.

(a) Before patch (b) After patch

@media (min-width: 768px) {

.explainer {

width: 25%;

}

}

(c) Code added

Figure 7.4: Fixing the PepFeed element collision failure at wide widths.

As expected, the root cause was the static widths applied to the content panels.

These meant there was insufficient room for the intended layout. The imple-

mented patch involved creating a media query with the condition (min-width:

768px) and applying fluid widths to the three main content panels. This ensured

they scale fluidly in response to any changes in the viewport width. Figure 7.4

illustrates the result of this patch.

StumbleUpon

When the viewport is wide enough, the browser renders the login link in the

top right corner and the company logo in the centre of the page, just beneath

it. However, as the viewport narrows, the login link wraps slightly and pushes
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the logo over to the left hand side of the page. Despite no strict overlap of

visual content, the layout shift has clearly caused an incongruous layout, rather

than just a DOM level overlap. This is why the failure was classified as a true

positive.

Debugging found the root cause to be the two header elements: the company

logo and the login link. These had static widths which were too large for the

elements to fit side-by-side at narrow viewport widths. There were multiple al-

ternative patches which could have implemented, but the chosen patch reduced

the size of the company logo as well as the margins between the offending ele-

ments and the edge of the page. When combined, these changes prevented the

failure from manifesting, as illustrated by Figure 7.5.

.su-logo {

width: 200px;

margin-left: 30px;

}

.login {

margin-right: 30px;

}

(a) Code before patch

.su-logo {

width: 100px;

margin-left: 10px;

}

.login {

margin-right: 10px;

}

(b) Code after patch

(c) Before patch (d) After patch

Figure 7.5: Fixing the StumbleUpon element collision failure.

Will My Phone Work

At the viewport widths of 990px and 991px, a misuse of media queries control-

ling the switch between the mobile and desktop versions of the site results in

the header bar and the main content banner overlapping. This failure is very

similar in nature to Cloudconvert. Therefore, the root cause was again highly

likely to be the breakpoint of one or more of the media queries controlling the

responsive layout.

The root cause was found to be a media query which toggled part of the lay-

out between mobile and desktop layouts at a different breakpoint to the rest of

the site. In this case, its breakpoint was 990 pixels rather than 992 pixels. This

discrepancy between the media queries led to the element collision observed at
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@media (min-width: 990px) {

header {

max-width: 750px;

}

}

(a) Code before patch

@media (min-width: 992px) {

header {

max-width: 750px;

}

}

(b) Code after patch

(c) Before patch (d) After patch

Figure 7.6: Fixing the Will My Phone Work element collision failure.

990-991 pixels. Once the breakpoint was modified, the failure no longer mani-

fested, as shown by Figure 7.6.

7.2.2 Element Protrusion Failures

BugMeNot

At wide viewport widths, the web page’s logo and a search form fit comfortably

side-by-side. However, as the viewport narrows, the header becomes too small

to accommodate this layout. This causes the search bar to overflow the header.

Given the characteristics of the failure, it is likely the root cause is either the

protruding form or the header itself.

(a) Before patch (b) After patch

@media(max-width: 678px) {

.search_form { float: left; }

header { height: 160px; }

}

@media(max-width: 403px) {

.search_form input { width: 70%; }

}

(c) Code added

Figure 7.7: Fixing the BugMeNot element protrusion failure.
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Debugging the failure showed the root cause to be a combination of two things.

Firstly, the static width of the two elements caused the web page to push the

form down when the viewport narrowed. Secondly, the fixed height of the

header element means it does not expand vertically to accommodate its con-

tents. These two factors combine to cause the failure. There was no feasible

way of preventing the page from pushing the form down. Therefore, the im-

plemented patch firstly added the float: left property to ensure it appears

directly beneath the web page logo. Next, the height of the header was in-

creased to accommodate the new location of the form. These rule declarations

were placed inside a media query that only applies them when the viewport is

too narrow for the original layout. Figure 7.7 presents the fix and its effect.

At very narrow viewport widths, the protruding text box also begins to pro-

trude outside of the viewport window. Originally, this failure was classified as

distinct from the element protrusion failure previously discussed. However, the

root cause of both failures was the static width of the text box. Therefore, it is

apparent they are instead just two manifestations of the same underlying issue.

Because of this, following the aforementioned patch, a fluid width declaration

was also applied to the offending element at narrow viewport widths, as shown

by part (c) of Figure 7.7. This ensured the viewport protrusion failure no longer

occurred.

ConsumerReports

At wider viewport widths, the text “All Products A-Z” is correctly rendered

inside its containing element. However, at narrower widths, a mistake in the

CSS causes it to overflow its container. This results in poor aesthetics which

could have a detrimental impact on user confidence in the site, as shown by

part a) of Figure 7.8. The other tiles in the “Featured Products” section do

not evince the same failure. Therefore, the root cause is likely to be a CSS

declaration applied only to the “All Products A-Z” element.

(a) Before patch

.a-z-item {

display: block;

}

(b) Code added (c) After patch

Figure 7.8: Fixing the ConsumerReports element protrusion failure.

As expected, the root cause was the declaration display: block; applied to the

.a-z-item class. Only the faulty element had this class, rather than all of the
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neighbouring tiles. This caused the browser to display the text below the ac-

companying image, regardless of the width of the tile, text or image. Once the

rule had been removed, the failure no longer occurred, with the text rendered

to the right of the image.

PDFescape

At narrow widths, the web page collapses the navigation links in the header

to a drop down list which a user can reveal by clicking on a button. At wider

widths, the links expand into a horizontal navbar. However, for a small number

of widths after the layout changes to the desktop navbar layout, there is insuffi-

cient space in the header for the programmed layout. This causes the elements

to overflow the header. As the header has the overflow: hidden CSS property

set, the overflowing links are invisible and unclickable at this small range of

widths. This therefore renders large portions of the web site inaccessible at the

faulty viewport widths.

@media (max-width: 800px) {

/* mobile nav layout */

}

(a) Code before patch

@media (max-width: 805px) {

/* mobile nav layout */

}

(b) Code after patch

(c) Before patch (d) After patch

Figure 7.9: Fixing the PDFescape element protrusion failure.

Debugging revealed the root cause to be a media query with a breakpoint of

800px. This caused the navigation links to display in a single row when there

was insufficient room in the header. Therefore, the patch modified the break-

point to only apply the “desktop” rules when there was enough space to do so.

In this case, the query (max-width: 805px) controlled when to use the mobile

layout. Figure 7.9 illustrates the details of the patch.
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7.2.3 Viewport Protrusion Failures

3-Minute Journal

At wide viewport widths, the browser displays the main text and the graph

side-by-side on the web page. However, as the viewport narrows, parts of the

graph start to protrude outside of the viewport window. These become inacces-

sible without horizontal scrolling. As discussed in Chapter 2, this is something

no responsive web page should require a user to do.

Debugging showed the graph had a fixed width applied to it, meaning it did

not scale its width in relation to that of the viewport window. The first part of

the patch therefore involved replacing the fixed width with a fluid one. In this

case 550px became 100%. It was then discovered that the x-axis labels continued

to protrude outside of the viewport. Further debugging found each label had

the

position: absolute attribute. Additional left: ??px declarations individually

placed each label in its position. The second part of the patch involved replac-

ing the static left values with fluid ones. These moved the labels closer at nar-

row viewport widths in order for them all to fit inside the viewport window.

Figure 7.10 illustrates the result of the patch.

<div style="position: absolute; left: 59

px;">Aug</div>

<div style="position: absolute; left: 103

px;">Sep</div>

<div style="position: absolute; left: 146

px;">Oct</div>

(a) Code before patch

<div style="position: absolute; left:

8.5%;">Aug</div>

<div style="position: absolute; left: 17%;

">Sep</div>

<div style="position: absolute; left:

25.5%;">Oct</div>

(b) Code after patch

(c) Before patch (June and July protruding) (d) After patch (June and July visible)

Figure 7.10: Fixing the 3-Minute Journal viewport protrusion failure.

The graph protrudes outside of the viewport at both wide viewport widths and

then again at much narrower ones following a layout shift. Therefore, two dis-
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tinct responsive layout failures were originally recorded for this subject. How-

ever, after implementing the aforementioned patch for the web page at wide

viewport widths, the narrow viewport failure no longer manifested. This indi-

cates the two failures in fact shared a root cause and were not distinct. This

proves that the participants in Chapter 6’s human study were in fact correct on

Question 6, while the grouping produced by ReDeCheck was incorrect.

ConsumerReports

At wide viewport widths, the “Price Watch” and “Featured” tiles easily fit side-

by-side in the main content banner of the page. However, as the viewport starts

to narrow, the “Featured” tile starts to protrude outside of the viewport, ob-

scuring most of its content. Although a user could scroll horizontally to view

the rest of the content, this seems to be a poor design choice given there are

only two elements. Also, many web users nowadays do not expect to scroll

horizontally. They may therefore not realise they have the ability to do so and

disregard the obscured information.

.main-content { width: 1040px; }

.main-article { width: 620px; }

.main-featured { width: 380px; }

(a) Code before patch

.main-content { width: 100%; }

.main-article { width: 60%; }

.main-featured { width: 35%; }

(b) Code after patch

(c) Before patch (d) After patch

Figure 7.11: Fixing the ConsumerReports viewport protrusion failure in the banner.

Debugging found the root cause to be the use of static widths for both the

banner itself and its contents. Therefore, the implemented patch modified the

width declarations to use fluid values instead. The banner was given a width

of 100%, while the “Price Watch” and “Featured” elements were given widths

of 60% and 35%, respectively. Figure 7.11 shows the effects of the patch.

Another viewport protrusion occurs further down the page. Here, the “Fea-

tured Products” tiles begin to protrude outside the viewport at narrow widths.

Initially this means just obscuring the white space on the right hand side of the

tiles. However, as the viewport narrows further text begins to become obscured.
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Given all six of the tiles protrude outside of the viewport, it is highly likely the

root cause lies with a rule applied to all of the tiles.

(a) Before patch

/* Before */

.productItem {

width: 365px;

}

/* After */

.productItem {

width: 95%;

max-width: 365px;

}

(b) Code before/after (c) After patch

Figure 7.12: Fixing the ConsumerReports viewport protrusion failure in “Featured

Products”.

Debugging found the issue to be each of the tiles having a static width of 365px.

Intuitively, at very narrow viewport widths (i.e., less than 365 pixels) this causes

part of the tile to protrude outside of the viewport. The implemented patch,

used a combination of a fluid width declaration (95%) and a max-width: 365px

declaration. This ensures the elements always fit within the viewport window

without becoming too wide for the desired layout. Figure 7.12 illustrates the

details and effects of this fix.

There is one final viewport protrusion failure manifesting on ConsumerReports.

At wider viewport widths, the navigation links in the footer fit comfortably

within the viewport window. However, at narrower viewport widths one of the

links (Privacy Policy) is fully obscured as the list protrudes out of the left side

of the viewport. Given the nature of the failure, it is likely the failure’s root

cause lies with the offending element, rather than with one of its neighbours.

Debugging found the footer had a static width declaration which was often

wider than the viewport width. This naturally caused the viewport protrusion.

The implemented patch was therefore very straightforward. This width was

simply reduced to one smaller than the viewport, as shown by Figure 7.13.

Duolingo

At wide viewport widths, the carousel of different languages easily fits in the

main content banner of the page. However, as the viewport starts to narrow, the

right navigation arrow starts to protrude outside of the viewport. Eventually, it
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.footer {

width: 1088px;

}

(a) Code before patch
(b) Before patch

.footer {

width: 1000px;

}

(c) Code after patch
(d) After patch

Figure 7.13: Fixing the ConsumerReports viewport protrusion failure in the footer.

becomes almost unclickable. As the carousel is the only element in the vicinity

which is protruding outside of the viewport, the root cause is likely a CSS rule

applied to the carousel itself.

Debugging of the failure showed the carousel already adhered to the fluid grid

sizing concept of RWD, with its width set to be 100% of its parent. However,

it also had a min-width: 1100px; property applied. This caused issues with the

web page’s layout when the viewport width was narrower. The patch removed

this declaration, allowing the carousel to scale its width up and down in re-

sponse to a changing viewport width, as shown by Figure 7.14.

(a) Before patch

.flag-carousel {

min-width: 1100px;

}

(b) Removed code (c) After patch

Figure 7.14: Fixing the Duolingo viewport protrusion failure.

Hotel WiFi Test

At narrow, mobile-device widths, the main content panels of the web page

are in two columns. However, beyond the viewport width of 414px, this shifts

to a 4 column layout. Unfortunately, the viewport is not anywhere near wide

enough to accommodate the items. This causes almost half of the main content

of the web page to protrude outside of the viewport. The nature of the failure

indicated the root cause was likely a media query controlling the change from

“mobile” to “desktop” layouts.
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@media (min-width: 415px) {

.main-container {

min-width: 768px;

}

}

(a) Code before patch

@media (min-width: 768px) {

.main-container {

min-width: 768px;

}

}

(b) Code after patch

(c) Before patch (d) After patch

Figure 7.15: Fixing the Hotel WiFi Test viewport protrusion failure.

Indeed, debugging found the offending condition, (min-width: 415px). This

tried to use the desktop layout when the viewport width was still very narrow.

The implemented patch modified this condition to (min-width: 768px), quickly

fixing the problem, as illustrated by Figure 7.15.

PDFescape

At wide viewport widths, the page displays the row of company logos side-by-

side. However, as the viewport starts to narrow, the “PCWorld” logo starts to

protrude outside of the viewport. While this does not hamper functionality, the

visual appearance is sub-optimal. There is clearly supposed to be white space

on the right hand side of the row of logos. Instead, the viewport obscures part

of one of the logos.

Debugging found the root cause to be the use of static widths for each of the

four logos. Each had the property width: 220px. Therefore, at viewport widths

such as 768 pixels, the combined width forced the right-most logo outside of

the viewport. The patch replaces these static width declarations with fluid ones
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(width: 100%). This meant the elements scaled their width correctly in response

to different viewport sizes, as shown by Figure 7.16.

.home-as-seen-logo {

width: 220px;

}

(a) Code before patch

.home-as-seen-logo {

width: 100%;

}

(b) Code after patch

(c) Before patch (d) After patch

Figure 7.16: Fixing the PDFescape viewport protrusion failure.

7.2.4 Small-Range Layout Failures

Accountkiller

At narrow viewport widths, the main content tiles are in a straightforward two-

column layout. Once the viewport width increases to wider than 480 pixels, a

media query increases the width of the tiles, while retaining the two-column

design. However, for a small range of viewport widths (476 pixels to 480 pixels)

the tiles shift into a three-column layout. This has no impact on functionality,

but it is likely something the developer will want to address. The preceding and

following layouts both implement two columns of tiles, indicating the layout

shift is unintentional.

Debugging of the failure found the root cause to be the breakpoint of the media

query controlling the change in width of the tiles. At the offending widths, the

elements are narrow enough to fit three to a row inside the container. Then,

the media query widens them and forces them back to a two to a row layout.

Therefore, the implemented patch changes the breakpoint so that the widths

increase before they incongruously wrap, as shown by Figure 7.17.
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(a) Before patch

@media(max-width: 480px) {

.account li {

width: 124px;

}

}

@media(max-width: 475px) {

.account li {

width: 124px;

}

}

(b) Code before/after (c) After patch

Figure 7.17: Fixing the Accountkiller small-range layout failure.

7.2.5 Wrapping Failures

Accountkiller

When the viewport window is wide enough, all the logos are in a single row.

However, when the viewport narrows, the logo “The Atlantic” wraps onto a

new line. Eventually the elements all wrap so they are in 2 rows of 3 and then

3 rows of 2. However, this occurs due to incongruous wrapping rather than

developer-programmed responsive behaviour. The implemented patch there-

fore implemented a media query which automatically shifted the layout of the

six logos. It changed to a 2 row layout as soon as the viewport became too

narrow for a single row layout. It then shifted to a 2 column layout and then

finally a single column layout as the viewport continues to narrow. Figure 7.19

illustrates both the added CSS code and its visual effect on the web page.

The web page also exhibits a second wrapping failure, with the “Tweet” icon

wrapping onto a new line as the viewport narrows. As the viewport continues

to narrow, more icons wrap onto the second row. Therefore, it was important

to design a patch which would stop all of the elements from wrapping. The

patch began by removing unnecessary padding from around elements such

as the Google+ icon, to give the icons a more uniform layout. Then, a media

query was introduced for narrow viewport widths which reduced the width of

the container holding all the icons. This laid them out in two equal rows, to

prevent any further wrapping failures and give the web page a more consistent

look. Figure 7.19 illustrates the effects of the patch.
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(a) Before patch (b) After patch

@media(min-width: 481px) and (max-width: 960px) {

#featured ul {

width: 480px;

margin: 0 auto;

}

}

(c) Added code

Figure 7.18: Fixing the Accountkiller wrapping failure.

(a) Before patch (b) After patch (450 pixels)

(c) After patch (360 pixels)

@media(max-width: 430px) {

.addt {

width: 210px;

}

}

(d) Added code

Figure 7.19: Fixing the Accountkiller wrapping failure in the footer.

Airbnb

At narrow viewport widths, the “Terms & Privacy” navigation link wraps onto

a new row, while the rest of the links are side-by-side. Obviously this is a

purely aesthetic issue and has no impact on the functionality of the web page.

Even so, it still may be something the developer wants to address. Debugging

found the cumulative width of the elements to be considerably wider than their

container. The obvious patch would be to reduce the element widths and the

spacing between them, to squeeze all five links into a single row. However, this

patch was unsuccessful due to the already small spacing between the elements.

Therefore, the implemented patch instead added a media query. At narrow

widths, it stacked the navigation links vertically. This results in a more elegant
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responsive design often implemented by developers when faced with limited

horizontal space. Figure 7.20 presents this fix.

(a) Before patch

@media (max-width: 365px) {

li { display: block; }

}

(b) Added code (c) After patch

Figure 7.20: Fixing the Airbnb wrapping failure with “Terms & Privacy”.

At narrow widths, the Instagram logo is also forced onto a new row in a similar

manner. In this case, debugging found that reducing the padding applied to

the sides of each icon from 5px to 2px achieved an almost identical layout,

without causing the final logo to wrap. There is the risk that when browsing

on mobile devices elements that are too close to each other are hard to interact

with, but the spacing between these elements should be enough for a high level

of usability. Figure 7.21 illustrates the patch.

(a) Before patch

li { padding: 0 5px; }

li { padding: 0 2px; }

(b) Code before/after (c) After patch

Figure 7.21: Fixing the Airbnb wrapping failure with the Instragram logo.

BugMeNot

The search button wraps onto a new line as the viewport narrows, giving the

web page a much less professional look and feel. Intuitively, the root cause is

likely to be either the form itself or one of its components. Indeed, the root

cause turned out to be the static width of the input box. At narrow viewport

widths this caused the cumulative widths of the form components to be too

wide to fit side-by-side. The implemented patch therefore introduced a fluid

width declaration at both narrow and very narrow viewport widths. To prevent

the input box becoming too wide at larger viewport widths and to keep with

the initial layout of the page, a max-width: 300px declaration was also added to

the element. Figure 7.22 illustrates the patched version of the web page.

Originally, the input box of the form also protruded outside of the viewport

at very narrow viewport widths. This failure was originally classified as dis-

tinct from the aforementioned wrapping failure. However, the patch to stop the
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(a) Before patch

@media(max-width: 414px) {

.form { width: 70%; }

}

.form {

width: 50%;

max-width: 300px;

}

(b) Added code (c) After patch

Figure 7.22: BugMeNot viewed at a viewport width of 500 pixels.

search button from wrapping also removed the viewport protrusion. This indi-

cates that the two failures in fact shared a root cause and were not distinct. Like

the viewport protrusions on 3-Minute Journal, this again shows that the deci-

sions of the participants in the previous chapter’s human study were correct,

while ReDeCheck was incorrect.

CoveredCalendar

The “Pricing” navigation link in the header bar wraps onto a new line as the

viewport becomes narrow. Given the failure manifests right at the top of the

web page, it could negatively influence visitors straight away. Therefore, it

should be a high-priority for the developer. The nature of the failure suggests

the root cause lies with the element containing the header bar. This is evidently

not always wide enough to accommodate the desired single-row layout.

(a) Before patch

.container {

width: 750px;

}

.container {

width: 98%;

}

(b) Code before/after (c) After patch

Figure 7.23: Fixing the CoveredCalendar viewport protrusion failure in the header.

Debugging of the failure showed that when the header switches from its mobile

view to its desktop counterpart, the container element of the logo and naviga-

tion links has a fixed width of 750px. This is not wide enough for the intended

layout. Therefore, the patch changed this fixed width to a fluid one of 98%. This

ensured there was always sufficient space for the links and logo to fit in a single

row, as shown by Figure 7.23.
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CoveredCalendar also exhibits another wrapping failure in its footer. The “Pri-

vacy Policy” links wraps onto a new line as the viewport becomes narrow. As

the vertical bar has also wrapped, it indicates the wrapping is not intended

layout behaviour, as the “CoveredCalendar.com” link doesn’t have a bar on its

left hand side. Intuitively, the root cause is likely to be the list items themselves

or their container.

(a) Before patch

li { padding: 0 15px; }

li { padding: 0 3px; }

(b) Code before/after (c) After patch

Figure 7.24: Fixing the CoveredCalendar wrapping failure in the footer.

Debugging found the root cause to be padding of 15 pixels on both the left and

right hand sides of each list element. This significantly increased the width of

the elements, causing the wrapping at very narrow viewport widths. The im-

plemented patch, shown by Figure 7.24 involved simply reducing the padding

until the elements fit side-by-side. This is fairly crude, as the footer is no longer

as aesthetically pleasing as it was with the larger padding. However, it is still

better than the alternative of having one of the links wrap onto a new line. Per-

haps a better option, although significantly more involved, would be to use a

media query to display the elements in a single column at narrow widths. This

would likely produce a more professional visual appearance.

Ninite

The “terms” links wraps onto a new line as the viewport becomes narrow. De-

bugging showed the root cause to be a combination of the item container not

being wide enough and the spacing between the list items being too large. This

meant all the elements could not fit in a single row at narrow viewport widths.

The patch consisted of two steps. First, the available space in the list container

was increased by reducing the left and right padding down from 15px to 1px.

Then, the padding on the individual list items was reduced until the items fit

side-by-side. Figure 7.25 illustrates the effects of the implemented patch.

PepFeed

At wide viewport widths, the four source logos are displayed side-by-side, but

the “Verge” link wraps onto a new line as the viewport becomes narrow. While

clearly not a major issue, it is something the developer may want to address

nonetheless as it does have a slightly detrimental impact on the aesthetics of
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.container { padding: 0 15px; }

li { padding: 0 5px; }

(a) Code before patch

.container { padding: 0 2px; }

li { padding: 0 1px; }

(b) Code after patch

(c) Before patch (d) After patch

Figure 7.25: Fixing the Ninite wrapping failure.

.sources {

margin-right: 10px;

}

.sources-two {

width: 65px;

}

(a) Code before patch

.sources {

margin-right: 5px;

}

.sources-two {

width: 50px;

}

(b) Code after patch

(c) Before patch (d) After patch

Figure 7.26: Fixing the PepFeed wrapping failure.

the web page. Debugging found the issue to be a combination of the static

widths of the four elements and the margins applied to them. Together, this

made the cumulative horizontal space required too large for the width of the

container of the elements. The implemented fix was therefore simple. It first

reduced the width of the elements without making them too small. Then, it

reduced the spacing between them without bringing them too close together.

Figure 7.26 illustrates the effects of this fix.

Usersearch

At wide, desktop viewport widths, the five navigation links fit comfortably side-

by-side. However, as the viewport narrows, the available space for the links

reduces. As such, the navigation links wrap incongruously onto different lines.

This creates a significantly less professional looking web page. While it does
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(a) Before patch

@media(max-width: 800px) {

.ui-tabs-nav li {

width: 100%;

}

}

(b) Added code (c) After patch

Figure 7.27: Fixing the Usersearch wrapping failure.

not negatively affect the functionality, many people now expect a mobile-ready

“drop-down” menu rather than a desktop menu which has wrapped. Therefore,

a developer should consider the failure fairly serious and worthy of fixing.

As one might expect, the debugging process quickly found the root cause to

be the navigation elements. These had permanent static widths, meaning at

narrower viewport widths they wrapped incongruously. To remedy the issue,

the patch introduced a media query with (max-width: 800px) as its breakpoint.

Inside this, a fluid width declaration width: 100%; was applied to the list items.

Rather than wrapping, this stacked them in a column, as illustrated by Fig-

ure 7.27.

7.2.6 Summary of Root Causes

The majority of the RLF root causes presented in this chapter show the majority

of both the initial manually created distinct RLF groupings and those automat-

ically generated by ReDeCheck were correct. However, there are a couple of

instances where RLFs initially thought to be distinct were revealed to share the

same root cause.

7.3 study results

Research Question One: The previous section showed that the majority of

distinct RLF classifications from Chapter 5 were correct. The only incorrect ex-

amples were 3-Minute Journal, BugMeNot and PepFeed. For the former, the

fault fixing exercise revealed that the 8 TPs reported by ReDeCheck actually

conflated down to a single distinct RLF. This was despite the failures occur-

ring at very different ranges of viewport widths, with a series of “non-faulty”
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widths in between. On BugMeNot, the element protrusion failure and one of

the viewport protrusions turned out to share the same root cause. This was

also the case for the second viewport protrusion and the wrapping failure. For

PepFeed, fault fixing revealed a series of element collision failures and a view-

port protrusion that had been classified as distinct were actually all related to

the same root cause. These examples will help guide further development in

the grouping approach, with the aim of making it more accurate.

Given these incorrect distinct RLF classifications, it is important to re-evaluate

the usability of ReDeCheck. Chapter 5 explained how the number of distinct

viewport ranges was a reliable indicator of the manual effort required to anal-

yse the tool’s results. Before the fault fixing experiment, the ratio of viewport

ranges to distinct RLFs was 3.4. Given there are actually only 27 distinct RLFs

rather than 33, this ratio becomes 4.1. While slightly higher, the benefits of de-

tecting actual layout failures still cancel out the manual effort required by a

user.

Summary of RQ1: The distinct RLF classifications produced in Chapter 5

were very accurate, with only four incorrect examples. The fault fixing pro-

cess revealed only 27 distinct RLFs present in the collection of web pages,

rather than the initial 33.

Research Question Two: Following the debugging and subsequent patching

of each failure, this question aimed to analyse the complexity of the imple-

mented patches. To do this, the Unix diff utility was used to determine the

number of added, deleted and modified lines of code by each patch to obtain a

metric by which patches could be compared. In some scenarios, using lines of

code as a measure for how easy or hard a bug is to fix can be problematic. For

instance, in some languages a single line can contain complex boolean logic and

therefore identifying the correct modification could be very difficult. However,

in HTML and CSS, each line of code generally has a very clearly defined pur-

pose, such as setting the padding for a particular element. This means actually

changing the code is much simpler for HTML and CSS than for other languages,

allowing lines of code to be used as a proxy for fix difficulty. Another option for

measuring relative fix difficulty is the time taken to fix a failure. For instance,

more reliable results could be obtained by having a collection of web develop-

ers each fix the same RLFs under controlled conditions and analysing the time
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required by each one, but unfortunately, time and cost constraints prevented

this.

To account for differences in CSS style and to provide a more consistent compar-

ison, the number of individual CSS declarations that were involved in the patch

was also calculated, disregarding lines only containing CSS selectors and/or

brackets. Then, based on this data and the nature of the patches themselves,

each patch was classified into one of four categories; simple, medium, complex

and finally redesign.

Simple patches are those involving only one or two code changes, such as

tweaking the value of a CSS declaration or deleting an unnecessary one. Medium

patches are slightly more involved, with 3–5 lines changing such as adding in a

new CSS selector block with a couple of declarations inside it. Complex patches

are more involved still, with upwards of 5 lines changing. Finally, redesign

patches are those where it was deemed there was no feasible fix to the failure

and since the developer’s intentions were unknown, the most logical “redesign”

of the web page’s layout was implemented. Table 7.1 presents the details and

classification of each patch implemented in Section 7.2.

The table shows over half of the patches (14 of 27) were classified as being

simple fixes. This highlights the difficulty in implementing reliable and failure-

free responsive web pages, as just a single erroneous CSS declaration can have

significant effects on the aesthetics of the web page. Interestingly, 11 of these

14 patches involved just changing the value assigned to a property rather than

adding further CSS declarations or removing unnecessary ones. This suggests

most of the failures in these web pages were due to incorrect application of a

CSS property, rather than a failure to apply a particular property. The remaining

“simple” patches all involved the deletion of a single CSS declaration which was

erroneously being applied to one or more elements. Interestingly, none of the

failures were resolved using just the addition of new CSS rules.

Four patches were classified as being of medium complexity. These often in-

volved tweaking the values of several CSS properties rather than just one or two.

For instance, the fix for Ninite involved modifying the values of four padding

declarations and deleting one margin declaration. In ConsumerReports, the

widths of three faulty elements were all modified to resolve a failure.

A further four of the patches were classified as complex, involving upwards

of six code modifications. The increased quantity of modifications were caused

by the addition of media queries to implement better responsive behaviour or
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Table 7.1: Summary statistics for the patches implemented for the various failures

detected. The labels A, D and C represent additions, deletions and changes respectively.

The numbers in parentheses represent the number of individual CSS declarations that

were added, deleted or modified.

Web Page Fault Description A D C Classification

Cloudconvert Banner and header overlapping 2 Simple

MidwayMeetup Two forms overlapping 6(3) Medium

PepFeed Icons overlapping at narrow widths 1 Simple

PepFeed Icons overlapping at wider widths 19(10) Complex

StumbleUpon Login link and logo overlapping 3 Medium

Will My Phone Work Header and content overlapping 1 Simple

BugMeNot Form protruding out of header 13(5) Redesign

ConsumerReports Text protruding outside of tile 3(1) Simple

PDFescape Navigation links protruding out of header 2 Simple

3-Minute Journal Graph labels protruding out of viewport 14 Complex

ConsumerReports Banner protruding out of viewport 3 Medium

ConsumerReports Featured products tiles out of viewport 1 1 Simple

ConsumerReports Footer link out of viewport 1 Simple

Duolingo Carousel out of viewport 1 Simple

Hotel WiFi Test Main content out of viewport 2 Simple

PDFescape PCWorld logo out of viewport 1 Simple

Accountkiller Incrongrous layout from 476-480px 1 Simple

Accountkiller Atlantic wraps 6(3) 1 Redesign

Accountkiller Tweet wraps 5(2) 1 Redesign

Airbnb “Terms” wrapping 5(2) Redesign

Airbnb Instagram logo wraps 1 Simple

BugMeNot Search button wraps 7(4) Complex

CoveredCalendar Navigation link wraps in header 1 Simple

CoveredCalendar Link wraps in footer 1 Simple

Ninite Link wraps in footer 1 4 Medium

PepFeed The Verge logo wraps 6 Medium

Usersearch Navigation links all wrap incongruously 5(2) Redesign

modifications to the CSS rules for several neighbouring elements. For example,

the wrapping failures observed on BugMeNot required two additional CSS

properties be applied at all viewport widths along with an additional media

query containing a specific width declaration. 3-Minute Journal is an example

of the other scenario, where the graph canvas and all twelve of the individual

x-axis labels had to have a CSS property changed in order to fix the observed

viewport protrusion failure.

Finally, five of the patches were placed in the redesign class. These failures re-

quired more careful planning to patch. Rather than simply modifying code

immediately, the most sensible design approach had to be determined before
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implementing the fix. An excellent example of this is Usersearch, in which the

navigation links wrap incongruously as the viewport narrows. Here, the cho-

sen fix implemented a different layout, with the links stacking in a single col-

umn. Table 7.1 also showed another interesting result. Redesign patches often

required substantially fewer code modifications than medium or high complex-

ity ones. This indicates in certain scenarios it is actually easier to change the

responsive layout of the web page, rather than tweak the existing layout until

the failure no longer manifests.

The most complex patch implemented consisted of 19 additional lines of CSS

code being added to PepFeed, of which 10 were CSS declarations. While this

may seem a large amount in comparison to the other patches, it is still not a

very large patch size when compared against the overall size of the web page’s

code base. The size of the patches also shows that actually fixing the observed

layout failures is not an overly-complex task. This further highlights the value

in reporting them to the developer, as they can often quickly fix them. It also

makes it more surprising that the failures manifest on live sites in the first place,

given the simplicity with which developers can fix them. It is therefore clear

that accurate detection of responsive layout failures is a task web development

professionals really do struggle with.

Summary of RQ2: Over half of the patches required to fix the failures

were simple, with only one or two lines of code modified. This suggests

many RLFs arise due to a single programming error from a developer. Of

the remaining failures, 5 were classed as “medium”, 3 as “complex” and 5

were “redesigns”. The largest fix required just 19 lines of additional code,

showing that fixing the failures is not necessarily the problem, detecting

them in the first place is.

7.3.1 Discussion

Following the analysis of both the failures observed and the patches imple-

mented, they were grouped in an attempt to extract various lessons which

could be learnt and applied by web developers to help prevent against the

wide variety of responsive layout failures observed in our collection of live web

pages.
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Using Static Widths: The first key principle of responsive web design from Mar-

cotte [96] was to use fluid, grid-based layouts (i.e. percentage widths for ele-

ments) rather than the more traditional static widths used previously. Failure

to do this resulted in a wide array of failures, including elements congruously

wrapping, colliding and protruding outside of their container or even the view-

port itself. In most cases, the implemented patches involved making the of-

fending elements use fluid widths rather than static ones. In fact, eight of the

implemented patches consisted of changing static declarations into fluid dec-

larations to improve the web page’s responsiveness. If developers take special

care to use fluid widths when building responsive web pages, they stand to

substantially mitigate the risk of layout failures. One obvious way of doing this

would be to use one of the many front-end frameworks such as Bootstrap [19]

or Foundation [161] which come prepackaged with a fluid grid-based layout.

However, as some developers may wish to write their CSS from scratch for a

more bespoke look, simply ensuring the use of fluid widths whenever possible

should be sufficient.

Lesson One: Always use fluid width declarations when possible to ensure web page

element scale their widths to that of the viewport.

Media Query Problems As the number of CSS declarations and media queries

used to control the layout of a page increases, it can quickly become difficult

for developers to track the breakpoints at which each media query “toggles”. As

such, throughout this analysis two major pitfalls were observed when it comes

to media queries. The first occurs when two related media queries equate to true

at a particular viewport width when only one should, while the second arises

when two media queries which should have identical breakpoints don’t.

Making sure media queries apply the right rules at the right time can be es-

pecially difficult if the developer is using a combination of the min-width and

max-width conditions. Cloudconvert is a good example of this, where the “desk-

top” layout is introduced with the media query (min-width: 980px), meaning

the rules for the layout at narrower viewport widths should only be applied

at viewport widths up to and including 979px. However, the offending media

query contained the condition (max-width: 980px), meaning that at 980px both

conditions equated to true, resulting in the wrong rules being applied to some

elements and thus producing the failure shown by part a) of Figure 7.1. To mit-

igate the risk of these errors occurring, developers should inspect the layout

of the web page at these breakpoints, as any “clashing” media queries would

likely be easily detected when viewed at these viewport widths. Many frame-
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works also predominantly use the min-width condition to try and make it easier

for developers to interpret which media queries are applied. However, this also

has a downside as a mistake in the order in which the CSS declarations are

placed in the file can impact how a web browser parses the CSS and therefore

have an effect on the appearance of the web page.

When two media queries controlling the layout of related or neighbouring ele-

ments have different breakpoints, undesirable aesthetic effects can often man-

ifest at viewport widths at which only one rather than both of the queries

equates to true. A textbook example of this is Will My Phone Work, where

two queries should both have had the condition (min-width: 992px), but one

had (min-width: 990px) instead. At 990px and 991px, the media query which

displayed the navigation links in a row was true, but the one which increased

the width of the navigation bar to accommodate the links was not, resulting

in the effects shown by part a) of Figure 7.6. Although the implemented patch

consisted of removing a max-width declaration, the alternative was to change

the breakpoints so both media queries “toggle” at the same point. This failure

clearly illustrates how careful developers have to be when implementing their

web sites to ensure the correct rules are applied at the right viewport widths,

as seemingly small errors can cause significantly detrimental issues. One ap-

proach to this could be performing “boundary” testing, checking a couple of

pixels either side of each planned breakpoint to make sure all the media queries

become true or false at the correct viewport widths.

Lesson Two: Always check the media queries used to control the layout. Make sure that

“related” queries have the exact same breakpoint and that only one query controlling a

particular element is true for each viewport width.

Some of the failures observed were due to the developer trying to implement

a “desktop” layout on devices with small viewport widths, which can often

be a recipe for disaster. For example, PepFeed attempted to display four ele-

ments side-by-side at viewports as narrow as 415px, whereas the more sensible

approach was to keep the elements in the stacked layout, as shown by Fig-

ure 7.3. The advice for developers would be to only change to a desktop style

layout when they know there will definitely be enough available space to do

so. Mobile-friendly layouts often require a reasonably large amount of vertical

scrolling due to their narrower nature, but given the ease of scrolling on mod-

ern mobile devices, this is unlikely to be seen as a negative by the vast majority

of users. To test for these types of issues, it is important for developers to ob-
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serve the layout of a web page at a viewport width between those normally

associated with mobile and desktop devices.

Lesson Three: Only attempt to switch a group of elements to a desktop layout when

there is guaranteed to be enough room to do so. When in doubt (for instance, at tablet

widths), staying with a mobile layout is a perfectly satisfactory choice.

7.4 concluding remarks

This chapter investigated the root causes of the 33 distinct RLFs identified in

Chapter 5, and then detailed the code fixes implemented to fix them. Then, it

evaluated the fixes in the context of three main research questions.

The first of these evaluated the correctness of the “distinct” RLF classifications

from Chapter 5. The fix results showed that for the vast majority of web pages

the classifications were correct. However for three web pages, failures that were

originally classified as distinct were revealed to actually stem from the same

root cause in the source code. This meant that the number of distinct RLFs

identified dropped from 33 to 27.

The second question investigated the complexity of the implemented fixes. Over

half of the failures could be fixed by changing just one or two lines of code,

indicating that many RLFs stem from just a single mistake on the part of the

developer. The most involved fix still required just 19 lines of additional code,

showing that actually fixing RLFs is a relatively simple process.

Finally, this chapter analysed the set of fixes as a whole to see if there were any

common mistakes that developers regularly make. From this, it then presented

three main lessons that developers can use to mitigate the risks of layout failures

manifesting in their responsive web pages.
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C O N C L U S I O N S A N D F U T U R E W O R K

8.1 summary of achievements

This thesis set out to tackle the important problem of presentation failures in

responsive web pages, which have been found to have seriously detrimental

impacts on not just the aesthetics of web pages but also the psychology of the

users browsing them. This required a number of challenges to be addressed:

1. Develop a method for representing the responsive layout of a web page.

2. Investigate whether this representation can be used to detect changes to

a web page’s layout.

3. Develop a method for detecting common types of layout failure without

an explicit oracle.

4. Further remove the effort burden from the user by developing a technique

for automatically grouping related issues together.

5. Investigate the root causes of presentation failures in real-world respon-

sive web pages to determine whether they are complex to fix and if there

are common mistakes made by developers.

8.1.1 The Responsive Layout Graph

Chapter 3 described and formalised the responsive layout graph (RLG), a model

of the dynamic layout behaviour of modern responsive web pages. The model

handles the two main aspects of responsive behaviour, namely, the changing

visibility and alignment of elements on the page. The chapter then presented a

series of algorithms for obtaining the RLG of a given web page. While others
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have proposed models of web page layout, such as the alignment graph [123]

and the layout graph [7], they model the web page at a single viewport width

and do not take into account any responsive behaviour. The RLG therefore rep-

resents an advance over these existing models and forms a novel contribution

of this thesis.

8.1.2 Detecting Potentially Unseen Layout Side-Effects

Following on from the introduction of the RLG in Chapter 3, Chapter 4 pro-

posed an approach for automatically alerting developers to potentially unseen

side-effects in the responsive layout of a web page, following a code change.

This approach first obtained the RLG for both the “original” and “modified”

version of the web page under test, before comparing them to detect any differ-

ences. A report of these changes was then output to the user, who could use it

to determine whether any unintentional side-effects are present.

The approach was implemented in ReDeCheck, an open-source responsive web

checking tool. It was then evaluated on a pool of 15 real-world responsive web

pages, using mutation analysis to automatically seed code changes. Results

showed the approach capable of detecting the vast majority of injected layout

changes, outperforming both manual and automated baseline techniques. To

the best of my knowledge, this is the first automated approach addressing pre-

sentation failures in responsive web pages and therefore represents the second

novel contribution of this thesis.

Unfortunately, the approach suffers from a couple of shortcomings. Firstly,

there is still quite a significant burden of effort on the developer, as they must

manually determine whether any of the layout changes represent real issues.

Second, the approach is far less usable if the “original” version of the web page

is too far removed from the latest one, as it would likely report an overwhelm-

ing number of layout changes. Finally, if a presentation failure is present in

both versions of the web page, the approach will be unlikely to bring it to the

attention of the developer.
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8.1.3 Detecting Common Types of Responsive Layout Failures

Addressing the shortcomings of the approach in Chapter 4, Chapter 5 presented

an approach for identifying five types of responsive layout failure (RLF) without

the need for an explicit oracle, such as a previous version of the web page. Like

the approach in Chapter 4, the foundation of this approach was the RLG. How-

ever, rather than comparing two RLGs, this approach analysed a single RLG,

searching for patterns that frequently represent common types of responsive

layout failure.

The approach was also implemented into ReDeCheck, which outputs both a

text report and a set of highlighted screenshots showing the detected RLFs on

the web page. An empirical evaluation using 26 randomly selected real-world

web pages found that RLFs were a prevalent problem and that the approach

was capable of detecting them. Results also showed the approach outperformed

the common industry technique of spot-checking and that ReDeCheck can per-

form its analysis in a short amount of time, allowing developers to quickly

obtain useful feedback.

The chapter then proposed a couple of small improvements to the approach.

The first changed the RLG definition and the second modified the RLF identifi-

cation approach to reduce the number of false positive failures reported. These

changes were then shown to have been very effective, reducing the number of

false positives produced while still detecting the same number of true positive

RLFs.

Other techniques have aimed to identify different categories of layout issues

in web pages (eg. [61, 62]), but this approach is, to the best of my knowledge,

the first to do so without the need of an explicit oracle against which the web

page’s layout is compared. For this reason, it forms the third major contribution

of this thesis.

There was one major shortcoming of the approach. Some web pages produced

numerous failure reports that were related and likely stemmed from the same

root cause. Grouping such failures together is currently a manual task that

reduces the overall usability of the approach.
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8.1.4 Grouping Related Failures Together

Chapter 6 took the approach proposed in the previous chapter and tried to re-

duce the effort required by a user of the tool by automatically grouping related

failures together. This approach used three measures of similarity to work out

whether different RLFs were related.

The evaluation found the automated grouping to be highly effective, observing

only a few incorrect groupings. Finally, a study of 11 computer science post-

graduate and undergraduate students investigating human opinion on both

individual RLFs and groupings of them showed the majority of humans agree

both with the failures identified and the groupings produced by the approach

presented in this chapter. However, there were a few disagreements, in which

the participants disagreed with both the manually produced and automatically

produced results.

8.1.5 A Study of Real-World RLFs

Chapter 7 investigated the root causes of the RLFs identified in Chapter 5. It

presented potential fixes for all of the 33 distinct RLFs identified and then pre-

sented a discussion of the failures. This allowed further investigation of the

manually created distinct RLF groupings, the groupings automatically gener-

ated by ReDeCheck and the opinions given by the participants in Chapter 6’s

human study.

The study found several points of interest. Firstly, the manual classifications

were very accurate, with only four incorrect examples, including a couple where

the human study participants were correct while the gold standard and Re-

DeCheck were in fact, wrong. Secondly, the majority of the RLFs could be

fixed with very few lines of code, with only two requiring more than 10 lines

of modified code. Finally, developer mistakes generally fall into one of three

main categories, including ensuring all elements on the web page adhere to

the three ingredients of RWD. This chapter then presented “lessons” web de-

velopers could potentially use to mitigate the risks of responsive layout failures

occurring in their web pages, which could in turn improve the overall web

browsing experience for everyone.
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8.2 limitations and future work

This section outlines various potential avenues of future work that further ex-

plore the problem of responsive web page layout testing. It mainly focusses on

work following on from the specific approaches investigated in this thesis: de-

tecting potentially unseen layout side-effects (Chapter 4), and identification of

responsive layout failures (Chapters 5-7).

8.2.1 Further Investigation of Web Page Mutants

Section 2.4.2 introduced mutation analysis, a method of introducing faults or

changes into the source code of an application. These changes, or mutants, gen-

erally try to model mistakes or changes a real world developer might make. The

set of eight operators proposed in Chapter 4 target common CSS and HTML

constructs used to control responsive layout, but it is vital they model the typ-

ical developer changes. They are based upon personal intuitions regarding the

types of changes made in practice, based on my knowledge of responsive web

development. Currently, I have not evaluated to what extent the changes intro-

duced by the operators reflect real-world changes.

One possible way to investigate this would be to run a human study simulating

a real-world development scenario, such as the usage scenario proposed for

the approach in Figure 4.2. The participants could be given a responsive web

page and a task to complete, such as changing some aspect of the web page’s

layout. Then, by tracking the source code changes made by each developer, I

could see whether developers frequently made layout changes similar to those

produced by the mutation operators. This study could also point out other

potential mutation operators that could be implemented, allowing for an even

more in-depth empirical evaluation of the overall approach.

8.2.2 Identification of Further Types of RLF

Chapter 5 introduced five types of common responsive layout failure (RLF)

identified through my own experiences of browsing the mobile web. These

were element collision, element protrusion, viewport protrusion, small-range

layout and element wrapping. As discussed previously in that chapter, it is
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possible that other types of RLF are prevalent in real-world responsive web

pages. Anecdotally, I observed no other types of failure during the evaluations

in Chapter 5 and Chapter 6. However, some participants in the human study in

Chapter 6 reported RLFs that did not properly fit in any of the pre-existing cat-

egories. For instance, some stated some elements were “misaligned” in relation

to others, suggesting that could be one potential failure type not currently sup-

ported. As four different algorithms were required to detect the five types of

RLF, it is highly likely that a totally new algorithm would be required to detect

a new type of RLF, along with changes to the responsive layout information

modelled by the RLG.

8.2.3 Automatic Classification of Identified RLFs

One of the main bottlenecks in the approach presented in Chapter 5 is that

a human must manually classify each identified RLF as either a true positive,

false positive or non-observable issue. For some web pages, the number of

reported failures is small so little manual effort is required. However, for other

subjects such as ConsumerReports, Accountkiller, Retail Me Not and Startup

Stash, the larger quantities of RLFs means the user has to do considerably more

manual analysis in order to reap all the benefits of the approach.

A potentially important avenue of future research therefore lies in the task of au-

tomatically classifying RLFs as one of the three categories. Other research has

investigated the use of techniques such as machine learning to perform this

task ([32, 126, 131]). The manually classified failures from the studies in this

thesis could therefore potentially form the beginning of a set of training data

for a machine learning classification approach, although many more examples

would likely be required to create an effective and accurate classifier. Imple-

menting a technique that accurately classifies failures would likely significantly

improve the overall usability of ReDeCheck.

8.2.4 Fault Localisation

This thesis has primarily focussed on identifying failures, which the developer

has had to manually classify and fix if necessary. Another way of potentially

improving the user experience of ReDeCheck and reducing the effort load on

the user is to analyse the source code of the web page and “localise” the failure.
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In other words, rather than just reporting the presence of an RLF, the approach

could point the user in the right direction for fixing the fault by suggesting

lines of code that could be responsible for the failure. For example, WebSee, the

tool created by Mahajan et al. [90, 91] outputs a list of web page elements that

are most likely to be responsible for the presentation failure in the web page.

However, given ReDeCheck already possesses this information (as it knows

which elements are involved in each RLF), it could potentially direct the user

to specific lines of faulty code.

8.2.5 Automatic Fault Fixing

One step further than fault localisation would be the implementation of an

automated fault fixing approach. This would not only identify the faulty line or

lines of code, but would work out how to modify this code to fix the identified

RLF. This could be particularly difficult in scenarios when code has to be added,

rather than simply modified.

Recent work by Mahajan et al. has used search-based software engineering

and other techniques to develop automated approaches for fixing cross-browser

issues [92], internationalization presentation failures [93] and mobile-friendly

problems [94]. Similar approaches could be used to provide automatic fixes to

identified RLFs, further reducing the effort required by the user.

8.3 final remarks

Providing an easy and enjoyable web browsing experience for users on all de-

vices is vital in the modern world. Unfortunately, doing so is a labour-intensive

and error-prone task, meaning presentation failures are frequently found. Al-

though prior research has targetted orthogonal problems such as cross-browser

compatibilities, almost no research has addressed the significant problem of

identifying presentation failures in mobile-friendly responsive web pages. Fur-

thermore, the task is very difficult to perform manually, due to the huge variety

of devices available and the effort required to thoroughly check a web page’s

layout.

Therefore, this thesis explored techniques for automatically detecting such is-

sues and reporting them to a developer. It began by proposing a model of a
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web page’s responsive layout. It then used this model as a way of reporting po-

tentially unseen layout side-effects following changes to the web page’s source

code. Next, it proposed a series of algorithms that analyse this model to identify

five different types of common responsive layout failure (RLF). Following this,

it proposed a technique for automatically grouping related RLFs together to in-

crease usability. Finally, it investigated the root causes of a set of 33 real-world

RLFs to identify commonalities.

Overall, the work contained within this thesis provides two different approaches

for checking the responsive layout of web pages. These approaches are both ef-

fective and efficient and should therefore aid real-world developers create better

responsive web pages and by extension, improve the web browsing experience

for all.
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9.1 screenshots for part one of the human study

Figure 9.1: Part One - Question One
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Figure 9.2: Part One - Question Two

Figure 9.3: Part One - Question Three
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Figure 9.4: Part One - Question Four



220 appendix

Figure 9.5: Part One - Question Five

Figure 9.6: Part One - Question Six
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Figure 9.7: Part One - Question Seven

Figure 9.8: Part One - Question Eight

Figure 9.9: Part One - Question Nine

Figure 9.10: Part One - Question Ten
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9.2 screenshots for part two of the human study

Figure 9.11: Part Two - Group One - Failure One
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Figure 9.12: Part Two - Group One - Failure Two

Figure 9.13: Part Two - Group One - Failure Three
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Figure 9.14: Part Two - Group One - Failure Four

Figure 9.15: Part Two - Group One - Failure Five
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Figure 9.16: Part Two - Group One - Failure Six
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Figure 9.17: Part Two - Group Two - Failure One

Figure 9.18: Part Two - Group Two - Failure Two

Figure 9.19: Part Two - Group Two - Failure Three
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Figure 9.20: Part Two - Group Three - Failure One

Figure 9.21: Part Two - Group Three - Failure Two

Figure 9.22: Part Two - Group Three - Failure Three
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Figure 9.23: Part Two - Group Four - Failure One

Figure 9.24: Part Two - Group Four - Failure Two

Figure 9.25: Part Two - Group Four - Failure Three
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Figure 9.26: Part Two - Group Five - Failure One
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Figure 9.27: Part Two - Group Five - Failure Two

Figure 9.28: Part Two - Group Five - Failure Three
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Figure 9.29: Part Two - Group Six - Failure One

Figure 9.30: Part Two - Group Six - Failure Two
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Figure 9.31: Part Two - Group Six - Failure Three
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Figure 9.32: Part Two - Group Seven - Failure One

Figure 9.33: Part Two - Group Seven - Failure Two

Figure 9.34: Part Two - Group Seven - Failure Three
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Figure 9.35: Part Two - Group Eight - Failure One

Figure 9.36: Part Two - Group Eight - Failure Two
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Figure 9.37: Part Two - Group Eight - Failure Three
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Figure 9.38: Part Two - Group Nine - Failure One

Figure 9.39: Part Two - Group Nine - Failure Two

Figure 9.40: Part Two - Group Nine - Failure Three
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Figure 9.41: Part Two - Group Ten - Failure One
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Figure 9.42: Part Two - Group Ten - Failure Two
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Figure 9.43: Part Two - Group Ten - Failure Three
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Figure 9.44: Part Two - Group Ten - Failure Four



9.2 screenshots for part two of the human study 241

Figure 9.45: Part Two - Group Ten - Failure Five
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Figure 9.46: Part Two - Group Ten - Failure Six
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Figure 9.47: Part Two - Group Ten - Failure Seven
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