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Abstract

Multicore systems are increasingly common as a modern computing platform. Mul-

ticore processors not only offer better performance-to-cost ratios relative to single-core

processors but also have significantly minimised space, weight, and power (SWaP) con-

straints. Unfortunately, they introduce challenges in verification as their shared compon-

ents are potential channels for interference. The potential for interference increases the

possibility of concurrency faults at runtime and consequently increases the difficulty of

verifying. In this thesis, search-based techniques are empirically investigated to determine

their effectiveness in temporal testing—searching for test inputs that may lead a task run-

ning on an embedded multicore to produce extreme (here longest) execution times, which

might cause the system to violate its temporal requirements. Overall, the findings suggest

that various forms of search-based approaches are effective in generating test inputs exhib-

iting extreme execution times on the embedded multicore environment. All previous work

in temporal testing has evolved test data directly; this is not essential. In this thesis, one

novel proposed approach, i.e. the use of search to discover high performing biased random

sampling regimes (which we call ‘dependent input sampling strategies’), has proved par-

ticularly effective. Shifting the target of search from test data itself to strategies proves

particularly well motivated for attaining extreme execution times. Finally, we present also

preliminary results on the use of so-called ‘hyper-heuristics’, which can be used to form

optimal hybrids of optimisation techniques. An extensive comparison of direct approaches

to establishing a baseline is followed by reports of research into indirect approaches and

hyper-heuristics. The shift to strategies from direct data can be thought of as a leap in

abstraction level for the underlying temporal test data generation problem. The shift to

hyper-heuristics aims to boost the level of optimisation technique abstraction. The former

is more fully worked out than the latter and has proved a significant success. For the

latter only preliminary results are available; as will be seen from this work as the whole

computational requirements for research experimentation are significant.
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Chapter 1

Introduction

This chapter addresses the general problem of verifying the temporal behaviour of applic-

ations running on multicore platforms. It then posits the use of search-based techniques,

and empirically investigates their applicability to verifying temporal behaviour. To mitig-

ate such verification issue, a research hypothesis is therefore proposed. It is then followed

by a brief overview of the rest of the thesis.

1.1 Motivation

In many real-time embedded systems, timing issues are crucially important. Producing

outputs too early or too late may be fatal to human life [3], especially in safety-critical

systems, such as avionics and automotive systems. The correctness of system function,

therefore, depends not only on logical correctness but also on temporal correctness (i.e.

the time when the results are produced) [4, 5].

In order to verify the temporal behaviour of real-time systems, timing analysis is

typically the principal timing-related safety evidence [6]. In particular, the Worst-Case

Execution Time (WCET) of each task is generally sought [7]. Nevertheless, it is infeasible

to determine the exact WCET. Execution times of a task may vary depending on the

input data and different behaviour of the environment [7]. More specifically, technical

characteristics, such as multicore architectures [7, 6], as well as the use of parallelism,

distribution and fault-tolerant mechanisms [4], lead to non-deterministic behaviour and

consequently complicate the exact determination of the WCET [4]. Rather, either an

upper bound or conservative estimate of the WCET is used for safety assurance [7, 6].
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Techniques for determining the WCET can be broadly categorised into three: 1) static

(analysis-based) approaches; 2) dynamic (measurement-based) approaches; and 3) hybrid

approaches [6].

Static methods normally analyse all possible control flow paths through the program-

ming language constructs on the underlying Operating System (OS) without knowledge

of the input nor executing the actual application [8, 7]. In many cases, however, static

WCET analysis does not always produce a usefully tight upper bound on the WCET [6].

Dynamic methods, on the other hand, verify the temporal quality of embedded systems

by executing the task or task parts on a given hardware for some set of inputs [7]. The

measured times are then taken and the maximal observed execution times are derived

[7]. In the literature, e.g. [4, 9], these methods are also called ‘temporal testing’. The

ultimate goal of temporal testing is to find test inputs which will cause the system to violate

performance timing requirements [4]. A number of research studies have also attempted

to combine these (measurement-based) approaches with analysis-based approaches; these

are normally known as hybrid methods [7, 6].

There are several methods for performing temporal testing of embedded real-time sys-

tems, including constrained random-based temporal testing, stress-based temporal test-

ing, search-based temporal testing and mutation-based temporal testing [4]. In this thesis,

search-based temporal testing is the main focus.

Search-Based Software Testing (SBST) is an approach that uses a metaheuristic op-

timising search technique, e.g. a Genetic Algorithm (GA), to automate a testing task [9].

Search-based approaches have been successfully applied across the spectrum of test case

design methods; this includes white-box (structural) testing, black-box (functional) test-

ing, grey-box (combination of structural and functional) testing, as well as non-functional

testing (such as temporal testing) [10, 9]. Particularly, search-based temporal testing uses

an optimisation algorithm to automatically search for test inputs that will produce extreme

execution times, e.g. either the longest or the shortest duration [4]. The aim is to discover

whether such test inputs can cause the system to violate its temporal requirements [4].

There is an increasing requirement for high-performance processing while maintaining

a reasonable power consumption and all at an affordable price. Additionally, there is a

trend towards highly integrated architectures, where resources can be shared by different

systems/functions in order to reduce the costs. As a result, most of today’s processors are

multicore processors, not only in the desktop and server but also in the embedded systems
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market [11, 12].

The move towards multicore platforms, unfortunately, raises numerous challenges to

the real-time system community, since interference, which is the unintended interaction

between threads on shared resources in multicores [13], prevents execution times from

being composable, predictable or even deterministic [12]. These qualities, i.e. execution

times’ determinism, predictability and composability, are the main ones expected from

platforms for time-critical computing and are also dictated by the safety standards, such

as DO-178 for avionics systems [12].

At the hardware level, for example, interference can occur through shared hardware

components between the cores of a multicore processor. These interference channels com-

prise caches and memory systems, interconnection structures, shared peripheral control-

lers, inter-processor and broadcast interrupts, and thermal control and power management

infrastructure.

Fuchsen [14] empirically investigated these cross interference channels over multicore

platforms. Evidence from the investigation of [14] showed that cache sharing and cache

coherency are essential causes of interference in dual-core processors, i.e. the Intel1 and

AMD2 processors. Most multicore processor cache architectures have shared caches, vary-

ing with the CPU family. Shared caches generally cause the worst case performance loss

(in terms of read and write throughput) through the second core by approximately 50 per

cent if the data set is significantly larger than the L2 cache.

Furthermore, multicore systems specifically use a cache coherency protocol, such as

Modified, Shared and Invalid protocol (MSI), to maintain coherency between caches. False

sharing, which is a performance reduction caused by the coherency protocol, can arise if

two cores operate on logically independent data but these data are physically stored in a

memory region, which ends up in the same cache line. For instance, the read throughput

of the Intel processor drops down to 90 per cent if one core is reading while the other core

is writing the same data set. For further details on an enumeration of interference issues,

the reader is referred to [14, 12].

1The Intel Pentium Dual Core E5300 processor has a per-core 32KB + 32KB L1 data and instruction
cache and a shared 2MB unified L2 cache.

2The AMD Athlon II X2 processor has a per-core 64KB + 64KB L1 data and instruction cache and a
per-core 512KB unified L2 cache.
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Interference increases the difficulty of verifying the embedded systems, especially with

respect to their temporal quality. More specifically, the additional non-functional de-

pendencies introduced by interference might not only cause common-cause failures but

also would lead overloads to be unpredictable (which implies additional delays possibly

violating the timing constraints of the systems) [12].

As far as we are aware, based on the literatures [10, 15] and Search-Based Software

Engineering (SBSE) repository [16], all previous work in search-based temporal testing so

far has applied a metaheuristic algorithm, i.e. either GA or Simulated Annealing (SA), to

directly search temporal test data. Also, only a little work in this area has emphasised the

multicore’s interference issue; the experiments were, however, conducted on a simulator

[17, 18].

Therefore, this research investigates the application of a variety of search-based tech-

niques for generating sequences of test inputs, which may give rise to extreme behaviour

of fundamental mathematical functions running on a non-deterministic environment of a

real multicore platform.

1.2 Research Hypothesis

The experimental study in this thesis is based on the following main hypothesis:

Hypothesis: Search-based approaches are effective ways of finding test data that at-

tains an extreme execution time for an application’s task running on a multicore platform.

Regarding this research hypothesis, the central objective of this thesis is:

Objective: To explore the effectiveness of search-based approaches to finding test data

that attains an extreme execution time for an application’s task running on a multicore

platform.

There are different ways search-based approaches can be brought to bear on our exe-

cution time problem. In this thesis, as illustrated in Figure 1.1, we classify search-based

approaches into primary three different methods: 1) direct approaches; 2) indirect ap-

proaches; and 3) hyper-heuristics. Correspondingly, the study is divided into following

separate technical chapters:
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Figure 1.1: Overview of search-based approaches for temporal testing

• Direct approaches (Chapter 3), where the search space is the set of possible test

input vectors of the Software Under Test (SUT);

• Indirect approaches (Chapter 4), where the search space is a parametrised family of

test input generation strategies (we seek a distribution from which test inputs can

be sampled); and

• Hyper-heuristic approaches (Chapter 5), where searches are made over the space of

search heuristics (i.e. seeking an effective hybrid technique).

More specifically, as demonstrated in Figure 1.1, in the perspective of optimisation

techniques (vertical axis), shifting the target of the search from test data itself (by means

of direct approaches) to either strategies (by means of indirect approaches) or heuristics

(by means of hyper-heuristics) aims to boost the abstraction level for the search space.
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Furthermore, in the perspective of underlying temporal test data generation problem

(horizontal axis), indirect approaches can also be thought of as a leap in the level of

abstraction in the sense that the selected strategy is used to generate test data which are

dependent to each other.

The research objective is accordingly broken down into three sub-objectives, as follows:

Sub-Objective 1: To explore the effectiveness of applying metaheuristics on temporal

testing of a task running on a multicore platform.

Sub-Objective 2: To propose a novel approach, named ‘dependent input sampling

strategy’, and to explore its effectiveness on temporal testing of a task running on a mul-

ticore platform.

Sub-Objective 3: To explore the effectiveness of applying (selective perturbative)

hyper-heuristics on temporal testing of a task running on a multicore platform.

1.3 Brief Overview of the Thesis Chapters

The remaining chapters of this thesis are:

Chapter 2 Literature Review This chapter provides detailed background related to

this research, including multicore processors, software testing, SBST and related work.

Chapter 3 Direct Optimisation This chapter aims to assess the effectiveness of ap-

plying metaheuristic techniques, i.e. Stochastic Hill Climbing (HC), Steepest Ascent Hill

Climbing (SHC), SA and GA, on temporal testing of a task running on a multicore plat-

form.

Chapter 4 Indirect Optimisation This chapter proposes a novel approach, i.e. the

application of metaheuristic search to find a dependent input sampling strategy for test

data generation with the aim of attaining extreme execution times. We adopt sequential

sampling of a task’s parameters and allow the sampling of a parameter to depend on the

sampling of previous parameters. Using search to find the best subdomains to sample and

to determine optimal dependencies forms the focus of this chapter’s research. Again, the

execution takes place on a multicore platform.
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Chapter 5 Hyper-Heuristics The goal of this chapter is to investigate the ability of

a hyper-heuristic to perform temporal testing of a task running on a multicore platform.

Chapter 6 Conclusions This chapter concludes the thesis. The contributions made,

limitations of the work and future research directions are presented.
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Chapter 2

Literature Review

This chapter describes the basic background necessary for understanding the rest of this

thesis. The chapter begins with an overview of multicore technologies. After that, there

is a description of verification challenges arising with multicore platforms. Next, a short

introduction to software testing, together with an overview of the diverse categories of

testing, is given. This is followed by a brief description of optimisation and search tech-

niques generally used for SBST, as well as the fundamental concept of hyper-heuristics.

Finally, a literature survey of SBST for temporal behaviour is summarised.

2.1 Multicore Processors

Due to the myriad demands for efficient computing performance, especially in the areas

of science and engineering (e.g. to model or simulate difficult problems), major chip

manufacturers have continually improved their products’ performance. For almost a half-

century, Gordon Moore, the Intel’s co-founder, predicted that the number of transistors

per square inch on integrated circuits would grow exponentially; it is popularly known as

Moore’s Law [19]. Accordingly, advances in silicon processing technology (i.e. technology

scaling) allows chip components to be manufactured with tinier size [20], resulting in higher

transistor density and shorter distance between components embedded on a chip. This

smaller process technology, therefore, enables higher clock frequencies. The technology also

allows a more sophisticated design on the chip. For instance, the cache size and number

of cache levels could be increasingly integrated, and the number of instruction pipelines1

1Instruction pipelining is a technique that implements a form of parallelism called ‘Instruction-Level
Parallelism (ILP)’ within a single processor.
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could be added into the chip for improving the overall performance of integrated circuits

[14].

The trend had largely followed Moore’s Law until the last few years when power con-

sumption rose at a faster rate than the clock speeds; it reached its limit. In particular,

increasing CPU frequency causes disproportionate power consumption and thermal dis-

sipation loss [14]. In some cases, the power problem could be aggravated by the designs

that attempt to dynamically extract extra performance from the instruction stream [21].

Furthermore, existing parallelism and dependencies on code level prevented further per-

formance improvement through parallel execution on instruction level within a single pro-

cessor [14]. Power hungriness leads in turn to a thermal problem, which requires additional

costly infrastructure to effect appropriate heat dissipation. Fred Pollack, a lead engineer

and fellow at Intel, empirically proved that the performance is roughly proportional to the

square root of the increase in complexity of the micro-architectural design; this is generally

known as Pollack’s Rule [22].

Seeking to improve performance by simply increasing frequency through technology

scaling is insufficient and is not a viable solution to the problems faced today. The trend

has led to a new approach in exploiting fabrication processes, where the area cost reduction

obtained from scaling is used to increase the number of cores, to provide more processing

bandwidth [20]. Consequently, multicore processors have been introduced to address the

issues described above. By adding more processing units on a single die to provide a higher

level of parallelism, multicore systems are capable of scaling performance while reducing

Space, Weight and Power (SWaP) consumption. Multicore has, therefore, become the

typical design choice for a broad range of computing domains, such as high-end servers,

desktops, mobiles, and embedded systems. Many believe that single-processor systems are

obsolete [20, 23].

2.1.1 Architectures for Parallelism

For the past several decades, parallel computation has, in fact, been exploited in order to

improve computing performance. Parallel computing is the simultaneous use of multiple

computing resources to solve a computational problem. The computing resources typically

range from a single computer with multiple processors/cores (as a stand-alone computer)

to an arbitrary number of such computers connected by a network (as a cluster). The

classifications and forms of parallelisation are briefly summarised below.
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Computer Architecture Classifications There are different ways to classify parallel

computer architectures, for example, based on the instruction and data streams, the struc-

ture of computers, how memory is accessed and grain size [24]. One of the more widely

used classifications is Flynn’s Taxonomy [25]. Based on the notion of a stream of inform-

ation, there are two types of information flow into a processor of a computer: instructions

and data. Flynn’s Taxonomy classifies computing machines into four categories according

to how instructions and data are processed at a single point in time, as illustrated in

Figure 2.1. (Note: PU stands for a processing unit.)

Single Instruction, Single Data Traditional uniprocessor machines, such as old

PCs and old mainframes, are in this Single Instruction, Single Data (SISD) class [26].

There is no parallelism in these traditional sequential computers since the CPU can process

only one data stream during a given clock cycle [26].
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Figure 2.1: Flynn’s taxonomy (adapted from [25])
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Multiple Instructions, Single Data This class is an unusual architecture be-

cause multiple instruction streams commonly need multiple data streams to be useful

[26]. Therefore, Multiple Instructions, Single Data (MISD) is generally used more as a

theoretical model than a practical computing platform [26].

Single Instruction, Multiple Data As a single instruction stream has the ability

to process multiple data streams simultaneously in a single clock, the Single Instruction,

Multiple Data (SIMD) machines are best suited for specialised problems characterised by

a high degree of regularity, such as signal, image and video processing [26].

Multiple Instructions, Multiple Data The most common parallel computing

platform is Multiple Instructions, Multiple Data (MIMD) architecture, where multiple

processors execute different instructions on different data simultaneously [26]. Examples

of this category include most current supercomputers, networked parallel computer clusters

and grid, multi-processor SMP computers and multicore PCs [26].

Forms of Parallelism According to Flynn’s taxonomy, the processor resources used in

the latter two categories (i.e. SIMD and MIMD machines) are capable of supporting par-

allel computation [26]. In order to make the most efficient use of these processor resources,

ILP is typically employed to realise a higher performance on single-core processors, and

Thread-Level Parallelism (TLP) is afterwards introduced to reinforce the performance on

multicore processors.

Regarding the ILP, multiple instructions from a single program are executed by the

processor in a single clock cycle. Superscalar, Very Long Instruction Word (VLIW)

and out-of-order execution are examples of micro-architectural techniques (which will be

presented in Section 2.1.2) that are used to exploit the ILP [27]. The TLP is, by the way,

a parallelism on a coarser scale since a sequence of programmed instructions that can be

managed independently by an OS scheduler is generally defined as a thread of execution

[27]. Therefore, different threads are executed in parallel on different processors according

to the TLP. The threads could be either from separated single-threaded applications or

from the same multi-threaded applications [27].
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2.1.2 Multicore Architecture

In recent years, a wide range of multicore architectures has been delivered to commercial

markets, e.g. embedded systems, general-purpose desktops and servers. With diverse

demands, there are numerous ways to implement multicore processors for the target market

segments. Each realm has its specific requirements.

For example, power is not an overriding concern for general purpose computing, such as

desktop and server multicores, while it is a vital issue for mobile and embedded applications

because many are intended to run from batteries [21]. In high-performance computing,

which is more specialised, a significant number of cores and very high power are required

to deliver the highest performance [21].

Figure 2.2 illustrates an example of Multiprocessor System-on-Chip (MPSoC) architec-

ture, i.e. the QorIQ P4080 multicore processor, which is the primary multicore platform

used for conducting empirical experiments in this thesis.

Multicore architectures can be classified in a number of ways. There are generally five

major distinguishing attributes of multicore architectures: application class; power/per-

formance; processing elements; memory system; and accelerators/integrated peripherals

[21].

QorIQ Communications Platforms

P4 Series Multicore Processors

Overview

Freescale QorIQ communications platforms are the next-generation evolution  
of our leading PowerQUICC communications processors. Built using high-
performance Power Architecture® cores, QorIQ platforms enable a new era of 
networking innovation where the reliability, security and quality of service for 
every connection matters.

QorIQ P4080 Multicore Processor
The QorIQ P4080 multicore processor, the 
first product offered in the QorIQ P4 platform 
series, delivers industry-leading performance 
in the under 30-watt power category. It 
combines eight Power Architecture e500mc 
cores operating at frequencies up to 1.5 GHz 
with high-performance datapath acceleration 
logic, as well as networking I/O and other 
peripheral bus interfaces. The P4080, built 

in 45 nm technology, is designed to deliver 
high-performance, next-generation networking 
services in a very low power envelope. 

The QorIQ P4080 processor is designed for 
combined control and dataplane processing, 
enabling high-performance layers 2–7 
processing. Its high level of integration offers 
significant performance benefits compared to 
multiple discrete devices, while also greatly 
simplifying board design. 
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Figure 2.2: Block diagram of QorIQ P4080 (reprinted from [28])
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Application Class One of the essential characteristics that can be used to differentiate

between multicore architectures is their envisaged application domain. There are broadly

two divisions of applications for which the processor is targeted, i.e. data processing

dominated and control processing dominated applications [21].

In most cases, although no application can purely fit into these classes, it is still

valuable to think of applications as falling into the divisions in order to understand how

different multicores design aspects can affect performance [21]. In a more fine-grained

level, execution phases of an application may genuinely fit into these neat categories [21].

For example, the H.264/AVC2 video codec [29], which is one of the execution phases for

a wide variety of applications, such as high definition systems (e.g. HDTV, Blu-ray Disc

players and HD DVD players), low resolution portable devices (e.g. Sony’s PSP and

Apple’s iPod), streaming internet services (e.g. Vimeo and YouTube), web software (e.g.

Adobe Flash Player and Microsoft Silverlight) and HDTV broadcasts (over terrestrial,

cable and satellite), is data dominated [21].

Typically, the computation of the data processing dominated application category is

a sequence of operations on a data stream with little or no data reuse [21]. In order to

handle the large amounts of data, the operations can be performed in parallel and require

high throughput and performance [21]. Therefore, this kind of application favours having

as many processing elements as practical with regards to the desired power/performance

ratio [21]. Examples of this group are graphics rasterisation, image processing, audio

processing and wireless baseband processing [21].

Conversely, the algorithms for the control processing dominated application type needs

to keep track of large numbers of states together with conditional branches and often have

a high amount of data reuse (which complicates the parallelism) [21]. Therefore, this type

of application favours a smaller number of general-purpose processing elements to handle

the unstructured nature of control dominated code [21]. Example applications include file

compression/decompression, network processing and transactional query processing [21].

Power/Performance Performance and power are strict requirements for many applic-

ations and devices [21]. For instance, a smartphone has a limited battery budget but must

demonstrate good performance for numerous features and services [21].

2H.264 (also known as MPEG-4 AVC) is a video compression standard that is currently one of the most
commonly used formats for the recording, compression and distribution of video content.
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Processing Elements At a fundamental level, a processing element (or microprocessor)

is the physical implementation of instructions, which specify what exactly tasks the micro-

processor is allowed to perform [21]. The set of all instructions is called the ‘instruction

set’ [21]. The Instruction Set Architecture (ISA) is defined by the combination of the

instruction set and other information, including the native data types, registers, address-

ing modes, memory architecture, interrupt and exception handling and external I/O, and

defines the boundary between software and hardware. The micro-architecture is one way

in which a given ISA is implemented on a processor [30].

Architecture The instruction sets can be classified into five major types according

to design philosophies, including a legacy ISA, custom defined ISA, Complex Instruction

Set Computer (CISC), Reduced Instruction Set Computer (RISC) and special instructions

[21]. These architectural design parameters are summarised in Table 2.1.

Table 2.1: Summary of pros and cons of various multicore architectural design parameters

(adapted from [21])

ISA Pros Cons

Legacy Compiler and software support. Maybe inefficient for targeted
applications requiring high per-
formance.

Custom Can be highly optimised for tar-
get applications.

Compiler and software support
can be non-existent.

RISC Easier micro-architectural
design; and easier compiler
design.

Code size can be large; and inef-
ficient for certain applications.

CISC More instructions that may al-
low for better optimisation; and
smaller code size.

Complex micro-architectural
design to support all instruc-
tions; and compiler design
complicated.

Special Instruction Allows highly optimised core for
targeted functions.

Complex to design; and may re-
quire hand coding due to lim-
ited/no compiler support.
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Typically, the ISA of conventional multicore processors is a legacy ISA [21]. The

legacy ISAs are modified a bit from the corresponding uniprocessor in order to support

parallelism, e.g. by adding atomic instructions for synchronisation [21]. The existent im-

plementations and available programming tools of the uniprocessor system are, therefore,

by-products of the legacy ISAs [21]. In addition, an ISA may be custom defined for specific

applications, but it also requires particular compiler and software support [21].

ISA can also be divided into CISC and RISC designs. The former embraces creating

an instruction set in which individual instructions are very powerful but quite complex

[21]. Oppositely, the latter creates instruction sets in which the individual instructions

are minimal; their simplicity, however, allows many optimisations to be performed [21].

Although CISC and RISC accomplish the same amount of work, there are some trade-

offs between the approaches. For instance, RISC probably gives rise to programs with

larger code sizes owing to the need to emulate more complex instructions with the smaller

set of RISC instructions. RISC instructions, however, most likely execute more quickly

than CISC since they provide an easier target for compilers and allow for easier micro-

architectural design [21].

In order to improve performance for common operations, vendors have continually

added extensions to the base-defined ISA [21]. These extra instructions allow for better

performance/power consumption ratio [21]. However, using these extensions to maximum

effect may require hand coding due to limited or no compiler support [21].

Micro-Architecture In general, a given ISA may be implemented with different

micro-architectures, depending on the different goals of a given design [21]. The traditional

goals like performance and power are thus mainly governed by the micro-architecture [21].

Furthermore, the micro-architecture of each processing element can be tailored to support

its targeted application domain [21].

There are a variety of types of micro-architectural processing elements. Many of their

designs typically utilise an instruction pipeline; these include in-order, out-of-order and

VLIW processing elements. By performing multiple operations at the same times without

reducing instruction latency—the time to complete a single instruction from start to finish,

the pipeline technique is able to increase instruction throughput—the number of instruc-

tions that can be executed in a unit of time [31]. In addition, pipelining can be modified

to get the more desirable performance by two main parameters. [21].
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First, performance can be improved by adding multiple pipelines [21]. A superscalar

execution3 is then created since more than one instruction is allowed to fetch, as well as

to issue simultaneously [21]. However, extra logic is necessarily required to assure correct

code execution in the pipelines [21]. Second, increasing the number of pipeline stages can

also improve the performance as the logic per stage is reduced [21]. Additionally, a clock

is able to be faster if the instruction sequence is broken by branches [21].

The in-order processing element is the simplest type, which instructions are decoded

and executed in program order [21]. This processing element type requires a small die

area and low power [21]. On the contrary, the out-of-order processing element insists on a

substantial die area and power-hungry circuitry owing to the dynamic scheduling [21]. In

particular, multiple instructions are dynamically found and scheduled in an out-of-order

manner to keep the pipelines full [21].

In order to avoid the complexity of the extra logic introduced by the dynamic schedul-

ing needed to properly execute the instruction streams while still providing increased

performance over superscalar architectures, SIMD or VLIW can be applied [21]. The

SIMD architecture, as aforementioned, technically processes multiple data points with

one instruction in lanes defined by partitions of very wide registers [21]. This architecture

is well suited for data-intensive applications, but highly not for general-purpose processing

[21]. The VLIW processors, on the other hand, support the MIMD architectures by using

multiple pipelines without having the forwarding, scheduling and hazard detection logic

of a typical superscalar core [21]. Therefore, multiple data points can be processed with

several instructions simultaneously [21]. The complexity, however, has been moved to the

compiler since it determines what operation each functional unit performs in each instruc-

tion cycle [21]. As a result, underutilised problems can be incurred if the compiler cannot

find sufficient parallelism [21]. Micro-architectural design parameters are summarised in

Table 2.2.

Multicore processors come in two flavours, namely homogeneous and heterogeneous

architectures [21]. In a homogeneous architecture, a number of identical cores are utilised

in order to obtain a power advantage without loss of performance [21]. The identity of

the cores means each processor has the same instruction set and data structures [21].

3The keys to superscalar execution are: 1) an instruction fetching unit which can fetch more than one
instruction at a time from the cache; 2) an instruction decoding logic which can decide when instructions
are independent and thus executed simultaneously; and 3) sufficient execution units to be able to process
several instructions at one time [32].
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Table 2.2: Summary of pros and cons of various multicore micro-architectural design

parameters (adapted from [21])

Micro-architecture Pros Cons

In-order Low to medium complexity;
low power; and low area (so
many can be placed on the
die).

Low to medium single thread
performance in general.

Out-of-order Very fast single thread per-
formance from dynamic
scheduling of instructions.

High design complexity; large
area; and high power.

SIMD Very efficient for highly data-
parallel/vector code.

Can be underutilised if the
code cannot be vectorised;
and not applicable to control-
dominated applications.

VLIW Can issue many more instruc-
tions than out-of-order due to
reduced complexity.

Required advanced compiler
support; and may have worse
performance than narrower
out-of-order core if a compiler
cannot statically find ILP.

On the other hand, cores in a heterogeneous architecture are different, i.e. they may

have distinct instruction sets and data structures, to satisfy the high-performance and

low-power requirements [21]. For example, a processor may have a common CPU core

for applications, a Digital Signal Processing (DSP) core for maths, a graphics core for

graphics work and an I/O processor core to handle specific I/O interfaces. However, the

programming model for heterogeneous multicore is much more complicated [21].

Memory System Cache memory plays an important role as it is an intermediary

between main memory and processing elements [32]. The idea is to have a local place

for storing items that will be used in the near future [32]. This brings about reducing the

number of accesses to the main memory, which is relatively slow owing to the memory

type it is. Examples of main memory include extended data-out (EDO), synchronous dy-

namic RAM (SD-RAM), double data rate SD-RAM (DDR-SDRAM) and Rambus dynamic

RAM (RD-RAM) [32]. The memory latency is, therefore, lessened and subsequently, the

response time is improved [32].
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Multicore processors use different levels of local memories to decrease the average

memory access latency [32]. These local memories can be considered as a hierarchical

system, where the CPU core is at the top of the hierarchy, followed by one or more levels

of cache memories, and the main memory (or physical memory) is at the bottom [32], as

depicted in Figure 2.3.

The number of cache levels depends on the distance in cycles between the main memory

and each processing element [32]. The longer the distance in cycles, the higher the need

for more cache levels [32]. Cache memories can be shared between CPUs or be local to a

CPU.

Generally, the level 1 (L1) cache is directly connected to the CPU and is usually small,

fast and dedicated to specific cores [21]. Subsequent levels—the level 2 (L2) cache and

so on—can be dedicated or shared among the cores [21]. These higher cache levels are

normally larger but slower [21].

The data transferred between the main memory and these different cache levels are in

fixed-size chunks, named ‘cache lines’ [14]. A cache entry, which includes the copied data

and the requested memory location, will be created when a cache line is copied from the

memory into the cache [14].
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Figure 2.3: Memory hierarchy (adapted from [33])
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Whenever the processor needs to read or write a location in main memory, a corres-

ponding entry in the cache is first checked to determine whether the memory location is

in the cache [14]. If the memory location is found (called a ‘cache hit’), the processor

immediately reads or writes the data in the cache line [14]. When the data request on

a given level of the cache cannot be satisfied, the request is delegated to the next level

instead; otherwise, the cache will allocate a new entry and copy in data from main memory

(generally called a ‘cache miss’) [14]. The request is then fulfilled from the contents of the

cache [14].

In addition, the cache memory system is linked with the processing elements and other

shared resources through the interconnection. There are diverse topologies for the gen-

eral communications among these components via the intra-chip interconnect, such as

bus, crossbar, ring and Network-on-Chip (NoC) [21]. In terms of simplicity and perform-

ance, each form of topologies has its particular benefits and drawbacks, as summarised in

Table 2.3. The bus, for instance, is the simplest to design but is not suitable for multicore

with a large number of processing elements because of the limitations in bandwidth and

latency [21]. On the other hand, NoC is more suitable for a large number of processing

elements but is more challenging to design [21].

Table 2.3: Summary of pros and cons of interconnect design decisions (adapted from

[21])

Interconnect Pros Cons

Bus Easy to implement; and all pro-
cessor see uniform latencies to
each other and attached memor-
ies.

Low bisection bandwidth; and
supports a small number of cores.

Ring Higher bisection bandwidth than
the bus; and supports a large
number of processors.

Non-uniform access latencies;
high variance in access latencies;
and requires routing logic.

NoC High bisection bandwidth; sup-
ports a large number of cores; and
non-uniform latencies are lower
variance than the ring.

Requires sophisticated routing
and arbitration logic.

Crossbar Highest bisection bandwidth; can
support a large number of cores;
and uniform access latencies.

Requires sophisticated arbitration
logic; and needs a large amount of
die area.
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Accelerators/Integrated Peripherals For highly specialised processors or Application-

Specific Integrated Circuits (ASICs), accelerators or integrated peripherals are typically

required to provide extra performance that software cannot emulate efficiently [21]. These

components usually require very low power consumption but have a massive impact on

overall performance in many cases [21]. Graphics rasterisers, codec accelerators and

memory controllers are examples of these components [21].

2.1.3 Multiprocessing Architectures

In OS level, multiprocessing approaches have been applied to multicore systems in order

to get the most performance possible out of the hardware for parallel computing [34].

There are three fundamental models for multiprocessing, which can be mapped to the

multicore: Asymmetric Multiprocessing (AMP), Symmetric Multiprocessing (SMP) and

Bound Multiprocessing (BMP) [34].

Asymmetric Multiprocessing In an AMP model, each core is treated as a separate

processing element [34]. Multiple instances of the same application (i.e. the same type and

version of OS) are thereby enabled to be replicated across multiple cores and to operate

on separate sets of data; this is sometimes referred to as homogeneous AMP [34]. In

addition, there is also heterogeneous AMP, where non-identical OSs (i.e. either different

OSs or different versions of the same OS) can be run on different cores [34]. Since the

cores operate independently, the software development effort, which is required to port to

a multicore architecture, is minimised at the application level [34].

However, hardware resources, such as L2 cache, memory buses and certain peripher-

als, are required to share among individual cores in multicore AMP systems [34]. Par-

ticularly, in order to ensure that access and control of the shared resources are handled

correctly, software must be designed and implemented carefully; otherwise, an incorrect

software operation could bring about the propagation of a fault from one core to another

[34]. Furthermore, an appropriate Inter-Processor Communication (IPC) mechanism is

also required to utilise an underlying hardware IPC transport for communication among

applications running on different cores [34]. Figure 2.4 shows an example of the AMP

multicore system.
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CPU Utilization in  
AMP Mode                                                                                                                                
In AMP mode, a process and all of its 
threads are locked to a single processor 
core. While this approach is useful for 
running legacy code, it can result in 
underutilization of processor cores. 
For instance, if one core becomes 
busy, applications running on that 
core cannot, in most cases, migrate 
to a core that has more CPU cycles 
available (refer Figure 4). Though such 
dynamic migration is possible, it typically 
involves complex checkpointing of the 
application’s state and can result in a 
service interruption while the application 
is stopped on one core and restarted on 
another. This migration becomes even 
more difficult, if not impossible, if the 
cores use different OSs.

Symmetric Multiprocessing 
(SMP) Mode
Allocating resources in a multicore 
design can be difficult, especially when 
multiple software components are 
unaware of how other components 
are employing those resources. SMP 
addresses many of the issues by 
running only one copy of an OS across 
all the chip’s cores. Because the OS 
has insight into all system elements 
at all times, it can allocate resources 
on multiple cores with little or no input 
from the application designer. By 
running only one copy of the OS, SMP 
can dynamically allocate resources 
to specific applications rather than to 
CPU cores, thereby enabling greater 
utilization of available processing power. 

Figure 4: AMP Multicore SystemAMP Multicore System
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Figure 2.4: AMP (reprinted from [34])

Symmetric Multiprocessing An SMP model, on the other hand, involves the use of

a single instance of OS running across multiple processor cores [34]. Hence, the SMP

model provides a homogeneous environment for applications [34]. Applications processes

and threads are also scheduled to execute across these multiple cores by OS kernel [34].

Rather than being restricted to a single CPU core, the SMP-capable OS will schedule

the highest-priority ready thread to execute on the first available core [34]. In addition,

since the OS has insight into all system elements at all times, the SMP model is able

to dynamically allocate resources to specific applications rather than to CPU cores [34].

These enable greater utilisation of multicore systems [34]. Also, since there is no longer a

need for a heavy networking protocol between applications running on different cores, the

memory footprint is reduced, all inter-core IPCs are local, and as a result, the perform-

ance is dramatically improved [34]. However, a significant software development effort

is unfortunately required to migrate single-core architecture applications to a multicore

SMP architecture effectively due to the lack of parallelism support in the original software

design. Figure 2.5 shows an example of the SMP multicore system.
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Because a single OS controls every 
core, all intercore IPC is local. This 
reduces the memory footprint and 
improves performance dramatically 
as the system no longer needs 
a heavy networking protocol to 
implement communication between 
applications running on different cores. 
Communication and synchronization 
can take the simple form of POSIX 
primitives (e.g. semaphores) or a native 
lightweight local-transport capability 
such as QNX distributed processing. 

A single instance of the OS across 
all cores simplifies optimization and 
debugging. Visualization tools such 
as the system profiler in the QNX 
Momentics® Tool Suite can track 
thread migration from core to core, 
scheduling events, application-to-
application messaging, CPU utilization 
and other events, all with high-resolution 
timestamping.

A well-designed SMP OS such as the 
QNX Neutrino RTOS allows the threads 
of execution within an application to 
run concurrently on any core. This 
concurrency makes the majority of the 
compute power of the chip available 
to applications at nearly all times. If the 
OS provides appropriate preemption 
and thread prioritization capabilities, it 
can also help the application designer 
ensure that CPU cycles go to the 
application that needs them the most.

In the control plane scenario in  
Figure 5, SMP allows all of the threads 
in the various processes to run on any 
core. For instance, the command-line 
interface (CLI) process can run at the 
same time that the routing application 
performs a compute-intensive 
calculation. 

Once designed, a process can run 
equally well on a single-core, dual-core, 
or N-core system, the only potential 
change being the number of threads 
that the application needs to create 
to maximize performance. In full SMP 
mode, an RTOS like QNX Neutrino 
will schedule the highest-priority ready 
thread to execute on the first available 
CPU core. As a result, application 
threads can utilize the full extent of 
available CPU power rather than being 
restricted to a single CPU.

Figure 5: SMP Multicore SystemSMP Multicore System
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CPU 

I/O I/O I/O I/O
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OS 1 Memory

System Interconnect 

Memory Controller
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resource sharing and arbitration issues.

Figure 2.5: SMP (reprinted from [34])

Bound Multiprocessing A BMP model takes full advantages of parallelism of mul-

ticore hardware by offering the benefits of SMP, where the resource management is trans-

parent, and of AMP, where designers have the ability to lock any application (and all

of its threads) to run in a specific core [34]. In particular, the BMP model allows some

threads to migrate from one processor to another, while other threads are restricted to

one or more processors [34].

The choice of AMP, SMP and BMP should depend on the problem at hand [35]. For

example, AMP works well with legacy applications but has limited scalability beyond two

CPUs, whereas SMP offers transparent resource management but any software that has

not been properly designed for concurrency might have problems [35]. BMP offers many

of the same benefits as SMP, but guarantee that uniprocessor applications will behave

correctly; greatly simplifying the migration of legacy software [35]. Table 2.4 illustrates the

differences among these multiprocessing models for striking the optimal balance between

performance, scalability and ease of migration.
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Table 2.4: Summary of multiprocessing features (adapted from [35])

Feature AMP SMP BMP

Seamless resource sharing - Yes Yes

Scalable beyond dual CPU Limited Yes Yes

Legacy application operation Yes In most cases Yes

Mixed OS environment Yes - -

Dedicated processor by function Yes - Yes

Inter core messaging - Yes Yes

Thread synchronisation between CPUs - Yes Yes

Load balancing - Yes Yes

System-wide debugging and optimisation - Yes Yes

The QorIQ P4080 multicore processor, which is a multicore platform used in this

research, can be flexibly configured to meet many system application needs [28]. However,

only the SMP model is mainly focused since the aim of this research is to observe the

interference occurred in a system that shares memory and other resources. Hence, the

SMP Linux is set up to be the main Real-Time Operating System (RTOS) for the P4080

systems as it is a general purpose system with a broad application base and runs on a

very large number of hardware platforms [36].

Note: there is another OS option for a more specific purpose of the P4080 processor,

i.e. Enea’s OSE for Multicore [36]. The Enea OSE is a message-passing based real-

time system optimised for data plane processing with tougher requirements on stability,

determinism and low kernel overhead. [36]. Processing of user data packets and control

signalling within both telecom and datacom areas are examples of high-performance data

plane applications [36].

2.1.4 Verification Challenges

Although multicore architectures undertake to deliver high computing performance through

a combination of parallelisms, i.e. ILP and TLP, there is a potential for interference that

increases the difficulty of verifying and certifying high-integrity systems. The interference

and its challenges are summarised in brief below.
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Interference Interference is an unintended interaction between threads and can arise

from the variety of channels in multicore architectures [13]. The potential channels for

interference include:

Hardware Interference Channels At the hardware level, interference can occur

through shared hardware components between the cores of a multicore processor [14].

These interference channels include memory caches, interconnection structures, shared

peripheral controllers, inter-processor interrupt, broadcast interrupts, thermal control sys-

tem and power management infrastructure [14, 13].

For memory caches, there are two main cache interference channels: shared caches and

cache coherency [14]. First, the cache sharing interference may occur either constructive or

destructive ways [13]. Constructive interference occurs when one processor loads data (i.e.

cache line) into a shared cache, which is later used by other processors sharing the same

cache; hence, cache misses are avoided [14]. On the other hand, destructive interference

can increase the number of cache misses since there are cache conflicts from competing to

use the shared cache for the own cache line (i.e. cache entry) among processors [14].

Second, data inconsistency usually occurs if the value of a cache line in a private cache

(L1) on one core is changed and the same cache line is also present in the private caches of

the other cores [14]. Although the use of cache coherency (e.g. snoopy protocols [37]) is to

handle with the data inconsistency problem, the overhead of ensuring cache coherency can

reduce performance and thread interference can also be introduced because of the need

for cache coherency from the other thread to access the memory [14].

Moreover, congestion and contention can occur through interconnection structures and

peripheral controllers because these components are shared between threads running in

parallel [13]. Interrupt controllers, which may be used by the OS for communication

between threads, as well as mechanisms of thermal control and power management, are

also the potential sources of interference [13].

Software Interference Channels Shared software components can also create

some interference [14]. For instance, concurrent access of shared data structures, e.g.

scheduling data and code in SMP, is a channel for interference at the OS level [13]. Fur-

thermore, at the application level, interference occurs in the form of race conditions, as

well as concurrency issues, such as deadlock arising from mechanisms designed to avoid

race conditions [13].

25



Chapter 2: Literature Review

Verification and Certification Issues Many critical systems must undergo a strin-

gent evaluation and acceptance process before being deployed. This process is generally

referred to as certification. Governmental agencies, e.g. the UK Ministry of Defence, or

domain-specific bodies, e.g. the Nuclear Regulatory Authority or Civil Aviation Author-

ity, set policies and standards for system acceptability. As far as multicore is concerned,

the complexity of confidently verifying systems using such processors is daunting. There

has been little published on this subject (compared to other aspects of verification and

certification) [13].

The matter is not just technical. As pointed out in [13], there is a good deal of

Intellectual Property Right (IPR) in leading-edge multicore design. For many multicore

processors, the safety critical market is actually quite small and not particularly influential.

Getting access to such information may prove difficult. The reader is referred to [13, 38]

for an enumeration of issues.

2.2 Software Testing

Software should perform its intended functions correctly; otherwise, its failures can cause

frustration, loss of resources and even loss of life (in safety-critical systems) [39]. Software

testing is therefore necessarily required to verify quality and reliability of software. In

particular, the testing can prevent (or minimise) the chances of software failures [39].

There are several activities in software testing, such as generating test cases, executing

programs with the generated test cases and evaluating the results [39]. Among the range

of testing activities, test case generation is considered as one of the most intellectually

demanding tasks and also one of the most critical challenges since it can have a strong

impact on the effectiveness and efficiency of the whole testing process [40].

According to the IEEE Standard for Software and System Test Documentation4 (also

known as the IEEE Std 829-2008), the term ‘test case’ is defined as a set of test inputs,

execution conditions and expected results developed for a particular objective, such as to

exercise a particular program path and to verify compliance with a specific requirement

[41]. A set of test cases is simply called a ‘test set’[39].

4It is an IEEE standard that specifies the form of a set of documents for use in eight defined stages of
software testing and system testing.
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Test case generation is normally referred to as a process of creating or identifying test

data which can satisfy a given test criterion of the SUT [42]; in many cases, the process

can be synonymously called ‘test data generation’.

In practice, however, exhaustive testing (or, in other terms, complete testing and full

coverage) cannot be performed, as it is usually computationally too expensive, and also

infeasible due to the fact that the number of potential inputs for most programs is so large

and cannot be explicitly enumerated [43]. Hence, coverage criteria are ordinarily used to

decide which test inputs to be used [43]. Effective use of coverage criteria is believed to

make it more likely that test engineers will find faults in a program, and provides informal

assurance that the software is of high quality and reliability [39].

Moreover, software testing is expensive and labour intensive; often up to 50 per cent

of total software development costs are accounted for the testing phase [40] and even more

for safety-critical applications [44]. Automation of test activities as much as possible is

thereby desirable because automating the testing process can significantly reduce testing

cost, minimise human error and make regression testing easier [39].

The idea of the automatic generation of test cases has been applied to a broad variety

of testing approaches. Such testing approaches can be classified in many different ways.

The most general categories include static and dynamic testing, white-box and black-box

testing, and functional and non-functional testing. The basic notions underlying these

varied perspectives, along with some other specific testing techniques, i.e. temporal testing

and stress testing, are briefly summarised as follows:

2.2.1 Static and Dynamic Testing

In some parts of the literature, software testing is categorised by whether the programmed

code is executed or not [39]. Static testing is a type of testing that is performed without

executing the program. It includes software inspections and some forms of analysis. By re-

viewing the documents (e.g. requirements, design and test cases), the software inspections

can be used to find and eliminate errors or ambiguities in such documents. The types of

reviews in formality order range from informal, walkthrough, peer review and inspection,

respectively. There are also some forms of analysis, such as static program analysis, model

checking and formal method.
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Dynamic testing executes the program with real inputs (i.e. a given set of test cases)

and checks the expected outputs. Nowadays, the term ‘testing’ used in most of the literat-

ure refers to dynamic testing, whereas static testing is often called ‘verification activities’

[39].

2.2.2 White-Box and Black-Box Testing

Another traditional and fundamental classification of software testing is known as the box

approach. The box approach is based on the point of view that a test engineer takes

when designing the test process (e.g. test cases). It is broadly divided into two primary

methods: white-box and black-box testing. Though some literature additionally includes

grey-box testing [45], which is a combination of those two methods, into the classification,

only white-box and black-box techniques are briefly described here.

For white-box testing, an internal or structural view of the SUT is mainly concerned.

Implicit knowledge of the system’s inner workings is therefore required to conduct the

testing [4]. Sometimes, it is also referred to as structural testing [45, 4]. As stated above,

exhaustive testing is impractical, in order to verify the structure of the program, the

test suite needs to satisfy one or more coverage criteria [39]. So that, a particular set

of elements, such as statements, branches, paths and internal logic of the code, should

be executed by the test suite once [43]. Some main coverage criteria include statement

coverage, branch coverage and condition coverage [4]. Although white-box testing can

uncover many errors or problems in the SUT, it is often unable to detect missing or

incorrect functionalities [4].

Black-box testing, by contrast, mainly concerns with a functional or external view of

the item tested [4]. It is also referred to as functional testing or behavioural testing [45, 4].

Black-box testing validates whether a given system conforms to its specifications; it thus

solely focuses on the outputs generated in response to the selected inputs and execution

conditions (i.e. ignoring the internal mechanism of the system) [4]. Any specific knowledge

of the underlying system is not necessarily required. Furthermore, system functionality

faults can be uncovered by black-box testing.
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2.2.3 Functional and Non-Functional Testing

Another software testing classification is based on what the software property is tested, i.e.

functional requirements and non-functional requirements. As mentioned in Section 2.2.2,

functional testing is sometimes also called ‘black-box testing’. It tends to verify a specific

action or function of the code. In particular, the input is fed to the function, and the

output is examined.

Non-functional testing tends to verify the non-functional requirements of the software,

such as scalability (or other performance issues), behaviour under certain constraints and

security. These non-functional requirements reflect the quality of the product.

2.2.4 Temporal Testing

In addition to those previous testing categories, there are several specific testing techniques

for their particular objective. Temporal testing, for instance, is used to verify the temporal

behaviour of real-time systems [4].

In particular, correct functioning of the system, especially for safety-critical systems,

such as avionics and automotive systems, relies on logical correctness as well as temporal

correctness [5, 4]. Timing issues are essentially required to be verified, since violating

timing constraints—either outputs produced too early or too late—may be fatal to human

life [3].

Timing analysis is generally used as a means to verify the temporal behaviour of real-

time systems owing to the fact that it is the foremost timing-related safety evidence [6].

Typically, in order to ensure that a system meets its timing requirements, the WCET of

each task is determined, and then the Worst-Case Response Time (WCRT) of the task

set is computed by using the WCETs as its inputs [6]. Note that WCRT analysis is out

of the research scope; for further details, the reader may refer to [46, 47].

Unfortunately, determining exact WCET is infeasible since a certain variation of ex-

ecution times of each task depends not only on the input data, but also the different

behaviour of the environment [7], which may be influenced by its technical characteristics,

such as the use of parallelism, distribution and fault-tolerant mechanisms [4].

Furthermore, such dynamic behaviour can exacerbate the WCET determination by

the use of multicore platforms [7, 6], as briefly described in Section 2.1.4 above. As a

result, either an upper bound or an estimate of the WCET is used for safety assurance

instead [7, 6].
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In practice, there are several approaches to determine WCET (for further details on an

overview of various timing analysis techniques, as well as a variety of available commercial

WCET tools, the reader may refer to [7]). In brief, however, determining the WCET can be

classified into three major types, including static (analysis-based), dynamic (measurement-

based) and hybrid approaches [6].

Static Methods Static WCET analysis techniques typically compute upper bounds on

the execution time of a task by analysing the set of possible control flow paths through

the task with no need of executing code on real hardware or on a simulator [7]. To obtain

the upper bounds of WCET, the static analysis may combine the control flow with some

annotations (i.e. abstract model of the hardware architecture) [7]. In particular, control-

flow analysis and bound calculation are used to cover all possible execution paths, and

abstraction is used to cover all possible context dependencies in the processor behaviour

[7].

By producing bounds, static approaches can guarantee that the execution time will not

exceed these bounds, and such bounds also allow safe schedulability analysis of hard real-

time systems [7]. Furthermore, the approaches do not require any complex equipment to

simulate the hardware and peripherals of the target system since they can be done without

running the program [7]. However, processor-specific models of processor behaviour may

necessarily be required for processor-behaviour analysis, and in many cases the obtained

results are imprecise, e.g. overestimated WCET bounds [7].

Dynamic Methods Dynamic WCET analysis techniques do not produce bounds like

static methods; rather they produce estimates by executing all possible execution paths

of a task (or task parts) on the given hardware or simulator for some set of inputs [7].

In addition, instead of using processor-behaviour analysis, measurements are used for

dynamic approaches [7]; the approaches are thus also called ‘measurement-based methods’

[7, 6]. During execution of the task, the measured times are taken and then the maximal

observed execution times or their distribution are derived (or the measured times of code

snippets are combined in order to result for the whole task) [7].

Dynamic approaches are simpler to apply to new target processors since processor

behaviour is not required to be modelled [7]. Also, WCET estimates produced by dynamic

timing analysis are more precise than the bounds from static approaches (i.e. closer to

the exact WCET), especially for complex processors and complex application [7].
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However, dynamic methods may be unsafe if all possible execution paths are not meas-

ured as some context-dependent execution-time changes may be missed [7]. Hence, the

approaches may be useful for non-hard real-time systems (i.e. applications that do not

require guarantees) because they may give the developer a feeling about the execution

time in common cases and the likelihood of the occurrence of the worst case [7].

Dynamic timing analysis is also known as temporal testing, where its ultimate goal is to

find test inputs that will cause the system to violate performance timing requirements [4,

9]. There are diverse ways of performing temporal testing of embedded real-time systems,

for example, constrained random-based temporal testing, stress-based temporal testing,

search-based temporal testing and mutation-based temporal testing [4]. In order to identify

temporal failures in embedded or complex systems, it is generally agreed and several

researchers also show that the last two techniques are substantially more effective than

the first two techniques, which yet are easier and relatively inexpensive to implement [4].

Search-based temporal testing, which will be presented in the next section (Section 2.3),

is the main focus of this research.

Hybrid Methods Hybrid approaches are timing analysis techniques that calculate an

estimate of the WCET by combining static program analysis techniques and execution

time measurements [7, 6].

Figure 2.6 illustrates a summary of relevant WCETs and Best-Case Execution Times

(BCETs) of a real-time task.
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Fig. 1. Basic notions concerning timing analysis of systems. The lower curve represents a subset of
measured executions. Its minimum and maximum are the minimal observed execution times and
maximal observed execution times, resp. The darker curve, an envelope of the former, represents
the times of all executions. Its minimum and maximum are the best-case and worst-case execution
times, resp., abbreviated BCET and WCET.

The literature on timing analysis has created a confusion by not always making
a distinction between worst-case execution times and estimates for them. We will
avoid this misnomer in this survey.

We will use the term timing analysis for the process of deriving execution-time
bounds or estimates. A tool that derives bounds or estimates for the execution
times of application tasks is called a timing-analysis tool. We will concentrate on
the determination of upper bounds or estimates of the WCET unless otherwise
stated. All tools described in Section 6 with the exception of SymTA/P offer
timing analysis of tasks in uninterrupted execution. Here, a task may be a unit of
scheduling by an operating system, a subroutine, or some other software unit. This
unit is mostly available as a fully-linked executable. Some tools, however, assume
the availability of source code and of a compiler supporting a subsequent timing
analysis.

Organization of the article

Section 2 introduces the problem and its subproblems and describes methods be-
ing used to solve it. Sections 3 and 4 present two categories of approaches, static
and measurement-based. Section 6 consists of detailed tool descriptions. Section 7
resumes the state of the art and the deployment and use in industry. Section 8
lists limitations of the described tools. Section 9 gives a condensed overview of the
tools in a tabulated form. Section 10 explains, how timing analysis is or should
be integrated in the development process. Section 11 concludes the paper by pre-
senting open problems and the perspectives of the domain mainly determined by
architectural trends.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

Figure 2.6: Basic notions concerning system timing analysis (reprinted from [7])
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In particular, as mentioned earlier in this section, an execution time of the task can

be varied by the input data and different behaviour of the environment, the upper curve

(the darker one) represents the set of all execution times of the task [7]. The lower curve

(the lighter one) depicts a subset of measured executions. So that, in practice, a WCET

estimate (or the maximal observed execution time) obtained from dynamic approaches

tends to underestimate the actual WCET [9]. The upper timing bound calculated by

static analysis is often conservatively overestimate the actual WCET [9].

In addition, regarding the above testing categories (Sections 2.2.2 and 2.2.3), temporal

testing can be classified as a type of (black-box) environment testing [4] since temporal

behaviour, which is affected by the system environment, is assessed. Besides, temporal

testing can also be considered as a non-functional testing [10] because time behaviour is

one of the non-functional properties, which is defined in the international standard for the

evaluation of software quality (ISO/IEC 25010:2011) [48].

2.2.5 Stress Testing

Another example of a specific testing technique is stress testing. For stress testing, the

system is stressed beyond its normal operating conditions in order to validate its robustness

and elasticity requirements [4]. In particular, the system should degrade gracefully rather

than fail catastrophically when it is overloaded (called ‘elasticity’), and it should also fully

recover when the unrealistic load is removed (called ‘robustness’) [4]. Temporal testing is

similar to stress testing in the way that they are used to test non-functional properties by

attempting to stress the SUT. However, they differ in that temporal testing rather verifies

the temporal quality of embedded systems, while stress testing validates the system’s

robustness and elasticity [4].
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2.3 Search-Based Software Testing

As mentioned in the previous section (Section 2.2), software testing is an essential part

for all software development to produce high-quality software [39]; however its tasks (e.g.

test case generation) are extremely laborious, difficult and costly in practice [43, 40].

Automation of test activities, therefore, has often been viewed as a means of reducing its

cost and improving its effectiveness [39, 40].

Nevertheless, software systems have become more and more complicated. In particular,

software components may be developed by different vendors, using different techniques

in different programming languages and even running on different platforms [40]. It is,

therefore, more difficult to generate appropriate data in any reasonable time-frame for

larger and more complex software [40].

Since previous efforts have been limited by the size and complexity of the software

involved, together with the basic fact that test data generation is an undecidable problem,

metaheuristic search techniques have been applied to the area of software testing, and

this has given rise to the research topic known as SBST [49]. Optimisation algorithms are

used in SBST to automate the search for test data that maximises the achievement of test

goals while minimising testing costs [40]. Search-based approaches have been developed to

address a wide and diverse range of domains, including testing approaches based on agents,

aspects, interactions, integration, mutation, regression, stress and web applications [40].

The primary concern in all SBST approaches is to define a fitness function (or a set of

fitness functions) that captures the test objectives and can be used to guide a search-based

optimisation algorithm, which searches the space of test inputs to find those that meet

the test objectives [49].

The next two sections (i.e. Sections 2.4 and 2.5) provide an overview of metaheuristics

and hyper-heuristics, which are heuristic search methods for solving computational search

problems.
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2.4 Metaheuristics

Optimisation metaheuristic algorithms are broadly recognised as the efficient approaches

for many hard optimisation problems [50]. The success of applying a metaheuristic on a

given optimisation problem chiefly relies on how well it can provide a balance between the

exploration (diversification) and the exploitation (intensification) over its problem space

[50]. In order to find the optimum of the search space, for example, making large (almost

random) changes does best for some kinds of problems, while making small local greedy

changes does best for others [51]. Particularly, exploration is the ability of an algorithm to

identify parts of the search space with high-quality solutions [50], e.g. being able to jump

to the other regions [52]. Exploitation, on the other hand, is the ability of the algorithm

to intensify the search in some promising areas of the accumulated search experience [50],

e.g. being able to perform a local search within a limited region by using accumulated

experience [52].

Metaheuristics can be classified in numerous ways based on their features or aspects.

Examples of metaheuristic classifications include trajectory methods and discontinuous

methods, population-based and single-point search, memory usage and memoryless meth-

ods, one and various neighbourhood structures, dynamic and static objective function,

and nature-inspired and non-nature inspiration [53].

With regard to the classification that distinguishes between single-solution based and

population-based metaheuristics, some major metaheuristic algorithms, which are com-

monly used for optimisation problems (and also used in this work), are briefly described

in the following sections.

2.4.1 Single-Solution Based Metaheuristics

Single-solution (or, in other terms, ‘single-point’ and ‘single-state’) metaheuristics, which

are more exploitation oriented, improve and maintain a single solution [50]. Generally,

these algorithms start with a single initial solution and iteratively move away from a

candidate solution to its direct neighbourhood [50]. The neighbourhood of the candidate

solution is the set of solutions that are slightly different from the candidate solution [54].

Some main algorithms belonging to this category are Random Search (RS), HC, SA and

Tabu Search (TS) [55, 50, 51, 56].
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Random Search RS is one of the simplest and easiest to implement optimisation al-

gorithms [9]. It is the extreme one in exploration owing to that fact that it explores the

search space by randomly selecting a candidate solution and evaluating the fitness of the

solution (without guidance) until the optimum is found or termination criteria are reached

[57, 51], as illustrated in Algorithm 1.

RS may be very poor at finding an optimal solution. For example, in test data genera-

tion (e.g. structural testing), the number of inputs covering a particular structural target

may occupy a very small part of the overall search space [9], as depicted in Figure 2.7.

However, since RS does not take much effort to implement and its evaluations can be

done fairly quickly, it is usually used as a reference to compare its performance with other

more sophisticated techniques (for the same number of evaluations) in order to evaluate

the efficiency of such techniques [57].

Algorithm 1: RS [51]

1: Best← some initial random candidate solution
2: repeat
3: S ← a random candidate solution
4: if Quality(S) > Quality(Best) then
5: Best← S
6: end if
7: until Best is the ideal solution or we have run out of time
8: return Best
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Randomly-

generated inputs

Portion of input

domain denoting

required test data

Figure 2.7: RS (adapted from [9])
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Stochastic Hill Climbing HC, which is also referred to as a local search, is likely the

oldest and simplest search algorithm that uses a fitness function to guide the search [55, 9].

A simple algorithm for HC is given in Algorithm 2. In particular, HC iteratively improves

a candidate solution by replacing it with a better new solution, which is the one in its

neighbourhood [51].

As depicted in Figure 2.8, it tries to climb up the hill. The algorithm, however, can

easily be trapped in a local optimum, where the qualities of all neighbouring solutions are

equal or worse [51].

Apart from the basic one mentioned above, in order to escape from the local optimum,

some variant of HC, i.e. random-restart HC, may benefit from being able to restart and

perform a climb from a new initial position in the landscape [9].

Some other, i.e. SHC, may be a little more aggressive as it explores a number of

neighbouring solutions all at one time and then possibly adopts the best one [51], as

presented in Algorithm 3.

Algorithm 2: HC [51]

1: S ← some initial candidate solution
2: repeat
3: R← Tweak(Copy(S))
4: if Quality(R) > Quality(S) then
5: S ← R
6: end if
7: until S is the ideal solution or we have run out of time
8: return S
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F
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Figure 2.8: HC (adapted from [9])
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Algorithm 3: SHC [51]

1: n← number of tweaks desired to sample the gradient
2: S ← some initial candidate solution
3: repeat
4: R← Tweak(Copy(S))
5: for n− 1 times do
6: W ← Tweak(Copy(S))
7: if Quality(W ) > Quality(R) then
8: R←W
9: end if

10: end for
11: if Quality(R) > Quality(S) then
12: S ← R
13: end if
14: until S is the ideal solution or we have run out of time
15: return S

Simulated Annealing SA is an alternative to the simple HC [9, 51]. It differs from HC

(Algorithm 2) in its decision of when to replace the original candidate solution (S) with

the newly tweaked child (R) [51]. In particular, if R is better than S, S will always be

replaced with R as usual; but if R is worse than S, S may still be replaced with R with a

certain probability P (t, R, S) [51]:

P (t, R, S) = e
Quality(R)−Quality(S)

t (2.1)

where t ≥ 0. In other words, SA attempts to escape local optima by going down hills

sometimes, as illustrated in Figure 2.9.

Regarding the probability P (t, R, S), as presented in Algorithm 4, the solution R will

be accepted, depending on t and on the values of the objective functions for R and S

[50]. A control parameter (i.e. temperature) t regulates the probability P to accept the

solutions by starting its initial value with a high number and then gradually decreasing

itself towards the end of the search process according to the cooling schedule [58, 59]. The

algorithm was inspired by the physical process of annealing in materials, i.e. the cooling

of a material in a heat bath [58].
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Algorithm 4: SA [51]

1: t← temperature, initially a high number
2: S ← some initial candidate solution
3: Best← S
4: repeat
5: R← Tweak(Copy(S))
6: if Quality(R) > Quality(S) or

a random number chosen from 0 to 1 < e
Quality(R)−Quality(S)

t then
7: S ← R
8: end if
9: Decrease t

10: if Quality(S) > Quality(Best) then
11: Best← S
12: end if
13: until Best is the ideal solution or we have run out of time or t 6 0
14: return Best

Input domain
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Figure 2.9: SA (adapted from [9])

Tabu Search TS uses the history of the search as a means to escape from local minima

and to implement an explorative strategy [50]. Specifically, the idea is to prevent the

cyclic repetition of recently visited solutions by maintaining a memory, which is called

‘tabu list’, and consequently to force the search to accept even deteriorating moves [50].

A simple TS algorithm with short-term memory is presented in Algorithm 5.

There are various types of memory structures used to remember specific properties of

the recent search trajectory; these include short-term, intermediate-term and long-term

memory structures [50].

For example, in short-term memory, the length of the tabu list controls the way of

exploration, i.e. the search will concentrate on small areas of the search space if the length

is low, and it will be forced to explore on larger regions if the length is high [50].
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In some cases, the tabu list can prevent attractive moves or may lead to an overall

stagnation of the search process, an intermediate-term memory (called ‘aspiration criteria’)

can be applied and greatly improves the search process by overriding tabu restrictions with

a set of rules [50]. Therefore, the aspiration criteria can allow a move, which is forbidden

by the tabu list, to be revisited if it is satisfied [50].

In addition, the search can be allowed to avoid visiting solutions that present the most

often encountered attributes or to visit solutions with attributes rarely encountered by

using a long-term memory, such as a frequency memory [50].

Algorithm 5: TS [51]

1: l← desired maximum tabu list length
2: n← number of tweaks desired to sample the gradient
3: S ← some initial candidate solution
4: Best← S
5: L← {} a tabu list of maximum length l � Implemented as first-in, first-out queue
6: Enqueue S into L
7: repeat
8: if Length(L) > l then
9: Remove oldest element from L

10: end if
11: R← Tweak(Copy(S))
12: for n− 1 times do
13: W ← Tweak(Copy(S))
14: if W /∈ L and (Quality(W ) > Quality(R) or R ∈ L) then
15: R←W
16: end if
17: end for
18: if R /∈ L then
19: S ← R
20: Enqueue R into L
21: end if
22: if Quality(S) > Quality(Best) then
23: Best← S
24: end if
25: until Best is the ideal solution or we have run out of time
26: return Best
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2.4.2 Population-Based Metaheuristics

Population-based (or multi-point) metaheuristics commonly consist of a collection of indi-

vidual solutions which are maintained in a population [50]. These optimisation algorithms

are more explorative oriented as they sample many points in the search space at once. Yet,

there are not simply just being a parallel hill climber because candidate solutions affect

how other candidates will climb up the hill in the quality function and candidate solutions

are forced to be tweaked in the direction of the better solutions [51]. Particularly, good

solutions cause poor solutions to be rejected and then the new ones are created.

Evolutionary Computation Evolutionary Computation (EC), which is inspired by

Darwin’s evolutionary theory, is one of the most studied population-based methods [50].

A collection of EC algorithms is also known as Evolutionary Algorithms (EAs) [51, 50].

In the literature, a number of EAs have been proposed. Among them, the two most

well-known ones, i.e. GA and Evolution Strategy (ES), are presented here. Other EAs

include evolutionary programming, Genetic Programming (GP), estimation of distribution

algorithms, differential evolution, coevolutionary algorithms, cultural algorithms, scatter

search and path relinking [50].

Note: there are several other optimisation techniques, which are also classified as the

population-based approaches. Those techniques are grouped under the term ‘swarm intel-

ligence’, including ant colony optimisation, particle swarm optimisation, bacterial foraging

optimisation algorithm, bee colony optimisation-based algorithms, artificial immune sys-

tems and biogeography-based optimisation [50].

Genetic Algorithm GA is a metaheuristic inspired by Darwinian principles of

nature and the concept of survival of the fittest [9]. An individual (or a chromosome)

refers to a candidate solution or a point in the search space currently under consideration.

A set of individuals is called a ‘population’. Generally, GA can also be classified as a gen-

erational algorithm, where the entire samples (individuals) are updated once per iteration

[51]. Therefore, a generation denotes the population produced in each cycle by a selection

mechanism and evolutionary operators (such as mutation, crossover and recombination)

[51]. Figure 2.10 illustrates an example of GA, where individuals are generated in the

search space at a time.
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Figure 2.10: GA (adapted from [9])

In general, as presented in Algorithm 6, the GA process is started by randomly gen-

erating the first population in the initialisation stage [9]. Then, in the fitness evaluation

phase, each individual is evaluated for fitness [9]. The selection mechanism decides which

individuals should be parents for crossover [9]. After that, elements of each parent indi-

vidual are combined to form two offspring individuals that embody characteristics of their

parents [9].

Algorithm 6: GA [51]

1: popsize← desired population size
2: P ← {}
3: for popsize times do
4: P ← P ∪ {new random individual}
5: end for
6: Best← � � The � means nobody yet
7: repeat
8: for each individual Pi ∈ P do
9: AssessFitness(Pi)

10: if Best = � or Fitness(Pi) > Fitness(Best) then
11: Best← Pi

12: end if
13: end for
14: Q← {}
15: for popsize/2 times do
16: Parent Pa ← SelectWithReplacement(P )
17: Parent Pb ← SelectWithReplacement(P )
18: Children Ca, Cb ← Crossover(Copy(Pa), Copy(Pb))
19: Q← Q ∪ {Mutate(Ca), Mutate(Cb)}
20: end for
21: P ← Q
22: until Best is the ideal solution or we have run out of time
23: return Best
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In order to diversify the search into new areas of problem space, the mutation mech-

anism is used to tweak some elements of the newly-created individuals at random, e.g.

replacing one of such individual’s elements with a newly-random generated element [9].

Finally, in the reinsertion step, the next generation of the population is chosen, and its

individuals are inserted into a new round of selection for evaluating the fitness [9]. This

cycle continues until the ideal solution is found or the allocated resources, such as a time

limit or a certain number of fitness evaluations, are exhausted [9].

Evolution Strategy ES is another EA technique, which is very similar to GA. It

differs from GA in that ES selects individuals by employing truncation selection and then

breeds new individuals for the next generation by using the only mutation [51]. Examples

of ES algorithms include (µ, λ)–ES and (µ+ λ)–ES.

Algorithm 7 shows pseudocode of one of the simplest ES algorithms called ‘(µ, λ)–ES

algorithm’. Typically, the (µ, λ)–ES begins with a randomly generated population of λ

number of individuals [51]. After that, the fitness values of all the individuals are assessed.

Truncation selection is then utilised to keep the µ fittest individuals and discard the rest

ones from the population [51]. As a parent, each of the µ fittest individuals produces λ/µ

children through a mutation operator; so that λ new children are created [51]. For the

next generation, the children replace the parents, who are deleted from the population

[51]. In brief, the number of parents which survive for the next generation is µ, and the

number of children that the µ parents make in total is λ [51].

The (µ+λ)–ES algorithm, as listed in Algorithm 8, differs from the (µ, λ)–ES algorithm

in that, rather than simply replacing the parents with the children in the next generation,

(µ+λ)–ES allows the parents to compete with the children to survive in the next generation

[51]. Therefore, all successive generations consist of the µ parents plus the λ new children

[51]. Since high-fitness parents persist to compete with the children, the (µ+ λ)–ES may

be more exploitative than the (µ, λ)–ES [51].
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Algorithm 7: (µ, λ)–ES [51]

1: µ← number of parent selected
2: λ← number of children generated by the parents
3: P ← {}
4: for λ times do
5: P ← P ∪ {new random individual}
6: end for
7: Best← �
8: repeat
9: for each individual Pi ∈ P do

10: AssessFitness(Pi)
11: if Best = � or Fitness(Pi) > Fitness(Best) then
12: Best← Pi

13: end if
14: end for
15: Q← the µ individuals in P whose Fitness() are greater
16: P ← {}
17: for each individual Qj ∈ Q do
18: for λ/µ times do
19: P ← P ∪ {Mutate(Copy(Qj))}
20: end for
21: end for
22: until Best is the ideal solution or we have run out of time
23: return Best

Algorithm 8: (µ+ λ)–ES [51]

1: µ← number of parent selected
2: λ← number of children generated by the parents
3: P ← {}
4: for λ times do
5: P ← P ∪ {new random individual}
6: end for
7: Best← �
8: repeat
9: for each individual Pi ∈ P do

10: AssessFitness(Pi)
11: if Best = � or Fitness(Pi) > Fitness(Best) then
12: Best← Pi

13: end if
14: end for
15: Q← the µ individuals in P whose Fitness() are greater
16: P ← Q
17: for each individual Qj ∈ Q do
18: for λ/µ times do
19: P ← P ∪ {Mutate(Copy(Qj))}
20: end for
21: end for
22: until Best is the ideal solution or we have run out of time
23: return Best
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2.5 Hyper-Heuristics

Although those metaheuristics presented in Section 2.4 and other search techniques are

successful in solving real-world computational search problems, they can often face some

difficulties in terms of easily applying them to newly encountered problems or even new

instances of similar problems [60]. These difficulties mainly arise out of the significant

range of parameter or algorithm choices involved when using this type of computational

search approaches, together with a lack of guidance as to how to select them [60]. The

level of understanding of the scientific community is insufficient to facilitate simple choices

of which heuristic approach to effectively use in which situation [60].

Moreover, state-of-the-art approaches tend to represent bespoke problem-specific (or

made-to-measure) methods, which are expensive to develop and maintain [60]. These

obstacles have motivated researchers to seek a better way for developing more generally

applicable search methodologies [60].

Hyper-heuristics, therefore, have been proposed as a search method to automate the

design of heuristic methods and to tune such methods for solving hard computational

search problems [61]. Rather than trying to solve the problem directly, hyper-heuristics,

which can be regarded as off-the-peg methods, attempt to find the right method or se-

quence of heuristics in a given situation [60]. In particular, hyper-heuristics operate on a

search space of heuristics (or heuristic components), instead of operating directly on the

search space of solutions to the underlying problem that is being addressed [60].

Above all, hyper-heuristic approaches aim to raise the abstraction level of tools to the

point where the tools automatically configure themselves to produce the most effective

search strategies [62]. Particularly, different problems may require different search ap-

proaches. It may not be immediately apparent that which approaches will work best at

hand for the problem. This requires the production of higher-level tactic that explore and

exploit a combination of lower-level heuristics to solve the problems [62].

2.5.1 Classification of Hyper-Heuristics

Burke et al. [60] proposed the general definition of the term ‘hyper-heuristics’ as ‘a search

method or learning mechanism for selecting or generating heuristics solve computational

search problems’. As illustrated in Figure 2.11, Burke et al. [62] further categorised hyper-

heuristic approaches into two primary types based on the methodology used to deal with

low-level heuristics: heuristic selection and heuristic generation.
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Feedback Nature of the heuristic search space

Hyper-
heuristics

Online
learning
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heuristics

Perturbation
heuristics

Construction
heuristics

Perturbation
heuristics

Figure 2.11: Classification of hyper-heuristic approaches (adapted from [62])

In particular, the heuristic selection is a methodology for choosing or selecting existing

heuristics [62]. On the other hand, the heuristic generation is a methodology for generating

new heuristics from the components of existing ones [62].

These two classes (i.e. heuristic selection and heuristic generation) can be further cat-

egorised into subcategories, depending on the nature of the low-level heuristics: construct-

ive or perturbative search paradigms [62]. For perturbative heuristic methods, complete

candidate solutions are considered, and these solutions are changed by modifying one or

more of their components [62]. As opposed to the perturbation, constructive heuristic

methods consider partial candidate solutions in which one or more components of such

solutions are missing and iteratively extending them [62].

Additionally, as depicted in Figure 2.11, hyper-heuristics are able to be differentiated

by sources of feedback information: online learning, offline learning and no learning [62].

Specifically, as a hyper-heuristic is considered to be a learning algorithm, some feedback in-

formation from the search (or learning) process is used for solving the underlying problems

[62].

The online approaches take place while the algorithm is solving an instance of a prob-

lem [62]. The high-level strategy hence uses task-dependent local properties to determine

the appropriate low-level heuristic to apply [62]. On the contrary, the offline methods

gather knowledge from a set of training instances in the form of rules or programs that

would hopefully generalise to the process of solving unseen instances [62]. Non-learning

hyper-heuristics are those that do not use any feedback from the search process [62].
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There have been numerous studies on hyper-heuristics as detailed in the recent survey

by Burke et al. [60]. In this thesis, the heuristic selection is the main focus. In addition,

since a candidate solution of the problem domain, i.e. temporal testing, is a test vector

that has to be entirely executed with the SUT together at once in order to measure its

execution time as a fitness function value, the perturbation is the appropriate preference

category. Therefore, this research applies a selection perturbative hyper-heuristic to search

for temporal test inputs that will produce extreme longest execution times, which may

violate the system’s temporal requirements.

2.5.2 Selection Perturbative Hyper-Heuristics

For selection perturbative hyper-heuristics, in general, low-level perturbative heuristics are

selected to improve a candidate solution [63]. The selection perturbative hyper-heuristics

can be separated into two major groups: single-point based and multi-point based search

hyper-heuristics [63].

Single-point selection perturbative hyper-heuristics consist of two successive stages:

heuristic selection and move acceptance [64]. An initial solution is generated, and then it is

iteratively improved through these stages [52]. At each iteration, a new candidate solution

is produced by selecting and applying a low-level perturbative heuristic from a predefined

set of perturbative heuristics [52]. The methods, such as choice function, reinforcement

learning, Monte Carlo methods and SA, have been used for heuristic selection [63]. Then, a

move acceptance decides whether such the candidate solution should replace the incumbent

solution [52].

Multi-point selection perturbative hyper-heuristics, on the other hand, consider pop-

ulations of solutions. A number of metaheuristic techniques, including GA, great deluge,

harmony search and TS, have been employed to explore the space of low-level perturbative

heuristics [63].

2.6 Related Work

In software testing community, search-based approaches have been used across the spec-

trum of test case design methods. In particular, metaheuristic search techniques have been

applied not only to white-box (structural), black-box (functional) and grey-box (combin-

ation of structural and functional) testing but also to non-functional properties.
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Afzal et al. [10] systematically reviewed the research work published from 1996 to

2007 in the field of application of metaheuristic search techniques for testing five non-

functional properties: execution time, Quality of Service (QoS), security, usability and

safety. Accordingly, there are thirty-five primary studies related to the field: 15 (execution

time), 2 (QoS), 7 (security), 7 (usability) and 4 (safety). A variety of metaheuristic

search techniques, i.e. GA, SA, grammatical evolution (GE), GP and its variants, swarm

intelligence methods, TS, HC and ant colony methods (AC), were found to be applicable

for non-functional testing. Figure 2.12 illustrates the year-wise distribution of primary

studies within each non-functional property as well as the frequency of application of

different metaheuristics.

As shown in Figure 2.12, with respect to the studies on execution time, two well-known

metaheuristic methods, namely GAs and SA, have been found efficacious in verification

of timing-related constraints [10]. Those studies are briefly summarised in Table 2.5.

Non-functional property

Year Range of metaheuristics

Execution
time

QoS

Security

Usability

Safety

200720062005200420032002200120001999199819971996 GA,
SA

SA GE LGP GA,
PSO

TS,
SA,
GA

SA,
HC

TS HC,
SA,
TS

AC,
GA

GA

1

2

1

1

1

1

1

3

1

1

2

1

3

2

1

1

21

1

521

1

1

2

1

1 2 1

1 1 1 1 1

14

2

3

2

Figure 2.12: Distribution of SBST studies on non-functional properties over a range of

metaheuristics and time period (adapted from [10])
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Table 2.5: Summary of research papers on applying metaheuristics for testing temporal property

Year Article Metaheuristic Aim Fitness function Benchmark(s) Comparison Findings

1996 Weneger et
al. [65]

GA WCET and
BCET

Execution time (µs) A simple C function Statistical and sys-
tematic testing

1) the longest execution time of 26.27 µs
was found quickly with GA in less than
20 generations; and 2) the shortest ex-
ecution time of 5.07 µs, which is shorter
than the shortest time determined so far
by statistical and systematic testing, was
found.

1997 Weneger et
al. [66]

GA WCET and
BCET

Execution time (pro-
cessor cycles)

Five test objects from dif-
ferent application domains

Random testing GA consistently outperformed random
testing by finding more extreme times.

1997 Alander et
al. [67]

GA WCET Execution time (ms) A power system protection
relay software

Random testing Based on the simulated environment,
with the same amount of test cases, GA
generated more input data cases with
longer response times.

1998 Tracey et
al. [68]

SA WCET Execution time (µs) Four simple programs,
varying in parameter
spaces

The worst-case
path of each
program

For all test programs, each search resul-
ted in a valid test case which exercised
a worst-case path. The use of SA was
more effective with larger, more com-
plex, parameter spaces.

1998 O’Sullivan
et al. [69]

GA with
cluster analysis

WCET Execution time (pro-
cessor cycles)

A complex algorithm from
automotive electronics do-
main

GA The results showed that cluster ana-
lysis is a useful termination criterion as
it provides detailed information about
the convergence state of the evolutionary
test. So that, a test is suggested to be
terminated if it has converged to one or
more local and global optima because the
probability of finding even better solu-
tions is small.

Continued on next page. . .
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Year Article Metaheuristic Aim Fitness function Benchmark(s) Comparison Findings

1998 Weneger
and
Grocht-
mann [70]

GA WCET Execution time (pro-
cessor cycles)

Eight test objects from dif-
ferent application domains

Random testing The experiments were extended from [66]
by raising the range of input parameters
to 5,000 and further included three more
benchmarks. With a large number of in-
put parameters, GA obtained more ex-
tremal execution times with less or equal
test effort than random testing.

1998 Puschner
and Nossal
[71]

GA WCET Execution time (pro-
cessor cycles only for
Heapsort and abstract
time units for the rest)

Seven programs RS, best effort
data generation
and static WCET
analysis

GA found same or longer times than ran-
dom testing. In comparison with best
effort timings, GA matched the timings
and found the longer time in one case,
while in comparison with static analysis,
the upper bounds were not broken but
were matched on several occasions.

1999 Pohlheim
and We-
gener [5]

Extended GA WCET Execution time (µs) Bubble sort algorithm and
software modules from a
motor control project

Systematic testing The results from bubble sort were used
to find approximate evolutionary para-
meters for motor control software mod-
ules. Extended GA, which includes the
use of multiple sub-populations (each us-
ing a different search strategy), found
longer execution times for all the given
modules in comparison with systematic
testing.

2000 Groß et al.
[72]

GA WCET and
BCET

Coverage of code
annotations along
shortest and longest
execution paths

22 test objects, including
simple sorting algorithms,
modules from a graph-
ical contour plotting pack-
age, modules from a robot
vision system, line inter-
polation algorithms, mod-
ules from a train control
systems and two artificial
modules

All annotations
which together
make up the
longest or shortest
path for each test
object

1) a prediction model based on the com-
plexity of the test objects, which can be
used to predict evolutionary testability;
and 2) there are several properties inhib-
iting evolutionary testability: small path
domains, high-data dependence, large
input vectors and nesting.

Continued on next page. . .
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Year Article Metaheuristic Aim Fitness function Benchmark(s) Comparison Findings

2000 Weneger et
al. [73]

GA WCET Execution time (µs) Six time-critical tasks in an
engine control system

Developer-made
tests

GA outperformed the developers’ tests.

2001 Groß [74] GA WCET and
BCET

Coverage of code
annotations along
shortest and longest
execution paths

22 test objects – This work extended [72] by introducing
source code measures with the intention
to map program attributes which inhibit
evolutionary testability into figures and
establish a prediction system for evolu-
tionary testability.

2001 Wegener
and
Mueller
[75]

GA WCET and
BCET

Execution time (pro-
cessor cycles)

Three real-time systems
and two general-purpose
algorithms

Static analysis For WCET, the estimates of static ana-
lysis provided an upper bound while
the measurements of evolutionary test-
ing yielded a lower bound, and vice versa
for BCET.

2003 Groß [76] GA WCET Execution time (µs) 15 example test programs Random testing
and manual testing

Evolutionary testing outperformed ran-
dom testing, i.e. random testing could
only produce about 85 per cent of the
maximum execution times found by evol-
utionary testing. The human tester was
more successful in four out of 15 test pro-
grams. It indicated the presence of prop-
erties of test objects that inhibit evol-
utionary testability, i.e. the ability of
an evolutionary algorithm to successfully
generate test cases that violates the tim-
ing specification.

2005 Briand et
al. [77]

GA Missed
deadline

Exponential fitness
function based on the
difference between
executions deadline
and executions actual
completion

Two case studies, i.e. arte-
fact scenarios and an ac-
tual real-time system

Task deadlines GA could identify seeding times that
stress the system to such an extent that
small errors in the execution time estim-
ates can lead to missed deadlines.

Continued on next page. . .
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Year Article Metaheuristic Aim Fitness function Benchmark(s) Comparison Findings

2006 Tlili et al.
[78]

Extended GA WCET and
BCET

Execution time (pro-
cessor cycles)

12 test objects GA For almost all the test objects, an ex-
tended GA, which is seeded by test
data that achieve a high structural cov-
erage and restricts the range of input
variables, outperformed (with fewer gen-
erations) standard evolutionary testing
when measuring long execution times.
Similar results were achieved for finding
the shortest execution times.

2011 Bate and
Khan [18]

GA WCET Execution time (pro-
cessor cycles), loop
count, instruction
cache misses and data
cache misses

16 programs from the
Mälardalen WCET re-
search group [79]

The highest-
quality solution
produced for the
respective bench-
mark problems

1) a multi-criteria fitness function did
not work well in practice; and 2) fitness
heuristics were proposed as a guide to
choosing criteria as a fitness measure for
specific characteristics of the program.
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In short, almost all of these studies aimed to search for input situations that produce

very long execution times (or WCETs) [65, 66, 67, 68, 69, 70, 71, 5, 72, 73, 74, 75, 76, 78];

some of them further included finding very short execution times (or BCETs) [65, 66,

72, 74, 75, 78]. In addition, a few of them also attempted to improve the performance

of evolutionary testing by using particular strategies, such as the incorporation of cluster

analysis [69], the use of multiple sub-populations (each using different strategy) [5], a

prediction model for evolutionary testability [72, 74] and the use of high structural coverage

test data as seeds and search space reduction [78].

Generally, the fitness function of temporal testing is the execution time, which is

measured either by a system clock (such as in milliseconds (ms) or microseconds (µs)) or

in terms of processor cycles, as depicted in Table 2.5. Afzal et al. [10] mentioned that

measurement in terms of processor cycles is more popular because it is more precise and

independent of the interrupts from the OS (e.g. context switching and paging). They also

added that measurement in terms of processor cycles is deterministic in the sense that it

is independent of system load and results in the same execution times for the same set

of input parameters [10]. However, such measurement is dependent on the compiler and

optimiser used, therefore the processor cycles differ for each platform [10]. We are rather

interested in non-deterministic behaviour occurred in the multicore environment, therefore

execution times are measured by a system clock in nanoseconds (ns) in this thesis.

Apart from the studies on temporal testing, where input data are normally generated

and executed on a target task, GA was used for searching the sequence of arrival times of

events for aperiodic tasks, which will cause the greatest delays in the execution time of the

target task, as well [77]. Briand et al. [77] stated that both input data and seeding times

for aperiodic tasks could impact on the execution time of the target task. Rather than

simply finding temporal test inputs, they sought scenarios of event arrival times that would

make the target task to miss its deadline and named the approach ‘stress testing’ [77].

Recall from Section 2.2.5 that the objective of stress testing is to validate the robustness

and elasticity requirements of the system, but the objective of [77] was to find the sequence

of arrival times of events for aperiodic tasks, which would cause the greatest delays in the

execution of the target task.
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Figure 2.13: Relative distribution of research papers on SBST for non-functional prop-

erties (adapted from [15])

A more recent survey of non-functional SBST research was conducted by Harman

et al. [15]. The survey extended the work of Afzal et al. [10] by identifying six more

non-functional attributes (i.e. availability, efficiency, energy consumption, flexibility, ro-

bustness and scalability) and including all the papers published from 1996 to 2014, as

illustrated in Figure 2.13b. In particular, data from 1996 to 2007 (Figure 2.13a) were

based on the systematic literature review by Afzal et al. [10], while data from 2008 to

2014 were collected from the SBSE repository [16].
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With regard to the SBSE repository [16], where it is the first source of information

on related work for the SBSE community [15], there have been a few recent studies on

applying search-based approaches to verify temporal constraints that explicitly addressed

the issue of interference introduced by multicore platforms. (The repository may not

guarantee 100 per cent precision and recall, but it has proved sufficiently usable [15].)

For example, as briefly summarised in Table 2.5, Bate and Khan [18] investigated the

effectiveness of GA in estimating WCET of software running on a modern processor, i.e.

the ARM processor simulated on the SimpleScalar architecture [80]. Besides using the

execution time as a fitness function alone, a number of program characteristics (e.g. loop

iterations) and hardware features (e.g. branch prediction misses, data cache misses and

instruction cache misses), were also examined their ability to supportingly guide the search

to find the WCET. These dominant factors are believed to make finding the WCET on

modern processors more difficult [18]. The approach is called a ‘multi-criteria heuristic

function’ [17]. The results showed that although these factors, as well as a combination of

them with the execution time, did not perform well in practice, they can still be gainfully

used if appropriate ones are chosen [18]. As a result, fitness heuristics were proposed

to suggest that which criteria should be used as the fitness measure for the particular

program’s characteristics [18]. For instance, if the program has a single path through it,

then execution time should be used as the single fitness function [18].

Note that in order to obtain the execution time, which might be affected by actual

interference that can take place within a multicore architecture, all the experiments in

this thesis were run on the real hardware, i.e. the QorIQ P4080 multicore processor.

2.7 Summary

In this chapter, some features of multicore processor systems, such as shared caches, were

highlighted and discussed their ability to cause interference which makes temporal beha-

viour verification more difficult. Nevertheless, it is unavoidable to ignore such verification,

as violations of timing constraints of safety-critical systems may, in particular, be fatal

to human life. A number of approaches to verify timing-related constraints were then

addressed, especially search-based temporal testing, where optimisation technique is used

to generate test inputs which will cause the system to violate performance timing require-

ments. This dynamic WCET analysis method will mainly be concerned in this research

because it is simpler than the static WCET analysis method in terms of applying it to
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new target processors, i.e. no specific details of a processor is required for its behaviour

analysis. After that, various search-based optimisation algorithms, which are different in

their ways of balancing between the exploration and exploitation, were briefly described.

Finally, a survey of the relevant literature on using search-based approaches to verify

timing constraints was provided.

Since there is a lack of guidance on how to select a metaheuristic technique to a

particular situation, as previously mentioned in Section 2.5; rather than evaluating the

effectiveness of an individual metaheuristic approach in the same way as those in Sec-

tion 2.6, e.g. a comparison between GA and static testing in [75], this study will compare

the effectiveness of applying diverse metaheuristics on temporal testing of a task running

on a multicore platform. In the next chapter, therefore, both single-solution based me-

taheuristics (i.e. RS, HC, SHC and SA) and population-based metaheuristic (i.e. GA),

which were given in Section 2.4, will be explored in details.
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Direct Optimisation

3.1 Introduction

3.1.1 Motivation

In the preceding chapter, a number of metaheuristic optimisation techniques were presen-

ted (Section 2.4), and their effectiveness in verifying temporal constraints was evidenced

in the literature (Section 2.6). However, there is no rule of thumb on how to choose a

particular approach for a particular (or instance) problem [60]. A metaheuristic approach

can be successful in providing a ‘sufficiently good’ solution to an optimisation problem

only when it is able to excellently balance exploration and exploitation over such problem

space [50]. Furthermore, based on the previous work as summarised in Table 2.5, a certain

metaheuristic algorithm (primarily the GA) was solely applied and its effectiveness was

compared with other timing analysis techniques, such as static analysis, random testing

and systematic testing; none of the work considered assessing the effectiveness among

the metaheuristics themselves. In addition, only a few studies [17, 18] of search-based

temporal testing explicitly emphasised multicore environments.

In this chapter, therefore, we explore how effective each metaheuristic algorithm is in

finding test cases to exhibit the execution time of a task running on an embedded multicore

platform.

3.1.2 Contributions

The contributions in this chapter are:

• Empirical evidence to demonstrate that metaheuristic search approaches are effective
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ways of reaching extreme execution times of numerical functions running on an

embedded multicore system;

• Empirical evidence to show that shared resources within a multicore environment

genuinely impact on the temporal behaviour of a real-time embedded system when

the problem size is too small.

3.1.3 Chapter Outline

The remainder of this chapter begins with a description of an experimental framework

(Section 3.2), which was used throughout the thesis to facilitate the empirical study.

In order to assess the effectiveness of metaheuristic approaches, this chapter, in par-

ticular, separates the problem domain of temporal testing into two problem instances: 1)

verifying the temporal behaviour of a single-threaded application; and 2) verifying the

temporal behaviour of a multi-threaded application. Accordingly, the empirical work in

this chapter considers five SUTs, including one single-threaded routine and four multi-

threaded routines, as detailed in Section 3.3.

A preliminary analysis is provided in Section 3.4 to explain how specific parameter

values are chosen for conducting the experiments throughout the chapter.

Experiment I (Section 3.5) demonstrates the performance of each metaheuristic tech-

nique for extremal timing performance of a single-threaded numerical function.

Experiment II (Section 3.6) demonstrates the performance of each metaheuristic tech-

nique for extremal timing performance of a multi-threaded numeric function.

In Section 3.7, the outcomes of the research described in this chapter are discussed

and used to motivate the research in the subsequent chapter of this thesis.

3.2 Experimental Framework

A variety of metaheuristics, including RS, HC, SHC, SA and GA, are empirically invest-

igated to determine their ability to find test inputs that will produce extreme (maximal)

execution times when executed on a multicore chip. In order to complete the experiments,

three elements are required to configure an experimental framework: a metaheuristics

toolkit; a hardware platform on which to execute tasks and time those executions; and an

interface between the two prior elements.
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3.2.1 Metaheuristics Toolkit

The empirical studies on direct optimisation (in this chapter) and indirect optimisation (in

the next chapter) were facilitated by the Java-based Evolutionary Computation Research

System (ECJ) [81]. ECJ is one of the most popular EC toolkits, is extensible, and has

a clear descriptive manual and strong community support (via a mailing list [82]) [83].

ECJ provides efficient implementations of a variety of EC approaches, such as GA, ES,

GP, differential evolution and other population-based metaheuristics (e.g. particle swarm

optimisation) [81]. Single-state based approaches, such as HC, SHC and SA, have recently

been included in ECJ’s latest version1 [84].

However, all experiments in this chapter (and in the succeeding chapter) were per-

formed using the ECJ version 23, which is the latest release available at the time of

configuring the experimental framework. Accordingly, the population-based features of

this ECJ version were adapted for the experiments of the single-state approaches. In par-

ticular, a simple HC and SA could be considered as the degenerate cases, i.e. (1 + 1)–ES,

of the more general (µ+λ)–ES [51]. Further details on modifying the ES features for HC,

SHC and SA to generate temporal test inputs are as follows.

Candidate Solution A candidate solution for the problem of temporal testing is defined

as a set of test inputs (or parameter values) in the form of a vector (sometimes simply

called a ‘test vector’) for a function being tested. The search space of the problem is,

therefore, the set of all possible test vectors for such the function.

Stochastic Hill Climbing Recall that, in Section 2.4.1, a new candidate solution, which

is one in the neighbourhood of a current solution, is evaluated and it will be adopted if it

is better than the current one for an HC algorithm. In this case, it could be thought of

as a (1 + 1)–ES, where only one parent (i.e. the current solution) survived and one child

(i.e. the new candidate solution) that the parent makes in total.

In the case of temporal testing here, a neighbourhood of an individual was defined as

a candidate solution that is randomly slightly different from the current one. Particularly,

only one position (or dimension) of a test vector changes to potentially any value (not just

to ‘nearby’ values, as is more usual in HC) from a range of possible input values.

1The latest release (as of September 2017) is ECJ version 25, which was released on 9 July 2017 [82].
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Therefore, the ec.vector.VectorMutationPipeline, which is the ECJ’s common

mutator for vector individuals, was used to generate the neighbourhood. In addition,

in order to generate a child, which is slightly different from its parent, the mutation prob-

ability (Pm) was set to 0.1. The Pm is a probability of mutation per gene of an individual;

it is not a probability of the whole individual [85]. An example of the neighbourhood

generated by VectorMutationPipeline is shown in Figure 3.1.

Steepest Ascent Hill Climbing Recall also that SHC is a little more aggressive version

of HC. A number of candidate solutions are created all at one time in each iteration, and

then the best one is adopted if it is better than the current solution. In this case, it could

also be thought of as a (1 + λ)–ES, where only one parent survived and λ children that

the parent makes in total.

A neighbourhood of an individual for temporal testing, in this case, was defined as a

set of candidate solutions, where only one position within a vector of each candidate (i.e.

a child) is slightly different, either by adding or subtracting a value within the position

with a fixed delta value (δ) from the current one (i.e. the parent).

In other words, the neighbourhood is a change of one allele by plus or minus delta, and

all these possible neighbours are examined. So, the number of neighbourhoods (or λ) are

double the length of the current solution. The neighbourhood here is very much smaller

than in the simple HC case.

Figure 3.2 depicts an example of 14 children of a parent with a length of seven genomes,

and the δ is given as five. In this regard, SHCVectorMutationPipeline was additionally

implemented as a breeding pipeline for generating children, corresponding to the afore-

mentioned neighbourhood’s definition.

0 1 2 3 4 5 6

2 −1 3 9 7 6 −4

2 −1 11 9 7 6 −4

Parent

Child

Figure 3.1: Example of the neighbourhood generated by VectorMutationPipeline

mutator for the test vector length of 7
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0 1 2 3 4 5 6

2 −1 3 9 7 6 −4

7 −1 3 9 7 6 −4 −3 −1 3 9 7 6 −4

2 4 3 9 7 6 −4 2 −6 3 9 7 6 −4

2 −1 8 9 7 6 −4 2 −1 −2 9 7 6 −4

2 −1 3 14 7 6 −4 2 −1 3 4 7 6 −4

2 −1 3 9 12 6 −4 2 −1 3 9 2 6 −4

2 −1 3 9 7 11 −4 2 −1 3 9 7 1 −4

2 −1 3 9 7 6 1 2 −1 3 9 7 6 −9

Parent

Child 1 Child 2

Child 3 Child 4

Child 5 Child 6

Child 7 Child 8

Child 9 Child 10

Child 11 Child 12

Child 13 Child 14

Figure 3.2: Example of the neighbourhoods generated by SHCVectorMutationPipeline

breeding pipeline for the test vector length of 7 with δ = 5

Simulated Annealing SA is quite similar to the basic HC, but some worse neighbours

may be accepted and replaced the current candidate with a certain probability. Likewise,

SA could be thought of as a (1 + 1)–ES.

Accordingly, a special selection operator, SAESSelection, was additionally implemen-

ted to accept some worse children during the search process. Also, the geometric reduction

cooling function [58, 59], Tk+1 = αTk, was used because it is the most common scheme

used in the SA literature and is normally used as a baseline for comparison with other

more elaborate schemes [86].

The parameters for SA were as follows: the sequence index in temperature cycle k ∈ N,

the initial temperature T0 = 1,000 and cooling rate α = 0.99. In fact, the value of α is

typically in the range of 0.9 ≤ α ≤ 0.99 [86]. Since the number of iterations for SA in this
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research is high (which will be described later in Section 3.5.2), we, therefore, chose 0.99

as the α value for the moderately slow cooling rate.

3.2.2 Timing Hardware Platform

For the purpose of verifying temporal behaviour on a real-time embedded system, and a

safety-critical system in particular, in a multicore environment, the benchmarks, which

will be presented later in Section 3.3, were run and their execution times were measured

on a FreeScale QorIQ P4080 processor (P4080). The experiments were conducted on the

P4080 processor owing to a wide variety of applications of the P4080 in industrial real-

time embedded systems [87], such as telecommunications and networking [28], as well as

on safety-critical systems, such as aerospace and defence markets [88].

The P4080 processor includes eight e500 PowerPC cores scaling to 1.5 GHz, and has a

three-level cache-hierarchy: 32KB I/D L1, 128KB private L2 per core and 2 MB shared

L3, as previously illustrated in Figure 2.2. In particular, the COMX-P4080 COM Express

Module (COMX-P4080) [89, 90], which is a Single Board Computer (SBC) that the P4080

processor is embedded in a plug-in COM Express® module2, was used as a multicore

platform in this study. The block diagram of the COMX-P4080 development board is

illustrated in Figure 3.3. (Note: there are several SBCs that provide a high-performance

alternative to the COMX-P4080 on the market, such as the P4080 development system

(P4080DS) [91] and the P4080 processor-based conduction- or air-cooled 6U cPCI Module

(XCalibur1600) [92].)

In terms of software, the COMX-P4080 development system contains U-boot, Mentor

Embedded Linux®, GNU Compiler Collection (GCC) tools (i.e. compiler and debugger)

and CodeWarrior evaluation copy [89]. Unfortunately, there is no Java Runtime Environ-

ment (JRE) available for the development board, but the ECJ is a Java-based toolkit as

previously described. In fact, although the full GCC suite is available, which means Java

source code can be compiled using GNU Compiler for Java (GCJ), the GCJ is no longer

maintained and will not be part of future releases [93]. Therefore, in order to conduct the

experiments, an interface between the toolkit and the multicore platform was configured

instead.

2COM Express is a Peripheral Component Interconnect (PCI) Industrial Computer Manufacturers
Group (PICMG) standard for a Computer-on-Module (COM) form factor with PCI Express interconnects
[89].
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COMX-P4080 Data Sheet

COMX-P4040 & COMX-P4080 Block Diagram

COM
Express
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Tamper Detect
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EE-PROM
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3x I2C
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Flash
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Flash

128MB
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Flash
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MDIO
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Dual
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PHY
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USB
PHY

ULPI

USB* USB
Hub

4x USB

USB
Hub*

4x USB*USB*

PCIe x4 / SRIO x 4 / x4 SGMII / XAUI

PCIe x4 / SRIO x 4 / x4 SGMII
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Channel 2

1066/1333
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ECC SO-DIMM

Freescale
QorIQ™

P4040/P4080

*Not supported on COMX-P4040
Figure 3.3: Block diagram of COMX-P4080 COM Express module (reprinted from [94])

3.2.3 Interface

The experimental framework was established by using the client-server model architecture

to facilitate the communication between the workbench, where the ECJ toolkit is running

on, and the COMX-P4080 development board, as depicted in Figure 3.4.

Internet

SwitchWorkbench
(Client)

COMX-P4080
(Server)

Figure 3.4: Overview of experimental framework
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In particular, the workbench was set as a client, and the COMX-P4080 was set as a

server. The workbench is the Intel® CoreTM i7-5960X processor3 with a RAM size of

64 GB. These two machines were connected together with a network switch in order to

enable them to receive, process and forward data between each other.

On this computer network, some further configurations are required. Specifically, the

File Transfer Protocol (FTP), which is a standard network protocol [95], was used for

transferring the files between the client and server. Furthermore, the Secure Shell (SSH),

which is a cryptographic network protocol [96], was used as a secure channel for remotely

operating the server by sending shell commands from the client site. Additionally, in

order to implement the FTP and SSH on the client site, the singleton pattern, which is a

software design pattern that restricts the instantiation of a class to one object [97], was

also applied to create a connection to the server only once during the entire experimental

period. By using this design pattern, a connection error due to an auto disconnection

by the COMX-P4080, which occurs when there are continual attempts by the client to

reconnect the server, can be avoided.

An overview of the experimental procedure is illustrated in Figure 3.5. In particular,

the iterative process starts with generating a test case, which is a sequence of integer

arguments, by the metaheuristic toolkit running on the client site. The test case is then

written into a *.csv file, e.g. input.csv. After that, this input file is transferred to the

server through the FTP. Next, in order to obtain a fitness function, which is an execution

time of a benchmark, the client sends a shell command to operate the server by way of

the SSH to execute such test case with the benchmark.

After the server executed the test case for a number of times, a median from these

runs is written into an output file, e.g. output.csv. (Further details on the number of

runs and median will be given in Section 3.4.1.) Finally, the output file is requested by

the client via the FTP for evaluating the fitness function. During the search process,

the fitness function is used to guide the searches and eventually to find an optimum; in

this optimisation problem, the maximum one is desirable. This process repeats until the

termination condition of a search algorithm satisfied. The number of generations is given

as the termination condition for all search algorithms researched in this thesis.

3The i7-5960X processor features a 3GHz clock speed, 20MB of L3 cache and eight physical processor
cores.
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Generate a test case and
create an input file
input.csv

Upload the input.csv file (via FTP)

Send a shell command to execute a benchmark (via SSH)

Execute the benchmark
and create an output file
output.csv

Download the output.csv file (via FTP)

output.csv

Evaluate a fitness function

Client Server

loop

Figure 3.5: Sequence diagram of experimental procedure

Moreover, since the tasks naturally take a very tiny amount of time for computation,

their execution times are therefore captured in ns by using function clock gettime with

a clock source CLOCK MONOTONIC in order to get more precise and accurate timing. Also,

this clock source is not affected by changes in the system time-of-day clock, while the

time from a clock source CLOCK REALTIME may leap forward or even backward after a time

adjustment.

3.3 Software Under Tests

This section describes numerical functions, which were used as the benchmarks for the

experiments of this chapter and the rest of the thesis. The numeric functions are the main

concern in this research for the reason that they are essentially used in most applications to

perform basic numerical calculations or even used as elements of more complex mathem-

atical computations. A number of commercial and academic institutions have facilitated

the applications by providing such numerical functions on scientific libraries. Some of the

libraries are the GNU Scientific Library (GSL) [98] for C language, and Apache Commons

Mathematics Library (Commons Math) [99] and Flanagan’s Java Scientific Library [100]

for Java language. The libraries generally offer a wide range of mathematical routines, such

as complex numbers, roots of polynomials, sorting, statistics and some special functions,

such as exponential and trigonometric functions.
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Based on the multicore environment, in this chapter, both single-threaded (or se-

quential) and multi-threaded (or parallel) computational routines, i.e. root finding of

polynomials and sort routines, respectively, were used for assessing the effectiveness of

metaheuristics for generating test inputs giving rise to extreme execution times.

3.3.1 Polynomial Root-Finding Algorithm

GSL4 [98] is the free software provided by GNU operating system (GNU). Linux OS,

which is one of the GNU versions, is nowadays widely used on servers, personal computers,

supercomputers, mobile phones and network routers [101], as well as the P4080 platform.

All GSL functions are thread-safe, as a result, they can be used in multi-threaded programs

[98]; albeit they are implemented in a single-threaded procedure.

There are several functions for evaluating and solving polynomials given by GSL [98].

A function for finding roots of a general univariate polynomial equation in the form of

a0 +a1x+a2x
2 + . . .+an−1x

n−1 = 0, where the coefficient of the highest order term must

be non-zero, gsl poly complex solve, was chosen for this study because it allows us to

explore the temporal behaviour with varying integer input sizes. By using balanced-QR

reduction of the companion matrix to compute the roots of the general polynomial, this

root finding routine returns GSL SUCCESS if all the roots are found; otherwise, the error

handler is invoked with an error code of GSL EFAILED [98] (as shown in the code fragments

of Appendix A.1).

In particular, the routine finds all of the real roots of a given polynomial by using an it-

erative method, i.e. the QR algorithm, to compute the eigenvalues of a companion matrix

[102]. The reason is that, in the context of linear algebra, the eigenvalues of a matrix are

considered (approximately) equivalent to the roots of the characteristic polynomial [103].

There are two main steps involved to determine such eigenvalues: 1) forming the compan-

ion matrix associated with the input polynomial, and then 2) computing the eigenvalues

of this non-symmetric matrix by using a matrix balancing technique and followed by the

QR iteration method [104].

4The GSL used in this thesis is version 2.1, while the current one (as of September 2017) is version 2.4
(released on 19 June 2017).
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QR Algorithm As the name suggests, the basic idea of QR method is to perform a

QR factorisation (also called a ‘QR decomposition’), which is a technique to decompose

a (complex) square matrix A into a product of an orthogonal matrix Q and an upper

triangular matrix R [105]:

A = QR (3.1)

In linear algebra, a matrix Q is orthogonal if its transpose is equal to its inverse, i.e.

QT = Q−1 [105]. It is also necessary that matrix Q is invertible (Q−1 = QT ), unitary

(Q−1 = Q∗) and therefore normal (Q∗Q = QQ∗) in the reals [105]. Accordingly, matrix A

can be transformed as follows [106]:

A = RQ = Q−1QRQ = Q−1AQ = QTAQ (3.2)

By reversing the order of multiplication product of Q and R and eliminating R, thus:

RQ = Q∗AQ (3.3)

and since Q∗AQ is a similarity transformation of A, RQ has the same eigenvalues as A

[107]. Based on this principle, the QR method computes the eigenvalues of matrix A by

generating a sequence of matrices Ak initiated with A0 = A and given by:

Ak = RkQk (3.4)

where Qk and Rk represent the QR factorisation of Ak−1 [107], so that:

Ak−1 = QkRk (3.5)

This process repeats for k-th iterations until the matrix RkQk converges to an upper

triangular matrix, such that we can eventually read off the eigenvalues from the diagonal

[107].
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Worst-Case Analysis According to the QR decomposition, different coefficients might

require a different number of iterations for the routine to find the roots of a corresponding

polynomial equation. As a result, the root-finding routine takes different times on different

coefficient vectors. The worst-case scenario of polynomial root-finder can happen when a

particular coefficient vector causes the greatest number of steps required for convergence

of the QR algorithm. Note that the QR function presented in Listing A.2 of Appendix A.1

does not always guarantee convergence as the maximum number of iterations is given at

120, if any further iteration is required, the error handler will be invoked to inform that

the QR reduction does not converge.

3.3.2 Sorting Algorithms

Over approximately 80 per cent of all processing cycles are accounted for by sorting [108].

A sorting routine is required in many applications, such as presenting the results from data-

base queries, compiling a list of business investments with associated risk-reward measures

and figuring the company payroll [108]. Although much processing time nowadays is spent

on graphical interfaces, visualisation processing and video games, sorting remains a vital

part of the computation [108].

Sorting functions are also usually included in libraries. For example, the GNU C

library (glibc), which is the core library function for GNU/Linux systems, provides qsort

(quicksort algorithm) as a standard library function for sorting [109], whereas GSL uses

the heapsort algorithm for all its sorting functions (e.g. gsl heapsort and gsl sort) [98].

Quicksort and heapsort are commonly used by the libraries because they are asymptotically

efficient with average time complexity (and also worst-case complexity) O(n log n).

In this research, however, a number of Pthreads-based sorting algorithms used in

the courses relevant to parallel programming from academic institutions were chosen.

(Algorithmic efficiency is not a requirement.) The parallel sorting routines include bubble

sort [110], shell sort [111], quicksort [111] and merge sort [112].

These parallel sorting algorithms, which sort numbers in ascending order, are designed

based on general-purpose decomposition techniques, i.e. data decomposition and recursive

decomposition, to split the computations to be performed into a set of tasks for concurrent

execution. It is, however, not always guaranteed that a given decomposition can lead to

the best parallel algorithm for a given problem [113].
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Bubble Sort An example of a bubble sort used as a benchmark here is implemented

in a parallel manner by using a data decomposition design on the odd-even transposition

sort algorithm as presented in Listing A.3 of Appendix A.2.

Generally, an odd-even transposition sort, which is an exchange sort related to bubble

sort, functions by comparing adjacent pairs of items and exchanging them if they are

found to be out of order relative to each other [114]. However, during different phases

of the sort, rather than one at a time comparing adjacent elements in the same way as

in simple bubble sort, the odd-even transposition sort compares disjointed pairs by using

alternating odd and even index values [108], as illustrated in Figure 3.6.

In particular, decoupling the compare-swaps is the key to the algorithm, i.e. all of the

compare-swaps in a single phase (either the odd or even phase) can concurrently occur

[114].

In a parallel version of the odd-even sort, data decomposition can additionally be

applied to the sorting algorithm by dividing the array into chunks in order to form in-

dependent data chunks for threads [108]. The number of chunks directly depends on the

given number of threads as every single thread is assigned to a particular chunk.

Shell Sort A concurrent shell sort illustrated in Listing A.4 parallelises the sorting by

modifying the sequential algorithm code to be able to sort an h-partition all at once.

A sequential shell sort typically breaks the original array into a number of smaller sub-

lists, each of which is then sorted by using an insertion sort [108]. In particular, instead of

breaking the array into sub-lists of contiguous items, each sub-list is created by using an

increment h (sometimes also called a ‘gap’ or ‘interval’ or ‘partition’) to choose all items

that are h items apart [108].

0 1 2 3 4 5 6 7 8 9

2 −1 3 9 7 6 −4 −5 8 10

2 −1 3 7 9 −4 6 −5 8 10

−1 2 3 7 −4 9 −5 6 8 10

Odd phase

Even phase

Figure 3.6: Serial odd-even transposition sort
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Figure 3.7 shows an example of a shell sort with an increment of three (h = 3).

Accordingly, there are three sub-lists (i.e. N/h = 10/3 = 3) for this pass, and then each

of the sub-lists can be sorted by the insertion sort.

After completing insertion sorts in the first pass, shell sort algorithm continues the

process by decreasing the value of h on every consecutive pass until h = 1, where it

becomes a standard insertion sort.

In practice, an initial gap should start out much larger for larger arrays [115]. However,

it is difficult to decide which the ‘perfect’ gap sequence to use since if there are too few

gaps, it will slow down the passes, whereas if there are too many gaps, it will produce an

overhead [115].

In Listing A.4, the sorting uses a gap sequence based on the reverse form of Knuth

sequence, which is generated by the recursive expression h = 3 ∗ h + 1, where the initial

value of h is 1 [116]. Also, it takes advantage of data decomposition by independently

doing an insertion sort on each sub-list of an entire h-partition before going to the next

pass [108].

Quicksort A parallelising divide-and-conquer algorithm of quicksort, which is presented

in Listing A.5, deploys a recursive decomposition design to divide the problem into a set

of independent sub-problems, each of which can be executed on different cores.

0 1 2 3 4 5 6 7 8 9

2 −1 3 9 7 6 −4 −5 8 10

2 −1 3 9 7 6 −4 −5 8 10

2 −1 3 9 7 6 −4 −5 8 10

2 −1 3 9 7 6 −4 −5 8 10

−4 −5 3 2 −1 6 9 7 8 10

Sub-list 1

Sub-list 2

Sub-list 3

After sorting
sub-lists

Figure 3.7: Serial shell sort with h = 3
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A serial quicksort is naturally implemented as recursive procedures. It begins by

choosing an element from the unsorted array as a pivot [108]. There are many different

ways of picking the pivot and partitioning.

The algorithm’s performance is greatly affected by the specific implementation scheme

[117]. The algorithm in Listing A.5 is implemented based on Hoare’s partition scheme

[118]. In Figure 3.8, as well as in Listing A.5, for example, the first element is always

picked as the pivot. Then, it partitions the given array around the picked pivot by moving

elements to either side of the pivot, depending on the elements’ relation to the pivot value

[108]. The ones that are less than or equal to the pivot are on the left while the others are

on the right. The above steps are recursively and separately applied to both sub-arrays

until the base case of the recursion is reached, i.e. the arrays of size zero or one [116].

As shown in Listing A.5, the recursive decomposition is done by assigning an independ-

ent task to a specific thread. In particular, via a single-slot buffer, thread 0 works on a

recursive partitioning task, while thread 1 does a sequential quicksort on those partitioned

sub-arrays [119].

0 1 2 3 4 5 6 7 8 9

2 −1 3 9 7 6 −4 −5 8 10

−5 −1 3 9 7 6 −4 2 8 10

−5 −1 3 9 7 6 −4 2 8 10

−5 −1 2 9 7 6 −4 3 8 10

−5 −1 −4 9 7 6 2 3 8 10

−5 −1 −4 2 7 6 9 3 8 10

Pivot

Partitioned
left sub-array

Partitioned
right sub-array

After
partitioning

Figure 3.8: Serial quicksort
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Merge Sort The parallelised merge sort (shown in Listing A.6) is based on a recursive

decomposition design that recursively makes two child threads, i.e. one for the left half

and another for the right half.

In the sequential version, based on a top-down implementation as depicted in Fig-

ure 3.9, merge sort recursively splits the unsorted list into sub-lists until sub-list size is

one, which is considered sorted [117]. Then, it merges the sub-lists to produce newly

sorted sub-lists until there is only one sub-list remaining [117].

For the concurrent version, every two threads are assigned to the available cores in

order to perform merge sort for the left and right sub-lists as presented in Listing A.6.

Worst-Case Analysis Regarding the description of sorting algorithms above, the dif-

ferent numbers of comparisons and swaps may be involved to complete the sorting with

a particular input list. In other words, it takes different execution times for variant lists.

The worst-case scenario of these comparison-based sorting algorithms can occur when a

particular order of elements requires the maximum number of comparisons and swaps to

sort. The worst case of each parallel sorting is distinctive owing to its particular algorithm

implemented.

0 1 2 3 4 5 6 7 8 9

2 −1 3 9 7 6 −4 −5 8 10

2 −1 3 9 7 6 −4 −5 8 10

2 −1 3 9 7 6 −4 −5 8 10

2 −1 3 9 7 6 −4 −5 8 10

2 −1 3 9 7 6 −4 −5 8 10

−1 2 3 7 9 −4 6 −5 8 10

Start splitting
a list

Start merging
sub-lists

Figure 3.9: Serial merge sort
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In bubble sort, for example, the input data that is in the reverse order will lead to the

worst-case scenario [120]. In particular, starting with the highest value, the first element

will be swapped with every other element down the list until it is in the last position

and, consequently, N − 1 comparisons of adjacent values are required [120]. For the next

successive passes, the number of comparisons is gradually reduced by one in each pass.

The process repeats until the list sorted.

For shell sort, its performance not only relies on insertion sort used in each sub-

list but also the choice of the increment sequence which affects the order of elements in

each sub-list [120]. Therefore, the worst-case scenario of shell sort can arise when the

input data is in the sequence in accordance with [121]. For instance, given N = 8 and

h = {5, 3, 1}, so the worst-case permutation of the sorted list {1, 2, 3, 4, 5, 6, 7, 8} would

be {8, 5, 2, 6, 3, 7, 4, 1}, which takes the maximum number of 19 swaps [121], whereas the

reverse order, i.e. {8, 7, 6, 5, 4, 3, 2, 1}, requires only 10 swaps.

In the case where a pivot is the first element of the list, the worst-case behaviour of

quicksort would appear when such list is either already sorted or in the reverse order [120].

Since in each pass the pivot element is either the smallest or largest one, after partitioning

the array, there is no element in one sub-array and N − 1 elements in the other [120].

As a result, at each recursive call, only one element could be removed from the list and

consequently maximises the number of comparisons [120].

In case of merge sort, the worst-case scenario happens if, in every merging of sub-lists

A and B, the elements of A and B are interleaved based on their value [120]. Since, in each

comparison, one element from either A or B will be moved into a sorted list C, the total

number of comparisons is NA +NB − 1. For example, the worst-case permutation of the

sorted list {1, 2, 3, 4, 5, 6, 7, 8} would be {5, 1, 7, 3, 6, 2, 8, 4}, which needs 17 comparisons,

while the reverse order takes 12 comparisons.

For further details on sorting algorithm analysis, the reader may refer to [115, 120].

73



Chapter 3: Direct Optimisation

3.4 Preliminary Analysis

In the literature, it is broadly acknowledged that a good initial parameter setting po-

tentially has more chance of being successful in applying a metaheuristic technique to

a concrete problem [50]. On the other hand, parameter tuning is a tedious and time-

consuming task [50]. To reduce such the task, several attempts have been made and are

widely called ‘automatic parameter tuning’ [122] and ‘adaptive metaheuristics’ [50], which

however are not the main objective of the research. In this study, therefore, the metaheur-

istic parameters were set to the values that are generally used and suggested by [51, 85].

Accordingly, Tables 3.2 and 3.3 list the parameter settings of metaheuristics used in this

chapter, as well as in Chapter 4.

3.4.1 Number of Runs

Beside the metaheuristics’ parameters, the number of runs is also an important one as it

may affect the trajectory of the search. Particularly, in order to obtain a more precise

fitness value of each test case, rather than using a benchmark’s execution time from a single

run as a cost function, each test case is instructed to repeatedly run with the benchmark for

a number of times and median of these runs is instead used to represent the benchmark’s

fitness function. The median is used because it is not affected by extremely large or small

on their values [123] (or, in other words, to eliminate noises from the collected data). For

proof of concept, we simply need a reliable cost function. Thus, the median empirically

determined measurement suffices. Other measures are not precluded.

We first performed a preliminary assessment to identify a proper number of runs to

be used for the whole study. In this way, a GA was executed by using default parameter

values (as presented in Table 3.2) and with four different numbers of runs (i.e. 50, 100,

1,000 and 10,000, respectively) to find a set of five coefficients that maximise the execution

time of the polynomial root-finder for the general quartic equation.

The effect of taking a median from the different numbers of runs over 101 generations

(i.e. a hundred generations plus an initial generation) of GA is illustrated in Figure 3.10.

Note: each marker on a line represents the global best fitness value so far along the way

of the search process.
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Figure 3.10: Results obtained by GA to the quartic equation with different numbers of

runs

The results shown in Figure 3.10 indicate that a 100 is a proper number of runs to be

used to get the median since it led the search to discover test vectors that produce the

better result, i.e. a longer execution times of the polynomial solver, compared to others.

Also, a hundred runs used a shorter computational time in comparison with 1,000 and

10,000 runs; it took a ten and a hundred times shorter, respectively.

3.4.2 Stopping Criterion

In addition to the number of runs, a stopping criterion is also an important factor that

not only affects the search result but also directly affects the computational time used

to perform the metaheuristic search algorithm. We conducted a preliminary analysis to

determine a suitable value for the stopping criterion within an acceptable computational

time, e.g. there is neither an improvement of the search process for a prolonged period

nor a significant difference in the results compared to the time that the algorithm spent.

In this research, the number of evaluations was used as a terminal condition.

To this end, we again initially run GA to generate test vectors of length five for a

polynomial root finder with the same default parameter setting as in Section 3.4.1 (but

with a different random seed). Since GA is a population-based approach, its number of

evaluations is calculated by multiplying a population size by the number of generations.
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However, rather than finding both the suitable population size and generations, we

fixed the population size to 100 as it is sufficiently diverse for each generation of the GA

search process to evolve its solutions in the population. We then only focused on determ-

ining an appropriate number of generations. In this manner, the number of generation for

GA was set to 1,001 and subsequently the total number of evaluations is 100,100. The

best fitness value of each generation is plotted in a graph as shown in Figure 3.11.

The graph in Figure 3.11 reveals that, during the search for finding temporal test

vectors, GA was fluctuated at the beginning and then it was roughly stable after the

generation of the sixties. Also, the global best fitness values (of approximately 83,500 ns)

appeared between generations 61 to 63. After that, it jumped to the execution times at

around 52,000 ns in the 95th generation and kept almost steady (as shown in a zoom-in

view) until it slightly increased again to about 53,000 ns at the 861st generation.

Therefore, we decided to use 101 as the proper number of generations (or particularly

10,100 evaluations) because the global best fitness values were found in the early stage of

the search, and there was very little progress after such generation.
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Figure 3.11: Best fitness values over 1,001 generations of GA
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3.5 Experiment I—Single-Threaded Routine

3.5.1 Objectives

Although legacy code cannot take advantage of this computing power, it is interesting to

examine the temporal behaviour of such sequential code on a multicore environment, as

well as to assess the effectiveness of metaheuristics on this instance of temporal testing.

In this experiment, we apply metaheuristic algorithms to search for test inputs that might

cause a single-threaded routine, i.e. finding the roots of a polynomial equation, running

on the COMX-P4080 board to violate performance timing requirements.

Note that the use of a single core of a multicore chip is actually considered a feasible

proposition in some critical environments. When this approach is adopted, the aim is

to make the execution as much like a single core chip as possible. Arguing the safety

of such operation may well be simpler. (The application must, however, not need the

enhanced compute power multicore use provides.) Therefore, the problem statement in

this experiment is:

Problem Statement: For a polynomial equation of the form a0 + a1x+ a2x
2 + . . .+

an−1x
n−1 = 0, we seek values of the coefficients (a0 to an) that maximise the execution

time of the polynomial solver.

Accordingly, the research questions addressed are:

Research Question 1: Among the metaheuristics, which technique is the best for

seeking values of the coefficients that maximise the execution time of the polynomial solver?

Research Question 2: Are metaheuristics effective in seeking values of the coeffi-

cients that maximise the execution time of the polynomial solver?

3.5.2 Preparation

In this chapter (and the rest of the thesis), the int type was primarily concerned for

all experiments. The range of the input data was given, from −32,768 to 32,767; this

equals to a 2-byte signed range of an integer data in C programming language. Note

that the storage size for the int type on the COMX-P4080 development board is 4-byte

though. The polynomial root finding algorithm was executed with 5, 7, 9 and 11 inputs

(i.e. coefficients), respectively.
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Since a representation used in this search problem is an integer vector, the number of

all possible solutions of each problem input size is calculated by raising the total number

of integers between −32,768 and 32,767 to the power of an input size: 65,536n, where n

is the number of arguments or the size of integer inputs. The domain cardinality of each

size of integer inputs is summarised in Table 3.1.

The algorithm parameter settings used in this experiment are listed in Tables 3.2

and 3.3. In particular, the population size was defined at 100 individuals over 100 gen-

erations (plus the initial generation) for GA. Some predefined genetic operators for GA,

such as crossover and mutation, on the ECJ toolkit were also used.

In particular, the VectorCrossoverPipeline, which is a typical crossover operator

for vector individuals, was used together with a uniform crossover5 with the crossover

probability (Pc) of 0.5. Every gene in a genome of the parents is crossed over independently

with such certain probability. Besides, the VectorMutationPipeline, which is a common

mutator for vector individuals, was used with the mutation probability (Pm) of 0.05. Each

gene of an individual is then mutated with such probability.

Furthermore, in order to choose any two parents in the population for the crossover

operator, a tournament selection was used as the primary selection technique for GA with

a default tournament of size two [51, 85]. Elitism was also included to GA in order to

allow the search to be more exploitative. The number of elite members was defined at 10

per cent of the population size (or ten individuals here). So, the best individuals from the

previous population are kept around in future populations by directly injecting them into

the next population [51].

Table 3.1: Domain cardinalities of the input arguments under consideration for the

polynomial root-finding routine

Data type Arguments Input range Cardinality

int 5 −32,768 to 32,767 65,5365

int 7 −32,768 to 32,767 65,5367

int 9 −32,768 to 32,767 65,5369

int 11 −32,768 to 32,767 65,53611

5The VectorCrossoverPipeline also supports other crossover types, such as one-point and two-point
crossovers.
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Table 3.2: Parameter settings for metaheuristic search algorithms

Algorithm

Parameter HC SA GA

Generations 10,099 10,099 101
Population size 2 2 100
µ 1 1 -
λ 1 1 -
Pc - - 0.5
Pm 0.1 0.1 0.05
Tournament size - - 2
Elitism - - 0.1
Evaluations 10,100 10,100 10,100

Table 3.3: Parameter settings for SHC (Experiment I)

Arguments

Parameter 5 7 9 11

Generations 1,011 723 562 460
Population size 2 2 2 2
µ 1 1 1 1
λ 10 14 18 22
δ 50 50 50 50
Pm 0.1 0.1 0.1 0.1
Evaluations 10,102 10,110 10,100 10,100

In addition, as illustrated in Tables 3.2 and 3.3, the resource usage, i.e. timing spent

for performing each algorithm, was controlled by specifying the parameters of algorithms

in the way that they could take almost the same number of evaluations. Accordingly, the

total number of evaluations for GA, which is 10,100 (as a result of the preliminary analysis

in Section 3.4.2), was used as our desired amount of evaluations; this takes approximately

three hours to complete its search process of each run.

In cases of HC and SA, therefore, the number of generations was given at 10,099. Based

on their population size of two, i.e. one for a parent (µ) and the other one for a child (λ),

their initial generation will perform two evaluations for their two initial random generated

individuals. So that, one of them will later be a survived parent (or a current solution)

for the next generation. Then, an evaluation will be performed once per generation to

evaluate a newly generated child (or a candidate solution).
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For SHC, however, the number of generations and λ are varied depending on the

genome size (or a test input size) for a problem as shown in Table 3.3. Recall that, in

Section 3.2.1, λ is double the size of the genome. Besides, in ECJ, a population size of

(µ + λ)–ES can be initialised for its initial generation with any size, and then the size

will be automatically changed and equal to µ + λ for the next generations [85]. Also, an

evaluation is required only once for each candidate solution. In addition, δ was given at

50, as we desired the SHC to be a bit more exploitative.

3.5.3 Method

In order to perform this empirical work, each metaheuristic algorithm was executed with

each problem input size of the polynomial function ten times. We will refer to each

execution of the algorithm as a trial. Each trial was provided with a different seed. In

particular, the number of trials was specified to the ECJ’s jobs parameter, and an initial

seed, which is a Pseudorandom Number Generator (PRNG) obtained from random.org,

was specified to the ECJ’s seed.0 parameter. Based on the job function of ECJ, the initial

seed is given to the first job (job.0), and then the ECJ will automatically generate seeds

for the rest (job.1 to job.9) by incrementing the given initial seed. The initial seeds in

this empirical experiment are summarised in Table 3.4.

Table 3.4: Initial seeds of metaheuristic algorithms for different input arguments of the

polynomial root-finder (Experiment I)

Arguments

Algorithm 5 7 9 11

SHC −16,424 −7,434 25,919 −20,920
HC 24,359 −18,192 11,984 20,253
SA 15,122 −20,872 −26,947 −6,722
GA −25,510 22,960 31,954 −31,171
RS 12,301 15,625 28,866 23,782
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3.5.4 Results

The results in this experiment are as follows:

From Figures 3.12 to 3.15, each bar chart shows the differences between the initial

and the final (best) fitness values gained from ten trials of each metaheuristic algorithm

on stressing the GSL’s polynomial routine with the different number of input arguments,

i.e. 5, 7, 9 and 11, respectively. Particularly, the darker bar represents an initial fitness,

whereas the lighter bar represents the best fitness. The percentage improvement is given

on the tip of the lighter bar.

In each box-and-whisker plot of Figure 3.16, a box depicts a distribution of the best

fitness values obtained from ten trials of each metaheuristic approach to stress the poly-

nomial solver with a particular number of input arguments. In particular, the bottom and

top of the box are the first and third quartiles, and the band inside the box is the median.

Also, the box’s whiskers indicate variability outside the upper and lower quartiles, such

as extreme fitness values.

Table 3.5 summarises the most extreme execution time among ten trials of each al-

gorithm. The result of the best performer for each problem input size is marked by a

dagger (†), and the result of the worst is marked by an asterisk (∗).

3.5.5 Discussion and Conclusions

Research Question 1 In order to answer the first research question, we compared

the effectiveness of the four metaheuristic methods on the ability to seek values of the

coefficients that maximise the execution time of the polynomial solver.

According to Figures 3.12 to 3.15, in comparison with other techniques, there was a

very small improvement in finding temporal test inputs that maximise the execution time

from SHC. Only a few trials clearly gave an improvement, such as the seventh trial of the

problem size of 9, and the first, fifth and seventh trials of the problem size of 11. SHC

seems to have difficulty escaping local optima.

To further describe the situation of getting stuck on local optima of SHC, let’s consider

Figure 3.12a, for example, where the first trial gave the lowest improvement rate at 0.28

per cent among the others, while the fifth trial made the highest improvement rate at 4.82

per cent. Accordingly, we plotted line graphs to display the global best fitness values from

the beginning to the end of the SHC search process on these two trials as illustrated in

Figure 3.17.
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Figure 3.12: Results of 10 trials obtained by each metaheuristic algorithm to the quartic equation
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Figure 3.13: Results of 10 trials obtained by each metaheuristic algorithm to the sextic equation

82



3.5
E

x
p

erim
en

t
I—

S
in

gle-T
h

read
ed

R
ou

tin
e

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0
.0
2
%

0
.2
6
%

0
.3
4
%

0
.3
3
%

0
.3
3
%

0
.2
6
%

1
7
.6
8
%

0
.2
7
%

6
.7
4
%

0
.2
9
%

Trial

Initial fitness Best fitness

(a) SHC

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

9
1
.7
9
%

8
4
.8
9
%

1
7
0
.1
9
%

2
9
8
.1
7
%

2
2
0
.0
7
%

2
0
7
.2
5
% 2
7
6
.2
4
%

2
2
4
.8
6
%

2
4
3
.0
9
%

9
9
.6
0
%

Trial

Initial fitness Best fitness

(b) HC

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

6
7
.7
1
%

1
2
5
.1
3
%

3
0
6
.5
9
%

4
7
.5
8
%

2
3
7
.1
5
%

1
6
6
.3
3
%

3
1
0
.6
3
%

2
2
0
.2
9
%

4
1
0
.7
5
%

1
3
2
.0
9
%

Trial

Initial fitness Best fitness

(c) SA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

3
4
.6
9
%

2
8
.6
7
%

1
3
3
.3
8
%

8
2
.0
8
%

1
0
6
.0
4
%

1
0
6
.9
8
%

8
3
.0
6
%

8
8
.8
3
%

6
1
.3
4
%

4
5
.9
4
%

Trial

E
x
ec

u
ti

on
ti

m
e

(n
s)

Initial fitness Best fitness

(d) GA

Figure 3.14: Results of 10 trials obtained by each metaheuristic algorithm to the octic equation
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Figure 3.15: Results of 10 trials obtained by each metaheuristic algorithm to the decic equation
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Figure 3.16: Distribution of the best fitness values of 10 trials of each metaheuristic

algorithm on the polynomial equation formed a0 + a1x+ a2x
2 + . . .+ an−1x

n−1 = 0

Table 3.5: Summary of the highest fitness value of 10 trials of each metaheuristic al-

gorithm over different input arguments for the polynomial solver

Arguments

Algorithm 5 7 9 11

SHC 33,980∗ 64,984∗ 131,467∗ 307,227∗

HC 134,449 355,198† 394,979 600,362
SA 171,629.5† 326,249 500,971† 612,587.5†

GA 75,917 243,980 311,219 410,202
RS 66,978 204,990 317,108 558,421.5

∗The worst performer. †The best performer.
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Figure 3.17: Results obtained by SHC to the quartic equation in the 1st and 5th trials

Both of the line graphs in Figure 3.17 reveal evidence that the global best fitness value

improved at the early stage of the search for a while and then it stopped improving. It is

due to the overly-restrictive neighbourhood that does not allow any improvements to be

found one hop away. Although SHC allows a big jump to a new area when there is no

improvement in its current neighbourhood (as indicated in line 4 of Algorithm 3), it still

has less chance of escaping from a local optimum in comparison with HC, where it is more

flexible to jump to anywhere over the space, at the same number of evaluations.

Furthermore, as illustrated in Figures 3.12 to 3.15, GA regularly started its initial

fitness with a higher value compared with other techniques. The reason is that it is a

population-based approach; therefore, it gets more chance to select the best candidate

solution from its population.

On the other hand, the two single-solution based metaheuristics, i.e. HC and SA,

usually began the search process with a low fitness value, which is similar to SHC, but

both of them delivered more desirable fitness value at the end, as depicted in Figures 3.12

to 3.15.
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In addition, Figure 3.16 shows that, in almost all cases, the final fitness values among

ten trials of SHC were very low and close to each other, except for the problem input size of

11, where there were slightly varied between the trials, and the extreme values appeared.

On the contrary, the distributions of trials’ best fitness from HC and SA fluctuated wildly

in all cases, but overall they performed very well as displayed by the whiskers on seeking

values of the coefficients that heighten the routine’s execution time. Although GA was

largely capable of stressing the polynomial solver and gave better results than SHC, it was

inferior to HC and SA in all the cases.

Research Question 2 The second research question is answered by comparing the

metaheuristic techniques with RS. We executed RS for the same number of evaluations at

10,100. As shown in Table 3.5, the longest execution time among ten trials of RS was worse

than the ones of SA and HC in all the cases, but better than the ones of GA in problem

input sizes of 9 and 11. SHC was the worst in all cases to seek values of coefficients that

maximise the polynomial solver’s execution time. SA substantially outperformed other

techniques, excepting the problem input size of 7, where HC was superior.

Regarding the best fitness values (the ones marked by †) shown in Table 3.5, the

coefficients that produced such extreme execution times of the polynomial solver, as well

as the number of iterations required for each of them, are listed in Table 3.6.

As shown in Table 3.6, these coefficient vectors maximised the number of QR iterations

for convergence as earlier described in Section 3.3.1. For instance, in the quartic equation,

the initial vector (i.e. 30,166; 15,894; 23,950; −15,881 and −2,509) took 17,960.0 ns to

execute the polynomial root-finding function as only six QR iterations is needed. The

best vector shown in Table 3.6, on the other hand, took 171,629.5 ns since it repeated the

use of QR refactorisation 59 times.

Table 3.6: Best values of coefficients (Chapter 3)

Arguments Coefficient vector Iterations

5 21,508; 15,894; −22,267; −20,437 and 17,985 9

7 3,797; −24,011; 28,203; 26,154; −13,873; −6,095 and 2,622 71

9 26,880; 2,291; 23,227; 8,105; −12,774; 4,007; −29,306;
−8,575 and 20,905

72

11 −15,999; 18,598; 1,673; −23,003; −29,935; −10,917; 6,219;
6,246; 19,083; 8,416 and −16,062

52
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Another example is the decic equation, where the initial coefficient vector (i.e. 9,689;

18,598; 3,954; −23,003; −29,935; −444; −24,838; −30,125; 22,755; 8,416 and −16,062)

only causes 21 iterations to execute the function for 157,728 ns, whereas the best vector

presented in Table 3.6 requires 52 iterations, which took 612,587.5 ns. Besides, the problem

size also significantly impacts the execution time of the root-finding function as more

operations are invoked.

The approximate roots of polynomials, where their coefficients maximised the execu-

tion times of GSL’s polynomial root-finder function, are summarised in Tables B.1 to B.4

of Appendix B.

We further validated these best input arguments by rerunning them with the GSL’s

polynomial solver. In particular, each best coefficient vector was exclusively run on five

different COMX-P4080 boards 100 times. The aim of this validation is to show the vari-

ation in speed among the development boards. The execution times obtained by each

P4080 board are plotted in Figure 3.18.

Specifically, each box plot presents the distribution of 100 execution times obtained

by running each coefficient vector with the polynomial root-finder on each development

board. A (red) line crossing all boxes of each diagram indicates the actual best fitness

value gained from each experiment in this section.

According to Figure 3.18, there was almost no variation of execution times on each

development board in all the cases, as revealed by the Interquartile Range (IQR), which

was nearly close to zero, albeit only a few extremal values were found. Such midspreads

of all development boards were also nearly the same in each case. Furthermore, the actual

best fitness values are within the ranges of distributions over five different boards. In

the case of octic equation (n = 9), although the actual value was outside the midspread

and slightly higher than the upper quartile, the number of QR iterations achieved by the

actual experiment and this validation was identical at 72.
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Figure 3.18: Distribution of 100 execution times of polynomial solver with best input

arguments obtained from 5 P4080 boards (Chapter 3)
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3.6 Experiment II—Multi-Threaded Routines

3.6.1 Objectives

Ideally, a parallel program has great potential to get benefit from multicore processing.

However, as previously discussed in Section 2.1.4, interference may occur on this shared

component environment during execution and can affect the timing constraints of the

system. In this experiment, we apply metaheuristic algorithms to find temporal test

inputs that may trigger a multi-threaded routine, i.e. a sorting algorithm, running on the

COMX-P4080 development board, to violate performance timing requirements. Hence,

the problem statement in this experiment is:

Problem Statement: We seek sequences of values that maximise the execution time

of the sorting.

Accordingly, the research questions addressed are:

Research Question 1: Among the metaheuristics, which technique is the best for

seeking sequences of values that maximise the execution time of the sorting?

Research Question 2: Are metaheuristics effective in seeking sequences of values

that maximise the execution time of the sorting?

Research Question 3: Does the number of threads affect the execution time of the

sorting?

3.6.2 Preparation

As mentioned earlier in Section 3.5.2, this experiment also focused on the int type with

its range from −32,768 to 32,767. Each sorting algorithm was executed with two different

numbers of input arguments, i.e. 100 and 200, respectively. We decided to expand the

number of input arguments to the hundreds since it is adequate enough—not too small,

not too big—to be executed by a parallel sorting routine. The domain cardinality of each

size of integer inputs is summarised in Table 3.7.
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Table 3.7: Domain cardinalities of the input arguments under consideration for the

sorting routines

Data type Arguments Input range Cardinality

int 100 −32,768 to 32,767 65,536100

int 200 −32,768 to 32,767 65,536200

The algorithm parameter settings used in this empirical experiment are also the same

as in Experiment I (Section 3.5), as listed in Table 3.2. Again, for SHC, the number of

generations and λ depend on the test input size. The parameter setting of SHC in this

experiment is illustrated in Table 3.8.

3.6.3 Method

The methodology in this experiment is quite similar to the previous experiment described

in Section 3.5.3. It differs only in that we additionally aimed to investigate the effect

of threads on the execution time of the multi-threaded sorting routines as stated in the

last research question of this experiment. Therefore, each metaheuristic algorithm was

executed with each problem input size of each sorting function and with a given number

of threads for ten trials. The initial seeds, which are also procured from random.org, for

bubble sort, shell sort, quicksort and merge sort are summarised in Tables 3.9 to 3.11,

respectively.

Table 3.8: Parameter settings for SHC (Experiment II)

Arguments

Parameter 100 200

Generations 52 27
Population size 2 2
µ 1 1
λ 200 400
δ 50 50
Pm 0.1 0.1
Evaluations 10,202 10,402
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Table 3.9: Initial seeds of metaheuristic algorithms for different input arguments of

bubble sort

(a) 100

Thread(s)

Algorithm 1 2 3

SHC 25,049 −159 −19,509
HC −5,315 −30,808 −914
SA −6,540 −20,893 31,800
GA −1,046 −3,028 −31,600
RS 9,175 29,673 −24,378

(b) 200

Thread(s)

Algorithm 1 2 3

SHC 15,764 −4,326 7,920
HC −13,317 2,882 28,075
SA −28,268 11,296 15,458
GA −16,048 −3,199 5,809
RS 4,364 −5,413 −13,410

Table 3.10: Initial seeds of metaheuristic algorithms for different input arguments of

shell sort

(a) 100

Thread(s)

Algorithm 1 2 3

SHC −1,819 −30,387 31,768
HC −7,954 31,167 −19,256
SA 12,504 3,051 16,987
GA 12,119 −32,102 −5,037
RS −16,149 11,739 −27,807

(b) 200

Thread(s)

Algorithm 1 2 3

SHC −2,742 −24,005 17,706
HC −29,459 15,036 9,706
SA −29,760 −20,501 32,220
GA −10,193 −6,743 14,881
RS 24,223 −28,015 −13,788
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Table 3.11: Initial seeds of metaheuristic algorithms for different input arguments of

quicksort and merge sort

(a) Quicksort

Arguments

Algorithm 100 200

SHC 24,499 −14,056
HC −24,723 −11,419
SA −2,782 25,511
GA −24,139 32,463
RS 6,650 −30,041

(b) Merge sort

Arguments

Algorithm 100 200

SHC 4,541 8,372
HC 28,358 −17,393
SA −8,228 5,033
GA −30,053 6,812
RS 19,193 15,532

3.6.4 Results

The results in this experiment are presented in the same way as in the preceding exper-

iment. In particular, for each sorting algorithm, the bar charts illustrate the differences

between the initial and final fitness values achieved from ten trials of each metaheuristic

search on stressing it with a specific number of threads and input arguments, i.e. 100 and

200, respectively. As previously described in Section 3.3.2, for bubble sort and shell sort,

the number of threads was specified to be 1 to 3, whereas the thread numbers cannot be

assigned to quicksort and merge sort.

After that, the box-and-whisker plots are used to exhibit distributions among the

trials’ best fitness values of each metaheuristic method over different numbers of threads

and input arguments. Finally, the longest execution time amongst trials of each technique

is summarised in the tables.

For ease of reference, Table 3.12 below contains a summary of figures and tables, which

are relevant to the results of each multi-threaded sorting routine. (For an electronic copy,

the reader may use the hyperlinks provided within the table to simply access to a particular

figure or table.)

Table 3.12: Summary of figures and tables related to the results of each sorting routine

Routine Bar charts Box plots Tables

Bubble sort Figures 3.19 and 3.20 Figure 3.21 Table 3.13

Shell sort Figures 3.22 and 3.23 Figure 3.24 Table 3.14

Quicksort Figures 3.25 and 3.26 Figure 3.27 Table 3.15

Merge sort Figures 3.28 and 3.29 Figure 3.30 Table 3.16
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(c) SHC—3 threads
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(d) HC—1 thread
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(g) SA—1 thread
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(h) SA—2 threads
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(j) GA—1 thread
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(l) GA—3 threads

Figure 3.19: Results of 10 trials obtained by each metaheuristic algorithm to bubble

sort with 100 input arguments
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(b) SHC—2 threads
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Figure 3.20: Results of 10 trials obtained by each metaheuristic algorithm to bubble

sort with 200 input arguments
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Figure 3.21: Distribution of the best fitness values of 10 trials of each metaheuristic

algorithm on bubble sort with 100 and 200 input arguments
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Table 3.13: Summary of the highest fitness value of 10 trials of each metaheuristic

algorithm over the different number of threads of bubble sort

(a) 100

Thread(s)

Algorithm 1 2 3

SHC 455,695.5∗ 1,021,941.5∗ 2,011,617∗

HC 498,359.5† 1,065,114 2,024,320
SA 497,770.5 1,065,540.5 2,031,089.5
GA 496,420.5 1,069,218.5† 2,037,010†

RS 474,795.5 1,057,870 2,015,250

(b) 200

Thread(s)

Algorithm 1 2 3

SHC 1,625,372.5∗ 2,412,950∗ 4,269,500∗

HC 1,740,700 2,447,100 4,380,680
SA 1,741,974.5† 2,452,520.5 4,384,920†

GA 1,721,700.5 2,464,131† 4,373,701.5
RS 1,649,699 2,431,220 4,346,010

∗The worst performer. †The best performer.
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Figure 3.22: Results of 10 trials obtained by each metaheuristic algorithm to shell sort

with 100 input arguments
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Figure 3.23: Results of 10 trials obtained by each metaheuristic algorithm to shell sort

with 200 input arguments
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Figure 3.24: Distribution of the best fitness values of 10 trials of each metaheuristic

algorithm on shell sort with 100 and 200 input arguments
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Table 3.14: Summary of the highest fitness value of 10 trials of each metaheuristic

algorithm over the different number of threads of shell sort

(a) 100

Thread(s)

Algorithm 1 2 3

SHC 26,841∗ 79,450∗ 128,172
HC 34,279† 84,639† 127,417.5
SA 34,002 84,455.5 129,860†

GA 33,256 83,689 129,299.5
RS 28,481 79,988 123,396.5∗

(b) 200

Thread(s)

Algorithm 1 2 3

SHC 60,743∗ 106,100 166,040∗

HC 80,300 122,254.5† 175,816
SA 80,779† 119,858 174,062.5
GA 78,858 117,566 176,276.5†

RS 64,197 105,420∗ 166,087.5

∗The worst performer. †The best performer.
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Figure 3.25: Results of 10 trials obtained by each metaheuristic algorithm to quicksort with 100 input arguments
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Figure 3.26: Results of 10 trials obtained by each metaheuristic algorithm to quicksort with 200 input arguments
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Figure 3.27: Distribution of the best fitness values of 10 trials of each metaheuristic

algorithm on quicksort with 100 and 200 input arguments

Table 3.15: Summary of the highest fitness value of 10 trials of each metaheuristic

algorithm on quicksort

Arguments

Algorithm 100 200

SHC 71,375 102,942.5∗

HC 78,612.5 120,340.5
SA 76,774.5 126,864.5
GA 78,974† 128,062†

RS 70,744∗ 106,664.5

∗The worst performer. †The best performer.
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Figure 3.28: Results of 10 trials obtained by each metaheuristic algorithm to merge sort with 100 input arguments
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Figure 3.29: Results of 10 trials obtained by each metaheuristic algorithm to merge sort with 200 input arguments
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Figure 3.30: Distribution of the best fitness values of 10 trials of each metaheuristic

algorithm on merge sort with 100 and 200 input arguments

Table 3.16: Summary of the highest fitness value of 10 trials of each metaheuristic

algorithm on quicksort

Arguments

Algorithm 100 200

SHC 815,440.5∗ 830,370.5
HC 818,020 835,110†

SA 818,071 826,947∗

GA 818,599† 829,366.5
RS 818,444.5 827,390

∗The worst performer. †The best performer.
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3.6.5 Discussion and Conclusions

The first two research questions are answered through a comparison of the effectiveness

among the metaheuristics themselves, and a comparison of the effectiveness between the

metaheuristics and RS, respectively.

Research Question 1 The first research question is discussed below:

With regard to all the bar charts (presented in Figures 3.19, 3.20, 3.22, 3.23, 3.25, 3.26,

3.28 and 3.29), all single-point metaheuristic algorithms, i.e. SHC, HC and SA, began

with roughly the same performance on seeking sequences of values that maximise the

execution time of the sortings, whereas the temporal test inputs sought by a population-

based metaheuristic algorithm, i.e. GA, slightly caused a higher execution time. However,

at the end of the search process on the bubble sort, shell sort and quicksort, all of these

metaheuristic approaches gave likely the same improved execution times, except for SHC

that was trapped on local optima. Surprisingly, SHC broadly outperformed GA in the

case of merge sort as shown in Figures 3.28 and 3.29.

Additionally, in accordance with the box-and-whisker plots (depicted in Figures 3.21,

3.24, 3.27 and 3.30), the ability of each metaheuristic algorithm to search for the sequences

of values that maximise the execution time was divergent among the sorting routines.

In particular, among ten trials of each algorithm applied on the bubble sort, the final

fitness values of HC, SA and GA were approximately constant over different numbers

of threads, while the SHC’s fitness values were not only varying but also inefficient as

illustrated in Figure 3.21.

In cases of shell sort (presented in Figure 3.24) and quicksort (presented in Figure 3.27),

HC, SA and GA performed almost the same as in bubble sort in terms of stability. Yet,

there were some wide variations among trials in some cases, such as SA with the problem

size of 100 and 3 threads in shell sort (Figure 3.24e), HC with the problem size of 200

and 2 threads in shell sort (Figure 3.24d) and HC with both input sizes in quicksort

(Figures 3.27a and 3.27b).
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Compared with the other three approaches, SHC performed worse on seeking the

temporal test inputs in both bubble sort and shell sort, but it was exceptionally better

than SA and GA on average in the case of merge sort with the input arguments of 200 as

shown in Figure 3.30b. It was also able to seek the sequences of 100 values that escalate the

execution time of merge sort to be higher than those of GA as displayed in Figure 3.30a.

Research Question 2 The second research question is discussed below:

In this experiment, we also executed RS for ten trials with the same number of eval-

uations at 10,100 in order to compare its results with the metaheuristic methods. Ac-

cordingly, in Tables 3.13 to 3.16, either HC, SA or GA were predominantly capable of

seeking temporal test inputs that produce the longest execution time. Broadly, SHC and

RS fell behind that of the other techniques. For example, in bubble sort, SHC was the

worst and followed by RS in all cases as presented in Table 3.13. For merge sort, however,

RS surpassed HC and SA on the problem input size of 100, and SA was the worst on the

problem input size of 200 as shown in Table 3.16.

Overall, there was not much difference among these four metaheuristics in the ability

to search for temporal test inputs that maximise the execution time of the sorting due

to the large search space sizes of both problem input sizes as formerly summarised in

Table 3.7.

The input arguments that led to the best fitness values (the ones marked by † in

Tables 3.13 to 3.16) are listed in Tables D.1 to D.3 of Appendix D. As summarised in

Table 3.17, those best input arguments require the higher numbers of swaps/comparisons

than the initial test inputs. As a result, they took longer execution times for sorting.

Additionally, as previously described in Section 3.3.2, the worst-case permutation of

a particular sorting has its specific pattern or characteristic of the input sequence. Ac-

cordingly, we plotted line graphs to illustrate the patterns of the best input sequences as

shown in Figures 3.31 to 3.35. Explicit examples of the worst-case permutations are shown

in Figures 3.31a and 3.32a, where the sequences of the input arguments are nearly in the

reverse order, corresponding to the worst-case scenario of bubble sort.

Similar to Experiment I, we also validated these best sequences of arrays by rerunning

them with the parallel sortings in this experiment. Figures 3.36 to 3.38 depict distributions

of 100 execution times obtained by running the best sequences of arrays with sorting

routines on five P4080 development boards.
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Table 3.17: Summary of the numbers of swaps/comparisons of the best sequences of

values for sortings compared to the initial sequences

(a) Bubble sort (number of swaps)

Arguments Thread(s) Initial sequence Best sequence

100 1 4,345 6,319
2 4,072 4,455
3 4,276 4,974

200 1 14,658 23,626
2 15,496 19,314
3 15,915 16,535

(b) Shell sort (number of swaps)

Arguments Thread(s) Initial sequence Best sequence

100 1 501 972
2 527 887
3 467 638

200 1 1,134 2,280
2 1,130 1,958
3 1,237 2,134

(c) Quicksort (number of swaps)

Arguments Thread(s) Initial sequence Best sequence

100 145 161
200 336 355

(d) Merge sort (number of comparisons)

Arguments Thread(s) Initial sequence Best sequence

100 540 544
200 1,281 1,287
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Figure 3.31: Best sequences of 100-element arrays for bubble sort
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Figure 3.32: Best sequences of 200-element arrays for bubble sort
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Figure 3.33: Best sequences of 100-element arrays for shell sort
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Figure 3.34: Best sequences of 200-element arrays for shell sort
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(c) Merge sort—100 inputs

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

−30,000

−20,000

−10,000

0

10,000

20,000

30,000

Element of array

V
al
u
e
of

el
em

en
t

(d) Merge sort—200 inputs

Figure 3.35: Best sequences of 100- and 200-element arrays for quicksort and merge sort
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Figure 3.36: Distribution of 100 execution times of bubble sort with 100 and 200 best

input arguments obtained from 5 P4080 boards
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Figure 3.37: Distribution of 100 execution times of shell sort with 100 and 200 best

input arguments obtained from 5 P4080 boards
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Figure 3.38: Distribution of 100 execution times of quicksort and merge sort with 100

and 200 best input arguments obtained from 5 P4080 boards

Regarding Figures 3.36 to 3.38, overall, there was a small variation or almost no

variation of executions times on each P4080 board in almost all the cases, excepting the

case of quicksort with 200 input arguments, where the IQR was remarkably broad in all

development boards. Besides, among the boards, the IQRs were approximately equivalent

in general. As indicated by the (red) lines on the plots, the actual best fitness values were

mostly within the ranges of distributions, e.g. some were within the midspreads while

others were above. However, as illustrated in Figures 3.36a and 3.36b, the actual best

fitness values of the one-threaded bubble sort were significantly outside the distribution

ranges of execution times, even though the number of swaps was the same in both the

actual experiment and the validation.
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Unfortunately, since we only have the best fitness data, we could not further analyse

the issue in depth. As previously described in the experimental procedure (Section 3.2.3),

to reduce the possible overheads caused by write operations, only the median of 100

replicates, which indeed occurred during the experiment, is written into the output file.

Nevertheless, in terms of timing analysis, the actual WCET for a task must be at least as

long as any witnessed or measured execution time, as presented in Figure 2.6. The before-

mentioned experimental best fitness values are just a variation of the execution times of

the test inputs under consideration based on the execution environmental conditions at

the time the experiment was conducted.

Research Question 3 The third research question is discussed below:

Figures 3.19, 3.20, 3.22 and 3.23 display the distinction of execution times obtained by

different numbers of threads. The bar charts show that the execution time was approxim-

ately almost double-increased when the number of threads increased, which is not what

it is supposed to be. In other words, as the computational problem is broken apart into

discrete chunks of work that can be solved simultaneously, a parallel program is expected

to increase its performance when more threads are assigned to the cores.

Particularly, suppose we can equally divide the work of our parallel program among

the cores. Also, suppose that we run the program with p cores (one thread per each core),

and there is no additional work for the cores. Therefore, the parallel program will run

p times faster than the serial one. The parallel program is said to have linear speed-up

when:

Tparallel =
Tserial
p

(3.6)

where Tparallel is the parallel run-time and Tserial is the serial run-time [114].

In practice, however, we are unlikely to get linear speed-up since the use of mul-

tiple threads almost invariably introduces some overheads, which are influenced by factors

including bus contention, memory contention and cache coherence [124], as previously

presented in Section 2.1.4. For example, shared-memory programs (like our sorting bench-

marks), which their threads are partitioned and determined either at program creation

or as a runtime parameter, will almost always have critical sections [114]. Such critical

sections will require the use of some mutual exclusion mechanisms [114], such as mutexes,

condition variables and synchronisation barriers. The calls to these functions are over-

heads that are not present in the serial program, and the parallel program is forced by
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such synchronisation operations to serialise execution of the critical section.

It is also likely that the overhead will be increased as the number of threads is increased,

i.e. more threads will probably mean more accesses are obliged to a critical section [114].

Hence, it is often the case that:

Tparallel =
Tserial
p

+ Toverhead (3.7)

where Toverhead is the parallel overhead [114].

Moreover, Toverhead often grows more slowly as the problem size is increased [114]. Said

otherwise, the relative amount of time spent coordinating the work of the threads should

be less since there is more work for the threads to do [114]. It might be the case that the

small problem input size is the main reason for the odd results of this experiment.

Accordingly, we proved this assumption by running the benchmarks, i.e. bubble sort

and shell sort, with different sizes of problem inputs, including 50, 100, 200, 500, 1,000,

2,000 and 5,000, respectively. We also controlled this additional experiment by running

the sortings on the same P4080 machine and used the same test inputs generated from

random.org.

Furthermore, to remove noises as discussed in Section 3.4.1, we used a median of 100

runs to represent the execution time produced by a sorting function. Figures 3.39 and 3.40

illustrate the results of running each benchmark with the different specific number of

threads and problem sizes. (Raw data is presented in Appendix C.)

In Figure 3.39, the graphs show that with small problem sizes of 50, 100 and 200,

parallel bubble sort with more threads took longer execution time than with fewer threads.

But, when the problem size is large enough (e.g. 1,000 inputs), bubble sort with more

threads dramatically increased its performance as the execution time is lower than the

case of fewer threads. This situation also happened in the case of shell sort as depicted

in Figure 3.40; although the larger problem sizes than what we presented here may be

required to reveal a significant improvement of parallelism. (The experiment only shows

the impact of problem sizes and threads toward a tendency of execution times on parallel

programs.)

Therefore, it can be interpreted that shared component resources of a multicore plat-

form may cause interference and result in parallel overhead that is relatively larger than

the time spent on the threads themselves if the problem size is too small, and consequently

impact the execution time of a task.
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Figure 3.39: Execution times of bubble sort across various problem sizes with the dif-

ferent number of threads
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Figure 3.40: Execution times of shell sort across various problem sizes with the different

number of threads
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3.7 Summary

In summary, this chapter primarily examined the ability of metaheuristic algorithms to

seek temporal input arguments that maximise the execution time of a task running on a

multicore platform. Based on the computing power of multicore systems, tasks running on

them can be classified into single-threaded and multi-threaded tasks. Subsequently, in this

chapter, we separated empirical studies into two major experiments: Experiment I—using

metaheuristics to find temporal test inputs of a single-threaded function; and Experiment

II—using metaheuristics to find temporal test inputs of a multi-threaded function.

Overall, the results from both experiments demonstrate that single-solution based

metaheuristics, i.e. HC and SA, and population-based metaheuristic, i.e. GA, were able

to effectively find temporal test inputs of numerical functions, including single-threaded

polynomial root finder and multi-threaded sortings, in comparison with RS.

Particularly, in Experiment I, where the GSL’s polynomial routine was stressed with

various number of input arguments (i.e. 5, 7, 9 and 11, respectively) generated by the

metaheuristic optimisation algorithms, the results indicate that two single-point meta-

heuristics (i.e. HC and SA) surpassed the population-based metaheuristic (i.e. GA) for

seeking values of the coefficients that maximise the routine’s execution time. On the other

hand, SHC and RS were the worst and the second-worst performers, respectively. This

could be interpreted that SHC was probably too exploitative, while RS was probably

too explorative in finding the optimal temporal test inputs on the solution space of such

polynomial routine.

In addition, for the cases of larger search spaces of sorting routines with 100 and 200

input arguments in Experiment II, GA was largely found to perform best in several cases

and followed by HC and SA, respectively. However, in some cases, either SHC or RS

outperformed at least one-third of above-mentioned techniques. It could be pointed out

that, with the same number of evaluations for each metaheuristic method to search for

optimal temporal test inputs over the larger search space of a sorting routine, there was

no explicit outstanding approach, i.e. none approach much better than other.

Accordingly, one may increase the number of evaluations for the search algorithms in

the expectation that the longer execution times will be found; still, there is no guarantee

that the optimal temporal test inputs could be found as evidenced in Section 3.4.2, since

extreme execution times may be concentrated in small partitions of the large input space.
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Rather, it would be beneficial if we could reduce the input domain sampled to increase

the chances of inputs with extreme times being sampled. Therefore, in Chapter 4, we will

present a novel approach named ‘dependent input sampling strategies’, which can increase

the chances of inputs with extreme times being sampled by using a metaheuristic search

algorithm to generate parameterised random sampling regimes.
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Indirect Optimisation

4.1 Introduction

4.1.1 Overview

In this chapter, we shift the target of optimisation from test inputs to strategies for test in-

put generation. In particular, we target the generation of parameterised random sampling

regimes. Search is used to optimise the parameters of a class of such regimes.

The approaches of the previous chapter can be viewed as ‘direct’ (the test data is the

immediate or direct target of the searches) and we will use the term ‘indirect’ to describe

the search for test generation strategies (we search for artefacts which can then be used

to generate test data).

4.1.2 Motivation

The outcome of the empirical experimentation in the previous chapter demonstrates that

metaheuristic optimisation techniques, i.e. HC, SA and GA, are effective ways of reaching

extreme execution times for numeric routines running on an embedded multicore platform.

All of them were superior to RS when the search space was small. However, when the

problem space was larger, some of them were inferior to RS or even SHC in some cases.

Randomised testing is an important means of testing systems and is an important

benchmark for evaluating new approaches. The most common form of randomised testing

samples uniformly and independently from the domains of the inputs. Thus, if the input

domains are D1, D2, . . . , Dn, then each domain Di is sampled in turn to produce a test

vector (t1, t2, . . . , tn).
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When sampling the domain Di, all possible elements of that domain have the same

chance of being selected. This is what is meant by uniform sampling. Furthermore, the

sampling of one domain Di is not affected by any sampling of another domain Dj . This

is what is meant by independent sampling. This approach is simple, well understood and

often easy to implement; though where complex data types are involved, some subtlety

may be required.

In ECJ, for example, the ec.util.MersenneTwisterFast [85], which is the ECJ’s

random number generator, uniformly and independently samples a value at random from

a given input domain. More specifically, in Experiment I (Section 3.5), each element of the

test vector (a0, a1, a2, a3, a4) for a quartic equation of P (x) = a0 +a1x+a2x
2 +a3x

3 +a4x
4

was independently sampled from its own input domain Da0 , Da1 , Da2 , Da3 and Da4 ,

respectively. Each domain is a uniform distribution U(−32768, 32767).

However, it is far from clear that uniform independent sampling is the most effective

approach to discovering test data with extremal properties. Extreme execution times may

be concentrated in small partitions of the input space, as illustrated in Figure 4.1. Much

of the input space may give unexceptional execution times. It would be beneficial to

constrain in some way the sampled inputs to more productive regions in order to increase

the chances of inputs with extreme times being sampled. However, we generally cannot

identify such regions confidently.

Test vector

E
x
ec
u
ti
on
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m
e

Figure 4.1: Example of search space for test data with extremal properties
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Also, suppose that a program has two parameters and its execution incurs extreme

times when both parameters are large or when both are small. In a sense, one would want

to be able to recognise that a ‘good’ choice for the second parameter depends on what

value was sampled for the first. Thus, we may acknowledge that dependent sampling may

well offer a more efficient means of gaining appropriate test data in this case.

Accordingly, in this chapter, we investigate an approach that allows the restriction to a

subset of the input domain and which also allows the sampling distribution for a parameter

to depend on the sampled values of earlier parameters. The idea is to shift the target of

optimisation from the test inputs to strategies for test input generation. In particular, we

target the generation of parameterised random sampling regimes. A metaheuristic search

is used to optimise the parameters of a class of such regimes, which can then be used

to generate test data. Our proposed approach can be viewed as an indirect approach to

test data generation since the metaheuristic operates on the search space of parameterised

distributions.

4.1.3 Contributions

The contributions in this chapter are:

• Demonstration of how optimisation can be used to find a dependent input sampling

strategy (an approach for generating a test input from a subset of the input domain

and where the sampling distribution for a parameter is dependent on the sampled

values of antecedent parameters);

• Provision of empirical evidence to show that using the dependent input sampling

strategies discovered is a more effective way of sampling test inputs that will give

rise to extreme execution times for numerical functions running on an embedded

multicore system than a uniformly independent sampling approach.
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4.1.4 Chapter Outline

The structure of the remainder of this chapter is as follows:

In Section 4.2, a comprehensive description of the proposed approach, i.e. dependent

input sampling strategy, is presented.

Section 4.3 gives a preliminary assessment to clarify how particular parameter values

are preferred for carrying out the experiments throughout the chapter.

The viability and performance of the proposed approach with a basic interval for

extremal timing performance of a (single-threaded) numerical function are then demon-

strated in Experiment III (Section 4.4).

Experiment IV (Section 4.5) explores the performance of the approach with a fixed

delta interval, which is a fixed parameter value to specify the upper bound for intervals of

the input subdomains, for extremal timing performance of the numerical function.

Experiment V (Section 4.6) examines the performance of the approach with a random-

ised delta interval, which is a randomised parameter value sampled from a given range

to specify the upper bound for intervals of the input subdomains, for extremal timing

performance of the numerical function.

The results obtained by those three main experiments are altogether discussed in detail

in Section 4.7.

Finally, in Section 4.8, the results of the empirical research in Experiments III, IV and

V are summarised.
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4.2 Dependent Input Sampling Strategies

4.2.1 Definition

A priori, it is generally unclear what test inputs will give rise to extremal behaviour, and

it is far from clear that sampling uniformly and at random is a good way of discovering

test data with extremal properties. Our investigation of dependent approaches is based

on the assumption that sampling uniformly across a full domain is unlikely to be partic-

ularly efficient to reveal optimal test inputs in temporal test vectors. Two clear means of

improving efficiency suggest themselves: allowing subdomains to be sampled rather than

the full domain; and allowing such subdomains to be sampled non-uniformly.

Also, in many cases, there may be an implicit assumption that the sampled domain

is in some sense contiguous, e.g. integer values sampled from a single full domain of all

232 possible int values by Java’s nextInt() method. However, this again does not seem

essential. It would be perfectly possible (and implementation-wise quite easy to effect) to

have a sampling domain that was the union of two or more disjoint domains.

Specifically, we will not insist on whole domain sampling. The sampling subdomain

for any parameter will be a union of a number of domain sub-ranges, e.g. if the full

input domain is [−100, 100], we might have [−32, 17] ∪ [54, 98] as the domain sub-ranges

actually sampled. We would not know in advance which constituent intervals work best

but will seek to discover this as part of the search. We will not insist on subdomains being

disjoint. It is feasible that overlapping domain sub-ranges for a parameter may give better

results. We should, therefore, allow it and allow the search process to discover whether

disjoint or overlapping domain sub-ranges are best. Particularly, in order to sample from

the subdomain of a parameter, we first select one of its intervals (i.e. the domain sub-

ranges) in accordance with some probability distribution and then sample uniformly from

that selected interval. Hence, the probability of a value being selected depends on not

only the probabilities of intervals containing that value being selected but also the sizes of

those intervals. A value that is in the intersection of two intervals has a greater likelihood

of selection than a value that is in a single interval alone. For instance, it follows that

[0, 2]∪ [0, 2] gives rise to different sampling distribution than [0, 1]∪ [0, 2], even though the

overall sampled domain is [0, 2]. In the first, the three values (i.e. 0, 1 and 2) are sampled

with equal probability, whereas in the second the value 1 has the greatest chance of being

selected (assuming interval selection probabilities are non-zero).
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Moreover, we will also allow the sampling distribution of an input subdomain to depend

on the values of subdomains sampled earlier. For example, in regard to the example of

input domains for the test vector t1, t2, . . . , tn as previously described in Section 4.1.2, the

sampling distribution of D3 will depend on the sampled values (i.e. the selected domain

sub-ranges) of D1 and D2. More precisely, let dij be a domain sub-range of Di, so that a

finite union of sub-ranges of Di is:
n⋃

j=1

Dij (4.1)

The sampling of a parameter ti will depend on the specific intervals dij sampled for previous

parameters, rather than the exact values sampled from those chosen domain sub-ranges.

The overall sampling regimes can be seen as a tree.

Figure 4.2 shows an example of a tree representation of a sampling distribution for

a three-parameter (A,B,C) problem. For simplicity, we assume here that the sampling

domain for each parameter is the union of two sub-ranges as indicated above. In particu-

lar, we assume that the first parameter sampled A comprises two intervals [lA0 , uA0 ] and

[lA1 , uA1 ]. The weights wA0 and wA1 represent the relative chances of each interval of A

being selected. We will normalise these weights to get the specific probabilities of choos-

ing each of these intervals by using a histogram-based selection method—the proposed

algorithm listed in Algorithm 9.

Besides, at each level of the tree, we can see that similar sampling regimes are available

for the second parameter sampled B, and so on, but that separate regimes are in place

depending on whether the left or right branch was chosen for A. Accordingly, we named

the proposed approach ‘dependent input sampling strategies’.
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Figure 4.2: Example of a tree structure for a sampling distribution
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Algorithm 9: Histogram-based selection method

1: n← a given total number of intervals of each parameter
2: W = {w0, w1, w2, . . . , wn−1}, a set of weights
3: for all wi such that wi = 0 do
4: set wi = 1 � This imposes equal probabilities in this degenerate case
5: end for and avoids division by zero under normalisation below
6: total =

∑n−1
i=0 wi, a summation of weights

7: normalised← ∅, an initial set of normalised weights
8: cumulative← ∅, an initial set of cumulative weights
9: for i = 0 to n− 1 do

10: normalisedi = wi
total

11: if i = 0 then
12: cumulativei = normalisedi
13: else
14: cumulativei = normalisedi + cumulativei−1

15: end if
16: end for
17: index← 0, an initial index
18: r ← U(0, 1), a random number sampled from the uniform distribution
19: while r > cumulativeindex do
20: index = index+ 1
21: end while
22: return index

According to Figure 4.2, suppose that domain sub-ranges A0, B01 and C010 are selected,

respectively, as highlighted in green. Therefore, the test vector of the three-parameter

(A,B,C) problem will be sampled from such selected intervals, i.e. [lA0 , uA0 ], [lB01 , uB01 ]

and [lC010 , uC010 ].

Regarding the tree representation described above, given that I is a set of input para-

meters (or a test vector) for a given problem, |I| is the cardinality of I (i.e. the number

of tree levels) and c is the number of domain sub-ranges per each parameter.

Thus, the total number of all possible dependent domain sub-range sets for the problem

or sampling regimes (i.e. the number of tree paths), denoted P , is:

P = c|I| (4.2)

and the total number of all possible domain sub-ranges that can be sampled (i.e. the

number of tree nodes), denoted N , is:

N =

|I|∑
i=1

ci (4.3)
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For instance, in Figure 4.2, I = {A,B,C}, |I| = 3 and c = 2; so that P = 8 and

N = 14.

4.2.2 Implementation

Rather than the use of notable optimisation techniques to directly generate test inputs

in the same way as in Chapter 3, as well as in all the previous work in search-based

temporal testing, a candidate solution of such metaheuristic is used to construct a tree

representation of a sampling distribution for our novel approach. The test inputs are then

sampled from the dependent domain sub-ranges of any regime path of the constructed

tree.

To this end, we utilised the ECJ toolkit [81] to generate a solution genome, where its

elements are decoded to the associated parameters of the tree’s nodes, including intervals

and weights. The metaheuristic search will operate on evolving parameterised random

sampling regimes for our indirect approach. Beside the metaheuristics’ parameters for such

parameterised generation, to further manipulate the mechanism of the indirect approach

for sampling test data, three additional parameters are necessitated, i.e. the number of

sub-ranges, the type of interval and the number of sampling trials.

Number of Sub-Ranges A tree representation of a sampling distribution can be con-

structed in various hierarchical forms depending on the number of sub-ranges designated

to each problem parameter. The number of domain sub-ranges defines the diversity of

the approach over the search space of test inputs (exploration). Particularly, the higher

number of sub-ranges per each parameter induces the approach to explore the temporal

test data on more different places over the search space. In other words, there are more

paths of the tree to be selected for generating a test vector.

Type of Interval Regarding the tree structure described earlier, each node (or a sub-

range) comprises three elements, i.e. a finite lower and upper bounds of interval and

selection weight. Such sub-range forces the dependent approach to intensify over a small

partition of the input space (exploitation). The approach classifies the interval into three:

basic, fixed delta-based and randomised delta-based types, which will be presented later

in this chapter (Sections 4.4 to 4.6).
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Number of Sampling Trials After the tree is formed, i.e. all sub-ranges’ elements

are decoded from the solution genome, in order to empower our approach to explore

and exploit the search space as described above, the test vectors are generated based on

such established sampling distribution for the number of trials. On each trial, the test

vector can be generated from any path of the tree (a selected sampling regime). It is not

necessary to stick the test data generation with any specific tree path for all trials. Then,

the highest fitness value of the test vector produced from among the number of trials

represents the fitness value of such constructed tree (or the solution genome). After that,

the metaheuristic algorithm repeats the process by evaluating the fitness value of such

solution genome and then generating newly parameterised random sampling regimes. The

new tree is, therefore, reconstructed by such newly evolved solution genome. The process

continues until the terminational conditions are satisfied.

4.3 Preliminary Analysis

As earlier described in Section 4.2.2, there are three supplementary parameters for de-

pendent input sampling strategies, including the number of sub-ranges, the interval type

and the number of sampling trials.

For simplicity, we first permanently set the number of sampling trials to ten for all ex-

periments in this chapter because such value allows the approach to be explorative enough

at each fitness evaluation of the utilised metaheuristic while consumes an acceptable com-

putational time. (Further insight into a benefit-cost ratio of the number of sampling trials

is the subject of future work.) We hence only performed a preliminary assessment to

choose the suitable number of sub-ranges to be used for the rest of the experiments. Fi-

nally, the three main experiments in this chapter are carried out based on different interval

types.

4.3.1 Number of Sub-Ranges

The number of sub-ranges for each problem parameter can be separately assigned with

different values. For instance, regarding the three-parameter (A,B,C) problem as previ-

ously described in Section 4.2.1, the number of sub-ranges cA, cB and cC could be assigned

to 2, 3, and 4, respectively. However, for simplicity, we designated the same number of

sub-ranges to all problem parameters.
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The preliminary experiments were conducted based on four different numbers of sub-

ranges, i.e. 2, 3, 5 and 10, respectively. Accordingly, we followed the procedure that was

previously done in the preliminary analysis of Section 3.4. In this chapter, however, GA

was used for generating sampling regime trees instead. Furthermore, since there are three

different types of intervals, we simply used the basic one for the preliminary study. Thus,

three elements of each sub-range, i.e. a lower bound, an upper bound and a selection

weight, were evolved by GA. (Further details on the basic interval type can be found in

the next section.) Figure 4.3 depicts the results obtained from running GA on the quartic

equation with different numbers of sub-ranges.

As shown in Figure 4.3, two sub-ranges was superior to every other number of sub-

ranges, while three sub-ranges was the worst. Based on the given number of sampling

trials (i.e. ten trials per constructed tree), it could be assumed that a small number

of sub-ranges per problem parameter is sufficient to explore the search space. However,

increasing the number of sampling trials may authorise a greater number of sub-ranges to

expand its ability on traversing and finding the better sampling regimes from the tree. For

instance, there are 25 possible sampling regimes over the tree structure for two sub-ranges,

while 105 sampling regimes for the case of ten sub-ranges. For proof of concept, we picked

the values of two and three as a ‘good enough’ sub-ranges for the rest experiments of this

chapter. We targeted to further study the effect of the different number of sub-ranges to

the indirect approach as well.
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Figure 4.3: Results obtained by GA to the quartic equation with different numbers of

sub-ranges
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4.4 Experiment III—Basic Interval

4.4.1 Objective

As previously described in the motivation above (Section 4.1.2), reducing the input do-

main of each test input would be advantageous to increase the opportunities of inputs with

extreme times being sampled. In this experiment, we apply a dependent input sampling

strategy, which is used in combination with metaheuristic algorithms, to search for test in-

puts that might cause a numeric function running on the COMX-P4080 development board

to violate performance timing requirement. The interval type used in this experiment is

a basic one, so both it lower and upper bounds are decoded from the solution genome of

the metaheuristic search. Furthermore, the effectiveness of the proposed strategy is able

to reflect the ability of a metaheuristic algorithm to seek subdomains (i.e. the intervals)

that are likely to encompass inputs with extreme times. Therefore, we apply HC, SA and

GA to find such extreme subdomains. In addition, for proof of concept, we evaluate our

proposed approach with the GSL’s polynomial root-finding routine. Hence, the problem

statement in this experiment is similar to Experiment I in Chapter 3, which is:

Problem Statement: For a polynomial equation of the form a0 + a1x+ a2x
2 + . . .+

an−1x
n−1 = 0, we seek values of the coefficients (a0 to an) that maximise the execution

time of the polynomial solver.

The research questions addressed in this experiment are:

Research Question 1: Is the dependent input sampling strategy with a basic interval

effective in seeking the values of the coefficients that maximise the execution time of the

polynomial solver?

Research Question 2: Among the metaheuristics, which technique is the best for

supporting the dependent input sampling strategy with a basic interval to seek test inputs

that maximise the execution time of the polynomial solver?

Research Question 3: Does the number of interval choices affect the effectiveness

of the dependent input sampling strategy with a basic interval?
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4.4.2 Preparation

Since the metaheuristic techniques are utilised to assign relevant values, i.e. an interval

and weight, to each sub-range choice (or a node of the tree structure), those ECJ’s features

earlier used in Chapter 3 were also employed in this experiment. We excluded SHC because

of its neighbours’ definition (stated in Section 3.2.1), together with its acceptance criterion

(listed in Algorithm 3), which may restrict the variation of values given to the sub-range.

The parameter settings for these metaheuristic algorithms are also the same as in the

preceding chapter (listed in Table 3.2). However, for a basic interval type of indirect

approach, the genome-size given to the ECJ’s metaheuristic algorithms was slightly dif-

ferent from those in Experiment I (Section 3.5). Specifically, the size of the genome is

triple the size of N (recall that N is the total number of all possible domain sub-ranges),

as three elements, i.e. a lower and upper bounds of an interval, and a selection weight,

are required to be decoded to each sub-range of a sampling distribution.

Figure 4.4 illustrates the genome size of 42 for the three-parameter (A,B,C) problem

with a union of two sub-ranges per each parameter from Figure 4.2. A value stored in

each gene of the genome is decoded to each node of the tree data structure by using a

combination of two tree traversals, i.e. level-order and pre-order, respectively. Other tree

representations are not prohibited. Indeed, the approach here is one of many. An optimal

representation is the subject of future research.

In this experiment, the polynomial routine was executed with two different numbers of

input arguments, i.e. 5 and 7, respectively, along with two variant numbers of sub-ranges

per each input argument. Accordingly, the genome sizes given to the ECJ are summarised

in Table 4.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

wA0 wA1 lA0 uA0 lA1 uA1 wB00 wB01 lB00 uB00 lB01 uB01 wC000 wC001

14 15 16 17 18 19 20 21 22 23 24 25 26 27

lC000
lC000

lC001
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uC010
wC011
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lB10
uB10

28 29 30 31 32 33 34 35 36 37 38 39 40 41

lB11
uB11
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uC100
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wC110
wC111

lC110
uC110

lC111
uC111

Figure 4.4: Example of a solution genome of the dependent input sampling approach

with a basic interval
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Table 4.1: Genome sizes for the empirical experiments of the dependent input sampling

approach with a basic interval

Arguments Sub-ranges Genome size

5 2 186
3 1,089

7 2 762
3 9,837

4.4.3 Method

In the same way as in Experiment I (Section 3.5), to perform four empirical experiments

listed in Table 4.1, each metaheuristic technique was executed with the polynomial routine

for ten trials. An initial seed obtained from random.org for each metaheuristic technique

is listed in Table 4.2.

In the proposed indirect approach, in particular, an individual or a candidate solution

genome generated by a metaheuristic algorithm is used to constructing a tree as described

earlier in Section 4.2. For proof of concept and simplicity as stated in the preliminary

analysis, we took ten sampling trials per each decoded tree. In other words, any tree

representation will be used to generate ten test data samples. The sampled test vector

that gives the highest execution time will be stored and its execution time will be used

to represent the fitness value of the individual tree. The metaheuristic algorithm will

then continue its search process to find more suitable trees, i.e. sampling distributions.

Consequently, the computation time of each experimental trial is approximately ten times

longer than the one in Experiment I; it takes around 30 hours per experimental trial.

Table 4.2: Initial seeds of metaheuristic algorithms for different input arguments of the

polynomial root-finder (Experiment III)

(a) 2 sub-ranges

Arguments

Algorithm 5 7

HC −23,990 11,717
SA 32,687 −8,936
GA 18,254 −5,390

(b) 3 sub-ranges

Arguments

Algorithm 5 7

HC 21,009 −27,595
SA −6,845 13,575
GA 13,854 17,629
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4.4.4 Results

The results from Experiment I in Chapter 3 are used as a baseline for comparisons with

the results of this experiment and the subsequent empirical studies in this chapter. For

ease of reference, we refer to those previous results of Experiment I by prefixing ‘direct’

to the metaheuristics’ names, whereas ‘indirect’ is prefixed to the names of metaheuristics

for the indirect approach results. Also, a value in the bracket indicates the number of

sub-ranges per each test input of a test vector.

Figures 4.5 and 4.6 depict the differences between the initial and the final (best) fitness

values gained from ten trials of each experiment on stressing the polynomial routine with

two different numbers of input arguments, i.e. 5 and 7, respectively.

Distribution of the best fitness values gained from ten trials of each experiment to

stress the polynomial solver is illustrated in Figures 4.7 and 4.8.

Finally, the longest execution time among ten trials of each experiment is summarised

in Table 4.3.

4.4.5 Discussion and Conclusions

Research Question 1 In order to answer the first research question of this experiment,

we assessed the effectiveness of the dependent input sampling strategy with a basic interval

on the ability to seek values of the coefficients that maximise the execution time of the

polynomial solver by comparing its results with the ones from Experiment I.

Particularly, the fitness values in Experiment I were gained from the execution of

the polynomial solver and the test vector, where each test input was uniformly and in-

dependently sampled from the input domain [−32768, 32767]. The fitness values in this

experiment were, on the other hands, obtained by executing the polynomial solver with

the test vector, where each test input was dependently sampled from selected sampling

regime.

According to Figures 4.7 and 4.8, overall, both of the dependent input sampling

strategies, i.e. two and three sub-ranges, performed more stable over ten experimental

trials than the direct ones. However, in several cases, the direct metaheuristic technique

delivered more extreme execution times than the dependent input sampling strategy with

a basic interval, such as SA in quartic equation case, and HC and SA in sextic equation

case, as shown in Table 4.3.
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Figure 4.5: Results of 10 trials obtained by the basic indirect approaches to the quartic

equation in comparison with the direct approaches
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(c) Indirect(3) HC
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(d) Direct SA
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1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

9
3
.7
7
%

1
9
.4
5
%

1
2
4
.3
5
%

1
7
6
.3
6
%

3
5
.6
3
%

6
5
.2
6
%

6
.7
0
% 3

9
.2
0
%

8
1
.9
6
%

6
8
.6
8
%

Trial

Initial fitness Best fitness

(g) Direct GA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

6
5
.2
6
%

1
2
3
.7
6
%

1
3
5
.7
3
%

4
6
.6
3
%

1
0
3
.4
7
%

4
4
.8
0
%

1
1
4
.3
9
%

7
1
.3
3
% 1
5
3
.7
2
%

1
0
3
.9
0
%

Trial

Initial fitness Best fitness

(h) Indirect(2) GA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0

2 · 105

4 · 105

6 · 105

1
5
5
.3
7
%

1
1
1
.9
9
%

9
8
.0
7
%

6
5
.4
6
%

1
2
0
.4
1
%

8
9
.5
8
%

3
4
.8
1
%

6
3
.5
3
%

3
4
.3
0
%

4
7
.2
0
%

Trial

E
x
ec

u
ti

o
n

ti
m

e
(n

s)

Initial fitness Best fitness

(i) Indirect(3) GA

Figure 4.6: Results of 10 trials obtained by the basic indirect approaches to the sextic

equation in comparison with the direct approaches
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Figure 4.7: Distribution of the best fitness values of 10 trials of the direct and basic

indirect approaches on the quartic equation
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Figure 4.8: Distribution of the best fitness values of 10 trials of the direct and basic

indirect approaches on the sextic equation

Table 4.3: Summary of the highest fitness value of 10 trials of the direct and basic

indirect approaches over different input arguments for the polynomial solver

(a) n = 5

Algorithm Direct Indirect(2) Indirect(3)

HC 134,449 134,300 199,659†

SA 171,629.5 136,841 160,457
GA 75,917∗ 163,110 157,159

(b) n = 7

Algorithm Direct Indirect(2) Indirect(3)

HC 355,198† 255,600 234,817
SA 326,249 326,003 280,537
GA 243,980 245,364 217,162∗

∗The worst performer. †The best performer.
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Research Question 2 For the second research question, we compared the effectiveness

of metaheuristic algorithms on supporting the dependent input sampling strategies to find

the values of the coefficients that maximise the execution time of the polynomial solver.

Figures 4.5 and 4.6 illustrate that the initial fitness values from both direct and indirect GA

were higher than those from both direct and indirect single-solution based metaheuristics,

i.e. HC and SA, but in the end, HC and SA outperformed in almost all cases, except

the case of indirect GA with two sub-ranges on the quartic equation, where the extreme

execution time appeared on the ninth trial (Figure 4.5h).

Research Question 3 Finally, the third research question is answered by comparing the

results between two sets of parameter settings for the indirect approach, i.e. with two and

three sub-ranges per test input argument, respectively. In four out of six cases, as depicted

in Figures 4.7 and 4.8, the dependent input sampling strategy with a union of two sub-

ranges gave the higher results. Only in the cases of the quartic equation with HC and SA

(as shown in Figures 4.7a and 4.7b) three sub-ranges brought the extreme execution times

and HC, in particular, gave the most extreme execution time for the quartic equation

problem in this experiment, whereas the direct HC gave the most extreme one for the

sextic equation problem as marked by † in Table 4.3.
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4.5 Experiment IV—Fixed Delta-Based Interval

4.5.1 Objective

In the prior experiment, we have found that the dependent input sampling strategy with

a basic interval could not surpass the direct metaheuristic approaches in some cases. The

range of interval of each sub-range is varied, depending on its lower and upper bounds

given by a metaheuristic algorithm.

In this experiment, we explore the impact of restricting all sub-ranges’ intervals to

have the same width, i.e. a fixed delta-based interval. In particular, the metaheuristic

technique assigns only weight and lower bound to each node, and its upper bound is

determined by adding its lower bound with a fixed delta value. This indirect method

allows more exploitation on subdomain spaces. The problem statement in this experiment

is also the same as in the previous experiment, that is:

Problem Statement: For a polynomial equation of the form a0 + a1x+ a2x
2 + . . .+

an−1x
n−1 = 0, we seek values of the coefficients (a0 to an) that maximise the execution

time of the polynomial solver.

In this experiment, the research questions addressed are:

Research Question 1: Is the dependent input sampling strategy with a fixed delta-

based interval effective in seeking the values of the coefficients that maximise the execution

time of the polynomial solver?

Research Question 2: Among the metaheuristics, which technique is the best for

supporting the dependent input sampling strategy with a fixed delta-based interval to seek

test inputs that maximise the execution time of the polynomial solver?

Research Question 3: Does the number of interval choices affect the effectiveness

of the dependent input sampling strategy with a fixed delta-based interval?

4.5.2 Preparation

In this experiment, all algorithm parameter settings are almost similar to Experiment III

(as summarised in Table 3.2), except that the genome-size given to the ECJ’s metaheur-

istic algorithms as only a selection weight and lower bound are required to be decoded to

a node of the tree structure, and an upper bound equals to the lower bound plus a delta
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value. Hence, the size of a solution genome in this experiment is double the size of N .

In Figure 4.9, for example, the genome size for the indirect approach with a delta-based

interval of the tree-parameter (A,B,C) problem is 28.

Again, in this experiment, the polynomial function was executed with numbers of input

arguments of 5 and 7, together with two options of the number of sub-ranges. Therefore,

the genome sizes are summarised in Table 4.4. In addition, the delta value is given at 10.

4.5.3 Method

Four empirical studies were performed in the same way as in Experiment III, i.e. ten

experimental trials were executed for each technique. Table 4.5 summarises an initial seed

for each metaheuristic technique.

4.5.4 Results

For ease of reference, we use the same prefixes as defined in Experiment III, along with ∆,

which indicates that it is the dependent input sampling strategy with a fixed delta-based

interval. All relevant results of this experiment are shown in Figures 4.10 to 4.13 and

Table 4.6.
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Figure 4.9: Example of a solution genome of the dependent input sampling approach

with a delta-based interval

Table 4.4: Genome sizes for the empirical experiments of the dependent input sampling

approach with a delta-based interval

Arguments Sub-ranges Genome size

5 2 124
3 726

7 2 508
3 6,558
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Table 4.5: Initial seeds of metaheuristic algorithms for different input arguments of the

polynomial root-finder (Experiment IV)

(a) 2 sub-ranges

Arguments

Algorithm 5 7

HC 8,378 17,928
SA 20,608 5,234
GA −16,478 −5,291

(b) 3 sub-ranges

Arguments

Algorithm 5 7

HC 26,831 −17,756
SA −32,118 −31,926
GA −25,092 −26,631

4.5.5 Discussion and Conclusions

Research Question 1 For the first research question, we found that the dependent

input sampling strategy with a fixed delta-based interval (where ∆ = 10) was superior

to direct metaheuristic approaches in all cases, as illustrated in Figures 4.12 and 4.13.

The results prove our aforementioned assumption in Section 4.1.2 that extreme execution

times may be concentrated in small partitions of the input space and reducing the input

domain could increase the chances of inputs with extreme times being sampled.

Research Question 2 In Figures 4.10 and 4.11, the bar charts demonstrate that GA

started with higher initial fitness values as usual. Also, although its final fitness values

were less than both HC and SA in all cases, its results with the fixed delta-based interval of

indirect approach were more improved than those of direct GA and basic indirect GA. For

the second research question, it can be concluded that single-solution based metaheuristics

were still the most effective approaches for dependent input sampling strategies, including

basic and fixed delta-based intervals.

Research Question 3 In this experiment, as illustrated in Figures 4.12 and 4.13, the

fixed delta-based indirect approach with a union of three sub-ranges delivered the higher

fitness values in all cases of single-solution metaheuristics, while the approach with two

sub-ranges gave the higher values in cases of population-based metaheuristic. In addition,

the fixed delta based interval with three sub-ranges and SA produced the most extreme

execution times in this experiment, as marked by † in Table 4.6, and the most extreme

execution time over all three experiments (Experiments III to V) in this chapter for the

case of the quartic equation.
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Figure 4.10: Results of 10 trials obtained by the fixed delta-based indirect approaches

to the quartic equation in comparison with the direct approaches
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Figure 4.11: Results of 10 trials obtained by the fixed delta-based indirect approaches

to the sextic equation in comparison with the direct approaches
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Figure 4.12: Distribution of the best fitness values of 10 trials of the direct and fixed

delta-based indirect approaches on the quartic equation
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Figure 4.13: Distribution of the best fitness values of 10 trials of the direct and fixed

delta-based indirect approaches on the sextic equation

Table 4.6: Summary of the highest fitness value of 10 trials of the direct and fixed

delta-based indirect approaches over different input arguments for the polynomial solver

(a) n = 5

Algorithm Direct Indirect-∆(2) Indirect-∆(3)

HC 134,449 233,315.5 264,310
SA 171,629.5 212,466 264,523†

GA 75,917∗ 247,400 195,888

(b) n = 7

Algorithm Direct Indirect-∆(2) Indirect-∆(3)

HC 355,198 367,868 428,145
SA 326,249 346,301 447,760†

GA 243,980∗ 390,689.5 388,320

∗The worst performer. †The best performer.
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4.6 Experiment V—Randomised Delta-Based Interval

4.6.1 Objective

The restriction of the interval ranges of sub-ranges with a fixed delta value was found

effective to support the dependent input sampling strategies in seeking values of coefficients

of the quartic and sextic equations as evidenced in Experiment IV. In this experiment, we

make it more flexible, but still under control, by sampling a delta value for each sub-range

from a given range, e.g. [1, 20]. This randomised delta-based indirect method allows a bit

more exploration on subdomain spaces. The problem statement in this experiment is also

the same to that of Experiment III, which is:

Problem Statement: For a polynomial equation of the form a0 + a1x+ a2x
2 + . . .+

an−1x
n−1 = 0, we seek values of the coefficients (a0 to an) that maximise the execution

time of the polynomial solver.

The research questions addressed in this experiment are:

Research Question 1: Is the dependent input sampling strategy with a randomised

delta-based interval effective in seeking the values of the coefficients that maximise the

execution time of the polynomial solver?

Research Question 2: Among the metaheuristics, which technique is the best for

supporting the dependent input sampling strategy with a randomised delta-based interval

to seek test inputs that maximise the execution time of the polynomial solver?

Research Question 3: Does the number of interval choices affect the effectiveness

of the dependent input sampling strategy with a randomised delta-based interval?

4.6.2 Preparation

All algorithm parameter settings and the genome sizes in this experiment are also the

same as in the preceding experiment (Experiment IV), which are shown in Tables 3.2

and 4.4, respectively. However, a randomised delta value is randomly sampled from a

uniform distribution U(1, 20).
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4.6.3 Method

Each metaheuristic technique was executed in combination with the randomised delta

based method for ten experimental trials. An initial seed obtained from random.org for

each technique is summarised in Table 4.7.

4.6.4 Results

For ease of reference, the same prefixes defined in Experiment III are also used, together

with ∆r, which indicates that it is the dependent input sampling strategy with a random-

ised delta-based interval. The results of this experiment are illustrated in Figures 4.14

to 4.17, and Table 4.8.

4.6.5 Discussion and Conclusions

Research Question 1 This more flexible version of the fixed delta-based indirect ap-

proach also outperformed the direct metaheuristics in all cases, as depicted in Figures 4.16

and 4.17. This, again, confirmed our assumption stated in Section 4.1.2.

Research Question 2 In Table 4.8, the results show that for two sub-ranges of the

randomised delta-based interval of the indirect approach, GA outperformed SA in both

quartic and sextic equation problems. Also, in case of a union of three sub-ranges in the

quartic equation, GA surpassed HC. However, overall, SA and HC still produced the most

extreme execution times on quartic and sextic equations, respectively, in this experiment.

Research Question 3 Furthermore, the three sub-ranges were better than the two sub-

ranges in cases of SA and GA of the quartic equation problem, as shown in Figures 4.16b

and 4.16c.

Table 4.7: Initial seeds of metaheuristic algorithms for different input arguments of the

polynomial root-finder (Experiment V)

(a) 2 sub-ranges

Arguments

Algorithm 5 7

HC −31,947 19,067
SA −31,084 −3,811
GA −4,226 −22,853

(b) 3 sub-ranges

Arguments

Algorithm 5 7

HC 13,628 −13,422
SA −29,340 8,718
GA −22,916 −28,746

146



4.6 Experiment V—Randomised Delta-Based Interval

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

2
4
3
.0
4
% 6
9
6
.5
5
%

1
0
1
.5
0
%

7
3
.9
4
%

1
2
8
.1
7
%

1
8
5
.4
0
%

4
8
4
.3
0
%

5
0
7
.0
8
%

3
2
4
.1
2
%

2
2
7
.2
4
%

Trial

Initial fitness Best fitness

(a) Direct HC

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

6
0
2
.3
5
%

7
3
2
.4
9
%

5
6
7
.1
4
%

6
7
0
.8
9
%

5
5
6
.7
2
%

6
7
3
.4
2
% 7
3
0
.5
8
%

4
8
2
.7
5
%

6
6
6
.4
3
%

4
6
6
.8
7
%

Trial

Initial fitness Best fitness

(b) Indirect-∆r(2) HC

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0

1 · 105

2 · 105

3 · 105

4 · 105

4
3
5
.4
3
%

7
0
4
.9
4
%

8
0
0
.6
9
%

2
6
9
.8
1
%

5
3
0
.1
3
%

5
3
4
.7
2
%

3
7
6
.9
7
%

2
9
6
.2
5
%

8
7
4
.9
3
%

4
6
4
.1
8
%

Trial

E
x
ec

u
ti

o
n

ti
m

e
(n

s)

Initial fitness Best fitness

(c) Indirect-∆r(3) HC

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

3
4
2
.5
4
%

3
7
5
.1
1
%

4
6
6
.9
6
%

1
2
7
.5
9
%

7
7
.8
1
%

3
9
1
.1
3
% 8
5
5
.6
2
%

1
7
7
.6
9
%

3
3
9
.1
9
%

4
8
0
.8
2
%

Trial

Initial fitness Best fitness

(d) Direct SA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

3
0
8
.4
3
%

8
1
3
.8
2
%

7
2
2
.8
8
%

1
2
0
.4
8
%

5
3
7
.1
5
%

4
3
0
.1
5
%

3
0
1
.7
6
%

4
4
2
.5
4
%

5
5
1
.2
2
%

4
4
0
.7
9
%

Trial

Initial fitness Best fitness

(e) Indirect-∆r(2) SA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0

1 · 105

2 · 105

3 · 105

4 · 105

5
9
7
.9
9
%

1
0
1
3
.7
1
%

3
2
7
.5
5
%

5
4
5
.8
7
%

4
5
4
.7
5
%

7
2
6
.1
1
%

5
5
8
.5
1
%

8
5
0
.0
6
%

4
7
5
.5
4
%

3
3
4
.2
8
%

Trial

E
x
ec

u
ti

on
ti

m
e

(n
s)

Initial fitness Best fitness

(f) Indirect-∆r(3) SA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

6
4
.4
1
%

1
3
.7
6
%

6
1
.3
2
%

1
1
6
.7
6
%

6
0
.1
9
%

1
6
1
.9
7
%

3
0
.8
9
%

1
4
.1
9
%

6
1
.5
2
%

4
4
.4
3
%

Trial

Initial fitness Best fitness

(g) Direct GA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

2
5
5
.3
7
%

3
1
6
.6
3
%

2
1
3
.3
8
%

5
4
1
.0
0
%

1
5
0
.1
5
%

3
5
1
.5
6
%

4
2
5
.6
0
%

2
9
3
.9
7
%

2
0
7
.5
5
% 2
9
9
.4
3
%

Trial

Initial fitness Best fitness

(h) Indirect-∆r(2) GA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0

1 · 105

2 · 105

3 · 105

4 · 105

3
3
9
.1
6
%

4
2
8
.1
2
%

2
6
2
.8
9
%

3
2
9
.2
2
%

3
4
1
.8
2
%

3
1
6
.0
2
%

2
8
0
.2
4
%

8
0
.4
8
%

2
2
2
.8
0
%

5
9
.7
1
%

Trial

E
x
ec

u
ti

o
n

ti
m

e
(n

s)

Initial fitness Best fitness

(i) Indirect-∆r(3) GA

Figure 4.14: Results of 10 trials obtained by the randomised delta-based indirect ap-

proaches to the quartic equation in comparison with the direct approaches
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Figure 4.15: Results of 10 trials obtained by the randomised delta-based indirect ap-

proaches to the sextic equation in comparison with the direct approaches
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Figure 4.16: Distribution of the best fitness values of 10 trials of the direct and random-

ised delta-based indirect approaches on the quartic equation
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Figure 4.17: Distribution of the best fitness values of 10 trials of the direct and random-

ised delta-based indirect approaches on the sextic equation

On the whole, as marked by † in Table 4.8, SA and the randomised delta-based indirect

approach with a union of three sub-ranges was the best for the quartic equation problem,

whereas HC and the randomised delta-based indirect approach with two sub-ranges was the

best for the sextic equation problem in this experiment and also among three experiments

(Experiments III to V).
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Table 4.8: Summary of the highest fitness value of 10 trials of the direct and randomised

delta-based indirect approaches over different input arguments for the polynomial solver

(a) n = 5

Algorithm Direct Indirect-∆r(2) Indirect-∆r(3)

HC 134,449 241,541 219,380
SA 171,629.5 219,500 260,820†

GA 75,917∗ 226,421 245,780

(b) n = 7

Algorithm Direct Indirect-∆r(2) Indirect-∆r(3)

HC 355,198 487,240† 365,160
SA 326,249 356,321 354,259.5
GA 243,980∗ 394,097 343,003

∗The worst performer. †The best performer.

4.7 Discussion as a Whole

According to the results from the experiments in the previous three section, the indirect

approach is suggested to be an effective means of revealing optimal test inputs for the

temporal testing problem in comparison with the direct approach. Since the number

of sampling trials per an established sampling distribution is given to ten, the indirect

approach here, therefore, requires ten times as many timing measurements compared to

the direct approach. However, when the direct approach, i.e. GA, takes the same timing

measurements, i.e. increasing its number of generations from 101 to 1,000, as previously

evidenced in the preliminary analysis of Chapter 3 (in Figure 3.11 in particular), there

was almost no improvement after a long period of running GA.

Among three different types of intervals, the delta-based intervals, i.e. fixed delta-

based and randomised delta-based intervals, delivered more extremal test vectors than the

basic interval. The domain sub-ranges based on the basic interval are varied, depending

on the lower upper bounds decoded to them. Although such sub-ranges are undoubtedly

smaller than the full domain range of the direct approach, they may still be considered too

large for temporal test input generation. Often, the bounds are broader than the cases of

delta-based intervals, where the bounds are either fixed or random to small numbers.
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4.7 Discussion as a Whole

Table 4.9 summarises the test input arguments that provided the most extreme ex-

ecution times for the quartic and sextic polynomials over all those three experiments of

the dependent input sampling strategies. The best values of coefficients for the quartic

polynomial was gained by the indirect approach with a union of three sub-ranges, where

their intervals are fixed to ten (∆ = 10). On the other hand, the best values of coefficients

for the sextic polynomial was discovered by the indirect approach with a union of two

sub-ranges, where their intervals are random between the range of [1, 20] (∆r = U(1, 20)).

In addition, the numbers of QR iterations are also listed in Table 4.9. Compared to the

best input arguments in Chapter 3, the best arguments obtained in this chapter require

more iterations for convergence.

We also validated these best input arguments by rerunning them on five P4080 devel-

opment boards in the same way as in Chapter 3. The execution times collected from 100

runs are plotted in Figure 4.18. The box-and-whisker plots showed that there were almost

no variations over the probability distributions of 100 execution times, as indicated by the

midspreads across five different boards. Also, all development boards’ midspreads were at

the same level and the actual execution times are within them in both cases.

Moreover, these best input arguments were sampled from the selected sampling re-

gimes, which were constructed from the solution genomes presented in Table D.4 of Ap-

pendix D. The tree representations for sampling distribution of such solution genomes

are illustrated in the following figures. Particularly, Figures 4.19 to 4.27 present the tree

structure from which the best input arguments of the quartic equation were sampled, and

Figures 4.28 to 4.31 present the tree structure from which the best input arguments of the

sextic equation were sampled. There are two elements presented in each node of the tree,

i.e. a selection weight (w) and a lower bound (l) in the form of w
[l] .

Table 4.9: Best values of coefficients (Chapter 4)

Arguments Coefficient vector Iterations

5 −21,492; −11,333; 26,663; 10,440 and −13,244 77

7 6,134; −16,035; 28,217; −16,510; −15,982; 32,398 and
17,391

74
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Figure 4.18: Distribution of 100 execution times of polynomial solver with best input

arguments obtained from 5 P4080 boards (Chapter 4)

According to those tree representations, the best input arguments for the quartic equa-

tion were sampled from the sampling regime, which consists of the dependent sub-ranges of

[−21498,−21488], [−11340,−11330], [26660, 26670], [10437, 10447] and [−13245,−13244],

respectively, as highlighted in Figure 4.21.

Furthermore, as highlighted in Figure 4.31 for the sextic equation, the best input

arguments were sampled from the sampling regime, which contains the dependent sub-

ranges of [6123, 6123 + U(1, 20)], [−16050,−16050 + U(1, 20)], [28217, 28217 + U(1, 20)],

[−16511,−16511 + U(1, 20)], [−15982,−15982 + U(1, 20)], [32396, 32396 + U(1, 20)] and

[17391, 17391 + U(1, 20)], respectively.
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Figure 4.19: Tree structure decoded from the best solution genome for the quartic equation (1st part)

(a0, a1, a2, a3, a4)

24296
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[28954]
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Figure 4.20: Tree structure decoded from the best solution genome for the quartic equation (2nd part)
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Figure 4.21: Tree structure decoded from the best solution genome for the quartic equation (3rd part)

(a0, a1, a2, a3, a4)
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29447
[−11229]
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Figure 4.22: Tree structure decoded from the best solution genome for the quartic equation (4th part)
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Figure 4.23: Tree structure decoded from the best solution genome for the quartic equation (5th part)

(a0, a1, a2, a3, a4)
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Figure 4.24: Tree structure decoded from the best solution genome for the quartic equation (6th part)
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Figure 4.25: Tree structure decoded from the best solution genome for the quartic equation (7th part)

(a0, a1, a2, a3, a4)
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Figure 4.26: Tree structure decoded from the best solution genome for the quartic equation (8th part)
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Figure 4.27: Tree structure decoded from the best solution genome for the quartic equation (9th part)
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Figure 4.28: Tree structure decoded from the best solution genome for the sextic equation (1st part)
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Figure 4.29: Tree structure decoded from the best solution genome for the sextic equation (2nd part)
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Figure 4.30: Tree structure decoded from the best solution genome for the sextic equation (3rd part)
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Figure 4.31: Tree structure decoded from the best solution genome for the sextic equation (4th part)
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4.8 Summary

To sum up, this chapter investigated the ability of our proposed approach, i.e. dependent

input sampling strategies, to seek temporal input arguments that maximise the execution

time of a task running on a multicore environment. The proposed approach is based on the

assumption that the test inputs that maximise the execution time may be concentrated

in small parts of the input space, and also such inputs may have a correlation among

themselves that escalate the execution time. In order to increase the chances of test

inputs with extreme times being sampled, we present here the novel approach that aims to

reduce the whole input domain into a subdomain, which is a union of a number of domain

sub-ranges. Also, the approach samples a parameter from the probability-based selective

interval, which depends on the specific intervals sampled from previous parameters.

Three essential parameters, i.e. the number of sub-ranges, the type of interval and the

number of sampling trials, trigger the approach to balance between the exploration and

exploitation over the domain input space. In particular, the first parameter diverges the

search over the input space, whereas the second parameter intensifies on a small partition

on such the space. The last parameter enables the approach to repeatedly sample a number

of test vectors from the established sampling distribution.

The experiments in this chapter were separated into three sub-experiments (Experi-

ments III to V) based on the different types of intervals: 1) a basic interval; 2) a fixed

delta-based interval; and 3) a randomised delta-based interval. In each sub-experiment,

the number of sampling trials was given at ten, whereas the number of sub-ranges was

two and three.

Overall, the results from three empirical experiments demonstrate that our dependent

approach performed effectively when the intervals of sub-ranges are restricted with either

a fixed delta value (∆ = 10) or a randomised value of delta from a given range (∆r =

U(1, 20)). However, the direct approach outperformed the indirect approach with a basic

interval in several cases. According to the results, it could be explained that the interval

of the basic case is varied based on its given lower and upper bounds. Such interval

sometimes may be too wide compared to those of the delta cases, where the ranges are

small. As a result, the exploitability of the indirect approach is limited.
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4.8 Summary

Furthermore, the elements value, i.e. a lower bound, an upper bound and a solution

weight, of sub-ranges created from the dependent input sampling strategies are given

by a metaheuristic optimisation method. Therefore, we also explored the ability of the

metaheuristic methods to evolve the values of parameters assigned to such subdomains of

the sampling distribution. The search space for these optimisation techniques is, therefore,

the space of parameterised distributions; not the space of inputs. Regarding the results

from those three experiments, single-solution based metaheuristics, i.e. HC and SA, were

effective in supporting the indirect approach to finding test vectors that maximise the

execution time of the polynomial solver.

As aforementioned in Section 4.2.1, the metaheuristic optimisation techniques were

used in this chapter to search on a parameterised distribution space, and the empirical

results demonstrate that using them to explore the space of parameterised distributions

is more effective for the problem domain of temporal testing than using them to search a

space of inputs directly. In the subsequent chapter, we will investigate the effectiveness of a

hyper-heuristic—a heuristic search method that operates on a search space of heuristics—

on verifying temporal constraints.
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Chapter 5

Hyper-Heuristics

5.1 Introduction

5.1.1 Motivation

The results from the previous two chapters have shown that metaheuristic approaches,

especially HC and SA, are effective in solving the problem of temporal testing in an

embedded multicore environment. The research has investigated the use of optimisation

techniques directly on the test input space and indirectly, where the target of optimisation

is the space of dependent randomised input strategies.

However, it is far from clear, a priori, that using any specific optimisation technique

alone will give the best results. Different optimisation approaches may work effectively in

different parts of the same search space. It seems plausible to see how extant techniques

can be combined in some way. However, it should not be assumed that the human tester

is capable of determining which way this might most profitably be done. This general

problem is known to the optimisation community and has led to the development of higher-

level heuristic search methods, termed ‘hyper-heuristics’. These are now acknowledged by

many as a more generic effective means of solving real-world computational problems [60].

This ‘off-the-peg’ approach operates on a search space of heuristics (or heuristic com-

ponents) to select or generate heuristics, and an adequate combination of the selected

heuristics (or generated components) is applied to solve the underlying problem [60]. Its

generality has been claimed to allow easy application to newly encountered problems (or

even new instances of similar problems) [60].
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The literature [60] shows the success of hyper-heuristics on diverse application domains

such as production scheduling, personnel scheduling, educational timetabling, cutting and

packing, workforce scheduling, constraint satisfaction, vehicle routing and travel salesman

problem.

In this chapter, we examine the effectiveness of using a hyper-heuristic to find test

cases exhibiting extreme execution times of a task running on an embedded multicore

platform. We believe this is the first application of hyper-heuristics to this problem.

5.1.2 Contribution

The contribution in this chapter is:

• The provision of empirical evidence to demonstrate that an EA hyper-heuristic is an

effective way of reaching extreme execution times of numerical functions running on

an embedded multicore chip but is inefficient in terms of computational demands.

5.1.3 Chapter Outline

The remainder of this chapter is organised as follows:

Section 5.2 briefly describes a hyper-heuristic toolkit, as well as a number of defined

low-level heuristics, employed in this chapter.

In Section 5.3, a preliminary analysis is carried out to simplify how the particular

parameter values are set for the hyper-heuristic toolkit.

Experiment VI (Section 5.4) describes and reports the results of an empirical study, i.e.

applying a hyper-heuristic approach for extreme timing performance of a (single-threaded)

numerical function.

Finally, the preliminary results gained from the experiment are discussed in Section 5.5.
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5.2 Hyper-Heuristic Toolkit

5.2 Hyper-Heuristic Toolkit

The empirical experiments in this chapter were similarly conducted using the experimental

framework and procedure described previously in Chapter 3 (Section 3.2). However, since

there are no hyper-heuristic features available in ECJ, the experiments in this chapter

were instead facilitated by EvoHyp [125], which is a Java-based toolkit for EA hyper-

heuristics. In particular, the toolkit uses GA as a high-level algorithm to choose some

low-level perturbative heuristics or search operators.

In fact, other Java-based hyper-heuristic toolkits, such as HyFlex [126] and HYPER-

ION [127], are also publically available. Nevertheless, this thesis rather aims at applying

the hyper-heuristic to the temporal testing problem. We neither intend to develop a new

iterative general-purpose heuristic search algorithm (also called a ‘hyper-heuristic’), which

is the purpose of HyFlex [126] nor to generate new hyper-heuristics by using metaheurist-

ics, which is the aim of HYPERION [127].

In general, EvoHyp uses generational evolution, where a whole population is evaluated

and then updated at a time. The evolutionary mechanism of EvoHyp is illustrated in

Figure 5.1. In particular, each individual or chromosome is a combination of low-level

heuristics, which are represented by a string of characters, such as a, b, c, d, e, f and g.

As shown in the upper dark (sky blue) ellipse area of Figure 5.1, which represents the

population of hyper-heuristics, its heuristic individuals, i.e. chromosomes 1, 2 and n, are

initially created at random. For example, chromosome 1 is randomly generated to be a

combination of the low-level heuristics e, a and b.

Within a chromosome, its initial solution, which is a test input in general and a tem-

poral test vector in particular, is randomly generated. Then, the perturbative heuristics of

such chromosome will be applied to the initial candidate solution in turn, from left to right

[128], as illustrated in the lower (light green) ellipse area of Figure 5.1, which represents

the space of test inputs. In other words, such initial solution will be perturbed by a set of

randomly selected perturbative heuristics and will then be evaluated its fitness function,

which represents a quality of the individual.
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Solution space

Population

Heuristic space
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2 −1 3 9 −7 6 −4

2 −1 3 9 8 5 0

2 1 3 9 8 5 0

9 1 3 2 8 5 0

Fitness 1

Initial solution

New solution e
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New solution b

Perturbate
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Evaluate

e a b

c f a

f g d

Chromosome 1

Chromosome 2

Chromosome nFitness 1

Fitness 2

Fitness n

Compare

Compare

Compare

Figure 5.1: Overview of EA-based hyper-heuristics provided by EvoHyp toolkit

Overall, since the toolkit employs GA as a high-level mechanism for operating low-level

heuristics, therefore, EvoHyp creates an initial population and evaluates the fitness values

of chromosomes within such initial population [128]. EvoHyp then selects parents and

followed by applies genetic operations to produce the offspring for the next generation of

the population [128]. After that, in each generation, the process iteratively evaluates its

new population until the termination criterion is satisfied [128].

In addition, in order to utilise EvoHyp toolkit for temporal testing, low-level per-

turbative heuristics should be defined and implemented. Accordingly, we defined seven

low-level heuristics for temporal test input generation. The descriptions of such newly

defined heuristics are presented in the following subsection.

166



5.2 Hyper-Heuristic Toolkit

5.2.1 Low-Level Heuristics

In the chapter, we defined low-level perturbative heuristic choices for the toolkit by adapt-

ing the definitions from mutators of bit-vector representation presented in [57]. Moreover,

we classified the newly defined low-level heuristics into three categories based on the ex-

isting one presented in [126], which includes mutation, ruin and recreate, and local search.

Below are the descriptions of the proposed heuristics:

Mutation Mutation is a heuristic which randomly mutates a solution [126]. This may

return a solution which is worse than the original one.

Converting Converting mutator randomly selects positions of the vector based on

a mutation probability, and then converts the values on those selected positions from a

positive to a negative number, and vice versa, as shown in Figure 5.2.

Interchanging Interchanging mutator randomly selects two positions of the vector,

and then the values corresponding to these two positions are interchanged, as shown in

Figure 5.3.

Reversing Revering mutator randomly selects a position of the vector, and then the

values after that position are reversed, as shown in Figure 5.4.

Ruin and Recreate Based on [126], the ruin and recreate category is originally defined

as a perturbative heuristic which changes part of a solution and then attempts to recreate

or repair it. In this research, however, the newly defined low-level heuristics do not have

a ‘recreate/repair’ stage.

0 1 2 3 4 5 6

2 −1 3 9 −7 6 −4

2 1 3 −9 −7 6 −4

Current solution

New solution

Figure 5.2: Mutation converting
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0 1 2 3 4 5 6

2 −1 3 9 −7 6 −4

−7 −1 3 9 2 6 −4

Current solution

New solution

Figure 5.3: Mutation interchanging

0 1 2 3 4 5 6

2 −1 3 9 −7 6 −4

2 −1 3 −4 6 −7 9

Current solution

New solution

Figure 5.4: Mutation reversing

Tweaking Tweaking operator randomly selects positions of the vector, and then

randomly generates new values to those selected positions, as shown in Figure 5.5.

Inserting Inserting operator randomly selects a position of the vector, and then the

values after that position are replaced by new random values, as shown in Figure 5.6.

0 1 2 3 4 5 6

2 −1 3 9 −7 6 −4

5 −1 3 9 0 6 8

Current solution

New solution

Figure 5.5: Perturbation tweaking

0 1 2 3 4 5 6

2 −1 3 9 −7 6 −4

2 −1 3 9 8 5 0

Current solution

New solution

Figure 5.6: Perturbation inserting
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Local Search Local search is a heuristic that attempts to improve the objective function

value of the solution to which it is applied [126]. A new solution will not have a worse

objective function value, but it may be the same as the original solution’s value. The

behaviour of these heuristics is controlled with the depth of search parameter, which is

used to set a number of iterations for the local search [126].

Stochastic Hill Climbing In each iteration of HC, a neighbour is generated, and

it is accepted immediately if it has the superior or equal fitness to the current solution;

otherwise, the change is not accepted. The search is terminated when the depth of search

is reached.

Tabu Search By maintaining a tabu list, TS keeps around a history of recently con-

sidered candidate solutions and refuses those candidate solutions until they are sufficiently

far in the past.

The characters, which represent these defined heuristics, are listed in Table 5.1.

Table 5.1: List of low-level heuristic representatives

Character Heuristic

a Mutation converting
b Mutation interchanging
c Mutation reversing
d Perturbation tweaking
e Perturbation inserting
f HC
g TS
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5.2.2 EvoHyp Parameters

Apart from the low-level heuristics that a user has to define, EvoHyp provides GA features

via the parameters, including population size, tournament size, number of generations,

mutation rate, crossover rate, initial maximum length, offspring maximum length and

mutation length. Some essential operations associated with the parameters are further

described below:

Tournament Selection Tournament selection is used to select parents which the muta-

tion and crossover operators will then be applied to produce the offspring for the next

generation [128].

Mutation Operator Mutation operator randomly selects a mutation point, and the

character at that position in the chromosome is replaced with a randomly created sub-

string [128]. The length of the sub-string is randomly chosen to be in the range of 1 to

the mutation length [128]. Regarding Figure 5.1, for example, at a mutation point of 2 in

chromosome 2, heuristic a is replaced by a newly random sub-string {d, e, e} as presented

in Figure 5.7.

Crossover Operator The crossover operator randomly selects two points in each of

the parents, and the parent chromosomes are crossed over at these points to produce two

offspring; however, only the fitter one of the offspring is returned [128]. The maximum

length of the offspring can be specified by the offspring maximum length [128]. Regarding

Figure 5.1, for example, chromosomes 2 and n are crossed over to produce two offspring

as depicted in Figure 5.8.

0 1 2

c f a

c f d e eOffspring

Sub-string

Figure 5.7: EvoHyp’s mutation operator
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Crossover point Crossover point

0 1 2 0 1 2

c f a f g d

c g d f f a

Parents

Offspring

Figure 5.8: EvoHyp’s crossover operator

The maximum length of offspring can be specified by parameter offspringMaxLength.

EvoHyp also allows the offspring produced by generic operators to be no limit on its size

by specifying such parameter value to −1 [128].

Furthermore, the population of each generation is created by applying the mutation

rate and crossover rate [128]. For example, if the mutation rate is 0.5 and the crossover

rate is 0.3, then the proportions of individuals within a population will be 50 : 30 : 20,

where the remaining 20 percentage of the population will be created using reproduction

[128]. The search will be terminated when the number of generations is reached [128].
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5.3 Preliminary Analysis

The preliminary analysis in this chapter is different from those former two chapters. Par-

ticularly, since other four development boards were running the experiments of Chapter 4,

we started our first attempt to carry out the investigation on the remaining board by

initially specifying the parameters as listed in Table 5.2 for the quartic equation in July

2017.

In particular, the values of population size, tournament size and the number of gener-

ations were given similar to those of GA in Chapter 3. Furthermore, unlike GA in general,

where the new individual is produced by crossing over the parents and then mutating

offspring, the crossover and mutation operations of EvoHyp independently generates the

new offspring of the population into a proportion of mutation, crossover and reproduction,

respectively, as earlier described in Section 5.2.2. Accordingly, we first gave the proportion

of evolutionary operations to 50 : 30 : 20. Besides, in the initial generation, the maximum

length of an initial individual was given to 20. In addition, the number of iterations for

local searches was initially set to 200 and the tabu list in particular was given at ten per

cent of such number of iterations.

Unfortunately, about a month later, the COMX-P4080 board unexpectedly stopped

working due to overheating. This overheating problem developed owing to the very long

duration in which the boards were persistently stressed by the experiments. This issue

occasionally occurred during the conduct of the experiments in the other chapters as well.

We have maintained the development boards by shutting them down for a few days before

restarting the experiment again.

Table 5.2: Parameter setting for the first and second attempts of preliminary analysis

Parameter Value

populationSize 100
tournamentSize 2
noOfGenerations 101
mutationRate 0.5
crossoverRate 0.3
initialMaxLength 20
offspringMaxLength −1
mutationLength 3
searchDepth 200
tabuList 0.1
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As of the submission date of the thesis (30 September 2017), the second attempt had

not yet completed. The parameter setting was also the same as in the first attempt. This

time we had got another board available. So, we conducted the investigations on both the

quartic and sextic equations.

As reported by the log files, the best combination of low-level heuristics, and best test

inputs and its fitness value, for each preliminary experiment as of 30 September 2017 is

summarised in Table 5.3.

Based on these preliminary results, compared to the results obtained by the direct

approach as summarised in Table 3.5, GA-based hyper-heuristic outperformed SHC, direct

GA and RS for the case of the quartic equation, whereas it could only surpass SHC for

sextic equation case. However, the hyper-heuristic was worse than the indirect approach

in all the cases.

According to the results summarised in Table 5.3, we have found that this highly

computational time demand happens due to the two local search heuristics, i.e. HC and

TS, which require a number of iterations every single time they are randomly selected as

an element of a chromosome by the high-level GA mechanism of EvoHyp.

Furthermore, such computational requirements are exacerbated by the frequent se-

lection of local search low-level heuristics. Particularly, both local search heuristics are

likely to have more chance of being selected by the high-level GA mechanism than the rest

because of their higher fitness values produced through hundreds of iterations.

Unsuccessfully, the preliminary investigation of the second attempt failed for the sake

of the annual network and systems maintenance of the department during the Christmas

holiday. All development boards were shut down.

Table 5.3: Best values of coefficients obtained by the preliminary analysis

Arguments Heuristics Coefficient vector Fitness value

5 g; f ; f ; f ; d and d 19,268; 15,896; 20,620;
−4,401 and −14,044

95,219

7 g; c; d; c; c; a; c; b and f 12,290; 14,619; 12,347;
30,646; 29,585; 22,268 and
13,355

161,481
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5.4 Experiment VI—Genetic Algorithm Hyper-Heuristic

5.4.1 Objective

The objective in this experiment is to apply a hyper-heuristic to search for test inputs that

might cause a single-threaded polynomial root-finding routine running on the COMX-

P4080 board to violate performance timing requirements. Although GA was inferior to

those single-solution metaheuristic techniques, i.e. HC and SA, in seeking extreme test

inputs as evidenced in the previous two chapters, it would be useful to also investigate its

ability as a high-level methodology to search a combination of low-level heuristics, which in

the end may produce the extreme test inputs. The problem statement in this experiment

is, therefore, similar to Experiment I in Chapter 3, which is:

Problem Statement: For a polynomial equation of the form a0 + a1x+ a2x
2 + . . .+

an−1x
n−1 = 0, we seek values of the coefficients (a0 to an) that maximise the execution

time of the polynomial solver.

The research question addressed in this experiment is:

Research Question: Is EA hyper-heuristic approach effective in seeking values of the

coefficients that maximise the execution time of the polynomial solver?

5.4.2 Preparation

We previously explained in Section 5.3, the computational time issue that occurred dur-

ing the preliminary analysis. As a result, we decided to reduce the computational time

by rerunning the experiment in this chapter with the new parameter setting shown in

Table 5.4. Similar to Chapter 4, in this chapter we conducted the experiment to find the

coefficients of the quartic and sextic equations that maximise the execution time of the

GSL’s polynomial root-finder by using EA hyper-heuristic.

5.4.3 Method

The methodology in this chapter corresponded to other experiments throughout the thesis.

In particular, the hyper-heuristic was executed with each problem input size of the poly-

nomial function ten times. Each trial was provided with a different random seed generated

from random.org. The initial random seeds for quartic an sextic equations are 8,675 and

8,610, respectively.
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Table 5.4: Parameter setting for GA-based hyper-heuristic

Parameter Value

populationSize 10
tournamentSize 2
noOfGenerations 21
mutationRate 0.5
crossoverRate 0.3
initialMaxLength 10
offspringMaxLength 5
mutationLength 5
searchDepth 100
tabuList 0.1

5.4.4 Results

In this chapter, the results obtained by GA hyper-heuristic were compared with the results

of Chapters 3 and 4. Particularly, Figures 5.9 and 5.10 display the differences between

the initial and the final (best) fitness values gained from ten trials of each experiment

on stressing the polynomial solver for quartic and sextic equations of direct and hyper-

heuristic approaches. Since these were almost the same in terms of the characteristic of

the initial fitness values among three different indirect approaches, therefore, we selected

the results gained by basic two-interval based indirect to represent the differences between

the initial and the final fitness values gained from ten trials of indirect and hyper-heuristic

approaches as presented in Figures 5.11 and 5.12. For ease of reference, we abbreviate

‘hyper-heuristic’ to ‘HH’.

Distributions of the best fitness values obtained from ten trials of hyper-heuristic in

comparison with direct approaches are shown in Figure 5.13 and with indirect approaches

are presented in Figures 5.14 and 5.15.

Finally, Table 5.5 summarises the longest execution time obtained from all search-based

approaches, including direct, indirect and hyper-heuristic approaches.

5.4.5 Discussion and Conclusions

The research question in this chapter was answered through a comparison of the effective-

ness of seeking the values of coefficients that maximise the execution time of polynomial

root-finder among the results attained by hyper-heuristic, direct and indirect approaches.
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Figure 5.9: Results of 10 trails obtained by the GA-based hyper-heuristic to the quartic equation in comparison with the direct approaches

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

3
3
4
.0
9
%

2
7
9
.3
2
%

1
1
6
.3
8
%

5
3
4
.7
2
%

3
2
0
.4
0
%

1
2
2
.4
0
% 2
7
9
.4
4
%

1
5
2
.2
9
%

3
9
2
.7
6
%

1
2
5
.7
0
%

Trial

Initial fitness Best fitness

(a) Direct HC

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

2
4
7
.7
8
%

4
1
6
.3
8
%

6
7
.2
3
%

2
9
9
.9
0
%

1
5
2
.5
5
%

1
0
6
.8
2
%

4
2
0
.3
2
%

1
9
3
.5
4
%

4
9
9
.5
5
%

1
0
5
.9
2
%

Trial

Initial fitness Best fitness

(b) Direct SA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

9
3
.7
7
%

1
9
.4
5
%

1
2
4
.3
5
%

1
7
6
.3
6
%

3
5
.6
3
%

6
5
.2
6
%

6
.7
0
% 3

9
.2
0
%

8
1
.9
6
%

6
8
.6
8
%

Trial

Initial fitness Best fitness

(c) Direct GA

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0

2 · 105

4 · 105

6 · 105

6
3
.5
0
%

6
8
.0
2
%

5
2
.0
2
%

5
9
.1
3
%

1
2
7
.2
6
%

5
4
.6
1
%

9
6
.6
0
%

5
9
.4
4
%

8
2
.0
5
%

4
0
.0
0
%

Trial

E
x
ec

u
ti

o
n

ti
m

e
(n

s)

Initial fitness Best fitness

(d) HH

Figure 5.10: Results of 10 trails obtained by the GA-based hyper-heuristic to the sextic equation in comparison with the direct approaches
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Figure 5.11: Results of 10 trails obtained by the GA-based hyper-heuristic to the quartic equation in comparison with the basic 2-interval

based indirect approach
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Figure 5.12: Results of 10 trails obtained by the GA-based hyper-heuristic to the sextic equation in comparison with the basic 2-interval

based indirect approach
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Figure 5.13: Distribution of the best fitness values of 10 trials of the direct approaches

and GA-based hyper-heuristic on the quartic and sextic equations

According to Figures 5.9 to 5.12, compared with direct and indirect approaches, GA

hyper-heuristic started the search with higher fitness values in general. In particular,

hyper-heuristic takes advantage of GA to choose the best fitness value among the initial

chromosomes of its population. Even though direct GA was the second-best approach

delivered high fitness values in the initial generation, its initial fitness values are gained

by the initial individuals, i.e. test vectors, which are directly generated at random. On

the other hand, the test vectors in the initial generation of GA hyper-heuristic have more

chance of improving their fitness values since they are evolved along the series of heuristics.

Considering the final fitness values among ten trials of each approach, in comparison

with direct approaches, hyper-heuristic outperformed SHC and GA, as well as had smaller

variations than others (except SHC), in both cases of quartic and sextic equations as shown

in Figure 5.13.

Moreover, hyper-heuristic performed roughly similar to the basic method of indirect

approaches, where the intervals are variant-free, as indicated by the IQRs which are almost

at the same level on the plots (some higher extreme values appeared on some indirect

approaches though), as presented in Figures 5.14a and 5.15a. Only the basic two-interval

based indirect approach with SA was explicitly surpassed hyper-heuristic in the case of

the sextic equation.
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Figure 5.14: Distribution of the best fitness values of 10 trials of the indirect approaches

and GA-based hyper-heuristic on the quartic equation
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Figure 5.15: Distribution of the best fitness values of 10 trials of the indirect approaches

and GA-based hyper-heuristic on the sextic equation
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Table 5.5: Summary of the highest fitness value of 10 trials of the direct, indirect and

hyper-heuristic over different input arguments for the polynomial solver

Arguments RS SHC HC SA GA HH

5 66,978 33,980 134,449∗ 171,629.5∗ 75,917∗ 149,329
264,310‡ 264,523‡ 247,400†

7 204,990 64,984 355,198∗ 326,249∗ 243,980∗ 256,156
487,240§ 447,760‡ 394,097§

∗Direct. † Indirect-∆(2). ‡ Indirect-∆(3). § Indirect-∆r(2).

However, as depicted in Figures 5.14b, 5.14c, 5.15b and 5.15c, when comparing with

the more restricted versions of indirect approaches, i.e. fixed delta-based and randomised

delta-based intervals, hyper-heuristic was the worst in all cases.

Overall, hyper-heuristic was mostly superior to direct approaches but worse than in-

direct approaches in seeking temporal coefficient vectors for polynomial solver on quartic

and sextic equations as summarised in Table 5.5. In terms of computational demands,

however, GA hyper-heuristic is considered inefficient. Particularly, based on the termin-

ation criterion, i.e. the number of generations, both direct and indirect approaches are

remarkably straightforward. No matter how many experimental trials are conducted, each

trial takes approximately the same computational time because an individual in general,

or a test vector in particular, is directly generated either by a metaheuristic for the direct

approach or by a selected sampling regime for the indirect approach.

For GA hyper-heuristic, on the other hand, its test vector is a result of a chromo-

some, which is a combination of the selected heuristics. The computational time for each

experimental trial thus depends on how many elements are there in each chromosome,

as well as what have selected heuristics in the chromosome. For example, in this ex-

periment, local searches take relatively 100 times longer than other low-level heuristics

due to their number of iterations. Table 5.6 summarises the computational time used

in each trial of GA hyper-heuristic. Note: the time taken is presented in the format

hours : minutes : seconds.

In this experiment, the best coefficient vectors among ten trials for quartic and sextic

equations, together with the best fitness values and the best chromosomes, are summarised

in Table 5.7. Additionally, the numbers of QR iterations, which maximised the execution

times of GSL’s root-finder, are also included in the table.
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Table 5.6: Computational demands of 10 trials of GA hyper-heuristic

Arguments

Trial 5 7

1 45:27:10 67:08:53
2 49:28:58 62:04:17
3 48:40:26 75:01:30
4 53:27:04 70:36:44
5 39:55:18 49:05:49
6 57:43:32 62:00:00
7 57:37:07 80:52:50
8 78:32:49 75:27:51
9 50:25:49 64:34:46

10 47:44:24 56:17:33

Table 5.7: Best values of coefficients (Chapter 5)

Arguments Heuristics Coefficient vector Iterations

5 g; f and f −22,783; 3,042; 31,270;
−4,245 and −16,092

52

7 f ; e; f ; f and f 28,689; 17,413; 1,102;
−9,699; −22,566; −1,507
and 13,888

48

Regarding the best combinations of low-level heuristics presented in Table 5.7, HC

was largely selected as parts of such best chromosomes. Owing to the fact that the new

solution gained by local searches will not have worse objective function value as previously

described in Section 5.2.1, hence, HC and TS are likely to be picked up more often than

other low-level heuristics, but they can lead to a longer computing time at the same time.

Likewise Chapters 3 and 4, we validated these best coefficient vectors by rerunning

them on five different P4080 boards. Figure 5.16 show box plots of the execution times

collected from 100 runs of each coefficient vector on each board. As indicated by the

midspreads on the box plots, there were almost no variations over the distributions among

five boards. Those IQRs were exactly at the same level in the case of the quartic equation

and were almost at the same level in the case of the sextic equation. The actual execution

times are also within such midspreads.
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Figure 5.16: Distribution of 100 execution times of polynomial solver with best input

arguments obtained from 5 P4080 boards (Chapter 5)

5.5 Summary

In conclusion, this chapter explored the ability of a selective perturbative hyper-heuristic

to seek temporal input arguments that maximise the execution time of a task running on

a multicore system. In particular, a GA is used as a high-level methodology to select a

combination of low-level perturbative heuristics, which generates extremal test inputs for

the polynomial solver. Accordingly, we defined seven low-level heuristics, which are con-

verting mutator, interchanging mutator, reversing mutator, tweaking operator, inserting

operator, HC and TS.

Regarding Table 5.5, compared to the direct approaches, the experimental results

indicate that test inputs (or a coefficient vector) produced by a combination of low-level

heuristics, which are selected by an EA hyper-heuristic, delivered a higher fitness value

than the fitness value of test inputs, which are directly generated from RS, SHC, HC

and GA for finding roots of the quartic equation. However, in the case of finding seven

coefficients of the sextic function, the fitness value produced by the test inputs generated

from a combination of selected heuristics of the EA hyper-heuristic was only greater than

the value from test inputs, which were directly generated by RS, SHC and GA. Besides,

such GA hyper-heuristic was the worst in comparison with the indirect approaches when

the intervals of indirect approaches are restricted by delta values.
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In terms of computational time, using a population-based approach as a high-level

methodology of a hyper-heuristic would appear to be significantly inefficient for our timing-

related problem. Since every time a set of heuristics are repeatedly selected and combined

with other heuristics (or set of heuristics), the GA mechanism requires a re-evaluation of

such a set of heuristics again as it is considered to be a new chromosome of the popula-

tion, especially when those two local search heuristics are picked up. This leads to a huge

demand for computation time required to perform such GA hyper-heuristic. A single-

solution approach probably may be more suitable for the timing-related problem than

the population-based approach. As evidenced throughout the thesis, the single-solution

based approaches are remarkable in attaining extreme execution times for temporal test-

ing, either as the direct approaches to generate the evolved test data or as the indirect

approaches to generate the evolved sampling distributions.

In the research of this chapter, more than that of the previous chapters, the computa-

tional demands have proven problematic. Exploring the attainment of extreme execution

times on the P4080 platform is well motivated in general, but perhaps the evaluation of

hyper-heuristics is computationally just a step too far. It would be possible to research

hyper-heuristics more confidently if a cloud-based solution was adopted, e.g. if we were run

on a set of identical specific multicore chips provided by, say, Amazon Web Services (AWS).

(Note: Amazon and other cloud computing providers do not offer P4080 provision.)
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Conclusions

This thesis has explored the use of various forms of optimisation approaches to the gener-

ation of test inputs exhibiting extreme execution times on a modern multicore platform.

The work has addressed:

1. The direct maximisation of the execution time.

2. The indirect maximisation of execution time, via the synthesis of correlated sampling

strategies.

3. The hyper-heuristic maximisation of extreme execution time (WCET).

6.1 Contributions

The contributions of the work described here are:

1. The most wide-ranging comparison of optimisation techniques to finding extremal

execution times we know of (and executing on a multicore chip).

2. The first investigation of optimisation approaches to the generation of dependent

input sampling strategies for test input sampling in the context of extreme execution

times. (Our particular target was a specific multicore chip, the P4080, but we know

of no other such application for any chip.)

3. The first investigation of the use of hyper-heuristics to generate extreme execution

times. (Our particular target was a specific multicore chip, but we know of no other

such application for any chip.)

185



Chapter 6: Conclusions

Furthermore, the work has demonstrated that the indirect approach formulated and

explored has considerable merit.

6.2 Limitations of the Research

The limitations of the work are:

1. The small number of case studies we were able to use. More confident general results

might be inferred from a much larger corpus of examples.

2. The availability of computational resources for our specific chip of choice has dis-

tinctly limited the amount of computation we were able to do. The choice of the

specific chip (i.e. P4080) was well motivated; being in active use in critical plat-

forms. However, the choice of this chip largely means that we are limited to the

actual number of chips procured for the research. Our evaluation environment star-

ted with a single specialised P4080 board, but it became clear that this simply would

not suffice. We finally had five specially constructed P4080 systems for cost function

evaluation at the time of completion of this thesis. Because we wish to comment

on the usefulness of an approach we need to do meaningful numbers of experiments,

which itself boosts the required computation resources hugely. Using five boards is

a substantial computational resource, but still, the computational demands of the

research are very significant. In the final nine months of the thesis, constant running

of all five boards was the norm. Computational limitations were felt particularly for

the work on Chapter 5 (hyper-heuristics), but the issue is relevant to all the work

reported this thesis. Over the empirical evaluation of the research, I estimate that

14,393 P4080 computational hours have been expended. The estimation excludes

time expended in failed experiments due to overheating, as well as in the prelimin-

ary analysis, especially the ones in Chapter 5, which took almost a half a year with

failures.

3. More complex data types need to be considered. Our case study problems are

numerical with integral inputs. The issue of complex data types is an acknowledged

issue in SBST.

4. The lack of a Java Virtual Machine (JVM) for the COMX-P4080 board was a lim-

itation. This forced the separation of computation for the optimisation technique
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(carried out on a desktop PC) from the cost function evaluation (which was done on

P4080 machines). Naturally, this incurs communications overheads.

5. The very limited evaluation of hyper-heuristics is a distinct although easily fixable

limitation. We simply ran out of time for further carrying out experiments with

various parameter settings.

6.3 Future Work

The future work in this area should include:

1. Distribution over the cloud to effect large-scale experimenting. This would enable

truly rigorous experimentation, albeit for a multicore environment used commercially

rather than in critical systems. For example, we could farm out evaluations to AWS

or similar.

2. Simulation and virtualisation is one possible solution, effectively adopting a P4080

simulator as the execution platform and distributing many instances across the cloud.

However, it is far from clear what constraints this approach would impose. Simulat-

ors are only a model of the system and in terms of execution time (of the simulator)

may well be terribly slow. However, this option should at least be considered for

future work.

3. Wider use of multi-threaded applications in the case studies.

4. Wider exploitation of the techniques researched to generate test data to induce other

extreme performance measures. There seems little reason to believe a technique

that generated extreme execution times would not find reasonable application to,

for example, generation of extreme power usage.

5. Wider exploitation of the indirect approach by utilising other probability distribu-

tions, such as beta, binomial, normal, exponential and Weibull distributions, to

generate test data from selected subdomains. The parameters of distributions for

sampling subdomains could readily be incorporated in the optimisation process.

(Distributional parameters could, for example, easily be incorporated in the chro-

mosome representation indicated in Section 4.2 and decoded appropriately.)
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6. Wider exploitation of the hyper-heuristic approach using a single-state solution ap-

proach, which would be an alternative to finding extreme execution times.

7. Manually crafted hybrids. Rather than using a hyper-heuristic to find a hybrid we

could investigate specific combinations directly.

6.3.1 Looking Forward

The area of temporal testing appears to be a promising avenue for search-based approaches.

There is clear value in further exploring the higher level search spaces of Chapters 4 and 5.

The area is recommended to the research community.
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Appendix A

Benchmark Source Codes

This appendix shows pieces of codes of the SUTs used throughout the thesis.

A.1 Polynomial Root Finder

The code fragments related to the polynomial root-finding routine, i.e. zsolve.c and

qr.c, are displayed in Listings A.1 and A.2. The full versions of these codes are available

to be downloaded at [129].

Listing A.1: zsolve.c [129]

1 #define MAT(m, i , j , n ) ( (m) [ ( i ) ∗(n) + ( j ) ] )

2

3 #include ”companion . c”

4 #include ” balance . c”

5 #include ” qr . c”

6

7 int

8 g s l p o l y c o m p l e x s o l v e ( const double ∗a , s i z e t n ,

9 gs l po ly complex workspace ∗ w,

10 gs l complex packed pt r z )

11 {

12 int s t a t u s ;

13 double ∗m;

14

15 i f (n == 0) {

16 GSL ERROR( ”number o f terms must be a p o s i t i v e i n t e g e r ” , GSL EINVAL) ;

17 }

18
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19 i f (n == 1) {

20 GSL ERROR( ” cannot s o l v e f o r only one term” , GSL EINVAL) ;

21 }

22

23 i f ( a [ n − 1 ] == 0) {

24 GSL ERROR( ” l ead ing term o f polynomial must be non−zero ” , GSL EINVAL) ;

25 }

26

27 i f (w−>nc != n − 1) {

28 GSL ERROR( ” s i z e o f workspace does not match polynomial ” , GSL EINVAL) ;

29 }

30

31 m = w−>matrix ;

32

33 set companion matr ix ( a , n − 1 , m) ;

34

35 balance companion matr ix (m, n − 1) ;

36

37 s t a t u s = qr companion (m, n − 1 , z ) ;

38

39 i f ( s t a t u s ) {

40 GSL ERROR( ” root s o l v i n g qr method f a i l e d to converge ” , GSL EFAILED) ;

41 }

42

43 return GSL SUCCESS ;

44 }
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Listing A.2: qr.c [129]

1 stat ic int

2 qr companion (double ∗h , s i z e t nc , g s l complex packed pt r z root )

3 {

4 double t = 0 . 0 ;

5

6 s i z e t i t e r a t i o n s , e , i , j , k , m;

7

8 double w, x , y , s , z ;

9

10 double p = 0 , q = 0 , r = 0 ;

11

12 /∗ FIXME: i f p , q , r , are not s e t to zero then the compi ler complains

13 t h a t they ‘ ‘ might be used u n i n i t i a l i z e d in t h i s

14 f unc t i on ’ ’ . Looking at the code t h i s does seem po s s i b l e , so t h i s

15 shou ld be checked . ∗/

16

17 int n o t l a s t ;

18

19 s i z e t n = nc ;

20

21 nex t roo t :

22

23 i f (n == 0)

24 return GSL SUCCESS ;

25

26 i t e r a t i o n s = 0 ;

27

28 n e x t i t e r a t i o n :

29

30 for ( e = n ; e >= 2 ; e−−)

31 {

32 double a1 = fabs (FMAT (h , e , e − 1 , nc ) ) ;

33 double a2 = fabs (FMAT (h , e − 1 , e − 1 , nc ) ) ;

34 double a3 = fabs (FMAT (h , e , e , nc ) ) ;

35

36 i f ( a1 <= GSL DBL EPSILON ∗ ( a2 + a3 ) )

37 break ;

38 }

39

40 x = FMAT (h , n , n , nc ) ;
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41

42 i f ( e == n)

43 {

44 GSL SET COMPLEX PACKED ( zroot , n−1, x + t , 0) ; /∗ one r e a l roo t ∗/

45 n−−;

46 goto next roo t ;

47 /∗ cont inue ; ∗/

48 }

49

50 y = FMAT (h , n − 1 , n − 1 , nc ) ;

51 w = FMAT (h , n − 1 , n , nc ) ∗ FMAT (h , n , n − 1 , nc ) ;

52

53 i f ( e == n − 1)

54 {

55 p = ( y − x ) / 2 ;

56 q = p ∗ p + w;

57 y = s q r t ( f abs ( q ) ) ;

58

59 x += t ;

60

61 i f ( q > 0) /∗ two r e a l r oo t s ∗/

62 {

63 i f (p < 0)

64 y = −y ;

65 y += p ;

66

67 GSL SET COMPLEX PACKED ( zroot , n−1, x − w / y , 0) ;

68 GSL SET COMPLEX PACKED ( zroot , n−2, x + y , 0) ;

69 }

70 else

71 {

72 GSL SET COMPLEX PACKED ( zroot , n−1, x + p , −y ) ;

73 GSL SET COMPLEX PACKED ( zroot , n−2, x + p , y ) ;

74 }

75 n −= 2 ;

76

77 goto next roo t ;

78 /∗ cont inue ; ∗/

79 }

80

81 /∗ No more roo t s found yet , do another i t e r a t i o n ∗/
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82

83 i f ( i t e r a t i o n s == 120) /∗ i nc reased from 30 to 120 ∗/

84 {

85 /∗ too many i t e r a t i o n s − g i v e up ! ∗/

86

87 return GSL FAILURE ;

88 }

89

90 i f ( i t e r a t i o n s % 10 == 0 && i t e r a t i o n s > 0)

91 {

92 /∗ use an e x c e p t i ona l s h i f t ∗/

93

94 t += x ;

95

96 for ( i = 1 ; i <= n ; i++)

97 {

98 FMAT (h , i , i , nc ) −= x ;

99 }

100

101 s = fabs (FMAT (h , n , n − 1 , nc ) ) + fabs (FMAT (h , n − 1 , n − 2 , nc ) ) ;

102 y = 0.75 ∗ s ;

103 x = y ;

104 w = −0.4375 ∗ s ∗ s ;

105 }

106

107 i t e r a t i o n s ++;

108

109 for (m = n − 2 ; m >= e ; m−−)

110 {

111 double a1 , a2 , a3 ;

112

113 z = FMAT (h , m, m, nc ) ;

114 r = x − z ;

115 s = y − z ;

116 p = FMAT (h , m, m + 1 , nc ) + ( r ∗ s − w) / FMAT (h , m + 1 , m, nc ) ;

117 q = FMAT (h , m + 1 , m + 1 , nc ) − z − r − s ;

118 r = FMAT (h , m + 2 , m + 1 , nc ) ;

119 s = fabs (p) + fabs ( q ) + fabs ( r ) ;

120 p /= s ;

121 q /= s ;

122 r /= s ;
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123

124 i f (m == e )

125 break ;

126

127 a1 = fabs (FMAT (h , m, m − 1 , nc ) ) ;

128 a2 = fabs (FMAT (h , m − 1 , m − 1 , nc ) ) ;

129 a3 = fabs (FMAT (h , m + 1 , m + 1 , nc ) ) ;

130

131 i f ( a1 ∗ ( f abs ( q ) + fabs ( r ) ) <= GSL DBL EPSILON ∗ f abs (p) ∗ ( a2 + a3 ) )

132 break ;

133 }

134

135 for ( i = m + 2 ; i <= n ; i++)

136 {

137 FMAT (h , i , i − 2 , nc ) = 0 ;

138 }

139

140 for ( i = m + 3 ; i <= n ; i++)

141 {

142 FMAT (h , i , i − 3 , nc ) = 0 ;

143 }

144

145 /∗ doub le QR s t ep ∗/

146

147 for ( k = m; k <= n − 1 ; k++)

148 {

149 n o t l a s t = ( k != n − 1) ;

150

151 i f ( k != m)

152 {

153 p = FMAT (h , k , k − 1 , nc ) ;

154 q = FMAT (h , k + 1 , k − 1 , nc ) ;

155 r = n o t l a s t ? FMAT (h , k + 2 , k − 1 , nc ) : 0 . 0 ;

156

157 x = fabs (p) + fabs ( q ) + fabs ( r ) ;

158

159 i f ( x == 0)

160 continue ; /∗ FIXME????? ∗/

161

162 p /= x ;

163 q /= x ;
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164 r /= x ;

165 }

166

167 s = s q r t (p ∗ p + q ∗ q + r ∗ r ) ;

168

169 i f (p < 0)

170 s = −s ;

171

172 i f ( k != m)

173 {

174 FMAT (h , k , k − 1 , nc ) = −s ∗ x ;

175 }

176 else i f ( e != m)

177 {

178 FMAT (h , k , k − 1 , nc ) ∗= −1;

179 }

180

181 p += s ;

182 x = p / s ;

183 y = q / s ;

184 z = r / s ;

185 q /= p ;

186 r /= p ;

187

188 /∗ do row mod i f i c a t i on s ∗/

189

190 for ( j = k ; j <= n ; j++)

191 {

192 p = FMAT (h , k , j , nc ) + q ∗ FMAT (h , k + 1 , j , nc ) ;

193

194 i f ( n o t l a s t )

195 {

196 p += r ∗ FMAT (h , k + 2 , j , nc ) ;

197 FMAT (h , k + 2 , j , nc ) −= p ∗ z ;

198 }

199

200 FMAT (h , k + 1 , j , nc ) −= p ∗ y ;

201 FMAT (h , k , j , nc ) −= p ∗ x ;

202 }

203

204 j = ( k + 3 < n) ? ( k + 3) : n ;
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205

206 /∗ do column mod i f i c a t i on s ∗/

207

208 for ( i = e ; i <= j ; i++)

209 {

210 p = x ∗ FMAT (h , i , k , nc ) + y ∗ FMAT (h , i , k + 1 , nc ) ;

211

212 i f ( n o t l a s t )

213 {

214 p += z ∗ FMAT (h , i , k + 2 , nc ) ;

215 FMAT (h , i , k + 2 , nc ) −= p ∗ r ;

216 }

217 FMAT (h , i , k + 1 , nc ) −= p ∗ q ;

218 FMAT (h , i , k , nc ) −= p ;

219 }

220 }

221

222 goto n e x t i t e r a t i o n ;

223 }
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A.2 Sortings

Code snippets of parallel sorting routines are shown below:

A.2.1 Bubble Sort

Listing A.3 presents a code fragment of parallel bubble sort. The full version of the code

is available to be downloaded at [110].

Listing A.3: bubblesort.c [110]

1 typedef struct{

2 int id ;

3 int∗ swapCount ;

4 pthread mutex t ∗ swapLock ;

5 p t h r e a d b a r r i e r t ∗ phaseBarr i e r ;

6 Set theSet ;

7 int s i z e ;

8 int numThreads ;

9 int (∗ compare ) ( Element , Element ) ;

10 } ptEO Data ;

11

12 void pthreadsBubbleSort ( Set set , int s i z e ,

13 int (∗ compare ) ( Element , Element ) , int numThreads )

14 {

15 int i ;

16 int swapCount = 0 ;

17

18 // i n i t i a l i z e the mutex

19 pthread mutex t swapLock ;

20 pthread mutex in i t ( &swapLock , 0 ) ;

21

22 // i n i t i a l i z e the b a r r i e r

23 p t h r e a d b a r r i e r t phaseBarr i e r ;

24 p t h r e a d b a r r i e r i n i t (&phaseBarr ier , 0 , numThreads ) ;

25

26 // c rea t e and i n i t i a l i z e the th reads .

27 pthread t ∗ threads = mal loc ( numThreads∗ s izeof ( pthread t ) ) ;

28

29 // t h i s i n f o i s cons tant between threads .

30 ptEO Data tmp ;

31 tmp . swapCount = &swapCount ;
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32 tmp . swapLock = &swapLock ;

33 tmp . phaseBarr i e r = &phaseBarr i e r ;

34 tmp . theSet = s e t ;

35 tmp . s i z e = s i z e ;

36 tmp . numThreads = numThreads ;

37 tmp . compare = compare ;

38

39 for ( i = 0 ; i < numThreads ; ++i )

40 {

41

42 // as s i gn id ;

43 tmp . id = i ;

44

45 // copy the tmp in to i t s own data s t r u c t u r e .

46 ptEO Data∗ data = mal loc ( s izeof ( ptBS Data ) ) ;

47 memcpy( data , &tmp , s izeof ( tmp ) ) ;

48

49 // c rea t e the thread ;

50 pth r ead c r ea t e ( &threads [ i ] , 0 , &bubbleSortCal lBack , data ) ;

51 }

52

53 // j o i n the th reads .

54 for ( i = 0 ; i < numThreads ; ++i )

55 {

56 p t h r e a d j o i n ( threads [ i ] , 0 ) ;

57 }

58

59 return ;

60 }

61

62 void∗ bubbleSortCal lBack ( void∗ in )

63 {

64 // ca s t our vo id ∗ inpu t to the co r r e c t type .

65 ptEO Data∗ data = ( ptEO Data ∗) in ;

66

67 // e x t r a c t some data from the s t r u c t u r e f o r r e a d a b i l i t y .

68 Set s e t = data−>theSet ;

69 int∗ swapCount = data−>swapCount ;

70 int id = data−>id ;

71 int s i z e = data−>s i z e ;

72 int (∗ compare ) ( Element , Element ) = data−>compare ;
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73 int numThreads = data−>numThreads ;

74 int elPerThread = data−>s i z e /numThreads ;

75

76 // some thread− l o c a l v a r i a b l e s we w i l l need .

77

78 int i ; // f o r use in l oops .

79 int numSwaps ; // the number o f swaps we performed in the phase .

80 Element tmp ; // a temporary element f o r use in swaps .

81

82 int s t a r t ; // s t a r t i n g index f o r t h i s thread ’ s chunk o f the s e t

83 int stop ; // non−i n c l u s i v e s t opp ing index

84

85 // c a l c u l a t e our s t a r t i n g and s topp ing i n d i c e s

86 s t a r t = id ∗( elPerThread ) ;

87 stop = s t a r t + elPerThread ;

88

89 i f ( ( numThreads − 1) == id )

90 {

91 stop += ( s i z e − numThreads∗ elPerThread ) ;

92 }

93

94 // do the s o r t i n g

95 do

96 {

97 numSwaps = 0 ;

98

99 // −−− even phase

100 // do compare swap opera t i ons f o r each even indexed element in our chunk

101 // wi th i t s l e f t ne ighbor in the s e t .

102 for ( i = s t a r t ; i < stop ; ++i )

103 {

104 i f ( i > 0

105 && 0 == ( i % 2) )

106 {

107 i f ( 1 == compare ( s e t [ i −1] , s e t [ i ] ) )

108 {

109 tmp = s e t [ i −1] ;

110 s e t [ i −1] = s e t [ i ] ;

111 s e t [ i ] = tmp ;

112

113 ++numSwaps ;
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114 }

115 }

116 }

117

118 // b a r r i e r to wai t u n t i l a l l t h reads have f i n i s h e d even s t a g e .

119 p t h r e a d b a r r i e r w a i t ( data−>phaseBarr i e r ) ;

120

121 p r i n t f ( ” id = %d , past b a r r i e r \n” , id ) ;

122

123 // −−− odd phase

124 // do compare swap opera t i ons f o r each odd indexed element in our chunk

125 // wi th i t s l e f t ne ighbor in the s e t .

126 for ( i = s t a r t ; i < stop ; ++i )

127 {

128 i f ( i < s i z e

129 && 1 == ( i % 2) )

130 {

131 i f ( 1 == compare ( s e t [ i −1] , s e t [ i ] ) )

132 {

133 tmp = s e t [ i −1] ;

134 s e t [ i −1] = s e t [ i ] ;

135 s e t [ i ] = tmp ;

136

137 ++numSwaps ;

138 }

139 }

140 }

141

142 // one thread r e s e t s swapCount

143 i f ( 0 == id )

144 {

145 ∗swapCount = 0 ;

146 }

147

148 // b a r r i e r to wai t u n t i l a l l t h reads have f i n i s h e d odd s t a g e .

149 p t h r e a d b a r r i e r w a i t ( data−>phaseBarr i e r ) ;

150

151 // −−− swap count

152 i f ( numSwaps > 0)

153 {

154 pthread mutex lock ( data−>swapLock ) ;
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155 {

156 ∗swapCount += numSwaps ;

157 }

158 pthread mutex unlock ( data−>swapLock ) ;

159 }

160

161 // b a r r i e r to wai t u n t i l a l l t h reads have f i n i s h e d count s t a g e .

162 p t h r e a d b a r r i e r w a i t ( data−>phaseBarr i e r ) ;

163

164 } while (∗ swapCount > 0 ) ;

165 }
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A.2.2 Shell Sort

In Listing A.4, a code fragment of parallel shell sort is illustrated. The full version of the

code is available to be downloaded at [111].

Listing A.4: shellPT.c [111]

1 void ∗ s h e l l s o r t (void ∗ arg )

2 {

3 th r ead da ta t ∗threadWork=( th r ead da ta t ∗) arg ;

4 int ∗a ;

5 int N;

6

7 int group ;

8 int i , j , h ;

9 int v ;

10

11 a = threadWork−>a ;

12 N = threadWork−>N;

13 p t h r e a d b a r r i e r w a i t (& b a r r i e r ) ;

14

15 for (h = 1 ; h <= N/9 ; h = 3∗h+1) ;

16 for ( ; h > 0 ; h /= 3)

17 {

18 for ( group = threadWork−>threadId ; group < h ; group += numThreads )

19 for ( i = group+h ; i < N; i += h)

20 {

21 v = a [ i ] ;

22 j = i ;

23 while ( j >= h && a [ j−h ] > v )

24 {

25 a [ j ] = a [ j−h ] ;

26 j −= h ;

27 }

28 a [ j ] = v ;

29 }

30 p t h r e a d b a r r i e r w a i t (& b a r r i e r ) ;

31 }

32 p t h r e a d b a r r i e r w a i t (& b a r r i e r ) ;

33

34 return (void ∗) threadWork ;

35 }
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A.2.3 Quicksort

Listing A.5 depicts a code fragment of parallel quicksort. The full version of the code is

available to be downloaded at [111].

Listing A.5: qsortPT.c [111]

1 int ∗ ar r ;

2 int a r r S i z e ;

3 int ze roAct ive = 1 , p a r t i t i o n A v a i l a b l e = 0 , le ftEnd , rightEnd ;

4 int maxThreshold ;

5

6 int p a r t i t i o n ( arr , p , r )

7 int ∗ arr , p , r ;

8 {

9 int x , i , j , temp ;

10

11 x = arr [ p ] ;

12 i = p − 1 ;

13 j = r + 1 ;

14 while (1 )

15 {

16 while ( a r r [−− j ] > x ) ;

17 while ( a r r [++ i ] < x ) ;

18 i f ( i < j )

19 {

20 temp = arr [ i ] ;

21 ar r [ i ] = ar r [ j ] ;

22 ar r [ j ] = temp ;

23 }

24 else

25 {

26 return j ;

27 }

28 }

29 }

30

31 void quickSort ( int ∗a , int p , int r )

32 {

33 int q ;

34

35 i f (p < r )
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36 {

37 q = p a r t i t i o n ( a , p , r ) ;

38 qu ickSort ( a , p , q ) ;

39 qu ickSort ( a , q+1, r ) ;

40 }

41 }

42

43 void quickSort2 ( int ∗a , int p , int r )

44 {

45 int q , k ;

46

47 i f (p < r )

48 {

49 q = p a r t i t i o n ( a , p , r ) ;

50 k = r − p + 1 ;

51 i f ( p a r t i t i o n A v a i l a b l e | | k > maxThreshold )

52 quickSort2 (a , p , q ) ;

53 else

54 {

55 le f tEnd = p ;

56 rightEnd = q ;

57 p a r t i t i o n A v a i l a b l e = 1 ;

58 }

59

60 k = r − q ;

61 i f ( p a r t i t i o n A v a i l a b l e | | k > maxThreshold )

62 quickSort2 (a , q+1, r ) ;

63 else

64 {

65 le f tEnd = q+1;

66 rightEnd = r ;

67 p a r t i t i o n A v a i l a b l e = 1 ;

68 }

69 }

70 }

71

72 void ∗ quickSort0 (void ∗ arg )

73 {

74 th r ead da ta t ∗threadWork = ( th r ead da ta t ∗) arg ;

75

76 p t h r e a d b a r r i e r w a i t (& b a r r i e r ) ;
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77

78 quickSort2 ( arr , 0 , a r rS i z e −1) ;

79 ze roAct ive = 0 ;

80

81 p t h r e a d b a r r i e r w a i t (& b a r r i e r ) ;

82

83 return (void ∗) threadWork ;

84 }

85

86 void ∗ quickSort1 (void ∗ arg )

87 {

88 th r ead da ta t ∗threadWork = ( th r ead da ta t ∗) arg ;

89

90 p t h r e a d b a r r i e r w a i t (& b a r r i e r ) ;

91

92 while ( ze roAct ive | | p a r t i t i o n A v a i l a b l e )

93 i f ( p a r t i t i o n A v a i l a b l e )

94 {

95 qu ickSort ( arr , le f tEnd , rightEnd ) ;

96 p a r t i t i o n A v a i l a b l e = 0 ;

97 }

98

99 p t h r e a d b a r r i e r w a i t (& b a r r i e r ) ;

100

101 return (void ∗) threadWork ;

102 }
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A.2.4 Merge Sort

A code fragment of parallel merge sort is demonstrated in Listing A.6. The full version of

the code is available to be downloaded at [112].

Listing A.6: parallelMergesort.c [112]

1 // p a r a l l e l mergesort top l e v e l :

2 // i n s t a n t i a t e pa ra l l e lMer g e s o r tHe l p e r thread , and t ha t ’ s b a s i c a l l y i t .

3

4 void p a r a l l e l M e r g e s o r t ( int l y s t [ ] , int s i z e , int t l e v e l )

5 {

6 int rc ;

7 void ∗ s t a t u s ;

8

9 int ∗back = ( int ∗) mal loc ( s i z e ∗ s izeof ( int ) ) ;

10

11 //Want j o i n a b l e th reads ( u s u a l l y d e f a u l t ) .

12 p t h r e a d a t t r t a t t r ;

13 p t h r e a d a t t r i n i t (& a t t r ) ;

14 p t h r e a d a t t r s e t d e t a c h s t a t e (&attr , PTHREAD CREATE JOINABLE) ;

15

16 // pthread func t i on can take on ly one argument , so s t r u c t .

17 struct thread data td ;

18 td . l y s t = l y s t ;

19 td . back = back ;

20 td . low = 0 ;

21 td . high = s i z e − 1 ;

22 td . l e v e l = t l e v e l ;

23

24 //The top− l e v e l thread .

25 pthread t theThread ;

26 rc = pthr ead c r ea t e (&theThread , &attr , pa ra l l e lMerge so r tHe lpe r ,

27 (void ∗) &td ) ;

28 i f ( rc )

29 {

30 p r i n t f ( ”ERROR; return code from pthread c r ea t e ( ) i s %d\n” , rc ) ;

31 e x i t (−1) ;

32 }

33

34 //Now jo in the thread ( wait , as j o i n i n g b l o c k s ) and qu i t .

35 p t h r e a d a t t r d e s t r o y (& a t t r ) ;
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36 rc = p t h r e a d j o i n ( theThread , &s t a t u s ) ;

37 i f ( rc )

38 {

39 p r i n t f ( ”ERROR; return code from p t h r e a d j o i n ( ) i s %d\n” , rc ) ;

40 e x i t (−1) ;

41 }

42 f r e e ( back ) ;

43 }

44

45 // pa ra l l e lMer g e s o r tHe l p e r

46 // − i f t he l e v e l i s s t i l l > 0 , then make pa ra l l e lMer g e so r tHe l p e r th reads

47 // to s o l v e the l e f t and r i gh t−hand s ide s , then merge r e s u l t s

48 // a f t e r j o i n i n g and qu i t .

49

50 void ∗ p a r a l l e l M e r g e s o r t H e l p e r (void ∗ threadarg )

51 {

52 int mid , t , r c ;

53 void ∗ s t a t u s ;

54

55 struct thread data ∗my data ;

56 my data = ( struct thread data ∗) threadarg ;

57

58 i f ( my data−>l e v e l <= 0 | | my data−>low == my data−>high )

59 {

60 //We have p l en t y o f threads , f i n i s h wi th s e q u en t i a l .

61 mergesortHelper ( my data−>l y s t , my data−>back ,

62 my data−>low , my data−>high ) ;

63 p t h r e a d e x i t (NULL) ;

64 }

65

66 //Want j o i n a b l e th reads ( u s u a l l y d e f a u l t ) .

67 p t h r e a d a t t r t a t t r ;

68 p t h r e a d a t t r i n i t (& a t t r ) ;

69 p t h r e a d a t t r s e t d e t a c h s t a t e (&attr , PTHREAD CREATE JOINABLE) ;

70

71 //At t h i s point , we w i l l c r ea t e th reads f o r the

72 // l e f t and r i g h t s i d e s . Must c r ea t e t h e i r data args .

73 struct thread data thread data a r ray [ 2 ] ;

74 mid = ( my data−>low + my data−>high ) /2 ;

75

76 for ( t = 0 ; t < 2 ; t ++)
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77 {

78 thread data a r ray [ t ] . l y s t = my data−>l y s t ;

79 th read data a r ray [ t ] . back = my data−>back ;

80 th read data a r ray [ t ] . l e v e l = my data−>l e v e l − 1 ;

81 }

82 thread data a r ray [ 0 ] . low = my data−>low ;

83 thr ead data a r ray [ 0 ] . high = mid ;

84 thr ead data a r ray [ 1 ] . low = mid+1;

85 thr ead data a r ray [ 1 ] . high = my data−>high ;

86

87 //Now, i n s t a n t i a t e the th reads .

88 pthread t threads [ 2 ] ;

89 for ( t = 0 ; t < 2 ; t ++)

90 {

91 rc = pthr ead c r ea t e (&threads [ t ] , &attr , pa ra l l e lMerge so r tHe lpe r ,

92 (void ∗) &thread data a r ray [ t ] ) ;

93 i f ( rc )

94 {

95 p r i n t f ( ”ERROR; return code from pthr ead c r ea t e ( ) i s %d\n” , rc ) ;

96 e x i t (−1) ;

97 }

98 }

99

100 p t h r e a d a t t r d e s t r o y (& a t t r ) ;

101 //Now, j o i n the l e f t and r i g h t th reads and merge .

102 for ( t = 0 ; t < 2 ; t ++)

103 {

104 rc = p t h r e a d j o i n ( threads [ t ] , &s t a t u s ) ;

105 i f ( rc )

106 {

107 p r i n t f ( ”ERROR; return code from p t h r e a d j o i n ( ) i s %d\n” , rc ) ;

108 e x i t (−1) ;

109 }

110 }

111

112 // Ca l l the s e q u en t i a l merge now tha t the l e f t and r i g h t

113 // s i d e s are so r t ed .

114 merge ( my data−>l y s t , my data−>back , my data−>low , mid , my data−>high ) ;

115

116 p t h r e a d e x i t (NULL) ;

117 }
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Appendix B

Approximate Roots of Polynomials

This appendix summarises the approximate roots of the best coefficient vectors, which

maximised the execution times of GSL’s polynomial root-finder, obtained from each chapter.

Table B.1: Approximate roots of 17985x4 − 20437x3 − 22267x2 + 15894x + 21508 = 0

(Chapter 3)

Roots

1.287408339087713793± 0.380431532870959876i
−0.719240421378509631± 0.382468304175276497i

Table B.2: Approximate roots of 2622x6 − 6095x5 − 13873x4 + 26154x3 + 28203x2 −
24011x+ 3797 = 0 (Chapter 3)

Roots

0.235710558547915006
0.403924841403742740
−1.556879134291467626± 0.392505777534434219i

2.399342136070031550± 0.378443939319265454i

Table B.3: Approximate roots of 20905x8 − 8575x7 + −29306x6 + 4007x5 − 12774x4 +

8105x3 + 23227x2 + 2291x+ 26880 = 0 (Chapter 3)

Roots

−0.246274919414626758± 0.846299340317886006i
0.287705009833163883± 0.823256707184029879i
−1.110474789396435735± 0.241213864506183123i

1.274139173983877882± 0.248714743536976562i
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Table B.4: Approximate roots of −16062x10 + 8416x9 + 19083x8 + 6246x7 + 6219x6 −
10917x5 − 29935x4 − 23003x3 + 1673x2 + 18598x− 15999 = 0 (Chapter 3)

Roots

0.095346496125123137± 1.098945088266054748i
0.601357465240699440± 0.789554915489905307i
0.485372339699980282± 0.377778761256662765i
1.330130823575401022± 0.297156580170683582i
−1.047507385294156101± 0.292191615961456874i

Table B.5: Approximate roots of −13244x4 + 10440x3 + 26663x2 − 11333x− 21492 = 0

(Chapter 4)

Roots

−0.905265307193834579± 0.302989136731997732i
1.299406050171785898± 0.303729421440160741i

Table B.6: Approximate roots of 17391x6 + 32398x5 − 15982x4 − 16510x3 + 28217x2 −
16035x+ 6134 = 0 (Chapter 4)

Roots

0.166620896627616477± 0.521038470618695237i
0.560725046614891642± 0.322833701144523200i
−1.658804743771514545± 0.252771668228436164i
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Appendix C

Execution Times of Benchmarks

over Different Problem Sizes

This appendix summarises execution times produced by running a benchmark with differ-

ent problem input sizes over the different number of threads in Table C.1.

Table C.1: Summary of execution times on different threads and problem size of bubble

sort and shell sort

(a) Bubble sort

Thread(s)

Problem size 1 2 3

50 142,120 592,020 907,960
100 443,870 1,004,040 1,904,930
200 1,599,750 2,364,490 4,223,610
500 9,343,470 8,548,140 14,131,270

1,000 35,947,990 25,697,090 23,413,880
2,000 141,096,760 86,981,850 72,160,390
5,000 834,296,520 473,509,400 362,390,410

(b) Shell Sort

Thread(s)

Problem size 1 2 3

50 11,400 64,740 110,690
100 25,300 77,080 120,810
200 56,480 98,680 157,960
500 166,980 195,830 266,060

1,000 390,540 377,820 443,360
2,000 740,960 658,950 754,740
5,000 1,457,460 1,328,850 1,459,520
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Appendix D

Best Genomes of Direct and

Indirect Approaches

This appendix presents the best sequences of values (i.e. genomes) generated by meta-

heuristics. Particularly, Tables D.1 to D.3 list the best sequences of values for sortings in

Chapter 3.

Table D.4 lists the best sequences of values for the polynomial solver. The subdomains,

which were constructed from these genomes, delivered the most extreme test inputs for

each problem input size in Chapter 4.
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Table D.1: Best sequences of values for bubble sort

Arguments Thread(s) A sequence of values

100 1 6,502; 30,019; 32,179; 28,217; 26,100; 26,989; 24,507; 29,290; 23,735; 26,975; 5,131; 21,744; 32,528; 13,514; 19,188; 30,833; −4,559; 12,663; 16,999;
19,312; 7,162; 5,074; 3,755; 19,662; 17,843; −1,916; 9,586; 5,298; −75; 12,801; 26,149; 13,989; 21,390; 15,486; 3,259; 7,521; 13,088; 15,063; 848;
5,726; 20,203; 14,879; 8,959; 182; −3,168; −1,050; −13,415; −7,510; −10,064; −4,213; −7,206; −26,082; 2,900; 5,783; 8,622; −1,423; −10,811;
−14,620; 4,792; −7,475; −3,270; −10,314; −8,386; −15,544; −2,857; −8,453; −15,959; −12,166; −18,072; −4,637; −7,888; −16,984; −30,131;
1,033; −16,062; −16,033; −16,938; −23,392; −22,374; −23,461; −14,301; −18,646; −24,134; −16,026; −31,305; −27,991; −30,888; −440; −11,090;
−7,559; −15,374; −14,796; −30,515; −20,516; −28,384; −23,355; −30,042; −32,457; −26,439 and −32,198

2 13,337; 5,138; −4,052; −2,960; 13,940; −22,477; −26,957; −6,872; −8,509; −6,761; −5,298; 11,145; 7,151; −17,619; 23,508; 16,805; −20,503; 20,546;
−27,020; 22,713; 23,231; −1,738; 28,563; 32,739; 20,768; −15,847; −23,365; 113; 26,407; 30,283; 9,452; 26,235; −5,084; 31,588; 14,724; −28,969;
−26,206; 27,604; −11,043; 24,838; 13,880; 10,511; 22,172; 30,619; 24,916; −16,351; 24,074; −7,693; 13,727; −16,963; −3,501; 10,442; −25,331;
−298; 24,438; −20,008; 12,337; 14,231; −19,639; 2,844; 5,510; −29,260; −3,169; 357; 8,847; −28,030; −18,993; −1,712; −3,711; 509; −28,532;
−26,603; 3,953; −10,410; 28,825; −25,893; 654; −26,807; −10,007; −2,913; −13,099; −24,047; −25,206; −24,154; 8,520; −22,003; −12,503; 7,950;
−109; −2,027; −6,943; −2,843; 13,565; −19,340; −1,009; −26,081; −26,076; −7,239; −16,767 and −32,190

3 30,430; 24,926; 11,767; 25,219; 21,117; 14,261; −1,807; 9,523; 18,402; 28,674; −4,696; 29,700; 2,530; 27,520; −6,645; −112; 24,164; 1,688; 19,629;
13,666; 30,115; 30,280; −25,154; −7,513; 24,902; −18,021; −10,880; 12,642; 5,360; −23,876; 26,382; −9,541; 8,153; 26,067; −7,859; −728; 30,431;
−20,497; 9,142; 8,704; −7,526; −5,604; −16,108; 7,840; −16,889; 23,644; −3,805; 30,013; 11,814; −687; −17,301; 19,453; −13,953; 3,031; −15,750;
−11,322; −18,208; 21,222; 30,500; 25,909; 21,052; −23,914; 2,329; 945; −18,083; −32,380; 5,829; −10,040; −7,557; −15,567; 10,466; −9,673; −956;
−26,312; 22,023; 5,830; −29,593; −28,995; −31,203; 10,273; −27,793; −5,577; −31,385; −27,690; −27,112; −17,297; 12,326; −28,640; −28,568;
−27,221; −29,685; −25,141; −26,859; 17,499; −27,024; 20,387; 24,424; 20,376; −24,410 and −32,682

200 1 32,331; 14,012; 29,318; 24,193; 24,665; 25,120; 28,265; 26,726; 31,281; −12,067; 12,913; 26,248; 12,674; 29,889; 21,278; 5,499; 24,173; 12,407;
26,857; 11,942; 23,884; 32,738; 22,702; 16,324; 30,873; 30,028; 12,527; 30,066; 15,246; 27,779; 30,611; 16,656; 20,836; −6,114; 16,036; 15,436;
8,919; 11,203; 26,846; 14,589; 14,809; 30,086; 27,222; 14,276; 12,258; 28,657; 31,215; 26,779; 10,349; 15,395; 5,103; 23,443; −1,983; 18,490; 30,608;
24,117; 20,992; 24,981; 18,132; 25,940; 8,203; 8,520; 8,388; 15,391; 3,314; 18,180; 20,289; 8,867; 18; −558; 8,391; 12,120; −618; −19,757; 2,966;
9,626; 1,162; −7,973; 6,067; 24,808; 28,364; 11,804; 12,312; 2,365; −4,473; −7,700; 8,571; −6,837; 4,528; 7,011; −19,359; −8,463; −6,938; 18,364;
−2,352; 28,776; 6,370; 15,044; −5,131; 5,385; 21,437; 28,578; −8,981; −3,442; −29,866; −20,061; −13,925; −19,148; 16,329; −1,300; −11,902;
−13,472; −19,678; 5,896; −10,283; −11,221; −19,812; −12,866; −27,127; −5,549; −7,602; 8,592; 8,707; −12,133; 9,976; −2,499; −9,125; −1,388;
12,553; 3,841; −27,104; 5,929; 5,345; 504; 17,636; −5,062; −7,985; −6,359; −19,093; −21,199; −20,207; −23,501; −8,511; −8,316; −4,892; −6,256;
−9,848; −7,365; −804; 2,298; −13,716; −15,906; −28,872; 8,884; −15,602; −15,140; 3,321; −26,094; −21,955; −19,649; −29,543; −6,775; −32,645;
−18,921; −7,617; −27,421; −14,981; −23,513; −25,825; −23,325; 3,629; −14,174; −21,699; −27,419; −18,563; −25,534; −10,467; −29,159; −9,770;
−10,914; −22,246; −79; 4,946; −12,984; −9,419; −10,241; −16,513; −26,727; −13,370; −22,379; −9,564; −23,230; −29,359; −21,086; −8,699;
−15,048; −24,904; −27,862; −32,550 and −25,234

Continued on next page. . .
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Arguments Thread(s) A sequence of values

200 2 32,398; 13,560; −8,726; 24,683; −5,854; 26,035; −2,617; 28,921; 26,593; 31,896; −14,947; 12,454; −2,889; 23,958; −6,766; 25,766; 29,157; −22,764;
29,674; −1,517; 30,908; 14,612; 100; 18,256; 3,019; 23,600; −6,654; 29,080; −10,670; 18,835; 9,787; −2,764; 12,839; 28,867; 27,398; 24,031;
19,336; −12,283; 30,807; 32,342; 24,109; 31,763; 19,569; 27,458; 8,882; 12,133; −14,901; −27,785; 26,618; 7,093; 3,320; −14,392; −16,359; 182;
11,377; 32,555; 10,805; 18,648; 20,483; 30,624; −18,166; 16,940; 1,035; 4,223; −10,530; 16,459; −18,043; −27,267; −21,889; 1,790; −3,183; −4,983;
−19,283; 21,088; 17,909; 27,048; −20,989; 11,432; −15,213; 13,768; 29,100; 21,167; 3,826; 18,321; 30,083; 456; −567; −11,492; 17,380; 23,697;
−4,800; −15,385; 16,228; −2,746; −31,584; −25,358; −7,157; 25,521; −21,447; −6,115; 12,500; 23,220; −16,349; −9,770; −21,926; −12,168;
−11,847; 27,412; −7,103; −25,894; 8,226; 17,381; −12,339; −9,495; 20,404; −29,067; 6,684; −23,329; 19,237; −29,478; 1,924; −15,237; −16,887;
−23,513; 19,664; 14,565; 4,975; 2,387; −8,579; 21,399; −26,186; 27,318; −11,458; 18,116; −31,187; 12,158; −11,871; −12,376; −18,728; 7,118;
11,445; −5,530; 27,388; −19,874; −24,890; −22,725; −21,924; 18,395; −5,209; −22,440; 10,674; −14,127; −2,785; −9,402; 12,599; 1,990; 5,829;
2,634; 15,475; −2,094; −9,440; −15,320; −22,111; −2,138; −661; −6,279; −30,363; −18,695; −9,330; −19,705; −2,217; −14,383; 13,070; −26,171;
−7,032; −32,237; −6,171; −537; −15,780; 26,036; 24,956; 9,722; 4,853; −28,791; −26,938; −8,451; −6,587; −9,619; 11,194; −9,999; −24,594; 672;
−14,357; −30,764; −27,983; 710; −31,712; −27,937; −3,373 and −32,600

3 −14,338; 23,437; 7,419; −2,098; −13,220; 32,656; 12,402; 14,392; −26,574; 13,822; −20,515; 15,952; −1,735; −15,812; −12,573; −27,567; −20,875;
4,988; 3,583; 12,809; 23,858; 29,628; −24,858; 1,978; 17,176; −4,176; −8,963; −22,809; −18,562; 5,829; 19,884; 23,245; 16,190; 23,677; 18,767;
28,370; 11,779; 25,090; −20,120; −24,846; 10,052; −15,575; 5,383; −7,060; 9,857; −17,249; −772; −761; 7,428; 10,985; 19,422; 30,424; −10,096;
5,656; −18,265; −21,920; 26,079; −12,600; −6,319; 20,039; −16,630; −19,471; 13,761; 4,283; 16,849; 19,748; −7,162; −25,545; 24,397; −4,055;
7,356; −26,980; 18,098; 1,015; −2,397; 7,701; 11,177; 13,803; 12,567; 6,203; 28,561; 15,005; 1,945; −14,523; −7,114; 5,601; −10,916; 19,426;
−11,507; −25,808; −934; 21,706; 29,461; 12,348; 23,361; 19,800; −20,010; 10,755; −19,117; −178; 9,496; −16,454; −24,043; −281; 3,189; 20,854;
11,816; 23,784; 6,317; 10,574; −5,410; 17,888; −22,353; 30,966; 10,603; −9,448; 19,607; −1,736; 22,020; 6,011; −16,407; 20,051; −10,722; 8,574;
11,234; 24,810; 17,709; −5,859; 3,222; −12,480; 12,377; −9,148; −4,368; 2,962; 13,933; 31,829; 16,725; 2,412; −30,382; −2,636; 23,102; −23,227;
−23,230; 16,030; 4,556; −21,509; −1,608; −26,739; 5,051; 23,636; −4,223; −25,527; −19,641; −22,460; 12,972; 2,145; 3,526; 2,379; −17,971;
−24,822; −27,268; 3,817; −10,023; −29,035; −11,882; −21,768; 6,813; −2,726; −14,188; −16,809; −18,036; −28,588; −2,080; −1,580; 7,388; 9,672;
16,112; 11,982; −30,520; −26,614; 15,850; −12,365; −17,028; −25,096; −13,251; −21,144; 3,828; −27,024; −5,687; 8,494; 26,834; 31,629; 15,255;
9,095; 1,088; 28,020; −25,271; −27,657; 10,768 and −31,528

215



A
p

p
en

d
ices

D
:

B
est

G
en

o
m

es
of

D
irect

a
n

d
In

d
irect

A
p
p

roach
es

Table D.2: Best sequences of values for shell sort

Arguments Thread(s) A sequence of values

100 1 12811; 5065; 32077; −6566; −9696; 5136; 19578; −15644; −27794; 29715; 31843; 1277; 3862; −9247; 32406; 28384; 5304; 28585; −10971; 21906;
−19995; 22399; 2908; 20782; −29089; −14481; 6124; 17624; 1918; −2416; 1565; −19181; 20190; −25707; 3082; 10777; 31061; 3339; 23306; 515;
22529; 26023; 3828; −18776; 26444; 9171; 5918; 5045; 21367; 6421; −30194; 3058; 24017; 29068; 2549; 17378; 6099; 7910; 1089; −2185; −12953;
894; −2207; −21281; −3209; −31358; −3997; 17687; −23440; 23100; 19539; −6401; 11388; −4770; −9533; 11694; −12360; −30696; 3810; −15762;
−8999; −30272; −6410; 11842; 2634; −26162; −23857; −5109; −7679; −4846; −10569; −18572; −8246; 31989; −30032; −20631; 263; 15140;
−2573 and 6879

2 32241; −22856; 12366; 19916; 31720; 26080; 10714; 21263; 3968; 25386; −11588; −22084; −6220; −2533; 30334; 8907; −3414; −9771; −22243;
6758; −23909; 25212; 21804; −29912; −27111; −25865; 16358; 11673; 24891; 23320; −21886; 17115; 50; 5093; −23792; 30071; 5404; 6397; 25897;
−4249; −7295; −7965; 18437; −22591; 16023; −303; 22104; 26859; −3184; −32054; 6041; −1501; 27511; 27150; −1393; 3093; −30289; 25442;
96; −24980; 32491; −14393; −30317; −31191; −29138; −10771; 25671; 6105; 6851; 18757; −9475; 2336; −25908; 436; −14388; −27666; −28245;
25147; −23873; −5575; 8006; 16977; −4646; 2396; −11126; −27452; −11188; 4189; −18285; −11313; 4151; −28865; 30502; 5357; 15120; 22621;
−11095; −4584; −22421 and −32344

3 25442; −20597; −18299; 15283; 24845; −9915; −4; 14852; 22595; 22562; 11672; −23158; −8696; 14003; 20676; −9996; −26422; −6100; −13904;
15383; −20502; 28202; 26878; 25411; 31892; 13052; 4362; −17060; −9439; −14587; −3230; 31397; 27483; −14100; −18397; 5258; 32363; −25248;
3364; 27582; 9580; −22514; −6678; −13308; −11320; −22136; 18783; 22073; −6020; −11265; −23114; 709; 13196; 3303; 24262; 10259; 23676; 6061;
−20073; −32641; 27323; −1212; 31033; −4909; −19862; −2884; 12808; 7307; −30473; −2943; 21568; −19182; −22135; −412; 21934; 17305; −5570;
3297; −25260; 9254; −22178; −25779; 19308; 8840; −25284; 13348; 20028; −31183; 23719; −19572; 28026; 27368; 23189; −17166; 20383; −17852;
21319; −7898; 2061 and −32452

200 1 −19431; −6266; 10617; 5897; −4945; 27077; 11351; 3929; −31960; −16140; −15855; 14061; −14670; −8151; 11928; 19347; 32182; 12204; −28644;
4452; 5453; −21728; −1859; 5699; 10360; −14924; −19472; −5301; −6638; 14128; 8006; −1027; 11744; −20103; 6860; 6485; 21389; −25409;
−12927; 19191; −757; 18010; −4375; 4702; 26347; −3165; 9124; 9863; −9255; −12648; −5509; 21589; −21491; 10245; −15035; 29079; 6270; 29595;
2220; 24044; 11353; −30129; −7464; 8802; 8949; −31201; −1726; 9691; −3798; 31836; 10446; −9301; −5788; −9218; −2622; 24985; −8643; −24827;
18810; −30296; 17453; −20327; 21493; −11893; 27639; −21550; 19450; 30267; −10502; 7547; 28706; 8368; −26091; 2432; 3688; 1712; 29225; 28078;
−11106; −3786; 20349; −11801; −1581; −15135; −6539; −31014; −18534; −1538; −1093; 410; 20710; 9916; 23511; −24549; −27181; −21801;
14547; −27335; −12457; −3466; −12319; −10116; −3956; 26060; 21069; 18309; −5318; 22809; −4545; −7689; 9830; −1473; −16223; −18114; 7245;
−26252; −27180; 11796; −4402; 13984; 19206; 1321; −20807; 944; 20543; −28112; −22527; −5084; −7994; 28173; 29796; −918; −30496; −25425;
−29975; −17370; −12491; −28803; −22864; −13346; −12703; 3358; 14141; 8937; 26277; −10023; 28908; 29390; −25475; 7170; 11182; 21111;
−32268; −15813; −8242; 15686; −4197; 20795; 23113; −18939; 21103; −2392; −8875; −4779; −4855; 19651; −12160; −12774; 22275; −5806; 9766;
−26977; 10464; −30861; −30836; −24894; 1778; −12109; −19752 and −24022

Continued on next page. . .
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Continued from previous page. . .

Arguments Thread(s) A sequence of values

200 2 24974; 2174; 26041; 19854; 10499; −1087; 13327; −15986; 30345; −14702; −16776; −3551; −16246; 8354; 12894; 8291; 22629; 9175; 26676;
−32452; 5818; 15221; −7177; −22475; 14007; −19060; 16357; 31599; 21310; 16800; −31297; 15667; 8181; −17782; 1626; −30595; −8294; 15053;
−13233; 7338; 191; 8118; −6095; −3880; −30163; −31934; 24674; −7881; 26537; 13929; −32336; −14119; 27918; 11732; 24600; 22857; 5237;
−31537; 18550; −17698; −14796; −14101; −24416; −16995; −17343; −4681; −4626; −16351; 5730; 29296; −5939; 30982; 26986; −18877; −24960;
−20235; −25263; −11228; −7473; 29887; −12349; −14467; 22577; −7056; −4816; 12679; 6057; −9348; −27443; −13923; −24331; 2498; 17649;
20177; 28041; 19956; 1285; −6727; 10607; −19333; 1833; 30186; −21358; −31007; −28004; −5796; 28995; 19760; 18665; 8731; −2949; −11165;
25612; −19144; −24517; −29212; −25595; −16756; −29197; −12094; 31025; −7683; −28602; −4867; −19467; 4776; 21457; −22906; 2458; −30300;
−32448; −28286; −10390; 9219; −21628; 5481; 10408; 29955; 7432; 18867; 5828; −30641; 7764; −8086; −10049; 17003; −22819; 30177; 27255;
4129; −26998; 8270; 23910; −28313; −28948; −9784; −32070; −27533; −10633; 15752; −3570; 24929; 27015; −7179; 3997; 17572; 19439; −8336;
14052; −22918; 18256; −13674; 8018; 11646; 18784; 7977; 14103; 2365; −14731; −20445; −32570; −4014; −277; −19422; 11670; −31181; −17799;
12997; 8682; 22892; 6895; 7236; −9332; −31465; 20291; −29144; −30947; −17537; −25576 and −16659

3 6431; 12873; 28217; 28068; −6782; 5592; 6025; −4101; −5856; 309; −2848; −9782; −510; 19357; 17412; 24195; 29209; 13562; −3631; 28606;
−22192; −11252; −24118; 7539; −6190; 8129; −12453; 30353; 18539; −11023; −4904; 25430; 18662; −20165; 12226; −9975; 21728; −18442;
−6469; 29010; −7920; 21255; −586; 24467; 4958; 13176; 19173; −29665; −24645; −27015; −3387; −18028; −29505; −5237; 25654; 30690; 4924;
898; −7269; 27376; −26265; −12407; −10893; 9075; −22864; 10780; 5314; 32475; −4013; −2172; 23363; 22768; 32449; −22536; −30614; −9901;
18558; −11223; −9911; −23425; −11336; 1482; 11581; 14034; 11444; 16109; 30338; 7490; −15251; −15363; −1305; −16666; −19436; 10145; 11934;
25995; 17622; −5925; 25036; 4383; −24607; −17298; −28173; 3714; −14667; −12835; 3795; 24022; 2917; 17195; 26534; 19155; 2321; −30897;
−11218; −5828; 8818; −18304; 21672; 2508; 31034; −4715; 22664; 31315; −11630; 28811; 13107; −31866; 28681; −29233; −6845; 5082; 25254;
−26862; 20440; 10091; −25396; 22548; 11852; −6343; −11194; −15559; −15217; −7777; −29679; −14224; 26902; 31995; 1334; −20259; −22204;
−9601; 31945; −28949; −9556; −2149; −14888; −16901; −27346; −8610; 12494; 14432; 24469; −18374; −8514; 24808; 25657; −27458; 8943;
−17928; −19408; −16209; 29542; 14719; 18201; 20483; 12044; 31144; 16041; 19888; −31718; −18686; −22349; −16582; −30236; −18321; −21718;
−10747; −6838; −17055; −10106; 12014; 9994; 97; −14441; −11395; −12594; −3272; −22607 and 1085
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Table D.3: Best sequences of values for quicksort and merge sort

Sorting Arguments A sequence of values

Quicksort 100 −32197; 31817; −31856; −31908; −29633; −31086; −29308; 13256; 9008; −21584; 4642; 23028; −24463; −15716; 10030; −15761; 7685; −15657;
−9617; −14161; −16558; −7137; 2502; 22357; −9641; −6164; 12215; −16449; 17298; −759; 21873; 22935; −3851; −17506; 22173; −15680; −11231;
27390; 6546; −1052; 14772; −12340; 14791; 25124; 6637; 30922; 25888; −7395; −18585; 20359; −4955; 24072; −20038; 15775; 2792; −16355;
13240; 25860; 27362; −15881; 14131; −29577; 75; −11217; −17540; 15257; −18026; −24867; 32747; −19695; −15397; 4440; −22952; 10344; 21012;
−24880; 4178; −22802; −11113; 29593; 13848; −22853; 10090; 9548; 8243; −8919; 4663; −2930; 19297; 15189; 8655; 11661; 3098; −20721; 19664;
26072; 27351; −28106; 30176 and −32140

200 −24431; −17273; −32395; −31345; −32511; −32686; 21842; −32566; 18893; −32129; −31364; −7567; −32751; 28692; −31393; −31447; −30005;
−30685; −16176; −30910; −32659; −26343; 8699; −17538; 11467; −18973; 7672; −27854; −29638; −24050; −17404; −3112; 20411; −16013;
−20649; −726; −32018; −21509; 13995; −5838; 8451; 31892; 11376; 14313; 1163; −17376; −3300; 18980; 6700; −8047; 4228; 21029; −16538;
20523; −4680; 5637; 29265; −16841; 9974; −7285; 27199; 3670; 5969; 6327; 19620; 11873; 25111; 1376; 18310; −11570; 4697; 7568; 5271; 6025;
615; −7280; 21617; 23788; 17245; −27469; −13666; −5578; −18007; −2968; 16561; 18038; −23526; −20648; −21497; −27415; −13402; 4958; 7672;
−12743; 3228; 17243; 32748; −4388; 13493; −28459; 9022; −6550; −17470; 6564; −12444; 32767; 23513; 25682; 23516; −3345; −19483; 22617;
−21261; −21516; −25738; 12472; 21901; 16123; 17362; −4014; 11771; 16091; −29930; 1275; −23044; 2630; −9619; −1237; −21432; 5606; 4939;
10828; −21118; −29366; −22433; 25319; 32422; 25298; 22595; −26288; −1437; 22321; 4104; −24931; 8198; 24798; −27454; −13409; −11507;
−4317; −16679; 2107; 20352; 32716; −225; 23745; −28377; −13550; 27206; −10427; −2666; −22290; 20690; 2171; −17654; 13741; 8726; 21640;
2510; 11026; −27751; −12250; −14749; −7546; −8898; −17595; −17497; 3783; 32654; 24033; 17450; −2512; 32238; −12143; 14909; −2646; −11486;
6350; −27545; −21969; −23494; −5117; 15050; 2365; 9828; 26548; 10447; −27115; 11812 and −25368

Merge
sort

100 25831; 12629; 26032; 7010; −304; 18219; −14883; 22391; −8346; −18550; 9488; 24312; −22767; −5563; 24547; −5064; 5606; 11352; −23860; 30818;
32210; −31176; 16792; −25583; 24774; −4147; −4365; −13743; 13283; −13459; −7276; 1930; 18375; −17987; −25697; −21894; −25844; 11324;
28332; 9359; −29111; 1609; 17692; −29459; 30332; 10413; −17889; −23689; −6083; −3815; 18017; −31229; 8796; −25307; 7960; 26615; −1634;
8974; 10663; −5188; −30199; 11057; 32163; 26292; 28791; −1325; 13046; −32210; 8067; −23491; 29510; 29768; 29969; −4596; −21694; 30714;
7262; 11339; −13392; 13462; −7405; −3498; 6114; −12599; 4956; 9560; −13382; 3730; 13076; 21764; 29934; −26915; −30866; 31365; 7371; 5908;
22716; 4435; −6603 and 21625

200 −10892; 13163; −27018; −13501; 16354; 12603; 5072; −15687; −17665; 18260; −20695; −24298; −13864; 5522; −9302; −16495; −28694; 4321;
3795; 27563; 21622; −11128; −28795; 12279; 569; 24260; 16115; −26234; 757; −23109; −8848; 646; −6436; −24801; 29593; 15245; −11148; −14571;
21246; −24513; 21784; 26245; −19550; −18691; −26094; −32352; 31639; 22694; −26314; −23414; −20068; 11846; 8261; −24091; −14940; −19215;
−6318; −22882; −31102; −30939; −18175; −21099; 10683; −23211; −15579; 7361; −7076; 13510; 27967; 294; −4261; −32594; 22871; −22039;
−1872; 11976; 31000; 18264; 27371; −8541; −25609; 28399; 32658; −2018; −31076; 20481; 2487; −29573; −15615; −2258; 9489; 4773; −30118;
−21129; −29786; 4910; 6793; 19037; −32619; −20926; −18409; −23653; −9286; −23204; 28006; 369; 31487; 3502; −29921; −6027; 32503; 23826;
−9839; 3624; 19050; 15763; −32173; 7231; 5153; 21025; −31327; −15698; −2386; 13944; 23503; 16932; −10932; −11741; −12112; 15359; −30823;
23086; −14827; 26848; 9616; −20273; −5138; 8794; −26817; 16873; 10852; −25145; −28205; 18639; −18011; 28008; −10000; 18258; 30673; 12546;
26156; 20808; 22687; −23057; −11840; 17011; 5641; −2186; −30815; 5242; 27612; 14660; 17859; −1500; −22711; −13195; −31785; −31192; 10859;
−26617; 6826; 30870; −8819; −28981; 13158; −26934; −31419; 14135; 10978; 2865; 19324; −32230; 12838; −26033; −2259; −8283; 168; −27281;
28201; 23925; 4737; −28811; −23925; 5174; −11331; 5086; 24889; 13759; 14863 and −9513

218



Table D.4: Best genomes for indirect approach on quartic and sextic equations

Arguments A sequence of values

5 24296; −28805; 15737; −21498; −14090; −30446; −30000; −239; −25868; −22836; −4472; −11340; 14880; 29357; 18182; −8182; 32140; 9694; 6307;
−21380; 26266; −27308; −10590; −15799; −27786; 29326; 16522; −6323; −11815; 28310; 21234; −17185; 27940; 21417; −6602; 24831; −16491; −18368;
−415; 3322; 15037; −29968; 9408; 3315; 23832; −11690; −22017; −19237; −28726; −7725; 19597; −2289; 18950; 30564; −19606; −17298; 25921; −9939;
28072; 4583; −19440; −24507; 32199; 26184; 9823; 13765; 32658; 17361; 19028; 30818; −16228; −5419; −13249; 28274; −1502; −6258; −30597; 1611;
−15421; −3812; −4266; 10980; −12818; −20632; 3531; −24094; 32730; −25115; 2220; 4307; 15869; −30257; −10419; −28589; 9014; −13411; 18476;
27260; −3735; 4544; 28954; −29206; −19279; −22644; 18648; 24450; −16945; 2871; −25202; −29973; −18429; −5476; 17948; −4142; −28869; −7241;
17633; −28723; −24865; −6182; 22162; −19101; −5558; 1463; 15756; −25956; −28322; 10832; −32647; −31544; 8572; 2018; 30155; 25958; 8120; −16758;
28503; 1571; −2687; −8462; 11538; 16063; −13859; −4983; −23830; 5797; 7790; −11624; −26396; 18676; −27745; 29872; 19539; 30476; −6441; −10839;
30800; −14615; 7797; −27119; 32346; −30768; −23272; 10918; −8811; 4337; −25883; 13850; −32582; −24972; −18312; 26660; 12853; 13150; −26753; 809;
−11253; 10437; 408; −26715; −20365; 21198; 12703; 13038; 25422; −13245; −22823; 8446; −23066; −8543; −30082; −8048; 10019; 12191; 26185; 14668;
−4235; 29151; 29326; −3610; −31406; 3279; −20952; 29065; −30805; 17657; −18998; 29523; −15427; 3108; 9689; −4462; −3592; −4450; 31301; −13699;
−20384; −24228; −16188; −29909; 2299; −32331; 13309; −10291; −18561; −16394; −25929; 20099; 29593; −17848; 14964; 8513; 15146; −3641; 25717;
10051; −21672; 21441; −10613; 15823; 21170; 31942; 16435; −7849; −21338; −13330; 17101; 25899; 9417; −13339; −2473; −18723; −21352; −11941;
10142; −7833; 32413; −9332; −18717; 4040; 13121; 27026; −20491; −22829; 14922; 1465; 21913; −11565; 9077; 15854; −17433; −4674; 29228; 13566;
23224; −4972; −23873; −489; −15744; 29938; 19981; 3901; −30458; 4297; −23731; −3738; 786; −10120; 2696; −9090; −23838; 31277; 22524; −28533;
3800; −32544; −11263; 661; −9309; 12853; 9545; −9019; 11418; 21402; −29845; −385; −9607; 313; 6890; 7692; 17554; 8970; −18953; 15877; 2523; −6721;
17889; 32348; 7146; −31473; −28731; 23554; −18210; 21180; 29447; 11192; −32315; −11229; 9522; −10847; 31945; 20520; 8047; 7573; −8181; 29595;
11970; −22553; −20369; −22261; −32388; 238; 23538; −1861; −11131; 31021; 13097; −9605; 10562; 4826; −20098; 4085; −30223; −11592; −20907;
−17277; 22858; −3864; −24794; 15503; −5947; −9256; −27363; 22823; −26852; 19977; 6943; −20076; −7819; −25344; −23974; 1309; −2415; 10712;
−6157; 7917; −8495; 20187; 4866; −29667; −11425; −25231; 7657; −19239; 1976; −26890; 12812; −31131; −31104; 19975; −5864; 29885; −22960; 31243;
−928; −19133; −19110; 30230; −11585; −3577; 6779; 13222; 10283; 17982; 4120; −7885; −25175; −8698; −26527; 6579; 3893; −12184; −23439; −3581;
−27742; −13078; −10636; −15031; 919; 12074; −19295; 32493; 6346; −21964; 4195; 16727; 3495; 5724; −27066; 5671; 30421; 10471; −28315; −31178;
12080; 32560; 20277; −9880; −28528; 1152; −2389; 24807; −2500; −12093; 25385; 3311; −26442; 24068; −13424; −13573; 32692; −17481; −10479; 23425;
−3382; −10768; −24963; −12495; −10944; −5064; 22884; 2260; 5848; −23903; −25130; −32411; −18042; 29183; −31494; −15270; −3447; −7346; −26196;
−24665; 24650; −12833; 15231; −16038; 4855; −7262; 2655; 6730; 15418; −5469; −1290; 15698; 9602; 28188; 29008; 17803; −13270; 21885; 20543; 5629;
−30097; 24167; −7937; 15919; 100; −3817; −18204; −29510; 1367; −14218; −10605; −4750; −10912; 10590; 7924; 32314; 4384; 27325; 13697; 13091;
31588; −7638; 19836; −13977; 27563; 19238; −22743; 2800; −17248; 5309; −2527; −7304; 9880; 941; −1384; 25073; −21789; −10923; 26291; −12730;
−614; 6185; −28456; 6569; −22977; −25472; 3074; −3572; 2200; −22371; −4058; −29086; 32363; 21933; −590; −18174; 9848; −21433; −27988; 26098;
−13813; −32021; 22583; −26178; −11118; −32239; 17556; 9080; −22235; 27414; 23873; −13835; −10330; 30092; 17402; 32042; −17103; 23835; 12529;
−4821; −2502; −11474; −20985; −27731; −3141; −20038; −4519; −22148; 9721; −18332; 13236; −14449; 15697; 29792; −4181; −11273; 14549; 28897;
−28721; 25190; −12553; 16191; −2020; 10492; 8883; −9084; −26980; 8724; −22971; −1609; −11075; −1552; −3258; 16599; −1712; −32117; −12324;
−4838; 10007; 7640; 6771; −26134; 2785; −32487; −18132; 19537; −12584; −9804; −12622; 8241; −14908; 21530; 13666; 18465; −15826; −8216; −21366;
−32530; −17498; −18502; 30241; 26183; 711; 18840; 24456; 18280; 17252; 13469; 18020; −7875; −29903; −19305; −31876; −26437; −11650; −19607;
24853; −24450; −31833; −11465; 13901; −22932; 30137; 12381; −5043; 8702; 21222; 7882; 29092; −4922; 18566; −4884; −16819; 22285; 9655; −1324;
−2177; −10979; −1580; 13042; −18965; 19169; −21408; −6636; −21677; 21581; −15129; −15959; 8215; 30124; −25121; 25726; −2226; −3383; 1770;
−26566; −9013; −20978; 853; −30395; −5666; −30576; −21043; −2418; 20518; −15232; 1074; −21765; −29477; 11971; 10635; −10321; −18294; −31404;
−11792; 3014; −32128; −506; 17113; 30210; 19078; 5223; −20188; −23365; −8135; 23372; −21331; −6219; −19363; −2267; −24372 and 5000

Continued on next page. . .
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Continued from previous page. . .

Arguments A sequence of values

7 1359; −26641; 22906; 6123; 24802; 1473; 10671; −26336; −19802; −2743; 3046; −6963; 28884; −16013; 14517; 23227; 9634; −20965; 19951; −26395;
10125; 25109; −30349; −32422; 17872; −3752; −30187; 12790; −3293; −23519; 26343; 20559; −30075; −32677; −21238; −19377; 12996; −29006; 20811;
30588; 13054; −30224; 31082; 7124; −8656; −1917; 28110; −9640; 18572; −29058; 25790; 20313; −19514; −24672; 11956; −11963; 29958; 19156; −24557;
−3399; 23862; −16522; 7823; −19408; 17542; 77; −25409; 25731; 17699; −6091; −1454; −1813; −99; −26522; −21591; 24164; 5441; 8557; 31091; 3856;
−13851; 2457; −8131; −13312; −28036; −13322; 21097; −4584; 3727; −30890; 10800; −6613; −7400; −25438; 23867; 6531; 21336; 23892; −23245; 29056;
15737; 23928; 11179; −28539; 9884; −10990; −15303; −31226; 19979; −17768; 25229; 24741; 24491; 7631; −7089; −32725; 16908; −29944; 31828; −2047;
−764; 5948; −6983; −20235; −19893; 10391; −1352; 4894; −16527; 27653; −4692; −31112; −9654; 5600; 21350; 16986; −21184; 28166; −17036; 7436;
−4249; 19220; 16898; −14361; −22841; −23299; 23534; −1968; −28097; 27198; 30558; 6595; 10056; 27100; −29020; −9920; −29444; 18909; −21051;
−12818; −29971; 11625; −29657; −9513; 12380; 1397; 13857; −29661; 9418; 18148; 4642; 10104; −10816; 18351; −28788; −716; −21198; 24442; 28465;
−6324; 29269; −12183; 16559; 13920; 29877; −26862; −16000; −1857; −13852; −5181; 527; 23387; 14087; −20559; −27342; 20365; −30240; −13277;
18011; 2564; 17617; −13362; 25536; 29880; −1028; −10626; −10018; 29556; −24145; −26970; 7261; −20454; −10732; 25461; −29064; 28222; 5854; 11485;
−30735; 28916; 25327; −24487; −5012; −6779; −30749; 11005; −11254; 11468; −30322; −24380; −32122; 8056; −20754; −31572; −13443; −22120; −645;
−29852; 6780; 14246; 7426; 12976; −15398; 19934; 7842; −31920; −7989; 12313; 13511; 4345; −25564; −29419; 13741; 4811; −5754; 23655; 3018; 12235;
3899; −16050; 8776; 10602; −2125; −12098; −26327; 11470; 25067; 15716; 26513; −11554; 6800; −9250; −28131; −26196; −6438; −11023; 12481; 30169;
−32332; −18613; 22588; −21067; −22787; 3940; −14325; 76; −7128; 25625; 22688; −28860; −14076; −13710; −24069; −22444; 26462; −13520; 13555;
−23846; −18498; 30486; −4876; −8768; −16069; −27552; 5025; −7696; −11287; −12801; −13685; 30079; −21832; −20708; 30690; −20470; −5812; 4836;
23910; −5259; −15163; −20518; 15672; −6378; 28176; 29058; 1232; 21146; −21447; −28832; −32108; 16984; −15928; −27532; 10880; 16349; 11092; 7158;
3168; 12952; 29528; −1506; 9883; 3790; −20057; 7585; 26960; 21520; −15966; 3954; −3172; −14340; −12249; 19332; −26749; −22001; −23285; −21348;
23380; −10876; 17996; −7465; −29474; −21259; 21135; −23836; −11438; −19290; 31936; 24306; −31583; 2535; −9325; 18869; −31557; −21522; −3713;
32379; −13546; 14675; −1760; −7510; 18260; −18427; 5975; −10076; 28028; −16584; 28217; 8981; 6374; 21204; −16511; −22590; 21190; −583; −15982;
1151; 1592; −11708; −21380; 32396; 11360; 18760; −5872; 1578; −346; −20819; 22900; 17391; −32541; −6016; −10281; −28359; 10741; −14477; 14416;
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