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Abstract
This thesis is concerned with calorons – finite-action, anti-self-dual connections over

S1 × R3. We study three major topics: a review of the geometry of calorons, and

their different construction techniques; the topic of symmetric calorons, that is, calorons

invariant under various isometries; and their role in understanding the links between the

Yang-Mills solitons, monopoles and instantons, and the solitons of the Skyrme model,

also known as skyrmions.

We emphasise the role of the rotation map – a large gauge transformation which acts

on calorons isometrically – in studying symmetric calorons, and provide a classification

of cyclically symmetric calorons where the cyclic groups considered involve the rotation

map. Our approach utilises a generalisation of the monad matrix data, first understood

in the context of calorons by Charbonneau and Hurtubise, and we additionally construct

explicit symmetric solutions to Nahm’s equations up to the case of charge 2.

Calorons are seen to interpolate between monopoles on R3 and instantons on R4, and

likewise, these have concrete, and convincing relationships to skyrmions. We refer to

this relationship between monopoles, instantons, and skyrmions, as the ‘soliton trinity’.

In a construction inspired by the Atiyah-Manton-Sutcliffe construction of Skyrme fields

from instantons, we show how caloron holonomies may be used to approximate gauged

skyrmions on R3. We observe that this interpolation between monopoles and instantons

is similarly exhibited by the gauged Skyrme models that we construct, by exploring

monopole-like and instanton-like boundary conditions for spherically symmetric Skyrme

fields. Due to the kinship of monopoles and calorons, this relationship between calorons

and skyrmions may prove to be a way to explain the apparent links between monopoles

and skyrmions.
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To my wife.
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“Exactly!” said Deep Thought. “So once you do know what the question

actually is, you’ll know what the answer means.”

Douglas Adams,

The hitchhiker’s guide to the galaxy.
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Notational conventions
The following notational conventions shall be used throughout this thesis, unless

otherwise specified, or clear from the context.

~x A coordinate vector (x1, x2, x3) ∈ R3.

(t, ~x) Coordinates on S1 × R3.

µ0 The reciprocal of the radius of the circle S1.

(x0, ~x) Coordinates on R4.

r The radial coordinate r = |~x| =
√

(x1)2 + (x2)2 + (x3)2.

s The coordinate on R
/
µ0Z .

S2
∞ The 2-sphere at r =∞ of R3, also the boundary ∂B3 of the 3-ball.

N The rank of the vector bundle V −→ S1 × R3.

Latin indices

i through n
Summation or referencing of indexed objects over indices 1, 2, 3.

Greek indices Summation or referencing of indexed objects over indices 0, 1, 2, 3.

Latin indices p, q, r Referencing of indexed objects over indices 1, . . . , N , sometimes

N ∼ 0.

∂µ The partial derivative ∂
∂xµ

.

DA A connection with connection 1-form A.

FA The curvature 2-form of a connection DA.

Ω The parallel transport operator for a connection.

Λp(M) The space of p-forms on a manifold M .

Λp(M, g) p-forms on M whose components are g-valued.

SYM The Yang-Mills action.

Q The Yang-Mills topological charge.

kp The magnetic charges of a caloron.



Notational conventions xiv

k0 or k The instanton number of a caloron.

µp The eigenvalues of the asymptotic Higgs field −ıΦ∞.

(~m, ~ν) or (mp, νp) The monopole charges and masses of a caloron.

CN(~m, ~ν) The moduli space of framed SU(N) calorons.

CNu (~m, ~ν) The moduli space of unframed SU(N) calorons.

? The Hodge-star operator on a riemannian manifold.

?3, ?4 The Hodge-star operators on R3 and R4 respectively.

εijk, εµνρσ The totally anti-symmetric Levi-Civita symbols of degree 3 and

4 respectively, with the convention that ε123 = ε0123 = 1.

〈·, ·〉 The inner product on su(N)-valued forms defined by

〈ξ, η〉Volγ = −tr (ξ ∧ ?η), where (M,γ) is a riemmannian

manifold with volume form Volγ .

| · |2 The norm squared of 〈·, ·〉, defined by |ξ|2 = 〈ξ, ξ〉.

〈〈·, ·〉〉 The integral over M of 〈·, ·〉.

|| · ||2 The norm squared of 〈〈·, ·〉〉.

σ1, σ2, σ3 The Pauli matrices

σ1 =

0 1

1 0

, σ2 =

0 −ı

ı 0

, σ3 =

1 0

0 −1


~σ The ‘vector’ of Pauli matrices (σ1, σ2, σ3).

Ip A subdivision of [µN , µ0 + µN ] defined by Ip = [µp+1, µp], for

p = 1, . . . , N − 1, and I0 = [µ1, µ0 + µN ].

(T λp , (up, wp)) Caloron Nahm data.

(α, β, u, w) A Nahm complex on R
/
µ0Z .

(A,B,C,D) Monad matrices.

Cp, Dp The p-th column/row of monad matrices C/D, p = 0, . . . , N − 1.

MN
k The moduli space of non-singular monad matrices.

I The set of all words Π(x1, x2) in two variables.



Notational conventions xv

ρ The rotation map.

R(~n, φ) A rotation matrix in SO(3) by angle φ about an axis ~n ∈ R3.

Sθ An element of SO(2) representing a translation t 7→ t+ θ/µ0.

P~ϕ An element of the maximal torus TN−1 in SU(N), with phase

vector ~ϕ = (ϕ1, . . . , ϕN) satisfying ϕ1 + · · ·+ ϕN = 0.

Sθ The circle translation – composition of parallel transport along

S1 with Sθ.

Sm or S The shift matrix Sm =


0 · · · 0 1

1m−1

0
...

0

, or simply S

when m = k, the instanton number.

diag{xp}mp=1 The m×m diagonal matrix


x1

. . .

xm

.

diag{xp}m−1
p=0 The m×m diagonal matrix


x0

. . .

xm−1

.

CNk The moduli space of calorons with equal monopole charges

and masses, with instanton number k.

CNk (H) orMN
k (H) The fixed point set in the moduli space of calorons/monad

matrices of a group of isometries H .

ρ(Cj,~ϕ
Nn) The rotation cyclic groups of order Nn, with j ∈ Zn.

ℵ gcd(n,Nj).

Γ gcd(n, j).

β The period 2π/µ0 of a caloron.

U A Skyrme field U : R3 −→ SU(2).
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L The left-invariant current of a gauged Skyrme field:

L = U−1DBU .

ψn, ψ+ The Hermite functions and additional Hermite function.

φ
(α,β)
n , φ(α,β)

+ The ultra-spherical functions and additional ultra-spherical function.

Eα The gauged Skyrme energy derived from periodic Yang-Mills theory.

f(r) The profile function for a spherically symmetric Skyrme field.

g(r) The profile function for a spherically symmetric gauge field.
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Chapter 1

Introduction

Various physically relevant field theories admit topological soliton solutions; particle-

like configurations which are stable under continuous deformations. A more precise

mathematical definition of what ‘topological solitons’ are is not to be found in the

literature, but usually the ‘topological’ refers to a classification by homotopy (for instance,

the degree of a map), or an integral charge (for instance, a Chern number), and the

‘soliton’ refers to a localization of the density of some energy functional, in analogue

to the classical wave solitons described by the KdV equations. An excellent review and

standard reference for these objects in general is the book by Manton and Sutcliffe [82].

Two prevalent examples of topological solitons, which have attracted the interest of

both physicists and mathematicians, are instantons and monopoles, whose field theories

are the 4-dimensional Yang-Mills, and 3-dimensional Yang-Mills-Higgs respectively.

Mathematically, these manifest themselves as finite-action (or energy) solutions to the

anti-self-dual equations (or a dimensional reduction of them known as the Bogomolny

equations). Instantons and monopoles both possess a very rich geometry, for example,

they have moduli spaces, which in particular provide examples of complete hyperkähler

manifolds [7, 34, 54]. In fact there is a veritable smörgåsbord of relationships to the wider

pure mathematical world. For example, explicit constructions make use of twistor theory
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[6, 124], with links to the realms of algebraic geometry [9, 88], and instanton moduli

spaces were fundamental in the work of Donaldson regarding topological invariants for

four-manifolds [32, 34].

Many of the pure mathematical advances in the study of solitons such as monopoles and

instantons have been as a result of physical motivations. Instantons and monopoles are

considered to be hypothetical elementary particles within the standard model of particle

physics, often given the name of ‘pseudoparticles’, and they both have important roles

to play in various areas of modern theoretical physics. Another example of topological

solitons with a key relevance in physics are skyrmions. These are critical points of a 3-

dimensional field theory called the Skyrme model, and are intended as a model of nuclear

physics. Skyrmions are in some ways rather different to instantons and monopoles. For

instance, the existence of the particles that they are supposed to model is not doubted, but

on the other hand, their geometry is less rich, with no moduli spaces or nice twistor

constructions. In addition, the topological charges of monopoles and instantons are

defined in contrasting ways to that of skyrmions. That said, the study of skyrmions

mathematically is still an interesting problem in its own right [78].

There are multiple concrete mathematical and physical relationships between instantons

and monopoles [45, 82], and in particular, monopoles can be thought of as translation-

invariant instantons. Having highlighted their differences, it may come as a surprise

to hear that skyrmions are also remarkably similar to instantons and monopoles. One

of the most striking resemblances between these objects is observed in the symmetric

examples, where through various sophisticated means, many examples of symmetric

instantons and monopoles correlate well with the existence of corresponding symmetric

skyrmions [8, 59, 111, 117]. The mathematical relationship between instantons and

skyrmions was first proposed by Atiyah and Manton [8], by approximating skyrmions

with instanton holonomies. This technique, and its remarkable accuracy, was later

explained and fully understood by Sutcliffe [113]. Regarding monopoles and skyrmions,
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one intriguing link between them is their shared relationship to rational maps [59], and

there are also important physical reasons to relate skyrmions and monopoles, for example,

skyrmions’ role in quantum chromodynamics (QCD) may be interpreted in a similar

way to monopoles’ role in the standard model [127]. Nevertheless, unlike the case of

instantons, so far there is no formal understanding of why monopoles and skyrmions

appear to be so similar.

Calorons, also known as periodic instantons, are topological solitons, which have in

recent years seen much interest for a variety of reasons [22, 44, 53, 71, 72, 73, 94]. One

of their attributes is that they are seen to interpolate between instantons and monopoles

[49, 69, 75, 107], and in particular, their understanding in terms of constituent monopoles

[44, 72] provides a further link between monopoles and instantons. In addition, like

instantons, their holonomies may be used to approximate skyrmions [36, 51, 96]. In the

final chapter of this thesis, we propose and explore the possibility that the relationship

between monopoles, instantons, and skyrmions – ‘the soliton trinity’ – may be best

understood by considering all three of their relationships with calorons. In particular,

we shall reassess the relationship between calorons and skyrmions in light of the work

of Sutcliffe in [113]. Importantly, far less is known in general about calorons compared

to instantons and monopoles, especially regarding their symmetric examples, and so this

will also be a major topic of this thesis.

The mathematical framework which describes the objects of interest, and that we shall

be working in, is that of differential geometry and topology, in particular, the gauge

theory of vector bundles, homotopy theory, and Chern-Weil theory. We shall assume

the reader is reasonably well-versed in these subjects from the outset, nevertheless, some

good references are [47, 119]. For the sake of completeness, in the next few sections we

shall formalise the main underlying concepts for this thesis, and expand on what we have

just discussed, and the problems to be considered, in greater detail.
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1.1 Anti-self-dual connections and the Yang-Mills action

For an oriented, m-dimensional riemannian manifold (M,γ), the Hodge-star operator is

the map

? : Λp(M) −→ Λm−p(M), (1.1)

defined by

u ∧ ?v = 〈u, v〉Volγ, (1.2)

where 〈·, ·〉 is the inner-product on p-forms induced by the metric γ, and Volγ is the

volume form on (M,γ). Consider a connectionDA = d+A on a vector bundle V −→M ,

with structure group G, so that A ∈ Λ1(M, g) with g = Lie(G). Its curvature, defined by

FA = dA + A ∧ A, is a g-valued 2-form, and in particular, ?FA is an (m − 2)-form. In

the case that m = 4, it is therefore possible to ask whether FA is self- or anti-self-dual

with respect to the Hodge-star, that is

?FA = ±FA. (1.3)

As a matter of convention, we shall only be interested in the equation ?FA = −FA,

and such connections will be known as anti-self-dual connections (ASD). The self-dual

connections can easily be obtained by reversing the orientation on M . From the outset,

we shall also restrict our attention to complex vector bundles with structure group U(N),

that is, rank-N hermitian bundles.

ASD connections are interesting for a variety of reasons. Firstly, they naturally minimise

the Yang-Mills-action

SYM := ||FA||2 = −
∫
M

tr (FA ∧ ?FA). (1.4)

Indeed, the equations of motion are the Yang-Mills equations DA ? FA = 0, which are

trivially satisfied by ASD connections due to the Bianchi identity DAFA = 0. This is
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not only an example of how to solve a second-order PDE by using a first-order PDE, but

in this particular case, the most successful attempt at minimising the Yang-Mills action

has been through studying ASD connections. Another way to see why this works more

directly is the following Bogomolny’i style argument: consider the identity

||FA||2 =
1

2
||FA + ?FA||2 +

∫
M

tr (FA ∧ FA). (1.5)

Since || · ||2 ≥ 0, what (1.5) tells us is that the Yang-Mills action satisfies the inequality

SYM ≥ 8π2Q, (1.6)

where Q is the quantity

Q =
1

8π2

∫
M

tr (FA ∧ FA). (1.7)

The real number (1.7) is known as the topological charge of the Yang-Mills connection.

The topological significance is, admittedly, dependent on the structure of M and V , but

the key importance comes from the (local) formula

tr (FA ∧ FA) = dtr (A ∧ dA+
2

3
A ∧ A ∧ A),

and so for anti-self-dual connections, the value of the action is essentially only dependent

on the behaviour at the boundaries of each trivialisation of V . The bound (1.6)

is saturated precisely by the ASD connections. Critical points of functionals which

possess topological bounds are often given the title of topological soliton [82], and those

configurations which attain the bound are often known as BPS topological solitons.

A second point of interest is found in the study of integrable systems. There are several

examples of integrable systems which may be obtained as a dimensional reduction, or

symmetry reduction, of the ASD equations. Examples include the Bogomolny equations,

Nahm’s equations, and the KdV equation. A relatively bold statement, known as ‘Ward’s

conjecture’, proposes that all systems of equations which may be considered in some way

to be ‘integrable’, are obtainable as a reduction of the ASD equations (see [84] for more
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details of this). Other relationships with integrable systems are observed as a result of the

twistor geometric descriptions that many ASD connections possess, and is an idea that

shall be remarked upon as we delve deeper into the topics of this thesis.

The final motivation that we shall discuss is the physical significance. To quantize gauge

theories, one usually tries to calculate Feynman ‘path integrals’ where the space of ‘paths’

is D(M ′), the space of all connections over M ′, where M ′ is a lorentzian 4-manifold. In

general, these integrals do not have a clear definition, and so a standard technique is to

‘Wick rotate’ M ′ to the riemannian M , and consider the functional integral

K[S] =

∫
A∈D(M)

p(A) exp (−SYM(A)) d[A],

where d[·] is a suitable measure on D(M), and p is a polynomial. Physically K is the

‘propagation function’ which represents the quantum probability amplitude of the physics

described by SYM . A good approximation to K is the semi-classical approximation,

which involves expanding the exponential around the ‘classical’ configurations, that is,

the critical points of SYM for which SYM is finite. In particular, since ASD connections

are critical points, this gives a motivation for the following definition.

Definition 1.1.1 A (Yang-Mills) instanton is an ASD connection with finite Yang-Mills

action.

Remark 1.1.2 The word ‘instanton’ was first coined by ’t Hooft in reference to a 1-

dimensional classical solution in the physics of the double-well potential, which appears

to be localised as an instantaneous trajectory between two classically forbidden vacuum

states [23, 110]. The instantons of Yang-Mills theory are intended to be 4-dimensional

analogues of these.

The initial breakthroughs in finding explicit examples of ASD connections were first made

by Belavin, Polyakov, Schwarz, and Tyupkin [11], then later Witten [126], and Corrigan,
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Fairlie, and ’t Hooft [31, 57] provided some more general examples. These were also the

first examples of Yang-Mills instantons, in the most simple case where the base manifold

is euclidean R4. Instantons on R4 are usually what are being referred to when the word

‘instanton’ is used. These instantons are in fact geometrically equivalent to instantons

on S4: since the ASD equations (1.3) are conformally invariant, and R4 is conformally

equivalent to S4 \ {∞}, every instanton on S4 gives rise to an instanton on R4, and a

theorem of Uhlenbeck [120] shows that the converse is also true, so that we have that every

instanton on R4 is determined uniquely, via stereographic projection, by an instanton on

S4. By compactness of S4, the action (1.4) is always finite, so that every anti-self-dual

connection on S4 is an instanton. Vector bundles over S4 are topologically classified by

their second Chern number c2(V, S4), an integer which can be computed from the integral

c2(V, S4) =
1

8π2

∫
S4

tr (FA ∧ FA) ∈ Z. (1.8)

This is exactly the topological charge (1.7), which in this context is often called the

instanton charge.

The instantons on R4 manifest themselves physically as the configurations which describe

tunneling between quantum vacuum states. More specifically, the vacuum states of (pure)

quantum chromodynamics (QCD) are characterised by an integer n ∈ Z [23], and an

instanton of charge Q corresponds to a trajectory between vacuum states |n〉 and |n+Q〉.

Furthermore, restricting the propagatorK toKQ, which integrates only over the spaces of

instantons of chargeQ, shows how instantons resolve the U(1) problem in QCD [58], that

is, they are an explanation of the apparent U(1) symmetry in QCD that is not observed in

the real world.

It is worth noting that the notion of an instanton may be generalised to higher dimension

than 4, and this is particularly important in the study of M -theories. However this, along

with other physical consequences, goes far beyond the scope of this thesis.
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1.1.1 Gauge transformations

In general, the space A of all ASD connections on V −→ M is quite large, but we can

exploit the structure of the bundle V to our advantage. Every bundle map γ : V −→ V

induces local gauge transformations g : U −→ U(N) for U ⊂ M open, defined by the

restriction to each trivialisation:

γU : U × CN −→ U × CN

(x, v) 7→ (x, g(x)v),

for x ∈ U , v ∈ CN . These form a group G called the gauge group, which acts on

connections via

A 7→ gAg−1 − dgg−1. (1.9)

Under this action, the curvature transforms as FA 7→ gFAg−1, and so it is straightforward

to see that the Yang-Mills action (1.4), and charge (1.7) are invariant under these

automorphisms of the bundle V . This gauge invariance motivates the consideration of

the orbit spaceM = A /G as the true physical space which these objects occupy. M is

called the moduli space of ASD connections

1.2 The soliton trinity

Instantons are seen to be topological solitons in four dimensions, and are arguably the only

special types of field configurations within this many dimensions. Moving down to three

dimensions, there are two major players in the topological soliton scene: monopoles and

skyrmions [82]. Both of these solitons have well-established relationships with instantons.

First, monopoles. Let (X, η) be an orientable riemannian 3-manifold, and W −→ X

be a vector bundle over X , which we shall for simplicity take to be trivial, rank N , and

hermitian. Let DÃ be a connection on W , with curvature F Ã and consider also a section
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Φ ∈ Γ(End(W )). With respect to a global trivialisation ofW , Φ is simply given by a map

Φ : X −→ u(N). Define a 4-manifold (M,γ) from (X, η) by setting M = R ×X , and

γ = dt2 + η, where t is a coordinate on R. Additionally, we may define a vector bundle

V −→M as the pull-back V = p∗W , where p : M −→ X is the obvious projection, and

a connection DA on V via A = Ã+ Φdt.

It is straightforward to see that the connection DA is anti-self-dual (?γFA = −FA) if and

only if (Ã,Φ) satisfies the Bogomolny equation1

?ηD
ÃΦ = −F Ã, (1.10)

furthermore, its Yang-Mills action is given by

SYM =

∫
R
EYMHdt, (1.11)

where EYMH is the Yang-Mills-Higgs energy

EYMH := ||F Ã||2 + ||DÃΦ||2 = −
∫
X

tr
(
F Ã ∧ ?F Ã +DÃΦ ∧ ?DÃΦ

)
. (1.12)

In short, a monopole onX is such a pair (Ã,Φ) satisfying the Bogomolny equation (1.10)

for which the Yang-Mills-Higgs energy (1.12) is finite. According to the description

above, monopoles may be thought of as translation-invariant instantons, where the

condition of finite action is replaced by the condition of finite energy. The most common

monopoles studied are those where X = R3, and in general are subject to rather strict

boundary conditions, which we shall describe later on in chapter 2.

Similarly to the identity (1.5), the Yang-Mills-Higgs energy (1.12) satisfies

||F Ã||2 + ||DÃΦ||2 = ||F Ã + ?ηD
ÃΦ||2 + 2

∫
X

tr (F Ã ∧DÃΦ), (1.13)

so that we have the energy bound

EYMH ≥ 2

∫
X

tr (F Ã ∧DÃΦ), (1.14)

1Strictly speaking, this depends on a choice of orientation, and so (1.10) is equivalent to (1.3) within

this formalism up to a change of sign.
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with equality when (Ã,Φ) satisfy the Bogomolny equation (1.10). This integral in (1.14)

is also topological, and in the case of X = R3, and N = 2, is precisely 4mπ, where

m ∈ Z is the monopole charge revealed by the boundary data for such a monopole. For

this reason, monopoles, like instantons, are known as BPS solitons.

Second, skyrmions. Consider an instanton DA on V −→ M = R4. With respect to a

global trivialisation of V , DA is determined by the connection 1-form A =
∑3

µ=0Aµdx
µ,

where Aµ : R4 −→ u(N) are the components of A, and xµ are the standard coordinates

on R4, for µ = 0, . . . , 3. Let Ω : R4 −→ U(N) be the solution to the equation

∂0Ω + A0Ω = 0 (1.15)

with the boundary condition limx0−→−∞Ω = 1. The function Ω is well-known to

differential geometers as the parallel transport operator of DA along all lines in the x0-

direction. This gives rise to a function U : R3 −→ U(N) defined by U = limx0−→∞Ω,

called the holonomy. The instanton is classified by an integer k, namely the second Chern

number of the associated bundle over S4. The constructed function U : R3 −→ U(N)

satisfies the boundary condition U −→ 1 as |~x| −→ ∞, so it descends to a map

U ′ : S3 −→ U(N). Such maps are classified too by an integer, given by π3(U(N)) ∼= Z,

and moreover, from this construction, this integer is precisely the instanton charge k.

The most applicable case of these holonomies is whenN = 2, and V has structure SU(2).

In 1989, Atiyah and Manton [8] proposed interpreting these functions U : R3 −→ SU(2)

as candidates for Skyrme fields. An SU(2) skyrmion is a map U : R3 −→ SU(2)

satisfying U −→ 1 as |~x| −→ ∞, which is a global minimum of the Skyrme energy

functional:

ES := ||U−1dU ||2 + ||U−1dU ∧ U−1dU ||2. (1.16)

The extrema of (1.16) are the solutions to the Skyrme field equation∑
i,j

∂i
(
U−1∂iU +

[
U−1∂jU, [U

−1∂iU,U
−1∂jU ]

])
= 0. (1.17)
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Unlike the exact relationship that we see between monopoles and instantons, this

construction sadly does not produce exact solutions to (1.17), but is merely an

approximation. Nevertheless, this approximation has proven to be remarkably good in

comparison to known results for skyrmions. A formal understanding of this relationship

was later provided by Sutcliffe [113] by employing a ‘mode expansion’ of the gauge field,

and we shall expand more on this relationship in chapter 4.

The topological degree of the map U : R3 −→ SU(2) is often denoted by B, and is

physically interpreted as the baryon number. This has the standard integral formula

B =
1

24π2

∫
R3

tr
(
U−1dU ∧ U−1dU ∧ U−1dU

)
. (1.18)

There is also a topological energy bound for (1.16), originally due to Faddeev [39], which

we shall demonstrate in a different manner here. Using the identity

ES = ||dU ∧ dU−1 ∓ ?dUU−1||2 ± 2

∫
R3

tr
(
U−1dU ∧ U−1dU ∧ U−1dU

)
, (1.19)

we straightforwardly see that the Skyrme energy satisfies the bound

ES ≥ 48π2|B|. (1.20)

The bound (1.20) is only attained when

dU ∧ dU−1 = ± ? dUU−1. (1.21)

Equation (1.21) is equivalent to saying that the right-invariant Maurer-Cartan current

corresponding to U , defined by R = dUU−1 satisfies the equation

?R = ∓dR. (1.22)

To understand this equation, consider the Skyrme-field U : R3 −→ SU(2) in components,

that is

U(~x) = φ0(~x)1 + ı~φ(~x) · ~σ,



Chapter 1. Introduction 12

where σ1, σ2, σ3 are the Pauli matrices, and φ = (φ0, φ1, φ2, φ3) : R3 −→ S3. Now let ηS3

denote the metric on S3. Then equation (1.22) is equivalent to saying that the strain tensor

φ∗ηS3 has all eigenvalues equal to 1.2 In other words φ : R3 −→ S3 is an isometry. But

this is impossible since R3 is not isometric to S3. Therefore, unlike the case of monopoles

and instantons, the Skyrme model is not BPS.

Despite not being a BPS theory, studying the Skyrme model is still an interesting physical

and mathematical problem. Physically, skyrmions are supposed to model atomic nuclei,

and there are many interesting variational questions regarding the functional (1.16), which

is a simple generalisation of the Dirichlet energy whose critical points are the famous

harmonic maps. For instance: is there a smooth map U : R3 −→ SU(2) within each

homotopy class which minimises ES? Can ES be thought of as some sort of Morse

function?

As we have discussed, there is a precise understanding of the links between instantons

and monopoles, and instantons and skyrmions. For quite some time, there have also been

striking observations of links between monopoles and skyrmions, besides the indirect link

via instantons on R4. One example is the rational map ansatz [59]. This is another way

of approximating Skyrme fields by considering rational maps P : S2 −→ S2, under the

novel consideration of identifying the domain of the rational map as concentric spheres in

R3, and the target as spheres of constant latitude in S3, i.e. a map R3 −→ S3, which

is a candidate for a Skyrme field. Besides the many attractive qualities for analysis

of the Skyrme energy functional (1.16) within this formalism, the main motivation for

this consideration belongs to trying to view monopoles and skyrmions in the same light.

Indeed, the moduli space of SU(2) monopoles has important relationships to rational

maps R : S2 −→ S2, which we shall not delve into here (but for further details see

[33, 67, 68]). The point is, every rational map gives rise to a monopole, and it would

seem that they also give rise to (approximate) skyrmions, with many valuable applications

2See [78].
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[79]. There are several other striking resemblances between monopoles and skyrmions,

which all fall under the category of ‘symmetric solitons’, and we shall discuss this in the

following section. These similarities between monopoles and skyrmions have not so far

been understood in any precise way, but we suspect a more concrete relationship exists.

1.2.1 The role of symmetry

A very common technique in studying variational problems is to hunt for ‘symmetric

solutions’, that is, critical points which are invariant under the action of some group of

diffeomorphisms. This is useful for several reasons. Firstly, imposing a symmetric form

invariably reduces the difficultly of solving the underlying equations, for example, in a

3-dimensional problem, asking for spherical-symmetry, that is, the fields only depend

on their radial component, reduces what was a PDE, into an ODE. This simplification

of the defining equations makes explicit construction more realistic. Secondly, there are

geometric reasons for studying symmetric solutions. In the cases where the space of

solutions is a riemannian manifold, and the group acts by isometries, then it is well-

known that the fixed-point sets are totally geodesic riemannian submanifolds, and so

information about the geodesic flow in the space of all solutions can be obtained from

studying symmetric examples. This may be exploited for the purposes of understanding

dynamics – Manton argues in [77], specifically in the context of monopoles, that the

geodesic flow on the moduli space is the low-energy approximation to the true dynamics

of the solitons. This idea has been rigorously formulated, and validated under certain

restrictions, by Stuart in [112]. A third advantage is somewhat philosophical, but has its

basis in physical reasoning, namely, that the important solutions to a variational problem

are those which possess some degree of symmetry. Indeed, many natural phenomena

exhibit high levels of symmetry, for example the spherical formation of soap bubbles,

and many simple variational problems are solved by highly symmetric configurations, for

example, the closed planar curve of some given length with maximal enclosed area is the
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circle. Moreover, the existence of certain symmetries is somewhat axiomatic in theoretical

physics [28]. Additionally, the observed symmetric ‘shape’ of nuclei is one of the many

reasons for studying symmetric skyrmions, which are supposed to model nuclear physics,

and is an important consideration for quantization.

Remark 1.2.1 The construction of symmetric solutions is dependent on the applicability

of the principle of symmetric criticality [99], which states that the symmetric critical

points are precisely the critical symmetric points, that is, the critical points of the

symmetrically reduced field theory. This principle does not hold in full generality,

however it is true for all of the relevant examples that we have discussed.

The existence of symmetric instantons, monopoles, and skyrmions, has been fundamental

in advancing the field, with a plethora of examples available to study [3, 10, 13, 14, 43, 55,

60, 61, 62, 83, 95, 104, 111, 116, 117, 123]. In fact, the first example of a monopole on

R3 was the Prasad-Sommerfield solution [105] to (1.10), which takes the O(3)-symmetric

form

Φ = −f(r)
~x · ~σ
r
,

A =
ı

2
(g(r)− 1)

~x× ~σ
r2
· d~x,

where r = |~x|, ~σ is the vector of Pauli matrices, and f, g : (0,∞) −→ R are given by3

f(r) = coth 2r − 1

2r
,

g(r) =
2r

sinh 2r
.

Sadly, most of the symmetric examples do not provide us with analytic formulae like

this monopole solution, and in the case of skyrmions, only numerical methods have been

successful. However, the trade-off is that almost all of the cases (at least for instantons and

monopoles) make use of the various ‘twistor’ construction techniques, highlighting not
3Up to some choice of length scale, which we have here set equal to 1.
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only their importance in understanding the objects’ geometric structure, but also in finding

‘explicit’ examples, which can then be constructed numerically from the associated data.

In figures 1.1-1.2, we show plots of the charge densities of symmetric monopoles and

skyrmions respectively, which are all constructed from numerical solutions.4

Figure 1.1: The abelian charge density isosurfaces of monopoles with platonic

symmetries. These monopoles have charges 3, 4, 5, and 7 respectively. Images courtesy

of Derek Harland.

Figure 1.2: The charge density isosurfaces of low charge skyrmions, taking the form of

polyhedral ‘shell-like’ structures. These skyrmions have baryon numbers 3, 4, 5, and 7

respectively. Images courtesy of Chris Halcrow, and colouring scheme coded by Dankrad

Feist, explained in [40].

It doesn’t take much imagination to notice that there are some striking resemblances

between some of these monopoles and skyrmions. Indeed, in the cases B = 3, 4, and

7, the symmetric skyrmions have precisely the same symmetries as the m = 3, 4, and

7 monopoles respectively! Similarly, although not shown in pictures, the charge 1 and

2 monopoles and skyrmions also share the same symmetries, namely spherical, and

4Many thanks go to Derek Harland and Chris Halcrow for providing me with these images.
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toroidal. It seems unlikely that such similarities would be only coincidental. These

relationships with the symmetries are somewhat explained by the rational map ansatz

[59]. More precisely, there is a unique (up to a choice of orientation) degree 3 rational

map P : S2 −→ S2 with tetrahedral symmetry,5 namely

P (z) =

√
3ız2 − 1

z3 −
√

3ız
, (1.23)

also a degree 4 rational map with cubic symmetry:

P (z) =
z4 + 2

√
3ız2 + 1

z4 − 2
√

3ız2 + 1
, (1.24)

and a degree 7 rational map with dodecahedral symmetry:

P (z) =
z5 − 3

3z7 + z2
. (1.25)

By a theorem of Jarvis [67, 68], these define the tetrahedral, cubic, and dodecahedral

monopoles of charges 3, 4, and 7 respectively, and via the rational map ansatz, go some

way towards explaining why the B = 3, B = 4, and B = 7 skyrmions have those

symmetries also. However, there are counter-examples to this apparent sequence of

symmetric solitons. For example, the B = 5 skyrmion does not seem to exhibit much

symmetry at all other than an order 2 dihedral symmetry [82]. On the contrary, there is,

as seen in figure 1.1, and in [60], a charge 5 monopole with octahedral symmetry. Thus,

the verdict over whether there is a direct link between skyrmions and monopoles is still

undecided.

These links that we have discussed between instantons, monopoles, and skyrmions, are

summarised in figure 1.3. The dashed line between monopoles and skyrmions highlights

the gaps in understanding, but with a respect for the fact that there are many convincing

reasons to expect a concrete link to exist.

5The group SO(3) acts on the space of rational maps by pull-back of an SU(2) Möbius transformation.
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Instantons

Monopoles

Skyrmions

?

Dimensional
reduction

Holonomy:
AMS-construction

Figure 1.3: The triangle of ideas relating the ‘soliton trinity’.

1.2.2 The role of calorons

Very loosely, calorons are instantons on S1 × R3, and we study them at great depth in

chapter 2. An important feature of calorons is how they relate to instantons on R4 and

monopoles on R3. Specifically, calorons can be viewed as ‘loops of monopoles’ [44],

calorons are embedded in the space of instantons [22, 32], and in particular, they are seen

to interpolate between these two solitons in certain limiting cases [49, 75, 107, 122]. Due

to the kinship between monopoles and calorons, any link between calorons and skyrmions

may be able to provide an understanding for the apparent links between monopoles

and skyrmions. Our idea is to consider the Atiyah-Manton-Sutcliffe construction of

Skyrme fields from instantons in the context of calorons, and to study the Skyrme fields

generated within the knowledge of this interpolation between instantons and monopoles.

In summary, the proposition is that the diagram of the soliton trinity in figure 1.3 may be

better understood by introducing calorons, and considering instead the diagram in figure
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1.4. All of these ideas are to be explored in more detail in chapter 4.

MonopolesInstantons

Skyrmions

Large period
limit

Large scale
limit

Calorons

Monad
embedding

Loop
groups

Holonomy
approximation

Figure 1.4: The soliton trinity from the perspective of calorons.

Remark 1.2.2 It is worth mentioning that some work, beyond the study of the rational

map ansatz, to compare monopoles and skyrmions was done in [48, 101] by adding a

‘Skyrme term’ to the usual Yang-Mills-Higgs energy. In contrast, our approach in chapter

4 does not make any modifications to the underlying theories.

1.3 Overview of thesis

Besides this introductory chapter, this thesis is separated into three main chapters which

cover the topics of ‘calorons, symmetry, and the soliton trinity’.

In chapter 2, we formalise the notion of what a caloron is, with a precise overview of

their definitions and boundary conditions. We then cover some brief examples, and

discuss some important properties of the geometry of their moduli spaces, including a

correspondence called the rotation map, which we will use later on when discussing
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symmetries. We also review their relationships to instantons on R4, and monopoles on

R3. We conclude this chapter with a review of the various related data to calorons.

Specifically, we describe the famous Nahm transform in the context of calorons, and also a

set of matrix data called monad matrices. This matrix data and its relationship to calorons

was first understood by Charbonneau and Hurtubise [22] in the case of SU(2) calorons,

and we generalise it to a special case of SU(N) calorons (those with all magnetic charges

equal to zero).

Chapter 3 is devoted to symmetric calorons. Firstly, we introduce the isometries on the

moduli space of calorons, and how they act on the associated Nahm and monad matrix

data. We follow this by proving some necessary conditions for the existence of invariant

solutions. The main results of this chapter are within the discussion of cyclic calorons,

that is, calorons invariant under the action of various cyclic groups. Here we show the

existence of charge k, SU(N) calorons, which are invariant under the action of cyclic

groups of order Nk, by utilising both the monad matrix data, and a special isometry of

the moduli space, which is the rotation map. We conclude the chapter with a discussion

of, and an explicit construction of, the corresponding cyclic Nahm data for some low

charge cases.

In the final chapter, chapter 4, we study the relationship between calorons and skyrmions

alluded to in figure 1.4, by reassessing the holonomy approximation in light of Sutcliffe’s

work in [113]. As we shall see, calorons provide a natural way to incorporate a gauge

field into the Skyrme model, and hence may be considered as good approximations

to gauged skyrmions. In particular, by expanding the caloron in terms of the ultra-

spherical functions, we may derive a one-parameter family of gauged Skyrme models,

which we show to reduce to the ordinary Skyrme model in a particular limit. The bulk

of this chapter is then concentrated on numerically studying the most simple examples

– those with spherical symmetry, and how they relate to calorons and monopoles. The

main conclusion is that the gauged skyrmions appear to exhibit the same interpolation
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between ‘instanton-like’ solutions, and ‘monopole-like’ solutions, which is a property of

calorons. We conclude this chapter by relating these gauged skyrmions, and their caloron

approximations, to skyrmions in the ordinary Skyrme model.
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Chapter 2

Calorons

The main objects of study in this thesis are calorons. Loosely speaking, calorons are

periodic instantons, that is finite-action, anti-self-dual connections on S1 × R3. Their

name is due to their physical interpretation, which is instantons at ‘finite temperature’1,

where, according to the Matsubara formalism, the euclidean time is seen to be periodic.

Calorons are arguably more relevant physically than both instantons2 and monopoles [2,

46, 65, 72, 121].

Unlike in the case of S4, in general, an ASD connection on S1 × R3 will not have finite

action, and so boundary conditions need to be carefully defined to allow for this. To

simplify things, we shall restrict our attention to the case of SU(N) calorons, for N ≥ 2,

which means that the vector bundle V is a trivial, rankN hermitian bundle, equipped with

a parallel volume form. The boundary conditions we shall describe for these calorons

were first formulated by Nye [97], and recent work by Cherkis and colleagues on Taub-

NUT instantons [27] suggests that they are in fact equivalent to the condition of finite

action.

1That is, non-zero.
2That is, instantons on R4.
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2.1 Boundary conditions

For the purpose of having well-defined boundary conditions, we shall compactify R3 by

thinking of it as the interior of the closed ball B3, then calorons will be defined on all

of S1 × B3, with conditions on S1 × ∂B3. We will always denote the boundary as the

2-sphere at infinity, that is ∂B3 ∼= S2
∞. In order to understand the boundary conditions,

we first need to develop a conceptual framework.

Definition 2.1.1 Let M be a manifold, and M ′ ⊂M be a submanifold. Let V −→M be

a vector bundle of rank r and let V ′ denote its restriction to M ′. A framing for V over

M ′ is a bundle isomorphism

f : V ′ −→ W ′,

where W ′ is a trivial, rank r bundle over M ′. A framed vector bundle is a pair (V, f).

(V, f) is said to be framed by W ′.

Consider the circle S1 of radius 1/µ0, for some µ0 > 0, as the quotient S1 ∼= R
/

2π
µ0

Z .

We denote coordinates on S1×R3 by (t, x1, x2, x3), and equip it with the euclidean metric

induced from R4. Let V and W be trivial, rank N hermitian vector bundles over S1×B3,

and B3 respectively, each equipped with a parallel volume form. We denote by V∞ and

W∞ their restrictions to S1 × S2
∞ and S2

∞ respectively in each case. We introduce the

framing for V over S1 × S2
∞

f : V∞ −→ p∗∞W∞,

(t, x, v) 7→ (t, x, ϕ(t, x)v)
, (2.1)

where p∞ : S1 × S2
∞ −→ S2

∞ is the projection, and ϕ : R× S2
∞ −→ SU(N) satisfies

ϕ(t, x) = ϕ(t+ 2π/µ0, x), ∀ t ∈ R, x ∈ S2
∞.

We are interested in the behaviour of the caloron connection 1-form A on the restriction

to S1 × S2
∞, and so via the framing (2.1), this depends on the properties of the bundle

W∞, which we shall now prescribe.
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Let W∞ decompose into line bundles3

W∞ = O(k1)⊕ · · · ⊕ O(kN), (2.2)

where kp are integers which sum to 0. We also equip W∞ with a connection 1-form a∞,

which we impose to be diagonal with respect to the splitting (2.2). Specifically,

a∞ =
N∑
p=1

ap,

where ap is the unique connection 1-form on O(kp) with curvature dap = kp
2
ıΩ, where

here Ω denotes the volume form on S2
∞ with the round metric. In addition to the

connection a∞, we consider a section Φ∞ ∈ Γ(End(W∞)) whose eigenbundles are

O(kp), that is, there exist µp ∈ R satisfying

Φ∞sp = ıµpsp, ∀ sp ∈ Γ (O(kp)) .

Note that we have dΦ∞ + [a∞,Φ∞] = 0. We will order the splitting (2.2) so that the

eigenvalues satisfy µN ≤ · · · ≤ µ1. Since the structure group is SU(N), we also have∑N
p=1 µp = 0. In general, we shall consider the eigenvalues to be distinct for the purposes

of construction. This choice is known as the condition of maximal symmetry breaking.

Finally, for further purposes of construction, and later interest, we shall restrict ourselves

to the situation where these numbers satisfy

µ0 − (µ1 − µN) ≥ 0. (2.3)

These definitions are consistent with that of Nye [97], and we are now in a position to

define what a caloron is.

Definition 2.1.2 Let (V, f) be a trivial, rank N , framed, hermitian bundle over S1 ×B3,

framed by p∗∞W∞ on S1 × S2
∞. A connection DA on V is said to be an SU(N)-caloron

3We remark that such a decomposition is a general feature of holomorphic vector bundles over S2
∞
∼=

CP 1 by the Birkhoff-Grothendieck theorem [56].
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configuration if it is anti-self-dual, and

(f−1)∗ A|S1×S2
∞

= (Φ∞ ◦ p∞)dt+ p∗∞a∞. (2.4)

Here p∞ : S1×S2
∞ −→ S2

∞ is the projection, andW∞, a∞, and Φ∞ are defined as above.

2.1.1 Topological charges and constituent monopoles

Associated to a caloron are a set of numbers which are determined by the boundary

conditions we have just described, and are the main classifying data for calorons. These

are a tuple

(~m, ~ν) ≡ (m1, . . . ,mN , ν1, . . . , νN), (2.5)

where mp ∈ N and νp ∈ [0, µ0] such that
∑

p νp = µ0. The numbers νp are called the

monopole masses of the caloron, and are formed from the eigenvalues ıµp of Φ∞ via

νp = µp − µp+1, p = 1, . . . , N − 1,

νN = µ0 + µN − µ1.
(2.6)

Note that the condition of maximal symmetry breaking is equivalent to saying that νp 6= 0

for all p = 1, . . . , N . The integers mp are topological quantities known as the monopole

charges, and are defined in terms of N + 1 related integers called the magnetic charges

and instanton number of the caloron. The magnetic charges k1, . . . , kN are the first

Chern numbers of the line bundles in the splitting (2.2). The instanton number, which

we denote by k0, may be interpreted as a ‘relative second Chern number’ of the bundle

(V, f). More explicitly, recall that the framing for V (2.1) is determined by a function

ϕ : R
/

2π
µ0

Z × S2
∞ −→ SU(N).

For fixed t ∈ R, this determines a function ϕt : S2
∞ −→ SU(N), which represents an

element of π2(SU(N)). This is a trivial group, so the homotopy extension theorem says
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we may extend the framing via homotopy to a function defined on the interior of B3:

Ft : V |{t}×B3 −→ p∗W

(t, x, v) 7→ (t, x,Ψt(x)v),
(2.7)

where p : {t} × B3 −→ B3 is the projection, and Ψt : B3 −→ SU(N) satisfies the

boundary condition

Ψt(z) = ϕ(t, z), ∀ z ∈ S2
∞,

but is not necessarily periodic on the interior of S1 × B3. Let ε > 0. The maps Ft, for

all t ∈ (−ε, ε + 2π/µ0), define a continuous one-parameter family, and we interpolate

between them via the clutching functions

κt(x) := Ψt+2π/µ0(x)Ψt(x)−1. (2.8)

For each t, κt : B3 −→ SU(N) gives an automorphism of W , and one can easily check

that κt|S2
∞

is the identity, so κt descends to a map κt : S3 −→ SU(N) by one-point

compactification of R3. The clutching functions are clearly homotopic for each t, and

represent an element of π3(SU(N)) ∼= Z. The integer representative of these maps is

precisely the instanton number k0.

Finally, in order to define the monopole charges mp, we must impose that
p∑
q=0

kq ≥ 0, ∀ p = 1, . . . , N. (2.9)

Then, the monopole charges are determined as

mp =

p∑
q=0

kq. (2.10)

Remark 2.1.3 The choice to describe calorons in terms of the monopole charges

and masses (~m, ~ν) is quite clearly equivalent to describing them in terms of the

data (k0, k1, . . . , kN , µ0, µ1, . . . , µN), but is the convention which makes a lot of later

discussion neater and more transparent.
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An SU(N)-caloron is thought of as having N constituent monopoles, each with charges

and masses (mp, νp). This notion is formalised in terms of the loop group point of view,

discussed in section 2.3.2. In general, a caloron with boundary data (~m, ~ν) will be known

as a ~m-caloron, with monopole masses ~ν. From the boundary data, we may extract

another important topological quantity – the caloron charge. This is given by the Yang-

Mills charge (1.7), which is computed in this context by the integral

Q =
1

8π2

∫
S1×R3

tr (FA ∧ FA). (2.11)

It is possible to show (for example in [97]) that the charge is expressed neatly in terms of

the monopole masses and charges as

Q =
1

µ0

N∑
p=1

mpνp. (2.12)

Another characteristic quantity for a caloron is the holonomy U : R3 −→ SU(N) around

the circle, also known as the Polyakov loop. This is given in terms of the solution

Ω : [0, 2π/µ0]× R3 −→ SU(N)

to the parallel transport equation

∂tΩ + AtΩ = 0,

formally written as the path-ordered exponential

U(~x) := Ω

(
2π

µ0

, ~x

)
= P exp

(
−
∫
S1

At(s, ~x)dt

)
. (2.13)

Here P in (2.13) denotes the ‘path-ordering’ [47] of the factors of At with respect to the

loop

γ~x : [0, 2π/µ0] −→ S1 × R3

t 7→ (t, ~x).

Information regarding the boundary data may be extracted from the holonomy. For

example, when the magnetic charges satisfy kp = 0 for all p = 1, . . . , N , U(~x) is globally
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constant on S2
∞, so it descends to a map U ′ : S3 −→ SU(N), representing an element of

π3(SU(N)) ∼= Z. This is homotopic to the clutching maps defined in (2.8), and hence its

‘degree’ is the instanton number k0. Another important idea is that of trivial holonomy.

Definition 2.1.4 An SU(N)-caloron caloron is said to have trivial holonomy ifU(∞) :=

limr−→∞ U(~x) belongs to the centre of SU(N).

The situation of trivial holonomy is a condition on the eigenvalues µp, and is simple to

characterise in the case of N = 2. In this case the eigenvalues satisfy µ1 = −µ2 ≡ µ, and

trivial holonomy is equivalent to µ = 0 or µ = µ0/2.

2.2 Examples

In this section, we shall present and discuss some simple examples of SU(N)-calorons

which appear in the literature.

2.2.1 Harrington-Shepard calorons

The first examples of calorons were SU(2)-calorons, written down explicitly by

Harrington and Shepard [52], utilising the Corrigan-Fairlie-’t Hooft ansatz for instantons:

Aµ =
ı

2
ηµν∂ν log φ, (2.14)

where φ : S1 × R3 −→ R, and ηµν is the self-dual ’t Hooft tensor, defined by

ηµν =


σj, µ = j, ν = 0, j = 1, 2, 3,

−σj, µ = 0, ν = j, j = 1, 2, 3,

εjklσ
l, µ = j, ν = k, j, k = 1, 2, 3.

(2.15)
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It is straightforward to show that the ASD equations for (2.14) are equivalent to the

Laplace equation ∂µ∂
µφ = 0. The Harrington-Shepard solution for calorons is given

by the general harmonic function on S1 × R3:

φ = 1 +
k∑
j=1

λ2
j

2rj

sinh(µ0rj)

cosh(µ0rj)− cos(µ0(t− θj))
, (2.16)

where λj > 0, and rj = |~x − ~aj|, for some different points ~aj ∈ R3, and θj ∈ S1. It

is possible to show that this gauge field defines a (k, k)-caloron with monopole masses

(0, µ0), that is, one with trivial holonomy. These are often interpreted as k (1, 1)-calorons,

with centres (θj, aj) ∈ S1 × R3, and ‘scales’ λj > 0.

2.2.2 Monopoles

Recall that monopoles on R3 are a pair (Ã,Φ) consisting of a connection 1-form Ã on

a rank N vector bundle W −→ R3, and a section Φ ∈ Γ(End(W )) called the Higgs

field, which are solutions to the Bogomolny equation (1.10) with finite Yang-Mills-Higgs

energy (1.12). Like calorons, monopoles may be thought of as being defined on B3, with

R3 identified as the interior, and an additional structure given on the boundary ∂B3 ∼= S2
∞.

The bundle W∞, that is, the restriction of W to S2
∞, is equipped with a connection 1-form

ã∞ and endomorphism section Φ∞ which are defined in the same way as with calorons

to be simultaneously diagonalisable with respect to the splitting (2.2). The pair (Ã,Φ)

are then subject to the conditions that they both admit extensions to all of B3, and that

A|S2
∞

= ã∞ and Φ|S2
∞

= Φ∞. An SU(N)-monopole has N − 1 constituent charges and

masses defined analogously to a caloron. The Higgs field at infinity Φ∞ has eigenvalues

ıµp and corresponding eigenspaces O(kp), where µN ≤ · · · ≤ µ1,
∑p

q=1 kq ≥ 0 for all p,

and µ1 + · · · + µN = k1 + · · · + kN = 0. The constituent charges are m̃p =
∑p

q=1 kq,

which are imposed to be non-negative, and constituent masses are ν̃p = µp+1 − µp. As

with calorons, monopoles possess maximal symmetry breaking if ν̃p 6= 0 for all p =

1, . . . , N − 1.
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A caloron can be obtained from an SU(N)-monopole by setting the caloron connection

1-form as

A = Ã+ Φdt. (2.17)

Since via this construction, the anti-self-dual equation is equivalent to the Bogomolny

equation, we see that this represents a ~m-caloron with instanton charge k0 = 0, i.e. a

( ~̃m, 0)-caloron. Its monopole masses ~ν are determined as usual by the eigenvalues of

Φ∞ and the reciprocal radius µ0. In fact, every such caloron arises in this way, but to be

precise, the condition (2.3) must be satisfied in order for a caloron to be generated. This

is okay though, since we are free to choose µ0 so that this holds as it is not part of the

monopole data.

2.2.3 Calorons with non-trivial holonomy

Besides monopoles, there are more generic examples of calorons with non-trivial

holonomy which have been written down explicitly. In 1998, both Lee and Lu [75],

and Kraan and van Baal [73], independently studied the first examples of SU(2) calorons

with non-trivial holonomy. They considered (1, 1)-calorons, and in particular the moduli

space and metric was explicitly constructed, and found to given by the product of S1×R3

with the Taub-NUT space modulo an action of Z2 [71, 73]. These results have been

generalised to the case of (1, . . . , 1)-calorons [70]. All of these calorons have magnetic

charges kp = 0 for all p = 1, . . . , N . Calorons with a mixture of magnetic and instanton

charge are significantly less understood, however some interesting explicit examples may

be found in [20, 49, 69].

By far the most successful method of constructing calorons has been the Nahm transform,

which we shall describe for calorons with all magnetic charges zero in section 2.4. This

construction was explicitly utilised for the construction of the k0 = 1 calorons in [70,

73, 75]. A few other examples of calorons have been implicitly described via the SU(2)
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Nahm transform. Some charge (k, k) cases were considered in [19], and many examples

of (2, 2)-calorons have been written down implicitly [18, 89, 93]. Examples which exploit

symmetry are given by Harland [49], Nakamula and Sawado [90], and Ward [122], but

only considering low charge (k, k), and (k+1, k) cases, and the latter two only with trivial

holonomy. Some of the implicit calorons of [49] were recently constructed explicitly in

[69], again via the Nahm transform.

2.2.4 Limits of calorons

In the limit µ0 −→ 0 (that is, the large period limit), the function (2.16) reduces to

φ = 1 +
k∑
j=1

λ2
j

r2
j + (t− θj)2

, (2.18)

which within the ansatz (2.14) generates a charge k instanton on R4. Another interesting

limit to consider is the large scale limit, where the scales λj are significantly large

compared to the period. In this limit, (2.16) is dominated by the non-constant terms,

and takes the form

φ =
k∑
j=1

λ2
j

2rj

sinh(µ0rj)

cosh(µ0rj)− cos(µ0(t− θj))
. (2.19)

One can show [49] that this generates a (k − 1, k)-caloron of constituent masses (0, µ0).

The k = 1 case has only one non-trivial constituent monopole (that is, with non-zero

mass and charge), and can be shown [107] to be related via the action of a large gauge

transformation g : R × R3 −→ SU(2) to a (1, 0)-caloron with masses (µ0, 0), i.e. an

SU(2) monopole. In fact, this monopole is the Prasad-Sommerfield monopole [105].

This gauge transformation was the first example of an explicit rotation map, the idea of

which we shall discuss further in section 2.3.3.

Various other examples of limits of calorons have been studied [49, 75, 122], and in each

case, the resulting limiting object is observed to be either an instanton, or a caloron of
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lower charge (by which we mean, at least one of the constituents’ charges is reduced).

The upshot is that calorons are seen to interpolate between monopole-like solitons at

large scales (in the limit µ0 −→ ∞) and instanton-like solitons at large periods (in the

limit µ0 −→ 0). This understanding is something that we shall return to again in chapter

4 when we discuss the relationship between calorons and skyrmions, in an attempt to

complete the links between the soliton trinity.

2.3 Moduli spaces

The group of gauge transformations acts on calorons via (1.9), and can be used to form

moduli spaces of SU(N)-caloron configurations with boundary data (~m, ~ν). In order

to do this properly, we require that our gauge transformations preserve all the boundary

conditions of the framed bundle (V, f).

A framed bundle map γ : V −→ V is one such that its restriction γ∞ : V∞ −→ V∞

satisfies f ◦ γ∞ = f , where f is the framing (2.1). This is equivalent to saying that the

gauge transformation is identity as |~x| −→ ∞. Such maps preserve the framed bundle

(V, f), and together they form the framed gauge group, isomorphic to the group of framed

gauge transformations4

G = {g : S1 × R3 −→ SU(N) : g −→ 1 as |~x| −→ ∞}.

It is usual to consider calorons which differ by framed gauge transformations to be

equivalent, hence we form the moduli spaces CN(~m, ~ν) of framed ~m- calorons as the

G-orbits of SU(N) caloron configurations with boundary data (~m, ~ν).

4In this context, all other gauge transformations will be known as unframed.
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2.3.1 The moduli space geometry

Constructing the moduli spaces CN(~m, ~ν) requires knowledge of the solutions to the ASD

equations (1.3) with the correct boundary conditions. Since S1 × R3 is unbounded, it is

not immediate5 that the moduli space is a finite-dimensional manifold. The most direct

way to gain any knowledge is to construct the calorons explicitly, but as we have seen,

explicit examples of calorons are few and far between. The most promising method

for understanding the moduli space involves the use of a non-linear transform known

as the Nahm transform, which we shall describe in section 2.4, along with an explicit

parameterisation in terms of some matrix data, which we describe in section 2.5. These

descriptions allow us to predict that the moduli space CN(~m, ~ν) is a complex manifold of

dimension 2
∑N

p=1mp, and this is confirmed in the case N = 2 [21]. Furthermore, it is

equipped with a natural metric, which we describe briefly in section 3.1, and this metric

is conjectured to be hyperkähler.

Unframing

By definition, along each ‘time slice’ of S1, every caloron is asymptotically isomorphic to

a connection a∞ and asymptotic Higgs field Φ∞ on W∞, which decomposes into the line

bundles O(kp) via the splitting (2.2), and this isomorphism is given by the framing (2.1).

The group of automorphisms of W∞ is given by the maximal torus TN−1 in SU(N). We

define the unframed moduli space CNu (~m, ~ν) as the quotient of CN(~m, ~ν) by this TN−1

action.

5For example, by analysing the ASD equations and using an index theorem.
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2.3.2 The loop group point of view

We have already observed in section 2.2.2 that monopoles give rise to calorons. In fact,

this relationship between calorons and monopoles goes deeper than this relatively trivial

example. Something that we have not been very transparent about so far is the reasoning

behind the terminology ‘constituent monopoles’ when describing the boundary data for

calorons. For SU(N) monopoles, the case where m̃q = ν̃q = 0 for all q 6= p, for some

p ∈ {1, . . . , N − 1}, is known as the p-th fundamental monopole. A general SU(N)

monopole, with maximal symmetry breaking, is therefore in some way made up of N − 1

fundamental monopoles, hence the term ‘constituents’. More precisely, these constituents

are embeddings of SU(2) monopoles into the space of SU(N) monopoles by associating

each to one of the N − 1 simple roots of the Lie group SU(N). In a similar fashion,

we claim that we may interpret SU(N) calorons, with maximal symmetry breaking, as a

superposition of N constituent SU(2) monopoles [72]. This interpretation is formalised

in the work of Garland and Murray [44] in the context of loop groups [106].

The loop group LG of a Lie group G is the group of smooth gauge transformations of

the trivial G-bundle over S1, that is

LG := {g : S1 −→ G : g smooth}, (2.20)

with point-wise composition. There is a natural action of U(1) on LG via the pull-back of

the corresponding isometry S1 −→ S1. This action defines the intertwined loop group

L̂G := LGoU(1). The main result regarding loop groups and calorons is the following:

Theorem 2.3.1 (Garland and Murray (1988) [44]) There is a 1-1 correspondence

between SU(N) calorons and monopoles on R3 whose gauge group is the intertwined

loop group L̂SU(N) = LSU(N) o U(1).

The N monopole constituents of the caloron are identified as the N simple roots of the

group L̂SU(N), and some examples of their Dynkin diagrams are given in figure 2.1.
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N=2 N=3 N=4

Figure 2.1: The Dynkin diagrams for the loop groups L̂SU(N) in the cases N = 2, 3,

and 4.

Remark 2.3.2 This relationship between solitons via loop groups is not unique to

calorons. For example, in [50], Harland relates chains in CP n sigma models to loops

of multi-kinks. Further generalisations of this sort of observation have also been made,

usually under the name the caloron correspondence [53], and there are also various other

applications of loop groups within the wider study of solitons and integrable systems [56].

2.3.3 The rotation map

In accordance with the loop group point of view, an SU(N)-caloron may be thought

of as N constituent SU(2) monopoles with charges and masses mp and νp respectively,

represented by the simple roots of the loop group L̂SU(N). There is an obvious symmetry

here. Note that the ordering of these roots is somewhat arbitrary; a caloron with boundary

data (~m, ~ν) is essentially the same as one with boundary data (~m′, ~ν ′), when (~m, ~ν) and

(~m′, ~ν ′) are related by a cyclic permutation of the masses and charges. To put this another

way, rotating the Dynkin diagram of L̂SU(N) by a multiple of the angle 2π/N , that

is, cyclically permuting the constituent monopoles, does not affect the structure of the

moduli space. Therefore, one expects such calorons to be related by a well-defined map

hC : CN(~m, ~ν) −→ CN(~m′, ~ν ′).
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It turns out that such a map may be described by a large gauge transformation – a gauge

transformation at infinity which is not itself periodic, but still preserves the periodicity of

the caloron, that is h : R× S2
∞ −→ SU(N) such that

h(t+ 2π/µ0, z) = λh(t, z), ∀t ∈ R, z ∈ S2
∞,

for some λ ∈ U(1). The quintessential example of such a large gauge transformation is

the rotation map. This corresponds directly to the outer automorphism of L̂SU(N) which

rotates the Dynkin diagram by one constituent, that is

ρC : CN(m1, . . . ,mN , ν1, . . . , νN) −→ CN(m2, . . . ,mN ,m1, ν2, . . . , νN , ν1). (2.21)

Given the existence of such a map (which we shall describe explicitly very shortly), one

is able to gain a full understanding of various moduli spaces by only considering a small

subset of possible boundary data.

Definition 2.3.3 A set of caloron boundary data is called principal if the monopole

charges mp satisfy

mp ≥ k0 ∀ p = 1, . . . , N,

with k0 the instanton number.

Due to the way the rotation map is defined, every caloron moduli space is related to one

with principal boundary data by ρrC for some r = 1, . . . , N . This observation is exploited

by Nye with regards to defining the Nahm transform for calorons [97].

The rotation map is defined6 by first considering the bundle map % : p∗W∞ −→ p∗W∞

given by its action on sections with respect to the splitting (2.2), namely

%sp =

 exp (−ıtµ0) sp, p = 1,

sp, 2 ≤ p ≤ N,
sp ∈ Γ(O(kp)). (2.22)

6It is important to note that our definition is different to that of Nye’s [97], but its properties are the

same.
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From this we define the object

ρ̃ = exp

(
ı
tµ0

N

)
%. (2.23)

which defines a large gauge transformation ρ : R× S2
∞ −→ SU(N) satisfying

ρ(t+ 2π/µ0, z) = exp

(
2πı

N

)
ρ(t, z). (2.24)

This large gauge transformation is what we refer to as the rotation map. Since (2.23)

is not an automorphism of p∗W∞, it is not at all obvious how this acts on calorons. To

understand this, note that (2.23) defines a bundle map ρ̃ : p∗W∞⊗L∞ −→ p∗W∞, where

L −→ S1 × R3 the trivial line bundle defined by

L = R× R3 × C /∼ , (t, ~x, w) ∼
(
t+

2π

µ0

, ~x, e−ı
2π
N w

)
, (2.25)

and L∞ is its restriction to S1 × S2
∞. Also note that the framing (2.1) naturally induces a

map f̃ : V∞ ⊗ L∞ −→ p∗W∞ ⊗ L∞, defined by f̃ = f ⊗ 1L, where 1L is the identity on

L∞. The action on calorons (bundle, framing, and connection (V, f, A)) is then given by

ρ · (V, f, A) =
(
V ⊗ L, ρ̃ ◦ f̃ , A⊗ 0

)
. (2.26)

This rotation map can be thought of as an overall ZN action on the space of all SU(N)

caloron configurations, namely the correspondence (2.21), which is the context we shall

discuss further in chapter 3. To see that (2.26) corresponds precisely to the map (2.21) on

the moduli spaces, we shall summarise the argument of Nye [97]. Note that by (2.4), ρ

acts on the boundary field Φ∞ via

Φ∞ 7→ ρ−1Φ∞ρ+ ρ−1dρ.

Hence, for sp ∈ Γ(O(kp)), we have

Φ∞sp 7→

 ı
(
µ1 +

µ0

N
− µ0

)
s1, p = 1,

ı
(
µp +

µ0

N

)
sp, 2 ≤ p ≤ N.

(2.27)
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This shows that the eigenvalues have transformed non-trivially. To see how to make sense

of it, the transformed eigenvalues µ̃p must preserve the conditions µN < · · · < µ1, and

(2.3). This makes sense in terms of (2.27) if they transform such that

µp 7→ µp+1 +
µ0

N
≡ µ̃p, p = 1, . . . , N − 1,

µN 7→ µ1 +
µ0

N
− µ0 ≡ µ̃N .

(2.28)

Clearly µ0 is unchanged, so this transformation of the eigenvalues corresponds to the

masses transforming via νp 7→ νp+1, and νN 7→ ν1. The eigenbundles of Φ∞ are

preserved by ρ, and since the connection 1-form a∞ splits up accordingly with respect

to the eigenbundle decomposition, the rotation map has no effect on it. Furthermore, the

eigenbundle with eigenvalue µ̃p has Chern number k̃p, where

k̃p = kp+1, p = 1, . . . , N − 1,

k̃N = k1.
(2.29)

Finally, to see how the instanton number transforms, we appeal to the fact that the total

caloron charge (2.11) will remain unchanged by the rotation map, so that if k0 7→ k̃0, then

using the formula (2.12) and the transformed data above, we have

Q 7→ k̃0 +
1

µ0

(k2µ2 + · · ·+ kNµN + k1(µ1 − µ0)) ,

which equalsQ if and only if k̃0 = k0+k1. Comparing this with the transformed magnetic

charges, we see that mp 7→ mp+1 and mN 7→ m1. Consequently, the rotation map as

defined above has exactly the effect described by (2.21).

2.4 The Nahm transform

Besides the examples given in the previous section, finding explicit, generic, solutions to

the ASD equations is a difficult problem, which makes getting a handle on the moduli

spaces hard as well. In this section and the next we shall describe two sets of objects
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– Nahm data, and monad matrices – both which have moduli in correspondence with

calorons. These objects do not rely on solving PDEs to write them down, and so studying

them provides a more user-friendly approach to understanding the moduli spaces of

calorons.

In general, a Nahm transform is a correspondence between moduli of anti-self-dual

connections on a space R4
/Γ , where Γ ⊂ R4 is a closed group of translations acting freely

on R4, with moduli of anti-self-dual connections defined on a “dual” space (R4)∗ /Γ∗ ,

where Γ∗ is the “dual” of the group Γ, given by

Γ∗ = {x ∈ (R4)∗ : x(Γ) ⊂ κZ},

for some real constant κ > 0, usually set to 1. The “dual” moduli space is usually known

as the moduli space of Nahm data. A good review of these general Nahm transforms may

be found in [66]. Recently this concept has been generalised further to understand Nahm

transforms for higher dimensional analogues of ASD connections [24, 25, 88, 100, 109],

but this goes far beyond the scope of this thesis.

The origins of the Nahm transform lie in the ADHM construction of instantons [6],

which considers the case of Γ trivial, and hence Γ∗ ∼= R4. The dual objects (here called

ADHM data) are solutions to ‘anti-self-dual equations’ over the single-point space R4
/R4 ,

that is, a set of solutions to purely algebraic equations. This construction was adapted and

generalised by Nahm (hence the term ‘Nahm transform’), with particular emphasis on

the construction of monopoles (Γ ∼= R, Γ∗ ∼= R3) [86], and there is a full description for

monopoles for all7 classical gauge groups [64]. For general ASD connections, that is for

general gauge groups and base manifold, even the existence of a Nahm transform is not

completely understood, and still an interesting open problem.

7Assuming maximal symmetry breaking.
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2.4.1 Nahm data for calorons

The Nahm transform that we are interested in is that for SU(N) calorons. This was

rigorously defined and analysed by Nye [97], together with Singer [98], but has only been

proven to be a bijection in the case N = 2 by Charbonneau and Hurtubise [21]. We

will focus on the special case where all the magnetic charges are 0, that is, the Nahm

transform for (k, . . . , k)-calorons. The other general cases are similar, but with some

added complexity which is not necessary for the purposes of this thesis.

Calorons are anti-self-dual connections onM = R4
/

2π
µ0

Z , and their Nahm data are “anti-

self-dual connections” on the dual space M∗ = R4 /
µ0Z× R3 ∼= S1. By this we mean

anti-self-dual connections on (R4)∗, which are Γ∗ ∼= µ0Z × R3-invariant. Giving (R4)∗

coordinates {s, q1, q2, q3}, we may define a Γ∗-invariant, U(k)-connection on (R4)∗ via

the 1-form

A(s) = T 0(s)ds+
3∑
j=1

T j(s)dqj, (2.30)

where T λ : R
/
µ0Z :−→ u(k) are smooth functions for λ = 0, 1, 2, 3. The condition of

anti-self-duality of (2.30) is equivalent to the functions T λ satisfying

dT j

ds
+ [T 0, T j] +

1

2

3∑
k,l=1

εjkl[T
k, T l] = 0, (2.31)

for j = 1, 2, 3, where εjkl is the Levi-Civita symbol, and ε123 = 1. These three equations

are known as Nahm’s equations, and are the underlying equations which govern the

space of Nahm data. As should be evident by now, since the dual space we are dealing

with is 1-dimensional, determining the Nahm data requires finding the solution to a system

of ODEs. This is in many ways the reason why this transform is so useful – it has reduced

the problem of solving PDEs into solving ODEs.

In order for this Nahm data to correspond to SU(N) calorons, we need a way to extract all

of the boundary data, including the masses ν1, . . . , νN . It turns out that the solution to this
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amounts to covering the circle M∗ by N intervals of lengths νp, namely8 Ip = [µp+1, µp],

for p = 1, . . . , N − 1, and I0 = [µ1, µ0 + µN ], and defining N pieces of Nahm data, one

over each interval, with boundary conditions at the end-points. We formalise this in the

following definition.

Definition 2.4.1 Let T λp (s) : Ip −→ u(k) be smooth functions, and (up, wp) ∈ (Ck ×

Ck)\{(0, 0)}, for p ∈ {0, . . . , N − 1} and λ ∈ {0, 1, 2, 3}. Define the matrix-valued

functions

Ap(s)(ζ) = T 2
p (s) + ıT 3

p (s) + 2ıT 1
p (s)ζ + (T 2

p (s)− ıT 3
p (s))ζ2, s ∈ Ip, ζ ∈ C,

for p = 0, . . . , N − 1. A set of k-Nahm data is given by a collection

(T 0
p , T

1
p , T

2
p , T

3
p , (up, wp))p=0,...,N−1

with the following conditions:

1. For each p = 0, . . . , N − 1, T λp satisfy Nahm’s equations

d

ds
T jp + [T 0

p , T
j
p ] +

1

2

3∑
k,l=1

εjkl[T
k
p , T

l
p] = 0, (2.32)

for j ∈ {1, 2, 3}.

2. The matricesAp(s)(ζ) have well-defined limits at the endpoints ∂Ip in a local gauge

where T 0
p = 0. Then the column vectors (up, wp) and the matrices Ap(s)(ζ) satisfy

the matching conditions

A0(µ0 + µN)(ζ)− AN−1(µN)(ζ) = (u0 − w0ζ)(w†0 + u†0ζ),

Ap(µp)(ζ)− Ap−1(µp)(ζ) = (up − wpζ)(w†p + u†pζ),
(2.33)

for all p = 1, . . . , N − 1 and ζ ∈ C.
8It is worth noting that our convention here is slightly different, but equivalent, to Nye’s. Nye’s

convention is to replace I0 by IN = [µ1 − µ0, µN ]. This is a simply change of coordinates of the circle

R
/
µ0Z .



Chapter 2. Calorons 41

Remark 2.4.2 We may think of the matrices T jp , j = 1, 2, 3, as endomorphisms of a

rank k hermitian vector bundle Kp over Ip with gluing conditions given by the matching

equations (2.33) above to make a hermitian bundle K over the circle M∗. The matrices

T 0
p may be thought of as connection one-forms on Kp. This understanding will be useful

later.

Definition 2.4.3 A collection of k-Nahm data is called irreducible if there are no parallel

sections of Kp invariant under the matrices T jp for each p = 0, . . . , N − 1, j = 1, 2, 3.

The notion of irreducibility turns out to be crucial regarding the existence and invertibility

of the Nahm transform [21]. We describe the total irreducible k-Nahm-data configuration

space T (k, ~ν) as the set of tuples containing all Nahm matrices T λp for all intervals, along

with the corresponding matching vectors (up, wp). For notational brevity, we will often

write the elements of T (k, ~ν) as (T λp , (up, wp)), with the understanding that the tuple is

ordered with p running over 0, . . . , N − 1, and λ running over 0, . . . , 3. If we wish to talk

about the Nahm matrices for λ = 1, 2, 3, we will usually use the Latin index j.

2.4.2 Constructing calorons from Nahm data

We shall now briefly describe the Nahm transform for calorons, that is, the method

of obtaining the corresponding (k, . . . , k)-caloron from a set of k-Nahm data. For

further details, see [97]. In practice, performing the Nahm transform requires solving

an additional ODE, and one is usually able to, at least implicitly, derive the caloron via

the Nahm transform with quite a lot of accuracy. In the case k = 1, this has been done

explicitly [70, 73, 75]. For higher charge cases, besides one special example [69], the

success has so far been only with numerical methods. For calorons, this has been done

only for very special cases [85, 91], but many examples have been considered in the

case of monopoles [115]. Recent work by Braden and Enolski [15] has shed light on
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how to construct monopoles explicitly from their corresponding Nahm data, yet it is still

unknown whether these results apply to calorons.

Let

V = C∞(S1,Ck)⊗ C2 ∼= C∞(S1,Ck ⊗ C2),

W = V ⊕ CN .

Given a set of k-Nahm data (T λp , (up, wp)), define

T λ(s) = T λp (s), s ∈ Ip, (2.34)

vp =
1√
2

wp − up
wp + up

 ∈ Ck ⊗ C2, (2.35)

for p = 0, . . . , N − 1. Let (t, ~x) ∈ S1 × R3, where here S1 = R
/

2π
µ0

Z , and denote

T = T 0 ⊗ 12 − ı
3∑
j=1

T j ⊗ σj, and x = −ıt1k ⊗ 12 −
3∑
j=1

xj1k ⊗ σj,

where σj are the Pauli matrices. The Nahm operator /D(t,~x) :W −→ V is defined as

/D(ψ, ~ζ) := −
(
d

ds
+ T + x

)
ψ + ζ0v0δ(s− µ0 − µN) +

N−1∑
p=1

ζpvpδ(s− µp), (2.36)

where ~ζ = (ζ0, . . . , ζN−1) ∈ CN , and δ(·) is the Dirac-delta. W has a natural L2 inner

product given by

〈(ψ, ~ζ), (ψ′, ~ζ ′)〉W =
N−1∑
p=0

ζpζ
′
p +

∫ µ0+µN

µN

ψ(s)†ψ′(s) ds, (2.37)

and one may show that the space Ker( /D) ⊂ W is of (complex) rank N . The vector

bundle V −→ S1×R3 is formed in such a way that the fibre over (t, ~x) is the vector space

Ker( /D(t,~x)). One may find an L2-orthonormal basis {(ψq, ~ζq)}Nq=1 ⊂ Ker( /D), where the

basis elements are functions of both s ∈ [µN , µ0 + µN ] and (t, ~x) ∈ S1 × R3. This set of
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solutions are used to construct the caloron as follows: identifying t with x0, the caloron

is given by the matrix of 1-forms

Aij =
3∑

λ=0

〈
(ψi, ~ζ i), (∂λψ

j, ∂λ~ζ
j)
〉
W
dxλ. (2.38)

In practice, finding the kernel of the Nahm operator amounts to solving a set of N

differential equations, one on each interval Ip, to obtain functions ψp, which describe

ψ on each Ip. One then finds the vector components ζp by solving matching conditions at

each point µp, namely

ψp−1(µp)− ψp(µp) = ζpvp,

ψN−1(µN)− ψ0(µ0 + µN) = ζ0v0.
(2.39)

2.4.3 The moduli space of caloron Nahm data

There are gauge transformations which act on Nahm data given by the elements of the

gauge group

G(k, ~ν) =

g ∈∏
p

Maps (Ip, U(k)) :
gp(µp) = gp−1(µp)

g0(µ0 + µN) = gN−1(µN)

 (2.40)

∼= Maps
(
S1, U(k)

)
,

which, for g = (g1, . . . , gN) ∈ G(k, ~ν), acts on T (k, ~ν) via g · (T λp , (up, wp)) =(
g · T λp , g · (up, wp)

)
, where

(
g · T jp

)
(s) = gp(s)T

j
p (s)gp(s)

−1, j ∈ {1, 2, 3},(
g · T 0

p

)
(s) = gp(s)T

0
p (s)gp(s)

−1 − dgp
ds

(s)gp(s)
−1,

g · (up, wp) = gp(µp)(up, wp), p = 0, . . . , N − 1,

g · (uN , wN) = gN(µ0 + µN)(uN , wN).

The moduli space of k-Nahm data is given by NN(k, ~ν) = T (k, ~ν)
/
G(k, ~ν) .
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In general, one may define Nahm data for ~m-calorons, where ~m is principal9, in an

analogous way by forming Nahm matrices of rank mp on Ip. The key difference is

that of the boundary conditions on the boundaries of two intervals with differing rank.

For these we refer the reader to Nye’s thesis [97]. From this more generic data, one

may analogously form gauge groups and hence moduli spaces NN(~m, ~ν), and we have

described the spacial case of ~m = (k, . . . , k). The main result regarding relationships

between Nahm data and calorons is the following, due to Nye and Singer (2000) [98],

Nye (2001) [97], and Charbonneau and Hurtubise (2007) [21]:

Theorem 2.4.4 There exist well-defined maps NN(~m, ~ν) −→ CN(~m, ~ν) and

CN(~m, ~ν) −→ NN(~m, ~ν). Moreover, in the case that N = 2, these maps are mutually

inverse, hence

N 2(m1,m2, ν1, ν2) ∼= C2(m1,m2, ν1, ν2).

The mappings referred to in Theorem 2.4.4 are the Nahm transform and inverse Nahm

transform respectively. It is still unknown whether the proof in the case N = 2 [21] may

be extended to the general case. Nevertheless, this theorem tells us that the structure of the

caloron moduli spaces may be studied by considering the moduli spaces of Nahm data,

and one obtains a complete understanding in the case that N = 2.

With this in mind, we shall now prove some useful properties ofNN(k, ~ν) to be used later

on.

Lemma 2.4.5 Every (T λp , (up, wp)) ∈ Tk is gauge equivalent to one such that T 0
p is some

constant Θ ∈ u(k) for all p = 0, . . . , N − 1.

Proof

Define a function T 0 :
⋃
p Ip = [µN , µ0 +µN ] −→ u(k) by setting T 0 = T 0

p on Ip. By the

9See definition 2.3.3.



Chapter 2. Calorons 45

standard existence results in ODE theory, for all s′ ∈ [µN , µ0 + µN ] there exists δs′ > 0,

such that there exists gs′ : [µN , µ0 + µN ] ∩ (s′ − δs′ , s′ + δs′) −→ U(k) solving

gs′(s)T
0(s)gs′(s)

−1 − dgs′

ds
(s)gs′(s)

−1 = 0,

with the initial condition gs′(s′) = 1. Now, the set

{[µN , µ0 + µN ] ∩ (s′ − δs′ , s′ + δs′) : s′ ∈ [µN , µ0 + µN ]}

is an open cover of [µN , µ0 + µN ], and since [µN , µ0 + µN ] is compact, there exists a

finite subcover, determined by a finite set {s1, . . . , sr} ∈ [µN , µ0 + µN ]. Therefore, we

may form a global gauge transformation g : [µN , µ0 + µN ] −→ U(k) from the functions

gs1 , . . . , gsr which solves g · T 0 = 0.

Importantly, we cannot guarantee that this g is periodic, so it is not necessarily in G(k, ~ν).

To obtain such a transformation, consider the map h : R −→ U(k) defined by

h(s) = exp (−Θs) ,

where Θ ∈ u(k) is a constant such that h(µ0) = g(µN)g(µ0 +µN)−1. Then hg ∈ G(k, ~ν),

and satisfies hg · T 0 = Θ. Since T 0 is gauge-equivalent to a constant, it follows that T 0
p is

also for all p = 0, . . . , N − 1. 2

Proposition 2.4.6 The following equivalence relation holds in NN(k, ~ν):(
T 0
p , T

j
p , (up, wp)

)
∼
(
T 0
p + ı

2nπ

µ0

1, T jp , e
ı
(
ϕ−µ̂p 2nπ

µ0

)
(up, wp)

)
, (2.41)

for all n ∈ Z, ϕ ∈ R, where µ̂p = µp for p = 1, . . . , N − 1, and µ̂p = µN for p = 0.

Proof

This is evident by performing a U(1) gauge transformation, namely

gp = exp

(
ıϕ− ı2nπ

µ0

s

)
1.

2
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The unframed moduli space

Like with calorons, there is a natural action of TN−1 on the moduli spaceNN(k, ~ν). This

is given by the action of a phase vector ~ϕ = (ϕ1, . . . , ϕN), where ϕ1 + · · · + ϕN =

0 (mod 2π), via

(T λp , (up, wp)) 7→


(
T λ0 , e

ıϕN (u0, w0)
)
, p = 0,(

T λp , e
ıϕp(up, wp)

)
, p = 1, . . . , N − 1.

(2.42)

The orbit space in NN(k, ~ν) under the action (2.42) is called the moduli space of

unframed Nahm data, which we denote byNN
u (k, ~ν). This is the analogue in the Nahm

data universe to the unframed space CNu (k, ~ν).

The rotation map

Like with the action of TN−1, there is similarly an analogue of the rotation map on caloron

Nahm data. Recall that the rotation map affects the boundary data via (2.28) and (2.29).

This translates to the intervals Ip as

Ip 7→ (µp+2 + µ0/N, µp+1 + µ0/N),

IN−1 7→ (µ1 + (1−N)µ0/N, µN + µ0/N).
(2.43)

This change in the intervals means that there needs to be a corresponding map which

affects the data (T λp , (up, wp)). This map is given by

T λp (s) 7→

 T λp+1(s− µ0/N), p = 0, . . . , N − 2,

T λ0 (s+ (N − 1)µ0/N), p = N − 1,

(up, wp) 7→ (up+1, wp+1),

(uN−1, wN−1) 7→ (u0, w0).

It is straightforward to check that these transformed data belong to N (k, ~ν ′), where ~ν ′

represents the transformed masses ν ′p = νp+1, and are compatible with the change of

intervals (2.43).
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Remark 2.4.7 Note that for the Nahm data we have described, that is where kq = 0,

q = 1, . . . , N , the rank of the data on Ip will not have changed under the rotation map.

In the general space NN(~m, ~ν), the rotation map will also have an effect on the rank of

the data on Ip, namely changing from mp to mp+1.

Phases and the rotation map within the Nahm transform

The existence of the Nahm transform NN(~m, ~ν) −→ CN(~m, ~ν), as in Theorem 2.4.4 has

only been proven in the case that the boundary data is principal (see definition 2.3.3). As

pointed out by Nye [97], the rotation map allows for the construction of calorons via the

Nahm transform, even with non-principal boundary data. Indeed, suppose you have a set

of Nahm data with boundary data which is not necessarily principal. Then you may apply

the rotation map ρN as many times as necessary until its boundary data is principal, from

which, the Nahm transform may be implemented, and then the caloron rotated back by

using ρC until the boundary data agrees with that of the original Nahm data. This is of

course true if the diagram

NN(~m, ~ν)

Nahm transform
��

ρN // NN (ρ(~m, ~ν))

Nahm transform
��

CN(~m, ~ν)
ρC // CN (ρ(~m, ~ν))

commutes. This follows from the fact that Ker( /D) is unaffected by the action of ρN ,10

and so the constructed calorons at the bottom of the diagram must be related by a large

gauge transformation, which is easily seen to be ρC .

In a similar fashion, we conjecture that quotienting by the actions of TN−1 on Nahm

data (2.42), and on calorons, as described in section 2.3.1, also commutes with the Nahm

10Strictly speaking we have only described this for the case kq = 0, q = 1, . . . , N , but the general case

also holds (see [97]).
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transform, i.e. the diagram

NN(k, ~ν)

Nahm transform
��

/TN−1

// NN
u (k, ~ν)

Nahm transform
��

CN(k, ~ν)
/TN−1

// CNu (k, ~ν)

commutes. The missing ingredient for this lies in how the Nahm transform defines the

framing (2.1). This is explained in Nye’s thesis [97], but we do not fully understand this

part of the construction.

2.4.4 Spectral curves and integrability

Recall the matrix-valued functions Ap(s)(ζ) which appear in the definition of caloron

Nahm data 2.4.1, given by

Ap(s)(ζ) = T 2
p (s) + ıT 3

p (s) + 2ıT 1
p (s)ζ + (T 2

p (s)− ıT 3
p (s))ζ2, (2.44)

for ζ ∈ C, and s ∈ Ip. Introducing the additional linear combination of Nahm matrices

A?p(s)(ζ) = T 0
p (s) + ıT 1

p (s) + (T 2
p (s)− ıT 3

p (s)) ζ, (2.45)

it is straightforward to show that Nahm’s equations (2.32) are equivalent to the equation

dAp
ds

= [Ap, A
?
p] ∀ ζ ∈ C. (2.46)

In other words, the Nahm equations may be written as a Lax pair, given by the

combinations A and A?, which qualifies them to the status of an ‘integrable system’.

An important consequence of this is that the quantities kn = tr ((Ap)
n) are not only gauge

invariant, but are constant for each n ∈ N. This is since

dkn
ds

= ntr

(
An−1
p

dAp
ds

)
= ntr

(
An−1
p [Ap, A

?
p]
)

= ntr
(
[Anp , A

?
p]
)

= 0
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by the cyclicity of the trace. Since the trace is the sum of the eigenvalues, this implies

that any symmetric polynomial in the eigenvalues η of Tp must be gauge invariant and

constant as well, which in particular means that the characteristic polynomial for −Ap(ζ)

χζ(η) = det (η1k + Ap(ζ))

must be gauge invariant and constant for all η, ζ ∈ C. We can extend this so that (ζ, η)

are coordinates on the tangent bundle of the Riemann sphere TCP 1, which is isomorphic

to Hitchin’s mini twistor space. Then the curves defined by

Cp =
{

(ζ, η) ∈ TCP 1 | det(η1k + Ap(ζ)) = 0
}
⊂ TCP 1 (2.47)

are known as the spectral curves for the charge (k, . . . , k) Nahm data, and there is one

curve for each interval Ip.

2.4.5 Examples

The first example we shall present is both the simplest, and most famous – the construction

of charge (1, 1) SU(2) calorons with non-trivial holonomy. This case was first understood

independently by Kraan and Van Baal [73], and Lee and Lu [75], within the Sp(1)

formulation, which is equivalent since Sp(1) ∼= SU(2). Here we shall present it using the

notation that we have developed so far, that is, in the SU(2) formulation.

We require functions Tα1 : [−µ, µ] −→ ıR, and Tα0 : [µ, µ0 − µ] −→ ıR, satisfying the

simple differential equation

dT jp
ds

= 0, j = 1, 2, 3, p = 0, 1.

Fixing a gauge such that the T 0
p are constant and equal (by Lemma 2.4.5), this has general

solution

Tp =

(
ı
θ

µ0

, ıxp, ıyp, ızp

)
θ, xp, yp, zp ∈ R. (2.48)
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It is worth remarking that (2.48) is the generic form of k = 1 Nahm matrices for any

rank N caloron. To completely describe the (1, 1)-Nahm data, we also need to solve the

matching conditions (2.33). In this case, we may translate these as follows: we require

vectors (up, wp) = (λpe
ıαp , κpe

ıβp), p = 0, 1, such that

x0 − x1 =
1

2
(λ2

1 − κ2
1) =

1

2
(κ2

0 − λ2
0),

y0 − y1 = λ1κ1 sin(β1 − α1) = λ0κ0 sin(α0 − β0),

z0 − z1 = λ1κ1 cos(α1 − β1) = −λ0κ0 cos(α0 − β0).

We may use the remaining gauge freedom from Proposition 2.4.6 in light of these

equations to fix α0 = −α1. Then, a straightforward calculation and relabelling of

parameters shows that

T 0
1 = ı

θ

µ0

, T 0
0 = ı

θ

µ0

T 1
1 = ıx, T 1

0 = ı

(
x+

1

2
(λ2

1 − λ2
0)

)
,

T 2
1 = ıy, T 2

0 = ı (y + λ1λ0 sin(β)) ,

T 3
1 = ız, T 3

0 = ı (z + λ1λ0 cos(β)) ,

u1 = λ1e
ıα, w1 = λ0e

ı(β+α),

u0 = λ0e
−ıα, w0 = −λ1e

ı(β−α),

(2.49)

is a generic representative for all points in the moduli space of (1, 1)-Nahm data, and

hence C2(1, 1, ν1, ν2) by Theorem 2.4.4.

In light of Theorem 2.4.4, we may exploit the data (2.49) to analyse the moduli space

C2(1, 1, ν1, ν2). Firstly, we observe that there are 8 real parameters. The parameters

(x, y, z) ∈ R3 are interpreted as the location in R3 of one constituent monopole. The

parameters β ∈ R /2πZ , and (λ1, λ2) ∈ R2
+ \ {(0, 0)} are separation parameters for the

constituent monopoles. The parameter α ∈ R /2πZ contributes an overall phase, and

according to Proposition 2.4.6, the parameter θ is only periodic when µ ≡ µ1 is a rational

multiple of µ0.
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Understanding the Nahm data for charge k > 1 is significantly harder than that of k = 1,

due to the increased complexity of solving the Nahm equations (2.32). For k = 2,

Bruckmann, Nógrádi, and van Baal [18] showed that the most general set of Nahm

matrices may be written in the form11

T jp (s) = ζp(s)hp

(
ıαjp12 + ı

3∑
a=1

Rja
p

Dp

2
fap (Dp(s+ sp))σ

a

)
h†pζp(s)

†, (2.50)

where αjp, Dp, sp ∈ R, hp ∈ U(2), Rp ∈ O(3), and

ζp(s) = exp
(
−T 0

p (s+ sp)
)
,

where we have set T 0
p constant in accordance with Lemma 2.4.5. The 3N functions

f 1
p , f

2
p , f

3
p : Ip −→ R are determined by Nahm’s equations, which here reduce to the

Euler-top equations

df 1
p

ds
= −f 2

p f
3
p ,

df 2
p

ds
= −f 3

p f
1
p ,

df 3
p

ds
= −f 1

p f
2
p . (2.51)

The general solution to these equations is well-known to be given by the Jacobi elliptic

functions

Φ1(s) = − κ′

cn κ(s)
, Φ2(s) =

κ′sn κ(s)

cn κ(s)
, Φ3(s) =

dn κ(s)

cn κ(s)
. (2.52)

Here the parameter κ ∈ [0, 1] is the elliptic modulus, and κ′ =
√

1− κ2. For details see

[1]. Our notation is slightly different, but may be translated simply via κ↔
√
m. We will

also often adopt Glaisher’s notation for quotients, for example sn (s)/cn (s) ≡ sc (s), etc.

The final challenge in fully describing the k = 2 Nahm data is to solve to matching

conditions (2.33) and obtain the matching vectors (up, wp). Many examples have been

found in the case N = 2, initially in [18], where three families of solutions are described.

Two of these are shown to have axial symmetry in [49], and the remaining solutions

11In fact, they described the data locally so as to set T 0 = 0. Here we have described the global data with

T 0
p constant.
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are known as the ‘crossed’ solutions, possessing an order 4 cyclic symmetry, which we

discuss further in section 3.6.3. A particularly detailed analysis of the N = k = 2 Nahm

data was done by Nakamula and Sakaguchi in [89], in the case where the trace-less part

of T 0
p is 0. Recently, in [30], we found an example which has T 0

p with explicitly non-zero

trace-less part. This was found by exploiting cyclic symmetries and the rotation map, and

we describe this solution in detail in section 3.6.3. In general, it is not possible to write all

of the solutions to the matching conditions in one closed form, as was the case for k = 1,

and as far as we can tell, nobody has ever considered matching these data for N > 2.

The case k > 2 is even less well-understood, with only a few scattered examples of

explicit Nahm data known [19, 90, 122]. On top of this, no explicit implementations of

the Nahm transform have been applied to Nahm data for k > 1.12 The only case where

the Nahm transform has been invoked is an example which uses numerical methods to

generate approximate caloron configurations, in the case of cyclically symmetric k = 3

data [91].

2.5 Nahm complexes and the monad construction

The Nahm transform associates calorons – solutions to a system of PDEs – with

Nahm data – solutions to a system of ODEs, thus making the construction of calorons

more accessible. To further classify calorons, it is possible to consider a Kobayashi-

Hitchin correspondence, by sacrificing some structure and extracting a holomorphic

piece. Charbonneau and Hurtubise [22] have shown that SU(2)-calorons may be thought

of, under this correspondence, as holomorphic bundles over CP 1 × CP 1, via a monad

construction, defined by a tuple of matrices subject to a set of algebraic equations, and

12There is one further example, in addition to that of [73], of an explicit construction using the Nahm

transform to be found in [69], but this is in the case of charge (2, 1), so not applicable to what we have

described.
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some additional constraints. This matrix data may be extracted from solutions to a

holomorphic version of the Nahm data known as a Nahm complex. The relationship

between monads and instantons first appeared in the work of Donaldson [32], has more

recently been established for more generalised instantons [26], and there are several other

instanton and caloron related algebro-geometric ideas which stem from the same lines of

thought [88, 118].

In this section, we shall describe these Nahm complexes, and matrix data, along with

some basic properties, generalised to the case of charge (k, . . . , k) SU(N)-calorons.

2.5.1 Nahm data and Nahm complexes

Writing

αp(s) = T 0
p (s) + ıT 1

p (s), and βp(s) = T 2
p (s) + ıT 3

p (s) (2.53)

for p = 0, . . . , N − 1, Nahm’s equations are equivalent to the complex and real equations

dβp
ds

(s) + [αp(s), βp(s)] = 0, (2.54)

d

ds

(
αp(s) + αp(s)

†)+ [αp(s), αp(s)
†] + [βp(s), βp(s)

†] = 0. (2.55)

Equation (2.54) is invariant under the action of gp : Ip −→ GL(k,C), where

αp(s) 7→ gp(s)αp(s)gp(s)
−1 − dgp

ds
gp(s)

−1, (2.56)

βp(s) 7→ gp(s)βp(s)gp(s)
−1, (2.57)

however, (2.55) is not so fortunate to possess this symmetry, and is only invariant under

unitary transformations, as with Nahm data.

Definition 2.5.1 Let πp : Kp −→ Ip be a complex vector bundle of rank k over the

interval Ip, equipped with a smooth connection αp and a parallel section βp of End(Kp),
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that is

dβp
ds

(s) + [αp(s), βp(s)] = 0 ∀ s ∈ Ip. (2.58)

Let up ∈ π−1
p (µp), w†p ∈

(
π−1
p (µp)

)∗, u0 ∈ π−1
0 (µ0 + µN), and w†0 ∈

(
π−1

0 (µ0 + µN)
)∗.

Then a tuple (αp, βp, (up, wp))p=0,...,N−1 is called a k-Nahm complex on the circle R
/
µ0Z

if there exist isomorphisms

i0 : π−1
0 (µ0 + µN) −→ π−1

N−1(µN),

ip : π−1
p (µp) −→ π−1

p−1(µp), p = 1, . . . , N − 1,

such that the maps

β0(µ0 + µN)− i−1
0 βN−1(µN)i0,

βp(µp)− i−1
p βp−1(µp)ip

(2.59)

are rank one, and coincide with the products upw†p. A Nahm complex is called reducible

if there exist parallel subbundles Vp ⊂ Kp with respect to αp, which are invariant under

βp, mapping to each other via the isomorphisms ip at the boundaries, and proper on at

least one of the intervals Ip. Otherwise, the complex is called irreducible.

The gauge group for a Nahm complex is the set of complex gauge transformations

Maps(S1, GL(k,C)) in analogy to (2.40). These act on the data (α, β, (u,w)) in the

natural way, and on the isomorphisms as

i0 7→ gN−1(µN)i0g0(µ0 + µN)−1,

ip 7→ gp−1(µp)ipgp(µp)
−1, p = 1, . . . , N − 1.

Remark 2.5.2 We note that the points (up, w
†
p) in Kp × K∗p are represented by vectors

(up, wp) ∈ (Ck × Ck) \ {(0, 0)}. There is a TN−1 action on these vectors (up, wp) for a

Nahm complex, given analogously by (2.42), and this determines a ‘framed’ moduli space

as a TN−1 bundle over an ‘unframed’ moduli space.
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Fixing a gauge such that ip = 1, and using (2.53), shows that every set of k-Nahm

data gives rise to a k-Nahm complex. It turns out, as shown by Donaldson [33] in

the context of SU(2) monopoles, that the orbits of solutions to (2.54) under the action

of GL(k,C) contain a unique solution to both (2.54) and (2.55), and hence one only

need consider (2.54) modulo the action of Maps(S1, GL(k,C)) to give all solutions to

Nahm’s equations. The only caveat is that the boundary conditions are different to those

considered by Donaldson. Luckily, the boundary conditions that we are interested in,

namely (2.33) and (2.59), appear analogously in the boundary conditions for SU(N)

monopoles, and this statement regarding the solutions of the real equation (2.55) has

been established for SU(N) monopoles [63, 64]. The irreducibility of a Nahm complex

is clearly equivalent to the irreducibility of Nahm data. Hence the moduli space

of irreducible k-Nahm complexes on the circle is equivalent to the moduli space of

irreducible k-Nahm data for calorons.

2.5.2 Monad matrices

Definition 2.5.3 Let A,B ∈ Matk×k(C), C ∈ Matk×N(C) and D ∈ MatN×k(C). Then

the matrices (A,B,C,D) are called monad matrices if they satisfy

1. The monad equation:

[A,B] + CD = 0. (2.60)

2. The full-rank conditions: the linear maps defined by
A− y1k

B − x1k

D

 , and
(
x1k −B A− y1k C

)
, (2.61)

are injective and surjective respectively for all x, y ∈ C.
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We denote the set of all monad matrices by M̃d
N

k .

For the purposes of brevity, unless explicitly clear in context, we will always denote by

Cp and Dp the p-th column of C and the p-th row of D respectively, for p = 0, . . . , N −1,

that is

C =
(
C0 C1 · · · CN−1

)
, D =


D0

D1

...

DN−1

 . (2.62)

The gauge group GL(k,C) acts on monad matrices via

g · (A,B,C,D) = (gAg−1, gBg−1, gC,Dg−1), (2.63)

and the moduli space M̃N
k := M̃d

N

k

/
GL(k,C) is known as the moduli space of monad

matrices.

Remark 2.5.4 Like the Lax pair decomposition of Nahm’s equation (2.46), and hence the

interest from the integrable systems perspective, the monad equation (2.60) also appears

in the literature of integrable systems in the context of the Calogero Moser systems [125].

Definition 2.5.5 A set of monad matrices (A,B,C,D) such that A ∈ GL(k,C) is called

non-singular. We denote the set and moduli space of all non-singular monad matrices by

MdNk andMN
k := MdNk

/
GL(k,C) respectively.

The relationship between (k, . . . , k)-calorons and monad matrices is given by the

following theorem, a generalisation of a theorem of Charbonneau and Hurtubise [22]:

Theorem 2.5.6 The following are holomorphically equivalent:

1. The moduli space NN(k, ~ν) of irreducible, caloron Nahm data;
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2. The moduli spaceMN
k of non-singular monad matrices.

Proof

Let NN
C (k, ~ν) denote the moduli space of Nahm complexes on the circle. By the

discussion in section 2.5.1, we know that NN
C (k, ~ν) ∼= NN(k, ~ν) holomorphically, so

it remains to show that there exists a bijection

ξ : NN
C (k, ~ν) −→MN

k .

Given a Nahm complex (α, β, u, w) on the circle, in a gauge where ip = 1 for all p, we

may obtain a set of non-singular monad matrices in the following way. Consider any point

χ ∈ IN−1, and the connection on [χ, µ0 + χ] given by

α̃(s) =


αN−1(s), s ∈ [χ, µN−1],

αp(s), s ∈ Ip, p 6= N − 1,

αN−1(µ0 − s), s ∈ [µ0 + µN , µ0 + χ].

(2.64)

Extending α̃ periodically gives a connection on the circle R
/
µ0Z . Let Ω(s, s0) denote

the parallel transport from s0 to s along α̃. Then we set13

A = Ω(µ0 + χ, χ)−1, B = βN−1(χ),

C0 = Ω(µ0 + µN , χ)−1u0, Cp = Ω(µp, χ)−1up,

D0 = w†0Ω(µ0 + χ, µ0 + µN)−1, Dp = w†pΩ(µ0 + χ, µp)
−1,

(2.65)

for p = 1, . . . , N − 1. The gauge transformations acting on these matrices via (2.63) as

constructed are given by g = gN−1(χ), where gN−1 is the IN−1 component of a gauge

transformationG ∈ Maps(S1, GL(k,C)). We need to check two things: that the complex

Nahm equation (2.58) and matching conditions (2.59) imply the monad equation (2.60),

and that the irreducibility of the Nahm complex implies the full-rank conditions (2.61),

and hence (2.65) defines a mapping ξ : NN
C (k, ~ν) −→MN

k .
13That is, A is the inverse holonomy from χ to µ0 + χ, Cp is the parallel transport of up to µ0 + χ and

Dp is the parallel transport of w†p from χ. This choice is in order for isomorphism to be equivalent to that

described in [22] in the context of SU(2) calorons.
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First note that the complex Nahm equations (2.58) tell us

βp(s) = Ω(s, µp+1)βp(µp+1)Ω(s, µp+1)−1, ∀s ∈ Ip, p = 0, . . . , N − 2,

βN−1(s) = Ω(s, χ)βN−1(χ)Ω(s, χ)−1, s ∈ IN−1.

Comparing the two forms of β0(µ0 +µN), from above, and from the matching conditions,

and iterating through the matching points µp, we obtain

Ω(µ0 + µN , χ)βN−1(χ)Ω(µ0 + µN , χ)−1 − Ω(µ0 + χ, µ0 + µN)−1βN−1(χ)Ω(µ0 + χ, µ0 + µN)

− u0w
†
0 −

N−1∑
p=1

Ω(µ0 + µN , µp)upw
†
pΩ(µ0 + µN , µp)

−1 = 0.

Using the constructed data (2.65), this becomes

Ω(µ0 + µN , χ)BΩ(µ0 + µN , χ)−1 − Ω(µ0 + χ, µ0 + µN)−1BΩ(µ0 + χ, µ0 + µN)

− Ω(µ0 + µN , χ)CDΩ(µ0 + χ, µ0 + µN) = 0.

Unconjugating the CD term, and using Ω(µ0 + χ, χ) = A−1, we obtain

[A,B] + CD = 0,

which is the monad equation. To check that the irreducibility of the Nahm complex

implies the full-rank conditions for the data (2.65), there are two cases to consider:

1. Suppose there exists a 1-dimensional subspace L ⊂ Ck such that

L ⊂ Ker


A− y1k

B − x1k

D

 ,

for some x, y ∈ C.

2. Suppose there exists x, y ∈ C such that

Im
(
x1k −B A− y1k C

)
⊂ V,

for some proper co-dimension 1 subspace V ⊂ Ck.
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It is relatively straightforward to see that case 1 corresponds to the existence of a sub-line

bundle of Kp, for all p, which is both parallel, and invariant under βp. Similarly, case 2

corresponds to the existence of a co-rank 1 parallel subbundle of Kp for all p, which is

invariant under βp.

Next we construct a mapping ψ :MN
k −→ NN

C (k, ~ν). To do this, first note that by using

gauge transformations gp such that

dg0

ds
= g0α0 +

dγ

ds
γ−1g0,

dgp
ds

= gpαp, p = 1, . . . , N − 1,

where γ : I0 −→ GL(k,C) is a path such that γ(µ1) = 1, and γ(µ0+µN) = A−1, we may

always transform a Nahm complex to a configuration such that αp = 0, βp = Bp, for all

p = 1, . . . , N − 1, α0 = −dγ/dsγ−1, and β0 = γB0γ
−1, where Bp are constant matrices.

Then, given a set of monad matrices (A,B,C,D), we may describe ψ(A,B,C,D) by

setting α as above,((
u0, w

†
0

)
,
(
up, w

†
p

))
=
((
A−1C0, D0

)
,
(
Cp, DpA

−1
))
, (2.66)

for p = 1, . . . , N − 1, and

Bp = B −
N−1∑
q=p+1

CqDqA
−1, p = 0, . . . , N − 1. (2.67)

This may be easily shown to be a Nahm complex in the given gauge, furthermore, a

gauge transformation (2.63) of the monad matrices corresponds to a constant gauge

transformation of the Nahm complex. Finally, is a straightforward exercise to show that

ξ ◦ ψ = 1MN
k

and ψ ◦ ξ = 1NNC (k,~ν), hence ψ = ξ−1. 2

Remark 2.5.7 The isomorphism demonstrated between Nahm complexes and monad

matrices (and hence between Nahm data and monad matrices) is not unique. For example,

varying the choice of interval Ip where the base point χ belongs will give different

isomorphisms. This variation corresponds to the action of the rotation map on the space

of monad matrices.
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Combined with Theorem 2.4.4, Theorem 2.5.6 has some important consequences for

calorons. Indeed, in the case N = 2, since the Nahm transform is a bijection, it follows

thatM2
k fully parameterises the space C2(k, ~ν), so the moduli space of SU(2) calorons

may be understood by studying the moduli space of non-singular monad matrices. This

is the result of Charbonneau and Hurtubise [22]. Now, whilst we do not necessarily have

a bijective Nahm transform for SU(N), Theorem 2.5.6 shows existence of a subspace of

CN(k, ~ν) which is at most a complex manifold of dimension 2Nk, but we conjecture that

the monad description is a full parameterisation for all N .

Remark 2.5.8 The full moduli space M̃N
k of monad matrices is well-known to

parameterise the moduli space of charge k instantons on S4 [32], and hence, Theorems

2.4.4 and 2.5.6 for N = 2 provide an embedding of SU(2)-caloron moduli into the space

of SU(2)-instantons. In this way, calorons with all magnetic charges 0 are the most

‘instanton-like’ calorons.

2.5.3 Basic properties of monad matrices

We shall conclude this chapter by covering some basic properties of monad matrices

which will be utilised later on. Many of these results were first described in [43] with

regards to the N = 2 monad matrices. We have reformulated them for our own purposes

and generalised for all N .14

Let I denote the set of all words Π(x1, x2) in two variables x1 and x2.

Lemma 2.5.9 (A,B,C,D) ∈ M̂dk if and only if [A,B] + CD = 0 and the following

conditions hold:

For all v ∈ Ck \ 0, there exists Π ∈ I such that DΠ(A,B)v 6= 0. (2.68)

14The notation we use for monad matrices may be translated to that in [43] via (A,B,C,D) ↔

(α1, α2, b, a).
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∑
Π∈I

Π(A,B)Im(C) = Ck. (2.69)

Proof

Let (A,B,C,D) satisfy the monad equations (2.60), and the conditions (2.68) and (2.69)

stated in the lemma. Let x, y ∈ C. For all u ∈ Ker(A − y1) ∩ Ker(B − x1) ∩ Ker(D),

we have DΠ(A,B)u = 0 for all Π ∈ I. Thus, by (2.68), u = 0. Furthermore,

Ck =
∑
Π∈I

Π(A,B)Im(C) ⊂ Im(A− y1) + Im(B − x1) + Im(C).

Hence (2.61) holds, so (A,B,C,D) ∈ M̂dk.

Conversely, let (A,B,C,D) ∈ M̂dk. Consider V = Ker(D), and define the subspace

V∞ ⊂ V as

V∞ = {u ∈ V : Π(A,B)u ∈ V, ∀Π ∈ I}.

By the monad equations (2.60), [A,B](V∞) = 0, furthermore, V∞ is both A and B

invariant. So if V∞ 6= 0, there exists a non-zero u ∈ V∞ which is a common eigenvector

of A and B. But this violates the full-rank conditions (2.61), a contradiction. Thus

V∞ = 0. Now, let v ∈ Ck \ {0}. If v /∈ V , then D1v = Dv 6= 0. If v ∈ V ,

since V∞ = 0, this means there must exist some Π ∈ I such that Π(A,B)v /∈ V ,

and hence DΠ(A,B)v 6= 0. So in each case we have shown that (2.68) holds. Let

W =
∑

Π∈I Π(A,B)Im(C). Then A(W ), B(W ), Im(C) ⊂ W , so A and B induce

well-defined maps a, b : Ck
/W −→ Ck

/W , and the monad equations imply that

[a, b]
(

Ck
/W

)
= 0.

If W 6= Ck, this means there is a shared eigenvector of a and b in Ck
/W , which since

Im(C) ⊂ W , contradicts the full-rank conditions (2.61). So W = Ck, i.e. (2.69) holds.2

Corollary 2.5.10 Let (A,B,C,D) ∈ M̂k. Then C,D 6= 0.
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Proof

If C = 0 or D = 0, this violates (2.69) or (2.68) respectively. 2

Lemma 2.5.11 The action of gauge transformations (2.63) is free on M̂dk.

Proof

Let (A,B,C,D) ∈ M̂dk and suppose that g ∈ GL(k,C) is such that

(A,B,C,D) = (gAg−1, gBg−1, gC,Dg−1).

Then for all Π ∈ I, we have Π(A,B) = gΠ(A,B)g−1. Let U = Im(1 − g), and

u = (1− g)v ∈ U . Then for all Π ∈ I, we have

DΠ(A,B)u = D
(
Π(A,B)v − gΠ(A,B)g−1gv

)
= DΠ(A,B)v−Dg−1gΠ(A,B)v = 0.

Hence, by Lemma 2.5.9 condition (2.68), we must have U = 0, i.e. g = 1. 2

2.6 Summary and open problems

This chapter has, for the most part, been a review of SU(N)-calorons. We have carefully

described their classifying data (~m, ~ν), and have emphasised some important properties

of their moduli spaces, including the torus action, the interpretation in terms of constituent

monopoles, and the existence of a large gauge transformation which cyclically permutes

the constituents, namely the rotation map. We have additionally given a brief overview

of the relationships between calorons, instantons, and monopoles. Indeed, calorons

interpolate between instantons at the large period limit (µ0 −→ 0), and monopoles at

the large scale limit (µ0 −→ ∞). Calorons are also explicitly related to monopoles on

R3 via the loop group interpretation, and also in how monopoles are a special case of
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calorons. We have also seen how SU(2) calorons are naturally embedded into the space

of instantons via the monad matrix description.

The key techniques for understanding calorons, which we shall utilise throughout the

next chapter, are the Nahm and monad matrix data for calorons. We have only described

this data in the case where all of the magnetic charges are 0, as this is the only case

for which we will be interested later. In particular, the (k, . . . , k)-caloron Nahm data

has been described in terms of a monad construction, determined by a moduli space of

complex matrices, and this is our generalisation of a result given for SU(2)-calorons by

Charbonneau and Hurtubise in [22]. In fact, they go further, by defining monad matrices

which parameterise C2(~m, ~ν), for all charges ~m, not just ~m = (k, k). We expect that the

same can be done analogously for SU(N)-calorons, but this remains to be considered.

Probably the most important open problem that remains from what we have discussed

so far is the bijectivity of the Nahm transform for all N . If this is true, then a full

monad description of ~m-calorons could be a way to prove that the moduli space really

is a complex manifold of dimension 2
∑

pmp. Another important open problem in this

area is whether the Nahm transform is a hyperkähler isometry, which has been shown to

be true for a variety of cases of instantons and monopoles.
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Chapter 3

Symmetric calorons

3.1 The instanton metric

LetDA be a connection on a vector bundle V −→M , which we shall assume is hermitian

for simplicity. In the moduli space D(M) /G of connections, a natural way to find a

tangent vector to DA is by linearisation, that is, identify tangent vectors with a one-form

a ∈ Λ1(M, u(N)) such that a is orthogonal to the gauge orbits. An infinitesimal gauge

transformation exp(εδg) induces a tangent vector [δg, A] − dδg, which is L2-orthogonal

to a if and only if

0 =

∫
M

tr ([δg, A] ∧ ?a− dδg ∧ ?a)

=

∫
M

tr (δgA ∧ ?a− Aδg ∧ ?a+ δgd ? a)

=

∫
M

tr (δg(A ∧ ?a+ ?a ∧ A+ d ? a)) ,

where in the last two lines we have used integration by parts, the cyclicity of the trace,

and the anti-commutability of the wedge-product on coordinate 1-forms. We thus require

that a satisfies the equation

d ? a+ A ∧ ?a+ ?a ∧ A = 0. (3.1)
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Note that with respect to local coordinates {e0, . . . , e3} of M , we have

DA ? a =
1

6
(∂µ(?a)νρσ + [Aµ, (?a)νρσ]) deµ ∧ deν ∧ deρ ∧ deσ

=
1

6
((∂µ(?a)νρσ + Aµ(?a)νρσ) deµ ∧ deν ∧ deρ ∧ deσ

+(?a)νρσAµde
ν ∧ deρ ∧ deσ ∧ deµ)

= d ? a+ A ∧ ?a+ ?a ∧ A,

so that, locally, (3.1) is equivalent to DA ? a = 0.

Let TA denote the space of all such tangent vectors to the connection DA. A metric

gA for the moduli space of connections is hence given by the L2 metric on TA, i.e. for

a1, a2 ∈ TA,

gA(a1, a2) := −
∫
M

tr (a1 ∧ ?a2) . (3.2)

If DA is anti-self-dual, we also require that the linearisation of the curvature

da+ A ∧ a+ a ∧ A, (3.3)

is an anti-self-dual element of Λ2(M, u(N)). Therefore, the tangent space TA to an

instanton DA is given by all a ∈ Λ1(M, u(N)) satisfying (3.1) and (3.3), with metric

(3.2).

For various examples of instantons, and monopoles, it is possible to show that the

metric (3.2) is hyperkähler [7, 12, 34, 54]. This notion arises by recognising the three

components of the ASD equations as moment maps, which can be used to describe a

hyperkähler quotient. The moduli space of Nahm data is also equipped with a hyperkähler

metric, constructed in an analogous way [25], and the Nahm transform for monopoles has

been shown to be an isometry [87]. In the case of (1, . . . , 1) calorons, the moduli space

and metric have been explicitly constructed [70], and the Nahm transform shown to be a

hyperkähler isometry. It is still only conjectured that that the same holds for all (~m, ~ν)-

calorons, including whether its metric is hyperkähler in general.
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3.2 Isometries

In this section, we shall describe various actions on the moduli spaces CN(~m, ~ν) which

are isometries of the moduli space metric (3.2) for calorons. These can be classified into

three types:

• ‘Euclidean isometries’ induced from isometries of S1 × R3;

• ‘Gauge group isometries’ given by unframed gauge transformations;

• ‘Large gauge transformations’, given by strictly un-periodic gauge transformations

at infinity, which nevertheless leave the caloron periodic.

We shall describe all of these actions on the space of caloron configurations, and they are

all unique up to gauge transformations. Therefore, there is a unique induced action on the

moduli space.

3.2.1 Euclidean isometries

It is straightforward to show that the anti-self-dual equations (1.3) are invariant under

orientation-preserving conformal transformations φ : M −→M , where the effect on DA

is the pull-back A 7→ φ∗A. Since φ∗V is isomorphic to V , this defines an action on the

space of all anti-self-dual connections which is unique up to gauge transformations, and

hence induces an action on the moduli space. When φ is an isometry of M , this action on

the moduli space is clearly an isometry of (3.2).

For calorons,M = S1×R3, and the set of conformal maps is exactly the set of isometries.

The orientation preserving subgroup is given by

Isom(S1 × R3)+
∼= (O(2)× E(3))+, (3.4)
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where O(2) denotes the isometries of S1, E(3) is the euclidean group generated by

rotations, translations, and reflections in R3, and the subscript + denotes orientation

preserving. The notion of ‘orientation preserving’ here is decoded by only including

elements (S,R) ∈ O(2)×O(3) satisfying

detS detR > 0. (3.5)

In order for these transformations to be well-defined on the moduli spaces of calorons, we

also need to check that the framing (2.1) is preserved, that is φ∗(V, f) ∼= (V, f) for all φ ∈

Isom(S1 × R3)+. It is easy to see that for subgroups of SO(2)× SO(3), and translations

of R3, this holds. However, there is one generator of Isom(S1 × R3)+ which affects

the boundary data non-trivially, namely the parity transformation σ ∈ (O(2) × O(3))+

defined by σ(t, ~x) = (−t,−~x). This transforms the asymptotic connection a∞ and Higgs

field Φ∞, seen in (2.4), as

Φ∞(z) 7→ −Φ∞(−z), (a∞)i(z) 7→ −(a∞)i(−z),

where z = (z1, z2) is a coordinate on S2
∞, and i = 1, 2. As a result, the eigenvalues µp,

and magnetic charges kp transform as

µp 7→ −µN−p+1,

kp 7→ −kN−p+1,
(3.6)

for all p = 1, . . . , N , and so as it stands, the parity transformation σ is a map between two

not necessarily equal moduli spaces. The condition for which the moduli spaces are the

same is when the set of all µp and kp is preserved under (3.6). This may be seen as setting

the µp (and kp) for p = 1, . . . , bN
2
c to be strictly positive, and for p = dN

2
e + 1, . . . , N

to be strictly negative, in direct reflectional symmetry to the positive half. In the case

N is odd, this forces µq = kq = 0 for q = dN
2
e. Only in these cases does σ induce a

well-defined isometric action on the corresponding caloron moduli spaces.

The actions of subgroups of the group (3.4) on the appropriate moduli spaces of calorons

are known as the euclidean isometries.
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3.2.2 Unframed gauge transformations

Recall that caloron moduli spaces are defined as the orbits of caloron configurations under

framed gauge transformations, that is g : S1 × R3 −→ SU(N) such that g = 1 on S2
∞.

An unframed gauge transformation is a gauge transformation such that g 6= 1 on S2
∞.

The action of unframed gauge transformations is an isometry of the space of all ASD

connections via (1.9), simply because the metric is gauge invariant. However, this action

does not necessarily extend to the moduli spaces CN(~m, ~ν). This extension exists only

when the gauge transformations at ∞, given by g|S2
∞

, are automorphisms of W∞, that

is, they respect the decomposition (2.2) into line bundles. These correspond to an action

of the maximal torus TN−1 in SU(N), and may be summarised as the set of bundle

automorphisms P (~ϕ) : V −→ V , such that the restriction P (~ϕ)∞ : W∞ −→ W∞ is of

the form

P (~ϕ)∞ = e−ıϕp , on O(kp), p = 1, . . . , N, (3.7)

where ~ϕ = (ϕ1, . . . , ϕN) is a phase vector satisfying ϕ1 + · · · + ϕN = 0 (mod 2π). We

will often refer to this action of TN−1 as a phase action, or phase vector action.

3.2.3 The rotation map

Recall from section 2.3.3 that the rotation map is a correspondence

ρC : CN(m1, . . . ,mN , ν1, . . . , νN) −→ CN(m2, . . . ,mN ,m1, ν2, . . . , νN , ν1).

This correspondence is given explicitly by a ‘large gauge transformation’, namely the

bundle map (2.23). Whilst the associated gauge transformation is not periodic, it still has

a well-defined action on the space of all calorons, given by (2.26). It is straightforward to

see that the rotation map is an isometry between the corresponding moduli spaces as the

metric is gauge-invariant.
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In general, the rotation map corresponds to an overall ZN action on the union of all caloron

moduli spaces, but is not automorphic, and so not an isometry ‘action’ on a specific

moduli space. As was the case with the parity transformation σ, certain conditions on

the boundary data need to be met in order for the rotation map to induce a well-defined

action. From (2.21), we see that in the cases such that mp = mq and νp = νq for all

p, q ∈ {1, . . . , N}, the rotation map is an example of an isometry of a single moduli

space. This specific set of boundary data corresponds to the case where the magnetic

charges satisfy kp = 0, and the masses νp of each monopole constituent is equal to µ0/N ,

for all p = 1, . . . , N . These are a subset of the calorons that we have described in detail

with regards to their Nahm and monad matrix data at the end of chapter 2, namely the

(k, . . . , k)-calorons of equal monopole mass.

Since we will be ultimately interested in fixed points under the action of groups containing

the rotation map, we shall mostly concern ourselves with the moduli spaces for which the

rotation map acts, namely CNk := CN(k, . . . , k, µ0/N, . . . , µ0/N). We shall also denote

the corresponding configuration space by ANk . We note that in these moduli spaces, the

magnetic charges satisfy kp = 0 for all p = 1, . . . , N , and the eigenvalues µp take the

form

µp =
N + 1− 2p

2N
µ0, p = 1, . . . , N, (3.8)

so that under the rotation map, they are preserved. As a consequence, the intervals Ip

are preserved under the rotation map ρN on Nahm data. In addition, the action of the

parity transformation σ(t, ~x) = (−t,−~x) preserves this choice of magnetic charges and

eigenvalues, as can easily be checked from (3.6).

3.2.4 Isometry groups and symmetric calorons

The groupF , consisting of all euclidean isometries, unframed gauge transformations, and

the rotation map, acts on the spaceANk in a way that is unique up to gauge transformations.
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The total group of isometries of the moduli space CNk (and its metric (3.2)) is therefore

given by S := F /G , and satisfies the isomorphism

S ∼=
(
TN−1 o ZN

)
o (O(2)× E(3))+ . (3.9)

The semi-direct products appear in (3.9) due to the fact that the rotation map, parity

transformation, and translation Sθ : t 7→ t + θ/µ0 interact non-trivially with each other

and with the action of a phase vector. More precisely, ZN acts on TN−1 ⊂ SU(N) via

ρ · P (~ϕ) = S−1
N P (~ϕ)SN , (3.10)

where SN is the N ×N standard shift matrix

SN =


0 · · · 0 1

1N−1

0
...

0

 , (3.11)

the parity transformation σ acts on TN−1 o ZN via

σ · ρ = ρ−1, (3.12)

σ · P ((ϕ1, . . . , ϕN)) = P ((ϕN , . . . , ϕ1)) , (3.13)

and the translation Sθ acts on TN−1 o ZN as

Sθ · ρ = S∗θρ, (3.14)

Sθ · P (~ϕ) = P (~ϕ). (3.15)

Remark 3.2.1 It is clear from the above relationships that the contribution of the rotation

map ρ, and the parity transformation σ, make up an N -fold dihedral group. However, we

choose to present the isometry group S as (3.9) to highlight the distinction between the

euclidean isometries, and the gauge transformation type isometries.
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Also note that the relationship (3.14) is equivalent to saying that a translation by θ/µ0 in

S1 affects the rotation map by right-multiplication of the overall phase vector

(θ(1/N − 1), θ/N, . . . , θ/N).

The main purpose of this chapter is find ‘symmetric calorons’, that is, fixed points under

the action of subgroups of S. More formally:

Definition 3.2.2 Let H ⊂ S be a subgroup. A caloron DA ∈ CNk is called H-symmetric

if its connection 1-form satisfies [h ·A] = [A] for all h ∈ H , where [·] denotes the framed

gauge equivalence classes. We denote by CNk (H) the set of all H-symmetric calorons.

3.3 Group actions on Nahm data and monads

Much of the historical success in constructing symmetric monopoles and instantons

utilised indirect methods, for example the ADHM and Nahm constructions, and analogues

to monad matrix data [3, 43, 55, 83]. This motivates us to look to the Nahm and

monad data in order to construct symmetric calorons. This has been done before in the

context of caloron Nahm data [49, 90, 122]. Until a recent publication [30], which is

ours, the caloron monad matrices had not been employed for the purpose of symmetric

constructions.

Of course, in order to use the Nahm and monad data for finding fixed points, we need

to understand the corresponding actions of the generators of S on these data. These

generators are summarised as follows.

1. The translations in S1 × R3 are generated by (Sθ, ~v) ∈ SO(2)× R3, representing

the euclidean isometry (t, ~x) 7→ (t+ θ/µ0, ~x+ ~v) ∈ S1 × R3.
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2. The rotations in R3 are generated by (1,R(~n, φ)) ∈ SO(2) × SO(3), where

R(~n, φ) represents a rotation by angle φ around a fixed unit axis ~n = (n1, n2, n3) ∈

R3. This generator is a euclidean isometry, and acts on S1 × R3 by (t, xj) 7→(
t,
∑3

k=1 Rjkx
k
)
, where the components Rjk may be written as

Rjk =

cos2 φ
2

+ sin2 φ
2

(
2n2

j − 1
)
, if j = k,

2njnk sin2 φ
2

+ εjklnl sinφ, if j 6= k.

3. The parity transformation σ ∈ (O(2)× O(3))+, represented by the element σ =
1 0

0 −1

 ,


−1 0 0

0 −1 0

0 0 −1


. This is the final euclidean isometry, and acts

on S1 × R3 via (t, ~x) 7→ (−t,−~x).

4. The phase vectors P (~ϕ) ∈ TN−1.

5. The rotation map ρ ∈ ZN .

6. The translation Sθ may be used to define the circle translation Sθ, which is the

composition of Sθ with the parallel transport along the t-direction from t = 0 to

t = θ/µ0. That is Sθ = Sθ ◦ P (~ϕθ), where

~ϕθ =

(
θ

µ0

µ1, . . . ,
θ

µ0

µN

)
,

where µp are set as in (3.8). This transformation has the advantage over Sθ that it

commutes with the rotation map.

The actions of these generators on Nahm data and monads are given in tables 3.1 and

3.2.1 As with calorons, we have really only described them as actions on the configuration

spaces, but they are again able to be lifted to the respective moduli spaces. Importantly,

we are only able to derive actions on monad matrices for euclidean subsets of S which
1The action of Sθ may be easily extracted by the formula Sθ = Sθ ◦ P (~ϕθ)

−1.
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fix the x1-axis, and for further simplicity, we have only stated the actions for euclidean

subgroups of SO(2)×E(2). The simple reason for this restriction is due to the nature of

the isomorphism between Nahm data and Nahm complexes – it reduces the structure of

the data to be holomorphic, and as such, the actions we describe are the only ones which

are immediately compatible with this holomorphic structure. This is analogous to the

restriction of Donaldson rational maps [33] for monopoles. Nevertheless, it still remains

an important open problem to derive the full SO(3) action on such objects, or better, to

derive analogous data which has such an action, for example an analogue of the Jarvis

rational map [67, 68].

Element of S Action on NN
k via (T λp , (up, wp)) 7→ ?

(Sθ, ~v)
(
T 0
p + ı θ

µ0
, T jp + ıvj, (up, wp)

)
(1,R(~n, φ))

(
T 0
p ,
∑3

k=1 RjkT
k
p ,
(
aup − bwp, bup + awp

))
σ

(
−T λN−p(−s), (uN−p+1, wN−p+1)

)
, p = 1, . . . , N − 1,(

−T λ0 (µ0 − s), (u1, w1)
)
, p = 0

P (~ϕ)

(
T λp , e

ıϕp(up, wp)
)
, p = 1, . . . , N − 1(

T λ0 , e
ıϕN (u0, w0)

)
, p = 0

ρ
(T0(s+ (N − 1)µ0/N), (u0, w0)), p = N − 1,(
T λp+1(s− µ0/N), (up+1, wp+1

)
, p = 0, . . . , N − 2

Table 3.1: The actions of the various generators of S on the moduli space NN
k .

In the tables, we have introduced the following shorthands:

a = cos φ
2

+ ın1 sin φ
2
, b = sin φ

2
(n2 + ın3) ,

σθ = diag
{
eı
θ(N+1−2p)

2N

}N−1

p=0
, σ̃θ = diag

{
eı
θ(N−1+2p)

2N

}N−1

p=0
,

q~ϕ = diag{ϕN , ϕ1, . . . , ϕN−1}.

(3.16)

It is straightforward to see via the construction (2.65) and (2.53) that the actions on

monad matrices correspond precisely to those on Nahm data, up to gauge transformations.
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Element of S Action onMN
k via (A,B,C,D) 7→ ?

(Sθ, (v
1, 0, 0))

(
eıθ−v

1
A,B,Cσθ+ıv1 , σ̃θ+ıv1D

)
(1,R( ~x1, φ))

(
A, e−ıφB, e−ı

φ
2C, e−ı

φ
2D
)

P (~ϕ)
(
A,B,Cq~ϕ, q

−1
~ϕ D

)
ρ

(
A,B −

∑N−1
q=1 CqDqA

−1, ACp+1, C0, Dp+1A
−1, D0

)
, p = 0, . . . , N − 2

Table 3.2: The actions of the various compatible generators of S on the moduli space

MN
k

Understanding how these actions relate to the actions on calorons requires analysing their

effect on the Nahm operator (2.36). For the rotation map and phases, this has been

discussed in section 2.4.2. For the euclidean isometries, it is best to break it down by

generator. The standard technique is to view the SO(3) rotations of R3 as elements of

SU(2), via the double covering

χ : SU(2) −→ SO(3)

h 7→
h : R3 −→ R3

x 7→ hxh−1,

(3.17)

where h ∈ SU(2) is viewed as a unit quaternion, and x ∈ R3 as an imaginary quaternion.

Similarly, for the parity transformation σ, we may first view it as an element of SO(4),

and then as the element (ıσ3, ıσ3) ∈ SU(2)× SU(2) via the analogous double covering

η : SU(2)× SU(2) −→ SO(4)

(h, h′) 7→
(h, h′) : R4 −→ R4

x 7→ hxh′,

(3.18)

where here x ∈ R4 is viewed as a quaternion. Using these, it is straightforward to see

that the actions we have described on Nahm data correspond to the correct actions on

calorons, up to automorphisms of V ∼= S1 × R3 ×Ker( /D).

For most of the euclidean isometries, it is clear that the actions are equivalent modulo

framed gauge transformations. However, for the parity transformation σ, and the circle
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translation Sθ, it is only clear that these actions agree up to some, not necessarily framed,

gauge transformation. Regardless of this, we shall always be considering actions which

include a generic phase vector, and so this discrepancy does not remove any generality,

and we have chosen the actions as described simply for later notational convenience.

With this in mind, from this point forward, whenever we are referring to an element of

(O(2) × O(3))+, we will replace the euclidean generator Sθ ∈ SO(2) with the circle

translation Sθ ∈ SO(2).

A further remark is to recognise that the action of ρ on monad matrices is rather

complicated in comparison to the action of ρ−1, given by

(A,B,C,D) 7→
(
A,B − CN−1DN−1A

−1, ACN−1, Cp−1, DN−1A
−1, Dp−1

)
,

for p = 1, . . . , N − 1. Since the ZN action on the moduli space is generated equivalently

by ρ−1, we may without loss of generality consider this generator when we act with the

rotation map on monad matrices.

3.4 Hunting for invariants

In section 3.5, we shall construct examples of symmetric calorons with cyclic symmetries.

Before we do that, it is worthwhile discussing some preliminary results and conventions

regarding which of the isometries described in the previous sections may have fixed

points, and which do not. One immediate result is that there are no fixed points in CNk
under any translations of R3. This is obvious, as if such a symmetric caloron existed, it

would not have finite action. For the circle translations, it is possible that there are fixed

points, however there are restrictions:

Proposition 3.4.1 Let H ⊂ S contain a non-trivial contribution of the euclidean action

Sθ : t 7→ t + θ/µ0, or the circle translation Sθ. Then CNk (H) 6= ∅ only if θ = 2rπ/k, for

some r ∈ Z.
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Proof

The action of Sθ on monad matrices is the same as the action of Sθ ◦ P (~ϕθ)
−1, and both

this and Sθ affect the matrixA ∈ GL(k,C) viaA 7→ eıθA. This is invariant inMN
k only if

the eigenvalues of A are preserved. In particular, since detA 6= 0, we must have eıkθ = 1,

that is, there exists r ∈ Z such that θ = 2rπ/k. 2

What Proposition 3.4.1 says is that the only translations of S1 that may yield fixed points

are those of finite cyclic type. However, there is more subtlety at play that this result

does not reveal. In order to have true invariant solutions, these circle translations must be

considered along with non-trivial transformations of R3. Indeed, if a (k, . . . , k)-caloron

were seen to be invariant under the action S2rπ/k alone, then, up to the action of a phase

vector, this is the same as saying it has r/k times its expected period, i.e. we would be

studying calorons with period 2rπ/kµ0. Such a caloron is more efficiently described by

a lower charge caloron when r/k ∈ Z, or simply one with a different value of µ0.

3.4.1 The role of the rotation map

Up until now, no study of symmetric calorons has ever asked if groups containing the

rotation map have fixed points, but it is an interesting consideration that we would like

to address. Besides the fact that nobody has done it before, a good motivation is due

to the kinship between calorons and monopoles. From the loop group perspective, we

see that SU(N) calorons may be viewed as N constituent SU(2) monopoles2, and the

rotation map is a way of relating these monopoles to each other. Therefore, calorons

which are symmetric with respect to a group containing the rotation map may in some

way be interpreted as consisting of N identical symmetric monopoles. Another benefit of

considering the rotation map has perhaps already been observed, but not commented on,

and that is that its corresponding map on monad matrices (seen in table 3.2), to the best

2Strictly speaking this only applies to calorons with maximal symmetry breaking, but this is okay as all

of our discussions have generally assumed this.



Chapter 3. Symmetric calorons 78

of the author’s knowledge, has never before been noticed as a symmetry of the monad

equations (2.60).3 Due to the role and interest of these equations in related subjects [32,

125], considering this symmetry may shed light on otherwise overlooked properties of

this integrable system.

In order to study the rotation map’s role in the topic of symmetric calorons, it is beneficial

to understand any restrictions on the types of symmetry groups to consider.

Proposition 3.4.2 Let H ⊂ S be such that P (~ϕ)ρr ∈ H , for some phase vector ~ϕ and

r ∈ {1, . . . , N − 1}. Then CNk (H) = ∅.

Proof

Let g~ϕ = P (~ϕ)ρr ∈ H , and suppose that CNk (H) 6= ∅. Recalling the action of the rotation

map (2.26), this means there exists a framed bundle isomorphism η : V ⊗Lr −→ V such

that the restriction η∞ : V∞ ⊗ Lr∞ −→ V∞ is an isomorphism. The notion of ‘framed’ in

this context means that

g~ϕ · f = f ◦ η∞, (3.19)

where f is the framing (2.1), and g~ϕ · f is the transformed framing from the action of the

phase and the rotation map (2.26). We also require that the connection A is fixed, which

means

g~ϕ · A = η∗A. (3.20)

With respect to a global trivialisation of V , η may be described by a gauge transformation

h : R× R3 −→ SU(N) which satisfies

h

(
t+

2π

µ0

, ~x

)
= exp

(
2rπı

N

)
h(t, ~x), ∀ (t, ~x) ∈ R× R3.

Now, (3.20) implies that h−1P (~ϕ) is covariantly constant (parallel) with respect to the

connection A ⊗ 0 ⊗ · · · ⊗ 0. This in turn implies that the eigenvalues of h−1P (~ϕ) must
3This is of course, only true in the case that the monad matrix A is invertible.
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be constant, and hence the eigenvalues of h must be everywhere constant, including on

R × S2
∞. But from (3.19), and the formulae (2.22)-(2.23) and (3.7), it is straightforward

to see that the eigenvalues of h∞ are

λp =

 e−ıϕp exp
(
ı (r−N)

N
tµ0

)
, 1 ≤ p ≤ r,

e−ıϕp exp
(
ı r
N
tµ0

)
, r + 1 ≤ p ≤ N,

which, since r 6= N , are clearly not constant. 2

The upshot is, the rotation map (along with a phase contribution) cannot be a generator;

in order to include the rotation map in the symmetry group, it must appear as part of a

generator of the form

h = Km ◦ P (~ϕ) ◦ ρr, (3.21)

where Km ∈ SO(2) × SO(3) generates a group of order m ∈ Z+ ∪ {∞}, and r ∈

{1, . . . , N − 1}. The contribution Km must be suitably chosen so that the conditions

discussed above are met. Along with various constraints on the combination of circle

translations and spatial rotations (which are too many to discuss in full generality here),

this in particular constrains the order m of the element Km in (3.21).

Proposition 3.4.3 Let H ⊂ S contain a generator of the form (3.21) for some order

m ∈ Z+ element Km, and let r ∈ {1, . . . , N − 1}. Then CNk (H) 6= ∅ only if

m =
Nn

gcd(r,N)
,

for some n ∈ Z+.

Proof

If CNk (H) 6= ∅, then by definition there exists a caloron fixed by every element of H , so

in particular is fixed by the element

hm =
(
P (~ϕ)S−rN

)m−1 ◦ P (~ϕ)S
(m−1)r
N ◦ ρmr. (3.22)
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Note that this equality holds by (3.10) and the straightforward result that Km commutes

with the rotation map and unframed gauge transformations.4 If m is not as stated, then

by (3.22), H contains an element of the form h′ = P (~ϕ′)ρr
′ , with r′ ∈ {1, . . . , N − 1},

so there cannot be any such invariant caloron by Proposition 3.4.2. 2

3.5 Cyclic calorons

The work of Braden and Sutcliffe on cyclically symmetric monopoles [14, 116] was

very influential in furthering the understanding of monopole moduli spaces, and so it

is certainly worthwhile studying cyclic calorons, that is, calorons invariant under various

cyclic subgroups of S. As discussed in the previous section, of particular interest are those

groups which incorporate a non-trivial action of the rotation map. Our main results are

showing existence of non-trivial fixed point sets in some special cases, and some explicit

constructions of monad matrix and Nahm data in even more specific cases.

This section reproduces results published in [30], here in the more general context of

SU(N) calorons, with some additional results not found in [30].

3.5.1 Cyclic groups and rotation cyclic symmetries

The euclidean isometries that we shall be considering are generated from cyclic subgroups

of S1×R3, which act temporally as well as in space. Since we shall be utilising the monad

matrix data to construct fixed points, we may only choose subgroups which preserve

the chosen holomorphic structure, namely those which fix the x1 axis. To this end, let

4This is true as we are considering Sθ as the SO(2) generator, not Sθ.
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Ki
m ∈ SO(2)× SO(3) be defined by

Ki
m :=

S 2iπ
m
,


1 0 0

0 cos
(

2π
m

)
sin
(

2π
m

)
0 − sin

(
2π
m

)
cos
(

2π
m

)

 , (3.23)

for m ∈ Z+ and i ∈ Zm. This generates an order m cyclic subgroup of SO(2)× SO(3).

From this, we may form the rotation cyclic groups5

ρ(Cj,~ϕ
Nn) :=

〈
KNj
Nn ◦ P (~ϕ) ◦ ρ−1

〉
⊂ S, (3.24)

for n ∈ Z+, j ∈ Zn, and ~ϕ a phase vector. It is straightforward to see that ρ(Cj,~ϕ
Nn)

is a cyclic group of order Nn for all choices of j, ~ϕ. Note that there are two possible

avenues for generalisation, namely replacing ρ by ρr in (3.24), and replacing Nj ∈ ZNn

by i ∈ ZNn. However, we conjecture that the second of these considerations only yields

solutions in the cases that we are already considering, that is i = Nj. This conjecture is

certainly true in the the case n = k as a result of Proposition 3.4.1, and it is straightforward

to show by results in [30] that this also holds in general for the case N = 2.

Remark 3.5.1 We have chosen to study cyclic groups involving the rotation map, but

there are cyclic groups of the form

Cj,~q
n =

〈
Kj
n ◦ P (2~qπ/n)

〉
, (3.25)

where ~q ∈ ZN such that q1 + · · · + qN = 0, which do not include the rotation map.

The work of Furuta and Hashimoto in [43] may be implicitly applied to study such cyclic

calorons (at least in the case N = 2) by picking out the solutions for which the monad

matrix A ∈ GL(k,C). Importantly, the cyclic groups considered in [43] did not consider

the rotation map.

5We have decided to act with ρ−1 due to the simpler form of its action on monad matrices. This is

equivalent to acting with ρ in the case N = 2, as is the convention in [30].
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To study the rotation cyclic symmetric calorons, we shall investigate ρ(Cj,~ϕ
Nn)-invariant

monad matrices, that is, (A,B,C,D) ∈MN
k such that

A = eı
2jπ
n gAg−1, (3.26)

B = e−ı
2π
Nn g

(
B − CN−1DN−1A

−1
)
g−1, (3.27)

C0 = e−ı
π
Nn eı

jπ
Nn

(N+1)eıϕNgACN−1, (3.28)

Cp = e−ı
π
Nn eı

jπ
Nn

(1+N−2p)eıϕpgCp−1, (3.29)

D0 = e−ı
π
Nn eı

jπ
Nn

(N−1)e−ıϕNDN−1A
−1g−1, (3.30)

Dp = e−ı
π
Nn eı

jπ
Nn

(N−1+2p)e−ıϕpDp−1g
−1, (3.31)

for some g = gN,n,j,~ϕ ∈ GL(k,C), and where p = 1, . . . , N − 1. To help solve these

equations, it is worth also studying the CNj,0
n -invariant monads:

A = eı
2Njπ
n GAG−1, (3.32)

B = e−ı
2π
n GBG−1, (3.33)

C = e−ı
π
nGCσ2Njπ/n, (3.34)

D = e−ı
π
n σ̃2Njπ/nDG

−1, (3.35)

for G ∈ GL(k,C). We denote by MN
k (CNj,0

n ) the set of matrices in MN
k satisfying

(3.32)-(3.35), and denote byMN
k (ρ(Cj,~ϕ

Nn)) the set of matrices inMN
k satisfying (3.26)-

(3.30). We have the inclusionMN
k (ρ(Cj,~ϕ

Nn)) ⊂MN
k (CNj,0

n ) by setting

G = eı
jπ
n

(N−1)gNA. (3.36)

To aid us in solving (3.26)-(3.31), we shall prove some necessary conditions for the

existence of fixed points. The most important of these is the result given by Lemma 3.5.4,

which translates to say that the matrix G = eı
π
n gNA may be chosen to be diagonal, with

eigenvalues given precisely by set of n-th roots of unity. Using (3.36), this makes solving

(3.32)-(3.35) much more manageable, and we may setup an ansatz for MN
k (ρ(Cj,~ϕ

Nn)).

Ultimately, we will then only consider the case where n = k, which as a result of this

statement about G, is the maximal order of a cyclic symmetry group we may consider.
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Notation 3.5.2 Before we embark on studying the symmetric solutions, we will first

review, and prescribe our various notational decisions. So, from this point forward in

this chapter, we shall always stick to the following notation conventions: k ∈ Z+ is the

instanton number, N ≥ 2 is the rank of the caloron, n ∈ Z+ defines the order Nn of the

cyclic group ρ(Cj,~ϕ
Nn), j ∈ Zn is the order of the circle translation, furthermore, we denote

ℵ = gcd(n,Nj), Γ = gcd(n, j), ωr = eı
2πr
n , Ω = eı

1+(N−1)j
n

π.

In addition, all indices of indexed objects shall be understood to obey their corresponding

modular arithmetic, for example, we interpret the product P =
∏3

p=1 x2p+1, where the xr

are taken from the set {x1, x2, x3, x4}, as P = x2
1x3. Finally, the letters a, b, i,m, p, q, r

and s will always, unless otherwise specified, be used as dummy indices.

Before we prove the main ‘gauge-fixing’ result, we need the following simple lemma.

Lemma 3.5.3 Let (A,B,C,D) ∈MN
k (ρ(Cj,~ϕ

Nn)). Then Cp, Dp 6= 0 for all p = 1, . . . , N ,

furthermore,

{
Ωωn−(N−p)j,Ωωpj−1 : p = 0, . . . , N − 1

}
⊂ Eval(G),

with

Cp ∈ Evec
(
G,Ωωn−(N−p)j

)
, Dp ∈ Ecovec (G,Ωωpj−1) .

Proof

If Cp = 0 for some p ∈ {0, . . . , N − 1}, then by (3.29) and (3.28), this implies Cq = 0

for all q, i.e. C = 0. But this violates Corollary 2.5.10. A similar argument applies for

Dp. The statement about the eigenspaces follows immediately from equations (3.34) and

(3.35). 2
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Lemma 3.5.4 For (A,B,C,D) ∈ MN
k (ρ(Cj,~ϕ

Nn)), G is diagonalisable, and the

eigenvalues of Ω−1G are the set of n-th roots of unity

Eval(Ω−1G) = {ωp : p = 1, . . . , n}.

Moreover, if ωr has multiplicitym ∈ N, then so does ωq, for all q such that q = r (mod ℵ).

Proof

If (A,B,C,D) ∈ MN
k (ρ(Cj,~ϕ

Nn)), then we may apply the symmetry equations (3.32)-

(3.35) n times to yield

A = GnAG−n, B = GnBG−n,

C = −eıj(N+1)πGnC, D = −eıj(N−1)πDG−n.

Since the action of gauge transformations is free by Lemma 2.5.11, the above equations

imply that −eıj(1−N)πGn = 1. So G is diagonalisable with eigenvalues λ satisfying

λn = eıπ(1+(N−1)j) = Ωn. Hence

∅ 6= X ≡ Eval(Ω−1G) ⊂ {ωr : r = 1, . . . , n}.

Let G̃ = Ω−1G. Now, if ωr ∈ X , let Vr denote the eigenspace of G̃ with eigenvalue ωr,

and otherwise set Vr = 0. If {vi}mi=1 ⊂ Ck is a basis for Vr, by (3.32), we have for any

a ∈ Z+,

G̃Aavi = (G̃AG̃−1)aG̃vi = ωr−NjaA
avi,

for all i = 1, . . . ,m. AsA ∈ GL(k,C),Aavi 6= 0 for all a ∈ Z+, so these are eigenvectors

with eigenvalues ωr−Nja, for all a = 1, . . . , n/ℵ, moreover, {Aavi}mi=1 is a linearly

independent set of non-zero vectors. Hence, the multiplicity of ωr ∈ X is the same

for all ωq such that q = r (mod ℵ). In particular, Vr 6= 0 if and only if Vr+aℵ 6= 0 for all

a = 1, . . . , n/ℵ. Now define the corresponding modular eigenspaces Wa, a ∈ {1, . . . ,ℵ}

as

Wa :=
⊕

r=a (mod ℵ)

Vr.
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By the above observations, the result hence follows if we show that Wa 6= 0 for all

a = 1, . . . ,ℵ. By (3.32), and above A(Wa) ⊂ Wa for all a = 1, . . . ,ℵ. We also have by

(3.33) that B(Wa) ⊂ Wa+1 for all a = 1, . . . ,ℵ. Additionally, Lemma 3.5.3 shows that

we have that Wpj,Wpj−1 6= 0 for all p = 0, . . . , N − 1.

Now, assume there exists 1 ≤ s ≤ ℵ, s 6= pj, pj − 1, for all p = 0, . . . , N − 1, such that

Ws = 0. Then there exists p ∈ {0, . . . , N − 1}, and a pair (q, q′) such that

pj ≤ q < q′ ≤ (p+ 1)j − 1,

with Wq,Wq′ 6= 0, and Wr = 0 for all q < r < q′, where all of these inequalities are

understood cyclically modulo ℵ. Then, by the fact that B(Wa) ⊂ Wa+1, and Lemma

3.5.3, we have

B(Wq) = D(Wq) = 0.

Hence, as A(Wa) ⊂ Wa for all a, we must have that for all w ∈ Wq and Π ∈ I,6 that

DΠ(A,B)w = 0,

which violates Lemma 2.5.9. Therefore Wa 6= 0 for all a = 1, . . . ,ℵ. 2

Corollary 3.5.5 MN
k (ρ(Cj,~ϕ

Nn)) 6= ∅ only if n ≤ k.

Proof

This follows immediately from Lemma 3.5.4 as n = |Eval(G)| ≤ k. 2

3.5.2 The case n = k

By Corollary 3.5.5, the largest rotation cyclic symmetry group we may consider is when

n = k, and this is the case which we shall now pursue in more detail. In this case, by
6Recalling that I is the space of all non-commuting words in two variables.
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Lemma 3.5.4, we may fix a basis so that G takes the standard form

G = Ωdiag{ω1, . . . , ωk}, (3.37)

where we recall that ωr = eı
2rπ
k is the r-th k-th root of unity. Letting ~ei and ~fi for

i = 1, . . . , k denote the standard basis vectors and covectors for Ck and (Ck)
∗ respectively,

and S denote the k × k standard shift matrix

S =


0 · · · 0 1

1k−1

0
...

0

 ,

we may hence solve (3.32)-(3.35) in this choice of basis to obtain a CNj,0
k -symmetric

ansatz forMN
k (ρ(Cj,~ϕ

Nk)):

A = diag{α1, . . . , αk}Sk−Nj B = diag{β1, . . . , βk}S,

Cp = up~ek−(N−p)j, Dp = yp ~fpj−1,
(3.38)

where αi, up, yp ∈ C∗, and βi ∈ C, for i = 1, . . . , k, p = 0, . . . , N − 1.

Remark 3.5.6 Consider (A,B,C,D) as in (3.38). Then we have

Am~ei =

(
m∏
r=1

αi−rNj

)
~ei−mNj, (3.39)

Bm~ei =

(
m∏
r=1

βi+r

)
~ei+m, (3.40)

Im(C) = spC∗{~e(p−N)j : p = 0, . . . , N − 1}, (3.41)

D~ei = y0δi,k−1
~bN +

N−1∑
q=1

yqδi,qj−1
~bq, (3.42)

where~bq denotes the standard basis for CN .

The case n = k is particularly nice due to the following important lemma:
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Lemma 3.5.7 Let (A,B,C,D) ∈MN
k (ρ(Cj,~ϕ

Nk)). Then detB 6= 0.

Proof

By Lemma 3.5.4, we may write a representative (A,B,C,D) ∈ MN
k (ρ(Cj,~ϕ

Nk)) in the

form as in (3.38). With this data, the monad equations (2.60) imply

βi =
αi−Nj−1

αi−Nj
βi−Nj, i ∈ {1, . . . , k} \ {qj (mod k) : q = 0, . . . , N − 1}. (3.43)

We have detB 6= 0 if and only if βi 6= 0 for all i = 1, . . . , k. So, suppose βr = 0 for

some r ∈ {1, . . . , k}.

Case 1: r 6= qj (mod ℵ), for all q = 0, . . . , N − 1. From (3.43), this means βi = 0 for

all i = r (mod ℵ). Define the vector spaces

Eℵi = spC{~en : n = i (mod ℵ)}, i ∈ {1, . . . ,ℵ}.

By (3.39) and (3.40), we have that A(Eℵi ) ⊂ Eℵi for all i, and B(Eℵs−1) = 0, where

s = r (mod ℵ). As r 6= qj, we also have by (3.42) that D(Eℵs−1) = 0, again where

s = r (mod ℵ). Therefore, for all v ∈ Eℵs−1, and Π ∈ I, we have

DΠ(A,B)v = 0,

which violates Lemma 2.5.9 sinceEℵi 6= 0 for all i. Hence, βr 6= 0 for all r 6= qj (mod ℵ),

for all q = 0, . . . , N − 1.

Case 2: r = qj (mod ℵ) for some q ∈ {0, . . . , N − 1}. Consider g ∈ GL(k,C) in the

form

g =
k∑
a=1

diag{γa1 , . . . , γak}Sa, γai ∈ C. (3.44)

Using this g as in (3.44), the symmetry equation (3.26) implies

γai = e−ı
2jπ
k

αi
αi−a

γai+Nj, for all a = 1, . . . , k. (3.45)
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Since αi 6= 0 for all i = 1, . . . , k, (3.45) tells us is that the sets

Ha
m = {γai : i = m (mod ℵ)},

for varying a,m ∈ {1, . . . , k}, satisfyHa
m = 0 or 0 /∈ Ha

m. Now, by (3.28)-(3.29) we have

that in column k−(N−q)j, for all q = 0, . . . N−1, there is only one non-zero component,

namely γjk−(N−q)j+j 6= 0, and γak−(N−q)j+a = 0, for all q = 0, . . . , N−1, a 6= j. Similarly,

equations (3.30)-(3.31) imply that in row qj−1, for all q = 0, . . . N −1, there is only one

non-zero component, namely γjqj−1 6= 0, and γaqj−1 = 0, for all q = 0, . . . , N − 1, a 6= j.

To summarise all of this in the notation of (3.44), letting

Sa = {l,m+ a : l = qj − 1, m = rj (mod ℵ), q, r = 0, . . . , N − 1},

we have

γji 6= 0, ∀ i ∈ Sj, γai = 0 ∀ i ∈ {1, . . . , k} \ Sa, ∀a ∈ {1, . . . , k} \ {j}. (3.46)

With all of this in mind, we now focus our attention to equation (3.27), which, with g as

in (3.44), and matrices (3.49) implies (among others) the equations:

γjmβm−j = eı
2π
Nkγjm−1βm, m = 1, . . . , k − 1, (3.47)

γjk(βk−j − uN−1yN−1α
−1
k−j−1) = eı

2π
Nkγjk−1βk. (3.48)

By (3.46), the coefficients γjm and γjm−1 are non-zero for m = qj (mod ℵ) for any

q = 0, . . . , N − 1. So, if βr = 0 for some r = qj (mod ℵ), (3.47) implies that βi = 0

for all i = r (mod Γ) = 0 (mod Γ). In particular, this means that βk−j = βk = 0, which

hence implies by (3.48) that either uN−1 = 0, or yN−1 = 0, which is a contradiction

of corollary 2.5.10 and equations (3.28)-(3.31). So βr 6= 0 for all r = qj (mod ℵ),

q = 0, . . . , N − 1.

Since each case has arrived at a contradiction, we must have that βr 6= 0 for all

r = 1, . . . , k, i.e. detB 6= 0. 2
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3.5.3 Existence of cyclically symmetric calorons

We may use the results of the previous sections to construct the parameters of

MN
k (ρ(Cj,~ϕ

Nk)), that is, the monad matrices invariant under the action of ρ(Cj,~ϕ
Nk).

Theorem 3.5.8 Let k,N ∈ Z+, N ≥ 2, j ∈ Zk, and ~ϕ be an arbitrary phase vector.

ThenMN
k (ρ(Cj,~ϕ

Nk)) is isomorphic to (C∗)2.

Proof

Let (A,B,C,D) ∈ MN
k (ρ(Cj,~ϕ

Nk)). As a result of Lemma 3.5.4, we may fix the form of

G, and solve (3.32)-(3.35) so that (A,B,C,D) necessarily take the form as in (3.38). By

Lemma 3.5.7, the matrix

h = diag

{
k−1∏
i=2

βi,

k−1∏
i=3

βi, . . . , βk−1, 1,
k−1∏
i=1

βi

}
,

is invertible, so we may use it as a gauge transformation to further fix the data as in (3.38)

to be

A = diag{α1, . . . , αk}Sk−Nj, B = diag{1, . . . , 1, β}S,

Cp = up~ek−(N−p)j, Dp = yp ~fpj−1.
(3.49)

With another gauge transformation, we may also choose to set yN−1 = 1. After some

calculation, we see that this form of the data fully fixes the gauge. Note that by (3.27), we

have det(B − CN−1DN−1A
−1) 6= 0, which means that uN−1 6= αk−j−1 when j 6= k, and

uα−1
k−1 6= β when j = k.

Consider the general GL(k,C) matrix

g = eı
π
Nk

k∑
a=1

diag{γa1 , . . . , γak}Sa.

As in the proof of Lemma 3.5.7, equations (3.28)-(3.31) imply that for a 6= j

γai = 0, ∀ i /∈ {l,m+ a : l = qj − 1, m = rj (mod ℵ), q, r = 0, . . . , N − 1}. (3.50)
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Additionally, equation (3.27) implies

γai = λai γ
a
i−1, for all i, a = 1, . . . , k,

where λai 6= 0. In particular,

γai =

(
i+1∏
r=0

λai−r

)
γak−1,

which is 0 for all a 6= j by (3.50). This means our ansatz for g reduces to

g = eı
π
Nkdiag{γ1, . . . , γk}Sj, (3.51)

where we have relabelled the components for simplicity. Using this and the form of A,

we may solve (3.36) to give

αi = ωi+Nj

N∏
q=1

γ−1
i+qj, i = 1, . . . , k. (3.52)

This solution also satisfies (3.26). Equations (3.28)-(3.31) imply

Cp = e−ı
(p+1)π
Nk eı

jπ
Nk

(p(N−p)+N+1)eı(ϕN+
∑p
q=1 ϕq)gp+1ACN−1, (3.53)

Dp = e−ı
(p+1)π
Nk eı

jπ
Nk

(p(p+N)+N−1)e−ı(ϕN+
∑p
q=1 ϕq)DN−1A

−1g−p−1, (3.54)

for p = 0, . . . , N − 1. Relabelling uN−1 = u, and using the form of g and A, this, along

with (3.28) and (3.30) reduces to the solution

up = eı
jπ
Nk

(p(N−p)−N+1)eı(ϕN+
∑p
q=1 ϕq)u

N−p−1∏
q=1

γ−1
k−qj, (3.55)

yp = e−ı
2(p+1)π
Nk eı

jπ
Nk

((2N−1)(1−N)+p(p+N))ω1e
−ı(ϕN+

∑p
q=1 ϕq)

N−1∏
q=p+1

γqj−1, (3.56)

for all p = 0, . . . , N − 1. Note that (3.55) and (3.56) reduce to the trivial equations

uN−1 = u and yN−1 = 1 in the case p = N − 1. The final symmetry conditions to solve

are dictated by (3.27). For this we have two cases to consider, namely j = k, and j 6= k.
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Case 1: j = k In this case, (3.27) decomposes as

γm = eı
2π
Nkγm−1, m = 1, . . . , k − 1, (3.57)

γk

(
β − eı

2π
k uγNk−1

)
= eı

2π
Nkγk−1β, . (3.58)

These may be solved to yield the solution

γm = eı
2mπ
Nk γk, m = 1, . . . , k − 1, (3.59)

β =
uγNk

1− eı 2πN
, (3.60)

which has two free parameters u and γ ≡ γk.

Case 2: j 6= k In this case, (3.27) decomposes as

γm = eı
2π
Nkγm−1, m 6= j, k, (3.61)

γk

(
1− uωk−(N−1)j+1

N−1∏
q=0

γqj−1

)
= eı

2π
Nkγk−1β, (3.62)

γjβ = eı
2π
Nkγj−1. (3.63)

We may straightforwardly solve (3.61) to obtain

γm =

 eı
2mπ
Nk γk, 0 ≤ m ≤ j − 1,

eı
2(m−j)π
Nk γj, j ≤ m ≤ k − 1,

(3.64)

where we are, as usual, identifying m = 0 as m = k. Combining this with (3.63) implies

that

β = eı
2jπ
Nk γkγ

−1
j . (3.65)

Using (3.64) and (3.65), along with (3.62), we conclude that

u =
(

1− eı
2π
N

)
ω(N−1)j−1

N−1∏
q=0

γ−1
qj−1. (3.66)
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This leaves us with two free parameters γ ≡ γk, and γ̃ = γj .

In both cases we have shown that the general solution to equations (3.26)-(3.31) in the

moduli space of non-singular monad matrices MN
k is necessarily a subset of (C∗)2. It

is straightforward to check that varying over the parameters (γ, u) ∈ (C∗)2 in the case

j = k, and (γ, γ̃) ∈ (C∗)2 in the case j 6= k, always gives different gauge equivalence

classes of solutions. Similarly, the full-rank conditions (2.61) certainly hold for this data,

as can be easily verified. The final hurdle is to show that for all (γ, u), (γ, γ̃) ∈ (C∗)2,

these solutions satisfy the monad equation (2.60).

To do this, let M = [A,B] + CD for our solutions (A,B,C,D). By the symmetry

equations (3.26)-(3.31) (with n = k) we thus have that

M = eı
2π
Nk

(Nj−1)gMg−1. (3.67)

Due to the form of the data (3.49), the matrix M is of the form

M = diag{χ1, . . . , χk}Sk−(N−1)j+1.

Therefore, using the definition of g as (3.51), equation (3.67) is equivalent to

χm = eı
2π
Nk

(Nj−1)χm−jγmγ
−1
m+Nj−1, ∀m = 1, . . . , k. (3.68)

This implies that

χm = e−ı
2π
NΓχm

k/Γ−1∏
q=0

γm−qjγ
−1
m+(N−q)j−1, (3.69)

for all m = 1, . . . , k (where we recall that Γ = gcd(k, j)). Using the formulae (3.59) and

(3.64) for the γi in each case, after a little calculation, we obtain from (3.69) that

χk = e−ı
2π
N χk,

which means, as N ≥ 2, that χk = 0. Thus, by (3.68), we must have that χm = 0 for all

m = 0 (mod Γ). For the remaining components, using (3.49) and (3.52), we see that

χm = ωm+j

(
N∏
q=1

γ−1
m+qj − ωk−1

N∏
q=1

γ−1
m+qj−1

)
, for m 6= 0 (mod Γ). (3.70)
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In particular, since m 6= 0 (mod Γ), the factors γk and γj never appear in the first product

in (3.70), so that by (3.61),7 (3.70) reduces to

χm = ωm+j

(
e−ı

2π
k − eı

2(k−1)π
k

) N∏
q=1

γ−1
m+qj−1 = 0, for m 6= 0 (mod Γ). (3.71)

Thus, M = 0, and so our solutions belong toMN
k . 2

Corollary 3.5.9 CNk (ρ(Cj,~ϕ
Nk)) 6= ∅ for all N ≥ 2, k ∈ Z+, j ∈ Zk, and phase vectors ~ϕ.

Furthermore, in the case N = 2, we have C2
k(ρ(Cj,~ϕ

2k )) ∼= (C∗)2.

Proof

These follow immediately from Theorem 3.5.8 with the knowledge of Theorems 2.4.4

and 2.5.6, in particular the fact that the Nahm transform is a bijection for N = 2. 2

Example 3.5.10 To further illustrate the statement of Theorem 3.5.8, we shall

demonstrate a simple example. Consider the case N = 2, and k = 3. By Theorem

3.5.8, there are 3 cases of these rotation cyclic solutions to write down, for any arbitrary

phase vector ~ϕ = (−ϕ, ϕ), dictated by j = 1, 2, 3. In each case, (γ, γ̃), (γ, u) ∈ (C∗)2 in

line with the notation in the proof of Theorem 3.5.8.

For j = 1, the symmetric monad matrices are

A =


0 0 e−ı

π
3 γ−1γ̃−1

eı
2π
3 γ−1γ̃−1 0 0

0 −γ̃−2 0

 , B =


0 0 1

1 0 0

0 eı
π
3 γγ̃−1 0

 ,

C =


2eı

7π
6 eıϕγ−1γ̃−2 0

0 2e−ı
π
3 γ−1γ̃−1

0 0

 , D =

0 e−ı
π
6 e−ıϕγ 0

0 0 1

 .

(3.72)

7Note that this is the same as (3.57) in the case j = k.
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These solve (3.26)-(3.31) in the case we are considering with accompanying gauge

transformation

g =


0 0 eı

π
6 γ̃

eı
π
2 γ̃ 0 0

0 eı
π
6 γ 0

 . (3.73)

For j = 2, the symmetric monad matrices are

A =


0 eı

4π
3 γ−1γ̃−1 0

0 0 e−ı
π
3 γ−2

eı
π
3 γ−1γ̃−1 0 0

 , B =


0 0 1

1 0 0

0 eı
2π
3 γγ̃−1 0

 ,

C =


0 2eı

π
3 γ−1γ̃−1

2e−ı
π
3 eıϕγ−2γ̃−1 0

0 0

 , D =

0 e−ı
π
3 e−ıϕγ 0

1 0 0

 .

(3.74)

The gauge transformation which completes this data, in order to satisfy (3.26)-(3.31), is

g =


0 eı

π
2 γ 0

0 0 eı
π
6 γ̃

eı
π
6 γ 0 0

 . (3.75)

Finally, for j = 3, the symmetric monad matrices are

A =


γ−2 0 0

0 γ−2 0

0 0 γ−2

 , B =


0 0 1

1 0 0

0 1
2
uγ2 0

 ,

C =


0 0

0 0

e−ı
π
2 eıϕγ−1u u

 , D =

0 eı
3π
2 e−ıϕγ 0

0 1 0

 ,

(3.76)

with accompanying gauge transformation

g =


eı
π
2 γ 0 0

0 eı
5π
6 γ 0

0 0 eı
π
6 γ

 . (3.77)
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We leave it as an exercise for the reader to check that the matrices (3.72), (3.74), and

(3.76) are inM2
3(ρ(Cj,~ϕ

6 )) for each j = 1, 2, 3 respectively.

3.6 Nahm data for cyclic calorons

Despite indicating geometric and topological information about calorons, the monad

matrix data lacks the accessibility of Nahm data when it comes to reconstructing the

associated caloron. Whilst the Nahm transform is in general a hard process, constructing

a caloron from monad matrices is harder still – to do this one must settle for either

reproducing the Nahm data via a Nahm complex, or obtain the caloron from the

holomorphic vector bundles over (CP 1)2 which arise as quotients of the maps (2.61).8

Both of these processes require solving several ordinary or partial differential equations.

In contrast, it is significantly more desirable to have Nahm data than monad matrix

data when it comes to actually constructing calorons. The Nahm transform has been

implemented explicitly and numerically in many cases, especially for monopoles on R3,

in order to reconstruct the object of interest. It would therefore be nice to be able to know

the cyclic Nahm data, in particular for our cyclic calorons from Corollary 3.5.9, so we

shall hence dedicate this final section to the story of how to study this Nahm data.

3.6.1 Cyclic Nahm data

Constructing fixed points under the action of ρ(Cj,~ϕ
Nn) in the moduli space Nk of k-Nahm

data, amounts to finding continuous functions gp : Ip −→ U(k), and Nahm data T λp :

8See [22].
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Ip −→ u(k), (up, wp) ∈ (Ck × Ck) \ {(0, 0)}, satisfying9

T 0
p (s) =

(
gp−1T

0
p−1g

−1
p−1 −

dgp−1

ds
g−1
p−1

)(
s+ µ0

N

)
+

2ıjπ

nµ0

1,

T 1
p (s) =

(
gp−1T

1
p−1g

−1
p−1

) (
s+ µ0

N

)
,

T 2
p (s) =

(
gp−1

(
cos
(

2π
Nn

)
T 2
p−1 + sin

(
2π
Nn

)
T 3
p−1

)
g−1
p−1

) (
s+ µ0

N

)
,

T 3
p (s) =

(
gp−1

(
− sin

(
2π
Nn

)
T 2
p−1 + cos

(
2π
Nn

)
T 3
p−1

)
g−1
p−1

) (
s+ µ0

N

)
,

(up, wp) = eıϕpgp−1

(
3−2p+N

2N
µ0

) (
e−ı

π
Nnup−1, e

ı π
Nnwp−1

)
,

(3.78)

for p = 1, . . . , N − 1. For p = 0, the above is replaced by shifting all function arguments

on the right-hand-side by−µ0, and replacing the subscript ‘−1’ with the subscript ‘N−1’.

To solve this system, in analogy to the methods for monad matrices outlined and executed

in the previous section, we may first consider Nahm matrices on IN−1 with CNj,0
n -

symmetry that is, such that

T 0
N−1(s) = G(s)T 0

N−1G(s)−1 − dG
ds

(s)G(s)−1 + 2ıNjπ
nµ0

1,

T 1
N−1(s) = G(s)T 1

N−1(s)G(s)−1,

T 2
N−1(s) = G(s)

(
cos
(

2π
n

)
T 2
N−1(s) + sin

(
2π
n

)
T 3
N−1(s)

)
G(s)−1,

T 3
N−1(s) = G(s)

(
− sin

(
2π
n

)
T 2
N−1(s) + cos

(
2π
n

)
T 3
N−1(s)

)
G(s)−1,

(3.79)

for some G : IN−1 −→ U(k), and data T λN−1 : IN−1 −→ u(k) satisfying Nahm’s

equations on IN−1. Additionally, the matching data (uN−1, wN−1) at s = µN−1 = 3−N
2N

µ0

are constrained to satisfy

(uN−1, wN−1) = G

(
3−N

2N
µ0

)(
e−ı

π
nuN−1, e

ıπ
nwN−1

)
. (3.80)

This gauge transformation G is to be related to the gp found in (3.78) via

G(s) =

(
N−1∏
p=1

gN−1−p

(
s+ p

µ0

N

))
gN−1(s). (3.81)

Once we have the Nahm matrices on IN−1, matching data at s = µN−1, and gauge

transformations gp, we may fix the form of the remaining data to satisfy (3.78) by using

9Recalling that the group ρ(Cj,~ϕNn) incorporates ρ−1 ≡ ρN−1.
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gp and this initial Nahm data, via the formulae

T λq (s) = Gq(s) ·
(

(KNj
Nn)q+1 · T λN−1

(
s+

q + 1−N
N

µ0

))
, (3.82)

(uq, wq) = eı
∑q
p=0 ϕpGq

(
1 +N − 2q

2N
µ0

)(
e−ı

(1+q)π
N uN−1, e

ı
(q+1)π
N wN−1

)
, (3.83)

for q = 0, . . . , N−1, whereKi
m is the euclidean generator (3.23), and we have introduced

the short-hand

Gq(s) =

(
q∏
r=1

gq−r

(
s+ r

µ0

N

))
gN−1

(
s+

q + 1−N
N

µ0

)
,

for q = 0, . . . , N − 1 (the product is of course ignored in the case q = 0). It is

straightforward to check that (3.82) and (3.83), along with the T λN−1 satisfying (3.79),

and (uN−1, wN−1) solving (3.80), is a general solution to (3.78).

The final obstruction is solving the matching conditions (2.33) with the symmetric data.

This only needs to be performed at s = µN−1 = (3−N)µ0/(2N), as the other conditions

are equivalent to this one due to the symmetric form of the data.

3.6.2 The case k = 1.

To ease us into studying the symmetric Nahm data, we shall start with a simple case –

when the rank of the data is k = 1. It is worth remarking that this case is somewhat special

since the Nahm transform has been shown to be a hyperkähler isometry for all SU(N)

(1, . . . , 1)-calorons [70]. Furthermore, it is this case which we are able to complete the

algorithm outlined in the previous section for all N , and hence obtain a full description of

the sub-moduli spaces CN1 (ρ(Cj,~ϕ
N )). We also note that there is only one case to consider

here, namely j = 0.10

10Strictly speaking, in the language of section 3.5, we really mean j = 1, but this is equivalent to setting

j = 0, up to the action of an overall phase, by Proposition 2.4.6.
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Recall that the Nahm equations in this case take the simple form dT ip/ds = 0 for all

p = 0, . . . , N − 1, i = 1, 2, 3. Using Lemma 2.4.5, we may hence fix the Nahm matrices

on IN−1 to be of the form

(
T 0
N−1, T

1
N−1, T

2
N−1, T

3
N−1

)
=

(
ı
θ

µ0

, ıx, ıy, ız

)
, (3.84)

with θ, x, y, z ∈ R constants. Note that this data satisfies (3.79) trivially in the case

n = k = 1, and j = 0, for any G ∈ U(1) constant. This G is further constrained by

equation (3.80), from which we deduce that G = −1 is the only possibility.

The next ingredients for the symmetric data are the transformations gp : Ip −→ U(1)

solving (3.81), and so that (3.78) may be satisfied. It is clear that such a set of gauge

transformations must be constant, and since G = −1, they must satisfy gN = −1, that

is g = eı
(2r+1)π

N for some r ∈ {0, . . . , N − 1}. We may fix r = 0 without any loss of

generality, since all of the cases give gauge equivalent data via (3.82) and (3.83) due to

Proposition 2.4.6. Thus, this choice of g, along with the data (3.84), the matching data

(uN−1, wN−1) = (u,w), and the formulae (3.82)-(3.83) determine a general solution to

(3.78).

The final hurdle is to solve the matching conditions (2.33). Due to the symmetric form, it

is enough to solve one matching condition, namely at s = µN−1. In this case, since the

data are constant, there is no dependence on this point µN−1, and the matching conditions

are equivalent to the equations

|u|2 − |w|2 = 0, (3.85)(
eı

2π
N − 1

)
(z − ıy) = uw. (3.86)

Equation (3.85) implies that (u,w) = (λeıη, λeıζ), for some λ, η, ζ ∈ R, and we may

perform a constant gauge transformation to fix η = 0. Solving (3.86) in this gauge, we
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conclude that the symmetric Nahm data is given by

T 0
N−1 = ı θ

µ0
, T 1

N−1 = ıx

T 2
N−1 = ı

λ2

2

sin
(

2π
N

)
cos ζ −

(
1− cos

(
2π
N

))
sin ζ(

1− cos
(

2π
N

)) ,

T 3
N−1 = −ıλ

2

2

sin
(

2π
N

)
sin ζ +

(
1− cos

(
2π
N

))
cos ζ(

1− cos
(

2π
N

)) ,

(uN−1, wN−1) =
(
λ, λeıζ

)
,

(3.87)

which defines the remaining data via (3.82) and (3.83), with gp = eı
π
N for all p. The

parameters are θ ∈ R /2NπZ ,11 x ∈ R, ζ ∈ R /2πZ , and λ ∈ R+, determining that the

moduli space CN1 (ρ(Cj,~ϕ
N )) is isomorphic to R × R+ × R /2NπZ × R /2πZ ∼= (C∗)2, in

agreement with Theorem 3.5.8 and Corollary 3.5.9.

In the simplest case N = 2, the solution simplifies tremendously. In terms of the most

general (1, 1) Nahm data (2.49), this symmetric data is determined by the subfamily of

(2.49) with separation parameters λ1 = λ0 = λ, and β = ζ , phase α = 0, and constituent

monopole locations (x,±y,±z) with y = −λ2

2
sin ζ , and z = −λ2

2
cos ζ .

3.6.3 The case k = 2

The next example of ρ(Cj,~ϕ
Nn)-symmetric Nahm data we shall consider is the case of charge

k = 2. To remain parallel to Theorem 3.5.8, we shall restrict to the case n = k = 2, and

for further simplicity, we shall only consider the case N = 2, that is symmetric SU(2)-

calorons.12 Much of the content of this section appears published in [30].

In accordance with our conventions, and Proposition 3.4.1, the only actions of the circle

translations to consider are j = 2 ≡ 0 and j = 1. In both cases, we shall need to start

11This can be seen by the fact that µp are all of the form rp/2N with rp ∈ Z, and applying Proposition

2.4.6.
12Alongside a lot more complexity regarding the choices of gauge transformations gp and G, the other

major difference when N > 2 is that the matching conditions are significantly harder to tackle.
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with solving (3.79) and (3.80), which requires fixing Nahm matrices on I1, matching data

at s = µ1 = µ0/4, and a function G : I1 −→ U(2) which fixes the data under the action

of C2j,0
2 . For all p = 0, 1, we may fix T 0

p to be constant, and equal, by Lemma 2.4.5, and

by anti-hermicity, we may use a constant gauge transformation so that they are diagonal,

i.e. T 0
p = ı( θ

µ0
1 + ξσ3). We may further simplify things on I1 by performing a further

transformation h : I1 −→ U(2), given by h(s) = exp (ıξsσ3), which sets a gauge so that

T 0
1 = ı θ

µ0
1. The matrices T i1 : I1 −→ u(2), for i = 1, 2, 3, will be of the form given

in (2.50), and are constrained further by the symmetry equations (3.79). Without loss of

generality, we may set the Nahm matrices on I1 to be in the form of the ansatz

T 0
1 =

ı

µ0

θ1, T 1
1 (s) = ı

(
α1 +

D

2
f1(Ds)σ3

)
,

T 2
1 (s) = ı

D

2
(cosφf2(Ds)σ2 + sinφf3(Ds)σ1) ,

T 3
1 (s) = ı

D

2
(cosφf3(Ds)σ1 − sinφf2(Ds)σ2) ,

(3.88)

for some constants θ,D, φ, α, and functions fi : I1 −→ R. Nahm’s equations hence

reduce to f ′1 = −f2f3 and cyclic permutations, with solution given by the elliptic

functions (2.52):

Φ1(s) = − κ′

cn κ(s)
, Φ2(s) =

κ′sn κ(s)

cn κ(s)
, Φ3(s) =

dn κ(s)

cn κ(s)
.

The ordering of these functions will be determined later. Additionally, we may fix the

matching data (u1, w1) as

(u1, w1) =

u
0

 ,

0

w

 , (3.89)

with (u,w) ∈ C2 \ {(0, 0)}. It is straightforward to check that (3.88) and (3.89) satisfy

(3.79) and (3.80) with the gauge transformation

G(s) = e
ı
2jπ(s−µ0

4 )
µ0 eı

π
2 σ3. (3.90)

At this stage we meet a fork in the road, where we shall explore the cases j = 0 and

j = 1 independently. It turns out that all solutions to (3.78) in the case N = n = k = 2,
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j = 0, are known. These are described by the ‘crossed solution’ of Nógrádi and coworkers

[18, 93]. We will describe this Nahm data in the next section. In the remaining sections

we shall construct previously unknown solutions, by looking at the case N = n = k = 2,

and j = 1, which we call the oscillating solutions, in detail.

The crossed solutions

In [18, 93], a solution of Nahm’s equations and the matching conditions, in the case

N = k = 2, is described called the ‘crossed solution’. This can be seen to contain a

subfamily which is ρ(C0,~ϕ
4 )-symmetric, but with the convention of the cyclic generator

fixing the x2-axis (rather than the x1-axis which is our convention). This solution may be

described within our conventions via the generating data (3.88)-(3.89), and the formulae

(3.82)-(3.83). The gauge transformations gp : Ip −→ U(2) which are crucial to this

process are

gp(s) = eı
π
4 diag{1, ı}.

One can straightforwardly check that all of this solves (3.78) in the case N = n = k = 2,

j = 0, and are hence ρ(C0,ϕ
4 )-symmetric, moreover, they describe the Nahm data for all

(2, 2)-calorons with such symmetry. The matching conditions (2.33) for this data reduce

to

2Dκ′sc κ(Dµ0/4) = λ2,

D(dc κ(Dµ0/4)− κ′nc κ(Dµ0/4)) = λ2.

The free parameters in this solution are given by φ ∈ R /2πZ , θ ∈ R /4πZ , α ∈ R, and

κ ∈ (0, 1). One may show that for all κ ∈ (0, 1), there exists a unique solution (Dκ, λκ)

to the matching conditions in terms of κ (the analysis is similar to the detailed example

we present in the next section).
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It is worth remarking that this solution family is called ‘crossed’ as in a particular

limit where the caloron becomes abelian [93], the constituent monopoles localise as two

crossed ellipses occupying the same plane.

The oscillating solutions

In this and the remaining sections, we construct the Nahm data for C2(ρ(C1,~ϕ
4 )), which

we know by Corollary 3.5.9 should be parameterised by (C∗)2. Our ansatz is given by the

solution (3.88) to (3.79) when n = 2 with gauge transformation G(s) = e
ı 2π
µ0
s
σ3.

The first step is to solve the equation (3.81) to obtain the gp : Ip −→ U(2) which appear

in the symmetry equations (3.78). In general, this factorisation problem is potentially

quite hard, however, we can use the form of (3.88), the fact that N = 2, and the intended

symmetry, to our advantage. Let χ ∈ I1, and consider the T 0-parallel transport operator13

Ω(s, χ) solving
dΩ(s, χ)

ds
+ T 0Ω(s, χ) = 0, Ω(χ, χ) = 1,

where T 0 is the connection on [χ, µ0 + χ] formed by T 0
p via

T 0(s) =


T 0

1 (s), s ∈ [χ, µ0/4],

T 0
2 (s), s ∈ [µ0/4, 3µ0/4],

T 0
1 (µ0 + χ− s), s ∈ [3µ0/4, µ0 + χ].

(3.91)

Define Ω(s) := Ω(s, χ)Ω(µ0 + χ, χ)Ω(s, χ)−1. The first equation of (3.78) (with N =

n = 2 and j = 1) implies the existence of a g : S1 −→ U(2) such that

Ω(s) = −g(s)Ω(s)g(s)−1. (3.92)

In particular, since the characteristic polynomial is gauge invariant, we must have

Eval(Ω(s)) = Eval(−Ω(s)). (3.93)

13This is similar, but not precisely the same as the parallel transport operator for α = T 0+ıT 1 considered

in the proof of Theorem 2.5.6, even though we use the same notation.
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By definition, we must also have that the eigenvalues of Ω(s) are constant. Putting this

together, since the operator Ω(s) takes values in U(2), equation (3.93) tells us that

Eval(Ω(s)) = {±%}, |%| = 1.

We may thus fix a gauge14 such that Ω(s) = %σ3. In particular, this gauge forces T 0
p

diagonal for each p, and is hence compatible with our earlier choices. Having fixed the

form of Ω(s), we may fix the form of g(s). By (3.92), and the form of the data (3.88) and

G(s) in (3.90), a short calculation reveals that

g1(s) = g2(s) =

 0 1

e−ıψe
ı 2π
µ0
s

0

 eıψ, (3.94)

for some ψ ∈ R, is the most general choice15 for such a gauge transformation which

makes the data (3.88)-(3.89), along with its generated data (3.82)-(3.83), have ρ(C1,~ϕ
4 )-

symmetry.

Solving the matching conditions

The matching conditions for the data above may be written as

−D
(
f1

(
D
µ0

4

)
+ f1

(
−Dµ0

4

))
= |u|2 = |w|2, (3.95)

D

2

(
f2

(
D
µ0

4

)
− f3

(
D
µ0

4

)
+ e2ıψ

(
f2

(
−Dµ0

4

)
+ f3

(
−Dµ0

4

)))
= eıφuw, (3.96)

D
(
f3

(
D
µ0

4

)
+ f2

(
D
µ0

4

)
− e−2ıψ

(
f2

(
−Dµ0

4

)
− f3

(
−Dµ0

4

)))
= 0. (3.97)

14Suppose P ∈ U(2) is such that PΩ(µ0 + χ, χ)P−1 = %σ3, and γ : [χ, µ0 + χ] −→ U(2) is a

continuous path between 1 and %σ3. Then a gauge transformation h : S1 −→ U(2) fixing Ω(s) in this form

may be given by

h(s) = γ(s)PΩ(s, χ)−1, s ∈ [χ, µ0 + χ],

extended periodically.
15That is, up to gauge equivalence.
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straightforward analysis of these equations reveals that we may set

u = λ, w = λeı(φ+nπ), (3.98)

for λ ∈ R+ and n ∈ Z. Now, recall that {f1, f2, f3} = {Φ1,Φ2,Φ3}, where the Φi are

given in (2.52), with Φ1,Φ2 even functions, and Φ3 an odd function. These matching

conditions reveal that f2 and f3 must have opposite parity, and f1 must be even. We

may, without loss of generality, fix f2 even, and f3 odd, as the opposite case is gauge

equivalent. It then follows from (3.96) and (3.97) that 2ψ = 2rπ, with different values of

r ∈ Z giving gauge equivalent data by Proposition 2.4.6. This means that the matching

equations (3.96) and (3.97) are reduced to the cases of finding solutions to either of the

following equations:

(−1)n (κ′sc κ(x)− dc κ(x)) + 2κ′nc (x) = 0, (3.99)

or

(−1)nκ′ (sc κ(x) + nc κ(x))− 2dc κ(x) = 0, (3.100)

where we have relabelled x ≡ Dµ0/4. We must check for which values of x, κ, n these

equations have solutions, if any exist at all. In appeal to Corollary 3.5.9, we expect there

to be a unique family of solutions. We shall proceed to analyse existence or non-existence

of solutions to (3.99) and (3.100).

Note that each of the elliptic functions Φi have poles at x = rK, for odd integers r, where

K(κ) ∈ R is the complete elliptic integral of the first kind

K(κ) =

∫ π
2

0

1√
1− κ2 sin θ

dθ.

It is possible, due to the residues of the individual functions, that rK could be a solution

to (3.99) or (3.100). However, an important property of Nahm data is that it needs to be

bounded and continuous, and hence pole-free across all of Ip. Therefore, we can throw

out any solutions which lead to the arguments Ds attaining poles for some s ∈ I1. A
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straightforward calculation reveals that the only values of x = Dµ0/4 which lead to pole-

free data are found in −K < x < K, hence we shall fix our attention to this interval

only.

Lemma 3.6.1 There are no solutions to equation (3.100) in the range −K < x < K, for

all κ, n.

Proof

Multiplying through by cn κ(x), and rearranging using elliptic function identities, (3.100)

implies

(
4− 3κ′2

)
sn 2

κ(x) + 2κ′2sn κ(x) + κ′2 − 4 = 0.

Since κ′ ∈ [0, 1], we have 4− 3κ′2 > 0, so that this is solved if and only if

sn κ(x) = 1, or sn κ(x) =
κ′2 − 4

4− 3κ′2
. (3.101)

Note also
κ′2 − 4

4− 3κ′2
≤ 3κ′2 − 4

4− 3κ′2
= −1.

As sn κ(x) ∈ [−1, 1], this means (3.101) is satisfied only when sn κ(x) = ±1, that is,

when x = K(κ) (modulo 4K), which is not in the interval (−K,K). 2

As stipulated above, we may only look for solutions in the interval (−K,K). Thus, by

Lemma 3.6.1, the only remaining case to consider is (3.99), which corresponds to

f1(s) = −κ′nc κ(s), f2(s) = dc κ(s), f3(s) = κ′sc κ(s).

Solutions to (3.99)

In this section, we consider the equation (3.99). First we shall show that no solutions exist

when n = 1 (mod 2), and then show existence of a unique family of solutions in the case
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n = 0 (mod 2) within the required range. Consider the functions

F1(x, κ) = κ′sc κ(x)− dc κ(x), (3.102)

F2(x, κ) = 2κ′nc κ(x). (3.103)

It is clear that for−K < x < K, the equation F1(x, κ) = F2(x, κ) has no solutions, since

we have

F1(x, κ) ≤ −1 < 2κ′ ≤ F2(x, κ) ∀ κ ∈ [0, 1], −K(κ) < x < K(κ).

This rules out the case n = 1, and hence we are only left with the case n = 0, for which

we are interested in finding solutions to F1 = −F2. We shall soon show that there exists a

subset U ⊂ [0, 1] such that there exist solutions x ∈ (−K,K) to F1(x, κ) = F2(x, κ) for

all κ ∈ U . However, in order for these solutions to yield Nahm data, they must solve not

only this equation, but the complete set of matching conditions. Other than the equation

we’re considering, the other dependent is (3.95), which in our situation gives the condition

xnc κ(x) > 0. (3.104)

As nc κ(x) > 0 for all −K < x < K, we easily see that (3.104) is satisfied only if

0 < x < K. This all leads to the following.

Proposition 3.6.2 For 0 < x < K, there exists a unique solution to the equation

F1(x, κ) = −F2(x, κ) if and only if κ ∈
(√

3
2
, 1
)

.

Proof

By rearranging and squaring, and using elliptic function identities, it is straightforward to

see that any solution to F1 = −F2 necessarily satisfies

sn 2
κ(x) + 4κ′2sn κ(x) + 4κ′2 − 1 = 0,

which is solved if and only if

sn κ(x) = −1, or sn κ(x) = 1− 4κ′2 = 4κ2 − 3. (3.105)



Chapter 3. Symmetric calorons 107

As sn κ(x) ∈ (0, 1) for all x ∈ (0, K), and κ ∈ [0, 1], (3.105) is solved in this range only

if κ ∈
(√

3
2
, 1
)

.

Conversely, let κ ∈
(√

3
2
, 1
)

, and consider the function F (x, κ) = F1(x, κ) + F2(x, κ).

As κ ∈
(√

3
2
, 1
)

, we have κ′ ∈
(
0, 1

2

)
, thus

F (0, κ) = 2κ′ − 1 < 0. (3.106)

Also, F has a simple pole with residue 2 at x = K, so F (K,κ) = ∞ > 0. As F is

continuous on (0, K), combining this with (3.106), the intermediate value theorem says

that there exists x0 ∈ (0, K) such that F (x0, κ) = 0, that is F1(x0, κ) = −F2(x0, κ).

Moreover, this solution x0 will be unique as both F ′1 > 0 and F ′2 > 0 for all 0 < x < K,

and hence the same for F . 2

The invariant Nahm data

Following the analysis of the matching conditions in the previous section, we may

summarise our results in the theorem below.

Theorem 3.6.3 There is a four-parameter family of ρ(C1,ϕ
4 )-symmetric, charge k = 2

caloron Nahm data, given by the Nahm matrices (3.88) on I1 with the replacements

f1 = −κ′nc κ, f2 = dc κ, f3 = κ′sc κ, D = Dκ, (3.107)

which determine the Nahm matrices on I2 via (3.82) using the gauge transformation

(3.94) with ψ = 0. The matching data are given by (3.89) and (3.83), with the

replacements

u =

√
2Dκκ′nc

(
Dκ

µ0

4

)
, w =

√
2Dκκ′nc

(
Dκ

µ0

4

)
eı(φ+π). (3.108)
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The parameter Dκ mentioned in theorem 3.6.3is given implicitly by the solution to the

equation

κ′sc κ

(
Dκ

µ0

4

)
− dc κ

(
Dκ

µ0

4

)
+ 2κ′nc κ

(
Dκ

µ0

4

)
= 0,

which we know exists and is unique for all κ ∈
(√

3
2
, 1
)

by Proposition 3.6.2. As a

consistency check with the result of Corollary 3.5.9, we will now look for evidence that

our Nahm data coincides with the corresponding monad matrices. Firstly, we see that the

free parameters θ, φ, α, and κ take values in a diffeomorphic space to (C∗)2, which agrees

with Corollary 3.5.9. A better indicator is to consider the values that | detB| can take, as

this is a gauge invariant quantity. By the construction (2.53) and (2.65), we may identify

B = T 2
1 (0)+ıT 3

1 (0), and we see from (3.88) and (3.107) that | detB| ∼ Dκ. The solution

(3.49) tells us that for the monads, | detB| = |β|, which can take all possible values in

R+. We want this to be the case for Dκ. We know from the proof of Proposition 3.6.2

that Dκ necessarily satisfies (3.105), with x ≡ Dκµ0/4. Note that K(1) = ∞, and when

κ ≈ 1, we have the asymptotic formula [1]

sn κ(x) ≈ tanh(x) +
κ′2

4

(
tanh(x)− xsech2(x)

)
.

Therefore, when κ ≈ 1, Dκ must satisfy

4− 4 tanh
(
Dκ

µ0

4

)
4 + tanh

(
Dκ

µ0

4

)
−Dκ

µ0

4
sech2

(
Dκ

µ0

4

) = κ′2. (3.109)

The solutions Dκ to this equation satisfy Dκ −→ ∞ as κ′ −→ 0. Hence, the eigenvalues

of T 2
1 +ıT 3

1 diverge as κ −→ 1, which agrees with the associated symmetric monad matrix

B, as expected.

Up to gauge equivalence, the parameters for this Nahm data are θ ∈ R /4πZ , φ ∈ R /2πZ ,

α ∈ R, and κ ∈
(√

3
2
, 1
)

which determines Dκ ∈ (0, K(κ)) in line with Proposition

3.6.2. These parameters make up the fixed-point moduli space C2
2(ρ(C1,~ϕ

4 )) ∼= (C∗)2, in

agreement with Corollary 3.5.9. We call this solution space ‘oscillating’ as it is much like

the crossed solution, but the crossing of the monopole constituents is shifted temporally

by half the period.
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3.7 Summary and open problems

We have introduced the notion of symmetric calorons, with particular emphasis on the

moduli spaces with equal monopole masses and charges. This emphasis is due to the

incorporation of the rotation map, which is an automorphic isometry of these moduli

spaces. To this end, we have proven various necessary conditions for the existence of

symmetric calorons, particularly in the case of cyclic groups of order Nn involving the

rotation map. When n = k, we have provided a classification of fixed point sets of these

cyclic groups of order Nk, in the moduli space CNk of SU(N) calorons with all monopole

masses and charges equal to µ0/N and k respectively. Our work has made use of the

monad matrix data, an approach which to date has not been utilised before in this context.

Additionally, in the caseN = k = 2, we have derived a new solution to Nahm’s equations

and the matching conditions for one family of these symmetric calorons, and in doing so,

this has completed the list of rank 2, charge 2 Nahm data with these symmetries.

We suspect that a similar result may be obtained analogously for Nahm data of charge 2

in the general case of SU(N), but the hard work is in solving the corresponding matching

conditions. Other generalisations would be to also consider values of k > 2. As we have

already seen in section 2.4.2, increasing the charge of the caloron increases the complexity

of solving Nahm’s equations. For this reason, even describing the Nahm data for k > 2

in the case N = 2 is tricky. In [116], Sutcliffe gives an ansatz for monopole Nahm data

with Ck symmetry, and this may be able to be exploited and adapted for our purposes to

solve (3.79) in general. However, it still remains to solve the matching conditions, and

derive the gauge transformations satisfying (3.81) in order to have a full set of ρ(Cj,~ϕ
Nk)-

symmetric caloron Nahm data.

Regarding the main classification result (Theorem 3.5.8), it still remains open whether this

result can be interpreted as a classification of the moduli spaces of calorons. We know that

this is certainly true in the case N = 2, as expressed by Corollary 3.5.9, since the Nahm
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transform is bijective in this case. An interesting observation is that the geometry of the

fixed point sets is not dependent on k, indeed they are all equal to (C∗)2, and it would be

interesting if this is the case for smaller cyclic groups with n < k. Going even further

into generalisation, using the recent work by Cherkis and Hurtubise [26] on monads for

Taub-NUT instantons, the next step in studying these symmetries would be to try and

reproduce these results in the case of Taub-NUT instantons.

Another question that is left open is how these calorons relate to other solitons, for

example, their large parameter limits (for example as considered in [49, 75, 122]). In

particular, in the next chapter we shall discuss how calorons are related to skyrmions, and

it would be interesting to see how these calorons fit into that picture. In line with the

work in [51], one expects some of these calorons to provide approximations to symmetric

periodic skyrmions by taking holonomies along a line in R3. However, in order to do

this properly would require the implementation of the Nahm transform on the Nahm data

constructed, which we are currently working on with some collaborators.

Finally, a broader understanding of which symmetry groups yield symmetric calorons is

still largely unknown, and in particular, what the full symmetry groups16 of the calorons

from Theorem 3.5.8 are for each N, k. Unfortunately, the methods involving the monad

matrices, presented in this chapter, can only divulge information in the case where

the Euclidean actions fix the x1 axis, and not generically, and so the only remaining

symmetries that may be investigated in this manner are the parity transformation and

dihedral symmetries.

16That is, stabiliser subgroup of S.
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Chapter 4

Calorons and skyrmions

1

4.1 Skyrme models

An SU(2) Skyrme model is a 3-dimensional field theory, concerned with an SU(2)-

valued function U : X −→ SU(2) called the Skyrme field, where (X, η) is a riemannian

3-manifold. The simplest form of a static energy for the Skyrme model is given by

E =

∫
X

(
c0|U−1dU |2 + c1|U−1dU ∧ U−1dU |2

)
Volη, (4.1)

where 〈ζ, η〉Volη = −tr (ζ ∧?3η), with ?3 denoting the Hodge-star on (X, η), c1, c2 ∈ R+

are arbitrary constants, and Volη is a choice of volume form on X . The most commonly

studied example of a Skyrme model is the case where X = R3 with the usual euclidean

flat metric, and this is the case that we shall consider. Various generalisations of Skyrme

models can be considered by including other terms, for example the sextic term and the

1Since the submission of this thesis, the results of this chapter have been written up in the author’s

preprint [29], which also contains additional results.
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‘pion mass’ term. Other terms are also considered when dealing with higher rank Skyrme

fields (e.g. SU(N), for N > 2).

The SU(2) Skyrme model described by the energy functional (4.1) aims to describe

nuclear physics, and in particular, is a theory of pions. The pion fields are manifested

as a vector valued field ~π : R3 −→ R3 seen in the Skyrme field’s SU(2) expansion:

U(~x) = σ(~x)1 + ı~π(~x) · ~σ. (4.2)

The function σ : R3 −→ R is a scalar field which has less physical significance than the

pion fields.

4.1.1 Skyrmions

Critical points of the energy functional (4.1) are given by U : R3 −→ SU(2) satisfying

the Skyrme field equation∑
i,j

∂i
(
c0U

−1∂iU + c1

[
U−1∂jU, [U

−1∂iU,U
−1∂jU ]

])
= 0. (4.3)

The boundary condition U −→ const on S2
∞ is usually imposed, and since E is invariant

under left multiplication of U by constant SU(2) matrices, the stricter boundary condition

U −→ 1 as |~x| −→ ∞ may be chosen without loss of generality.2 Whilst this boundary

condition alone is not sufficient for finite energy, it is suspected that the condition of finite

energy implies this boundary condition, but this is yet to be proven. Critical points with

this boundary condition are called skyrmions. The boundary condition implies that a

skyrmion descends to a map U : S3 −→ SU(2), which is characterised by an integer

degree B ∈ π1(SU(2)) ∼= Z, called the Skyrme charge, and is physically identified as the

baryon number. This has the integral formula

B =
1

24π2

∫
tr (U−1dU ∧ U−1dU ∧ U−1dU). (4.4)

2Another reason for this boundary condition is for consistency with an extended Skyrme model which

includes the ‘mass term’ tr (1− U)d3x in the energy.
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The Skyrme field equation (4.3) is a non-linear second order differential equation for U ,

and is highly ‘non-integrable’, at least in the sense that writing down exact solutions is

close to impossible. In fact, besides in the case of |B| = 1 [37, 38], it is still unknown

in general whether any solutions exist within each baryon number homotopy class. There

has however been significant work in constructing numerical solutions, whose margins

of error are negligible enough that there is a high likelihood that the solutions do exist,

and it is expected that there are solutions for all B ∈ Z. The Faddeev bound derived in

the introduction as (1.20) in the context of the functional (4.1) may be straightforwardly

shown to be

ES ≥ 48π2√c0c1|B|. (4.5)

For the same reason as outlined in the introduction, the Skyrme model is not a BPS theory,

that is, its critical points cannot attain the energy bound.

4.1.2 Symmetries

The symmetries of the Skyrme energy are given by the euclidean isometries of R3, and the

‘chiral symmetry group’ given by the isometries of SU(2) ∼= S3, namely O(4). However,

the boundary condition U −→ 1 breaks this symmetry to O(3). The euclidean group

E(3) acts via

R · U = U ◦R, (4.6)

for R : R3 −→ R3. The chiral symmetry group O(3) is generated by the SO(3) subgroup

of iso-rotations, and the parity transformation σ̃ ∈ O(3), given by the matrix

σ̃ =


−1 0 0

0 −1 0

0 0 −1

 .



Chapter 4. Calorons and skyrmions 114

The iso-rotations act as

O · U = OUO−1, (4.7)

where O ∈ SU(2) is a choice of preimage under the double covering (3.17) of the element

O ∈ SO(3), and

σ̃ · U = U−1. (4.8)

A Skyrme field which is invariant under the action (4.6) for all R ∈ H ⊂ O(3),

modulo chiral symmetries (4.7)-(4.8), is known as H-symmetric. Much of the success

in numerically constructing skyrmions has been with regards to finding the symmetric

solutions, for example in [10, 13]. These symmetric examples are important within their

physical interpretations, especially those which appear as clusters of symmetric examples,

seen in [40]. Symmetry is also an important consideration when it comes to quantization.

4.1.3 The Atiyah-Manton-Sutcliffe construction

In 1989, Atiyah and Manton [8] proposed a method of approximating skyrmions by using

instantons on R4. The candidate for the Skyrme field is taken to be the holonomy of the

gauge field along all lines in one of the directions in R4 (which may be arbitrarily chosen

to be x0), namely

U(~x) = P exp

(
−
∫ ∞
−∞

A0(z, ~x)dz

)
, (4.9)

where P denotes path ordering. This is not an unreasonable consideration. Firstly, since

A0 is su(2)-valued, the holonomy is a map U : R3 −→ SU(2). Furthermore, since

x0 = ±∞ correspond to the same point in S4, namely the point at infinity in R4, this

means that the holonomy (4.9) is taken along a closed loop in S4, and so any gauge

transformation g : S4 −→ SU(2) has the effect of transforming U via conjugation by

g(∞) ∈ SU(2), which leaves the energy invariant. Such a transformation corresponds
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to an iso-rotation (4.7), as introduced in the previous section. U also satisfies the correct

boundary conditions to be a Skyrme field since in the limit |~x| −→ ∞, the holonomy

(4.9) is taken around a constant loop (namely at the point ∞), and so U −→ 1 in this

limit. The topological structure of instantons also translates over to the Skyrme field: if

A has instanton number k, this corresponds directly to U having baryon number B = k.

The Skyrme fields U that are obtained from instantons on R4 via this construction

are certainly not exact solutions to the Skyrme field equation (4.3), nevertheless, as

approximations to skyrmions, this construction has proven to be remarkably good.

Indeed, when compared to the numerical solutions, the energies of the instanton

Skyrme fields typically lie within 1% of the ‘true energy’ given by the numerical

solutions. Moreover, many of the symmetric examples of skyrmions that have been

found numerically have been reproduced and confirmed by this instanton construction

[8, 76, 81, 111, 117]. Another major benefit and motivation of this approximation scheme

is in studying low-energy interactions between nucleons. To do this within the Skyrme

model, one needs to be able to choose a finite-dimensional manifold of Skyrme fields

(with physically relevant coordinates). Since charge k instantons have a moduli space

Ik, which is known to be an 8k-dimensional connected manifold, this approximation

generates a connected (8k − 1)-dimensional manifold of approximate charge k Skyrme

fields, given by Ik /R . We additionally remark that modifications to this approximation

have also been considered for more generalised Skyrme models [5, 74], skyrmions defined

on different manifolds [80], and skyrmions from generalisations of instantons [35, 103].

For quite some time, nobody had been able to provide a good explanation as to why

this construction appeared to approximate skyrmions so well. It wasn’t until 2010 that

Sutcliffe provided the answer [113]. The key idea was inspired by a Skyrme model

introduced by Sakai and Sugimoto [108] in the context of holographic QCD. This Sutcliffe

construction utilises a ‘mode expansion’ of the instanton gauge field in the x0-direction,

by expanding the fields in terms of a complete, orthonormal basis of L2(R) – the square
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integrable functions on R. The correct choice of functions are the Hermite functions

ψn : R −→ R, n ∈ N, defined in [1] by

ψn(x) =
(−1)n√
n!2n
√
π
e
x2

2
dn

dxn
e−x

2

. (4.10)

In a gauge where Aµ −→ 0 as |x0| −→ ∞, we may perform a subsequent gauge

transformation given by the inverse of

Ω(x0, ~x) = P exp

(
−
∫ x0

−∞
A0(z, ~x)dz

)
. (4.11)

Under this, the instanton A transforms such that A0 = 0, and the remaining components

satisfy the boundary condition Aj −→ U−1∂jU as x0 −→ +∞, where U(~x) = Ω(∞, ~x)

is the holonomy. These components may be expanded in terms of the Hermite functions

as

Aj = U−1∂jUψ+(x0) +
∞∑
n=0

V n
j (~x)ψn(x0), (4.12)

where ψ+ : R −→ R is an additional basis function introduced in order to include the

holonomy into the expansion. This is defined as

ψ+(x0) =
1√
2
√
π

∫ x0

−∞
ψ0(z)dz =

1

2
+

1√
π

∫ x0/
√

2

0

e−w
2

dw, (4.13)

and the normalisation given guarantees that ψ(−∞) = 0, and ψ(∞) = 1. The additional

fields that appear in the expansion (4.12) are the one-forms V n, which physically are

interpreted as (an infinite number of) vector mesons.

The emergence of the Skyrme model is made apparent when the vector mesons are

artificially set to be 0. Recall that the Yang-Mills action for the connection DA is given

by

SYM = −
∫

tr (FA ∧ ?4F
A),

where ?4 denotes the Hodge-star on R4. After calculating the curvature FA of A with

respect to the expansion (4.12) in the case that V n = 0, one may perform the integration

−1

2

∫ (∫ ∞
−∞

tr (FµνFµν) dx
0

)
d3x
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corresponding to the contribution of the Yang-Mills lagrangian integrated along the x0-

axis. The resulting integral over R3 is precisely the energy for a static Skyrme model (4.1),

with the coefficients c0 and c1 determined explicitly by integrating the Hermite function

ψ+ (4.13):

c0 =

∫ ∞
−∞

(
dψ+

dx0

)2

dx0 =
1

2
√
π
, c1 =

∫ ∞
−∞

ψ2
+(1− ψ+)2dx0 ≈ 0.099. (4.14)

Remark 4.1.1 The inclusion of the vector mesons in the expansion (4.12) has the

fortunate advantage that it makes the derived Skyrme model a BPS theory, and even

the inclusion of a finite number reduces the binding energies, leading to more realistic

theories [114]. The unfortunate pay-off is that their inclusion is a numerically taxing

problem, although some important progress has been made in this area [92].

4.1.4 Approximating skyrmions with calorons

Very soon after Atiyah and Manton suggested approximating Skyrme fields with

instantons (and prior to Sutcliffe’s construction), some attempts to compare calorons to

Skyrmions were made by calculating caloron holonomies in the S1 direction [36, 96].

This again showed to be a good approximation of skyrmions. However, there is a problem

with using calorons to approximate skyrmions in this way. Apart from the spherically

symmetric cases, performing a gauge transformation of the caloron is not a symmetry

of the resulting Skyrme field. In fact, this gauge variance is a general feature of trying

to construct skyrmions from instanton holonomies around circles, for example as seen

in [80]. As we shall see in the next section, reassessing this work in light of Sutcliffe’s

model shows that this problem of missing gauge invariance is no longer apparent when we

incorporate an SU(2) gauge field into the model. This means that in reality, the authors

of [36, 96] should have been investigating gauged skyrmions.
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Other interesting applications of the Atiyah-Manton construction involving calorons have

been considered in [51], where caloron holonomies have been taken along a line in R3,

resulting in periodic skyrmions, also known as Skyrme chains. This in particular shed light

on Skyrme chains with symmetries reminiscent of those considered in section 3.6.3, and

this suggests that the calorons in Corollary 3.5.9 provide a systematic way of obtaining

such symmetric skyrmions.

4.2 Skyrme models from periodic Yang-Mills

In line with our conventions throughout this thesis, let (t, ~x) be coordinates on S1 × R3

with the flat product metric, where we identify t ∼ t + β, for some β > 0.3 Let A be an

SU(2) connection one form on S1 × R3 with components Aµ satisfying

Aµ(t+ β, ~x) = Aµ(t, ~x). (4.15)

The parallel transport operator of A along S1 from −β/2 to t is

Ω(t, ~x) = P exp

(
−
∫ t

−β
2

At(z, ~x)dz

)
, (4.16)

where P denotes path-ordering. We may choose a gauge such that ∂tAt = 0, and in this

gauge (4.16) becomes

Ω(t, ~x) = exp (− (t+ β/2)At(~x)) . (4.17)

The function U : R3 −→ SU(2) defined by U(~x) = Ω(β/2, ~x), that is, the holonomy, is

the candidate for a Skyrme field. This transforms via gauge transformations of the caloron

as

U(~x) 7→ g(β/2, ~x)U(~x)g(−β/2, ~x)−1,

and when g is periodic, this hence defines a gauge transformation g(~x) := g(β/2, ~x) on

R3.
3For notational convenience, we have adopted the notation β = 2π/µ0 for the period of a caloron.
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We may further transform the connection A with a non-periodic gauge transformation,

given by the inverse of the parallel transport operator:

A 7→ Ω−1AΩ + Ω−1dΩ. (4.18)

The transformed gauge potential satisfies

At = 0, (4.19)

Aj(t+ β/2, ~x) = U−1Aj(t− β/2, ~x)U + U−1∂jU, (4.20)

that is, the R3 components are only periodic up to a gauge transformation by U−1. Now

consider an SU(2) connection one form B on R3 defined via the transformed connection

one-form A as Bj(~x) = Aj(−β/2, ~x). Let DB = d + B be the connection covariant

derivative defined by B. Then the boundary conditions above for the components Aj

imply

Aj(β/2, ~x)− Aj(−β/2, ~x) = U−1DB
j U,

∂t |t=β/2Aj = U−1∂t |t=−β/2AjU.
(4.21)

We wish to perform a mode expansion of Aj in an analogous way to (4.12), in such a way

that respects these boundary conditions. To do this, we shall consider a complete set of

L2-orthogonal functions {ϕ+, ϕn : n ∈ N}, which span the space L2[−β/2, β/2], such

that

ϕ+(−β/2) = 0, ϕ+(β/2) = 1, and ϕn(±β/2) = 0, ∀ n ∈ N.

The function ϕ+ is to be defined as

ϕ+(t) =
1

N

∫ t

−β
2

ϕ0(s)ds, (4.22)

where N is chosen in such a way that ϕ+(β/2) = 1.

There are various choices that we can make here for the functions ϕ. One obvious choice

would be for the mode expansion to be a Fourier expansion, that is, the basis is that of
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the trigonometric functions (−1)n cos((n + 1)πx/β). Another choice is to consider the

ultra-spherical functions φ(α,β)
n defined in [1] by4

φ(α,β)
n (x) = B(α,β)

n

(
1−

(
2x

β

)2
)α

Cα
n

(
2x

β

)
, (4.23)

for all α > −1
2
, where

B(α,β)
n =

√
2

β

√
n!(n+ 2α + 1

2
)Γ(2α + 1

2
)2

π2−4αΓ(n+ 4α + 1)
, α 6= −1

4
, B

(− 1
4
,β)

n =
n√
πβ

,

Cα
n (x) =

(−1)n

2nn!

Γ(2α + 1)Γ(n+ 4α + 1)

Γ(4α + 1)Γ(n+ 2α + 1)
(1− x2)−2α d

n

dxn
(1− x2)n+2α,

with Γ the usual gamma function

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Ultimately we shall only be considering the ultra-spherical functions in our constructions,

and not the Fourier expansion, for reasons outlined later in section 4.2.2.

Expanding Aj in terms of any of these choices of functions, we obtain

Aj(t, ~x) = ϕ+(t)Lj(~x) +Bj(~x) +
∞∑
n=0

V n
j (~x)ϕn(t), (4.24)

where the one form L = U−1DBU is the left-invariant Maurer-Cartan current on R3,

and the fields V n represent an infinite tower of vector mesons, in analogy to Sutcliffe’s

expansion of instantons (4.12). In general, the one-forms V n may be subject to some

additional constraints in order for (4.21) to hold. If we set V n = 0 for all n, then the

expanded gauge field (4.24) certainly satisfies the boundary conditions (4.21) regardless

of the choice of basis. The curvature FA of A may be easily calculated in this basis in the

case where V n = 0 as

FA = − d

dt
ϕ+(t)L ∧ dt+ (1− ϕ+(t))

(
FB − ϕ+(t)L ∧ L

)
+ ϕ+(t)U−1FBU, (4.25)

4For the purposes of later simplicity, we have changed the conventions in [1] as α 7→ 2α+ 1
2 .
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where FB = dB +B ∧B is the curvature of B.

Recall that the Yang-Mills action for the connection DA is given by

SYM = −
∫

tr (FA ∧ ?4F
A),

where ?4 denotes the Hodge-star on S1 × R3. Using (4.25), and integrating over the

interval [−β/2, β/2], we may write an energy functional over R3 as the contribution of

the Yang-Mills lagrangian integrated over this interval:

E =

∫ (
λ0|L|2 + λ1|L ∧ L|2 + λ2|FB|2 + λ3〈FB, U−1FBU〉 (4.26)

−λ4

〈
FB, L ∧ L

〉
− λ5

〈
U−1FBU,L ∧ L

〉)
d3x.

The coefficients λp are determined by the ϕ+-dependent integrals

λ0 =
∫ β

2

−β
2

(
dϕ+

dt

)2

dt, λ1 =
∫ β

2

−β
2

(1− ϕ+)2 ϕ2
+dt,

λ2 =
∫ β

2

−β
2

(
1− 2ϕ+ + 2ϕ2

+

)
dt, λ3 = 2

∫ β
2

−β
2

(1− ϕ+)ϕ+dt,

λ4 = 2
∫ β

2

−β
2

(1− ϕ+)2 ϕ+dt, λ5 = 2
∫ β

2

−β
2

(1− ϕ+)ϕ2
+dt.

(4.27)

The energy (4.26) describes an SU(2) Skyrme model on R3 coupled to a gauge field

B, that is, a gauged Skyrme model. Moreover, the energy is invariant under gauge

transformations induced by transforming the periodic connection DA.

There have been various previous considerations of static gauged Skyrme models [4, 16,

17, 102]. In the cases where the gauge transformations take values in SU(2) [4, 16],

the terms in the energies considered are |L|2, |L ∧ L|2, and |F |2. The model (4.26) that

we have derived contains additional ‘cross terms’ which have not been considered in the

context of of any gauged Skyrme model before, but nevertheless are gauge-invariant, and

seem to be natural terms to include due to their appearance from this construction.
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4.2.1 A family of gauged Skyrme energies

Recall the ultraspherical functions φ(α,β)
n defined for α > −1/2 and β > 0 by (4.23). We

shall now consider the expansion (4.24) in terms of these functions. Since we are only

interested at this time in the case where V n = 0, the only function that contributes to the

energy (4.26) is the additional function φ(α,β)
+ , given by

φ
(α,β)
+ (t) =

2
1
2
−2αΓ

(
α + 3

2

)
Γ (α + 1)

√
(2α + 1

2
)β

√
Γ(4α + 1)

Γ(2α + 1
2
)2

∫ t

−β
2

φ
(α,β)
0 (z)dz

=
2t

β

Γ(α + 3
2
)

√
πΓ(α + 1)

2F1

(
1

2
,−α;

3

2
;
4t2

β2

)
+

1

2
. (4.28)

Here 2F1(a, b; c; z) denotes the hypergeometric function5, and the normalisation has been

chosen so that φ(α,β)
+ (−β/2) = 0, and φ

(α,β)
+ (β/2) = 1. These identities may be

straightforwardly checked by utilising the integral formula for the ‘beta function’

Γ(z)Γ(w)

Γ(z + w)
= 2

∫ π
2

0

sin2z−1(x) cos2w−1(x)dx, for <(z),<(w) > 0.

The hypergeometric function (4.28) has a power series expansion given by (see [1])

φ
(α,1)
+ (t) =

1

2
+K

∞∑
k=0

1

2k + 1

(−1)k

k!

(
k−1∏
r=0

(α− r)

)
(2t)2k+1, (4.29)

where K is a constant dependent only on α, which is well-defined when α > −1
2
. Letting

xk =
1

2k + 1

(−1)k

k!

(
k−1∏
r=0

(α− r)

)
(2t)2k+1,

note that

lim
k−→∞

∣∣∣∣xk+1

xk

∣∣∣∣ = 4|t|2.

Therefore this series converges for all |t| < 1
2
. Since φ(α,β)

+ (t) = φ
(α,1)
+ (t/β), this means

the function φ(α,β)
+ is well-defined, and clearly continuous on [−1

2
, 1

2
], for all α > −1

2
, and

β > 0.
5See [1].
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The next step is to compute the coefficients λp appearing in the energy (4.26). These are

determined by the formulae (4.27) and require the evaluation of the integrals

Ir(α) =

∫ 1
2

− 1
2

(
φ

(α,1)
+ (t)

)r
dt, (4.30)

for all r = 0, . . . , 4. For r = 0, 1, the integrals Ir are easy to calculate, namely

I0(α) = 1, I1(α) =
1

2
. (4.31)

Additionally, for r = 3, we can use the symmetry of the interval [−1/2, 1/2], and the fact

that the non-constant term of (4.28) is an odd function, to obtain

I3(α) =
3

2
I2(α)− 1

4
. (4.32)

Evaluating Ir for r = 2, 4 is a harder problem, and it seems that for r = 4 it cannot

even be done analytically6 in general. Nevertheless, we may use (4.26) and (4.27), and

formulate a family of gauged Skyrme energies

Eα,β =

∫ (
κ0

β
|L|2 +

β

2
κ1|L ∧ L|2 + β|FB|2 (4.33)

+βκ2

(〈
U−1FBU, FB

〉
− 1

2

〈
FB + U−1FBU,L ∧ L

〉
− |FB|2

))
d3x,

where we have introduced the notation

κ0(α) =
2√
π

Γ(2α + 1)Γ(α + 3
2
)2

Γ(2α + 3
2
)Γ(α + 1)2

, (4.34)

κ1(α) = 1 + 2I4 − 4I2, (4.35)

κ2(α) = 1− 2I2. (4.36)

As already stipulated, calculating κ1 and κ2 explicitly is generally not possible, and

numerical integration techniques must be employed. In the case that α = m ∈ Z, the

6That is, cannot be expressed in closed form in terms of elementary functions of α. A recently calculated

formula for I2 appears in [29].
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hypergeometric function (4.28) takes the form of a degree 2m+1 polynomial with rational

coefficients:

φ
(m,β)
+ (t) =

1

2
+

Γ(m+ 3
2
)

m!
√
π

m∑
k=0

m
k

 (−1)k

(2k + 1)

(
2t

β

)2k+1

. (4.37)

In these special cases, the coupling constants κp are rational, and may be explicitly

calculated for any m ∈ Z. However, as can be seen in table 4.1, these coefficients grow

to be dramatically unwieldy as m increases.

m 0 1 2 3 4

κ0 1 6/5 10/7 700/429 4410/2431

κ1 1/15 243/5005 38750/969969 506611
14593293

5496461712
176684241305

κ2 1/3 9/35 50/231 245/1287 7938
46189

Table 4.1: The coupling coefficients in the energy Em,β for m = 0, 1, 2, 3, 4.

4.2.2 The instanton/un-gauged limit

Expanding the caloron gauge field (4.24) in terms of the complete, orthonormal basis of

L2([−β/2, β/2]), given by the ultra-spherical functions, has revealed a family of gauged

Skyrme energies parameterised by the period β > 0 of the caloron, and the ultraspherical

parameter α > −1/2. Other more complicated models may also be obtained by including

some of the vector mesons V n in (4.24), resulting in extensions to the family of energies

we already have. This choice of functions already has an advantage over considering

a different basis of L2([−β/2, β/2]), for example the trigonometric functions, since we

may vary the parameter α to explore different properties of the energy (4.33). Another

advantage of this choice is the relationship between the ultraspherical functions and the

Hermite functions (4.10) and (4.13). Indeed, consider a limit where α, β −→ ∞, such
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that α/β2 −→ 1/8. In this limit, the weight function for the ultraspherical functions

satisfies (
1−

(
2x

β

)2
)α

−→ e−
x2

2 . (4.38)

Also, for all z > 0 sufficiently large, we have [1] that for all a > 0, b ∈ R

Γ(az + b) ∼
√

2πe−az(az)az+b−
1
2 . (4.39)

From the formula (4.23), and using both (4.38) and (4.39), we therefore have that for

α, β > 0 large:

φ(α,β)
n (x) ∼ (−1)n

√
2

3
2
−2n

βn!
√
παn−

1
2

(
1−

(
2x

β

)2
)−α(

β

2

)n
dn

dxn

(
1−

(
2x

β

)2
)2α

= (−1)n

√
(β2/8α)n−

1
2

n!2n
√
π

(
1−

(
2x

β

)2
)−α

dn

dxn

(
1−

(
2x

β

)2
)2α

α,β−→∞−−−−−→ (−1)n√
n!2n
√
π
e
x2

2
dn

dxn
e−x

2

,

which is the formula (4.10) for the Hermite functions ψn. As ψ+ and φ(α,β)
+ are defined

as normalised integrals (over R and [−β/2, β/2]) of ψ0 and φ(α,β)
0 respectively, it hence

follows that the limit φ(α,β)
+ −→ ψ+ also holds.

The main consequence of this limiting behaviour is that any gauged Skyrme model

derived from the ultraspherical functions in the mode expansion (4.24) of a caloron (with

any number of vector mesons included) reduces, in a particular limit as α, β −→ ∞,

to the Sutcliffe model derived from an instanton mode expansion (4.12), with the same

number of vector mesons included. In particular, in the case that V n = 0, we have that

the energy for an ordinary Skyrme model is made manifest in this limit as a part of the

gauged Skyrme energy (4.33). Since the limit β −→ ∞ corresponds to an infinitely

periodic caloron, which may in many cases be recognised as an instanton on R4, we shall

hence call the limit α, β −→ ∞ with α/β2 −→ 1/8 the instanton or un-gauged limit of

the gauged Skyrme energy (4.33).
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4.2.3 Scaling and parameter fixing

It is straightforward to show that under a re-scaling of the spatial coordinates via ~x 7→ 1
β
~x,

the energy (4.33) transforms as

Eα,β 7→
1

β3
Eα,1.

What this means is that as far as the functional Eα,β is concerned, the parameter β only

affects it up to a re-scaling of the energy and length units. Therefore, in order to make

things simpler, we may without loss of generality choose to set β = 1, which we shall do

from now on. For notational brevity, we shall also introduce the notation Eα = Eα,1 and

henceforth consider the energies

Eα =

∫ (
κ0|L|2 +

κ1

2
|L ∧ L|2 + |FB|2 (4.40)

+κ2

(〈
U−1FBU, FB

〉
− 1

2

〈
FB + U−1FBU,L ∧ L

〉
− |FB|2

))
d3x.

4.3 Topological charge and energy bounds

Recall that the topological charge for a Yang-Mills field is given by the formula (1.7):

QYM =
1

8π2

∫
tr
(
FA ∧ FA

)
.

Similarly to the energy, we may calculate the topological charge for our gauged Skyrme

model (4.33) by inserting the expansion (4.24) with V n = 0 into (1.7) and integrating

over [−β/2, β/2]. We hence obtain the formula

B =
1

8π2

∫
tr

(
1

3
L ∧ L ∧ L− L ∧

(
FB + U−1FBU

))
, (4.41)

which is precisely the usual topological charge for a gauged Skyrme model [4, 16, 102],

and reduces to the topological charge (4.4) for the ordinary Skyrme model when B = 0.

The Yang-Mills topological bound (1.6) SYM ≥ 8π2|QYM | may be applied in the context
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of our gauged Skyrme models, and we immediately have the energy bound

Eα ≥ 8π2|B| (4.42)

for all α > −1
2
. For analogous reasons to why ordinary skyrmions cannot attain the

energy bound, any minimisers of (4.33) will not attain the energy bound (4.42) either.

However, the model which includes all of the vector mesons will be BPS, in as much as

minimisers can obtain the topological bound (4.42), simply because they are a completion

of the caloron mode expansion, and calorons are BPS.

For the model which we are concerned with, that is, the one with no vector mesons,

described by the family of energies (4.33), there is no reason why the bound (4.42) is the

best bound that can be found for all α > −1
2
. In fact, we suspect the following to hold:7

Conjecture 4.3.1 The gauged Skyrme energy Eα satisfies the topological bound

Eα ≥ 8π2C(α)|B|, (4.43)

where C(α) is given by

C(α) =

√
9κ0 (2κ1 − κ2

2)

1 + 18κ1 − 6κ2

. (4.44)

Moreover, this bound is the best bound that may be obtained by completing the square.

Proving this conjecture in general is an analytically hard problem, as it requires proving

many different inequalities for the coefficients κp. A general approach of how to prove

this would be the following argument.

Consider the quadratic forms on R4:

ωE = κ0x
2 +

κ1

2
y2 + I2z

2 + I2w
2 + κ2zw −

κ2

2
y(w + z), (4.45)

ωB =
1

3
xy − x(w + z). (4.46)

7Following the submission of this thesis, we have arrived at a proof of this conjecture, using an argument

that is different to that outlined below. This may be found in [29].
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It is straightforward to see from (4.40) and (4.41) that determining an optimal bound of

the form

Eα ≥ 8Cπ2|B|

is equivalent to finding the maximal value of C such that the quadratic form

ΩC = ωE − CωB (4.47)

is positive definite. The associated symmetric matrix to this quadratic form has

characteristic polynomial

χ(ΩC)(λ) =
1

144
(2κ2 − 1 + 2λ)

(
C2 (1 + 18κ1 − 6κ2 − 38λ)

+9(κ0 − λ)(κ2
2 − 2κ1 + 4(1 + κ1)λ− 8λ2))

)
.

The eigenvalues of ΩC are given by the roots of χ(ΩC), which are λ0 = 1
2
(1− 2κ2), and

λ1,2,3 determined by the roots of the polynomial PC :

PC(λ) = C2 (1 + 18κ1 − 6κ2 − 38λ) + 9(κ0 − λ)(κ2
2 − 2κ1 + 4(1 + κ1)λ− 8λ2).

Note that by the formula (4.28), the integral I2 (4.30) satisfies

I2 =

∫ 1
2

− 1
2

(
1

2
+ η(t)

)2

dt =

∫ 1
2

− 1
2

(
1

4
+ η(t)2

)
dt,

where η(t) is the non-constant term in (4.28), which is clearly an odd function. Hence,
1
4
< I2, which means that κ2 <

1
2
. Thus λ0 ≥ 0. Therefore, we only need to maximize C

such that the roots of PC are non-negative. When C = Cmax where

C2
max =

9κ0 (2κ1 − κ2
2)

1 + 18κ1 − 6κ2

,

we have

PCmax(λ) = 9λ

(
2κ1 − κ2

2 + 4κ0(1 + κ1)− 38κ0 (2κ1 − κ2
2)

1 + 18κ1 − 6κ2

− 4 (1 + κ1 + 2κ0)λ+ 8λ2

)
The roots of this polynomial are given by λ1 = 0 and

λ± =
1

4
(1 + 2κ0 + κ1 ± Ξ) ,
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where

Ξ =

√
1 + 4κ2

0 − 2κ1 + κ2
1 + 2κ2

2 −
4κ0 (1 + 18κ2

1 − 6κ2 + 19κ2
2 − κ1(19 + 6κ2))

1 + 18κ1 − 6κ2

.

In order to guarantee that this choice of Cmax gives a true lower bound, we need to show

two things: that C2
max > 0, namely Cmax ∈ R+, and that λ± are distinct and non-negative

for all α > −1
2
. For the latter, it suffices to show that the Ξ2 > 0, that is, the discriminant

is positive. Both of these conditions have been checked and shown to be true for several

values of −1
2
< α < 100.8

If these conditions are met for all α > −1
2
, it is straightforward to see why this is the

maximum value that can be obtained in this way, as the following argument shows. If

C > Cmax, it is clear that χ(ΩC)(0) > 0, and furthermore

lim
λ−→−∞

χ(ΩC)(λ) = −∞ < 0.

Therefore by the intermediate value theorem, there exists −∞ < λ0 < 0 such that

χ(ΩC)(λ0) = 0, i.e. a negative eigenvalue. Thus Cmax would be the most optimal.

In figure 4.1, we plot the functionC(α) given in conjecture 4.3.1, and in each case plotted,

the conditions of the above argument have been checked to be true. For α ≥ 0, the

bound is observed to be relatively stable, with C ∼ 1 for all α, whereas, for α < 0,

the bound becomes extremely large – whilst it cannot be seen in the plot, we found that

C(−0.499) ≈ 8.29811. This suggests that the model is far more well-behaved for α ≥ 0.

Due to the analysis in section 4.2.2, from the formulae (4.5) and (4.14), we expect the

limit

lim
α−→∞

C(α) = 6
√
c0c1 ≈ 1.0027 (4.48)

to hold. Interestingly, the minimum value of C that we have found is given uniquely by

α = 0, where C(0) = 1, i.e. the topological bound for α = 0 agrees with the Yang-Mills

bound, whereas in all other cases, we have a stronger bound.
8To be completely transparent, this has only been done analytically for α ∈ Z, and all other cases had

to be checked numerically.
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Figure 4.1: The function C(α) appearing in the topological bound Eα ≥ 8π2C(α)|B|.

4.4 Numerical gauged skyrmions and their caloron

approximations

4.4.1 The hedgehog ansatz

The group O(3) of spherical rotations and reflections has a natural action on the space of

gauged Skyrme configurations given in analogy to (4.6) by

R · (U,B) = (U ◦R,R∗B) , (4.49)

where R : R3 −→ R3 represents an element of O(3). As usual, a gauged skyrmion (U,B)

will be called H-symmetric if for all R ∈ H ⊂ O(3), it is invariant under (4.49), up to

gauge transformations, and parity transformations (4.8) of the Skyrme field. These actions

combined leave the energy (4.40) invariant, so are symmetries of the field theory. It is

well-known that the most general representative (U,B) of a gauged Skyrme configuration
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which is O(3)-symmetric is given by the fields in the hedgehog ansatz9

U = exp

(
ıf(r)

~x · ~σ
r

)
, B =

ı

2
(g(r)− 1)

~x× ~σ
r2
· d~x, (4.50)

where f, g : (0,∞) −→ R are functions in the radial direction r = |~x|. Imposing this

spherically symmetric form, the family of energies (4.40) reduce to the one-dimensional

integral

EH
α =8π

∫ ∞
0

(
κ0

(
r2f ′

2
+ 2g2 sin2 f

)
+

1

4r2

(
1− g2

)2
+
g′2

2

+κ2

(
sin2 f

(
g2

r2

(
1− g2

)
− g′2

)
− f ′gg′ sin 2f

)
(4.51)

+2κ1

(
g4

r2
sin4 f + 2f ′

2
g2 sin2 f

))
dr.

Similarly, we may calculate the topological charge for the fields in the hedgehog ansatz

as

BH =
1

π

∫ ∞
0

(
f ′(1− g2)− gg′ sin 2f + 2f ′g2 sin2 f

)
dr

=
1

π

∫ ∞
0

d

dr

(
f − 1

2
g2 sin 2f

)
dr

=
1

π

[
f − 1

2
g2 sin 2f

]∞
0

. (4.52)

9The name hedgehog is in reference to the pion fields, which here take the form

~π = sin f
~x

r
,

that is, they point radially outwards from 0 at all points in R3, which bears resemblance to a hedgehog’s

spines.
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It is straightforward to derive the equations which govern the critical points of (4.51).

These are the coupled non-linear second-order ODEs given by

2κ0

(
r2f ′′ + 2rf ′ − g2 sin 2f

)
− κ2

(
gg′′ +

g2

r2

(
1− g2

))
sin 2f (4.53)

+4κ1

(
f ′2g2 sin 2f +

(
2f ′′g2 + 4f ′gg′ − g4

r2
sin 2f

)
sin2 f

)
= 0,

g′′ +
g

r2

(
1− g2

)
− 4κ0g sin2 f − 8κ1

(
g2

r2
sin2 f + f ′2

)
g sin2 f (4.54)

−κ2

(
2f ′2g cos 2f + (f ′′g + 2f ′g′) sin 2f + 2

(
g′′ +

g

r2

(
1− 2g2

))
sin2 f

)
= 0.

4.4.2 Skyrme-monopoles

Unlike ordinary skyrmions, the Skyrme field for a gauged Skyrme model does not have

to satisfy the boundary condition U −→ 1 as r −→ ∞. This is made apparent by

considering BPS10 monopoles as approximate gauged skyrmions. Indeed, recall that

SU(2) BPS monopoles are the (m, 0)-calorons, whose gauge field At is identified with

the Higgs field Φ. These satisfy the boundary condition

−1

2
tr (Φ2) −→ ν2 (4.55)

for some ν ∈ (0, π].11 The corresponding Skyrme field given by the holonomy of the

monopole hence satisfies the boundary condition

1

2
trU −→ cos ν. (4.56)

There is hence no reason why we cannot consider boundary conditions like (4.56) for

gauged skyrmions. A gauged skyrmion satisfying boundary conditions including the

condition (4.56) will be called a Skyrme-monopole parameterised by ν ∈ (0, π]. Note

that the baryon number of an ordinary skyrmion is always integer valued. In contrast, the

10We adopt the term ‘BPS’ monopoles for the remainder of this chapter to describe monopoles on R3.
11We are still sticking to the convention that β = 1, that is, µ0 = 2π.
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charge (4.41) for fields satisfying (4.56) can potentially be any real number, moreover,

there is no reason why such a U should be constant on S2
∞. This highlights a key

difference between ordinary skyrmions and gauged skyrmions.

At the moment, we are concerned with the spherically symmetric configurations. We

hence consider the following boundary conditions for the profile functions within the

spherically symmetric ansatz (4.50):

f(0) = 0, g(0) = 1,

f(∞) = ν, g(∞) = 0,
(4.57)

for some constant ν ∈ (0, π]. These conditions are chosen so that (4.56) holds, U and

B are well-defined at r = 0, and so that DBU, FB −→ 0 as r −→ ∞ ensuring finite

energy. Immediately, from (4.52), we see that such a Skyrme-monopole has topological

charge BH = ν/π. We remark that boundary conditions of this type have previously been

investigated for SU(2) gauged Skyrme models in [16].

The gauged Skyrme fields derived from the charge m = 1 BPS monopole with spherical

symmetry have the profile functions

f(r) = ν coth(2νr)− 1

2r
, (4.58)

g(r) =
2νr

sinh(2νr)
, (4.59)

and these are seen to satisfy the boundary conditions (4.57). We may therefore compare

gauged skyrmion configurations satisfying the field equations (4.53)-(4.54), with the

boundary conditions (4.57), to this monopole.

Solving the equations (4.53)-(4.54) explicitly is not so simple, so we shall approximate

solutions numerically. In order to do this, we must understand the limiting behaviour of

the functions f and g near the boundaries. For r << 1, the linearisations of the field
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equations are

r2f ′′ + 2rf ′ + 2(1− 2g)f = 0, (4.60)

g′′ +
2

r2
(1− g) = 0. (4.61)

Equation (4.61) has general solution satisfying (4.57) given by

g(r) = 1− cr2, (4.62)

for some c ∈ R+.12 Substituting this into (4.60), we obtain the equation

r2f ′′ + 2rf ′ +
(
4cr2 − 2

)
f = 0. (4.63)

This is a spherical Bessel equation of order 1. A general spherical Bessel equation of

order n ∈ Z+ is of the form

r2f ′′ + 2rf ′ + (r2 − n(n+ 1))f = 0,

with solutions

jn(r) = (−r)n
(

1

r

d

dr

)n
sin r

r
, yn(r) = −(−r)n

(
1

r

d

dr

)n
cos r

r
,

where and jn(z) and yn(z) are the spherical Bessel functions of the first and second kind.

These functions satisfy the conditions j1(0) = 0 and y1(0) = ∞. Hence, (4.63) has

solutions satisfying (4.57) given by

f(r) = aj1

(
2
√
cr
)
, (4.64)

where a ∈ R.

For r large, the equation (4.53) for f linearises simply to

(
r2f ′

)′
= 0. (4.65)

12We expect c ∈ R+ as g should be a monotonically decaying function.
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Solving (4.65) with the boundary condition f(∞) = ν gives the large r form of f as

f(r) = ν − b

r
, (4.66)

for some constant b ∈ R. This constant has a physical interpretation, namely the scalar

charge of the Skyrme-monopole. To understand the asymptotics of g, we need to study

equation (4.54) with knowledge of the form of f . The linearisation is (up to order r−1)

given by

g′′ − 4κ0

(
sin2 ν

1− 2κ2 sin2 ν
− sin 2ν(

1− 2κ2 sin2 ν
)2

b

r

)
g +O(r−2) = 0. (4.67)

Drawing inspiration from the Frobenius method [42], we expect an asymptotic form for

g of the form

g(r) =
∞∑

j,k=0

eχjrrpjk , (4.68)

where χ0 > χ1 > . . . , and pj0 > pj1 > . . . are real numbers for all j ∈ N. In practice we

only need to consider the leading term, so that g(r) = eχrrp. Plugging this into (4.67),

we may set the leading and sub-leading terms equal to 0 and solve for χ and p. Choosing

the decaying solution, we therefore have the asymptotic form for g as

g(r) = d exp

(
−2 sin ν

√
κ0

1− 2κ2 sin2 ν
r

)
r

2b cos ν
√
κ0

 1

1− 2κ2 sin2 ν

 3
2

, (4.69)

for some constant d ∈ R to be determined. It is important to note that the asymptotic

formula (4.69) for g near r = ∞ may only be applied for ν 6= π, since when ν = π, this

formula does not decay unless d = 0, which is not a reasonable choice for the asymptotics.

To find a suitable asymptotic form for g when ν = π, we shall need to include more terms

in the expansion (4.67). Consider now

f(r) ∼ π − b

r
,
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for some b ∈ R. With this, we may expand (4.54) with g ∼ 0 to obtain

g′′ +
4κ2b

2

r3
g′ +

(
1− 4b2κ0

) g
r2

+O(r−4) = 0. (4.70)

Again we expect the asymptotic solution to take the form g = deχrrp. Substituting this

ansatz into (4.70), and setting the leading coefficients to 0, we find a decaying solution

given by

g(r) ∼ dr
1
2

(
1−
√

1+4(4b2κ0−1)
)
, (4.71)

again with d ∈ R constant. This is only decaying when

4b2κ0 − 1 > 0, (4.72)

and if we do not have this condition, we expect no solutions to exist. This is in contrast to

the case where ν 6= π, where no such condition is required.

Numerical algorithm

Using the asymptotic formulae for the profile functions f and g of a Skyrme-monopole,

we may produce numerical solutions to the field equations (4.53)-(4.54). Our approach

is to determine the constants (a, b, c, d) in the asymptotic formulae by performing a

‘shooting algorithm’. More precisely, using Mathematica’s inbuilt numerical differential

equation solver (the ‘NDSolve’ function), for each α > −1/2 and ν ∈ (0, π], we may

solve the field equations on a finite interval [ε,K], with boundary conditions at r = ε ∼ 0,

and separately at r = K ∼ ∞. The boundary conditions are taken by the asymptotic

formulae for f and g which depend on the constants (a, b, c, d) ∈ R4. This gives a set

of four functions fs(a, c), fl(b, d), gs(a, c), gl(b, d) : [ε,K] −→ R describing numerical

solutions to the field equations with the ‘small r’ (subscript s) and ‘large r’ (subscript l)

boundary conditions.

The next step is to determine the values of the constants (a, b, c, d) ∈ R4 so that

F (a, b, c, d)(r) = (fs − fl, f ′s − f ′l , gs − gl, g′s − g′l) (r) = 0,
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for some choice of r ∈ [ε,K]. In other words, we desire the numerical solutions, and their

derivatives, with ‘small r’ boundary conditions to match those with ‘large r’ boundary

conditions. To do this, we can employ the multi-variable Newton-Raphson algorithm. In

general, an n variable Newton-Raphson algorithm solves the equation Fj(~x) = 0 for all

j = 1, . . . , n with the iteration

~xk+1 = ~xk −



∂F1

∂x1
· · · ∂F1

∂xn... . . . ...
∂Fn
∂x1

· · · ∂Fn
∂xn


−1

F

 (~xk). (4.73)

To do this, we need the derivatives with respect to a, b, c, and d of the numerical solutions

and their derivatives. These may be well-approximated by taking the linear derivative

df

da
≈ f(a+ h)− f(a)

h
, (4.74)

for some h << 1, which we will fix to be 10−9 in all calculations. To further minimise

the numerical error, we may repeat this algorithm on a new interval [ε′, K ′], for ε′ ≤ ε and

K ≤ K ′, and with the new initial guesses for (a, b, c, d) determined by the result of the

Newton-Raphson step on [ε,K].

The energy for the numerical solutions may also be calculated using numerical integration

techniques. For this we will utilise a modified Simpson’s rule, with a sufficiently large

number of intervals. Again, to minimise the error, we may use the numerical solutions

with ‘small r’ boundary conditions to calculate the integral on [ε, r0], and the solutions

with ‘large r’ boundary conditions to calculate the integral on [r0, K], where r0 is the

chosen ‘matching point’. In addition to the numerical integration, the value of the energy

on (0, ε) ∪ (K,∞) may be calculated analytically by inserting the asymptotic formulae

for f and g into a linearised version of the energy functional (4.51).

Whenever any numerics are performed, it is important to have consistency checks in place

in order to be sure that we can trust the numerical results. The main check in this case

is that increasing the interval size should not vary the values of the constants (a, b, c, d)
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or the value of the energy Eα. Another check that can be performed are to calculate

the topological charge numerically (in an analogous way to the energy), and see how

close it is to the true charge ν/π. Since we are dealing with skyrmions, we have an even

better check, and that is to see if the Virial theorem holds (which we have adapted for our

purposes):

Theorem 4.4.1 Let E2 and E4 correspond to the terms in Eα which are quadratic and

quartic respectively in spatial derivatives. Then any minimiser (U,B) of Eα must satisfy

E2(U,B) = E4(U,B).

Proof

Under a re-scaling of space ~x 7→ µ~x, the energy becomes

Eα(µ) =
1

µ
E2 + µE4.

Any minimiser of Eα should not depend on this scale, and therefore should satisfy

d

dµ

∣∣∣∣
µ=1

Eα(µ)(U,B) = 0.

This equation implies the equation in the statement of the theorem. 2

In all of the subsequent statements of numerical results, all numbers and figures have been

through these checks, and have been deemed reliable if the accuracy is correct to at least

2 decimal places.

Numerical results and comparison to monopoles

In light of the results given in section 4.2.2, that as α −→ ∞, the gauged Skyrme energy

Eα reduces to the ordinary Skyrme energy, it would be most interesting to study the

behaviour at the other extreme, namely α small. The smallest value of α > −1
2

for which

we may explicitly calculate the coefficients in the energy is when α = 0, and so this is
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the case in which we shall study the general Skyrme-monopoles in detail. This is also

a particularly interesting extreme case due to the apparent behaviour of the topological

bound, conjectured in conjecture 4.3.1, as a function of α.

We find numerical solutions exist for all ν ∈ (0, π], and as an example, the profile

functions in the case ν = π/3 are plotted in figure 4.2. We also would like to compare the

2 4 6 8 10
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Figure 4.2: The profile functions (f green, g orange) for the Skyrme-monopole with

ν = π/3 in the energy E0.

solutions to that of the BPS monopole. The energy data for both the numerical solutions

and BPS monopole approximation are plotted in figure 4.3 along with the theoretical

energy given by the topological bound. As can be seen, the approximation is really

good, with less than a 1% difference in the energies for 0 < ν < 7π/15, and negligible

difference near ν = 0. As ν approaches π, the approximation is seen to be worse, but

still within a reasonable degree of accuracy, with the percentage difference at ν = π only

12.6%.

Another good measure of how the Skyrme-monopoles agree with the BPS monopoles is

the scalar charge b. For the BPS monopole, this is a topological quantity, namely, it is
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Figure 4.3: The energies of the Skyrme-monopole (blue), monopole approximation

(orange), and the topological absolute minimum (green), for ν ∈ (0, π].

exactly half the magnetic charge, i.e. b = 1/2, as seen by the profile function (4.58). The

value of b for the Skyrme-monopole solutions is plotted in figure 4.4. As with the energy,

this constant is seen to be close to that of the BPS monopole for ν ≈ 0, and deviates

further away from that of the BPS monopole as ν −→ π.

Varying α

Having studied in some detail the Skyrme-monopole solutions for α = 0, it would be

interesting to see what occurs as α varies. Doing this for general ν ∈ (0, π] is quite a

laborious task, so instead we have considered three distinctly separated cases: ν = π,

ν = 2π/3, and ν = π/3. The case ν = π is particularly interesting for two reasons.

Firstly, the asymptotic behaviour for the profile function g is explicitly different to that

for ν 6= π, and in particular the condition 4b2κ0(α) − 1 > 0 must hold in order for

solutions to exist. Secondly, the topological charge of such a Skyrme-monopole is B = 1,

which is the same as the configurations which we consider in section 4.4.3. We may hence

compare these Skyrme-monopoles with these other configurations, and this we shall also

explore in section 4.4.3.
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Figure 4.4: The scalar charge of the Skyrme-monopoles for ν ∈ (0, π].

The phase diagrams of the energies Eα for these Skyrme-monopoles, compared to the

BPS monopole energies, for varying 0 ≤ α ≤ 1, are plotted in figures 4.6-4.7. A similar

observation occurs as with the detailed analysis of the case α = 0, namely, the BPS

monopole approximation is significantly better for ν close to 0 compared to ν close to π.

It is also noticeable that as α increases, whilst the approximation improves in each case,

the energies also increase. This seemingly monotone behaviour in the Skyrme-monopole

energies is in contrast to the topological energy bound (4.3.1), which remains essentially

constant for α > 0.

Specifically in the case ν = π, we find that for −1
2
< α ≤ 1

2
13 there are numerical

solutions which satisfy Theorem 4.4.1. However, we were not able to generate such

solutions for α > 1
2
. In figure 4.8, we plot the quantity 4b2κ0 − 1 for the ν = π Skyrme-

monopoles, and it is observed that 4b2κ0(0.5) − 1 ≈ 0,14 which may explain why our

numerics did not behave well for α > 0.5. This aligns with the necessary condition

13We have only plotted for α ≥ 0 for the sake of clarity.
14The actual value we obtained numerically was 0.0036 to two significant figures.
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Figure 4.5: The phase diagram for the energies of Skyrme and BPS monopoles with

ν = π
3
, for varying 0 ≤ α ≤ 1.

(4.72). Having said this, there is no reason to believe that the quantity 4b2κ0 − 1 does not

become positive again, and hence that additional Skyrme-monopoles with ν = π could

exist, for some value of α > 1
2
. This we are yet to investigate.

Rather intriguingly, for some value of α ∼ 0 we observe that 4b2κ0−1 = 1. From (4.71),

this means that for this value of α, g behaves like r−1/ϕ, where

ϕ =
1 +
√

5

2

is the golden ratio. It is unclear whether any meaning should be taken from this

numerological observation, nevertheless, it is certainly rather curious.

4.4.3 Skyrme-instantons

SU(2) calorons with zero magnetic charge are the (k, k)-calorons that much of this thesis

has concentrated on. The Skyrme field constructed from the holonomy of a (k, k)-caloron
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Figure 4.6: The phase diagram for the energies of Skyrme and BPS monopoles with

ν = 2π
3

, for varying 0 ≤ α ≤ 1.

satisfies the boundary condition

U −→

e−ıµ 0

0 eıµ

 , (4.75)

with µ ∈ [0, π], and has topological charge B = k. A gauged skyrmion satisfying

boundary conditions including the condition (4.75) for any µ ∈ [0, π] will be called a

Skyrme-instanton of degree k, where k = deg(U).

For the time-being, we are interested in the spherically symmetric examples. There is

a one-parameter family of (1, 1)-calorons which possess O(3)-symmetry.15 These are

found within the family of Harrington-Shepard calorons from section 2.2.1 which are

(1, 1) calorons with µ = 0 (i.e. they have trivial holonomy). The components of the

caloron gauge field may be written more explicitly. Indeed,

At(t, ~x) = ıf(t, r)
~x · ~σ
r
, Aj(t, ~x) =

ı

2

(
(g(t, r)− 1)

εjklx
kσl

r2
+ h(t, r)σj

)
, (4.76)

15The O(3) subgroup of (O(2)×O(3))+ is precisely ({e, T} ×O(3))+, where T is the map t 7→ −t in

S1.
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Figure 4.7: The phase diagram for the energies of Skyrme and BPS monopoles with

ν = π, for varying 0 ≤ α ≤ 1
2
.

where

f = −∂rφ
2φ

, g = 1 +
r∂rφ

φ
, h =

∂tφ

φ
, (4.77)

with φ : S1 × R3 −→ R given by

φ = 1 +
λ2

2r

sinh(2πr)

cosh(2πr)− cos(2π(t− θ))
, (4.78)

which is (2.16) with k = 1, spatial position ~a = 0, and µ0 = 2π to match our scaling

conventions. At the moment, (4.76) only has SO(3)-symmetry, due to the appearance of

the function h(t, r). In order to obtain O(3)-symmetry we need to fix the parameter θ.

Setting θ = ±1
2
, or θ = 0 makes h(−t, r) = −h(t, r), and then we have full spherical

symmetry. In these cases, the functions f and g take the forms16

f0(t, r) =
λ2

4r2

sinh(2πr)(cosh(2πr)− cos(2πt))− 2πr (1− cosh(2πr) cos(2πt))

(cosh(2πr)− cos(2πt))(cosh(2πr)− cos(2πt) + λ2

2r
sinh(2πr))

,

g0(−1

2
, r) =

πλ2 + 1 + cosh(2πr)

cosh(2πr) + 1 + λ2

2r
sinh(2πr)

,

16We have evaluated g at t = − 1
2 as this is the requirement to define the skyrmion gauge field B.
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Figure 4.8: The value of the ‘cut-off variable’ 4b2κ0 − 1 plotted as a function of α.

when θ = 0, and

f±(t, r) =
λ2

4r2

sinh(2πr)(cosh(2πr) + cos(2πt))− 2πr (1 + cosh(2πr) cos(2πt))

(cosh(2πr) + cos(2πt))(cosh(2πr) + cos(2πt) + λ2

2r
sinh(2πr))

,

g±(−1

2
, r) =

cosh(2πr))− 1− πλ2

cosh(2πr)− 1 + λ2

2r
sinh(2πr)

,

when θ = ±1
2
. Note that since λ 6= 0, we have g± −→ −1 as r −→ 0, so the constructed

skyrme gauge field B would have a singularity at r = 0, as seen by the formula (4.50).

This is problematic. However, no such singularity exists for the case θ = 0, since g0 −→ 1

as r −→ 0, so we shall from now on only consider this case.

After a short calculation, we find that the resulting profile functions for the corresponding

Skyrme fields are

fλ(r) =
π sinh(2πr)− λ2

4r2 (sinh(2πr)− 2πr cosh(2πr))√(
λ2

2r
sinh(2πr) + cosh(2πr)− 1

) (
λ2

2r
sinh(2πr) + cosh(2πr) + 1

) − π,
gλ(r) = 1 +

λ2π − λ2

2r
sinh(2πr)

λ2

2r
sinh(2πr) + 1 + cosh(2πr)

,
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where the scale λ > 0 is the only remaining parameter. This parameter λ may be

optimised for each α so that Eα is minimised. We denote by λmin this optimal value

of λ for each α > −1
2
. These optimal values are plotted for α > 0 in figure 4.9.
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λmin

Figure 4.9: The optimal value λmin(α) of the Harrington-Shepard scale parameter such

that Eα is minimised.

A noticeable property of this is that for α ∼ 0, λmin is very large. In fact, our numerics

suggest that λmin(0) =∞. Now, the functions fλ and gλ both have well-defined limits as

λ −→∞, given by

f∞(r) = π coth(2πr)− 1

2r
− π, (4.79)

g∞(r) =
2πr

sinh(2πr)
. (4.80)

These are remarkably similar to the profile functions of the ν = π BPS monopole (4.58)-

(4.59), with the difference f∞ = fBPS−π. This is of course not a coincidence, but merely

a consequence of the fact that the limit λ −→∞, the (1, 1) Harrington-Shepard caloron is

the image under the rotation map of the charge 1 BPS monopole, as discussed in section

2.2.4 and in [107]. This observation, in light of figure 4.9, suggests that the energy Eα
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prefers ‘monopole-like’ boundary conditions near α = 0, and these become less preferred

as α −→ ∞. This can also be seen by plotting the energy Eα(λmin) against the energy

Eα(BPS), which we do in figure 4.10.
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Figure 4.10: The energies Eα, for −1
2
< α ≤ 10, of the optimal Harrington-Shepard

caloron and the ν = π BPS monopole.

Having studied the behaviour of the caloron approximations to Skyrme-instantons, we

would now like to see how this compares to the behaviour of the ‘true’ Skyrme-instantons.

We consider the following boundary conditions for the hedgehog profile functions:

f(0) = −π, g(0) = 1,

f(∞) = 0, g(∞) = 1.
(4.81)

These boundary conditions make (4.50) a Skyrme-instanton in the sense that the boundary

condition (4.75) holds. In particular, they are comparable to the Harrington-Shepard

caloron, whose profile functions also obey these boundary conditions. From (4.52), the

topological charge of such a Skyrme-instanton is BH = 1. We also remark that the

boundary conditions (4.81) are similar to those considered in [4].

In a similar way to the asymptotic analysis of the Skyrme-monopoles, we may linearise

the field equations (4.53) and (4.54) to obtain formulae for the asymptotic behaviour of
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the Skyrme-instanton. We obtain

fs(r) = ar − π, for r ∼ 0, (4.82)

fl(r) = − b

r2
, for r ∼ ∞, (4.83)

and

gs(r) = 1− cr2, for r ∼ 0, (4.84)

gl(r) = 1− d

r
, for r ∼ ∞, (4.85)

where the numbers a, b, c, d ∈ R may be determined using a Newton-Raphson shooting

algorithm, analogously to the case of Skyrme-monopoles.

Numerical results and comparison to calorons

For α > 0, and sufficiently not close to 0, we find that there are numerical Skyrme-

instanton solutions, and we plot their energies against the energies of the optimal caloron

approximation in figure 4.11, up to α = 10. It would appear from this plot that the caloron

approximation gets better as α increases. The behaviour near α = 0 is interesting. In the

case of Skyrme-monopoles with ν = π, we found that there was a cut-off for which our

numerics no longer returned valid solutions. For the Skyrme-instantons, our numerics

reveal that near α = 0, the same absence of solutions occurs. However, in contrast to

the case of the Skyrme-monopoles, here we do not have a reasonable hypothesis akin to

(4.72) which explains this. What we do have is the caloron approximation. This struggle

to find solutions near α = 0 was actually predicted by the analysis of the Harrington-

Shepard caloron, which suggested that monopole boundary conditions are preferred for

α ∼ 0. It would seem that this is the case for the actual solutions too.

As an illustrative example, implementing the algorithm at α = 0 for the Skyrme-instanton

boundary conditions (4.81), we observed that the constant d, appearing in the asymptotic
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Figure 4.11: The energies Eα for the optimal Harrington-Shepard caloron and the

numerical Skyrme-instanton minimisers.

formula (4.85), was not converging as the size of the interval [ε,K] was increased. This

can be seen in figure 4.12: asK increases, the profile function g for the gauge fieldB does

not converge to a function satisfying the boundary condition g(∞) = 1. Rather, it appears

to become less and less localised, and more comparable to that of a Skyrme-monopole,

satisfying g −→ 0 as r −→ ∞. This is manifested in the constant d = d(K) found in

(4.85), which satisfies d(20) ≈ 8.16, and d(100) ≈ 46.93, suggesting that g(∞) would

prefer to be 0. In contrast, the profile function f for the Skyrme field U does appear to

converge (see figure 4.13), which is expected since the boundary conditions are the same

as the Skyrme-monopole under the replacement f 7→ f − π, which is a symmetry of the

field equations.

The energy calculated for this Skyrme-instanton is E ≈ 92.74, which is extremely close

to that of the ν = π Skyrme-monopole, which has energy E ≈ 92.72. Importantly, this

Skyrme-instanton configuration does not satisfy Theorem 4.4.1, with E2 ≈ 46.35 and

E4 ≈ 46.39. We suspect that if we were to continue for K > 100, then the energy of

the Skyrme-instanton will lower, converging on the energy of the Skyrme-monopole, and

with Theorem 4.4.1 satisfied to an acceptable degree of accuracy.



Chapter 4. Calorons and skyrmions 150

K=20

K=40

K=60

K=80

K=100
5 10 15 20

r

0.2

0.4

0.6

0.8

1.0

g(r)

Figure 4.12: The profile functions g for the Skyrme-instanton minimiser of E0 on the

finite intervals [0.01, K], for K = 20, 40, 60, 80, 100.

A similar pattern in the numerics is observed for all 0 ≤ α < 0.1953, that is, the algorithm

did not converge, and Theorem 4.4.1 was not reasonably satisfied. One hypothesis as to

why this is the case for the small values of α 6= 0 is that the Skyrme-instanton actually

does exist, but it is extremely large, and to construct it would require considering values of

K which are far greater than 100, where we usually stopped the process. This is evidenced

by considering the behaviour of the optimal Harrington-Shepard caloron profile functions,

for which gλ, for λ large, does not get near to 1 until r is very large. Another idea is that

our numerical algorithm is not robust enough to find all of the solutions. One alternative

method is to use pseudo-arclength continuation alongside our usual shooting algorithm,

which means we also vary α, changing the shooting map to a function F̃ : R5 −→ R4,

F̃ = F̃ (α, a, b, c, d). This method has been used for similar purposes, namely to pick out

seemingly absent solutions to field equations which depend on a parameter, for example

in [41]. Of course, it is also possible that the algorithm did not converge because no

solution with those boundary conditions exists.
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Figure 4.13: The profile functions f for the Skyrme-instanton minimiser of E0 on the

finite intervals [0.01, K], for K = 20, 40, 60, 80, 100.

Comparison to Skyrme-monopoles

The main conclusion of studying the spherically-symmetric Skyrme-instantons and

Skyrme-monopoles is that the energy (4.51) appears to favour certain boundary conditions

as α varies. To test this idea further, we will make another comparison. The Skyrme-

monopoles with ν = π, and the Skyrme-instantons, both have topological charge BH = 1,

so it is reasonable to compare them as solitons. In fact, we have observed that when

α ≈ 0, these configurations may even be the same, in analogy with the λ −→ ∞ limit of

the Harrington-Shepard caloron.

Consider the phase diagram in figure 4.14. There we have plotted the value of the energy

Eα for both the numerical Skyrme-monopoles and Skyrme-instantons for α ∈ [0, 1].

Clearly, for α ≈ 0, the Skyrme-monopole boundary conditions dominate since there

are no Skyrme-instanton solutions. Extrapolating the curve for the Skyrme-instantons in

such a way that the two curves meet at α = 0, it is easy to convince oneself that this is

also true with regards to minimising the energy. Likewise, the Skyrme-instanton solutions

dominate away from α = 0.
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Figure 4.14: A phase diagram of the energies of Skyrme-monopoles and Skyrme-

instantons for varying α ∈ [0, 1].

4.5 Approximating skyrmions with gauged skyrmions

An energy of the form (4.26) describing an SU(2) gauged Skyrme model is a functional

E(U,B) of fields (U,B), where U : R3 −→ SU(2), and B is a connection 1-form on R3.

This naturally induces an ordinary Skyrme model in the case that B = 0, with energy

Eo =

∫ (
λ0|U−1dU |2 + λ1|U−1dU ∧ U−1dU |2

)
d3x. (4.86)

This functional describes a bona-fide SU(2) Skyrme model, whose critical points satisfy

the Skyrme field equation (4.3) with λp = cp. However, unlike the gauged model, this

induced model is not invariant under gauge transformations G : R3 −→ SU(2), since

here we have

U−1dU 7→ G
(
U−1dU + U−1LGU − LG

)
G−1,

where LG = G−1dG. Letting L = U−1(dU + [LG, U ]), the Skyrme energy (4.86) thus

transforms as Eo(U) 7→ E(G,U), where

E(G,U) =

∫ (
λ0|L|2 + λ1|L ∧ L|2

)
d3x. (4.87)
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In each gauge equivalence class of gauged skyrmions (U,B) (that is, critical points of

(4.26)), it is not unreasonable to ask whether there is a representative G · (U,B) such

that GUG−1 approximates a critical point of (4.86). This is equivalent to saying (G,U)

approximates a critical point of (4.87). Such a pair (G,U) must satisfy the asymptotic

boundary conditionsG,U −→ 1 as |~x| −→ ∞, in line with the usual boundary conditions

imposed on the Skyrme field.

The important variable that needs to be optimised here is the choice of gauge. Varying

E(G,U) with respect to G gives the equations∑
i,j

∂i
(
G [λ0Li + λ1 [Lj, [Li,Lj]] , U ]U−1G−1

)
= 0, (4.88)

which is a second order partial differential equation for G. So for any gauged skyrmion

(U,B), the representative U ′ which minimises (4.86) is hence given by U ′ = GUG−1,

where (G,U) solves (4.88).

Imposing a symmetric form on the Skyrme field U simplifies this condition. For example,

when (U,B) is spherically symmetric, i.e. of the form in (4.50), the gauge transformations

which preserve this are those of the same ‘hedgehog’ form:

G(~x) = exp

(
ıµ(r)

~x · ~σ
r

)
, (4.89)

for some function µ : (0,∞) −→ R. In this scenario, G acts trivially on U , that is

GUG−1 = U , and so (4.88) is obsolete. In other words, the energy (4.86) is invariant

under gauge transformations of spherically-symmetric gauged skyrmions.

With this in mind, we may automatically compare the minimisers of (4.86), to the

Skyrme-instantons and Skyrme-monopoles found in the previous section, without having

to consider a preferred choice of gauge. We set λ0 = κ0, and λ1 = κ1

2
so that (4.86) aligns

with (4.40). Within the hedgehog ansatz, the field equation for (4.86) reduces to the ODE

(
κ0r

2 + 4κ1 sin2 f
)
f ′′ + 2κ0rf

′ + sin 2f

(
2κ1f

′2 − κ0 − 2κ1
sin2 f

r2

)
= 0. (4.90)
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The usual boundary conditions imposed for a spherically-symmetric skyrmion are [82]

f(0) = π and f(∞) = 0. We shall instead consider the boundary conditions f(0) = −π

and f(∞) = 0 so that by the formula (4.52), the skyrmion U = exp
(
ıf(r)~x·~σ

r

)
satisfying

(4.90) has topological charge BH = 1. This boundary condition is also comparable to the

Skyrme fields of the Skyrme-instantons, and the Skyrme-monopoles with ν = π, from

the previous section.17 It is worthwhile noting that even though equation (4.90) appears

to depend on the couplings κ0, κ1, that is, the parameter α, this dependence is only the case

up to a re-scaling of length and energy units. It follows that all solutions of (4.90) with

these boundary conditions are the same up to this re-scaling, and will hence all be called

the spherically-symmetric skyrmion. Linearising (4.90) with these boundary conditions

gives a Cauchy-Euler type equation, and we obtain the asymptotic formulae

fs(r) = ar − π, r ∼ 0, (4.91)

fl(r) = − b

r2
, r ∼ ∞, (4.92)

for some a, b ∈ R+ to be determined numerically for each α > −1
2
.

We are particularly interested in comparing this ordinary skyrmion to the gauged

skyrmions considered in the previous sections, that is, the Skyrme-monopoles and

Skyrme-instantons. The most enlightening comparison in this situation is how much the

profile functions agree (or disagree) with each other. To measure this, we will calculate

Ξ = maxr |f−fSky|, where f is the profile function of the gauged skyrmion Skyrme fields,

to be varied over the different types, and fSky is the ordinary skyrmion (scaled accordingly

to solve (4.90) for the correct value of α). We will also use the same measure when we

come to compare the ordinary skyrmion to the optimal Harrington-Shepard calorons, and

the BPS monopoles, in the next section. Of course, for the monopoles, we consider instead

f − π.

17We remark that f 7→ f + nπ is a symmetry of the energy and topological charge for all n ∈ Z, so the

boundary condition f(0) = 0, and f(∞) = π for the Skyrme-monopoles is essentially equivalent to this.
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In figures 4.15-4.16, we plot this measure of difference between the ordinary skyrmion,

against the Skyrme fields of the Skyrme-monopoles (with ν = π) and Skyrme-instantons

respectively.
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Figure 4.15: The maximum difference between the Skyrme-monopole Skyrme field, and

ordinary Skyrme field, as a function of α.
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Figure 4.16: The maximum difference between the Skyrme-instanton Skyrme field, and

ordinary Skyrme field, as a function of α.

In the case of the Skyrme-monopoles, the difference is seen to be the greatest of all

configuration types studied, but still below 0.48 for all examples, which is ≈ 15% of the

maximum absolute value of the skyrmion’s profile function (|f(0)| = π). As α varies, this

measure of deviation is relatively constant, remaining between 0.45 and 0.48. Contrary
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to this, the difference between the Skyrme-instantons, and the ordinary skyrmions starts

similarly to the Skyrme-monopoles, and then becomes almost negligible as α increases.

This is in fact very much expected – as a result of the discussion in section 4.2.2, we know

that as α −→ ∞, the family of spherically-symmetric Skyrme-instantons that we have

described will converge in some way to the ordinary spherically-symmetric skyrmion.

4.5.1 Approximating skyrmions with calorons and monopoles

To finish our discussions on calorons, gauged skyrmions, and skyrmions, we shall make

one last set of comparisons. Part of the motivation for studying this topic was to see how

well calorons, and in particular monopoles, approximate ordinary skyrmions. This has,

as already mentioned, been investigated in part in [36, 96], but without the knowledge of

the family of gauged Skyrme models (4.40), and the intermediate relationship between

calorons and gauged skyrmions.

In the same way as with the gauged skyrmions, we compare the optimal Harrington-

Shepard calorons, and BPS monopoles with ν = π, by measuring the maximum

difference between the profile functions. The results for varying 0 ≤ α ≤ 10 are

plotted in figure 4.17. In light of the observations in section 4.4.3, it is unsurprising

that the strength of the BPS monopole approximation diminishes as α increases, with

the difference between the profile functions growing fairly rapidly. On the other hand,

the Harrington-Shepard caloron approximation improves as α increases, but of course,

this is expected as the caloron appeared to better approximate the Skyrme-instantons in

this way, as seen in figure 4.11. These two plots meet at α = 0, and importantly, the

difference between them and the ordinary Skyrme field is small, at approximately 0.25,

which is only 8% of the maximum absolute value of the skyrmion’s profile function.18

The conclusion of this brief analysis is that calorons appear to be good approximations

18This is actually not the minimum value found. A smaller value of the max difference may be obtained

at α ∼ −0.2, namely a difference of 0.21.



Chapter 4. Calorons and skyrmions 157

Caloron

BPS monopole

2 4 6 8 10
α

0.2

0.4

0.6

0.8

1.0

1.2

Max difference

Figure 4.17: The maximum difference between the Skyrme field profile function for the

charge 1 BPS monopole, and optimum Harrington-Shepard caloron, as a comparison with

the ordinary spherically-symmetric skyrmion.

of skyrmions at all length and energy scales (for optimal choices of the parameter λ), and

crucially, monopoles are a good approximation when the length and energy scales are

those which align with α ≈ 0.

4.6 Summary and open problems

By utilising the Atiyah-Manton-Sutcliffe methods for constructing approximate Skyrme

fields from instantons [8, 113], we have shown how to similarly construct approximate

gauged Skyrme fields from periodic instantons, also known as calorons. One nice property

of this construction is that it considers an expansion of the caloron in terms of the ultra-

spherical functions, which leads to a one-parameter family of gauged Skyrme models

(4.40), parameterised by the ultra-spherical parameter α > −1
2
. In particular, this family,

with any number of vector mesons included, reduces to the corresponding Sutcliffe model

[113] in a limit where α −→∞.

We have studied the relationships between calorons and gauged skyrmions in the case
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of spherically symmetric examples. The main conclusion is that the model appears to

interpolate between different favoured boundary conditions as α varies, with ‘monopole-

like’ boundary conditions preferred as α −→ 0, and ‘instanton-like’ conditions preferred

as α −→∞. This is rather interesting given the similar interpolation between monopoles

and instantons that calorons exhibit. We have also studied how monopoles and calorons

can be in some cases seen to be reasonable approximations to ordinary skyrmions. This

is a small step of progress in the objective of understanding the soliton trinity, as outlined

in the introduction of this thesis.

There is of course a lot of work still to be done here. Crucially, we have only considered

the most basic examples, and a lot more is likely to be revealed by looking at less

symmetric field configurations. The next most simple example would be to consider

axially symmetric examples. The famous (1, 1)-calorons of Kraan-van Baal and Lee-

Lu [73, 75], with non-trivial holonomy, contain a family of calorons with precisely this

symmetry. Like with the Harrington-Shepard calorons, the holonomies of these calorons

generate (less trivial) examples of Skyrme-instantons of charge 1. Since the Skyrme-

instanton boundary condition (4.75) for non-zero µ breaks the gauge symmetry to U(1),

there may be a relationship with the U(1)-gauged skyrmions found in [102], which also

exhibit an axial symmetry, in addition to a non-zero dipole moment, which is similar to

the interpretation of (1, 1)-calorons as two oppositely charged magnetic monopoles [72].

It would be particularly interesting to compare other examples of symmetric calorons to

the skyrmions of this model. For example, Ward presents in [122] examples of (k, k)-

calorons, with trivial holonomy, in the cases k = 2, 3, and 4, which exhibit symmetries

corresponding to platonic symmetries of instantons and monopoles, and in addition, these

instantons and monopoles occur as limiting cases. It would be very interesting to see

whether there exist corresponding symmetric gauged skyrmions, how well these calorons

approximate them, and of course, how they relate to the ordinary skyrmions. In particular,

it would be good to see if this comparison evinces the apparent correlation between the
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symmetries of certain monopoles and skyrmions. It would also be interesting to study the

more obscure symmetric examples of calorons in the context of skyrmions, for example

the crossed solutions and oscillating solutions described in section 3.6.3.
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[47] M Göckeler and T Schücker, Differential geometry, gauge theories, and gravity,

Cambridge University Press, 1989.

[48] D Y Grigoriev, P M Sutcliffe, and D H Tchrakian, Skyrmed monopoles, Phys. Lett.

B 540 (2002), no. 1-2, 146–152.

[49] D G Harland, Large scale and large period limits of symmetric calorons, J. Math.

Phys. 48 (2007), no. 8, 082905.

[50] D G Harland, Kinks, chains, and loop groups in the CP n sigma models, J. Math.

Phys. 50 (2009), no. 12, 122902.

[51] D G Harland and R S Ward, Chains of skyrmions, J. H. E. P. 2008 (2008), no. 12,

093.

[52] B J Harrington and H K Shepard, Periodic euclidean solutions and the finite-

temperature Yang-Mills gas, Phys. Rev. D 17 (1978), no. 8, 2122.

[53] P Hekmati, M K Murray, and R F Vozzo, The general caloron correspondence, J.

Geom. Phys. 62 (2012), no. 2, 224–241.

[54] N J Hitchin, A Karlhede, U Lindström, and M Roček, Hyperkähler metrics and
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