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Abstract   
 

Traditionally compartments of the marine ecosystem have been modelled 

separately with focus depending on research issues and questions. The problem with 

these traditional approaches is that they might fail to capture events at an ecosystem 

scale and cannot replicate the internal ecosystem structure. The fragmentation might also 

fail to capture the effects of anthropogenic and environmental forcing. End-to-end 

modelling aims to represent the marine ecosystem as a whole to assess the combined 

effects that anthropogenic and environmental factors have on it. 

This study used a simple non-spatial mathematical model with four state 

variables representing nutrients, phytoplankton, zooplankton and fish, to investigate the 

dynamic behaviour of the model. The three approaches of mathematical, graphical and 

numerical analysis were employed in the process of the study.  

All three methods of analysis indicated the presence of two internal equilibrium 

points, of which one was observed to be stable. The interesting finding was that fish 

density is higher at the stable equilibrium point and that a basin boundary prevents the 

reaching of this equilibrium once fish density falls below a certain value. It was also 

observed that the mortality rate of fish was the main parameter influencing the behaviour 

of the system. 

These findings are consistent with findings from other studies, and observations 

in exploited fisheries, which have described that processes such as fishing can make the 

ecosystem less stable. It can also give a possible reason for why some over exploited 

fish stocks have not recovered even after their exploitation was stopped. 
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1. Introduction 

1.1 Use of models in environmental management 

Models have a history of being used in a variety of areas in environmental management. 

They are deployed in making decisions on water quality management (Benndorf and 

Recknagel, 1982; Vieera and Lijklema, 1989), population management for the 

conservation of species (Jongejans et al., 2008; Shea et al., 1998) and in assessing the 

impact of habitat fragmentation (Gehring and Swihart, 2003; Rantalainen et al., 2008). 

Models are also readily employed to assess the impact of human actions on the 

environment. An example for this is the use of models to assess the impact of 

aquaculture on the marine environment (e.g. Stigebrandt et al., 2004; Díaz López et al., 

2008). Models have proved to be a useful tool in environmental management because 

they make it relatively easy to test different management scenarios and to quantify their 

impacts (Travers, 2009). 

 

 

1.2. Traditional types of models 

In the marine environment, traditionally there have been two main branches of 

modelling, biogeochemical and fish production models (Cury et al., 2008). These 

branches focus on components of the ecosystem, modelling them independently from 

the rest of the system, depending on research issues and questions (Franks, 2002; Latour 

et al., 2003). Other components of the ecosystem, and the effects of abiotic factors, have 

largely remained unconsidered in the past (Travers et al., 2007). 

 

Biogeochemical models are developed to assess the dynamic forcing of the oceans and 

its impacts on the primary production and nutrient fluxes which occur (e.g. Franks, 

2002). A common example for the modelling of fluxes in the marine ecosystem is the 

modelling of nitrogen, the main limiting factor in primary production, fluxes between 

the nutrient, phytoplankton and zooplankton compartments (e.g. Franks, 2002). 

Biogeochemical models, which are coupled to hydrodynamic models, can be used to 

assess environmental effects on plankton (e.g. Koné et al., 2005). Biogeochemical 
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models only represent small compartments of the marine ecosystem so they cannot be 

used to assess the effects of fishing on the marine environment (Travers et al., 2007). 

 

Fish production models were originally studied because of the economic importance of 

the fish (Travers et al., 2007). They focus on assessing the impact of fishing on 

exploited stocks. Initially the models focused on a single species (e.g. Andersen and 

Ursin, 1977). Later multi-species models were employed (first proposed by Pope, 1979) 

to advise in the management of fisheries. These models are based on equations for 

survival and catch and represent a cohort analysis of the exploited species. They may 

take predator interactions into account and explicitly model predation (Travers et al., 

2007). However, the single species approach has not been abandoned.  

 

 

1.3. Ecosystem models  

The problem with these traditional approaches is that they might fail to capture events at 

an ecosystem scale, and cannot replicate the internal ecosystem structure of the 

ecosystem (Cury et al., 2008), due to their specific focus. This can be the case because a 

perturbation at any point in the ecosystem can propagate both up and down through the 

food web and too specific a focus may fail to identify cascading effects, which result 

from anthropogenic and environmental forcing (IMBER, 2005). 

 

It has been long recognised that in addition to fishing, the abiotic environment has an 

influence on the dynamics of marine organisms. This was first mentioned by Hjort 

(1914) at the beginning of the last century. It is important to keep in mind that both the 

abiotic and anthropogenic factors are impacting the organisms at the same time and this 

should be taken into consideration when modelling is undertaken (Fennel, 2008; Travers 

et al., 2007). It is important to take this into consideration because, as Harley et al. 

(2006) emphasized, the effects of a factor (e.g. climate) may amplify or reduce the 

effects of another factor (e.g fishing). But a combination of both can also result in 

extreme changes that were never effected by the forcing of a single factor. It is thought 

that this combination of factors is probably at the origin of regime shifts that have been 
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observed in the past (Folke et al., 2004).  The direct effects of climate and fishing have 

been modelled for a long time. However, few models have allowed for the effects to be 

represented simultaneously, which represents an advance in end-to-end modelling 

(Travers et al., 2007). 

 

 

1.4. End-to-End Models 

End-to-end models are models of the marine ecosystem with representation of the 

dynamic effects of both the physical environment and human activities on living 

organisms, ranging from the lowest trophic levels to the highest trophic levels (Cury et 

al., 2008; Fennel, 2008). This approach to modelling provides a framework to 

understand the combined effects of fishing and climate, because it represents the whole 

food web and can therefore account for dynamic forcing of fishing and climate 

(deYoung et al., 2004, Cury et al., 2008). 

 

End-to-end models can in principle be constructed by connecting biogeochemical 

models with fish production models. In order to achieve this connection between the 

model types the focus has to be on the processes which link the components of the 

ecosystem. The key process is predation, which affects both the growth rate of predators 

and the mortality of the prey (Cury et al., 2008). In addition to predation other processes 

such as excretion can also be modelled and used to connect models of lower trophic 

levels with models of higher trophic levels (Megrey and Kishi, 2002; Megrey et al., 

2007). 

 

Scientists working on the coupling of models are faced with a number of difficulties, 

which are partially caused by an increase in complexity with increasing trophic level. 

Organisms at higher trophic levels are more complex because they have longer life 

spans, more complex life histories and complex behaviours. In additions to this they also 

use environments with a larger spatial scale than organisms at lower trophic levels 

(deYoung et al., 2004). The coupling is also made complicated by requiring the 

integration of scientific disciplines, which have very different objectives and use 
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different tools (Fennel, 2008; Werner et al., 2007). So far, few marine models have 

explicitly considered the trophic links from nutrients and primary producers, up the food 

web, and through to fish (Werner et al., 2007).  

 

There are some models which have coupled biogeochemical models of lower trophic 

levels and models of higher trophic levels using biological processes (e.g. Hermann et 

al., 2001), but they only used the predation process to achieve the connection between 

the models. This makes the modelled connection a one directional process, in which 

predation is taken as an output from the lower trophic level model and then used as an 

input to the higher trophic level model (Travers et al., 2009).   

 

So far only a few studies have attempted the creation of end-to-end models, by either 

trying to connect two already existing models or by creating a new model altogether. 

The model created by Travers (2009) is an example of the former. It takes ROM-

N2P2Z2D2, which is a biogeochemical model connected to a hydrodynamics model, and 

connects it to OSMOSE, an individual based model (IBM) of multiple fish species. 

OSMOSE simulates the whole lifecycle of fish and represents fish schools interacting 

through opportunistic and size based predation on a two dimensional scale. The two 

models were linked through predation, which uses plankton as food available for fish 

and applies a mortality rate on plankton due to fish predation. It was applied to the 

southern Benguela ecosystem and explicitly models both environmental factors and 

fishing exploitation simultaneously.  The output of the model showed that the two way 

coupling of the model improved the correspondence between simulated and observed 

zooplankton biomass. 

 

Another model using the end-to-end approach is the Nemuro.fish model (Megrey et al., 

2007). It was constructed for the north Pacific ecosystem by linking the already existing 

biogeochemical model (Nemuro) with a fish population bioenergetics model. The 

biogeochemical model is very detailed consisting of 11 compartments with 

phytoplankton and zooplankton divided into 2 groups each, with three nutrient pools and 

one group for dissolved organic matter. The bioenergetics model for the fish simulates 
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the whole life cycle and have been applied to Pacific herring and saury. There are two 

versions of Nemuro.fish. In an uncoupled version the biogeochemical model is used as a 

food source but no feed back from the fish model is represented. An example for this is 

the application of the model to saury population off the eastern coast of Japan (Ito et al., 

2004). The coupled version has a feedback from the fish to the biogeochemical 

compartment and has been applied to herring (Megrey et al., 2007). The environmental 

factors modelled are light and temperature in the biogeochemical department and 

temperature in the form of metabolic rate in the fish group. The effects of fishing are not 

explicitly considered.    

 

The creation of an end-to-end model by connecting two existing models ensures that 

temporal and spatial scales are maintained in each part of the final model and is also 

more cost effective than creating completely new models (Travers et al., 2007; Cury et 

al., 2008). 

 

One example for a model created from scratch to cover the marine environment from the 

nutrient up through the food web to fish is the bioenergetics model created by Fennel 

(2009). It represents the area of the Baltic Sea, and models three fish groups and their 

feeding on each other and on plankton. In the model the lower and upper trophic levels 

are connected via the processes of feeding and excretion. The constructed model is mass 

conserving apart from losses through the fishing mortality. The study used several 

simulations and found the model provided consistent results. In simulations with high 

fishing mortality the output of the model showed inter-annual variability of cod catches 

which resemble quantitatively the variations in data derived by multi-species stock 

assessment methods for the Baltic (Anonymous, 2005). 

 

While end-to-end models allow for a better quantification of anthropogenic and climatic 

effects on the dynamics of marine ecosystems (Travers et al., 2007), there is also a risk 

that the models become too complex and unfocused to be useful. Experience shows that 

complex models trying to represent an ecosystem as realistically as possible, rather than 
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representing the system with regard to a certain purpose, can be of limited use (Grimm 

and Railsback, 2005).   

 

1.5. Mathematical models 

In recent decades the theoretical investigation of the marine ecosystem, using 

mathematical models has developed into an important area of research (Fennel and 

Osborn, 2005). They have proven to be a good method to enable us to gain a better 

understanding on how the ecosystem functions and to determine which mechanisms are 

behind patterns in the natural world.   

 

The advantage of simple mathematical models is that they are able to expose crucial 

qualitative features and their relationship to or dependence on physical processes 

(Truscott and Brindley, 1994). It is a good idea to use simple models for this because an 

increase in complexity makes it more difficult to understand model behaviour and its 

dependence on the model assumptions and parameters (Murray and Parslow, 1999). 

Mathematical models are also a useful tool because they recognize the uncertainties and 

shortcomings that occur with the use of observational data in models (Edwards and 

Brindley, 1996). They can be used to explore the model to recognise and classify the 

range of possible behaviours that can be expected from the system (Edwards and 

Brindley, 1996). These analytical properties mean that simple models can be helpful in 

advancing the creation of end-to-end models, because they can help to assess the relative 

impact of climate change and exploitation on the food web structure and dynamics, 

which we need to know about if we want to explore how susceptible marine ecosystems 

are to these processes (Frank et al., 2007). 

 

1.6. Objectives 

The aim of this study was to create a simple mathematical model representing a marine 

ecosystem from the nutrient level up to the level of planktivorous fish. This approach 

allows the plankton dynamics to be linked to the fish dynamics in a simple mathematical 

model, which enables exploration of the dynamic behaviour of a simple end-to-end 

model. The results of the study will provide an idea about which dynamics need to be 
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included in the creation of end-to-end models. The study results will also aid in the 

identification of which factors have an influence on the dynamic behaviour of the model 

and its outputs. 

 

 

 

 

 

2. Methods 

2.1. The Models 

The models used in this study are expressed in continuous time t using differential 

equations to describe the rates of change over time. The four state variables present in 

the models are: Nutrient concentration (N), Phytoplankton density (P), Zooplankton 

density (Z) and Fish density (F), and the flows between them are considered. The units 

of the state variables are mmol N/m^3 and the values for P and Z can be converted by 

using the constant carbon of nitrogen ratio of 6.625. The state variables are modelled 

using ordinary differential equations, representing a well-mixed box with no spatial 

structure. A schematic representation of the final model is show in Figure 1., the model 

has the form of a food chain and was built up in three steps as described below.  The 

choice of modelling a closed system was made due to the simplification affect it has on 

the mathematical analysis of the model. However, this simplification limits the 

biological interpretation of the models. 

 

 

 

 N P Z F 

Figure 1. Schematic representation of the final NPZF model.  The boxes represent the state variables 

and the arrows indicate the flow between them. 



 14 

  

2.1.1. The NP Model  

The first step gives the dynamics of the nutrient (N) and phytoplankton (P) as  

 

Ppm
nkN

NP

dt

dN








     Eq 1 

Ppm
nkN

NP

dt

dP






  .    Eq 2 

 

Eq. 1 describes the rate of change of nutrient concentration dN over time t. Nutrient 

concentration is reduced through the uptake of nutrients by phytoplankton, a type II 

functional response (with rate parameter  and half saturation parameter kn) being used 

to allow for saturation of uptake rate of nutrients by phytoplankton. The concentration of 

nutrients increases by phytoplankton instantaneously releasing nutrients when they die, 

which occurs at a per capita rate mp. Eq 2 describes the rate of change of in 

phytoplankton density dP over time t. The rate terms here are the mirror image of those 

in Eq 1, so the density of phytoplankton increases by taking up nutrients, and decreases 

by death of phytoplankton.  

 

In Eqs 1 and 2, a further assumption, that the total concentration of nutrients in the 

system S = N + P is conserved, is made. We can therefore reduce the dimensions in the 

system by one. Eliminating the equation for nutrient dynamics leaves  

 

Ppm
nk)PS(

P)PS(

dt

dP








  .   Eq 3 
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2.1.2. The NPZ Model 

The next step adds the dynamics of the zooplankton (Z) to the system. 

 

Zzm
pkP

zPZγzg

dt

dZ



      Eq 4 

 

Eq. 4 describes the rate of change of zooplankton density (dZ) over time (t). 

Zooplankton density is increased through the consumption of phytoplankton, a type II 

functional response (with grazing rate gz, assimilation efficiency  z ) and half saturation 

parameter kp) being used to represent a saturation per-capita ingestion rate. The 

unassimilated proportion of the food intake is added to the nutrient compartment. The 

density decreases when zooplankton dies, which occurs at the per capita rate mz. 

 

The addition of the zooplankton state variable results in a change of the equation 

describing the phytoplankton dynamics. 

 

 

pkP

PZzg
Ppm

nkZPS

PZPS

dt

dP










   Eq 5 

 

In Eq 5 a term which describes the reduction of the phytoplankton caused by 

zooplankton grazing is added. The constant S now represents the sum of the nutrients 

present in the nutrient, phytoplankton and zooplankton state variables; this means that N 

can be substituted for by using the expression S = N + P + Z. 
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2.1.3. The NPZF Model 

In the final step a state variable representing the fish density (F) in the system was added 

to the model.  

 

FmZFg
dt

dF
fff        Eq 6 

 

Eq. 6 describes the rate of change of fish density dF over time t. The density increases 

through grazing on zooplankton by fish, a type I functional response (with grazing rate 

gf and assimilation efficiency  f) being used after the suggestion by Breck (1993) that 

fish are always searching for food and no saturation occurs. The population density of 

fish decreases at a per capita rate mf. 

 

This addition of the fish state variable changes the equations describing the 

phytoplankton and zooplankton densities of the system.  

 

pkP

PZzg
Ppm

nkFZPS

P)FZPS(

dt

dP










  Eq 7 

 

The phytoplankton density equation is only changed by a minimal amount because S is 

now S = N + P + Z + F  

 

A term is added to the Zooplankton state variable to represent the reduction of its density 

through grazing by fish (Eq 8). 

 

ZFfgZzm
pkP

zPZzg

dt

dZ






    Eq 8 
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2.2. Mathematical Analysis of Model Dynamics 

A mathematical stability analysis was performed for each of the three models. In the 

process the equations of each model were analysed to obtain the equilibrium points for 

the model. First the locations of the equilibria were determined by solving the equations 

of each model simultaneously, by setting each of the differential equations describing 

the state variables equal to zero. Next, eigenvalue analysis was carried out to test for 

local stability of each equilibrium. Jacobian matrices were constructed by differentiating 

each equation of the model with respect to each variable, and expressions for their 

eigenvalues were found. The previously determined equilibria were then entered into the 

solution to provide the eigenvalues for our choice of parameter values. The parameter 

values which were used in the numerical analysis where taken from relevant literature 

and are shown in Table 1. 

 

 

Table 1. Parameter values used in the numerical analysis of the models. Starting value concentrations 

(N, P, Z, F) are based on the knowledge that only around 10% of energy is transferred between trophic 

levels up the food chain.   a Soetaert and Herman (2009)     b Fennel (2009)       c Christensen et al., (2000) 

Parameter  Value Unit 

N Starting value of N in numerical integrations 100 mmolN/m
3
 

P Starting value of P in numerical integrations 10 mmolN/m
3
 

Z Starting value of Z in numerical integrations 1 mmolN/m
3
 

F Starting value of F in numerical integrations 0.1 mmolN/m
3
 

S Sum of all densities present in the system  mmolN/m
3
 

  Nutrient uptake rate 0.5
a
 day

-1
 

 z Assimilation efficiency of Z 0.7
a
  

 f Assimilation efficiency of F 0.8
c
  

kn Half saturation of Nutrient 1
a
 mmolN/m

3
 

kp Half saturation of Phytoplankton 1
a
 mmolN/m

3
 

mp Mortality rate of Phytoplankton 0.02
b
 day

-1
 

mz Mortality rate of Zooplankton 0.05
a
 day

-1
 

mf Mortality rate of Fish 0.05
b
 day

-1
 

gz Grazing rate of Zooplankton 0.5
a
 day

-1
 

gf Grazing rate of Fish 0.005
b
 day

-1
 

 

 

For unstable equilibrium points at the boundary of the NP and NPZ systems a 

mathematical analysis was performed to check if there are any conditions under which 

these unstable points could be stable. This was done by applying the Routh-Hurwitz 
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conditions which can be used to determine if an equilibrium point is stable without 

having to explicitly calculate the eigenvalues (Otto and Day, 2007). The conditions are 

based on the values of the coefficients of the characteristic polynomials. In a two 

dimensional system, such as the NPZ model, the characteristic polynomial can be 

expressed as r
2 

+ a1r + a2 = 0. In order for the system to be classified as stable the 

conditions a1 > 0 and  a2 > 0 have to be fulfilled simultaneously.  

 

 

2.3. Phase Space Analysis 

Phase space analysis was performed to gain a better understanding of the general 

dynamic behaviour of the models. In a phase space diagram all possible states of a 

system are represented, with each point in the space corresponding to a possible state, 

which enables general conclusions about model behaviour to be made. The phase space 

analysis can also be used to verify findings obtained during the mathematical analysis, to 

illustrate its main features with numerical examples, and to understand how the 

behaviour of a system will change under different parameterizations. Plotting the zero-

growth isocline of each differential equation created the phase plane diagrams. Points at 

which isoclines intersect are equilibria. The phase plane diagram can also provide 

information about the stability of the equilibria. For example in a one dimensional 

system the stability of an equilibrium depends on the slope of the differential equation at 

the point. If the slope is positive i.e. to the left of the peak the equilibrium is unstable. 

Conversely if the slope is negative at the equilibrium i.e. to the right of the peak, the 

equilibrium is stable (Otto and Day, 2007). 

 

 

2.4. Numerical Integrations 

Numerical integrations were performed for each model to verify the findings from the 

previously performed analysis and to gain a better understanding of how the densities of 

the state variables will vary over time. The integrations were also used to see what 

happens to the model dynamics when starting concentrations/densities are altered.  The 

integrations were performed using the R software package using the odesolve function, 
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which uses the 4
th

 order Runge-Kutta integration method. The integrations were 

performed with step sizes which were dictated by the odesolve tolerances and 

accuracies. The integrations for the NP system were run from t = 0 to t = 100. For the 

NPZ and NPZF systems the integrations were run from t = 0 to t = 1300 to ensure the 

behaviour of the system was captured. 

 

 

 

3. Results  

3.1 Mathematical analysis of model dynamics 

A mathematical analysis of the models was carried out to gain an understanding of the 

dynamics occurring in them. 

 

3.1.1. The NP model 

The mathematical analysis of the NP model showed that 2 equilibria are present in the 

system (Table 2). The first equilibrium was observed at P = 0 and the second 

equilibrium was observed at 
 

0pm
nkPS

PS





.  This equation was solved for P and 

on inserting the parameter values from table 1 resulted in a numerical value of               

P = 109.9583 mmolN/m
3
.  

 
Table 2. Table showing the equilibrium points found in the NP system.  

 indicates the eigenvalues obtained in the analysis.  

Equilibrium  N P   

1  110 0  0.4755 

2  0.0416 109.9583  -50.6688 

 

 

When these points were entered into the Jacobian matrix (Eq 9) for the purpose of a 

stability analysis, an eigenvalue of 0.4755 was obtained for the equilibrium of P = 0. 

This means that the equilibrium is an unstable equilibrium. For the second equilibrium 

of P = 109.9583 mmolN/m
3
 an eigenvalue -50.6688 was found, which means that this 

equilibrium is a stable equilibrium. This means that the NP system will end up at this 
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state, for any biologically realistic initial condition, in which almost all of the nutrients 

are bound up in the phytoplankton. 

 

The Jacobian matrix was created by differentiating the dP/dt equation show in Eq 3 with 

respect to P, resulting in: 

 

pm
2

)nkPS(

P)PS(

nkPS

)PS(

nkPS

P
J 















  Eq 9 

 

 

To test for conditions in the area around the unstable equilibrium P  = 0 can become 

stable the Jacobian at the point was calculated. According to the Routh-Hurwitz 

condition the unstable equilibrium would be stable if the condition J (0) < 0 is fulfilled. 

 

 Since 0
P

m
nkS

S
)0(J 





     we can assert that J(0) < 0 if and only if 

 

P
m

nkS

S






. 

 

This result means that at P = 0 the system could only be stable if the growth rate of 

phytoplankton is lower than its mortality rate. This means that the equilibrium could 

only be stable if the phytoplankton population is going extinct. 

 

 

3.1.2. The NPZ Model 

After the addition of the differential equation defining the zooplankton state variable as 

shown in equation 4, the mathematical analysis was repeated. The results showed the 

presence of three equilibria in the NPZ system (Table 3).  

 

The equilibrium value of P was obtained by setting dZ/dt = 0 in equation 4. This is true 

if Z = 0 or if  0zm
pkP

zPγzg



. This can be expressed as

zmzzg

pkzm
P





. Inserting 
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the parameter values from table 1 into this term, a value of P* = 0.1667 mmolN/m
3
 was 

obtained. 

 

Next, setting dP/dt = 0 in equation 5 yields two possible solutions: P = 0 or 

 
0

pkP

Zzg
pm

nkZPS

ZPS








.  When the second equation was solved 

under the assumption that P = P*, one positive solution for Z was obtained. When 

parameter values from table 1 were inserted into this solution a numerical value of                    

Z = 1.109463 mmolN/m
3
 was obtained.  

 

If dP/dt = 0 is solved under the assumption that Z = 0 the equation is reduced to the 

equation 
 

0



Pm

kPS

PPS
p

n


, which has two possible solutions. These are at      P = 0 

and 
 

0



p

n

m
kPS

PS
, i.e. P = 0 or 










pm

nkpmSpmS
P . When parameter 

values from table 1 were entered into this second solution a value of               P = 

110.9583 mmolN/m
3
 was obtained.  This gives three equilibria as shown in table 3. The 

values are slightly different to the values in table 2 due to the addition of the 

zooplankton state variable to the system. This means the value of S is increased to          

S = 111 from the previous value of  S = 110.  

 

 
Table 3. Table showing the equilibrium points found in the NPZ system.   

 indicates the eigenvalues obtained in the analysis 

Equilibrium N P Z 1 2 

1 111 0 0 0.4755357 -0.05 

2 0.0416667 110.9583 0 -51.1296 0.2968738 

3 109.7239 0.16667 1.109963 0.0339+0.139i 0.0339-0.139i 

 

As with the NP model in section 3.1.1. these results were entered into the Jacobian 

matrix (Eq 10) of the system and used in an eigenvalue analysis. The Jacobian matrix is 

defined as  
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P
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P
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J .     Eq 10 

 

The elements of the first row are comprised by differentiating the dP/dt equation as 

shown in equation 5, with respect to P and Z, resulting in  

   

   2pkP

PZzg

pkP

Zzg
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and  

 

  p

z
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Pg
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kZPS

P

Z
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
  

respectively.  The elements of the second row were created by differentiating the dZ/dt 

differential equation as shown in equation 4, with respect to P and Z resulting in 

 2pkP

zPZzg

pkP

zZzg

P

dt

dZ












  

and  

zm
pkP

zPzg

Z

dt

dZ










  

respectively. The explanations and values of parameters used can be found in Table 1.  

 

The results of this stability analysis of the system showed that all equilibria within the 

systems are unstable equilibria. In addition to this the analysis showed that the 

equilibrium point where N, P and Z coexist, is classified as an unstable focus in the 

system. This is indicated by the eigenvalues, which are complex numbers with a positive 

real part (Table 3). The positive value indicates instability and the complex number 

indicates the equilibrium is a focus.  
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When applying the Routh-Hurwitz conditions of stability to the NPZ system the 

following results were obtained. In the area around equilibrium 1 the Routh-Hurwitz 

conditions would only be fulfilled if the phytoplankton density is declining. In the area 

around equilibrium 2 the Routh-Hurwitz conditions are only fulfilled if both the 

phytoplankton and zooplankton densities are in decline.   

 

 

3.1.3. The NPZF Model 

As in section 3.1.1. and 3.1.2. the mathematical analysis was repeated after the addition 

of the differential equation, which in this case describes the fish state variable as shown 

in equation 6. The analysis of the NPZF model showed that five equilibria are present in 

the system. Two out of these were found to be internal equilibria and the three remaining 

equilibria are located on the boundaries of the system. 

 

The first step to determine the equilibria in the system was to set dF/dt = 0 in equation 6. 

This has the solutions F = 0 and gf Z  f - mf  = 0. This second equation can be expressed 

as 
ffg

fm
Z


 . Inserting the parameter values from table 1 into this equation for Z gives 

an equilibrium value of Z = 12.5 mmolN/m
3
. 

 

 

Next the equation dZ/dt = 0 in equation 8 was solved resulting in two solutions. The first 

is given by Z = 0 and the second is given by 0zmFzg
pkP

zPγzg



. When this 

equation is solved for F it can be expressed as   fgpkP

pkzmPzmzPzg
F







. 

 

 

Finally there are also two possible solutions for dP/dt = 0 in equation 7, the first being   

P = 0 and the second being 
 

0
pkP

Zzg
pm

nkFZPS

FZPS








.  This second 

solution can also be expressed as   
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)kkm-Sk-mPkm - nppppnp

2PmSPmZkgZPm ppnzp 
 

 

Because the equations defining F resulting from solving the dP/dt and the dZ/dt 

equations can only be defined as a function of P, a slightly different approach had to be 

employed to obtain a solution for F that is “independent” of P and vice versa. 

 

To obtain a solution for P independent of F, the solutions obtained for F from the dZ/dt 

and the dP/dt equations were set equal to each other and then solved for P. The solution 

had the shape of a cubic equation, which resulted in one negative, and two positive 

values for P when the parameter values from table 1 were inserted into the solution. The 

positive values were 12.45406 mmolN/m
3
 and 39.78610 mmolN/m

3
.  Inserting these 

obtained values of P into the solutions for F the results were 54.79711 mmolN/m
3
 and 

58.28373 mmolN/m
3
 respectively. This gives the five equilibria as shown in table 4. 

Again the values are slightly different to the values in table 2 and 3 due to the addition 

of the fish state variable to the system. This means the value of S is increased to S = 

111.1 from the previous value of S = 111. 

 
Table 4. Table showing the equilibrium points found in the NPZF system.   

 indicates the eigenvalues obtained in the analysis 

Equili

brium 

N P Z F 1 2 3 

1 111.1 0 0 0 0.4755 -0.05 -0.05 

2 0.0416 111.058 0 0 -51.172 0.2968 -0.05 

3 109.777 0.166 1.156 0 -0.0454 0.0255+0.1419i 0.0255-0.1419i 

4 31.348 12.454 12.5 54.797 0.3977 0.0132+0.1198i 0.0132-0.1198i 

5 0.53 39.786 12.5 58.283 -8.2439 -0.0014+0.124i -0.0014-0.124i 

 

 

When these obtained values where inserted into the Jacobian matrix (Eq 11) of the 

system and used in an eigenvalue analysis the result showed that out of the two internal 

equilibria one, equilibrium 4, was found to be unstable and the other, equilibrium 5, was 

found to be stable, the former having a lower density of fish then the latter. The 

 
ppppz

zzzppppppp

kmkPPmZg

ZgZPgZSgZkmPkmZkZPPkPSkSP
F








 22(
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eigenvalues obtained from the eigenvalue analysis are shown in table 4. The Jacobian 

matrix is defined as 
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J .    Eq 11 

 

The elements of the first row are comprised by differentiating the dP/dt differential 

equation as shown in equation 7 with respect to P, Z and F resulting in:   
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respectively.  The elements of the second row were created by differentiating the dZ/dt 

differential equation as shown in equation 8 with respect to P, Z and F resulting in 
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and  

Zfg
F

dt

dZ






 

respectively. Finally the third row of the matrix is created by differentiating the dF/dt 

differential equation as shown in equation 6 with respect to P, Z and F resulting in 

0
P

dt

dF






,  

fFfg
Z

dt

dF






  

and  

mfzgfZ
F

dt

dF






  

respectively. 

 

 

 

3.2. Phase space analysis 

The phase space analyses of the three models were performed to gain a better 

understanding of the general behaviour of the models and to give support to the results 

obtained during the mathematical analysis. To make the diagrams easier to understand 

only the internal zero-growth isoclines will be displayed in the diagrams below. 

 

 

3.2.1. The NP model  

To create the phase plane diagram for the NP model the zero-growth isocline were 

calculated. In the NP system, two such zero-growth isoclines were identified (Figure 2). 

The first is at P = 0 and the second at μ(S - P) – mpS + mpP - mpkn = 0. To the left of the 

equilibrium the density of phytoplankton is increasing while to the right of the 

equilibrium the phytoplankton density is decreasing.  
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Figure 2. Graph showing the equilibrium of the NP system.  The Red dot shows the position of the 

equilibrium. The arrows indicate the direction of the trajectories in the system. 

 

The results from the phase space analysis verify the mathematical analysis of the system 

with regards to the position of the equilibrium found in the system. 

 

 

 

3.2.2. The NPZ model  

The addition of the differential equation 4, which describes the zooplankton state 

variable, resulted in the addition of two additional zero-growth isocline to the system. 

 

Each of the two differential equations used to describe the system results in a boundary 

and an internal zero-growth isocline (Figure 3). The dP/dt differential equation as shown 

in equation 5 has a zero-growth isocline at P = 0 and at 

 
0

pkP

Zzg
pm

nkZPS

ZPS








. The dZ/dt differential equation as shown in 

equation 4 has one zero-growth isocline at Z = 0 and another one at 0zm
pkP

zPγzg



.  
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Figure 3. Phase space portrait of the NPZ system. The blue line shows the internal zero growth isocline 

of phytoplankton equation 5. The red line shows the internal zero-growth isocline of zooplankton equation 

4. The grey arrows are the vector field of the system. The internal equilibrium is situated at the 

intersection of the two internal zero-growth isoclines. 

 

A magnification of the phase space area around the internal equilibrium shows that the 

trajectories move in circle spiraling out from the equilibrium (Figure 4). 

 

 

 
Figure 4. Magnification of the area from 0 to 2 of the NPZ Phase space portrait. The blue line shows 

the internal zero growth isocline of phytoplankton equation 5 . The red line shows the internal zero-growth 

isocline of zooplankton equation 4. The grey arrows are the vector field of the system. The internal 

equilibrium is situated at the intersection of the two internal zero-growth  isoclines. 
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The two internal zero-growth isocline effectively divide the phase space into four areas, 

with the density of phytoplankton is increasing beneath the blue curve and decreasing 

above it. The zooplankton density is decreasing to the left of the red line and increasing 

to the right of it.  

 

In the first area located in the bottom left of the diagram the zooplankton density is 

decreasing while the phytoplankton density is increasing. In the second area in the 

bottom right the phytoplankton and zooplankton densities are both increasing. In the 

third area in the top right the phytoplankton density is decreasing while the zooplankton 

density is increasing. In the top left, the fourth area, to the left of the zooplankton and 

above the phytoplankton zero-growth isoclines, both the zooplankton and the 

phytoplankton densities are decreasing.   

 

The results obtained from the phase space analysis verify the results from the 

mathematical analysis with regards to the position of the equilibria in the system. The 

phase space and the mathematical analysis both indicated the presence of a stable limit 

cycle in the system. Following the Poincare-Bendixon theorem a stable limit cycle has to 

be present because there is no attracting fixed point present in the system and it is a two-

dimensional system (see Edelstein-Keshet, 1988). 

 

The position of the internal equilibrium is defined by the equation 0zm
pkP

zPγzg



. 

The isocline would shift towards the right either if the zooplankton mortality is 

increasing or if the zooplankton growth rate is decreasing (Figure 5).  
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                         A B C D  E            F                  G         H 

 
Figure 5.  Shift of the internal zooplankton zero-growth isocline.  Figure shows the different positions 

of the internal zooplankton zero-growth isocline with increasing values of mz.. A: mz = 0.05, B: mz = 0.2, 

C: mz = 0.3, D: mz = 0.32, E: mz = 0.33, F: mz = 0.34, G: mz = 0.3438, H: mz = 0.345 

 

 

3.2.3.  The NPZF model 

With the addition of the differential equation 6, which describes the fish state variable of 

the system, a third internal zero-growth isocline was added to the system. The zero-

growth isoclines for dF/dt equation 6 were observed to be at F = 0 and at 
ffg

fm
Z


 . 

This means that the internal zero-growth isocline which is obtained from the dF/dt 

differential equation is a constant with the value of Z = 12.5 mmol/m
3
.  The curves of the 

dZ/dt equation as shown in equation 8 are at Z = 0 or   fgpkP

pkzmPzmzPzg
F







. 

The zero-growth isoclines of the dP/dt differential equation as shown in equations 7 are 

at P = 0 and at 
 

0
pkP

Zzg
pm

nkFZPS

FZPS








. 
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Figure 6. Different views of the internal zero-growth isocline surfaces of the NPZF model.  Blue is 

the internal zero-growth isocline for phytoplankton, red is the zero growth isocline for zooplankton and 

grey is the zero-growth isocline for zooplankton. Equilibria are located at the intersection of all three 

surfaces. 

 

In the phase space diagram (Figure 6) the internal zero-growth isoclines divide the phase 

space into eight areas based on the following conditions. The phytoplankton densities 

are increasing beneath the blue dome shape and decreasing outside it. The zooplankton 

densities are increasing below the red surface and decreasing below it. The fish densities 

are increasing behind the grey surface, and decreasing in front of it. 

This means that in the area which is located behind the grey surface, beneath the red 

plane and inside the blue dome shape the densities of all three functional groups are 

increasing. In the area which is under the red plane but outside, the blue dome shape the 

phytoplankton density is decreasing while the zooplankton and fish densities are 

increasing. Above the red surface and inside the blue dome shape the densities of 

phytoplankton and fish are increasing while the density of zooplankton is decreasing. In 

the region outside the blue dome shape both phytoplankton and zooplankton densities 
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are decreasing and only the fish density is increasing. In the area, which is lying in front 

of the fish zero-growth isocline, the densities are behaving in the following ways. 

Beneath the red surface and inside the blue dome shape the densities for the 

phytoplankton and zooplankton state variable are increasing while the fish density is 

decreasing. Outside the blue dome shape the concentrations of the phytoplankton and 

fish groups are decreasing with only the zooplankton concentration increasing. Above 

the red surface and inside the blue dome shape only the phytoplankton density is 

increasing while both the zooplankton and fish densities are decreasing. In the area 

above the red surface and outside the blue dome all three densities are decreasing. 

 

On introduction of the fish state variable the phytoplankton zero-growth isocline 

remained unaffected, while the zooplankton zero-growth isocline was observed to bend 

towards the right. This is the case because the fish only have direct influence on the 

zooplankton state variable by preying on them while they do not prey on the 

phytoplankton.  

 

The position of the internal equilibrium points is determined by the internal fish zero-

growth isocline, which is defined by the equation
ffg

fm
Z


 . The plane would move 

backward in the space either if the mortality of fish is increasing or if the growth rate of 

fish decreases. If the surface is shifted sufficiently far back in the space, it will no longer 

intersect the two remaining zero-growth isocline surfaces present in the system (Figure 

7). This means that a change in the fish mortality parameter value can cause a 

bifurcation. 
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A

 

B

 

C 

 

D

 

Figure 7.  Shift of the internal Fish zero-growth isocline. Figure showing different positions of the fish 

zero-growth isocline for increasing mf values. A: m f= 0.05, B: mf = 0.07, C: mf = 0.83,  D: mf = 0.2 
 

3.3 Numerical Integrations 

3.3.1. The NP model 

The numerical integration of the NP system (Figure 8) was performed using the 

odesolve function in the R software package, which uses the 4
th

 order Runge-Kutta 

method, from t = 0 to t = 100 with a step size of 1 day. The graphical result shows that 

the nutrient concentration is rapidly taken up during an increase in the phytoplankton 
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density. The phytoplankton density can be observed to level when it reaches a value of 

around 109.9583 mmolN/m
3
. This behaviour observed in the numerical integration 

verifies the results from the mathematical analysis of the NP model, which indicated a 

stable equilibrium at this value of phytoplankton density.  

 

 
Figure 8.  Graph of the numerical integration of the NP system. Red is the nutrient concentration, blue 

is the phytoplankton density.  

 

 

 

3.1.2. The NPZ model 

As in section 3.1.1. the numerical integration of the NPZ model was performed using the 

odesolve function in the R software package, which uses the 4
th

 order Runge-Kutta 

method, from t = 0 to t = 1300 at a step size of 1 day. The graphical result shows a limit 

cycle in the densities of the functional groups present in the system (Figure 9). The 

observed behaviour of the densities is the following: As the phytoplankton density 

increases the nutrient concentration declines. Then as the zooplankton density increases 

the phytoplankton density declines. When the zooplankton density declines the nutrient 

concentration increases again, before the cycle restarts with an increase in phytoplankton 

density. 
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Figure 9. Graph of numerical integration of the NPZ system. Red shows the nutrient concentration and 

green and blue represent the phytoplankton and zooplankton densities respectively. 

 

 

 

When the results of the numerical integrations were plotted into phase space it was 

observed that independent of the starting values the trajectories move into the limit 

cycle. This suggests a stable limit cycle (Figure 10). In the third panel of figure ten the 

trajectory is approaching the limit cycle. 
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Figure 10.  Phase space portrait of the NPZ system. Showing trajectories from different starting points 

in the system. The units for both phytoplankton and zooplankton densities are mmolN/m
3
 

 

The observations from the numerical integrations verify the results which were obtained 

during the phase space analysis using equations 3 and 4 of the model in section 3.2.2.. 

The behaviour of the integration in which the phytoplankton density increases while the 

density of zooplankton decreases corresponds to the first area in the phase space 

diagram. The part of the integration in which both the phytoplankton and zooplankton 

densities are increasing simultaneously can be assigned to the second area in the phase 

space diagram, while the area with decreasing phytoplankton and increasing 

zooplankton densities corresponds to the third area in the phase space diagram. The last 

part of the cycle in which both the phytoplankton and zooplankton densities are 

observed to decrease relates to the fourth area on the phase space diagram. 
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3.3.3. NPZF model 

As in the two previous models in sections 3.3.1. and 3.3.2. numerical integrations were 

performed using the odesolve function in the R software package, which uses the 4
th
 

order Runge-Kutta method, for the NPZF model. The integration of the model was run 

form t = 0 to t = 1300 at a step size of 1 day. The numerical integrations revealed two 

areas of behaviour in the system, indicating bistability with a basin boundary being 

present.  

 

In the first area, with a value in fish density above the boundary value, the behaviour 

that can be observed in the integration is that the densities of nutrient, phytoplankton, 

zooplankton and fish are oscillating towards the stable equilibrium in the system (Figure 

11).  This behaviour was expected to occur based on the mathematical analysis of the 

equations 6, 7 and 8 of the NPZF model in section 3.1.3.. 

 

Figure 11. Result of the numerical integration in NPZF system with starting value slightly higher 

then the value of the unstable internal equilibrium point of the system. Red shows the nutrient 

concentration and green, turquoise and purple represent the phytoplankton, zooplankton and fish densities 

respectively 
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This behaviour can be observed as a spiraling towards the stable equilibrium in the 

system when the results obtained from the numerical integrations are plotted into the 

phase space of the system (Figure 12).   

 

 

 

Figure 12. Phase space portrait of the numerical integrations shown in figure 11.  

Blue dot represents starting point of the integration, red dot represents end point of the integration, green 

dots indicate the position of the equilibrium points. Arrows indicate the direction of the movement of the 

integration. The units for both phytoplankton, zooplankton and fish densities are mmolN/m
3
 

 

 

In the second area of behaviour that has been observed in the system, the fish density 

occurring in the system tends towards zero after initial cycling, leaving only the nutrient 

concentration and phytoplankton and zooplankton densities to continue to cycle. The 

slow spiraling of the trajectories towards the equilibrium and the closeness to zero of the 

real parts of the complex eigenvalues for equilibrium 5 in Table 4, indicates that the 

equilibrium is close to going through Hopf bifurcation. 
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When the integrations were run with the initial starting conditions shown in table 1 the 

graphical result shows the densities of the state variables going through one increase 

phase before declining again (Figure 13). The only state variable having the opposite 

behaviour is the nutrient concentration. After one cycle including all four state variables, 

only the nutrient, phytoplankton and zooplankton densities continue cycling as is the 

NPZ system. 

 
Figure 13. Numerical integration of the NPZF system Red shows the nutrient concentration and green,  

turquoise and purple  represent the phytoplankton, zooplankton and fish densities respectively 

 

When the result from the numerical integrations was plotted in the phase space this 

behaviour was also observed, represented as cycles in the bottom plane (Figure 14). 
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Figure 14. Phase space portrait of the numerical integrations shown in figure 13. 

Blue dot represents starting point of the integration, red dot represents end point of the integration, green 

dot indicates the position of the equilibrium. Arrows indicate the direction of the movement of the 

integration. The units for both phytoplankton, zooplankton and fish densities are mmolN/m
3
 

 

 

The result was also observed when integrations were started at the values of F = 54.797 

mmolN/m
3
, P = 12.454 mmolN/m

3
 and Z = 12.5 mmolN/m

3
, the value at the unstable 

equilibrium. After the initial cycle the behaviour was similar to the ones observed during 

the initial integration for the model (Figure 15). 
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Figure 15. Result of the numerical integration in NPZF system with starting value represented at 

the unstable internal equilibrium point of the system Red shows the nutrient concentration and green, 

turquoise and purple  represent the phytoplankton, zooplankton and fish densities respectively 

 

As before the results of the numerical integrations were plotted in the phase space of the 

system (Figure 16). 

 

 
Figure 16.  Phase space portrait of the numerical integrations shown in figure 15. 

Blue dot represents starting point of the integration, red dot represents end point of the integration, green 

dots indicate the position of the equilibria. Arrows indicate the direction of the movement of the 

integration. The units for both phytoplankton, zooplankton and fish densities are mmolN/m
3
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When the value of the fish density was increased to F = 130 mmolN/m
3
 the behaviour 

observed in the graphical result of the numerical integrations also showed a settling of 

the densities into a cycle in the nutrient, phytoplankton and zooplankton densities 

(Figure 17). 

 
Figure 17. Result of the numerical integration in NPZF system with a starting value of F = 130 

mmolN/m
3
 at the values of the stable internal equilibrium point of the system Red shows the nutrient 

concentration and green, turquoise and purple represent the phytoplankton, zooplankton and fish densities 

respectively 

 

The same behaviour can also be observed when the integration results are plotted into 

the phase space of the system (Figure 18). 
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Figure 18. Phase space portrait of the numerical integrations shown in figure 17. 

Blue dot represents starting point of the integration, red dot represents end point of the integration, green 

dots indicate the position of the equilibrium points. Arrows indicate the direction of the movement of the 

integration. The unites for both Phytoplankton, Zooplankton and Fish densities are mmolN/m
3
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4. Discussion 

4.1. The NP model 

In the system in which only nutrients and phytoplankton occur, the system was found to 

be stable in a state in which most nutrients have been taken up by the phytoplankton. 

The behaviour change in the system was observed to be rapid, with the phytoplankton 

taking up the nutrients present in the system before levelling. The levelling in the 

phytoplankton density means that it has reached its carrying capacity. In nature a 

levelling occurs too (e.g. Reynolds et al., 2000), for example if nutrient limitation occurs 

i.e. when there are not enough nutrients available for further increase in phytoplankton 

density (e.g. Mei et al., 2009; Seppälä et al., 1999). Although not considered in this 

model, self shading in phytoplankton, which occurs when a large amount of 

phytoplankton is present in the water column, preventing other phytoplankton from 

getting enough light to continue growing, can also cause a levelling in phytoplankton 

density (e.g. Mei et al., 2009; Huisman and Weissing, 1995). The phytoplankton density 

in the model stays at the level of carrying capacity because apart from the natural 

mortality there is no other factor defined to reduce its density.  

 

4.2. The NPZ model 

The analysis of the NPZ model has shown the presence of a limit cycle which is causing 

the cyclic behaviour in the densities of the nutrient, phytoplankton and zooplankton state 

variables in the system. This cycle can be observed in the graphical representation of the 

numerical integration of the model. The cycle corresponds to the following biological 

sequence. An increase in the phytoplankton density results in a decrease of the nutrient 

concentration because the phytoplankton is taking up the nutrients when it is growing. 

As the phytoplankton density increases the zooplankton density is starting to increase 

because its food source is increasing. As zooplankton densities are increasing further it 

starts to control the phytoplankton density. Eventually the zooplankton density becomes 

so high that it causes the phytoplankton density to decrease further. Once there is not 

enough phytoplankton left to support the zooplankton it starts to decrease in density. In 

the process it starts to release the nutrients which means the nutrient concentration is 
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increasing which enables the phytoplankton density to increase again. This restarts the 

cycle. This cyclic behaviour has been observed in other models. Examples for this are 

the models by Steele and Henderson (1992) and Edwards and Brindley (1996) which 

observed cyclic behaviours in NPZ models over a wide range of parameter values and a 

range of formulations used.  

 

Cycles have not only been observed in outputs of models they have also been observed 

in the natural world. In freshwater habitats a cycling between zooplankton and 

phytoplankton has been observed in analysed data from 30 studies in 12 countries and  

internally forced oscillations have been found in 15 cases (McCauley and Murdoch, 

1987).  Cycles have also been observed by Scheffer et al. (1997) who looked at the 

phytoplankton dynamics of Dutch lakes and suggested that the dips in phytoplankton 

density are caused by zooplankton. They also summarised other studies which showed 

this phytoplankton - zooplankton interaction. More recently a seasonal phytoplankton 

zooplankton cycle has been observed in the coastal waters of the Canary Islands 

(Aristegui et al., 2001) and a cyclic behaviour for most zooplankton species has also 

been observed in the North Sea (Fransz et al., 1991). While most studies on cycling in 

populations has been carried out in fresh water habitats, there is also evidence that 

cycling does occur in the ocean. The reason why cycles in phytoplankton are not 

commonly observed could be that the more turbulent environment could act to conceal 

signals which identify cycles (Edwards and Brindley, 1999; Koszalka et al., 2007). In 

field studies it is difficult to be certain, if the cycles found to occur are due to internal or 

external forcing. The model used in this study shows that internal forcing can cause 

cycles.  

 

At the internal equilibrium around which the cycle moves the zooplankton density is 

higher than the phytoplankton density. This can be explained by the top-down control 

exerted on the phytoplankton by the zooplankton (Frank et al., 2007). Although the 

model is minimalist, it is able to replicate the oscillations which have been observed in 

both laboratory and field experiments (Scheffer et al., 2000). 
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4.3. The NPZF model 

When the fish state variable was added to the previous system, with one internal 

unstable equilibrium and a stable limit cycle changed to a system with two internal 

equilibria, of which one was observed to be stable. This finding of an increase in 

stability with complexity is in agreement with other studies. Scheffer (1991) found that 

the presence of planktivorous fish has a stabilising effect on the system, with fish 

dampening the phytoplankton-zooplankton oscillations. It is also in agreement with the 

work carried out by Smetacek and Nicol (2005) who also found that a predatory 

population can exert a stabilising effect on populations of shorter lived organisms of 

lower trophic levels. This finding is also in agreement with more general studies such as 

the one carried out by Christensen et al. (2000) which suggest that the presence of an 

additional trophic level increases the possible food chain length, which results in a more 

stable ecosystem. 

 

The analysis of the NPZF system showed a bistability with a basin boundary present. 

Above the boundary value all the state variables in the system move towards the stable 

equilibrium in the system in which nutrients, phytoplankton, zooplankton and fish 

coexist.  

 

The most interesting difference between the stable equilibrium and the unstable 

equilibrium is that the stable equilibrium point has a higher density of fish. This could be 

compared to the situation in the natural world where an ecosystem with more fish is 

stable and becomes unstable as fish are lost from the system for example through 

fishing. This finding is in agreement with other studies which showed that fishing can 

have an influence on ecosystem stability (e.g. Jackson et al., 2001).   

 

The stable equilibrium also has a higher phytoplankton density and a lower nutrient 

concentration than occurs at the unstable equilibrium. This finding in the presence of a 

lower fish density is a sign of top-down control being exerted by the fish, on the rest of 

the food chain. This is in agreement with the results obtained in lake experiments which 

were carried out by Moss et al. (2004) which found that if zooplankton are released from 
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predation pressure they can control the phytoplankton populations, resulting in lower 

phytoplankton densities in lakes with lower fish biomass than in lakes with higher fish 

biomass. In lakes with higher fish biomass zooplankton was controlled and 

phytoplankton was released from grazing pressure resulting in the higher phytoplankton 

biomass. This finding is also in agreement with the theoretical study carried out by 

Scheffer et al (2000), which used a classical minimal Daphnia-algae model. This finding 

also shows that over-fishing will have consequences throughout the pelagic food web 

(e.g. Frank et al., 2005; Myers et al., 2007). Such a non-linear effect of fish has also 

been mentioned in other studies (e.g. Megrey et al., 2007). 

 

Below a certain value of fish the behaviour stays in the boundary basin and is not able to 

reach the stable equilibrium. The fish density goes to zero and then cycles in the 

nutrient, phytoplankton and zooplankton densities. A reason for a decrease in fish 

density in the system for example is exploitation through fishing. Empirical data studies 

have suggested that over-fishing can shift an ecosystem from one state to the other 

(Daskalov, 2007). Even though a lot of work has been carried out on regime shifts the 

complexity of ecosystems makes it difficult to find a definitive answer as to what factors 

are triggering the shifts. However, fishing appears to be a factor in the event of regime 

shifts (Daskalov, 2007), but so far evidence that the shift is caused by over-fishing has 

only been circumstantial (Collie et al., 2004). 

 

The finding of a basin boundary in the system of this study is interesting in itself. The 

observation that the fish density has to be above a critical value to be able to reach the 

stable equilibrium point could explain an observation in the natural world in which 

fishery stocks have not recovered from over-exploitation even after closing fisheries 

stopped exploitation. An example for such a situation is the Newfound-land cod fishery. 

In 1960s the Canadian cod stock numbered almost two billion individuals but over the 

last three generations the stock declined by 97%. By 1992 the stock had become 

commercially extinct and the fishery was closed, but stocks have not recovered despite 

the closure of the fishery (Hutchings and Reynolds, 2004). 
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5. Conclusion 

The main conclusion that can be taken from this study is that simple models like those 

analyzed here can be used to gain a better understanding about the processes going on in 

the interactions between nutrients, phytoplankton, zooplankton and fish groups. The 

model enables the suggestion of alternative explanations to observations, which have 

been made in the natural world. It can also provide us with an insight to understanding 

mechanisms, which are more difficult to understand (Scheffer, 1999), such as factors 

triggering regime shifts in marine ecosystems. This study gives support to previous 

studies suggesting that fishing alters ecosystems, and can shift ecosystems from one 

state to another. Fishing impacts cascade through the food web and that some systems 

cannot recover after over-exploitation. The findings of this study also give support to the 

end-to-end modelling approach of ecosystem modelling because they enable to study the 

impacts of fishing on the whole ecosystem and showed that fish dynamics are 

influencing plankton dynamics and vice versa. 

 

Future work in this area of work should focus on investigating, which changes occur in 

the behaviour of system dynamics when the fish state variable is modeled with inclusion 

of a complete life cycle. This is important because fish have different rates of mortality 

at different stages of their life cycle and their exploitation is life cycle stage dependent 

too. The inclusion of the whole life cycle could provide more understanding on which 

processes are influencing the dynamics in the system and how they influence it. 
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