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Abstract 

The Rivelin and Limb Valleys in Sheffield have a long history of Industrial activity and 

were chosen as acidic environments. The first aim was to analyse the microbial diversity 

present in the collected water samples from both sites using batch cultures. Two 

bacterial strains (Bacillus cereus and Micrococcus luteus) and two yeast strains 

(Aureobasidium pullulans and Debaryomyces hansenii) were successfully isolated 

and identified using 16S and 18S rDNA molecular identification techniques.  

Physiological characterisations were carried out on all four strains to examine their 

response to different pH values and high salinity. On the basis of these results, D. 

hansenii and M. luteus were chosen for further study based on their growth at high 

salinity at pH 3. Further physiological studies showed that D. hansenii was well 

adapted to grow at different, extreme conditions in M9 minimal and rich YPD media, 

while M. luteus required rich LB medium to successfully adapt to combined acid and salt 

stress. NMR spectroscopy showed when subject to high salinities, M. luteus accumulated 

betaine as the main compatible solute while D. hansenii accumulated glycerol. Most 

importantly, glycine betaine was identified as an additional compatible solute in D. 

hansenii. This is the first report of glycine betaine acting as a compatible solute in a 

yeast cell. D. hansenii was shown to maintain an internal pH of 6.7 when grown in 

pH 3 medium and unlike most acid tolerant microorganisms, their membrane 

potential remained negative when grown at pH 3. pH shock experiments (varying 

external pH between 3 and 7) suggested that it takes longer than 30 minutes for the D. 

hansenii cells to return their internal pH to pre-stress levels. 
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1 INTRODUCTION AND AIMS 

1.1 Microbial Life 

When a biosphere existed and long before plants and animals evolved on Earth, the planet 

teemed with microbial life. Microorganisms continue to thrive, evolve and make all other 

life on Earth possible (Staley, 2002). Generally, microbial cells thrive in populations which 

are in association with other cells, but nevertheless, a number of biological, physical and 

chemical factors control the continued existence of a microorganism. In fact, the physical 

environmental factors sometimes deter adaptation and define an absolute limit beyond 

which no life can exist (Lin and Reysenbach, 2003). 

The evidence indicates that there may be complex interactions between microbes 

growing in the environment. For example, when a particular organism starts 

metabolising a particular compound, it may reduce or remove inhibiting material and 

thus allow growth of other organisms. Kimura et al. (2006) have reported that, in the 

presence of acetic acid, sulphate reducing bacteria cannot grow. These bacteria 

require aerobic organisms to remove the acetic acid, a toxic by-product of their 

anaerobic sulphate reduction. 

In 1998 the known organisms consisted of 1.5 million animal species, 0.3 million plant 

species (Cases and De Lorenzo, 2002) and half a million insects (Pace, 1997), compared to 

only 4500 prokaryotes (Torsvik et al., 2002). This is significantly less than 1% of the total 

number of species on Earth, which is an astonishingly small percent when one considers 

that prokaryotes have been estimated to contain between 60-100 % of the total carbon 

contained in plants (Whitman et al., 1998). This strongly suggests that there are a great 
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number of microorganism species over the three domains of life (Figure 1-1) still to be 

discovered and characterised (Pace, 1997). Therefore, recent research has included 

intensive studies of microbial life in unusual environments such as a stratosphere, space, 

and Mars in order to isolate novel species.   

1.2 Extreme Environments and Extremophiles 

Life can be found on Earth in a wide range of environments, some of which are 

normal from a human viewpoint and others are extreme in human terms (DasSarma, 

2006). In this sense, normal environments are environments with a temperature 

between 20 and 40°C, pH near neutral, with sufficient levels of accessible water, 

essential nutrients, air pressure at 1 atmosphere and relatively low salt concentration. 

Therefore, any environmental condition that varies significantly from the normal 

condition can be considered as an extreme condition (Satyanarayana et al., 2005). 

There are various types of extreme environments such as extreme (acidity i.e. 

environments that have pH values lower than 4) or high alkalinity environments that 

have pH values above 9, high temperature between 55 to 121°C (volcanoes and hot 

springs) or extreme cold environments between -10 to 0°C (polar ice), and high-salt 

environments containing 2 – 5 M NaCl (saline lakes) (Hough and Danson, 1999, van 

den Burg, 2003, Gomes and Steiner, 2004). There are also high pressure 

environments that have hydrostatic pressures up to 1400 atmospheres (Satyanarayana 

et al., 2005). Additionally, there are manmade, extreme conditions including cool 

houses, steam heated buildings and acid mine waters (Satyanarayana et al., 2005). 
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Life in extreme environments has been studied intensively, focusing attention on the 

diversity of organisms and the molecular and regulatory mechanisms involved. 

Extremophiles are structurally adapted at the molecular level to resist these extreme 

conditions (Gomes and Steiner, 2004). MacElroy (1974) was one of the first to use 

the term extremophile to refer to an organism that can grow and thrive in extreme 

environmental conditions, as reported by Gomes and Steiner (2004). Many 

extremophiles are found within the Domain Archaea (Woese et al., 1990, Albers et 

al., 2001), however, many Bacteria and even some Eukarya can tolerate extreme 

conditions (Figure  1-1) (Albers et al., 2001, Konings et al., 2002). Unlike many 

microorganisms that cannot grow and survive under extreme conditions, extreme 

microorganisms can develop and grow optimally when one or several stress 

conditions are in the extreme range (Edwards, 1990, Horikoshi and Grant, 1991, 

Albers et al., 2001).  

Furthermore, some extremophiles are polyextremophiles that are able to withstand 

multiple extremes (i.e. adapted to more than one type of extreme environment). 

Examples are the acidothermophiles Sulfolobus solfataricus and Sulfolobus 

acidocaldarius that have been grown at high acidity and 80°C (Gomes and Steiner, 

2004, Irwin and Baird, 2004). Thermophilic alkalitolerant bacteria have also been 

isolated, such as Anaerobranca spp. (Engle et al., 1995).  

Additionally, the extremozymes (biocatalysts) produced by extreme microorganisms 

are proteins that can work under extreme conditions via their extreme stability, they 

suggest new opportunities for biotransformations and biocatalysis (Gomes and 

Steiner, 2004).  
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Table 1-1 shows the different groups of extremophiles and the extremozymes which 

have been obtained from these microorganisms (Hough and Danson, 1999, van den 

Burg, 2003). It is clear that extremophiles may have important industrial applications 

in terms of the utility of their metabolic ability in extreme environments and their 

ability to produce unusual enzymes (Russell, 2000, Goto et al., 2005).      

Extremophilic microorganisms are classified according to the environmental 

conditions required for optimum growth e.g. acidophiles (pH < 4), alkaliphiles (pH > 

9), halophiles (NaCl > 2M), thermophiles (temperature > 55°C), psychrophiles 

(temperature < 10°C) and osmophiles (water activity less than 0.8) (Edwards, 1990, 

Gilmour, 1990, Jennings, 1990, Horikoshi and Grant, 1991, ve Habitatlar, 2002, 

Gomes and Steiner, 2004). Moreover, it is fascinating to note that many 

extremophilic bacteria are amongst the most primitive of bacteria, as suggested by 

their location close to the root of the universal phylogenetic tree (Figure 1-1) (Hough 

and Danson, 1999). 

On interesting line of recent work has focused on isolating extremophilic 

microorganisms from non extreme environments to demonstrate their ubiquitous 

presence in many so-called normal habitats (Staley and Gosink, 1999, Ma et al., 

2010) 

 

 

 



6 
 

 

 

 

Figure  1-1: The universal phylogenetic tree, constructed from rRNA sequence comparisons. 

Branches representing the three domains (Archaea, Bacteria, Eukarya) are indicated (Woese 

et al., 1990). 
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Table  1-1: Characteristics of different groups of extremophiles and their biocatalysts 

(extremozymes), which could be applicable in industrial processes, *Genus of the domain 

Bacteria; all others are Archaea.  Modified from, Hough and Danson (1999) and van den 

Burg,(2003). 

Phenotype Environment 
Typical genera 

(Bacteria and Archaea) 
Extremozymes 

    

Thermophilic 55 – 80°C 

Methanobacterium, 

Thermoplasma, Thermus*, 

some Bacillus* species 

Amylases, 

Pullulanase,Glucoamylases, 

Glucosidases, Cellulases, 

Xylanases, Chitinases,  

Lipases, and   Esterases 

Hyper-

thermophilic 
80 –113°C 

Aquifex*, Archaeoglobus, 

Hydrogenobacter*, 

Methanothermus, Pyrococcus  

Pyrodictium,  Pyrolobus, 

Sulfolobus, Thermococcus, 

Thermoproteus, Thermotoga* 

Proteases 

Psychrophilic – 2 to 10°C Alteromonas*, Psychrobacter* 

DNA polymerases, 

Dehydrogenases, Proteases, 

Amylases, Cellulases, 

Dehydrogenases and  Lipases 
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Table  1-1: (Continued) 

 

 

 

 

 

 

Phenotype Environment 
Typical genera 

 ( Bacteria and Archaea) 
 Extremozymes 

     

Halophilic 

 

2–5 M NaCl 
Haloarcula, Halobacterium, 

Haloferax, Halorubrum 

 

 

Proteases,   

Dehydrogenases 

Acidophilic pH<4 
Acidianus, Desulfurolobus, 

Sulfolobus, Thiobacillus* 

 

 

Amylases, Glucoamylases  

Proteases and  Cellulases 

Alkaliphilic pH>9 

Natronobacterium, 

Natronococcus, some Bacillus* 

species 

 Proteases and Cellulases 
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1.3 Acidic Environments 

Acidic environments are environments which have a pH value less than 5. Extremely 

low pH value environments are not very abundant, and are often due to large amounts 

of pyrite and sulphur being exposed to oxygen causing several chemical processes to 

lower pH values (Figure 1-2) (Rainey and Oren, 2006). Other less typical 

environments, such as those contaminated by heavy metals or other pollutants, are 

also extreme. Prokaryotes (both bacteria and archaea) are the dominant 

microorganisms in most extreme environments, but some extremophilic eukaryotes 

are known. 

Acidic environments capable of sustaining life are usually dominated by sulphate 

anions, and there is usually only a low concentration of dissolved organic substances, 

with as little as 20 mg l-1 dissolved carbon in some environments (Johnson, 1998). 

Extremely acidic environments may be formed by processes that are entirely natural. 

However, anthropogenic influences (both direct and indirect) have become 

increasingly important in creating such environments, particularly since the onset of 

the industrial revolution. Indeed, the majority of extremely acidic sites now in 

existence worldwide have their origin in one particular human activity, the mining of 

metals and coal. 
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Figure  1-2: Acidic (sulfur-enriched geothermal) environment in Yellowstone National Park. 

Taken from Rawlings and Johnson (2002). 
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A variety of microbial activities create net acidity. These include nitrification, and the 

formation and accumulation of organic acids either during fermentation or as 

products of aerobic metabolism. Most relevant, however, to the genesis of extremely 

acidic environments is the microbial dissimilatory oxidation of elemental sulfur, 

reduced sulfur compounds (RSCs), and ferrous iron.  

Elemental sulphur is found in geothermal areas (e.g. around the margins of 

fumaroles) where it forms by the compression of sulfur dioxide and hydrogen sulfide: 

SO2 + 2H2S                 2H2O + 3S0 

Oxidation of sulphur by autotrophic and heterotrophic microorganisms produces 

sulfuric acid.  

S0 + H2O + 1.5O2                        H2SO4 

Which, if not neutralised by carbonates or other fundamental minerals present, can 

result in a dramatic lowering of pH within microsites or on the macro scale. Of larger 

environmental significance, however, is the generation of acidity which results from 

the microbial oxidation of sulphide minerals. Many metals occur as sulphides 

(Johnson, 1995); indeed, sulphides are the major mineralogical form of many 

commercially important metals, such as copper, lead and zinc. Iron sulphides (most 

notably pyrite) are the most abundant sulphide minerals. In the past, pyrite has been 

mined (for its sulphur, rather than for its iron content) but this is no longer 

commercially viable. However, iron sulphides are often associated with other metal 

sulfides in ore deposits, and as such are accidentally processed during the mining 
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process, ending up as waste materials (in mineral tailings etc.). Pyrite and other iron 

sulphides are also present in coal deposits (range: < 1 to > 20%) and, inevitably, in 

coal spoils. The mechanisms involved in the oxidation of pyrite have been subject to 

significant amounts of discussion (e.g. Sand et al., 1995, Evangelou, 1995). Current 

agreement is that ferric iron acts as the major oxidant of the mineral, as: 

FeS2 + 6Fe(H2O)6 + 3H2O                  Fe2+ + S2O2
3- + 6Fe(H2O)6

2+ + 6H+ 

The amount of thiosulphate formed depends on environmental pH; in circum-neutral 

environments this reduced sulfur compound (RSC) is chemically stable, but in acidic 

liquors it hydrolyses to form a variety of polysulphides, as well as elemental sulphur 

and sulphate (Sand et al., 1995). Ferrous iron and RSCs are potential energy sources 

for some acidophilic chemolithotrophic prokaryotes (described below). The 

regeneration of the ferric iron oxidant may be brought about biologically or 

abiotically; however, oxygen is required in both cases, so that the continued oxidation 

of pyrite requires the provision of both air and water. This requirement is met when 

coal spoils and mineral wastes are stored on the land surface, and when water 

accumulates in exposed deep mine shafts following the cessation of active mining 

(Johnson, 1998). 

Concentration of soluble metals is another important physico-chemical feature of 

extremely acidic environments and their concentrations tend to be much larger than in 

neighbouring areas of higher pH. The solubilities of metal oxyanions (such as 

molybdate) tend to be lower in acidic than in neutral solutions, those of cationic 

metals (such as aluminium and many heavy metals) are generally much larger. Heavy 
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metals types and concentrations which present in any specific extremely acidic 

environment are much dictated by the local geochemistry; metals may originate 

directly from the oxidation of sulphide minerals (various chalcophilic metals) or from 

the accelerated mineral weathering which occurs under conditions of high acidity 

(e.g. aluminium from the weathering of clay minerals). Also high concentrations of 

soluble metalloid elements may occur in extremely acidic environments, of which the 

most important (from the point of view of ecotoxicology) is arsenic, which occurs in 

several sulphide minerals such as arsenopyrite (FeAsS) and realgar (AsS) (Johnson, 

1998). 

1.4 Acidophiles and Diversity 

Under conditions of low pH, acidophiles flourish. These microorganisms are termed 

extreme acidophiles if they capable of optimal growth at less than pH 3 and moderate 

acidophiles if they are capable of optimal growth at pH 3 – 5. Microorganisms 

capable of growth at low pH are largely prokaryotes, and comprise relatively few 

species of Bacteria and Archaea (Johnson and Hallberg, 2003, Baker-Austin and 

Dopson, 2007, Johnson and Hallberg, 2008).  

Therefore, most acidophilic microorganisms have been isolated from extreme 

environments that present an inaccessible physical barrier which reduces the 

colonization potential of other microorganisms that grow at or around neutral pH                       

(neutralophilic). These extreme environments include both man-made and natural 

acidic environments that occur in the biosphere such as acid mine drainage and 

geothermal vents (Futterer et al., 2004, Johnson and Hallberg, 2003). True 
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acidophiles such as the archaea Picrophilus torridus and P. oshimae have been grown 

optimally at pH 0.7 and at 60°C (Gomes and Steiner, 2004). The biodiversity of 

extreme acidophiles has recently attracted considerable attention with regard to their 

physiology and phylogenetic affiliations (Table 1-2). The ability to use inorganic 

chemicals as electron donors is common among extreme acidophiles, as ferrous iron 

and sulfur represent two major energy sources in many extremely acidic 

environments (Johnson and Hallberg, 2008). Reduction of iron and sulfur by 

acidophilic microorganisms is driven by their use as electron acceptors under oxygen 

limited conditions and in turn these reactions drive major biogeochemical processes 

in low pH environments. Acidophiles show considerable diversity in how they 

assimilate carbon, some are obligate autotrophs and others are obligate heterotrophs, 

whereas a great number use either organic or inorganic carbon, depending on the 

availability of the former (Johnson and Hallberg, 2008). 

However, acidic effluents associated with acid mine drainage can cause huge 

environmental pollution such as the contamination of drinking water. Therefore, the 

reduction of this pollution is one of the important biotechnological applications of 

acidophiles, in addition to their role in metal extraction from ores (Rohwerder et al., 

2003, Golyshina and Timmis, 2005). Furthermore, acidophilic microorganisms can be 

used as a source of acid-stable enzymes with applications as lubricants and catalysts 

(van den Burg, 2003). These enzymes included, pullulanases, amylases glucosidases 

and glucoamylases (Gomes and Steiner, 2004). 
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According to their carbon source and method of energy generation and further 

subdivided based on their growth optimum temperature acidophiles are most 

commonly grouped as shown in (Table 1-2). 

Most extremely acidic environments contain relatively low concentrations (< 20 mg l-

1) of dissolved organic carbon, and may therefore be classed as oligotrophic. Primary 

production in sites which do not receive sunlight (e.g. abandoned deep mines) is 

based exclusively on chemolithoautotrophy, and is inexorably linked to the oxidation 

of ferrous iron and reduced sulphur compounds. The main focus of research in this 

area of microbiology is chemolithotrophic acidophiles, and much is known of the 

detailed physiology and biochemistry of some of these prokaryotes, most notably the 

iron/ sulphur-oxidising bacterium Acidothiobacillus ferrooxidans (Leduc and Ferroni, 

1994). Most iron- and sulfur-oxidising acidophiles are regarded as autotrophic, 

though the ability to assimilate organic carbon has been demonstrated with some of 

these (e.g. utilisation of formic acid by At. ferrooxidans (Pronk et al., 1991)). Either 

mixotrophic (i.e. may assimilate organic and inorganic carbon) or obligately 

heterotrophic are other prokaryotes which catalyse the dissimilatory oxidation of iron 

and/or RSCs.  

In those extremely acidic environments that are illuminated, primary production may 

also be mediated by phototrophic acidophiles. The majority of these are eukaryotic 

microalgae, and include filamentous and unicellular forms, and diatoms (Gyure et al., 

1987, Lopez-Archilla et al., 1995). 
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Table  1-2: Acidophilic prokaryotic microorganisms, adapted from Johnson et al. (2003). 
Mineral-degrading acidophiles  Thermal 

classification* 
 
 

Phylogenetic affiliation 

1a. Iron-oxidizers     
Leptospirillum ferrooxidans  Meso  Nitrospira 
L. ferriphilum   Meso  Nitrospira 
L. thermoferrooxidans  Mod Thermo  Nitrospira 
“Thiobacillus ferrooxidans” m-1  Meso  β-Proteobacteria 
“Ferrimicrobium acidiphilum”  Meso  Actinobacteria 
Ferroplasma acidiphilum  Meso  Thermoplasmals 
“Fp. acidarmanus”  Meso  Thermoplasmales 
     
1b. Sulfur-oxidizers     
Acidithiobacillus thiooxidans  Meso  β/γ-Proteobacteria 
At. caldus  Mod Thermo  β/γ-Proteobacteria 
Thiomonas cuprina  Meso  β-Proteobacteria 
Hydrogenobacter acidophilus  Mod Thermo  Aquifacales** 
Metallosphaera spp.  Ext Thermo  Sulfolobales 
Sulfolobus spp.  Ext Thermo  Sulfolobales 
     
1c. Iron- and sulfur-oxidizers     
Acidithiobacillus ferrooxidans  Meso  β/γ-Proteobacteria 
Acidianus spp.  Ext Thermo  Sulfolobales 
Sulfolobus metallicus  Ext Thermo  Sulfolobales 
     
1d. Iron-reducers     
Acidiphilium spp.  Meso  α-Proteobacteria 
     
1e. Iron-oxidizers/reducers     
Acidimicrobium Ferrooxidans  Meso  Actinobacteria 
     
1f. Iron-oxidizers/reducers and sulfur-
oxidizers 

 
 

   

Sulfobacillus spp.  Meso and Mod Thermo  
 

Firmicutes 

2. Heterotrophic acidophiles 
(non mineral-degrading) 

 
 

   

Acidocella spp.  Meso  α-Proteobacteria 
Acidisphaera rubrifaciens  Meso  α-Proteobacteria 
Acidobacterium capsulatum  Meso  Acidobacterium 
Acidomonas methanolica  Meso  α-Proteobacteria 
Alicyclobacillus spp.  Meso  Firmicutes 
Picrophilus spp.  Mod Thermo  Thermoplasmales 
Thermoplasma spp.  Mod Thermo  Thermoplasmales 
     
3. Obligate anaerobes     
Stygiolobus azoricus  Ext Thermo  Sulfolobales 
Acidilobus aceticus  Ext Thermo  Sulfolobales 

 
* Meso—mesophiles (Toptimum < 40 ◦C); Mod Thermo—moderate thermophiles 
(Toptimum 40–60 ◦C); Ext Thermo—extreme thermophiles (Toptimum > 60 ◦C). 
** Inferred ability to oxidize minerals (via production of sulfuric acid). 
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Mesophilic acidophilic phototrophs include Euglena spp., Chlorella spp., 

Chlamydomonas acidophila, Ulothrix zonata and Klebsormidium fuitans. The 

unicellular rhodophyte Galdieria sulphuraria (formerly Cyanidium caldarium) has 

been isolated from geothermal acidic springs and streams in Yellowstone National 

Park and elsewhere (Brock, 1978). This moderate thermophile may grow as a 

heterotroph in the absence of light (as may Euglena spp.) and has been reported to 

grow at pH values around zero (Schleper et al., 1995). 

Heterotrophic microorganisms may easily be isolated from most extremely acidic 

environments. Many are adept scavengers and rely to a greater or lesser extent on 

carbon originating as leakage or lysis products from chemolithotrophic acidophiles. 

Obligately acidophilic heterotrophs include archaea, bacteria, fungi, yeasts and 

protozoa. Some prokaryotic acidophilic heterotrophs have a direct role in the 

dissimilatory oxido-reduction of iron (Pronk and Johnson, 1992). These include the 

iron-oxidiser `Ferromicrobium acidophilus' (Johnson, 1998) which appears to use the 

energy from iron-oxidation to support growth, and various Acidiphilium-like isolates 

which can use ferric iron as terminal electron acceptor. Many acidophilic archaea 

(Table 1-2) are obligate heterotrophs, including Sulfolobus acidocaldarius; early 

reports of this archaeon being a facultative chemolithotroph are now thought to be 

due to the inadvertent use of mixed cultures of Sf. acidocaldarius and another 

extreme thermophile (possibly Sulfolobus metallicus (Johnson, 1998)). The two 

characterized species of the moderately thermophilic heterotrophic archaeon 

Picrophilus have the lowest recorded pH optima for growth (ca. pH -0.7) of all 

known acidophilic microorganisms (Schleper et al., 1995). 
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A number of yeasts have also been reported to inhabit extremely acidic environments. 

Rhodotorula spp. are frequently encountered (and readily isolated) in acid mine 

drainage waters, and isolates belonging to other genera (e.g. Candida, Cryptococcus) 

have also been described (Lopez-Archilla et al., 1995). Among the filamentous fungi 

which have been isolated from acidic sites are some of the most acidophilic of all 

microorganisms; Acontium cylatium, Trichosporon cerebriae and a Cephalosporium 

sp. have all been reported to grow at ca. pH 0 (Schleper et al., 1995). Protozoa are 

frequently encountered in acidic mineral leaching and related environments. A 

laboratory study of three flagellates (Eutreptia/Bodo spp.), a ciliate (Cinetochilium 

sp.) and an amoeba (Vahlkampvia sp.) showed that all were obligately acidophilic 

(growing in media poised at pH 1.6 and above) and that they grazed mineral-

oxidising (and other) acidophilic bacteria (Johnson and Rang, 1993). 

The basis of acidophilic microorganisms response to different temperatures is one of 

the more convenient ways of subdividing them (e.g. (Norris and Johnson, 1998)). 

Three groups have been recognised: mesophiles (Topt ca. 20-40oC), moderate 

thermophiles (Topt ca. 40-60oC) and extreme thermophiles (Topt >60oC; Table 1-2). 

Moderately thermophilic acidophilic prokaryotes include archaea and bacteria (the 

majority of which are Gram-positive), while the extreme thermophiles group is made 

up exclusively of archaea. In contrast, mesophilic acidophiles (autotrophs and 

heterotrophs) are dominantly by rod-shaped, Gram-negative bacteria. Exceptions to 

this general tendency include `F. acidophilus' which, on the basis of 16S rDNA base 

sequence analysis, is located within the Actinobacteria (Johnson, 1998), and 

Sulfobacillus disulfidooxidans, a mesophilic spore-forming Gram-positive bacterium 
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which has been reported to use pyrite and elemental sulphur as sole energy sources or 

to grow heterotrophically on various organic substrates (Dufresne et al., 1996). 

However, there is some uncertainty regarding the capacity of S. disulfidooxidans to 

grow chemolithotrophically, and the isolate is, in fact, more closely related to the 

obligately heterotrophic Alicyclobacillus spp. than to the iron/sulfur-oxidising 

Sulfobacillus spp. Relatively few studies have focused on psychrophilic and 

psychrotolerant acidophiles, even though many extremely acidic, low-temperature 

sites are known, such as subterranean mine waters in the mid-high latitudes.  

Berthelot et al. (1994) isolated acidophilic bacteria from water draining a uranium 

mine in Ontario, and studied their ability to grow at between 4oC and 37oC. Although 

96% of the iron-oxidising isolates and 54% of the heterotrophic isolates were classed 

as psychrotolerant, none was shown to be truly psychrophilic. Water samples were 

collected in the winter months, when temperatures ranged from 0.5 to 5oC and it is 

conceivable that the higher summer temperatures experienced at the mine may have 

precluded the establishment of psychrophilic strains.  

Langdahl and Ingvorsen in 1997 reported the presence of Thiobacillus-like and 

heterotrophic acidophiles in an exposed sulphide ore deposit located in the High 

Arctic; the mean air temperature at this site was between ˗ 15 and ˗ 20oC (range ˗ 30 

to +10oC). Although autotrophic and heterotrophic carbon assimilation of 

microorganisms from the site were both recorded to be optimum at ca. 21oC, 

microbial ore dissolution at 0oC was noted to be 30% of the maximum recorded (at 

21oC). There is likely to be a potentially important biotechnological function (e.g. in 



20 
 

in situ mining) for mineral-mobilising acidophilic bacteria which are active at very 

low temperatures (Langdahl and Ingvorsen, 1997).  

1.5 Mechanisms of Cytoplasmic pH Regulation in Acidophiles 

There are many different mechanisms and complex processes which support the 

survival of microorganisms in acidic habitats. Intracellular pH homeostasis is one of 

the most important mechanisms for the survival of any cell in acidic environments, 

regardless of the external pH. Growth in external pH values as low as -0.7 requires 

stringent control and regulation of internal pH in order for the cell to continue to 

function normally. In most cases, acidophiles must maintain a near-neutral 

intracellular pH, which can be several pH units higher than the pH of the external 

environment (Matin, 1990). 

Proton motive force (Δp) is a key factor in energy generation and pH homeostasis for 

all microorganisms. The Δp describes the energised state of the cell membrane, and is 

composed of membrane potential, ΔΨ, which is the difference in charge separation 

between the membrane and the external medium and ΔpH, the difference in pH 

between the internal (cytoplasm) and external environment (ΔpH = pHin – pHout). Δp 

is calculated as follows:  

Δp (mV) = ΔΨ – 60 ΔpH (at 25oC). 

In most neutralophiles, Δp is approximately -200 mV (inside negative), which results 

from a slightly negative ΔpH, in the approximate range -0.1 to -1.5 for most 

microorganisms, and a ΔΨ around 100 mV. However, acidophiles have a much 

greater ΔpH. This could be seen as advantageous as it allows the formation of a larger 

Δp and therefore for a greater proton influx though F0F1-ATPases and consequently 
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increased ATP generation. However, uncontrolled influx of protons into a cell can be 

extremely harmful, potentially leading to cell death. An increased proton 

concentration within the cell inhibits protein function and stability of nucleic acids, 

impedes enzymatic activity, protein synthesis and transcription of DNA, ultimately 

resulting in the complete dissipation of ΔpH which would result in a much decreased 

Δp incapable of meeting the cells energy requirements (Baker-Austin and Dopson, 

2007). 

Acidophiles can minimise or prevent proton influx into their cells by several known 

mechanisms, as well as other mechanisms which allow the cell to tolerate and survive 

a small influx of protons into the cell. Mechanisms which inhibit or prevent proton 

influx into the cell include reversing the membrane potential (ΔΨ), possessing a 

highly impermeable cell membrane and proton pumping. Meanwhile, cytoplasmic 

buffering, along with the presence of chemicals and enzymes which sequester protons 

within the cell and an increased number of secondary transporters help the cell to 

cope with proton influx (Matin, 1990). 

A reversal of membrane potential is one of the most commonly observed adaptations 

in acidophiles. All neutralophilic microorganisms have an inside negative ΔΨ 

whereas most acidophiles possess an inside positive ΔΨ, a reversal of the normal 

membrane potential (Figure 1-3). A reversed membrane potential is a mechanism for 

reducing proton influx into the cell as it forms a chemiosmotic barrier which deflects 

positively charged protons, preventing them from entering the cell.  
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Figure  1-3: Diagrammatic representation of commonly occurring adaptations to low pH 

observed in acidophilic microorganisms. The blue circles highlight several adaptations 

including (From top left, clockwise) reversed membrane potential, increased K+ ion 

accumulation, impermeable cytoplasmic membrane, proton pumping, increased number 

of secondary transporters, cytoplasmic buffering, DNA and protein repair mechanisms 

and weak acid degradation pathways. Diagram adapted from Baker-Austin and Dopson 

(2007).  
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It is thought that the reversed ΔΨ is generated by a Donnan potential (Donnan, 1924) 

of positively charged molecules, particularly accumulation of K+ ions. The creation of 

a reversed ΔΨ by an accumulation of K+ ions is supported by evidence that there is an 

increased number of potassium-transporting ATPases found in acidophile genomes 

(Futterer et al., 2004, Tyson et al., 2004). Reversal of ΔΨ results in a decrease in the 

overall proton motive force; however the reversed ΔΨ detracts from such a large ΔpH 

that the final Δp is large enough to meet the cells energy demands. 

As a result of the reversed membrane potential further difficulties are encountered. 

When the cell is in acidic media, the positive inside membrane potential results in the 

exclusion of permeant cations and the accumulation of permeant anions, which can 

begin to poison the cell. Whilst this is true there is one exception, SO4
2- , the most 

common anion in acidic environments. Acidophiles are able to tolerate higher levels 

of SO4
2- than other anions for two reasons. The first reason is that acidophiles have 

adapted systems to remove SO4
2- from inside the cell, whilst the second is that SO4

2- 

is less membrane permeable than other anions since it has additional polarity and 

carries a double charge (Johnson, 2006).  

Research into the cytoplasmic membranes of some acidophiles has discovered a 

cytoplasmic membrane which is highly resistant to proton entry, particularly in 

archaeal species which synthesise tetraether lipids (van de Vossenberg et al., 1998) 

(Figure 1-3). A delicate balance of membrane proton permeability is required, since 

the need to minimise proton influx is offset by the cells need to transport other ions 

and nutrients into the cell and pump protons out of the cell. This balance will 

determine if a cell can cope with a particular Δp. In silico shotgun sequencing of 
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several acidophilic bacterial species’ genomes from a biofilm revealed a large and 

varied set of genes for cell membrane biosynthesis (Tyson et al., 2004). These data 

imply that a complex structure, with an as yet unknown function, may be formed and 

could be an intrinsic component in acid tolerance. 

Certainly the cell cannot exclude all protons from the cytoplasm, therefore active 

proton pumping may be utilised in order to maintain a near-neutral intracellular pH 

(Figure 1-3) (Michels and Bakker, 1985). However, there is no definitive evidence 

which shows induced or increased expression of systems which exclude protons from 

the cytoplasm as yet. Putative proton efflux systems have been identified in all of the 

acidophilic genomes sequenced to date (Baker-Austin and Dopson, 2007) including 

the Leptospirillum species in the biofilm present in acid mine drainage at Iron 

Mountain, California (Tyson et al., 2004). An increased number of secondary 

transporters have also been noted in the genomes of some acidophiles, which is 

thought to be a further adaptation to growth in extremely low pH, since cells will 

utilise the Δp generated for metabolic purposes (Figure 1-3). 

The ability of the cytoplasm to buffer the intracellular pH of the cell has been 

observed and shown to be involved in maintaining a near-neutral intracellular pH in 

acidic conditions. All cells have the ability to buffer the cytoplasm, either releasing or 

sequestering protons as appropriate using basic amino acids such as lysine, arginine 

and histidine. The buffering capacity of respiration inhibited cells of Thiobacillus 

acidophilus and Acidithiobacillus facile were measured and compared to the 

buffering capacity of growth medium containing Tris buffer. The buffering capacity 

of the microorganisms was shown to be approximately 100 nmol H+ mg protein-1 pH 
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unit-1 (Matin, 1990), showing a much smaller decrease in cytoplasmic acidification 

than would be expected given the net H+ influx into the cells compared to the 

buffered medium. Comparison of buffering capacity between E. coli and 

Acidithiobacilus acidophilum was carried out, with buffering capacities of 85 nmol 

H+ mg protein -1 and 97 nmol H+ mg protein -1, respectively (Zychlinsky and Matin, 

1983) (Figure 1-3). 

Of particular concern to acidophiles is the uptake of weak acids (HA) as they function 

as uncouplers of the respiratory chain, which shuttle the net uniport of protons and 

‘uncouple’ proton transport from cellular processes (Ciaramella et al., 2005). These 

compounds can cross the cell wall in their undissociated form as they are uncharged 

at acidic pH (the external pH), but once they enter the cell, near-neutral pH, they 

become undissociated (H+ and A-) and can no longer leave the cell in their charged 

form. Accumulation of weak acids by this process is problematic for cells, as 

protonation of the cytoplasm can occur quickly therefore some acidophiles have 

developed active mechanisms of weak acid degradation in order to overcome this 

problem (Ciaramella et al., 2005) (Figure  1-3). 

Other mechanisms involved in pH homeostasis include the use of DNA and protein 

repair chaperones and the use of iron to stabilise enzymes and enzyme complexes 

(Baker-Austin and Dopson, 2007). However, after comparisons of the genomes of 

several acidophilic microorganisms there appears to be no definitive individual 

adaptation or set of adaptations present in every acidophile which enables growth in 

low pH environments.  
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1.6 Molecular Biology Techniques and Microbial Identification 

It has been recorded that less than 0.1% of the total microbial population of a natural 

habitat can be successfully isolated in pure culture. This is due to the bacteria being 

highly selective with their growth requirements. For this reason, a variety of media 

must be employed to obtain diverse microbial populations (Hill et al., 2000). 

Therefore, every process which avoids the need to cultivate microorganisms before 

examining their characteristics and diversity will have the potential to become a 

powerful tool in microbial ecology (Marilley et al., 1998). 

Compared to traditional visual and microscopic diagnostic methods, molecular 

methods have a higher specificity and sensitivity and therefore may be useful to find 

infections pre-symptoms and identify the target diseases without time-consuming 

isolation and culturing of pathogens (Martin et al., 2000). Therefore, traditional 

microbiology methods which have been used to classify organisms depending on 

phenotypic characters such as morphology, physiology, and metabolism are being 

supplemented by genotypic analysis (Scow et al., 2001). Amann et al. (1997) 

suggested that fluorescently labeled, rRNA-targeted nucleic acid probes are very 

useful for many fields of microbial ecology and also, described stages in the 

molecular methods to identify microorganisms from environmental samples (Figure 1-

4). 
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Figure  1-4: Flow diagram of the different stages in the molecular methods used to identify 

microorganisms from environmental samples, diagram modified (Amann et al., 1997). 
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Nucleic acid sequence information (16S rRNA gene for prokaryotes or 18S rRNA 

gene for eukaryotes) is being used to identify and determine the degree of similarity 

between groups of organisms and relationships of microorganisms and all other life-

forms. Therefore, the large genetic sequence database of known species can be used 

to identify sequences of rDNA from unknown species isolated from environmental 

samples. 

In fact, there are many modern molecular applications involving the extraction and 

analysis of DNA and RNA, (PCR, gene clone libraries, amplified ribosomal DNA 

restriction analysis, restriction fragment length polymorphism and fluorescent in situ 

hybridization) now being widely used to identify microorganisms without previous 

cultivation within their natural habitats, such as in soil, drinking water, oligotrophic lakes 

and marine environments (Bockelmann et al., 2000).  Pernthaler and Amann (2005) 

showed that 16S rRNA gene is most suitable to define microbial diversity in novel 

environments. Therefore, extraction of complete or partial sequences of DNA isolated 

from natural environments or directly from cells concentrated on membrane filters could 

be amplified by PCR (Figure 1-5) with bacterial primers.  PCR products are ligated into 

vectors and then transferred into E. coli. Crump et al. (1999) used a molecular approach 

(PCR-amplified 16S rRNA genes) to study particle-attached and free-living bacteria in the 

Columbia River and this study showed the large number of particle-attached bacterial 

clones (almost 75%) linked to members of the Proteobacteria. While, 48% of the free 

living bacterial clones correlated with cosmopolitan freshwater bacteria (Beta-

Proteobacteria, Gram-positive bacteria, and Verrucomicrobium spp). 
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Figure  1-5: Schematic diagram illustrating the processing steps of (PCR), beginning with 

denaturing the double-stranded DNA into single strands, followed by primers annealing to 

their respective complementary DNA sequence in the template and finally the target DNA 

template replicated (extension) by Taq polymerase enzyme, these steps recycle for 20 to 35 

times to produce approximately 68 billion copies (Vierstraete, 1999).  

Diagram taken from http://universe-review.ca/ 

 



30 
 

Johnson et al. (2001) isolated acidophilic bacteria from three samples of metal-rich waters 

with different pH values from a sub-arctic copper mine in Norway. The solid selective 

medium was used to isolate acidophiles and 16S rRNA sequence was used to identify the 

isolated microorganisms, the results indicated that Acidithiobacillus ferrooxidans was the 

dominant acidophile in all three waters. Yoon et al. (2004) isolated and identified 

Halobacillus as a new species by using molecular methods. Inagaki et al. (2002) used a 

molecular ecological approach to detect and identify microorganisms in a deep sea extreme 

environment, molecular phylogenetic analyses of RNA and PCR amplification of 16S 

rDNA were used.   

Drancourt and Raoult (2005) showed that the sequence of the 16S rRNA gene might not be 

enough for characterization of a new bacterial species.  Some essential phenotypic 

characters must be applied to describe unknown bacteria, for example Gram-stain, colony 

morphology, and motility, conditions for optimum growth such as temperature, spore 

formation and electron microscopic examination. Biochemical tests such as oxidase and 

catalase tests and the capability to metabolize major carbohydrates could also be helpful 

for initial description of unknown strains.   

The polymerase chain reaction (PCR) (Figure 1-5) is a powerful tool in molecular biology 

to exponentially amplify specific DNA sequences (Lexa et al., 2001, Fenollar et al., 2006, 

Yeung et al., 2009); a large amount of target DNA sequences can be amplified from tiny 

amounts of DNA. However, the success of PCR analysis is highly dependent on the 

selection of appropriate primers (Lexa et al., 2001). A useful primer must have various 

properties; it must be specific to the region that needs to be replicated, it must join with 

enough energy to support the experimental conditions and it must not allow the formation 
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of structures that might weaken the reaction. The number of cycles of amplification is 

performed in the same vial so that enough copies of the desired sequence are reproduced 

for analysis (Figure 1-5). 

Since the 1980s, 16S rRNA gene sequencing has been used to detect possible phylogenetic 

relationships between different bacteria to produce a molecular based classification of 

bacteria from various sources, such as environmental or clinical speciments (Cai et al., 

2003, Clarridge, 2004, Mignard and Flandrois, 2006). Carl Woese, during the 1970s and 

1980s, originally developed the idea that molecular sequences of highly conserved 

molecules could be used to detect possible phylogenetic relationships between bacterial 

groups (Pace, 1997). Olsen et al. (1986) noted that three types of rRNA molecules are 

found in the microbial ribosomes including, 5S rRNA, 16S rRNA (~1500 nucleotides) and 

23S rRNA (~3000 nucleotides). The first attempts to use rRNA to characterize microbes 

were carried out by extracting the 5S rRNA molecules. However, the information content 

in the approximately 120 nucleotide long molecule is relatively small and therefore it was 

abandoned in favour of the 1,500 nucleotide long 16S rRNA gene. 

16S rRNA gene sequence is composed of both variable and conserved regions which often 

contain a high degree of species specificity. The gene is large enough, with statistically 

relevant sequence information (Figure 1-6). 
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Figure  1-6: Color map superimposed on the 16S rRNA secondary structure model of E. coli. 

Nucleotides are subdivided into five groups of increasing variability. The most variable 

positions are in red, the most conserved in blue. Absolutely conserved positions are indicated 

in purple. Nucleotides present in E. coli but absent in >75% of the bacterial sequences 

considered are indicated in pink. Taken from, Van de Peer (1996). 
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1.7 Aims of the Project 

The Rivelin Valley River and Limb Brook in Sheffield were used for industrial 

activities over a long period dating back to the industrial revolution. So it was 

assumed that both sites would still contain some polluted acidic environments. 

Therefore, various liquid and sediment samples were collected from different places 

from both valleys at different times in order to isolate extremophilic microorganisms 

from these habitats. Many different media such as FeTSB, M9 minimal and ½ LB 

medium were set up at pH 3 to select for acidophilic microorganisms. 

The microbial strains isolated in pH 3 medium were further characterised to 

categorise them as acidophilic or acid tolerant (Chapter 3). Four microbial strains 

were identified using 16S rRNA and 18S rRNA sequencing (Chapter 4). The 

physiological characteristics such as growth rates, respiration rates and effects of high 

salinity on the growth rate of two species (Debaryomyces hansenii and Micrococcus 

luteus) were determined (Chapter 5). Also the accumulation of compatible solutes by 

D. hansenii and M. luteus was demonstrated using NMR spectroscopy (Chapter 5). In 

addition, scanning electron microscope (SEM) and transmission electron microscope 

(TEM) were used to examine the cell structure of the two species under different 

acidic conditions (Chapter 5). In the final result chapter the bioenergetics of 

acidophilic growth of D. hansenii were investigated using silicone oil technique 

(Chapter 6). 
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2 MATERIALS AND METHODS 

2.1 Area of Study 

2.1.1 Rivelin Valley 

“The River Rivelin is a river in South Yorkshire, England (Figure 2-1). It rises in the 

Hallam moors, North West of Sheffield, and on the outskirts of Sheffield joins the 

River Loxley (at Malin Bridge). The Rivelin Valley, through which the river flows, is 

a three and a half mile long woodland valley which includes the popular Rivelin 

Valley Nature Trail which was created in 1967. The valley has farmland on its gentler 

upper slopes. 

A relatively fast flowing river (it drops 80 metres between Rivelin Mill Bridge and 

Malin Bridge), the Rivelin is fed by a constant release of water from the nearby 

moorland peat. Its flow was exploited for centuries as a power source, driving the 

water wheels of up to twenty industries (forges, metal-working and flour mills) along 

its course” (Wikipedia web site). 

2.1.2 Limb Valley 

The Limb Brook is a stream in Sheffield, South Yorkshire, England. It rises at the 

village of Ringinglow, flowing east through Whirlow and Ecclesall Woods into 

Abbeydale in the Beauchief area, where it merges with the River Sheaf (Figure 2-1). 

Near this point part of the stream has been diverted to provide the goit (leat or 

millstream) for the Abbeydale Industrial Hamlet millpond, and this channel flows 

through what is now Beauchief Gardens. 

http://en.wikipedia.org/wiki/River
http://en.wikipedia.org/wiki/South_Yorkshire
http://en.wikipedia.org/wiki/England
http://en.wikipedia.org/wiki/Hallam
http://en.wikipedia.org/wiki/Sheffield,_England
http://en.wikipedia.org/wiki/River_Loxley
http://en.wikipedia.org/wiki/Malin_Bridge
http://en.wikipedia.org/wiki/Sheffield
http://en.wikipedia.org/wiki/South_Yorkshire
http://en.wikipedia.org/wiki/Ringinglow
http://en.wikipedia.org/wiki/Whirlow
http://en.wikipedia.org/wiki/Ecclesall_Woods
http://en.wikipedia.org/wiki/Beauchief
http://en.wikipedia.org/wiki/River_Sheaf
http://en.wikipedia.org/wiki/Leat
http://en.wikipedia.org/wiki/Abbeydale_Industrial_Hamlet
http://en.wikipedia.org/wiki/Beauchief_Gardens
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Limb Brook lies entirely within the City of Sheffield boundaries, but used to form 

(with the connecting River Sheaf and Meers Brook) part of the border between 

Yorkshire and Derbyshire. This boundary dates back to the Anglo-Saxon kingdoms 

of Mercia and Northumbria (Addy, 1888), (Wikipedia web site). 

2.2 Chemical Analysis of Water Samples 

In order to identify the levels of cations and anions present, water samples from the 

River Rivelin and from Limb Brook were chemically analyzed. 10 ml of each raw 

water sample were sent to Chemistry Department in the University of Sheffield for 

the required analysis. 

2.3 Sample Collection 

Water samples were collected from Rivelin River and Limb Brook and evidence of iron 

deposition was found. However, the pH of the samples from the Rivelin River was only 

slightly acidic at around pH 6.5, while the pH of the samples from Limb Brook was pH 5. 

Various samples were collected from the River Rivelin at two different times; the 

first collection was on 15th February 2009, and the second collection was on 6th April 

2009. During the both collections, the samples were transferred into sterile 50 ml 

Falcon tubes. Each sample was labelled at the time and a photograph taken at each 

sampling location. The pH of samples was measured in situ using a portable pH 

meter. Samples were stored at 4oC until required. Same procedure of sample 

collecting was performed when various samples were collected from a ditch near 

Limb Brook on the 7th May 2010. 

 

http://en.wikipedia.org/wiki/Sheffield
http://en.wikipedia.org/wiki/River_Sheaf
http://en.wikipedia.org/wiki/Meers_Brook
http://en.wikipedia.org/wiki/Anglo-Saxon_England
http://en.wikipedia.org/wiki/Mercia
http://en.wikipedia.org/wiki/Northumbria
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Figure  2-1: Map locations of Sheffield main rivers taken from (Addy, 
1888). 
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2.4 Growth Media 

2.4.1 FeTSB Liquid Medium 

Ferrooxidans medium was prepared by using three solutions, solution A (Basal salt 

solution) was prepared by dissolving 2.4 g (NH4)2SO4, 0.5 g MgSO4.7H2O, 0.05g 

KH2PO4, 0.05 g KCl and 0.014 g Ca(NO3)2 in 900 ml distilled water. Solution B was 

prepared by dissolving 0.5 g NaCl and 0.25 g K2HPO4 in 100 ml distilled water. 

Solution C was prepared by dissolving 29.13 g FeSO4.7H2O in 80 ml distilled water 

and sterilized by filtration. Then, 4 ml was added from solution B to the solution A 

and made up to 920 ml with distilled water and autoclaved. 

To prepare 50 ml culture, 46 ml was added from solution A+B to 4 ml solution C 

(Johnson et al., 1987). 

2.4.2 FeTSB Solid Medium 

Ferrooxidans solid medium was prepared by using four solutions, solution A (Basal 

salt solution) was prepared by dissolving 1.26 g (NH4)2SO4, 0.49 g MgSO4.7H2O in 

600 ml distilled water. Solution B (tryptone soya broth (TSB)) was prepared by 

dissolving 1.7 g bactotryptone, 0.5 g NaCl and 0.25 g K2HPO4 in 100 ml distilled 

water. Solution C (Ferrous sulphate solution) was prepared by dissolving 18.21 g 

FeSO4.7H2O in 50 ml distilled water, solution D (gelling solution) was prepared by 

dissolving 7 g agarose in 250 ml. 

Next, 10 ml of solution B was added to the solution A, and made up to 700 ml using 

distilled water, then the 50 ml of solution C and the 250 ml of gelling solution were 

added to the previous solution to prepare one litre of FeTSB solid medium. Each 
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solution has been autoclaved separately except solution C which was sterilized by the 

filtration method. All solutions were allowed to cool to approximately 50oC, 

combined aseptically and gently inverted to mix before being poured into sterile 

plastic Petri dishes and left to set (Johnson et al., 1987). 

2.4.3 M9 Medium 

M9 minimal medium was prepared by dissolving 11.3 g M9 minimal salts (Sigma M-

6030) in 980 ml distilled water and adjusting the pH as necessary with 1 M H2SO4 or 

1 M NaOH, and the following four solutions were autoclaved separately and added as 

follows; 1 ml MgSO4 (1 M), 9 ml NH4Cl (5 g in 45 ml distilled water), 9 ml glucose 

(15 g in 45 ml distilled water) and 1 ml CaCl2 (100 mM). Solid M9 minimal medium 

was prepared by adding 15 g agar No 1 directly to the pH 7 medium, while pH 3 

plates were made by preparing a separate gelling solution of 15 g agar No 1 (final 

concentration 1.5% w/v). 

2.4.4 ½ LB Medium 

Half Luria Bertani (1/2 LB) plates were prepared by adding 2.5 g yeast extract, 5 g 

tryptone and 2.5 g NaCl to 490 ml of distilled water, adjusting the required pH using 

1 M H2SO4 or 1 M NaOH and autoclaving. A separate solidifying solution was 

prepared by adding 10 g of agar No.1 to 500 ml of distilled water, and then continues 

as described in section (2.4.2). The liquid medium consisted of 2.5 g yeast extract, 5 

g tryptone and 2.5 g NaCl per litre. 

2.4.5 LB Medium 

Luria Bertani (LB) medium consisted of 5 g yeast extract, 10 g tryptone, 10 g NaCl in 

1000 ml of distilled water to produce liquid medium and was adjusted for the required 
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pH using 1 M H2SO4 or 1 M NaOH. For solid medium 15 g of bacteriological agar 

No.1 were added per litre. 

2.4.6 YPD Medium: 

YPD medium was prepared by dissolving 20 g peptone, 10 g yeast extract and 20 g 

glucose in 990 ml distilled water and was adjusted to the required pH with 1 M 

H2SO4 or 1 M NaOH. 10 g agar No. 1 was added if solid YPD medium was required. 

2.5 Isolation of Acidophilic or Acid tolerant Microorganisms 

Isolation of acidophilic or acid tolerant microorganisms was carried out using FeTSB, 

M9 and ½ LB medium. 1 ml of each river water sample was inoculated into 50 ml of 

FeTSB, M9 and ½ LB. All flasks were incubated overnight at 25ºC with shaking (250 

rpm). 

In parallel, approximately 200 µl of raw environmental sample was spread plated 

onto FeTSB, ½ LB and M9 minimal media. Each plate was labelled and incubated at 

25oC. Growth of liquid and solid cultures was monitored daily for 3 days and any 

growth obtained in liquid culture or any colonies appearing on plates were streaked 

onto fresh plates in order to isolate pure cultures. After the third generation of plate 

growth, a single colony from each isolate was inoculated into approximately 10 ml of 

the appropriate liquid medium and sub-cultured into 250 ml flasks, containing 50 ml 

of medium, and shaken at 250 rpm. 

2.6 Purity of Acidophilic Strains 

The purity of strains was monitored by streaking a loopful of the culture on agar 

plates of pH 3 M9 and ½ LB medium. After incubation, the plates were first 



41 
 

examined for colony morphology and then single colonies were picked off and 

observed as a wet mount using a phase contrast microscope. 

2.7 Maintenance of Acidophilic Strains 

All isolated strains were maintained by adding 2 ml of overnight culture (active 

inoculum) to 2 ml of sterile glycerol (50% v/v) and kept in a freezer at – 20ºC. When 

required, the frozen cells were thawed at room temperature and inoculated into 250 

ml conical flasks plugged with cotton wool containing 50 ml of M9 medium of the 

same pH, and incubated overnight at 25ºC on a rotary shaker at 250 rpm. In addition, 

once every two months each strain of acidophilic bacteria was maintained by 

streaking three pH 3 M9 or ½ LB medium plates.  

The plates were incubated for 24 – 48 h at 25ºC. When pure colonies had developed 

on the plates, a piece of parafilm was stretched around each plate’s edge and then one 

set of plates was stored at room temperature and the other put in the fridge until 

required. Sub-culturing of the strains was also performed routinely once every two 

weeks to minimize contamination over time by adding 1 ml of overnight culture into 

250 ml conical flasks containing 50 ml of M9 or ½ LB medium of the same pH. The 

flasks were incubated at 25ºC on a rotary shaker at 250 rpm and then kept at room 

temperature until required. 

2.8 Identification of Acidophilic Strains 

2.8.1 Colony Morphology 

The differences between colony shapes when growing on FeTSB, M9 or ½ LB media 

were noted. 
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2.8.2 Cell Morphology 

A simple stain (Safranin) was used to determine the shape of yeast cells, while the 

Gram stain was carried out on bacterial overnight cultures as follows (Kirkpatrick et 

al., 1993). A droplet of water was placed onto a slide, and an inoculating loop was 

used to transfer some cells into the water droplet. The slide was allowed to dry and 

then was heat-fixed by passing through a Bunsen flame. The cells were then washed 

in an excess of crystal violet solution and then treated with iodine solution as a 

mordant for approximately one minute. Ethanol was then added to decolourise the 

stain (for about 30 seconds). The cells were then counterstained with safranin 

solution for 1 minute and the excess stain was removed. The slides were examined 

under a light microscope at 1000 times magnification (oil immersion). Gram positive 

cells appear purple, whereas Gram negative cells will be pink. 

2.8.3 Motility of Bacteria 

The motility of the bacteria was examined by using a hanging drop preparation and 

then viewing the slide under the light microscope (Allen and Baumann, 1971). 

2.9 Effect of Medium pH on Growth of Isolated Strains and Growth 

Curve Determination 

The effect of different pH values on the growth of isolated strains was determined 

using overnight cultures in parallel half enrichment medium (½ LB) and minimal 

medium (M9). 1 ml of active inoculum from each strain was inoculated into ½ LB 

and M9 medium pH 7, pH 5 and pH 3 and the optical density (OD) at 600 nm was 

measured using the Unicam Helisα spectrophotometer against a distilled water blank 



43 
 

in 1 ml plastic cuvettes. To produce a growth curve, 4 x 250 ml conical flasks 

containing 50 ml of each pH value ½ LB and M9 medium were inoculated with 1 ml 

of the same pH adapted cells from an overnight culture. The OD660 was measured 

against a water blank immediately after inoculation then every two hours over an 

incubation period at 25ºC on a rotary shaker at 250 rpm. The growth curves were 

plotted against time of incubation. 

2.10 Measurement of External pH of Overnight Cultures of Strains in 

Different Media 

In order to investigate the behaviour of isolated strains with different pH values, the 

pH of overnight cultures was measured using a Mettler Toledo MP225 pH meter. 

To test the external pH, four 250 ml flaks containing 50 ml of either M9 or ½ LB or 

LB or YPD media at pH 7, pH 5 and pH 3 were inoculated with 1 ml of active 

inoculum from each strain and then incubated overnight at 25ºC on a rotary shaker at 

250 rpm. The overnight cultures were centrifuged for 10 min at 3000 g, then 10 ml of 

supernatant was taken and the pH was measured. 

2.11 Measurement of Respiration Rate (Oxygen Uptake) of Isolated 

Strains 

Respiration rate was measured using a modified Clarke oxygen electrode (Hansatech 

Scientific Instruments, Kings Lynn, UK) with a Servoscribe 1S potentiometric chart 

recorder as described by Delieu and Walker (1972). Schematic drawings of the 

oxygen electrode unit are shown in Figures 2.2 and 2.3. The electrode consists of 

platinum wire sealed in plastic as the cathode and an anode of circular silver wire 
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bathed in a saturated potassium chloride (KCl) solution which forms a bridge between 

the electrodes. The electrodes were separated from the reaction mixture (chamber) by 

an oxygen- permeable Teflon membrane. The reaction mixture in the Perspex 

container was stirred constantly with a small magnetic stirring rod.  

When a voltage was applied across the two electrodes using the polarising meter the 

platinum electrode became negative with respect to the reference electrode and the 

oxygen in the solution is thought to undergo electrolytic reduction at the cathode.   

4H+ + O2 + 4e-                                         2H2O 

The flow of current in the circuit when the polarising volts were set between 0.5 and 

0.8 V varied in linear relationship to the partial pressure of oxygen in solution. The 

current flowing was measured by connecting the electrode to a sensitive 

potentiometric chart recorder. The reaction chamber of the oxygen electrode was 

maintained at a constant temperature similar to the culture temperature (25°C), by 

circulating water from a temperature controlled water bath (Figure 2-2 and Figure 2-

3).  

 A 12 V, 100 W tungsten halogen lamp was used to illuminate the chamber when 

required, approximate output intensity 1800 μmol m -2 s -1. 
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Figure  2-2: Schematic diagram illustrating the key components of an oxygen 

electrode. Figure from (http://www.rankbrothers.co.uk/prod1exp.htm). 
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Figure  2-3: A diagram of the oxygen electrode showing more details of the 

electrode components. Only a Teflon membrane was used in the current work and 

the tissue was cigarette paper. 

Figure from (www.lsbu.ac.uk/biology/enzyme/oxelectrode.html). 
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The calibration of the oxygen electrode was achieved by placing 2 ml of distilled 

water in the reaction chamber for 15 minutes and setting the chart recorder to 100% 

oxygen saturation point and then a small amount of sodium dithionite was added to 

remove all oxygen from the chamber to give the 0% oxygen concentration point. 

After washing, air saturated water was added and this gave the 100% value. The 

difference between 0% and 100% is known as the range. The sodium dithionite reacts 

with dissolved oxygen and removes it from the solution as shown below:   

  Na2S2O2 + 2O2 + H2O                                                                   NaHSO4 + NaHSO3 

To calculate the respiration rate we need to know the concentration of O2 in air 

saturated water at 25°C and the protein content of the bacterial suspension. Then the 

following equation is used:  

O2 uptake or Respiration Rate (µmoles O2 mg protein-1 h-1) =    

standard 
range 

    𝑥    
number of units 

time 
    𝑥    

60
μg of protein per sample

 

• Standard: Oxygen amount in 2 ml medium (sample) = 0.660 µmoles at 30°C  or  

0.722 µmoles at 25°C  

• Range: Units taken from calibration (0 – 100%) 

• Number of units: Number of units was read directly from the chart recorder, it is 

normal to draw best fit straight line over 5 min 

• Time: The length of time in minutes for which the sample was measured 

•  60: This converts the time from minutes to hours 
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• Protein present in sample (μg): this relates to amount of protein in a sample of 2 

ml of cells from Bradford assay (see section 2.12).     

To prepare cells for measurements in the oxygen electrode, the OD600 of all cultures 

was measured and 5 to 10 ml of cells from each sample (grown overnight at pH 7, pH 

5, and pH 3 in ½ LB or LB or YPD medium) were transferred to a 50 ml Falcon tube 

and harvested by centrifugation at 3000 g for 10 minutes. Each pellet was then 

resuspended in a fresh 10 ml of same medium as they were grown and same pH. The 

cells were also normally concentrated twofold and the protein content was determined 

(section 2.12). The viability of the cultures grown overnight was measured by adding 

0.5 ml of concentrated cells to 1.5 ml of fresh medium of the same pH in the chamber 

of oxygen electrode (keeping the overall volume at 2 ml to allow standardisation of 

the results) and the plunger placed on top and was left for 5 minutes without 

illumination to induce oxygen uptake. The plunger was removed and the sample 

unloaded using a Pasteur pipette. Distilled water was used to clean both the chamber 

and the plunger. When the effect of increasing external salinity on the respiration rate 

was studied the same procedure was employed except that the washing step was 

carried out with sodium free desired medium. Then the cells were resuspended in 

different concentrations of sodium chloride for the measurements in the oxygen 

electrode.  

2.12  Determination of Protein Content    

2.12.1 Determination of Standard Curve 

A standard curve was produced using bovine serum albumin (BSA) in the range of 0 

- 100 µg by dissolving 250 mg of BSA in 50 ml of distilled water. The final 
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concentration of protein in the stock solution was 5 mg ml-1 (5 μg µl-1). The stock 

solution was used to make a range of protein concentrations by a series of dilutions 

as shown in Table 2-1. 

Three replicates were made for each test tube above. To each test tube, 3 ml of 

Bradford Reagent (Sigma) were added then thoroughly mixed and left on the bench 

for 5 min. Optical density was measured for each sample at 595 nm using a 3 ml glass 

cuvette. The blank was used to zero the Unicam Helisα spectrophotometer. The 

protein standard curve (Appendix A) was plotted from which protein concentration 

for each sample can be determined. Standard deviation for each sample was 

calculated and shown on the curve. 

2.12.2 Determination of Sample Protein 

Soluble protein in bacterial cells was measured using the method described by 

Bradford (1976). Bovine serum albumin (BSA) was used as the standard as described 

in section 2.12.1.  

Samples were prepared for protein determination as follows: 

• 0.1 ml from the same concentrated cells which were prepared for respiration rate 

measurements (see section 2.11) was placed into a clean test tube and then 0.9 ml 

of 1M NaOH was added. The sample was then thoroughly mixed and heated at 

90°C for 10 minutes.  

• The test tube was cooled on ice for 5 minutes and dried outside and then 

centrifuged for 10 minutes in bench centrifuge at full speed (3000 g). 
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• 0.3 ml of the resulting supernatant was added to 3 ml of Bradford’s reagent in a 

fresh test tube and the contents were thoroughly mixed. After 5 minutes 

incubation at room temperature the optical density was measured in the Unicam 

Helisα spectrophotometer against 0.1 ml water plus 3 ml of Bradford’s reagent 

(blank) at 595 nm.    

The protein content of the samples was determined by reading (μg protein) from the 

standard curve (Appendix A), divided by 0.3 to get μg protein ml-1 and then 

multiplied by 10 to take into account the dilution by NaOH. 

 

Table  2-1: Components in test tubes which were needed to make a standard protein curve. 

Tube 

number 

Volume of BSA 

Stock solution (µl) 

Volume of  distilled 

water (µl) 

Total volume in 

each tube (µl) 

 Amount of 

Protein (μg) 

1 0 100 100 0 (Blank) 

2 2.5 97.5 100 12.5 

3 5 95 100 25 

4 7.5 92.5 100 37.5 

5 10 90 100 50 

6 15 85 100 75 

7 20 80 100 100 
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2.13 Effect of High Sodium Concentration on the Growth of the Cells of 

RV4 and LV1 Strains 

To prepare sodium free M9 minimal medium, the pH of medium was adjusted to pH 

7, pH 5 and pH 3 as necessary using either 1 M HCl or 1 M KOH (instead of NaOH) 

and 200 mM potassium carbonate buffer was used instead of sodium carbonate with 

different concentrations of sodium chloride (0, 0.175, 0.4, 1 and 1.5 M) being added. 

The same procedure was used to prepare YPD and LB medium except that a tiny sodium 

chloride in yeast extract (approximately 0.05 mM NaCl) cannot be removed.  Then media 

containing different sodium chloride concentrations were prepared (0.4, 1, 1.5, 2, 2.5 M). 

An overnight culture (50 ml) grown in M9, YPD or LB medium to mid-exponential 

phase at pH 10 was transferred into a 50 ml Falcon tube and then harvested by 

centrifugation in a bench top centrifuge (3000 g) for 15 minutes. The pellet was 

resuspended (washed) three times in 50 ml of sodium free medium of the same pH 

and then 1 ml of cells was added into a number of 250 ml conical flasks containing 

50 ml of desired medium with different concentrations of sodium chloride (0 – 2.5 

M). The optical density (OD) at 600 nm was measured in the Unicam Helisα 

spectrophotometer against sterilized medium blank, immediately after inoculation, 

and then all flasks were incubated at 25ºC on a rotary shaker at 250 rpm, the OD at 

600 nm was measured every hour or every 3 hours or daily depending on the speed 

of growth and used as growth parameter.    
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2.14 Effect of High Sodium Concentration on the Respiration Rate of 

the Cells of RV4 and LV1 Strains 

The effect of increasing external salinity in the media on the oxygen consumption of 

both RV4 and LV1 strains was determined using YPD and LB medium, respectively 

and a modified Clarke type oxygen electrode as described in section 2.11. The pH 

adjustment and media preparation were done as explained in section 2.13. 

To prepare cells for measurements in the oxygen electrode, 40 ml of overnight culture 

grown to mid-exponential phase at pH 7, pH 5 and pH 3 in YPD medium for RV4 strain 

and LB medium for LV strain were transferred into a 50 ml Falcon tube and harvested by 

centrifugation in a bench top centrifuge at 3000 g for 15 minutes and the pellet was 

resuspended (washed) three times in 20 ml of sodium free YPD or LB medium. The 

respiration rate of the cells was measured in the oxygen electrode by adding 0.1 ml of 

concentrated cells to 1.9 ml of fresh YPD or LB medium with different NaCl 

concentrations and 1.9 ml of normal YPD and LB were also used as controls (keeping the 

overall volume at 2 ml to allow standardization of the results). A Bradford assay (see 

section 2.12) was performed on the concentrated cell suspensions to determine the protein 

concentration for use in calculating the respiration rate of the cells. 

2.15 Effect of Iron, Sulphur and Aluminium on the Growth of RV4 and 

LV1 Cells 

To prepare media containing iron, sulphur and aluminium, M9 minimal medium has 

been used with both RV4 and LV1 strains. First of all, normal M9 minimal medium 

has been prepared as usual and pH adjusted using H2SO4 and NaOH. Then the desired 
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concentrations of iron, sulphur and aluminium dissolved with distilled water were 

prepared and autoclaved separately (the concentrations were adjusted to be the same 

concentrations in the rivers (see Chapter 3, section 3.2.2), left to cool down, and then 

mixed together with M9 medium. 

To study the effects of iron, sulphur and aluminium, on the growth rates of strains 

RV4 and LV1, 4 x 250 ml conical flasks containing 50 ml of each amended medium 

against a control (M9 medium without addition of iron, sulphur or aluminium) were 

inoculated with 1 to 3 ml of pre-adapted cells from an overnight culture. The OD660 

was measured against a medium blank immediately after inoculation, then every three 

hours over an incubation period at 25ºC on a rotary shaker at 250 rpm. The growth 

was plotted against time of incubation. 

2.16 Anaerobic Growth of Bacteria 
Anaerobic growth of bacteria was carried out using fresh overnight cultures in 

normal LB medium. Triplicate LB medium plates were inoculated with a single 

colony from each strain and then placed in an anaerobic jar and incubated overnight 

at 25ºC. The growth was monitored to check if anaerobic growth was possible. 

2.17 Physiological Characteristics of Yeast Species 
2.17.1 Cycloheximide Resistance 

50 μl of Cycloheximide stock solution (100 mg ml-1 in DMSO) was added to 50 ml 

M9 medium and inoculated with 1 ml of Yeast strain cells, left overnight in 25oC 

incubator with shaking, and then the optical density (OD) at 600 nm was measured using 

the Unicam Helisα spectrophotometer against sterilized medium as a blank in 1 ml plastic 

cuvettes. 
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2.17.2 Assimilation of Glucose 

Normal M9 medium was used to check the ability of Yeast strain to use glucose as a 

carbon source. The growth was checked as described in section 2.17.1. 

2.17.3 Assimilation of α-Methyl glucoside 

M9 (α-Methyl glucoside) medium did not contain any carbon source except α-Methyl 

glucoside. To prepare 1 litre of M9 (α-Methyl glucoside) medium, 33.9 g disodium 

phosphate, 15 g monopotassium phosphate, 2.5 g sodium chloride and 20 ml (20mM) α-

Methyl glucoside, were dissolved and then then made up to 1 litre using distilled water. 

Growth was detected as described in section 2.17.1. 

2.17.4 Assimilation of Nitrate 

A modified M9 (nitrate) medium was prepared with nitrate as the sole source of nitrogen. 

To prepare 1 litre of M9 (nitrate) medium, 33.9 g disodium phosphate, 15 g 

monopotassium phosphate, 2.5 g sodium chloride, 5 g nitrate and 20 ml 1 M glucose, were 

dissolved and then made up to 1 litre by adding distilled water. Growth was measured as 

described in section 2.17.1. 

2.17.5 Assimilation of Cadaverine 

M9 (cadaverine) medium was prepared as described for M9 (nitrate) medium in section 

2.17.4 but 117 ml of 1 M cadaverine was added instead of nitrate, and then the growth was 

measured as described in section 2.17.1. 
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2.18 NMR Analysis of Compatible Solutes 

2.18.1 Preparation of Samples for NMR Analysis 

Samples (5ml) of RV4 and LV1 strains were put into 15 ml tubes, centrifuged at 3000 

g for 10 minutes and the supernatant was discarded. The pellets were kept in -80°C 

freezer until the analysis was due. 

The pellets were thawed, resuspended in 1 ml of distilled water and vortexed for 1 

minute at room temperature. Then the samples were sonicated (2 x 20 seconds) and 

centrifuged at full speed in the microfuge for 10 minutes. The supernatants were 

transferred into two 1.5 ml Eppendorf tubes, transferred to -80°C freezer for 2 hours 

and then freeze dried for two days. Freeze dried samples were prepared for Nuclear 

Magnetic Resonance (NMR) analysis by dissolving them in 500 µl of D2O in an 

Eppendorf tube and then 5 µl of trimethyl syle propionate (TSP) were added. Next, 

the dissolved sample was transferred into an NMR tube and run in the NMR (Frings 

et al., 1993). 

2.18.2 Effect of Adaptation to Different Salinity, pH and Growth Media on 

Compatible Solutes Accumulated by RV4 and LV1 Strains 

RV4 and LV1 strains were adapted to different concentrations of NaCl (0.4 and 1 M) 

in M9 minimal medium and (0.4, 1, 1.5, 2 and 2.5 M) in YPD medium for RV4 and 

LB medium for LV1 strain, with 3 different pH values (pH 7, pH 5 and pH 3). After 

incubation for 24 – 48 hours at 250C with shaking, 5 ml of each sample were 

centrifuged for 10 minutes, the supernatant was poured off and the pellet was kept in 

freezer until used. NMR analysis was carried out as described in section 2.18.1. 
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2.19 Electron Microscopy 

Electron microscopy was carried out using a scanning electron microscope (SEM) 

and a transmission electron microscope (TEM). Both types were used to examine RV4 

and LV1 cells under normal conditions (pH 7) and extreme condition (pH 3). The 

analysis was performed in the Biomedical Science Department. 

2.19.1 Scanning Electron Microscope (SEM) 

To produce very high-resolution images of a sample surface, SEM was used. First 

step was to prepare the sample for examination by pelleting 1.5 ml of overnight 

culture for 10 minutes at 3000 g and discarding the supernatant. The cells were fixed 

in 3% glutaraldehyde in 0.1 M phosphate buffer for 4 hours at 40C, then the cells 

were washed in 0.1 M phosphate buffer, twice with 15 intervals at 40C.  

Secondary fixation was carried out in 2% aqueous osmium tetroxide for 1 hour at 

room temperature. The wash step was repeated and dehydration was achieved through 

a graded series of ethanol solutions as follows: 

75% ethanol for 15 minutes 

95% ethanol for 15 minutes 

100% ethanol for 15 minutes 

100% ethanol for 15 minutes 

100% ethanol dried over anhydrous copper sulphate for 15 minutes. 

All the above steps were carried out at room temperature. 

The cells were then air dried from hexamethyldisilazane. Initially they were placed in 

a 50/50 mixture of 100% ethanol and hexamethyldisiazane for 30 minutes followed 
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by 30 minutes in 100% hexamethyldisilazane. The cells were then allowed to air dry 

overnight before mounting. 

Upon completion of drying, the cells were mounted on 12.5 mm diameter stubs, 

attached with Sticky Tabs and then coated in an Edwards S150B sputter coater with 

approximately 25 nm of gold. 

The cells were examined in a Philips XL-20 Scanning Electron Microscope at an 

accelerating voltage of 20 Kv. 

2.19.2 Transmission Electron Microscope (TEM) 

TEM has been used to obtain thin, minimally deformed cells that allow for the 

observation of the internal structures of cells. After preparing cells as described in 

section 2.19.1 in an Eppendorf tube, fresh 3% glutaradehyde in 0.1 M phosphate 

buffer was added to the pellet (re-suspended to ensure optimal fixation) and left 

overnight at 40°C. The cells were then washed in 0.1 M phosphate buffer, twice with 

30 min intervals at 40°C. 

Secondary fixation was carried out in 2% aqueous osmium tetroxide for 2 hours at 

room temperature, washed in buffer as above. Followed by dehydration through a 

graded series of ethanol solutions at room temperature as described in section 2.19.1, 

except the last dehydration step was repeated twice. 

The cells were then placed in an intermediate solvent, propylene oxide, for two 

changes of 15 minutes duration. Infiltration was accomplished by placing the cells in 

a 50/50 mixture of propylene oxide/Araldite resin. The cells were left in this 50/50 

mixture overnight at room temperature. 
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The cells were left in full strength Araldite resin for 6-8 hours at room temperature 

(resin was changed after 3-4 hours) after which they were embedded in fresh Araldite 

resin for 48-72 hours at 60°C.  

Araldite resin contained: 

               CY212 resin  10 ml 

               DDSA hardener  10 ml 

               BDMA accelerator 1 drop per 1 ml of resin mixture 

Semi-thin sections approximately 0.5 μm thick were cut on a Leica ultramicrotome 

and stained with 1% Toluidine blue in 1% Borax. 

Ultrathin sections, approximately 70-90 nm thick, were cut on a Leica ultramicrotome 

and stained for 25 minutes with saturated aqueous uranyl acetate followed by staining 

with Reynold’s lead citrate for 5 minutes. The sections were examined using a FEI 

Tecnai TEM at an accelerating voltage of 80 Kv. Electron micrographs were taken 

using a Gatan digital camera. 

2.20 Silicone Oil Technique       

Centrifugation through silicone oil was used to completely separate cells from 

medium (Gimmler et al., 1978). A range of oils with different densities were 

produced by mixing individual silicone oils with different densities (Dow Corning 

200/1 grade oil was mixed with Dow Corning 550 grade oil). Cell suspensions of the 

density to be used in experiments (with no isotopes added) were used to find the oil 

which is dense enough to restrict mixing with the medium, but which allows the cells 

to pass through the oil during centrifugation and produce a pellet (Figure 2-4). 



59 
 

2.20.1 Determination of Intracellular Volume (ICV) of RV4  

Estimation of cell volume was carried out using the silicone oil technique based on 

the method described by Rottenberg (1979). 

Two 1 ml samples of concentrated cells (10 ml of cells from an overnight culture 

grown in M9 minimal medium at pH 7 or pH 3 were transferred to a 50 ml Falcon 

tube and harvested by centrifugation at 3000 g for 10 minutes. The yeast cell pellet 

was resuspended in 8 ml of fresh medium of the same pH and placed in 1.5 ml 

Eppendorf tubes. 10 µl of 3H2O (1850 kBq ml-1) were added to one sample of  

concentrated cells to give 18.5 kBq ml-1 and 20 µl of 14C-dextran (MW = 70000, 1850 

kBq ml-1) were added to second sample of concentrated cells to give 14.8 kBq ml-1. 

Both samples were vortexed thoroughly. 

After 5 minutes incubation at room temperature the 1.5 ml Eppendorf tubes were 

vortexed again, triplicate samples (300 µl) were taken from each 1.5 ml Eppendorf 

tube and layered onto 300 µl of the silicone oil mixture (right density) in fresh 1.5 ml 

Eppendorf tubes. The samples were then centrifuged for 1 minute at 13000 rpm 

(11340 g) in a bench top micro centrifuge (MSE, Micro-Centaur). From the aqueous 

supernatant fraction, triplicate samples (50 µl) were taken and placed into separate 

scintillation vials containing 5 ml of FluoranSafe scintillation fluid (VWR) and 

labelled appropriately.   

The tips of the 1.5 ml Eppendorf tubes, which contain the pellet of yeast, were 

carefully cut off using a razor blade within the oil layer and placed cut end down into 

1.5 ml Eppendorf tubes containing 300 µl distilled water. They were then centrifuged 
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for approximately 15 seconds at 13000 rpm (11340 g) to remove the pellet from the 

tips which were then discarded.  

Each pellet was resuspended in the water and then the whole sample was pipetted out 

and placed into separate scintillation vials containing 5 ml of FluoranSafe 

scintillation fluid (labelled appropriately) and then dispersed using a vortex agitator. 

All the vials were placed in racks and counted for 5 minutes per vial in a Beckman LS 

1801 Liquid Scintillation Counter.     

The 3H2O was evenly distributed throughout the pellet, whereas the 14C-dextran was 

only found in the spaces between the cells and the pellet due to its high molecular 

weight (Figure 2-4). The pellet volume (PV) and the extracellular volume (ECV) 

were calculated from the ratio of 3H2O and 14C-dextran in the pellet and supernatant 

fractions respectively using the following equations given in Hard and Gilmour 

(1996). 

Pellet volume (PV) (µl) =   030
6tsupernatanin dpm OH3

pelletindpmOH3 

2

2
×

×
                 

Extracellular volume (ECV) (µl) =  300
6tsupernatanindpmdextran  C

pelletindpmdextran  C  
14

14

×
×−

−
 

The intracellular volume (ICV) was calculated by subtracting the ECV from the total 

pellet volume (PV) (Rottenberg, 1979). 

* dpm = Disintegrations per minute 
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1. Oil is not dense enough 

 

 

 

                                                2. Oil is too dense 

 

 

 

3. Oil is in the right density 

Figure  2-4: Silicone oil density selection for intracellular volume, membrane 

potential and internal pH determinations. After centrifugation a pellet was formed and 

then medium remained on top of silicone oil of the correct density (3), silicone oil of 

the incorrect density (1 and 2). 
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Figure  2-5: Intracellular volume (ICV) determination using 3H2O and 14C-

dextran. The 3H2O distributes throughout the pellet and 14C- dextran is 

only found in the spaces between cells in the pellet. 
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2.20.2 The Measurement of Membrane Potential (ΔΨ) in RV4 Cells 

Estimation of membrane potential was carried out using the silicone oil technique as 

described by Rottenberg, (1979) and (1989). The experimental procedure was similar 

to the method used to determine intracellular volume (ICV) (section 2.20.2), with the 

exception that 5 µl of 9250 kBq ml-1 14C-TPP+ (tetraphenylphosphonium) were added 

to 1 ml of concentrated cells to give a final concentration of 18.4 kBq ml-1 14C-TPP+. 

The membrane potential was then calculated as follows: 

1)  Dpm 14C-TPP+ in 1 µl = Dpm 3H-TPP+ of supernatant divided by 50   ⇒    A 

2) 14C-TPP+ within the pellet which is outside the cells = multiply A by extracellular 

volume in µl (calculated from parallel samples treated with 3H2O and 14C- dextran) 

⇒B 

3) Dpm µl-1 cell volume = Dpm 14C-TPP+ in pellet minus B and divided by 

intracellular volume in µl (calculated from parallel samples treated with 3H2O and 

14C-dextran)  ⇒  C 

4) Ratio of  
A
C

  = concentration of 14C-TPP+ inside the cells / concentration of         

14C-TPP+ outside cells (ao)   

Using the Nernst equation:         

 ΔΨ   (mV) =   ˗ 
RT
ZF

  ln  
ai
ao

 

Where:- 
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R = 8.3143 Joules mol-1 K-1                               T = 303 K (25°C) 

F = 96.487 Joules ml-1 mV-1                               Z = 1 (charge on ionic species) 

At 25°C and converting from ln to log10 (x 2.303):   

 ΔΨ (mV) = - 58.8 x log 
ai
ao

 

2.20.3 Determination of Internal pH (pHi) of RV4 Cells 

The principle of measurement of internal pH in small microbial cells is based on the 

ability of weak acids or bases to penetrate the cell membrane of microorganisms 

(Waddell and Butler, 1959, Rottenberg, 1979, Rottenberg, 1989, Kashket, 1985). In 

order to obtain a measurable accumulation, a weak acid (14C-benzoic acid) was used 

when the internal pH was higher than the external pH (external pH is lower than pH 

7). 

The silicone oil method was used in an identical manner to that used for intracellular 

volume (ICV) calculation (section 2.20.2) and membrane potential determination 

(section 2.20.2), except that 5 µl of 14C-benzoic acid were added to 1 ml of cell 

suspension (sample) to give a final concentration of 18.5 kBq  ml-1. The calculations 

were exactly the same as those used in section 2.20.2 to calculate the ratio
ai
ao

.  

To determine the internal pH from the 
ai
ao

 ratio  

When a weak acid such as benzoic acid was used, there are two equations involved in 

the calculations. 
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If the pK of the weak acid is more than 1.5 units below the external pH then the 

following equation is utilized.   
















=

o

i

a
alogpHΔ

              

If the pK of the weak acid is less than 1.5 units below the external pH this alternative 

equation is used. 

 

 

pK of benzoic acid  = 4.2                                 

The equation used to calculate the proton motive force (ΔP) is:-  

Proton motive force (ΔP) = ΔΨ- (2.3 RT/F) ΔpH 

See section 2.20.2 for definitions of R, T and F 

2.20.4 Measurement of Isotope Uptake over Time  

In order to determine uptake of each isotope by RV4 strain a time course experiment 

was carried out. Essentially the silicone oil method (section 2.20) was carried out 

using only one isotope. An appropriate volume of isotope was added to five 1 ml 

samples of cells and the silicone oil procedure carried out at 1, 5, 10, 15 and 30 

minute intervals. Thirty scintillation vials containing 5 ml of FluoranSafe scintillation 

fluid and samples were labelled appropriately and then dispersed using a vortex 

agitator. All the vials were placed in racks and counted for 5 minutes per vial in a 

Beckman LS 1801 Liquid Scintillation Counter. The mean disintegration per minute 






















 −+= pkpHo

o
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a
a logpHi pk
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(dpm) for the pellet and supernatant triplicates per time point were calculated and 

plotted against time.  

2.21 Molecular Identification of Unknown Organisms 

2.21.1 Genomic DNA Extraction 

CTAB method as described by Chen et al., (2001) (Appendix B) was used as first 

attempt to extract genomic DNA from all four strains.  

The second method used was QIAgen Genomic-Tip kit following manufacturers 

guidelines. 

ANACHEM Key Prep kit was the third method used in this study to extract genomic 

DNA from all four strains using liquid cultures and then following manufacturer’s 

protocol. 

2.21.2 Polymerase Chain Reaction (PCR) Amplification of 16S rRNA 

Following extraction of genomic DNA, polymerase chain reaction (PCR) was carried 

out in order to amplify the 16S rRNA gene, the primers used to amplify the 16S 

rRNA gene were two universal bacterial primers: Forward primer (f D1: 5’CCG AAT 

TCG TCG ACA ACA GAG TTT GAT CCT GGC TCA G 3’) and Reverse primer (r 

D1: 5’ CCC GGG ATC CAA GCT TAC GGC TAC CTT GTT ACG ACT T 3’) 

designed to target the conserved regions of the 16S rRNA gene (Weisburg et al., 

1991). The reaction mixture contained the following reagents in a 0.2 ml thin walled 

PCR tube: 39 µl Distilled Water, 5 µl 10x Buffer, 2.5 µl 50 mM MgCl2, 0.5 µl 

Forward Primer, 0.5 µl Reverse Primer, 1 µl 25 mM dNTPs, 1 µl genomic DNA and 

0.5 µl Taq polymerase (Bioline). 
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Amplifications were carried out in a MyCycler thermocycler (BioRad) and began 

with an initial denaturation step consisting of 94°C for 3 min followed by 30 cycles 

consisting of 1 min at 94°C, 1 min at 60oC, and 1 min at 72°C followed by a final 

extension at 72oC for 5 minutes. 

2.21.3 Purification of PCR Products 

PCR reactions were cleaned up using QIAgen PCR purification kit and ANACHEM 

Key Prep Purification as per the manufacturer’s protocols. This stage was used to 

remove any remaining primers and dNTPs. After the clean up, the PCR product can 

be sent for direct sequencing. 

2.21.4 Agarose Gel Electrophoresis 

After PCR and after purification process, gel electrophoresis was used to check and 

confirm the correct gene had been amplified (16S rRNA is 1.5 kbp). The gel was 

made by adding 2 ml of 50X TAE into a conical flask, add distilled water up to 100 

ml and add 1 g of agarose to produce a 1% gel, This mixture was then heated in a 

microwave until the agarose had melted, after which it was allowed to cool whilst 

being stirred, and 5 µl of ethidium bromide (Biorad #161-0433) was added prior to 

pouring into a Biorad Subcell GT electrophoretic tank with a 30 well comb. Once the 

gel had set, it was covered with 1X TAE buffer and run at 90 – 100 V using a Biorad 

PowerPack 300.  

PCR products were loaded on the gel as follows, 2 µl of the PCR reaction was added 

to 2 µl of Orange G loading dye and analysed on a 1 % agarose gel against 1 µl of 1 
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kb GeneRuler ladder (Fermentas) (Appendix B). Gels were visualised using the 

Uvitec “Uvidoc” mounted camera system. 

2.21.5 TOPO Cloning Reaction 

2.21.5.1 Ligation 

The ligation stage is used to ligate 16S rRNA into a vector or plasmid which is a 

naturally occurring circular piece of DNA which most bacteria possess (Appendix B). 

Bacteria use them to spread antibiotic resistance genes between each other for 

example, which is useful to use as a selective marker.  

2.21.5.2 Transformation & Miniprep Procedure 

After ligation of 16S rRNA gene into the vector, competent Escherichia coli cells 

were transformed with the vector containing the 16S rRNA insert. Basically, 

transformation is the process of forcing the E. coli cells to take up the plasmid DNA. 

Competent E. coli cells are made especially so that they can take up plasmid. Ligation 

reaction and transformation were carried out by using TOPO 10 cloning reaction 

protocol. 

2.21.5.3 Digestion 

Digest step is usually used to confirm if the plasmid has the correct insert or not. This 

involves cutting the DNA in a specific place using a restriction enzyme. Restriction 

digests usually contain 1 µl of enzyme, 1 µl 10X buffer (appropriate to the enzyme), 

2 µl plasmid DNA and 6 µl MilliQ water, and then the mixture was incubated at 37°C 

for 2 hours. The results are checked using gel electrophoresis and samples containing 
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the correct insert are sent to Medical School for sequencing. The sequences were then 

compared to other sequences using the NCBI Blast web site. 

For high quality plasmid DNA, the PureLinkTM HiPure Plasmid DNA MiniprepKit was 

used as described in the manufacturer’s protocol. 

2.21.6 Phylogenetic (DNA Sequence) Analysis 

For the phylogenetic placement of RV2 and RV4, 16S rRNA gene sequences were 

processed by The National Collection of Industrial, Marine and Food Bacteria 

(NCIMB) using the MicroSeq database and the EMBL public database. RV3 16S 

rRNA gene sequences were produced by Eurofins MWG while LV1 16S rRNA gene 

sequences were processed by the Medical School in the University of Sheffield. 

2.22  Statistics 

Most of the experiments in this study were carried out in triplicate and error bars 

represent standard errors of the means. If no error bars are shown, they were smaller 

than symbol used to represent the mean. For experiments carried out in duplicate, 

both values plus the average are shown. 
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3 Isolation and Initial Characterisation of 

Acidophiles from Rivelin and Limb Valleys 

3.1 Introduction 

Recent research has examined microbial life in extremely low pH environments either 

neutral or man-made environments. This research has focused on prokaryotic 

microorganisms due to the importance of these microorganisms (bacteria or archaea) in 

environmental pollution and biotechnology applications such as biodegradation. However, 

eukaryotic microorganisms (algae, fungi and yeasts) are also known to be obligate 

acidophiles which may form stable communities with prokaryotes (Norris et al., 1992, 

Norris and Johnson, 1998, Johnson, 1998). 

However, extremophiles have also been isolated from habitats where they are not expected 

to be actively growing (Echigo et al., 2005).  Therefore, it is possible that extremely 

tolerant or even extremophilic microorganisms can be isolated from a wide range of 

environments including fresh water (Kristjansson and Hreggvidsson, 1995, Schleper et al., 

1997, Purdy et al., 2004, Oren, 2008). 

As noted in Chapter 1, microorganisms that live at extreme pH values (acidophilic or 

alkaliphilic) must maintain a cytoplasmic pH that is compatible with optimal functional 

and structural integrity of the cytoplasmic proteins that support growth (Krulwich and 

Guffanti, 1983, Padan et al., 2001). Although acidophiles tolerate pH gradients [pH 

gradient (ΔpH) = pHin minus pHout] several orders of magnitude greater than 

neutralophiles, acidophiles require a moderate intracellular pH. The ΔpH across the 
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cytoplasmic membrane is intrinsically linked to cellular bioenergetics because it is the 

major contributor to the proton motive force in acidophiles. However, the influx of protons 

through the F0F1 ATPase to produce ATP intensifies cellular protonation and, if left 

unchecked, will rapidly dissipate the ΔpH. The functions of proteins and nucleic acids are 

impaired by protonation, and interference caused by free intracellular protons can impair 

processes such as DNA transcription, protein synthesis and enzyme activities (Madshus, 

1988, Baker-Austin and Dopson, 2007). 

Nevertheless, internal pH regulation mechanisms in acidophilic microorganisms although 

poorly understood, are essential for the survival and growth of this ecologically and 

biotechnologically important group of microorganisms. 

The Rivelin and Limb Valleys in Sheffield have long history of industrial activity dating 

back to the Industrial Revolution.  Therefore, it was assumed that even today, the rivers 

would remain polluted acidic environments. For that reason, analysis of the microbial 

diversity present in water samples from Rivelin and Limb Valleys was carried out 

using classical microbiology techniques using batch culture to isolate microorganisms 

from Rivelin and Limb Valley water samples which can grow at low pH values such 

as pH 5 and pH 3. 

In this chapter, initial characterisations were performed on all four isolated strains 

such as cell shape under light microscope, growth curves, their ability to grow in 

different pH values, respiration rates, the range of salinities that all isolated strains 

can tolerate and some salient physiological characteristics of both prokaryotic and 

eukaryotic microorganisms. 
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3.2 Results and Discussion 

3.2.1 Sample collection 

3.2.1.1 Rivelin Valley 

The collections of samples from the River Rivelin were carried out at two different 

times. 

3.2.1.1.1 First Collection 

A total of three samples were collected from the Rivelin Valley on 15th February 

2009 (Rivelin Valley was filled with snow which made it difficult to collect samples).  

Samples were numbered according to their type i.e. surface water, deep water and 

sediment). The pH of samples was measured upon returning to the laboratory and not 

on site, pH value for the three samples was 7.3, 6.68 and 7.15, respectively. 

3.2.1.1.2 Second Collection 

On 6th April 2009 a total of four samples were collected from Rivelin Valley. The pH 

of samples was measured in the field and the readings were 6.3 to 7 for the four 

samples. The samples were numbered and photographs taken during sampling in the 

Rivelin Valley (Figure 3-1). 

3.2.1.2 Limb Valley: 

A total of three samples were collected from water in the Limb Valley on the 7th May 

2010. The pH of samples was measured in the field, the highest pH was 6.5 and the 

lowest was 5, this latter sample was taken from a ditch in the Limb Valley. The 

samples were numbered and photographs taken during sampling (Figure 3-2). 
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Figure  3-1: Photographs showing the sampling sites in the Rivelin Valley during the 

second collection on 6th April 2009. 
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Figure  3-2: Photographs showing the sampling sites in the Limb Valley. The collection was 

made on the 7th May 2010. 
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3.2.2 Chemical Analysis of Water Samples 

Table 3-1 shows that both the Rivelin and Limb Valley water have similar 

concentrations of Ca2+, Cu, K+, Mn2+, Ni2+, Pb, and Zn2+, while Table 3-2 shows the 

ions that are found at different concentrations in the two sets of samples. It is obvious 

from Table 3-2 that the concentrations of Al3+, S, Si, Ti and Mg2+ were higher in the 

Limb Valley samples than in Rivelin River, while the concentrations of Fe2+ and Na+ 

were higher in Rivelin Valley samples. 

 

Table  3-1: Cations and anions of Rivelin and Limb Valley water samples which contain 

similar concentrations (mg/l). 

Ions            Ca Ni Cu K Mn Zn Pb 

         
Rivelin 29.5 0.005 0.04 4.4 0.34 0.16 0.04 

         
Limb 25.6 0.053 0.014 3.7 1.01 0.098 0.13 

 
  

      
         

 

Table  3-2: Cations and anions of Rivelin and Limb Valley water samples which contain 

different concentrations (mg/l). 

Ions            Al S Si Fe Na Mg Ti 

            
Rivelin 1.09 7.9 10.3 53.5 57.5 7.3 0.06 

         
Limb 77.5 41.4 23.1 8.2 12.6 16.6 0.26 
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3.2.3 Isolation and Selection of Culturable Microorganisms 

Initially in order to isolate acidophilic or acid tolerant microorganisms, FeTSB liquid 

and solid media (sections 2.4.1 and 2.4.2) were selected for isolation of strains 

(Johnson et al., 1987). Unfortunately, after several attempts, there was no observation 

of any microbial growth in this medium. 

Therefore, M9 minimal medium (section 2.4.3) was used for initial isolation of strains 

instead of FeTSB medium. M9 medium was adjusted to three different pH values 3, 5 

and 7. Seven samples of water (four from the first collection and three from the 

second) were collected from different points on the Rivelin River (Figure 3-1), and 

three samples of water were collected from Limb River and the ditch beside the river. 

1 ml of each river water sample was inoculated in to 50 ml of M9 medium. Flasks 

were incubated overnight at 25ºC with shaking (250 rpm). In parallel, a modified ½ 

LB medium which has half the normal concentration of LB medium components 

(section 2.4.4) was used as well as M9 in order to isolate a wider variety of 

acidophiles or acid tolerant microorganisms. 

The biomass obtained from the flasks was spread on M9 and ½ LB agar plates and 

single colonies from these plates were used to purify three strains from Rivelin valley 

RV2, RV3, and RV4, and one strain from Limb valley designed as LV1. Three strains 

RV2, RV3 and RV4 were able to grow well in both media at three different pH values 

3, 5 and 7 while LV1 strain took a longer time to adapt and grow in low pH, 

especially in M9 medium. Good growth was defined as reaching at least an OD600 of 

1 after overnight growth at 25°C with shaking (250 rpm).  
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3.2.4 Initial Characterisation of Bacterial Strains RV3 and LV1 

Strains RV3 and LV1 were identified as bacteria and their basic phenotypic and 

physiological characteristics are shown in Table 3-3. Gram staining overnight 

cultures showed that cells of both bacteria strains are Gram positive (Figure 3-3 and 

Figure 3-4). RV3 cells are rod-shaped and motile, LV1 cells are cocci and no motility 

was observed with LV1 cells. RV3 cells have ability to form internal spores, but in 

contrast no spores were observed with LV1 cells. RV3 cells grow as facultative 

aerobes, whereas LV1 are obligately aerobic. The most obvious difference between 

RV3 and LV1 strains was the yellow pigment produced by LV1 during growth.  

3.2.5 Initial Characterisation of Yeast Strains RV2 and RV4 

Table 3-4 illustrates some basic phenotypic characteristics of strains RV2 and RV4, 

which were identified as yeast strains. Both yeast strains are motile with oval cell 

shape (Figure 3-5 and Figure 3-6). The most noticeable difference between the two 

yeast strains was the pink colour of RV2 colonies on M9 medium agar plats. Also it 

was noticed that RV2 old colonies turned from pink to black colour. 
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Table  3-3: The basic characteristics of the isolated bacterial strains, cells were grown in ½ 

LB medium, pH 5 at 25ºC. 

      

Strains RV3 LV1 

Physical characterisation   

   
Gram stain Positive Positive 

Cell morphology Rod Coccus 

Cell arrangement Chain, single Staphylo, tetrad 

Pigmentation White Yellow 

Motility Motile Non motile 

Oxygen requirement Facultative aerobic An obligate aerobic 

Spore forming Positive Negative 
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Table  3-4: Basic physical characteristics of the isolated yeast strains, cells were grown in M9 

medium, pH 5 at 25ºC. 

      

Strains RV2 RV4 

Physical characterisation   
   
Morphology Oval Oval 

Motility Motile Motile 

Oxygen requirement Aerobic Aerobic 

Fresh colony colour Pink White 

Old colony colour Black White 
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Figure  3-4: Phase contrast photomicrograph of LV1 cells grown in ½ LB 

medium at pH 5 overnight at 25ºC. Photomicrograph was taken using an 

Olympus Bx61 Upright microscope.  Magnification was x 1000. 

Figure  3-3: Phase contrast photomicrograph of RV3 cells grown in ½ LB 

medium at pH 5 overnight at 25°C.  Photomicrograph was taken using an 

Olympus Bx61 Upright microscope. Magnification was x 1000.  
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Figure  3-6: Phase contrast photomicrograph of RV2 cells grown in M9 

medium at pH 5 overnight at 25ºC. Photomicrograph was taken using the 

Olympus Bx61 Upright microscope.  Magnification was x 1000. 

Figure  3-5: Phase contrast photomicrograph of RV4 cells grown in M9 

medium at pH 5 overnight at 25°C. Photomicrograph was taken using an 

Olympus Bx61 Upright microscope. Magnification was x 1000. 
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3.2.6 Further Characteristics of Isolated Yeast Strains 

As described in section 2.17 some further physiological tests were performed to 

investigate and differentiate the isolated yeast strains RV2 and RV4. 

Table 3-5 shows that both yeast strains RV2 and RV4 were unable to grow in the 

presence of 0.01 % (w/v) cycloheximide, while both strains fermented glucose. The 

characteristics of carbon and nitrogen assimilation by RV2 and RV4 strains were 

found to differ. RV2 can assimilate nitrate, but RV4 was negative for nitrate 

assimilation. In contrast, RV4 strain was able to assimilate both unusual carbon 

sources tested α-Methyl glucoside and cadaverine, while RV2 strain could not. 

These salient physiological characteristic results will help to confirm the molecular 

based identification of the yeast species described in Chapter 4.  
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Table  3-5: Some of physiological characterisations of isolated yeast strains RV2 and RV4. 

 
    

Strains RV2 RV4 

Cycloheximide resistance Negative Negative 

Glucose fermentation Positive Positive 

   
      
Assimilation of:   

  
Nitrate Positive Negative 

α-Methyl glucoside Negative Positive 

Cadaverine Negative Positive 
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3.2.7 Growth Characterisation of Isolated Strains RV2, RV3, RV4 and LV1 at 

Different pH Values in Different Culture Media 

Immediately after isolation and at an early stage in the adaptation process, growth 

curves were produced for RV2, RV3, RV4 and LV1 to investigate the effect of external 

pH on the growth rates at pH 7, pH 5 and pH 3 in M9 minimal medium and ½ LB 

medium. Growth was quantified by direct optical density (OD) measurement at 600 

nm using a Unicam Helisα spectrophotometer.  

3.2.7.1 M9 Minimal Medium 

Figure 3-7 shows that all isolated strains can grew well in M9 minimal medium at pH 

7, although LV1 strain grew slightly slower than the other strains. Similar results were 

found in pH 5 and pH 3 M9 medium but the gap between LV1 and the other stains 

became slightly wider (Figure 3-8 and Figure 3-9). It was also clear that RV4 strain 

was the best strain in terms of adapting and thriving in M9 minimal medium at low 

pH (Figure 3-8 and Figure 3-9). These interpretations of the growth curve results are 

supported by calculating the doubling times which are shown in Table 3-6. 

3.2.7.2 Half Enrichment Medium (1/2 LB) 

Growth curves shown in Figure 3-11 indicated that all isolated strains RV2, RV3, 

RV4 and LV1 can grow very well at pH 7 in ½ LB medium, but when the pH value 

goes down to pH 5 the growth of LV1 strain was decreased while the rest of strains 

still maintained very good growth (Figure 3-12). At pH 3 (Figure 3-13), RV4 strain 

again seems to be the best strain that successfully thrives and achieves a high growth 

level at pH 3 in ½ LB medium. Table 3-7 and Figure 3-14 show the doubling time 

calculations of the growth rates for all strains on ½ LB at different pH values.  It is 
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clear that all strains at all pH values grow faster on the richer ½ LB medium than on 

the minimal M9 medium. 

To conclude the RV4 strain is the most acid tolerant of the four strains tested, 

showing very little change in growth rate over the pH range pH 3 to pH 7 (Table 3-6 

and Table 3-7). In contrast, LV1 strain grew more slowly at low pH in both media 

(Table 3-6 and Table 3-7), and LV1 cells needed a longer time to adapt and grow 

particularly in M9 medium (data not shown). On the other hand, RV2 and RV3 strains 

seem to prefer neutral pH rather than growing in low pH but they showed good 

resistance to the acidity which means their cells have been successfully adapted to 

tolerate pH 3 in both media (Table 3-6 and Table 3-7). 
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Figure  3-7: Growth curves for RV2, RV3, RV4 and LV1 cells growing in M9 minimal medium at 

pH 7, incubated in a 25ºC constant temperature room on an orbital shaker at 250 rpm 

overnight. The OD for each strain was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  3-8: Growth curves for RV2, RV3, RV4 and LV1 cells growing in M9 minimal medium at 

pH 5, incubated in a 25ºC constant temperature room on an orbital shaker at 250 rpm 

overnight. The OD for each strain was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  3-9: Growth curves for RV2, RV3, RV4 and LV1 cells growing in M9 minimal medium 

at pH 3, incubated in a 25ºC constant temperature room on an orbital shaker at 250 rpm 

overnight. The OD for each strain was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Table  3-6: Effect of external pH on the doubling times of strains RV2, RV3, RV4 and LV1 in M9 

minimal medium. Each point represents the mean from four replicate samples. 

          
Doubling Time of Strains in M9 medium 

(Minutes) 

  RV2 RV3 RV4 LV1 

pH7 200 198 189 225 

pH5 269 258 180 293 

pH3 292 284 182 408 

 
 

 
 

 
 

 

Figure  3-10: Effect of external pH on the doubling times of strains RV2, RV3, RV4 and LV1 in M9 

minimal medium. Each point represents the mean from four replicate samples. 
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Figure  3-11: Growth curves for RV2, RV3, RV4 and LV1 cells growing in ½ LB medium at pH 7, 

incubated in a 25ºC constant temperature room on an orbital shaker at 250 rpm overnight. 

The OD for each strain was measured at 600 nm. Data points are the means of four replicates 

plus or minus standard deviation. 
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Figure  3-12: Growth curves for RV2, RV3, RV4 and LV1 cells growing in ½ LB medium at pH 

5, incubated in a 25ºC constant temperature room on an orbital shaker at 250 rpm overnight. 

The OD for each strain was measured at 600 nm. Data points are the means of four replicates 

plus or minus standard deviation. 
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Figure  3-13: Growth curves for RV2, RV3, RV4 and LV1 cells growing in ½ LB medium at 

pH3, incubated in a 25ºC constant temperature room on an orbital shaker at 250 rpm 

overnight. The OD for each strain was measured at 600 nm. Data points are the means of 

three replicates plus or minus standard deviation. 
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Table  3-7: Effect of external pH on the doubling times of strains RV2, RV3, RV4 and LV1 in ½ 

LB medium. Each point represents the mean from four replicate samples. 

Doubling Time of Strains in 1/2 LB medium 

(Minutes) 

  RV2 RV3 RV4 LV1 

pH7 110 102 156 138 

pH5 145 134 125 246 

pH3 192 186 162 276 

 

 

 

Figure  3-14: Effect of external pH on the doubling times of strains RV2, RV3, RV4 and LV1 in ½ 

LB medium. Each point represents the mean from four replicate samples. 
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3.2.8 Effect of External pH on Respiration Rate of RV2, RV3, RV4 and LV1 

Strains 

As described in section 2.10, the respiration rate of strains RV2, RV3, RV4 and LV1, 

was measured using a Clarke-type oxygen electrode in order to observe the effect of 

external pH on the rate of uptake of oxygen over a pH range of pH 7 to 3 in ½ LB 

medium. 

Cells were grown in ½ LB medium at pH 3, 5 and 7, and then respiration rate was 

measured in the growth pH (control) plus the other two pH values.  The red values in 

Tables 2 to 5 are the control values, 

Table 3-8 shows that the respiration rate of RV2 cells was highest at neutral pH and 

the respiration decreased with decreasing pH. There was a significant fall in the rate 

of O2 uptake from 4.2 μmoles O2 taken up mg-1 cell protein h-1 at pH 7 to 2 μmoles 

O2 taken up mg-1 cell protein h-1 at pH 3. This result was confirmed with the cells 

grown at pH 7 and shocked at pH 5 and pH 3 where the respiration rate decreased 

from 4.2 μmoles O2 taken up mg-1 cell protein h-1 to 2.8 and 2.6 μmoles O2 taken up 

mg-1 cell protein h-1, respectively. 

Similar results occurred with RV3 strain, the respiration rate goes down with the 

increasing of acidity (Table 3-9). Respiration rate was 3.9 μmoles O2 taken up mg-1 

cell protein h-1 at pH 7 and decreased to 3.3 and 3.2 μmoles O2 taken up mg-1 cell 

protein h-1 at pH 5 and pH 3, respectively. The respiration rate of RV3 cells grown at 

pH 7 and resuspended in pH 5 and pH 3 drop from 3.9 μmoles O2 taken up mg-1 cell 
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protein h-1 to 3.3 and 2.8 μmoles O2 taken up mg-1 cell protein h-1 at pH 5 and pH 3, 

respectively. 

In contrast, RV4 cells adapted to pH 3 have the highest rate of respiration at all three 

pH values tested (Table 3-10). The O2 uptake decreased from 3 μmoles O2 taken up 

mg-1 cell protein h-1 at pH 3 to 2.2 and 1.5 at pH 5 and pH 7, respectively. This 

finding was confirmed when for the cells grown at pH 7 and shocked at pH 5 and pH 

7 the respiration rate rose from 1.5 μmoles O2 taken up mg-1 cell protein h-1 at pH 7 to 

1.6 and 1.9 at pH 5 and pH 3, respectively. 

Table 3-11 shows that the O2 uptake rate of LV1 strain was decreased with the 

increasing of external pH. The respiration rate drops from 5.2 μmoles O2 taken up 

mg-1 cell protein h-1 at pH 7 to 4.2 and 3.7 μmoles O2 taken up mg-1 cell protein h-1 at 

pH 5 and pH 3, respectively. The shock experiments gave same results, when cells 

were grown at neutral pH and resuspended at low pH the respiration rate fell, while 

when the cells were grown at low pH and resuspended at higher pH the respiration 

rate increased. 

In general, these results supported and agreed with the growth curve results (Figure 3-

11 and Figure 3-13), which suggested that RV4 strain is the most acidophilic 

microorganism of the four strains while LV1 strain was the weakest one in terms of 

adapting to grow at low pH. 
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Table  3-8: Respiration rate for strain RV2 subjected to pH stress in ½ LB medium (µmoles 

mg-1 protein h-1). 5 ml of cells from each strain grown at pH 7, 5 and 3 in ½ LB medium 

overnight at 25°C on an orbital shaker at 250 rpm were harvested by centrifugation and 

resuspended in either 10 ml of fresh ½ LB medium of the same pH value or shocked by 

resuspension in a different pH value. The O2 uptake was measured as described in section 

2.11 immediately after resuspension in the fresh medium. Data points are the means of three 

replicates plus or minus standard deviations. 

 

 Fresh 1/2 LB Shock Medium 

  pH3 pH5 pH7 

Overnight cultures 
 

 
 

 

 
 

 

 
 

pH3 2.0 ±0.1  1.8 ±0.1  2.0 ±0.1  

pH5 3.3 ±0.2  3.6 ±0.2  3.6 ±0.3  

pH7 2.6 ±0.03  2.8 ±0.03  4.2 ±0.03  
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Table  3-9: Respiration rate for strain RV3 subjected to pH stress in ½ LB medium (µmoles 

mg-1 protein h-1). 5 ml of cells from each strain grown at pH 7, 5 and 3 in ½ LB medium 

overnight at 25°C on an orbital shaker at 250 rpm were harvested by centrifugation and 

resuspended in either 10 ml of fresh ½ LB medium of the same pH value or shocked by 

resuspension in a different pH value. The O2 uptake was measured as described in section 

2.11 immediately after resuspension in the fresh medium. Data points are the means of three 

replicates plus or minus standard deviations. 

 

 Fresh 1/2 LB Shock Medium 

  pH3 pH5 pH7 

Overnight cultures 
 

 
 

 

 
 

 

 
 

pH3 3.2 ±0.3  3.7 ±0.2  3.7 ±0.03  

pH5 3.0 ±0.3  3.3 ±0.2  3.4 ±0.2  

pH7 2.8 ±0.2  3.2 ±0.3  3.9 ±0.3  
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Table  3-10: Respiration rate for strain RV4 subjected to pH stress in ½ LB medium (µmoles 

mg-1 protein h-1). 5 ml of cells from each strain grown at pH 7, 5 and 3 in ½ LB medium 

overnight at 25°C on an orbital shaker at 250 rpm were harvested by centrifugation and 

resuspended in either 10 ml of fresh ½ LB medium of the same pH value or shocked by 

resuspension in a different pH value. The O2 uptake was measured as described in section 

2.11 immediately after resuspension in the fresh medium. Data points are the means of three 

replicates plus or minus standard deviations. 

 

 Fresh 1/2 LB shock Medium 

  pH3 pH5 pH7 

Overnight cultures 
 

 
 

 

 
 

 

 
 

pH3 3.0 ±0.1  3.0 ±0.2  2.9 ±0.0  

pH5 2.0 ±0.2  2.2 ±0.1  2.0 ±0.1  

pH7 1.9 ±0.05  1.6 ±0.1  1.5 ±0.1  
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Table  3-11: Respiration rate for strain LV1 subjected to pH stress in ½ LB medium (µmoles 

mg-1 protein h-1). 5 ml of cells from each strain grown at pH 7, 5 and 3 in ½ LB medium 

overnight at 25°C on an orbital shaker at 250 rpm were harvested by centrifugation and 

resuspended in either 10 ml of fresh ½ LB medium of the same pH value or shocked by 

resuspension in a different pH value. The O2 uptake was measured as described in section 

2.11 immediately after resuspension in the fresh medium. Data points are the means of three 

replicates plus or minus standard deviations. 

 

 Fresh 1/2 LB shock Medium 

  pH3 pH5 pH7 

Overnight cultures 
 

 
 

 

 
 

 

 
 

pH3 3.7 ±0.3  4.0 ±0.2  4.3 ±0.3  

pH5 4.1 ±0.2  4.2 ±0.1  4.4 ±0.06  

pH7 4.0 ±0.1  4.4 ±0.2  5.2 ±0.3  
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3.2.9 Effect of High Salinity on the Overnight Growth of RV2, RV3, RV4 and LV1 

Strains in ½ LB Medium at Different pH Values  

In order to investigate the range of salinities that the isolated strains can tolerate, cells 

of each strain were repeatedly sub-cultured in ½ LB medium containing higher levels 

of NaCl at different pH values 7, 5 and 3on an incremental basis.  Initially, all strains 

were adapted to grow in 0.4, 1 and 1.5 M NaCl, then 2, 2.5 and 3 M NaCl over a 

period of several weeks. 

Figure 3-15 shows the effect of different concentrations of sodium chloride on the 

growth of all isolated strains in ½ LB medium at pH 7. The results indicate that RV4 

and LV1 strains seem to be halophiles or at least halotolerant microorganisms, both 

strains were able to grow with optimally at 0.4 to 1.0 M NaCl respectively, but when 

the NaCl concentration was increasing up to 1.5 M there was an inhibitory effect and 

the growth of both strains was significantly slower at 2 M NaCl. Similar results were 

found for RV4 and LV1 at pH 5 and pH 3 as shown in Figure 3-16 and Figure 3-17 

showing clearly that both strains were capable of tolerating high salinity 

concentrations. 

On the other hand, Figure 3-15 shows that RV2 and RV3 strains were able to grow 

optimally at 0.1 M NaCl. Growth was similar to growth in control ½ LB medium at 

pH 7 which contains 50 mM NaCl. Increasing the concentration of NaCl to more than 

0.4 M NaCl significantly reduced the growth rate of both strains and there was no 

growth above 1 M NaCl. Furthermore, when pH was decreased to pH 5 and pH 3 both 

strains barely grew when salinity reached 0.4 M NaCl and there was no growth at 

salinities above this level as shown in Figure 3-16 and Figure 3-17. So, these results 

suggested that RV2 and RV3 strains cells could not tolerate more than 0.4 M NaCl. 
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Figure  3-15: Effect of different NaCl concentrations on the overnight growth of RV2, RV3, RV4 

and LV1 strains. Cells were grown in ½ LB medium at pH 7. The OD was measured at 600 nm 

after overnight incubation at 25°C with shaking at 250 rpm. Data points are the means of 

three replicates plus or minus standard deviations. 
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Figure  3-16: Effect of different NaCl concentrations on the overnight growth of RV2, RV3, RV4 

and LV1 strains. Cells were grown in ½ LB medium at pH 5. The OD was measured at 600 nm 

after overnight incubation at 25°C with shaking at 250 rpm. Data points are the means of 

three replicates plus or minus standard deviations. 
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Figure  3-17: Effect of different NaCl concentrations on the overnight growth of RV2, RV3, RV4 

and LV1 strains. Cells were grown in ½ LB medium at pH 3. The OD was measured at 600 nm 

after overnight incubation at 25°C with shaking at 250 rpm. Data points are the means of 

three replicates plus or minus standard deviations. 
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3.2.10 Measurement of External pH of Overnight Cultures of RV2, RV3, RV4 and 

LV1 strains 

As described in section 2.12 the external pH of overnight cultures of all strains was 

measured in order to investigate the ability of the strains to alter the external pH of 

M9 and ½ LB media set to pH values 7, 5 and 3. 

Table 3-12 illustrated that all four strains did not made any significant changes to the 

external pH in M9 medium, except RV4 strain where the pH was reduced from 5 to 

3.65. In contrast when RV2, RV3, and RV4 were grown in ½ LB medium at pH 3 their 

cells increased the pH to 7.7, 6.5, and 6.8 respectively, while only a slight increase 

from pH 3 to pH 4.3 happened with LV1 strain possibly due to the weaker growth of  

LV1 at pH 3 (Table 3-13). 

Large changes of external pH also occurred when strains were cultured in ½ LB 

medium at pH 5 and pH 7, all strains increased the pH values as shown in Table 3-13. 
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Table  3-12: Overnight cultures external pH of RV2, RV3, RV4 and LV1 strains at different pH 

values in M9 minimal medium. 

          

  Overnight external pH 

  RV2 RV3 RV4 LV1 

Initial external pH 
    

pH3 3.4 ±0.02 3.3 ±0.03 3.1 ±0.01 3.2 ±0.02 

pH5 5.5 ±0.04 5.6 ±0.04 3.65 ±0.03 5.9± 0.05 

pH7 7.2 ±0.05 7.3 ±0.04 7.0 ±0.06 7.3 ±0.03 
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Table  3-13: Overnight cultures external pH of RV2, RV3, RV4 and LV1 strains at different pH 

values in ½ LB medium. 

         

  Overnight external pH 

  RV2 RV3 RV4 LV1 

Initial external pH 
    

pH3 7.7 ±0.09 6.5 ±0.08 6.8 ±0.04 4.3 ±0.06 

pH5 8.5 ±0.1 8.9 ±0.09 8.8 ±0.08 8.2 ±0.09 

pH7 9.0 ±0.07 8.9 ±0.09 9.2 ±0.1 8.6 ±0.08 
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3.3 Conclusions 

Various samples of sediment and liquid were collected from Rivelin and Limb 

Valleys in Sheffield and minimal and half enrichment cultures were set up at pH 3, 

pH 5 and pH 7 in M9 and ½ LB medium at 25ºC to grow and isolate acidophilic or 

acid tolerant microorganisms. Four strains (RV2, RV3, RV4 and LV1) were chosen for 

further studies due to their good growth at different pH values of pH 7, 5 and 3, and 

also RV4 and LV1 were chosen for further studies due to their ability to grow at high 

salinities. 

Two prokaryotic strains RV3 and LV1 were successfully isolated and shown to be 

Gram-positive, aerobic microorganisms. RV3 strain was motile while LV1 strain was 

non-motile. Moreover, the other two strains isolated from the Rivelin Valley samples 

(RV2 and RV4) were eukaryotic microorganisms and characterised as yeast strains. 

Both strains were able to ferment glucose and could not grow in the presence of 

cycloheximide. RV2 strain was found to assimilate nitrate while RV4 could not. On 

the other hand, RV4 strain was able to assimilate α-methyl glucoside and cadaverine 

while RV2 strain could not. 

At an early stage in the adaptation process, LV1 strain did not grow at pH 3 in M9 

medium, while RV2, RV3 and RV4 showed a good growth at all pH values in M9 

minimal medium. However, RV4 strain was the best strain in terms of producing the 

best growth at pH 5 and pH 3 in both media. LV1 strain showed the lowest growth at 

low pH, particularly in M9 medium, and it should be noted that repeated sub-
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culturing for several weeks was required to allow LV1 strain to adapt and grow at pH 

3 in both media. 

The impact of different external pH values on the respiration rates of the four strains 

was also measured. RV2, RV3 and LV1 strains showed their highest respiration rates 

at pH 7, while RV4 showed its highest respiration rate at pH 3. The respiration results 

showed broad agreement with growth curve results. So, on the basis of these 

characteristics, the RV4 strain was classified as aerobic acidophilic yeast and was 

selected for further study. 

The tolerance of the strains to different salinities was examined, and the results 

indicated that RV4 and LV1 strains were able to grow at high salinities up to 2.5 M 

NaCl in M9 minimal and ½ LB medium. 

To conclude, it was decided to further investigate the bioenergetics of the growth of 

RV4 strain at pH 3 including the determination of membrane potential, and internal 

pH (Chapter 6). Furthermore, it was decided that further physiological work was 

required to investigate the metabolic processes that allow RV4 and LV1 strains to 

adapt and grow at high salinity (Chapter 5). 

However, first of all in the next chapter, the four strains will be identified using 

molecular identification techniques, including DNA extraction, PCR amplification 

and purification of 16S rRNA gene for bacteria strains and 18S rRNA gene for yeast 

strains. 
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4 Molecular Identification of RV2, RV3, RV4 and 

LV1 Strains 

4.1 Introduction 

Using phenotypic information as the only method to identify species in 

microbiology is no longer recommended, but this information is helpful for initial 

description of unknown strains. Therefore, traditional microbiology methods which 

have been used use to classify organisms depending on phenotypic characters such 

as morphology, physiology, and metabolism are being supplemented by genotypic 

analysis (Scow et al., 2001). 

Since the discovery of the polymerase chain reaction (PCR), molecular methods are 

much more reliable for relating and classifying organisms than phenotypic 

information, because they are more informative with regard to evolutionary 

relationships and they are also now more readily available (Woese, 1987, Lexa et 

al., 2001, Fenollar et al., 2006, Yeung et al., 2009) 

Ribosomal RNA (rRNA) is the most commonly used molecular marker for several 

reasons. Firstly and most importantly, it is present in all organisms and has been for 

a very long time (Olsen et al., 1986). The overall structure of rRNA is well 

conserved between all organisms which means that it is easy to identify rRNA by 

size alone (Olsen et al., 1986, Woo et al., 2000). rRNA molecules are a necessary 

element of one of the most basic cellular functions, protein synthesis, and thus, 

form a significant proportion of cellular mass, therefore rRNA is readily 

recoverable from all cell types (Olsen et al., 1986). In addition, it is possible to 
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sequence rRNA directly and rapidly using reverse transcriptase (Woese, 1987, 

Hugenholtz and Pace, 1996). 16S rRNA gene sequence is also chosen because it 

contains regions of conserved, variable and hyper variable sequence. For example, 

archaeal 16S rRNA molecules are easily identified from bacterial 16S rRNA or 

eukaryal 18S rRNA by their unique structure between positions 180 and 197 

(Woese et al., 1990, Johnson et al., 2001, Ma et al., 2004). In addition, 16S rRNA 

molecules are large (approximately 13 times larger than 5S rRNA) and consist of 

many domains which also facilitate their use as molecular markers and contain 

sufficient information for identification and phylogenetic analyses of organisms 

(Woese et al., 1990, Drancourt et al., 2000, Patel, 2001). 

In this chapter, RV3 and LV1 bacterial strains, isolated from Rivelin and Limb 

valleys respectively, were identified to the genus level by the use of 16S rRNA 

gene sequencing. The 16S rRNA gene was amplified using bacterial primers by the 

polymerase chain reaction (PCR) technique. PCR products were ligated into the 

cloning vector pCR2.1 and then transferred into E. coli competent cells. The 

plasmid was then isolated and the 16S rRNA gene sequenced as described in 

section 2.21.5. The sequences from RV3 and LV1 were compared with known 16S 

rRNA gene sequences using the NCBI Blast function. Phylogenetic trees were also 

constructed for both strains to predict their genetic relatedness to known strains in 

the database. 

The yeast strains RV2 and RV4, after many unsuccessful attempts to extract their 

genomic DNA using many different methods such as chemical CTAB protocol, 

QIAgen Genomic Kit and Anachem Key Prep kits, were sent to The National 
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Collection of Industrial, Marine and Food Bacteria (NCIMB) for 16S rDNA 

sequencing and their identification was achieved by using the MicroSeq database 

and the EMBL public database. 

4.2 Results and Discussion 

4.2.1 Bacterial Strains 

4.2.1.1 Extraction of Genomic DNA 

High molecular weight genomic DNA was extracted from the bacterial strains as 

described in section 2.12.  RV3 and LV1 cultures were grown overnight on ½ LB 

medium at pH 3 to produce the biomass required for DNA extraction. The DNA 

extraction process normally involves cell breakage by digesting cell wall, 

centrifugation to remove the cell fragments and debris and then nucleic acid 

precipitation and purification. 

Figure 4-1 shows that genomic DNA was successfully extracted from RV3 strain 

(lanes 2 and 3) and LV1 strain (lanes 6 and 7) using Anachem Key Prep Genomic 

DNA kit. In addition, the figure shows the purity of DNA and the efficiency of the 

Anachem Key Prep kit in removing polysaccharides, proteins and any other 

contaminating molecules. Also from this result it can be noted the high molecular 

weight DNA is free from RNA contamination to allow the amplification of 16S 

rRNA gene using PCR technique. 
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Figure  4-1: Agarose gel 1% electrophoresis with ethidium bromide showing 1 kb DNA 

ladder (lanes 1, 4 ,5 and 8) and genomic DNA extraction with a size over 10000 base pairs 

from both strains RV3 (lanes 2 and 3) and LV1 (lanes 6 and 7). Genomic DNA was extracted 

using Anachem Key Prep Genomic DNA kit. 
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4.2.1.2 PCR Amplification of 16S rRNA Gene of Bacterial Isolates 

PCR amplification protocol was carried out in order to amplify the 16S rRNA gene 

from the genomic DNA extracted from RV3 and LV1 strains (see section 2.21.2). 

Two universal bacterial primers were used to amplify the 16S rRNA gene (Chen et 

al., 2001). Universal primers: Forward primer 5`-AGAGTTTGATCCTGGCTCAG-

3` and reverse primer 5`-GGTTACCTTGTTACGACTT-3` designed to target the 

conserved regions of the 16S rRNA gene (Lane, 1991). 

Figure 4-2 shows the amplification product of 16S rRNA gene for RV3 (lanes 2 and 

3) and LV1 (lanes 4 and 5). The results demonstrated the success of the 

amplification process of 16S rRNA gene from genomic DNA for both strains with 

correct fragment band size for 16S rRNA gene of approximately 1500 base pairs. 

The PCR product (16S rRNA gene) was cleaned up using Anachem Key Prep PCR 

Purification Kit protocol (see section 2.21.3). The results shown in Figure 4-3 

indicated that the purification of PCR product was successful and this step removes 

any possibility of the presence of compounds that could affect the purity of the 16S 

rRNA gene such as proteins, extra primers, salts and dNTPs. 
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Figure  4-2: Agarose gel 1% electrophoresis with ethidium bromide showing the resolution 

of an approximate 1500 base pair amplification product (16S rRNA gene) from the PCR  

involving the universal bacterial primers and genomic DNA from strains RV3 (lanes 2 and 

3) and LV1 (lanes 4 and 5). Lanes 1 and 6 show the 10 kb DNA ladder. 
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Figure  4-3: Agarose gel 1% electrophoresis with ethidium bromide showing the resolution 

of an approximate 1500 base pair purification products (16S rRNA gene) from the PCR 

after purification using Anachem Key Prep PCR Purification Kit. RV3 strain (lane 2) and LV1 

strain (lane 3). Lanes 1 and 4 show the 10 kb DNA ladder.  
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4.2.1.3 Cloning of PCR Products and Transformation of E. coli 

Bacterial 16S rRNA gene sequences can be obtained directly from PCR products. 

However, the sequence returned from direct sequencing of PCR products is often 

only 800 - 1000 bp, significantly shorter than the full 1500 bp. Therefore, in this 

study the amplified 16S rRNA gene of both strains RV3 and LV1 was ligated into 

pCR2.1 vector (3.9 kb) (see appendix B) in order to obtain a longer read of the 

sequences (1.5 kb) for better comparison with other sequences in the genomic DNA 

databases.  

Transformation (the process of the E. coli DH5α competent cells taking up the 

plasmid by heat shock) with the vector containing the 16S rRNA gene insert was 

performed using ampicillin as the selectable marker with blue-white screening 

using X-gal as described in section 2.21.4. The successful ligation of the 16S rRNA 

gene into the vector is confirmed by the production of white colonies on the plates 

(Figure 4-4). Blue colonies confirm that there was no insertion, the lacZ gene was 

transcribed and the X-gal substrate was used by the E. coli cells. 

Immediately after overnight growth on plates, single white colonies were picked 

(each colony was added to a small volume of liquid media containing the 

antibiotic) and grown in order to generate a large number of copies of the plasmid.  

Plasmid was isolated using QIAgen Mini-Prep kit following the manufacturer’s 

protocol.  Plasmid DNA was cut using EcoR1 to confirm that the plasmid has the 

correct insert.  pCR2.1 is 3.9 kbp in length and has EcoR1 sites where the 16S 

rRNA sequence (1.5 kbp) should have inserted. Each digest produced two products 

(vector pCR 2.1 and 16S rRNA gene) at 3.9 kb and 1.5 kb band, respectively 

(Figure 4-5). 
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Figure  4-4: Selective LB agar plate containing 50 µl ml-1 ampicillin and 40 µl 5-bromo-4-

chloro-3-indolyl-β-D-galactopyranoside (X-gal) showing the results of blue-white screen 

for the detection of successful ligation. When β-glactosidase hydrolyses X-gal, it releases a 

relatively insoluble blue dye. Many competent E. coli DH5α colonies on this plate are blue, 

indicating the presence of vector without cloned DNA. However, many of the colonies are 

colourless, indicating that amplified 16S rRNA gene has been inserted into the vector and 

the lacZ gene has been disrupted. 
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Figure  4-5: Agarose gel 1% electrophoresis with ethidium bromide showing the 

restriction endonuclease analysis of vector pCR2.1 digested with EcoR1 for both strains 

RV3 (lane 2) and LV1 (lane 3).  Lane 1 shows the 10 kb DNA ladder. The upper band 

indicates the pCR2.1 vector (plasmid), with size 3.9 kb and the lower band indicates the 

16S rRNA gene with size 1.5 kb. 
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4.2.1.4 Sequencing of 16S rDNA Gene of Bacterial Isolates 

RV3 vector which containing the correct sized insert was sent to Eurofins MWG in 

London while LV1 vector was sent to the Medical School (University of Sheffield) 

for sequencing. Figure 4-6 and Figure 4-7 show good length sequences for RV3 and 

LV1 strains respectively (see Appendix C). The sequences were compared to other 

sequences using the NCBI Genbank. 

CTATAATTGCTCTTATGAAGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCC

CATAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAACATTTTGAACCGC

ATGGTTCGAAATTGAAAGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGCATT

AGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGT

GATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGA

ATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTC

GGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAGCTGGCACCTT

GACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA

GGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGT

CTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGAGACTTGAGT

GCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAA

CACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGG

GAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTT

AGAGGGTTTCCGCCCTTTAGTGCTGAAGTTAACGCATTAAGCACTCCGCCTGGGGAGTA

CGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATG

TGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCC

TAGAGATAGGGCTTCTCCTTCGGGAGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGC

TCGTGTCGTGAGATGTT 

 

Figure  4-6: 16S rRNA gene sequence of facultative aerobic strain RV3. Nucleotide sequence 

= 1020 letters. 
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GGGTGGATTAGTGGCGAACGGGTGAGTAACACGTGAGTAACCTGCCCTTAACTCTGG

GATAAGCCTGGGAAACTGGGTCTAATACCGGATAGGAGCGCCTACCGCATGGTGGGT

GTTGGAAAGATTTATCGGTTTTGGATGGACTCGCGGCCTATCAGCTTGTTGGTGAGG

TAATGGCTCACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGTGACCGGCCACACT

GGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAA

TGGGCGCAAGCCTGATGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAA

ACCTCTTTCAGTAGGGAAGAAGCGAAAGTGACGGTACCTGCAGAAGAAGCACCGGCT

AACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTATCCGGAATTATT

GGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCTGTCGTGAAAGTCCGGGGCTTAA

CCCCGGATCTGCGGTGGGTACGGGCAGACTAGAGTGCAGTAGGGGAGACTGGAATTC

CTGGTGTAGCGGTGGAATGCGCAGATATCAGGAGGAACACCGATGGCGAAGGCAGGT

CTCTGGGCTGTAACTGACGCTGAGGAGCGAAAGCATGGGGAGCGAACAGGATTAGAT

ACCCTGGTAGTCCATGCCGTAAACGTTGGGCACTAGGTGTGGGGACCATTCCACGGT

TTCCGCGCCGCAGCTAACGCATTAAGTGCCCCGCCTGGGGAGTACGGCCGCAAGGCT

AAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGCGGATTAATTC

GATGCAACGCGAAGAACCTTACCAAGGCTTGACATGTTCTCGATCGCCGTAGAGATA

CGGTTTCCCCTTTGGGGCGGGTTCACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC

G 

 

Figure  4-7: 16S rRNA gene sequence of obligate aerobic strain LV1. Nucleotide sequence = 

970 letters. 
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4.2.1.5 Phylogenetic Analysis 

The 16S rRNA gene sequences of both bacterial isolates were compared with the highly 

similar sequences available from NCBI GenBank library by using the BLAST program. 

The results show that RV3 was most similar to the species Bacillus cereus and LV1 was 

most similar to Micrococcus luteus with sequence identity 100% for both strains (Table 

4-1 and Table 4-2, respectively). Phylogenetic trees (neighbour joining) were 

constructed on the basis of the 16S rRNA gene sequences which show the relationship of 

the Rivelin and Limb valley isolates with the set of organisms that are the nearest 

matches (Figure 4-8 and Figure 4-10). Sequence comparisons are shown in Figure 4-9 

and Figure 4-11. 

On the basis of this analysis, RV3 is most closely related to Bacillus cereus (Accession 

No: HQ596560.1) and LV1 is most closely related to Micrococcus luteus (Accession No: 

JN545040.1). 
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Table  4-1: Similarity between 16S rRNA gene sequence of the facultative aerobic strain 

RV3 and other related species/strains based on MegaBlast. 

RV3 Top Hits NCBI BLAST® 

Sequence Name % Match 

Bacillus cereus strain NMRL PED1 100 

Bacillus cereus strain BPH33 100 

Bacillus cereus strain PPB131 100 

Bacillus cereus strain 57 100 

Bacillus sp. Strain GZT 100 

Bacillus sp. 5129 100 

Bacillus cereus strain DZ4 100 

Bacillus cereus strain M6 100 

Bacillus cereus strain HT21 100 

Bacillus cereus strain AcdSP4 100 
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Figure  4-8: Neighbour joining phylogenetic tree for RV3 strain associated with other 

members of the Protobacteria based on 16S rRNA gene sequences. The 16S rDNA sequence 

of RV3 strain was determined and compared with those of related strains. 
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> gb|HQ596560.1|  Bacillus cereus strain NMRL PED1 16S ribosomal RNA gene, 
partial sequence Length=1500 Score = 1884 bits (1020), Expect = 0.0 Identities = 
1020/1020 (100%), Gaps = 0/1020 (0%) Strand=Plus/Plus 
 
Query  241   GCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTC  300 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  309   GCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTC  368 
 
Query  301   CGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGTCGT  360 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  369   CGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGTCGT  428 
 
Query  361   AAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAGCTGGCACCTTGACGGTAC  420 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  429   AAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAGCTGGCACCTTGACGGTAC  488 
 
Query  421   CTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAG  480 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  489   CTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAG  548 
 
Query  481   CGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGTCTGATGTGAA  540 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  549   CGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGTCTGATGTGAA  608 
 
Query  541   AGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGA  600 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  609   AGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGA  668 
 
Query  601   AAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGA  660 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  669   AAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGA  728 
 
Query  661   AGGCGACTTTCTGGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGAT  720 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  729   AGGCGACTTTCTGGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGAT  788 
 
Query  721   TAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCC  780 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  789   TAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCC  848 
 
Query  781   CTTTAGTGCTGAAGTTAACGCATTAAGCACTCCGCCTGGGGAGTACGGCCGCAAGGCTGA  840 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  849   CTTTAGTGCTGAAGTTAACGCATTAAGCACTCCGCCTGGGGAGTACGGCCGCAAGGCTGA  908 
 
Query  841   AACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGC  900 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  909   AACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGC  968 
 
Query  901   AACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCTAGAGATAGGGCTTCTC  960 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  969   AACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAACCCTAGAGATAGGGCTTCTC  1028 
 
Query  961   CTTCGGGAGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTG  1020 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1029  CTTCGGGAGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTG  1088 
 

Figure  4-9: Sequence alignment of 16S rRNA gene sequence of a facultative aerobic 

environmental bacteria strain Bacillus cereus (Subject) versus Bacillus cereus strain NMRL 

PED1 (Query), which is the nearest matching species (See Table 4-2). 

 

http://www.ncbi.nlm.nih.gov/nucleotide/313485021?report=genbank&log$=nuclalign&blast_rank=99&RID=CDT04HVE012
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Table  4-2: Similarity between 16S rRNA gene sequence of the obligate aerobic strain LV1 

and other related species/strains based on MegaBlast. 

LV1 Top Hits NCBI BLAST® 

Sequence Name % Match 

Micrococcus luteus strain TS1 100 

Micrococcus sp. Cp21 100 

Micrococcus sp. 98TH11319 100 

Micrococcus sp. 98TH11322 100 

Micrococcus luteus strain CV39 100 

Micrococcus luteus strain CJ-GTSA7 100 

Micrococcus luteus strain C-SNA1 100 

Micrococcus luteus strain VKRKHg9 100 

Micrococcus luteus strain G3-6-08 100 

Micrococcus luteus strain NSN12 100 
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Figure  4-10: Neighbour joining phylogenetic tree for LV1 strain associated with other 

members of the Protobacteria based on 16S rRNA gene sequences. The 16S rDNA sequence 

of LV1strain was determined and compared with those of related strains. 

 

 

 



129 
 

> gb|JN545040.1|  Micrococcus luteus strain TS1 16S ribosomal RNA gene, 
partial sequence Length=1046 Score = 1788 bits (968), Expect = 0.0 Identities = 
968/968 (100%), Gaps = 0/968 (0%) Strand=Plus/Plus 
 
 
Query  241   CGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGA  300 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  309   CGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGA  368 
 
Query  301   TGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGTAGGGAA  360 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  369   TGCAGCGACGCCGCGTGAGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGTAGGGAA  428 
 
Query  361   GAAGCGAAAGTGACGGTACCTGCAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCCGCG  420 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  429   GAAGCGAAAGTGACGGTACCTGCAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCCGCG  488 
 
Query  421   GTAATACGTAGGGTGCGAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGT  480 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  489   GTAATACGTAGGGTGCGAGCGTTATCCGGAATTATTGGGCGTAAAGAGCTCGTAGGCGGT  548 
 
Query  481   TTGTCGCGTCTGTCGTGAAAGTCCGGGGCTTAACCCCGGATCTGCGGTGGGTACGGGCAG  540 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  549   TTGTCGCGTCTGTCGTGAAAGTCCGGGGCTTAACCCCGGATCTGCGGTGGGTACGGGCAG  608 
 
Query  541   ACTAGAGTGCAGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGGAATGCGCAGATATCA  600 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  609   ACTAGAGTGCAGTAGGGGAGACTGGAATTCCTGGTGTAGCGGTGGAATGCGCAGATATCA  668 
 
Query  601   GGAGGAACACCGATGGCGAAGGCAGGTCTCTGGGCTGTAACTGACGCTGAGGAGCGAAAG  660 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  669   GGAGGAACACCGATGGCGAAGGCAGGTCTCTGGGCTGTAACTGACGCTGAGGAGCGAAAG  728 
 
Query  661   CATGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGTTGGGCACTAG  720 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  729   CATGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGTTGGGCACTAG  788 
 
Query  721   GTGTGGGGACCATTCCACGGTTTCCGCGCCGCAGCTAACGCATTAAGTGCCCCGCCTGGG  780 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  789   GTGTGGGGACCATTCCACGGTTTCCGCGCCGCAGCTAACGCATTAAGTGCCCCGCCTGGG  848 
 
Query  781   GAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAG  840 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  849   GAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAG  908 
 
Query  841   CATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCAAGGCTTGACATGTTCTCGATC  900 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  909   CATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCAAGGCTTGACATGTTCTCGATC  968 
 
Query  901   GCCGTAGAGATACGGTTTCCCCTTTGGGGCGGGTTCACAGGTGGTGCATGGTTGTCGTCA  960 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  969   GCCGTAGAGATACGGTTTCCCCTTTGGGGCGGGTTCACAGGTGGTGCATGGTTGTCGTCA  1028 
 
Query  961   GCTCGTGT  968 
             ||||||||   
Sbjct  1029  GCTCGTGT  1036 
 

Figure  4-11: Sequence alignment of 16S rRNA gene sequence of an obligate aerobic 

environmental bacteria strain Micrococcus luteus (Subject) versus Micrococcus luteus 

strain TS1 (Query), which is the closest matching species (See Table 4-2).  

 

http://www.ncbi.nlm.nih.gov/nucleotide/343788343?report=genbank&log$=nuclalign&blast_rank=77&RID=CDVENP7D013
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4.2.2 Yeast Strains 

4.2.2.1 The Identification of Yeast Strains 

Initially, the CTAB method with sonication was used in order to extract genomic 

DNA from both yeast strains, but no DNA has been obtained. So, QIAgen DNA 

extraction kits were used, but after many trials no genomic DNA was extracted 

(Figure 4-12). Another extraction kit (ANACHEM Key Prep) was used, and again 

even with optimised extraction protocol and sonication a very low quality genomic 

DNA was extracted from both strains which did not support the amplification 

process of 18S rRNA using PCR protocol (Figure 4-13). So, both isolates were sent 

as fresh colonies on plates to NCIMB in Aberdeen in order to identify them. 

After two weeks, the sequencing of both strains was received (Figure 4-14 and 

Figure 4-15) and confirmed as eukaryotes The results show that both strains were 

yeast and most similar to the species Aureobasidium pullulans (RV2) and 

Debaryomyces hansenii (RV4) with sequence identities 100% and 99.72% 

respectively (Table 4-3 and Table 40-4). Phylogenetic trees (neighbour joining) 

constructed on the basis of the 18S rRNA gene sequences show the relationship of 

the Rivelin and Limb valleys isolates with the set of organisms that are the nearest 

matches (Figure 4-16 and Figure 4-18). Sequence comparisons are shown in Figure 

4-17 and Figure 4-19. 
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Figure  4-12 : Agarose gel 1% electrophoresis with ethidium bromide showing 10 regularly 

spaced bands of 1 kb DNA ladder (lane 3). The bands for both strains RV3 (lane 2) and LV1 

(lane 1) did not migrate on the gel, which means that no genomic DNA was extracted. 

QIAgen Genomic DNA kit was used. 
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Figure  4-13: Agarose gel 1% electrophoresis with ethidium bromide showing 1 kb DNA 

ladder (lane 1).  Very low quality genomic DNA was extracted for both strains RV3 (lane 2) 

and LV1 (lane 3). Anachem Key Prep Genomic DNA kit was used. 
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GAGTGATCGAAAGATGAAAAGCACTTTGGAAAGAGAG 

TTAAAAAGCACGTGAAATTGTTGAAAGGGAAGCGCTT 

GCAATCAGACTTGTTTAAACTGTTCGGCCGGTCTTCT 

GACCGGTTTACTCAGTTTGGACAGGCCAGCATCAGTT 

TCGGCGGCCGGATAAAGGCTCTGGGAATGTGGCCTCC 

ACTTCGGTGGAGGTGTTATAGCCCAGGGTGTAATACG 

GCCAGCCGGGACTGAGGTCCGCGCTTCGGCTAGGATG 

CTGGCGTAATGGTTGTAAGCGAC 

 

Figure  4-14: 18S rRNA gene sequence of RV2 strain as received from NCIMB in Aberdeen. 

Nucleotide Sequence (283 letters). 
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CAGTGATGGAAAGATGAAAAGAACTTTGAAAAGAGAGTGA 

AAAAGTACGTGAAATTGTTGAAAGGGAAGGGCTTGAGATC 

AGACTTGGTATTTTGCGATCCTTTCCTTCTTGGTTGGGTT 

CCTCGCAGCTTACTGGGCCAGCATCGGTTTGGATGGTAGG 

ATAATGACTAAGGAATGTGGCTCTACTTCGGTGGAGTGTT 

ATAGCCTTGGTTGATACTGCCTGTCTAGACCGAGGACTGC 

GTCTTTGACTAGGATGTTGGCATAATGATCTTAAGCCAY 

 

Figure  4-15: 18S rRNA gene sequence of RV4 strain as received from NCIMB in Aberdeen. 

Nucleotide Sequence (279 letters). 
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Table  4-3: Similarity between 18S rRNA gene sequence of RV2 strain and other related 

species/strains as received from NCIMB in Aberdeen. 

RV2 Top Hits NCBI BLAST® 

Sequence Name % Match 

Aureobasidium Pullulans 100 

Kabatiella lini 99.72 

Septoria pisticiae 91.0 

Sydowia polyspora 90.32 

Arthrographis cuboidae 86.16 

Neotesudina rosatii 84.97 

Dendrostibella mycophila 84.72 

Stromatinia narcissi 84.3 

Meria laricis 84.27 

Oosporidium magaritiferum 83.99 

  
  



136 
 

 

Figure  4-16: Neighbour joining phylogenetic tree for RV2 strain associated with other 

members of the Eukarya as received from NCIMB in Aberdeen.  
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> Aureobasidium pullulans Sequence Length=548 Score =521 
bits (282) Identities = 282/282 (100%) Gaps = 0/282(0%) 
  
 
Query  1    GAGTGATCGAAAGATGAAAAGCACTTTGGAAAGAGAGTTAAAAAGCACGTGAAATTGTTG  60 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  257  GAGTGATCGAAAGATGAAAAGCACTTTGGAAAGAGAGTTAAAAAGCACGTGAAATTGTTG  316 
 
Query  61   AAAGGGAAGCGCTTGCAATCAGACTTGTTTAAACTGTTCGGCCGGTCTTCTGACCGGTTT  120 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  317  AAAGGGAAGCGCTTGCAATCAGACTTGTTTAAACTGTTCGGCCGGTCTTCTGACCGGTTT  376 
 
Query  121  ACTCAGTTTGGACAGGCCAGCATCAGTTTCGGCGGCCGGATAAAGGCTCTGGGAATGTGG  180 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  377  ACTCAGTTTGGACAGGCCAGCATCAGTTTCGGCGGCCGGATAAAGGCTCTGGGAATGTGG  436 
 
Query  181  CCTCCACTTCGGTGGAGGTGTTATAGCCCAGGGTGTAATACGGCCAGCCGGGACTGAGGT  240 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  437  CCTCCACTTCGGTGGAGGTGTTATAGCCCAGGGTGTAATACGGCCAGCCGGGACTGAGGT  496 
 
Query  241  CCGCGCTTCGGCTAGGATGCTGGCGTAATGGTTGTAAGCGAC  282 
            |||||||||||||||||||||||||||||||||||||||||| 
Sbjct  497  CCGCGCTTCGGCTAGGATGCTGGCGTAATGGTTGTAAGCGAC  538 

 

Figure  4-17: Sequence alignment of 18S rRNA gene sequence of yeast strain RV2 (Subject) 

with the closest matching species Aureobasidium pullulans (Query) using NCBI BLAST 

database (See Table 4-3). 

 

 

 

 

 

 



138 
 

 

 

Table  4-4: Similarity between 18S rRNA gene sequence of RV4 strain and other related 

species/strains as received from NCIMB in Aberdeen. 

RV4 Top Hits NCBI BLAST® 

Sequence Name % Match 

Debaryomyces hansenii 99.72 

Wingea robertsii 98.57 

Debaryomyces udenii 98.22 

Candida multigemmis 95.38 

Candida krissi 94.3 

Candida zeylanoides 94.3 

Pitchia etchellsii 93.46 

Schwanniomyces occidentalis 92.96 

Candida railenensis 92.67 

Debaryomyces polymorphus 92.6 
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Figure  4-18: Neighbour joining phylogenetic tree for RV4 strain associated with other 

members of the Eukarya as received from NCIMB in Aberdeen.  
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> Debaryomyces hansenii Sequence Length= 553 Score =514 
bits (278) Identities = 278/278 (100%) Gaps = 0/278 (0%) 
 
 
Query  1    CAGTGATGGAAAGATGAAAAGAACTTTGAAAAGAGAGTGAAAAAGTACGTGAAATTGTTG  60 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  268  CAGTGATGGAAAGATGAAAAGAACTTTGAAAAGAGAGTGAAAAAGTACGTGAAATTGTTG  327 
 
Query  61   AAAGGGAAGGGCTTGAGATCAGACTTGGTATTTTGCGATCCTTTCCTTCTTGGTTGGGTT  120 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  328  AAAGGGAAGGGCTTGAGATCAGACTTGGTATTTTGCGATCCTTTCCTTCTTGGTTGGGTT  387 
 
Query  121  CCTCGCAGCTTACTGGGCCAGCATCGGTTTGGATGGTAGGATAATGACTAAGGAATGTGG  180 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  388  CCTCGCAGCTTACTGGGCCAGCATCGGTTTGGATGGTAGGATAATGACTAAGGAATGTGG  447 
 
Query  181  CTCTACTTCGGTGGAGTGTTATAGCCTTGGTTGATACTGCCTGTCTAGACCGAGGACTGC  240 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  448  CTCTACTTCGGTGGAGTGTTATAGCCTTGGTTGATACTGCCTGTCTAGACCGAGGACTGC  507 
 
Query  241  GTCTTTGACTAGGATGTTGGCATAATGATCTTAAGCCA  278 
            |||||||||||||||||||||||||||||||||||||| 
Sbjct  508  GTCTTTGACTAGGATGTTGGCATAATGATCTTAAGCCA  545 
 

 

Figure  4-19: Sequence alignment of 18S rRNA gene sequence of yeast strain RV4 (Subject) 

versus Debaryomyces hansenii (Query) which is the nearest matching species (See Table 4-

4). 
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4.3 Conclusions 

Four microbial species have been isolated from Rivelin and Limb valleys, two bacterial 

strains (RV3 and LV1) and two yeast strains (RV2 and RV4). The bacterial species have 

been identified in the lab according to molecular identification techniques, starting with 

the extraction of genomic DNA, followed by PCR amplification and purification of 16S 

rRNA gene, and the transformation of competent E.coli cells. The sequences have been 

subjected to computer analysis and compared with other sequences using the NCBI 

GenBank which confirmed the identification of these bacteria as Bacillus cereus (RV3) 

and Micrococcus luteus (LV1) with sequence identities of 100%. 

On the other hand, both yeast strains RV2 and RV4 were identified by The National 

Collection of Industrial, Marine and Food Bacteria (NCIMB) using the MicroSeq 

database and the EMBL public database. The identifications as received were 

Aureobasidium pullulans (RV2) and Debaryomyces hansenii (RV4) with sequence 

identities 100% and 99.72%, respectively. 

Bacillus cereus is a Gram-positive, rod-shaped, facultative aerobe, which produces 

protective endospores and is beta hemolytic. It can be isolated from different 

environments, but usually from soil environments (Luksiene et al., 2009). B. cereus 

commonly grows on plants and is adapted for growth in the intestinal tract of insects and 

mammals (Arnesen et al., 2008). From these environments it is easily spread to foods, 

therefore, it can be isolated from a wide range of foods and also food ingredients, 

including rice, spices, dried foods, dairy products (milk powder, milk substitute, and 

dairy desserts), fresh vegetables and meat products (Reyes et al., 2007, Arnesen et al., 
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2008). The bacterium is responsible for gastrointestinal disease and non-gastrointestinal 

disease (wound and eye infections plus systemic infections) (Ehling-Schulz et al., 2004). 

It is a major cause of two different forms of food poisoning (B. cereus foodborne 

disease), the emetic and the diarrhoeal syndromes (Finlay et al., 2002a, Finlay et al., 

2002b, Ehling-Schulz et al., 2004, Clavel et al., 2007). The emetic type of food 

poisoning is probably the most dangerous as it has been associated with life-threatening 

acute conditions such as fulminant liver failure. It is caused by ingestion of a preformed 

toxin in the food, while the diarrhoeal poisoning is caused by a variety of toxins that can 

be formed in the food but also in the small intestine (Reyes et al., 2007). The emetic 

toxin that causes vomiting is an extremely stable (heat and acid), small ring-form 

dodecadepsipeptide (peptide) which is resistant to proteolytic degradation, pH extremes 

and high temperature (Finlay et al., 2002a, Finlay et al., 2002b, Ehling-Schulz et al., 

2004, Arnesen et al., 2008). Whereas the diarrhoeal disease is caused by one or more 

heat-labile protein enterotoxins produced during vegetative growth of B. cereus in the 

small intestine (Ehling-Schulz et al., 2004, Arnesen et al., 2008). 

Micrococcus luteus is a Gram-positive bacterium, spherical or cocci shape, the cells 

arranged in tetrads producing yellow pigmented creamy colonies, obligate aerobe, which 

produce acid from glucose (Madigan et al., 2009, Bergey and Boone, 2009). It can be 

found in a wide range of environments such as water, soil, air and dust (Baird-Parker, 

1965, Rosypal et al., 1966, Madigan et al., 2009). It can also be isolated from the skin of 

mammals (Kloos et al., 1974). M. luteus is commonly resistance to reduced water 

potential, can tolerate high salt concentrations and drying (Madigan et al., 2009). In 

1994, Moriguchi et al. have reported two salt-tolerant glutaminases which play major 
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roles in supporting growth of M. luteus cells at high salt concentrations (Moriguchi et 

al., 1994). Despite M. luteus being a non-spore forming bacterium, Greenblatt and others 

recorded the ability of M. luteus to survive in oligotrophic environments. They 

investigated the presence of M. luteus in a 120 million year-old block of amber 

(Greenblatt et al., 2004). 

Aureobasidium pullulans is a yeast like fungus which can be found ubiquitously, it 

survives mainly in soil, water, air, limestone, rocks and commonly occurs on fruits 

(Domsch et al., 1980, Deshpande et al., 1992, Urzi et al., 1999). Its colonies are white to 

pink at first but after a while they turned to black due to chlamydospore production and 

for this reason it is called the black yeast (Cooke, 1959, Domsch et al., 1980, Hoog, 

1993, Kurtzman and Fell, 1998). A. pullulans causes plant tissue softening so it 

demonstrated due to its osmotolerant properties (Hoog, 1993). It can be considered as a 

secondary saprophyte after the colonisation of bacterial mats or other fungi due to the 

low of its competitiveness in poor environments (Hoog, 1993).  A. pullulans can divided 

to three varities, A. pullulans var melanogenum, A. pullulans var pullulans and A. 

pullulans var aubasedani Yurlova (Yurlova and De Hoog, 1997). A recent study carried 

out by Chi et al. demonstrated that A. pullulans can produce  enzymes such as pullulan, 

amylase, mannanase, cellulose, proteinase, and siderophores which can used in many 

different biotechnological applications in different fields (Chi et al., 2009).  

 A. pullulans has the ability to ferment glucose, assimilate nitrate, but α-methyl 

glucoside and cadaverine are not assimilated. Also A. pullulans cannot grow in the 

presence of cycloheximide (Kurtzman and Fell, 2000, Barnett et al., 2000, Senses-Ergul 

et al., 2006). In the previous chapter (section 3.2.6), exactly these characteristics were 
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found for RV2 strongly supporting the molecular identification made in the current 

chapter i.e. that RV2 is Aureobasidium pullulans. 

Debaryomyces hansenii is classified as an ascomycetous yeast and associated with food 

spoilage especially salted and low-water-activity foods. It can also be found in salty 

water (Tokuoka, 1993, Kurtzman and Fell, 1998, Kurtzman and Robnett, 1998). It 

usually uses traditional sausages and cheeses as a habitat and can contribute to the 

production of special flavours (Seiler and Busse, 1990, Saldanha-da-Gama et al., 1997). 

Therefore,  the unusual ability of D. hansenii to sustain and thrive in high salinity has led 

researchers to investigate its ability to accumulate lipids, which could be very important 

for biotechnology applications such as oil production and degradation (Ratledge and 

Tan, 1990). Furthermore, it has been recorded that D. hansenii can produce thermophilic 

ß-glucosidases in wine production which are important in the production of alcohol-

based fuels (Saha and Bothast, 1996). In 2006, Breuer and Harms used  D. hansenii in 

the manufacture of many different foods such as dairy products and meat fermentation 

(Breuer and Harms, 2006). Recent taxonomy divided D. hansenii into two varieties, D. 

hansenii var. hansenii and D. hansenii var. fabryi, with different maximum growth 

temperatures (Breuer and Harms, 2006). D. hansenii can ferment glucose, and has the 

ability to assimilate α-methyl glucoside and cadaverine, whereas it cannot assimilate 

nitrate (Kurtzman and Fell, 2000, Barnett et al., 2000, Senses-Ergul et al., 2006). In 

previous chapter (section 3.2.6), these exact characteristics were found for RV4, strongly 

supporting the molecular identification in this chapter (i.e. that RV4 is Debaryomyces 

hansenii). 
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In the next chapter, the physiological adaptation of Debaryomyces hansenii (RV4) and 

Micrococcus luteus (LV1) to different pH values and different high salinity 

concentrations in M9 minimal and LB medium will be investigated.  
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5 Physiological Growth of Debaryomyces hansenii 

(RV4) and Micrococcus luteus (LV1) Under Acidity 

and Salinity 

5.1 Introduction 

Extremophilic microorganisms have the ability to grow and survive under extreme 

environmental conditions that would be uncomfortable for the normal functioning of 

humans (Gomes and Steiner, 2004). Several of these extremophiles are able to 

withstand multiple extremes such as extreme acidity, high salinity and high 

temperature (Irwin and Baird, 2004). 

Recently, extremophiles have been isolated from environments where they are not 

expected to be actively growing. Therefore, it is possible that acid tolerant or 

halotolerant prokaryotes or eukaryotes can be isolated from a wide range of 

environments including freshwater (Echigo et al., 2005). However, most organisms 

have a relatively limited set of pH values and range of salt concentrations that 

enable growth and also, the minimum, optimum and maximum pH values or salt 

concentrations are often found to be dependent on the medium composition and 

growth temperature (Ventosa et al., 1998, Oren, 2008). In 1990, Gilmour stated that 

microorganisms requiring salt for growth can be divided into three groups: the first 

group is slight halophiles including many marine organisms, seawater contains 

about 0.5 M NaCl; second group is moderate halophiles that have optimal growth 

between 0.2 and 2 M NaCl; third group is extreme halophiles with optimal growth 
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above 3 M NaCl. Furthermore, extremely halotolerant bacteria are able to grow and 

survive over a wide range of NaCl (0.1 to 4.5 M) (Gilmour, 1990). 

However, microorganisms have different mechanisms to cope with acidity or 

salinity stresses depending on the stress encountered. For example, at high acidity 

stress (low pH) there are passive and active pH regulation mechanisms. In passive 

regulation the microorganisms produce biofilms to slow down the diffusion of 

molecules into the cell, or change their cell membrane to incorporate substances 

such as fatty acids that shield the cell against acidity, or they may secrete buffer 

molecules which help to raise the external pH (Raven and Smith, 1973, Ahmed and 

Booth, 1983, Booth, 1985). In addition, some microbes have the ability to pump 

hydrogen ions out of their cells (active mechanisms) (Mitchell, 1973, Baronofsky et 

al., 1984, Gonzalez-Toril et al., 2003). On the other hand, at high salinity 

concentrations there are two mechanisms that help microorganisms to maintain the 

osmotic equilibrium. Some microorganisms such as anaerobic bacteria (Rengpipat et 

al., 1988) and halophilic archaea (Lanyi, 1974) are able to accumulate inorganic 

ions like Na+ or K+ , while some methanogenic archaea (Robertson et al., 1990), 

most halophilic bacteria (Severin et al., 1992) and halotolerant eukaryotes (Gunde-

Cimerman et al., 2009, Ben-Amotz and Avron, 1983) are able to accumulate or 

synthesize organic osmolytes (compatible solutes) (Brown, 1976).  

Thereby, the importance of these extremophiles or extreme-tolerant microorganisms 

which adapt to grow and survive at both high acidity and high salinity is due to their 

special unique characteristics that enable them to produce extremozymes like 

amylase, cellulose, protease, catalase and lipase (Demirjian et al., 2001, van den 
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Burg, 2003) and compatible solutes including glycine betaine, proline, glycerol, 

ectoine, alanine and sorbitol (Da Costa et al., 1998, Bremer and KrÃmer, 2000, 

Demirjian et al., 2001, Gomes and Steiner, 2004). 

In fact, compatible solutes allow organisms to adapt to a wide range of salinity 

concentrations by adjusting the cytoplasm to the osmolarity of their environments, 

and they also protect proteins, membranes, and even whole cells against 

denaturation, inactivation, and inhibition by hyperosmotic stress (Yancey, 2005, 

Schubert et al., 2007, Oren, 2008, Konrad and Bar-Zvi, 2008, Rajan et al., 2010, Ma 

et al., 2010, Fallet et al., 2010). Moreover, the other reasons for the importance of 

compatible solutes and extremozymes are due to the applications which can be 

found in industrial biotechnology, medical biotechnology and other fields (Ratledge 

and Tan, 1990, Hough and Danson, 1999, Demirjian et al., 2001, Irwin and Baird, 

2004).  

Nuclear magnetic resonance (NMR) spectroscopy is a suitable method for 

determination of intracellular potential compatible solutes in cells after exposure to 

high salinities (Landfald and Strom, 1986, Mendum and Smith, 2002). NMR has 

been used to determine the compatible solutes in various Bacillus species (Bursy et 

al., 2007); Halobacillus dabanensis (Gu et al., 2008); Salinivibrio costicola (Zhiu et 

al., 2008), and Halomonas (Cummings et al., 1993), also NMR was used to detect 

intact yeast cells and their compatible solutes (Salhany et al., 1975, Jovall et al., 

1990, Block et al., 2004). 
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Strain RV4 was identified in Chapter 4 as a strain of Debaryomyces hansenii and in 

Chapter 3 D. hansenii (RV4) was shown to thrive in extreme low pH and flourish in 

high salinity (Norkrans, 1966, Kreger-van Rij and W., 1984, Tokuoka, 1993, 

Almagro et al., 2000). Strain LV1 was identified as a strain of  Micrococcus luteus 

in Chapter 4 and M. luteus (LV1) was shown to survive in pH 5 and thrive in high 

salinity (Moriguchi et al., 1994, Madigan et al., 2009). 

In the current chapter further studies are described that investigate the ability of the 

two strains to grow under many extreme stresses simultaneously such as low 

nutrients, low pH and high salinity. Furthermore, compatible solutes in both strains 

were determined using NMR spectroscopy and the effect of sulphur, aluminium and 

iron on the growth rate in M9 minimal medium was measured. In addition, the 

electron microscope was used to analyze D. hansenii and M. luteus cells grown 

under different conditions such as low nutrients, neutral pH and low pH in order to 

investigate any changes to the cell structure in response to different stresses. 

5.2 Results and Discussion 

5.2.1 Electron Microscope Analysis of Debaryomyces hansenii (RV4) and 

Micrococcus luteus (LV1) Cells Grown at pH 3 and pH 7 

Scanning and transmission electron microscopes were used to observe any changes 

in the external structures of the cells of both D. hansenii and M. luteus under 

moderate and low pH values in low nutrient medium (M9 minimal medium). The 

analysis was carried out in the Biomedical Science Department (The University of 

Sheffield) as described in section 2.19. 
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Figure 5-1 shows scanning electron microscope images of D. hansenii grown at pH 

3 (A and B) and at pH 7 (B and C), the main change observed was that the cells 

grown at pH 7 were larger than the cells grown at pH 3. Moreover, a transmission 

electron microscope was used to examine ultra-thin sections of D. hansenii cells 

grown under both conditions (Figure 5-2), the high resolution micrographs show 

that no significant changes were observed between cells at pH 3 (Figure 5-2; A1, 

A2) or pH 7 (Figure 5-3; B1, B2). 

The same procedure was performed to investigate any changes that may accrue to 

M. luteus cells grown under acid stress in M9 minimal medium. However, despite 

previous results showing poor growth of M. luteus at low pH (Chapter three), there 

were no visible changes in the external structure of M. luteus cells observed when 

using the scanning electron microscope (Figure 5-3; pH 3; A, B. pH 7; C, D). 

However, high resolution TEM images of ultra-thin sections of overnight M. luteus 

cells grown in M9 medium at pH 3 (Figure 5-4; A1, A2) and pH 7 (Figure 5-4; B1, 

B2) show that the cell walls of cells grown at pH 3 were thicker than cell walls of 

cells grown at pH 7. Also it was noted that some large vacuoles were found in M. 

luteus cells when they were grown at pH 3 while no vacuoles were observed in cells 

when they were grown at pH 7. In addition, M. luteus cells appeared to form clumps 

more readily when grown at low pH which may help them to cope with the acidity 

and sustain life (Figure 5-4). The good quality SEM and TEM images of both 

microorganisms confirmed the phenotypic and phylogenic identifications arrived at 

in Chapters 3 and 4. 
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Figure  5-1: Electron micrographs of D. hansenii cells grown overnight in M9 minimal 

medium in a 25ºC constant temperature room on an orbital shaker at 250 rpm at pH 3 (A and B) 

and pH 7 (C and D). Note the difference in cell size when grown at pH 7 (larger) (C and D) or 

when grown at pH 3 (smaller) (A and B). The cells viewed by SEM (1000x A, C), (4000x B, 

D). 
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Figure  5-2: Electron micrographs of ultra-thin sections of D. hansenii cells grown overnight 

in M9 minimal medium in a 25ºC constant temperature room on an orbital shaker at 250 rpm at 

pH 3 (A1, 2) and pH 7 (B1, 2). Cell division by budding can be seen in B1. The cells were 

viewed by TEM (20000x A1 and A2) (200000x B1 and B2). 
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Figure  5-3: Electron micrographs of M. luteus cells grown overnight in M9 minimal medium 

in a 25°C constant temperature room on an orbital shaker at 250 rpm at pH 3 (A and B) and 

pH 7 (C and D). Note how M. luteus cells are arranged together in tetrads or clumps of 

tetrads. The cells were viewed by SEM (1000x A, C), (4000x B, D). 
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Figure  5-4: Electron micrographs of ultra-thin sections of M. luteus cells grown overnight in 

M9 minimal medium in a 25ºC constant temperature room on an orbital shaker at 250 rpm at pH 

3 (A1, 2) and pH 7 (B1, 2). Note that the cell wall of the cells grown at pH 3 (A1and 2) is 

thicker than the cell wall of cells grown at pH 7 (B1 and 2). Also M. luteus cells clumped 

together more at pH 3(A1), and a large vacuole can seen in A2 in a cell grown at pH 3. The 

cells were viewed by TEM (20000x A1 and A2) (200000x B1 and B2). 
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5.2.2 Effect of External pH Medium on Growth Rate of D. hansenii and M. luteus 

In section 3.2.7, the effect of external pH on the growth rates of D. hansenii (RV4) 

and M. luteus (LV1) was measured in ½ LB and M9 medium. To further investigate 

the effect of pH on growth of the two organisms, the same protocol was carried out 

with other two other media, YPD the standard medium for D. hansenii and LB the 

standard medium for M. luteus. Growth rates were produced for both strains at pH 3, 

5 and 7. Growth was quantified by direct optical density (OD) readings at 600 nm 

measured with Unicam Helisα spectrophotometer. 

Figure 5-5 shows very good growth of D. hansenii cells at pH 5 and pH 7 while 

lower growth was seen at pH 3, which differs from the results accrued when cells 

were grown in M9 and ½ LB medium (section 3.2.7), where growth was similar in 

all pH values in M9 and ½ medium. Growth at pH 3 in YPD medium is comparable 

to the growth at pH 3 in M9 and ½ LB medium (Table 5-1 and Figure 5-6). So, the 

biggest difference is the fast growth rates found at pH 5 and pH 7 in YPD medium 

in comparison to growth at the same pH in M9 and ½ LB medium.  

M. luteus cells also grew best at neutral pH in LB medium (Figure 5-7), but 

significantly higher growth rates were found in LB medium at all pH values. The 

doubling times show clearly that M. luteus prefers enriched media rather than low 

nutrient media (Table 5-2 and Figure 5-8). 
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Figure  5-5: Growth curves for D. hansenii. Cells were incubated in YPD medium at pH 3, 5 

and 7 and incubated in a 25ºC constant temperature room on an orbital shaker at 250 rpm 

overnight. The OD was measured at 600 nm. Data points are the means of four replicates 

plus or minus standard deviation. 
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Table  5-1: Effect of external pH on the doubling times of D. hansenii in M9, ½ LB and YPD 

medium. Each point represents the mean from four replicate samples. 

        

Doubling Time of D. hansenii in Different Media 

(Minutes) 

  M9 1/2 LB YPD 

pH 7 189 156 120 

pH 5 180 125 115 

pH 3 182 162 195 

     

 

Figure  5-6: Effect of external pH on the doubling times of D. hansenii in M9, ½ LB and YPD 

medium. Each point represents the mean from four replicate samples. 
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Figure  5-7: Growth curves for M. luteus. Cells were incubated in LB medium at pH 3, 5 and 7 

in a 25ºC constant temperature room on an orbital shaker at 250 rpm overnight. The OD 

was measured at 600 nm. Data points are the means of four replicates plus or minus 

standard deviation. 
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Table  5-2: Effect of external pH on the doubling times of M. luteus in M9, ½ LB and LB 

medium. Each point represents the mean from four replicate samples. 

        

Doubling Time of M. luteus in Different Media 

(Minutes) 

  M9 1/2 LB LB 

pH 7 225 138 53 

pH 5 293 246 114 

pH 3 408 276 159 

     

 

Figure  5-8: Effect of external pH on the doubling times of M. luteus in M9, ½ LB and LB 

medium. Each point represents the mean from four replicate samples. 
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5.2.3 Effect of High Salinity and External pH on the Growth Rate of D. hansenii 

and M. luteus 

In order to investigate the effect of different high salinity concentrations and 

different external pH values on the growth rates of D. hansenii and M. luteus, growth 

curves were produced in M9 minimal medium for both strains, in YPD for D. 

hansenii and in LB medium for M. luteus. Growth of both microorganisms was 

quantified by direct optical density (OD) readings at 600 nm measured with the 

Unicam Helisα spectrophotometer.  

M9 minimal medium, YPD and LB medium containing different NaCl concentrations 

(from 0.1 M to 3.5 M) were used in order to produce growth curves of D. hansenii and 

M. luteus at pH 7, 5 and 3 depending on the tolerance of the microbes to high salinity. M9 

medium was used to indicate the effect of low nutrients on the growth rate of both strains 

simultaneously with the other two stresses (high salinity and low pH) (i.e. to demonstrate 

whether the two strains were capable of growing under stress conditions without the use 

of enriched medium components). 

5.2.3.1 Debaryomyces hansenii 

In general, D. hansenii cells show a good ability to adapt and grow in the three stresses 

(low nutrients, low pH and high salinity) at 0.1 M and 0.4 M NaCl in particular at pH 5 

and pH 7 (Figure 5-9 and Figure 5-10). Figure 5-11 and Figure 5-12 show that D. 

hansenii cells do not grow well at pH 3 in 1 M and 1.5 M NaCl while the cells still 

adapted and thriving at both salinities at pH 5 and pH 7. The tolerance range of D. 
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hansenii cells reached its limit when the yeast cells were grown in 2 M and 2.5 M NaCl at 

all pH values in M9 minimal medium (Figure 5-13 and Figure 5-14). 

Table 5-3 and Figure 5-15 show the doubling times of D. hansenii in M9 medium which 

confirm that the best growth of D. hansenii at all pH values was in 0.1 M NaCl and 

afterward the growth rate decreased with the rise of NaCl concentrations. 

On the other hand, D. hansenii cells showed higher growth and adapt to grow and thrive 

in higher salinity concentrations and low pH when grown in YPD medium. Figure 5-16 

shows that D. hansenii cells produced good growth at pH 5 and pH 7 while growth was 

lower at pH 3. However, when salinity was increased to 0.4 and 1 M NaCl the growth of 

D. hansenii cells improved and increased at all pH values (Figure 5-17 and Figure 5-18). 

The cells also show good ability to grow in 1.5 and 2 M NaCl at all pH levels (Figure 5-

19 and Figure 5-20). Increasing the salinity to 2.5 M NaCl caused a drop in the growth of 

the cells grown at pH 3 while the cells grown at pH 5 and 7 still continue adapting and 

growing at this high level of salinity (Figure 5-21). Figure 5-22 shows that D. hansenii 

cells started to struggle to grow  at all pH values when the NaCl concentration was 

increased to 3 M, while little or no growth was observed in 3.5 M NaCl at all pH values 

(Figure 5-23). The doubling times show that the best salinity for growth of D. hansenii in 

YPD medium is 1 M NaCl at all pH values (Table 5-4 and Figure 5-24). 
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Figure  5-9: Growth curves for D. hansenii. Cells were grown in M9 medium at pH 3, 5 and 7 

in 0.1 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-10: Growth curves for D. hansenii. Cells were grown in M9 medium at pH 3, 5 and 

7 in 0.4 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-11: Growth curves for D. hansenii. Cells were grown in M9 medium at pH 3, 5 and 

7 in 1 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-12: Growth curves for D. hansenii. Cells were grown in M9 medium at pH3, 5 and 7 

in 1.5 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-13: Growth curves for D. hansenii. Cells were grown in M9 medium at pH 3, 5 and 

7 in 2 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-14: Growth curves for D. hansenii. Cells were grown in M9 medium at pH 3, 5 and 

7 in 2.5 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Table  5-3: Effect of different NaCl concentrations on the doubling times of D. hansenii in M9 

medium at pH 7, 5 and 3. Each point represents the mean from four replicate samples. 

Doubling Time of D. hansenii under Different Salinity in M9 Medium 
(Minutes) 
  0.1 0.4 1 1.5 2 
pH 7 189 216 276 288 678 
pH 5 180 240 282 296 660 
pH 3 182 267 438 693 * 

   *: No growth was observed 

 

 

 

Figure  5-15: Effect of different NaCl concentrations on the doubling times of D. hansenii in 

M9 medium at pH 7, 5 and 3. Each point represents the mean from four replicate samples. 
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Figure  5-16: Growth curves for D. hansenii. Cells were grown in YPD medium at pH 3, 5 and 

7 in 0.1 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 

YPD 0.4M NaCl

Time (Hours)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lo
g O

.D
 6

00
nm

0.1

1

pH7 
pH5
pH3

 
Figure  5-17: Growth curves for D. hansenii. Cells were grown in YPD medium at pH 3, 5 and 

7 in 0.4 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-18: Growth curves for D. hansenii. Cells were grown in YPD medium at pH 3, 5 and 

7 in 1 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-19: Growth curves for D. hansenii. Cells were grown in YPD medium at pH 3, 5 and 

7 in 1.5 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-20: Growth curves for D. hansenii. Cells were grown in YPD medium at pH 3, 5 and 

7 in 2 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-21: Growth curves for D. hansenii. Cells were grown in YPD medium at pH 3, 5 and 

7 in 2.5 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-22: Growth curves for D. hansenii. Cells were grown in YPD medium at pH 3, 5 and 

7 in 3 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-23: Growth curves for D. hansenii. Cells were grown in YPD medium at pH 3, 5 and 

7 in 3.5 M NaCl and incubated in a 25 ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Table  5-4: Effect of different NaCl concentrations on the doubling times of D. hansenii in 

YPD medium at pH 7, 5 and 3. Each point represents the mean from four replicate samples. 

Doubling Time of D. hansenii under Different Salinity in YPD medium 
(Minutes) 
  0.1 0.4 1 1.5 2 2.5 3 
pH 7 120 101 89 135 295 336 588 
pH 5 115 100 85 128 288 328 588 
pH 3 195 145 111 171 321 473 655 

 

 

 

Figure  5-24: Effect of different NaCl concentrations on the doubling times of D. hansenii in 

YPD medium at pH 7, 5 and 3. Each point represents the mean from four replicate samples. 
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5.2.3.2 Micrococcus luteus 

Generally, the growth curves for M. luteus in M9 medium in different pH values and at 

various NaCl concentrations showed the limited ability of M. luteus to adapt and thrive in 

low nutrient medium at low pH values. However, the bacterial cells were able to adapt 

and grow at pH 3, 5 and 7 in 0.1 M NaCl (Figure 5-25). Figure 5-26 shows that 

increasing the NaCl concentration to 0.4 M partially inhibited growth at all pH values. M. 

luteus cells were unable to adapt when grown in the presence of 1 M NaCl at all pH 

values in M9 medium (Figure 5-27). The doubling times show that the best growth of M. 

luteus cells in M9 minimal medium was in 0.1 M NaCl at pH7 (Table 5-5 and Figure 5-

28). 

Unlike in M9 medium, M. luteus cells showed good adaptation and higher growth in LB 

medium at different pH values and different NaCl concentrations. The best growth for M. 

luteus cells occurred at pH 3 in 0.1 M NaCl (Figure 5-29), while the highest growth at pH 

7 and pH 5 occurred when cells were grown in 0.4 M NaCl (Figure 5-30). Figure 5-31 

shows that M. luteus was still able to adapt and thrive in 1 M NaCl at pH 7, 5 and 3. 

However, when M. luteus cells were grown in 1.5 M NaCl, the growth at pH 3 decreased 

while the cells continue to adapt and grow at pH 7 and pH 5 (Figure 5-32). The same 

happened in 2 and 2.5 M NaCl (Figure 5-33 and Figure 5-34). At 3 M NaCl, M. luteus 

was unable to grow at all three pH values (Figure 5-35). 

Table 5-6 and Figure 5-36 show the calculation of doubling times for M. luteus cells 

grown in LB medium at pH 7, 5 and 3. 
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Figure  5-25: Growth curves for M. luteus. Cells were grown in M9 medium at pH 3, 5 and 7 

in 0.1 M NaCl and incubated in a 25ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD for each strain was measured at 600 nm. Data points are the 

means of four replicates plus or minus standard deviation. 
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Figure  5-26: Growth curves for M. luteus. Cells were grown in M9medium at pH 3, 5 and 7 

in 0.4 M NaCl and incubated in a 25ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD for each strain was measured at 600 nm. Data points are the 

mean of four replicates plus or minus standard deviation. 
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Figure  5-27: Growth curves for M. luteus. Cells were grown in M9 medium at pH 3, 5 and 7 

in 1 M NaCl incubated in a 25ºC constant temperature room on an orbital shaker at 250 rpm 

overnight. The OD for each strain was measured at 600 nm. Data points are the means of 

four replicates plus or minus standard deviation. 
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Table  5-5: Effect of different NaCl concentrations on the doubling times of M. luteus in M9 

medium at pH 3, 5 and 7. Each point represents the mean from four replicate samples. 

 
Doubling Times of M. luteus under Different Salinities in M9 Medium 

(Minutes) 

  0.1 0.4 1 

pH 7 225 239 720 

pH 5 293 372 765 

pH 3 408 870 * 

      *: No growth was observed 

 

 

Figure  5-28: Effect of different NaCl concentrations on the doubling times of M. luteus in M9 

medium at pH 3, 5 and 7. Each point represents the mean from four replicate samples. 
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Figure  5-29: Growth curves for M. luteus. Cells were grown in LB medium at pH 3, 5 and 7 

in 0.1 M NaCl and incubated in a 25ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-30: Growth curves for M. luteus. Cells were grown in LB medium at pH 3, 5 and 7 

in 0.4 M NaCl and incubated in a 25ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-31: Growth curves for M. luteus. Cells were grown in LB medium at pH 3, 5 and 7 

in 1 M NaCl and incubated in a 25ºC constant temperature room on an orbital shaker at 250 

rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-32: Growth curves for M. luteus. Cells were grown in LB medium at pH 3, 5 and 7 

in 1.5 M NaCl and incubated in a 25ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-33: Growth curves for M. luteus. Cells were grown in LB medium at pH 3, 5 and 7 

in 2 M NaCl and incubated in a 25ºC constant temperature room on an orbital shaker at 250 

rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-34: Growth curves for M. luteus. Cells were grown in LB medium at pH 3, 5 and 7 

in 2.5 M NaCl and incubated in a 25ºC constant temperature room on an orbital shaker at 

250 rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Figure  5-35: Growth curves for M. luteus. Cells were grown in LB medium at pH 3, 5 and 7 

in 3 M NaCl and incubated in a 25°C constant temperature room on an orbital shaker at 250 

rpm overnight. The OD was measured at 600 nm. Data points are the means of four 

replicates plus or minus standard deviation. 
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Table  5-6 : Effect of different NaCl concentrations on the doubling times of M. luteus in LB 

medium at pH 7, 5 and 3. Each point represents the mean from four replicate samples. 

        *: No growth was observed 

 

 

Figure  5-36: Effect of different NaCl concentrations on the doubling times of M. luteus in LB 

medium at pH 7, 5 and 3. Each point represents the mean from four replicate samples. 
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5.2.4 Effect of High Salinity and External pH Medium on the Final Biomass of 

D. hansenii and M. luteus Cells 

To further investigate the growth of D. hansenii and M. Luteus under stress conditions, 

the incubation period was increased to include overnight incubation (minimum of 24 

hours) to observe the final biomass level attained. The overnight cultures of both strains 

show similar results to growth curves discussed in the previous section, but with more 

clarity and the results are easier to summarize in graphs. In general, both strains required 

at least 0.1 M NaCl to grow and thrive in M9, YPD and LB medium, their cells showed 

little or no growth when grown on those media with no NaCl added (Figures 5-37, 5-38, 

5-39 and 5-40).  

Figure 5-37 shows that the highest biomass attained for D. hansenii grown in M9 medium 

was in 0.4 M NaCl medium at all pH values, but when the cells were grown in YPD 

medium, the greatest biomass was observed in 1 M NaCl at all three pH values (Figure 5-

38). M. luteus cells did not grow well above 0.4 M NaCl when grown in M9 medium at 

all three pH values; biomass produced was steadily inhibited by an increase in NaCl 

concentrations and biomass also dropped with decreasing pH 7 at 1 M NaCl (Figure 5-

39). On the other hand, M. luteus biomass production was stimulated when the NaCl 

concentration was increased to 0.4 M at all three pH values in LB medium. Furthermore 

in LB medium M. luteus cells were able to adapt and grow at pH 3 until the salinity 

reached 2 M and at pH 7 and pH 5 the maximum salinity tolerated was 2.5 M NaCl 

(Figure 5-40). 
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Figure  5-37: Effect of different NaCl concentrations on the biomass attained by overnight 

cultures of D. hansenii in M9 medium at pH 7, 5 and 3. 
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Figure  5-38: Effect of different NaCl concentrations on the biomass attained by overnight 

cultures of D. hansenii in YPD medium at pH 7, 5 and 3. 
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Figure  5-39: Effect of different NaCl concentrations on the biomass attained by overnight 

cultures of M. luteus in M9 medium at pH 7, 5 and 3. 
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Figure  5-40: Effect of different NaCl concentrations on the biomass attained by overnight 

cultures of M. luteus in LB medium at pH 7, 5 and 3. 
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5.2.5 Measurement of External pH After Overnight Growth of D. hansenii and 

M. luteus 

The external pH of the overnight cultures of D. hansenii and M. luteus was measured in 

order to determine how much it changed during growth of the strains under pH and 

salinity stress in rich and minimal media. 

D. hansenii showed different behaviour according to the medium used. When the cells 

were grown in M9 minimal medium the external pH did not change in pH 7 and pH 3 

cultures at all NaCl concentrations. However, when they were grown at pH 5 the pH 

decreased to 4 or less with a rise in NaCl concentration up to 1 M NaCl.  Above this 

salinity, the external pH returned again to pH 5 (Figure 5-41). In rich YPD medium when 

D. hansenii was grown at neutral pH the external pH was stable at 7 in 0.4 M NaCl then 

decreased with increases of NaCl concentration up to 1.5 M, before the opposite trend of 

increasing pH again at higher salinities (Figure 5-42).  For D. hansenii cells grown in M9 

medium, the results showed that cells grown at pH 5 raised the pH from 5 to 6 in 0.4 M 

NaCl and then reduced the pH to 5 again and keep reducing it until the external pH 

reached a pH 4 in 2 M NaCl and then increased again towards 5 at the highest salinities 

(Figure 5-42). Finally, the external pH in YPD medium at all salinity concentrations set 

to pH 3 did not change (Figure 5-42), this agrees with the results in M9 medium (Figure 

5-41). 

Contrary to D. hansenii, the external pH in M. luteus cultures did not decrease under all 

conditions studied in both media, as M. luteus cells always tended to increase the external 

pH value. Figure  5-43 shows that M. luteus cells made slight changes to the external pH 
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in M9 medium at pH 7 and pH 3, but when grown at pH 5, they tended to increase the 

external pH from 5 to 6 in normal and high NaCl concentrations. On the other hand, M. 

luteus cells grown in LB medium raised the external pH in all cases, they increased the 

external pH from 7 to close to 9  at low NaCl concentrations, but the effect was less 

pronounced at high salinities.  The same pH changes happened when cells were grown at 

pH 5 or pH 3, but the effect was smaller at pH 3 (Figure 5-44). 

An NMR experiment was performed in order to find out how M. luteus cells changed the 

external pH from acidity to alkalinity when grown in LB medium at low pH values. 

Figure 5-45 shows that M. luteus cells released approximately 10 mM ammonium to 

increase the external pH and adapt to the acidity stress. 
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Figure  5-41: External pH of D. hansenii cultures grown overnight in M9 medium at pH 7, 5 

and 3. (Control: M9 medium has not been inoculated with microorganisms). 
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Figure  5-42: External pH of D. hansenii cultures grown overnight in YPD medium at pH 7, 5 

and 3. (Control: YPD medium has not been inoculated with microorganisms). 
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Figure  5-43: External pH of M. luteus cultures grown overnight in M9 medium at pH 7, 5 

and 3. (Control: M9 medium has not been inoculated with microorganisms). 
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Figure  5-44: External pH of M. luteus cultures grown overnight in LB medium at pH 7, 5 and 

3. (Control: LB medium has not been inoculated with microorganisms). 
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Figure  5-45: One-dimensional 1H-NMR spectra of culture supernatant derived from M. 

luteus cells grown in LB medium at pH 5 and pH 3. 
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5.2.6 Effect of Salinity and pH on Respiration Rate of D. hansenii and M. 

luteus 

Cells of D. hansenii and M. luteus grown in YPD and LB medium, respectively, at 

different salinity (0.1, 0.4, 1.0 1.5, 2.0 and 2.5 M NaCl) and pH (3, 5 and 7), were 

harvested by centrifugation then the pellets re-suspended in YPD and LB media of the 

same salinity and pH. Then oxygen uptake of bacterial strains was immediately 

determined by the oxygen electrode as described in section 2.11. 

 Figure 5-46 shows that the respiration rate of D. hansenii at pH 3 was the highest 

while the lowest rate occurred at pH 7. Furthermore, respiration rate in all cases 

increased when salinity is increased from 0.1 to 0.4 M NaCl, and then decreased 

again at higher salinities for all pH values.  The decrease in respiration rate at high 

salinities was particularly pronounced at pH 3. 

On the other hand, the effect of pH on respiration rates in M. luteus was quite 

different from that in D. hansenii; the respiration rate was higher at pH 7 while the 

lowest rates occurred at pH 3 in M. luteus (Figure 5-47). Respiration rate at pH 7 

increased slightly when NaCl concentration was increased from 0.1 to 0.4 M, and 

then decreased with any increase of NaCl concentrations (Figure 5-47). However, at 

pH 5 and pH 3 when NaCl concentrations increased from 0.1 to 1 M through 0.4 M 

NaCl, the respiration rates increased. When salinity was increased beyond 1 M 

NaCl, the respiration rates decrease again at both pH values (Figure 5-47). 
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Figure  5-46: Respiration rate of D. hansenii subjected to different salinity concentrations 

(0.1, 0.4, 1.0, 1.5, 2.0 and 2.5 M NaCl) after overnight growth in YPD medium of the same 

salinity at pH 7, 5 and 3 at 25°C on an orbital shaker at 250 rpm.  Measurement of 

respiration rate took place after adaptation to several NaCl concentrations at different pH 

values. 5 ml of cells were harvested by centrifugation and resuspended in 20 ml of fresh 

YPD medium of the same NaCl concentration and pH value. The O2 uptake was measured as 

described in section 2.11. Data points are the means of three replicates plus or minus 

standard deviation. 
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Figure  5-47: Respiration rate of M. luteus subjected to different salinity concentrations (0.1, 

0.4, 1.0, 1.5, 2.0 and 2.5 M NaCl) after overnight growth in LB medium of the same salinity at 

pH 7, 5 and 3 at 25°C on an orbital shaker at 250 rpm. Measurement of respiration rate took 

place after adaptation to several NaCl concentrations at different pH values. 5 ml of cells 

were harvested by centrifugation and resuspended in 20 ml of fresh LB medium of the same 

NaCl concentration and pH value. The O2 uptake was measured as described in section 2.11. 

Data points are the means of three replicates plus or minus standard deviation. 
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5.2.7 Determination of Compatible Solutes (Osmolytes) by NMR Spectroscopy 

In order to identify the compatible solutes accumulated by D. hansenii and M. luteus 

when exposed to different salinity concentrations and different external pH values, 

NMR was used as described in section 2.18. The importance of the medium used 

was investigated by comparing rich LB medium (M. luteus) and rich YPD medium 

(D. hansenii) with M9 minimal salts medium. 

Figure 5-48, Figure 5-49 and Figure 5-50 show the variety of compatible solutes 

accumulated by D. hansenii when yeast cells were grown in M9 minimal medium at 

pH 7, 5 and 3 in different salinities (0.1, 0.4, 1 M NaCl). From the spectra it is clear 

that glycerol, arabitol, glycine betaine (betaine) and alanine were found under all 

conditions but at varying concentrations depending on NaCl concentration and pH 

value, for example, alanine was quite low at all pH values in 0.1 and 0.4 M NaCl 

(Figure 5-48 and Figure 5-49). Moreover, all compatible solutes increased with 

increasing salinity from 0.1 - 1 M NaCl (Figure 5-48 and Figure 5-50). However, 

glycerol was the compatible solute accumulated to the highest amount in all spectra 

and in particular at pH 3, 1 M NaCl there was more glycerol (Figure 5-50). 

Similar results occurred when D. hansenii cells were grown in YPD medium 

(Figures 5-51, 5-52, 5-53 and 5-54). In YPD medium the highest amount of glycerol 

was found when yeast cells were grown in 0.4 M NaCl at pH 3 (Figure 5-52). So, it 

is very clear that glycerol is the main compatible solute accumulated by D. hansenii 

cells when they were grown under different stresses. 
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Figure  5-48: One-dimensional 1H-NMR spectra of cell extracts derived from D. hansenii 

cells grown in M9 minimal medium in 0.1 M NaCl at pH 7, 5  and 3. 

 
Figure  5-49: One-dimensional 1H-NMR spectra of cell extracts derived from D. hansenii 

cells grown in M9 minimal medium in 0.4 M NaCl at pH 7, 5  and 3. 
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Figure  5-50: One-dimensional 1H-NMR spectra of cell extracts derived from D. hansenii 

cells grown in M9 minimal medium in 1.0 M NaCl at pH 7, 5  and 3. 
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Figure  5-51: One-dimensional 1H-NMR spectra of cell extracts derived from D. hansenii 

cells grown in YPD medium in 0.1 M NaCl at pH 7, 5  and 3. 

 
Figure  5-52: One-dimensional 1H-NMR spectra of cell extracts derived from D. hansenii 

cells grown in YPD medium in 0.4 M NaCl at pH 7, 5  and 3. 
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Figure  5-53: One-dimensional 1H-NMR spectra of cell extracts derived from D. hansenii 

cells grown in YPD medium in 1.0 M NaCl at pH 7, 5  and 3. 

 
Figure  5-54: One-dimensional 1H-NMR spectra of cell extracts derived from D. hansenii 

cells grown in YPD medium in 2 M NaCl at pH 7, 5  and 3. 
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Figures 5-55, 5-56 and 5-57 show the range of compatible solutes found in M. luteus 

when cells were grown in M9 minimal medium at different pH values and different 

salinity concentrations (0.1, 0.4 and 1 M NaCl). However, betaine was the main 

compatible solute which was present under all conditions. In contrast, glutamic acid 

(glutamate) was only found in cells grown in 0.1 M NaCl at pH 5 and pH 7 (Figure 

5-55), and proline was only present when cells were grown in 1 M NaCl at pH 5 and 

pH 7 (Figure 5-57). 

When M. luteus cells were grown in LB medium with different NaCl concentrations 

at different pH values (Figures 5-58, 5-59 and 5-60), betaine was again found in all 

spectra, the lowest amount of betaine was found at pH 3 (Figure 5-58), and almost 

equal amounts at pH 5 and pH 7 (Figure 5-59 and Figure 5-60) respectively. Quite 

low amounts of proline were present at pH 5 and pH 7 at all NaCl concentrations 

(Figure 5-59 and Figure 5-60). Furthermore, glutamate is present, but only at 2 M 

NaCl concentration at pH 5 and pH 7 (Figure 5-59 and Figure 5-60). 
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Figure  5-55: One-dimensional 1H-NMR spectra of cell extracts derived from M. luteus cells 

grown in M9 minimal medium in 0.1 M NaCl at pH 7, 5  and 3. 

 
Figure  5-56: One-dimensional 1H-NMR spectra of cell extracts derived from M. luteus cells 

grown in M9 minimal medium in 0.4 M NaCl at pH 7, 5  and 3. 
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Figure  5-57: One-dimensional 1H-NMR spectra of cell extracts derived from M. luteus cells 

grown in M9 minimal medium in 1.0 M NaCl at pH 7, 5  and 3. 

 
Figure  5-58: One-dimensional 1H-NMR spectra of cell extracts derived from M. luteus cells 

grown in LB  medium in different NaCl concentrations at pH 3. 
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Figure  5-59: One-dimensional 1H-NMR spectra of cell extracts derived from M. luteus cells 

grown in LB  medium in different NaCl concentrations at pH 5. 

 
Figure  5-60: One-dimensional 1H-NMR spectra of cell extracts derived from M. luteus cells 

grown in LB  medium in different NaCl concentrations at pH 7. 
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5.2.8 Effect of Sulphur, Aluminium and Iron on the Growth of D. hansenii and 

M. luteus 

As mentioned in chapter three, it was assumed that even today, the Rivelin and Limb 

Valleys in Sheffield would remain polluted acidic environments because they have a long 

history of industrial activity dating back to the Industrial Revolution. Therefore, both 

rivers water metallic contents were analysed as and the results were presented in chapter 

three (section 3.2.2). 

However, in the present chapter three elements (iron, sulphur and aluminium) which exist 

in both rivers water were chosen in order to investigate their effect on the growth of D. 

hansenii and M. luteus. In addition, experiments were performed to examine the ability of 

D. hansenii and M. luteus in to utilize these elements by growing them in M9 minimal 

medium in the presence of the elements as described in section 2.15. 

Figure 5-61 shows that D. hansenii was able to grow and thrive in all M9 media 

containing iron, sulphur and aluminium as well as in the control (M9 minimal 

medium). It is clear that iron showed most inhibition of growth, but this was still a 

very small effect. 

M. luteus showed a good ability to grow in the presence of iron, sulphur and 

aluminum in M9 minimal medium (Figure 5-62). Again iron was the most effective 

inhibitor of M. luteus growth while aluminium and sulphur were less effective. 
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Figure  5-61: Effect of iron, sulphur and aluminium on the growth of D. hansenii. The cells 

were grown in M9 medium at pH 7 and incubated in a 25ºC constant temperature room on 

an orbital shaker at 250 rpm overnight. The O.D was measured at 600 nm every 3 hours. 

Data points are the means of four replicates plus or minus standard deviation. 
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Figure  5-62: Effect of sulphur, iron and aluminium on the growth of M luteus. The cells 

were grown in M9 medium at pH 7 and incubated in a 25ºC constant temperature room on 

an orbital shaker at 250 rpm overnight. The O.D was measured at 600 nm every 3 hours. 

Data points are the means of four replicates plus or minus standard deviation. 
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5.3 Conclusions 

In the current chapter, low nutrient and rich nutrient media with different pH values 

(pH 7, 5 and 3) and different NaCl concentrations (0.1, 0.4, 1.0, 1.5, 2.0, 2.5, 3 M) 

were used to determine the ability of eukaryotic yeast strain (Debaryomyces 

hansenii) and prokaryotic bacterial strain (Micrococcus luteus) to grow under 

different extreme conditions. Furthermore, generation (doubling) times, respiration 

rates and the presence of compatible solutes were all determined. Finally, the effects 

of three elements (iron, sulphur and aluminium) on growth were also investigated. 

D. hansenii and M. luteus were grown in low nutrient (M9 minimal medium) under 

acid stress, and then electron microscopy (SEM and TEM) was used in order to 

investigate any changes that may have occurred to the cells structure. It was a good 

achievement as recorded in the beginning of the current chapter to obtain many high 

resolution microscope images of D. hansenii (Figure 5-1 and Figure 5-2) and M. 

luteus (Figure 5-3 and Figure 5-4) which confirm and support the phenotypic and 

phylogenic identification in chapters three and four. Also, SEM images showed that 

D. hansenii cells grown at pH 7 were larger than cells grown at pH 3 in low nutrient 

medium (Figure 5-1). While TEM images showed that the cell walls of M. luteus 

cells grown at pH 3 were thicker than the cell walls of cells grown at pH 7, and that 

the M. luteus cells grown at pH 3 tended to clump together more than in cells grown 

at pH 7 (Figure 5-4). 

Despite the changes which were observed by the use of SEM and TEM, it was quite 

hard to investigate more significant changes using these types of electron 

microscope. Using Environmental Scanning Electron Microscope (ESEM) may lead 
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to the discovery of more significant changes happening to microbial cells when 

grown under stress. ESEM can examine microbial cells directly while they are still 

subject to the environmental stresses while in SEM and TEM the cells must be re-

suspended in a phosphate buffer then followed by many other fixation steps as 

described in section 2.19. These additional steps may obscure the effects of 

environmental stresses on the microbial cells. 

In growth curves experiments, D. hansenii shows a good ability to grow and thrive 

under many extreme conditions such as low nutrients, high salinity and low pH. For 

example, D. hansenii was able to grow in M9 minimal medium containing 1 M NaCl 

at pH 7, 5 and 3 (Figure 5-11), and tolerate 1.5 M NaCl at pH 7 and pH 5 in the 

same medium (Figure 5-12). In addition, D. hansenii shows a greater ability to grow 

at high acidity and high salinity when grown in YPD medium. For example, D. 

hansenii was able to thrive in YPD containing 2 M NaCl at pH 7, 5 and 3 (Figure 5-

20), and tolerate 3 M of NaCl at pH 7 and pH5 in YPD medium (Figure 5-22). 

On the other hand, M .luteus shows poor capability to thrive under many stresses 

when grown in low nutrient medium (M9 minimal medium) in particular at high 

acidity. M. luteus just thrives at all pH values (7, 5 and 3) when grown in normal 

M9 at 0.1 M NaCl (Figure 5-25), and barely grows in 0.4 M NaCl at pH 7 and pH 5 

and no growth at pH 3 was observed (Figure 5-26). However, M. luteus showed a 

significantly greater ability to tolerate high acidity and high salinity when grown in 

LB medium. For example, M. luteus cells were able to tolerate 1 M NaCl at all pH 

values (7, 5 and 3) (Figure 5-31), tolerate 2 M NaCl at pH 5 and pH 7 (Figure 5-33), 

and tolerate 2.5 M NaCl at pH 7 (Figure 5-34). 
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To conclude, D. hansenii has range of optimum pH in low nutrient medium from 7 

to 5 and the optimum salinity was 0.4 M NaCl at 25ºC (Figure 5-37), while the 

optimum pH in rich YPD medium was pH 5 and optimum salinity is 1.0 M NaCl at 

25ºC (Figure 5-38). These results are consistent with the results of  Norkrans (1966) 

who demonstrated that D. hansenii has the ability to tolerate high salt 

concentrations. The results also in agreement with the results of Prista and Madeira-

Lopes (1995) and Thome-Oritz et al. (1998) who recorded that Na+ was not toxic to 

D. hansenii. Moreover, the present results are consistent with the results of Prista et 

al. (1997) who reported that increasing salt concentrations improved D. hansenii 

growth under normal conditions, and also agree with the results of Almagro et al. 

(2000) who demonstrated that the presence of salt stimulated the growth of D. 

hansenii under stress conditions. 

On the other hand, M. luteus optimum pH was 7 in both M9 and LB medium, and 

the optimum salinity was 0.1 M NaCl in M9 at 25ºC while 1.0 M NaCl was the 

optimum in LB medium at 25ºC (Figure 5-39). These results are consistent with the 

results of Chan and Leung (1979) who reported that M. luteus required 0.5 M NaCl 

for optimum growth in a chemically defined medium which contains different 

concentrations of salts, multi vitamins and some amino acids at 30ºC and required 

0.2 M NaCl for optimum growth at 25ºC. 

Respiration rates of D. hansenii and M. luteus were measured in order to determine 

the metabolic activity under salt stress at three different pH values (pH 7, 5 and 3). 

D. hansenii shows a higher respiration rate when the cells were grown in YPD 

medium at pH 3 and the lowest was at pH 7, the oxygen uptake slightly increased 
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when the salinity increased from 0.1 to 0.4 M NaCl and then the respiration rates 

fell with any further increase in NaCl concentration at all pH values studied (Figure 

5-46). In contrast, M. luteus shows higher respiration rate when the cells were 

grown in LB medium at pH 7 while the lowest rate occurred at pH 3, the oxygen 

uptake goes up slightly when the salinity was increased from 0.1 to 0.4 M NaCl at 

pH 7 and then the respiration rate goes down with any further increase in salt 

concentration. For cells grown at pH 5 and pH 3, the respiration rate recast when 

NaCl concentration increased from 0.1 to 0.4 and to 1 M NaCl, after which the 

oxygen uptake fell with any further increase in salt (Figure 5-47). 

In order to investigate the ability of both strains to alter the pH of the medium, the 

cells were grown in M9 minimal medium for both strains and YPD medium for D. 

hansenii and LB medium for M. luteus at different pH values and different salinity 

concentrations. For D. hansenii there was no change in the external pH when cells 

were grown at pH 7 and pH 3 in M9, but in pH 5 they tended to decrease the pH to 4 

or less at all salt concentrations (Figure 5-41). When D. hansenii cells were grown in 

YPD medium at pH 7 the external pH was reduced when NaCl concentrations were more 

than 0.4 M, while no changes were recorded to the external pH when the cells grown at 

pH 3, but when cells were grown at pH 5 the external pH was raised to 6 in 0.4 M NaCl 

and then goes down to pH 4 when salinity reached 2 M NaCl.  It appears that the changes 

in salinity are related to the rate of growth and less change takes place when growth is 

poor (Figure 5-42). There is no decrease in the external pH for M. luteus cultures at all 

conditions, the cells slightly increased all pH values in M9 minimal medium (Figure 



207 
 

5-43), and always tend to increase the external pH from acidity toward alkalinity in 

LB medium at all pH values (Figure 5-44). 

The accumulation of compatible solutes for both strains was detected in M9 minimal 

medium (both strains), YPD medium (D. hansenii) and LB medium (M. luteus) by 

NMR spectroscopy. Glycerol was found in all spectra as a main compatible solute 

for D. hansenii and arabitol was the next most important compatible solute in both 

M9 and YPD medium (Figure 5-48 and Figure 5-51). The presence of betaine as a 

compatible solute in the eukaryotic D. hansenii cells (Figure 5-50 and Figure 5-53) 

was very interesting. On the other hand, as expected betaine was found in all spectra 

for M. luteus as the main compatible solute in both M9 and LB medium (Figure 5-56 

and Figure 59). In addition, glutamate was found at 0.1 M NaCl in M9 minimal 

medium (Figure 5-55) and at 2 M NaCl in LB medium (Figure 5-60). 

To conclude, M. luteus use betaine as a main compatible solute and glutamate as an 

additional compatible solute. These results are similar to the results of Imhoff and 

Rodriguez-Valera (1984) who reported that betaine plays the major role as 

compatible solute in halophilic bacteria such as M. luteus, and glutamate was also 

involved. In contrast D. hansenii use glycerol as a main compatible solute and 

another polyol (arabitol) an additional compatible solute. These results are 

consistent with the results obtained by Gustafsson and Norkrans (1970) and (1976) 

who suggested that glycerol is the compatible solute in D. hansenii. Also the present 

results agree with results of Adler et al. (1985) and Andre et al. (1988) who 

demonstrated that glycerol plays the main role in the high salt resistance of D. 
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hansenii. In addition, glycine betaine was also identified and to the best of our 

knowledge this is the first time that glycine betaine has been found in yeast cells.  

It is well known that LB medium contains choline, which is a precursor for betaine 

synthesis (Cummings et al., 1993). In the presence of choline, the bacteria 

preferentially, use betaine, but M. luteus also relied on betaine as a major 

compatible solute in the absent of choline in M9 minimal medium. So, the current 

data suggests that M. luteus is capable of synthesizing betaine without the presence 

of choline in the media, and also that glutamate is used as a second compatible 

solute particularly at high salt concentrations. 

Clearly, these results demonstrated that D. hansenii has the ability to grow and 

adapt to hypersaline conditions in M9 minimal and YPD medium, while M. luteus 

has the ability to grow and adapt to high salt concentrations in LB medium but lacks 

the ability to adapt to high salinity (more than 0.4 M NaCl)  when grown in M9 

minimal medium. Therefore, compatible solutes synthesis depends on the type of 

medium (rich or poor in nutrients) and on the level of salinity in the medium. 

D. hansenii and M. luteus were both able to adapt to grow in the presence of iron, 

sulphur and aluminum in M9 minimal medium at 25ºC (Figure 5-61 and Figure 5-

62). However, it might be that the main reason for the low effect of those elements 

on the growth of D. hansenii and M. luteus is due to the availability of those 

elements at pH 7 and the low concentrations of iron, sulphur and aluminum used in 

this experiment. A previous study demonstrated that heavy metals such as copper, 

cobalt or zinc can prevent the production of riboflavin pigment by D. hansenii (this 
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pigment is produced by yeast cells when grown in the presence of iron-depletion or 

heavy metals) if extra iron was added to the growth medium (Gadd and Edwards, 

1986). A previous study reported that M. luteus has the ability to grow on pyridine 

(Sims et al., 1986). Leung et al. (2000) demonstrated that M. luteus also has the 

ability to remove significant amounts of heavy metals such as Pb and  Cu when 

grown at pH 5. 
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6 Bioenergetics of Growth of Debaryomyces hansenii 

6.1 Introduction 

Microorganisms generate a great variety of lifestyles and can adapt to a wide range of 

physical and chemical factors to allow growth in extreme environments. Therefore, 

microorganisms are widely distributed in nature, each organism being defined and 

characterized according to specific parameters which are essential for its development 

(e.g. thermophiles, halophiles, acidophiles and alkaliphiles) (Cook, 2000, Goto et al., 

2005). 

Microorganisms which grow in environments of extreme pH (low or high) have to 

maintain a relatively constant cytoplasmic pH that is compatible with the best function 

and structural integrity of their intracellular proteins, and which supports growth during 

fluctuations in external pH (Albers et al., 2001, Sydow et al., 2002, Padan et al., 2005). 

The range of cytoplasmic pH is strongly dependent on the external pH (Padan et al., 

2005). For example, neutrophilic bacteria that grow optimally at neutral pH have 

intracellular pH (pHi) values from 7.5 to 8.0 (Booth, 1985). Alkaliphilic bacteria must 

maintain their intracellular pH up to approximately 2 pH units more acidic than the 

external pH (i.e. inverted pH gradient) (Krulwich et al., 1998, Olsson et al., 2003, 

Satyanarayana et al., 2005, Liu et al., 2008). Furthermore, acidophiles which grow 

optimally under acidic conditions exhibit intracellular pH values in the range of 6.5 to 7.0 

(Cook, 2000). 

Mitchell (1961) described the chemiosmotic theory which explains the key role that 

membranes play in the generation of metabolic energy in the form of ATP (Albers et al., 
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2001). Electron transport in the cytoplasmic membrane of bacteria induces a difference in 

electrochemical potential of H+ across the membrane (proton motive force, PMF, Δp), 

which is the sum of both membrane potential (transmembrane electrical potential, ΔΨ) 

and transmembrane pH gradient (ΔpH), and is required for production of ATP by H+-

ATPase. The proton motive force is calculated using following equation: 

PMF or Δp = ΔΨ- ZΔpH  

ΔpH = pHi − pHo 

Z = 2.3 RT/F = 58.5 ≅ 59 mV 

 ΔΨ (mV) is the membrane potential (electrical potential of membrane is outside positive 

and inside negative), while ΔpH is the transmembrane pH gradient (outside acidic in 

neutrophiles and outside alkaline in alkaliphiles), pHi is the internal pH, pHo is the pH 

outside, R is the gas constant, T is absolute temperature and F is the Faraday constant 

(Albers et al., 2001, Yumoto, 2002, Olsson et al., 2003, Goto et al., 2005).   

The respiratory chain pumps out H+ from the inside to the outside of the membrane 

associated with the flow of electrons from NADH to O2. ATPase produces ATP by 

translocating H+ from the outside to the inside of the cell membrane of bacteria. 

Moreover, the cell membrane of bacteria possesses a number of transporter systems for 

obtaining substrates from the outside of the membrane, which work by using the 

electrochemical potential of H+ across the cell membrane (Δp) as their driving force.  

In fact, the survival of eukaryotic acidophiles microorganism in acidic environments is a 

complex process and differs from the mechanisms used by prokaryotes. For example, 

eukaryotes must cope with acid conditions on the surface of the plasma membrane, but 
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their internal organelle membranes are not in direct contact with the external acidity. Ion 

channels and transporters are in contact with the low pH of the external environment, 

which would minimally require molecular modifications compared to the equivalent 

proteins of neutralophilic organisms (Messerli et al., 2005). Nevertheless, several yeast, 

multicellular fungal and algal species thrive in acidic environments, often playing key 

roles in the microbial communities present in these environments, particularly when 

biofilms are present (Aguilera et al., 2007, Baker et al., 2009). 

In the present chapter, the bioenergetics of the yeast Debaryomyces hansenii cells 

adapted to grow at different pH values in M9 minimal medium were examined using the 

silicone oil technique. Intracellular volumes of D. hansenii were investigated at pH 7 and 

pH 3 (section 6.2.1). Furthermore, in section 6.2.2 membrane potentials (ΔΨ) were also 

measured at pH 7 and pH 3. Internal pH (pHi) of D. hansenii was also determined at pH 7 

and pH 3 in M9 minimal medium (section 6.2.3). 

6.2 Results and Discussion 

6.2.1 Determination of Intracellular Volume of D. hansenii at pH 3 and pH 7 

In order to calculate the concentration ratios of probes across the cytoplasmic membrane 

and hence membrane potential (ΔΨ) and internal pH (pHi) the intracellular volume (ICV) 

was determined. The intracellular volume of D. hansenii cells was investigated by 

centrifugation through silicone oil as described in section 2.20 following the protocol 

described by Gimmler et al. (1978). Determination of both pellet volume (PV) using 

tritiated water (3H2O) and extracellular volume (ECV) using 14C-dextran for all cells 
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grown over a wide pH range of culture media enables us to calculate the intracellular 

volume by the equations given in Hard and Gilmour (1996). 

The tritiated water (3H2O) can diffuse into cells. In contrast, 14C-dextran is not taken into 

cells due to the complex structure of this high molecular weight polymer preventing 

diffusion of 14C-dextran across the cell membrane. Figure 2.5 (Chapter 2) shows the 

ration of 3H2O between the supernatant and pellet fractions corresponds to the total 

volume of the pellet. A percentage of this volume is due to fluid packed between the 

cells. The ratio of 14C (also between pellet and supernatant) corresponds to this volume 

and thus the subtraction of the 14C volume or extracellular volume from the 3H total pellet 

volume (including excess liquid trapped between the cells) results in the estimation of the 

intracellular volume alone.  

Time course experiments were carried out at pH 7 and pH 3 using 14C-Dextran and 3H2O 

in order to ensure there was no active uptake or efflux of the isotopes after the initial 

distribution between cells and medium i.e. the uptake was rapid and levelled off after a 

short time. The results indicated that 5 minute incubation periods were suitable for 

determining pellet volume (PV), extracellular volume (ECV) and the subsequent 

intracellular volume determination (ICV) (Figures 6-1, 6-2, 6-3 and 6-4). 
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Figure  6-1: Time course of 3H2O uptake by D. hansenii. DPM in supernatants was measured 

during the 30 minute incubation period. Cells were grown at pH 7 in M9 minimal medium 

overnight at 25ºC. Means of three replicates were used. 
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Figure  6-2: Time course of 3H2O uptake by D. hansenii. DPM in supernatants was measured 

during the 30 minute incubation period. Cells were grown at pH 3 in M9 minimal medium 

overnight at 25ºC. Means of three replicates were used. 
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Figure  6-3: Time course of 14C-Dextran uptake by D. hansenii. DPM in supernatants was 

measured during the 30 minute incubation period. Cells were grown at pH 7 in M9 minimal 

medium overnight at 25ºC. Means of three replicates were used. 
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Figure  6-4: Time course of 14C-Dextran uptake by D. hansenii. DPM in supernatant was 

measured during the 30 minute incubation period. Cells were grown at pH 3 in M9 minimal 

medium overnight at 25ºC. Means of three replicates were used. 
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Table  6-1: Intracellular volume (ICV) of D. hansenii as a function of external pH. 10 ml of 

cells adapted to grow at pH 7 or pH 3 in M9 minimal medium and grown overnight at 25ºC 

were transferred to 50 ml Falcon tubes and harvested and then the pellet was resuspended 

in 8 ml of fresh M9 minimal medium of the same pH (section 2.20.1). Means and standard 

deviations for three replicates are shown.  

 

 

 

 

 

 

 

 

Growth pH Pellet Volume (PV) Extracellular Volume (ECV) ICV (µl mg-1  protein) 

pH 7            8.6 ± 0.6                   3.5 ± 0.1             5.1 ± 0.8 

pH 3            5.6 ± 0.2                   3.9 ± 0.1             1.7 ± 0.3 
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Table 6-1 shows the intracellular volume measurements of D. hansenii cells adapted to 

grow in M9 minimal medium at pH 3 and pH 7. It was clear that D. hansenii cells 

showed different volumes when grown in different pH media. This was interpreted as a 

direct result of pH stress on the D. hansenii cells.  

The intracellular volume of D. hansenii cells was 5.1 µl mg-1 soluble protein when they 

were grown at pH 7 in M9 minimal medium, but when the cells grown at pH 3 the 

intracellular volume of the cells fell to 1.7 µl mg-1 soluble protein (Table 6-1). The 

decrease of cell volume of D. hansenii cells may be considered to be a direct response 

and potential defence mechanism against extreme acidity stress. 

6.2.2 Determination of Membrane Potential (ΔΨ) of D. hansenii 

The definition of membrane potential is the electrical potential difference that would be 

measured between two identical reference electrodes positioned on opposite sides of a 

cell membrane. It is a property of the whole system and is independent of the spatial 

location of the electrodes (Rottenberg, 1979). So, it is necessary for microorganism cells 

when exposed to an external stress to keep a stable internal pH balance. Thereby, it is 

essential to determine the membrane potential and internal pH of cells in relation to 

changes in external pH. 

Section 2.20.3 illustrated the equation which enables us to calculate the proton 

electrochemical potential difference or proton motive force (Δp) after the determination 

of both (ΔΨ) and pH gradient (ΔpH) across a membrane.  Rottenberg in 1979 reported 

that the measurements of Δp for cells growing or surviving at different external pH values 

are very important for an experimental evaluation of the chemiosmotic hypothesis and are 
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also an indicator of the coupling in energy conversion membrane systems (Rottenberg, 

1979). 

In the present study 14C-TPP+ (tetraphenylphosphonium) was used as a probe for ΔΨ 

determination, using the silicone oil centrifugation technique as described by Rottenberg 

(1979 and 1989). TPP+ a positively charged ion is distributed across the membrane 

according to the membrane potential. 

In order to measure membrane potential based on the distribution of isotopes, the time 

course of uptake for 14C-TPP+ probe was carried out using of D. hansenii cells to ensure 

there was no active uptake or efflux of the isotope after the initial distribution between 

cells and medium, and that the uptake was rapid and levelled off after a short time. This 

indicated that 14C-TPP+ probe was suitable for membrane potential determination, if 5 

minutes were used as an incubation period (Figure 6-5 and Figure 6-6). 
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Figure  6-5: Time course of 14C-TTP+ uptake by D. hansenii. DPM in supernatants was 

measured during the 30 minute incubation period. Cells were grown at pH 7 in M9 minimal 

medium overnight at 25ºC. Means of three replicates were used. 
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Figure  6-6: Time course of 14C-TTP+ uptake by D. hansenii. DPM in supernatants was 

measured during the 30 minute incubation period. Cells were grown at pH 3 in M9 minimal 

medium overnight at 25ºC. Means of three replicates were used. 
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Table  6-2: Membrane potential (ΔΨ) of D. hansenii as a function of external pH. 10 ml of 

cells adapted to grow at pH 7 and pH 3 in M9 minimal medium and grown overnight at 25ºC 

were transferred to 50 ml Falcon tubes and harvested and then the pellet was resuspended 

in 8 ml of fresh M9 minimal medium of the same pH (blue figures) of subjected to a pH 

shock (red figures)(Section 2.20.2). Means and standard deviations for three replicates are 

shown. 

 

Incubation pH  ΔΨ (mV)       shock pH ΔΨ (mV) after pH shock 

            pH 7 -30.3 ± 2.96             pH 3             -19.7 ± 0.33 

            pH 3    -73 ± 2.88             pH 7             -90.7 ± 3.17 
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Membrane potential was investigated in two different ways, the first was a direct 

measurement using same external pH value, whereas the second was a shock 

measurement in which the cells were resuspended in the opposite pH to their incubation 

pH. The cells in the shock experiment were incubated for 30 minutes in the other pH 

value before measuring ΔΨ. For example, if the cells incubated over course in M9 

minimal medium at pH 7, the cells pellet and re-suspend in M9 minimal medium at pH 3 

for 30 minutes before starting the determination of membrane potential and carried out 

using 14C-TPP+ probe, and just the opposite was done with pH 3. 

Table 6-2 shows the measurements of ΔΨ as a function of the external pH for D. hansenii 

cells grown at external pH 7 and pH 3 in M9 minimal medium. It was obvious from the 

results that D. hansenii cells produced different membrane potential values at pH 7 and 

pH 3. The cells generated a significant higher ΔΨ at pH 3 (-73 mV) than at pH 7 (-30.3 

mV). It is clear that the membrane potential of D. hansenii is increasing with decreasing 

external pH (Table 6-2). 

However, when the cells were incubated at external pH 7 and shocked by external pH 3 

the membrane potential decreased from -30.3 mV to -19.7 mV, while for cells grown at 

pH 3 medium and shocked using external pH 7 medium, the ΔΨ increased from -73 mV 

to -90.7 mV (Table 6-2). 
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6.2.3 Determination of Internal pH (pHi) and ΔpH of D. hansenii 

The silicone oil centrifugation method as described by Rottenberg, (1979) was carried out 

in order to determine the cytoplasmic pH of D. hansenii cells.  It was again essential to 

completely separate cell pellets from their external media to enable the measurement of 

both intracellular and extracellular volumes of cells (section 2.20). The measurement of 

cytoplasmic pH of cells adapted to grow and survive at different external pH values is 

very important for an experimental evaluation of the limits of acidic pH homeostasis. 

The controlled pH (pre-set external pH) and the pH gradient (ΔpH) across the 

cytoplasmic membrane of the cell have usually been used to calculate the cytoplasmic pH 

(Padan et al., 2005). In the current study in order to measure the cytoplasmic pH of D. 

hansenii cells grown at external pH 7 and pH 3 in M9 minimal medium the radioisotope 

probe 14C-Benzoic acid, with a pKa of 4.2, was used as described in section 2.20.3. 

In order to ensure there was no active uptake or efflux of the isotope after the initial 

distribution between cells and medium the time course of uptake for 14C-Benzoic acid 

probe was performed using D. hansenii cells. The uptake was rapid and levelled off after 

a short time. The results indicated that a 5 minute incubation period was suitable for 

cytoplasmic pH determination (Figure 6-7 and Figure 6-8). 
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Figure  6-7: Time course of 14C-Benzoic acid uptake by D. hansenii. DPM in supernatant was 

measured during the 30 minute incubation period. Cells were grown at pH 7 in M9 minimal 

medium overnight at 25ºC. Means of three replicates were used. 
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Figure  6-8: Time course of 14C-Benzoic acid uptake by D. hansenii. DPM in supernatant was 

measured during the 30 minute incubation period. Cells were grown at pH 3 in M9 minimal 

medium overnight at 25ºC. Means of three replicates were used. 
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The internal pH (pHi) was measured under two different conditions; the first was a direct 

measurement using same external pH value, whereas the second was a shock 

measurement in which the cells were resuspended in the opposite pH to the growth pH as 

was the case for membrane potential measurements (section 6.2.2). 

Table 6-3 shows that D. hansenii cells tend to maintain their internal pH (pHi) close to 

natural at both pH 7 and pH 3. However, the cells keep their internal pH at 7.1 when they 

were grown at pH 7 compared to a pHi of 6.7 when grown at pH 3.  The proton motive 

force (Δp) value for cells of D. hansenii was calculated to be -36.3 mV at external pH 7 

while the Δp value was much higher at external pH 3 i.e -295.2 (Table 6-4). 

On the other hand, when the cells were shocked noticeably different responses were seen 

(Table 6-3). The results indicated that when the cells were grown at pH 7 and shocked by 

external pH 3 medium their pHi increased from 7 to 9.5, while when the cells grown at 

pH 3 were shocked by pH 7 the pHi increased from 3 to 4.2. The total proton motive 

force (Δp) value was found to be similar (i.e. -169.8 and -162.8) when the cells were 

shocked by pH 3 and pH 7 respectively (Table 6-5). 
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Table  6-3: Internal pH (pHi) of D. hansenii as a function of external pH. 10 ml of cells 

adapted to grow at pH 7 or pH 3 in M9 minimal medium overnight at 25ºC were transferred 

to 50 ml Falcon tubes and harvested and then the pellet was resuspended in 8 ml of fresh 

M9 minimal medium of the same pH or different pH when shock experiment was run 

(section 2.20.3). Means and standard deviations for three replicates are shown. 

Incubation pH          pHi           shock pH  pHi after pH shock 

         pH 7    7.1 ± 0.07                pH 3           9.5 ±0.06 

         pH 3    6.7 ± 0.03                pH 7           4.2 ±0.09 
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Table  6-4: Internal pH (pHi), ΔpH generation and proton motive force (Δp) measurements 

from cells of D. hansenii as a function of external pH. 10 ml of cells adapted to grow at pH 7 

or pH 3 in M9 minimal medium were grown overnight at 25ºC, transferred to 50 ml Falcon 

tubes and harvested. The pellet was resuspended in 8 ml of fresh M9 minimal medium of 

the same pH (section 2.20.3). Means and standard deviations for three replicates are shown. 

The Δp figures take into account the ΔΨ measured under the same conditions (see Table 

6.2). 

 Incubation pH            pHi          ΔpH             Δp (mV) 

          pH 7     7.1 ± 0.07           0.1               -36.3 

          pH 3     6.7 ± 0.03           3.7              -295.2 
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Table  6-5: Internal pH (pHi), ΔpH generation and proton motive force (Δp) measurements 

from cells of D. hansenii as a function of external pH. 10 ml of cells adapted to grow at pH 7 

or pH 3 in M9 minimal medium were grown overnight at 25ºC , transferred to 50 ml Falcon 

tubes and harvested. The pellet was resuspended in 8 ml of fresh M9 minimal medium of 

the different pH (section 2.20.3). Means and standard deviations for three replicates are 

shown. The Δp figures take into account the ΔΨ measured under the same conditions (see 

Table 6.2). 

                         pH 
        pHi         ΔpH      Δp (mV) 

Incubation      Shock 

       pH 7        pH 3   9.5 ± 0.06          2.5        -169.8 

       pH 3        pH 7   4.2 ± 0.09          1.2        -162.8  
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To conclude, D. hansenii cells maintained their pHi close to neutral when grown at pH 7 

(pHi was maintained to 7.1) and pH 3 (pHi was maintained to 6.7), but the cells showed 

an inability to balance their pHi 30 minutes after being resuspended in a different pH. The 

cells increased their pHi to 9.5 when they shocked by external pH 3 medium, and but they 

only slightly increased pHi to 4.2 when cells grown at pH 3 were shocked by external pH 

7 medium. 

The results suggest that D. hansenii was able to grow at low external pH levels despite 

their pHi becoming more acidic or more alkaline. Nevertheless, the pHi levels are always 

higher (more alkaline) than the external pH under all conditions tested. 
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6.3 Conclusions 

To study the effect of the pH of the culture medium on the bioenergetics of growth of D. 

hansenii, the intracellular volume (ICV), membrane potential (ΔΨ) and cytoplasmic pH 

(pHi) of cells were all examined. The use of radiolabelled isotopes in the silicone oil 

experiments described in the present study produced consistent results. This method 

allows the calculation of a volume for a pellet of cells through the ratio of two isotope 

species; tritiated water (3H2O) and 14C-dextran.  

The cell volume of D. hansenii was determined in cells adapted to grow at different 

external pH values of 7 and 3. It can be seen from the current chapter that there was a 

change in the ICV of D. hansenii cells when they were grown at different pH values. The 

ICV decreased with decreasing external pH, it was 5.7 µl mg-1 soluble protein when the 

cells were grown at pH 7 but fell to 1.7 µl mg-1 soluble protein when the external pH 

decreased to 3. This decrease in cell volume may be considered to be a self defence 

mechanism of this yeast to the extreme pH of the culture medium. Berner and Gervais in 

1994 demonstrated that the cell volume of yeast decreased to a minimum with increasing 

salt concentrations (Berner and Gervais, 1994). In 2006 Mortensen et al., recorded cell 

shrinkages of D. hansenii cells of approximately 30% to 35% under NaCl stress 

(Mortensen et al., 2006). 

14C -TPP+ (tetraphenylphosphonium) was used for membrane potential determination 

using the silicone oil centrifugation technique at a range of external pH values. 

Membrane potential (ΔΨ) of D. hansenii cells was found to be highest (most negative) at 

low external pH, the ΔΨ was increased from -30.3 mV at external pH 7 to -73 mV at 
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external pH 3. The difference in membrane potential was more pronounced when they 

were subjected to pH shocks. The ΔΨ was about -19.7 mV when the cells grown at pH 7 

were shocked by external pH 3 and it was -90.7 mV when cells grown at external pH 3 

were shocked by external pH 7. In 1998 Thome-Ortiz et al., reported that K+ stimulated 

proton pumping decreased the ΔΨ of D. hansenii and they also found evidence for a 

K+/H+ exchange system that can control pH (Thome-Oritz et al., 1998). 

Additionally, the internal pH (pHi) of D. hansenii cells was measured by the distribution 

of 14C-Benzoic acid between the cell and the surrounding medium at different external 

pH values. The results show that D. hansenii cells are able to maintain their cytoplasmic 

pH close to neutral when they are grown in M9 minimal medium at pH 3 (pHi was 6.7) 

and pH 7 (pHi was 7.1). Moreover, shock experiment was designed to investigate D. 

hansenii cells behaviour under rapid changes of external pH values. However, when the 

cells were grown at pH 7 and shocked by external pH 3 the pHi increased to 9.5 

(alkaline), while when the cells were grown at pH 3 and shocked by external pH 7 

medium the pHi was maintained at 4.2 (acidic).  

These results suggest that D. hansenii cells have a problem in maintaining their internal 

pH against external pH stress in M9 minimal medium when they face rapid change in the 

external pH value (measurements made 30 minutes after pH shock). Previous study of 

two D. hansenii strains showed that a more NaCl-tolerant strain was able to maintain pHi 

homeostasis, whereas intracellular acidification occurred in the less NaCl-tolerant strain 

(Mortensen et al., 2006). This suggests that the NaCl tolerant D. hansenii strain had a 

greater intracellular buffering capacity. Another study done by (Mortensen et al., 2008) 

showed that the intracellular acidification of D. hansenii cells was induced by 200 µg/ml  
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of nitrite at external pH 4.5, while the cells show a good homeostasis maintenance of pHi 

in the presence of nitrite at external pH 5.5.  Parallel studies with Candida zeylanoides 

showed that this yeast was acidified at external pH 5.5 in the presence of nitrite.  This 

suggests that D. hansenii is better able to control pHi than less acid tolerant yeast species. 
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7 General Conclusions and Future Work 

7.1 Conclusions 

The major initial aim of this research project was to isolate acidophilic or 

acidotolerant microorganisms from sites in Sheffield (Rivelin and Limb valleys), 

which were known to have been polluted by industrial activity dating back several 

hundred years.  In the event, four microorganisms (Bacillus cereus, Micrococcus 

luteus, Aureobasidium pullulans and Debaryomyces hansenii) were isolated as pure 

cultures and shown to be capable of growth over the pH range from 3 to 7 (Chapters 

3 and 4).  After initial characterisation and identification by 16S or 18S rDNA 

sequencing, it was decided to concentrate work on one bacterial species (M. luteus) 

and one eukaryotic species (D. hansenii). The major reason for selecting M. luteus 

and D. hansenii for further characterisation was the ability of these two strains to 

grow well at high salinities (up to 2.5 M NaCl) at pH 3 (Figure 3.17) (i.e. they show 

potential to be polyextremophiles) (Gomes and Steiner, 2004). 

This potential was realised for D. hansenii, which was able to grow well at high salt 

concentrations and low pH values in minimal M9 medium. D. hansensii showed a 

greater ability to grow at high acidity and high salinity when grown in rich YPD 

medium. The optimum pH for D. hansenii in M9 medium was from 7 to 5 and the 

optimum salinity was 0.4 M NaCl at 25ºC. In YPD medium, the optimum pH was 5 

and optimum salinity was 1.0 M NaCl at 25ºC. This clearly illustrates the 
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importance of rich medium in extending the range for optimal growth under stress 

conditions (Cummings et al., 1993). 

On the other hand, M .luteus shows poor ability to thrive under salt and acid stresses 

when grown in low nutrient M9 medium. However, M. luteus showed a significantly 

greater ability to tolerate high acidity and high salinity when grown in rich LB 

medium. It was found that pH 7 was the optimum pH for M. luteus in both M9 and 

LB medium, and 0.1 M NaCl was the optimum salinity in M9 at 25ºC while 1.0 M 

NaCl was the optimum in LB medium at 25ºC.  Therefore, in general M. luteus 

favours non-extreme conditions, but it can be classified as a slight halophile when 

grown in rich medium (Gilmour, 1990). 

The ability of microorganisms to adapt to high external salt concentrations depends 

on their efficiency at accumulating osmotically active compounds intracellularly. 

These compounds are known as compatible solutes to denote their compatibility 

with cell function (Brown, 1976). D. hansenii cells accumulate glycerol as the main 

compatible solute and another polyol (arabitol) as an additional compatible solute. 

The presence of polyols in D. hansenii has been found previously (Norkrans, 1966), 

but the identification of glycine betaine as a compatible solute in D. hansenii 

(Figures 5-48 to 5-54) is a new observation to the best of our knowledge. Even more 

surprising is the presence of glycine betaine in M9 minimal medium cultures, which 

suggests that D. hansenii is synthesising this compatible solute de novo and not just 

taking it up (or its precursor choline) from rich YPD medium (Cummings et al., 

1993). The presence of glycine betaine in cell extracts of M. luteus was to be 

expected based on previous work with related bacteria (Ventosa et al., 1998) and M. 
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luteus was shown to use betaine as the main compatible solute and glutamate as an 

additional compatible solute (Figures 5-55 to 5-60). 

D. hansenii and M. luteus were both able to adapt to grow in M9 minimal medium 

containing iron, sulphur and aluminum at 25ºC. However, it might be that the main 

reason for the low effect of those elements on the growth of D. hansenii and M. 

luteus is due to the availability of those elements at pH 7 and the relatively low 

concentrations of iron, sulphur and aluminum used in this experiment. 

The intracellular volume (ICV), membrane potential (ΔΨ) and cytoplasmic pH (pHi) of 

D. hansenii cells were measured in M9 minimal medium at pH 7 and pH 3. The ICV of 

D. hansenii decreased with decreasing external pH from 5.7 µl mg-1 soluble protein when 

the cells were grown at pH 7 to 1.7 µl mg-1 soluble protein at pH 3. This indicates that 

cells grown at pH 3 were significantly smaller than cells grown at neutral pH, a finding 

that was confirmed by electron micrographs of D. hansenii (Figure 5.1). The ΔΨ of D. 

hansenii cells was found to be highest (most negative) at pH 3 (-73 mV) compared with -

30.3 mV at pH 7. Furthermore, the difference in membrane potential was more obvious 

when they were subjected to pH shocks, the ΔΨ was -90.7 mV when cells were grown at 

pH 3 and shocked by resuspension in pH 7. The ΔΨ was -19.7 mV when the cells grown 

at pH 7 were shocked by resuspension in pH 3.  

D. hansenii cells are able to maintain their cytoplasmic pH close to neutral when they are 

grown in M9 minimal medium at pH 7 (pHi was 7.1) or pH 3 (pHi was 6.7). This means 

that the pH gradient between the inside and outside of the cells is extremely large in cells 

grown at pH 3. In bacterial cells, where the ΔpH is very large, the ΔΨ is reversed (inside 



237 
 

positive), but as noted in the paragraph above this does not happen with D. hansenii cells.  

The most likely explanation is that the eukaryotic yeast cell does not use its cytoplasmic 

membrane as the site of ATP generation and therefore controlling the overall level of Δp 

may not be crucial.   

When D. hansenii cells were grown at pH 7 and shocked by resuspension in pH 3 the pHi 

jumped to 9.5 (alkaline), while when the cells were grown at pH 3 and shocked by 

resuspension in pH 7 the pHi decreased to 4.2 (became more acidic). These results 

suggest that D. hansenii cells have a problem in maintaining their internal pH against 

external pH stress in M9 minimal medium when they face a rapid change in the external 

pH value (measurements made 30 minutes after pH shock). 

7.2 Future Work 

Despite the success of isolating four microorganisms (two bacteria and two yeasts) 

in the present work from Rivelin and Limb Valleys in Sheffield, UK using 

traditional culturing methods, it was perhaps surprisingly not to isolate more novel 

strains or at least a greater number than just four microorganisms. As noted in 

Chapter 3, several different culture media were used, but future work could include 

the use of a larger variety of selective media to try to isolate additional 

microorganisms from these natural habitats. 

The use of electron microscopy (SEM and TEM) allowed the observation of some 

stress-induced changes in the cell structure of D. hansenii and M. luteus cells 

(Figures 5-1 to 5-4). However, it is highly recommended to use Environmental 
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Scanning Electron Microscope (ESEM) in future work which may lead to the 

discovery of further significant changes happening to microbial cells when grown 

under stress. 

The present experiments on the bioenergetics of growth of D. hansenii gave 

promising results, but it would be very interesting to carry out further research 

looking at the uptake of compatible solutes (or their precursors) from rich media. In 

addition, extending the pH shock experiments to times beyond 30 minutes after the 

pH change would allow the determination of the time taken for the cells to recover 

and return their ΔpH and ΔΨ to normal values. 
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Appendix A: 

Protein Standard Curve: 

 

 

Standard curve of Bovine Serum Albumin (BSA) 5 mg ml-1. 
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Appendix B: 

List of Solution Used: 

1. CTAB buffer 

2% CTAB (hexadecyltrimethylammonium bromide) 

100 mM TrisHCl [pH=8] 

20 mM EDTA, 

1.4 M NaCl 

2% β-mercaptoethanol [added just before use] 

2.  50× TAE buffer 

242 g Tris base, 57.1 ml Glacial Acetic Acid and 18.6 g EDTA are added to 900 ml 

dH2O before adjusting the final volume to 1 litre with additional dH2O. This solution 

is diluted 1 in 50 to produce 1 X TAE suitable for use as an electrophoresis buffer. 

3. Buffers used to provide a range of pH in M9 minimal, ½ LB, LB and 

YPD medium 

 

 
50 mM Buffers  

 
Common name      Molecular formula     Useful pH range     Working pH range           g l-1 

 
Mops                          

 
C7H15NO4S 

 
           2.5 - 4.0 

 
     3.5 - 4.5 

 
              10.46 

Mes C6H13NO4S     5.0 – 6.7     5.0 - 6.5               9.76 

Trizma C4H11NO3    7.0 – 9.0       7.5 - 8.5               6.05 
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4.  SOC medium 

The following reagents are added to 900 ml dH2O: 

20 g Bacto Tryptone, 5 g Bacto Yeast Extract, 2 ml of 5 M NaCl, 2.5 ml of 1 M KCl, 

10 ml of 1 M MgCl2, 10 ml of 1 M MgSO4 and 20 ml of 1 M glucose before adjusting 

the final volume to 1 litre prior to autoclaving at 121 oC and 15 psi for 15 minutes. 
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5. Standard Hyperladder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standard HyperLadder I produces a pattern of 14 regularly spaced bands (10000, 8000, 

6000, 5000, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 800, 600, 400 and 200 bp). 
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6. Plasmid pCR 2.1 TOPO (3.9 kb) 

 

 

 

Schematic illustration of structure plasmid pCR 2.1 TOPO (3.9 kb) used as coloning 

vector. Vector data for pCR 2.1 indicating the ligation site for the TA cloning system and 

the available restriction sites. Information extracted from the Invitrogen TA cloning kit 

manual. 
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Appendix C: 

1. LV1 Strain 16S rDNA Foreword Sequences Applied in FinchTV Program 

 

2. LV1 Strain 16S rDNA Reverse Sequences Applied in FinchTV Program 
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3. RV3 Strain 16S rDNA Foreword Sequences Applied in FinchTV Program 

 

 
 

4. RV3 Strain 16S rDNA Foreword Sequences Applied in FinchTV Program 
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Appendix D: 

1. DR. Gilmour Lab Facility: 
A. Oxygen Electrode: 

 

B. PCR Equipments: 

 

C. Other Equipments:  
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2. Electron Microscope Facility: 

 

 
SEM                                                     TEM 

     

3. NMR Facility: 
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