Advances in Ptychography

Tega Edo

A Thesis submitted for the degree of

Doctor of Philosophy

Department of Electronics and Electrical Engineering
University of Sheffield
England

September 2011



Abstract

Ptychography aims to completely revolutionise imaging in visible light, X-rays and Electron
wavelengths by providing a robust platform for sub-Nyquist high-resolution real-time
imaging. This thesis explores the framework of the very promising implementation of
ptychography called the Ptychographic Iterative Engine (PIE). The PIE algorithm provides
an elegant solution to the phase problem that facilitates recovery of complex representations
of both the illuminating wave and the object of interest. The aim of this thesis is to present
work done on the study of the machinery behind the PIE algorithm. This thesis formulates
the solution provided by the PIE algorithm in reciprocal space; this shows the exact
minimisation routine implemented by the PIE update function and provides a unified

framework for quantifying the performance of the PIE algorithm.

This work is timely because it highlights aspects of the PIE algorithm that permits practical
implementation of bandwidth extrapolation of a specimen from a small detector and
demonstrates the uniqueness of the corresponding solution provided by the PIE algorithm.
This thesis also presents a viable scheme that utilises the redundancy of the ptychographic
dataset to greatly reduce the sampling requirement on the detector; thus optimising the
dataset size employed in real-time high-resolution reconstruction of the specimen over a wide

field of view.
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Chapter 1

1 Introduction

This thesis presents a novel theoretical analysis, backed up by computational modelling, of an
imaging technique called ptychography, which in the last few years has been the subject of
intense research. This approach does not require the use of a lens to form the image and as a
result circumvents the limitations of lenses such as aberrations, which restrict the maximum
resolution that can be achieved in conventional imaging systems. The technique works at
visible light wavelengths, for both transmission and reflection geometry. Although resolution
1s not an issue at visible light wavelengths, where very good lenses are available,
ptychography nevertheless can benefit light optics. In particular, it provides a very accurate
measure of the phase of the exit wave from the specimen. Because there is no need for a lens,
it can also allow for very long working distances to be used, say for the imaging of live cells

through thick vessels such as petri dishes.

However, the most important application of ptychography is at X-ray and electron
wavelengths where it promises to revolutionise the quality and resolution of atomic-scale

transmission microscopy. Specifically the resolution of a ptychographic imaging system is



only limited by the size of the detector, which contrasts with the conventional imaging
methods that require aberration correction over the angle of the wavefield processed by the
lens. Moreover, ptychography provides the means of solving for the complex optical
potential of the specimen and as a result eliminates the need for different contrast
mechanisms such as bright field Zernicke phase contrast or diffraction contrast, which
introduce serious artefacts into the image. The basic experimental setup for the technique
comprises a detector placed downstream from the specimen. The specimen is illuminated by
a localised wavefield that is translated across it, as shown in Fig. 1.1. In Fig 1.1a the aperture
is translated across the specimen in order to illuminate different parts from which the
ptychographic diffraction patterns are collected. The configuration of Fig. 1.1b, where a
curved wave illuminates the specimen, is the main thrust of this thesis. A typical diffraction
pattern from this setup is composed of a Gabor Hologram at the central part and intensities
outside this region. The central bright disc region is called the bright field and the outside is
called the dark field. Whilst Gabor holography requires a highly transparent specimen, this is
not a requirement of ptychography and the dark field data provides the means for increasing

the resolution, without using a larger lens.

plane-wave  aperture magnitude of
curved illumination

object

i
Translation of
detector
aperture specimen plane

(@ (b)

FIGURE 1.1 — Model setup for ptychography, which employs (a) an aperture illuminated by a plane wave (b) a curved wave

illumination, made by a lens that is not shown here.



Ptychography utilises a set of diffraction patterns generated by moving a finite illumination
beam over the specimen, with a stepping size that is equal to a substantial fraction of the
illumination size, as illustrated in Fig. 1.1. The stepping size and number of diffraction
patterns determines the redundancy of the ptychographic dataset, when compared to other
imaging diffractive imaging methods that employ only a single diffraction pattern. This
allows robust recovery of complex objects using iterative algorithms that compute the phase
of the diffraction patterns via a deconvolution process. A highly successful deconvolution
algorithm used to retrieve specimen information from such diffraction patterns is called the
Ptychographic Iterative engine (PIE). The PIE algorithm has proved to be a very robust,
especially in the presence of noise. Furthermore, an extension of the fundamental algorithm
called the extended-PIE (ePIE) provides the means for simultaneously solving for the object
and illuminating wave using the ptychographic dataset. The ePIE algorithm has been widely
adopted and is currently used at five X-ray synchrotrons worldwide. @ To date, these
algorithms are used because they work, however the underlying mechanism that underpins

their operation is not well understood.

This thesis undertakes the first detailed mathematical analysis of the PIE algorithm in order to
provide a better understanding of its operation. It explains the exact mechanism that the PIE
algorithm employed in object recovery and also provides the framework for investigating
further extensions to both the PIE and ePIE algorithm, especially when count rates are low so
that noise is a significant issue in the effectiveness of the technique. It is shown that even
though the PIE algorithm was invented for the inverse solution of ptychographic data sets, a
key part of the algorithm, called the ‘update function’ can be used on single diffraction
patterns with great effect, especially in the case when the illumination at the specimen is
curved. The thesis also investigates various improvements and extensions of the technique,

including resolution improvement via an algorithm which can recover not only the phase of



the diffraction pattern, but also the phase and modulus of parts of the diffraction pattern that
have not actually been measured. It also considers sub-Nyquist sampling of the diffraction
pattern: to date, an absolutely key underlying assumption of all so-called diffractive imaging
methods (coherent diffractive imaging, or CDI) is that the diffraction pattern must be sampled
at twice the Nyquist sampling of the underlying complex wave. Here it is shown for the first
time that in the case of ptychography, redundancy in the data can reduce this required

sampling by a staggering factor of 5.

Although at the time of writing electron ptychography is not well developed (though it is
rapidly being developed), the results presented here have some very significant implications
for the future of electron imaging. In particular, the curved illumination configuration, which
for experimental reasons is the only practical implementation of electron ptychography,
offers an easy route to double the resolution of a microscope run in the scanning transmission
mode. Because in this mode only a bright central region of the diffraction pattern needs to be
processed, the dynamic range of the detector does not need to be very high (as is the case if
the dark-field data is processed simultaneously). Given the extreme difficulty of improving
the resolution of electron imaging by further development of aberration-corrected lens
technology, a possible improvement by a factor of two using the work presented here should

be very significant.

Chapter 2 presents the theory of conventional imaging and discusses some of its limitations.
This chapter also reviews the literature of diffractive imaging methods, which provide viable
alternatives to conventional imaging methods and it also presents a detailed description of the

PIE and ePIE algorithms.

Chapter 3 investigates the impact of the illumination type on the quality of the

reconstructions when the algorithm processes a single diffraction pattern. This allows the



optimisation of diffractive imaging setup and highlights the need to discuss solubility of the
phase problem in terms of interference rather than sampling. This is because interference
provides a general explanation that cuts across different experimental setups. Chapter 3 also
formulates the PIE algorithm in reciprocal space to provide a framework for discussing the

behaviour of the algorithm in later chapters.

Chapter 4 investigates the impact of experimental parameters on the PIE algorithm, in
calculations that apply the algorithm to a single diffraction pattern for the setup shown in Fig.
1.1b. These calculations use a single diffraction pattern in order to consider the algorithm in
isolation, so that the deconvolution process provided by the algorithm is decoupled from the
benefits of the multiple diffraction patterns available in ptychography. This work is also
applicable to diffractive imaging experiments that use a single diffraction pattern. The
parameters examined include the number of counts in the diffraction pattern, the condenser
aperture and the defocus. The defocus calculations also explore the issue of sampling on this
setup. This investigation provides additional insight into the inner workings of the

deconvolution process, provided by the PIE algorithm.

In Chapter 5, the error tolerance of the ePIE algorithm is investigated in calculations that use
the model setup of Fig. 1.1b. These calculations examine several error sources including the
number of counts in ptychographic diffraction patterns and incorrect estimation of the
illuminating wavetfield. The wavefield is characterised by the defocus and astigmatism
parameters. Furthermore, the distribution of counts information in a set of diffraction
patterns is also investigated, in order to determine the optimum data collection strategy for

ptychographic experiments.

Chapter 6 explores the expression of information in a single diffraction pattern and the

diversity that is introduced by moving from single diffraction pattern calculations to multiple



diffraction pattern calculations. The investigation was undertaken for the setup shown in Fig.
1.1b using electron parameters. This analysis provides insights that facilitate bandwidth
extrapolation or resolution improvement, which has significant implications in electron
microscope imaging because it could potentially double the resolution of even the latest
aberration corrected microscope. It also improves the resolution of uncorrected microscopes
by a factor of two without the need for aberration correctors. Chapter 6 also explored sub-
Nyquist sampling of ptychographic diffraction patterns and the findings of this work radically
call into question the conventional wisdom of the sampling requirement for diffractive

imaging.



Chapter 2

2 Theory of Imaging

Section 2.1 formulates the theory of light propagation and provides the Fourier transform
representation that is crucial for diffractive imaging methods. Section 2.2 presents
conventional imaging using Abbé’s theory to highlight the connection between diffractive
imaging and conventional imaging. In Section 2.3, the difficulties of conventional image
formation using short wavelength radiation and works that have been done to overcome some
of these limitations are discussed. Section 2.4 introduces the theory of lens aberration and
discusses the condenser lens aberrations that occur when forming a finite illuminating
wavefield at the specimen in short wavelength diffractive imaging experiment using
electrons. Diffractive imaging methods provide a robust imaging alternative to conventional
imaging methods; these are reviewed in Section 2.6. A description of early phase retrieval
algorithms and a detailed outline of the PIE algorithm are given in Section 2.6.3 and Section
2.6.4. Section 2.7 discusses the sampling requirement in diffractive imaging and Section 2.8
covers the resolution of diffractive imaging methods. In Section 2.9 resolution improvement

using ptychography is discussed.



2.1 Wave Propagation

This section provides an explanation for the use of the Fourier transform as a propagator in
diffractive imaging. The Fourier propagator provides an efficient means for computing the
scalar wave function, which encodes the probability distribution of photons or electrons over
a plane given prescribed initial conditions at a different plane with a separation distance (z).
The scalar wave approximation of the electromagnetic field is discussed in Section 2.1.1
where the Helmholtz equation is introduced. The Helmholtz equation is a partial differential
equation derived from Maxwell’s equations that describes the propagation of light in free
space. The Helmholtz equation is equivalent to the time independent Klein-Gordon equation,
which adequately describes the electron scattering process (Fujiwara, 1961), thus the
succeeding derivations also apply to electrons. The scalar wave function is a solution to the
Helmbholtz equation. The Rayleigh-Sommerfeld diffraction integrals provide a solution to the
Helmbholtz equation in situations where boundary conditions are imposed in one of the planes.
The Rayleigh-Sommerfeld diffraction integral is a convolution integral and can thus be
expressed as a product using the Fourier convolution theorem. In this formulation, the
propagation of waves in free space is described by a transfer function. In experiments where
the scattering angles are small, the transfer function is approximated by the Fresnel transfer
function. Furthermore, increasing the distance between the planes, as in the case of far field
diffractive imaging experiments, gives the propagation between planes in terms of the Fourier

transform.



2.1.1 Scalar wave approximation of light propagation

In conventional imaging, structural details of an object/specimen are revealed via interactions
with light or electrons. Light is an electromagnetic (EM) radiation that satisfies Maxwell’s
equations. In free space Maxwell’s equations can be expressed as separate wave equations
for the electric (€) vector of the EM wave (Goodman, 2005), given by

10% (2.1b)

Ve —Eoe =0

and the magnetic (H) vectors of the EM wave, given by

107G (2.1a)

These equations show that all the components of the electric (€;) and magnetic (H;) fields of
propagating EM waves satisfy an identical wave equation and can thus be summarised by a

single scalar equation given by

10%¢ (2.1¢)

where c is the velocity of propagation in a vacuum. The subscript j identifies the x, y and z
components of the electric and magnetic fields. If the scalar field is strictly monochromatic,
we get ¢(x,y,z) = P(x,y, z)exp[iwt], where the space-dependent part (¥ (x, y, z)) satisfies

the time-independent Helmholtz equation given by

V2¢ _ k2¢ — 0’ (22)

where k = ki + ki + kZ=w/c = 2n/A



A solution to Helmholtz equation for the case where the aperture (A) of an opaque screen is
illuminated by a monochromatic wave is given by the Rayleigh-Sommerfeld diffraction

integrals in Eq. (2.3) (Bouwkamp, 1954).

1 0 ikR 2.3
Y(u,v,2) = Effﬂl,l)(X, y,z=0) E(%) dxdy 2:32)
exp[ikR] (2.3b)

1 0
Y(u,v,z) = —ﬁffﬂg(lp(x,y,z = 0))dedy

Here the distance from a point (x,y) in the aperture plane to another point (u,v) in the

detector plane (See Fig. 2.1) is given by R = \/(u — x)% + (v — y)% + z2.

FIGURE 2.1 — illustration of aperture and detector plane coordinates

Eq. (2.3a) can be can be rewritten as Eq. (2.3b) using integration by parts together with the
boundary condition (¥(x,y,0) = 0 outside the aperture). Eq. (2.3a) gives the propagated
wavefield in the region z > 0 when the values of the wavefield Y (x, y, 0) are known a priori,

while Eq. (2.3b) provides a similar solution when the derivatives of the wavefield

10



aa_z (¥(x,y,0)) take on prescribed values (Born and Wolf, 1999). In this thesis we employ

Eq. (2.3a) where the complex wave distribution at the aperture plane is used to compute the

propagated wavefield at the detector plane.

Eq. (2.3a) can be viewed as a convolution integral that describes a linear system with input

Y(x,y) and output Y(w,v). In this view, the convolution kernel h(x,y;z) =

10
21 0z

(%) defines the impulse response of the system with r = \/x2 + y2 + z2. It

should be noted that z is not a variable in the equations of this section but a parameter of the

convolution kernel that encodes the distance between the planes of propagation in Fig. 2.1.

In order to express Eq. (2.3) in the frequency domain, we review the Fourier convolution
theorem. The Fourier convolution theorem enables the convolution integral of two functions
O(x,y) and P(x,y) to be expressed as a multiplication in the frequency domain (ky, ky).

This facilitates efficient computation of convolution integrals via

pu,v) = f O0(x,y)P(u —x,v — y)dxdy, (2.4a)

@(kyx, ky) = O(kx, ky)P(kx, ky). (2.4b)
The relationships between the real space representation and the Fourier space representation

of these functions are given by

@k, ky) = Flo(u,v)} = -U o(u, v)expli(uky + vky)]dudv, (2.4¢)
O(kx, ky) = F{O(x,y)} = ﬂ 0(x, y)expli(xky + yky)ldxdy, (2.4d)
(2.4e)

Pl k) = FPCo )} = [[ PGrydexpliCeks + yi)ldxdy,
where F is the Fourier transform operator. The reader should note that this thesis employs

the same symbol to represent a function in real space and Fourier space, where the distinction

is encoded by explicit dependence of the function on their corresponding coordinates; in the
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two-dimensional representation the real space coordinate is given by (x,y) and the Fourier
space coordinate given by (ky,ky). Furthermore, the parameter z quantifies the distance
between the aperture plane and the detector; it is not a variable but a parameter in the

convolution kernel.

Using the Fourier convolution theorem of Eq. (2.4b), the frequency domain representation of

the convolution integral in Eq. (2.3a) is given by

. (2.5)
e 3 7) = g, by, O)exp i [1 = 2203 + ) |,
where the Fourier transforms of the wavefields and the impulse response are given by

B B . (2.6a)

Y(kx, ky; 2) = Flp(uw,v; 2)} = || (u,v; 2)expli(uky + vky)],
B B . (2.6b)

PYlkx, ky; 0) = F{pp(x, y; 00} = || ¥(x,y; 0)expli(xky + yky)],

2.6
exp [ikz\/l — 22(kZ + k2)/4m?|, <1, (2-6c)
h(kx, ky, Z) = Th(r) =
0, 0=>1.

Here 60 = \/Az(k)z( + kZ)/4m? maps angles at the aperture plane and h(ky,ky;z) is the
transfer function of free space propagation over a distance z. Eq. (2.5) is the Angular
Spectrum formulation of scalar wave propagation (Sherman, 1967). It expresses the
spectrum of the propagated field in terms of the spectral decomposition of the field at the
aperture plane and the transfer function of free space. The propagated wavefield at the

detector plane is the inverse Fourier transform of Eq. (2.5), given by

Y(u,v;2) = F W(ky, ky; 2) = [[ P(ky, ky; 2)exp(—i(uky + vky))dkydky, (2.7)

where F~1 is the inverse Fourier transform operator.
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Most diffractive imaging experiments are performed in the paraxial regime, where diffraction
angles (0, = Ak,/2m) and (0, = Ak, /2m) are small. The Fresnel transfer function
he(ky, ky; z) in Eq. (2.8d) approximates the more general transfer function h(ky, ky; z) of
Eq. (2.8b), when small angle approximations are made. The Fresnel transfer function hy is

given by the first two terms of the binomial expansion of the general transfer function h. The
corresponding impulse response or convolution kernel is the inverse Fourier transform of the

Fresnel transfer function, given by

_ y Ne . .k ,
he(x,y;z) = F~he(ky, ky; z) = (iAz) " explikz]exp [lz(xz + yz)] (2.8a)

where the Fresnel transfer function derivation is given by

h(ky, ky; 2) = exp |ikzy/T = 22 (% + kD), (2.8b)

= exp [ikz (1 - 3220 + k3) + ). (2.8¢)

hy (kx. ky; 2) = exp [ikz (1 — 12203+ kg))], (2.8d)

Using the Fresnel kernel h¢(x,y; z), the propagation equation in the Fresnel regime is given
by

Y(u,v; z) = (iAz) " explikz] ffﬂz/)(x, y,0)exp [l£ ((u—x)2%+w— y)z)] dxdy, (2.9a)

=0 _U ¥ (x,y,0)exp [—i%(xz + 3’2)] exp [—ig(ux + vy)] dxdy, (2.95)
A

where Q = (i1z) lexplikz]exp [izk—z(u2 + vz)] is a parabolic phase distribution over the
detector plane that can be moved out of the integral. The second quadratic term in the

integral that varies over the aperture plane, depending on (x,y), and cannot be taken out of

the integral.
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In the far field (large values of z), the Fraunhofer approximation of the Fresnel integral in Eq.
(2.9) gives the wavefield in the detector plane as the Fourier transform of the wavefield at the
aperture plane. The Fourier relationship holds because in the Fraunhofer regime, the
quadratic phase term (exp [—izk—z(x2 + yz)]) inside the integral of Eq. (2.9b) varies very
slowly over the diffracting region of the specimen (defined by A) and can be considered to
be constant; this condition is satisfied for propagation distances where 2z >
k(x? + y?)max/2. Furthermore, the size of the detector is larger than the specimen so that
the propagated wavefield at points u > xp,x and v > y. results from interference

conditions with appreciable linear phase variations over the specimen. These phase
variations come from the term exp [ig(ux + vy)] in Eq. (2.9b), which introduces linear
phase ramps over the specimen, whose gradient depends on the values of u and v. The term
exp [i S (ux + vy)] can also be viewed as the Fourier basis with spatial frequencies of ky =

ku/z and ky = kv/z. With these considerations, the wavefield in the detector plane

becomes the Fourier transform of the wavefield at the specimen plane and is given by

Y(u,v,z) =Q ffﬂl/)(x, y,0)exp [i ((kz—u) x + (g) y>] dxdy, (2.10a)

=Q f f Y(x, y, 0)explilkyx + kyy)ldxdy. (2.10b)
A

By dropping the explicit dependence on z, the diffraction pattern I,,,(u, v), measured by the

detector is given by

2 (2.11a)

1

I, v) = ‘Q f wa. VexpliCkyx + kyy)ldxdy

2 (2.11b)

)

f fﬂzp(x, VexpliCkyx + kyy)ldxdy

where |Q| = 1/1z, because it is a pure phase term.
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2.2 Abbe theory of imaging

Abbe's theory of imaging describes image formation as a two-step process consisting of the
analysis and synthesis of the exit wave emanating from the specimen/object (Abbe, 1873). In
the analysis stage, visible light rays emanating from the object at a given angle are all focused
to a point in the back focal plane of the converging lens, shown in Fig. 2.2. This process of
mapping angles (0) to a unique point in the back-focal plane is identical to the Fourier
transform in Eq. (2.10) and corresponds to the 'Fourier analysis' step of image formation.
The Fourier transforming property of a converging lens comes from the parabolic phase

change introduced by the lens thickness function over the lens aperture (Goodman, 2005).

In the case where the object is placed against the lens, Eq. (2.10) gives the complex wavefield
at the back focal plane of the lens, in which the propagation distance z equals the focal length
of the lens (Goodman, 2005). The intensity pattern of the wavefield at the back-focal plane is
a scaled down version of the Fraunhofer diffraction pattern that would be measured at large

distances from the object.

AR R R

Image

lens back-focal
plane of lens

FIGURE 2.2 - Image analysis step of Abbe's theory. The analysis stage of Abbe's theory is an angular spectrum
decomposition of the object transmission function. The process terminates at the back focal plane of the objective lens
where linear displacement from the optical axis relates to a corresponding angular displacement about the optical axis in
the object plane. This is equivalent to a Fourier transform.
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In the synthesis stage, the wavefield at the back-focal plane of the lens propagates onwards to
form an image of the object at the image plane. This propagation step is given by a single
Fourier transform. Abbe's theory allows us to view the converging lens as a linear system
that imparts phase changes to the propagated wavefield from the object in such a way as to
allow information that emerges from a point in the object plane to converge to a conjugate

point in the image plane.

Abbe's theory shows that knowledge of the complex distribution in the back focal plane
together with Fourier processing of this information provides the complex transmission
function of the object. However, measurement of the wavefield at the back focal plane using
a detector gives only intensity information because detectors can only measure intensity data.
The corresponding phase information (over the back focal plane) is therefore lost during the
measurement process. This inability to capture the phase of complex signals occurs in many

areas in science and is called the phase problem.

The analysis above assumes that the lens is perfect, with an identical frequency response over
a wide range of angles. However, in practice deviations from the perfect lens occur due to a
finite lens thickness, which gives rise to an angular dependent frequency response.
Furthermore, fabrication errors result in a lens that generates a distorted image of the

specimen. The next section discusses some of the limitations of the lens.

2.3 Limitations of the lens

Imperfections in the simple lens results in distortions of the image, as the lens no longer maps
points from the object plane to corresponding points in the image plane. These distortions are

characterised by the aberrations of the lens, such as astigmatism and spherical aberration.
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Astigmatism arises when the lens possesses different focusing powers in the horizontal and
vertical planes. As a result on axis image points are blurred to an oval shape. The effect gets
worse for off-axis points where coma dominates and the oval morphs into a conical shape
that points toward the optical axis. In the case of spherical aberration, the lens focussing
strength increases with distance from the optic axis. This means that rays that traverse
regions of the lens further from the optic axis get bent more and thus focus at planes other
than the image plane, resulting in image blur. In addition to monochromatic aberrations,
chromatic aberrations also arise in cases where the incident beam has an energy spread. This
is because the refractive index of the lens varies with wavelength and as a result, different
wavelengths focus on different planes. In visible light optics, doublets which are composed
of two simple lenses paired together to function as a single lens are used to reduce the effects
of aberrations. Doublets are employed because they provide additional optical surfaces that
can be engineered to reduce optical aberrations. However, a good camera requires up to 10

lens or more in order to completely minimise the effects of aberrations.

The requirements of short wavelength lenses (such as X-ray and electron) are very stringent.
In the case of X-rays the predominant lens used is the zone plate, which requires
manufacturing precision of the outer circular zones to be the same order as the required
resolution. This is impractical for high resolution imaging with hard X-rays, where a zone
plate with a thickness of ~8um and outer zone lateral dimensions of ~2nm would need to be

manufactured (Schroer, 2006).

In the case of electrons, the potential used to accelerate the electrons needs to be stable to
within 1 part of 107 in order to minimise the chromatic aberrations resulting from a spread of
the beam energy. The current through the objective lens coil also needs to provide a stable
enough magnetic field that preserves the path difference (less than the electron wavelength)

of scattered beams so they properly reinterfere to form an image at the image plane, where
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the path difference defines the relative phase values of the scattered beams. In 1936 Scherzer
showed that spherical aberration term of rotationally symmetric static lenses is always non-
negative and as a result cannot be eliminated by skilful design, which employs a system of
round electron lenses (Scherzer, 1936). In practice spherical aberration limits the resolution
of electron images to about 50 electron wavelengths (Hawkes, 2001). Scherzer (1947) and
(1949) proposed the use of a non-symmetric lens to cancel the effects of aberrations but the
complexity of implementing non-symmetric lens aberration correctors delayed its realisation
until Zach and Haider (1995) demonstrated a correction system in the low voltage Scanning
Electron Microscope (SEM). In subsequent years, Krivanek et al (1997) and Haider et al
(1998) successfully implemented aberration correctors in the Scanning Transmission Electron
Microscope (STEM) and Transmission Electron Microscope (TEM) configurations.
Although these lens systems allow atomic resolution imaging, they require precision
alignment, otherwise the image is highly distorted by the aberration of the corrector lenses
and the alignment procedure is quite complicated. Furthermore, aberration correctors are
very costly, where a typical corrector costs about $1M and high resolution electron
microscopes (HREM) only image thin samples in order to produce interpretable images using

the projection approximation.

2.4 Aberrations in imaging systems

The theory of aberrations is further explored in this section in order to provide background
material to be used in subsequent chapters of this thesis. In direct imaging methods, the
quality of an imaging system is determined by its ability to map points from the specimen
plane on to points in the image plane. Any imperfections in the imaging system that prevent

such ideal mappings are called aberrations. While this is not a problem in diffractive
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imaging, it will be useful to understand the formulation of aberrations because the
illumination forming optics in the case of X-ray and electron microscopy makes use of

aberration parameters in order to characterise the form of the illumination function.

Since propagation from the source plane to the specimen plane can be computed via
convolution integrals, this means that any departure of the radiation from the ideal path is
captured by an appropriate convolution equation. Consequently, its effect can be
incorporated via multiplication in the frequency domain. In the case where the illuminating
radiation traverses a lens the appropriate frequency domain is the back focal plane of the lens.
It is important to note that the lens has angular dependent frequency response and thus
requires different transfer functions for beams incident at different angles to the optical axis
(i.e. plane waves with different k-vectors incident on the lens requires different transfer
functions, where k := (ky, ky)). This section considers the case where the incident plane
wave propagates along the optic axis so that a perfect lens forms a single bandlimited spot at
the centre of the specimen plane. The wavefront at the back focal plane of a perfect lens is

illustrated by the Gaussian reference in Fig. 2.3.

Gaussian
reference
7’
~
’
/

Aberrated
wavefront

Back focal
plane of lens

FIGURE 2.3 — illustration of aberration at the back focal plane of the lens

In a real lens, departure of the converging aberrated wave front from the Gaussian reference

(see Fig. 2.3) is encoded by the phase of the aberration function (A) in Eq. (2.12) (Kirkland,
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2010). The terms of the aberration function that are considered in this thesis are those with
coefficients corresponding to defocus (Az) and two-fold astigmatism (Cj,4, Ci2p)- The

aberration function A(8, ¢) is given by

2mi(l 1 , 1 ..
A(B,¢) = exp T(EAZ 04+ Eclza 0% cos(2¢) + EC1Zb -0 51n(2¢>))

(2.12)

where 6 and ¢ are polar coordinate variables in the back focal plane of the condenser lens

and with the change of variable given by 8, = 6 cos(¢) and 6, = 6 sin(¢).

Defocus

The first term in Eq. (2.12) models the case where the focus plane of the condenser lens is
different from that of the specimen plane. The illumination at the specimen plane is spread
over an area determined by the defocus value Az. This is particularly important for
diffractive imaging experiments where the size of the diffracting region, required for
adequate sampling at the detector plane, cannot be made with a pinhole aperture. This is

especially true for high resolution X-ray and electron experiments.

Two-fold Astigmatism

The last two terms in Eq. (2.12) model the effect of two-fold astigmatism. Two-fold
astigmatism is also a common aberration introduced by imperfections in electron imaging
optics and is the primary parameter that defines the shape of the illumination function. In
traditional bright field transmission imaging, the presence of two-fold astigmatism introduces
distortions into the imaging system in which points are mapped on to ovals resulting in

degradation of the image. In STEM mode, this determines the minimum size of the focused
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probe and thus limits the effective resolution of the system. Astigmatism does not limit the
resolution in diffractive imaging because the objective lens is not required to form an image
of the illuminated object. Furthermore, in the case where the incident illumination has some
astigmatism, the situation is not detrimental because diffractive imaging methods can cope

with structured illumination.

2.5 Overcoming the limitations of the lens

Several routes have been suggested to liberate the process of image formation from the
limitations of the lens. For example, Gabor’s invention of holography was motivated by the
need to provide a method that circumvents the theoretical limitations of the round electron
lens (Gabor, 1948). Holography is an imaging method that encodes the phase information of
the propagating wavefield as intensity variations in the recording plane and thus provides a
solution to the phase problem. In holography the propagated wavefield interferes with a
reference wave. The reference wave comes from a part of the incident beam that does not

interact with the specimen.

For a highly transparent specimen most of the incident radiation traverses the specimen
without interaction and forms a strong reference at the recording plane. This setup generates
an inline hologram or Gabor hologram. The hologram is developed and printed on a

transparent material to give a transparency.

(a)
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(b) (©)

FIGURE 2.4 — (a) Recorded hologram (b) image of micrograph (c) reconstruction. The discs that define the size of the
original and reconstructed images have a diameter of Imm. These images were reproduced from the original paper by

Gabor (1949)

Fig. 2.4a shows the hologram recorded by Gabor (1949) and Fig. 2.4c shows the
corresponding reconstruction from the hologram. By employing a strong curved reference
wave Gabor provided the means to encode most of the phase information of the wavefield in
the recorded hologram. Gabor’s formulation is particularly efficient, as it requires no
mathematical calculations to recover the phase of the wavefield in the recording plane. This
is because the phase of the wavefield in the recording plane is almost equal to the phase of
the reference beam, due to the strong reference wave and because both waves interfere at the
recoding plane. That is to say adding the phasors of the strong reference wave to low
magnitude diffraction components affects the phase values slightly and also results in

intensity variations over the recording plane. Subsequent illumination of the transparency
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with a model of the reference wave, recreates a complex wavefield at the transparency that

closely approximates the original wavefield at the recording plane.

As a general imaging method, Gabor holography has the limitation that the specimen needs to
be substantially transparent in order to encode phase information. In addition the Gabor
holographic reconstruction is plagued by a diffuse twin image when illuminated by a curved
wave. The presence of the twin image arises from the measurement process of squaring a
complex function. Leith and Upatnieks (1962) devised a method that eliminates the twin
image present in the Gabor holographic reconstruction. This formulation provides the means
of separating the twin images by employing a tilted reference beam; the encoded phase
information separates the conjugate solutions at the image plane and is called off-axis
holography. Off-axis holography requires stability in the reference beam, which preserves
the path difference between the reference and scattered beams in order to correctly encode
phase information into the intensity variations. It also places a stringent sampling
requirement on the detector because of the large phase gradient (over the recording plane)

needed to separate the true image from the conjugate image.

An alternative method that provides a solution to the phase problem is X-ray crystallography.
In X-ray crystallography the relative magnitudes of the Bragg peaks together with a priori
information about the finite size of atoms, crystallographic space groups and knowledge
about the constituent atoms are used to reduce the number of candidate solutions. Diffraction
patterns are computed using crystallographic models of the remaining candidates and the
closest to the recorded diffraction pattern gives the best guess of the crystal structure.
Although crystallographic methods employ finite crystals (as opposed to perfect crystals of
infinite extent), the strengths of signals at Bragg peaks are very high because the Bragg
intensities are proportional to the sixth power of the linear dimension of the unit cell (in the

case of a cubic unit cell). As a result, finite crystals with several unit cells diffract most of
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the incident radiation to Bragg peaks and thus allow crystallography with finite samples
because of the high signal to noise ratio (SNR) at Bragg peaks. Additional information can
also be incorporated by taking the Fourier transform of the diffraction pattern to give the
Patterson function where analysis of the peaks provides information about distribution of
interatomic distances in the crystal (Patterson, 1934). As an imaging technique, X-ray
crystallography has the drawback of imaging only crystalline materials whereas most

materials of interest are not crystalline.

A technique that combines the merits of these methods while avoiding their limitations at the
expense of computational cost is diffractive imaging. In diffractive imaging, a diffraction
pattern is measured, just like crystallography, from a specimen that can be either amorphous
or crystalline. In order to encode phase information in the diffraction intensity, like
holography, a structured beam illuminates the specimen where the convolution integral
encodes the necessary phase information. In the case of curved beam illumination, the

reference beam need not be as strong as that of Gabor holography.

2.6 Diffractive Imaging

Diffractive imaging is a lensless imaging method that computes the optical potential of a
scattering medium from a diffraction pattern or set of diffraction patterns. Unlike
conventional imaging methods, the process of image formation uses only the analysis stage of
Abbé¢'s theory, where a specimen is illuminated by coherent radiation and a Fresnel or
Fraunhofer diffraction pattern is measured. Diffractive imaging provides the complex

representation of the object (crystalline or amorphous) that is free from aberration distortions,
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which plagues conventional imaging systems. It is rapidly becoming an invaluable imaging
tool in short wavelength microscopy because it circumvents the limitations of X-ray and
electron lenses. Fig. 2.5a shows a typical diffractive imaging setup that generates a
diffraction pattern from a finite specimen illuminated by a plane-wave, the corresponding

diffraction pattern measured in this setup is shown in Fig. 2.5b.

Plane-wave Emerging wave-front

object

(a) (b)

FIGURE 2.5 — (a) illustration of diffractive imaging setup where a plane wave illuminates a finite amorphous specimen. (b)
Typical far-field diffraction pattern from a finite amorphous object illuminated by a plane-wave illumination

An additional benefit of diffractive imaging is the ability to easily improve resolution by
increasing the size of the detector as illustrated in Fig. 2.6, where the detector records
intensities at scattering angles greater than the processing range of the lens. This is not
easily achieved with conventional imaging methods because the imaging system has to
correct lens aberrations to very large angles, which is very difficult to achieve, especially for

electrons and X-rays.
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FIGURE 2.6 — (a) Lens and camera in reciprocal space. The maximum spatial frequency processed by the lens in angle
space is mapped to the size of the detector, where the detector is used to capture diffraction patterns. (b) Increasing
the angular size of the detector extends the range of spatial frequencies captured by the detector. This means that image
resolution can be improved by simply increasing the detector size.

Furthermore, increasing the size of the detector allows strong expression of three-dimensional
(3D) information of the specimen in the diffraction pattern (Rodenburg, 2008), although the
sampling requirement of the detector is more stringent at high angles because speckle sizes
become smaller (Rodenburg, 1988). Expression of 3D information is analogous to parallax
where the top surface of the specimen moves with respect to the bottom surface. As a result
the interference condition changes with viewing angle (off-centre detector pixels), thus a
large detector improves our ability to extract 3D information about the specimen. By similar
reasoning, structured illumination that comprises several plane-waves move 3D information
to the central part of the detector. This means that diffractive imaging has the potential to
recover 3D information from a diffraction pattern without tilting the object as done in
tomography. Maiden, Humphry and Rodenburg (2011) recently developed a method for

extracting 3D information from a set of ptychographic diffraction patterns.
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2.6.1 Ptychography

Ptychography is a diffractive imaging method that employs multiple diffraction patterns to
provide a unique solution to the phase problem. The concept of ptychography was developed
by Walter Hoppe in a series of papers (Hoppe, 1969a), (Hoppe, 1969b) and (Hegerl and
Hoppe, 1972). Hoppe’s approach to the phase problem begins with the realisation that the
encoding of phase information in the diffraction pattern gives rise to a complex conjugate
ambiguity that is similar to the twin image problem in holography. Consequently any method
devised to retrieve the phase information needs to resolve such ambiguities. He examined the
phase problem in the case of crystals illuminated by a STEM probe. In this situation the
diffraction pattern comprises a set of discs, which can be made to overlap by increasing the
size of the lens aperture that generates the beam. Hoppe showed that shifting the illumination
to generate two diffraction patterns in this configuration provided a way to decode phase
information (Hoppe, 1969a) and the technique was called ptychography by Hegerl and Hoppe

(1972).

In 1969, Hoppe and Strube (1969) demonstrated the validity of ptychography with periodic
objects at visible light wavelengths and Hoppe (1969b) attempted to extend the idea of
ptychography to non-periodic objects but without much success. The lack of success was
because a large number of interfering beams made it difficult to devise a simple algorithm to
decode the phase information from the diffraction patterns. As a result, Hoppe (1982) made a
distinction between the applications of ptychography to crystalline and aperiodic objects

because he assumed that ptychography might not provide a solution in the aperiodic case.

Further work on visible light ptychography extended classical ptychography from two
diffraction patterns to a multiple diffraction pattern dataset generated by scanning the

illumination across the specimen (with a step size equal to the sampling interval) and
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collecting a diffraction pattern at each scan point. These experiments generated a dense
ptychographic dataset that was processed using the Wigner Distribution Deconvolution
method (WDDC) to generate a 1-D plot of the specimen (Friedman and Rodenburg, 1992)
and later work by McCallum and Rodenburg (1992) demonstrated two-dimensional imaging

of the specimen.

McCallum and Rodenburg (1993) showed that the illuminating wave and specimen
information could be simultaneously retrieved from this dataset although with great
difficulty. Further investigation of probe position errors by McCallum and Rodenburg
(1993b) showed that translation errors from half to twice the step size can be accommodated
by the WDDC method. In the case of crystalline samples, Fourier processing of a subset of
the dense ptychographic dataset provides a direct route to recover the complex representation
of the specimen function and was demonstrated with electrons by Nellist, McCallum and
Rodenburg (1994). This work showed that a dense ptychographic dataset was not limited by
the coherence function of the electron microscope. Chapman (1996) carried out similar work

at the X-ray wavelengths.

The dense ptychographic dataset comprises a set of STEM diffraction patterns that have
large-scale features and can thus be sampled using segmented detectors. Landauer,
McCallum and Rodenburg (1995) used a quadrant detector to recover the image of a weak
phase object and McCallum, Landauer and Rodenburg (1995) employed a three-sector
detector for complex image reconstruction. These works employed systematic addition and
subtraction of the intensities from the different sectors of the detector to infer amplitude and

phase contrast information.

Although these works demonstrate the principle of diffractive imaging, the reconstruction

methods lacked speed needed for routine imaging. For example, the WDDC method needs
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all the data to be recorded before it can start processing. The direction of diffractive imaging
research shifted to the iterative framework when Gerchberg and Saxton (1972) demonstrated
an algorithm that improved on the speed of image recovery. This framework is especially
robust when compared to the existing methods, at that time, because it does not require a
deconvolution operation. Subsequent works along this line of research now constitutes the

field of iterative phase retrieval.

2.6.2 Iterative phase retrieval

Iterative phase retrieval is a diffractive imaging framework, where the transmission function
of an object is recovered using algorithms that propagate a scalar wavefield (1)) between the
specimen and detector planes. The first iterative phase retrieval algorithm was implemented
by Gerchberg and Saxton (1972) where two intensity measurements (an image of the
specimen and a diffraction pattern) are used to constrain the algorithm. The Gerchberg
Saxton (GS) algorithm was first applied to modelled electron data comprising an electron
image and a Fraunhofer diffraction pattern. Propagation between the specimen and
diffraction plane was implemented with the fast Fourier transform (FFT) algorithm. At each
stage of the iteration the wavefield from the specimen is propagated to the detector plane
where the phase of the propagated wavefield is retained and the magnitude replaced by the
squared root of the modelled diffraction intensities; the reverse process is computed and the
specimen image is used to constrain the algorithm at the specimen plane and the
corresponding phase distribution is retained for the next iteration. The motivation behind this

scheme was the realisation that the measured intensities derive from coherent processes that

use phase information. Consequently, enforcing the magnitude signal /I, at the detector
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plane constrains the phase distribution at the specimen plane and vice versa. Chapman
(1975) applied the GS algorithm to the experimental electron diffraction patterns from
periodic magnetic structures and discussed some of the practical issues that surround the

implementation of the GS method in the electron microscope.

The GS algorithm can be described in a projection framework. In this formulation, the
operator (1) projects the estimated wavefield at the detector plane to the closest point that
satisfies the diffraction modulus constraint. It is useful to refer the projection operator (1my)
from the detector plane to the specimen plane for analysis (Elser, 2003). The real-space view

of imposing the diffraction constraint in iterative phase retrieval is given by

T {n ()} = F /1y, - expli - arg(F{y, D]} (2.13)
Employing Eq. (2.13) in the GS algorithm gives the estimated complex function (¥, (1)) at

the specimen plane as

Pn (1) = T {thn (1)} (2.14)

The complex function in Eq. (2.14) is then updated with the specimen image constraint (Ig)

so that the updated object is given by

Ynea () =I5 - exp [ - arg (P (1)) . (215
In some situations in astronomy and X-ray crystallography experiments, only measurements
corresponding to the Fourier transform of the object of interest are available. Fienup (1978)
extended the GS algorithm to work with a single intensity measurement and the resulting
algorithm was called the error-reduction (ER) algorithm. The ER algorithm utilises a single
diffraction pattern and a priori knowledge of the object size in real space. As with the GS
algorithm, the ER algorithm imposes two constraints (at the object and detector planes) in
each iteration step. However, the constraint in the specimen plane takes the form of a binary

mask (A(r)) rather than information from measured image intensity. This mask is called the
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support mask and takes a value of zero in regions that do not contribute to the diffraction
pattern and unity in regions that may contribute to the diffraction pattern, i.e. it defines an
upper bound for the object size in real space. The running estimate of the object in the ER

algorithm is given by

T {Yn (1)}, A(r) =1, (2.16)
Yrr(r) =
0, A(r) = 0.
The input-output approach was incorporated into the ER method for cases in which the
running estimate of the object function does not satisfy the size constraint in real space

(Fienup, 1978). This was done to avoid stagnation problems that plagued the ER algorithm.

The running estimate of the input-output method is given by

Y (1), A =1, (2.17)
Yn1(r) =

¢n(7”) -B- T[M{ll)n(r)}' A(T) = 0.
This particular implementation does not update the object in the region where A(r) = 1, thus
it was augmented with the ER algorithm in Eq. (2.16). In this approach, Eq. (2.16) and Eq.

(2.17) were used to update the object at different iterations. Fienup (1982) combined the

interchanging algorithm into a single algorithm called the Hybrid-Input-Output (HIO) given

by

T {Pn (1)}, A(r) =1, (2.18)
Y () =
Yu(r) — Broy{Ypn ()}, A(@) =0.

The HIO algorithm was shown to be a special case of a general class of iterative algorithms
that employ the Difference Map method (Elser, 2003). The Difference Map method updates
the object with average contributions from different constraint sets and as a result does not

readily get stuck in local minima of the search space. Several algorithms such as Solvent Flip
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(Oszlanyi and Siito, 2004), Average Successive Reflection (Bauschke, Combettes and Luke,
2002), Hybrid Projection Reflection (Bauschke, Combettes and Luke, 2003), Relaxed
Average Alternating Reflection (Luke, 2005) have found applications in iterative phase
retrieval. A review on the connections between the Difference Map method and these

algorithms, together with visual representations of their behaviour was given by Marchesini

(2007).

foe'le ceeed’ N 3

FIGURE 2.7 — (a) Recorded diffraction pattern. (b) Diffractive imaging reconstruction from the diffraction pattern. (c)
visible light image of specimen (d) scanning electron microscope image of specimen. These images are reproduced from the

paper by Miao et al (1999).

Miao et al. (1999) demonstrated the first experimental reconstruction at X-ray wavelengths
(see Fig. 2.7b). This work was done in transmission geometry where the reconstruction

algorithm employed the finite support constraint together with the positivity constraint.

32



Robinson et al. (2001) also imaged gold nano-crystals using hard X-rays in the reflection
geometry. Improving the convergence of X-ray diffraction pattern calculations with curved
illumination was explored by Nugent et al. (2005), Abbey et al. (2008) with an extension to
complex constraints by Clark et al (2010). Diffractive imaging at X-ray wavelengths has
been extensively investigated; a review of the literature is given in a recent paper by Nugent

(2010).

Error Metric

The sum squared error between the measured intensity and the modulus square of the Fourier
transform provides a suitable metric for investigating trends of the iterative algorithms. The
error metric (E') measures the error between the estimated object’s diffraction pattern and the

measured diffraction pattern. This is given by

E = Uy = 1F ) @19)
Gerchberg and Saxton (1978) showed that in the case of two intensity constraints (i.e. when
one has a diffraction pattern and an image of the object), the error metric either decreases
with iterations or stays the same, based on Parseval’s theorem. Fienup (1982) showed that
the case of two intensity constraints (image and diffraction pattern) and the case of a single
intensity constraint (diffraction pattern) together with a support in real space are both error
reduction methods, because, in both cases, the projection operations move the object guess to
a point closer to the correct object function in the region outside of the support. This thesis
employs the mean squared error (MSE) metric to investigate the convergence of the

calculations in subsequent chapters. The MSE is given by the error in Eq. (2.19) divided by
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the power of the measured diffraction pattern and provides identical convergence properties

as Eq. (2.19).

2.6.3 Benefits of diversity in iterative phase retrieval

Ptychography is one of several ways of expressing diversity in a set of diffraction patterns. A
technique that employs wavefront modulation of the specimen exit wave was shown to also
overcome the stagnation problems of single diffraction pattern iterative calculations (Zhang,
Pedrini and Osten, 2007). Diversity can also be added to the diffraction pattern via
wavelength variation for non-dispersive samples (Boa et al., 2008). In relation to
ptychography, Guizar-Sicairos and Fienup (2008) employed a non-linear optimisation
approach on ptychographic datasets to minimise the impact of small errors in the illumination
positions and small changes in the illumination size. Thibault et al (2008) used the difference
map method together with the diversity of ptychographic diffraction patterns to
simultaneously refine the initial estimate of the illumination in ptychographic calculations.
The recovered transmission profiles of a set of 2D slices from ptychographic reconstructions
using the difference map method have been successfully combined with tomographic
techniques to produce 3D representations of biological specimens (Dierolf et al., 2010).
Maiden and Rodenburg (2009) showed that serial processing of the ptychographic dataset
using the ePIE algorithm, which is described in the next section, provides a better
reconstruction than the difference map method when the diffraction patterns contain high

noise.
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2.6.4 The Ptychographic Iterative Engine (PIE)

In this thesis, it is important for the reader to understand the difference between two types of
iterative algorithms employed called the PIE and ePIE algorithm. These algorithms are both
iterative implementation of ptychography that employs a set of diffraction patterns generated
from overlapping illuminated regions of the specimen. These diffraction patterns are used to
solve for the specimen optical potential, where calculations that employ the PIE algorithm
require a priori knowledge of the illumination, whereas the ePIE algorithm also solves for the
illumination function, by refining the initial illumination guess. This section presents the
developments that resulted in the current form of these algorithms, together with a detailed

description of their implementations.

The PIE algorithm was original developed for use with short wavelength imaging but its
usefulness extends beyond the realm of X-ray and electron imaging. This is because it can
also be used to calculate the complex transmission/reflection functions of objects at visible
light wavelengths.  There are several benefits of having a complex representation of an
object when compared with the conventional image. Amongst these is the ability to provide
quantitative phase imaging, perform offline refocusing, long working distance and

improvement of image contrast using a combination of magnitude and phase information.

Some of the benefits of ptychography for iterative phase retrieval were first demonstrated
computationally with hard aperture (a top hat with sharp edges) illumination by Faulkner and
Rodenburg (2004), where a precursor to the PIE algorithm extended the ER method to
multiple diffraction pattern measurements and was shown to eliminate stagnation problems
that plagued the ER algorithm. The algorithm was also shown to accurately recover the
transmission function of complex objects without the complex conjugate ambiguity, which

plagued solutions from single diffraction patterns that employed circular supports.
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In the electron microscope, the diffracting region of the specimen cannot be selected with a
pinhole because it is very difficult to fabricate; there is also the problem of charging around
the pinhole from the electron beam so that the aperture quickly contaminates (Rodenburg,
2008). The only viable way to provide a localised spot at the specimen plane is with a
focused beam made by the condenser lens of the electron microscope. At focus the
illumination takes the form of the Airy function, with size inversely proportional to the
angular span of the condenser aperture. Moving the specimen slightly away from the focus
of the lens along the z- axis changes the beam size on the specimen. The same effect can be
accomplished by adjusting the current in the condenser lens to either overfocus or underfocus
the illumination at the specimen plane. This produces a spot at the specimen plane with an
effective size given by the defocus. However, the illumination is extended at the specimen
plane because the condenser aperture, which is at the Fourier plane of the specimen, has a
finite size, leading to Fresnel type ringing effects at the edge of the illumination (see Fig.
3.2b). Consequently, the illumination does not have a finite boundary (support constraint)

that ER and HIO methods need to recover the specimen function.

This difficulty was solved by Rodenburg and Faulkner (2004) with the creation of the PIE

algorithm, given by

Ons1 (1) = 0, (1) + Usny M{mar{thsony M} = Y5y )} (2.20)
where 0, (r) represents the running estimate of the object after n iterations of the algorithm,
my{...} again represents the real space view of enforcing the diffraction pattern constraint,
Ys(ny (1) is the exit wave immediately downstream of the specimen at the nth iteration, and

Usny(1) is called the update function. The PIE algorithm facilitates soft illumination

iterative phase retrieval via the introduction of the update function, which combines weighted
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contributions from a set of diffraction patterns into a single running estimate of the object.

The update function is given by

|P(1‘ + RS(H))llP*(r + Rs(n)) (2.21)

|P(r)|%1ax (|P(T + Rs(n))|2 + 6)’

Us(n) (1") = .8

where [ acts as a feedback parameter that determines the amount of correction added to the
running estimate of the object in Eq. (2.20), |P(7)|3,ax represents the maximum value of the
illumination intensity, the parameter § is a small non-zero value that prevents division by
zeros in the deconvolution process and [ maximises the update effect of the weighting
scheme (Rodenburg and Faulkner, 2005). P(r + Rs(n)) is the illumination/probe function
translated by the probe position vector Rgy) and s(n) is used to randomly address the
diffraction patterns during iterative calculations. This improves the robustness of the
algorithm and was introduced by Maiden and Rodenburg (2009). In one ptychographic
iteration cycle, the algorithm processes each diffraction pattern of the dataset once in a serial

fashion.

The PIE algorithm has been demonstrated at visible light wavelengths by Rodenburg, Hurst
and and Cullis (2007) and using hard X-ray by Rodenburg et al (2007). The PIE algorithm
was also used by Hue et al (2010) to recover the phase shift introduced by ferromagnetic
nano particles when probed by an electron beam; this information is not available in
conventional bright field electron imaging. A flow chart of a single iteration step of the PIE

algorithm is illustrated in Fig. 2.8
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FIGURE 2.8 — illustration of a single iteration step of the PIE algorithm, where A,y (1) = nM{lps(n) (r)} — Yy (). The

variable k represents the Fourier transform basis for expanding the propagated exit wave. It corresponds to the detector

coordinate in diffractive imaging experiments.

The strength of the PIE algorithm comes from the overlap of shifted versions of illumination
at different scan positions. This is characterised by the overlap parameter, which measures
the step size in units of the effective illumination diameter. A percentage overlap of 50%
corresponds to a step size equal to half of the illumination diameter. The percentage overlap
parameter was investigated by Bunk et al (2008) where it was shown that the PIE algorithm
provides robust reconstruction of complex objects for an overlap parameter greater than 60%.
By optimising the percentage overlap with respect to radiation dose (total exposure time) an
optimum overlap range below 60% was deduced. It was also reported that a percentage
overlap greater than 90% does not provide an optimal dataset because the diversity of the
dataset drops since all the diffraction patterns in the ptychographic dataset have similar

intensity distributions.

The PIE algorithm was extended to simultaneously calculate the object transmission function
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and the illumination function by Maiden and Rodenburg (2009). The new algorithm was
called the extended-PIE (ePIE). The ePIE algorithm can be compared with the blind
deconvolution approach, where two unknown signals are extracted from their convolution
(Ayers and Dainty, 1988). However, in the case of ptychography the redundancy of the
dataset constrains the calculation enough for the ePIE algorithm to explore the solution space
of complex functions. Simultaneous recovery of the illuminating wave in ptychography was
first demonstrated by McCallum and Rodenburg (1993) but using the rather ill-conditioned
WDDC deconvolution method. The update function in Eq. 2.21 provides the stability of the
ePIE algorithm via its robust iterative deconvolution process and is further explored in

Chapter 3 and Chapter 4.

In the ePIE algorithm, a value (I = 2) is used for the magnitude weight parameter in order to
incorporate radiation flux information at the specimen plane. The radiation flux at the
specimen plane is given by the intensity of the illumination. This weighting scheme assumes
that regions of the specimen with high radiation flux are more strongly expressed in the
diffraction pattern than regions with low radiation flux. Consequently, the ePIE algorithm
employs the illumination intensity in the object update step of the algorithm. Furthermore, in
the limit where the multiplicative approximation holds, the exit wave is given by the product
of the illumination and the specimen function. The product symmetry between the specimen
and the illumination function means that the probe update step employs the intensity of the
specimen function as the corresponding update function, see Eq. (2.22). A typical
ptychographic calculation that employs 64 diffraction patterns, each of which comprises
512x512 pixels, takes approximately two minutes to run 200 iterations of the ePIE algorithm.

A flow chart of a single iteration step of the ePIE algorithm is illustrated in Fig. 2.9.
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FIGURE 2.9 — illustration of a single iteration step of the ePIE algorithm, where Ag(n) (1) = T {5y (1)} — Yoy (7).

The variable k represents the Fourier transform basis for expanding the propagated exit wave. It corresponds to the detector
coordinate in diffractive imaging experiments. The illumination and object functions have been normalised in the update

function of this figure.

In this framework the parameter § is no longer required since the magnitude squared in the
numerator cancels with the illumination intensity in the denominator when § = 0, so that the
ePIE algorithm avoids the problem of dividing by zeros. For the parameter configuration

(I = 2,6 = 0), the ePIE algorithm is given by

Py(r+ Ry,
(r ( )2) {nM{l/)s(n) (T)} - ll’s(n) (T)},
|Pn(r + Rs(n))lm‘,le (2.22)

Op1(r) = 0,(r) + B

O;{(T + Rs(n))
2
|0n(r + Rs(n))|

max

Ppy (1) = B(r) + B {nM{l/}s(n) (T)} - lps(n) (T)}
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By setting the feedback parameter to unity (f = 1) and scaling the illumination function so
that |Pn (r+ Rs(n))|r2nax = 1, the update function becomes the conjugate of the illumination

function (i.e. U (r + Rs(n)) = P*(r + Ry())) during the object update step. By repeating

above procedures for the probe update step, the ePIE algorithm takes the form given by

On+1(r) = On (1‘) + Prr (1" + Rs(n)){”M{lps(n) (1‘)} - lps(n) (T)}, (2'23)

Pn+1(r) = Pn(r) + 0;{(1” + Rs(n)){nM{lps(n) (1‘)} - lps(n) (1‘)}

This form of the ePIE algorithm is convenient for further analysis of the update function,
presented in Chapter 3. The ePIE algorithm has been used to obtain the complex
transmission profile of the specimen and illuminating wave at visible light wavelengths
(Maiden, Rodenburg and Humphry, 2010b). It has also been employed in reflection
geometry to characterize the surface profile of materials (Maiden, Rodenburg and Humphry,
2010a). The ePIE algorithm has also found applications in the characterisation of X-ray

beam parameters (Honig et al., 2011).

2.7 Sampling

Shannon (1949) showed that a bandlimited continuous signal is completely determined by a
discrete set of sample points with a sampling interval equal to the reciprocal of twice of the
signal’s bandwidth. This is particularly important because it allows digitisation of continuous
signals, which facilitates signal processing and image processing in the case of 2D functions.

The fundamental importance of the minimum sampling interval called the Nyquist interval
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was pointed out by Harry Nyquist in relation to telegraphy (Nyquist, 1928). In the present
context, Shannon’s sampling theorem allows a distortion-free discrete representation of either
the exit wave at the specimen plane, or the propagated wavefield at the detector plane, on the
condition the corresponding spectrum is band limited; here the propagated wavefield at the

detector is given by the Fourier transform of the exit wave at the specimen plane.

An efficient algorithm for computing the discrete Fourier transform is the Fast Fourier

transform (FFT) algorithm by Cooley and Turkey (1965). To avoid aliasing in the real space
window, the maximum spatial frequencies (|Ky|max: |ky|max) and the real space sampling
intervals (Ax,Ay) in a calculation that uses a square grid of NxN points must satisfy the

Shannon sampling theorem. These relations are given in Eq. (2.22a) and Eq. (2.22b)

(Kirkland, 2010).

2.22a
|kx|max < m: ( )
1 (2.22b)
eyl < 28y
where |ky|max = NAk, and |ky|max = NAk,.

For the inverse Fourier transform calculation, the maximum window in the specimen plane
(1%l maxs |Vlmax) and the sampling of reciprocal space (spatial frequency domain)

automatically satisfy the relationships,

il < 1 (2.23a)
max 2Ak,’

1 (2.23b)
|y|max<m:

where |X|qr = NAx and |Y|pax = NAY.
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Eq. (2.22) requires that the specimen’s spectrum be band limited (extended in real space) and
Eq. (2.23) requires a finite size specimen in real space. These conflicting requirements imply
that the discrete representation always has some element of aliasing. Gerchberg and Saxton
(1972) showed that the effect of aliasing on diffractive imaging calculations can be
minimised by judicious selection of which plane to enforce the sampling criteria. For the
case of single intensity measurements, the intensity of the diffraction pattern is used to
enforce the correct magnitude constraint (that is not aliased) in reciprocal space during
iterative calculations. Consequently, the sampling criterion is enforced in reciprocal space so
that the wavefield in the specimen plane falls to a value very close to zero in the real space

calculation window.

In the case where a finite aperture is employed in real space to limit the size of the diffracting
region at the specimen plane, aliasing is only present at the detector plane. The magnitude of
the frequency components that wrap into the diffraction pattern window are weighted by the
Airy function (Fourier transform of the aperture) and so their effects are minimal because of
the rapid fall-off of the Airy function. On the other hand, when the illumination spot at the
specimen plane is formed with a lens that has a finite aperture, the illumination function is
not finite in real space; thus the illumination function has some aliasing. Gerchberg and
Saxton (1972) also showed that sampling a chirp at the Nyquist interval where 99% of the
signal is contained within the calculation window still results in failure of their algorithm and

further commented that such behaviour was not characteristic of most signals.
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2.8 Resolution in diffractive imaging

The Abbé’s resolution (Born and Wolf, 1999) for an imaging system that illuminates the

specimen with a collimated coherent beam is given by

A = 082
Ta = BCopy
(2.242)

which corresponds to the smallest periodicity of a sinusoid that is correctly reproduced by the
imaging system. The numerical aperture NA = sin(6@) in free space, 8 is the one-half of the
angle that the objective lens subtends on the specimen, A is the wavelength of the
illuminating radiation. An alternative way of quantifying the resolution of a coherent system

is the Sparrow’s criterion (DeViels and Thompson, 1998) given by

2 (2.24b)
ATS =047 m

The Sparrow’s criterion measures the distance Ary between two points that results in a

uniform intensity gradient of sinc® functions centred at these points.
In the case of incoherent systems, the Rayleigh’s criterion gives the resolution as

1 (2.24¢)
Ay = 0.61—.
"R NA

In all of these cases, the NA of the imaging system determines the resolution. In diffractive
imaging the size of the detector corresponds to the NA of the imaging system. In
ptychography, the iterative calculations produce a virtual detector with a larger NA (see

Chapter 6).
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2.9 Resolution improvement with ptychographic diffraction
patterns

Rodenburg, McCallum and Nellist (1993) showed that the dense ptychographic dataset,
where a focused spot illumination, in the STEM configuration, is moved to every position in
the image, contains double resolution information about the image. A method for recovering
double resolution information in the iterative formulation of ptychography (PIE) using a
sparse ptychographic dataset, where a defocused illumination is moved by a substantial
fraction of its effective size, was presented by Edo, Zhang and Rodenburg (2010). This work
was further extended to structured illuminating wavefields by Maiden et al (2011) using the
ePIE algorithm. These are important developments in the implementation of ptychography
because they show that more information about the object can be extracted from the
ptychographic dataset if the correct framework is employed. For example, information
pertaining to 3D structure of a specimen is embedded in the highly redundant ptychographic

dataset; and should be recoverable with the right algorithmic framework.

An analogous way of looking at the resolution enhancement of this method is in the form of
aperture synthesis via tilt series reconstruction (Kirkland et al., 1995). In a tilt series
reconstruction, the specimen is illuminated by a plane-wave at different incident angles and
an image is recorded for each illumination tilt. This allows different parts of the specimen’s
Fourier transform to pass through the transfer function envelope of the objective. As a result
this set of recorded images contains a range of the specimen’s spatial frequencies greater than
the limit imposed by the transfer function envelop on the corresponding bright field image.
These images are then used to reconstruct a single image with a spatial frequency range equal
to the union of the spatial frequencies of the recorded images. This procedure synthesises a

larger aperture in the back focal plane of the objective lens. In a similar way, the STEM
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probe is composed of a coherent superposition of several tilted plane-waves, where the
maximum tilt angle («) is determined by the size of the condenser aperture. This means that
a set of bright field diffraction patterns contains a redundant expression of double resolution
(2a) information about the specimen, as illustrated in Fig 2.10. Thus applying the PIE
algorithm to a set of bright field diffraction patterns (Ronchigrams) that have a semi-angle

(@) recovers an object with double resolution information.

=" specimen

detector

FIGURE 2.10 — illustration of double resolution information expression in the bright field of a STEM diffraction pattern.

Gerchberg (1974) and Papoulis (1975) implemented early iterative methods for extrapolating
the frequency spectrum of finite 1D signals. These methods rely on the fact that a finite
object has an extended frequency spectrum; this means that imposing the specimen plane
boundary conditions at every stage of the iteration introduces spectra components outside the
known frequency range. This is equivalent to performing a convolution of the estimated
signal with a sinc function in the Fourier domain, in the case where the real space boundary
constraint is a top hat function. Since the sinc function oscillates about zero for large

frequencies, the convolution operation generates complex values at regions outside the
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known spectra. However, the rapid fall-off of the sinc profile means that the extent of
bandwidth extrapolation is very small especially in the presence of noise; so that the effective
amount of bandwidth extrapolation is determined by the size of the central lobe of the sinc

function.

2.10 Summary

In this chapter we reviewed the theory of imaging and wave propagation. The limitations of
the lens in conventional imaging were discussed and diffractive imaging was shown to
provide a means to liberate image formation from the limitations of the lens. The PIE and
ePIE algorithms that implement diffractive imaging via ptychography were also presented.
In the next chapter, the PIE update function is investigated in more detail using simulations

and mathematical analysis in reciprocal space.
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Chapter 3

3 The PIE update function

Section 3.1 investigates the update function of the PIE algorithm for two different model
setups. These setups employ both plane-wave and curved-wave illumination. The following
calculations are used to investigate the influence of the illumination curvature on the update
function. This should also highlight the connection between information expression in the
diffraction pattern and the quality of the solution provided by the update function. Section
3.2 reviews the interference framework of the phase problem based on the ptychographic
principle. Although this framework traditionally deals with multiple diffraction patterns, its
applicability to single diffraction pattern calculations is investigated in order to provide an
explanation of the results from Section 3.1. This is important because it provides a general
framework for discussing the recovered solutions from a wide range of illumination
functions. Section 3.3 derives a general form of the update function using information
mapping between the object and diffraction pattern. This approach provides a means for
understanding the impact of the current update function on the spatial frequencies of the

recovered object and thus determines whether it provides the optimum deconvolution
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scheme. The derivations in Section 3.3 show the connection between the illumination
intensity and the quality of the recovered object. Section 3.4 discusses the consequences of

these connections in terms of coupling amongst spatial frequencies of the recovered object.

3.1 PIE update function with different experimental setups

In the PIE algorithm, the update function has two main functions; it weights information from
each diffraction pattern of the ptychographic dataset and provides a bridge that couples the
contributions from several diffraction patterns into a single image. This produces a very
robust framework that guarantees the unique recovery of complex objects in most
experimental setups; however it does conceal the difficulties inherent in solving the phase
problem in different setups. Unfortunately, these difficulties highlight aspects of the phase
problem that should, in turn, influence the form of the update function. Consequently, the
contribution from the ptychographic dataset is removed in this chapter for the first time and

the update function is investigated for single diffraction pattern calculations.

In this section, the PIE update function is applied to two modelled configurations, employing
plane-wave and curved-wave illuminations. Plane-wave illumination is predominantly used
in X-ray diffractive imaging; this is because the illumination profile from a highly coherent
synchrotron source takes the form of a plane-wave, that is to say it has a flat phase profile
over the diffracting region of a finite specimen. In such an experiment, an isolated specimen
is introduced into the beam in order to satisfy the sampling requirement at the detector plane,
this isolation allows the application of the support constraint in iterative algorithms that solve
for the specimen transmission function. This experimental configuration is modelled with the

setup shown in Fig. 3.1a, where a pinhole is used to limit the size of an extended specimen.
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The diffracting region of the specimen is thus limited to the size of the pinhole aperture. This
model will be called the Type-I setup and is defined by the flat phase profile of the
illumination over the diffracting region of the specimen. In electron experiments, the
diffracting region of an extended object is selected with an illumination spot made by a
converging lens. This experimental configuration is modelled by the Type-II setup, shown in
Fig. 3.1b. The effective size of the illumination spot formed by the lens is determined by the
defocus value Az as illustrated in Fig. 3.1b (using a geometrical optics argument). It is worth
noting that because of diffraction broadening the illumination generated by the lens in Fig.
3.1b does not have a finite boundary as with the case of the pinhole aperture in Fig. 3.1a,
although most of the incident beam energy traverses the central spot defined by the defocus.
Furthermore, using a defocused beam introduces curvature into the illumination at the
specimen plane, where the local curvature over any part of the specimen decreases with
increasing defocus. The curvature of the illumination over the specimen is the defining
property of the Type-II setup. The diffraction patterns in both the Type-I and the Type-II

setups are measured in the far-field.

aperture
detector

aperture

detector

. . (b) The Type-II setup. Experimental configuration of
The Type-I setup. E tal figurat f

(@ © typesh setup xperimenta’ COMASUTAtion o diffractive imaging in which the finite extent of the diffracting
region is facilitated by the defocused spot of a lens. This setup

is approximately like Gabor holography when the specimen is

diffractive imaging in which the finite extent of the
diffracting region takes the shape of a circular pinhole

aperture.
P weak.

FIGURE 3.1 - Schematic of the experimental setups modelled with the plane and curved illumination functions
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Diffractive imaging setups that employ plane-wave and curved-wave illuminations were
reported to have different convergence properties by Nugent et al (2005) and should thus
serve as ideal candidates for investigating the properties of the update function. In this
investigation, the size of the diffracting region for the Type-II setup is engineered to be
approximately equal to the size of the aperture opening in the Type-I setup. This is done to
test whether the size of the diffracting region alone gives a good handle on the convergence
of the update function. This is important because the size of the diffracting region in these
calculations directly relates to the sampling of the diffraction pattern. Thus, the results from
this investigation can be used to investigate the connection between the sampling of the
diffraction pattern and the convergence of the update function in different experimental

setups.

(a) Magnitude of plane-wave illumination that is restricted (b) Magnitude of curved illumination at the specimen plane
by a disc-like mask.

FIGURE 3.2 - Structure of the illumination at the specimen plane for plane-wave and curve-wave diffractive imaging setups

The magnitude of the illumination incident on the specimen for the Type-I and the Type-II

setups are modelled and shown in Fig. 3.2a and Fig. 3.2b respectively. The illumination
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shown in Fig. 3.2b is generated using parameters that model a 200 keV electron beam that is
focused with an electromagnetic lens via a 15 mrad condenser aperture. As a result, the
dimensions of these calculations correspond to those of electron diffractive imaging
experiments. In this case, the Type-I setup models a finite size nano-particles experiment
performed in the transmission electron microscope (TEM) mode; this setup is not prone to
drift of the nano-particles within the illumination because of the shift invariance property of

the resulting plane-wave diffraction patterns.

The total number of counts in the diffraction patterns from both model setups (see Fig. 3.3b
and Fig. 3.3¢c) is normalised to have the same value (10%). This is done because count values
of 108 and above do not substantially affect the quality of the recovered object in region
where the illumination has high intensity, for calculations that employ the test object shown
in Fig 3.3a. This minimum count value varies with specimen type, i.e. specimens with a
textured background require a lower number of counts in the diffraction pattern for the same
exposure time because most of the incident radiation is diffracted from the zero order peak of
the diffraction pattern and results in a higher signal to noise ratio (SNR). The total number of
counts in these calculations is also used to incorporate Poisson noise into the diffraction
patterns in order to account for the quantum noise inherent in the statistical arrival of
electrons; the intensity values of the calculated diffraction patterns are used as mean values of
the Poisson distribution, from which the noise is generated. For high count values, the
Poisson distribution approaches the Gaussian distribution. This is a crucial input to these
model calculations because the measured diffraction patterns in any experiment do not have

the exact intensity values that are calculated with the FFT algorithm.

Employing one diffraction pattern in these iterative calculations removes the benefit of being
able to routinely recover a complex object using the update function with probe overlap.

Thus, the object used in this investigation is a resolution target with a positive transmission
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magnitude, shown in Fig. 3.3a. It is worth noting this absorbing object is more appropriate at
X-ray and visible light wavelengths, where the dimensions of the calculations need to be
rescaled. In electron experiments, the object would usually be a phase object (see Section
4.1). However, this image type suffices to investigate the convergence properties of the
update function for the Type-I and the Type-II setups. The background is transparent with
transmission coefficient of unity and the bars of the object have transmission values that
represent absorption strength. The sharpness of the diffracting bar edges in the object was
removed in order to minimise the effect of aliasing in the forward calculation of the
diffraction pattern during iterative calculations because the detector plane is multiplied by the

atomic scattering factor.
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(a) Magnitude of transmission function (b) Diffraction pattern from an object (c) Diffraction pattern from an object
of test object. White corresponds to in the Type-I setup. in the Type-II setup.

maximum transmission value of 1 and

black  correspond to  minimum

transmission value of 0.1.

FIGURE 3.3 — The transmission function of the test object and the corresponding diffraction patterns for plane and curved
wave illumination

Fig. 3.3b and Fig. 3.3c show the diffraction patterns from the Type-I and the Type-II setups
respectively. The diffraction patterns are calculated by taking the Fast Fourier Transform
(FFT) of the exit wave at the specimen plane. The detectors in both setups comprise 512x512

pixels and span the same angular range of 62.7 mrad. This gives a sampling pitch of 0.04 nm
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at the specimen plane. The forward calculation in the generation of the test data is performed
with a sampling pitch of 0.0lnm and the central part of the resulting diffraction pattern,
spanning 62.7 mrad was extracted. This was done to ensure that the edges of the diffraction
patterns result from linear convolution rather than cyclic convolution, which results from the
discrete implementation of the FFT algorithm. It is worth noting that the four-fold
oversampling of the real space coordinate was only used to generate the test data and does not
correspond to the real space sampling pitch in subsequent iterative calculations. The update

step of the algorithm that employs the original update function is given by

On1(1) = 0 (r) + P* (") {7y {n (1)} — P (1)}. (3.1a)

The algorithm is then modified to take advantage of the non-complex nature of the test
object, which improves the quality of the reconstructions (see Fig. 3.4). This was
implemented by taking the real part of the exit wave difference. The modified algorithm with

normalised illumination magnitude is given by

On41(r) = 0y (r) + real (P* (X {my {(¥n (1)} = ¥ (M}) (3.1b)

3.1.1 Results

The update schemes in Eq. (3.1) were applied to the diffraction patterns of Fig. 3.3b and Fig.
3.3c. These algorithms were run for 10000 iterations, which corresponds to the number of
times the update function was applied at the specimen plane. Fig. 3.4a and Fig. 3.4b show
the recovered objects from calculations that applied the original and modified versions of the

algorithm to the Type-I diffraction pattern. Fig. 3.4c and Fig. 3.4d show the results for the
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same calculations using the Type-II diffraction pattern. The evolution of the error metric

over 500 iterations is shown in Fig. 3.5.
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(a) Recovered object from the Type-I experiment (b) Recovered object from the Type-I experiment using
using original update function update function with non-complex constraint

(c) Recovered object from the Type-II experiment using (d) Recovere object from the Type-II exement using
original update function update function with non-complex constraint

FIGURE 3.4 — Recovered transmission function of the model object using diffraction patterns from the Type-I and the Type-
II setups.
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FIGURE 3.5 - Trend of mean squared error with number of iterations for the Type-I and the Type-II experiments.
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3.1.2 Discussion

The quality of the recovered objects in Fig. 3.4 shows that the algorithms converge to a better
estimate of the test object for the case of the Type-II setup than they do in the case of the
Type-I setup. This result is interesting because the diffracting regions have the same size in
both the Type-I and the Type-II calculations. In fact, the effective size of the diffracting
region is larger from the Type-II setup since the illumination does not have a finite boundary.
This suggests that the size of the diffracting region does not explain the quality of the
recovered object in calculations that employ different forms of illumination. One explanation
for the quality of the recovered objects in Figs. 3.4c and 3.4d may be the close
correspondence between the central bright field region of the diffraction pattern with curved-
illumination and the Gabor hologram (Gabor, 1948). In the Type-II calculations, the estimate
of the object after the first iteration gets very close to the original object because lower spatial
frequency information (up to the aperture size) of the object is encoded in intensity variations
of the hologram. Fig. 3.4d shows that the recovered object improves significantly with the
application of the non-complex constraint in the Type-II calculations however similar
improvements do not occur in the Type-I calculations (see Fig. 3.4b). This means that the
expression of the object information in the Type-II setup provides a better conditioned phase

problem for the update function.

The algorithms defined by Eq. 3.1 uses a feedback (f) of unity (see Eq. (2.18)). As a result,
the algorithm reduces to the Error Reduction method for the Type-I calculations. This is
because the weighting function is a binary mask that has a normalised value of unity inside
the aperture and a value of zero outside. Consequently, the update function enforces a
boundary constraint (just like ER) since the illumination is constant inside the aperture. The

ER method was shown to have stagnation problems for the Type-I setup (Fienup, 1982) when
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applied to a single diffraction pattern. A better estimate of the object in the Type-I setup can
be obtained with the HIO method. However the HIO method is only applicable to simple
illumination functions with boundaries defined by an aperture, as in the case of the Type-I
setup. Thus it does not provide a general solution that can be applied to the case of structured

1llumination.

The error plots in Figs. 3.5a and 3.5b have similar error magnitude suggesting that the error
metric does not accurately quantify the quality of the recovered objects. These results mirror
the analysis by Fienup (1982) and Guizar-Sicairos and Fienup (2008) that show these
algorithms minimise the error in the diffraction pattern, however this does not guarantee the

correct solution from the minimisation routine.

The above explanations draw from the insights of holography and from iterative phase
retrieval techniques with plane-wave illumination. This suggests that the behaviour of the
update function and the quality of the recovered object for experimental setups that employ
other forms of illumination may only rely on insights particular to that setup. However, this
results in a multitude of explanations that obscure the fundamental reasons for the solubility
of the phase problem in different experimental setups. To provide a coherent explanation for
the results in a general framework, diffractive imaging experiments need to be viewed as
concurrent plane-wave interference experiments, where the strength of each plane-wave is
determined by the magnitude of the Fourier component that corresponds to its k-vector. The
next section introduces the relevant mathematics required for viewing diffractive imaging
experiments in a framework where interference serves as the solubility metric for the phase
problem. This will provide a unified way of characterising the behaviour of the update

function and the quality of the recovered object.
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3.2 Mathematical Concepts and Nomenclature

This section introduces some new and essential mathematical concepts that are required for
an effective discussion on the solution (recovered object) provided by the update function.
This section adopts a nomenclature in which the symbols that represent functions in real
space, Fourier space and the detector plane (in the far-field) are the same except for the
explicit dependence on different coordinates. The real space domain is spanned by the
coordinate r =: (x, y), the Fourier transform of the object is spanned by the coordinate k =

: (ky, ky) and the detector plane is spanned by the coordinate u =:(u,v). The Fourier

transform coordinate, k, points in the same direction as the detector coordinate, u, but is

used as a dummy variable in the convolution integral that follows.
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/71 specimen T

specimen

detector detector

(a) Specimen illuminated by plane-wave illumination. | (b) Specimen illuminated by curved-wave illumination.
Unique mapping of spatial frequencies to angle (k = §/1). | Different spatial frequencies k; = 6;/4 and k, = 6,/2 are

The detector plane is accurately mapped by the k-basis. mapped to one point in the detector thus the detector plane is
not uniquely mapped by the k-coordinate but is instead

spanned by the u-coordinate.

FIGURE 3.6 — illustration of spatial frequencies mapping for plane-wave and curved wave illumination

The distinction between the Fourier domain and the detector plane in a far-field diffractive
imaging setup is necessary in order to incorporate the effects of structured illumination. In

this framework, the directions of k-vectors capture scattering events when the specimen is
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illuminated by a plane-wave (see Fig. 3.6a) however u-vectors capture scattering events when
the specimen is illuminated by a structured wave. Since a structured wave has several plane-
wave components, u-vectors account for scattering from different plane-wave directions into
a given detector pixel as illustrated in Fig. 3.6b. The Fourier transform is used to calculate
the diffraction pattern in far-field diffractive imaging experiments. The Fourier transform
relationship between the specimen exit-wave and the complex wave at the detector plane is

given by

Y(u) = j Y(r) exp(iu - r) dr. (3.2)

In practical experiments, the detector can only measure the intensities of the complex

coefficients in the expansion; this results in loss of the phase information.

3.2.1 Solution to the phase problem via interference

The specimen function can be represented with the real space basis function § (X — 1) or the
Fourier basis exp(ik - X), where § is the Dirac delta function. This is equivalent to viewing
the specimen function as an image distribution in real space or an angular distribution in

reciprocal space, such that

o(r) = j 0(X)8(X — r)dX,
(3.3)
0(k) = j 0(X) exp(ik - X) dX.

This enables the phase problem to be in two conjugate domains (real and Fourier space) and
allows different aspects of the problem to be solved in the domain in which it takes a simple
form. In diffractive imaging, the region of the specimen O(r) that contributes to the

diffraction pattern is selected with an illumination function P(r). The exit wave from a
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sufficiently thin specimen is given by the product of the specimen transmission function and
the illumination function, Y(r) = O(r) - P(r), where the term ‘thin’ has been used to
exclude 3D geometric interference. The specimen can also introduce strong phase changes
into the illuminating beam (i.e. scatters strongly). The complex wave distribution in the far-
field is given by the Fourier transform of the exit wave Y (u) = Fy(r), thus the convolution
theorem allows one to also express the wavefield at the detector in terms of a convolution
integral. These steps are outlined in Eq. (3.4), where I,,(u) represents the intensity values

measured by detector.

Y(r) = 0(r) - P(r) (3.42)

Y(w) = Fy(r) (3.4b)

W) = 0(k) + PUO = [ 0P (u— Ky (3.40)
(3.4d)

1mw=www=ubwww—MMz
A different way to arrive at Eq. (3.4d) is to decompose the incident beam into a set of plane-
waves, where each plane-wave illuminates the specimen at an angle proportional to its k-
vector. The complex wavefield at the detector plane resulting from each plane-wave
component is laterally shifted by an amount proportional to the k-vector of the incident plane-
wave (using the Fourier shift theorem). Furthermore, the distribution of all the complex
wavefields is identical to the Fourier transform of the specimen function except for lateral
displacements of these wavefields at the detector plane. The recorded diffraction pattern is
given by the intensities of the sum of all the complex wavefields. This corresponds to an
addition of shifted versions of the Fourier transform of the specimen (i.e. convolution
operation). This means that the measured intensity value at a given pixel (u) of the detector
results from adding different spatial frequencies of the object. This results in interference

amongst various spatial frequencies of the specimen and is expressed mathematically by Eq.
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(3.4d), where the contribution from each spatial frequency is given by the kth component of

the convolution kernel, P(u — k).

The preceding argument suggests that the solubility of the phase problem (in far-field
geometry) may be viewed in a framework where convolution in Fourier space provides a
metric for solubility. Consider the case where the diffracting region of the specimen has
dimensions that correspond to the sampling pitch of the detector (i.e. Nyquist sampling) and
is illuminated by a plane-wave P,(1r); In such a situation the exit wave immediately
downstream of the specimen is given by ¥ (1) = O(r), where the illumination function is
unity i.e. (P,(r) = 1). By applying Eq. (3.4d) to generate the diffraction pattern, the spatial
frequency or k-space representation of the specimen O (k) is convolved with the Dirac delta

function as shown in Eq. (3.5).

2 3.5
@ = 101 = || 0008 - Idk o

Eq. (3.5) reveals that there is no room for interference amongst the object spatial frequencies
due to the sifting property of the delta function. The phase problem is therefore insoluble
because phase information is not coded in the intensities of the diffraction pattern. The
diffraction pattern from Eq. (3.5) gives an accurate representation of the power spectrum of
the specimen but contains no information about the relative phase difference amongst

different spatial frequencies.

3.2.2 Diffractive imaging with plane-wave and curved-wave
illuminations

It is important to note that the plane-wave is an idealisation since the wavefront from a source

such as a laser is usually finite in extent. In diffractive imaging, the wavefield is considered
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to be a plane-wave if it is covers the region of interest with a reasonably flat phase profile. In
the Type-I setup, the size of the diffracting region is made small enough to allow the central
lobe of the Airy function (which corresponds to the Fourier transform of the circular aperture)
to span more than one pixel in the detector plane. This means that size limitation of the
diffracting region of an extended object provides room for interference amongst different
spatial frequencies of the object. In the case of a finite object, the propagated wave at the
detector plane automatically results from an interference, which is governed by the Fourier
transform of the particle’s shape. Hegerl and Hoppe (1972) suggested the connection
between the finite size of the diffracting region and the phenomenon of interference, where
they showed that interference provides the means for solving the phase problem. In the X-ray
field size limitation of the diffracting region, which results in a spread of the central lobe of

the Airy function over several pixels of the detector is called oversampling.

By making the diffracting region smaller, the interference strength amongst the object’s
spatial frequencies increases because the central lobe of the Airy function spreads over a
larger area of the detector. An alternative way of increasing the strength of interference is to
introduce structure into the illumination. Structured illumination enables a spread of the
illumination intensity over a larger area of the detector in the absence of any specimen.
Curved illumination is one of the simplest forms of structured illumination and can be easily
made with a lens whose quality need not be as good as that required for normal imaging.
This is because the lens is used only to form an illumination spot on the specimen, in order to
limits the size of the diffracting region for an extended specimen and the aberrations of the
lens do not affect the quality of the recovered object. It also facilitates interference
conditions that do not have the rapid fall-off profile of the Airy function, without the need to
reduce the size of the diffracting region. This means that structured illumination can provide

the means for large field of view (FoV) diffractive imaging, possibly at sub-Nyquist sampling
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of the diffraction pattern. This is investigated in Sections 4.5 for the case of single diffraction
pattern calculations; an extension to the case of multiple diffraction patterns is also

investigated Section 6.7.

The illumination in the Type-II setup has a large range of plane-waves with uniform strength.
This allows maximum interference amongst the spatial frequencies of the object when
compared to the Type-I setup where the interference strength falls-off with the magnitude of
the Airy function. In addition, a priori knowledge of the phase structure of the illumination
enables the decoupling of the contributions from each spatial frequency and is further
explored in Section 3.3. From an interference point of view, the strength of interfering
components of the object’s spatial frequency provides a possible explanation for why the
calculations of the Type-II setup gives a better quality reconstruction than the case of the

Type-I setup.

3.2.3 Diffractive imaging and sampling

This section considers the issue of sampling in diffractive imaging. The Shannon sampling
theorem states that in order to capture the entire content of a bandlimited signal, the signal
should be sampled at a rate that correspond to twice the bandwidth of the signal. This
ensures that the discrete representation of the signal does not suffer from the effect of
aliasing. In relation to image processing, this means that the window in the specimen plane
forms an independent unit cell that does not overlap with adjacent cells (that results from the
periodic framework of the discrete Fourier transform or DFT). The symmetry between the
Fourier transform and its inverse implies that this window can represent either real space or

reciprocal space. Since the image cannot be bandlimited in both domains, there is always
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some element of aliasing in diffractive imaging calculations. The effect of aliasing is
minimised by judicious sampling of the diffraction pattern. In forward calculations where
one computes the FFT of an image that is completely contained within the real space
window, the diffraction pattern is aliased because adjacent windows in the detector plane
overlap. The strength of the aliased components at atomic wavelengths is, however, small
because the diffracting region consists of finite size of atoms and thus the diffraction window
is multiplied by the atomic scattering factor. Sayre (1952) suggested that if one assumes a
Gaussian model for atoms, then the Fourier spectrum is multiplied by a Gaussian profile so
that the effect of aliasing is minimal in the detector plane. Furthermore, enforcing the correct
magnitude distribution in the detector plane ensures that the magnitude profile within the
diffraction window is correct; although this does not guarantee that the associated phase
distribution is also correct. This is because the finite window in diffraction space results in a
convolution of real-space sampling points with a 2D sinc function as opposed to the

Gaussian. This effect can only be minimised by increasing the angular size of the detector.

So the question arises, is oversampling the key requirement for the solubility of the phase
problem? It was shown earlier that oversampling could be viewed as a way of creating
interference that encodes phase information. In order to connect solubility via interference
and the Shannon sampling criterion, we need to think about the representation of the
information content of a signal. Firstly, it is important to note that the Shannon sampling
criterion assumes that the signal of interest is represented in an orthogonal basis so that the
sampled points are independent. In the case of diffractive imaging, diffraction patterns are
measured in non-orthogonal bases so that the measured components interfere. Furthermore,
we can factorise the exit wave into two components, the object and the illumination, for
which the illumination function is sometimes known a priori. As a result, the diffraction

pattern provides a redundant representation of the specimen. Furthermore, knowledge of the
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illumination function provides the structure for the redundancy. This suggests that a
possibility is to sample the diffraction pattern at the Nyquist rate of the underlying complex
distribution and get a reasonable reconstruction from the undersampled diffraction pattern.
The diffraction pattern is undersampled because its bandwidth is larger than the bandwidth of
the complex wavefield from which it is derived. The calculation still needs to be performed
in a window that satisfies Shannon sampling in order to avoid aliasing. Performing the
calculation with a Nyquist window requires upsampling of the diffraction pattern. When the
diffraction pattern intensity values are not interpolated, parts of the detector plane lack
intensity information that needs to be solved for. Undersampling the diffraction pattern
facilitates large FoV experiments and is further explored in Chapter 6, where the

ptychographic dataset provides the necessary diversity to constrain the calculations.

3.3 Derivation of the PIE iterative deconvolution kernel (IDK)

In this section the iterative deconvolution process in Fourier space is explored, where the
machinery of the PIE update function takes a less compact form that lends itself to analysis.
This work is timely because the update function provides the framework for bandwidth
extrapolation of the recovered object in resolution-improvement ptychographic calculations.
It is therefore paramount to establish that the current weighting scheme of the update function
provides the right framework and a robust platform for bandwidth extrapolation calculations,
which are further discussed in Chapter 6. Consequently, this section explores the structure of
the update function and provides an alternative description for the optimum weighting (I = 2)

of the update function used in the PIE algorithm. The analysis presented in this section lays
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the foundation for further discussions on the behaviour of the update function that are

presented in Chapter 4.

The PIE algorithm retrieves the specimen function using an iterative deconvolution process
that is facilitated by an update function. The update function constrains the deconvolution
process by weighting the feedback errors or corrections that are added to the object during
iterative calculations. This weighting scheme can be viewed in real space where it has the
effect of preventing division by zeros during the deconvolution process. Since this analysis is
performed in reciprocal space, we need a representation of the update function in reciprocal
space. The update function has a reciprocal space representation called the iterative
deconvolution kernel (IDK) and is equal to the Fourier transform of the update function i.e.

IDK[u] = F{U[r]}.

During iterative calculations, the PIE algorithm processes the input (guess of object function)
and outputs a new estimate of the object. The algorithm adds corrections calculated from the
measured diffraction pattern, in order to ensure that the iterative calculations move the
running estimate of the object towards the correct solution. These corrections are codified by
what might be called the feedback error function &,[u]. This error function needs to be
transformed from the detector plane (u-space) to the Fourier domain of the estimated object
(k-space). Since the diffraction pattern is calculated from the convolution operation in Eq.
(3.4c), the forward calculation suggests that the reverse process requires the convolution
inverse. Implementation of the convolution inverse can be accomplished with a division in
the Fourier domain of the detector (i.e. real-space). However the diffracting region in real-
space is usually limited to ensure adequate sampling of the diffraction intensities by the
detector. This means the illumination function, which defines the boundary of the diffracting

region, contains zeros. As a result, the deconvolution operation contains divisions by zero
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and is, therefore, ill-conditioned. Moreover, the diffraction pattern contains no phase

information; so direct deconvolution does not provide the required solution.

Iterative deconvolution using the PIE algorithm resolves this problem by assigning phase
values to the diffraction pattern whilst solving for the object. In the PIE algorithm, the
running estimate of the object function is updated using feedback errors from the diffraction

pattern; where the error function, |e,[u]|?

, measures the departure of the calculated
diffraction pattern from the measured diffraction pattern in the nt” iteration. The calculated

diffraction pattern is given by the intensity of the FFT of the exit wave.
A general form of the update function is given by

Op+1lk] = Oylk] + &, (K], (3.6a)
Ona[K] = 01k + ) IDKTk = u] - 2 [u], (3.6b)

where the feedback error function &,[k] has been appropriately transformed from the detector
plane to the Fourier domain of the object using the iterative deconvolution kernel, IDK[u] =
F{U[r]}. Here square brackets are used to emphasize the fact that the analyses in this thesis
only consider the discrete case. The rest of this section investigates the form of the IDK that
is required to correctly transform the feedback error (¢,[u]) from the diffraction pattern to

the feedback error (&, [k]) in the object.

Eq. (3.6b) shows that the IDK provides the means for mapping errors from the diffraction
pattern to errors in the object. In order to derive the form of the IDK, we first need to
consider the influence of the object on the detector wavetfield in order to get a handle on the
flow of information from the object to the diffraction pattern. Here 'flow of information'
means identifying the set/group of the object's spatial frequencies that contribute to a given

diffraction pattern intensity. This information flow can then be backtracked from the detector

67



plane to the object. This allows the reverse calculation (deconvolution) to be constrained in
such a way that the diffraction pattern intensity values only influence those spatial
frequencies from which they were derived. This approach is essential because it provides a
generic means of updating the object components (spatial frequencies) based on information

expressed in the diffraction pattern.

Consider the case where the object function is changed by a small amount (AO), the

corresponding change in the complex wave at the detector plane is given by

A = Zg—lgw,

O oplul (3.7)
Mplu] = S(Zk) 5677 S0k

where S(u; k) defines the components of the object function (O[k]) that influence the wave
distribution (y) at the detector pixel (u). Fig. 3.7 shows a pictorial representation of the
transformation indicated in Eq. (3.7) for the Type-II setup, where the region enclosed by the
white circle on the FFT of the object corresponds to S(u; k). The disc shape of S(u; k) in

the Type-II setup is inferred from Eq. (3.8).

diffraction pattern,

FIGURE 3.7 - illustration of spatial frequencies of the object that contributes to a pixel in the diffraction pattern. The
circular region is centre on k = —u because the convolution operation flips the Fourier transform of the object so that

integration is done over a region centred on u = —k, but is illustrated here as k = —u. This is valid for a circular region.
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Since the forward calculation corresponds to a convolution, the change of the wave
distribution at the detector plane Ay can be calculated directly from Eq. (3.4c). This is
AY[u] = Paolu] —Plul,

- (Z Plu — KI(O[K] + AOTK])) - (z Plu— k|O[K]),

(3.8)
- Z Plu — k]AO[K].
S(uk)
Equating the terms of Eq. (3.7) and Eq. (3.8), gives
0Y[u] (3.9

Sor = Pl

Eq. (3.9) captures the flow of information from the object to the diffraction pattern, because it
identifies the correct set of object spatial frequencies that contributes to a given diffraction
pattern intensity value; i.e. S(u; k) = (JP[u— k]| > 0). This means that the diffraction
pattern intensity value (Iy;[u]) has a contribution from a set of spatial frequencies defined by
S(u; k). In the Type-II configuration, the magnitude of the convolution kernel is constant
and can be normalised so that |P|,,q, = 1. Thus, S(u; k) corresponds to the disc (encircled
patch) shown in Fig. 3.7. The shape of S(u; k) is different for different illumination
functions, also the magnitude profile of the convolution kernel is not constant for other types
of illumination. An extension of the patch idea to other structured illumination indicates that
the general case should have S(u; k) = |P[u — k]|, where the contributions to a given
diffraction pattern intensity value are weighted by the magnitude of the convolution kernel.
It is important to note that other power functions, i.e. S(u; k) = |P[u — k]|™, with n # 1, do
not correspond to the correct solution, because the convolution integral encodes the

interference information using a linear power of the object spatial frequencies, i.e. n = 1.
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The remaining analysis is undertaken with the convolution kernel of the Type-II setup and the

result applies to a general illumination function.

In the present context, the transformation (convolution) equation depends only on the
difference between the u and k coordinates, therefore the patch is best described as S(u; k) =
S(u— k). Furthermore, since we only consider a single diffraction intensity at a time (i.e.
the value of u is fixed), we can drop the u dependence so that S(u — k) goes to S(—k),
which will be called S(k) because of the symmetry of the illumination FT in the Type-II
setup. The negative sign indicates that the transformation between the diffraction pattern and

the object is a convolution instead of a correlation, so that the coordinates are flipped.

3.3.1 IDK magnitude calculation

To investigate the inverse case, consider perturbations of the object that are restricted to a
single spatial frequency (i.e. e[k] = AO[k] = 6[k’ — k]); Eq. (3.4c) indicates that the
resulting effect in the detector plane is proportional to the Fourier transform of the
illumination function centred on that frequency i.e. AY(u) = [ (k' — k)P(u — k')dk' =
P(u — k). This conclusion can also be drawn from Eq. (3.9) by keeping k fixed and
allowing u to vary. This gives the set of u-components in the detector plane required for the
inverse operation via information backtracking. These u-components define the inverse
domain (S™1(k;u)) which is now referred to as S™1(u) in order to emphasize that all
contributions come from the detector domain. Put differently, in the Type-II setup,
information from the object component (O[k]) can only contribute to a finite set of
diffraction intensities defined by S™1(u) = (|P[k — u]|) > 0 and, conversely, only feedback

errors from this region should contribute to the running estimate of the object component
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(0, [ k]) during iterative calculations. This piece of information defines the magnitude of the

iterative deconvolution kernel and is given by

|IDK| = |P[k — u] (3.10)
where the magnitude of the /DK is again a linear function of the kernel’s magnitude, because
the object spatial frequencies contribute linearly towards the interference pattern in the

detector plane

3.3.2 IDK phase calculation

The most efficacious way to infer the phase components of the IDK is to find a phase
configuration in the detector plane that transforms the contribution from the object (which is
AO[k]P[u — k]) back to the object (O[k]) with a minimal change in the relative phase values
of the object components. This is important because we need to preserve the relative phase
difference amongst all the object spatial frequencies. One strategy would be to remove the
phase of the illumination from the diffraction pattern contribution (AO[k]P[u — k]). The
function that provides the required phase configuration over the diffraction pattern is the
conjugate of the convolution kernel, because AO[k] < Y g-1(,,) P*[u — k](AO[Kk]P[u — k]).
This suggests that the IDK could simply be the conjugate of the convolution kernel. To
confirm this hypothesis, the rest of this section explores an alternative route to find the

required phase configuration.

To find the IDK phase configurations the convolution inverse is required, this is derived by
finding the change of the object function due to changes in the complex wave at the detector

plane. This is given by
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AO = 00 A
= 61/) P,

2O[K] = 90[k]
J4t VL]

(3.11)

The error in the detector plane is given by [u] = Ayp[u] and S™1(u) defines the region in
the detector plane that is influenced by information from O[k] in the forward convolution
calculation. It is important to note that Eq. (3.11) does not uniquely map information back to
a single object component because it is not possible to independently vary points in the
detector plane since they are linked via the convolution relation in Eq. (3.4¢). Nevertheless,
such an approach does give a good handle on the phase components, provided that only the
correct patch of the diffraction pattern is used. The key to preventing the inverse operation
from being ill-conditioned is to correctly identify S™1(w), which was identified in the
previous section as S™*(u) = (|P[k — u]|) > 0. So far this shows the set of u-components
that should contribute to the inverse transformation (i.e. magnitude information) but not

information on how they should contribute (i.e. phase information). To resolve this issue, the

d0[k]

mnverse term
oY[u]

of Eq. (3.11), which quantifies their contributions, needs to be calculated

so that the phase information can be extracted.

For this task, we calculate the change of the object function in k-space due to a change in a

single component of the diffraction pattern. This is given by

(3.12)

-1 L _
oot~ Got) = (e

S™Hw)
where the kernel of the convolution inverse in Eq. (3.12) is approximated by ignoring the

regions where S™1(u) = 0. As far as information flow is concerned, this approximation is
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valid in a general setup because we know the regions where S™1(u) = 0 do not have
contributions from the object component O[k]; consequently, any correction of the object
component O[k] should not be influenced by regions where S™(u) = 0. Fig. 3.8 illustrates

the inverse mapping from the diffraction pattern to a spatial frequency of the object.

diffraction pattern

FIGURE 3.8 — Illustration of the convolution inverse domain

The iterative deconvolution kernel is built from the magnitude information of Eq. (3.10) and
the phase information of Eq. (3.12). Since division by zero is avoided in Eq. (3.12) via the
reverse of information flow constraint, the phase value of the approximated inverse kernel

equals the phase of the conjugate kernel. This substitution transforms Eq. (3.13b) to Eq.

(3.13¢) in
IDK[k — u] = |IDK|exp [i . arg (zzmﬂ (3.13a)
_ _ - Pk —u] (3.13b)
= |P[k u]leXp [l arg<|P[k_u]|2 5'1(u)>]
|P[k — u]|expli - arg(P*[k — u])] (3.13¢)
= P*[k —u] (3.13d)
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This gives the IDK as the conjugate of the convolution kernel. The first paragraph of this
section showed that the conjugate kernel acting as an IDK has the effect of minimising phase
distortions in the spatial frequencies of the recovered object. Taking the Fourier transform of
the IDK gives the corresponding update function as the conjugate of the illumination
function, which is the PIE update function with the parameter configuration (I = 2,8 = 0).
Thus, the preceding analysis indicates that the PIE algorithm extracts specimen information
in a way that minimises phase distortions in the spatial frequencies of the recovered object.
Using the IDK in Eq. (3.13d), the procedure for mapping the feedback error function from

the diffraction pattern to the object spatial frequency is

e[k] x Z P*[k —ule[u] = z P*[k — u]Ay[u] (3.14a)
sTw S=1(w)
enlk] o Z P*[k — ] A, [u] (3.14b)
s71(w)
Ops1lk] = On[k] + & [k] = On[K] + Z P*[u — k] A, [u] (3.14¢)
s71(w)
Opi1[1] = 0, [1] + P*[r] Ay, [7] (3.144d)

Here Ay, [1] = my{,[1]} — ¥y, [r] defines the exit wave difference in the n' iteration.

Eq. (3.14a) transforms the error from the detector plane to the k-space representation via the
conjugate kernel. Eq. (3.14b) expresses the error in Eq. (3.14a) as the feedback error in the
n™ iteration of the algorithm. In Eq. (3.14c), the feedback error is added to the k-space
running estimate of object, this is the correction step of the algorithm. Eq. (3.14d) is the
Fourier transform of Eq. (3.14c), which transforms the solution to the specimen plane in real

space.
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These arguments provide a first proof for the intensity weighting of the PIE update function,
which can now be viewed as a scheme that minimizes phase distortions of the recovered

object's spatial frequencies.

3.4 The coupling function of the PIE algorithm

This section investigates the impact of the update function on the quality of the
reconstructions from the PIE algorithm. The illumination intensity is used as a weight in the
update function to provide an effective and practical way to extract the object information.
This was shown to be equivalent to mapping errors from the correct patch of the diffraction
pattern to the object using the conjugate of the convolution kernel. The derivation of the IDK
in Section 3.3 shows that the conjugate kernel minimises the phase distortions of the
recovered object’s spatial frequencies but does not completely eliminate them. This is
because the convolution kernel that makes the diffraction pattern (see Eq. (3.4)) is not
orthonormal to the conjugate kernel. As a result, the error correction for a given spatial
frequency inevitably gets contributions from adjacent spatial frequencies. The remaining

phase and amplitude distortions are captured by the coupling function, which is given by

nlk] = F|P[r]|? (3.15)

Eq. (3.15) quantifies the coupling amongst spatial frequencies of the recovered object. This
representation highlights the impact of magnitude and phase structure of the illuminating
wave, which is not easily discerned in the real space representation. It also provides the
means of quantifying the effect of the illumination structure on the quality of the recovered

object, which is explored in Chapter 4. In the ideal case, the coupling function should be a
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delta function so that all the object’s spatial frequencies are accurately recovered. This
requires the conjugate kernel to be the exact inverse of the convolution kernel. Since this is
not the case, it is important to understand the implications of using the conjugate kernel as the

IDK in the update equation.

The finite FoV recovered by the update equation (via the illumination intensity distribution)
is directly connected to coupling errors amongst adjacent spatial frequencies of the recovered
object and is encoded in Eq. (3.15). As the illumination size increases, 1[k] approaches a
delta function, because of the scaling property of the Fourier transform. Consequently, the
reconstruction from the algorithm approximates the object over a larger FoV. To illustrate
the coupling of the recovered object’s spatial frequencies, consider the situation where the
running estimate of the object contains an error in a single spatial frequency, i.e. A0, [k'] =
S[k']. The update function spreads the error fed back to adjacent spatial frequencies during

the update step,

BOnalkl = ) P[u— k] B far,

S~1(w)
- Z P*[u — k] Z Plu— k']A0,[K'] ),
N ()] S(k")

= Z P[u — k']A0,[K'] P*[u — K], (3.16)

S~ 1(u) S(k")
- z z P*[k — ulP[u— k'] | A0, [K'],
SN \sT(w

= >l — K140,[K],
S(kr)

= > ik~ K18Tk'T = nlk]
S(kr)
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where n[k] = F|P[r]|?, using the Fourier convolution theorem. The second line of Eq.
(3.16) assumes that the estimated diffraction pattern is close to the measured diffraction
pattern so that the difference can be expanded using the FFT of the illumination as a basis.
This is possible because the diffraction pattern is built out of shifted versions of the

illumination FFT via the convolution operation in Eq. (3.4).

Phrased differently, updating the running estimate of the object with the weighted intensity of
the illumination is equivalent to obtaining an estimate of the underlying object with spatial
frequency errors determined by the coupling function (n[k]). This analysis suggests that any
departure of n[k] from a delta function should show up in the recovered image. The case
where the specimen is illuminated by a localised spot gives rise to an n[k] with low spatial
frequencies departure from a delta function profile, this limits the FoV of the recovered
object. Thus, a finite FoV in this framework is equivalent to a form of structured low
frequency noise in real space, where the variation of the noise is of the order of the size of the
illumination. By the same logic, non-zero values of n[k] at high spatial frequencies should
result in high frequency distortions in the recovered object. Thus highly structured
illumination that gives rise to peaks in n[k] at locations other than the central point should
result in high frequency distortions in the recovered image. The effects of spatial frequency
coupling in single diffraction pattern calculations are demonstrated in Chapter 4. An
interesting property of the ptychographic dataset is the extension of the recovered FoV, which
in a ptychographic reconstruction is, in principle, unlimited. Thus, extension from a single
diffraction pattern to a ptychographic dataset must consequently provide the means for

reducing the low frequency distortions in the recovered object.
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3.5 Summary

This chapter shows that characterising the convergence property of the update function in
different experimental setups requires that the solution provided by the update function be
viewed in a framework where interference provides a metric for solubility of the phase
problem. The derivation of the form of the update function in Section 3.3 shows that the
update function extracts spatial frequency information of the specimen from the correct patch
of the detector plane in a way that minimises relative phase distortions in those spatial
frequencies. Section 3.4 introduced the coupling function, which quantifies the effects of

using the illumination intensity as a weight in the update function.
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Chapter 4

4 Impact of experimental constraints
on the PIE update function

This chapter further investigates the update function for the Type-II setup to get a handle on
how it extracts object information from diffraction patterns. In the Type-II setup the
illumination is formed by a lens and is consequently curved. The calculations of Section 4.1
are used to investigate the performance of the update function for different types of specimen
functions, such as transparent and diffuse objects. In Section 4.2 the number of counts in the
diffraction patterns, processed by the update function, is reduced to a value that gives a poor
representation of the test object. Analysis of the resulting trend (quality of the recovered
objects) provides insight into signal to noise (SNR) properties of the Type-II diffraction
patterns. In the Type-Il setup, the main parameters that control the size of the
illumination/probe at the specimen plane are the defocus and size of the lens aperture.
Sections 4.3 to 4.5 investigate the trend of the error metric with each of these parameters in
order to determine the optimum parameter configuration for the Type-II setup. Furthermore,

it is useful to recover a large field of view (FoV) with high-resolution information; hence
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Section 4.5 also investigates the largest illumination size that can be accommodated in Type-
II diffractive imaging. In this investigation, the size of the illumination is increased using the
defocus parameter to regimes that highlights the impact of sub-Nyquist sampling on the
reconstruction. Section 4.6 investigates the impact of incorrect characterisation of the

defocus parameter on the quality of the recovered object in the Type-II setup.

4.1 Impact of object type on the update function

This section aims to understand the influence of object type on the update function. For this
investigation, the update function is applied to magnitude-only and phase-only objects
derived from the images in Fig. 4.1 and Fig. 4.2b. The calculations with magnitude-only
object model situations, where the object is absorbing, as in some classes of visible light and
X-ray experiments. The phase-only object calculations model both visible light and electron
experiments. The modified update function of Eq. (3.1b) is used in the magnitude-only
object calculations, where the real part of the iterative calculations is added to the running
estimate of the object. A similar routine was adapted to the phase-only object calculations, in
which the magnitude of the running estimate of the object is set to unity at each iteration step
of the algorithm. These provide additional projection constraint sets defined by the real line
(in the case of magnitude-only objects) and the circle of unit radius centred at the origin (in
the case of phase-only objects). The real line constraint reduces the number of unknown
variables in the detector plane by a factor of 2. This is because the Fourier transform of a real
object (g(r)) is the Hermitian function g(k), that possesses the symmetry for which complex

conjugation together with change of the variable sign leaves the function unchanged; i.e.
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g(k) = g*(—k), where k represent the Fourier coordinate and g(k) = Fg(r) gives the
Fourier transform relationship. Consequently, only half of the Fourier plane has independent
coefficients. The unit circle constraint has the same impact as the modulus constraint of the
diffraction pattern with the exception that the intensity value in real space is equal to one for

all the object pixels.

The results from calculations that use the transparent object in Fig. 4.1 are compared to the
corresponding Gabor hologram reconstructions (See Fig. 4.3 and Fig. 4.4). The recovered
objects from the Gabor holography method were calculated by multiplying the central bright
field disc of the diffraction pattern by the reference wave (FFT of the illumination); the
estimated exit wave at the specimen plane is the inverse FFT of this complex wave
distribution. In the case where the test object comprises only real transmission coefficient
values, the magnitude of the exit wave was extracted. The phase of the exit wave was
multiplied by the conjugate of the illumination function for the case where the test object is a
phase-only object; this was done to remove the curvature of the illumination. The results of

these calculations are shown in Fig. 4.3b and Fig. 4.4b.

The illumination used for this investigation was modelled in terms of an electron experiment
with a defocus of 300 nm and a convergence semi-angle of 15 mrad. Fig. 4.2a shows the
magnitude of the illumination at the specimen plane. The initial estimate to the specimen was
free-space with uniform transmission value of unity and the appropriate modified update
functions were applied to the diffraction patterns over 10000 iterations. The results are

presented in the next section.
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FIGURE 4.1 - Test specimen that models a resolution target. The calculations in this chapter employ the entire object but

only the region enclosed by the rectangle is shown in the most of the result sections because it corresponds to the region

where the illumination has high intensity values. For magnitude-only object calculations, the range of the specimen is

[0.1 1] and for phase-only object calculations, the range of the specimen is [-0.97 0].

(b)

(a)
FIGURE 4.2 — (a) Magnitude of illumination function that models a 200 keV electron beam with defocus of 300nm. The

aperture at the back focal plane of the illumination forming lens span a semi-angle of 15 mrad. (b) Test specimen used for

textured object calculations. The dashed lines in these images delineate the region of the recovered objects in Fig. 4.3 to Fig

4.5.
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4.1.1 Results
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(a) (b) (c)
FIGURE 4.3 — (a) Test specimen comprising real-valued transmission coefficients. (b) The Gabor hologram reconstruction
of the magnitude object in (a). (c) Magnitude of recovered object after 10000 iterations of the calculations that used the
modified update function in Eq. (3.1b). The field of view of the images shown in (a), (b) and (c) correspond to the region

enclosed by the rectangles in Fig. 4.1 and Fig. 4.2.
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FIGURE 4.4 - (b) Test specimen used for phase object calculations. The range of the specimen phase is [—0.97 0]. (b) The
Gabor hologram reconstruction for the phase object in (a). (c) Phase of recovered object after 10000 iterations of the update
function, with the additional constraint that sets the magnitude to the running guess of the object to unity at the start of each
iteration. The field of view of the images shown in (a), (b) and (c) correspond to the region enclosed by the rectangle in Fig.

4.1.
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@ (b)

FIGURE 4.5 - (a) Magnitude of recovered object for magnitude-only diffuse object calculations. (b) Phase of recovered
object for phase-only diffuse object calculations. The field of view of these images corresponds to the region enclosed by

the rectangle in Fig. 4.2b. These results correspond to the output of the algorithms after 10000 iterations.

4.1.2 Discussion

The recovered objects in Fig. 4.3c and Fig. 4.4c show that the algorithm recovers a better
representation of the object compared to the corresponding reconstructions from the Gabor
reconstructions in Fig. 4.3b and Fig. 4.4b. This is understandable because the Gabor
reconstruction can be retrieved from the estimated exit wave of the algorithm after the first
iteration. This estimated exit wave comprises the sum of the Gabor exit wave and
contributions from points outside the bright field disc of the diffraction pattern. The
algorithm refines this estimate in subsequent iterations using the appropriate modified update
function, where the known phase curvature of the illumination discriminates against the twin
image solution that distorts the Gabor reconstructions. The quality of the magnitude and
phase reconstructions in Fig. 4.3c¢ and Fig. 4.4c indicate that the update function can be

tailored to provide similar performance in iterative algorithms that recover magnitude-only or
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phase-only objects. The magnitude and phase reconstructions in the case of diffuse object
(see Fig. 4.5) contain imprints of the illumination magnitude. This means that application of
the update function to single diffraction patterns produces better quality reconstruction in the
case where the object is sparse (like the object in Fig. 4.1). This is an interesting result
because one would expect the converse to be the case, since a textured object samples the
illumination at a larger number of points and should therefore provide a more constrained
calculation. Subsequent calculations in this chapter employ the magnitude-only version of the

resolution target in Fig. 4.1 to further investigate the properties of the update function.

4.2 Impact of Counts on the update function

In diffractive imaging, the number of counts in the diffraction pattern needs to be high
enough to encode information about the scattering potential of the illuminated object. The
number of counts in the diffraction pattern of the Type-II experiments is governed by several
experimental factors. For example, in the electron microscope implementation of the Type-II
experiment, the specimen may drift during data collection. Specimen drift can arise from
thermal gradient in the specimen holder or local charging of the specimen by the electron
beam. The phase curvature of the illumination over the specimen in the Type-II setup means
that lateral movement of the specimen during data collection affects the distribution of
intensities in the detector plane. This compromises the quality of the diffraction pattern by
blurring interference fringes. In the case where the specimen is illuminated by a defocused
beam, translations in the specimen plane result in both translation and distortion of the

shadow image within the central bright field region of the diffraction pattern. This has the
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same effect as using an extended source that introduces spatial partial coherence into the
experiment (see Fig. 4.6). Partially coherent diffraction patterns degrade the quality of the
recovered object because diffractive imaging calculations employ wave propagation between
the specimen and detector plane that requires coherence for meaningful interpretation of
phase difference between different parts of the wave. In the type-II setup, iterative
calculations that employ a real space sampling pitch, greater than the effective spot size at the

lens focus, can correctly process the corresponding partially coherent diffraction pattern.

aperture aperture !

object ‘ object
finite Iens‘ 1 finite lens J
source source ;

detector shifted detector
illumination

(a) Illumination profile from a point source that is (b) Illumination profile from a point source that is
located along the central axis of the extended source. displaced from the central axis of the extended source.

centred
illumination

FIGURE 4.6 - Translation effect of illumination profile due to finite source size in the Type-II setup. This shows the
correspondence between specimen drift during data collection and partial coherence in the Type-II setup.

The effect of drift on the Type-II diffraction pattern can be minimised by reducing the
exposure time of the diffractive imaging experiment, which reduces the counts in the
diffraction patterns. Furthermore, the source size is demagnified to improve coherence of the
source at the specimen plane and results in low beam intensity. There is also the issue of
specimen damage from the beam that is especially true in the context of electron microscopy
imaging of soft matter (e.g. biological specimens) where counts as low as 10 electrons/A? are

sometimes required. The effect of damage can also be minimised by using a short exposure
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time. These constraints set an upper limit on the number of counts in diffractive imaging

experiments and may well result in noisy diffraction patterns.

In low count electron experiments, the dominant source of noise is described by the statistical
distribution of electron arrivals at a given pixel of the detector and the distribution is Poisson
(Spence, 2003). In the case where N electrons are expected to arrive at a given detector pixel

due to finite exposure time, the standard deviation of Poisson statistics gives the noise in that
pixel as VN. In other words, the signal to noise ratio (SNR) for that pixel is given by the

ratio of the mean signal (N) to the noise (\/N ), shown in Eq. (4.1).

_N 4.1)
SNR_W VN

In the Type-II setup, the diffraction pattern is made up of two regions called the bright field
and the dark field; the bright field corresponds to the central bright disc region of the
diffraction patterns of Fig. 4.7 and the dark field corresponds to the outer region. In the
absence of a specimen, all the counts are registered in the bright field. Thus the bright field
act as a reference region in the Type-II setup. The resulting diffraction pattern is close to the
Gabor hologram (Gabor, 1948) but we can have strong scattering specimens with textured
backgrounds. For the specimen used in these calculations (see Fig. 3.3a), the measured
intensities in the bright field result from the interference of diffracted beams with the
reference beam. This means that in a low count experiment, the majority of the counts reside
in the central bright field disc of the diffraction pattern. Eq. (4.1) suggests that the SNR of
scattered signals that resides in the bright field region is greater than those in the dark field

region, because the number of counts in the bright field disc is higher.
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(a) Diffraction pattern from (b) Diffraction pattern from (c) Diffraction pattern from
calculations using 105 counts calculations using 10° counts calculations using 108 counts

FIGURE 4.7 - Diffraction patterns from calculation using different count values. These diffraction patterns were used as
inputs to the PIE update function for the generation of the results in the next section. The diffraction patterns in (a), (b) and
(c) span a semi-angle of 62.3 mrad.

To model the effect of different exposure times, the power of the diffraction pattern was fixed
by the total number of counts in the experiment. Poisson noise was added to the diffraction
patterns, where the intensities of the calculated diffraction patterns were used as mean values
of the Poisson distribution. The noisy diffraction patterns were used as model diffraction
patterns for the associated count values. The diffraction patterns generated for counts values
of 105, 10° and 108 are shown in Fig. 4.7. These diffraction patterns were processed by the
algorithm in order to understand the impact of counts on the update function and to
investigate how much specimen information the update function can extract from noisy

diffraction patterns.

The illumination used for this investigation corresponds to a 200 keV defocused electron
probe generated with a lens that has a convergence semi-angle of 15 mrad. The specimen
was offset from the focus of the lens by a defocus distance of 300 nm. Fig. 4.8 shows the
magnitude of the illumination at the specimen plane. This investigation employed the
resolution target Fig. 4.1 as a test specimen and the initial estimate to the specimen was free-

space with uniform transmission value of unity. The algorithm applied the update function to

88



the noisy diffraction patterns over 10000 iterations and results are presented in the next

section.

4.2.1 Results

Fig. 4.9 shows the middle part of the recovered object transmission functions for the cases
with count values of 10%, 10°, 10° and 108. The region delineated by the dashed line in Fig.
4.8a corresponds to the part of the recovered object shown in Fig.4.8b and Fig. 4.9. To aid in
the analysis of the qualities of the recovered images, it is useful to split the recovered objects
into three regions; the inner region (R1), the middle region (R2) and the outer region (R3) as
shown in Fig. 4.8b. The outer region R3 corresponds to parts of the recovered object where
the illumination has low intensity values. The middle region R2 and the inner region R1 refer
to the parts of the object, where the illumination has high intensity values and are
distinguished by the average displacement of the object pixels from the centre of the

illumination. The evolution of the error metric over 10000 iterations is shown in Fig. 4.10.

(@ (b)

FIGURE 4.8 - (a) Magnitude of illumination function used in count calculations. The illumination models a 200 keV
electron beam with a defocus of 300 nm and a convergence semi-angle of 15 mrad. The rectangle delineates the region of
the recovered objects in (b) and Fig. 4.9. (b) Identification of three regions with different recovered properties. The
sampling pitch of these calculations is 0.04 nm and the calculation size is 512x512 pixels.
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(a) Recovered object from calculations using 10* counts (b) Recovered object from calculations using 10° counts

(c) Recovered object from calculations using 10° counts (d) Recovered object from calculations using 108 counts

FIGURE 4.9 - Magnitude of recovered objects after 10000 iterations of the algorithm for calculation that use different count
values. These results show that the recovered object from different count calculations contain graininess in region R3. The
image in (a) shows that the update function fails to recover the object features in calculation where the number of count in
the diffraction pattern equals 10*. The sampling pitch of these calculations is 0.04 nm and corresponds to a semi-angle at
the detector plane of 62.3 mrad.
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FIGURE 4.10 - Evolution of the error metric over 10000 iterations for calculations with different counts.
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FIGURE 4.11 - illustration of mapping between points at the specimen plane and points in the central bright field disc in the

case where the illumination is a defocused probe formed by a lens.

Points inside the region defined by the effective

illumination size are mapped to points in the bright field disc of the diffraction pattern while points outside this region are

mapped to the dark field of the diffraction pattern.
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4.2.2 Discussion

As we would expect, Fig. 4.9 shows that the update function provides the best representation
of the test specimen in the calculations with the highest count value. Fig. 4.9a shows that the
update function fails to recover the object features in the case where the number of counts in
the diffraction pattern equals 10*. The departure of the recovered objects from 