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Abstract

The aim of this research was to develop a behavioural paradigm capable of quantifying
action acquisition. It takes the form of a series of experiments in which human
participants learn to produce new actions with a joystick. Research questions were
focussed on the behavioural implications of Redgrave and Gurney’s (2006) theory that
dopamine neurons in the ventral midbrain play a pivotal role in the reinforcement and
reselection of motor output that is essential to action learning. The first study looked
at the effect of delayed audio and visual reinforcement on the ability to learn stable
hand positions. Delays of 100 ms were found to impair acquisition in both modalities.
This degree of temporal sensitivity supports the idea that dopamine neurons fire at
low latencies to reduce the reinforcement of non-contiguous motor output. The
second study investigated the effect of delay on the learning of hand movements. The
movements produced during the delay period were analysed to address the question
of whether the quantity of non-contingent output would impact on learning over and
above the mismatch in temporal alignment. The results revealed that this was not the
case, thus suggesting that timing is of primary importance to learning. The final study
utilised a task requiring more complex movements, in an attempt to reduce the
contribution of high-level, conscious, learning in favour of low-level non-declarative
learning. Performance was compared across conditions, which differed in the quantity
of spatial information provided. No evidence was found that the type of movements
produced during learning impacted on later performance, thus indicating a tendency
to use high-level spatial guidance of movements. All findings are discussed in terms of
the value of the current paradigm and the extent to which they support the theory
that action learning is mediated by a time-stamping mechanism in the midbrain.
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Chapter 1: the discovery of novel actions

Redgrave and Gurney (2006) and Redgrave, Gurney and Reynolds (2008) offer an
alternative explanation to the prevailing theory (Schultz, Dayan & Montague, 1997)
regarding the function of the phasic activity of midbrain dopamine neurons. They
argue that this activity does not serve as a reward prediction error signal, but is central
to the reinforcement and reselection of motor output and the discovery of novel
actions. If true, this dopaminergic activity could underpin some of the most basic
aspects of learning and behaviour including agency detection and action acquisition.
However, whilst the tools and methods for investigating the effects of reward
prediction are refined and clearly calibrated across the research community in the
form of operant chambers, shaping techniques and standardised schedules of
reinforcement, the most popular model for investigating action acquisition — lever
pressing — is limited to the extent it that it makes different levels of performance, and
therefore different stages of acquisition, difficult to quantify. The motivation for the
current research was to develop a behavioural paradigm, suitable for human
participants, that is capable of testing hypotheses derived from Redgrave and Gurney's
theory. The three chapters that follow chart the development of this paradigm, but
first this introduction attempts to situate the topic of action acquisition amongst other
similar fields in psychology, and then discusses possible neural correlates and the
implications of neural processes at the behavioural level and finally consideration is
given to some of the methodological requirements of a behavioural test of action

acquisition.

Previous research into action acquisition

Thorndike: action acquisition in animals

Thorndike (1911) was a pioneer in the quantitative study of learning. He investigated
action acquisition using an escape paradigm whereby animals were repeatedly
exposed to situations in which a particular sequence of movements was required in
order to bring about a desirable consequence, namely escape from an enclosure. The
iterated nature of the task allowed Thorndike to record the change in an animal's

behaviour over successive trials, both qualitatively: by means of general observations,

7



and quantitatively: by measuring the time between entry into the experimental
chamber and the point at which its escape was completed. In perhaps the best known
version of this task, a cat was enclosed in a puzzle-box and its behaviour observed as it
learned, over successive trials, to escape by pressing a foot pedal linked to a door
release mechanism. Initially, the animal would produce the escape behaviours natural
to a cat in a confined space and, consequently, any depression of the foot pedal was a
mere by-product of this. However, after many attempts, the normal escape response
of the cat was gradually reduced and behaviour consistent with lever depression was
increased. The cat’s behaviour in the context had apparently become more purposeful
and efficient. In other words, the cat had added a new action to its behavioural

repertoire.

Thorndike’s (1911) simple and intuitive account of the learning process was just as
influential as the paradigm he used to record it. He emphasised the animal's ability to
monitor the consequences of its own behaviour and observed that those responses
which do not result in positive outcomes are gradually "stamped out" whilst all those
resulting in reinforcement are gradually "stamped in" (p.74). He called this the law of

effect and explained it as follows:

The Law of Effect is that: Of several responses made to the same
situation, those which are accompanied or closely followed by
satisfaction to the animal will, other things being equal, be more firmly
connected with the situation, so that, when it recurs, they will be more
likely to recur; those which are accompanied or closely followed by
discomfort to the animal will, other things being equal, have their
connections with that situation weakened, so that, when it recurs, they
will be less likely to occur. The greater the satisfaction or discomfort,
the greater the strengthening or weakening of the bond. (p.244).

Although somewhat simplistic, Thorndike's law of effect retains the durability of other
process descriptions such as 'survival of the fittest', not because it is a complete
explanation but because it provides a means of describing learning without reference
to the unknown mechanisms on which learning depends. It also offers a neat summary

of the process under investigation here.



For the current purposes, the term ‘action acquisition’ is used to describe the type of
learning undertaken by Thorndike’s animal subjects and here this is treated as distinct
from action-outcome learning (Dickinson & Balleine, 2000). Typically, in action-
outcome learning a stable sequence of movements has already been acquired and the
learning in question involves the connection of new effects with this set of
movements. Action acquisition, by contrast, is treated here as the reduction of
behavioural variance from an initially large set of varied movements to a smaller,
stable set of movements that reliably bring about a particular outcome. This does not
necessarily involve the animal learning new movements that it was previously
incapable of performing, rather it involves the animal discovering that a given chunk of
behaviour has reliable consequences such that this chunk is now treated differently to
the individual elements from which it is comprised. During this process, the animal is
therefore forced to solve a credit assignment problem (Barto, Sutton & Anderson,
1983; Minsky, 1961), something that is less of an issue in action-outcome learning
where the pre-learned sequence of movements can potentially be dealt with as a
chunk. Despite the distinction drawn here, however, it is acknowledged that there is

much crossover between the two types of learning.

Skinner: the maintenance of an action

With behaviourism, attention turned from action acquisition to the ways in which
behaviour could be recorded and manipulated. This is exemplified by Ferster and
Skinner (1957) who developed a technique to investigate the effect that different
timings, magnitudes and probabilities of reinforcement could have on an animal’s
responses; they termed the technique operant conditioning. In a typical experiment, a
rat or a pigeon would be placed inside a small cage or box (an operant chamber)
containing one or more levers. Depression of a lever would be reinforced by delivery
of food into a hopper. By varying the timing, quantity or likelihood of food being
delivered, the rate at which the animal responded with depressions of the lever could
be changed. Thus, psychologists had a means of distilling some of the complexities of

learning down to discrete responses on a lever operandum.

Operant conditioning owes much to the work of Thorndike; however, it would be
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wrong to think of it as a simple refinement of his work. Thorndike’s escape paradigm
was designed to investigate the acquisition of new actions and therefore experiments
utilising this paradigm continue only until the point at which the relevant action has
been fully learned. Operant conditioning, by contrast, was designed to investigate how
reinforcement can change the rate at which animals produce fully formed (previously
learned) actions. The relationship between the two approaches is explained by Skinner

(1969) as follows:

By thoroughly adapting the rat to the box before the lever is made
available, most of the competing behaviour can be “stamped out”
before the response to be learned is ever emitted. Thorndike’s learning
curve, showing the gradual disappearance of unsuccessful behaviour,
then vanishes. In its place we are left with a conspicuous change in the
successful response itself: an immediate, often quite abrupt, increase in
rate. (pp.6-7).

In other words, Skinner’s primary aim when employing operant conditioning was not
to investigate how a rat learns to press a lever, but instead to record how the

probability of a fully formed lever-press response changes over time.

The obvious question for anyone interested in action acquisition, is how do the animal
subjects acquire the lever pressing (or key pecking) actions in the first place? To
Skinner, the acquisition phase was essentially an obstacle to measuring rate of
response (Lattal & Gleeson, 1990) and he developed a technique for quickly
transforming simple components of an animal’s behaviour into more elaborate actions
and sequences of actions: a process known as shaping. From an experimental point of
view, this avoids the need for a protracted period whereby the animal acquires the
behaviour automatically. However, whilst it is easy to appreciate that researchers
might want to skip straight to the process of interest, it is hard to escape the
impression that Skinner’s efficient techniques for investigating learning have resulted

in guestions of acquisition being left relatively ignored (Peterson, 2004).

What is learnt during action acquisition?

A somewhat confusing aspect of the study of action acquisition is the question of what

constitutes an action. Redgrave et al. (2008) define action acquisition as “discovering a
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movement that has a predicted outcome" (p.331). The animals in Thorndike’s
experiments were better able to effect an escape from the enclosures by the end of a
testing session than they were at the beginning and yet it seems strange to suggest
that they had learnt new movements during this time. So what exactly did they learn?
One might argue that they learned that the pedal was the cause for the door opening
and in a sense this is true, but with an important qualification. Thorndike found that
demonstrating the task to the animals prior to a testing session did not increase their
rate of learning. He also found that, once trained, the animals would attempt to press
the door release pedal, even if that pedal was removed (they would ‘press’ thin air). In
other words, it is likely that the cats’ understanding of their behaviour was very
limited. However, what we can say with confidence is that the cats had learned a
stable sequence of movements that reliably resulted in a desirable outcome. The
process of combining and refining movements would seem, therefore, to be central to

action acquisition.

There is no simple relationship between the proximity of any given movement within
an action and its contribution to bringing about a particular outcome. The final portion
of an action may be no more or less important to the outcome than the earliest part of
an action. Because of this, actions are often not decomposable into component parts,
even if each of those parts is just a simple movement learned long before the whole
action. Indeed, Ostlund, Winterbauer and Balleine (2009) have demonstrated that
action sequences — that is to say, combinations of not just movements, but entire
actions — can be treated as a single reinforceable entities or ‘chunks’. They found that
healthy rats were able to avoid a particular sequence of lever presses when the
outcome of that sequence had been devalued through prefeeding. Importantly, they
were able to demonstrate that the rats weren’t merely avoiding sequences based on
individual components within those sequences. Actions, then, are perhaps not only
defined in terms of the movements of which they are composed, but also in terms of

the outcome they bring about.

Action-outcome learning

Thorndike’s work is clearly a very pure and intuitive approach to the study of action
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acquisition, but the issue of action sequence chunking shows that we can take an
entirely different perspective on the subject: it is possible to study action acquisition
when the stable sequence of movements already exists within the animal’s
behavioural repertoire. In such circumstances, we can focus instead on what the
animal learns about the consequences of those movements such as how the utility
changes depending on the animal’s inner state (e.g. level of satiety or nausea). This
approach has come to be known as action-outcome learning (Dickinson & Balleine,

2000).

Action-outcome learning can be thought of as the formation of memories regarding
the causal consequences of actions, such that the probability of invoking a learnt
action at any given time is dependent on the current utility of that action's
consequences. Adams and Dickinson (1981) pioneered the modern study of action-
outcome learning with two experiments that tested "whether or not animals know
about the consequences of their actions" (p.109). Rats were trained to press a lever in
return for a food reinforcer. They were also fed on a different kind of food, not paired
with lever pressing. Following this training phase, half of the rats had the contingent
food devalued whilst the other half had the non-contingent food devalued; the
devaluation was achieved by injecting them with lithium chloride (a toxic salt that
causes sickness) following consumption of the relevant food. It was found that the
number of lever presses performed during subsequent extinction trials was lower in
the group of rats for whom the contingent food had been devalued. In other words,
the rats' experience of the contingent food (i.e. sickness) outside of the normal lever-
pressing context affected their behaviour when they returned to the lever pressing
situation, even though they didn't experience the reinforcer again. Apparently, this
difference in behaviour depends crucially on the rats' knowledge of what lever

pressing does.

This study and other similar studies (e.g. Colwill & Rescorla, 1985) concern action
acquisition insofar as they provide information about precisely what has been learnt
by the animal. For example, in the Adams and Dickinson (1981) experiments, we find
that learning the action involves more than just the connection of stimuli with

responses because, after devaluation, the rate of response was measured during
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extinction trials so there was no further exposure to a stimulus-response relationship
that could have prompted the drop in rate of response. Therefore, to fully characterise
the action that has been learnt by the rats, it isn’t enough speak in terms of stable
sequences of movements, we must also take into account what the rat has learnt
about the consequences of these movements because this informs its choices as to
whether or not to produce the action at a given time and allows it to make intelligent

decisions which take into account its own internal state.

The focus of the current research concerns the reselection, repetition and
reinforcement of recent movements as detailed by Redgrave and Gurney (2006) and
Redgrave et al. (2008) and, therefore, it is considered that this puts it in the tradition
of Thorndike’s (1911) escape paradigm as opposed to the devaluation paradigms
which are central to action-outcome learning research. In nonhuman animals, an
understanding of utility is most directly expressed in terms of rate of response and is
most informative when the response is a sequence of movements that already exists
within the animal’s behavioural repertoire. By contrast, the extent to which recent
motor output has been reinforced is most directly expressed in terms of the efficiency
with which a sequence of movements is performed. When studying this efficiency, we
must assume that the outcome/consequence of the recent motor output has at least
some utility to the agent be that through novelty, experimenter instructions or
nutritional benefits. In other words, the animal’s motivation to elicit the outcome is a
requirement of the investigation, and the extent to which the outcome is useful to the

animal is only a secondary concern.

Action-acquisition versus supervised learning

A basic consideration when developing a new experimental paradigm is to ascertain
whether it is likely to be able to measure the process of interest. Specifically, there is a
risk that a joystick paradigm might tell us more about motor control than it does about
action acquisition. It has long been argued that the movements we make must, to
some extent, be pre-programmed and, where necessary, be corrected during travel by
the use of an internal model predicting the sensory outcome of the movement

(Desmurget & Grafton, 2000; Jordan & Rumelhart, 1992). One of the most persuasive
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reasons for believing this is that some movements are executed and corrected so
rapidly that there wouldn’t be time to guide the movement using sensory feedback,
due to the latencies in conveying that information through the nervous system (Bard
et al., 1999). Consequently, it seems certain that such movements are carried out
based on a motor program that specifies the movement so, once planned, it can be
carried out without external feedback and errors can be predicted in advance. The
creation of these motor programs is, of course, closely related to the topic of action
acquisition. Consequently, it is important to be clear on the differences between
supervised learning and reinforcement learning, given that the latter is the primary

focus of the current research.

A good example of a supervised learning paradigm is the task employed by Kitazawa,
Kohno and Uka (1995). They projected targets onto a screen and required human
participants to make reaching movements towards these targets. Participants wore
prism spectacles, which shifted their view of the target by a fixed amount. The
spectacles also served to render the target invisible during reaching movements by
becoming opaque. This ensured that the only visual feedback received by the
participants was on first sight of the target and then again once their finger had settled
on the screen at the end of the reaching movement. By this method, the
experimenters were able to measure the adaptation of the participants’ reaching

movements over several trials as they learned to correct for the effect of the prisms.

Whilst it is easy to identify archetypal examples of both supervised learning (e.g.
Kitazawa et al., 1995) and reinforcement learning (e.g. operant conditioning or
Thorndike, 1911), the key differences between the two aren’t quite so apparent. Here
we will take a methodological perspective, mindful that there are other technical ways
of differentiating the two types of learning at the algorithmic level (e.g., Jordan &
Rumelhart, 1992). Essentially the difference lies in how the results of behaviour are
presented to the agent. In the case of supervised learning, the results are presented in
such a way that the agent can compare their actual performance to a target
performance. In the case of reinforcement learning, by contrast, the results are
gualitative in nature, indicating whether performance was successful or not, and

perhaps even differing degrees of success, but they can’t be compared to a target
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performance; the target performance must be discovered through practice. In a sense,
then, supervised learning is learning how to execute a movement. The outcome will
certainly be successful, but it is the extent to which it is successful that matters.
Reinforcement learning involves discovering what the target level of performance is
whilst simultaneously learning to execute the necessary movements. The outcome of
any given attempt may or may not be successful and often a lack of success won’t
result in explicit feedback. Another way of looking at the difference is to consider what
an absence of feedback means. In the case of reinforcement learning, an absence of
feedback provides the agent with useful information: it means that it hasn't yet
performed the relevant action, so it must continue to try to achieve the reinforcement.
By contrast, with supervised learning, the absence of feedback is not informative as it

simply means that the agent is no longer attempting the task.

In the case of Thorndike’s (1911) escape paradigm, the animals had a clear goal which
was to escape from a puzzle box and they had clear reinforcement in the form of the
lever mechanism opening the door to allow the animals to escape, but they didn’t
have a way of monitoring performance at any given time relative to optimal
performance. Instead, they were forced to extract this information from their own
behavioural variance. In the experiment by Kitazawa et al. (1995), participants had a
clear goal, which was to touch the target, and they had clear feedback in the form of
the image of their finger relative to the target. This image provided participants with
everything they needed to know in order to improve their performance; unlike
Thorndike’s cat, there was no need for them to gradually learn the target
position/performance through several attempts at the task as it was explicitly
presented to them. Interestingly, the Kitazawa et al. (1995) task appears to
demonstrate that one of the features we often associate with reinforcement learning
paradigms — the discrete presentation of reinforcement rather than continuously
provided feedback on performance — is not something that can be used to
differentiate supervised learning paradigms from reinforcement learning paradigms.
By making the arm movements invisible to their participants Kitazawa et al. ensured
that the feedback provided a single snapshot of performance once the attempt was

complete.
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Neural basis of action acquisition

The function of dopaminergic neurons

Over the past 25 years (beginning with Schultz, 1986), a large body of evidence has
accumulated linking the activity of dopamine neurons in the ventral midbrain with
reinforcement learning. It is now well documented that these neurons fire in response
to the presentation of rewards and information predicting rewards (Schultz, 2000). In a
typical experimental scenario, during which the activity of dopamine neurons is
recorded, an animal learns that it will be presented with a reward (food or drink)
should it perform a specific action such as pressing a button following the presentation
of an arbitrary stimulus (a tone or a light). At first, the activity of the neurons
correlates with the presentation of the reward itself but after repeated performance
of the task the neural activity is no longer elicited by the reward and instead occurs in
response to the conditioned stimulus (the tone or light). Furthermore, withholding the
reward, and thus confounding the animal’s prediction, results in the suppression of
activity to below the baseline firing rate. This phenomenon has been formally
described by Montague, Dayan and Sejnowski (1996) and Schultz et al. (1997) and has
come to be known as the reward prediction error theory. As Bayer and Glimcher
(2005) have put it, “the midbrain dopamine neurons are hypothesized to provide a

physiological correlate of the reward prediction error signal" (p.129).

A general concern with any claim to have located the site of a particular signal in the
brain is the possibility that a similar pattern of activity might exist in another
unrecorded brain structure (Hellon, 1986). Furthermore, without the use of controls, it
cannot be ruled out that the large numbers of responses required of animals under
conditions of low sensory stimulation (e.g. Ljunberg, Apicella & Schultz, 1992; Schultz,
Apicella & Ljungberg, 1993) might generate abnormal patterns of neural activity. That
is to say, the unusual testing conditions (relative to natural conditions) might result in

misleading data.

In the specific case of the reward prediction error theory, there are good reasons for
having confidence about the involvement of dopamine neurons in instrumental

learning. Firstly, increased activity is seen in response to stimuli that are correlated
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with the delivery of reward (behaviourally significant) and not merely unpredicted
stimuli (Ljunberg et al., 1992), so it isn’t the case that the neurons are just responding
to surprising stimuli. Secondly, and more convincingly, the experimental intervention
in the activity of dopamine neurons has effects on operant behaviour. Tsai et al.
(2009), for example, were able to bring about conditioning in mice through the
deliberate activation of midbrain dopamine neurons by means of optogenetic tools.
This along with lesions studies (e.g. Dowd et al., 2005) offer important evidence as to
the causal role that these neurons play in instrumental learning and, consequently,

add credence to theories of the function of dopamine neurons.

The reward prediction error is not the only interpretation of this neural activity.
Redgrave and Gurney (2006) have called into question the observation that the activity
of dopamine neurons is a response to rewards per se and not simply a response to
stimuli that are novel. They argue that the neural response of these neurons to
experimental stimuli occurs so soon — approximately 100 ms (Bayer & Glimcher, 2005;
Guarraci & Kapp, 1999; Horvitz, Stewart & Jacobs, 1997; Ravel & Richmond 2006;
Schultz, 1998; Takikawa, Kawagoe & Hikosaka, 2004) — after the occurrence of a
stimulus as to be impossible for it to be a signal specifically associated with reward
value. They submit that there would be insufficient time between the presentation of
the stimulus and the response of the dopamine neurons for any rewarding
characteristics of that stimulus to be assessed. The neurons react before a saccade can
be executed at around 150 to 200 ms (Hikosaka & Wurtz, 1983; Jay & Sparks, 1987)
and at a point that is at least coincident with, and therefore unlikely to be a
consequence of, the time it takes for the earliest cortical identification of visual
stimulus properties at around 80 to 100 ms (Rousselet, Thorpe & Fabre-Thorpe, 2004;
Thorpe & Fabre-Thorpe, 2001). They point out that, in the visual domain, the only
sensory signals available at such short latencies would arrive via the superior colliculus,
a subcortical structure that is probably insensitive to the kind of visual information that
could indicate reward value (Sumner, Adamjee & Mollon, 2002; Wurtz & Albano,
1980). This view is supported by other research, which suggests that the only visual
structures with prominent connections to midbrain dopamine neurons and working at
such short latencies are the superior colliculi (Comoli et al., 2003; Dommett et al, 2005;

May et al., 2009).
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Redgrave and Gurney (2006) offer an alternative theory, reasoning that dopamine
neurons do not signal reward prediction errors but are instead involved in the job of
linking novel events (irrespective of whether those events are rewarding or not) with
the behavioural output that caused them. It is generally agreed that the phasic activity
of these neurons changes in response to the predictability of events in a way that
suggests that it is part of a learning process (Bayer & Glimcher, 2005). Rather than
inferring what that learning process is from the behaviour of the animal, the approach
of Redgrave and Gurney was to identify regions to which the dopamine neurons
project and likely sources of input from other regions of the brain that would converge
at similar times. They point out that sources of contextual (Apicella, Legallet &
Trouche, 1997) and motor information (Reiner, Jiao, Del Mar, Laverghetta & Lei, 2003)
should, in theory, converge on the striatum at a point in time that just precedes
sensory input from the thalamus (Matsumoto, Minamimoto, Graybiel & Kimura, 2001)
and the sensory evoked dopamine input from the ventral midbrain (Dommett et al.,
2005), and that this indicates that the learning mechanism might be capable of both
agency detection and the discovery of novel actions. In other words, their theory is
that the dopaminergic activity is involved in helping an animal to learn whether or not
it was responsible for the occurrence of a given stimulus and, if so, which aspect of its
recent motor output was critical to eliciting that stimulus. They further argue that one
of the reasons why the phasic response of dopamine neurons is of such short latency
relative to the incidence of a novel stimulus, is that this reduces the opportunity for
causally irrelevant movements to be reinforced and reselected (or ‘stamped-in’, to use
Thorndike’s terminology). In particular, the dopaminergic activity is of sufficiently short
latency that it precludes the contribution of movements which are a direct response to
the novel stimulus itself, thus removing contamination from necessarily non-

contingent motor output.

The difference between the theory put forward by Redgrave and Gurney (2006) and
the more well established theory offered by Montague et al. (1996) and Schultz et al.
(1997) appears, initially, to be a subtle one at the neural level: reward-driven versus
salience-driven learning. However, ultimately it is behaviour that matters, as behaviour

is the only means through which the mechanism can be judged by evolutionary
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pressures. As Hills (2006) notes:

It is well argued that [dopamine's] role in extant species is associated
with novelty or reward detection. However, this cannot be a complete
definition with respect to evolution, because evolution cannot act on a
detector that is not associated with some subsequent behavioural or
physiological modulation. (p. 16).

At the behavioural level, the difference between the two theories is considerable,
amounting to the difference between response maintenance (reward prediction error
theory) and action acquisition (Redgrave et al.). Whether or not these two aspects of
reinforcement learning ultimately amount to the same thing, the two theories tend to

emphasise one over the other.

Here, the emphasis is firmly on action acquisition and, therefore, the theory offered by
Redgrave and Gurney’s (2006) and Redgrave et al. (2008) will be the primary
theoretical reference point with regard to the neural correlates of action acquisition
and their likely impact on behaviour. If this interpretation is correct then it means that
phasic dopaminergic activity in the midbrain is doing a job very similar to the process
of ‘stamping-in’ referred to by Thorndike (1911). For the present purposes, the term
‘stamping-in’ will be used to refer to the processes of reinforcement and reselection of
motor output described by Redgrave and Gurney as being triggered by the phasic

activity of dopamine neurons.

Temporal alignment and the eligibility period

A key component of Redgrave and Gurney’s (2006) theory is the idea that a temporal
alignment of sensory input and motor output is essential to the processes of action
acquisition and credit assignment. They argue that phasic dopaminergic activity is
triggered by salient stimuli and functions as a time stamp to indicate the portion of the
motor record with which the stimulus is temporally aligned and, by virtue of this, the
last part in the motor record that will be eligible for stamping-in (Redgrave et al.,
2008). As to the learning and storage mechanisms, they point to long-term
potentiation (LTP) and long-term depression (LTD) as the means by which motor

output might be stamped-in and stamped-out respectively. If they are correct, then
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there is a short-latency, short-duration timing signal to indicate when a sequence of
movements is successful in eliciting a novel stimulus. There is also a process of LTP,
triggered by the short-duration timing signal, which acts as the means by which
successful sequences of behaviour are stored over an extended period of time (Staubli
& Lynch, 1987). However, what is missing from the picture so far is a mechanism that
can explain how contingent motor output and the consequences of actions are stored
in the short term, from one attempt to the next and that can also determine how great

a portion of the previous motor output should be eligible for stamping-in.

Histed, Pasupathy and Miller (2009) describe two possible explanations of how the
consequences of an action might be stored in the short-term: either changes to
synapses or "sustained firing patterns of neurons" (p.245). Their research has shown
that sustained firing in the striatum and prefrontal cortex can last for several seconds,
enough time to allow the temporary storage of the consequences of actions over the
period between trials in their experimental testing sessions. They argue that sustained
neuronal activity is the best candidate for short-term storage between learning
attempts because it isn’t subject to the delays inherent in synaptic changes that allow
storage over comparable periods of time (2 to 6 s). Sustained neural activity is an
excellent candidate mechanism for a process that involves an eligibility period. It
seems plausible that such a mechanism might be responsible for sustaining the neural
activity associated with motor output and there is evidence that preparatory activity in
the human motor cortex (Mars, Coles, Hulstijn & Toni, 2008) can be sustained over

similar periods of time

One of the implications of a timing based system of action acquisition is that it will
learn indiscriminately. In a new learning situation, for example, an animal is likely to
perform an action sub-optimally to begin with and yet the contiguous portion of the
motor output, warts and all, will be stamped-in by virtue of its temporal proximity to a
novel stimulus. In other words, if the system works by simply reinforcing recent motor
output, it will be reliant on the imperfect repetition of this motor output during
subsequent attempts in order to extract the common, task-relevant, elements of the
behavioural variance. There is some evidence to support the existence of such a

learning system. Thorndike's (1911) experiments, for example, revealed the kind of
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gradual learning and apparent absence of insight that one would expect to result from
such a mechanism. Skinner (1948), too, provides evidence in the form of the
development of superstitious behaviour in pigeons: conditioning in the animals was
produced by the coincidence of a movement with the non-contingent release of a food
reinforcer. That is to say, Skinner found that movements could be stamped-in if the
temporal alighment was right, even if those movements were functionally irrelevant to

the process of acquiring food.

What is reward and what is reinforcement?

Throughout the present research, repeated reference will be made to the process of
reinforcement so it is important to outline what is meant by this term. Much has been
made of the distinction between rewards and reinforcers with some researchers
placing great emphasis on the need to distinguish between the two. Salamone, Correa,
Farrar, Nunes and Pardo (2009), for example, make a strong case for the need to

define the concept of reward when undertaking research:

In some papers, the word “reward” seems to be used as a rather
monolithic, all- encompassing term that refers to any and all aspects of
appetitive learning, motivation and emotion, whether conditioned or
unconditioned. Used in this way, the term reward is a rather blunt
instrument. These problems are not merely semantic, as it is difficult to
test a hypothesis which maintains that a neurotransmitter mediates
such an ill-defined set of functions. (p.1).

Certainly this is true when research depends on a theory that relates to things that are
rewarding as opposed to merely reinforcing. However, with the greatest will in the
world, authors can struggle to pin down the concept of reward. The following
definition from Schultz et al. (1997) is as good an attempt as any and yet it is still tends
towards the broad; it isn’t clear, for example, whether it would meet the standards of

Salamone et al. (2009):

“Reward” is an operational concept for describing the positive value
that a creature ascribes to an object, a behavioral act, or an internal
physical state. The function of reward can be described according to the
behavior elicited. For example, appetitive or rewarding stimuli induce
approach behavior that permits an animal to consume. Rewards may
also play the role of positive reinforcers where they increase the
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frequency of behavioral reactions during learning and maintain well-
established appetitive behaviors after learning. The reward value
associated with a stimulus is not a static, intrinsic property of the
stimulus. Animals can assign different appetitive values to a stimulus as
a function of their internal states at the time the stimulus is
encountered and as a function of their experience with the stimulus.
(p.1593).

The concept of reward would seem to be particularly fuzzy in the context of research
into action acquisition and often the term ‘reinforcer’ is used in its place. Natural
examples of action acquisition do not involve operant chambers and food hoppers.
Indeed, it can be difficult even to identify what the reinforcer is in a given situation, let
alone make a decision as to whether or not it is best described as a reward or
reinforcer. It is during the early development of higher mammals that we can observe
the fastest rate of action acquisition and yet the rewards in operation during intensive
exploratory and play behaviour are particularly obscure. There are also a number of
non-play examples of responses being maintained by outcomes that have no obvious
relationship to basic survival or reproductive requirements of an animal. For example,
light flashes which are delivered in a way that is temporally contiguous and contingent
with bar touching in mice result in increased responding and extinction effects when
the light is not longer provided (Kish, 1955). Presumably, the ultimate advantage of a
learning system that does not necessarily require reinforcement in the form of
economic rewards (or stimuli predicting economic rewards) is that the organism can
build up a behavioural repertoire in advance of needing to use the actions for direct
survival reasons. Singh, Lewis, Barto and Sorg (2010) capture this distant relationship
between reinforcement and ultimate survival benefits in their account of intrinsically
motivated learning: "there are no hard and fast features distinguishing intrinsic and
extrinsic reward computationally. Rather, the directness of the relationship between
rewarding behavior and evolutionary success varies along a continuum" (p.70). In
other words, the more distal the apparent relationship between a behaviour and
genetic fitness, the more we can describe the properties of any reward involved as

being intrinsic as opposed to extrinsic.

The idea that some behaviour is intrinsically motivated and that the extent to which it

is intrinsic can be placed on a continuum of how distal is its relationship to
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evolutionary success, ties in with theories about changes in the way dopamine has
mediated behaviour over evolutionary time. Hills (2006) speculates that the effect of
dopamine on behaviour in higher mammals is not so different to its effects on foraging
and spatial search for food rewards in much more primitive animals; what has changed
is rather the range of things that modern animals are capable of treating as goals and

rewards:

Molecular machinery that initially evolved for the control of foraging
and goal-directed behavior was co-opted over evolutionary time to
modulate the control of goal-directed cognition. What was once
foraging in a physical space for tangible resources became, over
evolutionary time, foraging in cognitive space for information related to
those resources. (p.4).

In other words, higher mammals are no longer restricted to motivation through
primary rewards and are able, via the effects of, amongst other things, dopamine, to
treat abstract objects, events and perhaps even memories as goals. And yet, responses
to these abstract goals should be much the same as they are still mediated by the
same underlying brain processes. All of this would seem to support Redgrave and
Gurney’s (2006) account of the function of dopamine neurons because it suggests that
there has been a move away from purely appetitive stimuli towards stimuli that are
interesting to an animal for other reasons. As Berridge and Robinson (1998) have
suggested, the effect of dopamine might be to make animals ‘want’ something without
necessarily ‘liking’ it, a particularly useful trait for any animal that is designed to add

lots of actions to its behavioural repertoire.

The reinforcement that will feature in the experiments to follow tends to involve
simple discrete sounds or visual stimuli. These will be referred to as instances of
reinforcement and, following Redgrave and Gurney (2006) and Redgrave et al. (2008),
it will be assumed that these novel events will be reinforcing for the purposes of action
acquisition. This is in the tradition of behaviourism where Ferster and Skinner (1957),
for example, defined a reinforcer as anything that increases the probability of a
specific response being emitted. From this perspective, then, there is no sense in
which we should talk about rewards and reinforcers as being separate things; they

either result in reinforcement or they do not.
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Methodological requirements for a behavioural test of

action acquisition

Thorndike’s (1911) escape paradigm, described above, is an excellent methodological
precedent for the study of action acquisition. However, whilst it is an elegant
approach, it has many limitations, both from a quantitative and a practical point of
view. Consequently, it provides a wuseful starting point for identifying the
characteristics we would ideally find (or avoid) in a good action acquisition paradigm.
Perhaps the biggest single limitation of the puzzle-box paradigm is that it makes data
collection difficult. Whilst it was possible to extract a useful one-dimensional
performance metric in the form of escape time, it was not possible for Thorndike to
guantitatively deal with the more complex aspects of an animal’s behaviour, so metrics
such as the distance travelled by an animal or the time spent in the proximity of the
lever were not readily available. Furthermore, the task was not easy to automate:
whilst it would not be difficult to automatically record the time from when the animal
first entered the puzzle-box to the point at which it effected its escape, each new trial
still required experimenter intervention in order to put the animal back into the puzzle
box. A further limitation is that the puzzle box scenario is clearly not suited to testing
human subjects: any such endeavour would be unwieldy, requiring a large and
complex, yet safe, puzzle environment. Perhaps more importantly, though, is the
problem of hiding the puzzle mechanism from a human participant. When using
animal subjects it is possible to rely on the animal’s lack of insight into the action-
outcome mechanism as a way of forcing the animal to rely on the reinforcement of
recent motor output rather than simply jumping to a solution. This is far more difficult
with human participants. It is therefore important that any new paradigm aimed at
investigating action acquisition in humans, involves some means of obscuring the
method of eliciting the outcome so that participants are forced to learn and not
merely perform the required action. Finally, the puzzle-box scenario was limited from
the point of view of repeated testing of individual subjects: repeated measures for
Thorndike meant physically changing the apparatus that the animals were required to
escape from. Such a high maintenance approach to repeated measures investigations

is clearly something to be avoided if at all possible.
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Thorndike’s line-drawing paradigm

Thorndike (1927) addressed some of the above limitations with an experiment that
tested the ability of human participants to draw lines of particular lengths. Blindfolded
participants were asked to draw lines as close to a target length as possible. In the first
phase of a testing session all of the lines were drawn without any feedback. During the
second phase, feedback was provided in the form of the verbal responses “right” and
“wrong”, depending on whether or not the length of the line was close enough to the
target length. In the third and final phase, the participants were tested once again
without any feedback. Thorndike was then able to calculate the improvement from
phase one to three as a means of describing the amount of learning that had taken
place. For the present purposes, the line-drawing paradigm solves some of the short-
comings of the puzzle box approach. From a practical point of view, the approach
lends itself to the testing of human participants and also to the automation of the
learning procedures. Whilst Thorndike himself was not able to implement the
experiment in an automated fashion, it is nonetheless easy to appreciate how we
might translate his procedure into a computerised version that could be run with
relatively little input from the experimenter. Furthermore, the drawing approach
makes it simple to run repeated measures designs. Participants can, of course, be
tested on different lengths of lines, but clearly they can also be tested on other shapes

and symbols.

However, whilst the line-drawing paradigm solves some of the problems associated
with the puzzle box, it also has some limitations from the point of view of the current
research. At first, it appears like Thorndike was able to obscure the method of eliciting
the outcome simply by blindfolding the participants: the task demands are sufficiently
straightforward that they can be achieved whilst wearing a blindfold so the blindfold
can be employed as a means of forcing the participants to learn to draw the lines
through ‘feel’ rather than simply remembering what the correct length of line looks
like. However, whilst the blindfold certainly serves to make the task more difficult, the
task is still primarily one of executing a pre-specified movement more accurately. This

point is easier to appreciate when we consider the kind of behavioural variance that
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was being produced in the experiment. In theory, Thorndike was able to extract an
extremely rich data set from the line drawing paradigm: participants produced
hundreds of two dimensional movement traces and, in a modern computerised
version of the task, it would be easy to also collect accurate timing data. And yet,
irrespective of how complete the record of behaviour is, the task is just too heavily
constrained to make full use of the record. There is only one way to complete a trial;
no degrees of freedom other than the length of the line remain open for the
participant to express behavioural variance. Failure to draw a line is simply failure to
perform the task and the relative quality of a line (e.g. its straightness) is not taken into
account. If we consider the puzzle box scenario it is clear that whilst each trial must
ultimately end with the cat falling upon the lever in order to open the door, the means
by which the cat achieves this end are free to vary as the cat chooses. In the line
drawing task, there is no sense in which the participant can achieve the drawing of a
line in an efficient or an inefficient manner: efficiency is not a parameter that is free to
vary. In this sense, the line-drawing paradigm is somewhat more similar to a
supervised learning task as opposed to a reinforcement learning task. This point is
particularly underlined when we consider that feedback, whether it indicates a correct
or an incorrect response, is provided regardless of what the participant does: the
presence or absence of feedback is not contingent on performance, rather it is a

description (albeit a crude one) of performance.

The serial response time task

An alternative approach to the study of action learning in humans is to record
sequence learning in the form of multiple button presses. The serial response time task
(SRTT) (Nissen & Bullemer, 1987) is designed to measure motor sequence learning at
different levels of attention. In a typical set-up, participants press one of four buttons
on a keypad in response to visual cues that occur at one of four corresponding
locations on a computer monitor. As the buttons are pressed, the time between the
signal appearing on the monitor and the associated button being pressed is recorded.
Depending on the particular methodological setup, repeating sequences of button
presses are hidden from attention by asking participants to perform a concurrent

secondary task or by embedding them within random, non-repeating sequences
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(Willingham, Salidis & Gabrieli, 2002). The aim is therefore to investigate “whether it
is necessary to attend to a stimulus event in order to remember it later” (Nissen &
Bullemer, 1987, p.1) and the relationship between learning and attention is effectively

distilled down to a single vector of response time.

Researchers who employ the SRTT tend to be interested in the question of whether or
not learning is available to awareness rather than the particular type of learning that is
taking place. As a result, the task is difficult to categorise from a theoretical point of
view. It is similar to a supervised learning paradigm in the sense that all of the targets
and movements are visible to participants, so it is possible for a participant to monitor
their performance at all times. However, it differs from a typical supervised learning
task in that learning can only be expressed in terms of speed. Accuracy of movement
has little freedom to vary: clearly it is possible for a participant to miss a button or
press the wrong button, but there is no sense in which a correct button-press can be
either accurate or inaccurate. In this respect, it is rather more like an action acquisition
paradigm in that learning can be expressed in terms of the speed at which an action is
performed. But, there are some differences here too. For instance, the learning
environment is so highly constrained that participants must always produce the
correct sequence of button presses; the way that a sequence is executed, therefore,
cannot vary in structure. Furthermore, nothing is contingent on improved performance
at the sequence level. Loosely speaking, we could say that the action that is being
learnt is the sequence of button-presses; however this isn’t itself a unit of
reinforcement. The event that is contingent on behaviour is the disappearance of the
current set of cues on the monitor. These cues disappear when the correct button is
pressed, but they are unaffected by previous button-presses in the sequence.
Consequently, whilst the SRTT is an attractive research option from a practical point of
view and is an example of action learning, it does not allow the freedom of movement

that will be a focus of the present research.

The Morris water maze

The Morris water maze (Morris, 1981) was developed as a way of investigating spatial

memory in rats and is an example of a learning paradigm that allows for high variations
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in the efficiency with which trials are solved. The search environment consists of a
circular pool of water rendered opaque by the addition of milk. Rats are introduced
into the pool whereupon they begin to search for a means of escape. The key to the
paradigm is a platform that can be introduced just beneath the surface of the water.
This platform is hidden from view and yet provides the animals with somewhere to
stand if they are able to find it, enabling Morris to hide the means of escape without
the use of physical barriers. The behaviour of the rats is recorded using a camera
placed over the pool of water. From this recording, it is possible to extract a two-
dimensional movement trace of the animals’ attempts at finding the hidden platform;
all manner of metrics can then be extracted and submitted to analysis. Of particular
interest to Morris was path directionality. Previous walled maze paradigms physically
restricted the ability of animals to express the directionality of their movements to a
few particular choice points. The Morris water maze removes these constraints so that
animals are not forced into correct or incorrect choices but can instead display their

understanding of the environment in terms of the efficiency of their movement traces.

From the point of view of the current research, the Morris water maze solves some of
the limitations of Thorndike’s (1911) puzzle box escape paradigm described earlier.
The issue of rich data collection is solved by the use of a video camera, which can
capture the two-dimensional movement trace of the animals. This trace is rich enough
to provide the experimenter with a choice of metrics to investigate and yet it is also
constrained enough that the data are not overly difficult to interpret. The advantage of
rich data is that it allows for multiple descriptions of the data. Whilst escape time
scores might only tell us about raw performance for a given trial, other aspects of the
data can convey information about particular processes: reduced speed of movement,
for example, can indicate impaired sensorimotor function (Vorhees & Williams, 2006).
Importantly, the paradigm constrains behaviour to two dimensions in a credible way. It
doesn’t take much of a stretch to imagine how the task demands of a trial in the water
maze might translate into wild behaviour. The data are constrained to two dimensions
not because the movements are only recorded from one angle but because the
environment provided to the animals only allows the expression of behaviour in a two
dimensional plane. This was not the case with Thorndike’s task because locating the

lever and pressing the lever were two separate components of the overall action.
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Whilst it might be possible to describe the cat’s movement towards the lever in terms
of a two-dimensional trace, the cat’s efforts at operating the lever must be described

in a different way.

A further advantage to the water maze is that it solves the problem of hiding the
mechanism from the animal performing the task so that, during hidden trials, the
animal is forced to discover the location of the platform through its own search
behaviour; it can only solve the problem of how to move towards the platform by
virtue of its memory for the location; it can never perceive the location directly.
Because of this location finding structure, the water maze also makes it easy to employ
repeated measures designs. The starting position of the animal and the position of the
platforms can be moved easily with each new position presenting a new learning

scenario for the animal, whilst keeping the structure of the task consistent.

A final advantage of the Morris water maze, from the present perspective, is that it
provides a means of running control conditions that share most of the physical
demands but fewer of the memory and cognition demands found in the experimental
conditions. Whilst a hidden platform provides challenges to memory and cognition, a
visible platform can also be made available which allows experimenters to run control
tests to ensure that animals are capable, and willing, to perform the basic physical
dimension of the task (D’Hooge & De Deyn, 2001). In this way, experimenters can
check to make sure that any manipulation hasn’t unduly affected the animals’

motivation or basic motor abilities.

Whilst the water maze has many of the attributes that we might want from an action
acquisition paradigm, it is also limited in some important respects. From a purely
practical point of view, the task is not scalable from rodent subjects up to human
participants and it requires substantial experimenter input. Another issue is the
number of movements required in order to complete a trial. It is not the case that the
rats were able to complete a trial from start to finish in a handful of continuous
movements. Optimal performance in the water maze still requires that the animal
swim for many seconds and produce all of the movements involved in this activity.

Even in the absence of a strict definition of what constitutes an action, it seems clear
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that a typical water maze trial does not so clearly represent what we normally mean by
an action as, say, a lever press or the unscrewing of a cap. A problem that is also
related to the length of the trials is the difficulty in moving away from simple location
finding to more complex gestural movements that we might associate with action
acquisition. Clearly the availability of the platform in the water maze could be made
contingent on the rats moving through certain other portions of the pool first, but the
time it would take to discover and perform such gestures through swimming would
likely make this kind of learning extremely difficult. The water maze is therefore a
useful starting point for developing an action acquisition paradigm. If we bear in mind
some of these limitations this general concept will form the basis of the action

acquisition paradigm that is central to the current investigation.

Putting the pieces together: the joystick task

With these theoretical, methodological and statistical considerations in mind, the
following chapters will show how this information was used to design and develop a
task with some of the theoretical and practical attributes of existing paradigms whilst
also attempting to capture an intuitive sense of what constitutes an action. The first

version of the task is detailed in chapter 2.
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Chapter 2: the joystick task and reinforcement

delay

Having set out the motivations for the current research and situated the topic of action
acquisition relative to other research areas, the current chapter provides a description
of the joystick task. Following this, the importance of delay as an experimental variable
for the investigation of action acquisition is discussed and a study investigating the

impact of delayed audio and visual reinforcement is described.

The joystick task

In an attempt to achieve a balance between freedom and constraints of movement,
the current task deliberately emulates the Morris water maze (Morris, 1981) by
providing a learning environment (albeit a virtual one) with similar characteristics. A
computer defines a two-dimensional, square environment and a joystick is the means
by which a user can search this space (figure 2.1). Whilst, technically speaking, any
input device could have been used, a joystick was chosen for several reasons. Most
important of these is that joysticks provide a good physical representation of a two-
dimensional search space. The travel of the joystick is constrained by the aperture
within which the moveable part of the apparatus is moved so that the user can feel the
limits of the space that they have to explore and are physically restricted from going
beyond it. The joystick also provides the benefit that the moveable part of the
apparatus cannot be separated from the base (unlike a mouse or a stylus, for example)
so the participant’s understanding of the search space (and our ability to track their
movements within it) are consistent because all movements are relative to the stable
base of the joystick. The result is that the user has an intuitive understanding of which
of their movements are task relevant because they can be sure that only movements
of the joystick will translate into movements within the search environment. Finally,
the joystick offers a great practical benefit to the researcher in that the spring allows it

to return to a consistent central starting position automatically.
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Figure 2.1 The basic design of the task was based on the Morris water maze, with a joystick being used to search a
two-dimensional square space for a circular reinforced area (coloured red above). The small white circle marks the

centre point to which the joystick returns when released.

A virtual search environment offers huge flexibility to the experimenter. The means of
eliciting reinforcement in the joystick task was based on the idea of escape platforms
in the Morris water maze (Morris, 1981). Circular portions of the search space, instead
of providing a means of escape from a pool of water, simply cause a stimulus event
(reinforcement) to occur when the joystick is moved into them. In this virtual
environment, we might lose the ability to elicit primary motivational drives (such as a
desire to escape from water) that align with our experimental goals, but the task
provides a very intuitive game-like experience and we gain much in terms of flexibility
with the ability to vary the goals easily. For instance, the range of reinforcement
contingencies that can be set up is essentially limitless and the rules can be changed at
any time, offering the additional benefit of allowing the experimenter to present the
same individual with many different learning situations within a single experiment.
Furthermore, it should also be possible to scale task difficulty. The benefit of this lies in
the opportunity it presents for calibrating task difficulty when testing clinical

populations or even non-human animals.

In terms of data collection, the joystick task provides 3 basic elements, x coordinates, y
coordinates and time. From these data it is possible to calculate the distance, duration
and speed of movement as well as potentially deriving a host of other higher level
metrics that focus on the shape or style of movement. The focus of the current study is

on the simpler performance metrics such as distance, however, even then, the
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richness of the data still provide the researcher with useful information. For instance,
it is possible to play back all of the movements made during a particular trial in the
form of a continuous movement trace; it is also possible to generate still images
featuring all or part of the total movement trace (figure 2.2). The advantage of this is
that it alerts the researcher to problems with the task, enabling us to ask the question
of whether participants are performing the task in the intended way and, if not, what
might be done to develop the task in future. A further advantage is that the traces can
provide information about which formal analysis might best represent the learning and
behaviour that occurred. For example, and as we will see later in this chapter, the
movement data can alert us to sources of variance that make one performance metric
difficult to analyse, but that are largely absent from another performance metric and
thus can allow us to make better choices as to how we describe the data

guantitatively.

>

Figure 2.2 An example movement trace taken from the data for a trial in experiment 1. The ability to inspect still
images and even play back trials to observe movement properties is a useful resource for both development of the

task and for performing checks when conducting formal analyses of the data.

Reinforcement delay
Differing sensitivities to delay depending on the type of motor

task

The effect of delay on reinforcement learning is dependent on a number of factors
from the agent’s experience of the learning environment (Dickinson, Watt & Griffiths,

1992) to the relative contribution of stimulus-response versus goal-directed learning
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systems (Cardinal, 2006). It is, therefore, difficult to build up a picture of how learning
responds to differing delay durations, partly because of these factors and partly
because of how results are presented: researchers are free to report the point at
which learning is abolished, the point at which an effect of delay is detected and
everything in between. In other words, as Snycerski, Laraway and Poling (2005) have

noted, the success criterion can have a huge effect on how results are interpreted.

Where there does appear to be a clear split, however, is in the overall sensitivity to
delay seen in motor control and motor adaptation paradigms versus traditional
reinforcement learning paradigms. It has been shown in human subjects, for example,
that in visual tracking tasks, feedback delays as short as 300 ms can have a large
impact on performance (Foulkes & Miall, 2000; Miall & Jackson, 2006; Miall, Weir, &
Stein, 1985); tasks involving adaptation to visually displaced targets are found to be
equally sensitive to delay (Held, Efstathiou, & Greene, 1966), with some demonstrating
an effect at just 50 ms (Kitazawa et al., 1995). In reinforcement learning paradigms,
learning and performance does not appear to be quite as sensitive to the effects of
delay, with studies showing an effect at somewhere between 1 to 2 s (Elsner &
Hommel, 2004; Shanks & Dickinson, 1991; Shanks, Pearson and Dickinson, 1989),
although there is a notable absence of data to indicate the duration at which the effect

of delay first appears.

However, whilst there is an apparent difference in the sensitivity to delay of
reinforcement learning and supervised learning paradigms, there is also a difference in
the type of experimental task employed. The former tend to employ simple button-
pressing response mechanisms, whilst the latter rely on more complex reaching
movements and target pursuit, which require precise motor control. The current
experiments will investigate the effect of delay in a task that involves rich motor

behaviour with delivery that is more typical of reinforcement learning.

Short latency dopaminergic activity and contamination

According to Redgrave and Gurney (2006), the advantage of time-stamping so quickly

following the incidence of a novel stimulus (~¥100 ms) is that this reduces the
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opportunity for causally irrelevant movements to be reinforced. Furthermore, such a
rapid response effectively precludes the contribution to motor learning of any
movements that are a direct consequence of the novel stimulus itself. The
disadvantage of such low-latency activity, however, is that the response is necessarily
an indiscriminate one. As discussed in chapter one, the signal occurs so quickly after an
event that it happens before the stimulus can be brought onto the fovea and at the

same time as cortical processing required for identifying stimulus characteristics.

These points raise the following question: why could the time-stamp not have evolved
with a longer delay? Delaying the dopamine response for several hundred milliseconds
would allow for a saccade to take place, plus some subsequent cortical processing of
the event. Contamination could then be avoided simply by discounting the motor
activity that occurred whilst this extra sensory processing was taking place. Similar
discounting mechanisms for coping with internal biological transmission delays are
commonly proposed in the supervised learning literature (e.g. Miall, Weir, Wolpert &
Stein, 1993). However, the problem with this idea is that the time required for
discounting would not be stable. Unlike simple internal transmission time delays,
which change only gradually over time due to growth, ageing and other physiological
factors, the length of time taken to identify a stimulus is necessarily highly variable
from one instance to the next. It isn’t clear how any neural mechanism could make a
decision as to when the stimulus could be considered adequately identified, or how
this information could be incorporated into such an evolutionarily ancient neural
mechanism. It seems more likely, therefore, that an indiscriminate time-stamp evolved
because it is sufficient for most purposes and has been selected in favour of a more

resource-intensive ‘sample and hold’ discounting system.

If the dopamine time-stamp, as described by Redgrave and Gurney (2006) and
Redgrave et al. (2008), is low latency specifically to avoid contamination, then the
learning mechanism that it contributes to should be highly sensitive to delays of
reinforcement. One way to investigate this is to test the sensitivity to temporal
alignment of learning procedures that are believed to be dependent on the dopamine
time-stamp. Whilst we can’t experimentally manipulate the post-stimulus, pre-

dopamine delay, it is a straightforward task to introduce post-movement, pre-stimulus
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delays into the action-effect chain. In other words, temporal alignment of motor
output and sensory feedback can be manipulated by interposing a delay between the
point at which an animal causes an event to occur and the moment that the
occurrence of this event is presented to the animal as a stimulus, thus approximating a
learning system with a longer latency time-stamp. In theory, the temporally contiguous
yet non-contingent motor activity that occurs during the delay period (that is to say,
the artificial delay plus the 100 ms biological delay) would act as an unavoidable
contaminant in the animal’s learning system, making it more difficult to identify
causally relevant portions of motor output. Indeed, Redgrave and Gurney (2006) and
Redgrave et al. (2008) point to research demonstrating the detrimental effects of delay
on reinforcement learning (Dickinson, 2001; Elsner & Hommel, 2004; Schultz, 2006) to
support their explanation for the evolution of such a low latency system; however, the
delay durations at which the effects are found in these studies start at 0.5 s (Schultz,
2006, original source: Hollerman & Schultz, 1998), much longer than the latency of the
dopamine activity in question and sufficiently long that we might assume the delay
would also interfere with post-saccadic (and high-level post-identification) learning

processes.

If we are to believe that the phasic dopamine timestamp evolved as a means of
reducing motor contamination and therefore reducing the credit assignment problem,
then we would expect much shorter delays than the 0.5 s cited by Redgrave et al. to
have a severe impact on learning. Specifically, there should be a measurable effect at
shorter durations than that which would be required for identification of the stimulus
to occur. If this were not the case, then it would be difficult to explain why the system
doesn’t simply delay the time-stamp for a similar duration, given the potential benefits
this would bring as the dopamine response would not need to be an indiscriminate
one. It seems reasonable to assume that for identification of the stimulus to occur,
approximately 150 ms would be required for a saccade (Hikosaka & Wurtz, 1983; Jay &
Sparks, 1987) to bring the stimulus on to the fovea, plus an additional 80 to 100 ms for
basic cortical processing of the new image (Rousselet, Thorpe & Fabre-Thorpe, 2004;
Thorpe & Fabre-Thorpe, 2001), giving a total of around 250 ms, i.e. 150 ms longer than
the dopamine time stamp. In other words, a detrimental impact of delays less than

150 ms in duration would provide more convincing support for the theory than the 0.5
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s durations referred to in the literature.

Experiment 1: within-trial repetition of audio

reinforcement

Experiment 1 was developed to investigate the effects of reinforcement delay on the
ability of people to home in on the location of a reinforced area within a two-
dimensional search space. The first reason for the task was to assess where the
sensitivity to delay lies in a rich motor task featuring discrete and qualitative instances
of reinforcement. The results will provide insight into whether the key factor in the
effect of delay has to do with the motor demands of the task, such as the speed and
the accuracy of movements, or whether the type of reinforcement and the type of
learning are the most important factors. In other words, does delay sensitivity lie
beneath 0.5 s, as we might expect based on previous studies featuring tasks with
similar physical demands, or does it lie somewhere in excess of 1 s, as we might expect
based on physically very different reinforcement learning paradigms? The second
guestion also concerns sensitivity to delay. If task performance ultimately relies on the
activity of midbrain dopamine neurons and this activity is short latency specifically to
avoid contamination with non-contingent motor output, then we would expect the
system to be highly sensitive to artificial delays. It was, therefore, a goal of the current
experiments to investigate the effect of delays of less than 0.5 s, including delays

under the 150 ms that would be required for basic stimulus identification.

Method

Participants

27 people (25 female) participated in all conditions of this study. Ages ranged from 18
to 24 years with a mean age of 19 (SD = 1.3 years). Participants were all
undergraduate students at the University of Sheffield who took part in return for
credits in the department's research participation scheme. All subjects were naive to

the purpose of the experiment.
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Apparatus

The experiment program was written using Matlab (Version 2007) with the
Psychophysics Toolbox extension. A commercial joystick (Logitech extreme 3D pro
joystick, P/N: 863225-1000) was used as the input device. These tools were used for all

experiments described in this thesis.

Defining the search environment and the reinforced area

The search space was defined as a square that was 1024 by 1024 units in size, which
corresponded to the limits of the joystick’s travel (the joystick movements were
physically restricted by a square aperture at the base of the stick). Movements of the
joystick mapped on to movements within the search space in a 1 to 1 fashion, with the
joystick starting in the centre of the search space at the beginning of each trial. Once
released from the grip of a participant, the joystick was able to return to the centre of
the search space within a tolerance of 10 units, by virtue of a built-in spring

mechanism.

Different sizes of reinforced area (hotspots) were tested during development and
piloting of the task. The size was eventually set to occupy 0.91% of the overall search
space based on finding a balance between making the task sufficiently difficult to
provide useful data and the practical limitations of running multiple trials that were
not time-limited; there was no theoretical reason for choosing this specific size of
hotspot. At the beginning of every new trial, the centre of the hotspot was positioned
randomly on an annulus placed centrally within the search space (figure 2.2). The inner
edge of the annulus was exactly 1 times the diameter of the hotspot from the centre
of the search space. At its closest point, the outer edge of the annulus equivalent to
the radius of the hotspot from edge of the search space. The reason for these
dimensions was to ensure that the hotspot never overlapped the central starting point

or the outer edge of the search space.
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Figure 2.3 Experimental search space and hotspot positioning. The black area represents the search space and the
grey annulus represents the area of the search space in which the centre of the hotspot (shown in red) could be

randomly positioned at the start of each trial. The diagram is drawn to scale.

Defining reinforcement and the learning criterion

Any movement of the joystick into the hotspot region of the search space was defined
as a hit and resulted in a short ‘pip’ sound of 10 ms duration (the reinforcement) —
holding the joystick over the hotspot resulted in a rapid series of these discrete pip
sounds (i.e. not a continuous sound). An audio stimulus was chosen for the first
experiment in an attempt to reduce any focus the participants might have on the
computer monitor and increase the feeling that the task was to find the correct
position to hold the joystick in rather than a location on a screen; it was considered
that if participants thought about the task in terms of points on the computer monitor,
they would be more likely to take a cognitive/strategic approach to the task and their
performance would then be less representative of the kind of learning under
investigation. Another reason for choosing an audio stimulus was that such stimuli
convey much less in the way of spatial information, misleading or otherwise.
Generating a single hit was not sufficient to bring an end to a trial. Instead, a learning
criterion was used to determine whether a participant had learnt the location of the
hotspot. The learning criterion was defined as the number of hits required within 1 s in
order to bring an end to a trial. Like hotspot size, the learning criterion was set using
information gained from pilot tests in order to balance task difficulty (more hits per
second meant the threshold was harder to meet) against better verification of learning

(more hits per second requires a participant to demonstrate better learning of the
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hotspot location). The criterion was set at 15 hits per second. From an individual
participant’s perspective the aim in a given trial was, therefore, to find the hotspot and
try to maintain the position of the joystick over this region until having achieved 15

hits (and audio reinforcements) in a second.

Delay

Delayed reinforcement was achieved by interposing a delay between the point at
which a participant moved into the reinforced area and the point at which a hit was
recorded and the audio reinforcement delivered. In all, 6 delay conditions were
chosen: 0-ms, 75-ms, 150-ms, 225-ms, 300-ms and 375-ms. Despite the findings from
previous reinforcement learning paradigms showing a sensitivity to delay starting at
around 500 ms, pilot test revealed that the experiment was extremely sensitive to
delay and that delays of 500 ms would have made trials difficult to complete.
Consequently the 6 delay conditions were chosen to provide a balance between task
difficulty and the ability to discern the point at which an effect of delay started. It was
necessary to include a refractory period of 25 ms after each instance of reinforcement
during which another stimulus (and hit) could not occur; this was to allow sufficient
time to prepare and play each audio stimulus and enabled us to ensure that we could
provide discrete stimuli that didn’t blend into one another and that would be repeated

at regular intervals at their fastest rate.

Procedure

Participants sat at a desk in front of the joystick and a 19 inch computer monitor.
Before starting the experimental program, the task was briefly described verbally with
the task goal being phrased in terms of “finding the correct position to place the
joystick in” rather than, say, “search for the correct location”. In order to reduce the
tendency of individuals to simply move the joystick around the very edges of its travel
(something flagged up during pilot sessions), participants were encouraged to explore
the whole range of joystick movements. Finally, the participants were told that the
experiment involved no deception and that the correct position could always be found.
This guidance was included because pilot tests revealed the task to be difficult and the

lack of feedback might lead sceptical participants to believe that a given trial was
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impossible, based on their experience of participating in other psychology experiments
featuring deception. Following the verbal instructions, the experiment program was
then started and the participants were asked to follow the onscreen instructions (see
appendix 1). After reading the instructions, 3 practice trials commenced automatically.
The practice trials involved no reinforcement delay and, as with all trials in the
experiment, no feedback or screen graphics were provided during the trial (the
monitor was kept black until the end of a trial). Once the practice trials were
completed the experimental trials began and participants were left to complete all 18

trials.

Design

A repeated measures design was used. The independent variable was reinforcement
delay and it included 6 conditions: 0-ms, 75-ms, 150-ms, 225-ms, 300-ms and 375-ms.
Each experimental session was made up of 21 trials: 3 of which were practice trials
(involving no delay); the remaining 18 were experimental trials. The experimental trials
were presented in 3 batches of 6, such that all 6 conditions were experienced in each
of the three batches. This was done to ensure that the 3 attempts at a particular
condition were spread out over the full testing session. Each level of the independent
variable was, therefore, experienced a total of 3 times with the order of presentation

being randomly shuffled within each of the 3 batches.

Results

The post discovery period

For the purposes of analysis, each trial was treated as occurring in two phases: pre-
discovery and post-discovery. The pre-discovery period lasts from the start of the trial
to the first instance of reinforcement: it is the period during which the participant is
naive as to the position of the hotspot. The post-discovery period lasts from the first
instance of reinforcement to the end of the trial; this period is of primary interest
because it includes all instances of reinforcement and is, therefore, the period that is

sensitive to the effects of the independent variable.
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Distance travelled during the post-discovery period

Distance was identified as the baseline metric of performance and measured in search
space units. Better performance should be reflected in a participant travelling a
relatively short distance over the course of a trial. In other words, a top performing
individual should be able to achieve the required hit rate with comparatively little
movement of the joystick. Each participant had 3 attempts at each delay condition and

it was the mean of these 3 distances that was submitted to analysis.

It was anticipated based on the recommendation of Keene (1995), that log-
transformed data would provide the most representative picture of the learning and
behaviour under investigation, when analysed using parametric tests. However, all
data in this thesis also underwent tests of normality (Shapiro-Wilk before and after
transformation) as well as checks on the relationship between standard deviations and
means (i.e. whether standard deviations increased with higher mean values) and
inspection of the frequency distributions in all cases to ensure that the data submitted
to analysis were suitable for parametric tests. Due to the open ended nature of the
tasks described, most of the data in this thesis were found to be positively skewed and
were corrected using a log transformation (base-10). On each occasion throughout,

this is indicated in the relevant results section.

A one-way repeated-measures analysis of variance (ANOVA), with 6 levels of delay,
was conducted on the log-transformed data. Mauchly's test indicated that the
assumption of sphericity had been violated (12 (14) = 27.54, p < .05; therefore degrees
of freedom were corrected using a Greenhouse-Geisser estimate of sphericity (€ = .74).
The results showed that there was a significant effect of reinforcement delay on the
distance travelled during the post-discovery period, F(3.7, 88.69) = 6.87, p <
.001. Figure 2.3 shows that the effect of delay was to increase the duration of the
post-discovery period. Bonferroni corrected post hoc t-tests revealed that the 0-ms
condition differed significantly from the 75-ms condition (t(26) = 3.11, p < .05) and that

the 75-ms condition did not differ significantly from any other conditions (p > .05).
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Figure 2.4 Mean distance travelled during the post-discovery period (and standard error) for the 6 levels of delayed

audio reinforcement. Values are back-transformed from the log transformation.

Instances of reinforcement (hits) during the post-discovery

period

As expected, the distance data were sensitive to an effect of delay but contained a
large amount of variance, especially in the longer delay conditions. The ability to play
back individual movement traces made it possible to look for potential sources of
variance in the behaviour. One issue identified was that participants would often move
into the reinforced area and receive reinforcement but then seemingly lose their way,
resulting in large distance scores, despite the fact that on returning the correct area
they were then able to home in on the hotspot relatively quickly. A way of reducing
the impact of these events is to use the number of hits as a performance metric. An
early hit followed by lots of searching does not impact the total number of hits as
much as it would influence other metrics such as time or distance. Consequently, an
analysis was conducted on the number of hits recorded during a trial: that is to say, the
number of instances of reinforcement required for a participant to reach the learning
criterion. With this metric, a top performing individual would require fewer hits (and,
accordingly, fewer instances of reinforcement) in order to achieve the required hit

rate.
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Once again, the mean number of hits for each delay condition was calculated from the
3 attempts made by each participant. A one-way repeated-measures ANOVA was
conducted on the log-transformed data. Mauchly's test indicated that the assumption
of sphericity had been violated (#? (14) = 30.69, p < .05; therefore degrees of freedom
were corrected using Greenhouse-Geisser estimates of sphericity (€ = .68). The results
show that there was a significant effect of reinforcement delay on the number of hits
during the post-discovery period, F(3.4, 81.47) = 13.88, p < .001. Figure 2.4 shows that
for longer reinforcement delays, more instances of reinforcement were required in
order to bring a trial to an end. Bonferroni corrected post hoc t-tests revealed that the
number of hits for the 0-ms condition differed significantly from the 75-ms condition
(t(26) = 4.12, p < .05) and that the 75-ms condition differed significantly from the 150-
ms condition (t(26) = 3.05, p < .05). A further comparison was made between the 150-
ms and the 300-ms conditions, which was found to be non-significant (t(26) = 1.9, p >

.05).
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Figure 2.5 Mean number of hits (and standard error) for the 6 levels of delayed audio reinforcement. Values are

back-transformed from the log transformation.

Speed during the post-discovery period

Whilst the length of the delay period was short in all conditions, the effects of the

delay on the feel of the task were noticeable when performing the task as a non-naive
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participant. During development and piloting of the task, all of the delay conditions
were tested and the general impression when experiencing a condition with delayed
reinforcement was one of frustration, almost as if the target position was moving,
particularly for delays in excess of 200 ms. This experience of frustration was echoed
by many of the participants in the experiment, though none of them were able to
guess what was being manipulated. The fact that the manipulation was noticeable, at
least to some people, raises the possibility that participants might have adopted a
strategy either consciously or unconsciously. If this was the case then a basic check is
to test whether speed varies depending on the amount of delay experienced. To this
end, speed was calculated in terms of screen units per second for the post-discovery
period. A one-way repeated-measures ANOVA was conducted. The results (figure 2.5)
showed that there was no effect of reinforcement delay on speed during the post-

discovery period, F(5, 120) =1.23, p = .3.
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Figure 2.6 Mean speed (and standard error) for the 6 levels of delayed audio reinforcement.

Discussion

The results of experiment 1 revealed an effect of reinforcement delay on learning at
just 75 ms. Even allowing for any additional delay caused by latencies in the apparatus,
this still puts the effective delay at around 100 ms. If this type of learning is dependent
on the short latency dopamine response, as argued by Redgrave and Gurney (2006)

and Redgrave et al. (2008), then it is clear that there would be considerable costs to
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having a longer latency dopamine response. The fact that this delay is shorter than the
time it would take for a saccade and the necessary processing that would be required
to identify the source suggests any costs associated with generating the dopamine
response indiscriminately (i.e. without having first processed identifying characteristics
of the stimulus) would be offset by the considerable costs associated with a more
complex credit assignment problem. This finding, therefore, adds greater credibility to
claims that the dopamine response is short latency as a means of minimising the
amount of irrelevant contaminating motor and contextual input that is reinforced in
the striatum following the occurrence of a novel stimulus (Redgrave & Gurney, 2006;

Redgrave et al. 2008).

The sensitivity to delay in the current task is far higher than is generally found in
reinforcement learning paradigms (Anderson & Elcoro, 2007; Black, Belluzzi & Stein,
1985; Elsner & Hommel, 2004; Hollerman & Schultz, 1998; Lattal & Gleeson, 1990;
Okouchi, 2009; Renner, 1964; Shanks & Dickinson, 1991; Shanks et al. 1989; Sizemore
& Lattal, 1977; Snycerski, Laraway, Huitema & Poling, 2004; Snycerski et al., 2005;
Stubbs, 1969) and much more in line with what is reported for supervised learning
paradigms (Foulkes & Miall, 2000; Held, Efstathiou, & Greene, 1966; Kitazawa, Kohno
& Uka, 1995; Miall & Jackson, 2006; Miall, Weir, & Stein, 1985). Furthermore,
comparisons between pairs of conditions revealed that the effect was not simply a
delay versus no delay effect and that additional delays within the range tested had an
added impact on performance. This is important because the distinction between the
two types of learning tends to rely on the informational content of the feedback that is
provided. However, the current results suggest that, in the case of delay, it is the
specific task demands that are more important. This result widens the already large
range of sensitivities to delay that have been observed in the reinforcement learning
literature and calls into question the extent to which we can speak of the effects of
delayed reinforcement on learning and response acquisition. The effects of delay are

perhaps better described in terms of the task properties on which they are measured.

A useful property of the current paradigm was the resistance to the use of strategies
on the part of the participants. The fact that there was no effect of delay on speed and

that none of the participants guessed the independent variable suggests that people
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weren’t reacting systematically to delay by adopting strategies to cope with it. This is
important because in supervised learning tasks, where targets are not hidden,
researchers have found that people have a tendency to adopt strategies such as a
‘move and wait’ approach in order to cope with delay (Sheridan, 1993; Sheridan &
Ferrell, 1963). In the current study, such strategies would have interfered with our
ability to interpret the effect of delay in terms of the low-level neural mechanism
offered by Redgrave and Gurney (2006) as an explanation for the acquisition of novel
actions. However, it is nonetheless possible that the effect found in this experiment
was associated with high-level cognitive/declarative processes and it is impossible to

rule this out given the limitations of the current paradigm.

Having tested the paradigm with audio stimuli and finding it to be highly sensitive to
the effects of delay, it was decided that the experiment should be repeated with visual
stimuli to test whether the result was robust and also to ascertain whether the
modality of the stimuli is important at such short delay durations. As will be explained
in experiment 2, Redgrave and Gurney (2006) make particular reference to visual
stimuli and the activity of the superior colliculus at less than 100 ms. Consequently,
testing the effects with visual stimuli will provide further information relevant to this

theory.

Experiment 2: within-trial repetition of visual

reinforcement

Experiment 1 demonstrated a high sensitivity to short delays, consistent with Redgrave
and Gurney’s (2006) theory; however, it relied on audio stimuli for reinforcement.
Redgrave and Gurney (2006) and Redgrave et al. (2008) make specific reference to the
superior colliculus and visual stimuli as the source of sensory input on which the phasic
dopamine response might depend. As noted by Redgrave et al., the claim is not that
action learning is modality specific; rather the emphasis on visual input from the
superior colliculus reflects the fact that most previous research has involved the use of
visual stimuli. Response latencies in the superior colliculus are unique amongst visual
areas in that they precede even the short latency dopamine response in the substantia

nigra, indicating that they could provide the input that triggers this activity (Comoli et
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al., 2003). Furthermore, it has been found that the superior colliculus has a greater
ability to stimulate nigral neurons as compared to cortical visual areas (Comoli et al.,
2003), thus adding support to the idea that these areas of the brain contribute to a
single learning mechanism. In light of this, it was decided that a version of the task
utilising visual stimuli should be run. This would not only provide data that is relevant
to action learning mediated by input from the superior colliculus, but would allow for a
comparison of learning dependent on stimuli from two different modalities. A final
motivation for this version of the task was to pave the way for future research within
this author’s research group. Future experiments hope to compare action learning
with visual stimuli to which the superior colliculus is minimally sensitive versus stimuli

to which cortical visual areas are minimally sensitive.

Method

The method and design were identical to that employed in experiment 1 except that

the reinforcement signal was visual instead of audio.

Participants

24 people (22 female) participated in all conditions of this experiment. Ages ranged
from 18 to 23 years with a mean age of 19 (SD. = 1.4 years). Participants were all
undergraduate students at the University of Sheffield who took part in return for
credits in the department's research participation scheme. All subjects were naive to

the purpose of the experiment.

Visual reinforcement stimuli

Any movement into the hotspot was reinforced by a short duration (17 ms) screen
flash. A single flash consisted of the whole monitor area, which was black by default,
turning completely white and then back to black again. Whilst a full screen flash,
viewed straight on, was too large to be a stimulus to which collicular neurons would
respond maximally, it was used to avoid any misleading (or, indeed, revealing) location
information that might interfere with the task of finding the correct joystick position
and the high change in luminance with each stimulus presentation ensured that it

would be a stimulus to which the superior colliculus would be sensitive (Sparks, 1986).
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This is particularly important when we consider the high sensitivity of the superior
colliculus to stimulus location (Sparks, 1986; Wurtz & Albano, 1980). In practice,
participants tended to adopt a similar attitude in this task to that adopted in the audio
task and paid most attention to the movement of their hand. The screen flash was
salient enough that participants did not feel the need to look directly at the computer

monitor.

Results

Distance travelled during the post-discovery period

Once again, the data describing the distance travelled were the first to be investigated.
A one-way repeated-measures ANOVA, with 6 levels, was conducted on the log-
transformed data in order to investigate the effect of reinforcement delay. The
analysis revealed that there was a significant effect of delay on the distance travelled
during the post-discovery period, F(5, 100) = 7.19, p < .001. Figure 2.7 shows that the
general effect of delay was to increase the duration of the post-discovery period,
though the clearest effect was between the no delay and all other delay
conditions. Bonferroni corrected post hoc t-tests revealed that the 0-ms condition
differed significantly from all other conditions: 75-ms (t(23) = 3.79, p < .05); 150-ms
(t(23) =3.34, p < .05); 225-ms (t(23) = 4.79, p < .05); 300-ms (t(23) = 5.14, p < .05); 375-
ms (t(20) = 5.92, p < .05). A further comparison between the 300-ms and the 375-ms
conditions revealed no difference, though it approached significance (t(20) = 2.22, p >

.05).
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Figure 2.7 Mean distance travelled during the post-discovery period (and standard error) for the 6 levels of delayed

visual reinforcement. Values are back-transformed from the log transformation.

Total number of hits recorded during the post-discovery period

Once again, the distance metric contained a considerable amount of variance, so an
analysis of the hits metric was performed. A one-way repeated-measures ANOVA was
conducted on the log-transformed data. The results show that there was a significant
effect of reinforcement delay on the number of hits during the post-discovery
period, F(5, 100) = 14.84, p < .001. Figure 2.8 shows the result from the audio task
(experiment 1) plotted alongside the current visual results. Just as was the case with
the audio task, the effect of the reinforcement delay was to increase the number of
hits during the post-discovery period. Bonferroni corrected post hoc t-tests revealed
that the 0-ms condition was significantly different to the 75-ms (t(23) = 4.18, p < 0.05),
150-ms ((23) = 4.56, p < 0.05) and the 225-ms ((23) = 6.14, p < 0.05) conditions. Further
comparisons revealed that the 75-ms condition did not differ significantly from the
225-ms (t(23) = 2.05, p > 0.05) condition but did differ from both the 300-ms (t(23) =
3.74, p < 0.05) and 375-ms (t(20) = 4.48, p < 0.05) conditions. And finally, two further
comparisons revealed that the 150-ms did not differ significantly from either the 300-
ms (t(23) = 2.78, p > 0.05) or the 375-ms (t(20) = 2.92, p > 0.05) conditions. Thus, once
again, the effect was not simply a delay versus no delay effect and the additional

delays within the range tested had additional negative impacts on performance.
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Figure 2.8 Mean number of hits during the post-discovery period (and standard error) for the 6 levels of
reinforcement delay in experiments 1 (audio, shown in black) and 2 (visual, shown in red). Values are back-

transformed from the log transformation.

Speed during the post-discovery period

Just as with experiment one, speed was calculated in terms of screen units per second
for the post-discovery period. A one-way repeated-measures ANOVA was conducted.
The results showed that there was no effect of reinforcement delay on speed during
the post-discovery period, F(5, 100) = 1.87, p = .12 (means and standard error of the

mean displayed in figure 2.9).
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Figure 2.9 Mean speed during the post-discovery period (and standard error) for the 6 levels of delayed visual

reinforcement.

Discussion

The results of experiment 2 were largely in agreement with the first experiment. Once
again, there was an effect of delay at just 75 ms, which lends further support to
Redgrave and Gurney’s (2006) theory. The results also indicated that delay had an
additional effect for durations in excess of 75 ms demonstrating that the effect was
not simply a delay versus no delay contrast. There was no effect of delay on speed,
once again, suggesting that participants (none of whom were able to guess the
independent variable) were not using strategies to adjust their behaviour in order to
cope with delay and therefore providing some assurance that the task was capable of
measuring low-level, nondeclarative learning effects. Most importantly, the results
showed that the sensitivity to delay at durations close to the latency of the phasic
response of dopamine neurons held for visual stimuli (large changes in luminance) to
which the superior colliculus would have been sensitive (Sparks, 1986). This, therefore,
provides support for the specific account of an action acquisition mechanism that

relies on the very short latency input from the superior colliculus.

General Discussion

There were three main reasons for conducting the experiments described in this

chapter. Firstly, the task described was the first version of the joystick task and these
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experiments allow for an initial assessment of it as a new behavioural paradigm for the
investigation of action acquisition. Secondly, the experiments provided a means of
investigating sensitivity to delay in a task that relies on feedback delivered in a fashion
consistent with reinforcement learning and yet demanding of responses similar to the
kind normally found in adaptation learning or supervised learning tasks. And thirdly,
the experiments allowed for a test of an effect of delay at a duration of less than 100
ms as a way of investigating the idea that the phasic activity of dopamine neurons is
short latency as an evolved means of reducing contamination when associating
outcomes with the movements that caused them. These three issues are discussed

below in reverse order.

High delay sensitivity and time-stamping mechanisms

It's easy to appreciate how a neural mechanism designed to stamp-in recent motor
output, following a novel stimulus, might have evolved to function at extremely low
latencies. The advantage of ignoring causally irrelevant motor output by promptly
time-stamping behaviour that led up to a stimulus is conceivably so great that it
outweighs any gains that might come from waiting for sensory input that has
undergone a greater degree of processing. Consequently, the argument from Redgrave
and Gurney (2006) and Redgrave et al. (2008), that short latency collicular input
prompts short latency activity of dopamine neurons as part of a system involved in
action acquisition, is a compelling one: it might be better to learn first and ask

guestions later.

Whilst we can’t directly increase the latency of dopamine neurons in human subjects,
it is possible to introduce a delay between an action and the subsequent stimulus.
Even though the stimulus would not be contingent on the activity that took place
during the delay period, there would be no way for an indiscriminate low-level learning
mechanism to take this into account on its own. We might, therefore, assume that at
least some of the irrelevant behaviour from the delay period will be stamped-in. So, if
we introduce delay into a task that relies heavily enough on this kind of low-level
learning mechanism, then we should expect it to interfere with learning even at very

short durations. In both of the experiments detailed in this chapter, an effect was
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found at delays in the region of 75 to 100 ms in duration. Although this doesn’t prove
that a particular brain region was involved in the effect, it shows that there is a
learning mechanism, of some description, that is so sensitive to the timing of
movements and sensory outcomes that it would benefit from short neural latencies of
the kind discussed by Redgrave and Gurney (2006). Certainly, the effect found here
offers more convincing support for this theory than the comparatively long duration
delay effects found in previous experiments involving reinforcement learning cited by
Redgrave and Gurney (e.g. Elsner & Hommel, 2004; Hollerman & Schultz, 1998).
However, this in itself raises questions as to why the sensitivity in the current
experiment should be so much greater than in previous studies of reinforcement

learning.

Differing sensitivities to delay depending on the type of motor

task

We hardly need to run an experiment to appreciate that the impact of delay on
learning and performance is likely to be a negative one in most situations. However,
predicting the relative impact of different delay durations depending on the type of
learning or activity being undertaken is rather less straightforward. An apparent split in
the overall sensitivity to delay seen in motor control and motor adaptation paradigms
versus reinforcement learning paradigms is difficult to interpret due to major
differences in the response mechanisms involved. Generally speaking, the former rely
on tasks that demand complex or highly accurate responses such as precise reaching
movements or target tracking. The latter, by contrast, tend to rely on simple discrete
responses that place no emphasis on accuracy, such as button pressing. Consequently,
we can’t come to any conclusions as to whether the apparent difference in the effect
of delay is due to the different learning mechanisms being employed or whether it is

due to the response requirements of the tasks.

By employing a rich input device instead of button-press or lever-press responses, the
task described in this chapter minimised one of the major differences between the
experimental approaches. The results show that, in terms of overall sensitivity to

delay, the task described in this chapter was more akin to tasks employed in motor
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control (Foulkes & Miall, 2000; Miall & Jackson, 2006; Miall et al.,, 1985) or motor
adaptation paradigms (Held et al., 1966; Kitazawa et al., 1995) than reinforcement
learning paradigms (Elsner & Hommel, 2004; Shanks & Dickinson, 1991; Shanks et al.,
1989), and yet it was designed to be a test of reinforcement learning, with stimulus
characteristics that one would expect to find in such a task. For instance, all
reinforcement signals were qualitative, indicating whether or not the correct
movement had been produced but providing no information on the relative level of
performance: the output only ever indicated whether or not the joystick had been
moved into the correct position. Reinforcement was also contingent on behaviour: if
an individual failed to move the joystick into the hotspot, they would have received no
feedback at all. The question is: what can such a finding tell us about the distinction

between these two kinds of learning?

There is much to be said for drawing a theoretical distinction between supervised
learning and reinforcement learning (Jordan & Rumelhart, 1992; Wolpert, Ghahramani
& Flanagan, 2001). However, in developing a task that involves rich movements with
feedback of the kind found in reinforcement learning, there is a sense in which the
boundaries between the two types of learning have been methodologically blurred in
the current task. From a participant’s perspective, the within-trial repetition of
reinforcement found in these experiments demanded the kind of online readjustment
of performance that we would not typically associate with reinforcement learning and
yet the feedback provided retained characteristics associated with reinforcement
learning. This version of the task, therefore, raises the question of whether the
distinction between supervised and reinforcement learning carries much meaning at
the behavioural level. It is possible that the distinctions we draw between different
types of learning and their associated forms of feedback do not correspond to the way
in which the brain deals with this information. Certainly, the current study suggests
that, at the behavioural level, sensitivity to delay has more to do with whether or not
reinforcement is delivered rapidly as an action is being produced as opposed to the

informational properties of the reinforcement.

There is evidence that motor control with delayed visual feedback can improve with

considerable practice, though performance always remains far below that achieved
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with immediate feedback (Miall & Jackson, 2006; Sheridan, 1993). Such findings are
primarily from supervised learning tasks, where the current position and the target are
always visible to the agent. As a means of further understanding the type of learning
that is being tested in the current task and the more general differences between
supervised learning and reinforcement learning, it would be informative to measure
the ability of people to improve their performance with delayed reinforcement over

many trials and many experimental sessions.

Audio versus visual reinforcement

One possibility for the similarity in the effects of audio and visual stimuli is that the
experiment simply wasn’t calibrated to detect any such differences. Previous
psychophysics research (Jaskowski, Jaroszyk & Hojan-Jezierska, 1990), has found that
reactions times to audio stimuli are approximately 40 ms faster than those to
equivalent visual stimuli. On this basis, one might have expected to find a difference in
the joystick task, especially in light of the large number of stimulus presentations that
occurred in each trial. However, when audio and visual stimuli are well above
threshold, as was the case here, there appear to be no such differences in reaction
times (Kohfeld, 1971). Consequently, it is unlikely that different modalities could have
produced a different effect unless the role they played in the learning mechanism

being tested was substantially different.

Assessment of the task

The intention when developing the task was to measure learning based on discrete
instances of qualitative reinforcement. This type of feedback could only provide
information as to whether the correct action had been performed so it was a desirable
means of investigating a learning mechanism based on the reinforcement of recent
motor output. The learning criterion was introduced as a means of determining the
point at which the correct position of the joystick had been sufficiently well learned.
The combination of these two features made it possible to present participants with
multiple new learning scenarios (in the form of new hotspot locations) and to extract a
performance metric in the form of hits that was resistant to some sources of variance

that are a problem for open ended trials.
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However, efficient though the structure of the task was, it was nonetheless limited
from the perspective of making use of the rich data that was collected. In essence, the
action being learnt in this task was to hold the joystick steady in a particular position.
Whilst the end position is well defined in this task, there is nothing to constrain the
route that is taken towards the hotspot following each instance of reinforcement. In
other words, the end point might be clearly spatially defined, but movement towards
that point is bound to vary between instances of reinforcement as the participants
overshoot the target and attempt to return. Figure 2.10 illustrates this point. We can
see that the post discovery period is typified by a clustering of movements within a
particular portion of the search space rather than by a particular shape of movement

trace.

Figure 2.10 A trace of movements during the post-discovery period only. The task demands are such that they don’t

encourage particular shapes of movement. (The black frame depicts the boundaries of the search space.)

A further problem stemming from the task structure was that participants were never
required to repeat a particular sequence of movements in its entirety. In Thorndike’s
(1911) puzzle-box paradigm, animals were required to perform a task until they
happened upon the solution, at which point they were placed back into the puzzle-box
and required to produce the whole sequence of movements again. If we could draw a
movement trace of this activity, we would see that the trace would take on a clearer

shape as trials progressed and movement became more efficient. In the current

57



version of the joystick task, however, it would have been difficult to learn the correct
hand position through the reinforcement of particular muscle movements; instead, the
consistent aspect of behaviour was the particular resting place of the hand, a higher
level motor command. Whilst this level of representation is something that the
nervous system is more than capable of encoding (Graziano, 2006; Graziano, Taylor &
Moore, 2002), from an experimental point of view it makes the progression of learning
much harder to decompose at the behavioural level. A potentially better situation
would be to split learning into discrete trials (i.e. between-trial as opposed to within-

trial repetition of reinforcement) and this will be the focus of the next chapter.
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Chapter 3: contamination, delay and between-trial

repetition of reinforcement

This chapter focuses on a change to the structure of the joystick task, whereby
reinforcement is repeated between trials rather than within trials. Experiment 3 details
the development of this task and its structure whilst also investigating the possibility
that target size might be utilised as a way of scaling task difficulty for potential future
investigations comparing populations of differing abilities. Experiment 4 details a study
designed to investigate the effects of delay with this new task structure. The purpose
of this was twofold. Firstly, it provides a measure of the sensitivity to delay of the
joystick task where the delivery of reinforcement is more comparable to that used in
other areas of research. Secondly, it allows the opportunity to more clearly investigate
the activity that occurs during the delay period in an attempt to investigate hypotheses

regarding the contamination of the motor record during action acquisition.

Reasons for employing between-trial repetition of

reinforcement

Response acquisition in non-human animals is a subject that has received much
research attention in fields associated with operant conditioning and reinforcement
learning. At least some of this interest has to do with the practicalities of training
animals to produce responses in the laboratory that they might not be naturally
disposed to produce (Peterson, 2004). Many species of animal, faced with the need to
produce a novel response, are not able to infer that response from the mechanism
that confronts them, nor are they able to copy the behaviour from other animals or a
human instructor (Thorndike, 1911). They are, therefore, forced to acquire responses
through trial and error, extracting the important motor elements from their own
behavioural variance. It is perhaps unsurprising, then, that a similar interest has not
been taken in response acquisition in humans. The ability to acquire responses can, by
and large, be taken for granted in humans: a person will either come to a new task
with the response already in their behavioural repertoire or they will be able to
produce the response immediately after having observed another person performing

it. The joystick task is aimed specifically at recording response acquisition in humans by
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removing access to a perfect model of performance and increasing the extent to which

people must extract a response from their own behavioural variance.

Chapter 2 detailed a version of the joystick task that measured the ability of people to
acquire novel responses based on discrete instances of qualitative feedback, but the
structure of the task differed from the type of response acquisition that is typically
required of laboratory animals (e.g. Lattal & Gleeson, 1990). During the acquisition of a
lever-press response by a rat, for example, a stable set of movements, necessary for
depression of the lever, must be produced before reinforcement can be delivered. This
set of movements does not change from one lever-depression to the next and
therefore it is this common element within the animal’s behaviour that is learnt. The
joystick task featuring within-trial repetition of reinforcement, described in chapter 2,
required the learning of a stable hand position rather than a stable sequence of
movements and therefore differed from the typical structure employed to investigate
action acquisition in laboratory animals. In order that the joystick task can be
considered on similar terms to such studies, it was decided that a version of the task

featuring between-trial repetition of reinforcement should be developed.

By iterating the learning process between trials, with a stable starting position, we can
ensure that the data for each trial represents a single attempt at finding the correct
movement. Figure 3.1 shows what this looks like in practice. Trial one is necessarily a
naive trial and locating the correct position is a question of exploring the search space.
The hotspot can then be kept in the same position for subsequent trials, allowing us to
record performance following an individual instance of reinforcement. It is much
easier to appreciate with this design how people have deviated from optimal

performance on a given trial.

60



2 !ﬂq-\‘r 77 ii’."
Tz \
S8 2 X \
Trial 2 Trial 3 Trial 4 Trial 5
Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

Figure 3.1 The progression of a movement trace over 10 trials with reinforcement occurring just once in a trial, on

entry into the hotspot region of the search space (shown here in red).

A further advantage of adopting this task structure is that it should make it easier to
draw comparisons concerning the effects of delayed reinforcement with the studies
cited in the previous chapter (e.g. Anderson & Elcoro, 2007; Black et al., 1985; Elsner &
Hommel, 2004; Hollerman & Schultz, 1998; Lattal & Gleeson, 1990; Okouchi, 2009;
Renner, 1964; Shanks & Dickinson, 1991; Shanks et al., 1989; Sizemore & Lattal, 1977;
Snycerski et al. 2004; Snycerski et al., 2005; Stubbs, 1969). It is possible that the high
degree of sensitivity to delay found when employing within-trial repetition of
reinforcement in experiments 1 and 2 would not occur with a task structure based on
between-trial repetition of reinforcement. In other words, this change in task structure
might bring the sensitivity to delay into the 0.5 to 1 s range, a duration that marks the

maximal sensitivity of the experiments cited above.

Scaling task difficulty

Before exploring the effects of delay, the new task structure was used to investigate
the potential scalability in difficulty of the joystick task. Such manipulations are
potentially of benefit when comparing across populations, for instance between
clinical and control populations. Clearly, the difficulty of all experimental tasks can be
varied to some extent but the advantage here is that the required precision of
movement can potentially be calibrated to the abilities of a particular population
whilst leaving the basic task rules (the contingencies on which reinforcement depends)
stable. Such calibration could potentially provide a means of running more successful

control groups when comparing healthy and clinical populations. This type of
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manipulation is not possible in simple reaction time or lever pressing paradigms
because in these instances the response itself never varies in terms of the difficulty of
exploration. Experiment 3, therefore, details the structure of a joystick task featuring
between-trial repetition of reinforcement and describes a test designed to investigate
whether the joystick task paradigm would allow the effective scaling of task difficulty

for such purposes.

Experiment 3: scaling task difficulty with variable target

sizes

With a task based on location finding, the obvious candidate parameter for scaling
difficulty is to change the size of that location. With larger targets it is easier to
produce a sequence of movements that will take the joystick into the hotspot region of
the search space and therefore learning and performance should improve with larger
hotspot sizes. This experiment was designed to investigate the effect of hotspot size
on performance and determine whether the change in task difficulty with hotspot size
is a viable method for calibrating the task based on the abilities of a particular
individual or population. A further benefit of running a formal test to investigate the
effect of hotspot size is that it enables better informed choices of suitable hotspot

sizes for future experiments including experiment 4 described later in this chapter.

Method

Unless otherwise stated, all apparatus and procedures were the same as those used in

experiment 1 (see chapter 2).

Participants

29 people (26 female) participated in all conditions of this study. Ages ranged from 18
to 26 years with a mean age of 19 (SD. = 1.8 years). Participants were all
undergraduate students at the University of Sheffield who took part in return for
credits in the department's research participation scheme. All subjects were naive to

the purpose of the experiment.
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Apparatus

Defining the reinforced area

It was easy to determine from pilot studies that hotspots of the size used in
experiment 1 (i.e. occupying 0.91% of the search space) would have made a task
featuring between-trial repetition of reinforcement much too easy. Consequently, the
largest hotspot in the current experiment was chosen to be substantially smaller than
that used in experiments 1 and 2, in an attempt to cover as informative a range of
hotspot sizes as possible. Ultimately, 4 different sizes were chosen. In order from
smallest to largest, they occupied 0.07% (small), 0.14% (medium), 0.28% (large) and
0.56% (exlarge) of the search space, thus the figure doubled with each increase in size.
Figure 3.2 is drawn to scale and gives a visual representation of the size of the hotspots

relative to the overall search space.

0.07% 0.14% 0.28% 0.56%

Figure 3.2 Hotspot sizes as a percentage of the overall search space.

Defining reinforcement

Just as in experiment 1, the screen was kept black throughout a trial and any
movement into the hotspot resulted in a brief audio stimulus (10 ms ‘pip’ sound) but,
unlike experiment 1, it also resulted in the immediate ending of that trial accompanied

by white text on the black screen (see appendix 3 for full details of onscreen text).
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Procedure

Participants were given verbal instructions as explained in experiment 1 (see chapter
2). Following this, the task program was started and the participants were asked to
follow the onscreen instructions (see appendix 3). After reading the instructions, 3
practice trials commenced automatically. For the first practice trial, the participant was
required to move the joystick around in search of the correct position and on finding
that position was presented with a pip sound and the end of the trial. Following this
they would then complete the second and then the third practice trials, with the
hotspot remaining in the same position for all 3 practice trials. As with all the
experiment trials, no feedback or screen graphics were provided during the practice
trials and the monitor set to display a black screen. The practice trials differed from
experimental trials in that the hotspot was larger than any of the experimental
hotspots, occupying 0.75% of the search space. Once the practice trials were
completed the experimental trials began. Participants were required to complete 10
trials at each hotspot size. For the first trial in a batch of 10 the hotspot was placed
randomly within a limited region of the search space (as defined in experiment one),
such that no part of it could overlap either the centre or the outer edges of the search
space. During each batch of 10 trials, the size and position of the hotspot did not

change.

Design

There was one independent variable with 4 levels: the 4 hotspot sizes detailed above.
There were 43 trials in total: 3 practice trials and 40 experimental trials. Each
experimental condition was therefore experienced in the form of 10 identical trials (i.e.
same hotspot position and size). The order of presentation of the experimental

conditions was counterbalanced.

Results

Irrelevant distance as a performance metric

As a result of the way that hotspot positions were determined, each new hotspot

location could differ in terms of its distance from the centre of the screen. In other
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words, the optimum distance between the starting position and the hotspot varied
between trials. The reason for this was to keep the required action as variable as
possible within the confines of the two-dimensional search space. However, it meant
that 2 people achieving optimum performance on a given trial could differ in terms of
the distance travelled. One potential alternative to using the raw distance is to take
the ratio between the total distance and the optimum distance. This is intuitively
appealing because it would seem to take into account the fact that for longer optimum
distances there is more opportunity to make irrelevant movements, simply because

more distance must be travelled in order to reach the hotspot.

However, the chief problem with ratio scores is that they have a disproportionately
large effect on trials that involve even moderate amounts of movement. Whilst the
optimum distance may only represent a small proportion of the overall distance
travelled, it can greatly affect the performance score because it is the denominator in
the fraction. This effect is easier to appreciate if we look at movement traces that
display similar overall amounts of movement with different optimal distances. The
actual distance travelled for the trace on the left hand side of figure 3.3 is 14 times the
optimal distance whereas this ratio is just 6.5 for the trace on the right of the figure
and yet it seems strange to suggest that performance is twice as efficient in the right

hand trace.

Optimal: 193 Optimal: 418
Actual: 2707 Actual: 2717

Figure 3.3 Examples of movement traces of similar length in trials with very different optimal distances.

In order to investigate this issue further, a test for a correlation between the optimum
distance and the ‘irrelevant distance’ (total distance minus optimum distance) was run
for each of the 4 hotspot sizes. If the optimum distance were having an important

effect on the actual distance travelled then we would expect these two metrics to
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correlate with one another. A Pearson product-moment correlation was run to test the
relationship between the optimum and log-transformed irrelevant distances. This
revealed that there was a significant (2-tailed) positive correlation for the small (r =
0.5, n =29, p <.01) and medium (r=0.52, n = 29, p < .01) conditions but no correlation
for the large (r = 0.23, n = 29, p = .23) and the exlarge condition (r = 0.3, n =29, p =
.12). Longer optimal distances were therefore correlated with longer irrelevant

distances for 2 of the 4 conditions.

Because the correlation differed across conditions, it was decided that optimum
distance would not have made a consistent covariate and that the effect of calculating
a ratio score might have interacted with the independent variable. It was therefore
decided that irrelevant distance (total distance minus optimal distance) would be used
as a conservative measure of performance. This metric avoids the issue of potentially
overestimating the effect of the optimal distance whilst also taking into account the
basic additional distance that some trials required over others by virtue of the hotspot

being located further from the central starting position.

Scalable task difficulty and the effect of hotspot size

For each participant the mean irrelevant distance was calculated based on the last 9
trials of the 10 trial batches; the first trial was always excluded from the calculation as
it represented naive performance, indicative of search time rather than learning. A
one-way repeated-measures ANOVA showed that there was a significant effect of
hotspot size (F(3, 84) = 13.29, p < .001). Figure 3.4 shows that as hotspot size increases
so does the mean irrelevant distance travelled; in other words, as one would expect,
the task gets more difficult with small hotspots. Bonferroni corrected post hoc t-tests
revealed that the mean distance travelled in the small condition differed significantly
to both the large (t(28) = 4.6, p < .05) and the exlarge (t(28) = 4.94, p < .05) conditions
and that the medium condition differed significantly from the exlarge condition (t(28)
= 4.18, p < .05). No other comparisons reached significance, although the small-

medium comparison approached significance (t(28) = 2.53, p > .05).

66



9000 1
8000 1§
7000 1

6000 1

_Mean 5459
irrelevant
distance 4000 *

3000 1§
2000 1
1000 1

0 T T T ]
0.07 0.14 0.28 0.56

Hotspot size (% total search space)

Figure 3.4 Mean irrelevant distance travelled for the 4 different hotspot sizes: small (0.07%), medium (0.14%), large

(0.28%) and exlarge (0.56%). Values are back-transformed from the log transformation.

Because of the iterated structure of the task it is possible to plot the mean
performance on each trial for the four different hotspot sizes. Figure 3.5 shows how
the mean performance across participants improves with experience at a given
hotspot size and location (the naive trial 1 has been removed to make the comparison
clearer). Figure 3.6 has the error bars removed and includes trial 1 to show where
post-reinforcement performance lies relative to naive searching. Overall learning is
rapid for each of the 4 hotspot sizes, with the majority of the improvement occurring

by trial 4.
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Figure 3.5 Mean irrelevant distance (and standard error) for each trial at the four different hotspot sizes. Trial 1

(naive trial) is removed in order to display rate of learning more clearly. Values are back-transformed from the log

transformation.
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Figure 3.6 Mean irrelevant distance for each trial at the four different hotspot sizes. Trial 1 is included to show
where post reinforcement performance lies relative to naive searching. Error bars have been removed so that the
approximate rate can be seen more clearly (see figure 3.5 for error bars on trials 1-9). Values are back-transformed

from the log transformation.

Discussion

The results of the overall comparison in performance (figure 3.4) indicate that task
difficulty does significantly differ depending on hotspot size; however, the scope for
calibrating the joystick task based on manipulations to this experimental parameter is
likely to be limited. In terms of overall performance and rate of learning, the smallest
hotspot size (0.07%) appears to mark a substantial shift in task difficulty relative to the
other sizes. Despite the considerable variance in the performance scores, the
difference to the other conditions was either significant or approached significance
with a conservative post hoc correction. Furthermore, figure 3.5 indicates that this
difference appears to be sustained across trials. In one sense, this is potentially useful
as it indicates that with hotspots of this size we can be assured of avoiding ceiling
effects. However, on playing back trials from this condition, there were signs that
some of the variance and difficulty might have been caused by limitations in the

apparatus. Although the tracking of the joystick was generally smooth, the smallest
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hotspot occupied so little of the search space that irregularities in the movement of
the joystick would have made it more difficult to locate the hotspots. In other words, it
is more likely in the small condition that a participant could produce a movement that,
under perfect conditions, would have entered the hotspot but due to the noise in the
apparatus would actually result in a false-negative outcome. Furthermore, it is possible
that this hotspot was presenting substantial challenges to the motor control of
participants. Whilst it is potentially useful to make the task harder for some
populations of individuals, the difficulty should depend on exploration of the search
space rather than the motor control of the participant. At the other end of the scale,
the largest hotspot (0.56%) produced the opposite problem, resulting in near ceiling
levels of performance. Consequently, the scope for varying task difficulty by

manipulating hotspot size appears to be very limited with this paradigm.

Experiment 4: between-trial repetition of delayed

reinforcement

Temporal alignment and the eligibility period

In chapter 1, the idea of a short latency and relatively indiscriminate learning system
was introduced and in chapter 2 the temporal sensitivity of such a system was
discussed. It was also suggested in chapter 2 that the findings cited by Redgrave and
Gurney (2006) as possibly indicating the negative effects of delay on such a learning
system did not perhaps demonstrate the degree of sensitivity that their theory
implied. However, it would be wrong to think that the delay durations employed in
these studies were especially long in the general context of research into
reinforcement learning. In fact, the range of delays over which reinforcement learning
can apparently be sustained is surprisingly large. Several studies, for instance, have
found that animals are capable of acquiring new responses, such as lever-press
responses, with reinforcement delays in excess of 10 s (Lattal & Gleeson, 1990;
Snycerski et al., 2004; Snycerski et al., 2005). A similar result has been reported for
acquisition of response sequences by humans with delays also in excess of 10 s

(Okouchi, 2009).
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If it is the case that these subjects were relying on reinforcement learning and that this
system is indiscriminate with respect to everything but the temporal alignment of
action, outcome and context, then the apparent resistance to delay is somewhat
surprising. As discussed in earlier chapters, Redgrave and Gurney (2006) suggest that
the short latency phasic response of dopamine neurons to salient stimuli acts as a time
stamp that reinforces and promotes the reselection of motor output that immediately
preceded a novel stimulus and that the short latency nature of this response limits the
guantity of non-contingent motor output that could be associated with the stimulus.
Whilst the short latency of the dopamine response suggests that this learning system is
likely to be sensitive to the effects of delay (as discussed in chapter 2), the limits of this
system’s tolerance to delay are unclear. According to Redgrave and Gurney, the
converging input of sensory, motor and contextual information in the striatum is the
target with which the phasic dopaminergic output interacts. Consequently, the limits
of the duration over which learning in such a system could occur should ultimately be
dictated by the length of time that the convergent signals in the striatum remain

eligible for reinforcement.

This concept of an eligibility trace has proven useful in models of reinforcement
learning for explaining how it is that a reinforcement learning mechanism might cope
with delays of reinforcement (Singh & Sutton, 1996). If reinforcement occurs
immediately, it will interact with a trace that contains a strong representation of the
behaviours on which that reinforcement was contingent; however, with increasing
delay between the contingent response and the reinforcement, the representation of
that response weakens (decays) and the overall effect on learning is that less weight
will be placed on these older responses and thus more repetitions would be required
in order to learn under conditions of long delay duration. An eligibility period caused
by the gradual decay of behavioural representations provides an explanation as to how
it is that reinforcement learning could occur with delays in excess of 10 s, provided
there is sufficient opportunity to repeat the behaviour many times. It would also
provide an explanation as to how it is that humans and animals are able to learn
sequences of actions that take place over many seconds because only the final portion
of these sequences would be temporally contiguous with the outcome despite the fact

that the whole sequence is what the outcome is contingent on.
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However, one alternative explanation is that the eligibility period concerns not so
much the length of time that has elapsed but the number of task-relevant movements
that have occurred during the delay period between a contingent response and a given
outcome. This is conceptually similar to the idea of working memory (Baddeley, 2003),
with the learning mechanism being limited not only by time but also by the number of
units of relevant information present in the trace. The more output that occurs during
the delay period, the more potential there is for this non-contingent output to be
assigned the credit of having caused the reinforcing event. By extension, the more
similar the contingent and non-contingent output components of the motor record are
to one another, the harder it might be to pick out the signal from the noise. If this is
correct, then the sensitivity that was found in the version of the joystick task detailed
in chapter 2 might be a consequence of the low contrast between task relevant and
task irrelevant motor record that occurred during the delay period. In other words, the
difference between relevant and irrelevant joystick movements is small as compared
to the difference between lever-presses and cage exploration behaviour (the response
opportunities in the extended delay studies cited above) and therefore non-contingent
behaviour in the joystick task might have a more contaminating effect during learning,

rendering the task more susceptible to the effects of delay.

The employment of within-trial repetition of reinforcement in the experiments
described in chapter 2 made it difficult to explore the idea of contamination. In theory,
learning should be less efficient if more movements occur during the delay period
because it is then harder to identify the portion of movement activity on which the
outcome was dependent; that is to say, the credit assighnment problem becomes more
difficult (Redgrave et al.,, 2008). However, measuring this activity was not
straightforward because each trial contained many instances of delayed reinforcement
and therefore many separate instances of contaminating movement activity. A
solution to this is to have a single instance of reinforcement in each trial as outlined
above. In this way, for any given trial, it would be straightforward to separate the task
relevant portion of the movement trace versus the movements that occurred during
the delay period. Consequently the contents of the delay period can be investigated,

thus providing insight into how contamination might work to impede performance
72



under conditions of delay.

The problem with addressing this research question experimentally is that it would
involve the manipulation of the amount of activity that occurs during the delay period.
This could potentially be achieved by intervening in ways that make participants move
the joystick faster or in more complex ways. However, with this type of manipulation,
there is no obvious control condition that could tell us whether any effect was due to
contamination per se or whether the intervention had simply made the task more
difficult. Consequently, one of the aims of experiment 4 was to use the natural
variation in the movements during the delay period in order to investigate whether
contamination could be contributing to any drop in performance caused by
reinforcement delay. Specifically, if contamination is important, the complexity and
overall distance of movement during the delay period should be negatively correlated

with performance.

The second aim of experiment 4 was to determine the sensitivity to reinforcement
delay of a version of the joystick task employing between-trial repetition of
reinforcement. The structure of the task is much more similar to that of traditional
reinforcement learning and response acquisition paradigms. Once again, if the task
relies on the learning mechanism described by Redgrave and Gurney (2006) then we
would expect an effect of delay at the kind of short durations found in experiments 1
and 2. By contrast, if the effect of delay is primarily affected by specific task demands
then we would expect that the sensitivity to delay should lower and much more in line

with previous experiments featuring delayed reinforcement.

Method

Unless otherwise stated, all apparatus and procedures were the same as those used in

experiment 3.

Participants

30 people (25 female) participated in all conditions of this study. Ages ranged from 18

to 22 years with a mean age of 19 (SD. = 1 year). Participants were all undergraduate
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students at the University of Sheffield who took part in return for credits in the
department's research participation scheme. All subjects were naive to the purpose of

the experiment.

Apparatus

Hotspot size

The hotspot size was chosen based on the results from experiment 3. The 0.28%
hotspot size employed in experiment three was selected in order to avoid the possible
ceiling effects associated with the exlarge (0.56%) condition and the large amounts of
error present in the small (0.07%) condition. The 0.28% (large) size was selected in
preference to the 0.14% (medium) size on the basis that the introduction of delay
would increase the difficulty of the task and it was important that the delay conditions
shouldn’t be overly difficult for the purposes of data collection. Furthermore, the
results from the correlations in experiment 3 indicated that there was no relationship
between optimum and irrelevant distance for this hotspot size so by choosing this size

it was hoped that noise from this potential source of variance would be reduced.

Delay

Just as with experiments 1 and 2, delayed reinforcement was achieved by interposing a
delay between the point at which the joystick moved into the hotspot and the point at
which reinforcement was delivered. However, the structure of the task was the same
as that employed in experiment 3 so the reinforcement stimulus (short duration pip
sound) also signalled the end of the current trial. The range of durations chosen was:
0-ms, 150-ms, 300-ms and 450-ms. These durations therefore covered a slightly larger
range than those in experiments one and two but with an increased increment
between conditions. This decision was based on the fact that paired comparisons for
delays in excess of 75 ms revealed no effects with a single increment in delay duration
in experiments 1 and 2; furthermore, pilot tests suggested that the task was much less
sensitive to the effects of delay so increasing the range with fewer durations would
provide more informative data. Finally, it was important that at least one of the
conditions was close to the 0.5 s delay, which was the shortest effective delay duration

reported in the experiments cited earlier (e.g. Hollerman & Schultz, 1998).
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Procedure

The procedure was identical to that employed in experiment three. However,

participants were asked an additional question at the end of the experiment

Design

A repeated measures design was used. The independent variable was reinforcement
delay, with 4 conditions: 0-ms, 150-ms, 300-ms and 450-ms. Each experimental session
was comprised of 83 trials, the first 3 of which were practice trials (involving no delay)
and the remaining 80 were experimental trials. The trials were presented as 8 batches
of 10, where each batch represented a new hotspot location. Each delay condition was
experienced twice. In other words, participants experienced 2 batches of 10 trials at

each delay condition. Batch order was counterbalanced.

Results

Defining pre-discovery and post-discovery periods

Figure 3.7 displays movement traces that depict all of the movements made during a
10 trial batch at 450-ms delay. We can see that the movement trace doesn’t stop at
the hotspot, but carries on as a short tail representing the movements made during
the delay period. It was therefore possible, for all trials in which reinforcement had
been delayed, to distinguish between the pre-discovery and post-discovery periods.
Just as with experiments 1 and 2, the pre-discovery period included all movements
made from the start of the trial to the point at which the joystick moved into the
hotspot. Figure 3.8 depicts this clearly by displaying only those movements that
occurred during the pre-discovery period. The post-discovery period included all
movements made from the moment the joystick moved into the hotspot until the end
of the trial. Figure 3.9 depicts this by showing only those movements that occurred
during the post-discovery period. Unlike experiments 1 and 2, both the pre-discovery
and post-discovery periods are of interest. The distance travelled during the pre-
discovery period gives us a metric of performance: shorter distances indicate that the

participant has learned to move into the correct position more efficiently. The
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behaviour during the post-discovery period is also of interest as it is indicative of the

necessarily non-contingent behaviour that occurred during a trial. In other words, this

design allowed us to measure a participant’s performance and also to investigate how

behaviour in the post-discovery period might impact on behaviour during the pre-

discovery period.
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Figure 3.7 Movement traces showing all movements made during a batch of trials under the 450-ms delay

condition. The black dot represents the centre of the search space and starting point on each trial. The red dot is

the hotspot.
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Figure 3.8 Movement traces showing only pre-discovery movements during a batch of trials under the 450-ms delay

condition. The black dot represents the centre of the search space and starting point on each trial. The red dot is

the hotspot.
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Figure 3.9 Movement traces showing only post-discovery movements during a batch of trials under the 450-ms

delay condition. The black dot represents the centre of the search space and starting point on each trial. The red

dot is the hotspot.

Performance and pre-discovery distance

Before running the analysis to determine the effect of delay, a test was run to check
for a relationship between the optimum distance and the irrelevant pre-discovery
distance. A Pearson product-moment correlation was run to test the relationship
between the optimum distance and the log-transformed irrelevant distance. This
revealed that there was no significant (2-tailed) correlation for the 0-ms (r = 0.3, n =
30, p = .11), 300-ms (r = 0.2, n = 30, p = .3) and 450-ms (r = -0.01, n = 30, p = .95)
conditions, but that the 150-ms condition did display a positive correlation (r = 0.55, n
= 30, p < .01). Longer optimal distances were therefore correlated with longer
irrelevant distances in 1 of the 4 conditions. Because of the inconsistency of this effect

it was decided that optimal distance should not be used as a covariate.

The effect of delay was investigated in terms of the differences in the mean irrelevant
pre-discovery distance. Just as with experiment 3, the mean was taken from the 9 non-
naive trials in a batch of 10. Better performance by this metric would be indicated by
shorter distances. A one-way repeated-measures ANOVA was conducted. Mauchly's
test indicated that the assumption of sphericity had been violated (»? (5) = 12.402, p <
.05; therefore degrees of freedom were corrected using Greenhouse-Geisser estimates
of sphericity (¢ = 0.802). The results show that there was a significant effect of
reinforcement delay on the unnecessary distance travelled during the pre-discovery

period, F(2.406, 69.781) = 5.339, p = .002. Figure 3.10 shows that the effect of
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reinforcement delay was to increase the irrelevant distance travelled during the pre-
discovery period. Bonferroni corrected post hoc t-tests revealed that the unnecessary
distance travelled during the 450-ms condition differed significantly from the 0-ms

(t(29) = 2.85, p < .05), 150-ms (t(29) = 3.4, p < .05) and 300-ms (£(29) = 4.7, p < .05)

conditions.
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Figure 3.10 Mean irrelevant pre-discovery distance (and standard error) for the 4 levels of reinforcement delay.

Values are back-transformed from the log transformation.

Learning

Experiments 1 and 2 included a threshold to determine the point at which a trial ended
and this ensured that a trial couldn't be completed unless learning had taken place.
Experiment 3 had no such threshold so it was important to check that at least some
learning was occurring in each of the conditions; that is to say, whether the distance
travelled in the later trials was shorter than that in the early trials. A learning ratio was
calculated by dividing the irrelevant pre-discovery distance in trials 1 to 5 by that
travelled in trials 6 to 10 of each batch. This metric not only provided a way to check
for learning but also a means of testing whether there was an effect of delay on the

extent of learning.

A one-way repeated-measures ANOVA was conducted on the log-transformed data.

The results show that there was no significant effect of reinforcement delay on the
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improvement in performance from early to late trials, F(3, 87) = 0.43, p = .73. In other
words, whilst delay had a detrimental impact on overall performance, it doesn’t
appear to have had an effect on the relative improvement in performance over trials,

which was large for all conditions (figure 3.11).
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Figure 3.11 Mean performance ratio of early to late trials (and standard error) for the 4 levels of reinforcement

delay. Values are back-transformed from the log transformation.

To test for differences in learning across trials, the distance for the early trials (trials 1
to 5) was compared to the distance for the late trials (trials 6 to 10) for all delay
conditions. A two-way repeated-measures ANOVA was conducted on the log-
transformed data. The results show that there was a significant main effect of
reinforcement delay on the distance travelled, F(3, 87) = 4.88, p = .003; figure 3.12
shows that there was a general increase in the distance travelled with longer delay
durations. There was also a significant main effect of phase (early or late trials), F(1,
29) = 133.21, p < .001; figure 3.12 clearly shows that the distance travelled in the late
trials was shorter than that during the early trials. However, there was no significant
delay-phase interaction, F(3, 87) = 3.79, p = .13; figure 3.12 shows that the

improvement from early to late trials did not differ according to delay condition.

79



16000 1

=0=—Trials 1-5
14000 o

=—8—Trials 6-10
12000 *

10000 1

Mean distance
(search space 8000 o
units)

6000 H

4000 1

2000 1 F I

0 150 300 450
Reinforcement delay (ms)

Figure 3.12 Mean distance for early and late trials (and standard error) for the 4 levels of reinforcement delay.

Values are back-transformed from the log transformation.

Contamination

One of the predictions for a learning system with an eligibility period (whether it is
indiscriminate or sensitive to the contents of the motor record) is that delayed
reinforcement will hamper learning because it will contaminate the motor record with
non-contingent output. If delayed reinforcement was hampering learning and
performance due to contamination of the motor record then the effect of delay should
be worse for some people than for others. Specifically, people who move further
during the delay period will create more non-contingent motor output and therefore
contaminate the motor record more than others. A test was therefore carried out in
order to investigate the relationship between the pre-discovery irrelevant distance and

the post-discovery speed for the 450-ms delay condition.

A Pearson product-moment correlation was carried out to test for a relationship
between the log-transformed pre-discovery distance and the log-transformed post-
discovery speed. It revealed that there was no correlation between irrelevant pre-
discovery distance and the post-discovery speed (r = 0.22, n = 30, p < .13, one-tailed)

(Figure 3.13).
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Figure 3.13 The relationship between the log of the post-discovery speed and the log of the irrelevant pre-discovery

distance for the 450-ms delay condition.

Whilst speed gives an indication of the amount of contaminating (non-contingent)
output that was occurring, it gives no indication as to the complexity of that
movement. An estimate of the complexity of the movement during the post-discovery
period was produced by calculating the change in the angle of movement over time
(degrees per second). According to this metric, movement in a straight line would
result in no change in angle and would be classed as a low complexity movement,
whereas movement with lots of changes of direction would result in large changes in
angle and would be classed as high complexity movement. If the type of movement
during the delay period is an important part of the effect of delay because of how this
impacts on contamination then we would expect large changes in angle during the
post-discovery period to be correlated with longer irrelevant pre-discovery distances.
A Pearson product-moment correlation was carried out to test for a relationship
between the irrelevant pre-discovery distance and the post-discovery change in angle,
it revealed no correlation between the two variables (r = -0.03, n = 30, p < .43, one-

tailed) (Figure 3.14).
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Figure 3.14 The relationship between the complexity of movement during the post-discovery period and the

irrelevant pre-discovery distance for the 450-ms delay condition.

Discussion

Differing sensitivities to delay depending on type of motor task

The results showed that the effect of delay on performance was limited to the longest
duration condition (450 ms) and therefore that the overall sensitivity to delay was
considerably lower than for the task employed in experiments 1 and 2 where an effect
was detected in the 75-ms condition. In terms of overall sensitivity, changing the
repetition of reinforcement from within to between trials was akin to changing the
task from a motor control (Foulkes & Miall, 2000; Miall & Jackson, 2006; Miall et al.,
1985) or motor adaptation paradigm (Held et al., 1966; Kitazawa et al. 1995) to a
reinforcement learning paradigm (Elsner & Hommel, 2004; Hollerman & Schultz, 1998;
Shanks & Dickinson, 1991; Shanks et al., 1989). And yet both versions of the task were
designed to be tests of reinforcement learning, with feedback characteristics that one
would expect to find in such tasks (Jordan & Rumelhart, 1992). For instance, all
reinforcement signals were qualitative, indicating whether or not the correct
movement had been produced but providing no information on the relative level of
performance. Reinforcement was also contingent on behaviour: if an individual had
failed to move the joystick into the hotspot, they would have received no feedback at

all.
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One potential explanation for this result is that the important difference between
tasks that target supervised learning mechanisms and those that target reinforcement
learning mechanisms is not the informational content of the feedback but the
frequency with which that feedback is delivered. The primary difference between the
two versions of the joystick task in this sense is that feedback is delivered whilst
movement is on-going in one case (within-trial repetition of reinforcement) whereas it
signals the successful completion of a movement in the other (between-trial repetition
of reinforcement). From the individual’s perspective, the within-trial repetition
experiments were effectively closed-loop tasks with the participants constantly
adjusting their movements based on external feedback. In some ways this is similar to
the situation in a standard motor control task (supervised learning) such as target
pursuit (Foulkes & Miall, 2000; Miall & Jackson, 2006; Miall et al., 1985). By contrast,
the between-trial repetition experiment is like an open loop task with the participants
attempting to make the correct movement in the absence of feedback and on

subsequent attempts adjusting the movement based on past experience.

An alternative explanation is that the differences between the two tasks call into
guestion the distinctions that are sometimes drawn between different types of
learning such as supervised and reinforcement learning (Jordan & Rumelhart, 1992;
Wolpert et al., 2001). By employing a rich input device instead of a button- or lever-
pressing response, the joystick task removed one of the most obvious distinctions
between the experimental approaches to investigating supervised versus
reinforcement learning. It could be that the difference in effect found here simply
highlights the problems associated with attempting to investigate particular neural
mechanisms at the behavioural level (Anderson, Fincham and Douglass, 1997).
Definitions based on theories of learning or neuroanatomy might not accord well with
the way behaviour pans out in reality. It might not make sense to refer to some types
of learning independently of one another because they simply cannot operate

independently in a normally functioning organism.

In terms of the theory of action acquisition offered by Redgrave and Gurney (2006)
and Redgrave et al. (2008), the difference in sensitivity between the two different

versions of the joystick task is difficult to interpret. It could indicate that the match
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between the effective delay duration in experiments 1 and 2 and the onset latency of
the phasic activity of dopamine neurons is purely incidental. In other words, the
experiments were sensitive to delay for reasons other than the underlying learning
mechanism. If this is true, then the theory needs to be able to account for the result
from experiment 4 and also the range of findings from the reinforcement learning
literature with which this result is in accordance. In other words, the current finding
does not necessarily contradict the theory, but it does potentially call into question the
explanation that the learning mechanism evolved to be short latency in order to avoid
non-contingent contamination of the motor record. If the learning mechanism has
evolved to work at such short latencies in a trade-off between the greater depth of
processing that would come from a few hundred milliseconds of further processing
(Redgrave et al., 2008) then we must assume that the detrimental impact of

contamination is strong and presumably detectable at the experimental level.

One problem with comparing the susceptibility to delay in the two tasks covered here
(and almost any two tasks featuring delay) is that they are not calibrated in terms of
difficulty. Performance in difficult tasks is likely to suffer more when reinforcement is
delayed so it could be the case that the task featuring within-trial repetition of
reinforcement was simply more difficult than the task featuring between-trial
repetition. This is not something that can be ruled out in the present case, but it could
present a fruitful line of inquiry for future studies seeking to investigate differences at

the methodological level between supervised learning and reinforcement learning.

Eligibility and contamination

As discussed in the introduction, the ability of animals to learn in the presence of
delayed reinforcement implies the existence of some kind of short term record of
movements and context, perhaps in the form of a gradually decaying eligibility trace
(Singh & Sutton, 1996). It is assumed that any such trace must be time limited and
previous research investigating response acquisition in the presence of delay indicates
that the length of the trace could be in excess of 10 s (Lattal & Gleeson, 1990; Okouchi,
2009; Snycerski et al., 2004; Snycerski et al. 2005). However, it is also possible that the

number and type of actions that occur within the eligibility period are also important,
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producing more or less contamination depending on the type of behaviour involved.
Consequently, it was suggested that we might be able to find evidence of movement
specific contamination in the joystick task in the form of a correlation between the

guantity or complexity of movement during the delay period and performance.

The results, however, revealed no correlation between performance and complexity or
between performance and the speed of movement during the delay period and thus
provide no support for the hypothesis that the amount of movement is a factor in
learning with delayed reinforcement in addition to the duration of the delay period. In
a sense, this result is not wholly unexpected. One of the major differences between
the working memory system mentioned in the introduction (Baddeley, 2003) and the
reinforcement learning process under investigation here is that the latter works at a
very low level and, as we have noted, is essentially indiscriminate in nature; the
latency at which phasic dopamine activity occurs precludes any rich information
processing. However, the idea that any learning system would be unaffected by

information load is, nonetheless, surprising.

Of course, it is possible that the experiment simply didn’t provide the necessary
conditions to enable the detection of an effect of contamination. For instance, longer
delay durations would have provided more opportunity for the occurrence of non-
contingent movements and it is conceivable that the amount of movement must reach
some kind of threshold before it exerts a load over and above the basic effect of a
decaying eligibility trace. Another explanation is that the effect of delay was the result
of an entirely different brain process. For example, it is possible that the learning might
reflect the effect of the declarative guidance of behaviour. Rather than having to rely
primarily on the reinforcement of recent motor output, the participants might have
been choosing successful shapes of movement or spatially inferring the movement
they were required to make. If so, the relative complexity and distance of the
movement might be unimportant as the overall trajectory would be object of learning.

This issue is discussed further in the general discussion below.

General Discussion
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The influence of declarative processes

The theme across all the experiments in this thesis is to develop and assess an
experimental paradigm designed to record action acquisition in humans. Chapter 2
introduced the joystick task and detailed two studies featuring within-trial repetition
of reinforcement and the present chapter has detailed a variant on the task featuring
between-trial repetition of reinforcement. The advantages of between-trial repetition
have already been discussed and certainly, the emergence of a shape of movement
over trials, visible in figures 3.1 and 3.7, captures an intuitive sense of how it is that
actions are learned. Indeed, it is possible that in such cases, the trajectory of
movement became much more important than the need to achieve a particular end
point. In this sense, at least some participants could have been solving the problem of
‘what movement will bring an end to the trial’ as opposed to ‘where in the search
space does the joystick need to be in order to bring an end to the trial’; or, more
simply, learning ‘what’ instead of ‘where’. This is presumably similar to the type of
learning that is involved in producing a gesture and thus variations on the current task

might present a useful way of investigating this type of learning for future research.

However, whilst many of the trials showed a stable progression of a particular shape of
movement, a substantial number also displayed jumps in performance over the course
of a single trial and, in a handful of cases, such as that shown in figure 3.15, seemingly
one-shot learning. One reason for examples of learning such as this is that the basic
structure of the task — location finding — meant that it was relatively easy to
accidentally produce near optimal performance on a given trial. In other words, the
path taken from the central starting position in an attempt to explore the search space
could result in the joystick moving straight through the hotspot. Whilst it would be
wrong to conclude that such cases definitely do not represent the kind of learning that
the task was meant to record, the general presence of rapid learning in the experiment
raises the possibility that performance in the task is driven to a large extent by learning

at the declarative level.
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Figure 3.15 Data taken from experiment 4. The images show a batch of trials where a lucky first trial is followed by

near perfect performance in all subsequent trials.

Avoiding the effects of declarative learning in humans is extremely difficult. In the
experiments presented so far, attempts were made to reduce these effects. For
instance, all participants were aware that the task was to move the joystick to the
correct position. This intervention appears unusual at first as it removes such a large
portion of what the participant must discover. However, whereas Thorndike (1911),
for example, could rely on animals not to make a leap of insight; human participants,
by contrast, can be relied on to do the opposite: the question is not so much if they
will work something out but when. By giving some information about the task
demands, the intention was to as far as possible avoid large shifts in performance
caused by learning or insight at a declarative level. In other words, it was not possible
for a participant to leap to the conclusion that the task was to search for a particular

joystick position as this information was already provided.

It would be impossible to create a version of the joystick task that we could guarantee
had excluded the contribution of spatial memory and general high-level cognitive
guidance of behaviour (Anderson, Fincham and Douglass, 1997). However, whilst we
might not be able to achieve process purity in the joystick task, it is, nonetheless
possible to change the balance of the paradigm from one that might be more
declarative in nature (i.e. involving the selection of a particular reaching movement) to
one that is more nondeclarative (i.e. forcing the motor system to extract contingent
motor output from multiple samples of self-generated behavioural variance). A

potential way of achieving this is to make the required movement more complex and
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therefore more difficult to infer spatially. This would have the benefit of making it
harder to accidentally produce optimal performance and would give more scope for
learning over and above the declarative guidance of behaviour. To this end, chapter 4
details the development of a gestural version of the joystick task and an investigation

into the potential contribution of higher-level learning processes.
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Chapter 4: declarative and nondeclarative

components of action learning.

The versions of the joystick task described in chapters 2 and 3 provided simple and
flexible approaches to the study of action acquisition. The task featuring within-trial
repetition of reinforcement provided a particularly useful approach for presenting
numerous new learning scenarios and a means of extracting a low variance learning
metric in the form of the number of instances of reinforcement. It also offered a way
of delivering large numbers of discrete stimulus presentations, ideal for investigating
the effects of special stimulus properties on acquisition. The task featuring between-
trial repetition of reinforcement provided a more traditional method of delivering
reinforcement and as such represented a model of response acquisition that can be
reasonably compared to response acquisition paradigms involving nonhuman animals.
It also offered a means of recording the evolution of a movement trace over time,
allowing learning to be quantified relative to optimal performance in a way that is finer
grained than would be possible with a button-push paradigm. The present chapter
describes a version of the task that requires the participant to generate more complex
movements, the aim being to shift the task further towards the low-level learning
processes that are the subject of the current research. It furthermore describes an
attempt to investigate the contribution of high-level cognitive and spatial learning

systems to the joystick task.

The declarative-nondeclarative split

There is a tradition in psychology and neuroscience of drawing a distinction between
those mental processes that are described as flexible, insightful and conscious and
those that are described as rigid, habitual and unconscious. In the field of long-term
memory, for example, Squire (2004) summarises memory classifications with one main
grouping criterion: a distinction between declarative and nondeclarative memory. He

describes the difference as follows:

Declarative memory is representational. It provides a way to model the
external world, and as a model of the world it is either true or false. In
contrast, nondeclarative memory is neither true nor false. It is
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dispositional and is expressed through performance rather than
recollection. (p.173).

A similar distinction is made in the field of animal learning, with Balleine and Dickinson
(1998) explaining that their “analysis of instrumental learning conforms to the popular
distinction between declarative and procedural learning with contingency learning
being declarative in nature and habit learning procedural (p.412)”. This is further

echoed in the field of skill learning and performance:

Automatic processing is activation of a learned sequence of elements in
long-term memory that is initiated by appropriate inputs and then
proceeds automatically—without subject control, without stressing the
capacity limitations of the system, and without necessarily demanding
attention. Controlled processing is a temporary activation of a sequence
of elements that can be set up quickly and easily but requires attention,
is capacity-limited (usually serial in nature), and is controlled by the
subject. (Schneider & Shiffrin, 1977, p.1).

In other words, many different approaches to the study of learning, memory and
performance have converged on this compelling dichotomy. As we will see, the

distinction has important implications for the study of action acquisition.

Perhaps the most convincing attempt to operationalise this difference has come from
research into instrumental learning, employing techniques of overtraining and
reinforcer devaluation. Adams (1982), provided the template for future research with
a series of experiments investigating the effects of various degrees of exposure to
reinforcers and response practice on the tendency of rats to behave as if they
understand the consequences of their actions. The first experiment saw rats trained to
press a lever in return for sucrose pellets. Half of the rats received a low amount of
training and the other half received a relatively high amount of training. Following this,
half of the low training group and half of the high training group received injections of
lithium chloride paired with access to the sucrose pellets (thus devaluing the
reinforcer) whilst the remaining two groups received unpaired injections (causing
sickness without devaluation). All of the rats were then given an extinction session
during which the number of lever responses was recorded. Adams found that the low

training devaluation group had a lower rate of response during extinction than the low
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training control group, indicating that the rats in the devaluation group had
understood that pressing the lever would deliver food that was no longer palatable to
them (i.e. similar to Adams & Dickinson, 1981). By contrast, no difference was found
between the high training conditions, suggesting that the high training devaluation
group had not integrated the devaluation with their understanding of the lever-food
contingency. The implication of this finding is that behaviour initially under goal-
directed control can be transformed into a habit through prolonged training. This
experimental procedure provides an excellent example with which to compare other

examples of declarative or nondeclarative learning.

Adding components to the behavioural repertoire and

‘accidental’ performance

Whilst Adams (1982) was able to demonstrate a convincing distinction between
habitual and goal-directed elicitation of actions from the behavioural repertoire, an
equivalent distinction regarding the different brain processes that might be involved in
the acquisition of actions has been relatively neglected. This is presumably due in part
to a general neglect of research into action acquisition in favour of the maintenance of
actions (Lattal & Gleeson, 1990), but it also relates to methodological problems
associated with demonstrating that nonhuman animals can produce not only the kind
of uninsightful learning reported by Thorndike (1911), but also the kind of insightful

learning that humans are capable of (Bayern, Heathcote, Rutz & Kacelnik, 2009).

The apparent tendency of animals to learn laboratory tasks uninsightfully has allowed
researchers to gain some understanding as to how important it is for an essentially
indiscriminate learning system to be exposed to the right kind of behavioural variance.
The technique of shaping (see, for example, Petersen, 2004), for instance, is an
exercise in constraining the behavioural variance of an animal subject. The
experimenter effectively takes on the role of an external declarative system for the
animal by identifying appropriate behavioural variance and ensuring that the animal
executes the desired movements by reinforcing successive approximations of the
desired behaviour. At the other end of the spectrum is the kind of gradual, error laden

learning investigated by Thorndike (1911) in which no guidance of behaviour occurs
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and, still more extreme, the phenomenon of superstitious learning in which the
animal’s learning systems are exposed to non-contingent reinforcement. Skinner
(1948), for example, describes a study in which pigeons were placed into operant
chambers and given access to a food hopper at regular intervals, irrespective of their
behaviour. He found that in 6 out of 8 cases, operant conditioning took place: the
pigeons developed stereotyped responses to the hopper, such as pronounced head-
tossing, even though delivery of food was not contingent on those responses. In other
words, Skinner’s work suggests that if inefficiencies are sufficiently consistent, they can
evolve into stable, and yet completely irrelevant, actions in the presence of non-
contingent reinforcement. It should be noted, however, that the explanation of
superstitious learning in terms of the reinforcement of recent motor output has been

disputed (Aeschleman, Rosen & Williams, 2003; Timberlake & Lucas, 1985).

Finding evidence of such nondeclarative learning is notoriously difficult and the
interventions and scenarios that are required to provide convincing demonstrations of
such learning tend to be extreme. Examples include stochastic obscuring of
associations (e.g. Knowlton, Mangels & Squire, 1996), dual task procedures (e.g. Nissen
& Bullemer, 1987), implicit priming (e.g. Leiphart, Rosenfeld & Gabrieli, 1993) and
lesion studies (e.g. Bayley, Frascino and Squire, 2005). Whilst such techniques are
useful for the purpose of measuring nondeclarative learning in general, they are not
readily compatible with the paradigm presented here for the general investigation of

action acquisition in healthy subjects.

What characterises action acquisition in those nonhuman animals that are unable to
learn through insight is that they are largely at the mercy of external constraints and
current drives for the behavioural variance they produce and this in turn influences
what they are able to learn and how fast they are able to learn it. The consistent yet
irrelevant behaviour acquired during superstitious learning provides a caricature of the
type of situation that the declarative guidance of behaviour helps humans to avoid.
However, it also points to a possible hallmark of nondeclarative action acquisition that
is of potential use in human research. Whilst pure examples of superstitious learning
are, presumably, rare, perhaps more common are situations in which a successful task-

relevant action is learnt which contains consistent inefficiencies; that is to say, an
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action which contains movement components that are unnecessary but are
nonetheless faithfully repeated each time the action is produced. The ability to identify
such consistent inefficiencies in the joystick task under some circumstances but not
others would provide some support for the idea that an indiscriminate learning

mechanism is capable of driving action acquisition.

As discussed in chapter 3, we have thus far attempted to reduce the effects of the
powerful declarative abilities that human participants bring to all tasks, by disclosing
information about task demands before testing commences. However, whilst this
intervention at the level of task instructions might have reduced the number of
different approaches that were taken to the task, it also had two potential limitations.
Firstly, by increasing a participant’s knowledge we make the task easier to learn and
therefore decrease the number of trials over which learning occurs, thus reducing the
amount of effective data that can be collected. Secondly, it greatly reduces the
likelihood of learners developing consistently inefficient behaviour: that is to say,
extracting a suboptimal movement trace from their own behavioural variance. An
alternative is to make the movement on which reinforcement is contingent more
complex. In this way, the task instructions can remain explicit, but we provide more
scope for participants to display inefficiencies of behaviour and increase the chances

that learning will occur over a greater number of trials.

Testing the contribution to action acquisition of declarative versus nondeclarative
processes

The learning mechanism proposed by Redgrave and Gurney (2006) does not just
concern nondeclarative learning. Indeed, it is part of their position that this
mechanism helps animals to determine whether they are agents of events as well as
how to elicit those events by time stamping the information converging on the
striatum at the moment of reinforcement and reselecting movements (and seeking out
context) that immediately preceded the reinforcement. Under normal circumstances,
it is assumed that this process would be intricately tied in with declarative processes.
However, in the case of the joystick task, any such low-level mechanism for linking
events with behavioural output would manifest itself in behaviour that has competing

explanations in terms of high level executive systems and spatial learning. Specifically,
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the ability to home in on a particular hotspot location could be based on an explicit
memory of the hand position and simple inference of the path required to move to

that point or it could be based on the stamping in of recent motor output.

In order to investigate the contribution of high-level spatially guided learning and low-
level reinforcement learning, an experiment was carried out to measure acquisition
under conditions featuring different amounts of spatial information and different
types of practice. Spatial knowledge of the task was manipulated by either providing or
concealing the precise location of hotspots during a learning phase. The type of motor
output was also manipulated during the learning phase by varying whether or not
participants had access to a visual representation of the current location of the joystick
relative to the hotspots onscreen. The effect was measured in terms of performance in
a test phase during which no visual information was provided onscreen about either
the hotspot locations or joystick position relative to these locations. The overall aim
was to determine how readily the joystick task — in many ways a spatial paradigm —
relied on non-spatial processes and therefore, the potential value of this paradigm for
widespread investigation of the process of interest. In other words, the aim was not to
detect nondeclarative learning at all costs but to provide conditions in which its effects

could show through in spite of competition from other learning processes.

The first question addressed concerned the issue of whether action acquisition relies
primarily on the spatial guidance of movements when full information is available
regarding the specific form that the action must take. If action acquisition in the
joystick task relies primarily on spatial guidance rather than the learning of particular
movements, then performance during a blind test phase should not differ depending
on the type of behavioural variance produced during a learning phase in which
participants have the same access to information about the locations of contingent
areas of the search space. By contrast, if performance is influenced by the movements
that have been practiced during a learning phase (i.e. the motor output that has been
reinforced) then performance during a blind test phase should differ depending on the

type of behavioural variance produced during the learning phase.

The second question concerned the issue of whether action acquisition relies primarily
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on spatial information when the task is demonstrated in a spatial way, but no
information regarding specific locations is provided. If people use their exploration of
the search space to infer the location of contingent areas such that they can guide
their movements using a spatial model of the environment, then performance during a
blind test phase should not depend on whether particular spatial locations are
provided visually or determined through exploration during a learning phase. By
contrast, if learning depends on the movements that have been practiced, then
performance during a blind test phase should differ depending on how the target
locations were discovered, because discovery under blind conditions should result in

more behavioural variance than when the positions are visually represented onscreen.

A third question concerned the variability of movements relative to the point of
reinforcement. If, as Redgrave and Gurney (2006) suggest, the system controlling
learning is a time stamp that reinforces motor output immediately preceding the
moment of reinforcement, then we might expect that movements closest to the point
of reinforcement should be less variable than those more distal; as they put it, “the
maximal positive/negative reinforcing effect of [dopamine] would be directed to
immediately contiguous motor efference copy” (p.973). Such a result would not be
expected if the correct movement was simply inferred from exploration of the search

space and performed based on a spatial model of relevant locations.

The final question concerns the issue of inefficiencies in the movements that are
acquired. In a situation where participants understand the general structure of the
movement they are required to make and are then given the opportunity to infer the
specific nature of this movement through exploration of the search space, we would
not expect them to develop particularly inefficient movements. However, if learning is
strongly influenced by the reinforcement of motor output then the movements learnt
will be more dependent on the variance of the exploratory behaviour and more likely

to include inefficiencies.

Experiment 5: gesture discovery

95



Method

Participants

26 people (20 female) participated in all conditions of this study. Ages ranged from 18
to 20 years with a mean age of 19 (SD. = 0.6 years). Participants were all
undergraduate students at the University of Sheffield who took part in the study in
return for credits in the department's research participation scheme. All subjects were

naive to the purpose of the experiment.

Defining the action

In the task featuring between-trial repetition of reinforcement, the task of locating a
single location in space meant that it was relatively easy to accidentally produce the
correct movement. The problem with this was that, on such occasions, the amount of
behavioural variance from which the correct movement needed to be extracted was
extremely small and this limited the value of the data that could be obtained. A
potential solution to this problem is to make the hotspot smaller, thus making it
harder to find the location by accident and return to it on subsequent attempts.
However, experiment 3 indicated that, whilst smaller location sizes did indeed make
the task more difficult to learn, there was a limit as to how small a hotspot could be
made and still result in useful behavioural data. Very small hotspots introduce
unwanted experimental error arising from the limitations of the apparatus. The limited
precision of the analogue joystick mechanism meant that a small amount of noise was
present in all movements. In essence this meant that the movement recorded by the
apparatus was potentially not as smooth as the participant’s input. The significance of
this issue would necessarily increase with smaller targets. Small hotspots also place
too much emphasis on fine motor control as opposed to action discovery.
Consequently, a different type of action, a ‘gesture’, was defined for the current
experiment which would increase the complexity of the required action without

increasing the precision of movements required to perform it.

Whilst the type of action defined in this experiment will here be described as a
gesture, it is important to explain what is meant by this term for the present purposes.

In cognitive psychology and zoology a distinction is made between egocentric and
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allocentric representations of items in space: items may be represented relative to the
animal’s own body position (egocentric) or relative to one another (allocentric). The
former type of representation is the kind we use when reaching and manipulating
objects and the latter is the kind of representation that allows us to navigate through
an environment from novel starting positions and would enable us to draw a birds-eye
view room plan (Galati et al. 2000; Wang & Spelke 2000). This issue is relevant to how
gestures are defined in the current experiment. Gestures are typically thought of as
highly practiced stereotypical responses that can be performed in a range of contexts.
In order to demonstrate such gesture learning in the joystick task, a participant would
need to learn not just a particular shape of movement, but that this shape can be
produced anywhere within the search space and still result in reinforcement. This is a
strong definition of a gesture and it is not how the term will be used in the current
experiment. A gesture in the current experiment simply refers to a particular shape of
joystick movement, always in the same position relative to the central starting point.
The required movement can only be expressed through the joystick in this task and, to
this extent, the required movement is always the same relative to the participant’s
body, irrespective of where their body is situated in space. From a purely spatial
perspective, the type of learning that the joystick task aims to investigate, therefore, is

egocentric rather than allocentric in nature.

The gesture was defined in terms of a movement through 3 hotspots. The hotspots
were randomly placed on an annulus within the search space, as defined in chapter 2,
with the additional rule that they could not overlap one another. The aim of the task
was to move the joystick once into each of the 3 hotspots in the correct order, as
illustrated in figure 4.1; once the joystick had moved into hotspots 1, 2 and 3 (in that

order), the trial would end and the next trial would commence immediately.
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Figure 4.1 Arrangement of hotspots within the search space. The centre of each hotspot is placed randomly on the
grey annulus such that the centre of the screen, the edge of the screen and other hotspots are never overlapped.
The white dotted line indicates a path that could be taken through the hotspots in order to bring an end to the trial.

Hotspots are drawn to scale.

An unavoidable consequence of varying the quantity of information provided to
participants is that this would in turn affect the amount of exploration required in
order to produce a successful movement. Whilst exploratory behaviour is informative,
it is, nonetheless, desirable to be able to remove this behaviour from analysis in order
to better focus on other aspects of performance. The primary reason for defining the
gesture in terms of a movement through 3 discrete areas of the search space was to
provide a way of splitting the trace into separate components at the methodological
level rather than doing so post hoc. Due to the way the gesture was defined, the trial
could be split into 2 main periods of movement (figure 4.2). The first period is an
‘exploration’ phase including all movements leading up to a successful entry into the
first of the 3 hotspots. The second period, the ‘gesture’ phase, is the period that
includes only the successful movement through the 3 hotspots. This distinction is
important because even though the joystick task employs a stable central starting
position, the successful movement as executed on a given trial will not always
originate from this central point, especially when a participant is required to actively
hunt for the correct movement. Thus, by defining a separate gesture phase it is
possible to isolate a portion of the movement trace that always has a stable starting
position irrespective of how much exploratory behaviour took place in a trial; this is
therefore the stable portion of the movement trace that is reinforced trial on trial.
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Exploration Gesture
phase phase
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Figure 4.2 The 2 main periods of movement within a trial. The exploration phase includes all movements leading up
to the successful entry into the first hotspot. The gesture phase includes only those movements following successful

entry into the first hotspot.

A related benefit of defining the gesture in this way was to provide a means of defining
portions of the movement trace that differed in terms of their proximity to the point of
reinforcement. In other words, the gesture phase shown in figure 4.2 can be split into
2 further portions of movement (figure 4.3). Phase 1 includes all movements from the
point of entry into the first hotspot up to the point of entry into the second hotspot.
Phase 2 includes all those movements from the point of entry into hotspot 2 up to the
point of entry into the third (and final) hotspot. Consequently, we can identify 2
portions of the movement on which reinforcement is contingent but that differ in

terms of their temporal and spatial proximity to the point of reinforcement.

Gesture Gesture
phase 1 phase 2

Figure 4.3 The gesture phase of the movement (shown in figure 4.2) can be split into 2 further periods of movement
that vary in terms of their proximity to the point of reinforcement. In this diagram, gesture phase 2 is both

temporally and spatially closer to the point of reinforcement (i.e. entry into hotspot 3).
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The final reason for defining a gesture using separate, discrete regions of the search
space was to reduce the constraints on the form that the final movement should take.
A brain process that relies on the reinforcement of recent motor output could only
differ from other brain processes if movements are allowed to vary from one trial to
the next. In other words, the range of possible movements that can result in
reinforcement must be large enough to ensure that trials differ not only in exploration
distance but also in gesture distance. If a narrow channel of movement had been
defined instead, then all participants would have been forced to move through this
channel, thus restricting the behavioural variance that could be generated during the
gesture phase and, consequently, reducing the opportunity for the characteristics of a
particular learning system, be it spatial or reinforcement learning, to express itself in

the data.

Hotspot size

The hotspot size chosen for this task was large relative to the size of the hotspots
employed in the earlier experiments, each hotspot occupying 8.2% of the search
space. The size of the hotspots relative to the search space is illustrated by all of the
above figures (e.g. figure 4.1). The size was determined through pilot testing and
chosen based on 3 main considerations. Firstly, the task could not be too difficult
because there was a need to ensure that participants of different abilities could
complete the requisite number of trials and demonstrate some improvement during
the limited learning phase, regardless of which condition they were performing.
Secondly, it was important that the emphasis should be on the extraction of a
particular shape of movement and not on an individual’s ability to demonstrate fine
motor control. And thirdly, the task was designed so that it was possible to complete it
spatially under blind conditions. It is conceivable that the use of extremely small
hotspots might force people, under blind conditions, to adopt the kind of trial and
error low-level learning that is the focus of this research; however, the issue here is
not whether such learning could possibly occur, but whether it plays an important role
in learning in the joystick because of the way the feedback (reinforcement) is

presented. If the task was so difficult that the participants couldn’t work out the
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locations of the hotspots spatially from their behavioural variance then there would be
no way of knowing whether this was indicative of a general tendency to perform the
task non-spatially or whether it was caused by the challenging task conditions. By
contrast, if the task is sufficiently easy that it can potentially be completed based on
spatial inference, then this provides a better indication as to which learning system
people are inclined to rely on and the contribution that the learning system of interest

is likely to make to action learning in general.

Phases and trials

The experiment was split into 2 phases: a learning phase featuring 3 different stimulus
conditions followed by a blind test phase which featured no stimuli irrespective of

what was experienced during the learning phase.

The number of instances of reinforcement (trials) during the learning phase was
restricted to 25. This was to ensure that all participants at the test phase had received
the same amount practice on a particular arrangement of hotspots. At the test phase,
it would have been possible to assign a threshold along with a requirement that a
minimum number of trials be completed; however, the methodological advantages of
using a threshold were not sufficient to outweigh the practical advantages of having a
consistent number of trials for all attempts. Whilst a threshold was important in
experiments 1 and 2, this was because the required action was defined in terms of the
rate at which reinforcement was received, so choosing a threshold was necessary in
order to be able to compare performance between conditions. When utilising
between-trial repetition, by contrast, performance can be considered separately for
each instance of reinforcement (e.g. distance travelled during a given trial) so there is
no necessity to wait for a threshold to be achieved before performance can be

measured.

The conditions

The independent variable was the amount of location specific information provided
during the learning phase of the experiment. This was manipulated by the use of 3
stimulus conditions (figure 4.4): 1, no visual information provided (blind); 2, the
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positions of the hotspots shown on screen (half); and 3, the positions of the hotspots
and the current location of the joystick relative to them all shown onscreen (full). In
the blind condition, participants would be forced to extract the relevant movements or
infer the hotspot locations from their exploration of the search space. In the half
condition, the relevant locations were provided directly to the participants, so all that
was required was to translate these positions into correct movements of the joystick
either by extracting this from behavioural variance or by more deliberate guidance of
the joystick. The full condition required nothing more than to move a dot representing
the current location of the joystick into the relevant hotspot positions, thus there was
no need to discover the locations or how to move the joystick into them and thus
behavioural variance was constrained by the participants themselves. The correct
order of the hotspots was not revealed in any of the 3 conditions. In the full and the
half conditions, the hotspots were all displayed in the same colour (red) and had no
identifying features so there was no way of determining the correct order of the

hotspots without exploring the search space and awaiting reinforcement.

No stimuli - ‘blind’ Location only - ‘half’ Location and cursor - “full’

Figure 4.4 Visual information available to participants during the learning phase of the experiment for the 3

different conditions (hotspots shown in red and drawn to scale, cursor shown in blue).

The importance of the full condition was to help determine the extent to which the
half condition forced participants to learn from their behavioural variance, if at all. The
full condition provides a non-intrusive manipulation of behavioural variance. The main
way in which the half and full conditions differ is in terms of the type of movements
they cause to occur. During the learning phase, the full condition makes it easier to
complete trials in a very direct, highly efficient manner, whereas the half condition

requires a certain amount of approximation of movements, consequently, the
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conditions should force participants to practice a different set of movements whilst
having the same access to information about the location of the hotspots. If
behavioural variance is not an important aspect in learning to complete the trials, then
performance in these conditions should not differ at test phase when the stimuli are
no longer available to guide performance. Specifically, the transition from the learning
phase to the blind test phase should have minimal effect on the half condition but
should negatively impact on performance in the full condition. The comparison
between these stimulus conditions also allows us to infer whether or not there was a
strong unintended negative impact during the transition from learning to test phase,
caused simply by adaptation to the unfamiliar conditions. If such an effect was
present, this would show up in decreased performance for both the full and the half

conditions.

The blind condition provides a situation in which the correct movement or an
understanding of the location of the hotspots must be extracted from the participant’s
own behavioural variance. Consequently it differs from the half condition in terms of
how much information must be inferred or reinforced by practicing different
movements through space. Performance in the test phase will give an indication as to
how learning is occurring in the blind condition. If the blind condition results in similar
performance at test phase to the half condition then this will be an indication that
learning relies less on what was practiced and more on the ability to infer the correct

movement and generate this movement in a spatially guided fashion.

Reinforcement

The reinforcing stimulus was the same as that used in experiments 3 and 4.

Instructions

As discussed in previous chapters, there are good reasons why we might wish to keep
participants naive as to what it is that they must learn during the task, the primary
reason being that there is simply more for the participant to discover. However, once
again, a decision was made to provide all participants with full task knowledge. The

issue in the current experiment is that the independent variable (visual information)
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also influences a participant’s understanding of the task requirements. This means that
if people starting in the blind condition were also naive regarding the task structure,
then the blind and the half conditions would differ not only in terms of knowledge
about the particular locations of hotspots but also in terms of the understanding of the
task requirements. Consequently, full task knowledge was provided prior to the
experiment so as to reduce the differences between the blind and the half conditions.
Prior to starting the experiment, all participants received three practice trials with full
visuals (cursor and hotspot positions) as a visual explanation of what would be
involved in the task. This happened just once for each participant and the arrangement
of the hotspots in these three practice trials was always different to any they would
subsequently encounter in the experiment. In other words the blind condition differed
in that it required the specific arrangement of hotspot locations to be learned through
exploration of the search space. Once again, the correct order of the hotspots was not
revealed to the participants, irrespective of condition, so even in the full visuals

condition, this needed to be learned from exploration of the search space.

Procedure

The participants were told that the experiment was designed to test their ability to
learn gestures. The experimental program was started and they were asked to
complete the 3 practice trials, which featured full visual information: hotspots and the
relative position of the joystick were displayed onscreen. It was explained that the aim
of the task was to move the joystick into the 3 hotspots in the correct order and that
doing so would result in the end of the trial. It was further explained that they would
have to work out the correct order by exploring the search space. Once the 3 practice
trials were completed, the participants were told that the rest of the experiment
would involve exactly the same task but that the visual information provided and the
positions of the hotspots would change depending on the condition. They were further
informed that it would be made clear to them that the hotspot positions had been
changed. It was explained that for each new set of hotspot positions, they would have
to complete 50 trials, the last 25 of which would always be blind. Following these
instructions, the experimental trials were started. The participants were told at the

start of each new condition that the arrangement of hotspots had been changed; they
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were also told during a 2 minute interval between all learning and test phases that the
locations of the hotspots would remain the same once the trials recommenced. No
onscreen instructions were provided other than text to indicate that the current trial
had been successfully completed: “You produced the correct movement!”. A summary
of the protocol is presented in figure 4.5; it should be noted that the order of blocks 1,
2 and 3 was counterbalanced to ensure that participants experienced these blocks in

different orders.

PRACTICE 3 practice trials

Position of hotspots changed

25 trials full visuals

BLOCK 1 2 minute interval

25 trials blind

Position of hotspots changed

25 trials half visuals

BLOCK 2 2 minute interval

25 trials blind

Position of hotspots changed

25 trials blind

BLOCK 3 2 minute interval

25 trials blind

Figure 4.5 Summary of the experimental procedure. Blocks 1, 2 and 3 were counterbalanced so that different
participants experienced the blocks in different orders. Each block comprised 25 learning trials followed by a 2-

minute break and then another 25 test trials.

Design

All participants completed 3 practice trials featuring full information regarding the
hotspot locations and current position of the joystick onscreen. For the experimental
trials, each learning phase consisted of 25 trials, during which the positions of the 3

105



hotspots remained the same. Following the learning phase there was a 2 minute break
and the test phase commenced, also comprising 25 trials with the hotspot positions
remaining in the same place as they had been for the immediately preceding learning
phase. The experiment had a repeated measures design, with all participants
completing 3 learning and 3 test phases and therefore experiencing each of the 3
conditions. The position of the hotspots was changed at the start of each new learning

phase. The order of the conditions was counterbalanced.

Results

Irrelevant distance

The first analysis was to summarise the basic performance measure — the irrelevant
distance travelled during a trial — for each of the conditions at both learning and test
phase. A two-way (2 x 3) repeated-measures ANOVA (phase by stimuli) of the log-
transformed data revealed that there was a significant main effect of the phase of the
experiment (F(1, 25) = 4.47, p = .045) and of stimuli (F(2, 50) = 42.38, p < .001). There
was also a significant interaction between phase and stimuli (F(2, 50 = 31.4, p < .001).
Figure 4.6 shows that the stimulus manipulation greatly affected the distance
travelled. Bonferroni corrected post hoc t-tests confirmed this, revealing that, during
the learning phase, both the blind (t(25) = 3.7, p < .05) and the full (t(25) = 7.84, p <
.05) stimuli conditions differed significantly from the half condition, indicating that
under these conditions, differing amounts of behavioural variance were being
produced. The graph also shows that the means for the full and the half conditions
converged between the learning and the test phases of the experiment. The half
condition showed no change between the phases and did not differ from the full
condition at test phase, whilst performance in the full condition significantly declined
(t(25) = 6.72, p < .05) across the phases. This suggests that the shared feature of these
conditions — knowledge of the hotspot locations — was the most important
determinant of performance under blind conditions, notwithstanding the relatively
large difference in the amount of behavioural variance produced during the learning
phase. One possible explanation for why the performance in the full condition declined
from the learning to the test phase is that this condition required participants to get

used to unfamiliar (blind) stimuli, something that was clearly not the case in the blind
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condition where conditions at test phase were identical to those during the learning
phase. However, the half condition also resulted in a large change in the stimuli
provided and they did not show a similar decline in performance, suggesting that the
performance drop in the full condition was not due to the unfamiliar stimuli at test
phase. Figure 4.6 also shows a convergence between the blind and half conditions
from the learning phase to the test phase and an analysis confirmed that the distance
travelled in the blind condition significantly decreased (t(25) = 3.65, p < .05) across
phases. Somewhat surprisingly, however, the blind-half comparison at test phase only
approached significance (t(25) = 2.23, p > .05), indicating just how high the level of
performance was in the blind condition, in spite of the fact that the specific hotspot

locations were never presented at learning or test phase.
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Figure 4.6 Mean irrelevant distance travelled (and standard error) for the 3 stimulus levels at both learning and test

phases. Values are back-transformed from the log transformation.

Consistent inefficiencies

Whilst there was no attempt in the present study to investigate superstitious learning
in the strict Skinnerian sense (that is to say, by providing non-contingent outcomes), it
is possible to investigate this kind of learning in the weaker sense of participants
learning consistent but inefficient movements. In these terms, all movement traces,
apart from the optimum trace, lie on a ‘superstition spectrum’, containing a lesser or
greater degree of unnecessary movement. In order to investigate this between
conditions, an analysis was undertaken into performance in terms of the consistent

behaviour achieved during the test phase of the experiment.
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Over the course of the 25 trials during the test phase, participants produce a range of
movements and often make missed attempts at the movement they intended, perhaps
because of the blind conditions they are performing under. Consequently, the record
of all movement traces creates a noisy representation of the core movement that the
participant was settling on. In order to identify occasions where the sequence of
movements remained stable over multiple trials, similar to that illustrated in figure 4.7,
a consistency criterion was applied to the data. By identifying runs of trials during
which the participant was able to maintain a consistent movement, it is possible to
pick out traces that better represent the movement they had learnt or, as the case
may be, the accuracy of their inference of the hotspot locations. The important thing
about these traces is that they are occasions in which the participants have ceased to
explore the search space and are instead performing a movement based on what they
have learnt over previous trials — it is assumed that if the participants were still

exploring the search space then they wouldn’t be able to achieve this consistency.

Figure 4.7 Example of the kind of attempts that the consistency criterion was designed to capture. The 3 attempts

depicted in the diagram differ from one another but feature a consistent shape of movement.

Being able to identify situations in which performance is less representative of
exploratory behaviour is important when making comparisons between the blind and

half conditions. The blind condition necessarily requires more in the way of exploration
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than the half condition because information about the particular arrangement of
hotspots can only come from the behavioural variance that is produced. Consequently,
for any given trial, it is not clear how much of the performance in the blind condition is
due, on the one hand, to their, as yet, incomplete exploration of the search space and,
on the other, to genuine limitations in the efficiency that can be achieved through the
learning processes in operation. By identifying consistent trials, participants in both
conditions can be compared in terms of an action they have settled on and the
influence of exploratory behaviour is therefore reduced. If participants under both
conditions are learning the movement spatially by simply moving the joystick to
inferred (blind condition) or recalled (half condition) hotspot locations then the length
of the consistent movement traces should not depend on how they learnt those
hotspot positions. If, on the other hand, the blind condition had resulted in the
participants learning a particular movement rather than inferring the positions of the
hotspots, then we would expect to see less efficient — more ‘superstitious’ —

movement traces.

Trials for all participants during the test phase were assessed for consistency, with
‘consistency’ being defined in terms of the difference in the distance travelled
between 2 given trials. For each trial (excluding trials 1 and 2), this difference was
calculated by comparing the current trial (T°) with each of the 2 preceding trials (T
and T?), and also by comparing those preceding trials with one another. The sum of
these differences was then calculated in order to generate a total difference score. A
threshold was set at 0.5 times the mean trace length for the 3 trials; if the total
difference score exceeded this threshold, then the trials were not classed as being
consistent. A further constraint was applied which dictated that in order to be treated
as consistent, trials could not be in excess of 4 times the optimal distance; this was to
exclude occasions where consistency was achieved by virtue of extremely long trace
lengths. For some individuals, the threshold was reached more than once within a
testing session; in such situations, only the final instance was submitted to analysis.
The data for 5 participants was removed from analysis as these people failed to reach
the threshold in at least one of the 3 conditions. Figures 4.8, 4.9 and 4.10 show the

movement traces for the consistent trials overlaid on top of one another.
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Figure 4.8 Combined movement traces for the 3 consistent trials at test phase in the blind condition.
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Figure 4.9 Combined movement traces for the 3 consistent trials at test phase in the half condition.
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Figure 4.10 Combined movement traces for the 3 consistent trials at test phase in the full condition.

A one-way repeated-measures ANOVA was conducted to investigate the effect of
stimulus condition on the mean irrelevant distance for the consistent trials during the
test phase. The ANOVA of the log-transformed data revealed that there was a
significant effect of stimulus condition on the mean irrelevant distance travelled during
the consistent trials, F(2, 40) = 5.5, p = .008. As figure 4.11 illustrates, there was a
substantial difference between the blind and the full conditions and this was
confirmed by a Bonferroni corrected post hoc t-test (t(20) = 3.53, p < .05). However,
the more relevant comparison between the blind and half conditions did not reach
significance and would not have done so even without the conservative post hoc
correction (t(20) = 1.86, p > .05). This result indicates that the blind condition did not
force participants to settle on solutions that were significantly less optimal than the
half condition and consequently gives no indication that this condition caused a

different type of learning to occur to the half condition.
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Figure 4.11 Mean irrelevant distance (and standard error) for the consistent trials at test phase. Values are back-

transformed from the log-transformation.

Gesture phase of movement trace

The analyses described so far show that, at test phase, the blind and half conditions
result in similar performance. However, the mean values appear to suggest that the
blind group were generally less efficient at producing the required movement. One
possibility is that performance was more similar than these data imply and that the
results described so far largely reflect differences in the persistent need to explore the
search space for the blind group, even after the 25 learning trials. In order to
investigate performance for all trials with less emphasis on exploratory behaviour, an
analysis was performed on the irrelevant distance travelled during the gesture phase
of the movement trace (as defined in the methods section, also see figure 4.2). A two-
way (2x3) repeated measures ANOVA (experiment phase by stimulus condition) was
carried out on the log-transformed data. Mauchly's test indicated that the assumption
of sphericity had been violated for the main effect of stimulus (%2 (2) = 7.55, p < .05;
therefore degrees of freedom were corrected using Greenhouse-Geisser estimates of
sphericity (€ = 0.79). The analysis revealed that there was no main effect of phase (F(1,
25) = 3.52, p > .05), but that the main effect of stimuli (F(1.58, 39.37) = 23.2, p < .001)

and the phase by stimuli interaction (F(2, 50) = 27.87, p < .001) were significant.
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Bonferroni corrected post hoc comparisons revealed that the irrelevant gesture length
for the blind and the half conditions differed significantly during the learning phase
(t(25) = 2.39, p < .05), but not at test phase t(25) = 1.35, p > .05. Figure 4.12 shows the
general convergence in gesture length between the learning and test phase. The
greater similarity in the results at test phase for this metric appears to support the idea
that much of the apparent difference in the blind condition for previous analyses was
probably due to differences in exploratory behaviour as opposed to the action that

had been acquired.
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Figure 4.12 Mean irrelevant distance (and standard error) for the gesture phase of the movement trace only. Values

are back-transformed from the log-transformation.

Early versus late phases of the gesture period

As indicated in the introduction, a possible symptom of learning through the
reinforcement of motor output is that the variability in movements might differ
depending on their proximity relative to the point of reinforcement. If the gesture is
learnt based on the reinforcement of recent motor output, then it is possible that
movements closest to the point of reinforcement will be less variable than those
situated further from the point of reinforcement. If the gesture is inferred spatially, by
contrast, there is no reason to expect one portion of the movement to vary more or
less than any other. An important aspect of this prediction is that it doesn’t depend on

13



absolute distances travelled and, consequently, the results are less readily explained in

terms of, for example, the differences in task difficulty between the conditions.

The gesture portion of the movement trace for the test phase of the experiment was
split into 2 further portions (phase 1 being furthest from the point of reinforcement
and phase 2 being closest) as detailed in the methods section (see also figure 4.3).
Following this, the standard deviation of the distances for both portions was calculated
for each participant in both the blind and the half conditions (i.e. the standard
deviation encompassed all 25 distances — one for each trial — in the test phase for each
participant). A two-way (2 x 2) repeated measures ANOVA (gesture phase by stimuli)
was performed on the log-transformed data. The analysis revealed no main effects of
phase (F(1, 25) = 2.2, p > .05) or of stimuli (F(1, 25) = 3.68, p > .05) and no phase-
stimuli interaction (F(1, 25) = .000, p > .05). Figure 4.13 shows that neither condition
differed across the phases nor did the conditions differ from one another. In other
words, contrary to the prediction, the variability in the length of the movement trace

did not depend on its proximity to the point of reinforcement for either condition.

400 1
BBlind

350 1 BHalf
Mean deviation in 30 s

distance (search
space units)

250 1

200 1

150

Phase 1 Phase 2

Phase of the gesture portion
of the movement trace

Figure 4.13 Mean trace length deviation (and standard error) for the two phases of the gesture portion of the
movement trace. Phase 1 is the portion of the trace furthest from the point of reinforcement and phase 2 is the

portion that is closest. Values are back-transformed from the log-transformation.

Whilst distance provides a good overall estimate of performance, it takes no account

of the relative position in space of the portion of movement trace under investigation.
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It is always possible that small differences in distance represent relatively substantial
differences in the shape of movement. Consequently, the deviations in distance shown
in figure 4.13 might not fairly represent the variations in the gesture that the
participants were attempting to perform. In order to take into account something of
the shape of the movement, the point of entry into the first and the final hotspots was
extracted from the data and the deviation in the point of entry was then calculated.
The prediction is the same as for the 2 portions of the gesture period: the deviation for
the hotspot closest to the point of reinforcement will be lower than that for the
hotspot further away. There is also the further possibility that the overall variation in
the point of entry for the blind condition might be smaller than that for the half
condition irrespective of the proximity to the point of reinforcement. This is because,
gestures learnt as a set of movements that are stable relative to the hotspots cannot
vary greatly because each point of entry is dependent on the last. By contrast, if the
position of the hotspots is spatially inferred, the point of entry into a given hotspot is
less important because the position of the next hotspot will not be determined based

on previous movements.

In order to calculate the deviation scores, an arbitrarily determined stable point was
first set on the perimeter of each hotspot. Following this, a deviation distance was
calculated by determining the distance of the point of entry from the stable point
around the perimeter of the hotspot. The circumference of each hotspot was 1037
screen units so the maximum deviation distance was half this, at 518.5 units. The
standard deviation of all deviation distances was then calculated for each participant in
both the blind and the half conditions at test phase (i.e., once again, the standard
deviation described the variation of all 25 deviation distances for each participant in
both conditions). These variance scores for the point of entry were then submitted to

analysis.

A two-way (2 x 2) repeated measure ANOVA (hotspot number by stimuli) was
conducted to investigate the effect of the position of the hotspot relative to the point
of reinforcement and the effect of the stimulus condition on the deviation in point of
entry. The analysis revealed that there was no main effect of hotspot (F(1, 25) = 0.04, p

> .05) or of stimuli (F(1, 25) = 0.67, p > .05) and no hotspot-stimuli interaction (F(1, 25)
15



= 0.96, p > .05). Figure 4.14 shows that the consistency of the point of entry into the
hotspots was not affected by either the proximity of that hotspot to the point of

reinforcement or the stimulus conditions experienced during the learning phase.
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Figure 4.14 Mean point of entry deviation (and standard error) for the first and the final hotspot in the gesture. The

maximum possible deviation on a given trial is 518.5 units.

Procrustes analysis

In order to consider the shape of movement on its own, a Generalised Procrustes
Analysis (GPA; Gower, 1975) was conducted on the data for the blind condition. With
this technique it is possible to minimise the influence of the size, orientation and the
position in space of the movement trace because the analysis first scales, rotates and
then transforms the coordinates of each configuration such that they are
superimposed before they are compared. All data were first resampled to ensure that
each movement trace to be analysed consisted of 1000 landmarks (coordinates). A
mean movement configuration was generated from Procrustes adjusted movement
traces for all trials of each participant’s data. Following this, each of the adjusted
traces was compared to the mean trace for that participant with the root mean square
residual providing a score for the variability of the trace from the mean trace (Miall,

Leschziner, Miall & Stein, 1997).

A paired-sample t-test was used to compare the mean variability for all participants
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during the learning phase with the mean variability at test phase. This revealed that
there was a significant difference in the variability of the movement traces produced in
the learning and test phases, t(25) = 3.55, p = .002, two-tailed. Figure 4.15 shows that
there was a substantial reduction in variability from the learning to the test phase
indicating that movement conformed more to an underlying shape of movement with

practice at the task.
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Figure 4.15 Mean GPA determined variability (and standard error) at learning and test phase for the blind condition.

Discussion

The current task involved the learning of patterns of movement in human participants
under different stimulus conditions. Using this paradigm it was possible to find and
document evidence of pattern learning and show that the ability to generate these
movements with no visual feedback was similar irrespective of the visual conditions

under which the pattern was originally learned.

As indicated in the introduction, the experiment was designed to look at 4 main
guestions, all related to the general issue of whether action acquisition is influenced by
the reinforcement of recent motor output when an alternative means of acquisition is
available in the former of high-level cognitive/spatial guidance of movements.
Comparisons between the full and the half conditions revealed that when the shape of

the gesture is known, the type of practice has no effect on the ability of people to

nr



perform that gesture when those locations are subsequently hidden. Both conditions
provided full visual information about the positions of the hotspots and both required
participants to discover the correct order by exploring the search space. However, the
conditions differed markedly in the amount of behavioural variance that was produced
when navigating between these hotspots. The full condition allowed participants to
move between hotspots in a near optimal fashion during the learning phase, whereas
the half condition resulted in a greater quantity of irrelevant movements. And yet,
despite this, performance at test phase did not differ between the 2 conditions,

indicating that the different movements practiced had little impact on learning.

The comparisons between the half and blind conditions revealed that when
information is provided about the general form of the gesture, exploratory behaviour
results in no differences in the ability of people to perform that gesture under blind
conditions. Both conditions provided full information about the general form that the
gesture would take. However, once again, the conditions differed in terms of the
amount of behavioural variance that was produced in navigating between these
hotspots. The half condition provided information about the specific locations of the
hotspots so no exploratory behaviour was required to determine their locations during
the learning phase, whereas the blind condition required participants to learn about
the gesture by exploring the search space resulting in a greater quantity of irrelevant
movements during learning. Once again, performance at test phase did not reflect the

differences in the movements practiced during the learning phase.

The general finding that movements produced during the learning phase resulted in no
differences in performance during the blind test phase was reflected in further, more
specific analyses. The blind and the half groups did not differ in terms of the variance
in movements relative to the point of reinforcement. Nor did these conditions differ in
terms of the efficiency of the consistent movements acquired. In other words, these
results also provided no reason to believe that learning was influenced to any large

degree by the movements practiced.

It was, however, possible to learn whether or not there was a basic improvement in

the consistency of movement from the learning to the test phase. A Procrustes
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analysis of the data for the blind condition indicated that there was a significant
decrease in the variability of movement traces around an underlying mean movement
trace derived from all traces. In other words, the movement traces were more similar
in shape to one another during the test phase than the learning phase. This confirms a
valuable feature of the paradigm to measure to ability of people to learn and refine
self-generated patterns of movement without the ability to visually monitor

movements relative to a target.

The Procrustes analysis also proved to be a potentially better way of detecting
improvements across phases than the other performance metric described in the
results section. Whilst the distance during the gesture period for the blind condition
was found to decrease (indicating better performance) across phases of the
experiment (t(25) = 2.81, p = .01), the same comparison based on the Procrustes
derived metric of variability proved marginally more sensitive to the change (t(25) =
3.55, p =.002). In general the Procrustes analysis probably offers a better description
of performance because performance is defined in terms of consistency rather than
how close the distance travelled is to the optimum distance. This is important because
the optimum route between hotspots is unlikely to align well with the natural

dynamics of movements that follow a more rounded path.

The theory of action acquisition proposed by Redgrave and Gurney (2006) and
Redgrave et al. (2008) differs from some traditional accounts of skill and action
acquisition. Their proposal is that circuitry in the midbrain and basal ganglia are
actively involved in the early stages of action acquisition from the detection of agency
to the reselection of temporally contiguous motor output and the filtering of task
relevant features from behavioural variance. This view is in line with a large amount of
evidence that the basal ganglia are contribute heavily during the early stages of action
acquisition (Brasted & Wise, 2004; Costa, 2007; Costa, Cohen, Nicolelis & Carolina,
2004; Ungerleider, 2002). The perspective differs from some existing accounts in that
it is generally assumed that these areas of the brain, and indiscriminate processes of
reinforcement in general, are associated with more gradual and habitual learning
(Bayley et al., 2005; Buffalo, Stefanacci, Squire & Zola, 1998; Squire, 2004). In

traditional accounts of skill acquisition this amounts to the gradual automatisation
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phase, characteristic of the final stages of skill learning in humans (Anderson, 1982;

Fitts & Posner, 1967; Newell & Rosenbloom, 1981).

In the context of the current experiment these different perspectives on action
acquisition call for different interpretations of the findings. The traditional account
describes the learning process as going through a series of stages that start with the
initially rapid improvement in performance typical of a declarative phase of learning
(Anderson, 1982). From this point of view, the learning phase in the current
experiment (i.e. the first 25 trials) would be part of the rapid declarative phase of
learning and there would be no reason to expect much contribution from the
reinforcement of motor output; such low-level effects would be expected further
down the line, once the action had been repeated sufficiently often that it starts to
become automatic. Consequently, the finding that, for example, the ‘full’ condition in
the current experiment showed a decline in performance between the learning and
test phase would support the idea that performance was being guided at a declarative
level. According to Redgrave and Gurney’s account, by contrast, we would expect the
learning mechanism to influence mostly the early phase of action acquisition, when
the link between the movements, context and reinforcing stimulus remains novel.
According to this account, it is somewhat surprising that the highly efficient
movements produced during the learning phase in the full condition did not transfer to

the test phase.

In fact, Redgrave and Gurney (2006) allude to a transition between learning mediated
by the phasic activity of dopamine neurons, that results in the discovery of novel
actions, and learning that arises from the repetition of the newly discovered action,
through “traditional reinforcement learning mechanisms” (p.972). It is possible,
therefore, that there is a major distinction between these two types of reinforcement
learning, with the former causing a tendency simply to reselect and repeat important
recent motor output and the latter playing more of a role in the reinforcement and
storage of that motor output. Such a distinction would have important implications for
how we view the joystick task in general and the results of the experiments in chapters

2 and 3.
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The findings from the current experiment suggest that we cannot assume that
reinforcement learning is responsible for the effects uncovered in the previous
experiments based solely on the fact that feedback was presented in a way that is in
accordance with this type of learning. Indeed, there were indications from the
experiment featuring between-trial repetition of reinforcement (experiment 4) that
learning may have been under the influence of higher-level declarative systems. The
effect of delay, therefore, could have been due to the declarative system being fooled
by the different positions in space that resulted from delayed reinforcement as
opposed to a low level learning mechanism stamping in non-contingent, yet
contiguous, motor output. The effect of delay in experiment 4 was similar to that
found in other investigations of reinforcement learning (e.g. Shanks et al., 1989;
Shanks & Dickinson, 1991), though very different to the effect found in experiments 1
and 2 and this difference was interpreted as possibly being caused by the rate at which
reinforcement was delivered. However, an explanation in terms of different learning
systems might make more sense. Buehner and May (2004) were able to demonstrate,
for example, that the results concerning delay reported by Shanks et al. (1989) could
be abolished by a small change in the task instructions. This finding therefore implies
that the results concerning delay in the Shanks study may have little to do with the
operation of simple associative learning mechanisms and much more to do with

participants being fooled at a declarative level.

The sensitivity to delay found in experiments 1 and 2 is not so readily explained in
terms of learning at the declarative level. As discussed in chapter 2, the sensitivity was
in line with what we would expect based on Redgrave and Gurney’s (2006) theory of
the function of the phasic activity of dopamine neurons. This interpretation is further
supported by the finding that the basal ganglia are much faster to respond to
reinforcement contingencies than the prefrontal cortex (Pasupathy & Miller, 2005) and
furthermore that prefrontal systems and model based learning in general require more
time to operate due to a greater level of computational complexity (Bogacz, McClure,
Li, Cohen & Montague, 2007; Daw, Niv & Dayan, 2005). It is therefore possible that
participants in experiments 1 and 2 were forced to rely on lower level learning
mechanisms because the time between instances of reinforcement and adjustments of

hand position didn’t afford them the opportunity to process their responses using
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more computationally sophisticated brain processes. By contrast, experiment 4
allowed participants a period of approximately 5 s between one attempt and the next
and thus gave them time to make the subsequent response based on a deeper level of
information processing. The emphasis that the task in experiments 1 and 2 placed on
the reselection and repetition of movements rather than on the more gradual
refinement of behavioural variance, might therefore make it a more effective means of

investigating the mechanism of action acquisition described by Redgrave and Gurney.

Results are in line with previous evidence showing that humans

find it hard to use their nondeclarative systems

The opportunity for participants to demonstrate declarative learning was deliberately
left open in the experiment 5 in order to test the general tendency of people to
reinforce the movements they make rather than simply infer correct movements.
However, it is possible that even if the crucial aspects of the task had been made
opaque to higher-level processes, the task may have uncovered little in the way of

nondeclarative learning (i.e. just an overall decline in learning).

The best evidence on this issue, either way, is to be found in situations where people
are forced to rely on nondeclarative systems as is sometimes the case with instances
of brain damage and, here, the evidence is mixed. Buffalo et al. (1998), for instance,
have found that medial temporal lobe lesions (lesions designed to impair declarative
memory) have no effect on the ability of macaques to learn a concurrent
discrimination task: the monkeys learn this task gradually and apparently habitually
whether they are lesioned or not. Similar brain damage in humans has a devastating
impact on learning, but some capacity for learning is retained and, importantly, the
rate of acquisition is comparable to the gradual habitual acquisition that is the norm in
monkeys (Bayley et al., 2005). Furthermore the brain damaged participants are able to
demonstrate none of the flexibility that one would expect had they learned the task
declaratively, indicating that they had instead learnt the task habitually and in a way
very similar to the monkeys. In other words, Bayley et al. (2005) were able find
evidence of nondeclarative memory in humans and a similar propensity to learn

nondeclaratively as nonhuman animals.
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A somewhat different pattern of results is found in blindsight research. Following
damage to the primary visual cortex, both humans and monkeys can be prompted to
use their preserved visual abilities in laboratory tests, and the performance of both
improves over time. However, despite the fact that both humans and monkeys display
evidence of unconscious perception, monkeys appear better able to make use of their
preserved abilities outside of heavily cued testing sessions, where responses are not
prompted and behaviour is more naturalistic (Allen-Hermanson, 2010; Humphrey,
1995; Humphrey, 2000; Stoerig & Cowey, 1997). In other words, when it comes to
having the confidence to rely on nondeclarative processes to navigate and respond to
the environment, monkeys, in spite of their very similar visual systems, are apparently
better able to rely on nondeclarative processing. Though, it is clearly true that such
differences are marginal and only likely to appear under special circumstances. Both
humans and nonhuman animals are adept at utilising nondeclarative learning and

control across all areas of control.

Not only do humans have a highly developed ability to process information
declaratively and, arguably, a greater tendency to rely on this type of information
processing, but the range of behaviour that is monitored at the declarative level is
surprising large. The Chevreul Pendulum lllusion (Easton and Shor, 1975), for example,
is a situation where human participants are fooled by an apparent inability to monitor
movements consciously. The illusion is created by asking a participant to use their
hand to suspend an object, such as a wedding ring, on the end of a piece of thread.
When participants are then asked to focus on the object, the object will often begin to
oscillate despite the participant having no sensation that they are causing the
movements. The muscle movements powering the pendulum are apparently so small
that they are simply not registered and thus the participant is left with the sensation
that the pendulum is powered through some external means. What is surprising about
this illusion is that it suggests that the judgements of causality necessary to ascribe
agency to oneself are heavily reliant on conscious awareness and, to some extent,
external monitoring of muscle movements. Split brain animals and patients also
demonstrate how important the external monitoring of behaviour can be in the form

of cross-cueing integration of information between the hemispheres (Jakobson,
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Servos, Goodale & Lassonde, 1994; Levy, Trevarthen & Sperry, 1972; Savaki, Kennedy,
Sokoloff & Mishkin, 1993). Put simply, one side of the brain finds out what the other
side is doing or thinking by witnessing the body movements it produces or by listening
to the verbalisation of behaviour. This process of monitoring is so efficient that in spite
of the severing of the corpus callosum, it is possible for humans and monkeys to
behave in a way that, outside of the laboratory, is almost indistinguishable from
normal behaviour. In other words, there are signs that the declarative monitoring and
guidance of behaviour is more than just a computationally expensive veneer
overlaying a largely nondeclarative and computationally cheap set of learning and
control processes. Rather, we might be incorrigibly reliant on declarative level
processing, in spite of our limited attentional resources even for relatively simple

guidance of motor behaviour.

The declarative threshold

Pursuing the issue of reselection and repetition of responses in isolation to
reinforcement is one possible future avenue for research, especially as regards
Redgrave and Gurney’s (2006) theory. However, the nondeclarative acquisition of
actions through the reinforcement of motor output is, nonetheless, still an important
issue. If action acquisition is dependent on the neural learning mechanism detailed by
Redgrave and Gurney (2006), then we must assume that the type of learning displayed
by the animals in Thorndike’s (1911) original studies was largely a product of this
mechanism. Indeed, the data and descriptions of behaviour provided by Thorndike are
in line with what one would expect from an indiscriminate learning mechanism with no
additional declarative guidance. On the first trial inside a puzzle box, a cat’s
performance of the required action is an incidental consequence of the general escape
behaviour it produces on being place in the enclosure. In other words, it performs the
behaviour by accident. But, unlike the participants in the current study, so too does it
complete the second trial by accident: perhaps slower, perhaps quicker, but the cat
remains apparently clueless as to what needs to be done. The process continues and
the trend is towards more efficient performance of the necessary action over
subsequent trials and yet the cat remains in the dark as to how it is achieving the

desired outcome. Thorndike persuades us of this by observing that trained cats
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displayed irrelevant behaviour such as trying to perform the required action even
when the door to the puzzle box was open or performing the action when the
operandum had been removed. Attempts to teach the cats or allowing them to see
other animals completing the action had no effect on performance. Furthermore, in
most of the puzzle boxes, learning did not shift abruptly from poor performance to
efficient performance; rather there was a gradual trend towards an increase in
efficiency. As Thorndike notes, this was never a smooth curve and there was no
guarantee that a given trial would be completed more quickly than the trial that
preceded it. In other words, the cats displayed behaviour with none of the properties
of insightful learning (Bayern et al., 2009). In a sense then, it was as if the cats were
escaping from the puzzle box by accident on the first attempt and escaping by accident
on the final attempt, the only thing that had changed was the speed with which the

accident was performed.

The question Thorndike’s (1911) study raises for the future of research into action
acquisition in humans is whether there might be any conditions under which people
acquire actions in a similar way to Thorndike’s nonhuman animal subjects. Dekeyser
(2007) raises the interesting concept of a declarative threshold that must be crossed
during the process of acquiring a new skill. Most skills, Dekeyser observes, are learnt
with a distinctive rate of acquisition, described by a power law learning curve: initially
performance improves rapidly, but the rate of improvement then declines and follows
a shallow slope of improvement for all subsequent practice. Dekeyser notes that the
two distinct portions of the learning curve, as defined by their different slopes, are
generally thought to represent the different processes that are contributing to learning
at different points during skill acquisition. Early on, the skill is approached
declaratively, with the learner developing a structural understanding of the task
requirements. Once this phase is over, the learner has, in Dekeyser’s words, crossed a
declarative threshold and learning continues through a ‘automatisation’ phase during
which the rate of improvement is lower and the contribution of declarative processes

is diminished.

Dekeyser’s use of the concept of a declarative threshold is potentially useful for

identifying situations in which learning occurs nondeclaratively. However, his use of
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the term is not how we would normally understand a threshold to work: in Dekeyser’s
sense, learning ceases to be declarative when the threshold is exceeded. If we instead
consider this concept from the opposite point of view, it becomes much more useful to
the present purposes. Exceeding the declarative threshold in the context of the current
research might be thought of as any instance in which an aspect of learning becomes
available to awareness and therefore to the powerful higher level cognitive processing
abilities of the human participant. The question is: can we identify, or contrive to
produce, any instances of action acquisition that do not exceed this revised definition
of the declarative threshold? Doing so would provide a potential means of

investigating the low level learning processes central to the current research.

The role that a tutor can play in helping people to learn skills such as juggling, gives us
a clue as to how far declarative learning processes can take us in learning to perform
such actions. The aspects that a tutor cannot convey — the components of an action
that only come from practice — are, by contrast, good candidates for nondeclarative
learning. Juggling is an excellent example of an action with the frustrating property
that when one follows the guidance, it still seems like there is an instruction missing.
The basic combination of actions required is simple and yet, in spite of the apparent
simplicity of the required sequence of movements, there is a component of the action
that one cannot execute through an understanding of the task structure alone. Some
aspects of such skills are presumably, too fast, too fine or simply too far outside of our
frame of reference to be perceived and/or executed declaratively. Instead, one must
simply practice the skill and generate the behavioural variance from which the
important aspects of that variance can be gradually extracted. This frustrating
component of skill learning is popularly referred to as the ‘knack’ of the skill and such
knacks might provide a way of investigating the contribution of low-level,

nondeclarative learning mechanisms to the process of action acquisition.
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Chapter 5: summary and going forward

There is currently no methodological standard for the investigation of action
acquisition in humans in the way as there is, for example, for the investigation of
reward learning in nonhuman animals. For many reasons, this situation is unlikely to
change any time soon. The scope of the subject of action acquisition is extremely
broad, encompassing multiple learning processes and types of feedback. The current
work has described the development of a novel behavioural paradigm for the
investigation of action acquisition in humans. From the outset, the aim has been to
constrain this broad research question by focusing the theoretical emphasis on a low-
level learning mechanism detailed by Redgrave and Gurney (2006) and Redgrave et al.
(2008). However, even thus constrained, the development was far from

straightforward.

The prospects for the joystick task as a means of investigating action acquisition are
mixed. It provides many methodological advantages over button-press reinforcement
learning paradigms; however, it suffers, as do so many other methodological
techniques, in that it is not straightforward to separate the effects of declarative level
processing from low-level reinforcement learning mechanisms. What is perhaps most
important is that it proved extremely difficult to demonstrate the specific influence of
behavioural variance on learning — a key element of the theory of action acquisition

under investigation.

However, whilst the reinforcement of behavioural variance remains a difficult
phenomenon to investigate with the joystick task, as discussed in chapter 4, it seems
likely that this means of measuring the influence of Redgrave and Gurney’s action
acquisition mechanism may not ultimately prove to be the most efficient approach. By
focussing our intention instead on the repetition and reselection as opposed to the
reinforcement of motor output, we may be able to gain more insight into how such a
mechanism might contribute to the earliest stages of action acquisition. In this regard,
the version of the task described in chapter 2 is likely to provide a useful starting point

from which to approach future research.
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Going forward, there are countless areas of research open to investigation. Here, two
areas of potential inquiry are identified. The first concerns another test of Redgrave
and Gurney’s (2006) theory in a patient population and potentially utilising the joystick
task paradigm. The second concerns behavioural variance and would likely require an

alternative methodological approach.

Parkinson’s disease

As already discussed, Redgrave and Gurney’s (2006) theory of action acquisition
concerns the activity of neurons in the ventral midbrain, including the substantia nigra.
Parkinson’s disease is characterised by a loss of cells in the substantia nigra (Pavese &
Brooks, 2009), which is a major site of dopamine neuron cell bodies (Schultz, 1998). An
idea put forward by Redgrave and Gurney within this author’s research group, is that
this implies that people suffering from Parkinson’s disease should be less able to learn
associations between novel stimuli and their own motor output. Consequently, they
should find it particularly difficult to add new actions to their behavioural repertoire
(Redgrave et al., 2008; Redgrave, et al., 2010). Interestingly, another prediction arising
from the theory is that for patients who are being treated with dopamine agonists, the
general therapeutic effect of the medication should not include an improvement in the
ability to learn novel actions. This is because the phasic release of dopamine (as
opposed to the tonic levels) would be relatively unaffected by the treatment and it is
the phasic release of dopamine that is thought to have the time-stamp effect that is

crucial to learning.

In order to test the potential of the joystick task as a means of investigating a deficit in
action acquisition in this population, a pilot study was run on one male (66 year-old)
participant suffering from Parkinson’s disease (fully medicated at the time of testing).
The task employed was a modified version of experiment 3 and it was carried out
mainly to assess the ability Parkinson’s disease sufferers to perform the joystick task.
Somewhat surprisingly, given the prediction, performance on the task was excellent
for hotspot sizes up to the smallest tested — 0.48% of the search space — and certainly
in the general range found for undergraduate participants in experiment 3 (M =

1838.61, SD = 1659.60, values in untransformed screen units). Going forward, there is
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value in running further experiments with people suffering from Parkinson’s disease,
using different versions of the joystick task. Such investigations would not only enable
the testing of the general hypothesis outlined above but may also prove informative of

the paradigm itself.

Imitation learning and the generation of behavioural

variance

The emphasis of Thorndike’s (1911) research was very much on the nondeclarative
end of the learning spectrum: on the accidental nature of learning. In his view, the
animals in the puzzle-boxes were utterly at the mercy of the environment they were
placed into: “If all cats, when hungry and in a small box, will accidentally push the
button that holds the door, an occasional cat in a large room may very well do the
same” (p.73). Given a similar puzzle-box task to Thorndike’s cats, humans could bring a
powerful declarative learning system to bear on the problem and, provided they could
locate an operandum, would not be unduly affected by parameters such as the size of
the room they were placed in. However, this is not to say that there can be no room
for indiscriminate behaviour, even in the sophisticated learning of humans. As has
already been argued, in the case of knacks, exposing our learning system to samples of
essentially accidental behavioural variance might be the only way that we can learn to
reliably elicit a desired outcome because we are forced by our very ignorance of the
paradigm to explore portions of movement space we have no good reason to think will

be of use.

We might accept that there are advantages to be gained from indiscriminate learning;
however, this raises the question of how a learning agent can generate behavioural
variance from which commonalities can be drawn in the first place. Given that we are
not prone to motor babbling outside of the first few months of life and that knack
learning makes up just a small proportion of most of the learning we produce, there
doesn’t seem to be much scope for producing behaviour which doesn’t have a direct
purpose. However, the question of the origins of behavioural variance is an important

one and as Staddon and Niv (2008) have noted:
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It is something of a historical curiosity that almost all operant-
conditioning research has been focused on the strengthening effect of
reinforcement and almost none on the question of origins, where the
behavior comes from in the first place, the problem of behavioral
variation, to pursue the Darwinian analogy.

One possible source of behavioural variation in humans, which is more naturalistic
than the kind of forced behavioural variance produced during the exploratory period
of the joystick task, is imitation. In spite of the obvious constraints that imitation
implies, it can result in the generation of behaviour that is at odds with anything we
might produce with a strict goal-directed approach to the situation. There is
considerable evidence that both children and adult humans imitate causally irrelevant
aspects of behaviour (Lyons, Young, & Keil, 2007; McGuigan, Makinson & Whiten,
2011; McGuigan, Whiten, Flynn, & Horner, 2007), even behaviour that chimpanzees
will not imitate (Horner & Whiten, 2005). A potential advantage of imitating aspects of
behaviour that are apparently causally irrelevant (and potentially inefficient) is the
possibility that these components of the behaviour have some hidden value. For
example, by copying the style of a particular tennis player, a novice is likely to gain
substantial advantages from principles of body-shape, follow-through and small-step
movements without necessarily understanding the relevance of these behaviours.
Imitation learning is therefore a potentially fruitful avenue of research for investigating

how learning is derived from behavioural variance under normal circumstances.
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Appendices

Appendix 1

Onscreen instructions for experiment 1 (within-trial repetition

of audio reinforcement)

1.

10.
11.

12.
13.
14.
15.

Welcome to the Joystick Task. Please read the instructions using the space bar
to move from page to page.

You will start with a practice session composed of 3 trials to get you limbered
up.

The task is to find the correct position to place the joystick in. Finding it will
result in a "pip" sound.

Keep the joystick in the position where you found the pip until you hear
another sound indicating success.

Trials will end automatically and move on to the next one after a short delay.
The first trial will start when you press "Space bar"; thereafter trials start
automatically. Trials are counted in by 3 beeps.

Press the "Space bar" to start the practice session.

You found the correct position! Get ready for trial (...) of 3.

You found the correct position!

Practice session over; time for the real thing. There are 18 trials in total.

Please complete trials as quickly as possible; some will be more difficult than
others.

Press "Space bar" to start.

You found the correct position! Get ready for trial (...) of 18

You found the correct position and that was the last one. Phew!

The experiment is now over. Thanks for participating!

144



Appendix 2

Onscreen instructions for experiment 2 (within-trial repetition

of visual reinforcement)

1.

10.
11.
12.
13.

14.
15.
16.
17.

If you suffer from epilepsy DO NOT continue with the task as screen flashes
could potentially induce a seizure.

Welcome to the Joystick Task. Please read the instructions using the space
bar to move from page to page.

You will start with a practice session composed of 3 trials to get you
limbered up.

The task is to find the correct position to hold the joystick in. Finding it will
result in a screen flash.

Keep the joystick in the position where you found the screen flash until you
hear a sound indicating success.

Trials will end automatically and move on to the next one after a short
delay.

The first trial will start when you press "Space bar"; thereafter trials start
automatically. Trials are counted in by 3 beeps.

If you have any problems or queries please tell Tom and he will be happy to
assist you.

Press the "Space bar" to start the practice session.

You found the correct position! Get ready for trial of (...) of 3.

You found the correct position!

Practice session over; time for the real thing. There are 18 trials in total.
Please complete trials as quickly as possible; some will be more difficult
than others.

Press "Space bar" to start.

You found the correct position! Get ready for trial (...) of 18

You found the correct position and that was the last one. Phew!

The experiment is now over. Thanks for participating!
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Appendix 3

Onscreen instructions for experiment 3 (between-trial

repetition of audio reinforcement)

1.

10.

11.
12.

13.

14.

15.
16.
17.

Welcome to the Joystick Task. Please read the instructions using "Space
bar" to move from page to page.

You will start with a practice session composed of 3 trials to get you
limbered up.

The task is to find the correct area to put the joystick in as quickly as
possible. As soon as you find the correct area the trial will end.

The next trial will begin automatically after a short delay. When it begins,
you need to search for the same area again.

The first trial will start when you press "Space bar" thereafter trials start
automatically. All trials are counted in by 3 beeps.

If you have any problems or queries please tell Tom and he will be happy to
assist you.

Press the "Space bar" to start the practice session.

You found the correct position! Get ready for the next trial...

You found the correct position!

Practice session over time for the real thing. Press "space bar" to move
through these instructions.

There are 4 sets of 10 trials: i.e. 40 trials in total.

Within a set of 6 trials the correct area to move the joystick to remains the
same.

When you complete a set of 10 trials, the position of the area changes to
another, randomly determined, location and you have to start searching
afresh.

Please complete trials as quickly as possible; some will be more difficult
than others.

Press "Space bar" to start.

You found the correct position! Get ready for the next trial...

You found the correct position and have finished set 1 of 4!
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18.

19.
20.

21.
22.

23.
24.

Remember, the correct area has now been moved, at random, to a new
location. Press space bar when ready to start the second set of trials.

You found the correct position and have finished set 2 of 4!

Remember, the correct area has now been moved, at random, to a new
location. Press space bar when ready to start the third set of trials.

You found the correct position and have finished set 3 of 4!

Remember, the correct area has now been moved, at random, to a new
location. Press space bar when ready to start the final set of trials.

You found the correct position and that was the last one. Phew!

The experiment is now over. Thanks for participating!
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Appendix 4

Onscreen instructions for experiment 4 (between-trial

repetition with delayed reinforcement)

1.

10.

11.

12.

13.

14.

15.
16.

Welcome to the Joystick Task. Please read the instructions using "Space bar" to
move from page to page.

You will start with a practice session composed of (_)trials to get you limbered
up.

The task is to find the correct area to put the joystick in as quickly as possible.
As soon as you find the correct area the trial will end.

The next trial will begin automatically after a short delay. When it begins, you
need to search for the same area again.

The first trial will start when you press "Space bar"; thereafter trials start
automatically. All trials are counted in by 3 beeps.

If you have any problems or queries please tell Tom and he will be happy to
assist you.

Press the "Space bar" to start the practice session.

Practice session over; time for the real thing. Press "space bar" to move
through these instructions.

There are 8 sets of 10 trials: i.e. 80 trials in total.

Within a set of 10 trials the correct area to move the joystick to remains the
same.

When you complete a set of 10 trials, the position of the area changes to
another, randomly determined, location and you have to start searching afresh.
Please complete trials as quickly as possible; some will be more difficult than
others.

Press "Space bar" to start.

Found it! Get ready for the next trial...

You found the correct position and that was the last one. Phew!

The experiment is now over. Thanks for participating!
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