
Lachlan Non-Splitting Pairs and High

Computably Enumerable Turing Degrees

Ingram Bondin

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

Department of Pure Mathematics

March 2018

The candidate confirms that the work submitted is his own and that appropriate credit

has been given where reference has been made to the work of others. This copy has been

supplied on the understanding that it is copyright material and that no quotation from the

thesis may be published without proper acknowledgement.

Abstract
A given c.e. degree a > 0 has a non-trivial splitting into c.e. degrees v and w if a = v ∨ w

and v | w. A Lachlan Non-Splitting Pair is a pair of c.e. degrees 〈a,d〉 such that a > d and

there is no non-trivial splitting of a into c.e. degrees w and v with w > d and v > d. Lachlan

[Lachlan, 1976] showed that such a pair exists by proving the Lachlan Non-Splitting Theorem.

This theorem is remarkable for its discovery of the 0′′′-priority method, and became known as the

‘Monster’ due to its significant complexity.

Harrington, Shore and Slaman subsequently tried to explain Lachlan’s methods in more intuitive

and comprehensible terms in a number of unpublished notes. Leonhardi [Leonhardi, 1997]

then published a short account of the Lachlan Non-Splitting Theorem based on these notes and

generalised the theorem in a different direction.

In their work on the separation of the jump class High from the jump class Low2, Shore and

Slaman [Shore and Slaman, 1993] also conjectured that every high c.e. degree strictly bounds a

Lachlan Non-Splitting Pair, a fact which could be used to separate the two jump classes. While

this separation was eventually achieved through the notion of a Slaman Triple, the conjecture itself

remained an open question. Cooper, Yi and Li [Cooper et al., 2002] also defined the notion of a

c.e. Robinson degree as one which does not strictly bound the base d of a Lachlan Non-Splitting

Pair 〈a,d〉, and sought to understand the relationship of this notion to the High/Low Hierarchy.

In this dissertation we make the following two contributions. Firstly we show that a counter-

example can be found to show that the account of the Lachlan Non-Splitting Theorem given by

Leonhardi [Leonhardi, 1997] fails to satisfy its requirements. By rectifying the construction, we

give a complete, correct and intuitive account of the Lachlan Non-Splitting Theorem. Secondly we

show that the high permitting method developed by Shore and Slaman [Shore and Slaman, 1993]

can be combined with the construction of the Lachlan Non-Splitting Theorem just described to

prove that every high c.e. degree strictly bounds a Lachlan Non-Splitting Pair. From this it

follows that the existence of a Lachlan Non-Splitting Pair can be used to separate the jump classes

High and Low2, that the distribution of Lachlan Non-Splitting Pairs with respect to these jump

classes mirrors the one for Slaman Triples, and that there is no high c.e. Robinson degree.

ii

To my wife Clarissa Bondin.

iii

iv

Acknowledgements
I would like to acknowledge the following debts of gratitude in writing this dissertation.

Prof. Barry S. Cooper was my supervisor between October 2013 and October 2015, before he

very sadly and unexpectedly passed away. I am very grateful for the opportunity he has given me

to study Computability Theory, as well as for his patience, kindness, and profound insight into

the subject which he shared with me whenever we met. Prof. Cooper also suggested the original

problem of proving the existence of a high c.e. Robinson degree.

Prof. Dugald MacPherson took on the mantle of supervisor in the absence of Prof. Cooper. I am

very grateful for the support he has offered me in the wake of this event, for listening attentively to

the various twists and turns which the problem was taking, for ensuring that the project remained

on track and for the valuable feedback he has given me on the draft of this dissertation.

Prof. Theodore A. Slaman visited Leeds twice after Prof. Cooper passed away and was very

generous with his time on both occasions. I am very grateful for the two lengthy discussions

which we had on the problem.

During the first discussion Prof. Slaman suggested that I prove a strong form of the negation of

the original theorem instead, which meant showing that every high c.e. degree strictly bounds

a Lachlan Non-Splitting Pair. This required modifying the Lachlan ‘Monster’ theorem and his

encouragment was very significant for me to overcome the dread which I felt at this stage.

During the second discussion, Prof. Slaman helped me focus on the fact that the central obstacle

to applying the Slaman-Shore high permitting method to the Lachlan Non-Splitting Theorem was

related to preserving the honesty of certain computations. He also made a number of suggestions

on how one could approach this problem. It turned out that one of his remarks about modifying

the requirements was key to ensure that honesty could be preserved.

Dr. Andy Lewis-Pye, became my advisor on technical matters after Prof. Cooper passed away. I

am very grateful for his assistance in reconstructing the Lachlan Non-Splitting Theorem and for

his suggestions on how to overcome the problems which were present in the existing literature on

the subject. He also helped me master the finer points of the high permitting method of Shore

v

and Slaman and gave me the confidence that the resulting extension of the Lachlan Non-Splitting

Theorem was a reasonable one.

Dr. Mariya I. Soskova pointed me in the right direction by making me aware of Leonhardi’s

account of the Lachlan Non-Splitting theorem when I was still disoriented and unfamiliar with the

material.

Dr. Charles Harris offered his support and took an interest in my work, engaging with my

explanation of the Lachlan Non-Splitting Theorem at a time when I was still trying to obtain a

firm grasp of it.

Prof. John K. Truss took a broad interest in the well being of the students orphaned by Prof.

Cooper, for which I am very thankful.

Kim and Sharon Broadhead were very kind to offer me their hospitality in Yeadon when I first

arrived in the United Kingdom and when I had to change lodging at a later date.

During my stay in Leeds I was fortunate to enjoy the friendship of a number of fellow students at

the School of Mathematics. Amongst these I would like to mention Mark Carney, Alec Thomson,

Martin Krombholz, James Gay, James Riley, Daoud Siniora, David Toth, Richard Whyman and

Sarah Sigley.

Amongst the members of my family I would like to thank my wife Clarissa for her sacrifice,

love and understanding, my mother for her care and affection at all times, and my late father for

transmitting to me the fondness for logical argument.

This research was also supported by a University Research Scholarship (URS) granted by the

University of Leeds.

vi

Contents

1 Introduction 1

1.1 Preliminaries . 1

1.1.1 Turing Computability . 1

1.1.2 Relative Computability . 3

1.1.3 High and Low Hierarchy . 6

1.2 Literature Review . 7

1.2.1 Background . 8

1.2.2 Splitting and Non-Splitting Theorems 10

1.2.3 Separation of Jump Classes High and Low 15

1.2.4 Distribution of Various Degrees . 17

1.2.5 Contributions . 20

1.3 The Priority Method . 21

1.3.1 The Priority Ordering . 21

1.3.2 The Strategies . 21

1.3.3 The Priority Tree . 22

1.3.4 The Construction . 23

1.3.5 The Verification . 24

vii

2 The Lachlan Non-Splitting Theorem 25

2.1 Preliminaries for the Theorem . 25

2.1.1 The Requirements . 25

2.1.2 Implementation of the Requirements . 26

2.1.3 Further Simplification of the Requirements 27

2.1.4 Further Remarks . 27

2.1.5 Stages and Substages . 30

2.2 OneR Requirement . 31

2.2.1 TheR Strategy . 31

2.2.2 Satisfaction of Requirement . 32

2.3 One S Requirement . 34

2.3.1 The S Strategy . 34

2.3.2 Satisfaction of Requirement . 35

2.4 S BelowR - First Approximation . 36

2.4.1 The S Strategy . 37

2.4.2 TheR Strategy . 42

2.4.3 Organisation of Priority Tree . 43

2.4.4 Satisfaction of Requirements . 45

2.5 S BelowR - Second Approximation . 47

2.5.1 Backup Strategies . 47

2.5.2 Work Intervals . 48

2.5.3 Active Strategies . 50

viii

2.5.4 Γ̂-Strategies . 50

2.5.5 Switching . 50

2.5.6 Open Stages and Close Stages . 50

2.5.7 S-Synchronisation . 51

2.5.8 TheR Strategy . 52

2.5.9 The S Strategy . 54

2.5.10 Organisation of Priority Tree . 59

2.5.11 Satisfaction of Requirements . 62

2.6 S BelowR2 BelowR1 - First Approximation 66

2.6.1 R-Synchronisation . 66

2.6.2 Gap Opening Convention . 67

2.6.3 TheR Strategy . 68

2.6.4 The S Strategy . 69

2.6.5 Organisation of Priority Tree . 77

2.6.6 Satisfaction of Requirements . 78

2.7 S BelowR2 BelowR1 - Second Approximation 82

2.7.1 Γ̂-Strategies . 82

2.7.2 Switching . 83

2.7.3 S-Synchronisation . 83

2.7.4 TheR Strategy . 84

2.7.5 The S Strategy . 85

2.7.6 Organisation of Priority Tree . 92

ix

2.7.7 Satisfaction of Requirements . 93

2.7.8 Counterexample to the Leonhardi Account 95

2.8 S BelowR2 BelowR1 - Third Approximation 96

2.8.1 Self-repair ofR Strategies . 97

2.8.2 Restarting . 98

2.8.3 TheR Strategy . 98

2.8.4 The S Strategy . 100

2.8.5 Organisation of the Priority Tree . 100

2.8.6 Satisfaction of Requirements . 106

2.9 The General Case . 112

2.9.1 Generalising the Strategies . 112

2.9.2 Fairness . 113

2.9.3 TheR Strategy . 115

2.9.4 The S Strategy . 117

2.9.5 Organisation of the Priority Tree . 122

2.9.6 The Construction . 126

2.10 Verification . 127

2.10.1 Definitions . 127

2.10.2 Representation Lemma . 128

2.10.3 Leftmost Path Lemma . 134

2.10.4 Infinite True Path Lemma . 135

2.10.5 Restraint Lemma . 137

x

2.10.6 Synchronisation Lemma . 138

2.10.7 Injury Lemma forR Strategies . 144

2.10.8 Injury Lemma for S Strategies . 153

2.10.9 Truth of Outcome Theorem . 159

3 High Permitting of Lachlan Non-Splitting Pairs 165

3.1 The High Permitting Method . 165

3.1.1 Martin High Permitting . 166

3.1.2 Shore and Slaman High Permitting . 167

3.2 Preliminaries for the Theorem . 188

3.2.1 The Non-Splitting Requirements . 188

3.2.2 Implementation of the Non-Splitting Requirements 190

3.2.3 Further Simplification of the Non-Splitting Requirements 190

3.2.4 The High Permitting Requirements . 191

3.2.5 Honesty Preservation . 192

3.2.6 Further Remarks . 193

3.3 OneR Requirement . 199

3.3.1 Questions for theR Strategy . 199

3.3.2 TheR strategy . 199

3.3.3 Satisfaction of Requirement . 203

3.4 One S Requirement . 204

3.4.1 Questions for the S Strategy . 204

3.4.2 The S Strategy . 204

xi

3.4.3 Satisfaction of Requirement . 208

3.5 S BelowR . 210

3.5.1 Open and Close Modes . 210

3.5.2 Open and Close Stages . 211

3.5.3 Questions for theR Strategy . 213

3.5.4 TheR Strategy . 213

3.5.5 Analysis of Outcomes . 221

3.5.6 Questions for the S Strategy . 222

3.5.7 The S Strategy . 225

3.5.8 Analysis of Outcomes . 242

3.5.9 Organisation of Priority Tree . 249

3.5.10 Satisfaction of Requirements . 250

3.6 S BelowR2 BelowR1 . 253

3.6.1 Questions for theR Strategy . 253

3.6.2 TheR Strategy . 254

3.6.3 Analysis of Outcomes . 259

3.6.4 Questions for the S Strategy . 259

3.6.5 The S Strategy . 264

3.6.6 Analysis of Outcomes . 278

3.6.7 Organisation of Priority Tree . 291

3.6.8 Satisfaction of Requirements . 294

3.7 The General Case . 296

xii

3.7.1 Fairness . 297

3.7.2 Honesty Preservation . 298

3.7.3 Questions for theR Strategy . 304

3.7.4 TheR Strategy . 305

3.7.5 Questions for the S Strategy . 312

3.7.6 The S Strategy . 315

3.7.7 Organisation of the Priority Tree . 333

3.7.8 The Construction . 335

3.8 Verification . 337

3.8.1 Definitions . 337

3.8.2 Representation Lemma . 339

3.8.3 Leftmost Path Lemma . 340

3.8.4 Attachment Procedure Lemma . 341

3.8.5 Honesty Preservation Lemma . 343

3.8.6 Synchronisation Lemma . 358

3.8.7 Qualified Infinite True Path Lemma . 372

3.8.8 Restraint Lemma . 373

3.8.9 Injury Lemma for S Strategies . 379

3.8.10 Injury Lemma forR Strategies . 391

3.8.11 Pseudo Outcome Lemma . 405

3.8.12 Truth of Outcome Theorem . 409

3.8.13 High Permitting Theorem . 413

Bibliography 422

xiii

xiv

List of figures

2.1 Priority tree for S belowR , first approximation 44

2.2 Priority tree for S belowR , second approximation 60

2.3 Priority tree for S belowR2 belowR1, first approximation 78

2.4 Priority tree for S belowR2 belowR1, second approximation 93

2.5 Priority tree for S belowR2 belowR1, Leonhardi’s Account 96

2.6 Priority tree for S belowR2 belowR1, third approximation. 102

2.7 Priority tree for S belowR2 belowR1 - detail of the g2 outcome of αU1,U2 108

3.1 Priority tree for S belowR . 251

3.2 Priority tree for S belowR2 belowR1 - path leading to αV1,V2 293

xv

xvi

Chapter 1

Introduction

In this chapter we shall introduce the necessary background to the problems which will be treated

in this dissertation. In Section 1.1 we make the necessary definitions and introduce the notation

which will be used in the rest of this work. In Section 1.2 we shall review the relevant literature.

Finally in Section 1.3 we introduce the priority method, which we shall be using to structure the

constructions in this dissertation.

1.1 Preliminaries

In this section we shall define the concepts related to Turing computability, relative computability

and the High/Low hierarchy which will be used in this work. For an introduction to computability

theory see [Soare, 1987],[Cooper, 2004] or [Soare, 2016].

1.1.1 Turing Computability

The notion of Turing computability is based on the concept of a Turing machine. A Turing machine

M consists of a finite non-empty set of states Q, a set of symbols S containing a special blank

symbol B ∈ S, a two way infinite working tape divided into cells each of which contains a

symbol from S, a read-write head which sees one cell from the tape at time, and a partial function

δ : Q × S → Q × (S ∪ {R,L}) known as the Turing program of the machine. One of the states

1

q0 ∈ Q is designated as the initial state, and another state qh ∈ Q is designated as the halting

state.

The machine goes through a sequence of stages t. During each stage it will find itself in some state

q ∈ Q and the read-write head will read the symbol s ∈ S which is written on the present cell.

The machine will then determine the value of δ(q, s), obtaining a tuple (q′, x). This causes the

machine to change its state to q′ and to take one of the following actions depending on the value

of x. If x ∈ S, we have that the read-write head writes the symbol x on the present cell. On the

other hand the read-write head will move one cell to the left if x = L and one cell to the right if

x = R. After taking any one of the above actions, the machine will go to the next stage.

Initially the machine finds itself in the initial state q0 and its read-write head is in some given

starting cell. The machine receives a natural number x as an input in the form of x consecutive

‘1’ symbols written on the working tape starting from the starting cell, and with all other cells

being filled with the blank symbolB. If at some stage the machine reaches the halting state qh, the

machine M will stop and its output y will be the number of ‘1’ symbols written on the tape. Note

that since the machine can only have made a finite number of moves before reaching the halting

state, the portion of the tape which needs to be examined to determine the output is bounded.

The Turing program δ of a Turing machineM (henceforth program) may be represented as a finite

set of quadruples. Through the use of Gödel numbering it is possible to list all programs and assign

a natural number e to each program. We denote the eth program on this list by Pe and say that

e is the index of the program. We shall use the notation Φe to denote the function computed by

Pe and say that Φe is a partial computable (p.c.) function. This listing also gives us a standard

numbering of all the p.c. functions.

Given a p.c. function Φe we shall write Φe(x) ↓ if the machine with program Pe eventually

converges by reaching its halting state when given input x. If the machine gives output y when it

converges, we write Φe(x) ↓= y. If the machine converges in s steps, we write Φe,s(x) ↓, and

Φe,s(x) ↓= y. if it converges with output y. On the other hand if the machine diverges in s steps,

we shall write Φe,s(x) ↑.

The Turing machine model allows us to define the notion of Turing computability as follows. We

2

shall say that a function f is Turing computable (henceforth computable) if there exists a Turing

machineM such that if f(x) = y andM starts with x written on its working tape, thenM reaches

the state qh after finitely many stages and the number of ‘1’ symbols written on the working tape

is y.

Since every set A can be associated with its characteristic function χA(x) (defined as χA(x) = 1

if x ∈ A and χA(x) = 0 if x 6∈ A), we can say that a set A is computable if χA is computable. In

these cases we shall write A = Φe, where e is the index of the program Pe used by the machine

which computes χA(x). We shall also say that a set A is computably enumerable (c.e) if its

elements can be effectively listed. This notion is formally identified with A being the range of

some p.c. function Φe.

1.1.2 Relative Computability

The notion of relative computability is based on the notion of an oracle Turing machine. We base

our account of this notion on [Cooper, 2004]. An oracle Turing machine O is similar to a Turing

machine except for the following modifications. In addition to the working tape found in a Turing

machine, the oracle Turing machine also has a one way read only infinite oracle tape. This tape

shall have the characteristic function of some set A written on it, which acts as an ‘oracle’ for the

machine.

The function δ, will now be called an oracle Turing program and is of type Q × S → Q × (S ∪

{R,L}∪Q). During a given stage the oracle machine will determine the value of δ(q, s) as usual,

obtaining the tuple (q′, x). However this time if the oracle machine sees that x ∈ Q, it will instead

query the oracle. The machine does this by counting the number n of ‘1’ symbols on its working

tape, and reading the oracle tape at the nth cell to determine whether n ∈ A or not. If n ∈ A, the

machine goes to state x, while if n 6∈ A, the machine goes to state q′. Either way the working tape

is unaffected. The use of an oracle machine during the course of a computation is defined as being

the largest natural number whose membership in A has been ascertained in this way.

The oracle Turing program δ of an oracle Turing machineO (henceforth oracle program) may also

be represented as a finite set of quadruples. Once again it is possible to list all oracle programs and

3

assign a natural number e to each oracle program. We denote the eth oracle program on this list

by P̃e and say that e is the index of the oracle program. We shall use the notation ΦA
e to denote the

function computed by P̃e when it is given A as an oracle and say that ΦA
e is a partial computable

(p.c.) functional. We shall often abbreviate this to functional, making it explicit when it is total.

This listing also gives us a standard numbering of all the p.c. functionals.

Given a p.c. functional ΦA
e we shall write ΦA

e (x) ↓ if the oracle machine with program P̃e

eventually converges by reaching its halting state when given input x and oracle A. If the oracle

machine gives output y when it converges, we shall write that ΦA
e (x) ↓= y. If u is the largest

number whose membership in A was queried by the oracle machine during this computation, we

shall say that u is the use of the computation. If the oracle machine converges in s steps, we shall

denote this by ΦA
e,s(x) ↓. If the output of this computation is y we shall write that ΦA

e,s(x) ↓= y,

and if the use of this computation is u, we shall write that φe,s(x) = u. On the other hand if oracle

machine diverges in s steps, we shall denote this by ΦA
e,s(x) ↑.

We shall say that a function f is Turing computable in A (henceforth computable in A, or

computable with the help of A) if there exists an oracle Turing machine O such that if f(x) = y

and O has x written on its working tape and A written on its oracle tape, then O reaches state qh

after finitely many stages and the number of ‘1’ symbols written on the tape is y.

A set B is said to be computable in A if χB is computable in A. In these cases we shall write

B = ΦA
e , where e is the index of the program P̃e used by the oracle machine which computes χB

when χA is written on its oracle tape. We shall also say that a set B is computably enumerable in

A (henceforth c.e in A, or c.e. with the help of A) if its elements can be effectively listed in A.

This notion is formally identified with B being the range of some p.c. functional ΦA
e .

Frequently we shall need to approximate c.e. sets or p.c. functionals. This need arises from the

fact that these objects will be given to us, or will be constructed by us, on a stage by stage basis.

Given some c.e. set A, we shall denote the approximation to A at stage s by As. It shall also be

convenient to use the notation A � n to denote the characteristic function of A restricted up to

argument n.

On the other hand following [Lachlan, 1980], we can think of a p.c. functional ΦA as a c.e. set

4

of axioms of the form Γσ(x) = y, where σ is an initial segment of some characteristic function

whose length is equal to the use of the computation. This allows the use of the Lachlan notation

ΓA[s](x), which corresponds to the computation performed by the finite functional defined by the

set of axioms enumerated before stage s, when this is given the approximationAs as an oracle and

is run for s stages on the value x. Sometimes we shall write φ[s](x) in order to denote the use of

this computation. The Lachlan notation also extends to functionals with more than one oracle in

the expected way.

Turing Reducibility

The notion of computability in an oracle can be used to define the notion of Turing reducibility

as follows. If a set B is computable in A, we shall say that B is Turing reducible to A, written

B ≤T A. We shall say that the functional ΦA
e giving B = ΦA

e is a reduction of B to A. The sets

A and B are said to be Turing equivalent, written A ≡T B iff A ≤T B and B ≤T A. If A ≤T B

but B 6≤T A, we shall write that A <T B.

Turing Degrees

Turing reducibility can then be used to define the notion of a Turing degree as follows. The Turing

degree (henceforth degree) of a set A, written deg(A) consists of all the sets B which are Turing

equivalent to A, or {B | B ≡T A}. We shall use the boldface letter a to denote deg(A). The class

of all such degrees is denoted by D. The degrees D form a partially ordered set (D,≤), where

deg(B) ≤ deg(A) iff B ≤T A. If deg(B) ≤ deg(A) but deg(A) 6≤ deg(B), we shall write

deg(B) < deg(A). If deg(B) 6≤ deg(A) and deg(A) 6≤ deg(B), the degrees are incomparable

and we shall write deg(A) | deg(B).

The join of two degrees deg(A) ∨ deg(B) shall denote the least upper bound of deg(A) and

deg(B). The least upper bound of deg(A) and deg(B) is equal to deg(A ⊕ B), where A ⊕ B =

{2x | x ∈ A}∪{2x+1 | x ∈ B} and⊕ is called the computable join of the two sets. The degrees

D also form an upper semi-lattice (D,≤,∨) where ∨ gives the supremum of two degrees, but for

5

which an infimum does not always exist. There is also a least degree 0, which contains all of the

computable sets.

If A is a set, we shall also denote the Turing jump of A by A′ and define it as A′ = {x | ΦA
x (x) ↓}.

The nth jump of A is written as A(n) and is defined as follows: A(0) = A and A(n+1) = (A(n))′.

Note that A(1) = A′. Two important properties of the Turing jump are that A <T A′ and that

A ≤T B ⇒ A′ ≤T B′. If A ∈ a then we shall write that a′ = deg(A′). Hence we have that the

Turing jump of a degree is strictly greater than the original degree, that is a < a′. We also have

that the Turing jump also preserves the order ≤, giving that a ≤ b⇒ a′ ≤ b′.

Computably Enumerable Turing Degrees

In this dissertation we shall be concerned with the computably enumerable Turing degrees which

are defined as follows. A Turing degree a is a computably enumerable Turing degree (henceforth

c.e. degree) if there is a c.e. set A such that a = deg(A). We shall denote the class of c.e. degrees

by C. The c.e. degrees also form an upper semi-lattice (C,≤,∨), with the ordering ≤ and join

∨ being the same for D. As with the Turing degrees, the c.e. degrees are not a lattice because

an infinimum does not always exist. Since every computable set is also computably enumerable,

we have that 0 is also the least c.e. degree. In addition, the c.e. set K = {x | Φx(x) ↓} is

complete, in the sense that A ≤T K for every c.e. set A. It follows that there is a largest c.e.

degree 0′ = deg(K).

1.1.3 High and Low Hierarchy

The High/Low Hierarchy can be used to categorise the Turing degrees below 0′ according to their

jumps. Intuitively a degree a below 0′ is high if its jump is as high as possible, that is if a′ = 0′′.

On the other hand a degree a below 0′ is low if its jump is as low as possible, that is if a′ = 0′.

Note that since every c.e. Turing degree is also a Turing degree this hierarchy can also be used to

stratify the c.e. Turing degrees.

The concept described above can be generalised in a straightforward manner to consider iterated

Turing jumps as well. For every natural number n, we define the jump classes Highn as {a ≤

6

0′ | a(n) = 0(n+1)} and Lown as {a ≤ 0′ | a(n) = 0(n)}. If deg(A) ∈ Highn, we shall say that

A and deg(A) are highn. Similarly if deg(A) ∈ Lown, we shall say that A and deg(A) are lown.

In the case where n = 1, we omit the subscript and refer to the jump classes High and Low and

to high and low sets and degrees respectively.

1.2 Literature Review

In this section we shall review the literature relevant to the problems treated in this dissertation.

In Section 1.2.1 we trace the developments which led to the structure of the c.e. degrees becoming

an object of research. We also outline a number of definitions and results relating to the structure

of the c.e. degrees which are relevant for the rest of the literature review.

Once this background has been covered, we review the known splitting and non-splitting theorems

for the structure of the c.e. degrees in Section 1.2.2. Of the theorems covered, the Lachlan Non-

Splitting Theorem is central to this dissertation. We show how the original account of the Lachlan

Non-Splitting Theorem was of considerable difficulty and how this led Leonhardi to publish a

more intuitive account of the theorem based on the unpublished notes of Harrington, Slaman and

Soare. In Chapter 2 we shall show that Leonhardi’s construction fails to satisfy the requirements

of the Lachlan Non-Splitting Theorem, and present a rectified construction.

The Lachlan Non-Splitting Theorem constructs an object known as a Lachlan Non-Splitting Pair.

In Section 1.2.3 we review the problem of separating the jump classes High and Low2 in the

structure of c.e. degrees. Shore and Slaman conjectured that the notion of strictly bounding a

Lachlan Non-Splitting Pair could be used for this purpose, but then separated the jump classes

using the simpler notion of a Slaman Triple. In Chapter 3 we shall prove that every high c.e.

degree strictly bounds a Lachlan Non-Splitting pair, thus showing that the conjecture holds.

Research on the separation of jump classes led to questions about the distribution of various objects

in the structure of the c.e. degrees. In Section 1.2.4 we review the known results about the

distribution of Lachlan Non-Splitting Pairs and Slaman Triples in the c.e. degrees. We also review

the known results about the distribution of Robinson degrees which are relevant for failing to

7

bound the base of a Lachlan Non-Splitting Pair. This allows us to situate the result of Chapter 3 in

its broader context and to obtain its corollaries.

In Section 1.2.5 we shall conclude this chapter by summarising the contributions of this

dissertation in light of the prior discussion and make explicit our claims of novel work.

1.2.1 Background

We shall start by describing the relevant developments which led to the class of the c.e. degrees

being discovered and becoming an object of research. For a more detailed history of degree theory

see [Ambos-Spies and Fejer, 2014].

Turing introduced the notion of a Turing machine as a mathematical model of effective

calculability in [Turing, 1936]. Using this notion, Turing defined the concept of a computable

function as one computable by a Turing machine. In this paper Turing also defined the notion of

a Universal machine, which was able to simulate any other Turing machine given its description.

The paper is also important for showing the existence of uncomputable problems.

Kleene introduced the notion of computably enumerable set as the range of a computable function

in [Kleene, 1936]. Post had in fact anticipated this notion in the form of generated sets, but

this work was not submitted for publication until 1941 and did not appear in print until 1965

in [Post, 1965]. In his paper Kleene also showed that the set K = {x | Φx(x) ↓} is computably

enumerable, but not computable.

Turing introduced relativised computation through the notion of an oracle Turing machine in

[Turing, 1939]. The oracle machine used by Turing had access to a fixed oracle corresponding

to the set of well-formed formulas A(n) of the conversion calculus of Church with the property

of being ‘dual’, which means that the formula is convertible to ‘2’ for all integers n. Turing then

defined a set to be ’number-theoretic’ if it could be computed by such an oracle Turing machine.

Although this introduced the notion of a set being Turing reducible to a fixed oracle, it did not

define the notion of Turing reducibility between two sets A and B.

Post introduced the notion of degree of unsolvability in [Post, 1944]. Given some specific

8

reducibility, sets A and B were regarded as having the same degree of unsolvability if they

were reducible to one other. Thus if A is reducible to B but B is not reducible to A, it would

mean that A has a lower degree of unsolvability and B has a higher degree of unsolvability. If

neither is reducible to the other, the sets have incomparable degrees of unsolvability. Post also

defined the strong reducibilities known as one-one reducibility (≤1), many-one reducibility (≤m),

bounded truth table reducibility (≤btt) and truth table reducibility (≤tt), but gave only an informal

definition of Turing reducibility (≤T). Formal definitions of Turing reducibility were given by

Kleene in terms of general recursive functions in [Kleene, 1943], by Post in terms of canonical

sets in [Post, 1948] and again by Kleene in terms of oracle Turing machines in [Kleene, 1952].

In [Post, 1944] the author also showed thatK was complete under Turing reducibility, in the sense

that every c.e. set was Turing reducible to K. This paper also introduced what became known as

Post’s Problem and Post’s Program. Post’s Problem asked whether it was possible to find a non-

computable incomplete c.e. set. On the other hand Post’s Program formulated the way in which

this was to be achieved, namely by defining some structural property of sets, proving that there

were c.e. sets satisfying this property and finally showing that such sets were neither computable

nor complete. Post was able to resolve Post’s problem for the aformentioned strong reducibilities,

but not for Turing reducibility.

Kleene and Post abstracted from the notion of degree of unsolvability introduced in [Post, 1944]

by defining a Turing degree as an equivalence class of sets which were Turing reducible to one

another in [Kleene and Post, 1954]. This allowed Kleene and Post to show that the class of Turing

degrees D formed an upper semi-lattice. It was also shown that the Turing degrees do not form a

lattice because the infimum of two degrees does not always exist. This paper also gave a notion

of the Turing jump which was well-defined on the Turing degrees. The technique of breaking

down the conditions which need to be satisfied by a set being constructed into infinitely many

requirements was also introduced in this paper. Through the use of the finite extension method

it was also shown that for every non-computable Turing degree there is a Turing degree which is

incomparable with the former. However these degrees did not have to be c.e. degrees.

Post’s problem was resolved independently by Friedberg in [Friedberg, 1957] and by Muc̆nik in

[Muc̆nik, 1956], who constructed two incomparable c.e. degrees a and b through a finite injury

9

priority argument.

Theorem 1.2.1. (Friedberg-Muc̆nik Theorem). There exist c.e. degrees a and b such that a | b.

This result by Friedberg and Muc̆nik led to a detailed investigation of the structure of the class of

c.e. degrees C, although much of this research did not in fact follow Post’s Program. The following

two theorems would become relevant to the development of splitting and non-splitting theorems

for the c.e. degrees.

Sacks proved the Density Theorem in [Sacks, 1964] which showed that between every two c.e.

degrees, one can always find a third.

Theorem 1.2.2. (Density Theorem). Let a and b be c.e. degrees, with a > b. Then there exists a

c.e. degree c such that a > c > b.

The existence of a minimal pair of c.e. degrees was shown independently by Lachlan in

[Lachlan, 1966] and Yates in [Yates, 1966]. A minimal pair consists of two c.e. degrees a0 and

a1 whose greatest lower bound is 0.

Definition 1.2.3. (Minimal Pair Theorem). There exist c.e. degrees a0 and a1 such that the

following conditions hold.

1. a0 > 0.

2. a1 > 0.

3. For all c.e. degrees b, b ≤ a0 ∧ b ≤ a1 ⇒ b = 0.

1.2.2 Splitting and Non-Splitting Theorems

We shall now review the known splitting and non-splitting results for the c.e. degrees. Given some

non-computable c.e. degree a, one often wants to find a non-trivial splitting of a into c.e. degrees

u and v.

Definition 1.2.4. A c.e. degree a > 0 has a non-trivial splitting into c.e. degrees u and v if the

following conditions hold.

10

1. a = u ∨ v.

2. u | v.

From the two conditions above, it also follows that 0 < u < a and 0 < v < a.

Splitting and Non-Splitting theorems determine under which conditions such splittings can be

found. We shall now review the results present in this field.

Friedberg proved the first splitting result in [Friedberg, 1958], which was related to the c.e. sets

and not to the c.e. degrees. In this result Friedberg showed that if A is some non-computable

c.e. set, then it can be split by finding non-computable c.e. sets U and V such that A forms their

disjoint union U t V .

Theorem 1.2.5. (Friedberg Splitting Theorem). Let A >T ∅ be a c.e. set. Then there exist c.e.

sets U and V such that:

1. U >T ∅ and V >T ∅.

2. A = U t V .

Friedberg’s result did not yield a corollary related to the non-trivial splitting of c.e. degrees. For

although one can infer that a = u ∨ v from the theorem, it is not possible to conclude that u | v.

Sacks improved on Friedberg’s result in [Sacks, 1963] by showing that the c.e. sets U and V could

be made low and to avoid the upper cone of any non-computable set C.

Theorem 1.2.6. (Sacks Splitting Theorem). Let A and C be c.e. sets and let C >T ∅. Then there

exist c.e. sets U and V such that:

1. A = U t V .

2. U and V are low.

3. C 6≤T U and C 6≤T V .

The upper cone avoidance allows one to obtain a corollary about the non-trivial splitting of

c.e. degrees. This states that given a non-computable c.e. degree a it is possible to find non-

computable, incomparable and low c.e. degrees u and v which join to a. The corollary is obtained

11

by applying the Sacks Splitting Theorem to a c.e. set A ∈ a with C = A, giving low c.e. sets U

and V such that A = U t V , which also gives that A ≡T U ⊕ V .

From this fact, we can conclude that U and V are non-computable c.e. sets. For suppose, without

loss of generality that V was a computable set. Then we would have that V ≤T U , and thus that

A ≡T U . But this would mean that A ≤T U , contradicting the fact that A 6≤T U through the

choice of C = A. Similarly, we have that U and V are of incomparable degree. For suppose, once

again without loss of generality, that V ≤T U . It would then follow that A ≡T U . This would

mean that A ≤T U , contradicting the fact that A 6≤T U through the choice of C = A.

By taking u = deg(U) and v = deg(V) it follows that a = u ∨ v and u | v, where u and v are

low non-computable c.e. degrees.

Corollary 1.2.7. (Sacks Splitting Theorem). Let a > 0 be a c.e. degree. Then there exist c.e.

degrees u and v such that:

1. a = u ∨ v.

2. a = u | v.

3. u and v are low.

The Sacks Splitting Theorem can thus be used to establish the fact that given some non-computable

c.e. degree a, it is always possible to find a non-trivial splitting of a above 0.

Lachlan combined the techniques for building a minimal pair with those used to prove Sacks

Splitting Theorem in [Lachlan, 1980] to show that for every non-computable c.e. degree a, one

could find c.e. degrees u and v which form a non-trivial splitting of a and have a non-computable

c.e. degree d as their meet. This result is significant since infinima do not always exist for the c.e.

degrees.

Theorem 1.2.8. (Lachlan Splitting Theorem). Let a > 0 be a c.e. degree. Then there exist c.e.

degrees u and v and a c.e. degree d > 0 such that:

1. a = u ∨ v.

2. u | v.

12

3. d = u ∧ v.

Robinson improved on Sacks’ result in [Robinson, 1971] by showing that given some non-

computable c.e. degree a, and some low non-computable c.e. degree c < a, it is always possible

to find low c.e. degrees u and v which form a non-trivial splitting of a above c.

Theorem 1.2.9. (Robinson Splitting Theorem). Let a and c be c.e. degrees, where c > 0, a > c

and c is low. Then there exist c.e. degrees u and v such that:

1. a = u ∨ v.

2. u | v.

3. u and v are low.

4. u > c and v > c.

Shore and Slaman showed that the Robinson Splitting Theorem could be extended to the low2

c.e. degrees in [Shore and Slaman, 1990]. Shore and Slaman indicate that this result had been

independently discovered by Harrington and by Brickford and Mills, but had never been published.

Theorem 1.2.10. (Shore and Slaman, Harrington, Brickford and Mills). Let a and c be c.e.

degrees, where c > 0, a > c and c is low2. Then there exist c.e. degrees u and v such that:

1. a = u ∨ v.

2. u | v.

3. u > c and v > c.

Given some c.e. degree a, it is thus always possible to find a non-trivial splitting of a over any

low2 c.e. degree c strictly below a.

On the other hand Lachlan showed that the the Sacks Density Theorem and the Sacks Splitting

Theorem could not be combined, thus giving the first Non-Splitting Theorem in [Lachlan, 1976].

In this theorem Lachlan constructed non-computable c.e. degrees a and d, with a > d such that

it was not possible to find a non-trivial splitting of a over d. The pair 〈a,d〉 is called a Lachlan

Non-Splitting Pair, where a is called a Lachlan Non-Splitting Top, and d is called a Lachlan

Non-Splitting Base.

13

Theorem 1.2.11. (Lachlan Non-Splitting Theorem). There is a pair of c.e. degrees 〈a,d〉, with

d > 0 and a > d such that there is no non-trivial splitting of a into c.e. degrees u and v with

u > d and v > d.

The Lachlan Non-Splitting Theorem introduced the 0′′′-priority method for the first time, and is

known as the Monster Theorem due to its great complexity. Prior to presenting the verification of

his construction, Lachlan added the following note:

This part of the paper is very complex. Its complexity stems from the way in which

the construction was discovered. From very crude beginnings the final format of

the construction was achieved only after a series of modifications each designed to

eliminate a flaw found in the previous attempt. This process of evolution yielded only

a cloudy intuition as to why the construction should work.

This cloudy intuition into why the construction should work motivated several researchers to study

the construction in greater depth. Describing what happened in the aftermath of Lachlan’s paper,

Leonhardi states the following in [Leonhardi, 1997]:

The proof was so complicated that the theorem became informally known as the

‘Monster Theorem.’ Eventually, notes by Harrington, Slaman, and Soare were

circulated (but never published) which attempted to explain Lachlan’s methods in

more intuitive and comprehensible terms.

Harrington had also improved upon Lachlan’s result in his notes [Harrington, 1980]. In fact

he showed that the top of the Lachlan Non-Splitting Pair a could be made equal to 0′ . This

result, known as the Harrington Non-Splitting Theorem, proved the existence of Harrington Non-

Splitting Bases d over which every non-trivial splitting of 0′ fails.

Theorem 1.2.12. (Harrington Non-Splitting Theorem). There is a c.e. degree d > 0, such that

there is no non-trivial splitting of 0′ into c.e. degrees u and v such that u > d and v > d.

14

Leonhardi also gave a different account of the Lachlan Non-Splitting Theorem, and then proceeded

to generalise this theorem in a different direction in [Leonhardi, 1997]. Leonhardi explains that

this new account of the Lachlan Non-Splitting Theorem was derived from the aformentioned

unpublished notes:

Many of the ideas presented in this section, along with some terminology and

notation, have been taken from the notes of Harrington, Slaman, and in particular

from the notes of Soare on Lachlan’s theorem. As with all such borrowings and

adaptations, much credit should go to these authors, who were themselves inspired by

the powerful and ingenious ideas presented in Lachlan’s paper.

Leonhardi’s published account of the Lachlan Non-Splitting Theorem shed considerable light on

the techniques which need to be employed in order to prove Lachlan’s Non-Splitting Theorem.

Regrettably this account, which is 8 pages in length, omits a number of important details when

sketching out the construction, and contains no proper verification. It is in fact possible to find

counter-examples to show that the construction as sketched by Leonhardi does not satisfy the

requirements of the Lachlan Non-Splitting Theorem.

We remedy this situation in Chapter 2 of this dissertation, where we shall present a complete,

correct and intuitive account of the Lachlan Non-Splitting Theorem.

1.2.3 Separation of Jump Classes High and Low

One important problem related to Lachlan Non-Splitting Pairs is the question of separating the

jump class High from the jump class Low. By separating the jump class High from the jump

class Low we mean finding some first order formula of degree theory θ(x) in the language of

partial orders such that the formula is true whenever the c.e. degree x is high and false when the

c.e. degree x is low.

Shore and Slaman considered the problem of separating the jump class High from the jump class

Low in [Shore and Slaman, 1990, Shore and Slaman, 1993]. In [Shore and Slaman, 1990] they

15

identified the existence of a Lachlan Non-Splitting Pair strictly below a given c.e. degree x as one

possible way of separating the high c.e. degrees from the low c.e. degrees.

Indeed, the following corollary of the Robinson Splitting Theorem would provide the first part of

this result:

Corollary 1.2.13. (Robinson Splitting Theorem). Let l be a low c.e. degree. Then there is no

Lachlan Non-Splitting Pair 〈a,d〉 strictly below l.

Proof. Consider the low c.e. degree l. By the definition of lowness and the fact the the Turing

jump preserves the ordering between c.e. degrees, it follows that every c.e. degree below l is also

low. Suppose that one chooses c.e. degrees a and d strictly below l with a > d. Then by the

Robinson Splitting Theorem we have that it is possible to find a non-trivial splitting of a over d.

It follows that l cannot strictly bound some Lachlan Non-Splitting Pair 〈a,d〉.

By applying an analogous argument to the result obtained by Shore and Slaman, Harrington and

Brickford and Mills one obtains that a low2 c.e. degree cannot strictly bound a Lachlan Non-

Splitting Pair.

On the other hand, the second part of the result for separating the jump class High from the

jump class Low would have to be provided by proving that every high c.e. degree h strictly

bounds a Lachlan Non-Splitting Pair. Shore and Slaman announced that this was the case

in [Shore and Slaman, 1990] and [Shore and Slaman, 1993], mentioning that this result would

appear in a forthcoming paper, but this result was never published.

Slaman has confirmed that no proof of this fact exists [Slaman, 2015], and that Shore and himself

had in fact singled out the notion of a Slaman Triple of c.e. degrees as a more tractable one for

separating the jump class High from the jump class Low, especially in the light of their new

technique for high permitting introduced in [Shore and Slaman, 1993].

It is thus the case that the existence of a Lachlan Non-Splitting Pair strictly below every high c.e

degree remains a conjecture.

Conjecture 1.2.14. (Shore-Slaman Conjecture). Let h be a high c.e. degree. Then h strictly

bounds a Lachlan Non-Splitting Pair.

16

We shall prove that this conjecture holds in Chapter 3 of this Dissertation. The following unproven

result will then follow from our theorem.

Corollary 1.2.15. (Separation of Jump Classes High and Low2). The property of strictly

bounding a Lachlan Non-Splitting Pair separates the jump classes High and Low2.

Since every low c.e. degree is also a low2 c.e. degree, we have that the property of strictly

bounding a Lachlan Non-Splitting Pair separates the jump class High from the jump class Low

as a special case of the above.

1.2.4 Distribution of Various Degrees

Shore and Slaman’s proposal for separating the jump classes High and Low by asking whether a

given c.e. degree strictly bounds some degree theoretical object such as a Lachlan Non-Splitting

Pair or a Slaman Triple led to the question of how these objects were distributed in the c.e. degrees,

and especially of their relation to c.e. degrees from various jump classes.

A related question involves the construction of c.e. degrees which do not strictly bound Lachlan

Non-Splitting Bases or Harrington Non-Splitting Bases, and which thus strictly bound only well-

behaved c.e. degrees x over which it is always possible to find a non-trivial splitting of any c.e.

degree a > x or of 0′ respectively.

We start by reviewing the proven and conjectured relationships between Lachlan Non-Splitting

Pairs, Slaman Triples and c.e. degrees from various jump classes. It is interesting to compare

the distribution of Lachlan Non-Splitting Pairs and Slaman Triples. For although the construction

for Slaman Triples exhibits a resemblance to the construction for Lachlan Non-Splitting Pairs, the

latter presents several features which complicate the situation. We shall then review the results for

the Robinson degrees, defined as being those c.e. degrees which avoid all Lachlan Non-Splitting

Bases in their lower cone.

Lachlan Non-Splitting Pairs

We start by restating the notion of a Lachlan Non-Splitting Pair [Lachlan, 1976].

17

Definition 1.2.16. (Lachlan Non-Splitting Theorem). A Lachlan Non-Splitting Pair is a pair of

c.e. degrees 〈a,d〉, with d > 0 and a > d such that there is no non-trivial splitting of a into c.e.

degrees u and v with u > d and v > d.

The c.e. degree a is called a Lachlan Non-Splitting Top, the c.e. degree d is called a Lachlan

Non-Splitting Base, and if a = 0′, the c.e. degree d is called a Harrington Non-Splitting Base.

The known results and conjectures regarding the relationship of Lachlan Non-Splitting Pairs to

various jump classes are as follows. Shore and Slaman have shown that low2 c.e. degrees cannot

strictly bound a Lachlan Non-Splitting Pair in [Shore and Slaman, 1990]. In addition Shore and

Slaman have claimed that there is a low3 c.e. degree which strictly bounds a Lachlan Non-

Splitting Pair in [Shore and Slaman, 1993], but have not given a proof of this result. On the

other hand, Cooper, Li and Yi have shown that there is a non-low2 c.e. degree which does

not strictly bound a Lachlan Non-Splitting Base in [Cooper et al., 2002]. Hence this degree

cannot strictly bound a Lachlan Non-Splitting Pair either. Shore and Slaman have claimed that

every high c.e degree strictly bounds a Lachlan Non-Splitting Pair in [Shore and Slaman, 1990,

Shore and Slaman, 1993] but have not given a proof of this result, as discussed in the previous

section.

Slaman Triples

We shall now define the notion of a Slaman Triple [Shore and Slaman, 1993].

Definition 1.2.17. A Slaman Triple is a triple of c.e. degrees 〈a,b, c〉 which obeys the following

properties:

1. a > 0.

2. c 6≤ b.

3. If d is a c.e. degree such that 0 < d < a, we have that c ≤ d ∨ b.

The known results and conjectures regarding the relationship of Slaman Triples to various jump

classes are as follows. Shore and Slaman have shown that low2 c.e. degrees cannot strictly bound a

18

Slaman Triple in [Shore and Slaman, 1990]. In addition, Shore and Slaman have claimed that there

is a low3 c.e. degree which strictly bounds a Slaman Triple in [Shore and Slaman, 1993], but have

not given a proof of this result. Shore and Slaman used a new high permitting method introduced

in [Shore and Slaman, 1993] in order to show that every high c.e. degree strictly bounds a Slaman

Triple. In this way, Shore and Slaman have successfully separated the jump class High from

the jump class Low2, and hence also from the jump class Low. On the other hand, Leonhardi

has shown that there is a high2 c.e. degree which does not strictly bound a Slaman Triple in

[Leonhardi, 1996].

Robinson Degrees

We shall now define the notion of a Robinson degree [Cooper et al., 2002]. A Robinson degree is

a c.e. degree r which does not strictly bound any Lachlan Non-Splitting Base. In particular this

also means that a Robinson degree does not strictly bound any Lachlan Non-Splitting Pair.

Definition 1.2.18. A Robinson degree is a c.e. degree r such that there is no Lachlan Non-Splitting

Pair 〈a,d〉 with d < r.

The known results relating to Robinson degrees are the following. From the Robinson Splitting

Theorem it follows that no low c.e. degree strictly bounds a Lachlan Non-Splitting Base, which

makes every low c.e. degree a Robinson degree. The result of Shore and Slaman, Harrington

and Brickford and Mills showing that no low2 c.e. degree bounds a Lachlan Non-Splitting Pair

[Shore and Slaman, 1990] is not strong enough to show that no low2 c.e. degree strictly bounds a

Lachlan Non-Splitting Base. Cooper, Li and Yi have shown that there is a non-low2 c.e. degree

which does not strictly bound a Lachlan Non-Splitting Base in [Cooper et al., 2002], but have not

determined the exact jump class of this degree. It is not known whether there is a high Robinson

degree, although from the Shore and Slaman Conjecture it would follow that no high c.e. degree

is a Robinson Degree.

Corollary 1.2.19. (Shore and Slaman Conjecture). There is no high c.e. Robinson degree.

19

1.2.5 Contributions

We shall now summarise the contributions of this dissertation and the corollaries following from

them, and make the novel elements explicit.

In Chapter 2 of this dissertation, we shall present a complete, correct and intuitive account of

the Lachlan Non-Splitting Theorem. Our presentation will follow the outline of the Lachlan

Non-Splitting Theorem given by Leonhardi in [Leonhardi, 1996], broadening this account into

a detailed exposition of this construction. However there will also be a number of divergences

and novel elements which are not present in Leonhardi’s account, which we shall summarise

as follows. These are the notion of R-Synchronisation (Section 2.6), the use of open and close

stages (Section 2.7), the counterexample showing that Leonhardi’s account fails to satisfy the

requirements of the Lachlan Non-Splitting Theorem (Section 2.7), the notion of self-repair for

R strategies which overcomes this difficulty (Section 2.8), the notion of fairness (Section 2.9),

explicit strategies for the general case involving the satisfaction of many R and S requirements

simultaneously (Section 2.9), a schema for generating the priority tree in the general case (Section

2.9) as well as the entire verification of the construction (Section 2.9).

In Chapter 3 of this dissertation we give an entirely novel result by showing that every high c.e.

degree strictly bounds a Lachlan Non-Splitting Pair, thus settling the Shore-Slaman conjecture.

In order to achieve this, we shall permit the construction of the Lachlan Non-Splitting Theorem

strictly below any given high c.e. degree. Our theorem will show how to apply the high permitting

method of Shore and Slaman given in [Shore and Slaman, 1993] to the Lachlan Non-Splitting

construction given in Chapter 2 so as to obtain the desired result.

From this result it will follow that the property of strictly bounding a Lachlan Non-Splitting Pair

can be used to separate the jump classes High and Low2, and hence also Low. This would mean

that Lachlan Non-Splitting Pairs are distributed in a way analogous to that of Slaman Triples with

respect to the jump classes High and Low2. In addition it will also follow that there is no high

Robinson degree. In particular, the non-low2 Robinson degree built by Cooper, Li and Yi in

[Cooper et al., 2002] cannot be high.

20

1.3 The Priority Method

In this section we shall outline the priority method, which will be used to organise the constructions

found in Chapters 2 and 3. For further details about 0′ (finite injury), 0′′ (infinite injury) and 0′′′

priority arguments, see [Soare, 1987].

1.3.1 The Priority Ordering

The first step in the use of the priority method is to impose a strict total order <p on the infinite

set of requirements which will need to be satisfied. This is called a priority ordering and results in

the following sequence of requirements:

R1 <p R2 <p R3 <p . . .

We shall then say thatRn is of higher priority thanRn+1 and that the latter is of lower priority than

the former. It is also possible to have requirements of different kinds. When this is the case the

requirements will be interleaved in some way and will be ordered by the same priority ordering.

1.3.2 The Strategies

Every requirement will be satisfied through the action of one or more strategies. A strategy is

a finite program with some (possibly infinite) set of outcomes Λ which attempts to satisfy one

requirement. The outcomes Λ of the strategy are ordered by some strict total order <Λ. If a <Λ b

we shall say that the outcome a lies to the left of outcome b, and that b lies to the right of outcome

a. We shall use Greek letters such as γ to denote strategies.

The construction will deem certain strategies to be accessible during every stage s. If a strategy

γ becomes accessible at stage s it will execute its finite program, and this will leave it in some

particular state. Each such state will correspond to an outcome and the strategy will choose the

corresponding outcome Os(γ) at stage s.

Over the course of the construction the strategy may reach a limit outcome, or else it may reach

some outcomes infinitely often. The order a <Λ b is usually defined so that if the strategy chooses

21

outcome a infinitely often, then b cannot be the outcome which causes the strategy to satisfy the

requirement. Hence it is possible to define the true outcome of the strategy as the limit outcome if

it exists, and as the leftmost outcome which is visited infinitely often by the strategy otherwise.

1.3.3 The Priority Tree

Strategies are organised into a priority tree, which will be specific to each construction. A priority

tree is a tree such that the nodes correspond to strategies and the outgoing edges of each node

correspond to the outcomes of that strategy.

More formally, let Λ̃ be the set of all possible outcomes of the strategies which will be used in the

construction. Let Λ̃ω be the set of finite sequences of elements from Λ̃. The priority tree T of the

construction will be a subset of Λ̃ω. We shall say that p is a path in the priority T tree if p ∈ T .

Hence a path p consists of a sequence of outcomes.

Since every node of the priority tree corresponds to a strategy, we have that every path p in T also

corresponds to some strategy γ. This strategy is the one obtained by starting at the root node of the

priority tree and following all the edges corresponding to the sequence of outcomes p. The length

of the path |p| is obtained by counting the elements in the sequence, or in other words the number

of edges on the path. The notation p � n will be used to denote the initial segment of p of length

n. The expression p � n = γ shall be used as shorthand to denote that the strategy corresponding

to p � n is γ. The notation p(n) will denote the outcome of the strategy γ which corresponds to

p � n. The notation [T] will be used to denote the set of infinite paths through T , where p is said

to be an infinite path through T if p � n ∈ T for every n.

The notation p ˆ o shall be used to denote the path of length |p| + 1 obtained by appending the

outcome o to the end of the sequence of outcomes of p. If γ = p � n, we shall use the notation

γ _ o to identify the edge with outcome o of the strategy γ. Given some path p of length m > n,

and the fact that γ = p � n, we shall use the notation γ+ to denote the successor strategy of γ on

the path p.

Given paths p and p′, we shall use the notation p ⊂ p′ to denote that p is an initial segment of p′,

and p ⊆ p′ to denote that p is either an initial segment of p′ or equal to p′. The notation p ⊃ p′ and

22

p ⊇ p′ is then straightforward. We shall also write p <L p′ if the path p lies to the left of the path

p′, defined as (∃ a, b ∈ Λ̃)(∃ p′′ ∈ T)[p′′ˆa ⊆ p ∧ p′′ˆb ⊆ p′ ∧ a <Λ b].

Since every path p corresponds to a strategy γ, we can interpret γ ⊂ γ′ as meaning that the strategy

γ is above γ′ on the priority tree. Similarly γ ⊆ γ′ will mean that γ is above or equal to γ′, γ ⊃ γ′

will mean that γ is below γ′ and γ ⊇ γ′ will mean that the strategy γ is below or equal to γ′.

Finally γ <L γ′ shall mean that the strategy γ lies to the left of γ′.

1.3.4 The Construction

At any given stage s, the construction will construct a current path δs of length s through the

priority tree. Strategies which lie on the current path will be declared to be accessible at stage s.

To build the current path, the construction goes through a sequence of substages t ≤ s. During

substage 0, we define δs as being the empty path of length 0, and declare the strategy lying at the

end of this path to be accessible.

During substage t + 1, the construction takes the strategy γ lying at the end of the path δs which

was defined during the previous substage. It then computes the outcome Os(γ) of the strategy γ

at stage s. Furthermore it redefines δs by extending the path defined during the previous substage

with this new outcome. Finally, the strategy at the end of the new path is declared to be accessible

as before.

One this process concludes, the construction has finished building the current path δs. It will thus

initialise all strategies lying to the right of the current path. This will cause these strategies to

cancel all work done so far and restart their execution from the beginning.

Finally we define the true path f as follows. For every n, f(n) is the true outcome of the strategy

f � n. If the construction is correct, the true path will be infinite and will correspond to the

leftmost path which is visited by the construction infinitely often. By this we mean that there will

be infinitely many stages s such that δs ⊂ f . If a strategy γ lies on the true path, there will be

some stage s0 such that for all stages t > s0 we have that δt 6<L γ, or in other words that the

current path does not lie to the left of γ at stage t. Hence, the strategy γ will not be initialised by

23

the construction after some stage s0.

1.3.5 The Verification

The construction has to be verified in order to show that all requirements are satisfied. During the

verification it is shown that for every requirement there is some strategy on the true path which

will attempt and succeed in satisfying the requirement.

24

Chapter 2

The Lachlan Non-Splitting Theorem

2.1 Preliminaries for the Theorem

In this chapter we shall be proving the following theorem.

Theorem 2.1.1. (Lachlan Non-Splitting Theorem [Lachlan, 1976]). There exist c.e. degrees a

and d such that d < a, and there is no non-trivial splitting of a into c.e. degrees u and v such

that d < u and d < v.

2.1.1 The Requirements

In order to prove the theorem we shall build two sets A and D, satisfying certain requirements,

and then take a = deg(A ⊕ D) and d = deg(D) to be the top and the base of the Lachlan

Non-Splitting pair which we are required to construct.

Since D ≤T A⊕D, we have that d ≤ a. To show that d < a, it is sufficient to prove that a 6≤ d.

Hence we shall need to satisfy the following requirement.

S : A 6≤T D

In order to show that there is no non-trivial splitting of a into c.e. degrees u and v such that d < u

and d < v, we shall need to satisfy the requirementR(U,V) for every pair of c.e. sets U and V .

R(U,V) : [A ≤T U ⊕ V]⇒ [A ≤T U ⊕D ∨ A ≤T V ⊕D]

25

We now show that satisfying these requirements is enough to prove the theorem.

Lemma 2.1.2. If the requirement S is satisfied and the requirement R(U,V) is satisfied for every

pair of c.e. sets U and V , there is no non-trivial splitting of a into c.e. degrees a0 and a1 such

that d < a0 and d < a1.

Proof. Suppose for contradiction that a has a non-trivial splitting into c.e. degrees a0 and a1

such that d < a0 and d < a1. Let a0 = deg(A0) and a1 = deg(A1), where A0 and A1 are

c.e. sets. Then by the definition of a non-trivial splitting we have that a = a0 ∨ a1. Hence we

have that A ⊕ D ≡T A0 ⊕ A1. From this it follows that A ⊕ D ≤T A0 ⊕ A1 and hence that

A ≤T A0⊕A1. Thus from the fact thatR(A0,A1) holds we can conclude thatA ≤T A0⊕D or that

A ≤T A1 ⊕D. Now without loss of generality, suppose that A ≤T A0 ⊕D is the case. Then we

have that A⊕D ≤T A0 ⊕D. On the other hand, since d < a0 we have that D ≤T A0, and thus

that A0 ⊕D ≤T A0. By transitivity we obtain that A⊕D ≤T A0. In addition from a = a0 ∨ a1,

we can conclude that A ⊕D ≡T A0 ⊕ A1 and therefore we have that A0 ⊕ A1 ≤T A ⊕D. By

transitivity we have that A0 ⊕A1 ≤T A0 and hence that A1 ≤T A0. But this means that a1 ≤ a0

and hence that a0 - a1. It follows that a0 and a1 cannot be a non-trivial splitting of a, which gives

the required contradiction.

2.1.2 Implementation of the Requirements

In order for strategies to be able to satisfy the above requirements we will need to break them

down into a simpler form. Let (Θ) be a standard listing of all p.c. functionals, and let (Φ, U, V)

be a standard listing of all triples such that Φ is a p.c. functional, and U and V are c.e. sets.

Then the requirement S can be broken down into infinitely many requirements of the following

form.

S(Θ) : ΘD 6= A

On the other hand each requirementR(U,V) can be broken down into infinitely many requirements

of the following form.

R(Φ,U,V) : [ΦU,V = A]⇒ [ΓU,D = A ∨ ΓV,D = A]

26

In this case the functionals ΓU,D or ΓV,D would need to be built by any strategy attempting to

satisfy such a requirement.

2.1.3 Further Simplification of the Requirements

The requirements can be further simplified as follows. Consider a requirement of the formR(U,V),

and suppose that A ≤T U ⊕ V , so that it does not hold trivially.

Then in order to satisfy R(U,V) it is sufficient to show that a requirement of the form R(Φ,U,V)

holds for some p.c. functional Φ. This is because building a functional ΓU,D = A or a functional

ΓV,D = A is sufficient to show that A ≤T U ⊕D or A ≤T V ⊕D respectively, thus satisfying

R(U,V).

Finally if a functional Φ satisfying ΦU,V = A exists, there must also be a functional Ψ which

gives ΨU,V = A and which satisfies the following properties:

(1) (∀s)(∀x)(∀y) [x < y ⇒ ψs(x) < ψs(y)].

(2) (∀x)(∀s)(∀s′) [s < s′ ⇒ ψs(x) ≤ ψs′(x)].

Thus it follows that in order to satisfy a requirement R(U,V), it suffices to attempt to satisfy only

those requirements R(Φ,U,V) such that the functional ΦU,V satisfies properties corresponding to

(1) and (2) as specified above.

2.1.4 Further Remarks

We shall now make a number of preliminary remarks on the construction which will be used to

satisfy the requirements.

Priority Ordering of the Requirements

Earlier in this section we said that in order to prove the Lachlan Non-Splitting Theorem, we needed

to satisfy infinitely many requirements of the form S(Θ) where (Θ) is a standard listing of p.c.

27

functionals, and infinitely many requirements of the formR(Φ,U,V), where (Φ, U, V) is a standard

listing of all triples such that Φ is a p.c. functional and U and V are c.e. sets.

By making the index underlying each list of requirements explicit we can express the infinite list

of requirements S(Θ) as Si, and the infinite list of requirementsR(Φ,U,V) asRi, where i is a natural

number. It is then possible to define the priority ordering <p on the set of all requirements, which

is the strict total ordering below.

R1 <p S1 <p R2 <p S2 <p . . .

StrategiesR and S

Different strategies will be needed for the two kinds of requirement. Strategies which will attempt

to satisfy a requirement Ri will be called R-strategies, while strategies which will attempt to

satisfy a requirement Si will be called S-strategies. In general we shall use the notation α, α′, . . .

to denote S-strategies, and β, β′, . . . to denote R-strategies. We shall use the notation γ, γ′, . . .

when there is no need to distinguish between the two types of strategy.

In order to avoid ambiguity for situations involving multipleR strategies, if anR strategy β builds

a functional ΓU,D, we shall sometimes denote this functional by ΓU,Dβ . Similarly, if an R strategy

β builds a functional ΓV,D we willl sometimes denote the functional by ΓV,Dβ .

Witness, Threshold and Use Sets

During the course of its execution anR strategy may need to choose uses from some set, whilst an

S strategy may need to choose witnesses from some set and thresholds from another. These uses,

witnesses and thresholds shall sometimes be referred to as parameters. Different S strategies and

differentR strategies will have access to separate sets from which to choose these parameters.

In order to ensure that every set is disjoint from all others, we shall computably partition the set of

natural numbers N into infinitely many infinite subsets, which we can then assign to the strategies

as required.

28

We shall also totally order the R strategies on the priority tree, indexing them as βe for some

natural number e. Similarly we will totally order the S strategies on the priority tree, indexing

them as αe for some natural number e. In this manner we will be able to denote the set of uses of

anR strategy βe by U e. Similarly, we will denote the set of witnesses of an S strategy αe by W e,

and the set of thresholds of an S startegy αe by V e.

Expansionary Stages

An R strategy attempting to satisfy a requirement R(Φ,U,V) will need to observe the agreement

between the functional ΦU,V and the set A in order to decide what to do at any given stage s. We

define some useful notions related to this process below. Let β be anR strategy.

The length of agreement between the functional ΦU,V and the set A at stage s is denoted by

ls(Φ
U,V , A) and is defined as max {x | (∀y < x)[ΦU,V [s](y) = As(y)] }.

A stage s is called anR-expansionary stage if ls(ΦU,V , A) > lt(Φ
U,V , A) for all stages t < s. This

notion of expansionary stage is a global notion defined over all stages s. Thus if there are multiple

R strategies β which are attempting to satisfy the same requirement, and an R-expansionary

stage occurs, this will be noted by all such strategies. Note that if there are only finitely many

R-expansionary stages, theR requirement is satisfied trivially.

Given a strategy β, a stage s is called a β-expansionary stage if s is a β-stage and ls(ΦU,V , A) >

lt(Φ
U,V , A) for all β-stages twith t < s. This notion of expansionary stage is a local notion which

is specific to the strategy β. When using this notion, β is only measuring the length of agreement at

those stages at which it is accessible, and deciding whether there was an expansionary stage based

on the length of agreement at these stages. Note that if there are infinitely many R-expansionary

stages, and β sees only finitely many of them despite being accessible infinitely often, it follows

that ΦU,V (x) ↑ at some element x and that theR requirement is also satisfied trivially.

29

2.1.5 Stages and Substages

The construction shall proceed through a number of stages as described in section 1.3.4. During

each stage s, it will construct a current path of finite length through the priority tree. This path

is built during a number of substages, with a new strategy on this path becoming accessible and

executing during each substage. Since each strategy executes during its own substage, we shall

instruct the strategy to‘end the substage’ once it is done executing. This will allow the next strategy

on the current path to execute, if there is any. When a strategy is instructed to end the substage,

we will also indicate from which step it should resume execution when it becomes next accessible

during the appropriate substage of some stage s′ > s.

Note that if a requirement can be satisfied through a single strategy, the priority tree will consist

of that strategy only. In these cases, the construction goes through a number of stages as

usual, but each stage will only have one substage, during which the strategy becomes accessible.

This will be the case in sections 2.2 and 2.3, where we consider how to satisfy an R and

an S requirement in isolation respectively. On the other hand, any atempt to satisfy multiple

requirements simultaneously will require the use of multiple strategies laid upon a priority tree,

and in these cases each stage will have multiple substages.

30

2.2 OneR Requirement

In this section we shall consider how to satisfy oneR requirement in isolation.

There are two ways in which anR requirement can be satisfied. If the equality ΦU,V = A does not

hold, the requirement is satisfied trivially. On the other hand, if the equality ΦU,V = A holds, it is

sufficient to build a functional ΓU,D such that ΓU,D = A holds. Alternatively, it is also possible to

build a functional ΓV,D such that ΓV,D = A holds.

If an R strategy is going to build a functional ΓU,D, we shall say that it is following a Γ-strategy.

On the other hand, if the strategy is going to build a functional ΓV,D, we shall say that it is following

a Γ̂-strategy.

In order to satisfy one R requirement we shall use an R strategy β following a Γ-strategy. This

strategy will be able to choose parameters from a set of uses U e.

The strategy then works as follows. If the current stage s is not a β-expansionary stage, the strategy

will do nothing. On the other hand, if stage s is a β-expansionary stage, the strategy will define

the axiom ΓU,D[s](x) = As(x) for every x < ls(Φ
U,V , A).

When defining ΓU,D[s](x), the strategy also needs to choose a use γs(x). This use is the least

element in the set of uses U e satisfying certain conditions. The first condition is that use chosen

has to be at least as large as any use which has previously been chosen for the element x. The

second condition is that the use chosen must be greater than the use which is presently assigned to

all elements which are smaller than x.

2.2.1 TheR Strategy

We give the formal definition of theR strategy below.

TheR Strategy

This strategy has a set of uses U e, and follows a Γ-strategy.

31

(1) (Check for expansionary stage). Is stage s a β-expansionary stage?

(a) (Yes) Go to step (2).

(b) (No) End the substage and resume from step (1).

(2) (Define the functional). For every x < ls(Φ
U,V , A) such that ΓU,D[s](x) ↑, define the

axiom ΓU,D[s](x) = As(x), and choose the corresponding use γs(x) to be the least

element in the set of uses U e obeying the following conditions (if it exists):

(a) γs(x) ≥ γt(x) for all t < s.

(b) γs(x) > γs(y) for all y < x.

(c) γs(x) is greater than the stage at which β was last initialised.

End the substage and resume from step (1).

We shall now consider the outcomes of the R strategy and define the outcome which the strategy

selects at stage s.

Outcome of theR Strategy

The R strategy has two outcomes, the infinitary outcome i and the finitary outcome f . These

outcomes are ordered as follows: i <Λ f . At stage s, the strategy decides which outcome to visit

by performing the following case analysis:

(I) Waiting for expansionary stage. The strategy ends its substage at step (1). Then the present

stage s is not a β-expansionary stage. TheR strategy visits its f outcome.

(II) Expansionary stage. The strategy ends its substage at step (2). Then the present stage s is a

β-expansionary stage. TheR strategy visits its i outcome.

We are now in a position to analyse whether theR strategy satisfies theR requirement or not.

2.2.2 Satisfaction of Requirement

We perform a case analysis based on the leftmost outcome visited infinitely often by theR strategy.

32

f Suppose that f is the leftmost outcome to be visited by the R strategy. Then this means that

there have only been finitely many β-expansionary stages, and that the strategy has satisfied its

requirement trivially.

i Suppose that i is the leftmost outcome to be visited by the R strategy. Then this means that

there have been infinitely many β-expansionary stages. But during each such β-expansionary

stage, the strategy has defined its functional to agree with A according to the new length of

agreement. Hence we have that ΓU,V = A, and the requirement is satisfied.

33

2.3 One S Requirement

In this section we shall consider how to satisfy one S requirement in isolation.

In order to satisfy an S requirement, one needs to ensure that ΘD 6= A. This can be achieved

through an S strategy α which follows the Friedberg-Muc̆nik procedure.

The strategy α will have an infinite set of witnesses W e. It will start by choosing the least unused

witness w from this set and wait for a stage s such that ΘD[s](w) ↓= 0. When this becomes the

case, the strategy will diagonalise by enumerating w into A and restraining D � θs(w) to prevent

the computation from changing value.

We give the formal definition of the S strategy below.

2.3.1 The S Strategy

The S Strategy

The strategy has a set of witnesses W e. It chooses one parameter, the witness w.

(1) (Select the witness). Choose a witness w. The value selected for this witness is the least

value in W e such that:

(a) w is greater than the stage at which α was last initialised.

(2) (Wait for convergence). Is ΘD[s](w) ↓= 0?

(a) (Yes) Go to step (3).

(b) (No) End this substage. Resume from step (2).

(3) (Diagonalise). Enumerate w into A, restrain D � θs(w). Go to step (4).

(4) (Successful Diagonalisation). End this substage and resume from step (4).

We shall now consider the outcomes of the S strategy and define the outcome which the strategy

selects at stage s.

34

Outcome of the S Strategy

The S strategy has two outcomes, the diagonalisation outcome d and the wait outcome w. These

outcomes are ordered as follows: d <Λ w. At stage s, the strategy decides which outcome to visit

by performing the following case analysis:

(I) Waiting for computation. The strategy ends its substage at step (2)(b). Then we have that

ΘD[s](w) ↑, or that ΘD[s](w) ↓= 1. The strategy visits its w outcome.

(II) Successful Diagonalisation. The strategy ends its substage at step (4). Then we have that the

strategy has diagonalised successfully by enumerating w into A and restraining D � θs(w).

The strategy visits its d outcome.

We are now in a position to analyse whether the S strategy satisfies the S requirement or not.

2.3.2 Satisfaction of Requirement

We perform a case analysis based on the leftmost outcome visited infinitely often by the S .

w Suppose w is the leftmost outcome to be visited infinitely often. Then one of two things must

be the case. Either we have that ΘD(w) ↑, in which case ΘD(w) 6= A(w) and the requirement

is satisfied, or else we have that ΘD(w) ↓= 1. But in this case, the strategy never enumerates

w into A. Thus in this case we have that ΘD(w) 6= A(w) as well and the requirement is also

satisfied.

d Suppose d is the leftmost outcome to be visited infinitely often. Then it must be the case that

ΘD(w) ↓= 0. But in this case, we have that w has been enumerated into A and that the

computation cannot change its value due to the restraint imposed on D. Hence we have that

ΘD(w) 6= A(w), and the requirement is satisfied.

35

2.4 S BelowR - First Approximation

In this section we shall consider how to satisfy two requirementsR and S , withR being of higher

priority than S .

The simultaneous satisfaction of these two requirements will only be possible through the

interaction of multiple R and S strategies which are of a specific form and are organised in a

specific way on a priority tree.

The form of the R and S strategies which are necessary shall not be given immediately, but will

be arrived at through a sequence of approximations. During each step of the approximation, a

provisional version of the R and S strategies will be introduced. A number of strategies of this

form will then be organised into a priority tree in an attempt to satisfy the requirements.

When the present arrangement fails to satisfy the requirements in some specific way, we move to a

new step of the approximation, introducing a new version of the R and S strategies which is able

to circumvent this problem. This process continues until one arrives at a sufficiently sophisticated

form ofR and S strategies.

We shall now consider the first approximation for satisfying the two requirements R and S . As

we have already seen, an R requirement in isolation can be satisfied through an R strategy β of

the form found in Section 2.3. In order to deal with an additional S requirement, we shall require

an S strategy α which is capable of taking the β strategy above it into consideration.

In what follows we shall assume that the R requirement is not satisfied trivially, and that thus β

has to actually build its functional in order for the requirement to be satisfied. This in turn means

that β sees infinitely many β-expansionary stages. If this were not the case, the S requirement

could be satisfied by an S strategy which ignores the existence of β. Such an S strategy could thus

be of the form found in Section 2.3.

36

2.4.1 The S Strategy

We shall begin by considering the use of an S strategy α of the form found in Section 2.3. Such

a strategy α would attempt to diagonalise by enumerating its witness w into A and by restraining

D � θ(w).

However the strategy β will now also be affected by this action, since the enumeration of w into

A causes the occurrence of the disagreements ΦU,V (w) 6= A(w) and ΓU,D(w) 6= A(w). Now,

since there are infinitely many β-expansionary stages, the disagreement ΦU,V (w) 6= A(w) must

be removed. This can happen either through a U � φ(w) change, or through a V � φ(w) change.

Consider the situation where φ(w) < γ(w). In this case, a U � φ(w) change also undefines

ΓU,D(w), allowing theR strategy to redefine ΓU,D(w) so as to agree with the new value of A(w).

In this case we shall say that ΓU,D(w) is honest with respect to ΦU,V (w), or more simply that

ΓU,D(w) is honest.

Since this situation is a beneficial one, the α strategy should try to ensure that ΓU,D(w) is honest

before enumerating w into A. In this way the disagreement ΓU,D(w) 6= A(w) can be corrected

automatically in the case of a U change. The α strategy can achieve this by enumerating γ(w) into

D in order to undefine ΓU,D(w). This allows the β strategy to redefine ΓU,D(w) with an increased

use γ(w), which will eventually become greater than or equal to φ(w). We refer to this process as

honestification.

One should note that it is also possible for ΦU,V (w) to become undefined through a V � φ(w)

change. In this case φ(w) could increase once the functional is defined again. If this results in

φ(w) > γ(w) the α strategy would be required to perform honestification once again.

On the other hand, if the α strategy sees that ΦU,V (w) is honest, it will proceed to open a gap. The

strategy will enumerate w into A and restrain D � θ(w). Opening a gap creates a disagreement

ΦU,V (w) 6= A(w) for the strategy β. This will be repaired during the next β-expansionary stage,

either through a U � φ(w) change, or through a V � φ(w) change.

After the β-expansionary stage leads to one or both of these changes, the α strategy will close a

gap. If there has been a U � φ(w) change, then we have that the disagreement ΓU,D(w) 6= A(w)

37

has been removed without any need to change D. Hence the α strategy has diagonalised, and is

able to protect this diagonalisation by preserving its restraint on D.

On the other hand, if there has been no U � φ(w) change, we have that there has been a V �

φ(w) change. In this case the disagreement ΦU,V (w) 6= A(w) has been removed, whilst the

disagreement ΓU,D(w) 6= A(w) persists. This disagreement must thus be repaired through some

other means.

The α strategy can repair this disagreement by enumerating some x ≤ γ(w) into D, thus

undefining ΓU,D(w). However, if θ(w) ≥ γ(w), such an action would destroy the computation

ΘD(w), and the diagonalisation would fail, meaning that a new witness would have to be chosen

and that the α strategy would have to start over.

To choose the x to enumerate into D we proceed as follows. Let the strategy α have an infinite

set of thresholds V e and an infinite set of witnesses W e. The strategy will select two parameters,

a threshold v from V e and a witness w from W e. When selecting these parameters, it will seek to

satisfy the following parameter choice constraint:

v < γ(v) < w < γ(w)

If the strategy α does not see a U change when closing a gap, it will enumerate γ(v) into D in

order to undefine ΓU,D(w). We refer this action as capricious destruction. Note that whilst the

witness w needs to change each time a gap is opened, the threshold v remains fixed. This fact will

be important when defining work intervals, which will be discussed at a later stage.

In our description of the strategy we postponed the mention of two important facts.

The first is that when the α strategy opens a gap by enumerating the witness w into A and

restraining D � θ(w), it shall impose a constraint on the β strategy to choose γ(w) to be greater

than θ(w) if it becomes undefined. In this way, if a U change occurs whilst closing a gap, not only

is the disagreement ΓU,D(w) 6= A(w) removed without changing D, but the computation is also

protected from any enumeration of γ(x) with x ≥ w into D.

The second is that the α strategy will wait until the functional built by β is in a suitable state before

proceeding. Suppose that α has defined some parameter. Then we shall require α to check whether

38

the functional is defined and equal to A at every element less than or equal to the parameter before

proceeding.

On the one hand, this makes sure that the operations carried out by α and the work intervals which

will be introduced at a later stage will be well-defined. On the other hand, it will stop α from

taking any action involving any parameter until any disagreements between the functional and A

have been repaired below that parameter, ensuring that actions affecting the functional built by β

take place in an orderly fashion.

The aforementioned checks will take place through the use of a background task which the strategy

α performs whenever it is accessible, before resuming from where it had left. Note that in order

for this measure to apply consistently, α will also need to make the same checks prior to choosing

any parameter.

We now proceed to formalise the S strategy.

The S Strategy

The strategy has a set of witnesses W e and a set of thresholds V e. It chooses two parameters,

the witness w and the threshold v. It lies below oneR strategy β which follows a Γ-strategy.

(*) (Background Step) Perform this step at the beginning of every substage during which

the strategy is accessible. If the following conditions are met resume from the step last

indicated by the strategy, or resume from step (1) if no such step exists. Otherwise end

the substage.

(a) If v is defined, (∀n≤v)(ΓU,D[s](n) ↓= As(n)).

(b) If w is defined, (∀n≤w)(ΓU,D[s](n) ↓= As(n)).

(1) (Select the thresholds). Choose a threshold v. The value chosen for this threshold is the

least value in V e such that:

(a) v is greater than the stage at which α was last initialised.

(2) (Select the witness). Choose a witness w. The value chosen for this witness is the least

value in W e such that:

39

(a) (∀n≤w)(ΓU,Ds (n) ↓= As(n)).

(b) w > γs(v).

(c) w is greater than the stage at which α was last initialised.

If a witness satisfying these conditions cannot be found, end this substage. Resume

from step (1). Otherwise go to step (3).

(3) (Wait for convergence). Is ΘD[s](w) ↓= 0?

(a) (Yes) Go to step (4).

(b) (No) End this substage. Resume from step (3).

(4) (Honestification). Is φs(w) > γs(w)?

(a) (Yes) Enumerate γ(w) into D. End this substage and resume from step (3).

(b) (No) Go to step (5).

(5) (Gap open) Constrain the strategy β to choose uses γs′(w) > θs(w) at all stages s′ >

s. Enumerate w into A and restrain D � θs(w). Cancel the witness w and end this

substage. Resume from step (6).

(6) (Gap close) Let t be the stage at which the strategy last opened a gap by ending its

substage at step (5). Let t′ be the the leastR-expansionary stage greater than t. Is it the

case that Ut � φt(w) 6= Ut′ � φt(w)?

(a) (Yes) Go to step (8).

(b) (No) Go to step (7).

(7) (Capricious destruction) Enumerate γs(v) into D. End this substage and resume from

step (1).

(8) (Successful diagonalisation). End this substage. Resume from step (8).

We shall now consider the outcomes of the S strategy and define the outcome which the strategy

selects at stage s.

40

Outcome of the S Strategy

The S strategy has four outcomes, the diagonalisation outcome d, the gap outcome g, the

honestification outcome h and the wait outcome w, with d <Λ g <Λ h <Λ w. At stage s,

the strategy decides which outcome to visit by performing the following case analysis:

(I) Waiting for parameters. The strategy ends its substage at step (*) or at step (2). Then the

functional of the active strategy β fails to be defined and equal to A up to some parameter, or α

has failed to choose some parameter. The strategy visits its w outcome and imposes the work

interval (0,∞).

(II) Waiting for computation. The strategy ends its substage at step (3). Then we have that

ΘD[s](w) ↑, or ΘD[s](w) ↓= 1. The strategy visits its w outcome.

(III) Honestification. The strategy ends its substage at step (4)(a). Then we have that ΘD[s](w) ↓=

0 and that γs(w) < φs(w). The strategy visits its h outcome.

(IV) Opening a gap. The strategy ends its substage at step (5). Then we have that ΘDs
s (w) ↓= 0,

φs(w) ≤ γs(w) and that w has been enumerated into A. The strategy has opened a gap. The

strategy visits its g outcome.

(V) Closing a gap - capricious destruction. The strategy ends its substage at step (7). Then we

have that the strategy has last opened a gap at stage t and that Ut � φt(w) = Us � φt(w). The

strategy is closing a gap. The strategy visits its g outcome.

(VI) Closing a gap - successful diagonalisation. The strategy ends its substage at step (8). Then we

have that the strategy has last opened a gap at stage t and that Ut � φt(w) 6= Us � φt(w). The

strategy has diagonalised successfully. The strategy visits its d outcome.

(VII) Stopped. The strategy ends its substage at step (8), and step (8) has been visited since

the strategy was last initialised. Then we have that the strategy has already diagonalised

successfully. The strategy visits its d outcome.

41

2.4.2 TheR Strategy

A more sophisticated R strategy β will be needed to deal with the actions of the S strategy lying

below it. TheR strategy β introduced in this section will differ from the one found in Section 2.2

in three respects.

Firstly, the β strategy needs to consider the fact that it is now possible for the functional ΓU,D to

disagree with the set A at some element. The reason for such a disagreement is that the strategy α

could have enumerated its witness w into A by opening a gap during a stage at which ΓU,D(w) ↓.

Whilst this disagreement persists, the β strategy cannot continue building its functional. Instead it

will have to wait until the strategy α closes its gap so that the disagreement is removed.

Secondly, when defining its functional, β will not choose elements from the set U e which have

already been enumerated into the set D. This means that whenever α enumerates some use γ(x)

into D during honestification or capricious destruction, the β strategy will have to choose an

increased use when redefining its functional at the element x.

Thirdly, when defining its functional, the strategy β has to observe any constraints which may

have been imposed on it by lower priority S strategies which have opened a gap. This means that

whenever α opens a gap by enumerating its witness w into A, the β strategy will have to choose a

use greater than θ(w) when redefining its functional at the element w.

We formalise theR strategy below.

TheR Strategy

The strategy has a set of uses U e, and follows a Γ-strategy.

(1) (Check for expansionary stage). Is stage s a β-expansionary stage?

(a) (Yes) Go to step (2).

(b) (No) End the substage and resume from step (1).

(2) (Check for disagreement). Is there an m such that ΓU,D[s](m) 6= As(m)?

(a) (Yes) End the substage and resume from step (1).

42

(b) (No) Go to step (3).

(3) (Define the functional). For every x < ls(Φ
U,V , A) such that ΓU,D[s](x) ↑, define the

axiom ΓU,D[s](x) = As(x), and choose the corresponding use γs(x) to be the least

element in the set of uses U e obeying the following conditions:

(a) γs(x) ≥ γt(x) for all t < s.

(b) γs(x) > γs(y) for all y < x.

(c) γs(x) 6∈ D.

(d) γs(x) > y, where y is a constraint imposed by some S strategy below β.

(e) γs(x) is greater than the stage at which β was last initialised.

End the substage and resume from step (1).

We shall now consider the outcomes of the R strategy and define the outcome which the strategy

selects at stage s.

Outcome of theR Strategy

The R strategy has two outcomes, the infinitary outcome i and the finitary outcome f . These

outcomes are ordered as follows: i <Λ f . At stage s, the strategy decides which outcome to visit

by performing the following case analysis:

(I) Waiting for expansionary stage. The strategy ends its substage at step (1). Then the present

stage s is not an expansionary stage. TheR strategy visits its f outcome.

(II) Expansionary stage. The strategy ends its substage at step (2) or step (3). Then the present

stage s is an expansionary stage. TheR strategy visits its i outcome.

2.4.3 Organisation of Priority Tree

We shall now make our first attempt at organising a priority tree to satisfy an S requirement below

an R requirement. The following discussion will refer to the priority tree shown in Figure 2.1.

The following notation will be used on the priority tree.

43

• βU will denote anR strategy (from Section 2.4) which is following a Γ-strategy.

• αU will denote an S strategy (from Section 2.4) which needs to take into consideration one

R strategy following a Γ-strategy above it.

• αwill denote an S strategy (from Section 2.3) which does not need to take into consideration

anyR strategy above it.

βU

α

..

d w

αU

....

d
g h

w

i f

Figure 2.1: Priority tree for S belowR , first approximation

We shall start by attempting to satisfy the highest priority requirement, which happens to be R.

We assign anR strategy βU of the form found in Section 2.4 for this purpose.

Now, the strategy βU has two outcomes, i and f . The i outcome means that the strategy βU

sees infinitely many expansionary stages, and needs to build its functional in order to satisfy

the R requirement. On the other hand, the f outcome means that βU sees only finitely many

expansionary stages. This would imply that theR requirement is satisfied trivially.

Below the f outcome of the βU strategy, we have that the S requirement is the highest priority

unsatisfied requirement. In addition the R requirement is satisfied trivially, with or without the

action of the βU strategy. Hence the S requirement can be satisfied through an S strategy α which

ignores βU . In this case, α can be of the form found in Section 2.3. The strategy α will then satisfy

the S requirement, following the satisfaction of requirements analysis given in the same section.

Below the i outcome of the βU strategy, we have that the S requirement is the highest priority

unsatisfied requirement. But in this case, theR requirement is not satisfied trivially, and we require

the strategy βU to actually build its functional in order for theR requirement to be satisfied. This

means that we need to use an S strategy which takes the R strategy above it into consideration.

44

We shall thus use an S strategy αU of the form found in Section 2.4.

We are now in a position to analyse whether the strategies βU and αU acting together are sufficient

to satisfy theR and S requirements on this branch of the priority tree.

2.4.4 Satisfaction of Requirements

We perform a case analysis based on the leftmost outcome visited infinitely often by the strategy

αU .

w Suppose w is the leftmost outcome to be visited infinitely often. Then we either have that

ΘD(w) ↑ or that ΘD(w) ↓= 1 for some witness w. In the first case, we have that ΘD(w) 6=

A(w) trivially. In the second case we have that the strategy never enumerates the witness w

into A, and thus that ΘD(w) 6= A(w) as well. Hence the S requirement is satisfied. In addition

the strategy βU is able to construct its functional ΓU,V without interference after some stage,

meaning that theR requirement is satisfied as well.

h Suppose h is the leftmost outcome to be visited infinitely often. Then there must be some

witness w such that ΓU,D(w) is dishonest infinitely often. Each time ΓU,D(w) is dishonest, αU

performs honestification by enumerating γ(w) into D. This undefines ΓU,D(w), leading the

strategy βU to redefine the functional by increasing the use γ(w).

Since φ(w) > γ(w) infinitely often, honestification must take place infinitely often, causing

lims γs(w) → ∞. On the other hand, the increase in γ(w) must eventually cause γ(w) to

become greater than or equal to φ(w). Hence for ΓU,D(w) to be dishonest infinitely often, it

follows that lims φs(w) → ∞ must be the case as well. Hence we have that ΓU,D(w) ↑, but

also that ΦU,V (w) ↑, which means that theR requirement is satisfied trivially.

On the other hand the αU strategy does not enumerate its witness w into A. Hence it does not

manage to diagonalise against the computation ΘD(w) ↓= 0 and the S requirement remains

unsatisfied. We shall thus require a backup strategy in order to satisfy this requirement, which

will be discussed in the next section. It is important to note that despite the failure to satisfy

both requirements, progress has been made through the satisfaction of theR requirement.

45

g Suppose g is the leftmost outcome to be visited infinitely often. Then there must be infinitely

many witnesses w such that αU opens a gap at some stage s by enumerating w into A and

restraining D � θs(w). This is then followed by an expansionary stage at some stage t > s.

Since a U � φs(w) change must fail to occur by stage t, we have that a V � φt(w) change must

have occurred instead.

This means that the disagreement ΓU,D(w) 6= A(w) persists and that the αU strategy has to

perform capricious destruction by enumerating γ(v) into D in order to undefine ΓU,D(w). It

follows that ΓU,D(v) is undefined infinitely often, and that thus ΓU,D(v) ↑. In addition, if

γ(v) ≤ θ(w), capricious destruction also destroys the computation ΘD(w), forcing the αU

strategy to start anew. Since the S strategy never manages to diagonalise successfully, we have

that the S requirement remains unsatisfied. Once again we shall need a backup strategy in order

to satisfy the S requirement.

On the other hand, the βU strategy has also failed to satisfy its requirement, because ΓU,D(v) ↑.

We thus also require a backup strategy in order to satisfy the R requirement. There seems to

be a problem here in that no progress has been made in terms of satisfying at least one of theR

and S requirements. However each time the strategy αU fails to witness a U � φ(w) change,

a V � φ(w) change occurs instead. It will be possible for a backup R strategy to use these

changes in order to construct a functional ΓV,D, as will be discussed in the next section.

d Suppose d is the leftmost outcome of the αU strategy to be visited infinitely often. Then there

must be a witness w such that αU opens a gap at some stage s by enumerating w into A and

restraining D � θs(w). This is then followed by an expansionary stage at some stage t > s,

with a U � φs(w) change occurring by stage t. The U change undefines ΓU,D(w), allowing the

βU strategy to repair the disagreement without changing the set D.

The αU strategy has diagonalised successfully, whilst protecting its computation ΘD(w).

Hence the S requirement has been satisfied. In addition after stage t the βU strategy

remains able to construct its functional ΓU,D without further interference, meaning that the

R requirement is satisfied as well.

From the above discussion one can conclude that the g and h outcomes of the αU strategy leave

46

one or more requirements unsatisfied. This will require us to pass to a second approximation

which is able to deal with this situation.

2.5 S BelowR - Second Approximation

In this section we shall make a second attempt to satisfy an S requirement below anR requirement.

In order to achieve this we shall need to present the second approximation to the S and R

strategies. A number of concepts need to be introduced before one can proceed.

2.5.1 Backup Strategies

In Section 2.4, we have seen that some of the outcomes of the S strategy α leave one or both of the

requirements unsatisfied. In general, when a strategy leaves a requirement unsatisfied, one resorts

to a backup strategy which attempts to satisfy the requirement once again. Such a backup strategy

has the added advantage of lying below the outcome which has led to the requirement remaining

unsatisfied. Hence it is aware of why the original strategy has failed to satisfy the requirement in

question. This represents additional information which can help the backup strategy to satisfy the

requirement.

Note that such backup strategies will not work in the same way as the strategies which have left

certain requirements unsatisfied. This is because they need to exploit the additional information

which is available to them by virtue of being below the problematic outcomes. In addition these

backup strategies now have to contend with the fact that they are operating below other S and R

strategies, and this has to be taken into consideration.

In order to deal with unsatisfied requirements below an outcome of a given strategy, one proceeds

as follows. One first lists the requirements which are left unsatisfied below a given outcome in

priority order. Then one chooses the highest priority unsatisfied requirement and assigns a backup

strategy of the appropriate kind to satisfy it below that outcome. This process can then be repeated

below outcomes of the backup strategy itself, until every requirement has been satisfied.

47

2.5.2 Work Intervals

The S strategy α in Section 2.4 enumerates elements into the sets A and D. Strategies operating

below one of the outcomes of α risk being injured by the actions being taken by α itself. Work

intervals can be used to protect lower priority strategies from being injured.

A work interval is an interval of natural numbers (a, b) = {x ∈ N | a < x < b} which is

associated to an outcome of an S strategy. In fact, every outcome of an S strategy will be assigned

a work interval. R or S strategies lying below an outcome of an S strategy will work inside the

associated work interval in the following manner.

AnR strategy operating inside a work interval will choose uses lying inside the work interval. On

the other hand S strategies operating inside a work interval will choose thresholds and witnesses

inside the work interval. In addition an S strategy will only trust a computation ΘD[s](w) if its

use θs(w) is inside the work interval.

Suppose that an S strategy has a work interval (a, b) associated to one of its outcomes. Then when

visiting this outcome, the strategy will only enumerate elements into the sets A or D which are

greater than or equal to b. This will ensure that actions taken by the S strategy when visiting that

outcome do not injure strategies located below that outcome.

In addition the upperbound b shall either be absent, or else will increase during visits to the

outcome. In this way the work interval will increase in length, allowing strategies located below

the outcome more space where to operate.

The work intervals associated to the different outcomes of the S strategy will also be ordered in

a specific way, so that strategies operating below one outcome, do not interfere with strategies

operating below an outcome to its left. This ordering between work intervals arises out of the

ordering between parameters enforced by the S strategy.

Different forms of S strategy will give rise to different kinds of work interval. These will be made

explicit when defining the outcomes of that particular form of S strategy.

To give an example of their use, we shall explain the work intervals which one can expect to find

below the S strategy α of the form found in Section 2.4. This strategy has four outcomes d, g, h

48

and w, and a work interval has to be defined for each.

Consider the outcome w of the S strategy. When visiting this outcome, the S strategy does not

enumerate any elements into the set D or A. Hence the strategy can impose the interval (0,∞)

below this outcome. Clearly this does not place any constraint on lower priority strategies.

Consider now the outcome h of the S strategy. When visiting this outcome, the S may enumerate

γ(w) into the set D. In order to protect strategies below the h outcome from this enumeration into

D, the strategy shall impose the work interval (w, γ(w)) below this outcome.

The next outcome to consider is the outcome g of the S strategy. When visiting this outcome, the

S strategy may enumerated its witness w into the set A, and may also enumerate γ(v) into D.

Strategies below the g outcome of the S strategy will be protected from enumeration into the set

D through the imposition of the work interval (v, γ(v)) below this outcome. Since the ordering

between parameters ensures that γ(v) < w, we also have that strategies below the g outcome are

protected from the enumeration of w into A by the same work interval.

The final outcome which needs to be considered is the outcome d of the S strategy. When visiting

this outcome, the S strategy does not enumerate any elements into the set D or A. The strategy

imposes the interval (s1,∞) below the d outcome, where s1 is the stage at which the strategy has

diagonalised successfully and visited the outcome d for the first time. This work interval stops

all strategies below the d outcome of the S strategy from interfering with any computation which

took place before stage s1.

There is one final operation which is necessary to ensure that strategies operating below one

outcome do not interfere with strategies operating below an outcome lying to its left. Whenever a

strategy is accessible, it will initialise every strategy lying to its right. When a strategy which has

been initialised selects its parameters, it will select parameters which are greater than the stage at

which it is initialised. This is the reason behind the fact that no work interval is needed below the

w outcome.

49

2.5.3 Active Strategies

In general, there will be many strategies attempting to satisfy a given requirement. However a

given strategy γ might not be concerned with every higher priority strategy γ′ located above it.

Since γ is located below a certain outcome of γ′, it might be able to tell that the latter will fail to

satisfy its requirement, or that the requirement would be satisfied trivially regardless of its actions.

If one of the above conditions is the case, γ′ will be inactive for γ. Otherwise, we shall say that γ′

is active for γ. A strategy γ only needs to take a higher priority strategy γ′ into consideration if γ′

is active for γ. Otherwise γ will be able to ignore its existence.

2.5.4 Γ̂-Strategies

In Section 2.4 we introduced R strategies which were only capable of following Γ-strategies. In

our second approximation,R strategies will either follow a Γ-strategy or a Γ̂-strategy. This means

that they will either build a functional ΓU,D or a functional ΓV,D. The kind of strategy followed

will depend on the position of the strategy on the priority tree.

2.5.5 Switching

In Section 2.4 we have also seen that visits to the g outcome of S strategies during capricious

destruction are related to the occurrence of a V change. The first step towards exploiting these

V -changes is to have strategies which are able to follow a Γ̂-strategy and build a functional ΓV,D.

We shall say that the g outcome of the S strategy causes a switch in the manner of satisfying the

R requirement. Such a switch causesR strategies below the g outcome of the S strategy to follow

a Γ̂-strategy instead.

2.5.6 Open Stages and Close Stages

It shall be convenient for a given strategy α to keep track of what strategies lying above it are

doing during any given stage. In particular, a strategy will want to distinguish between stages

50

during which higher priority strategies are all enumerating elements into D, and stages during

which no higher priority strategies are enumerating elements intoD. The first kind of stage occurs

when higher priority strategies with g outcomes above α are performing capricious destruction and

higher priority strategies with h outcomes are honestifying, and is called a close stage. The second

kind of stage occurs when higher priority strategies with g outcomes above α are opening gaps

by enumerating elements into A and higher priority strategies with h outcomes above α are not

enumerating any elements into D. These definitions are useful to synchronise the actions of lower

priority strategies with those of higher priority strategies as will be discussed in the following

section.

2.5.7 S-Synchronisation

S strategies enumerate elements into A and restrain D when opening a gap, and enumerate

elements into D when closing a gap through capricious destruction or when honestifying. Thus

in a situation with multiple S strategies, it is possible for different S strategies to be enumerating

and restraining the set D at the same time. Whilst work intervals protect lower priority strategies

which are restraining D from the actions of higher priority strategies which are enumerating into

D, the reverse is not the case.

To prevent such a situation from occurring we will require an S strategy α which is located below

the g or h outcome of a higher priority S strategy α′ to S-Synchronise with it.

In this case, the lower priority strategy will wait for the higher priority strategies to enumerate

elements into D before enumerating elements of its own into D. In other words it will wait for

a close stage before performing capricious destruction or honestification. This will stop the S

strategy α from injuring any restraint which may have been imposed by some higher priority

strategy α′ on D.

In addition to this, the lower priority strategy will only enumerate elements intoA if higher priority

strategies with g outcomes above α have also enumerated elements into A, and if higher priority

strategies with h outcomes above α have not enumerated elements into D. In other words, the

lower priority strategy will wait for an open stage before opening a gap. When combined with

51

work intervals, Γ̂-strategies, and switching this will provide the second step towards exploiting

V -changes to satisfyR requirements.

For suppose that at stage t the strategy α enumerates w into A and some strategy α′ enumerates

w′ into A. This means that by the least R-expansionary stage t′ with t′ > t, the disagreements

between ΦU,V and A at w and w′ will have been removed. This is due to the occurence of a

U � φt(x) change or a V � φt(x) change (or both) by stage t′, where x = min{w,w′}.

We shall arrange the priority tree so that whenever the strategy α′ cannot use a V � φt(x) change

to diagonalise, the strategy α will be able to use the V � φt(x) change to diagonalise instead. In

addition this V change will undefine the functional being built by the active R strategy above α

without the latter having to enumerate any elements into D.

We have now developed all the concepts required in order to discuss the second approximation to

theR and S strategies.

2.5.8 TheR Strategy

The main difference between the first approximation to the R strategy and the second

approximation is that the latter can now either follow a Γ-strategy or a Γ̂-strategy, depending

on its position on the priority tree.

TheR Strategy

This strategy has a set of uses U e, and can either follow a Γ strategy of a Γ̂-strategy. The

strategy operates inside a work interval (a, b).

(1) (Check for expansionary stage). Is stage s a β-expansionary stage?

(a) (Yes) Go to step (2).

(b) (No) End the substage and resume from step (1).

(2) (Check for disagreement). Is there an m such that ΓU,D[s](m) 6= As(m)? (or

ΓV,D[s](m) resp.).

52

(a) (Yes) End the substage and resume from step (1).

(b) (No) Go to step (3).

(3) (Define the functional). For every x < ls(Φ
U,V , A) such that ΓU,D[s](x) ↑ (or

ΓV,D[s](x) resp.), define the axiom ΓU,D[s](x) = As(x) (or ΓV,D[s](x) resp.), and

choose the corresponding use γs(x) to be the least element in the set of uses U e obeying

the following conditions (if it exists):

(a) γs(x) ≥ γt(x) for all t < s.

(b) γs(x) > γs(y) for all y < x.

(c) a < γs(x) < b.

(d) γs(x) 6∈ D.

(e) γs(x) > y, where y is a constraint imposed by some S strategy below β.

(f) γs(x) is greater than the stage at which β was last initialised.

End the substage and resume from step (1).

We shall now consider the outcomes of the R strategy and define the outcome which the strategy

selects at stage s.

Outcomes of theR Strategy

The R strategy has two outcomes, the infinitary outcome i and the finitary outcome f . These

outcomes are ordered as follows: i <Λ f . At stage s, the strategy decides which outcome to visit

by performing the following case analysis:

(I) Waiting for expansionary stage. The strategy ends its substage at step (1). Then the present

stage s is not a β-expansionary stage. TheR strategy visits its f outcome.

(II) Expansionary stage. The strategy ends its substage at step (2) or step (3). Then the present

stage s is a β-expansionary stage. TheR strategy visits its i outcome.

We now proceed to describe and formalise the second approximation to the S strategy.

53

2.5.9 The S Strategy

The S strategy α has to take into consideration one R strategy β lying above it, which can now

be either following a Γ-strategy or a Γ̂-strategy. It will thus choose a threshold v and a witness w

as before, this time making sure that these parameters lie inside any work interval which has been

imposed on it. It will then wait for ΘD[s](w) ↓= 0 to be the case, trusting this computation only

if the use θs(w) is also inside the work interval.

The strategy α will then check whether ΓU,D(w) (or ΓV,D(w) resp.) is dishonest. If φs(w) >

γs(w), the strategy needs to honestify ΓU,D(w) by enumerating γs(w) into D.

Before honestifying, αmust check whether stage s is a close stage as a result of S-Synchronisation.

If this is the case, α will honestify by enumerating γs(w) into D. If this is not the case, α will not

enumerate γs(w) intoD, but will still behave as if it had honestified, by visiting the corresponding

outcome. Without such a measure one would have a situation in which strategies lying below the

h outcome of the α strategy would be accessible only during close stages.

If ΓU,D(w) is honest, the strategy α will want to open a gap. However prior to opening a gap α

has to check whether stage s is an open stage as a result of S-Synchronisation.

If this is the case αwill open a gap by enumerating its witnessw intoA and restrainingD � θs(w).

Otherwise the strategy will not open a gap and will wait instead.

Note that if s is not an open stage, the strategy will have to go through all the previous steps once

again before making another attempt at opening a gap. In particular the strategy has to check

whether ΓU,D(w) is still honest, as in the meantime φ(w) might have increased as a result of a U

or a V change.

Once α opens a gap at some stage t, it creates a disagreement between A(w) and ΦU,V (w). Now,

in order for α to become accessible again, there must have been some β-expansionary stage.

This means that an R -expansionary stage must have taken place at some stage t′, and that the

disagreement must have been removed through a U � φt(w) change, or through a V � φt(w)

change.

Now when α becomes accessible once again at some stage s ≥ t′, it will proceed to close the gap

54

by determining whether a U � φt(w) change has occurred between stage t and stage t′.

If β is following a Γ-strategy and a U � φt(w) change has occurred, then α has diagonalised

successfully. Otherwise a V � φt(w) change must have occurred and α needs to perform

capricious destruction.

However, prior to performing capricious destruction, the strategy α has to check whether stage s

is a close stage as a result of S-Synchronisation. If this is the case, α enumerates γs(v) into D.

Otherwise it waits for such a stage to occur before performing capricious destruction.

On the other hand, if β is following a Γ̂-strategy, α needs a V � φ(w) change to ensure that the

functional being built by β is repaired without it having to enumerate elements into the set D. But

the priority tree will be organised in a manner such that α will automatically obtain this change as

a result of some other higher priority S strategy above it failing to obtain a U � φt(w) change.

Hence if the β strategy is following a Γ̂-strategy, we have that the α strategy diagonalises

successfully during the same stage it enumerates its witness into the set A, because the occurrence

of the V change required to repair the functional built by β is guaranteed. This means that α does

not need to check whether such a change has occurred, and that it does not need to perform any

capricious destruction step.

We give the formal definition of the S strategy below.

The S Strategy

The strategy has a set of witnesses W e and a set of thresholds V e. It chooses two parameters,

the witness w and the threshold v. It lies below one active R strategy β, which may either be

following a Γ-strategy or a Γ̂-strategy. The strategy operates inside a work interval (a, b).

(*) (Background Step) Perform this step at the beginning of every substage during which

the strategy is accessible. If the following conditions are met resume from the step last

indicated by the strategy, or resume from step (1) if no such step exists. Otherwise end

the substage.

(a) If v is defined, (∀n≤v)(ΓU,D[s](n) ↓= As(n)) (or ΓV,D[s](n) resp.).

55

(b) If w is defined, (∀n≤w)(ΓU,D[s](n) ↓= As(n)) (or ΓV,D[s](n) resp.).

(c) If w is defined, a < θs(w) < b.

(1) (Select the thresholds). If no threshold v corresponding to β is defined, choose a

threshold v. The value selected for this threshold is the least value in V e such that:

(a) (∀n≤v)(ΓU,D[s](n) ↓= As(n)) (or ΓV,D[s](n) resp.).

(b) a < v < b.

(c) v is greater than the last stage at which α was last initialised.

If thresholds satisfying these conditions cannot be found, end this substage. Resume

from step (1). Otherwise go to step (2).

(2) (Select the witness). Choose a witness w. The value selected for this witness is the least

value in W e such that:

(a) (∀n≤w)(ΓU,D[s](n) ↓= As(n)) (or ΓV,D[s](n) resp.).

(b) a < w < b.

(c) ΘD(w) ↓

(d) a < θs(w) < b.

(e) w > γs(v).

(f) w is greater than the last stage at which α was last initialised.

If a witness satisfying these conditions cannot be found, end this substage. Resume

from step (1). Otherwise go to step (3).

(3) (Wait for convergence). Is ΘD[s](w) ↓= 0?

(a) (Yes) Go to step (4).

(b) (No) End this substage. Resume from step (3).

(4) (Honestification). Is φs(w) > γs(w)?

(a) (Yes) Is s a close stage?

(i) (Yes) Enumerate γs(w) into D. End this substage and resume from step (3).

56

(ii) (No) End this substage and resume from step (3).

(b) (No) Go to step (5).

(5) (Gap open) Is stage s an open-stage?

(a) (Yes) Constrain β to choose uses γs′(w) > θs(w) at all stages s′ > s. Enumerate

w into A and restrain D � θs(w). Cancel the witness w. End this substage.

Resume from step (6).

(b) (No) End this substage and resume from step (3).

(6) (Gap close) Is stage s a close-stage?

(a) (Yes) Let t be the stage at which the strategy last opened a gap by ending its

substage at step (5), and let t′ be the least R-expansionary stage greater than t. If

β is following a Γ-strategy and Ut � φt(w) = Ut′ � φt(w), go to step (7). If β

is following a Γ-strategy and Ut � φt(w) 6= Ut′ � φt(w), go to step (8). If β is

following a Γ̂-strategy, go to step (8).

(b) (No) End this substage and resume from step (6).

(7) (Capricious destruction) Enumerate γs(v) into D. End this substage and resume from

step (2).

(8) (Successful diagonalisation). End this substage and resume from step (8).

Outcomes of S Strategy

The S strategy α has between three and four outcomes. The first three outcomes will be the

diagonalisation outcome d, the honestification outcome h and the wait outcome w. The fourth or

capricious destruction outcome g, occurs only if the activeR strategy β lying above α is following

a Γ-strategy. These outcomes, when present, are ordered as follows: d <Λ g <Λ h <Λ w. At

stage s, the strategy decides which outcome to visit by performing the following case analysis:

(I) Waiting for parameters. The strategy ends its substage at the (Background Step), step (1) or

step (2). Then the functional of the active strategy β fails to be defined and be equal to A up to

57

some parameter, or α has failed to choose some parameter. The strategy visits its w outcome

and imposes the work interval (0,∞).

(II) Waiting for computation. The strategy ends its substage at step (3). Then we have that

ΘD[s](w) ↑, or ΘD[s](w) ↓= 1. The strategy visits its w outcome and imposes the work

interval (0,∞).

(III) Honestification. The strategy ends its substage at step (4)(a)(i). Then we have that

ΘD[s](w) ↓= 0, φs(w) > γs(w) and that s is a close stage. The strategy visits its h outcome

and imposes the work interval (w, γs(w)).

(IV) Honestification - waiting for close stage. The strategy ends its substage at step (4)(a)(ii). Then

we have that ΘD[s](w) ↓= 0, and that φs(w) > γs(w), but s is not a close stage. The strategy

visits its h outcome and imposes the work interval (w, γs(w)).

(V) Opening a gap - g outcomes exist. The strategy ends its substage at step (5)(a). Then we have

that ΘD[s](w) ↓= 0, φs(w) ≤ γs(w) and that w has been enumerated into A. In addition the

strategy β is following a Γ-strategy. The strategy has opened a gap. The strategy visits its g

outcome and imposes the work interval (v, γs(v)).

(VI) Opening a gap - no g outcomes. The strategy ends its substage at step (5)(a). Then we have

that ΘD[s](w) ↓= 0, φs(w) ≤ γs(w) and that w has been enumerated into A. In addition

the strategy β is following a Γ̂-strategy. Then we have that the strategy has diagonalised

successfully. The strategy visits its d outcome and imposes the work interval (s1,∞), where

s1 is equal to the present stage s.

(VII) Opening a gap - waiting for open stage. The strategy ends its substage at step (5)(b). Then we

have that ΘD[s](w) ↓= 0 and that φs(w) ≤ γs(w) but s is not an open stage. The strategy

visits its w outcome and imposes the work interval (0,∞).

(VIII) Closing a gap - waiting for close stage. The strategy ends its substage at step (6)(b). Then we

have that the strategy has opened a gap at stage t, that there has been no close stage between t

and s and that s is not a close stage. The strategy visits its w outcome and imposes the work

interval (0,∞).

(IX) Closing a gap - capricious destruction. The strategy ends its substage at step (7). Then we

58

have that the strategy has opened a gap at stage t, that there has been no close stage between t

and s and that s is a close stage. In addition U1,t � φ1,t(w) = U1,t′ � φ1,t(w), where t′ is the

leastR1-expansionary stage greater than t. The strategy is closing a gap. The strategy visits its

g outcome and imposes the work interval (v, γs(v)).

(X) Closing a gap - successful diagonalisation. The strategy ends its substage at step (8). Then we

have that the strategy has opened a gap at stage t, that there has been no close stage between

t and s and that s is a close stage. In addition U1,t � φ1,t(w) 6= U1,t′ � φ1,t(w), where t′ is

the least R-expansionary stage greater than t. The strategy has diagonalised successfully. The

strategy visits its d outcome and imposes the work interval (s1,∞) where s1 is the stage at

which the strategy has diagonalised successfully and visited its outcome d.

(XI) Stopped. strategy ends its substage at step (8), and step (8) has been visited since the strategy

was last initialised. Then we have that the strategy has already diagonalised successfully. The

strategy visits its d outcome and imposes the work interval (s1,∞), where s1 is the stage at

which the strategy has first diagonalised successfully and visited its outcome d.

The next step is to present the priority tree.

2.5.10 Organisation of Priority Tree

We shall now organise a priority tree in order to make our second attempt at satisfying an S

requirement below an R requirement. The following discussion will refer to the priority tree

shown in Figure 2.2. The following notation will be used on the priority tree.

• βU will denote anR strategy (from Section 2.5) which is following a Γ-strategy.

• βV will denote anR strategy (from Section 2.5) which is following a Γ̂-strategy.

• αU will denote an S strategy (from Section 2.5) which needs to take into consideration one

R strategy following a Γ-strategy above it.

• αV will denote an S strategy (from Section 2.5) which needs to take into consideration one

R strategy following a Γ̂-strategy above it.

59

• αwill denote an S strategy (from Section 2.3) which does not need to take into consideration

anyR strategy above it.

In our discussion we shall omit the parts of the priority tree occurring below the f outcomes ofR

strategies. The f outcome of anR strategy results in the trivial satisfaction of theR requirement,

allowing the S requirement to be satisfied by an S strategy of the form found in Section 2.3.

βU

αU

.α

..

d w

βV

αV

.α

..

d w

.

d h w

i

.

d g
h

w

i

Figure 2.2: Priority tree for S belowR , second approximation

In order to build the priority tree we start by attempting to satisfyR , which is the highest priority

requirement. For this purpose, we shall use an R strategy βU of the form found in Section 2.5.

This strategy will be following a Γ-strategy. In the absence of interference from other strategies,

this strategy will build its functional ΓU,D and will satisfy theR requirement.

Hence, the highest priority unsatisfied requirement below the i outcome of the strategy βU is now

the S requirement. To satisfy this requirement, we shall use an S strategy αU of the form found

in Section 2.5. This strategy considers theR strategy βU to be active and thus needs to take it into

consideration.

60

As we have already seen, the d and w outcomes of the strategy αU result in the S requirement

being satisfied without the satisfaction of theR requirement being compromised.

On the other hand, we have seen that the h outcome of the strategy αU makes ΦU,V partial,

resulting in the trivial satisfaction of the R requirement. However this outcome also leaves the S

requirement unsatisfied since αU never enumerates a witness into A.

The trivial satisfaction of theR requirement however means that an S strategy α of the form found

in Section 2.3 can be used below the h outcome in order to satisfy the S requirement. This strategy

does not regard the strategy βU as being active and is thus able to ignore it. The strategy α will

then satisfy the S requirement regardless of whether it has a d or w outcome.

Finally, consider the g outcome of the αU strategy. In this case we have seen that capricious

destruction makes ΓU,D partial, leaving the R requirement unsatisfied. In addition the S

requirement is left unsatisfied because αU fails to see a U change each time it closes a gap, thus

failing to diagonalise. We have also seen that this failure to obtain a U change, results in a V

change occurring instead.

Thus we have that the highest priority unsatisfied requirement below the g outcome of the αU

strategy is once again the R requirement. However as we have seen earlier, the g outcome causes

a switch in the manner of satisfying the R requirement. This switch means that we shall now

assign an R strategy βV of the form found in Section 2.5 to satisfy the R requirement. This

strategy will be following a Γ̂-strategy instead.

In the absence of interference from other strategies, the strategy βV will build a functional ΓV,D

and will satisfy the R requirement. This means that below the i outcome of the βV strategy, the

highest priority unsatisfied requirement is now the S requirement.

In order to satisfy the S requirement, we shall use an S strategy αV of the form found in 2.5.

This strategy regards βU as having failed to satisfy its requirement and thus as inactive. Instead it

believes that βV is working to satisfy the R requirement, and thus treats βV as an active strategy.

Since βV is following a Γ̂-strategy, the αV strategy will have only three outcomes, which are d, w

and the honestification outcome h related to the functional ΓV,D being built by βV .

61

Once again, the d and w outcomes of the αV strategy result in the S requirement being satisfied,

without the satisfaction of theR requirement by the βV strategy being compromised.

On the other hand the h outcome of the αV strategy makes ΦU,V partial, resulting in the trivial

satisfaction of theR requirement. This outcome also leaves the S requirement unsatisfied, because

αV never gets to enumerate a witness into A.

However the trivial satisfaction of theR requirement means that an S strategy α of the form found

in Section 2.3 can be used below the h outcome in order to satisfy the S requirement. This strategy

does not regard the strategy βV as being active and is thus able to ignore it. The strategy α will

then satisfy the S requirement regardless of whether it has a d or w outcome.

2.5.11 Satisfaction of Requirements

We shall now examine the satisfaction of the R and S requirements through the second

approximation presented in this section. For this purpose it shall be sufficient to consider the

leftmost outcome visited infinitely often by the strategy αV .

w Suppose that w is the leftmost outcome to be visited infinitely often by αV . Then there is some

stage s0 beyond which the strategy α does not visit any outcome to the left of w. It also follows

that αV must have chosen some witness w′ such that one of the following three cases holds.

In the first case one has that ΘD(w′) ↑, in which case the S requirement is satisfied trivially.

In the second case, one has that ΘD(w′) ↓= 1, which means that lims θs(w
′) must be finite.

Since the upper bound of any work interval increases without bound, there must exist some

stage t > s0 such that a < θs(w
′) < b for all stages s ≥ t. This means that the strategy will

hold the computation ΘD(w′) ↓= 1 forever and that it will not enumerate w′ into A. It follows

that ΘD(w′) 6= A(w′) and that the S requirement is satisfied once again.

In the third case, we have that ΘD(w′) ↓= 0. Once again we must have that lims θs(w
′) must

be finite and that there is some stage t > s0 such that for all s ≥ twe have that a < θs(w
′) < b.

Now at such stages s, we have must have that ΓU,D[s](w′) is honest, or otherwise the strategy

would visit the outcome h which is to the left of w, giving a contradiction.

62

In addition after stage t the strategy must visit its outcome w until it sees a close stage and is

able to open a gap. If the strategy never sees a close stage, then we would have that ΘD(w′) =

A(w′) and the S requirement would remain unsatisfied. On the other hand if a close stage

occurs the strategy would open a gap and visit the g outcome. Since this is to the left of w, this

would give a contradiction.

We claim that it is possible to ensure that αV sees infinitely many open and close stages, and

that therefore this case cannot occur. However we postpone addressing this issue until Section

2.9.

Note that in each of the above three cases, we have that αV does not interfere with βV in the

construction of its functional, and that the uses chosen to build this functional are protected

from αU through the work interval it imposes. Hence we have that the R requirement is

satisfied as well.

h Suppose h is the leftmost outcome to be visited infinitely often. Then there is some stage s0

beyond which the strategy α does not visit any outcome to the left of h. It follows that after

stage s0 the strategy αV must have chosen some witness w′ such that ΓV,D(w′) is dishonest

infinitely often.

If at stage s we have that ΓV,D[s](w′) is dishonest and s is a close stage, αV performs

honestification by enumerating γs(w
′) into D and visiting outcome h. This undefines

ΓV,D(w′), leading the strategy βV to redefine the functional by increasing the use γ(w′).

On the other hand if at stage s we have that ΓV,D[s](w′) is dishonest and s is an open stage,

αV does not enumerate γs(w′) into D but still visits outcome h. Once again we claim that it is

possible to ensure that αV sees infinitely many open and close stages. Thus we have that αV

enumerates γs(w′) into D infinitely often.

This means that ΓV,D(w′) ↑. On the other hand, since ΓV,D(w′) becomes dishonest infinitely

often, it follows that lims φs(w
′)→∞, and hence we have that ΦU,V (w′) ↑ as well. Hence the

R requirement is satisfied trivially.

However the αV strategy does not enumerate its witness w′ into A and thus does not

diagonalise. This means that the S requirement remains unsatisfied. This will cause another S

63

strategy to occur below the h outcome of the strategy αV . This S strategy does not consider

the strategy βV to be active, since the R requirement has been satisfied trivially. Therefore

the S strategy α is of the form found in Section 2.3, and will now satisfy the S requirement

independently of its outcome.

d Suppose d is the leftmost outcome of the S strategy to be visited infinitely often. Then it

follows that αV must have opened a gap and diagonalised successfully.

In order for αV to have opened a gap, there must have been an open stage t such that αV was

accessible at t and ΘD[t](w′) ↓= 0. In addition ΓV,D[t](w′) must have been honest. As a

result, αV must have enumerated w′ into A, opening a gap at stage t.

Now t is an open stage, and αV is accessible at stage t. This means that αU must have been

accessible at stage t, and that it has visited its g outcome by opening a gap. Hence, αU must

also have enumerated its witness w into A at stage t.

Since αV is located inside the work interval (v, γt(v)) imposed by αU , it must be the case

that v < w′ < γt(v). In addition the ordering between the parameters of αU ensures that

γt(v) < w. It follows that w′ < w.

The enumeration of the witnesses w and w′ into A at stage t mean that the functional ΦU,V , the

functional ΓU,D built by βU , and the functional ΓV,D built by βV now disagree with the set A

at w and w′.

Now in order for the αU strategy to be accessible again, βU must have visited its i outcome and

seen a βU -expansionary stage. Hence there must have been some least stage t′ > t such that an

R -expansionary stage has taken place. The R -expansionary stage removes the disagreement

between ΦU,V and A. This means that a U � φt(w′) change, or a V � φt(w′) change must have

taken place between stages t and t′.

When αU is accessible again at some close stage s > t′, it will attempt to close a gap. If a

U � φt(w′) change has taken place, αU would diagonalise successfully, and αV would never

be accessible again, which is a contradiction.

This means that a V � φt(w′) change must have occurred. In this case, αU will close its gap by

visiting its outcome g and performing capricious destruction. The strategy will then enumerate

64

γs(v) into D (note that γs(v) = γt(v)). Whilst αU undefines ΓU,D(w′), this will not affect βV

or αV in any way since these strategies are located inside the work interval (v, γs(v)).

Now in order for the αV strategy to be accessible again, βV must have visited its i outcome

and seen a βV -expansionary stage. We have already determined that the leastR -expansionary

stage greater than stage t occurs at stage t′. It is the changes which have occurred between t

and t′ which are considered to determine whether a strategy has diagonalised successfully.

Since αV has ensured that ΓV,D[t](w′) is honest prior to enumerating the witness into A, we

have that the V � φt(w′) change which took place between the stages t and t′ is sufficient to

undefine ΓV,D(w′) as well.

In addition, the expansionary stage seen by βV makes the strategy αV accessible once again.

Since βV is the only activeR strategy for αV , and since the disagreement of the functional built

by βV has been removed without needing to enumerate any element intoD, the αV strategy has

diagonalised successfully whilst preserving its restraint on D. Hence we have that αV satisfies

the S requirement.

In addition βV is able to keep building its functional without interference after αV has

diagonalised successfully, and hence theR requirement is satisfied as required.

65

2.6 S BelowR2 BelowR1 - First Approximation

We now consider how to satisfy twoR requirements and one S requirement. TheR1 requirement

will have the highest priority, followed by theR2 requirement and the S requirement.

In our first approximation we shall use an R strategy β1 to satisfy the requirement R1, an R

strategy β2 to satisfy the requirement R2, and an S strategy α to satisfy the requirement S . We

shall assume that theR requirementsR1 andR2 are not satisfied trivially.

Thus β1 will see infinitely many β1-expansionary stages and β2 will see infinitely many β2-

expansionary stages. This means that these strategies will have to build a functional each in order

to satisfy their corresponding requirement. In this first approximation, β1 will be following a Γ-

strategy and will build the functional ΓU1,D
1 . Similarly β2 will be following a Γ-strategy and will

build the functional ΓU2,D
2 .

Since the β1 strategy is associated to the requirement of highest priority, it does not need to take

any other strategy into consideration. On the other hand, the strategy β2 considers the strategy β1

to be active, and has to take it into consideration. Similarly, the strategy α considers β1 and β2 to

be active, and has to take both into consideration.

We now introduce a few concepts which will be necessary in order to proceed.

2.6.1 R-Synchronisation

When an R strategy such as β2 has an active R strategy β1 above it, it will R-Synchronise with

it in the following way. Whenever β2 needs to define ΓU2,D
2 (x) and choose a use γ2(x), it will

ensure that γ2(x) > γ1(x). Note that this means that β2 might not be able to define its functional

at x until β1 has also done so.

There are two reasons for synchronising theR strategies in this way.

The first is to ensure that enumeration of elements into the setD which makes the functional ΓU1,D
1

partial, also makes the functional ΓU2,D
2 partial. This ensures that R requirements are satisfied in

66

order, in the sense that a lower priorityR requirement will remain unsatisfied whilst higher priority

R requirements remain unsatisfied.

The second is to ensure that if an S strategy cannot be injured by the enumeration of uses γ1(x)

into the set D, then it is also safe from uses γ2(x) which are enumerated into the set D.

2.6.2 Gap Opening Convention

In order to diagonalise successfully, the S strategy α will need to enumerate its witness w into

A and restrain D � θ(w). But this time, it needs to be concerned about the effect which the

enumeration of w into A has on the functionals ΓU1,D
1 and ΓU2,D

2 .

In particular it will need to make sure that ΓU1,D
1 (w) and ΓU2,D

2 (w) are honest before opening a

gap. Following this, it will need to ensure that there has been both a U1 � φ1(w) change and a

U2 � φ2(w) change when closing the gap, so that the disagreement which both functionals have

with the set A at w can be removed without enumerating elements into D and running the risk of

destroying the restraint on D in the process.

We thus have a situation where any one of ΓU1,D
1 (w) and ΓU2,D

2 (w) can fail to be honest prior to

opening a gap, as well as a situation where any one of the sets U1 and U2 can fail to change when

closing a gap. To reflect this fact α will need, besides the d and w outcomes, two honestification

outcomes h1 and h2, as well as two capricious destruction outcomes g1 and g2.

Prior to opening a gap, the strategy α will visit the outcome h1 when ΓU1,D
1 (w) fails to be honest,

and will visit the outcome h2 when ΓU1,D
1 (w) is honest but ΓU2,D

2 (w) is not. Similarly, when

closing a gap, α will visit the outcome g1 when a U1 change has failed to occur, and will visit g2

when a U1 change has occurred, but a U2 change has failed to occur.

The fact that there are now two outcomes g1 and g2 raises the question of which one should be

visited when α is opening a gap. If α has never closed a gap before, we shall adopt the convention

that the outcome with the least index (in this case g1) should be visited. On the other hand, if α

has closed a gap before, we choose the outcome which α has visited last when closing the gap.

The reason for adopting this convention is the following. Suppose that the outcome gn is the

67

leftmost outcome visited infinitely often by the strategy α. Then this means that α closes the gap

unsuccessfully on gn infinitely often. By having α open a gap on gn each time it closes a gap on

gn, we ensure that the strategies below the outcome gn see α opening a gap infinitely often. This

arrangement guarantees that strategies below gn would then be accessible during infinitely many

open stages, just as they would be accessible during infinitely many close stages.

2.6.3 TheR Strategy

The R strategy β which will be introduced in this section will be following a Γ-strategy. It

will need to take at most one other R strategy β′ above it into consideration, which will also

be following a Γ-strategy. We formalise theR strategy below.

TheR Strategy

This strategy has a set of uses U e, and follows a Γ strategy. It lies below at most one higher

priority R strategy β′ which is following a Γ-strategy. The strategy operates inside a work

interval (a, b).

(1) (Check for expansionary stage). Is stage s a β-expansionary stage?

(a) (Yes) Go to step (2).

(b) (No) End the substage and resume from step (1).

(2) (Check for disagreement). Is there an m such that ΓU,D[s](m) 6= As(m)?

(a) (Yes) End the substage and resume from step (1).

(b) (No) Go to step (3).

(3) (Define the functional). For every x < ls(Φ
U,V , A) such that ΓU,D[s](x) ↑, define the

axiom ΓU,D[s](x) = As(x), and choose the corresponding use γs(x) to be the least

element in the set of uses U e obeying the following conditions (if it exists):

(a) γs(x) ≥ γt(x) for all t < s.

(b) γs(x) > γs(y) for all y < x.

68

(c) a < γs(x) < b.

(d) γs(x) 6∈ D.

(e) γs(x) > γ′s(x), where γ′(x) is the use of the functional being built by β′ at the

element x.

(f) γs(x) > y, where y is a constraint imposed by some S strategy below β.

(g) γs(x) is greater than the stage at which β was last initialised.

End the substage and resume from step (1).

We shall now consider the outcomes of the R strategy and define the outcome which the strategy

selects at stage s.

Outcomes of theR Strategy

The R strategy has two outcomes, the infinitary outcome i and the finitary outcome f . These

outcomes are ordered as follows: i <Λ f . At stage s, the strategy decides which outcome to visit

by performing the following case analysis:

(I) Waiting for expansionary stage. The strategy ends its substage at step (1). Then the present

stage s is not a β-expansionary stage. TheR strategy visits its f outcome.

(II) Expansionary stage. The strategy ends its substage at step (2) or step (3). Then the present

stage s is a β-expansionary stage. TheR strategy visits its i outcome.

2.6.4 The S Strategy

The S strategy α which we shall introduce in this section needs to take two R strategies β1 and

β2 into consideration. The strategies β1 and β2 will be following a Γ-strategy, and will build the

functionals ΓU1,D
1 and ΓU2,D

2 respectively.

The strategy α will choose a witness w and wait for a stage t such that ΘD[t](w) ↓= 0. It will

then check whether both ΓU1,D
1 [t](w) and ΓU2,D

2 [t](w) are honest.

69

If φ1,t(w) > γ1,t(w), then we have that ΓU1,D
1 [t](w) is dishonest and thus needs to be honestified.

Prior to honestifying, α must check whether stage t is a close stage.

If this is the case, α will perform honestification for β1 by enumerating γ1,t(w) into D. This

undefines ΓU1,D
1 [t](w), allowing the strategy β1 to redefine it by choosing a larger use. If t is not

a close stage, α will not enumerate γ1,t(w) into D. However the strategy will still behave as if it

had honestified, by visiting the corresponding outcome.

On the other hand, if φ1,t(w) ≤ γ1,t(w), but φ2,t(w) > γ2,t(w), we have that ΓU1,D
1 [t](w) is

honest, but that ΓU2,D
2 [t](w) is dishonest and thus needs to be honestified.

If this is the case, α will perform honestification for β2 by enumerating γ2,t(w) into D. This

undefines ΓU2,D
2 [t](w), allowing the strategy β2 to redefine it by choosing a larger use. If t is not

a close stage, α will not enumerate γ2,t(w) into D. However the strategy will still behave as if it

had honestified, by visiting the corresponding outcome.

If both ΓU1,D
1 [t](w) and ΓU2,D

2 [t](w) are honest, the strategy α will try to open a gap.

Prior to opening a gap, the strategy will check whether stage t is an open stage. If this is not the

case, then the strategy will wait instead. When it becomes accessible again it will have to start

over before making another attempt at opening a gap.

In particular the strategy has to check whether ΓU1,D
1 (w) and ΓU2,D

2 (w) are still honest, as in the

meantime φ1(w) might have increased as a result of a U1 or a V1 change, and φ2(w) might have

increased as a result of a U2 or a V2 change.

On the other hand, if t is an open stage, the strategy opens a gap by enumerating w into A and

restraining D � θt(w). This creates the disagreements ΦU1,V1
1 (w) 6= A(w), ΦU2,V2

2 (w) 6= A(w),

ΓU1,D
1 (w) 6= A(w) and ΓU2,D

2 (w) 6= A(w).

Now, in order for α to become accessible again, there must have been some stage which is both a

β1-expansionary stage and a β2-expansionary stage. For this to be the case there must have been

some least stage t1 > t such that t1 is anR1-expansionary stage and some least stage t2 > t such

that t2 is anR2-expansionary stage.

This means that the disagreement between ΦU1,V1
1 (w) andA(w) is removed by stage t1. This takes

70

place either through a U1 � φ1,t(w) change or through a V1 � φ1,t(w) change between the stages t

and t1.

Similarly, the disagreement between ΦU2,V2
2 (w) andA(w) is removed by stage t2. This takes place

either through a U2 � φ2,t(w) change or through a V2 � φ2,t(w) change between the stages t and

t2.

But despite these changes it is possible for ΓU1,D
1 (w) or ΓU2,D

2 (w) to still be in a state of

disagreement with A(w).

When α becomes accessible again at stage s, it will attempt to close its gap. Prior to closing the

gap, the strategy will check whether stage s is a close stage. If this is not the case the strategy will

wait. It will then try to close the gap when it becomes accessible once more. On the other hand if

s is a close stage, the strategy can proceed to close its gap.

Since α needs to take two strategies into consideration, we shall need two thresholds. The

threshold v1 will correspond to the strategy β1 and the threshold v2 will correspond to the strategy

β2. The strategy α will seek to preserve the following ordering between parameters.

v2 < γ2(v2) < v1 < γ1(v1) < w < γ1(w) < γ2(w)

While the strategy α is able to choose the thresholds v1 and v2 and the witness w, it has no control

over the uses selected by the β1 and β2 strategies. Hence α might have to redefine the threshold

v1 if γ2(v2) becomes too large.

On the other hand, if γ2(v2) or γ1(v1) increases due to capricious destruction, the witness w

must have already been enumerated into the set A, and thus presents no problems. Also note that

γ1(w) < γ2(w) due to the R-Synchronisation of theR strategies.

The strategy α can now proceed to check how the gap has been closed at stage s. Suppose that

there has not been a U1 � φ1,t(w) change between stages t and t1. Then a V1 � φ1,t(w) change

must have occurred between stages t and t1.

Therefore we have that the disagreement between ΓU1,D
1 (w) and A(w) persists, and we undefine

this disagreement through the enumeration of γ1,s(v1) into D, where γ1,s(v1) = γ1,t(v1). This is

called capricious destruction for β1.

71

On the other hand, suppose that there has been a U1 � φ1,t(w) change between stages t and t2.

Then the disagreement between ΓU1,D
1 (w) and A(w) has been removed. However, it may now be

the case that there has been no U2 � φ2,t(w) change between stages t and t2.

Hence a V2 � φ2,t(w) change must have occurred between stages t and t2. Therefore we have

that the disagreement between ΓU2,D
2 (w) and A(w) persists, and we undefine the disagreement

through the enumeration of γ2,s(v2) into D, where γ2,s(v2) = γ2,t(v2). This is called capricious

destruction for β2.

Finally suppose that there has been both a U1 � φ1,t(w) change and a U2 � φ2,t(w) change. In this

case both disagreements have been removed without the need to enumerate any element intoD. In

addition, the α strategy has managed to diagonalise and to protect its computation by preserving

its restraint on the set D, so it can now stop.

We formalise the S strategy below.

The S Strategy

The strategy has a set of witnessesW e and a set of thresholds V e. It chooses three parameters,

the witness w and two thresholds v1 and v2. It also lies below the sequence of active R

strategies (β1, β2). Each strategy βi in this sequence follows a Γ-strategy. The strategy

operates inside a work interval (a, b).

(*) (Background Step) Perform this step at the beginning of every substage during which

the strategy is accessible. If the following conditions are met resume from the step last

indicated by the strategy, or resume from step (1) if no such step exists. Otherwise end

the substage.

(a) For all 1 ≤ i ≤ 2, if vi is defined, we have that (∀n≤vi)(Γ
Ui,D
i [s](n) ↓= As(n))

holds.

(b) If w is defined, for all 1 ≤ i ≤ 2 we have that (∀n≤w)(ΓUi,Di [s](n) ↓= As(n))

holds.

(c) If w is defined, a < θs(w) < b.

72

(1) (Select the thresholds). Let βi be a strategy in the sequence (β1, β2). If no threshold

vi corresponding to βi is defined, choose a threshold vi. The value selected for this

threshold is the least value in V e such that:

(a) (∀n≤vi)(Γ
Ui,D
i,s (n) ↓= As(n)).

(b) a < vi < b.

(c) (∀i<j≤2)(vi > γj,s(vj)).

(d) vi is greater than the last stage at which α was last initialised.

If thresholds satisfying these conditions cannot be found, end this substage. Resume

from step (1). Otherwise go to step (2).

(2) (Select the witness). Choose a witness w. The value selected for this witness is the least

value in W e such that:

(a) For all 1 ≤ i ≤ 2, we have that (∀n≤w)(ΓUi,Di,s (n) ↓= As(n)) holds.

(b) a < w < b.

(c) ΘD(w) ↓

(d) a < θs(w) < b.

(e) (∀1≤j≤2)(w > γj,s(vj)).

(f) w is greater than the last stage at which α was last initialised.

If a witness satisfying these conditions cannot be found, end this substage. Resume

from step (1). Otherwise go to step (3).

(3) (Wait for convergence). Is ΘD[s](w) ↓= 0?,

(a) (Yes) Go to step (4).

(b) (No) Otherwise end this substage. Resume from step (3).

(4) (Honestification for β1). Is φ1,s(w) > γ1,s(w)?

(a) (Yes) Is s a close stage?

(i) (Yes) Enumerate γ1,s(w) into D. Go to step (3).

(ii) (No) End this substage and resume from step (3).

73

(b) (No) Go to step (5).

(5) (Honestification for β2). Is φ2,s(w) > γ2,s(w)?

(a) (Yes) Is s a close stage?

(i) (Yes) Enumerate γ2,s(w) into D. Go to step (3).

(ii) (No) End this substage and resume from step (3).

(b) (No) Go to step (6).

(6) (Gap open) Is stage s an open stage?

(a) (Yes) Constrain each strategy βi in the sequence (β1, β2) to choose uses γi,s′(w) >

θs(w) at all stages s′ > s. Enumerate w into A and restrain D � θs(w). Cancel

the witness w and end this substage. Resume from step (7).

(b) (No) End this substage and resume from step (3).

(7) (Gap close) Is stage s a close stage?

(a) (Yes) Let t be the stage at which the strategy last opened a gap by ending its

substage at step (6). Let t1 be the least R1-expansionary stage greater than t, and

let t2 be the leastR2-expansionary stage greater than t. Let βi be the least strategy

in the sequence (β1, β2) such that Ui,t � φt(w) = Ui,ti � φt(w). If βi = β1 go to

step (8), whilst if βi = β2, go to step (9). If there is no such βi, go to step (10).

(b) (No) End this substage and resume from step (7).

(8) (Capricious destruction for β1) Enumerate γ1,s(v1) into D. End this substage and

resume from step (1).

(9) (Capricious destruction for β2) Enumerate γ2,s(v2) into D. End this substage and

resume from step (1).

(10) (Successful diagonalisation). End this substage and resume from step (10).

We shall now consider the outcomes of the S strategy and define the outcome which the S strategy

selects at stage s.

74

Outcomes of the S Strategy

The α strategy has six outcomes, the diagonalisation outcome d, the capricious destruction for

β2 outcome g2, the capricious destruction for β1 outcome g1, the honestification for β1 outcome

h1, the honestification for β2 outcome h2 and the wait outcome w. These outcomes are ordered

as follows: d <Λ g2 <Λ g1 <Λ h1 <Λ h2 <Λ w. Note that the g outcomes are ordered in

descending order, while the h outcomes are ordered in ascending order. At stage s, the strategy

decides which outcome to visit by performing the following case analysis:

(I) Waiting for parameters. The strategy ends its substage at the (Background Step), step (1) or

step (2). Then the functional of the active strategy β fails to be defined and equal to A up to

some parameter, or α has failed to choose some parameter. The strategy visits its w outcome

and imposes the work interval (0,∞).

(II) Waiting for computation. The strategy ends its substage at step (3). Then we have that

ΘD[s](w) ↑, or ΘD[s](w) ↓= 1. The strategy visits its w outcome and imposes the work

interval (0,∞).

(III) Honestification for β1. The strategy ends its substage at step (4)(a)(i). Then we have that

ΘD[s](w) ↓= 0, φ1,s(w) > γ1,s(w) and that s is a close stage. The strategy visits its h1

outcome and imposes the work interval (w, γ1,s(w)).

(IV) Honestification for β2. The strategy ends its substage at step (5)(a)(i). Then we have that

ΘD[s](w) ↓= 0, φ1,s(w) ≤ γ1,s(w), φ2,s(w) > γ2,s(w) and that s is a close stage. The

strategy visits its h2 outcome and imposes the work interval (w, γ2,s(w)).

(V) Honestification for β1 - waiting for close stage. The strategy ends its substage at step (4)(a)(ii).

Then we have that ΘD[s](w) ↓= 0, and that φ1,s(w) > γ1,s(w), but s is not a close stage. The

strategy visits its h1 outcome and imposes the work interval (w, γ1,s(w)).

(VI) Honestification for β2 - waiting for close stage. The strategy ends its substage at step (5)(a)(ii).

Then we have that ΘD[s](w) ↓= 0, φ1,s(w) ≤ γ1,s(w) and that φ2,s(w) > γ2,s(w) but s is not

a close stage. The strategy visits its h2 outcome and imposes the work interval (w, γ2,s(w)).

(VII) Opening a gap. The strategy ends its substage at step (6)(a). Then we have that ΘD[s](w) ↓= 0,

75

φ1,s(w) ≤ γ1,s(w), φ2,s(w) ≤ γ2,s(w) and that w has been enumerated into A. The strategy

has opened a gap. If the strategy has never closed a gap, the strategy visits the outcome g1.

Otherwise, the strategy visits the outcome on which a gap was last closed. The work interval

(vi, γi(vi)) is imposed, where i is the index of the gi outcome which has been visited last.

(VIII) Opening a gap - waiting for open stage. The strategy ends its substage at step (6)(b). Then we

have that ΘD[s](w) ↓= 0, φ1,s(w) ≤ γ1,s(w), φ2,s(w) ≤ γ2,s(w) but s is not an open stage.

The strategy visits its w outcome and imposes the work interval (0,∞).

(IX) Closing a gap - waiting for close stage. The strategy ends its substage at step (7)(b). Then the

strategy has opened a gap at stage t, there has been no close stage between t and s and s is not

a close stage. The strategy visits its w outcome and imposes the work interval (0,∞).

(X) Closing a gap - capricious destruction for β1. The strategy ends its substage at step (8). Then

we have that the strategy has opened a gap at stage t, that there has been no close stage between

t and s and that s is a close stage. In addition U1,t � φ1,t(w) = U1,t1 � φ1,t(w), where t1 is the

leastR1-expansionary stage greater than t. The strategy is closing a gap. The strategy visits its

g1 outcome and imposes the work interval (v1, γ1,s(v1)).

(XI) Closing a gap - capricious destruction for β2. The strategy ends its substage at step (9). Then

we have that the strategy has opened a gap at stage t, that there has been no close stage between

t and s and that s is a close stage. In addition U1,t � φ1,t(w) 6= U1,t1 � φ1,t(w) and U2,t �

φ2,t(w) = U2,t2 � φ2,t(w), where t1 is the least R1-expansionary stage greater than t and t2

is the least R2-expansionary stage greater than t. The strategy is closing a gap. The strategy

visits its g2 outcome and imposes the work interval (v2, γ2,s(v2)).

(XII) Closing a gap - successful diagonalisation. Then we have that the strategy has opened a gap at

stage t, that there has been no close stage between t and s and that s is a close stage. In addition

U1,t � φ1,t(w) 6= U1,t1 � φ1,t(w) and U2,t � φ2,t(w) 6= U2,t2 � φ2,t(w), where t1 is the least

R1-expansionary stage greater than t and t2 is the least R2-expansionary stage greater than t.

The strategy has diagonalised successfully. The strategy visits its d outcome and imposes the

work interval (s1,∞), where s1 is equal to the present stage s.

(XIII) Stopped. The strategy ends its substage at step (10), and step (10) has been visited since

76

the strategy was last initialised. Then we have that the strategy has already diagonalised

successfully. The strategy visits its d outcome and imposes the work interval (s1,∞) , where

s1 is the stage at which the strategy has first diagonalised successfully and visited its outcome

d.

2.6.5 Organisation of Priority Tree

We shall now make our first attempt at organising a priority tree to satisfy the S requirement below

theR2 requirement below theR1 requirement. The following discussion will refer to the priority

tree shown in Figure 2.3. The following notation will be used on the priority tree.

• βU1
1 will denote anR strategy (from Section 2.6) which is following a Γ-strategy.

• βU2
2 will denote anR strategy (from Section 2.6) which is following a Γ-strategy.

• αU1,U2 will denote an S strategy (from Section 2.6) which needs to take into consideration

twoR strategies above it, with each following a Γ-strategy.

Note that we shall omit the parts of the tree occurring below the f outcomes of the R1 and R2

strategies. The f outcome of R strategies results in the trivial satisfaction of the corresponding

requirement. Hence, the S strategy would either be concerned with just one active R strategy

above it, or none at all. This would then give rise to one of the cases already treated in previous

sections.

In order to construct the tree, we start by attempting to satisfy the highest priority requirement,

which is R1. We assign an R strategy βU1
1 of the form found in Section 2.6 for this purpose. In

the absence of interference from other strategies, this strategy will build its functional ΓU1,D
1 and

will satisfy theR1 requirement.

Below the i outcome of the βU1
1 strategy, we have that the R2 requirement is the highest priority

unsatisfied requirement. We assign an R strategy βU2
2 of the form found in Section 2.6 for this

purpose. Now, since the R1 requirement is not satisfied trivially, βU2
2 regards βU1

1 as an active

strategy and must take it into consideration. This means that βU2
2 will R-Synchronise with βU1

1 . In

77

the absence of interference from other strategies, this strategy will build its functional ΓU2,D
2 and

will satisfy theR2 requirement.

Below the i outcome of the βU2
2 strategy, we have that the S requirement is the highest priority

unsatisfied requirement. Hence we assign an S strategy αU1,U2 of the form found in Section 2.6

to satisfy this requirement. The strategy αU1,U2 regards βU1
1 and βU2

2 as active strategies, and

therefore must take both into consideration. This means that the strategy αU1,U2 needs to have the

six outcomes, d, g2, g1, h1, h2 and w.

We are now in a position to analyse whether the strategies β1, β2 and α collectively satisfy the

requirementsR1,R2 and S .

βU1
1

βU2
2

αU1,U2

......
d g2 g1 h1 h2 w

i

i

Figure 2.3: Priority tree for S belowR2 belowR1, first approximation

2.6.6 Satisfaction of Requirements

We perform a case analysis based on the leftmost outcome visited infinitely often by the strategy

αU1,U2 .

w Suppose that w is the leftmost outcome visited infinitely often by αU1,U2 . Then there is

some stage s0 beyond which the strategy does not visit any outcome to the left of w. Hence

the strategy chooses some witnessw and holds it forever. It follows that one of the following

cases holds.

78

If ΘD(w) ↑, we have that ΘD(w) 6= A(w) trivially, and the S requirement is satisfied. On

the other hand ΘD(w) ↓= 1, there has to be some stage at which this computation converges

and remains convergent forever. Hence we have that the strategy holds its witness w forever

and never enumerates it into A. It follows that ΘD(w) 6= A(w) and that the S requirement

is satisfied. Finally we have that ΘD(w) ↓= 0 cannot be the case if there are infinitely many

open and close stages. For if this were the case, the strategy would either honestify or open

a gap, thus visiting an outcome to the left of w which is a contradiction.

In addition, this means that after some stage, αU1,U2 no longer interferes with the strategies

β1 or β2. Hence, the latter two strategies are able to build their functionals and satisfy the

correspondingR1 andR2 requirements.

h1 Suppose that h1 is the leftmost outcome visited infinitely often by αU1,U2 . Then the strategy

has chosen a witness w such that ΓU1,D
1 (w) fails to be honest infinitely often. In addition

there might be infinitely many stages such that ΓU1,D
1 (w) is honest, but ΓU2,D

2 (w) is not

honest. However it will never be the case that both ΓU1,D
1 (w) and ΓU2,D

2 (w) are honest.

The infinite honestification of β1 makes ΓU1,D
1 (w) ↑. But this also makes ΦU1,V1

1 (w) ↑.

Hence, theR1 requirement is satisfied. However, the R-Synchronisation of theR strategies

will make ΓU2,D
2 (w) ↑ as well, leaving the R2 requirement unsatisfied. Finally, the S

strategy fails to diagonalise, and thus the S requirement remains unsatisfied.

h2 Suppose that h2 is the leftmost outcome visited infinitely often by αU1,U2 . Then the strategy

has chosen a witness w such that ΓU2,D
2 (w) fails to be honest infinitely often. The infinite

honestification of β2 makes ΓU2,D
2 (w) ↑, but we also have that ΦU2,V2

2 (w) ↑ as well. Hence,

theR2 requirement is satisfied.

On the other hand, the strategy β1 will be able to build the functional ΓU1,D
1 . This is the case

because whenever the functional is undefined at some element, β1 will simply redefine the

functional at this element using its old use. Hence, the requirementR1 is satisfied.

Finally, the S strategy does not manage to diagonalise, and thus the S requirement remains

unsatisfied.

g1 Suppose that g1 is the leftmost outcome visited infinitely often by αU1,U2 . Then the

79

strategy will open infinitely many gaps which fail to obtain the required U1 change. Infinite

capricious destruction of β1 makes ΓU1,D
1 (v1) ↑. Hence, theR1 requirement is not satisfied.

Similarly, the R-Synchronisation ofR strategies makes ΓU2,D
2 (v1) ↑ as well leaving theR2

requirement unsatisfied. Finally, the S strategy does not manage to diagonalise, and thus

the S requirement remains unsatisfied. However progress in satisfying the requirements is

made in the form of a V1 change being obtained each time capricious destruction of β1 takes

place.

g2 Suppose that g2 is the leftmost outcome visited infinitely often by αU1,U2 . Then the strategy

opens infinitely many gaps. During infinitely many of these gaps, it will obtain a U1 change

but fail to obtain a U2 change. The infinite capricious destruction of β2 makes ΓU2,D
2 (v2) ↑,

leaving theR2 requirement unsatisfied.

However whilst β2 is R-Synchronised with β1, the reverse is not true. Hence if the

enumeration of γ2(v2) into D undefines the functional ΓU1,D
1 at some element, the β1

strategy can redefine the functional at that element using its old use. Moreover as γ2(v2)

increases, it forces v1 to be redefined.

Hence whenever the outcome g1 which lies to the right of g2 is visited, neither ΓU1,D
1 ,

nor ΓU2,D
2 can be made partial at some fixed v1. Hence we have that the strategy β1

is able to build its functional and satisfy the R1 requirement, whilst the R2 requirement

remains unsatisfied. Finally, the strategy α does not manage to diagonalise, and therefore

the requirement S remains unsatisfied as well.

d Suppose that d is the leftmost outcome visited infinitely often by αU1,U2 . In this case, the

αU1,U2 strategy must have chosen a witness w and seen that ΓU1,D
1 (w) and ΓU2,D

2 (w) were

honest. Following this the strategy must have opened a gap by enumerating w into A and

restraining D � θ(w), and closed the gap successfully by obtaining the required U1 and U2

change.

Thus the αU1,U2 strategy diagonalises successfully and protects its computation ΘD(w),

and the S requirement is satisfied. In addition, this means that after some stage, α no longer

interferes with the strategies β1 or β2. Hence, the latter two strategies are able to build their

functionals and satisfy the correspondingR1 andR2 requirements as well.

80

From the above discussion one can conclude that the outcomes g2, g1, h1 and h2 of the αU1,U2

strategy leave one or more requirements unsatisfied. This will require us to pass to a second

approximation which is able to deal with this situation.

81

2.7 S BelowR2 BelowR1 - Second Approximation

In this section we shall make a second attempt at satisfying the requirements R1, R2 and S . We

shall therefore introduce the second approximation to the S and R strategies needed to achieve

this goal. We start by introducing a number of concepts.

2.7.1 Γ̂-Strategies

In the previous section we attempted to satisfy the requirement R1 by using an R strategy β1

which followed a Γ-strategy and built the functional ΓU1,D
1 . Similarly, we attempted to satisfy the

requirement R2 by using an R strategy β2 which followed a Γ-strategy and built the functional

ΓU2,D
2 .

In order to proceed R strategies of greater generality shall be required. Such strategies will be

capable of following either a Γ-strategy or a Γ̂-strategy. Thus anR strategy might now attempt to

satisfy theR1 requirement by building a functional ΓV1,D1 . Similarly anR strategy might attempt

to satisfy the R2 requirement by building a functional ΓV2,D2 . Whether an R strategy follows a

Γ-strategy or a Γ̂-strategy is determined by its position on the priority tree.

This however means that an S strategy α located below two active R strategies β1 and β2 needs

to be able to deal with the fact that one or both of these strategies may be following a Γ̂-strategy.

Note that if the strategy β1 is following a Γ-strategy, the strategy α will have g1 as an outcome.

On the other hand if the strategy β1 is following a Γ̂-strategy, this outcome will be absent. In

this case we would have already attempted to satisfy the R1 requirement by building functionals

ΓU1,D
1 and ΓV1,D1 , and the priority tree would have been arranged so that the latter attempt would

have succeeded.

Similarly, if the strategy β2 is following a Γ-strategy, the strategy α will have g2 as an outcome.

On the other hand if the strategy β2 is following a Γ̂-strategy, this outcome will be absent. In

this case we would have already attempted to satisfy the R2 requirement by building functionals

ΓU2,D
2 and ΓV2,D2 , and the priority tree would have been arranged so that the latter attempt would

have succeeded.

82

2.7.2 Switching

In the previous section we have seen that whenever an S strategy α performs capricious destruction

for β1 by visiting its g1 outcome, a V1 change must occur. Similarly, when an S strategy α

performs capricious destruction for β2 by visiting its g2 outcome, a V2 change must occur.

These V1 and V2 changes can be used to satisfy R requirements which were left unsatisfied by α.

Clearly in order for anR strategy to make use of these changes, it has to be following a Γ̂-strategy.

Hence it must be building a functional ΓV1,D1 or a functional ΓV2,D2 respectively.

The outcome g1 of an S strategy α will cause the R1 requirement to switch the manner in which

it is satisfied. AnyR strategy below the g1 outcome which is attempting to satisfy the requirement

R1 will now follow a Γ̂-strategy. Similarly, the outcome g2 of an S strategy α will cause the R2

requirement to switch the manner in which it is satisfied. Any R strategy below the g2 outcome

which is attempting to satisfy the requirementR2 will now follow a Γ̂-strategy.

Thus the outcomes g1 and g2 of an S strategy have two important effects. On the one hand they are

associated to the occurence of V1 and V2 changes, whilst on the other they cause the appearance

ofR strategies following a Γ̂-strategy which are able to make use of such changes.

2.7.3 S-Synchronisation

Satisfying all the requirements will require multiple S strategies along certain paths of the priority

tree. As in Section 2.5, an S strategy α has to S-Synchronise with a higher priority S strategy α′

whenever α lies below the g1 or the g2 outcome of the α′ strategy.

Hence before the S strategy α opens a gap by visiting a g1 or g2 outcome, it will check whether

the present stage is an open stage, and wait otherwise. Similarly, before the S strategy α closes

a gap by visiting a g1 or g2 outcome, it will check whether the present stage is a close stage, and

wait otherwise.

We shall now formalise theR strategy required in this section.

83

2.7.4 TheR Strategy

The main difference from the R strategy found in Section 2.5 is that it can now follow either a

Γ-strategy or a Γ̂-strategy.

TheR Strategy

This strategy has a set of uses U e, and follows either a Γ-strategy or a Γ̂-strategy. It lies below

at most one higher priority R strategy β′. The strategy β′ follows either a Γ-strategy or a

Γ̂-strategy. The strategy operates inside a work interval (a, b).

(1) (Check for expansionary stage). Is stage s a β-expansionary stage?

(a) (Yes) Go to step (2).

(b) (No) End the substage and resume from step (1).

(2) (Check for disagreement). Is there an m such that ΓU,D[s](m) 6= As(m)? (or

ΓV,D[s](m) resp.).

(a) (Yes) End the substage and resume from step (1).

(b) (No) Go to step (3).

(3) (Define the functional). For every x < ls(Φ
U,V , A) such that ΓU,D[s](x) ↑ (or

ΓV,D[s](x) resp.), define the axiom ΓU,D[s](x) = As(x) (or ΓV,D[s](x) resp.), and

choose the corresponding use γs(x) to be the least element in the set of uses U e obeying

the following conditions (if it exists):

(a) γs(x) ≥ γt(x) for all t < s.

(b) γs(x) > γs(y) for all y < x.

(c) a < γs(x) < b.

(d) γs(x) 6∈ D.

(e) γs(x) > γ′s(x), where γ′(x) is the use of the functional being built by β′ at the

element x.

(f) γs(x) > y, where y is a constraint imposed by some S strategy below β.

84

(g) γs(x) is greater than the stage at which β was last initialised.

End the substage and resume from step (1).

We shall now consider the outcomes of theR strategy and define the outcome which theR strategy

selects at stage s.

Outcomes of theR Strategy

The R strategy has two outcomes, the infinitary outcome i and the finitary outcome f . These

outcomes are ordered as follows: i <Λ f . At stage s, the strategy decides which outcome to visit

by performing the following case analysis:

(I) Waiting for expansionary stage. The strategy ends its substage at step (1). Then the present

stage s is not a β-expansionary stage. TheR strategy visits its f outcome.

(II) Expansionary stage. The strategy ends its substage at step (2) or step (3). Then the present

stage s is a β-expansionary stage. TheR strategy visits its i outcome.

We shall now formalise the S strategy required in this section.

2.7.5 The S Strategy

The main difference from the S strategy found in Section 2.6 is that the S strategy α now has to

deal with two R strategies β1 and β2 above it, each of which can be following a Γ-strategy or a

Γ̂-strategy.

The S strategy α will go through the usual steps of choosing a witness w, waiting for the

computation to converge, checking the functionals built by the strategies β1 and β2 for honesty

and then opening a gap.

Now, since β1 and β2 can now be following either a Γ-strategy or a Γ̂-strategy, it follows that α

has to wait for the appropriate combination of changes in the corresponding sets. Obtaining the

correct combination of changes results in the functionals built by β1 and β2 becoming undefined

85

at their least point of disagreement with A. In addition, the strategy does not have to change D,

resulting in a successful diagonalisation.

Suppose that α opens a gap at stage t. Suppose also that the least R1-expansionary stage greater

than t is t1, while the leastR2-expansionary stage greater than t is t2. Then the changes which the

strategy α has to wait for are determined as follows:

• If β1 is following a Γ-strategy and β2 is following a Γ-strategy, the strategy α will wait for

a U1 � φt(w) change between stages t and t1 and for a U2 � φt(w) change between stages t

and t2.

• If β1 is following a Γ-strategy and β2 is following a Γ̂-strategy, the strategy α will wait for

a U1 � φt(w) change between stages t and t1 and for a V2 � φt(w) change between stages t

and t2.

• If β1 is following a Γ̂-strategy and β2 is following a Γ-strategy, the strategy α will wait for

a V1 � φt(w) change between stages t and t1 and for a U2 � φt(w) change between stages t

and t2.

• If β1 is following a Γ̂-strategy and β2 is following a Γ̂-strategy, the strategy will wait for a

V1 � φt(w) change between stages t and t1 and for a V2 � φt(w) change between stages t

and t2.

Note that in practice, the S strategy α only needs to check whether it has obtained the changes

related to those strategies which are following a Γ-strategy. It is not necessary for α to check

whether V1 or V2 changes have taken place, because a strategy needing such a permission will be

located below a g1 or g2 outcome which guarantees that such a change has occurred.

In general when depicting some S strategy α located below two activeR strategies β1 and β2, we

shall use a notation which helps us identify those sets whose change is necessary for the strategy α

to diagonalise successfully when closing a gap. We shall write αU1,U2 when β1 and β2 both follow

a Γ-strategy, and αV1,V2 when β1 and β2 both follow a Γ̂-strategy. When β1 follows a Γ-strategy

and β2 follows a Γ̂-strategy, we write αU1,V2 , whilst when β1 follows a Γ̂-strategy and β2 follows

a Γ-strategy, we shall write αV1,U2 .

86

We shall now formalise the S strategy needed in this section.

The S Strategy

The strategy has a set of witnessesW e and a set of thresholds V e. It chooses three parameters,

the witness w and two thresholds v1 and v2. It also lies below the sequence of active R

strategies (β1, β2). Each strategy βi in this sequence follows either a Γ-strategy or a Γ̂-

strategy. The strategy operates inside a work interval (a, b).

(*) (Background Step) Perform this step at the beginning of every substage during which

the strategy is accessible. If the following conditions are met resume from the step last

indicated by the strategy, or resume from step (1) if no such step exists. Otherwise end

the substage.

(a) For all 1 ≤ i ≤ 2, if vi is defined, we have that (∀n≤vi)(Γ
Ui,D
i [s](n) ↓= As(n))

holds (ΓV,D resp).

(b) If w is defined, for all 1 ≤ i ≤ 2 we have that (∀n≤w)(ΓUi,Di [s](n) ↓= As(n))

holds (ΓV,D resp).

(c) If w is defined, a < θs(w) < b.

(1) (Select the thresholds). Let βi be a strategy in the sequence (β1, β2). If no threshold

vi corresponding to βi is defined, choose a threshold vi. The value selected for this

threshold is the least value in V e such that:

(a) (∀n≤vi)(Γ
Ui,D
i [s](n) ↓= As(n)) (ΓV,D resp).

(b) a < vi < b.

(c) (∀i<j≤2)(vi > γj,s(vj)).

(d) vi is greater than the last stage at which α was last initialised.

If thresholds satisfying these conditions cannot be found, end this substage. Resume

from step (1). Otherwise go to step (2).

(2) (Select the witness). Choose a witness w. The value selected for this witness is the least

value in W e such that:

87

(a) For all 1 ≤ i ≤ 2, we have that (∀n≤w)(ΓUi,Di,s (n) ↓= As(n)) holds (ΓV,D resp).

(b) a < w < b.

(c) ΘD(w) ↓

(d) a < θs(w) < b.

(e) (∀1≤j≤2)(w > γj,s(vj)).

(f) w is greater than the last stage at which α was last initialised.

If a witness satisfying these conditions cannot be found, end this substage. Resume

from step (1). Otherwise go to step (3).

(3) (Wait for convergence). Is ΘD[s](w) ↓= 0?

(a) (Yes) Go to step (4).

(b) (No) Otherwise end this substage. Resume from step (3).

(4) (Honestification for β1). Is φ1,s(w) > γ1,s(w)?

(a) (Yes) Is s a close stage?

(i) (Yes) Enumerate γ1,s(w) into D. Go to step (3).

(ii) (No) Go to step (3).

(b) (No) End this substage and resume from step (5).

(5) (Honestification for β2). Is φ2,s(w) > γ2,s(w)?

(a) (Yes) Is s a close stage?

(i) (Yes) Enumerate γ2,s(w) into D. Go to step (3).

(ii) (No) Go to step (3).

(b) (No) End this substage and resume from step (6).

(6) (Gap open) Is stage s an open stage?

(a) (Yes) Constrain each strategy βi in the sequence (β1, β2) to choose uses γi,s′(w) >

θs(w) at all stages s′ > s. Enumerate w into A and restrain D � θs(w). Cancel

the witness w and end this substage. Resume from step (7).

(b) (No) End this substage and resume from step (3).

88

(7) (Gap close) Is stage s a close stage?

(a) (Yes) Let t be the stage at which the strategy last opened a gap by ending its

substage at step (6). Let t1 be the least R1-expansionary stage greater than t, and

let t2 be the leastR2-expansionary stage greater than t. Let βi be the least strategy

in the sequence (β1, β2) such that Ui,t � φt(w) = Ui,ti � φt(w). If βi = β1 go to

step (8), whilst if βi = β2, go to step (9). If there is no such βi, go to step (10).

(b) (No) End this substage and resume from step (7).

(8) (Capricious destruction for β1) Enumerate γ1,s(v1) into D. End this substage and

resume from step (1).

(9) (Capricious destruction for β2) Enumerate γ2,s(v2) into D. End this substage and

resume from step (1).

(10) (Successful diagonalisation). End this substage and resume from step (10).

We shall now consider the outcomes of the S strategy and define the outcome which the strategy

selects at stage s.

Outcome of the S Strategy

The S strategy α may have up to six outcomes. These will include the diagonalisation outcome d,

the honestification for β1 outcome h1, the honestification for β2 outcome h2 and the wait outcome

w. In addition if β1 is following a Γ-strategy, α will have a g1 ouctome, whilst if β2 is following

a Γ-strategy, α will have a g2 outcome. These outcomes, when present, are ordered as follows:

d <Λ g2 <Λ g1 <Λ h1 <Λ h2 <Λ w. Once again note that the gi outcomes are ordered in

descending order, while the hi outcomes are ordered in ascending order. At stage s, the strategy

will decide which outcome to visit by performing the following case analysis:

(I) Waiting for parameters. The strategy ends its substage at the (Background Step), step (1) or

step (2). Then the functional built by strategy β1 or that built by strategy β2 fails to be defined

and equal to A up to some parameter, or α has failed to choose some parameter. The strategy

visits its w outcome and imposes the work interval (0,∞).

89

(II) Waiting for computation. The strategy ends its substage at step (3). Then we have that

ΘD[s](w) ↑, or ΘD[s](w) ↓= 1. The strategy visits its w outcome and imposes the work

interval (0,∞).

(III) Honestification for β1. The strategy ends its substage at step (4)(a)(i). Then we have that

ΘD[s](w) ↓= 0, φ1,s(w) > γ1,s(w) and that s is a close stage. The strategy visits its h1

outcome and imposes the work interval (w, γ1,s(w)).

(IV) Honestification for β2. The strategy ends its substage at step (5)(a)(i). Then we have that

ΘD[s](w) ↓= 0, φ1,s(w) ≤ γ1,s(w), φ2,s(w) > γ2,s(w) and that s is a close stage. The

strategy visits its h2 outcome and imposes the work interval (w, γ2,s(w)).

(V) Honestification for β1 - waiting for close stage. The strategy ends its substage at step (4)(a)(ii).

Then we have that ΘD[s](w) ↓= 0, and that φ1,s(w) > γ1,s(w), but s is not a close stage. The

strategy visits its h1 outcome and imposes the work interval (w, γ1,s(w)).

(VI) Honestification for β2 - waiting for close stage. The strategy ends its substage at step (5)(a)(ii).

Then we have that ΘD[s](w) ↓= 0, φ1,s(w) ≤ γ1,s(w) and that φ2,s(w) > γ2,s(w) but s is not

a close stage. The strategy visits its h2 outcome and imposes the work interval (w, γ2,s(w)).

(VII) Opening a gap - g outcomes exist. The strategy ends its substage at step (6)(a). Then we have

that ΘD[s](w) ↓= 0, φ1,s(w) ≤ γ1,s(w), φ2,s(w) ≤ γ2,s(w) and that w has been enumerated

intoA. In addition at least one of β1 and β2 are following a Γ-strategy. The strategy has opened

a gap. If the strategy has never closed a gap, the strategy visits the outcome gi, where gi is the

rightmost g outcome of the α strategy. Otherwise, the strategy visits the outcome on which a

gap was last closed. The work interval (vi, γi(vi)) is imposed, where i is the index of the gi

outcome which has been visited last.

(VIII) Opening a gap - no g outcomes. The strategy ends its substage at step (6)(a). Then we have

that ΘD[s](w) ↓= 0, φ1,s(w) ≤ γ1,s(w), φ2,s(w) ≤ γ2,s(w) and that w has been enumerated

into A. Both of β1 and β2 are following a Γ̂-strategy. Then we have that the strategy has

diagonalised successfully. The strategy visits its d outcome and imposes the work interval

(s1,∞), where s1 is equal to the present stage s.

(IX) Opening a gap - waiting for open stage. The strategy ends its substage at step (6)(b). Then we

90

have that ΘD[s](w) ↓= 0, φ1,s(w) ≤ γ1,s(w), φ2,s(w) ≤ γ2,s(w) but s is not an open stage.

The strategy visits its w outcome and imposes the work interval (0,∞).

(X) Closing a gap - waiting for close stage. The strategy ends its substage at step (7)(b). Then the

strategy has opened a gap at stage t, there has been no close stage between t and s and s is not

a close stage. The strategy visits its w outcome and imposes the work interval (0,∞).

(XI) Closing a gap - capricious destruction for β1. The strategy ends its substage at step (8). Then

we have that the strategy has opened a gap at stage t, that there has been no close stage between t

and s and that s is a close stage. In addition, β1 is following a Γ-strategy, and U1,t � φ1,t(w) =

U1,t1 � φ1,t(w), where t1 is the least R1-expansionary stage greater than t. The strategy is

closing a gap. The strategy visits its g1 outcome and imposes the work interval (v1, γ1,s(v1)).

(XII) Closing a gap - capricious destruction for β2. The strategy ends its substage at step (9). Then

we have that the strategy has opened a gap at stage t, that there has been no close stage between

t and s and that s is a close stage. In addition, β2 is following a Γ-strategy, U1,t � φ1,t(w) 6=

U1,t1 � φ1,t(w) and U2,t � φ2,t(w) = U2,t2 � φ2,t(w), where t1 is the least R1-expansionary

stage greater than t and t2 is the least R2-expansionary stage greater than t. The strategy is

closing a gap. The strategy visits its g2 outcome and imposes the work interval (v2, γ2,s(v2)).

(XIII) Closing a gap - successful diagonalisation. Then we have that the strategy has opened a gap at

stage t, that there has been no close stage between t and s and that s is a close stage. In addition

Ui,t � φi,t 6= Ui,ti � φi,t whenever βi is following a Γ-strategy. The strategy has diagonalised

successfully. The strategy visits its d outcome and imposes the work interval (s1,∞), where

s1 is equal to the present stage s.

(XIV) Stopped. strategy ends its substage at step (10), and step (10) has been visited since the strategy

was last initialised. Then we have that the strategy has already diagonalised successfully. The

strategy visits its d outcome and imposes the work interval (s1,∞) , where s1 is the stage at

which the strategy has first diagonalised successfully and visited its outcome d.

We are now in a position to take the next step and expand the priority tree below the strategy

αU1,U2 .

91

2.7.6 Organisation of Priority Tree

We shall now make our second attempt at organising a priority tree to satisfy the S requirement

below the R2 requirement below the R1 requirement. The following discussion will refer to the

priority tree shown in figure 2.4. For the time being we shall only expand the priority tree below the

g2 outcome of αU1,U2 . This will be sufficient to expose a difficulty in satisfying the requirements

which can only be addressed through strategies of greater sophistication. We shall omit the f

outcomes ofR strategies as usual. The following notation will be used on the priority tree.

• βU1
1 will denote anR strategy (from Section 2.7) which is following a Γ-strategy.

• βU2
2 will denote anR strategy (from Section 2.7) which is following a Γ-strategy.

• αU1,U2 will denote an S strategy (from Section 2.7) which needs to take into consideration

twoR strategies above it, with each following a Γ-strategy.

• βV22 will denote anR strategy (from Section 2.7) which is following a Γ̂-strategy.

• αU1,V2 will denote an S strategy (from Section 2.7) which needs to take into consideration

two R strategies above it, with the first following a Γ-strategy and the second following a

Γ̂-strategy.

In order to construct the tree below the g2 outcome of αU1,U2 , we recall that this outcome does

not interfere with the attempts of the strategy β1 to satisfy the requirement R1. On the other

hand, the actions of αU1,U2 will make the functional built by β2 partial, leaving the requirement

R2 unsatisfied. Finally, αU1,U2 fails to satisfy the S requirement, because it never diagonalises

successfully.

This means that the highest priority requirement which is left unsatisfied below the g2 outcome

of αU1,U2 is now R2. Now, the g2 outcome causes a switch in the manner of satisfying the

requirement R2. Hence in order to satisfy the R2 requirement we shall use an R strategy βV22

which follows a Γ̂-strategy.

The highest priority requirement which is left unsatisfied below the i outcome of the R strategy

βV22 is now the S requirement. The requirement can be satisfied by an S strategy αU1,V2 of the

form found in Section 2.7.

92

This strategy considers the strategies βU1
1 and βV22 as being active and needs to take them into

consideration. The strategy αU1,V2 will have the mandatory outcomes d, h1, h2 and w. It will also

have a g1 outcome, since βU1
1 is following a Γ-strategy, but no g2 outcome, since βV22 is following

a Γ̂-strategy.

βU1
1

βU2
2

αU1,U2

....βV22

αU1,V2

.....

d g1
h1

h2 w

i

.

d
g2

g1

h1 h2 w

i

i

Figure 2.4: Priority tree for S belowR2 belowR1, second approximation

2.7.7 Satisfaction of Requirements

We shall now bring to the fore a problem with the present strategies. We consider the situation in

which the leftmost outcome which is visited infinitely often by the strategy αU1,V2 is w.

93

w Suppose w is the leftmost outcome to be visited infinitely often by αU1,V2 . Then there is a stage

s0 after which outcomes to the left of w are not accessible.

Suppose that at some stage t ≤ s0, αU1,V2 opens a gap by enumerating its witness w′ into the

set A. In order for this to be the case, αU1,U2 must have visited its g2 outcome at t, and stage

t must have been an open stage for αU1,V2 . For the latter to be the case αU1,U2 must also have

opened a gap at stage t and enumerated a witness w into A.

Now, since αU1,V2 is located inside the work interval (v2, γ2(v2)) imposed by αU1,U2 , it must

be the case that v2 < w′ < γ2(v2). In addition the ordering between the parameters of αU1,U2

ensures that γ2(v2) < w. It follows that w′ < w.

Since w′ has been enumerated into A, we have that the strategy βU1
1 sees that ΦU1,V1

1 (w′) and

ΓU1,D
1 (w′) disagree withA(w′). Similarly the strategy βU2

2 sees that ΦU2,V2
2 (w′) and ΓU2,D

2 (w′)

disagree with A(w′).

Now suppose that αU1,U2 becomes accessible again and closes the gap at stage s. Then there

must have been an R1-expansionary stage at some least stage t1 such that t < t1 < s and an

R2-expansionary stage at some least stage t2 such that t < t2 < s.

Hence by the time αU1,U2 becomes accessible again the disagreement between ΦU1,V1
1 (w′),

ΦU2,V2
2 (w′) and A(w′) must have been removed. Suppose that αU1,U2 closes its gap at stage s

by visiting the outcome g1. Then we have that ΓU1,D
1 (w′) still disagrees with A(w′), and this

disagreement can only be removed if γ1(w′) or some smaller element enters D.

Now, since αU1,V2 is located below the g2 outcome of the strategy αU1,U2 , it follows that the

witness w′ which it has enumerated when opening a gap is located within the work interval

(v2, γ2(v2)). On the other hand, the strategy αU1,U2 closes its gap by visiting the outcome g1,

which is associated to the work interval (v1, γ1(v1)).

This means that we have that v2 < w′ < γ2(v2) < v1 < γ1(v1), and thus that w′ < v1. Now

repairing the disagreement between ΓU1,D
1 (w′) andA(w′) requires enumerating γ1(w′) or some

smaller element into D. But αU1,U2 enumerates γ1(v1) into D, where γ1(w′) < γ1(v1).

It follows that αU1,U2 has failed to repair the disagreement between ΓU1,D
1 (w′) and A(w′)

through this capricious destruction step.

94

Suppose now that after closing the gap at stage s, αU1,U2 is accessible once again at a stage

greater than s0. This means that after stage s, αU1,U2 can only ever visit outcome w.

In addition, every strategy below the w outcome of the αU1,U2 strategy is initialised at stage s,

and can only choose parameters which are greater than stage s itself. Hence no element up to

γ1(w′) can ever enter D again.

Thus the R1 requirement will remain unsatisfied forever, because the functional built by the

strategy βU1
1 remains in a state of disagreement.

2.7.8 Counterexample to the Leonhardi Account

Leonhardi’s account of the Lachlan Non-Splitting Theorem [Leonhardi, 1996] differs from the one

given in this dissertation in that the hi outcomes of S strategies are ordered in descending order

from left to right, whilst our account orders them in ascending order from left to right. This yields

the priority tree shown in Figure 2.5. Since the priority tree is organised in the same manner as ours

below the g1 outcome of the strategy αU1,U2 , it follows that the counterexample introduced in the

previous section also applies to the Leonhardi’s account of the Lachlan Non-Splitting Theorem.

95

βU1
1

βU2
2

αU1,U2

....βV22

αU1,V2

.....

d g1
h2

h1 w

i

.

d
g2

g1

h2 h1 w

i

i

Figure 2.5: Priority tree for S belowR2 belowR1, Leonhardi’s Account

2.8 S BelowR2 BelowR1 - Third Approximation

In this section we shall make the third and final attempt at satisfying the requirements R1, R2

and S . We shall therefore introduce the third approximation to the S and R strategies needed to

achieve this goal. We start by introducing a number of concepts.

96

2.8.1 Self-repair ofR Strategies

In Section 2.7 we have shown a situation in which the strategy αU1,U2 opened a gap by visiting

its outcome g2. This led to the strategy αU1,V2 being able to open a gap with a small witness w′

inside the work interval below the g2 outcome at the same stage. This enumeration consequently

caused a disagreement between ΓU1,D
1 (w′) and A(w′).

But when αU1,U2 closed the gap by visiting its g1 outcome, it was unable to repair the

disagreement. This happened because the enumeration of γ1(w) into D was too large to correct

this disagreement, which needed to be at least as small γ1(w′). Moreover, the strategy αU1,U2 has

no control on the outcome it visits when it closes the gap, because this is controlled by the changes

which fail to happen in the sets U1 and U2.

Since the disagreement between ΓU1,D
1 (w′) and A(w′) cannot be repaired through the action of

any S strategy below β1, we shall allow the R strategy to self-repair its disagreements instead.

When anR strategy sees a disagreement between ΓU1,D(x) and A(x), it will proceed to undefine

its functional at this element by enumerating γ(x) into the set D. The strategy will then be able to

redefine its functional at a later stage so that it agrees with the set A once again.

Note that this turns the R strategies into positive strategies. The enumeration of elements into D

aimed at repairing disagreements created by the enumeration of small witnesses can now result

in the injury of other lower and higher priority S and R strategies. In particular, S strategies can

have their restraint on D injured and their computation destroyed, andR strategies run the risk of

having the functional they are building become partial at some element. The proof that this is not

the case will be postponed until Section 2.10.

We have already determined that S strategies wishing to perform capricious destruction or

honestification steps by enumerating elements into D should only do so during close stages. This

stops the S strategy in question from interfering with higher priority strategies wishing to open

a gap and restrain the set D. We shall adopt the same measure for R strategies performing self-

repair, by allowing them to enumerate elements into D only during close stages.

97

2.8.2 Restarting

In order to be able to present the entire priority tree for S below R2 below R1, we shall need to

introduce the concept of a restart.

Whenever an S strategy has a g1 or h1 outcome which is associated to the requirement R1, all

switches related to the requirementR2 will be canceled. Note that the g1 and h1 outcomes render

the requirement R2 unsatisfied through R-Synchronisation. The restart means that the next R

strategy which attempts to satisfy the requirement R2 below the g1 outcome must follow a Γ-

strategy.

In general we have that whenever an S strategy has a gn or hn outcome associated with a

requirement Rn, this outcome will cancel all switches related to requirements Rm with m > n.

These requirements will become unsatisfied and theR strategies which will be assigned to satisfy

them once again will follow a Γ-strategy. Thus in these cases, progress made towards satisfying

lower priorityR requirements is discarded and the process is restarted once again.

We shall now formalise theR strategy required in this section.

2.8.3 TheR Strategy

The main difference from the R strategy found in the previous section is that it can now follow

either a Γ-strategy or a Γ̂-strategy.

TheR Strategy

This strategy has a set of uses U e, and follows either a Γ-strategy or a Γ̂-strategy. It lies below

at most one higher priority R strategy β′. The strategy β′ follows either a Γ-strategy or a

Γ̂-strategy. The strategy operates inside a work interval (a, b).

(1) (Check for expansionary stage). Is stage s a β-expansionary stage?

(a) (Yes) Go to step (2).

(b) (No) End the substage and resume from step (1).

98

(2) (Repair or define the functional). Is ΓU,D[s](m) 6= As(m) for somem? (or ΓV,D[s](m)

resp.).

(a) (Yes) Is stage s a close-stage?

(i) (Yes) Enumerate γs(m) into D. End the substage and resume from step (1).

(ii) (No) End this substage and resume from step (1).

(b) (No) (Define the functional). For every x < ls(Φ
U,V , A) such that ΓU,D[s](x) ↑

(or ΓV,D[s](x) resp.), define the axiom ΓU,D[s](x) = As(x) (or ΓV,D[s](x) resp.),

and choose the corresponding use γs(x) to be the least element in the set of uses

U e obeying the following conditions (if it exists):

(i) γs(x) ≥ γt(x) for all t < s.

(ii) γs(x) > γs(y) for all y < x.

(iii) a < γs(x) < b.

(iv) γs(x) 6∈ D.

(v) γs(x) > γ′s(x), where γ′(x) is the use of the functional being built by β′ at

the element x.

(vi) γs(x) > y, where y is a constraint imposed by some S strategy below β.

(vii) γs(x) is greater than the stage at which β was last initialised.

End the substage and resume from step (1).

We shall now consider the outcomes of theR strategy and define the outcome which theR strategy

selects at stage s.

Outcomes of theR Strategy

The R strategy has two outcomes, the infinitary outcome i and the finitary outcome f . These

outcomes are ordered as follows: i <Λ f . At stage s, the strategy decides which outcome to visit

by performing the following case analysis:

(I) Waiting for expansionary stage. The strategy ends its substage at step (1). Then the present

stage s is not a β-expansionary stage. TheR strategy visits its f outcome.

99

(II) Expansionary stage. The strategy ends its substage at step (2)(a)(i) or step (2)(a)(ii) or step

(2)(b). Then the present stage s is a β-expansionary stage. TheR strategy visits its i outcome.

2.8.4 The S Strategy

The S strategy which we shall use in this section is identical to the one found in Section 2.7.

2.8.5 Organisation of the Priority Tree

We shall now make our final attempt at organising a priority tree to satisfy an S requirement below

an R2 requirement below an R1 requirement. The following discussion will refer to the priority

tree shown in Figure 2.6.

We shall build the full priority tree below the strategy αU1,U2 from right to left. As we descend

down the tree, the strategies which are required become simpler and can be reused from previous

sections.

Similarly when moving from the right to the left of the tree some structures will also be repeated

and can be reused, simplifying the presentation of the priority tree.

In Figure 2.6 some branches of the tree terminate in a strategy rather than in the symbol ’.’. This

is an indication that the tree needs to be expanded below this strategy, according to a case which

has been seen previously.

We shall also omit those parts of the tree occurring below the f outcomes ofR strategies as usual.

The following notation will be used on the priority tree.

• βU1
1 will denote an R strategy (from Section 2.8) attempting to satisfy the R1 requirement

by following a Γ-strategy.

• βU2
2 will denote an R strategy (from Section 2.8) attempting to satisfy the R2 requirement

by following a Γ-strategy.

• βV11 will denote an R strategy (from Section 2.8) attempting to satisfy the R1 requirement

by following a Γ̂-strategy.

100

• βV22 will denote an R strategy (from Section 2.8) attempting to satisfy the R2 requirement

by following a Γ̂-strategy

• αU1 will denote an S strategy (from Section 2.5) attempting to satisfy the S requirement.

This strategy needs to take into consideration one R strategy which is attempting to satisfy

the requirementR1 by following a Γ-strategy.

• αU2 will denote an S strategy (from Section 2.5) attempting to satisfy the S requirement.

This strategy needs to take into consideration one R strategy which is attempting to satisfy

the requirementR2 by following a Γ-strategy.

• αV1 will denote an S strategy (from Section 2.5) attempting to satisfy the S requirement.

This strategy needs to take into consideration one R strategy which is attempting to satisfy

the requirementR1 by following a Γ̂-strategy.

• αV2 will denote an S strategy (from Section 2.5) attempting to satisfy the S requirement.

This strategy needs to take into consideration one R strategy which is attempting to satisfy

the requirementR2 by following a Γ̂-strategy.

• αU1,U2 will denote an S strategy (from Section 2.7) attempting to satisfy the S requirement.

This strategy needs to take into consideration two R strategies which are attempting to

satisfy the requirementsR1 andR2 by following Γ-strategies.

• αU1,V1 will denote an S strategy (from Section 2.7) attempting to satisfy the S requirement.

This strategy needs to take into consideration two R strategies which are attempting to

satisfy the requirementsR1 andR2 by following a Γ-strategy and a Γ̂-strategy respectively.

• αV1,U2 will denote an S strategy (from Section 2.7) attempting to satisfy the S requirement.

This strategy needs to take into consideration two R strategies which are attempting to

satisfy the requirementsR1 andR2 by following a Γ̂-strategy and a Γ-strategy respectively.

• αV1,V2 will denote an S strategy (from Section 2.7) attempting to satisfy the S requirement.

This strategy needs to take into consideration two R strategies which are attempting to

satisfy the requirementsR1 andR2 by following Γ-strategies.

101

βU1
1

βU2
2

αU1,U2

.αU1βU2′
2

αU2

i

βV11

βU2′
2

αV1,U2

.αV1βU2′′
2

αU2

i

βV22

αV1,V2

.αV1βU2′′
2

αU2

i

.

d
h1 h2 w

i

.

d
g2 h1 h2 w

i

i

βV22

αU1,V2

.αU1βU2′
2

αU2

i

βV11

βU2′
2

αV1,U2

i

i

.

d
g1 h1 h2

w

i

.

d
g2 g1

h1
h2

w

i

i

Figure 2.6: Priority tree for S belowR2 belowR1, third approximation.

102

(1) Below the w outcome of the αU1,U2 strategy we have that the S , R2 and R1 requirements

are satisfied.

(2) Below the h2 outcome of the αU1,U2 strategy we have that the R2 requirement is satisfied

trivially, whilst the R1 requirement will be satisfied by the strategy βU1
1 in the absence of

interference by other strategies. On the other hand, the S requirement remains unsatisfied.

Therefore we add an S strategy αU1 which considers only the R strategy βU1
1 above it as

active, which is a situation which has already been encountered before.

(3) Below the h1 outcome of the αU1,U2 strategy we have that the R1 requirement is satisfied

trivially, whilst theR2 requirement fails to be satisfied due to R-Synchronisation. Similarly

the S requirement remains unsatisfied. The h1 outcome of αU1,U2 causes a restart, meaning

that in order to satisfy the R2 requirement we use an R strategy βU2′
2 which follows a Γ-

strategy. In order to satisfy the S requirement, we use an S strategy αU2 which considers

only the R strategy βU2′
2 above it as active, which is a situation which has already been

encountered before.

(4) Below the g1 outcome of the αU1,U2 strategy we have that theR1 requirement is unsatisfied,

and that the R2 requirement fails to be satisfied due to R-Synchronisation. Similarly the S

requirement remains unsatisfied. The g1 outcome causes a switch in the manner of satisfying

R1 and a restart in the manner of satisfying R2. This means that in order to satisfy the

requirement R1, we shall use a strategy βV11 following a Γ̂-strategy, whilst to satisfy the

requirement R2 we shall use a strategy βU2′
2 following a Γ-strategy. Finally, in order to

satisfy the S strategy we shall use a strategy αV1,U2 which considers βV11 and βU2′
2 as active

strategies.

We now consider the priority tree below the αV1,U2 strategy.

(4.1) Below the w outcome of the αV1,U2 strategy we have that the S , R2 and R1

requirements are satisfied.

(4.2) Below the h2 outcome of the αV1,U2 strategy we have that the R2 requirement is

satisfied trivially, whilst the R1 requirement will be satisfied by the strategy βV11 in

103

the absence of interference by other strategies. On the other hand, the S requirement

remains unsatisfied. Therefore we add an S strategy αV1 which considers only the R

strategy βV11 above it as active, which is a situation which has already been encountered

before.

(4.3) Below the h1 outcome of the αV1,U2 strategy we have that the R1 requirement

is satisfied trivially, whilst the R2 requirement fails to be satisfied due to R-

Synchronisation. Similarly the S requirement remains unsatisfied. The h1 outcome of

αV1,U2 causes a restart in the manner of satisfying the requirement R2. Thus in order

to satisfy the R2 requirement we use an R strategy βU2′′
2 which follows a Γ-strategy.

In order to satisfy the S requirement, we use an S strategy αU2 which considers only

the R strategy βU2′′
2 above it as active, which is a situation which has already been

encountered before.

(4.4) Below the g2 outcome of the αV1,U2 strategy we have that the R2 requirement is

unsatisfied, whilst the R1 requirement will be satisfied by the strategy βV11 in the

absence of interference by other strategies. Similarly the S requirement remains

unsatisfied. Now the g2 outcome of the strategy αV1,U2 causes a switch in the manner

of satisfying the R2 requirement. This means that in order to satisfy the requirement

R2, we shall use a strategy βV22 which follows a Γ̂-strategy. On the other hand to

satisfy the S strategy we shall use a strategy αV1,V2 which considers βV11 and βV22 as

active strategies.

We now consider the priority tree below the αV1,V2 strategy.

(4.4.1) Below the w outcome of the αV1,V2 strategy we have that the S , R2 and R1

requirements are satisfied.

(4.4.2) Below the h2 outcome of the αV1,V2 strategy we have that the R2 requirement

is satisfied trivially, whilst the R1 requirement will be satisfied by the strategy

βV11 in the absence of interference by other strategies. On the other hand, the

S requirement remains unsatisfied. Therefore we add an S strategy αV1 which

considers only the R strategy βV11 above it as active, which is a situation which

has already been encountered before.

104

(4.4.3) Below the h1 outcome of the αV1,V2 strategy we have that the R1 requirement

is satisfied trivially, whilst the R2 requirement fails to be satisfied due to R-

Synchronisation. Similarly the S requirement remains unsatisfied. The h1

outcome of αV1,V2 causes a restart, meaning that in order to satisfy the R2

requirement we use an R strategy βU2′′
2 which follows a Γ-strategy. In order

to satisfy the S requirement, we use an S strategy αU2 which considers only the

R strategy βU2′′
2 above it as active, which is a situation which has already been

encountered before.

(4.4.4) Below the d outcome of the αU1,V2 strategy we have that the S , R2 and R1

requirements are satisfied.

(4.5) Below the w outcome of the αV1,U2 strategy we have that the S, R2 and R1

requirements are satisfied.

(5) Below the g2 outcome of the αU1,U2 strategy we have that theR2 requirement is unsatisfied,

whilst theR1 requirement will be satisfied by the strategy βU1
1 in the absence of interference

by other strategies. Similarly the S requirement remains unsatisfied. Now, the g2 outcome

of the αU1,U2 strategy causes a switch in the manner of satisfying theR2 requirement. This

means that in order to satisfy the requirementR2, we shall use a strategy βV22 which follows

a Γ̂-strategy. On the other hand to satisfy the S strategy we shall use a strategy αU1,V2 which

considers βU1
1 and βV22 as active strategies.

We now consider the priority tree below the αU1,V2 strategy.

(5.1) Below the w outcome of the αU1,V2 strategy we have that the S, R2 and R1

requirements are satisfied.

(5.2) Below the h2 outcome of the αU1,V2 strategy we have that the R2 requirement is

satisfied trivially, whilst the R1 requirement will be satisfied by the strategy βU1
1 in

the absence of interference by other strategies. On the other hand, the S requirement

remains unsatisfied. Therefore we add an S strategy αU1 which considers only the R

strategy βU1
1 above it as active, which is a situation which has already been encountered

before.

105

(5.3) Below the h1 outcome of the αU1,V2 strategy we have that the R1 requirement

is satisfied trivially, whilst the R2 requirement fails to be satisfied due to R-

Synchronisation. Similarly the S requirement remains unsatisfied. The h1 outcome

of αU1,V2 causes a restart in the manner of satisfying theR2 requirement. This means

that in order to satisfy the R2 requirement we use an R strategy βU2′
2 which follows

a Γ-strategy. In order to satisfy the S requirement, we use an S strategy αU2 which

considers only the R strategy βU2′
2 above it as active, which is a situation which has

already been encountered before.

(5.4) Below the g1 outcome of the αU1,V2 strategy we have that the R1 requirement is

unsatisfied, and that theR2 requirement fails to be satisfied due to R-Synchronisation.

Similarly the S requirement remains unsatisfied. The g1 outcome causes a switch in

the manner of satisfying R1 and a restart in the manner of satisfying R2. This means

that in order to satisfy the requirement R1, we shall use a strategy βV11 following a

Γ̂-strategy, whilst to satisfy the requirementR2 we shall use a strategy βU2′
2 following

a Γ-strategy. Finally, in order to satisfy the S strategy we shall use a strategy αV1,U2

which considers βV11 and βU2′
2 as active strategies. This is a situation which has already

been encountered before on the priority tree.

(5.5) Below the d outcome of the αU1,V2 strategy we have that the S, R2 and R1

requirements are satisfied.

(6) Below the d outcome of the αU1,U2 strategy we have that the S, R2 and R1 requirements

are satisfied.

2.8.6 Satisfaction of Requirements

We shall now examine the satisfaction of the S, R2 and R1 requirements, showing how they are

finally satisfied by the priority tree in Figure 2.6. Many of the branches terminate in strategies

representing a subtree which has already been shown to succeed in satisfying these requirements.

Hence, we do not need to analyse whether these branches lead to the satisfaction of these

requirements.

106

We shall instead focus on the most complicated branch which goes from αU1,U2 to αV1,V2 , as

shown in Figure 2.7.

107

βU1
1

βU2
2

αU1,U2

.
...

...
...βV22

αU1,V2

.
...

...βV11

βU2′
2

αV1,U2

.
...

...βV2′2

αV1,V2

.
...

....

d
h1 h2

w

i

.

d
g2

h1 h2
w

i

i

.

d
g1

h1 h2
w

i

.

d
g2 g1

h1 h2
w

i

i

Figure 2.7: Priority tree for S belowR2 belowR1 - detail of the g2 outcome of αU1,U2 .

108

For the purpose of our exposition, we shall consider only the situation where the d outcome is the

leftmost outcome visited infinitely often by the strategy αV1,V2 , which reveals the operation of the

most complex part of the construction.

Suppose that the strategy αV1,V2 and every other S strategy above it attempts to diagonalise during

the same stage. Then the analysis below shows how each combination of changes in the sets U1

and V1 by the least R1-expansionary stage greater than s, and changes in the sets U2 and V2 by

the least R2-expansionary stage greater than s causes one of the S strategies to succeed. It also

shows that if αV1,V2 becomes accessible again after stage s, it must be the result of every S strategy

above it failing to diagonalise, and that this result causes it to diagonalise instead, leading to the

satisfaction of the S requirement.

d Suppose d is the leftmost outcome of the strategy to be visited infinitely often. Then αV1,V2

must have opened a gap and diagonalised successfully as a result.

In order for αV1,V2 to open a gap at some stage t, αV1,V2 must have been accessible at stage

t. This can only have been the case if the strategies αU1,U2 , αU1,V2 and αV1,U2 have also been

accessible at stage t.

In this case αU1,U2 has opened a gap by visiting its outcome g2, αU1,V2 has opened a gap by

visiting its outcome g1, and αV1,U2 has opened a gap by visiting outcome g2.

When opening a gap, αU1,U2 enumerates its witnessw, αU1,V2 enumerates its witnessw′, αV1,U2

enumerates its witness w′′ and αV1,V2 enumerates its witness w′′′.

Now, each S strategy on the priority tree is located inside the work interval imposed by the S

strategy immediately above it. This means that the ordering w′′′ < w′′ < w′ < w must hold

between the witnesses. Hence w′′′ is now the least point of disagreement between the set A

and the functionals built by R strategies lying on the path leading from the root of the tree to

the strategy αV1,V2 .

In order for the strategy αU1,U2 to become accessible again after stage t, there must have been

some least stage t1 > t such that t1 is an R1-expansionary stage. In addition there must have

been some least stage t2 > t such that t2 is anR2-expansionary stage.

109

Hence we have that the disagreement between ΦU1,V1
1 and A has been repaired through some

U1 � φt(w′′′) or V1 � φt(w′′′) change between stages t and t1. Similarly, the disagreement

between ΦU2,V2
2 and A has been repaired through a U2 � φt(w′′′) or a V2 � φ(w′′′) change

between stages t and t2.

Now, the functional ΦU1,V1
1 is shared amongst all strategies attempting to satisfy the R1

requirement and the functional ΦU2,V2
2 is shared amongst all strategies attempting to satisfy

the R2 requirement. Hence t1 and t2 are the stages by which the strategies αU1,U2 , αU1,V2 ,

αV1,U2 and αV1,V2 will have to check whether U1 or U2 changes have occurred in response to

the gaps which they have opened.

In addition, if an R strategy β which is trying to satisfy some requirement Ri sees an Ri-

expansionary stage at some given stage s, every R strategy β′ attempting to satisfy the

requirementRi will see anRi-expansionary stage.

Suppose that αU1,U2 is accessible and is ready to close its gap at stage t′. Then it must check

whether there has been the required U1 change between t and t1 and the required U2 change

between t and t2.

If both changes have taken place, αU1,U2 would have diagonalised, making αU1,V2 inaccessible,

which is impossible. On the other hand, we could have a U1 change but no U2 change (with

a V2 change instead), leading αU1,U2 to visit its outcome g2. This makes the strategy αU1,V2

accessible at stage t′. The strategy αU1,V2 will then close its gap, and note that the U1 and V2

changes allow it to diagonalise successfully. But this is impossible once again.

Hence it follows that at stage t1, a U1 change must have failed to occur (with a V1 change

occurring instead). This leads αU1,U2 to close its gap by visiting outcome g1. Note that although

the strategies αU1,V2 , αV1,U2 and αV1,V2 are inaccessible at stage t′, they remain in a suspended

state waiting to close their gap. Eventually, αU1,U2 must visit its g2 outcome again, and this can

only happen if αU1,U2 has closed a gap on g2 which it had opened at some stage greater than t′.

Suppose that αU1,U2 visits its g2 outcome again at stage t′′. Then αU1,V2 becomes accessible

and closes its gap. When closing its gap, αU1,V2 notices that U1 has failed to change at stage

t1, and thus closes its gap by visiting its outcome g1.

110

This makes αV1,U2 accessible. This strategy knows that the failure of U1 to change by stage t1

guarantees the occurrence of a V1 change by stage t1. Hence, the strategy needs to check

whether there has been a U2 change by stage t2. If this is the case, the strategy would

diagonalise successfully, which is impossible. Hence, there must have been a V2 change, and

αV1,U2 closes by visiting the outcome g2.

This makes the strategy αV1,V2 accessible. When the strategy closes its gap it must be the case

that V1 change has taken place by stage t1 and that a V2 changes has taken place by stage t2.

Hence the strategy must have been correct in believing that it would diagonalise successfully.

The requirement S is thus satisfied by the strategy αV1,V2 .

On the other hand the V1 � φ1,t(w
′′′) and V2 � φ2,t(w

′′′) changes ensure that the functionals

built by the strategies βU2′
2 , and βV2′2 no longer disagree with the set A at w′′′. This follows

from the fact that the αV1,V2 strategy ensures that the functionals built by the strategies βU2′
2 ,

and βV2′2 are honest at w′′′ before opening the gap.

It follows that the strategies βU2′
2 and βV2′2 can keep building their functionals without further

interference, satisfying the requirementsR1 andR2.

111

2.9 The General Case

We shall now consider the general case, where we are required to satisfy many R and many S

requirements simultaneously. In order to deal with many R and many S requirements, we shall

generalise the approach found in Section 2.8, which we have used to successfully satisfy an S

requirement below twoR requirements.

We shall start by considering a straightforward generalisation of the S and R strategies which

allows them to be used in a context involving many R and S requirements. Then we shall return

to the problem of ensuring that the general R and S strategies are fair, in the sense of preserving

infinitely many open and close stages for strategies located below them.

Following this the generalR and S strategies will be formalised. We then proceed to consider the

general priority tree, and formalise the way in which it is generated. We conclude by formalising

the construction which decides which strategies are accessible on the priority tree at each stage.

The verification, which proves that every requirement can be satisfied by the resulting system will

be postponed to Section 2.10.

2.9.1 Generalising the Strategies

The general R strategy β must be able to follow either a Γ-strategy or a Γ̂-strategy. It also needs

to consider the fact that there might be n activeR strategies lying above it. This means that when

building its functional it will need to R-Synchronise with all of these strategies.

The general S strategy α needs to consider the fact that there might be a sequence of m active R

strategies (β1, . . . , βm) above it. Hence it will need to choose a threshold vi for each one of these

strategies in addition to its witness w. This will also give rise to m different hi outcomes. If m′ of

these m strategies are following a Γ-strategy, we will also have m′ different gi outcomes.

The strategy α will first choose a witness w and wait to see a computation ΘD(w) ↓= 0, visiting

its outcome w until this is the case. Once this has become the case, the α strategy will determine

whether there is some least activeR strategy βi above it whose functional is dishonest at w. If this

is the case it will honestify the functional it is building and visit the corresponding hi outcome.

112

When closing a gap, the strategy will consider each active R strategy above it which is following

a Γ-strategy. It will then determine whether there is a least strategy βi amongst these for which Ui

has failed to change. If there is such an i, then the strategy will perform capricious destruction by

visiting its gi outcome. Otherwise it will diagonalise successfully and visit its d outcome.

The notions of S-Synchronisation, switching and restarting will now apply in their general form.

Thus if an S strategy α lies below the gi outcome of some S strategy α′, it will need to S-

Synchronise with it. In addition the gi outcomes of an S strategy α cause a switch in the manner

of satisfying the requirementRi. Satisfying such a requirement will now require anR strategy to

follow a Γ̂-strategy.

Finally, the gi and hi outcomes of an S strategy α cause a restart, canceling all switches affecting

R requirements of priority lower than Ri. Satisfying such a requirement will now require an R

strategy to follow a Γ-strategy.

2.9.2 Fairness

Any S strategy α on the priority tree with a gi outcome needs to see infinitely many open and

close stages in order to function correctly. If the strategy is starved of one kind of stage it could be

forced to wait forever, stuck at outcome w with a computation ΘD(w) ↓= 0 which is not suitable

for satisfying the corresponding S requirement.

In order to avoid such a situation, we need to ensure that every R and S strategy passes infinitely

many open and close stages down the leftmost outcome which they visit infinitely often, whichever

this might be. We do this by assuming that the strategy in question sees infinitely many open and

close stages, and then by showing that an infinite subset of each is preserved down the leftmost

outcome which the strategy visits infinitely often.

The S strategy α shall ensure that this is the case in the following way.

Suppose that the outcome d or the outcomew is the leftmost outcome visited infinitely often by the

strategy α. Then we have that the strategy eventually stops changing outcome and thus preserves

every open and close stage it sees, passing it down the outcome in question.

113

Suppose that the outcome gi is the leftmost outcome visited infinitely often by the strategy α.

Then whenever the strategy closes a gap by visiting the outcome gi, it will open the next gap by

also visiting the outcome gi. This is the approach adopted in previous sections and is sufficient

to preserve infinitely many open and close stages and to pass them down the gi outcome of the

strategy.

Suppose that the outcome hi is the leftmost outcome visited infinitely often by the strategy α.

Whenever the functional built by some strategy above α is dishonest, the strategy will perform

honestification in two parts.

During Part I the strategy will wait for a close stage and visit its outcome hi. During this visit it

will enumerate the required element into D in order to honestify the functional. During Part II the

strategy will wait for an open stage and also visit its outcome hi. However this time the strategy

will not enumerate any element into D and will thus have no effect on the functional. This will

ensure that the S strategy preserves infinitely many open and close stages and passes them down

its hi outcome.

On the other hand, the situation with the R strategy β is more complex. This is because the R

strategy β chooses whether to visit its i or its f outcome depending on whether stage s is a β-

expansionary stage or not. However whether s is a β-expansionary stage or not is completely

outside of the strategy’s control.

It might be the case that every β-expansionary stage coincides with an open stage, and that every

stage which is not a β-expansionary stage coincides with a close stage (or vice versa). In such a

scenario the strategy would visit its i outcome during open stages only and its f outcome during

close stages only (or vice versa). It would thus fail to preserve infinitely many open stages and

infinitely many close stages and to pass them down the leftmost outcome visited infinitely often

by the strategy.

This difficulty can be resolved in the following way. Let us assume that there are infinitely many

R -expansionary stages. At any given point in time β will want to pass an open stage or a close

stage down its i outcome. The β strategy will first wait for a β-expansionary stage s. Then it

will check whether that stage is of the required kind (say, an open stage). If this is the case, the

114

β-expansionary stage has coincided with a required stage. Therefore we can build the functional

and visit the i outcome as usual, ensuring that an open stage has been passed down this outcome.

We then set the required stage to be a close stage and repeat the process.

On the other hand, suppose that the β-expansionary stage occurs during a close stage. Then the

β-expansionary stage and the open stage have not coincided. The strategy will then wait for an

open stage s′ such that the length of agreement between ΦU,V and A is at least as large as the one

witnessed during stage s. If this stage occurs, then we build the functional as usual according to

the length of agreement, visit the i outcome and pass an open stage down this outcome as required.

If this stage never occurs, then the only explanation is that the functional keeps becoming

undefined at some element which is less than the length of agreement seen at stage s. Hence,

although there are infinitely manyR -expansionary stages, the length of agreement between ΦU,V

and A is not infinite in the limit. This means that while the strategy visits only its f outcome after

some stage, this is in effect the correct outcome to visit.

Note that in the situation where there are only finitely many β-expansionary stages, or where there

is only finite agreement in the limit despite there being infinitely many R -expansionary stages,

we have that the strategy visits only its f outcome. In this case, every open stage and close stage

seen by the strategy, will be passed down its f outcome, as required.

2.9.3 TheR Strategy

We shall now formally define the generalR strategy.

TheR strategy

This strategy has a set of uses U e, and follows either a Γ-strategy or a Γ̂-strategy. It lies below

a sequence of n active of R strategies (β1, . . . , βn). Each strategy βi in the sequence follows

either a Γ-strategy or a Γ̂-strategy. The strategy operates inside a work interval (a, b).

(1) (Initialise). Set the required stage to be an open-stage and go to step (2).

(2) (Check for expansionary stage). Is stage s a β-expansionary stage?

115

(a) (Yes) Go to step (3).

(b) (No) End the substage and resume from step (2).

(3) (Wait for the required stage). Is the required stage of the same kind as stage s, and is

ls(A,Φ
U,V) ≥ lt(A,Φ

U,V), where t is the last stage during which β last visited step

(2)?

(a) (Yes) If the required stage is currently an open-stage, set the required stage to be

a close-stage. On the other hand, if the required stage is currently a close-stage,

set the required stage to be an open-stage. Go to step (4).

(b) (No) End the substage and resume from step (3).

(4) (Repair or define the functional). Is there an m such that ΓU,D[s](m) 6= As(m)? (or

ΓV,D[s](m) resp.).

(a) (Yes) Is stage s a close-stage?

(i) (Yes) Enumerate γs(m) into D. End the substage and resume from step (2).

(ii) (No) End this substage and resume from step (2).

(b) (No) For every x < ls(A,Φ
U,V) such that ΓU,D[s](x) ↑ (or ΓV,D[s](x) resp.),

define the axiom ΓU,D[s](x) = As(x) (or ΓV,D[s](x) resp.), and choose the

corresponding use γs(x) to be the least element in the set of uses U e obeying

the following conditions (if it exists):

(i) γs(x) ≥ γt(x) for all t < s.

(ii) γs(x) > γs(y) for all y < x.

(iii) a < γs(x) < b.

(iv) γs(x) 6∈ D.

(v) γs(x) > γj,s(x), for every activeR strategy βj ⊂ β.

(vi) γs(x) > y, where y is a constraint imposed by some S strategy below β.

(vii) γs(x) is greater than the last stage at which β was initialised.

End the substage and resume from step (2).

116

We shall now consider the outcomes of the R strategy and define the outcome which the strategy

selects at stage s.

Outcome of theR strategy

The R strategy β has two outcomes, the infinitary outcome i and the finitary outcome f . These

outcomes are ordered as follows: i <Λ f . The outcome which is visited by the strategy β at stage

s, and which we denote by Os(β) is chosen through the following case analysis:

(I) Waiting for expansionary stage. The strategy ends its substage at step (2)(b). The strategy is

waiting for an expansionary stage. Then theR strategy visits its f outcome.

(II) Waiting for a required stage. The strategy ends its substage at step (3)(b). The strategy is

waiting for a required stage which preserves the previous length of agreement. Then the R

strategy visits its f outcome.

(III) Expansion preserving required stage. The strategy ends its substage at step (4)(a)(i), (4)(a)(ii)

or (4)(b). The strategy has seen a required stage which preserves the previous length of

agreement. Then theR strategy visits its i outcome.

2.9.4 The S Strategy

We shall now formally define the general S strategy.

The S strategy

The strategy has a set of witnessesW e and a set of thresholds V e. It choosesm+1 parameters,

the witnessw andm thresholds v1, . . . , vm. It lies below the sequence ofm activeR strategies

(β1, . . . , βm), each of which may either be following a Γ-strategy or a Γ̂-strategy. The strategy

operates inside a work interval (a, b).

(*) (Background Step) Perform this step at the beginning of every substage during which

the strategy is accessible. If the following conditions are met resume from the step last

117

indicated by the strategy, or resume from step (1) if no such step exists. Otherwise end

the substage.

(a) For all 1 ≤ i ≤ m, if vi is defined, we have that (∀n≤vi)(Γ
Ui,D
i [s](n) ↓= As(n))

holds (ΓV,D resp).

(b) If w is defined, for all 1 ≤ i ≤ m we have that (∀n≤w)(ΓUi,Di [s](n) ↓= As(n))

holds (ΓV,D resp).

(c) If w is defined, a < θs(w) < b.

(1) (Select the thresholds). Let βi be a strategy in the sequence (β1, . . . , βm). If no

threshold vi corresponding to βi is defined, choose a threshold vi. The value selected

for this threshold is the least value in V e such that:

(a) (∀n≤vi)(Γ
Ui,D
i [s](n) ↓= As(n)) (ΓV,D resp).

(b) a < vi < b.

(c) (∀i<j≤m)(vi > γj,s(vj)).

(d) vi is greater than the last stage at which α was initialised.

If thresholds satisfying these conditions cannot be found, end this substage. Resume

from step (1). Otherwise go to step (2).

(2) (Select the witness). Choose a witness w. The value selected for this witness is the least

value in W e such that:

(a) For all 1 ≤ i ≤ m, we have that (∀n≤w)(ΓUi,Di,s (n) ↓= As(n)) holds (ΓV,D resp).

(b) a < w < b.

(c) ΘD[s](w) ↓

(d) a < θs(w) < b.

(e) (∀1≤j≤m)(w > γj,s(vj)).

(f) w is greater than the last stage at which α was initialised.

If a witness satisfying these conditions cannot be found, end this substage. Resume

from step (1). Otherwise go to step (3).

118

(3) (Wait for convergence). Is ΘD[s](w) ↓= 0?

(a) (Yes) Go to step (4).

(b) (No) Otherwise end this substage. Resume from step (3).

(4) (Honestification, Part I). Is there some strategy βi in the sequence (β1, . . . , βm) for

which φi,s(w) > γi,s(w)?

(a) (Yes) Is stage s a close-stage?

(i) (Yes) Let βi be the least strategy for which φi,s(w) > γi,s(w). Enumerate

γi,s(w) into D. End this substage and resume from step (5).

(ii) (No) End this substage and resume from step (3).

(b) (No) Go to step (6).

(5) (Honestification, Part II). Is stage s an open-stage?

(a) (Yes) End this substage and resume from step (3).

(b) (No) End this substage and resume from step (5).

(6) (Gap open) Is stage s an open-stage?

(a) (Yes) Constrain each strategy βi in the sequence (β1, . . . , βm) to choose uses

γi,s′(w) > θs(w) at all stages s′ > s. Enumeratew intoA and restrainD � θs(w).

Cancel the witness w. End this substage. Resume from step (7).

(b) (No) End this substage and resume from step (3).

(7) (Gap close) Is stage s a close-stage?

(a) (Yes) Let t be the stage at which the strategy last opened a gap by ending its

substage at step (6)(a). Let ti be the leastRi-expansionary stage greater than t for

all i such that 1 ≤ i ≤ m. Is there some strategy βi in the sequence (β1, . . . , βm)

such that βi is following a Γ-strategy and such that Ui,t � φt(w) = Ui,ti � φt(w)?

(i) (Yes) Go to step (8).

(ii) (No) Go to step (9).

(b) (No) End the substage and resume from step (7).

119

(8) (Capricious destruction) Let βi be the least strategy satisfying the condition in step (7a).

Enumerate γi,s(vi) into D. Cancel all thresholds vn with n < i. End this substage and

resume from step (1).

(9) (Successful diagonalisation). End this substage and resume from step (9).

We shall now consider the outcomes of the S strategy and define the outcome which theR strategy

selects at stage s.

Outcome of the S strategy

The S strategy α may have up to 2m+ 2 outcomes, where m is the number ofR strategies above

α. These will include the diagonalisation outcome d, the wait outcome w and m honestification

outcomes h1, . . . , hm. If βi for i ∈ {1 . . .m} is following a Γ-strategy, then gi will also be an

outcome of α. These outcomes, when present, are ordered in the following way: d <Λ gm <Λ

. . . <Λ g1 <Λ h1 . . . <Λ hm <Λ w. Once again note that the gi outcomes are ordered in

descending order, while the hi outcomes are ordered in ascending order. The outcome which is

visited by the strategy α at stage s, and which we denote byOs(α) is chosen through the following

case analysis:

(I) Waiting for parameters. The strategy ends its substage at the (Background Step), step (1) or

step (2). The functional built by some strategy βi fails to be defined and equal to A up to some

parameter, or α has failed to choose some parameter. The strategy visits its w outcome and

imposes the work interval (0,∞).

(II) Waiting for computation. The strategy ends its substage at step (3). Then we have that

ΘD[s](w) ↑, or ΘD[s](w) ↓= 1. The strategy visits its w outcome and imposes the work

interval (0,∞).

(III) Honestification, Part I for βi. The strategy ends its substage at step (4)(a)(i). Then we have that

ΘD[s](w) ↓= 0, βi is the least strategy such that φi,s(w) > γi,s(w), and that s is a close stage.

The strategy visits its hi outcome and imposes the work interval (w, γi,s(w)).

120

(IV) Honestification, Part I for βi - waiting for close stage. The strategy ends its substage at step

(4)(a)(ii). Then we have that ΘD[s](w) ↓= 0, βi is the least strategy such that φi,s(w) >

γi,s(w), but s is not a close stage. The strategy visits its w outcome and imposes the work

interval (0,∞).

(V) Honestification, Part II for βi. The strategy ends its substage at step (5)(a). Then the strategy

has performed Part I honestification for βi at some stage t, and has not performed Part II

honestification for βi between stages t and s. In addition stage s is an open stage. The strategy

visits its hi outcome and imposes the work interval (w, γi,s(w)).

(VI) Honestification, Part II for βi - waiting for open stage. The strategy ends its substage at step

(5)(b). Then the strategy has performed Part I honestification for βi at some stage t, and has

not performed Part II honestification for βi between stages t and s. In addition stage s is an

open stage. The strategy visits its w outcome and imposes the work interval (0,∞).

(VII) Opening a gap - g outcomes exist. The strategy ends its substage at step (6)(a). Then we have

that ΘD[s](w) ↓= 0, φi,s(w) ≤ γi,s(w) for every strategy βi, and that s is an open stage. In

addition at least one strategy βi is following a Γ-strategy. The strategy has opened a gap. If the

strategy has never closed a gap, the strategy visits the outcome gj , where gj is the rightmost g

outcome of the α strategy. Otherwise, the strategy visits the outcome on which a gap was last

closed. The work interval (vj , γj(vj)) is imposed.

(VIII) Opening a gap - no g outcomes. The strategy ends its substage at step (6)(a). Then we have

that ΘD[s](w) ↓= 0, φi,s(w) ≤ γi,s(w) for every strategy βi, and that s is an open stage.

Every strategy βi is following a Γ̂-strategy. Then we have that the strategy has diagonalised

successfully. The strategy visits its d outcome and imposes the work interval (s1,∞), where

s1 is equal to the present stage s.

(IX) Opening a gap - waiting for open stage. The strategy ends its substage at step (6)(b). Then we

have that ΘD[s](w) ↓= 0, φi,s(w) ≤ γi,s(w) for every strategy βi, but s is not an open stage.

The strategy visits its w outcome and imposes the work interval (0,∞).

(X) Closing a gap - waiting for close stage. The strategy ends its substage at step (7)(b). Then the

strategy has last opened a gap at stage t, but s is not a close stage. The strategy visits its w

121

outcome and imposes the work interval (0,∞).

(XI) Closing a gap - capricious destruction for βi. The strategy ends its substage at step (8). Then

we have that the strategy has last opened a gap at stage t, that βi is the least strategy such that

βi is following a Γ-strategy, that ti is the least stage greater than t such that there has been an

Ri-expansionary stage, and that Ui,t(m) � φt(w) = Ui,ti(m) � φt(w). In addition s is a close

stage. The strategy is closing a gap by performing capricious destruction on βi. The strategy

visits its gi outcome and imposes the work interval (vi, γi,s(vi)).

(XII) Closing a gap - successful diagonalisation. The strategy ends its substage at step (9). Then

we have that there is no strategy βi such that βi is following a Γ-strategy, that ti is the

least stage greater than t such that βi has seen an Ri-expansionary stage, and that Ui,t(m) �

φt(w) = Ui,ti(m) � φt(w). In addition stage s is a close stage. The strategy has diagonalised

successfully. The strategy visits its d outcome and imposes the work interval (s1,∞), where

s1 is equal to the present stage s.

(XIII) Stopped. The strategy ends its substage at step (9), and step (9) has been visited since

the strategy was last initialised. Then we have that the strategy has already diagonalised

successfully. The strategy visits its d outcome and imposes the work interval (s1,∞), where

s1 is the stage at which the strategy has first diagonalised successfully and visited its outcome

d.

2.9.5 Organisation of the Priority Tree

We shall now describe formally how the priority tree T is organised in general. The layout of

strategies on the tree is not uniform and will be different for each path through the tree. This

reflects the fact that a requirement is not in general satisfied by one strategy but as the result of

action on the part of multiple strategies, and that different outcomes will necessitate the use of

different backup strategies.

To build the priority tree T we first assign the following priority ordering to the requirements:

R0 <p S0 <p R1 <p S1 <p . . .

122

Every node on the tree will be assigned a label, corresponding to the highest priority requirement

which is unsatisfied at that node. Each such node will be assigned a strategy of the appropriate

kind in order to satisfy this requirement. Hence, nodes which are labeled Ri will be assigned an

R strategy, while nodes which are labeled Si will be assigned an S strategy.

AnR strategy β assigned to a node labeledRi will have two edges leaving it. These are labeled i

and f with i <Λ f , and represent the outcomes of the strategy.

The situation with an S strategy α assigned to a node labeled Si is more complex. In order to

define the edges leaving this strategy, we shall first need to introduce a few auxiliary concepts.

Firstly we shall define the concept of a strategy being restarted. Let
−→
t be a finite path. We shall

say that a strategy γ assigned to a node labeled Ri on
−→
t is restarted on

−→
t if there is some S

strategy α below γ, such that α has an edge labeled hj or gj with j < i on
−→
t .

In this case we say that the strategy α has caused a restart in the manner of satisfying the

requirementsRi with i > j, thus canceling all switches affecting this requirement.

On the other hand a strategy γ assigned to a node labeled Si on
−→
t is restarted on

−→
t if there is

some S strategy α below γ, such that α has an edge labeled hj or gj for j ≤ i on
−→
t .

Secondly we define the concept of a strategy following a Γ-strategy or a Γ̂-strategy. Let
−→
t be

a finite path. We shall say that a strategy β assigned to a node labeled Ri on
−→
t is following a

Γ̂-strategy if:

• There is some strategy β′ which is assigned to a node labeledRi above β.

• β′ is the greatest strategy (under ⊂) which is assigned to a node labeledRi above β.

• There is some S strategy α assigned to a node between β′ and β with the edge leaving α on
−→
t being labeled gi.

• The strategy β′ is not restarted on
−→
t .

In this case we say that the strategy α has caused a switch in the manner of satisfying the

requirement Ri, forcing the β strategy to start following a Γ̂-strategy. If an R strategy β lying

on a finite path
−→
t is not following a Γ̂-strategy, then we shall say that β is following a Γ-strategy.

123

Thirdly we need to define the concept of an active strategy. Let
−→
t be a finite path. We shall say

that anR strategy β assigned to a node labeledRj on
−→
t is active on

−→
t if:

• The edge leaving β on
−→
t is labeled i.

• There is no S strategy α assigned to a node below β with the edge leaving α on
−→
t being

labeled hj or gj .

• The strategy β is not restarted on
−→
t .

With the benefit of these concepts we can now define the edges which leave an S strategy α

assigned to a node labeled Si. Two of the edges leaving α will be labeled d and w. In addition

there will be an edge labeled hn for everyR strategy β obeying the following conditions:

• β is above α.

• β is assigned to a node labeledRn.

• β is active on the path terminating at α.

as well as an edge labeled gn for everyR strategy β obeying the following conditions:

• β is above α.

• β is assigned to a node labeledRn.

• β is active on the path terminating at α.

• β follows a Γ-strategy.

The edge labeled d will be the leftmost edge leaving α, followed by the edges labeled gn arranged

in descending order from left to right, followed by the edges labeled hi arranged in ascending

order from left to right and ending with the edge labeled w as the rightmost edge.

On any given finite path, there will be at most one strategy γ which is managing to satisfy a

particular requirement, while all the other strategies associated to the requirement will be failing

to do so. A strategy which is satisfying a particular requirement over a given finite path is said to

represent the requirement on that path. We shall formalise this notion below.

124

Given a finite path
−→
t , we say that an S strategy α represents a requirement Si on

−→
t if all of the

following are the case:

• α is on
−→
t .

• α is assigned to a node labeled Si.

• The edge leaving α on
−→
t is labeled d or w.

• α is not restarted on
−→
t .

Given a finite path
−→
t , we say that an R strategy β represents a requirement Ri on

−→
t if all of the

following are the case:

• β is on
−→
t .

• β is assigned to a node labeledRi.

• β is not restarted on
−→
t .

and in addition, at least one of the following is also the case:

• The edge leaving β on
−→
t is labeled f .

• There is some S strategy α below β on
−→
t , such that the edge leaving α on

−→
t is labeled hi.

• The strategy β is active on
−→
t .

Note that although a strategy may represent some requirement on
−→
t , it may stop doing so on some

−→
t′ extending

−→
t .

In addition, we shall say that a strategy represents some requirement on an infinite path p if it

represents the requirement on p � m for every natural number m.

The priority tree T can then be defined by induction as follows. Given any finite path
−→
t in T

ending with an unlabeled node, we label the node with the highest priority requirement which is

unrepresented on
−→
t . We then assign a strategy of the appropriate kind to the node in order to

satisfy this requirement. Following this we determine the edges leaving the strategy as detailed

above, extending the tree with several new unlabeled nodes over which we can then repeat the

same procedure.

125

We shall now formalise the construction which decides which strategies on the priority tree are

accessible at each stage.

2.9.6 The Construction

During each stage s, we will generate a current path δs in T of length s by recursion, consisting

of the edges visited by the construction during stage s. Whilst generating δs in this manner, we

implicitly obtain the strategies lying on this path, which we declare to be accessible. The current

path δs is generated by going through a sequence of substages t ≤ s. During each substage, one

chooses the last strategy on the path and computes its outcome at stage s, which corresponds to

the next edge on the path.

The following procedure is followed to generate δs.

1. Base case (t = 0). Let δs = ∅. Declare δs � 0 to be accessible.

2. Recursive case (t+ 1).

If t+ 1 > s, the path δs has been constructed. Go to the next stage s+ 1.

Otherwise consider the strategy γ = δs � t (that is, the strategy lying at the end of the path

built during the last substage).

Execute the strategy γ and compute its outcome Os(γ) at stage s.

Otherwise γ goes to the next substage at stage s. Let δs = δs � t ̂ Os(γ). Declare δs � t+1

to be accessible. Go to the next substage.

If a strategy γ is accessible at stage s, we shall say that s is a γ-stage.

Whenever a strategy γ is declared to be accessible, every strategy to its right is initialised.

Strategies which have been initialised must start again from step (1). In addition initialised

S strategies have all their parameters (witnesses and thresholds) canceled, while initialised R

strategies have their functional destroyed and need to rebuild it anew.

126

2.10 Verification

2.10.1 Definitions

The true path f is defined as follows. The edge f(n) is determined by identifying the strategy γ

lying at the terminal node of the true path of length n and choosing the edge which the strategy

converges to if it exists, or the leftmost edge which the strategy visits infinitely often otherwise.

Note that the strategy lying at the terminal node of the true path of length 0 is the strategy located

at the root node of the priority tree.

Definition 2.10.1. (True Path). The true path f is defined by induction as follows. Let f � n = γ.

If there are only finitely many γ-stages, f(n) is undefined. Otherwise:

(a) If γ is anR strategy,

f(n) =

 i if lim infsOs(γ) = i

f if limsOs(γ) = f

(b) If γ is an S strategy,

f(n) =



w if limsOs(γ) = w

gj if lim infsOs(γ) = gj

hk if lim infsOs(γ) = hk

d if limsOs(γ) = d

where:

j ∈ {n : N | (∃β ⊂ γ)[β is labeledRn ∧ β is active for γ ∧ β follows a Γ-strategy]}.

k ∈ {n : N | (∃β ⊂ γ)[β is labeledRn ∧ β is active for γ]}.

s ∈ Nγ , where Nγ is the set of γ-stages.

We shall now define the concepts of a γ-open stage and a γ-close stage for a strategy γ. A stage s

is a γ-open stage if every S strategy α with outcome gn above γ is opening a gap at s, and every

S strategy α with outcome hn above γ is performing Part II honestification at s. In addition any

functional built by an R strategy above γ cannot disagree with the set A at any element at which

it is defined during the stage under consideration. On the other hand a stages is a γ-close stage

127

if every S strategy α with outcome gn above γ is closing a gap at s, and every S strategy α with

outcome hn above γ is performing Part I honestification at s.

Definition 2.10.2. (Open-Stages and Close-Stages) Let γ be anR or S strategy.

A stage s is a γ-open stage if it satisfies conditions (O1)-(O3).

(1) (Condition O1). γ is accessible at s.

(2) (Condition O2). If α is an S strategy with an edge with outcome gn above γ, then α has

chosen case (VII) when computing its outcome during stage s. Similarly, if α is an S strategy

with an edge with outcome hn above γ, then α has chosen case (V) when computing its

outcome during stage s.

(3) (Condition O3). If β is anR strategy above γ building a functional ΓU,D, there is no element

m such that As(m) 6= ΓU,D[s](m) (ΓV,Dresp).

A stage t is a γ-close stage for γ if it satisfies conditions (C1)-(C2).

(1) (Condition C1). γ is accessible at t.

(2) (Condition O2). If α is an S strategy with an edge with outcome gn above γ, then α has

chosen case (XI) when computing its outcome during stage s. Similarly, if α is an S strategy

with an edge with outcome hn above γ, then α has chosen case (III) when computing its

outcome during stage s.

2.10.2 Representation Lemma

The Representation Lemma shows that given any requirement and any infinite path through the

priority tree, there will eventually be a strategy which represents that requirement on the infinite

path.

Lemma 2.10.3. (Representation Lemma). Let Q be a requirement, and let p be an infinite path.

Then there is some strategy γ and some natural number v such that:

1. γ represents Q on p � v.

128

2. For every m ≥ v, γ represents Q on p � m.

Proof. We proceed by strong induction on the list of requirements {Qi}i∈N. Suppose, as the

inductive hypothesis that for every requirement Qi with i ≤ n, there is some strategy γi and some

natural number vi such that γi represents Qi on p � vi, and such that for every m ≥ vi we have

that γi represents Qi on p � m.

We shall prove that for requirement Qn+1 there is some strategy γn+1 ⊂ p and some natural

number vn+1 such that γn+1 represents Qn+1 on p � vn+1, and that for every m > vn+1 we have

that γn+1 represents Qn+1 on p � m.

From the inductive hypothesis it follows that for every requirement Qi with i ≤ n, there is some

strategy γi and some least natural number v′i such that γi represents Qi on p � v′i, and such that for

every m ≥ v′i we have that γi represents Qi on p � m.

Let u = maxi≤n{v′i}.

Then u must be the least natural number such that for every requirement Qi with i ≤ n we have

that γi represents Qi on p � u and such that for every m ≥ u we have that γj represents Qi on

p � m.

For if it were otherwise, there would exist some least natural number u′ < u such that for every

requirement Qi with i ≤ n we have that γi represents Qi on p � u′, and that for every m ≥ u′ we

have that γi represents Qi on p � m. But this contradicts the fact that there is some requirement

Qj with j < n such that v′j = u is the least natural number such that γj represents Qj on p � v′j ,

and that for every m ≥ v′j we have that γj represents Qj on p � m.

Now, either Qn+1 is already represented by some strategy γn+1 on p � u, or else this is not the

case. We shall show that this is not the case by contradiction. Suppose that γn+1 already represents

Qn+1 on p � u. Then there must be some requirement Qi with i ≤ n, and some strategy γi with

γn+1 ⊂ γi such that γi represents Qi on p � u.

For suppose that this was not the case. Then γn+1 can only represent Qn+1 on p � u in one of the

following ways. If Qn+1 is an S requirement, γn+1 must have outcome d or outcome w on p � u.

On the other hand, if Qn+1 is an R requirement, γn+1 must either have outcome f on p � u, or

129

have outcome i on p � u along with one of the following conditions; either there is an S strategy

below γn+1 with an h outcome on p � u associated to the requirement, or there is no S strategy

with an h or g outcome on p � u associated to the requirement.

In all of the above cases, we have that there is no effect on strategies γi for i ≤ n with respect to

them representing requirement Qi on p � u. It follows that every strategy γi for i ≤ n represents

its requirement Qi on p � |γn+1|, where |γn+1| < u. But this contradicts the fact that u is the least

natural number such that for every requirement Qi with i ≤ n we have that γi represents Qi on

p � u and such that for every m ≥ u we have that γj represents Qi on p � m.

Now, in order for the strategy γn+1 labeled Qn+1 to appear on the tree at p � |γn+1|, it must be

the case that Qn+1 is the highest priority unrepresented requirement on p � |γn+1|. Hence, the

requirement Qi must have been represented on p � |γn+1|.

But in order for the strategy γi labeled Qi to appear on the tree at p � |γi|, it must be the case

that Qi is the highest priority unrepresented requirement on p � |γi|. Hence the requirement Qi

must have become unrepresented due to the strategy γi being restarted by the outcome of some

strategy lying between p � |γn+1| and p � |γi|. Since i < n, the outcome of this strategy must also

have restarted the startegy γn+1 labeled Qn+1. It follows that Qn+1 is not represented by γn+1 on

p � u, which gives a contradiction.

Since every requirement Qi with i ≤ n is represented by some γi on p � u, we have that the

strategy at p � u, must be labeled Qn+1, since this is the highest priority requirement which is not

represented on p � u. Let this strategy be denoted by γ.

We are now in a position to show that there exists some strategy γn+1 and some number vn+1 such

that γn+1 represents the requirementQn+1 on p � vn+1, and for allm > vn+1, γn+1 represents the

requirement Qn+1 on p � vn+1. In order to do so we split our analysis into two cases, depending

on whether Qn+1 is anR or an S requirement.

Case 1: Qn+1 is anR requirement.

(1) If the outcome of γ labeled Qn+1 on p is f , we have that γ represents Qn+1 on p � u + 1.

Now, the only way for γ to stop representing Qn+1 on extensions of p � u + 1 is for some

S strategy α on this extension to have outcome gj or hj with j ≤ n.

130

It is not possible for α to have outcome gj with j ≤ n or outcome hj with j < n, because

this would cause some requirement Qi with i ≤ n to become unrepresented on an extension

of p � u. On the other hand it is possible for α to have outcome hn, because this ensures

that Qn remains represented on extensions of p � u.

If α has outcome hn, then we have that γ does not representQn+1 on p � |α|+1, because the

requirementQn+1 has been restarted. Since every requirementQi with i ≤ n is represented

on p � m for all m ≥ u, it follows that the strategy γ′ at p � |α|+ 1 must be labeledRn+1.

If the outcome of γ′ on p is f , then we have that γ′ represents Qn+1 on p � m for all

m ≥ |γ′|+ 1. Note that there can now be no strategy α′ below γ′ with outcome hn, because

there is no strategy labeledRn above α′ which is active. Hence γ′ now represents Qn+1 on

all p � m with m ≥ |γ′|+ 1.

On the other hand if the outcome of γ′ on p is i, the analysis becomes identical to that found

in (2)(i) for the strategy γ′ with outcome i on p.

(2) If the outcome of γ labeled Qn+1 on p is i, we have that γ represents Qn+1 on p � u + 1.

Now, the only way for γ to stop representing Qn+1 on extensions of p � u + 1 is for some

S strategy α on this extension to have outcome gj with j ≤ n + 1 or outcome hj with

j < n+ 1 on the same extension.

Now, if α has outcome gj with j ≤ n, it would make some requirement Qi with i ≤

n unrepresented on the extension, which is a contradiction. Hence in this case, the only

outcome possible is gn+1.

Similarly if α has outcome hj with j < n, it would make some requirement Qi with i ≤

n unrepresented on the extension, which is a contradiction. Hence in this case, the only

outcome possible is hn.

(i) If α has outcome hn, then we have that γ does not represent Qn+1 on p � |α| + 1,

because the requirement Qn+1 has been restarted. Since every requirement Qi with

i ≤ n is represented on p � m for allm ≥ u, it follows that the strategy γ′ at p � |α|+1

must be labeledRn+1.

If the outcome of γ′ on p is f , then we have that γ′ represents Qn+1 on p � m for all

131

m ≥ |γ′| + 1. Note that there can now be no strategy α′ below γ′ with outcome hn.

This arises from the fact that α has outcome hn, which stops any strategy β labeled

Rn which is active for α from being active for α′. In addition, the hn outcome of α

ensures that β representsRn on p � m′ for allm′ > |β|, meaning that this requirement

will not appear again on the priority tree. Similarly, there can now be no strategy α′

below γ′ with outcome gn+1, because the f outcome of γ′ stops this strategy, which is

labeled Rn+1, from being active for α′. In addition the f outcome of γ′ ensures that

γ′ representsRn+1 on p � m′ for all m′ > |γ′|+ 1, meaning that this requirement will

not appear again on the priority tree.

If the outcome of γ′ on p is i, then we have that γ′ represents Qn+1 on p � |γ′| + 1.

The only way in which γ′ can stop representing Qn+1 on extensions of this path is for

there to be a strategy α′ below γ′ with outcome gn+1. Note that there can now be no

strategy α′ below γ′ with outcome hn. This arises from the fact that α has outcome

hn, which stops any strategy β labeledRn which is active for α from being active for

α′. In addition, the hn outcome of α ensures that β represents Rn on p � m′ for all

m′ > |β|, meaning that this requirement will not appear again on the priority tree.

If the outcome of α′ on p is gn+1, we have that γ′ does not represent Qn+1 on p �

|α′| + 1. Since every requirement Qi with i ≤ n is represented on p � m for all

m ≥ u, it follows that the strategy γ′′ at p � |α|+ 1 must be labeled Rn+1. Since the

outcome gn+1 causes a switch in the manner of satisfying the requirement Qn+1, we

have that the strategy γ′′ is following a Γ̂-strategy.

If the outcome of γ′′ on p is f , we have that γ′′ represents Qn+1 on p � m for all

m ≥ |γ′′|+ 1 through an argument identical to the one for γ′. On the other hand if the

outcome of γ′′ on p is i, we have that γ′′ representsQn+1 on p � m for allm ≥ |γ′′|+1.

This can be the case for one of two reasons. The first is that the strategy γ′′ is active at

all extensions of p � |γ′′|+ 1, because there can now be no strategy α′′ with outcomes

gn+1 or hn below γ′′. The second is that there is some strategy α′′ with outcome hn+1

on p below γ′′. This is sufficient for α′′ represent Qn+1 on all extensions of |γ′′|+ 1.

(ii) If α has outcome gn+1, we have that γ does not represent Qn+1 on p � |α|+ 1. Since

132

every requirement Qi with i ≤ n is represented on p � m for all m ≥ u, it follows that

the strategy γ′ at p � |α|+ 1 must be labeledRn+1. Since the outcome gn+1 causes a

switch in the manner of satisfying the requirement Qn+1, we have that the strategy γ′

is following a Γ̂-strategy.

If the outcome of γ′ on p is f , our analysis becomes identical to the one in (1). On

the other hand if the outcome of γ′ on p is i, we have that γ′ represents Qn+1 on

p � |γ′| + 1. The only way in which γ′ can stop representing Qn+1 on extensions of

this path is for there to be a strategy α′ below γ′ with outcome hn. Note that now the

strategy α′ can have no outcome gn+1, because γ′ is already following a Γ-strategy. If

such a strategy α′ with outcome hn exists, then our analysis becomes identical to the

one in (2)(i).

Case 2: Qn+1 is an S requirement.

In this case the strategy γ at p � u is an S strategy. In order to determine its outcomes we

proceed as follows.

First of all we note that by the inductive hypothesis we have that anyR requirementQr with

r ≤ n is represented by some strategy γr on p � u and on p � m for all m > u. In order for

this to be the case, one of the following conditions must hold.

(1) γr has outcome f on p. In addition γr is not restarted on p.

(2) γr has outcome i on p. In addition, there is some S strategyα below γr having outcome

hr on p. Finally γr is not restarted on p.

(3) γr has outcome i on p. In addition, γr must be active on p. This means that there is no

S strategy α below γr having outcome hr or gr on p. Finally γr is not restarted on p.

We claim that in each of these three cases the S strategy γ does not have hr or gr as an

outcome.

In the first case we have that γr does not have outcome i on p. Hence γr is not active for γ

and the latter cannot have hr or gr as an outcome.

In the second case we have that there is some S strategy α between γr and γ with outcome

hr. Hence γr is not active for γ and the γ cannot have hr or gr as an outcome.

133

In the third case we have that there cannot be any S strategy α below γr with outcomes hr

or gr on p. Since α can be γ, we have that γ cannot have hr or gr as an outcome.

In addition the same argument guarantees that there can be no S strategy α′ below γ with

outcomes hr or gr on p. Hence it is not possible for the strategy α to be restarted either.

From this it follows that γ can only have outcomes d or w on p, and that γ is never restarted

on p. This means that that γ represents Qn+1 on p � |γ|+ 1, and that γ represents Qn+1 on

p � m, for all m > |γ|+ 1 as required.

2.10.3 Leftmost Path Lemma

The Leftmost Path Lemma shows that if a strategy lies on the true path, the current path generated

by the construction at each stage can only lie to its left finitely often. This will mean that if a

strategy lies on the true path, there will be some greatest stage s0 such that the strategy is never

initialised at stages s > s0.

Lemma 2.10.4. (Leftmost Path Lemma). Let f be the true path. If f � n is defined, there are only

finitely many stages s such that δs <L γ, where γ = f � n.

Proof. We prove the lemma by induction on n.

For the Base Case n = 0 we consider f � 0. In this case we have that f � 0 is defined and is the

strategy γ0 located at the root of the priority tree. Hence there is no stage s such that δs <L γ0.

For the Inductive Case we assume that the lemma holds for n = k. Thus we have that if f � k is

defined, there are only finitely many stages s such that δs <L γk, where γk = f � k.

We then prove that the lemma holds for n = k + 1. Thus we need to show that if f � k + 1 is

defined, there are only finitely many stages s such that δs <L γk+1, where γk+1 = f � k + 1.

Now if f � k + 1 is not defined, the lemma holds trivially.

Otherwise suppose that f � k + 1 is defined. This can only be the case if f � k is defined and if

f(k) is defined.

134

Since f � k is defined, by the Inductive Hypothesis we have that there is some stage t such

that δt′ 6<L γk for all t′ > t. In addition, since f(k) is defined, it must either be the case that

f(k) = limsOs(γk) or that f(k) = lim infsOs(γk), where γk = f � k.

Hence there must be some stage u > t such that Ou′(γk) 6<L f(k) for all u′ > u. Since f �

k + 1 = f � kˆf(k), we have that δs 6< γn+1 for all s > u.

2.10.4 Infinite True Path Lemma

The Infinite True Path Lemma shows that the true path is infinite in length.

Lemma 2.10.5. (Infinite True Path Lemma). Let f be the true path. Then f(n) is defined for every

n.

Proof. To prove that f(n) is defined for some n, we need to show two things. The first is that

there are infinitely many γn-stages, where γn = f � n. The second is that either limsOs(γn) or

lim infsOs(γn) exists.

We first prove a preliminary result by showing that for any strategy γ, we have that limsOs(γ) or

lim infsOs(γ) always exists.

Suppose that γ is anR strategy.

If γ does not visit its i outcome infinitely often there is some stage t such that γ must always visit

its f outcome after t. In this case limsOs(γ) exists and is equal to f . It follows that f(n) is

defined and is equal to f .

On the other hand it could be the case that γ visits its i outcome infinitely often. Since i is to the

left of the outcome f , we have that lim infsOs(γ) exists and is equal to i. It follows that f(n) is

defined and is equal to i.

Suppose now that γ is an S strategy.

If γ visits its d outcome at some stage t, it will stop acting, visiting its d outcome at all subsequent

stages. Hence, limsOs(γ) exists, and is equal to d. It follows that f(n) is defined and is equal to

d.

135

If γ never visits its d outcome, it could be that it visits outcomes gi for i < k finitely often, but

outcome gk infinitely often. Since gk is to the left of all other remaining outcomes, we have that

lim infsOs(γ) exists, and is equal to gk. It follows that f(n) is defined and is equal to gk.

If γ never visits its d outcome, and visits its gi outcomes only finitely often, it could be the case

that γ visits outcomes hi for i < k finitely often, but outcome hk infinitely often. Since hk is to

the left of all other remaining outcomes, we have that lim infsOs(γ) exists, and is equal to hk. It

follows that f(n) is defined and is equal to hk.

If γ never visits its d outcome, and visits its gi and hi outcomes only finitely often, then γ must

visit its w outcome at all subsequent stages. Hence limsOs(γ) exists, and is equal to w. It follows

that f(n) is defined and is equal to w.

We are now in a position to prove the lemma by Induction on n.

For the Base Case n = 0 we need to show that f(0) is defined. Consider f � 0, then we have

that the strategy γ0 = f � 0 is located at the root of the priority tree. This means that the strategy

is accessible at every stage. Hence there are infinitely many γ0-stages. By the preliminary result

we also have that either limsOs(γ0) or lim infsOs(γ0) exists. This means that f(0) is defined as

required.

For the Inductive Case we assume that the lemma holds for n = k. Then we have that f(k) is

defined. This means that there are infinitely many γk-stages, where γk = f � k. We also have that

either limsOs(γk) or lim infsOs(γk) exists.

We then prove that the lemma holds for n = k + 1. This means that we need to prove that

f(k + 1) is defined. This requires showing that there are infinitely many γk+1-stages, where

γk+1 = f � k + 1, as well as showing that either limsOs(γk+1) or lim infsOs(γk+1) exists.

In order to show that there are infinitely many γk+1-stages we proceed as follows. By The

Inductive Hypothesis we have that there are infinitely many γk-stages. This means that γk is

accessible at infinitely many stages.

If limsOs(γk) exists there must be some stage s such that γk visits f(k) at every stage s′ > s.

Hence γk+1 is accessible at infinitely many stages as well, which means that there are infinitely

136

many γk+1-stages as required. If limsOs(γk) does not exist but lim infsOs(γk) exists, it must be

the case that γk visits f(k) at infinitely many stages. Hence γk+1 is accessible at infinitely many

stages as well, which means that there are infinitely many γk+1-stages as required.

Finally, by the preliminary result we also have that either limsOs(γk+1) or lim infsOs(γk+1)

exists. This means that f(k + 1) is defined as required.

2.10.5 Restraint Lemma

The Restraint Lemma shows that the restraint imposed on any strategy on the true path by strategies

located above it or to its left drops to some constant value during infinitely many of the stages at

which it is accessible.

Lemma 2.10.6. (Restraint Lemma). Let γ be an R strategy or an S strategy on the true path f .

Let r(α, s) be the restraint imposed on γ by a strategy α lying to the left of or above γ at stage s.

Then lim inf
s∈Nγ

r(α, s) exists, where Nγ is the set of γ-stages.

Proof. Consider the strategy γ on the true path f . Since γ is on the true path, by the Leftmost Path

Lemma there is a stage s0 such that no strategies to the left of γ are accessible at stages s > s0.

This means that the restraint imposed by strategies to the left of γ becomes constant during such

stages. Hence we only need to consider restraints imposed by strategies above γ.

Now, R strategies located above γ do not impose any restraint on lower priority strategies.

Therefore we only need to consider S strategies α located above γ. When determining the

restraints which are imposed on γ, we are only interested in the restraints imposed during those

stages at which γ is accessible. We thus consider the contribution of each such strategy α to the

total restraint imposed on γ, by considering the outcome of α on the true path.

First of all we note that if the outcome of α on the true path is w or hn for some n then α imposes

no restraint on γ at stages at which γ is accessible. If the outcome of α on the true path is d, then

α imposes the constant restraint θ(w) on γ at stages during which γ is accessible.

We now need to consider the situation which occurs when the strategies α have outcomes gn for

some n on the true path. Such strategies impose a restraint of θ(w) when they open a gap, and

137

lower it to zero when they close a gap. We shall show that there are infinitely many stages such that

γ is accessible, and such that the total restraint imposed by strategies α above γ with gn outcomes

at these stages is 0.

Let α∗ be the greatest S strategy such that α∗ _ gn ⊂ γ for some n. Since α∗ _ gn is on the true

path, α∗ must be accessible and visit its gn outcome infinitely often. If α∗ opens a gap by visiting

gn, then it will be able to visit gn again only once α∗ closes some gap on gn again. In addition,

after α∗ closes this gap by visiting gn, it will open the next gap at gn as well. Note that when α∗

opens a gap, it will impose the restraint θ(w) on γ, and when it closes a gap, it will lower this

restraint to 0. Now, due to S-Synchronisation α∗ will only visit the gn outcome whilst closing a

gap if every higher priority S strategy on f is also closing a gap during the same stage. But this

has to eventually occur, as otherwise the gn outcome of the α∗ strategy would not be on the true

path. Thus, when α∗ finally closes a gap by visiting its gn outcome, it not only lowers its restraint

down to 0, but does so during a stage when all higher priority S strategies have also lowered their

restraints down to 0.

Hence we have that there are infinitely many stages such that the total restraint imposed by all S

strategies with gn outcomes which are of higher priority than γ is 0. During these stages the total

restraint imposed on γ is thus the sum of the constant restraint imposed by strategies to the left of

γ after stage s0 and the constant restraint imposed by strategies above γ with d outcomes. Hence

a lim inf restraint on α exists, as required.

2.10.6 Synchronisation Lemma

The Synchronisation Lemma shows that if a strategy is on the true path it is accessible during

infinitely many open stages and infinitely many close stages.

Lemma 2.10.7. (Synchronisation Lemma). Let γ be an R or S strategy on the true path. Then

there are infinitely many open-stages for γ and infinitely many close-stages for γ.

Proof. We prove this lemma by induction on the length of the true path.

For the base case consider the top strategy of the tree γ. Since γ is the top strategy of the tree,

it must be accessible at every stage. Since γ has no other R or S strategy above it, it follows

138

that every stage satisfies conditions (O1)-(O3) and (C1)-(C2) for γ. Hence, γ is accessible during

infinitely many open-stages and close-stages.

For the inductive case we show that if there are infinitely many open-stages and infinitely many

close-stages for a given strategy γ on the true path, then there are also infinitely many open-stages

and infinitely many close-stages for its successor γ+ on the true path. In order to prove this fact we

shall have to show that γ preserves infinitely many open-stages and infinitely many close-stages

down its outcome on the true path.

We split our analysis into two cases, depending on whether γ is anR strategy or an S strategy.

(1) γ is an R strategy. Suppose γ is accessible at infinitely many open-stages and at infinitely

many close-stages. We split the analysis into a further two cases, depending on whether the

R strategy has outcome i or outcome f on the true path.

(a) γ has outcome f on the true path. By the Leftmost Path Lemma there is a stage s0 after

which γ visits its f outcome every time it is accessible. Suppose that γ is accessible

during some open-stage s > s0. Then we have that γ+ is also accessible at stage s.

Now, since s is an open-stage and γ is an R strategy, it follows that every S strategy

above γ+ with a gn or hn outcome for some n, is still opening a gap or performing Part

II honestification at stage s. Finally, since s is an open-stage and the outcome of γ on

the true path is f , it follows that γ+ does not have any active strategy whose functional

disagrees with the set A above it. Hence stage s satisfies conditions (O1)-(O3) for γ+

as well.

Suppose now that γ is accessible during a close-stage t > s0. Then we have that γ+

is also accessible at stage t. In addition, since t is a close-stage and γ is anR strategy,

it follows that every S strategy above γ+ with a gn or hn outcome for some n, is still

closing a gap or performing Part I honestification at stage t. Hence stage t satisfies

conditions (C1)-(C2) for γ+ as well.

(b) γ has outcome i on the true path. By the Leftmost Path Lemma γ visits its i outcome

infinitely often. Now, for γ to visit its i outcome infinitely often, it must be the case

that γ ends its substage at step (4)(a)(i), (4)(a)(ii) or (4)(b) infinitely many times. In

order for γ to have reached step (4), it must have first passed from step (2)(a), and

139

then from step (3)(a) respectively. By passing from step (2)(a), γ must have witnessed

a γ-expansionary stage, whilst by passing from step (3)(a), the strategy must have

witnessed a required stage and the preservation of the previous γ-expansionary stage.

In addition, the visit to step (3)(a) flips the required stage. All these facts mean that

γ witnesses infinitely many cycles leading from step (2)(a) to step (3)(a) to step (4),

alternately witnessing an open-stage and a close-stage during these cycles.

In order to obtain an open-stage for γ+ one proceeds as follows. First one waits for

γ to have an open-stage as the required stage prior to beginning the cycle leading

from step (2)(a) to step (4). Next, one waits for the strategy γ to pass through step

(2)(a) and witness a γ-expansionary stage, and then to pass through step (3)(a) to

witness a required stage which also preserves the previous γ-expansionary stage. The

strategy will then pass through step (4) at some stage s and will check whether the

As(m) 6= ΓUs,Vsi,s (m) for some m.

If there is no such disagreement, we have that γ visits its i outcome, and that the γ+

strategy is now accessible. In addition, since s is an open-stage and γ is anR strategy,

it follows that every S strategy above γ+ with a gn or hn outcome for some n, is still

opening a gap or performing Part II honestification at stage s. Hence we have that

stage s satisfies conditions (O1)-(O3) for γ+ as well.

On the other hand, if there is a disagreement, we have that γ visits its i outcome. While

this makes γ+ accessible, it fails to make it accessible at a stage satisfying conditions

(O1)-(O3), because (O3) is not satisfied. Now, since s is an open-stage, it follows that

the strategy must pass through step (4)(a)(ii), thus leaving the functional unrepaired.

One should note however that by passing from step (3)(a), the required stage was

flipped to a close-stage. In order for the next cycle from step (2)(a) to step (4) to take

place, such a close-stage must be witnessed during an intermediate step (3)(a). Upon

reaching step (4) at stage s′ however, γ will find that there is still some m such that

As′(m) 6= Γ
Us′ ,Vs′
i,s′ (m).

Now, since s is a close-stage, the strategy will pass from step (4)(a)(i) and enumerate

γi,s(m) into D in order to undefine the functional at the point of disagreement. In

140

addition, when visiting step (3)(a), the strategy must have flipped the required stage

to an open-stage. Although γ+ is accessible again, the disagreement will be removed

only at the next stage, meaning that stage s fails to satisfy condition (O3) again for γ+.

In order for the next cycle from step (2)(a) to step (4) to take place, such an open-stage

must be witnessed during an intermediate step (3)(a). Upon reaching step (4) at stage

s′′, γ will note that there is now no disagreement between As′′ and Γ
Us′′ ,Vs′′
i,s′′ . Hence,

γ passes through step (4b), defining the functional up to the ls′′(A,ΦU,V).

Now since γ visits the outcome i when it passes through step (4b), we have that γ+

is accessible at stage s′′. Since s′′ is an open-stage for γ, and γ is an R strategy,

we have that every S strategy above γ+ with a gn or hn outcome for some n, is still

opening a gap or performing Part II honestification at stage s′′. Finally, we know that

γ witnesses no disagreement between the set As′′ and Γ
Us′′ ,Vs′′
i,s′′ . Hence, s′′ satisfies

conditions (O1)-(O3) for γ+, and is thus an open-stage for γ+ as well.

We now show that γ preserves infinitely many close-stages, which therefore become

close-stages for γ+. In order to obtain a close stage for γ+, we proceed as follows.

First one waits for γ to have a close-stage as the required stage prior to beginning the

cycle leading from step (2)(a) to step (4). Next, one waits for the strategy γ to pass

through step (2)(a) and witness an γ-expansionary stage, and then to pass through step

(3)(a) to witness a required stage which also preserves the previous γ-expansionary

stage. The strategy will then pass through step (4) at stage t and will check whether

the At(m) 6= ΓUt,Vti,t (m) for some m.

Now irrespectively of whether γ finds a disagreement or not at step (4), it will visit its

i outcome. Hence we have that γ+ is accessible at stage t. In addition t is a close-stage

for γ, and γ is an R strategy, we have that every S strategy above γ+ with a gn or hn

outcome for some n, is still closing a gap or performing Part I honestification at stage

t. Hence, t satisfies conditions (C1)-(C2) for γ+, and is thus a close-stage for γ+ as

well.

(2) γ is an S strategy. Suppose γ is accessible at infinitely many open-stages and at infinitely

many close-stages. We split the analysis into four cases, depending on whether the S

141

strategy has outcome w, hn for some n, gn for some n or d on the true path.

(a) γ has outcome w on the true path. By the Leftmost Path Lemma there is some stage s0

after which γ no longer visits outcomes lying to the left of w. Hence γ must always

visit outcome w after stage s0.

This means that whenever γ is accessible at an open stage s, γ+ is also accessible.

In addition, since γ has w as an outcome on the true path and s is an open-stage, it

follows that every S strategy above γ+ with a gn or hn outcome for some n, is still

opening a gap or performing Part II honestification at stage s. Finally, since s is an

open-stage and γ is an S strategy, it is still the case that every R strategy above γ+

witnesses no disagreement between A and its functional. Hence, s satisfies conditions

(O1)-(O3) for γ+, and is thus an open-stage for γ+ as well.

Similarly, whenever γ is accessible at a close-stage t, γ+ is also accessible. In addition,

since γ has w as an outcome on the true path and t is an open-stage, it follows that

every S strategy above γ+ with a gn or hn outcome for some n, is still closing a gap

or performing Part I honestification at stage t. Hence, t satisfies conditions (C1)-(C2)

for γ+, and is thus a close-stage for γ+ as well.

(b) γ has outcome hn for some n on the true path. By the Leftmost Path Lemma we have

that there is some stage s0 after which γ no longer visits outcomes lying to the left of

hn. In addition we have that the outcome hn is visited infinitely often.

Now, for the outcome hn to be visited at some stage s, γ must have seen a close-stage

s and performed Part I Honestification. The following visit to hn takes place when γ

sees an open stage t, at which point it performs Part II Honestification. This cycle is

then repeated upon the next visit to the hn outcome.

Note that at a stage such as t, γ+ is accessible. In addition, γ is performing Part II

honestification. This means that every S strategy above γ+ with a gn or hn outcome

for some n, is still opening a gap or performing Part II honestification at stage s.

Finally, since t is an open-stage and γ is an S strategy, it is still the case that every R

strategy above γ+ witnesses no disagreement between A and its functional. Hence, s

satisfies conditions (O1)-(O3) for γ+, and is thus an open-stage for γ+ as well.

142

On the other hand, at a stage such as s, γ+ is accessible. In addition, γ is performing

Part I honestification. This means that every every S strategy above γ+ with a gn or

hn outcome for some n, is still closing a gap or performing Part II honestification at

stage s. Hence, s satisfies conditions (C1)-(C2) for γ+, and is thus a close-stage for

γ+ as well.

(c) γ has outcome gn for some n on the true path. By the Leftmost Path Lemma we have

that there is some stage s0 after which γ no longer visits outcomes lying to the left of

gn. In addition we have that the outcome gn is visited infinitely often.

Now for γ to visit outcome gn, it must have first opened some gap on this outcome.

To open such a gap, γ must have first waited for an open-stage s to appear, at which

point it will have visited the outcome gn. The following visit to gn will occur once γ is

ready to close a gap on the outcome gn. To close the gap in this manner, γ must have

waited for a close-stage t to appear, at which point it will visit gn again. This cycle is

then repeated upon the next visit to the outcome gn.

Note that at a stage such as s, γ+ is accessible. In addition, γ is opening a gap. This

means that every S strategy above γ+ with a gn or hn outcome for some n, is still

opening a gap or performing Part II honestification at stage s. Finally, since s is an

open-stage and γ is an S strategy, it is still the case that every R strategy above γ+

witnesses no disagreement between A and its functional. Hence, s satisfies conditions

(O1)-(O3) for γ+, and is thus an open-stage for γ+ as well.

On the other hand, at a stage such as t, γ+ is accessible. In addition, γ is closing a gap.

This means that every every S strategy above γ+ with a gn or hn outcome for some n,

is still closing a gap or performing Part I honestification at stage s. Hence, s satisfies

conditions (C1)-(C2) for γ+, and is thus a close-stage for γ+ as well.

(d) Suppose γ has outcome d on the true path. By the Leftmost Path Lemma the γ strategy

must visit its d outcome infinitely often. But once γ visits its d outcome, it stops and

visits its d outcome at all subsequent stages. This means that from this point onwards

whenever γ is accessible at an open stage s, γ+ is also accessible. In addition, since

γ has d as an outcome on the true path and s is an open-stage, it follows that every

143

S strategy above γ+ with a gn or hn outcome for some n, is still opening a gap or

performing Part II honestification at stage s. Finally, since s is an open-stage and

γ is an S strategy, it is still the case that every R strategy above γ+ witnesses no

disagreement between A and its functional. Hence, s satisfies conditions (O1)-(O3)

for γ+, and is thus an open-stage for γ+ as well.

Similarly, whenever γ is accessible at a close-stage t, γ is also accessible. In addition,

since γ has d as an outcome on the true path and s is a close-stage, it follows that

every S strategy above γ+ with a gn or hn outcome for some n, is still closing a gap

or performing Part I honestification at stage s. Hence, s satisfies conditions (C1)-(C2)

for γ+, and is thus an open-stage for γ+ as well.

2.10.7 Injury Lemma forR Strategies

We now show that if anR strategy represents anR requirement on the true path by being active on

the true path, we have that the functional built by the strategy will be equal to the set A. To prove

this fact, we first show that if the strategy redefines the functional whenever it becomes undefined,

there will be some stage after which the functional will never become undefined again.

Lemma 2.10.8. (Injury Lemma for R Strategies) Let Ri be an R requirement and let β be a

strategy which represents Ri on the true path f . If β has outcome i and is active on the true path

f then the following hold for every element x.

(a) If there are infinitely many stages s such that ΓU,Dβ [s](x) ↓, there is some stage u such that

for all u′ ≥ u, ΓU,Dβ [u′](x) ↓ (ΓV,Dresp.)

(b) A(x) = ΓU,Dβ (x) (ΓV,Dresp.)

Proof. Lemma 2.10.8, Part (a). Suppose that there are infinitely many stages s such that

ΓU,Dβ [s](x) ↓. We shall show that whenever some strategy enumerates an element into D, one

of the following must be the case.

(i) ΓU,Dβ (x) is not undefined.

144

(ii) ΓU,Dβ (x) is undefined, but no constraint to increase γ(x) is imposed, meaning that the

strategy β can redefine the functional at x by choosing the same use γ(x). Since there

are only finitely many elements less than γ(x), there will be a stage after which ΓU,Dβ (x)

cannot be undefined again.

(iii) ΓU,Dβ (x) is undefined, and a constraint to increase γ(x) is imposed. In these cases the

constraint will only be imposed by some strategy if it holds some parameter which is less

than or equal to x. It will then suffice to prove that such a strategy cannot hold this parameter

forever. When combined with the fact that there are only finitely many parameters less than

or equal to x, it follows that only finitely many strategies can impose such constraints, and

that they can do so only finitely many times. Hence there will be a stage after which ΓU,Dβ (x)

cannot be undefined again.

We shall now examine the behaviour of all possible strategies which could enumerate elements

into D and show that their behaviour falls into one of the above three cases. In the argument

below, β is the strategy building ΓU,Dβ (or ΓV,Dβ), β′ is someR strategy on the priority tree, and α

is some S strategy on the priority tree.

(1) We start by considering the situation where β itself enumerates some γβ(w) into D in order

to repair a disagreement betweenA(w) and ΓU,Dβ (w). If w > x, β cannot undefine ΓU,Dβ (x)

by enumerating γβ(w) into D. Therefore one only needs to consider the situation where

w ≤ x. When β enumerates γβ(w) into D, it will also undefine ΓU,Dβ (x). Since the use

of ΓU,Dβ (w) has to increase when the functional is redefined, this could lead to the use of

ΓU,Dβ (x) to increase as well. Now, since there are only finitely many elements w ≤ x, it

follows that such a disagreement can only arise and be repaired finitely many times. Thus it

follows that β can only undefine ΓU,Dβ (x) finitely many times, as required.

We now consider R strategies β′ lying to the left, below, above or to the right of β, and the effect

which they have on β when they enumerate elements into D.

(2) Consider the situation in which β′ is to the left of β. Then by the Leftmost Path Lemma

there is some stage s0 such that β′ is not accessible after stage s0. This means that after

stage s0, β′ cannot enumerate any elements into D, and hence does not undefine ΓU,Dβ (x),

145

as required.

(3) Consider the situation in which β′ is below β. In this case it is possible for β′ to enumerate

some element less than γβ(x) into D, thus undefining ΓU,Dβ (x). However, such an action

does not constrain β to choose a new use at x. Hence β will simply redefine ΓU,Dβ (x) using

its old use. This means that β′ cannot cause the use of the ΓU,Dβ (x) to increase, as required.

(4) Consider the situation in which β′ is above β. Suppose that β′ enumerates some γβ′(w) into

D in order to repair a disagreement between A(w) and ΓU,Dβ′ (w). Now it is either the case

that β′ is active for β, or else that β′ is inactive for β.

Suppose that β′ is active for β. Then we have that β is R-Synchronised with β′, and that

thus γβ′(x) < γβ(x) for every x.

If w > x, the enumeration of γβ′(x) may undefine ΓU,Dβ (w), but the strategy β can simply

redefine its ΓU,Dβ (w) using its old use γβ′(w). This means that β′ cannot cause the use of

the ΓU,Dβ (x) to increase, as required.

On the other hand it could be the case thatw ≤ x. In this situation β′ enumerates γβ′(w) into

D, which also undefines ΓU,Dβ′ (x). In addition since β is R-synchronised with β′, ΓU,Dβ (x)

will also be undefined.

Now, since γβ′(w) has been enumerated into D, it follows that the use of ΓU,Dβ′ (w) must

increase when the functional is redefined at this value. Since this can lead to the use

of ΓU,Dβ′ (x) to increase as well, R-Synchronisation can also cause an increase in the use

ΓU,Dβ (x).

Now, since there are finitely many elements w ≤ x, it follows that such a disagreement

can only arise and be repaired by β′ finitely many times. Thus it follows that β′ can only

undefine ΓU,Dβ′ (x) finitely many times.

Once the use of ΓU,Dβ′ (x) stops changing, it follows that β can redefine ΓU,Dβ (x) using its old

use whenever this is undefined by β′, whilst still observing R-Synchronisation. Since the

use of ΓU,Dβ (x) remains constant, there can only be finitely many elements below it. Hence

β′ can only undefine ΓU,Dβ (x) finitely many times, as required.

Suppose that β′ is inactive for β. In this case, β′ enumerates γβ(w) into D, it may happen

146

to undefine ΓU,Dβ (x). But in this case there is no constraint stopping β from redefining

ΓU,Dβ (x) using its old use. Thus it follows that β′ can only undefine ΓU,Dβ (x) finitely many

times, as required.

(5) Consider the situation in which β′ is to the right of β. During stages at which β is accessible,

β′ is initialised. Once β′ is accessible once again, it will rebuild its functional by selecting

uses which are greater than any use assigned to some functional being built by a strategy

appearing to the left of β′. It follows that if β′ enumerates some γβ′(w) into D, it will not

be able to undefine ΓU,Dβ (x) at any element.

We proceed by considering S strategies α lying to the left, below, above or to the right of β, and

the effect which they have on β when they enumerate elements into D.

(6) Consider the situation in which α is to the left of β. Then by the Leftmost Path Lemma there

is some stage s0 such that α is not accessible after stage s0. This means that after stage s0, α

cannot enumerate any elements into D, and hence does not undefine ΓU,Dβ (x), as required.

(7) Consider the situation in which α is below β, and α is on the true path. By assumption we

have that β has outcome i, is active on the true path, and represents the requirement on the

true path.

Since β is labeled Ri, we have that that α cannot have outcomes hj or gj for j ≤ i on the

true path. Hence the true outcome of α could only be one of d, gj for j > i, hj for j > i or

w. It is important to recall that while the gj outcomes are ordered in descending order, the

hj outcomes are ordered in ascending order.

The strategy α will have a sequence of active R strategies (β1, . . . , βn) located above it,

with βm being labeledRm. The strategy βm corresponds to the outcomes gm and hm of the

strategy α. Note that the strategy β labeledRi being analysed in this lemma corresponds to

the strategy βi in the aforementioned sequence.

We now examine the effect of the strategy α on the strategy β through a case analysis based

on the true outcome of the α strategy.

(a) If the outcome of α on the true path is d, then α stops acting after it has successfully

closed its gap for the first time. Hence, α can only enumerate finitely many elements

147

into D and can only undefine ΓU,Dβi (x) finitely often.

(b) If the outcome of α on the true path is gj , with j > i, we have that w → ∞

because infinitely many witnesses are enumerated into A during open stages, and

that γβj (vj) → ∞ because capricious destruction takes place infinitely often during

close stages. In order to preserve the ordering between parameters, it follows that

vn → ∞ for every n < j. Let s0 be the stage after which strategies to the left of α

are inaccessible, as by the Leftmost Path Lemma. Then there must be a stage s1 > s0

such that both the witness w and thresholds vn with n < j become greater than x.

Now, if α visits outcome gj , it will enumerate γβj (vj) into D. This may undefine

ΓU,Dβi (x). Now, since γβj (vj) has been enumerated into D, it will have to increase. On

the other hand, the strategy βi can redefine ΓU,Dβi (x) using is previous use, because this

has not been enumerated into D. Since γβj (vj)→∞, whilst γβi(x) remains constant,

it follows that α can only undefine ΓU,Dβi (x) finitely often as required.

If α visits outcome gn, with n > i, it will enumerate γβn(vn) into D. By R-

Synchronisation, γβi(vn) < γβn(vn). After stage s1, we also have that x < vn, which

by transitivity gives that γβi(x) < γβn(vn). Hence ΓU,Dβi (x) cannot be undefined when

α visits this outcome.

If α visits outcome gi, it will enumerate γβi(vi) into D. But after stage s1, we have

that x < vi, which gives that γβi(x) < γβi(vi). Hence ΓU,Dβi (x) cannot be undefined

when α visits this outcome.

If α visits outcome gn, with n < i, it will enumerate γβn(vn) into D. Now, for any

m such that n < m ≤ i it is possible that γβn(vn) < γβm(x), leading to ΓU,Dβm (x)

becoming undefined. However, whilst γβn(vn) has entered D, γβm(x) has not. Hence

each of these strategies is able to redefine its functional by choosing its old use. Since

the value of γβm(x) for all m such that n < m < i remains constant, we have that the

value of γβi(x) does not increase through R-Synchronisation either. It follows that the

functional ΓU,Dβi (x) is undefined only finitely often.

The situation when visiting outcomes hn for some n is similar.

If α visits outcome hn, with n > i, it will enumerate γβn(w) into D. By R-

148

Synchronisation, γβi(w) < γβn(w). After stage s1, we also have that x < w, which

by transitivity gives that γβi(x) < γβn(w). Hence ΓU,Dβi (x) cannot be undefined when

α visits this outcome.

If α visits outcome hi, it will enumerate γβi(w) into D. But after stage s1, we have

that x < w giving that γβi(x) < γβi(w). Hence ΓU,Dβi (x) cannot be undefined when α

visits this outcome.

If α visits outcome hn, with n < i, it will enumerate γβn(w) into D. Now, for any

m such that n < m ≤ i it is possible that γβn(w) < γβm(x), leading to ΓU,Dβm (x)

becoming undefined. However, whilst γβn(w) has entered D, γβm(x) has not. Hence

each of these strategies is able to redefine its functional by choosing its old use. Since

the value of γβm(x) for all m such that n < m < i remains constant, we have that the

value of γβi(x) does not increase through R-Synchronisation either. It follows that the

functional ΓU,Dβi (x) is undefined only finitely often.

Finally if α visits the outcome w no element is enumerated into D. Hence α cannot

undefine ΓU,Dβi (x) after this stage.

(c) If the outcome of α on the true path is hj with j > i, we have that after stage s1 the

strategy α chooses a witness w and holds it forever.

Now if α visits any outcome hn with n > i, we have that it will enumerate γβn(w)

into D. This may undefine ΓU,Dβi (x). However whilst γβn(w) has entered D, γβi(x)

has not. Hence the strategy βi is able to redefine its functional by choosing its old

use. Since γβi(x) remains constant while γβn(w) increases, it follows that ΓU,Dβi (x)

can only be undefined finitely many times.

On the other hand if α visits the outcome w no element is enumerated into D. Hence

α cannot undefine ΓU,Dβi (x) after this stage.

(d) Finally if the outcome of α on the true path is w, it must be the case that α no longer

enumerates any element into D after stage s1. Hence α cannot undefine ΓU,Dβi (x) after

this stage.

(8) Consider the situation in which α is below β, but this time, α is to the right of the true path.

This means that α must be initialised infinitely many times. Each time α is initialised, it has

149

to choose new parameters p, which eventually must increase to become greater than x.

Once this has occurred α can only enumerate uses γβ′(p) for some p > a for some β′

active for α. Now, suppose ΓU,Dβ (x) is undefined by this enumeration. In this case α cannot

impose a constraint on β which forces it to choose a greater use when it defines ΓU,Dβ (x)

again, because such a constraint can now only be imposed at some parameter p greater than

x.

Consider now strategies β′ which are of higher priority than β and which are active for

α. In this case we have that β does not increase its use due to a R-Synchronisation with a

higher priority strategy β′. The reason for this is that the enumeration of γβ′(p) into D does

not undefine ΓU,Dβ′ (x). Hence if ΓU,Dβ (x) is undefined by this enumeration, β can simply

redefine its functional using its old use. Since the use of ΓU,Dβ (x) remains constant, there

can only be finitely many elements below it. Hence ΓU,Dβ (x) can only be undefined finitely

many times, as required.

(9) Consider the situation in which α is above β. Depending on the outcome of α on the true

path, α will be operating inside some work interval. If the outcome of α on the true path

is d, then α must have already stopped acting for β to be accessible. Hence α does not

enumerate any element into D.

If the outcome of α on the true path is gn for some n, then we have that β is operating

inside the work interval (vn, γn(vn)), and that it builds its functional by choosing uses

inside this work interval. Now, if α visits gn, it will enumerate γn(vn) into D. But β

has built its functional by choosing uses which are all less than γn(vn). This means that α

cannot undefine the functional built by β at any element. In addition, due to the ordering

of the parameters chosen by the α strategy, outcomes to the right of gn can only cause the

enumeration of elements which are greater than γn(vn) into D, leaving the functional built

by β unaffected. It follows that ΓU,Dβ (x) can only be undefined finitely often by α.

If the outcome of α on the true path is hn for some n, then we have that β is operating

inside the work interval (w, γn(w)), and that it builds its functional by choosing uses inside

this work interval. Now, if α visits hn, it will enumerate γn(w) into D. But β has built

its functional by choosing uses which are all less than γn(w). This means that α cannot

150

undefine the functional built by β at any element. In addition, due to the ordering of

the parameters chosen by the α strategy, outcomes to the right of hn can only cause the

enumeration of elements which are greater than γn(w) into D, leaving the functional built

by β unaffected.

Finally if the outcome of α on the true path is w, it must be the case that α no longer

enumerates any element into D after stage s1. Hence α will not affect the functional being

built by β after stage s.

(10) Consider the situation in which α is to the right of β. The strategy α has a number of active

R strategies β′ above it. Each of these strategies chooses uses from its set of uses in order

to build its functional. When α visits some gn or hn outcome, it will enumerate some use

belonging to the functional built by one of the strategies β′.

Now, if β′ is to the right of β, then β′ is initialised whenever β is accessible. Once β′ is

accessible again, it rebuilds it functional by choosing uses which are greater than those of β.

Hence, if α were to enumerate a use belonging to the functional built by β′, this use would

be too large to undefine the functional built by β at some element.

On the other hand, it could be that β′ is above β. This means that β would be synchronised

with β′, and that γβ(x) has to be greater than γβ′(x) for every x. Now, if α undefines

ΓU,Dβ′ (p) for some parameter p ≤ x, then it will also undefine ΓU,Dβ′ (x) and ΓU,Dβ (x). Since

the enumeration by α into D can constrain β′ to redefine ΓU,Dβ′ (p) using an increased use,

this can also cause an increase in the use of ΓU,Dβ′ (x) and ΓU,Dβ (x) when the appropriate

strategies redefine their functionals.

However we know that when β is accessible, α is initialised. This means that all of its

thresholds and witnesses have to be chosen again and thus increase. But because there are

only finitely many elements which are less than x, there must be a stage such that all of the

parameters chosen by α are greater than x. Hence, no R-Synchronisation constraint will

be imposed on β to increase the use of ΓU,Dβ (x) if it needs to be redefined. It follows that

eventually α cannot undefine ΓU,Dβ (x) anymore by enumerating elements into D.

Proof. Lemma 2.10.8, Part (b). We shall now show that for all x we have that A(x) = ΓU,Dβ (x)

151

(ΓV,Dβ resp.)

We prove the above fact by Strong Induction. Suppose that for every y < x, there exists some

stage ty such that for all s ≥ ty, ΓU,Dβ [s](y) = ΓU,Dβ [ty](y) = A(y). Then we prove that for x

there exists some stage t such that for all s ≥ t, ΓU,Dβ [s](x) = ΓU,Dβ [t](x) = A(x).

Let y′ = max{ty | 1 ≤ y < x}. Then y′ > s0, where s0 is the least stage after which strategies

to the left of β become inaccessible, and after which β cannot be initialised. For if this was not

the case, β would be initialised at or after y′, resulting in the functional ΓU,Dβ [s](y) becoming

undefined at all elements and contradicting the inductive hypothesis.

We now perform a case analysis, depending on whether A(x) = 0 or A(x) = 1.

(A) A(x) = 0. Suppose that ΓU,Dβ [u](x) ↑ for some stage u ≥ y′.

Then since β has outcome i on the true path, we have that this outcome will be visited

infinitely often. For this to be the case, β must reach reach step (4) infinitely often. Suppose

that β reaches step (4) at stage u1 > u. By the inductive hypothesis, the strategy β will

then see that there is no disagreement between the functional and the set A at stage u1.

It will therefore go to step (4)(b) and define the computation ΓU,Dβ [u1](x) to be equal to

Au1(x) = A(x).

(B) A(x) = 1. Suppose that ΓU,Dβ [u](x) ↑ for some stage u ≥ y′.

Then since β has outcome i on the true path, we have that this outcome will be visited

infinitely often. For this to be the case, β must reach reach step (4) infinitely often. Suppose

that β reaches step (4) at stage u1 > u. By the inductive hypothesis, the strategy β will then

see that there is no disagreement between the functional and the set A at stage u1. It will

therefore go to step (4)(b) and define the computation ΓU,Dβ [u1](x) to be equal to Au1(x).

Hence if Au1(x) = 1, we have that the strategy defines ΓU,Dβ [u1](x) to be equal to A(x).

On the other hand, it could be the case that Au1(x) = 0. Then we have that ΓU,Dβ [u1](x) is

equal to Au1(x). However, there must be some least stage u2 > u1 such that Au2(x) = 1.

This means that a disagreement will arise between ΓU,Dβ [u2](x) and Au2(x).

Now suppose that the strategy reaches step (4) again at stage u3 > u2. Then the strategy

152

β will see that there is a disagreement between the functional and the set A. If u3 is not a

close stage, we have that the strategy β reaches step (4) again at some close stage u4 > u3

by the Synchronisation Lemma.

Therefore at stage u4 the strategy β will go to step (4)(a)(i) and enumerate γβ,u4(x) into D,

undefining ΓU,Dβ (x).

Now, suppose that the strategy reaches step (4) again at stage u5 > u4. Then by the inductive

hypothesis, the strategy β will see that there is no disagreement between the functional and

the set A. Hence the strategy will go to step (4)(b) and define the computation ΓU,Dβ [u5](x)

to be equal to A(x).

Hence we have that if the functional is undefined at some stage u ≥ y′, the strategy will eventually

redefine it to be equal to A(x). But then by Lemma 3.8.11, Part (a), we have that there is some

stage v such that for all v′ > v, ΓU,Dβ [v′](x) ↓. It follows that there exists some stage t such that

for all s ≥ t, ΓU,Dβ [s](x) = ΓU,Dβ [t](x) = A(x), as required.

2.10.8 Injury Lemma for S Strategies

The Injury Lemma for S Strategies describes those S strategies which represent an S requirement

on the true path and which have outcome d on the true path. It shows that in such cases there is

some stage t such that the strategy enumerates a witness w into A by opening a gap at stage t

and restraining D � θt(w). In addition the strategy closes the gap successfully when it becomes

accessible again by visiting outcome d. Finally and most importantly, no elements smaller than or

equal to θt(w) enter D after stage t, meaning that the diagonalisation is preserved.

Lemma 2.10.9. (Injury Lemma for S Strategies). Let α be a strategy which represents the

requirement Si on the true path f . Suppose that α has outcome d on the true path. Then there

exists a stage t such that:

(1) α imposes a restraint D � θt(w) for some witness w, and such that no element x ≤ θt(w)

enters the set D at or after stage t.

153

(2) t is the least stage such that:

(a) t > s0, where s0 is the stage such that no strategy to the left of α is accessible at stages

s > s0, as by the Leftmost Path Lemma.

(b) α opens a gap at t.

(c) α closes the gap opened at t successfully, visiting its d outcome.

Proof. Let t be the stage defined in condition (2), that is the least stage such that t > s0, α opens

a gap at stage t, and α subsequently closes this gap by diagonalising successfully. We show that

this stage t satisfies condition (1), that is α is no longer injured at and after stage t.

We have to consider possible injury to α at and after stage t coming from other S andR strategies

on the tree. We start by examining possible injury coming from S strategies α′ located to the left,

below, above and to the right of α.

(1) Suppose that α′ <L α. Then α′ is no longer accessible after stage s0, and therefore cannot

injure α.

(2) Suppose that α ⊂ α′. Then α′ is not able to injure α, because α imposes the restraint

D � θ(w) on α′ at stage t.

(3) Suppose that α′ ⊂ α. Consider the outcomes of α′ on the true path.

(a) Suppose that the outcome of α′ on the true path is w. Then we have that α′ does not

enumerate elements into the set D after stage s0.

(b) Suppose that the outcome of α′ on the true path is hn for some n. Firstly we note that

after stage s0 outcomes to the left of hn are not accessible. Secondly, the strategy α′

imposes the work interval (w′, γn(w′)) below its hn outcome. Since α is operating

inside this work interval, we have that w′ < w < θ(w) < γn(w′). Hence, if α′ visits

the outcome hn and enumerates γn(w′) into D, it cannot injure α. Thirdly, if α′ visits

an h outcome to the right of hn, it will only be able to enumerate elements greater than

γn(w′) into D, thanks to the ordering between the upper bounds of work intervals. On

the other hand if α′ visits its w outcome, it does not enumerate any element into D.

(c) Suppose that the outcome of α′ on the true path is gn for some n. Firstly we note

that after stage s0 outcomes to the left of gn are not accessible. Secondly the strategy

154

α′ imposes the work interval (v′n, γ(v′n)) below its gn outcome. Since α is operating

inside this work interval, we have that v′n < w < θ(w) < γn(v′n). Hence, if α′ visits

the outcome gn and enumerates γn(v′n) into D, it cannot injure α. Thirdly, if α′ visits

a g or h outcome to the right of gn, it will only be able to enumerate elements greater

than γn(v′n) intoD, thanks to the ordering between the upper bounds of work intervals.

On the other hand if α′ visits its w outcome, it does not enumerate any element into

D.

(d) Suppose that the outcome of α′ on the true path is d. At stage t, the node α is

accessible. Since α is on the true path, this means that at this stage α′ has visited

outcome d. But once an S strategy visits its d outcome, it will stop and always visit

its d outcome whenever it is accessible. The only exception to this would be if the α′

strategy were initialised. But after stage s0, strategies to the left of α are not accessible.

Since α′ ⊂ α, strategies to the left of α′ are also inaccessible after s0. Hence we can

conclude that whenever α′ is accessible at or after stage t, it will visit its outcome d

and thus will not enumerate any element into the set D.

(4) Suppose that α <L α′. When α opens the gap at stage t, every node α′ to the right of α is

initialised. Hence when α′ becomes accessible again after stage t, it will first of all choose

thresholds and witnesses which are greater than any parameters chosen by α, since this lies

to its left. In particular any parameters chosen by α′ have to be greater than w, the witness

chosen by α.

Now, if α′ becomes accessible after stage t it could enumerate some element of the form

γβ(vβ) or γβ(w′) into D, where the uses belong to the functional Γβ being built by some

strategy β which is active for α′. We have to consider two situations, one where β ⊂ α, and

the other when α <L β.

If β ⊂ α, then we have that when α opened the gap at stage t, it has placed a constraint

upon β to pick uses γβ(x) > θ(w) for all x ≥ w. Since β is above α′, it has to be accessible

before α′ is accessible. Now, when β becomes accessible, it will either be undefined at w,

or else it will undefine the functional at w itself by enumerating γβ(w) into D. The strategy

α′, on the other hand, will wait until it can choose uses belonging to the functional built

155

by β for each of its thresholds and its witness. Suppose that α′ succeeds in choosing uses

from the functional built by β at any of its parameters, which as we have seen are greater

than w. In order for this to have been possible, β must have redefined its functional at these

elements, this time following the constraint imposed on it by α, and choosing uses greater

than θ(w). Then if α′ ever enumerates any one of these uses into D, we have that it cannot

injure α.

On the other hand, if α <L β, we have that β is initialised when α opens its gap at stage

t. Since β is above α′, it has to be accessible before α′ is accessible. The strategy β will

redefine its functional during β-expansionary stages, choosing uses which are greater than

any convergent computation lying to its left. Thus β will choose uses γβ(x) > θ(w) for

every x. The strategy α′, waits until it can choose uses belonging to the functional built by

β for each of its thresholds and its witness. Thus if α′ ever succeeds in choosing uses from

the functional built by β at any of its parameters and proceeds to enumerate such a use into

D, we have that it cannot injure α.

We now examine the possible injury coming from R strategies β located to the left, below, above

and to the right of α.

(1) Suppose that β <L α. Then β is no longer accessible after stage s0, and therefore cannot

injure α.

(2) Suppose that α ⊂ β. Then β is not able to injure α, because α places the restraint D � θ(w)

on β.

(3) Suppose that β ⊂ α. We shall show separately that β cannot injure α at stage t, and that β

cannot injure α at stages after t.

(a) In order to show that β cannot injure α at stage t, we consider whether β is active or

inactive for α.

(i) Suppose that β is an active strategy for α. When α opens its gap at stage t, it will

enumerate its witness w into A. Then this enumeration of w into A could have

injured the functional being built by β, creating a disagreementA(w) 6= ΓU,Dβ (w).

Now when β is accessible again, it must have seen the required U change. This

156

must have been the case because for α to diagonalise successfully and visit its d

outcome at stage s, every higher priorityR strategy β must have seen the required

changes to repair its functional. Therefore in this case, β does not enumerate any

element into D to correct its functional at w, and thus cannot injure α.

(ii) Suppose that β labeledRi is inactive for α. When α opens its gap at stage t, it will

enumerate its witness w into A. Then this enumeration of w into A could have

injured the functional being built by β, creating a disagreementA(w) 6= ΓU,Dβ (w).

Now, for β to be inactive for α, there must exist some β′ labeled Rj and some

strategy α′ such that we have β′ ⊆ β ⊂ α′ _ o ⊂ α, where o = gj or o = hj , for

some j ≤ i. We shall show that each of these two cases leads to the conclusion

that β cannot injure α if it enumerates γβ(w) into D.

Before proving each of these two cases we shall need to show that β is

synchronised with β′. We start from the observation that for α′ to have any one of

these two outcomes, β′ has to be active for α′. Now, assume for contradiction that

β was not synchronised with β′. This means that there would be some intervening

strategy α′′ between β′ and β with outcome gn or hn, with n ≤ j. But this would

make β′ inactive for β, and hence for α′, which is a contradiction.

We shall now show that α cannot be injured by β if α′ has outcome o = gj ,

for some j ≤ i. In this case, α′ imposes a work interval (v′j , γβ′(v′j)) on α.

Since α has to select its witness w inside the work interval, and will only trust

computations θ(w) which are in the work interval, we have that v′j < w < θ(w) <

γβ′(v′j). Now, since we have determined that β is synchronised with β′, we have

that γβ′(v′j) < γβ(v′j). Since v′j < w, it follows that γβ(v′j) < γβ(w). Hence β

cannot injure α when trying to repair its disagreement at w.

We shall now show that α cannot be injured by β if α′ has outcome o = hj ,

for some j ≤ i. In this case, α′ imposes a work interval (w′, γβ′(w′)) on α.

Since α has to select its witness w inside the work interval, and will only trust

computations θ(w) which are in the work interval, we have that w′ < w <

θ(w) < γβ′(w′). Since we determined that β is synchronised with β′, we have

that γβ′(w′) < γβ(w′). Now, since w′ < w, it follows that γβ(w′) < γβ(w).

157

Once again, β cannot injure α when trying to repair its disagreement at w.

(b) In order to show that β cannot injure α after stage t, we proceed as follows. Suppose

that α opens its gap at stage t. We start by showing that whenever some strategy α′

enumerates some witness w′ into A after stage t, we have that w′ > w.

(i) Suppose that α′ <L α. Then α′ is not accessible and does not enumerate any

witness after stage s0.

(ii) Suppose that α ⊂ α′. In this case, α′ can only be accessible at some stage if

α is also accessible at the same stage. Now, when α opens its gap at stage t, it

will subsequently close this gap successfully at stage s by visiting its outcome d.

Henceforth, α will stop, and always visit its d outcome whenever it is accessible.

The only exception to this would occur if α were initialised, but strategies to the

left of α are not accessible after stage s0. Hence, if α′ is accessible at or after

stage t, it must be the case that α′ is below the d outcome of α. From this we can

conclude that α′ must be working inside the work interval (s1,∞) imposed by α,

where s1 is the stage at which α has diagonalised successfully. This means that

if α′ picks some witness w′, it must be the case that w < θ(w) < s1 < w′, as

required.

(iii) Suppose that α′ ⊂ α. If α′ _ gn ⊂ α for some n, then α picks its witness w

inside the work interval specified by α′. In addition, α only opens a gap when α′

opens a gap, because α is synchronised with α′. Since strategies opening a gap

enumerate their witness into A, and then proceed to pick another one once they

close the gap, it follows that the witness w picked by α is always smaller than the

witness w′ picked by α′. Hence we have that w′ > w as required.

(iv) Suppose that α <L α′. When α opens the gap at stage t, every strategy α′ to

the right of α is initialised. When α′ becomes accessible again, it will choose

thresholds and witnesses which are larger than any parameters chosen by S

strategies located to the left of α′. Since this includes α, the parameters of α′

will thus be greater than those of α. Hence we have that w′ > w as required.

From the above argument we can conclude that after stage t, the functional built by

any strategy β ⊂ α can only witness a disagreement at some w′ > w. We shall now

158

show that if β needs to enumerate γβ(w′) into D in order to repair its functional at

some such witness w′, this would not injure α. We split our analysis in two cases,

depending on whether β is an active or an inactive strategy for α.

Suppose β is an active strategy for α. When α opens its gap at stage t, it enumerates

its witness w into A, and constrains every active R strategy β ⊂ α to choose uses

γ(x) such that θ(w) < γ(x) for every w ≤ x. Now, when β becomes accessible again

after stage t, it must have obtained the required changes to undefine its functional at w.

Hence we have that that for all x ≥ w, β must now choose uses obeying the constraint

created by α. Suppose that some α′ now enumerates some w′ > w into A, and that

β tries to repair its functional by enumerating γβ(w′) into D. But then we have that

γβ(w′) > θ(w), meaning that β cannot injure α.

On the other hand suppose that β is an inactive strategy for α. In (2) we have already

determined that if β enumerates γβ(w) into D, it cannot injure α. Suppose that some

α′ enumerates some w′ > w into A, and that β needs to repair its functional by

enumerating γβ(w′) into D. But since w < w′, we have that γβ(w) < γβ(w′),

meaning that β cannot injure α.

(4) Consider the situation in which α <L β. When α opens the gap at stage t, every β strategy to

the left of α is initialised. When such a strategy β rebuilds its functional, it will choose uses

γβ(x) which are greater than the use of any converging computation belonging to strategies

located to the left of β. Since this includes α, we have that β will define θ(w) < γβ(x) for

every x. This means that β cannot enumerate any use into D which would injure α.

2.10.9 Truth of Outcome Theorem

The Truth of Outcome Theorem shows that every requirement is satisfied by the strategy which

represents it on the true path.

Theorem 2.10.10. (Truth of Outcome Theorem). Let f be the true path, and let Q be a

requirement. Then there exists a strategy γ which satisfies Q on the true path f .

Proof. We start by considering the case where Q is a requirementRi.

159

Consider the true path f . By the Representation Lemma there is some node β which represents

Ri on f . For β to representRi on f , one of the following must be the case.

• β is labeledRi has outcome f on the true path.

• β is labeledRi and there is some α below β with outcome hi on the true path.

• β is labeledRi, has outcome i on the true path, and there is no α below β with outcome hj

for j < i or with outcome gj for j ≤ i on the true path.

We consider these three cases in turn.

(1) Suppose that β has outcome f on the true path. Then by the Leftmost Path Lemma there is

some stage s0 such that β no longer witnesses any β-expansionary stage at stages s > s0.

This means that l(ΦU,V
i , A) is finite, and that Q is satisfied trivially.

(2) Suppose that β is labeled Ri and there is some α below β with outcome hi on the true

path. Then α chooses some witness w for which φi(w)→∞. Hence ΦU,V
i (w) ↑, and Q is

satisfied trivially.

(3) Suppose that β is labeledRi, has outcome i on the true path, and there is no β below α with

outcome hj for j < i or with outcome gj for j ≤ i on the true path. In this case, β will build

the functional ΓU,Dβ in order to ensure its equality with the set A. By the Injury Lemma for

R Strategies we have that for all x, A(x) = ΓU,Dβ (x). Hence β satisfies its requirement Q.

We now consider the case where Q is a requirement Si.

Consider the true path f . By the Representation Lemma there is some strategy α which represents

Si on f . For α to represent Si on f , we must either have that α _ d ⊂ f or that α _ w ⊂ f .

(1) Suppose that α _ d ⊂ f . By the Leftmost Path Lemma there is some stage s0 such that for

all stages s ≥ s0 no strategy to the left of α is accessible. Since α _ d ⊂ f , by the Injury

Lemma for S Strategies we have that there is some least stage t > s0 such that α opens a

gap at stage t, and subsequently closes it successfully. In addition, α is not injured at or after

stage t. Now, for α to have opened the gap at stage t, it must have seen some computation

ΘDt
t (w) ↓= 0, and restrained D � θt(w), for some witness w. Since no strategy injures α

at or after t, and since α is never initialised again after s0, we have that this computation is

160

preserved forever. In addition, α will enumerate its witness w into A. Hence we have that

A(w) 6= ΘD(w), and the requirement Q is satisfied.

(2) Suppose that α _ w ⊂ f . By the Leftmost Path Lemma there is some stage s0 such that for

all stages s > s0 no strategy to the left of α is accessible. Since α _ w ⊂ f , the w outcome

of α is the leftmost outcome which is visited infinitely often. This means that there is some

stage s1 > s0 such that α does not move to the left of outcome w. Since α has no outcome

lying to the right of w, this means that α has to visit outcome w every time it is accessible

after stage s1, holding its chosen witness w forever.

We shall show that α satisfies the requirement Q by splitting our analysis into two cases.

(a) lims θs(w) → ∞. In this case we have that ΘD(w) ↑ and that the requirement is

satisfied trivially.

(b) lims θs(w) is finite. We consider the following four cases.

(i) Suppose that there is some stage t such that for all s ≥ t we have that ΘDs
s (w) ↑.

Then we have that ΘD(w) ↑ and the requirement Q is satisfied trivially.

(ii) Suppose that there is some stage t such that for all s ≥ twe have that ΘDs
s (w) ↓=

1. In this case α never enumerates w intoA. Hence we have that ΘD(w) 6= A(w)

and that the requirement Q is satisfied trivially.

(iii) Suppose that there is some stage t such that for all s ≥ twe have that ΘDs
s (w) ↓=

0. In this case there must be some stage after t such that α tries to honestify or

to open a gap, meaning that α visits an outcome to the left of w, which is a

contradiction.

(iv) Suppose that there is some stage t such that for all s ≥ twe have that ΘDs
s (w) ↓=

0, but α does not trust this computation at stage s because θs(w) is not within the

work interval (a, b) imposed on it. But the upper bound of the work interval is

either absent or it moves off to infinity. This means that this condition cannot hold

for all stages s ≥ t and that we have a contradiction.

Hence we have that A(w) 6= ΘD(w), and the requirement Q is satisfied.

161

162

163

164

Chapter 3

High Permitting of Lachlan

Non-Splitting Pairs

In this Chapter we shall use the high permitting method of Shore and Slaman to modify the

construction of the Lachlan Non-Spliting Theorem from Chapter 2. This will allow us to prove

that a Lachlan Non-Splitting Pair can be found strictly below every high c.e. degree.

We start by describing the concept of high permitting in Section 3.1, before applying the high

permitting of Shore and Slaman to the construction of the Lachlan Non-Splitting Theorem in the

subsequent sections.

3.1 The High Permitting Method

Suppose that a construction is building some c.e. set X so as to satisfy some requirements, and

that one of these requirements involves showing that X ≤T A for some given c.e. set A. This

requirement can be satisfied by making use of some permitting method. If the method succeeds,

the set A is said to be permitting X [Soare, 1987].

Similarly, a high permitting method is employed to build some c.e. set X so as to satisfy a

requirement X ≤T H for some given high c.e. set H . Such a method works by making use of

165

the highness of the set H . Since this will be the only property used by the method, it follows that

the set X can be built to be below or equal to any high c.e. set.

Now suppose that the construction is building the c.e. set X so as to show the existence of some

c.e. degree x = deg(X) satisfying certain requirements. Since for every high c.e. degree h there

is some high c.e. set H such that h = deg(H), it follows that every high c.e. degree h bounds a

c.e. degree x satisfying these requirements.

We shall now review the two main high permitting methods. In Section 3.1.1 we describe a high

permitting theorem based on a theorem of Martin, while in Section 3.1.2 we describe the high

permitting method discovered by Shore and Slaman.

3.1.1 Martin High Permitting

The first high permitting method to be considered rests on the characterisation of high c.e. sets

given by a theorem of Martin in [Martin, 1966]. Before stating this theorem, we shall need to make

a few definitions. We shall say that a total function f dominates a total function g if (∃y)(∀x >

y)[f(x) > g(x)]. We shall also say that f is dominant if it dominates every total computable

function. Then Martin’s theorem says the following.

Theorem 3.1.1. (High Domination Theorem). A c.e. set H is high if and only if there is a

dominant function f ≤T H .

We shall now describe how to buildX ≤T H by making use of the dominant function f witnessing

the highness of the set H (although the actual implementation will vary from construction to

construction).

Since f ≤T H , there must exist some total functional ΨH such that f = ΨH . In order to show

that X ≤T H , one builds a total functional ΦH such that X = ΦH in the following way. If

at stage s + 1 we have that ΨH [s + 1](x) ↓ while ΦH [s](x) ↑ for some element x, we define

ΦH [s+ 1](x) = Xs+1(x), choosing a use φ[s+ 1](x) ≥ ψ[s+ 1](x).

In addition we shall require strategies to refrain from enumerating an element x into the set X at

stage s+ 1 if ΦH [s+ 1](x) ↓, so as to avoid creating an inequality between the two. On the other

166

hand it will still be possible for strategies to enumerate x into X at stage s+ 1 if ΦH [s+ 1](x) ↑.

While the above restriction is sufficient to show that X ≤T H , it creates a problem in that a

strategy might be blocked from enumerating elements into the set X . This could in turn stop it

from satisfying some other requirement. One way to approach this problem is for the strategy

to build a total computable function g which f would then have to dominate. For instance if the

strategy was not able to enumerate the element x into X at stage t, it could define gt(x) to be

greater than ΨH [t](x). While H may be able to ignore the value of g(x), it will not be able to

ignore the value of g(x′) for infinitely many elements x′, or else f would not dominate g and H

would not be high. Therefore one of two things have to be the case.

The first is that there is some stage u such that for all stages u′ > u, if the strategy wishes to

enumerate an element x into X at stage u′, we have that ΦH [u′](x) ↑. This would mean that H

stops blocking the strategy from enumerating witnesses into X after stage u, resulting in g being

defined at only finitely many elements and f not having to dominate it.

The second is that there are infinitely many elements x such that H blocks the strategy from

enumerating x into X at some stage u because ΦH [u](x) ↓. In this case the strategy can build

g to be a total computable function which f has to dominate. Since f = ΨH , we have that an

H � ψu(x) change must take place at some stage u′ > u for almost every x. This results in

ΨH [u′](x) ↑. But since the construction of ΦH ensures that φ[u′](x) > ψ[u′](x), we have that

ΦH [u′](x) ↑ as well, allowing the strategy to enumerate x into X at stage u′.

3.1.2 Shore and Slaman High Permitting

The second method to be considered is the high permitting method of Shore and Slaman given in

[Shore and Slaman, 1993]. We proceed to give a detailed exposition of this method, which will be

used in Chapter 3.

Suppose that one starts with an existing construction which builds some c.e. degree x satisfying

certain requirements. Then one can use this method to modify the construction and build this c.e.

degree below any given high c.e. degree h, that is such that x ≤ h.

167

The method is a general one and can be used to modify constructions which make use of Π0
2

strategies on a priority tree. It also has the advantage of isolating the permitting problem to

a question of whether events which take place during the course of the construction can be

synchronised with the guesses which will be performed by the modified strategies regarding their

occurrence.

It is needless to say that the c.e. degrees in question will be permitted only if the method succeeds.

However it can be shown that if the method succeeds, the stronger statement x < h can also be

proved. This fact shall be made explicit in Section 3.1.2 once the entire method has been described.

We shall now proceed to describe the concepts required for the use of this method as well as the

steps of the method itself.

Π0
2 Strategies

A Π0
2 strategy γ is a finite program with some (possibly infinite) set of outcomes Λ and a total

order <Λ on this set. Π0
2 strategies are characterised by the fact that they will either reach a limit

outcome, or else will reach some leftmost outcome infinitely often. This outcome will be the true

outcome of a Π0
2 strategy.

Whether a given outcome of a Π0
2 strategy is the true outcome can also be characterised in terms

of certain events taking place or failing to take place infinitely often during the course of the

construction. Given a Π0
2 strategy, it shall be possible to find a sequence of Π0

2 sentences related

to the occurrence of these events, such that each sentence is stronger than the one preceding it,

and such that each consistent sequence of truth values is tied to a certain outcome being the true

outcome. This also means that for each outcome of a Π0
2 strategy there will be a sentence consisting

of a conjunction of finitely many Π0
2 and Σ0

2 sentences which specifies which conditions must hold

for this outcome to be the true outcome.

We shall refer to each Π0
2 sentence as a Π0

2 question, whose answer will be ‘Yes’ if the truth value

of the Π0
2 sentence is true and ‘No’ if the truth value of the Π0

2 sentence is false.

168

Limit Computability of Π0
2 Questions in H

We shall now consider how the truth value of a Π0
2 question can be determined in terms of a limit

computation in H . This can be achieved through the following two observations.

The first observation is that since H is a high c.e. set we have that ∅′′ is limit computable in H .

This means that there exists a total functional ΨH witnessing the highness of H such that:

x ∈ ∅′′ ⇔ lim
t→∞

ΨH(x, t) = 1

and

x 6∈ ∅′′ ⇔ lim
t→∞

ΨH(x, t) = 0.

The second observation is that there is a uniform reduction of Π0
2 sentences into ∅′′. This means

that there is some computable function f such that if Q is a Π0
2 sentence we have that:

Q⇔ (f(Q)) 6∈ ∅′′)

By combining these two observations we have that the truth value of any Π0
2 sentence Q is limit

computable in H:

Q⇔ lim
t→∞

ΨH(f(Q), t) = 0

From this it follows that the Π0
2 question corresponding to a given Π0

2 sentence will have a ‘Yes’

answer if and only if lim
t→∞

ΨH(f(Q), t) = 0 and a ‘No’ answer if and only if lim
t→∞

ΨH(f(Q), t) =

1.

Apparent Limit and Apparent Use

A computable construction is not able to compute the value of an expression such as

lim
t→∞

ΨH(f(Q), t) in order to determine the answer to a Π2
0 question Q. This will instead have

to be approximated at every stage s.

We shall suppress the notation f(Q) for the moment and discuss how the value of an expression

lim
t→∞

ΨH(x, t) can be approximated for any x at each stage s through the concepts of an apparent

limit and an apparent use. Before proceeding, we shall need the following preliminary definition

169

of the hat functional Ψ̂H(x, t). This functional will be computed from ΨH [s](x, t) by any strategy

γ wishing to approximate the value of lim
t→∞

ΨH(x, t) at stage s.

Definition 3.1.2. (Hat Functional). Let γ be a strategy. Given a stage s, let s′ < s be the greatest

stage such that γ has been accessible at s′. If s′ does not exist, we have that Ψ̂H [s](x, t) ↑ for

every x and t. Otherwise Ψ̂H [s](x, t) is defined as follows for every x and t:

Ψ̂H [s](x, t) =

 ΨH [s](x, t) if (∀t′ ≤ t)[ΨH [s](x, t′) ↓= ΨH [s′](x, t′)];

undefined otherwise.

If Ψ̂H [s](x, t) ↓, we have that ψ̂[s](x, t) = ψ[s](x, t).

An important property of the hat functional is that if Hs � ψ[s](x, t) = H � ψ[s](x, t) and

Ψ̂H [s](x, t) ↓, we have that Ψ̂H [s](x, t) = ΨH(x, t).

Given the above definition, a strategy can approximate lim
t→∞

ΨH(x, t) at stage s by computing the

finite sequence of values Ψ̂H [s](x, t) for every t < s. From this sequence it will be able to extract

the apparent limit and the apparent use for lim
t→∞

ΨH(x, t) at stage s.

In order to define the notions of apperant limit and apparent use, we shall first need to define the

number tmaxs for every stage s. This corresponds to the largest value of t for which Ψ̂H [s](x, t)

is defined .

Definition 3.1.3. (tmaxs). The number tmaxs < s be the greatest natural number such that

Ψ̂H [s](x, tmaxs) ↓

The apparent limit will then be the value of Ψ̂H [s](x, t) at the largest t such that the functional is

defined.

Definition 3.1.4. (Apparent Limit). The apparent limit at stage s is the value of Ψ̂H [s](x, tmaxs).

On the other hand the apparent use will be the length of the initial segment of Hs which was

necessary to establish the apparent limit. Suppose that at stage s there is some u such that for all

u′ > u we either have that Ψ̂H [s](x, u′) ↑ or that Ψ̂H [s](x, u′) = Ψ̂H [s](x, u). Then the apparent

170

limit must have already been achieved at Ψ̂H [s](x, u). Therefore as our apparent use we shall

choose the maximum of all the uses required by computations up to and including Ψ̂H [s](x, u),

since these were the computations necessary to achieve the apparent limit.

Definition 3.1.5. (Apparent Use). Let u ≤ tmaxs be the least number such that Ψ̂H [s](x, v)

is constant for all v ∈ [u, tmaxs]. The apparent use at stage s is the maximum of the uses of

Ψ̂H [s](x, t) for every t ≤ u.

Modification of the Π0
2 Strategies

We have already seen that if H is high and Q is a Π0
2 question, we have that its answer is

determined by the value of lim
t→∞

ΨH(f(Q), t).

Now a Π0
2 strategy as found in the original construction chooses its outcome at stage s depending

on the events which have occurred up to stage s. In addition we have also said that the true outcome

of such a Π0
2 strategy can be determined by the answers to a particular sequence of Π0

2 questions.

The concepts of apparent limit and apparent use can therefore be used to approximate what the

answer to each such question is at stage s. This allows the Π0
2 strategy to be modified so that the

outcome selected by the strategy at stage s is determined by the approximations to the answers of

these questions.

Each Π0
2 strategy γ will be modified into a modified strategy γ∗ as follows.

Let Q1, . . . , Qn be the sequence of Π0
2 questions whose answers determine the true outcome of

the strategy. At any stage s, one can calculate the apparent limit oi and apparent use σi for

lim
t→∞

ΨH(f(Qi), t) for every 1 ≤ i ≤ n. From the sequence of apparent limits 〈o1, . . . , on〉 it

is then possible to construct the corresponding sequence of ‘Yes’ or ‘No’ answers, which we shall

denote by o. We shall also determine the apparent use of greatest length, which we shall denote

by σ.

The set of outcomes Λ of the modified strategy will then correspond to all the tuples of the form

〈o, σ〉 described above. Each such edge will be accessed by the strategy for the first time at some

stage s.

171

Note that the modified set of outcomes is thus infinite. At any given stage t, the modified strategy

will also use the procedure described above in order to choose the outcome 〈o, σ〉 to visit at that

stage.

We shall now describe the ordering between the outcomes of the modified strategy.

To achieve this we shall need to define a finite function fx,〈o,σ〉(t) for every natural number x and

outcome of the strategy 〈o, σ〉. This function is defined over the set {0, . . . , |σ|}, but does not need

to be total. It will give us the value of Ψ̂σ
s (x, t), as long as this is defined for all t′ ≤ t, where s is

the least stage at which the strategy visits the outcome 〈o, σ〉.

fx,〈o,σ〉(t) =

 y if (∀t′ ≤ t)[Ψ̂σ
s (x, t′) ↓] ∧ Ψ̂σ

s (x, t) = y;

undefined otherwise.

By considering the largest element in the domain of fx,〈o,σ〉(t), we obtain the largest value of t for

which the value of Ψ̂σ
s (x, t) exists.

Now let 〈o, σ〉 and 〈o′, σ′〉 be outcomes of the modified strategy. We shall say that 〈o′, σ′〉 <Λ

〈o, σ〉 if one of the following conditions holds.

(1) There exists some least x such that σ′(y) = σ(y) for all y < x, and σ′(x) = 1 and σ(x) = 0.

(2) σ′ ⊂ σ and there exists some greatest b ∈ dom(fx,〈o′σ′〉) and some t∗ ∈ dom(fx,〈o,σ〉) such

that t∗ > b and fx,〈o′,σ′〉(b) 6= fx,〈o,σ〉(t
∗).

We now make a number of observations.

Firstly, for the modified strategy to visit outcome 〈o, σ〉 at stage s, it must be the case that σ ⊂ Hs.

Secondly, suppose that the modified strategy visits outcome 〈o, σ〉 during some stage s, and that

it visits an outcome 〈o′, σ′〉 to its left when it is accessible again at some least stage s′ > s. Then

one of the following two things must have taken place.

(a) Suppose that there is some x such that σ′ and σ agree for all y < x , and σ′(x) = 1

and σ(x) = 0. Then an H � |σ| change must have occurred at some stage u such that

s′ < u ≤ s.

172

(b) Suppose that σ′ ⊂ σ. Then the apparent use σ′ of lim
t→∞

Ψ̂H(x, t) at stage s′ is shorter

in length than the apparent use σ′ of lim
t→∞

Ψ̂H(x, t) at stage s. This means that every

computation Ψ̂H [s](x, i) with i ≤ tmaxs and use ψ̂s(x, i) > |σ| has become undefined

at stage s′. Let v = min{ψ̂s(x, i) | i ≤ tmaxs ∧ ψ̂s(x, i) > |σ|}. Then it must be the case

that an H change has occured at some element y with v ≤ y ≤ |σ|.

Thirdly, suppose that the modified strategy visits the outcome 〈o′, σ′〉 during some stage s′ and

that it visits an outcome 〈o, σ〉 to its right when it is accessible again at some least stage s > s′.

Then by case (2) we must have that Ψ̂(x, t) experiences a ‘mind-change’ when the computation is

given greater resources in the form of a longer oracle σ and of a longer span of time in the form of

s stages.

By mind-change we mean the following. Suppose that b is the largest value of t such that the value

of Ψ̂(x, t) can be computed in s′ stages and queries up to σ′. Then some t∗ > b is the largest value

of t such that the value of Ψ̂(x, t) can be computed in s stages and queries up to σ, and in addition

Ψ̂[s](x, t∗) does not agree with the value of Ψ̂[s′](x, b).

Fourthly, we have that <Λ is a strict total order. We prove that this is the case by showing that <Λ

is irreflexive, anti-symmettrical, transitive and obeys the trichotomy law.

(1) We show that <Λ is irreflexive, that is that for any edge 〈o, σ〉 of the strategy γ, we have

that 〈o, σ〉 6<λ 〈o, σ〉.

Suppose for contradiction that this is not the case. Then we have that 〈o, σ〉 <λ 〈o, σ〉. If

this holds by case (1) of the ordering, we would have that there is some least element x such

that σ(x) = 0 and σ(x) = 1, which gives a contradiction since σ = σ. On the other hand if

this holds by case (2) of the ordering, we have that σ ⊂ σ, which also gives a contradiction,

since σ = σ. Hence we have that <Λ is irreflexive, as required.

(2) We show that <Λ is anti-symmetric, that is that for any two edges 〈o, σ〉 and 〈o′, σ′〉 of the

strategy γ, we have that 〈o, σ〉 <λ 〈o′, σ′〉 ⇒ 〈o′, σ′〉 6<λ 〈o, σ〉.

Suppose that 〈o, σ〉 <λ 〈o′, σ′〉.

If 〈o, σ〉 <λ 〈o′, σ′〉 through case (1) of the ordering, we have that there is some least x such

173

that σ and σ′ agree for all y < x, and that σ(x) = 1 and σ′(x) = 0 (and hence that σ|σ′).

Now suppose for contradiction that 〈o′, σ′〉 <λ 〈o, σ〉. If this was the case through case

(1) of the ordering, we would have that there is some least x′ such that σ and σ′ agree for

all y < x′, and that σ′(x′) = 1 and σ(x′) = 0. But this contradicts the fact that there is

some least x such that σ and σ′ agree for all y < x, and that σ(x) = 1 and σ′(x) = 0.

Otherwise if this was the case through case (2) of the ordering, we have that σ′ ⊂ σ. But

this contradicts the fact that σ | σ′.

On the other hand it could be the case that 〈o, σ〉 <λ 〈o′, σ′〉 through case (2) of the ordering.

In particular, this would mean that σ ⊂ σ′.

Now suppose for contradiction that 〈o′, σ′〉 <λ 〈o, σ〉. If this was the case through case (1)

of the ordering, we would have that there is some least x′ such that σ and σ′ agree for all

y < x′, and that σ′(x′) = 1 and σ(x′) = 0. But this would mean that σ | σ′, when we

have already concluded that σ ⊂ σ′. Otherwise if this was the case through case (2) of the

ordering, we have that σ′ ⊂ σ. But this contradicts the fact that σ ⊂ σ′.

(3) We show that <Λ is transitive, that is that for any three edges 〈o, σ〉, 〈o′, σ′〉 and 〈o′′, σ′′〉 of

the strategy γ, we have that if 〈o, σ〉 <λ 〈o′, σ′〉 and 〈o′, σ′〉 <λ 〈o′′, σ′′〉, then 〈o, σ〉 <λ
〈o′′, σ′′〉.

Suppose that 〈o, σ〉 <λ 〈o′, σ′〉 and 〈o′, σ′〉 <λ 〈o′′, σ′′〉.

(a) Consider the situation where 〈o, σ〉 <λ 〈o′, σ′〉 through case (1) of the ordering, and

〈o′, σ′〉 <λ 〈o′′, σ′′〉 through case (1) of the ordering. Then there is some least x such

that σ and σ′ agree for all y < x, and that σ(x) = 1 and σ′(x) = 0. We also have that

there is some least x′ such that σ′ and σ′′ agree for all y′ < x′, and that σ′(x′) = 1 and

σ′′(x′) = 0. But this means that σ and σ′′ agree for all y < x and that σ(x) = 1 and

σ′′(x) = 0. Hence we have that 〈o, σ〉 <λ 〈o′′, σ′′〉 through case (1) of the ordering.

(b) Consider the situation where 〈o, σ〉 <λ 〈o′, σ′〉 through case (1) of the ordering, and

〈o′, σ′〉 <λ 〈o′′, σ′′〉 through case (2) of the ordering. Then there is some least x such

that σ and σ′ agree for all y < x, and that σ(x) = 1 and σ′(x) = 0. We also have

that σ′ ⊂ σ′′. But this means that σ and σ′′ agree for all y < x and that σ(x) = 1 and

174

σ′′(x) = 0. Hence we have that 〈o, σ〉 <λ 〈o′′, σ′′〉 through case (1) of the ordering.

(c) Consider the situation where 〈o, σ〉 <λ 〈o′, σ′〉 through case (2) of the ordering, and

〈o′, σ′〉 <λ 〈o′′, σ′′〉 through case (1) of the ordering. Then we have that σ′ and σ′′

agree for all y < x and that σ′(x) = 1 and σ′′(x) = 0. We also have that σ ⊂ σ′ and

that there exists some greatest b ∈ dom(fx,〈o,σ〉) and some t∗ ∈ dom(fx,〈o′,σ′〉) such

that t∗ > b and fx,〈o,σ〉(b) 6= fx,〈o′,σ′〉(t
∗).

Now since σ ⊂ σ′, it could be the case that |σ′| ≥ x. If this is the case, we have that

σ and σ′′ agree for all y < x and that σ(x) = 1 and σ′′(x) = 0. Hence we have that

〈o, σ′〉 <λ 〈o′′, σ′′〉 by case (1) of the ordering.

Otherwise we have that σ ⊂ σ′′.

Since 〈o, σ〉 is an outcome of the strategy, we have that it is first accessed by the

strategy at some stage s, when the strategy computes the apparent limit o and the

apparent use σ of lim
t→∞

Ψ̂H(x, t) at stage s. Since the apparent limit exists at stage

s, we must have that there is at least one computation Ψ̂H [s](x, 0) ↓, giving that

dom(fx,〈o,σ〉) is not empty.

Similarly, from the fact that 〈o′′, σ′′〉 is an outcome of the strategy, we have that this

outcome is first accessed by the strategy at some stage s′′, when the strategy computes

the apparent limit o′′ and the apparent use σ′′ of lim
t→∞

Ψ̂H(x, t) at stage s′′. Since the

apparent limit exists at stage s′′, we must have that there is at least one computation

Ψ̂H [s′′](x, 0) ↓, giving that dom(fx,〈o′′,σ′′〉) is not empty.

Consider the greatest b ∈ dom(fx,〈o,σ〉).

If s < s′′, we must have that Ψ̂σ[s](x, i) ↓= Ψ̂σ′′
[s′′](x, i) for every i ≤ b, due to

the fact that σ ⊂ σ′′. On the other hand, if s′′ < s, we have that Ψ̂σ′′
[s′′](x, i) ↓=

Ψ̂σ[s](x, i) for every i ≤ b, where ψ̂(x, i) ≤ |σ| for all i ≤ b.

Now, if there exists some t∗ > b such that t∗ ∈ dom(fx,〈o′′,σ′′〉) and fx,〈o,σ〉(b) 6=

fx,〈o′′,σ′′〉(t
∗), then it must be the case that 〈o, σ〉 <Λ 〈o′′, σ′′〉 by case (2) of the

ordering.

On the other hand, if there does not exist some t∗ > b such that t∗ ∈ dom(fx,〈o′′,σ′′〉)

and fx,〈o,σ〉(b) 6= fx,〈o′′,σ′′〉(t
∗), then it must be the case that the apparent limit and

175

apparent use of lim
t→∞

Ψ̂H(x, t) at stage s′′ is equal to the apparent limit and apparent use

of lim
t→∞

Ψ̂H(x, t) at stage s. In this case, we have that 〈o, σ〉 = 〈o′′, σ′′〉. This means

that the antecedent of the implication 〈o, σ〉 <λ 〈o′, σ′〉 ∧ 〈o′, σ′〉 <λ 〈o′′, σ′′〉 ⇒

〈o, σ〉 <λ 〈o′′, σ′′〉 is of the form 〈o, σ〉 <λ 〈o′, σ′〉 ∧ 〈o′, σ′〉 <λ 〈o, σ〉, which is false

by antisymmetry, leading to the trivial satisfaction of this case.

(d) Consider the situation where 〈o, σ〉 <λ 〈o′, σ′〉 through case (2) of the ordering, and

〈o′, σ′〉 <λ 〈o′′, σ′′〉 through case (2) of the ordering. Then we have that σ ⊂ σ′ and

that there exists some greatest b ∈ dom(fx,〈o,σ〉) and some t∗ ∈ dom(fx,〈o′,σ′〉) such

that t∗ > b and fx,〈o,σ〉(b) 6= fx,〈o′,σ′〉(t
∗). We also have that σ′ ⊂ σ′′ and that there

exists some greatest b′ ∈ dom(fx,〈o′,σ′〉) and some t∗∗ ∈ dom(fx,〈o′′,σ′′〉) such that

t∗∗ > b′ and fx,〈o′,σ′〉(b
′) 6= fx,〈o′′,σ′′〉(t

∗∗).

Since 〈o, σ〉 is an outcome of the strategy, we have that it is first accessed by the

strategy at some stage s, when the strategy computes the apparent limit o and the

apparent use σ of lim
t→∞

Ψ̂H(x, t) at stage s. Similarly, we have that 〈o′, σ′〉 is first

accessed by the strategy at some stage s′, when it computes the apparent limit o′ and

the apparent use σ′ of lim
t→∞

Ψ̂H(x, t) at stage s′. Finally, we have that 〈o′′, σ′′〉 is first

accessed by the strategy at some stage s′′, when it computes the apparent limit o′′ and

the apparent use σ′′ of lim
t→∞

Ψ̂H(x, t) at stage s′′.

Now, if s < s′, we must have that Ψ̂σ[s](x, i) ↓= Ψ̂σ′
[s′](x, i) for every i ≤ b, due

to the fact that σ ⊂ σ′. On the other hand, if s′ < s, we have that Ψ̂σ′
[s′](x, i) ↓=

Ψ̂σ[s](x, i) for every i ≤ b, where ψ̂(x, i) ≤ |σ| for all i ≤ b.

Similarly, if s′ < s′′, we must have that Ψ̂σ′
[s](x, i) ↓= Ψ̂σ′′

[s′](x, i) for every

i ≤ b′, due to the fact that σ′ ⊂ σ′′. On the other hand, if s′′ < s′, we have that

Ψ̂σ′′
[s′′](x, i) ↓= Ψ̂σ′

[s′](x, i) for every i ≤ b′, where ψ̂(x, i) ≤ |σ′| for all i ≤ b′.

Now, since b′ is the greatest element in dom(fx,〈o′,σ′〉), we must have that b′ ≥ t∗.

Hence, we have that Ψ̂σ′′
[s′′](x, t∗) = Ψ̂σ′

[s′](x, t∗).

It follows that t∗ ∈ dom(fx,〈o′′,σ′′〉), t∗ > b and fx,〈o,σ〉(b) 6= fx,〈o′′,σ′′〉(t
∗). Hence

we have that 〈o, σ〉 <L 〈o′′, σ′′〉 by case (2) of the ordering, as required.

(4) We show that <Λ obeys the trichotomy law, that is that for any two edges 〈o, σ〉 and 〈o′, σ′〉

176

of the strategy γ, we have that one of the following is the case; 〈o, σ〉 <λ 〈o′, σ′〉, 〈o′, σ′〉 <λ
〈o, σ〉 or 〈o, σ〉 = 〈o′, σ′〉.

Consider two edges 〈o, σ〉 and 〈o′, σ′〉.

Suppose that σ | σ′. Then there must be some least x such that σ and σ′ agree for all y < x,

and σ(x) = 1 and σ′(x) = 0, or σ′(x) = 1 and σ(x) = 0. In the first case, we have

that 〈o, σ〉 <Λ 〈o′, σ′〉 by case (1) of the ordering, while in the second case we have that

〈o′, σ′〉 <Λ 〈o, σ〉 by case (1) of the ordering.

On the other hand, it could be the case that σ ⊂ σ′ or that σ′ ⊂ σ. Without loss of generality,

suppose that σ ⊂ σ′.

Since 〈o, σ〉 is an outcome of the strategy, we have that it is first accessed by the strategy

at some stage s, when the strategy computes the apparent limit o and the apparent use σ of

lim
t→∞

Ψ̂H(x, t) at stage s. Since the apparent limit exists at stage s, we must have that there

is at least one computation Ψ̂H [s](x, 0) ↓, giving that dom(fx,〈o,σ〉) is not empty.

Similarly, from the fact that 〈o′, σ′〉 is an outcome of the strategy, we have that this outcome

is first accessed by the strategy at some stage s′, when the strategy computes the apparent

limit o and the apparent use σ of lim
t→∞

Ψ̂H(x, t) at stage s′. Since the apparent limit exists

at stage s′, we must have that there is at least one computation Ψ̂H [s′](x, 0) ↓, giving that

dom(fx,〈o′,σ′〉) is not empty.

Consider the greatest b ∈ dom(fx,〈o,σ〉).

If s < s′, we must have that Φσ[s](x, i) ↓= Φσ′
[s′](x, i) for every i ≤ b, due to the fact that

σ ⊂ σ′. On the other hand, if s′ < s, we have that Φ̂σ[s′](x, i) ↓= Φ̂σ′
[s](x, i) for every

i ≤ b, where φ̂(x, i) ≤ |σ| for all i ≤ b.

Now, if there exists some t∗ > b such that t∗ ∈ dom(fx,〈o′,σ′〉) and fx,〈o,σ〉(b) 6=

fx,〈o′,σ′〉(t
∗), then it must be the case that 〈o, σ〉 <Λ 〈o′, σ′〉 by case (2) of the ordering.

On the other hand, if there does not exist some t∗ > b such that t∗ ∈ dom(fx,〈o′,σ′〉) and

fx,〈o,σ〉(b) 6= fx,〈o′,σ′〉(t
∗), then it must be the case that the apparent limit and apparent use

of lim
t→∞

Ψ̂H(x, t) at stage s′ is equal to the apparent limit and apparent use of lim
t→∞

Ψ̂H(x, t)

at stage s. In this case we have that 〈o, σ〉 = 〈o′, σ′〉.

177

Behaviour of the Modified Π0
2 Strategies

Recall that the behaviour of a modified strategy depends on some finite number of Π0
2 questions

Q1, . . . , Qn. The answer to each of the questions Qi for every 1 ≤ i ≤ n is approximated at each

stage s by computing an apparent limit oi and an apparent use σi for lim
t→∞

ΨH(f(Qi), t) at stage

s. The strategy then calculates the corresponding sequence of answers o and the apparent use of

greatest length σ so as to choose its outcome 〈o, σ〉 at stage s.

In this section we shall show that this results in the modified strategy choosing some leftmost

outcome infinitely often and that this outcome corresponds to the answers of the questions

Q1, . . . , Qn.

We start by considering the situation where the strategy depends only on one Π0
2 question Q1. In

this case the answer to the question is determined by the value of lim
t→∞

ΨH(f(Q1), t).

In the following lemma we show that the existence of lim
t→∞

ΨH(f(Q1), t) guarantees that the

apparent limit o1 reaches the value lim
t→∞

ΨH(f(Q1), t) infinitely often, and that in each case the

apparent use σ1 returns to the same value σ∗. This means that the strategy visits the outcome

〈o∗, σ∗〉 infinitely often, where o∗ is the answer of Q1.

In addition to the above we show that there is some stage after which the apparent use σ1 can

only be an extension of σ∗. This means that there is a stage after which no outcome to the left of

〈o∗, σ∗〉 is visited by the strategy.

In the following lemma we shall suppress the notation f(Q), denoting it by x for readability.

Lemma 3.1.6. Suppose that lim
t→∞

ΨH(x, t) exists. Then there is some least number u and some

stage q such that the following conditions hold for infinitely many stages s.

(1) The apparent limit at stage s is equal to Ψ̂H [q](x, u) and the apparent use at stage s is equal

to max{ψ̂q(x,w) | w ≤ u}.

(2) Ψ̂H [q](x, u) = lim
t→∞

ΨH(x, t).

(3) Hq � max{ψ̂q(x,w) | w ≤ u} = H � max{ψ̂q(x,w) | w ≤ u}.

178

Proof. In order for lim
t→∞

ΨH(x, t) to exist, there must be some least u such that for every v ≥ u

we have that ΨH(x, u) = ΨH(x, v). Let q be the least stage such that for every w ≤ u we have

that ΨH [q](x,w) ↓, and such that Hq � max{ψq(x,w) | w ≤ u} ⊂ H . The existence of this

stage follows from the totality of ΨH . Then it is the case that for every s ≥ q, ΨH [s](x, u) =

ΨH [q](x, u) = lim
t→∞

ΨH(x, t), and that for every w ≤ u, ψs(x,w) = ψq(x,w).

Now consider any stage s ≥ q. Then one of the following cases must hold.

(a) For every v such that u < v ≤ tmaxs, the computation Ψ̂H [s](x, v) is equal to

Ψ̂H [q](x, u). Then we have that the apparent limit is Ψ̂H [q](x, u) and that the apparent

use is max{ψ̂q(x,w) | w ≤ u}, as required.

(b) There is some least v such that u < v ≤ tmaxs and such that the computation Ψ̂H [s](x, v)

is not equal to Ψ̂H [q](x, u). Then it must be the case thatHs � ψ̂s(x, v) 6⊂ H . For otherwise

u is not the least number such that ΨH(x, u) = ΨH(x, v) for every v ≥ u.

Hence if (b) is the case, there must be some stage s′ > s such that Hs′(y) 6= Hs(y) for some y

such that ψ̂s(x, u) < y ≤ ψ̂s(x, v). This means that at stage s′ we have that u is the least number

such that Ψ̂H [s′](x, u) has value equal to lim
t→∞

ΨH(x, t), and such that Ψ̂H [s′](x, v′) is constant

for all v′ ∈ [u, tmaxs′].

It follows that the apparent limit is Ψ̂H [s′](x, u) = Ψ̂H [q](x, u), and that the apparent use is

max{ψ̂q(x,w) | w ≤ u}, as required for condition (1). In addition since Ψ̂H [q](x, u) =

lim
t→∞

ΨH(x, t), we have that Ψ̂H [s′](x, u) = lim
t→∞

ΨH(x, t) as required for condition (2).

The above argument can be repeated to obtain infinitely many stages such that the apparent

limit for lim
t→∞

ΨH(x, t) is equal to Ψ̂H [q](x, u) and the apparent use for lim
t→∞

ΨH(x, t) is equal

to max{ψ̂q(x,w) | w ≤ u}. Thus conditions (1) and (2) of the lemma hold as required.

In addition we have already determined that Hq � max{ψ̂q(x,w) | w ≤ u} ⊂ H . This means that

we have that Hq � max{ψ̂q(x,w) | w ≤ u} = H � max{ψ̂q(x,w) | w ≤ u} and that condition

(3) is met as well.

We now proceed to consider the situation where the strategy depends on some finite number of Π0
2

questions Q1, . . . , Qn. In this case the truth value of each question Qi is determined by the value

179

of lim
t→∞

ΨH(f(Qi), t) for every 1 ≤ i ≤ n

By Lemma 3.1.6, we have that for each of the limits lim
t→∞

ΨH(f(Qi), t) there are infinitely many

stages s such that the apparent limit oi attains the value lim
t→∞

ΨH(f(Qi), t) and such that the

apparent use σi returns to some value σ∗i .

We shall now prove the Collation Lemma by showing that there are infinitely many stages s such

that all of the apparent limits oi attain the value of their corresponding limit lim
t→∞

ΨH(f(Qi), t)

simultaneously. In addition the maximum of all the apparent uses σ shall return to some value σ∗

at these stages. This means that the strategy visits some outcome 〈o∗, σ∗〉 infinitely often, where

o∗ is the sequence of answers to the sequence of questions Q1, . . . , Qn.

Furthermore we shall also show that there is some stage after which the maximum of the apparent

uses can only be an extension of σ∗. Hence we have that there is a stage after which no outcome

to the left of 〈o∗, σ∗〉 is visited by the strategy.

In the following lemma we shall suppress the notation f(Qi), denoting it by xi for readability.

Lemma 3.1.7. (Collation Lemma). Suppose that lim
t→∞

ΨH(xi, t) exists for every 1 ≤ i ≤ n. Then

there are infinitely many stages s, as well as a least number ui and a stage qi for all 1 ≤ i ≤ n,

such that the following conditions hold.

(1) The apparent limit for lim
t→∞

ΨH(xi, t) at stage s is equal to Ψ̂H [qi](xi, ui) and the apparent

use for lim
t→∞

ΨH(xi, t) at stage s is equal to max{ψ̂qi(xi, w) | w ≤ ui} for every 1 ≤ i ≤ n.

(2) Ψ̂H [qi](xi, ui) = lim
t→∞

ΨH(xi, t) for every 1 ≤ i ≤ n.

(3) Let zi = max{ψ̂qi(xi, w) | w ≤ ui} for every 1 ≤ i ≤ n, and let z = max{zi | 1 ≤ i ≤ n}.

Then there is a stage q′ such that Hq′ � z = H � z.

Proof. By Lemma 3.1.6 we have that for every lim
t→∞

ΨH(xi, t) for every 1 ≤ i ≤ n, there exists

some least number ui and stage qi such that there are infinitely many stages such that the apparent

limit for lim
t→∞

ΨH(xi, t) is equal to Ψ̂H [qi](xi, ui) and the apparent use for lim
t→∞

ΨH(xi, t) is equal

to max{ψ̂qi(xi, w) | w ≤ ui}.

Let q′ = max{q1, . . . , qn}. Consider some stage s > q′, and let tmaxi,s < s be the greatest

number such that Ψ̂H [s](xi, tmaxi,s) ↓, for every 1 ≤ i ≤ n.

180

Then for every lim
t→∞

ΨH(xi, t) such that 1 ≤ i ≤ n we have that case (a) or case (b) below must

hold for the corresponding apparent limit and apparent use at stage s.

(a) For every vi such that ui < vi ≤ tmaxi,s, the computation Ψ̂H [s](xi, vi) is equal

to Ψ̂H [qi](xi, ui). Then we have that s is a stage such that the apparent limit for

lim
t→∞

ΨH(xi, t) is equal to Ψ̂H [qi](xi, ui) and the apparent use for lim
t→∞

ΨH(xi, t) is equal

to max{ψ̂qi(xi, w) | w ≤ ui} for every 1 ≤ i ≤ n.

(b) There is some least vi such that ui < vi ≤ tmaxi,s and such that the computation

Ψ̂H [s](xi, vi) is not equal to Ψ̂H [qi](xi, ui). Then there must be some stage s′ > s such

that Hs � ψ̂s(qi, vi) 6= Hs′ � ψ̂s(qi, vi). For if this were not the case, ui would not be the

least number such that Ψ̂H(x, ui) = Ψ̂H(x, v) for every v ≥ ui.

If case (a) holds for every lim
t→∞

ΨH(xi, t) such that 1 ≤ i ≤ n, then we have that stage s satisfies

conditions (1) and (2).

Otherwise case (b) must hold for some lim
t→∞

ΨH(xi, t) such that 1 ≤ i ≤ n.

Now when the H � ψ̂s(qi, vi) change occurs at stage s′, we either have that case (a) holds for

every lim
t→∞

ΨH(xi, t) such that 1 ≤ i ≤ n, in which case stage s′ satisfies conditions (1) and (2) or

else that case (b) holds once again.

In the latter case there is some lim
t→∞

ΨH(xj , t) for 1 ≤ j ≤ n and j 6= i for which there is some

least vj > uj such that Ψ̂H [s′](xj , vj) 6= Ψ̂H [qj](xj , uj). But in order to have Ψ̂H [s′](xj , vj) ↓ it

follows that ψ̂s′(xj , vj) < ψ̂s(xi, vi).

Hence the repeated occurrence of case (2) constructs a strictly increasing sequence of stages sm >

s with a corresponding strictly decreasing sequence of uses um such that there must be an H � um

change at stage sm.

But by Lemma 3.1.6 we have that q1 is a stage such that Ψ̂H [q1](x1, u1) ↓ and such that

ψ̂q1(x1, u1) ⊂ H . This means that case (2) cannot cause an H � ψ̂q1(x1, u1) change. Hence

the sequence of stages sm corresponding to the decreasing sequence of uses um constructed by

the occurrence of case (2) must be finite. Let s∗ be the greatest stage in the sequence of stages

constructed by the occurence of case (2). Then case (1) holds at stage s∗ and conditions (1) and

181

(2) are satisfied at stage s∗.

The above argument can be repeated to obtain infinitely many stages such that the apparent limit

for lim
t→∞

ΨH(xi, t) is equal to Ψ̂H [qi](xi, ui) and the apparent use for lim
t→∞

ΨH(xi, t) is equal to

max{ψ̂qi(xi, w) | w ≤ ui} for every 1 ≤ i ≤ n. Thus conditions (1) and (2) of the lemma hold

as required.

In addition by Lemma 3.1.6 we have that Hqi � max{ψ̂qi(x,w) | w ≤ ui} = H �

max{ψ̂qi(x,w) | w ≤ ui} for every 1 ≤ i ≤ n. Let zi = max{ψ̂qi(x,w) | w ≤ ui} for

every 1 ≤ i ≤ n, and let z = max{zi | 1 ≤ i ≤ n}. Since q′ > qi for every 1 ≤ i ≤ n we have

that Hq′ � z = H � z as required, meaning that condition (3) is satisfied as well.

Synchronisation of Guesses and Events

The original strategy takes action and visits an outcome depending on the events which have taken

place at stage s, or at some previous stage. On the other hand, the modified strategy will guess

which outcome to visit at each stage as described in the previous section. This means that the

outcome visited by the modified strategy at stage s bears no relation to the actual events which

have taken place at stage s, or at some previous stage.

However in order for the construction to work properly, the modified strategies should only take the

action associated to visiting some outcome if the underlying event on which the action depends has

happened at stage s. In practice this cannot be guaranteed, so there has to be a way of preserving

the event until the modified strategy visits an outcome which is able to make use of such an event.

This is performed by using an attachment procedure.

During every stage s, the strategy will first execute the attachment procedure, which checks which

events have occurred at stage s, and attaches the event to an edge which is able to make use of

that event. The modified strategy then proceeds to guess the edge which is to be visited as before.

Now, if the modified strategy visits an edge which has an event attached to it, the strategy will take

corresponding action, whilst otherwise it will terminate the stage.

The main problem in implementing this form of synchronisation is to make sure that events which

182

have been attached to an edge at stage s remain valid until the edge is actually visited by the

strategy at some stage s′ > s.

Making sure that this holds is non-trivial and might require changes to the Π0
2 questions on which

the modified strategy is basing its guesses. This would then affect the attachment procedure once

again.

It is interesting to observe that the inability to preserve certain events is what causes the high

permitting method to fail for certain constructions.

Inaccessibility on the Left of the True Path

The ordering between the outcomes allows us to show that there is some set Y of strategies γ∗ and

edges γ∗ _ 〈o, σ〉 on the priority tree which contains every node and edge on the true path as a

subset, and for which it is possible to computably enumerate in H stages s such that no node or

edge to the left of γ∗ or γ∗ _ 〈o, σ〉 is accessible after stage s.

Lemma 3.1.8. There is a set Y of strategies γ∗ and edges γ∗ _ 〈o, σ〉 such that:

(1) If γ∗ is on the true path, then there is some stage s such that γ∗ is enumerated into Y .

(2) If γ∗ _ 〈o, σ〉 is on the true path, then there is some stage s such that γ∗ _ 〈o, σ〉 is

enumerated into Y .

(3) If γ∗ is enumerated into Y at stage s, then no node to the left of γ∗ is accessible after stage

s.

(4) If γ∗ _ 〈o, σ〉 is enumerated into Y at stage s, then no edge to the left of γ∗ _ 〈o, σ〉 is

accessible after stage s.

(5) Y is c.e. in H .

Proof. The procedure to computably enumerate the set Y in H will be the following.

Stage 0: Enumerate γ∗0 into the set Y , where γ∗0 is the root strategy of the priority tree.

Stage s + 1: Consider every strategy γ∗ on the priority tree which has been accessible at some

stage t < s + 1. If every edge on the path leading to γ∗ has been enumerated into the set Y ,

183

consider every edge γ∗ _ 〈o, σ〉 which has been accessible at some stage u < s + 1. If the edge

γ∗ _ 〈o, σ〉 has not yet been enumerated into Y , ask the oracle H whether σ ⊂ H . If this is the

case determine whether Hs ⊇ σ. If this is also the case enumerate the edge γ∗ _ 〈o, σ〉 into Y ,

and enumerate the strategy (γ∗)+ into Y , where (γ∗)+ is the successor strategy of γ∗ along the

edge γ∗ _ 〈o, σ〉.

We shall now show that the set Y as constructed above satisfies properties (1)-(5).

(1) We prove this statement by induction on the length of the true path f .

For our base case we consider the strategy γ∗0 = f � 0. In this case we have that the strategy

γ∗0 is enumerated into the set Y during stage 0 of the construction, as required.

For our inductive case we assume that there exists some stage sn such that the strategy γ∗n

is enumerated into the set Y by the construction, where γ∗n = f � n.

We then prove that there exists some stage sn+1 such that the strategy γ∗n+1 is enumerated

into the set Y by the construction, where γ∗n+1 = f � n+ 1.

Consider the edge γ∗n _ 〈o, σ〉 lying on the true path. Since the strategy γ∗n has been

enumerated into the set Y , it must be the case that every edge on the path leading to the

strategy γ∗n must also have been enumerated into the set Y . Now, since the edge γ∗n _ 〈o, σ〉

is on the true path, there must be a stage such that it becomes accessible. In addition, since

the edge is on the true path, we have that σ ⊂ H . Hence there must be some stage sn+1

such that Hsn+1 ⊇ σ. From this it follows that at stage sn+1 the construction enumerates

the edge γ∗n _ 〈o, σ〉 and the strategy γ∗n+1 into the set Y as required.

(2) This statement follows directly from the proof of (1).

(3) Suppose that the strategy γ∗ has been enumerated into Y at stage s. Then for each edge

γ′ _ 〈o, σ〉 on the path leading to the strategy γ∗ there must exist some stage s′ such that

the edge γ′ _ 〈o, σ〉 has been enumerated into Y . In order for this to be the case, we must

have that σ ⊂ H .

Now, consider any edge γ′ _ 〈o′, σ′〉 lying to the left of γ′ _ 〈o, σ〉.

If σ′ | σ, we have that there is some x such that σ′(x) = 1 and σ(x) = 0. Hence in order

for the edge γ′ _ 〈o′, σ′〉 to become accessible at some stage t > s it must be the case that

184

Ht(x) = 1. But this is impossible, since we have determined that σ(x) = 0 and σ ⊂ H .

On the other hand we could have that σ′ ⊂ σ and that there exists some b ∈ dom(fx,〈o′,σ′〉)

and some t∗ ∈ dom(fx,〈o,σ〉) such that t∗ > b and fx,〈o′,σ′〉(b) 6= fx,〈o,σ〉(t
∗). Hence in

order for the edge γ′ _ 〈o′, σ′〉 to become accessible at some stage t > s there must be

some x such that |σ′| < x ≤ |σ| such that σ(x) = 0 and Ht(x) = 1. But this is impossible,

since we have already determined that σ ⊂ H .

Hence we have that the edge γ′ _ 〈o′, σ′〉 is inaccessible at every stage t > s.

Now if γ′′ lies to the left of γ∗, it must be the case that γ′′ lies below some edge of the form

γ′ _ 〈o, σ〉 as described above. Hence we have that γ′′ is inaccessible at every stage t > s,

as required.

(4) This statement follows directly from the proof of (3).

(5) This statement is true by our construction of the set Y .

Showing X ≤T H

In order to determine whether a given set X is computable with the help of H , we need to be able

to determine whether x ∈ X or not after some finite number of steps and in finitely many queries

to H .

The construction will often be organised in such a way that it is possible to computably determine

which strategy on the priority tree is able to enumerate the element x into the set X . In order for

the modified strategy to make use of this element, it will first have to be attached to some edge of

the appropriate kind.

Once the strategy which can potentially enumerate x into X has been identified, one can set in

motion both the construction and the enumeration of the set Y with the help of H , which is the

object of Lemma 3.1.8.

At this point one waits and observes the modified strategy until one of the following events occurs.

If the strategy enumerates x into X at some stage, we clearly have that x ∈ X .

185

Otherwise suppose that x 6∈ X . Then we need to be able to tell that this is the case in finitely many

stages and in finitely many queries to H .

Suppose that x is attached to some edge γ _ 〈o, σ〉 lying to the right of the true path. Then this

edge is eventually initialised, resulting in x being discarded, allowing us to determine that x 6∈ X .

Suppose that x is attached to some edge γ _ 〈o, σ〉 lying to the left of the true path. Then there

is some stage s such that some strategy γ′ or edge γ′ _ 〈o, σ〉 on the true path lying to the right

of γ _ 〈o, σ〉 will be enumerated into Y . This means that no strategy or edge to the left of

γ′ _ 〈o′, σ′〉 will be accessible after stage s. It follows that the edge γ _ 〈o, σ〉 is now also

inaccessible, and that thus x cannot be enumerated into X . Hence we have that x 6∈ X .

Suppose that x is attached to some edge γ _ 〈o, σ〉 lying on the true path. Then this edge is

visited infinitely often and it should be possible to tell from the action associated to the edge itself

whether x will be enumerated into X or not.

Finally suppose that x is never attached to any edge. Then it should be possible to discover this

fact in the following way. Suppose that γ _ 〈o, σ〉 is the edge lying on the true path. Then

this edge will be enumerated into the set Y at some stage t, meaning that no edge to the left of

γ _ 〈o, σ〉 is accessible after stage t.

Now, whenever the strategy γ visits this edge at some stage s, it will initialise every edge lying to

its right, forcing the latter to discard any attached witness. In addition, a restraint will be imposed

on edges lying to the right of γ _ 〈o, σ〉 such that only elements which are greater s can now be

attached to these edges.

One can then simply wait for γ _ 〈o, σ〉 to become accessible again at some stage t′ > t such

that we also have that t′ > x. It then becomes impossible for x to be attached to any edge of the γ

strategy, meaning that x cannot be enumerated into X either. Hence we have that x 6∈ X .

Showing x < h

Suppose that we have a construction which builds some c.e. set X and that the high permitting

method succeeds in giving a correct modified construction. Then for any high c.e. degree h it is

186

possible to choose a c.e. set H such that h = deg(H) and build X such that X ≤T H . From this

it follows that it is possible to build a c.e. degree x = deg(X) such that x ≤ h.

However, for any high c.e. degree h, it is also possible to build X such that x = deg(X) and

x < h. This can be carried out as follows.

Miller has shown that below every high c.e. degree, there exists a high minimal pair of c.e.

degrees in [Miller, 1981].

Theorem 3.1.9. (Miller). Let h be a high c.e. degree. Then there exist high c.e. degrees h0 and

h1 such that h0 ≤ h, h1 ≤ h and h0 and h1 form a minimal pair.

Before proceeding we note that h0 < h. For if h0 = h, we would have that h1 ≤ h0. Since

h1 ≤ h1, by the minimal pair property we would have that h1 = 0. But this is not possible

because h1 > 0 by the definition of a minimal pair.

Hence given a high c.e. degree h, one can first build a high minimal pair of c.e. degrees h0 and

h1 below h. The high permitting method is then used to build the c.e. setX such that x = deg(X)

and x ≤ h0. Since h0 < h, we can then conclude that x < h by transitivity, as required.

We are now in a position to apply the high permitting method of Shore and Slaman to the

construction of the Lachlan Non-Spliting theorem presented in Chapter 2.

187

3.2 Preliminaries for the Theorem

In this section we shall show that a Lachlan Non-Splitting Pair can be found strictly below every

high c.e. degree.

Theorem 3.2.1. (Every High c.e. Degree Bounds a Lachlan Non-Splitting Pair). For every high

c.e. degree h there exist c.e. degrees a and d such that a < h, d < a, and there is no non-trivial

splitting of a into c.e. degrees u and v such that d < u and d < v.

In order to prove the theorem we shall build two sets A and D, which satisfy certain ‘Non-

Splitting’ requirements, causing a = deg(A ⊕ D) and d = deg(D) to form the top and the

base of a Lachlan Non-Splitting Pair. In order to show that the Lachlan Non-Splitting Pair 〈a,d〉

lies strictly below the given high c.e. degree h, we proceed as follows. We first use Miller’s

Theorem (Theorem 3.1.9) to obtain a high c.e. degree h0 < h, where h0 = deg(H0), and then

use Shore and Slaman’s high permitting technique to build A ≤T H0 and D ≤T H0. From this

it follows that A ⊕D ≤T H0, and thus that A ⊕D <T H0. Thus we shall have that a < h and

d < h as required.

3.2.1 The Non-Splitting Requirements

Since D ≤T A⊕D, we have that d ≤ a. To show that d < a, it is sufficient to prove that a 6≤ d.

Hence we shall need to satisfy the following requirement.

S : A 6≤T D

In order to show that there is no non-trivial splitting of a into c.e. degrees u and v such that

d < u and d < v, we shall need to satisfy a requirement R(U,V) for every pair of c.e. sets U and

V . These requirements are a weakened form of the corresponding requirements for the Lachlan

Non-Splitting Theorem, and will also allow us to show that a < h. We postpone the argument for

weakening the requirements to Section 3.2.5.

R(U,V) : [A ≤T U ⊕ V ∧ U ≤T A⊕D ∧ V ≤T A⊕D]⇒

[A ≤T U ⊕D ∨ A ≤T V ⊕D]

188

We now show that satisfying these requirements is enough to prove the theorem.

Lemma 3.2.2. If the requirement S is satisfied and the requirement R(U,V) is satisfied for every

pair of c.e. sets U and V , there is no non-trivial splitting of a into c.e. degrees a0 and a1 such

that d < a0 and d < a1.

Proof. Suppose for contradiction that there is a non-trivial splitting of a into c.e. degrees a0 and

a1 such that d < a0 and d < a1. Let a0 = deg(A0) and a1 = deg(A1), where A0 and A1 are

c.e. sets. Then by the definition of a non-trivial splitting we have that a = a0 ∨ a1, which means

that A⊕D ≡T A0 ⊕A1. In addition we have that D <T A0 and D <T A1.

We shall now derive the following three facts - A ≤T A0⊕A1, A0 ≤T A⊕D and A1 ≤T A⊕D.

In order to derive A ≤T A0 ⊕A1 we proceed as follows. Since A⊕D ≡T A0 ⊕A1 we have that

A⊕D ≤T A0 ⊕ A1. On the other hand from D <T A0 it follows that D ≤T A0. Hence we can

conclude that A ≤T A0⊕A1. In order to derive A0 ≤T A⊕D and A1 ≤T A⊕D we use the fact

that A0 ⊕ A1 ≡T A ⊕D. From this it follows that A0 ⊕ A1 ≤T A ⊕D. Thus we can conclude

that A0 ≤T A⊕D and A1 ≤T A⊕D.

Now since the requirementR(U,V) holds for any pair of c.e. sets U and V , and sinceA0 andA1 are

c.e. sets, we have thatR(A0,A1) is the case. In addition since we have shown that A ≤T A0 ⊕A1,

A0 ≤T A⊕D and A1 ≤T A⊕D, we have that the antecedent of the implication is satisfied and

hence we can conclude that A ≤T A0 ⊕D or that A ≤T A1 ⊕D.

Now without loss of generality, suppose that A ≤T A0 ⊕ D is the case. Then we have that

A⊕D ≤T A0 ⊕D. Since we have that D <T A0 and thus that D ≤T A0, we can conclude that

A0⊕D ≤T A0. Then by transitivity we have thatA⊕D ≤T A0. On the other hand we also know

that A⊕D ≡T A0⊕A1 and hence that A0⊕A1 ≤T A⊕D. Hence we have that A0⊕A1 ≤T A0

once again by transitivity. From this it follows that A1 ≤T A0. But this means that a1 ≤ a0 and

hence that a0 - a1. It follows that a0 and a1 cannot be a non-trivial splitting of a, which gives

the required contradiction.

189

3.2.2 Implementation of the Non-Splitting Requirements

In order for strategies to be able to satisfy the above requirements we will need to break them down

into a simpler form. Let (Θ) be a standard listing of all p.c. functionals, and let (Φ1,Φ2,Φ3, U, V)

be a standard listing of all 5-tuples such that Φ1,Φ2 and Φ3 are p.c. functionals, and U and V are

c.e. sets.

Then the requirement S can be broken down into infinitely many requirements of the following

form.

S(Θ) : ΘD 6= A

On the other hand each requirementR(U,V) can be broken down into infinitely many requirements

of the following form.

R(Φ1,Φ2,Φ3,U,V) : [ΦU,V
1 = A ∧ ΦA,D

2 = U ∧ ΦA,D
3 = V]⇒

[ΓU,D = A ∨ ΓV,D = A]

In this case the functionals ΓU,D or ΓV,D would need to be built by any strategy attempting to

satisfy such a requirement.

3.2.3 Further Simplification of the Non-Splitting Requirements

We can further simplify the requirements as follows. Consider a requirement of the form R(U,V)

and suppose that A ≤T U ⊕ V , U ≤T A ⊕D and V ≤T A ⊕D, so that the requirement is not

satisfied trivially.

Then in order to satisfy R(U,V) it is sufficient to show that a requirement of the form

R(Φ1,Φ2,Φ3,U,V) holds for some p.c. functionals Φ1, Φ2 and Φ3. This is because building a

functional ΓU,D = A or a functional ΓV,D = A is sufficient to show that A ≤T U ⊕ D or

A ≤T V ⊕D respectively, thus satisfyingR(U,V).

Finally if there are functionals Φ1, Φ2 and Φ3 such that ΦU,V
1 = A, ΦA,D

2 = U and ΦA,D
3 = V ,

there must also exist functionals Ψ1, Ψ2 and Ψ3 giving ΨU,V
1 = A, ΨA,D

2 = U and ΨA,D
3 = V

and satisfying the following properties for all 1 ≤ i ≤ 3:

190

(1) (∀s)(∀x)(∀y) [x < y ⇒ ψi[s](x) < ψi[s](y)].

(2) (∀x)(∀s)(∀s′) [s < s′ ⇒ ψi[s](x) ≤ ψi[s′](x)].

By combining the above two observations we have that in order to satisfy a requirement R(U,V)

it suffices to attempt to satisfy only those requirements R(Φ1,Φ2,Φ3,U,V) for which the functionals

ΦU,V
1 , ΦA,D

2 and ΦA,D
3 have the properties corresponding to (1) and (2) as specified above.

3.2.4 The High Permitting Requirements

We have already seen that in order to prove that a < h and that d < h, we have to show that

A ≤T H0 and that D ≤T H0. In order to achieve this, we shall apply the high permitting method

of Shore and Slaman described in Section 3.1 to the construction of the Lachlan Non-Splitting

Theorem given in Chapter 2.

In order to do this we shall mirror the development of the strategies given in Chapter 2, modifying

the strategies in each case by following the procedure in Section 3.1.2. When introducing the

modified startegy we shall start by defining the sequence Q1, . . . , Qn of Π0
2 questions which

determines the true outcome of the strategy. This allows the calculation of the apparent limits

and apparent uses at stage s for every lim
t→∞

ΨH0(f(Qi), t) such that 1 ≤ i ≤ n. The apparent

limits and the apparent use of greatest length can then be used to determine the outcome of the

strategy at stage s. In this manner we obtain both the set of outcomes of the modified strategy

and the means for allowing the modified strategy to guess the outcome which it should visit at

stage s. The priority tree shall then be modified a natural way to take into account the fact that the

outcomes of the strategy have changed.

The fact that the outcome chosen by a modified strategy is now driven by the stagewise

approximation to H0 represents a lack of control on the part of the strategy, which introduces

a variety of technical problems which need to be resolved. The most serious of these problems

arise from the fact that the modified strategy will now be divided into the following two parts. The

first is an attachment procedure which attaches elements having certain properties at stage s to

edges of a specific form. The second is a procedure which visits an edge at stage s as determined

by the approximation H0,s, taking the action associated to this edge based on any element which

191

is attached to it.

While the property satisfied by an element which is attached to an edge at stage s will hold at

stage s, this may no longer be the case when the strategy actually visits this edge at some stage

s′ > s. While certain properties can be preserved through direct means, this will not be the case

in general. In fact the major obstacle in applying the Shore-Slaman high permitting method to

the Lachlan Non-Splitting Theorem lies in preserving the honesty of computations ΓU,D(w) (or

ΓV,D(w) resp.) for a given witness w. This problem shall be treated in greater length in Section

3.2.5 below.

The verification of the construction has two main objectives. The first is to show that the various

modifications which have been performed still allow the Non-Splitting requirements discussed

above to be satisfied. The second is to prove that A ≤ H0 and that D ≤ H0. In the latter case

the set H0 returns in the guise of an oracle, helping us to computably enumerate in H0 the edges

lying to the left of the true path of the construction. By combining this with a suitably devised

attachment procedure, we shall be able to determine whether x 6∈ A or x 6∈ D for any element x

in finite time and in finitely many queries to H0.

3.2.5 Honesty Preservation

We shall now discuss how weakening the requirements R(U,V) with respect to the analogous

requirements for the Lachlan Non-Splitting Theorem, allows us to preserve the honesty of

computations ΓU,D(w) (or ΓV,D(w) resp.) for a given witness w.

Consider the requirementsR(Φ1,Φ2,Φ3,U,V), corresponding toR(U,V). Since the premises of these

requirements now contain the expressions U = ΦA,D
2 and V = ΦA,D

3 we are now able to exercise

indirect control over the sets U and V through our control of the sets A and D.

For in order for the element x to enter the set U , an A � φ2(x) or D � φ2(x) change is required.

Similarly, in order for the element x to enter the set V , an A � φ3(x) or D � φ3(x) change is

required. For if x were to enter one of these sets without the corresponding change to one of the

sets A or D, a disagreement U(x) 6= ΦA,D
2 (x) or V (x) 6= ΦA,D

3 (x) would be the case and the

requirementR(Φ1,Φ2,Φ3,U,V) would be satisfied trivially.

192

Now suppose that a computation ΓU,D(w) (or ΓV,D(w) resp.) is honest with respect to ΦU,V
1 (w)

at some stage s. This will be the case if γ[s](w) > φ1[s](w). Then we have that the computation

can only become dishonest at some stage t > s if there is some U � φ1[u](w) change or a

V � φ1[u](w) change at some stage u such that s < u < t.

However a U � φ1[u](w) change is only possible if the construction allows an A �

φ2[u′](φ1[u′](w)) change or a D � φ2[u′](φ1[u′](w)) change at some stage u′ such that s <

u′ < u. Similarly a V � φ1[u](w) change is only possible if the construction allows an

A � φ3[u′](φ1[u′](w)) change or a D � φ3[u′](φ1[u′](w)) change at some stage u′ such that

s < u′ < u.

Hence the weakened requirements allow us stop a computation ΓU,D[s](w) (or ΓV,D[s](w)

resp.) for a given witness w. which is honest from becoming dishonest at some stage t > s.

Preserving the honesty of computations in this way will be central to resolving the synchronisation

problem which is created when the high permitting method of Shore and Slaman is applied to the

construction of the Lachlan Non-Splitting Theorem.

3.2.6 Further Remarks

We shall now make a number of preliminary remarks on the construction which will be used to

satisfy the requirements.

Witness, Threshold and Use Sets

As in Section 2.1.4 of Chapter 2, we shall totally order the S strategies on the priority tree, indexing

them as αe for some natural number e. Similarly we shall totally order the R strategies on the

priority tree, indexing them as βe for some natural number e. We shall also computably partition

the set of natural numbers N into infinitely many infinite subsets, assigning the sets V e and W e to

the strategy αe for use as its threshold set and witness set respectively.

However, an R strategy shall now have to build a functional ΓU,Dβ_〈i,σ〉 or ΓV,Dβ_〈i,σ〉 for each one

of its edges β _ 〈i, σ〉, of which there can be infinitely many. Each one of these edges shall

193

therefore need its own use setU e,β_〈i,σ〉 from which to choose the uses to define the corresponding

functional.

Initialisation and Reseting

During every stage s, the construction will attempt to construct a current path δs of length s

through the priority tree in the usual manner. Strategies which lie on the current path are said to be

accessible at stage s. One important difference from the construction of the Lachlan Non-Splitting

Theorem is that the current path at stage s does not have to be of length s. This situation results

from the fact that some strategy lying on the current path might tell the construction to terminate

the path early by going to the next stage, thus cutting the current path short.

Once the construction has built the current path δs, it will initialise all strategies and all edges

lying to the right of the current path. A strategy which has been initialised behaves as if had never

been previously accessible. It will also cancel all work performed so far by setting all restraints to

zero, setting the variable ‘suspend’ to its initial state, and initialising every one of its edges. When

an edge has been initialised, the construction will detach any element which has been attached to

the edge, undefine every work interval which has been defined for the edge, set every boundary

associated to the work interval to zero and cancel any functional which is associated to the edge.

The mode of the edge will also be set to its initial state.

During the course of the construction a strategy may impose a diagonalisation restraint or a

downward restraint on a strategy lying below it. Since the latter strategy may have chosen certain

elements which are incompatible with the restraint, we shall reset the startegy whenever some

strategy lying above it increases one of these two restraints. A strategy which has been reset will

count as having been initialised the moment the higher priority strategy increased its restraint, with

the exception that the diagonalisation restraint imposed by the strategy being reset will not be set

to zero.

194

Expansionary and Expansionary* Stages

AnR strategy attempting to satisfy a requirementR(Φ1,Φ2,Φ3,U,V) will need to observe the length

of agreement between the set A and the functionals ΦU,V
1 , ΦA,D

2 and ΦA,D
3 . These are defined as

follows.

Definition 3.2.3. (Length of Agreement).

• ls(ΦU,V
1 , A) is the length of agreement between the functional ΦU,V

1 and the set A at stage

s, and is defined as follows:

ls(Φ
U,V
1 , A) = max {x | (∀y < x)[ΦU,V

1 [s](y) = As(y)] }

• ls(ΦA,D
2 , U) is the length of agreement between the functional ΦA,D

2 and the set U at stage

s, and is defined as follows:

ls(Φ
A,D
2 , U) = max {x | (∀y < x)[ΦA,D

2 [s](y) = Us(y)] }

• ls(ΦA,D
3 , V) is the length of agreement between the functional ΦA,D

3 and the set V at stage

s, and is defined as follows:

ls(Φ
A,D
3 , V) = max {x | (∀y < x)[ΦA,D

3 [s](y) = Vs(y)] }

If any one of these lengths of agreement stops increasing, we have that the requirement is satisfied

trivially and that the strategy does not need to take further action. If on the other hand this is not

the case, the strategy will need to build one of the functionals ΓU,D or ΓV,D in order to satisfy the

requirement.

In the construction of the Lachlan Non-Splitting Theorem, we used the occurrence of an

expansionary stage to signal that strategy should continue to build its functional. Since we are

now monitoring not one but three lengths of agreement, the notion of an expansionary stage

must now take all three into account. However since the various lengths of agreement might

not increase simultaneously, we shall first measure whether l(ΦU,V
1 , A) has expanded and then

measure whether l(ΦA,D
2 , U) and l(ΦA,D

3 , U) have expanded as measured only over those stages

at which l(ΦU,V
1 , A) has expanded. In this manner if l(ΦA,D

2 , U) expands at some stage t2 < s,

l(ΦA,D
3 , V) expands at some stage t3 < s, both lengths of agreement are preserved at stage s and

195

l(ΦU,V
1 , A) expands at stage s, we have that s signals that any disagreement between ΦU,V

1 and A

has been removed and that at stage s it appears that the requirement will not be satisfied trivially.

This shall correspond to the required notion ofR-expansionary stage, which is defined below.

Definition 3.2.4. (R-expansionary stage). Let β be anR strategy. A stage s is anR-expansionary

stage if:

(1) (∀s′ < s)[ls(Φ
U,V
1 , A) > ls′(Φ

U,V
1 , A)].

(2) (∀s′ < s)[(∀s′′ < s′)[ls′(Φ
U,V
1 , A) > ls′′(Φ

U,V
1 , A)]⇒

ls(Φ
A,D
2 , U) > ls′(Φ

A,D
2 , U)].

(3) (∀s′ < s)[(∀s′′ < s′)[ls′(Φ
U,V
1 , A) > ls′′(Φ

U,V
1 , A)]⇒

ls(Φ
A,D
3 , V) > ls′(Φ

A,D
3 , V)].

In practice a strategy γ will only measure the various lengths of agreement at those stages during

which it is accessible. In general we refer to the stages at which a given strategy γ is accessible as

γ-stages.

Definition 3.2.5. (γ-stage). Let γ be an R or S strategy. A stage s is said to be a γ-stage if γ is

accessible at stage s. If s is a γ-stage, we shall denote this by γ-stage(s). In addition we denote

the set of γ-stages {s : N | γ-stage(s)} by Nγ .

Given anR strategy β, we can then define the notion of a β-expansionary stage by measuring the

expansion of the lengths of agreement at those stages at which β is accessible. A β-expansionary

stage s thus signals to the strategy β that it should proceed to build its functional.

Definition 3.2.6. (β-expansionary stage). Let β be an R strategy. A stage s is a β-expansionary

stage if:

(1) s is a β-stage.

(2) (∀s′ < s)[β-stage(s′)⇒ ls(Φ
U,V
1 , A) > ls′(Φ

U,V
1 , A)].

(3) (∀s′ < s)[β-stage(s′) ∧ (∀s′′ < s′)[β-stage(s′′)⇒ ls′(Φ
U,V
1 , A) > ls′′(Φ

U,V
1 , A)]⇒

ls(Φ
A,D
2 , U) > ls′(Φ

A,D
2 , U)].

196

(4) (∀s′ < s)[β-stage(s′) ∧ (∀s′′ < s′)[β-stage(s′′)⇒ ls′(Φ
U,V
1 , A) > ls′′(Φ

U,V
1 , A)]⇒

ls(Φ
A,D
3 , V) > ls′(Φ

A,D
3 , V)].

In the previous section we also indicated that we shall be attempting to preserve the honesty of

computations ΓU,D(x). In order to do this we shall define the length of honesty preservation to be

the length of the initial segment of U and V which cannot change without a corresponding A or D

change as described in the previous section, or without resulting in the requirement being satisfied

trivially.

Definition 3.2.7. (Length of Honesty Preservation).

hs(Φ
U,V
1 ,ΦA,D

2 ,ΦA,D
3) is the length of honesty preservation between the functional ΦU,V

1 and the

set A at stage s, and is defined as follows:

hs(Φ
U,V
1 ,ΦA,D

2 ,ΦA,D
3) = max {x | (∀y < x)[φ2[s](φ1[s](y)) ↓ ∧ φ3[s](φ1[s](y)) ↓] }

R strategies implementing mechanisms for honesty preservation will also require expansions in

the length of honesty preservation, as measured over those stages s at which ls(Φ
U,V
1 , A) has

expanded. Infinitely many expansions of the length of honesty are required so as to ensure that

the uses of longer initial segments of ΦU,V
1 will not change value. In this manner lower priority S

strategies which need to take the R strategy into consideration are also guaranteed the honesty of

longer initial segments of ΓU,D. We expand the notion of an R-expansionary stage to the one of

an R-expansionary* stage by including this constraint in the same manner as we have done with

the other lengths of agreement.

Definition 3.2.8. (R-expansionary* stage). Let β be an R strategy. A stage s is an R-

*expansionary stage if:

(1) s is anR-expansionary stage.

(2) (∀s′ < s)[(∀s′′ < s′)[ls′(Φ
U,V
1 , A) > ls′′(Φ

U,V
1 , A)]⇒

hs(Φ
U,V
1 ,ΦA,D

2 ,ΦA,D
3) > hs′(Φ

U,V
1 ,ΦA,D

2 ,ΦA,D
3)].

Given an R strategy β, we can then define the notion of a β-expansionary* stage by measuring

the expansion of the lengths of agreement and the length of honesty preservation at those stages at

which β is accessible.

197

Definition 3.2.9. (β-expansionary* stage). Let β be anR strategy. A stage s is a β-*expansionary

stage if:

(1) s is an β-expansionary stage.

(2) (∀s′ < s)[β-stage(s′) ∧ (∀s′′ < s′)[β-stage(s′′)⇒ ls′(Φ
U,V
1 , A) > ls′′(Φ

U,V
1 , A)]⇒

hs(Φ
U,V
1 ,ΦA,D

2 ,ΦA,D
3) > hs′(Φ

U,V
1 ,ΦA,D

2 ,ΦA,D
3)].

The following lemma tells us that if the length of agreement between ΦU,V
1 and A as seen by an

R strategy β attempting to satisfy a requirement R(Φ1,Φ2,Φ3,U,V) is unbounded, but the length of

honesty preservation as seen by the strategy β is finite, we have that the requirement is satisfied

trivially. It follows that the notion of an expansionary* stage is an appropriate guide to when anR

strategy with honesty preservation mechanisms should proceed to build a functional.

Lemma 3.2.10. Let β be an R strategy attempting to satisfy a requirement R(Φ1,Φ2,Φ3,U,V). If

lim
s∈Nβ

hs(Φ
U,V
1 ,ΦA,D

2 ,ΦA,D
3) is finite, then the requirementR(Φ1,Φ2,Φ3,U,V) is satisfied trivially.

Proof. Suppose that lim
s∈Nβ

ls(Φ
U,V
1 , A) is unbounded and that lim

s∈Nβ
hs(Φ

U,V
1 ,ΦA,D

2 ,ΦA,D
3) is finite.

From the latter it follows that there is some element x such that lim
s∈Nβ

φ2[s](φ1[s](x)) is unbounded

or such that lim
s∈Nβ

φ3[s](φ1[s](x)) is unbounded.

In the first case we either have that lim
s∈Nβ

φ1[s](x) is unbounded, or that lim
s∈Nβ

φ1[s](x) = u for

some finite u and lim
s∈Nβ

φ2[s](u) is unbounded. Hence we either have that ΦU,V
1 (x) ↑, or that

ΦA,D
2 (u) ↑. Similarly in the second case we either have that lim

s∈Nβ
φ1[s](x) is unbounded, or that

lims φ1[s](x) = u for some finite u, whilst lim
s∈Nβ

φ3[s](u) is unbounded. Hence we either have that

ΦU,V
1 (x) ↑ or that ΦA,D

3 (u) ↑.

Therefore we have that the requirementR(Φ1,Φ2,Φ3,U,V) is satisfied trivially as required.

Note that allR strategies used in this chapter which are defined prior to Section 3.7 do not contain

the mechanisms for honesty preservation and are based on the notion of an expansionary stage. On

the other hand the strategies defined in Section 3.7 have the mechanisms for honesty preservation

and are therefore based on the notion of an expansionary* stage.

198

3.3 OneR Requirement

In this section we shall show how one can satisfy one R requirement. This will require defining

an R strategy to satisfy the R requirement. We start by defining the questions needed for the R

strategy to determine its outcome at any given stage.

3.3.1 Questions for theR Strategy

The R strategy β will need to ask one question, which we denote by Q1. The question asks

whether the strategy β sees infinitely many β-expansionary stages:

(1) Are there infinitely many stages q ∈ Nβ such that the following holds?

(i) (∀q′ < q)[β-stage(q′)⇒ lq(Φ
U,V
1 , A) > lq′(Φ

U,V
1 , A)].

(ii) (∀q′ < q)[β-stage(q′) ∧ (∀q′′ < q′)[β-stage(q′′)⇒ lq′(Φ
U,V
1 , A) > lq′′(Φ

U,V
1 , A)]⇒

lq(Φ
A,D
2 , U) > lq′(Φ

A,D
2 , U)].

(iii) (∀q′ < q)[β-stage(q′) ∧ (∀q′′ < q′)[β-stage(q′′)⇒ lq′(Φ
U,V
1 , A) > lq′′(Φ

U,V
1 , A)]⇒

lq(Φ
A,D
3 , V) > lq′(Φ

A,D
3 , V)].

If the strategy is accessible at some stage s, it will guess the answer to Q1 by computing the

apparent limit o and apparent use σ for lim
t→∞

ΨH0(f(Q1), t) at stage s. If the answer corresponding

to o1 is ‘No’, we denote the outcome by 〈f, σ〉. On the other hand, if the answer corresponding to

o1 is ‘Yes’, we denote the outcome by 〈i, σ〉.

We now describe theR strategy itself.

3.3.2 TheR strategy

TheR strategy β follows a Γ-strategy and has outcomes of the form 〈i, σ〉 and 〈f, σ〉. The strategy

will build a different functional ΓU,Dβ_〈i,σ〉 below every edge β _ 〈i, σ〉 leaving β. Each edge will

also have a separate set of uses U e,β_〈i,σ〉 from which the strategy chooses uses when defining the

functional associated to the edge β _ 〈i, σ〉. Note that e is the index of the strategy β in the total

ordering of theR strategies lying on the priority tree.

199

The strategy goes through the following steps at stage s.

Firstly, the strategy calculates a rightward restraint r(β _ 〈o′, σ′〉, s) for every edge β _ 〈o′, σ′〉

which has been previously accessible. This restraint has to be observed by all edges lying to the

right of β _ 〈o′, σ′〉.

The restraint itself is equal to the maximum of two values. These are the stage at which the edge

was last visited and any β-expansionary stage which might be attached to the edge. The first

constraint protects the functional ΓU,Dβ_〈i,σ〉 associated to the edge from computations taking place

to the right of the edge. This follows from the fact that this functional can only be defined when

the strategy visits the edge. The second constraint protects the β-expansionary stage itself from

computations taking place to the right of the edge. This will include protecting the functionals

ΦU,V
1 , ΦA,D

2 and ΦA,D
3 at those elements which are defined during the β-expansionary stage.

Secondly, the strategy performs its attachment procedure. The strategy will check whether the

present stage is a β-expansionary stage, and if so it will attach this stage to the leftmost edge

of the form β _ 〈i, σ′〉 which has been previously accessible and which has no β-expansionary

stage attached to it. The attachment of a β-expansionary stage to the edge β _ 〈i, σ′〉 causes all

β-expansionary stages attached to edges lying to its right to become detached.

Thirdly the strategy will impose an attachment restraint a(β _ 〈o′, σ′〉, s) on every edge which

has been previously accessible. This restraint will have to be obeyed by the edge β _ 〈o′, σ′〉

itself. If a β-expansionary stage has become attached to some edge β _ 〈o′′, σ′′〉 lying to the

left of β _ 〈o′, σ′〉 during stage s, we set a(β _ 〈o′, σ′〉, s) to be equal to s. Otherwise it will

be equal to 0. This restraint protects any β-expansionary stage which has been attached to an

edge during the present stage from computations taking place to the right of this edge, in the same

manner as before.

Fourthly, the strategy chooses the edge β _ 〈o, σ〉 to visit during the present stage. It then takes

action according to the outcome of this edge.

If the outcome is 〈f, σ〉, we do nothing and proceed with the next substage.

If the outcome is 〈i, σ〉, and there is no β-expansionary stage attached to the edge, then we do

not build the functional associated to the edge, and terminate the stage. On the other hand if

200

the outcome is 〈i, σ〉, and there is a β-expansionary stage attached to the edge, the functional

associated to the edge can be built based on this β-expansionary stage, and the strategy can proceed

with the next substage.

When defining the functional, the uses which are chosen must obey certain constraints. In

particular when choosing a use to define a functional at some given element x, the strategy makes

sure that this use is at least as large as any use which has already been chosen for this element, and

larger than the use which presently holds for all smaller elements. In addition the strategy makes

sure that the use chosen is greater than any rightward restraint imposed by an edge lying to the left

of the one being visited, and greater than the attachment restraint imposed on the edge.

Note that strictly speaking, the use of rightward restraints and attachment restraints is not necessary

to satisfy one R requirement in isolation. We include these restraints in this section to introduce

the fact that certain parts of the construction will need to be protected from computations taking

place to their right. This provides an anticipation of the more complex restraints which need to be

introduced in future sections, and avoids having to introduce all of these restraints at once.

We shall now formalise the modifiedR strategy.

TheR Strategy

The strategy β will be following a Γ-strategy. Each edge of the form β _ 〈i, σ〉 will have a

functional ΓU,Dβ_〈i,σ〉 associated to it, which will be built by the strategy when the strategy visits

that edge. Each edge β _ 〈i, σ〉 will also have its own set of uses U e,β_〈i,σ〉 which will be

used when defining the respective functionals.

(1) Define the rightward restraint r(β _ 〈o′, σ′〉, s) for every edge β _ 〈o′, σ′〉 which has

been previously accessible as the least element x such that:

(a) x ≥ t, where t is some stage attached to β _ 〈o′, σ′〉.

(b) x ≥ t, where t is the last stage at which β _ 〈o′, σ′〉 has been accessible.

Go to step (2).

201

(2) If stage s is a β-expansionary stage, and there is some edge β _ 〈i, σ′〉 which has been

accessible at some previous stage and which has no β-expansionary stage attached to it,

attach s to the leftmost such edge.

If a β-expansionary stage s has been attached to some edge β _ 〈i, σ′〉, consider every

edge β _ 〈i, σ′′〉 lying to the right of β _ 〈i, σ′〉. If some β-expansionary stage s′ is

attached to β _ 〈i, σ′′〉, detach the β-expansionary stage from the edge.

Go to step (3).

(3) Define the attachment procedure restraint a(β _ 〈o′, σ′〉, s) for every edge β _

〈o′, σ′〉 which has been previously accessible. If the strategy has not attached a β-

expansionary stage to some edge β _ 〈o′′, σ′′〉 <L β _ 〈o′, σ′〉 at stage s, define

a(β _ 〈o′, σ′〉, s) = 0. Otherwise define a(β _ 〈o′, σ′〉, s) = s.

Go to step (4).

(4) Calculate the outcome β _ 〈o, σ〉 of the strategy at stage s. Take action by performing

the following case analysis.

(a) o = f . Continue with the next substage.

(b) o = i.

(i) The edge β _ 〈i, σ〉 has no β-expansionary stage attached to it.

End stage s, and go to stage s+ 1.

(ii) The edge β _ 〈i, σ〉 has a β-expansionary stage attached to it.

Detach the stage from the edge. For every x < ls(Φ
U,V
1 , A) such that

ΓU,Dβ_〈i,σ〉[s](x) ↑, define the axiom ΓU,Dβ_〈i,σ〉[s](x) = As(x), and choose

the corresponding use γβ_〈i,σ〉[s](x) to be the least element u in the set

U e,β_〈i,σ〉 obeying the following conditions (if it exists):

(i) u ≥ γβ_〈i,σ〉[t](x) for all t < s.

(ii) u > γβ_〈i,σ〉[s](y) for all y < x.

(iii) u > r(β _ 〈o′, σ′〉, s) for every edge β _ 〈o′, σ′〉 lying to the left of

β _ 〈o, σ〉.

202

(iv) u > a(β _ 〈o′, σ′〉).

We are now in a position to analyse whether theR strategy β satisfies theR requirement.

3.3.3 Satisfaction of Requirement

Consider the leftmost edge β _ 〈o, σ〉 which is visited infinitely often by β. We perform the

following case analysis depending on the outcome 〈o, σ〉.

f Suppose that the outcome is 〈f, σ〉. Then the answer to question Q1 is ‘No’. This means

that there are only finitely many β-expansionary stages. Hence one or more of ΦU,V
1 6= A,

ΦA,D
2 6= U or ΦA,D

3 6= V must be the case. It follows that the strategy satisfies its requirement

trivially.

i Suppose that the outcome is 〈i, σ〉. Then the answer to question Q1 is ‘Yes’. This means that

there are infinitely many β-expansionary stages.

Now since β _ 〈i, σ〉 is the leftmost edge which is accessible infinitely often, we have that

there is a stage s0 after which no edge to its left is accessible. Hence only finitely many edges

to the left of β _ 〈i, σ〉 can have been accessible at stages s < s0. Suppose that the edge

β _ 〈i, σ〉 does not have a β-expansionary stage attached at some stage s1 > s0. Since β-

expansionary stages are attached to the leftmost edge of the form β _ 〈i, σ〉 which has no

element attached, and since there are infinitely many β-expansionary stages, it follows that a

β-expansionary stage is eventually attached to β _ 〈i, σ〉 at some stage s2 > s1.

But whenever β _ 〈i, σ〉 is visited by the strategy, and a β-expansionary stage s is attached to

this edge, we have that the strategy defines the functional ΓU,Dβ_〈i,σ〉 to agree with the set A up

to ls(Φ
U,V
1 , A)− 1. Hence it is the case that ΓU,Dβ_〈i,σ〉 = A, and the requirement is satisfied.

203

3.4 One S Requirement

In this section we shall show how one can satisfy one S requirement. This will require defining

an S strategy to satisfy the S requirement. We start by defining the questions needed for the S

strategy to determine its outcome at any given stage.

3.4.1 Questions for the S Strategy

The S strategy α will need to ask one question, which we denote by Q1. This question asks

whether there are infinitely many witnesses w and stages s such that ΘD[s](w) ↓= 0. In addition,

it also asks whether the length of agreement between the functional ΘD and the set A expands

infinitely often.

(1) Are there infinitely many witnesses w ∈ W e and stages s ∈ Nα and q ∈ Nα such that the

following holds?

(i) ΘD[s](w) ↓= 0.

(ii) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

If the strategy is accessible at some stage s, it will guess the answer to Q1 by computing the

apparent limit o and apparent use σ for lim
t→∞

ΨH0(f(Q1), t) at stage s. If the answer corresponding

to o is ‘No’, we denote the outcome by 〈w, σ〉. On the other hand, if the answer corresponding to

o is ‘Yes’, we denote the outcome by 〈d, σ〉.

We now describe the S strategy itself.

3.4.2 The S Strategy

The S strategy α has an infinite set of witnesses W e, where e is the index of the strategy α in the

total ordering of the S strategies lying on the priority tree. At any given stage s the strategy will

be able to impose a restraint Rα,s. Initially, we have that Rα,0 is equal to 0. The strategy α shall

use the fact that Rα,s > 0 to signal that it has diagonalised. Once this restraint has been set, it will

204

keep its value during subsequent stages. The strategy will have outcomes of the form 〈d, σ〉 and

〈w, σ〉.

The strategy goes through the following steps at stage s.

Firstly, the strategy determines whether it has enumerated some witness w′ during the last stage t

at which it was accessible (assuming it was accessible at least once before). If this is the case, the

strategy has diagonalised. It will thus set the restraint Rα,s = θt(w) so as to protect the use of the

computation used in the diagonalisation.

Secondly, the strategy calculates a rightward restraint r(α _ 〈o′, σ′〉, s) for every edge α _

〈o′, σ′〉which has been previously accessible. The restraint is equal to the maximum of two values.

These are the stage at which this edge was last visited, and the use θt(w) of any computation

ΘD[t](w) such that w is a witness attached to the edge and t is the stage at which it was attached.

Such a restraint will have to be obeyed by all edges lying to the right of α _ 〈o′, σ′〉. In this way

we shall have that the uses θs(w) for witnesses w attached to α _ 〈o′, σ′〉 are protected from any

computation taking place to the right of α _ 〈o′, σ′〉.

Thirdly, the strategy performs its attachment procedure. If the strategy believes that it has already

diagonalised (Rα,s > 0), the attachment procedure is terminated and no further witnesses are

attached.

Otherwise the attachment procedure will consider in turn every witness w in W e which at stage

s yields a computation ΘD[s](w) ↓= 0 and which has not been attached to an edge so far. The

attachment procedure will be seeking to attach one of these witnesses to an edge, and will stop

considering further witnesses once this has been achieved.

The strategy will try to attach the witness under consideration to the leftmost edge of the form

α _ 〈d, σ′〉 which does not have a witness attached. Prior to attaching the witness to the edge

it wil make sure that the witness is also greater than the restraint r(α _ 〈d, σ′〉, s), as discussed

before.

Fourthly, the strategy will impose an attachment restraint a(α _ 〈o′, σ′〉, s) on every edge which

has been previously accessible. This restraint will have to be obeyed by the edge α _ 〈o′, σ′〉

itself. If a witness w has become attached to some edge α _ 〈o′′, σ′′〉 lying to the left of α _

205

〈o′, σ′〉 during stage s, we set a(α _ 〈o′, σ′〉, s) = θs(w). Otherwise it will be equal to 0. This

restraint protects the use θs(w) from computations taking place to the right of this edge, in the

same manner as before.

Fifthly, the strategy guesses the edge β _ 〈o, σ〉 to visit during the present stage. It then takes

action according to the outcome of this edge.

If the outcome is 〈w, σ〉, we do nothing and proceed with the next substage.

On the other hand if the outcome is 〈d, σ〉 and a witness is attached to the edge, we enumerate the

witness w into A and end the stage. If the outcome is 〈d, σ〉 and there is no witness attached to the

edge, we do nothing and end the stage.

Note that strictly speaking, the use of rightward restraints and attachment restraints is not necessary

to satisfy one S requirement in isolation. We include these restraints in this section to introduce

the fact that certain parts of the construction will need to be protected from computations taking

place to their right. This provides an anticipation of the more complex restraints which need to be

introduced in future sections, and avoids having to introduce all of these restraints at once.

We shall now formalise the modified S strategy.

The S Strategy

The strategy has a set of witnesses W e and imposes a restraint Rα,s at each stage s. Initially

we have that Rα,0 = 0.

(1) Let t be the stage at which α was last accessible. If such a stage does not exist, go to

step (2). Otherwise, has α has enumerated some witness w into A at stage t?

(a) (No) Do nothing.

(b) (Yes) Set the restraintRα,s to θt(w). Consider every edge α _ 〈o′, σ′〉 of αwhich

has been previously accessible. If some witness w′ is attached to α _ 〈o′, σ′〉,

detach the witness.

Go to step (2).

206

(2) Define the rightward restraint r(α _ 〈o′, σ′〉, s) for every edge α _ 〈o′, σ′〉 which was

previously accessible as the least element x such that:

(a) x ≥ θt(w), where w is a witness attached to α _ 〈o′, σ′〉 and t is the stage at

which the witness was attached.

(b) x ≥ t, where t is the last stage at which α _ 〈o′, σ′〉 was last accessible.

Go to step (3).

(3) Consider the finite set of witnesses w in W e such that w < s and ΘD[s](w) ↓= 0

and such that w has not been attached to an edge at some stage u < s. Perform the

following case analysis for every such witness in turn (under the order <), until one

witness is attached successfully to an edge or until no more witnesses are available.

(a) Suppose Rα,s > 0. Do nothing.

(b) Suppose Rα,s = 0. If there is an edge α _ 〈d, σ′〉 such that:

(i) α _ 〈d, σ′〉 has been accessible during a previous stage.

(ii) α _ 〈d, σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈d, σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

Attach w to the leftmost such α _ 〈d, σ′〉.

If a witness w has been attached to some edge α _ 〈o′, σ′〉 at stage s, consider every

edge α _ 〈o′′, σ′′〉 lying to the right of α _ 〈o′, σ′〉. If some witness w′ is attached to

α _ 〈o′′, σ′′〉, detach the witness from the edge.

Go to step (4).

(4) Define the attachment procedure restraint a(α _ 〈o′, σ′〉, s) for every edge α _

〈o′, σ′〉 which has been previously accessible. If the strategy has not attached a witness

w to some edge α _ 〈o′′, σ′′〉 <L α _ 〈o′, σ′〉 at stage s, define a(α _ 〈o′, σ′〉, s) =

0. Otherwise define a(α _ 〈o′, σ′〉, s) = θs(w).

Go to step (5).

207

(5) Calculate the outcome α _ 〈o, σ〉 of the strategy at stage s. Take action by performing

the following case analysis.

(a) o = w. Go to the next substage.

(b) o = d.

(i) Rα,s > 0. End stage s, and go to stage s+ 1.

(ii) Rα,s = 0, and the edge α _ 〈d, σ〉 has no witness attached to it. End stage

s, and go to stage s+ 1.

(iii) Rα,s = 0, and the edge α _ 〈d, σ〉 has a witness attached to it. Enumerate

w into A. End stage s, and go to stage s+ 1.

We are now in a position to analyse whether the S strategy α satisfies the S requirement or not.

3.4.3 Satisfaction of Requirement

Consider the leftmost edge α _ 〈o, σ〉 which is visited infinitely often by α. We perform the

following case analysis depending on the outcome 〈o, σ〉.

w Suppose that the outcome is 〈w, σ〉.

Then the answer to question Q1 must be ‘No’.

If condition (i) of question Q1 fails, we have that there are only finitely many witnesses w and

stages s such that ΘD[s](w) ↓= 0. Then there must be some stage t′ and some element x′ such

that for every t > t′ and x > x′, we have that ΘD[t](x) ↑ or ΘD[t](x) ↓= 1.

Now, if ΘD(x) ↑ for some x, we have that ΘD(x) 6= A(x) and the requirement is satisfied. On

the other hand, if ΘD(x) ↓= 1 for some x, we have that the strategy will never enumerate x

into A. This means that ΘD(x) 6= A(x) and that the requirement is also satisfied.

If condition (i) of question Q1 holds but condition (ii) of question Q1 fails, we have that there

are infinitely many witnesses w and stages s such that ΘD[s](w) ↓= 0, but only finitely many

stages q such that (∀q′ < q)[lq′(Θ
D, A) < lq(Θ

D, A)]. Then there must be some x such that

ΘD(x) 6= A(x), meaning that the requirement is satisfied.

208

It is important to note that one way for this outcome to be on the true path is for the strategy to

diagonalise successfully.

d Suppose that the outcome is 〈d, σ〉.

Then the answer to question Q1 must be ‘Yes’.

This means that there are infinitely many witnesses w and stages s such that ΘD[s](w) ↓= 0,

but also that there are infinitely many stages q such that (∀q′ < q)[lq′(Θ
D, A) < lq(Θ

D, A)].

Now since α _ 〈d, σ〉 is the leftmost edge which is accessible infinitely often, we have that

there is a stage s0 after which no edge to its left is accessible. Hence only finitely many edges

to the left of α _ 〈d, σ〉 can have been accessible at stages s < s0. Suppose that the edge

α _ 〈d, σ〉 does not have a witness attached at some stage s1 > s0. Since witnesses satisfying

the conditions for attachment are attached to the leftmost edge of the form α _ 〈d, σ〉 which

has no other witness attached, and since there are infinitely many such witnesses, it follows

that a witness satisfying these conditions is eventually attached to α _ 〈d, σ〉 at some stage

s2 > s1.

Now suppose that a witness w is attached to α _ 〈d, σ〉 at stage s2. When α visits α _ 〈d, σ〉

at the least stage s3 > s2, the strategy will enumerate w into A. Once the strategy is accessible

again at the least stage s4 > s3, it will determine that it has diagonalised. It will therefore set

the restraint Rα,s4 to θs2(w). Hence it must be the case that ΘD(w) 6= A(w). However, this

contradicts the fact that there are infinitely many stages q such that (∀q′ < q)[lq′(Θ
D, A) <

lq(Θ
D, A)].

From this contradiction, it follows that no edge with outcome 〈d, σ〉 can be on the true path.

In fact, only an edge with outcome 〈w, σ〉 can be on the true path if the strategy diagonalises

successfully. This is the only outcome for which Q1 can have a negative answer, which in turn

allows the length of agreement between ΘD and A to be finite in length.

209

3.5 S BelowR

In this section we shall show how one can satisfy one S requirement below oneR requirement.

Unlike the situation in the previous section, satisfying an S requirement below an R requirement

will require multiple S and R strategies organised into a priority tree. Strategies located lower

down the priority tree will be able to guess the outcome which strategies above them will be

choosing. This additional information allows the use of a special case of the strategy used to

satisfy a given requirement.

The most concise way of presenting all of the strategies which we will need to lay out on the

priority tree is the following. We shall give an R strategy and an S strategy which is sufficiently

comprehensive to describe any strategy lying on the priority tree. Depending on the strategy’s

location on the priority tree, different parts of the R and S strategy will then be executed. This

will involve determining what kind of R and S strategies (if any) lie above the strategy under

consideration.

As with the Lachlan Non-Splitting Theorem, a strategy γ will need to take into consideration those

strategies γ′ lying above it which it believes will satisfy their requirement. Such a strategy γ′ is

said to be active for γ. An S strategy γ′ may also define a work interval on one of its edges.

An R strategy γ lying below such an edge will have to choose uses which lie inside this work

interval when defining its functionals. An S strategy γ lying below such an edge will have to

choose witnesses and thresholds and uses which lie inside this work interval, and will only believe

a computation ΘD[s](w) if θs(w) lies inside the work interval.

We shall now discuss the concept of open and close modes related to the edges of the strategies

used in this section.

3.5.1 Open and Close Modes

Given any strategy γ, each one of its edges will be in one of two modes. If γ is an R strategy,

edges with outcomes 〈f, σ〉 or 〈i, σ〉 outcomes will either be in open mode or in close mode. If

210

γ is an S strategy, edges with 〈w, σ〉, 〈g, σ〉 or 〈d, σ〉 outcomes will either be in open mode or in

close mode, while edges with an 〈h, σ〉 outcome will either be in Part I mode or in Part II mode.

Initially, edges start in open mode or in Part I mode, respectively. If the edge is initialised by the

current path moving to its left, or reset by higher priority strategies increasing their restraints, the

mode of an edge is also changed to open mode or to Part I mode, respectively.

If a strategy needs to enumerate some element into the set A when visiting an edge, it shall do

so when the edge is in open mode. Similarly, if a strategy needs to enumerate some element into

the set D when visiting an edge, it shall do so when the edge is in close mode (or Part I mode

respectively). If the strategy manages to take its intended action when visiting an edge, it will

change the mode of the edge to the opposite mode. The mode of the edge will also be changed if

proceeding requires enumerating an element into the set associated with the opposite mode.

3.5.2 Open and Close Stages

A strategy will also attempt to synchronise its actions with actions of the same kind taken by

higher priority strategies.

We shall say that a stage s is a γ-open stage if every edge lying on the path leading to γ is in open

mode or Part II mode at stage s. Similarly we shall say that a stage s is a γ-close stage if every

edge lying on the path leading to γ is in close mode or Part I mode at stage s.

A strategy γ visiting an edge which is in open mode or Part II mode, will only take the action

associated to the mode of the edge if the present stage s is a γ-open stage. Similarly, a strategy

γ visiting an edge which is in close mode or Part I mode, will only take the action associated to

the mode of the edge if the present stage s is a γ-close stage. Either way if the mode of the edge

does not match the required kind of stage, the strategy will terminate the stage early, and strategies

below it will not be accessible during that stage.

There are three important consequences of this arrangement.

The first consequence is that during any given stage, either all accessible strategies will be able

to enumerate elements into the set A, or else all accessible strategies will be able to enumerate

211

elements into the set D. This allows us to associate actions which are incompatible with elements

entering into D during the same stage with open modes (or Part II modes), and actions which

are incompatible with elements entering into A during the same stage with close modes (or Part I

modes).

The second consequence is the following. Suppose that there are infinitely many γ-open stages

and infinitely many γ-close stages. Now, while a strategy γ may visit the edge lying on the true

path during infinitely many stages, it may be the case that only finitely many of these are γ-open

stages, or that only finitely many of these are γ-close stages. This is a result of the fact that

strategies are now guessing the outcome which is to be visited during each stage. In practice

we shall want to ensure that the existence of infinitely many γ-open stages and infinitely many γ-

close stages guarantees that there are infinitely many γ+-open stages and infinitely many γ+-close

stages, where γ+ is the successor of γ on the true path. We shall postpone resolving this problem

until section 3.7.1, when we shall address the question of ‘fairness’ in the context of satisfying

multipleR and S requirements simultaneously.

The third consequence is that S -Synchronisation can be implemented in the following way. We

shall only allow an S strategy γ to go to the next substage when visiting an edge with outcome

〈g, σ〉 which is in open mode if γ also enumerates a witness into A during the same stage. The

same shall apply to the special case of strategies γ which enumerate elements intoA when visiting

edges with outcome 〈d, σ〉, and to strategies γ with outcome 〈gi, σ〉 in more general settings. This

solution implements S -Synchronisation due to the fact that if an S strategy γ is accessible during

some stage s and visits an edge which allows it to enumerate a witness w into A, it must be the

case that s is a γ-open stage. Hence the edge of any S strategy γ′ on the path to γ must either be

in open mode or Part II mode. It follows that every strategy γ′ with an edge with outcome 〈g, σ〉

on the path to γ must be in open mode, and that γ can only be accessible if γ′ has also enumerated

a witness w′ into A when visiting the edge, as required for S-Synchronisation.

In the above discussion we have omitted mentioning that there is an additional requirement for

the present stage to qualify as a γ-open stage. The additional requirement states that if γ′ is an

R strategy above γ building a functional associated to an edge on the path to γ, then there can

be no disagreement between the functional and the set A. In this manner, any S strategy γ below

212

anR strategy γ′ will refrain from enumerating elements into A when some functional being built

by γ′ for the edge lying above it already has a disagreement. This will allow γ′ to remove the

disagreement without γ introducing a new one during the same stage.

We are now in a position to define the questions needed for the modifiedR strategy.

3.5.3 Questions for theR Strategy

The R strategy β, will need to ask one question, which we denote by question Q1. The question

asks whether the strategy β sees infinitely many β-expansionary stages:

(1) Are there infinitely many q ∈ Nβ such that the following holds?

(i) (∀q′ < q)[β-stage(q′)⇒ lq(Φ
U,V
1 , A) > lq′(Φ

U,V
1 , A)].

(ii) (∀q′ < q)[β-stage(q′) ∧ (∀q′′ < q′)[β-stage(q′′)⇒ lq′(Φ
U,V
1 , A) > lq′′(Φ

U,V
1 , A)]⇒

lq(Φ
A,D
2 , U) > lq′(Φ

A,D
2 , U)].

(iii) (∀q′ < q)[β-stage(q′) ∧ (∀q′′ < q′)[β-stage(q′′)⇒ lq′(Φ
U,V
1 , A) > lq′′(Φ

U,V
1 , A)]⇒

lq(Φ
A,D
3 , V) > lq′(Φ

A,D
3 , V)].

If the strategy is accessible at some stage s, it will guess the answer to Q1 by computing the

apparent limit o and apparent use σ for lim
t→∞

ΨH0(f(Q1), t) at stage s. If the answer corresponding

to o is ‘No’, we denote the outcome by 〈f, σ〉. On the other hand, if the answer corresponding to

o is ‘Yes’, we denote the outcome by 〈i, σ〉.

We now describe theR strategy itself.

3.5.4 TheR Strategy

A R strategy β will either be following a Γ-strategy or a Γ̂-strategy which will depend on its

location on the priority tree. The outcomes of the strategy will be of the form 〈i, σ〉 and 〈f, σ〉. If

the strategy is following a Γ-strategy, it will build a different functional ΓU,Dβ_〈i,σ〉 for every edge

β _ 〈i, σ〉 leaving β. Similarly if the strategy is following a Γ̂-strategy, it will build a different

functional ΓV,Dβ_〈i,σ〉 for every edge β _ 〈i, σ〉 leaving β. Each edge will have a separate set of

213

uses U e,β_〈i,σ〉 from which the strategy will choose uses when defining the functional associated

to the edge β _ 〈i, σ〉. Note that e is the index of the strategy β in the total ordering of the R

strategies lying on the priority tree.

The strategy goes through the following steps at stage s.

During its first step, the strategy β will calculate a rightward restraint r(β _ 〈o′, σ′〉) for every

edge β _ 〈o′, σ′〉 which has been previously accessible, exactly as in the previous section.

Similarly during its second step, the strategy β will perform its attachment procedure as in the

previous section, attaching the stage s to a suitable edge if s is a β-expansionary stage.

During its third step the strategy β will calculate its attachment restraint a(β _ 〈o′, σ′〉) for every

edge β _ 〈o′, σ′〉 which has been previously accessible as in the previous section.

This is followed by its fourth step, where the strategy will calculate the edge β _ 〈o, σ〉 to visit

during the present stage.

Once the outcome has been determined, the strategy will perform its fifth step by calculating

a downward restraint d(β _ 〈o′, σ′〉, s). The downward restraint consists of three parts; the

supremum of the rightward restraints imposed by edges lying to the left of β _ 〈o′, σ′〉, the

attachment restraint imposed on any edge lying to the left of β _ 〈o′, σ′〉, and any previously

computed downward restraint for the edge. In this way edges lying to the left of β _ 〈o′, σ′〉, any

β-expansionary stages attached to them and any functionals associated to them will be protected

from lower priority strategies.

During the final and sixth step, the strategy takes action depending on the outcome of the edge

β _ 〈o, σ〉.

Suppose that the outcome is 〈f, σ〉 and the edge is in open mode. If the present stage is not a

β-open stage, we terminate the stage so as to wait for a β-open stage. Otherwise we go to the

next substage and change the mode to close mode. On the other hand, suppose that the outcome is

〈f, σ〉 and the edge is in close mode. If the present stage is not a β-close stage, we terminate the

stage so as to wait for a β-close stage. Otherwise we go to the next substage and change the mode

back to open mode.

214

On the other hand, if the outcome is 〈i, σ〉, we have to consider the case where the edge is in open

mode and the case where the edge is in close mode.

We start by considering the case where the edge is in open mode. In this case, we shall attempt to

define the functional associated to the edge. We make the following observations.

Firstly, in order to define the functional, we first wait for a β-expansionary stage to be attached to

the edge. Such a β-expansionary stage means that the strategy has determined that the length of

agreement between ΦU,V
1 and A has increased, and that the strategy needs to increase the length

of agreement between ΓU,D and A in response. Thus if no β-expansionary stage is attached to the

edge, we terminate the stage and wait for a β-expansionary stage to become attached to the edge.

Secondly, the functional will only be defined if the present stage is a β-open stage. Since no

elements are enumerated into D during a β-open stage, we avoid defining the functional and

undefining it during the same stage. Thus if a β-expansionary stage is attached to the edge, but the

present stage is not a β-open stage, we terminate the stage and wait for a β-open stage.

Thirdly, the functional cannot be defined if it presently disagrees with the set A at some element.

If there is no such disagreement, a β-expansionary stage is attached to the edge, and the present

stage is a β-open stage, the strategy proceeds to define its functional based on the present length

of agreement between ΦU,V
1 and A and detaches the β-expansionary stage from the edge. Whilst

choosing uses to define the functional, the strategy will consider a number of additional constraints

to those found in the previous section.

First, any uses chosen must be within any work interval imposed on the strategy. In this way the

functional will be unaffected by higher priority strategies which enumerate elements into the sets

A andD which are greater than or equal to the upper bound of the work interval. Second, elements

which have already been enumerated into the set D cannot be chosen as uses. This is because β

or some other strategy below β which takes the latter into consideration might need to enumerate

this use into D. Third, if some lower priority strategy imposes a constraint on the functional to

choose uses greater than a given element, the strategy will obey this constraint. Finally, suppose

that the strategy needs to redefine the functional at some element x. If it cannot do so by choosing

its previous use, the strategy will choose a use which is greater that every use which has been

215

previously chosen by the strategy itself. This fourth condition is necessary to show that D ≤T H

during the verification of the construction.

On the other hand, it could be the case that there is a disagreement between the functional and

the set A. In this case we need the strategy to ‘self-repair’ and remove this disagreement by

enumerating the use of the element into D. However elements can only be enumerated into D if

the edge is in close mode. Thus if a β-expansionary stage is attached to the edge, the present stage

is a β-open stage, but the functional disagrees with A at some element, we change the mode of the

edge to close mode, and terminate the stage.

When the edge is in close mode, the strategy will determine whether the functional disagrees with

the set A at some element, and if so will try to remove the disagreement.

We now consider the case where the edge is in close mode.

If there is no disagreement, but the present stage is not a β-close stage, we terminate the stage so

as to wait for a β-close stage. Otherwise we go to the next substage and change the mode to open

mode.

If there is a disagreement ΓU,Dβ_〈i,σ〉(x) 6= A(x) at some element x, the strategy will first determine

whether a β-expansionary stage is attached to the edge. Such a β-expansionary stage indicates that

the length of agreement between ΦU,V
1 and A has increased. This means that any disagreement

ΦU,V
1 (x) 6= A(x) which would have arisen as a result of x entering A at an earlier stage has

been removed through a U or V change. Therefore the strategy needs to increase the length of

agreement between ΓU,D and A in response. Thus if no β-expansionary stage is attached to the

edge, we terminate the stage and wait for a β-expansionary stage to become attached to the edge.

If the edge is in close mode, there is a disagreement ΓU,Dβ_〈i,σ〉(m) 6= A(m), and a β-expansionary

stage is attached to the edge, the strategy will determine whether the present stage is a β-close

stage. If this is not the case, we terminate the stage and wait for a β-close stage to occur. Otherwise

the strategy is now in a position to enumerate γβ_〈i,σ〉(m) intoD so as to ‘self-repair’ and remove

the disagreement. The stage is terminated so as not to allow lower priority strategies to introduce

new disagreements, and the edge is changed to open mode. The strategy can now attempt to define

its functional once again.

216

We shall now formalise theR strategy.

TheR Strategy

The strategy β labeled Ri will either be following a Γ-strategy or a Γ̂-strategy. Every edge

β _ 〈i, σ〉 has a functional ΓU,Dβ_〈i,σ〉 (or ΓV,Dβ_〈i,σ〉 resp.) associated to it, which the strategy

will build when it visits that edge. Each edge β _ 〈i, σ〉 will also have its own set of uses

U e,β_〈i,σ〉 from which uses will be chosen when defining the respective functionals.

The strategy β may lie below a number of R strategies β′. Each such strategy β′ imposes a

downward restraint d(β′ _ 〈o′, σ′〉, s) on β at stage s, where β′ _ 〈o′, σ′〉 is the edge of β′

on the path leading to β.

The strategy β may also lie below a number of S strategies α′. Each such strategy α′ imposes

a downward restraint d(α′ _ 〈o′, σ′〉, s) on β at stage s, where α′ _ 〈o′, σ′〉 is the edge of α′

on the path leading to β. The strategy α′ also imposes the diagonalisation restraint Rα′,s on

β at stage s. The strategy α′ may also impose a work interval on β at stage s, depending on

its outcome on the path leading to β. Finally, let α′′ ⊂ β be the greatest S strategy (under ⊂)

which imposes a work interval on β. We shall denote the work interval imposed by α′′ on β

at stage s by (as, bs).

(1) Define the rightward restraint r(β _ 〈o′, σ′〉, s) for every edge β _ 〈o′, σ′〉 which was

previously accessible as the least element x such that:

(a) x ≥ t where t is some β-expansionary stage attached to β _ 〈o′, σ′〉.

(b) x ≥ t where t is the last stage at which β _ 〈o′, σ′〉 was accessible.

Go to step (2).

(2) If stage s is a β-expansionary stage, and there is some edge β _ 〈i, σ′〉 which has been

previously accessible and which has no β-expansionary stage attached to it, attach s to

the leftmost such edge.

If a β-expansionary stage s has been attached to some edge β _ 〈i, σ′〉, consider every

edge β _ 〈i, σ′′〉 lying to the right of β _ 〈i, σ′〉. If some β-expansionary stage s′ is

217

attached to β _ 〈i, σ′′〉, detach the β-expansionary stage from the edge.

Go to step (3).

(3) Determine the edge β _ 〈o, σ〉 which the strategy should visit at stage s.

Go to step (4).

(4) Define the attachment procedure restraint a(β _ 〈o′, σ′〉, s) for every edge β _ 〈o′, σ′〉

which was previously accessible. If the strategy has not attached a β-expansionary stage

s to some edge β _ 〈o′′, σ′′〉 <L β _ 〈o′, σ′〉 at stage s, define a(β _ 〈o′, σ′〉, s) = 0.

Otherwise define a(β _ 〈o′, σ′〉, s) = s.

Also define the downward restraint d(β _ 〈o, σ〉, s) as the least element x such that:

(a) x ≥ sup{r(β _ 〈o′, σ′〉, s) | β _ 〈o′, σ′〉 <L β _ 〈o, σ〉 ∧

β _ 〈o′, σ′〉 has been previously accessible}.

(b) x ≥ a(β _ 〈o, σ〉, s).

(c) x ≥ d(β _ 〈o, σ〉, t) for all t < s.

Go to step (5).

(5) Consider the edge β _ 〈o, σ〉 being visited by the strategy at stage s. Take action

according to the value of o through the following case analysis.

(a) o = f .

(i) β _ 〈f, σ〉 is in open mode and s is not a β-open stage. End the stage s, and

go to stage s+ 1.

(ii) β _ 〈f, σ〉 is in open mode and s is a β-open stage. Set the edge to close

mode. Go to the next substage.

(iii) β _ 〈f, σ〉 is in close mode and s is not a β-close stage. End the stage s, and

go to stage s+ 1.

(iv) β _ 〈f, σ〉 is in close mode and s is a β-close stage. Set the edge to open

mode. Go to the next substage.

(b) o = i.

218

(i) β _ 〈i, σ〉 is in open mode and there is no β-expansionary stage attached to

the edge. End the stage s, and go to stage s+ 1.

(ii) β _ 〈i, σ〉 is in open mode and there is a β-expansionary stage attached to

the edge and s is not a β-open stage. End the stage s, and go to stage s+ 1.

(iii) β _ 〈i, σ〉 is in open mode and there is a β-expansionary stage attached to

the edge and s is a β-open stage.

If there is some element m such that ΓU,Dβ_〈i,σ〉[s](m) 6= As(m) (or

ΓV,Dβ_〈i,σ〉[s](m) resp.), set the edge to close mode. End the stage s, and go to

stage s+ 1.

Otherwise, detach the stage s from the edge. Consider every x < ls(Φ
U,V
1 , A)

such that ΓU,Dβ_〈i,σ〉[s](x) ↑. Define the axiom ΓU,Dβ_〈i,σ〉[s](x) = As(x).

Consider the least element u < s in U e,β_〈i,σ〉 (if it exists) such that:

(A) u ≥ γβ_〈i,σ〉[t](x) for all t < s.

(B) u > γβ_〈i,σ〉[s](y) for all y < x.

(C) u > sup{r(β _ 〈o′, σ′〉, s) | β _ 〈o′, σ′〉 <L β _ 〈o, σ〉 ∧

β _ 〈o′, σ′〉 has been previously accessible}.

(D) u > a(β _ 〈i, σ〉, s).

(E) u > Rα′,s, for every S strategy α′ ⊂ β.

(F) u > d(β′ _ 〈o′, σ′〉, s), for every R strategy β′ ⊂ β with edge β′ _

〈o′, σ′〉 on the path leading to β.

(G) u > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ β with edge α′ _

〈o′, σ′〉 on the path leading to β.

(H) as < u < bs.

(I) u 6∈ D.

(J) u > y, where y is a constraint imposed by some S strategy α below β.

(K) u > t, where t is the last stage at which the edge β _ 〈i, σ〉 was last

initialised.

If u does not exist, ΓU,Dβ_〈i,σ〉(x) is not defined.

Otherwise let t′ < s be the greatest stage such that ΓU,Dβ_〈i,σ〉[t
′](x) ↓, and let

219

u′ be the greatest use which the strategy has chosen so far when defining its

functional at some element.

If t′ does not exist, define γβ_〈i,σ〉[s](x) = u.

If t′ exists and u > γβ_〈i,σ〉[t
′](x), define γβ_〈i,σ〉[s](x) to be the least

element in U e,β_〈i,σ〉 which is greater than u′.

Otherwise define γβ_〈i,σ〉[s](x) = γβ_〈i,σ〉[t
′](x).

Set the edge to close mode. Go to the next substage.

(ΓV,D resp.)

(iv) β _ 〈i, σ〉 is in close mode and there is an element m such that

ΓU,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓV,Dβ_〈i,σ〉[s](m) resp.) and there is no β-

expansionary stage attached to the edge. End the stage s, and go to stage

s+ 1.

(v) β _ 〈i, σ〉 is in close mode and there is an element m such that

ΓU,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓV,Dβ_〈i,σ〉[s](m) resp.) and there is a β-

expansionary stage attached to the edge and s is not a β-close stage. End

the stage s, and go to stage s+ 1.

(vi) β _ 〈i, σ〉 is in close mode and there is an element m such that

ΓU,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓV,Dβ_〈i,σ〉[s](m) resp.) and there is a β-

expansionary stage attached to the edge and s is a β-close stage. Enumerate

γβ_〈i,σ〉[s](m) into D. Set the edge to open mode. End the stage s and go to

stage s+ 1.

(vii) β _ 〈i, σ〉 is in close mode and there is no element m such that

ΓU,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓV,Dβ_〈i,σ〉[s](m) resp.) and s is not a β-close

stage. End the stage s, and go to stage s+ 1.

(viii) β _ 〈i, σ〉 is in close mode and there is no element m such that

ΓU,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓV,Dβ_〈i,σ〉[s](m) resp.) and s is a β-close stage.

Set the edge to open mode. Go to the next substage.

We are now in a position to analyse whether theR strategy β satisfies theR requirement.

220

3.5.5 Analysis of Outcomes

Consider the leftmost outcome β _ 〈o, σ〉 which is visited infinitely often by β. We perform the

following case analysis depending on the outcome 〈o, σ〉.

f Suppose that the outcome is 〈f, σ〉. Then the answer to question Q1 is ‘No’. This means

that there are only finitely many β-expansionary stages. Hence one or more of ΦU,V
1 6= A,

ΦA,D
2 6= U or ΦA,D

3 6= V must be the case. It follows that the strategy satisfies its requirement

trivially.

i Suppose that the outcome is 〈i, σ〉. Then the answer to question Q1 is ‘Yes’. This means that

there are infinitely many β-expansionary stages.

Through an argument identical to the one found in the previous section, we have that if there

is no β-expansionary stage attached to the edge β _ 〈o, σ〉 at some stage s1 > s0, some

β-expansionary stage will eventually be attached to the edge at some stage s2 > s1.

In addition we claim that it is possible to ensure that the edge β _ 〈i, σ〉 is visited during

infinitely many β-open stages and infinitely many β-close stages. We address this claim when

we discuss fairness in section 3.7.1.

Suppose that there is some stage s > s0 such that for all t > s, there is no element x giving

a disagreement ΓU,Dβ_〈i,σ〉[t](x) ↓6= At(x). Then if the edge is in open mode at such a stage

t, we have that a β-expansionary stage is eventually attached to the edge. We also have that

the edge eventually becomes accessible during some β-open stage. This allows the strategy

to build the functional ΓU,Dβ_〈i,σ〉 to agree with the set A according to the length of agreement

witnessed at stage s and to change the mode of the edge to close mode. On the other hand,

if the edge is in close mode at some stage t > s, we have that the edge eventually becomes

accessible during some β-close stage, allowing the strategy to set the edge to open mode. It

follows that the length of agreement between ΓU,Dβ_〈i,σ〉 and A increases infinitely often. This

means that ΓU,Dβ_〈i,σ〉 = A, and that the requirement is satisfied

On the other hand suppose that at some stage s > s0, there is some disagreement

ΓU,Dβ_〈i,σ〉[s](w) 6= As(w) for some witness w. Then we have that a β-expansionary stage is

eventually attached to the edge. If the edge is in open mode, we also have that the edge is

221

eventually visited during a β-open stage, which causes the mode of the edge to be changed to

close mode. Once the edge is in close mode, we have that the edge is eventually visited during

a β-close stage. This causes the strategy β to enumerate γβ_〈i,σ〉(w) into D and remove the

disagreement, change the mode of the edge to open mode and terminate the stage.

Now, if the strategy visits the edge again, it will terminate the stage unless the present stage is

a β-open stage. Hence, no S strategy α below β is able to enumerate any element into A until

this is the case. Once the strategy visits the edge during a β-open stage, it will now proceed

to build the functional ΓU,Dβ_〈i,σ〉 to agree with the set A according to the length of agreement

witnessed at stage s.

Hence we have that every disagreement results in the length of agreement between ΓU,Dβ_〈i,σ〉

and A increasing. Since there are infinitely many disagreements, and each one is removed in

this manner, we have that ΓU,Dβ_〈i,σ〉 = A, and that the requirement is satisfied.

(The above also holds for ΓV,D respectively).

We shall now proceed to discuss the S strategy. We start by defining the questions which will be

needed for this purpose.

3.5.6 Questions for the S Strategy

The S strategy α will need to ask a number of questions, which take the context of the strategy

into consideration. In particular α may lie below some R strategy β which is active for α and

which follows a Γ-strategy or a Γ̂-strategy. In this case the strategy β will have an outgoing edge

β _ 〈i, σ〉, which lies on the path leading to the strategy α. In addition S strategies α′ lying above

α may impose a work interval on α. The work interval imposed at stage s by the greatest strategy

α′ (under ⊂) above α is denoted by (as, bs).

The strategy starts by asking question Q1. This question asks whether there are infinitely many

witnesses w and stages s such that w and θs(w) lie inside the work interval (as, bs) at stage s and

such that the computation ΘD[s](w) ↓= 0 holds. In addition the question also asks whether the

length of agreement between the functional ΘD and the set A expands infinitely often.

222

(1) Are there infinitely many w ∈W e, s ∈ Nα and q ∈ Nα such that the following hold?

(i) ΘD[s](w) ↓= 0.

(ii) as < w < bs (if a work interval is imposed on the strategy).

(iii) as < θs(w) < bs (if a work interval is imposed on the strategy).

(iv) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

If β exists, the strategy proceeds by asking question Q2. A positive answer to question Q1 asserts

that there are infinitely many witnesses w and stages s such that w and θs(w) lie inside the work

interval (as, bs) and such that the computation ΘD[s](w) ↓= 0 holds. Question Q2 also asks

whether infinitely many of these witnessesw and stages s give rise to computations ΓU,Dβ_〈i,σ〉[s](w)

(or ΓV,Dβ_〈i,σ〉[s](m) resp.) which are honest.

(2) Are there infinitely many w ∈W e, s ∈ Nα and q ∈ Nα such that the following hold?

(i) ΘD[s](w) ↓= 0.

(ii) as < w < bs (if a work interval is imposed on the strategy).

(iii) as < θs(w) < bs (if a work interval is imposed on the strategy).

(iv) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

(v) φ1,s(w) ≤ γβ_〈i,σ〉[s](w).

Following this if β exists and is following a Γ-strategy, we proceed by asking question Q3. A

positive answer to question Q1 and question Q2 asserts that there are infinitely many witnesses

w and stages s which give rise to computations ΘD[s](w) ↓= 0, and to honest computations

ΓU,Dβ_〈i,σ〉[s](w), where w and θs(w) lie inside (as, bs). Question Q3 also asks whether infinitely

many of these witnesses w enter A at stage s. In addition it asks whether a U � φ1,s(w) change

occurs by the leastR -expansionary stage t > s.

(3) Are there infinitely many w ∈W e, s ∈ Nα, t ∈ N and q ∈ Nα such that the following hold?

(i) ΘD[s](w) ↓= 0.

(ii) as < w < bs (if a work interval is imposed on the strategy).

(iii) as < θs(w) < bs (if a work interval is imposed on the strategy).

(iv) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

223

(v) φ1,s(w) ≤ γβ_〈i,σ〉[s](w).

(vi) As(w) = 0.

(vii) As+1(w) = 1.

(viii) t > s.

(ix) (∀s < t′ < t)[Ut′ � φ1,s(w) = Us � φ1,s(w)].

(x) (∀s < t′ < t)[Vt′ � φ1,s(w) = Vs � φ1,s(w)].

(xi) Ut � φ1,s(w) 6= Us � φ1,s(w).

If the strategy is accessible at some stage s, it will guess the answer to questions Q1, Q2 and Q3

(where applicable). This is done by computing an apparent limit oi and an apparent use σi for each

lim
t→∞

ΨH0(f(Qi), t) at stage s. Let σ be the apparent use of greatest length. The outcome visited

by the strategy at stage s is calculated as follows.

• If the answer corresponding to o1 is ‘No’, we denote the outcome by 〈w, σ〉.

• If β exists, the answer corresponding to o1 is ‘Yes’ and the answer corresponding to o2 is

‘No’, we denote the outcome by 〈h, σ〉.

• If β exists and is following a Γ-strategy, the answer corresponding to o1 is ‘Yes’, the answer

corresponding to o2 is ‘Yes’, and the answer corresponding to o3 is ‘No’, we denote the

outcome by 〈g, σ〉.

• If β exists and is following a Γ-strategy, the answer corresponding to o1 is ‘Yes’, the answer

corresponding to o2 is ‘Yes’, and the answer corresponding to o3 is ‘Yes’, we denote the

outcome by 〈d, σ〉.

• If β does not exist and the answer corresponding to o1 is ‘Yes’, we denote the outcome by

〈d, σ〉.

• If β exists and follows a Γ̂-strategy, the answer corresponding to o1 is ‘Yes’, and the answer

corresponding to o2 is ‘Yes’, we denote the outcome by 〈d, σ〉.

We now formalise the S strategy.

224

3.5.7 The S Strategy

The S strategy α has an infinite set of witnesses W e, and an infinite set of thresholds V e, where

e is the index of the strategy α in the total ordering of the S strategies lying on the priority tree.

At any given stage s the strategy will also be able to impose a restraint Rα,s on all lower priority

strategies. Initially, we have that Rα,0 is equal to 0. The strategy α shall use the fact that Rα,s > 0

to signal that it has diagonalised. Once this restraint has been set, it will keep its value during

subsequent stages. The strategy may lie below at most oneR strategy β which is active for α. The

outcomes of the strategy will be of the form 〈d, σ〉, 〈h, σ〉 and 〈w, σ〉, while the outcome 〈g, σ〉

will be present if β exists and is following a Γ-strategy.

The strategy goes through the following steps at stage s.

During its first step, the strategy determines whether it has opened a gap by enumerating some

witness w′ into the set A during the last stage t at which it was accessible (assuming it was

accessible at least once before, and that it has not been initialised in the meantime). Suppose that

this has been the case, then we have to consider the following three scenarios.

Suppose that there is an R strategy β ⊂ α which is active for α and is following a Γ-strategy.

Then we have that the strategy β has an edge β _ 〈i, σ〉 on the path leading to α. In this case,

the strategy α must determine the way in which the disagreement ΦU,V (w′) 6= A(w′) which was

introduced when the strategy enumerated w′ into A at stage t was removed. It is important to note

that the disagreement must have been removed due to the occurrence of an R expansionary stage

at some least stage t′ such that t < t′ ≤ s. If this were not the case, β would not have gone to

the next substage whilst visiting the edge β _ 〈i, σ〉 above α at stage s, and α would not have

been accessible at stage s, giving a contradiction. Now if a U � φ1[t](w′) change has occurred, the

strategy has diagonalised and will set the restraint Rα,s = θt(w) so as to protect the computation

used in the diagonalisation, and go to the next step. If this is not the case, the diagonalisation

attempt has failed and the strategy goes to the next step.

On the other hand suppose that there is anR strategy β ⊂ α which is active for α and is following

a Γ̂-strategy. Then we must have that the disagreement ΦU,V (w′) 6= A(w′) was removed through

a V � φ1[t](w′) change due to the way in which the strategies are organised on the priority tree.

225

The strategy has diagonalised and will go to the next step.

Finally suppose there is no R strategy β ⊂ α which is active for α. Then we have that the

strategy α is not concerned with the functionals built by any higher priorityR strategy. Hence the

enumeration of w′ into A at stage t is sufficient for the strategy to diagonalise. The strategy has

diagonalised and will go to the next step.

If the strategy has diagonalised, it will set the restraintRα,s = θt(w) to protect this diagonalisation.

The strategy will also detach every witness attached to one of its edges, and will undefine

every work interval defined for one its edges. This is due to the fact that once the strategy has

diagonalised, its work is complete and it has no further use for these elements.

During its second step, the strategy α calculates a rightward restraint r(α _ 〈o′, σ′〉) for every

edge α _ 〈o′, σ′〉 which has been previously accessible, exactly as in the previous section.

During its third step, the strategy α will perform its attachment procedure.

If the strategy has already diagonalised (Rα,s > 0), no further action needs to be taken and the

attachment procedure will be terminated.

Otherwise the attachment procedure will consider in turn every witness w in W e which at stage

s yields a computation ΘD[s](w) ↓= 0 and which has not been attached to an edge so far. The

attachment procedure will be seeking to attach one of these witnesses to an edge, and will stop

considering further witnesses once this has been achieved.

In order to decide which edge the witness under consideration should be attached to, the strategy

will first consider the kind of outcomes which the strategy has. These are determined by the

position of the strategy on the priority tree.

There are three cases to consider.

In the first (and most general) case we have that the S strategy α lies below some R strategy

β which is active for α and which follows a Γ-strategy. In this case, α has edges with

outcomes 〈d, σ〉, 〈g, σ〉, 〈h, σ〉 and 〈w, σ〉. Hence the strategy will have to determine whether

the computation ΓU,Dβ_〈i,σ〉[s](w) is honest, which will be the case if φ1[s](w) ≤ γβ_〈i,σ〉[s](w).

The strategy will then attach the witness to the appropriate edge depending on the result.

226

If the witness w is honest at stage s, we attach it to the leftmost edge of the form α _ 〈g, σ〉which

does not have a witness attached and which has been previously accessible, as long as it satisfies

the following constraints.

First, the witness w has to be greater than all restraints imposed on the edge. This includes

the supremum of all rightward restraints imposed by edges lying to the left of α _ 〈g, σ〉, the

downward restraints which might be imposed by some higher priority strategy on an edge leading

to α and any diagonalisation restraint Rα′,s which might be imposed by some S strategy α′ lying

above α. Second the witness w and the use θs(w) must lie inside any work interval imposed

by some higher priority S strategy which might lie above it at stage s. This ensures that the

computation ΘD[s](w) is not affected when the higher priority strategy enumerates some element

greater than or equal to the upper bound of the work interval into D. Third, the edge α _ 〈g, σ〉

has to be in open mode. In this way the witness is only attached to the edge if the edge needs to

enumerate a witness into A. Fourth, a work interval for the edge α _ 〈g, σ〉 must be defined.

Fifth, the witness must be greater than the upper bound of this work interval. Sixth, the witness

must be greater than the last stage at which the edge was last initialised. In this way w cannot

affect any computation which has previously taken place to the left of the edge. Finally w must be

greater than any witness which has previously been attached to the edge. This will be necessary

to show that D ≤T H during the verification of the construction.

On the other hand, if the witness w is dishonest at stage s, we attach it to the leftmost edge of

the form α _ 〈h, σ〉 which does not have a witness attached and which has been previously

accessible, as long as it satisfies a number of constraints.

First, the witness w has to be greater than all restraints imposed on the edge. This includes the

supremum of all rightward restraints imposed by edges lying to the right of α _ 〈h, σ〉, the

downward restraints which might be imposed by some higher priority strategy on an edge leading

to α and any diagonalisation restraint Rα′,s which might be imposed by some S strategy α′ lying

above α. Second, the use θs(w) must lie inside any work interval imposed by some higher priority

S strategy which might lie above it at stage s. Third, the witness must be greater than the upper

bound of any work interval defined for some edge lying to the left of α _ 〈h, σ〉. Since attaching

the witness will also define a work interval for the edge, this constraint ensures that the proper

227

ordering between work intervals is maintained. Fourth, the witness must be greater than the last

stage at which the edge was last initialised. Fifth the witness must be greater than any witness

which has previously been attached to the edge. This will be necessary to show that D ≤T H

during the verification of the construction.

When a witness w is attached to an edge with outcome 〈h, σ〉 at stage s, the strategy defines a

work interval (w, γβ_〈i,σ〉[s](w)) for the edge.

In the second case we consider the special case where the S strategy α lies below someR strategy

β which is active for α but which is following a Γ̂-strategy. Hence we have that α has edges with

outcomes 〈d, σ〉, 〈h, σ〉 and 〈w, σ〉. This means that there are no edges with outcome 〈g, σ〉 to

which the strategy can attach witnesses w giving honest computations ΓV,Dβ_〈i,σ〉[s](w). Hence the

attachment procedure will instead attach these witnesses to the leftmost edge with outcome 〈d, σ〉

which has been visited previously and which presently has no witness attached. The witness will

also have to satisfy an appropriate subset of the constraints described above for edges with 〈g, σ〉

outcomes.

In the third case we consider the special case where there is no active R strategy β above α.

Hence we have that α has edges with outcomes 〈d, σ〉 and 〈w, σ〉. This means that α is not

concerned with any R strategies lying above it. This means that the strategy does not need to

discern between honest and dishonest witnesses. In addition there are no edges with outcome g

to which the strategy can attach witnesses. Thus the strategy will attach any witness which gives

a computation ΘD[s](w) ↓= 0 to the leftmost edge with outcome 〈d, σ〉 which has been visited

previously and which presently has no witness attached. The witness will also have to satisfy an

appropriate subset of the constraints described above for edges with 〈g, σ〉 outcomes.

The attachment procedure concludes by determining whether it has attached a witness w to some

edge at stage s. If this is the case it will consider every edge lying to its right and detach any

witness and undefine every work interval defined for the edge. It will also set the edge to open

mode or to Part I mode as appropriate.

During its fourth step the strategy α will calculate the edge α _ 〈o, σ〉 to visit during the present

stage. It then takes action according to the outcome of this edge.

228

This is followed by its fifth step, where the strategy αwill calculate the attachment restraint a(α _

〈o′, σ′〉, s) for every edge α _ 〈o′, σ′〉 which has been previously accessible. If the strategy has

attached a witness w to some edge α _ 〈o′′, σ′′〉 lying to the left of α _ 〈o′, σ′〉 at stage s, we

set a(α _ 〈o′, σ′〉) = θs(w). The restraint will have to be obeyed by the edge α _ 〈o′, σ′〉 and

protects the computation ΘD[s](w) ↓= 0 from any of the computations taking place to the right

of α _ 〈o′′, σ′′〉.

The strategy also calculates a downward restraint d(α _ 〈o, σ〉, s) for the edge α _ 〈o, σ〉

which is visited by the strategy during stage s. The downward restraint consists of three parts;

the supremum of the rightward restraints imposed by edges lying to the left of α _ 〈o, σ〉, the

attachment restraint imposed on any edge lying to the left of α _ 〈o, σ〉, and any previously

computed downward restraint for the edge. In this way edges lying to the left of α _ 〈o, σ〉, and

the uses θt(w′) of the witnesses w′ attached to them at some stage t ≤ s will be protected from

lower priority strategies.

During the final and fifth step, the strategy takes action depending on the outcome of the edge

α _ 〈o, σ〉 which the strategy is visiting during stage s.

There are three cases to consider.

In the first (and most general) case we have that the S strategy α lies below some R strategy β

which is active for α and which follows a Γ-strategy.

Suppose that the strategy visits an outcome of the form α _ 〈w, σ〉 and the edge is in open mode.

If the present stage is not a β-open stage, we terminate the stage so as to wait for a β-open stage.

Otherwise the strategy will count visiting the edge as having taken action successfully, changing

the mode of the edge back to close mode and going to the next substage.

On the other hand, suppose that the outcome is 〈w, σ〉 and the edge is in close mode. If the present

stage is not an α-close stage, we terminate the stage so as to wait for an α-close stage. Otherwise

the strategy will count visiting the edge as having taken action successfully, changing the mode of

the edge back to open mode and going to the next substage.

Suppose that the strategy visits an outcome of the form α _ 〈g, σ〉. If the strategy has already

diagonalised, the stage is terminated. Otherwise we have that the edge is either in open mode or

229

in close mode.

If the edge is in open mode, the strategy will first determine whether a work interval for the edge

is defined. If this is not the case, the strategy will choose a threshold v < s from V e so as to define

a work interval (v, γβ_〈i,σ〉[s](v)) for the edge. This threshold has to obey certain constraints.

First, the threshold v has to be greater than all restraints imposed on the edge. This includes

the supremum of all rightward restraints imposed by edges lying to the left of α _ 〈g, σ〉, the

attachment restraint imposed on α _ 〈g, σ〉, any diagonalisation restraint Rα′,s which might be

imposed by some S strategyα′ lying aboveα and the downward restraints which might be imposed

by higher priority strategies on an edge leading to α. Second, the threshold must lie inside any

work interval imposed on α. Third, the threshold v must be greater than the upperbound of any

work interval defined for some edge lying to the left of α _ 〈g, σ〉. Fourth, the threshold v must be

greater than an witness attached to some edge lying to the left of α _ 〈g, σ〉. Fifth, the threshold

must be greater than the last stage at which the edge was last initialised.

Once a work interval is defined for the edge, the strategy will determine whether a witness is

attached to the edge. If this is not the case, the strategy will terminate the stage and wait for a

witness to be attached. If a work interval is defined for the edge and a witness has been attached

to the edge, the strategy will determine whether the witness still gives an honest computation, that

is whether φ1,s(w) ≤ γβ_〈i,σ〉[s](w). If the witness has become dishonest since it was attached,

the witness is detached from the edge. If a work interval is defined for the edge, a witness has

been attached to the edge and the witness is honest, the strategy determines whether the present

stage is an α-open stage. If this is not the case, the strategy will terminate the stage and wait for

an α-open stage. If the strategy visits the edge, a work interval has been defined, a witness w has

been attached, the witness is honest, and the present stage is an α-open stage, the strategy can

finally take action and open a gap by enumerating the witness w into the set A. Since the strategy

has taken action successfully, it changes the mode of the edge to close mode and goes to the next

substage.

When the edge is in close mode, the strategy will determine whether the present stage is an α-

close stage. If this is not the case, the strategy will terminate the stage and wait for an α-close

stage. If the strategy visits the edge and the present stage is an α-close stage, the strategy will

230

perform capricious destruction by enumerating the upper bound of the work interval of the edge

γβ_〈i,σ〉[s](v) into the set D. Since the strategy has taken action successfully, it changes the mode

of the edge to open mode and goes to the next substage.

Suppose now that the strategy visits an outcome of the form α _ 〈h, σ〉. If the strategy has already

diagonalised, the stage is terminated. Otherwise we have that the edge is either in Part I mode or

in Part II mode.

If the edge is in Part I mode, the strategy will determine whether a witness is attached to the edge.

If this is not the case, the strategy will terminate the stage and wait for a witness to be attached. If

a witness w is attached to the edge during the present stage, the work interval (w, γβ_〈i,σ〉[s](w))

will be defined for the edge and the stage will be terminated. If a witness is attached to the edge

and the work interval is defined for the edge, the strategy will determine whether the present stage

is an α-close stage. If this is not the case, the strategy will terminate the stage and wait for an

α-close stage. Otherwise, the strategy will determine whether the witness w attached to the edge

is still dishonest. If this is not the case, the strategy will terminate the stage and wait until the

witness becomes dishonest again. If a witness is attached to the edge and the work interval for

the edge is defined, the present stage is an α-close stage, and the witness w is dishonest, it will

perform honestification by enumerating γβ_〈i,σ〉[s](w) into the setD. Since the strategy has taken

action successfully, it changes the mode of the edge to Part II mode and goes to the next substage.

When the edge is in Part II mode, the strategy will determine whether the present stage is an α-

open stage. If this is not the case, the strategy will terminate the stage and wait for an α-open

stage. Otherwise, the strategy will take no action. This will count as the strategy having taken

action successfully, changing the mode of the edge back to Part I mode and going to the next

substage.

Suppose that the strategy visits an outcome of the form α _ 〈d, σ〉. There are three cases to

consider.

In the first case we have that the S strategy α lies below some R strategy β which is active for α

and which follows a Γ-strategy. Then we do nothing and terminate the stage.

In the second case we consider the special case where the S strategy α lies below someR strategy

231

β which is active for α but which is following a Γ̂-strategy. In this case α has edges with outcomes

〈d, σ〉, 〈h, σ〉 and 〈w, σ〉. The actions taken when the strategy visits edges with outcomes 〈h, σ〉

and 〈w, σ〉 remain the same as described above. On the other hand the actions taken when the

strategy visits an edge with outcome 〈d, σ〉 change so as to reflect the fact that witnesses are now

enumerated into the set A by first being attached to an edge with outcome 〈d, σ〉.

Suppose that the strategy visits an outcome of the form α _ 〈d, σ〉 and that the edge has no witness

attached. Then the strategy terminates the stage and waits for a witness to become attached. Once a

witness becomes attached to the edge, the strategy will determine whether the witness still gives an

honest computation, that is whether φ1[s](w) ≤ γβ_〈i,σ〉[s](w). If the computation has become

dishonest since it was attached, the witness is detached from the edge. If a witness has been

attached to the edge and the witness gives an honest computation, the strategy determines whether

the present stage is an α-open stage. If this is not the case, the strategy will terminate the stage and

wait for an α-open stage. If the strategy visits the edge, a witness w has been attached, the witness

gives an honest computation, and the present stage is an α-open stage, the strategy can finally take

action and open a gap by enumerating the witness w into the set A. The strategy terminates the

stage.

In the third case we consider the special case where there is no active R strategy β above α.

Hence we have that α has edges with outcomes 〈d, σ〉 and 〈w, σ〉. The actions taken when the

strategy visits edges with outcome w remains the same as described above. On the other hand the

actions taken when the strategy visits an edge with outcome 〈d, σ〉 change so as to reflect the fact

that witnesses are now enumerated into the set A by first being attached to an edge with outcome

〈d, σ〉, and the fact that α ignores all higher priority R strategies, and is thus able to open a gap

without the witness having to give honest computations.

Suppose that the strategy visits an outcome of the form α _ 〈d, σ〉 and that the edge has no witness

attached. Then the strategy terminates the stage and waits for a witness to become attached. Once

a witness becomes attached to the edge, the strategy determines whether the present stage is an

α-open stage. If this is not the case, the strategy will terminate the stage and wait for an α-open

stage. If the strategy visits the edge, a witness w has been attached and the present stage is an

α-open stage, the strategy can finally take action and open a gap by enumerating the witness w

232

into the set A. The strategy terminates the stage.

We shall now formalise the S strategy.

The S Strategy

The S strategy α has a set of witnesses W e and a set of thresholds V e, and at every stage s is

able to impose a restraint Rα,s on lower priority strategies. Initially we have that Rα,0 = 0,

and if the strategy sets Rα,s > 0 during some stage s, the restraint will maintain this value

unless the strategy has been initialised.

The strategy α may lie below a number of R strategies β′. Each such strategy β′ imposes a

downward restraint d(β′ _ 〈o′, σ′〉, s) on α at stage s, where β′ _ 〈o′, σ′〉 is the edge of β′

on the path leading to α. One of these strategies, which we denote by β will be active for α.

In this case we denote the edge of the strategy lying on the path leading to α by β _ 〈i, σ〉.

This strategy will either be following a Γ-strategy or a Γ̂-strategy.

The strategy α may also lie below a number of S strategies α′. Each such strategy α′ imposes

a downward restraint d(α′ _ 〈o′, σ′〉, s) on α at stage s, where α′ _ 〈o′, σ′〉 is the edge of

α′ on the path leading to α. The strategy α′ also imposes the diagonalisation restraint Rα′,s

on α at stage s. The strategy α′ may also impose a work interval on α at stage s, depending

on its outcome on the path leading to α. Finally let α′′ ⊂ α be the greatest S strategy (under

⊂) which imposes a work interval on α. We shall denote the work interval imposed by α′′ on

α at stage s by (as, bs).

(1) Consider the last stage t at which α was accessible. If t does not exist, or the strategy α

has been initialised at some stage t′ such that t < t′ < s, go to step (2).

If t exists, has α enumerated some witness w into A at stage t?

(a) (No) Go to step (2).

(b) (Yes) Is it the case that (i) there is no R strategy β ⊂ α which is active for α or

(ii) there is some R strategy β ⊂ α which is active for α, and it is following a

Γ̂-strategy or (iii) there is some R strategy β ⊂ α which is active for α, and it is

233

following a Γ-strategy and Ut � φ1[t](w) 6= Ut′ � φ1[t](w), where t′ is the least

R-expansionary stage greater than t?

(i) (No) Go to step (2).

(ii) (Yes) Set the restraint Rα,s to θt(w). Consider every edge α _ 〈o′, σ′〉 of α

which has been previously accessible. If a work interval is defined for α _

〈o′, σ′〉, cancel the work interval. If some witness is attached to α _ 〈o′, σ′〉,

detach the witness. If o′ is equal to d, g or w, set the edge to open mode. If o′

is equal to h, set the edge to Part I mode. Go to step (2).

(2) Define the rightward restraint r(α _ 〈o′, σ′〉, s) for every edge α _ 〈o′, σ′〉 which was

previously accessible as the least element x such that:

(a) x ≥ θt(w), where w is a witness attached to α _ 〈o′, σ′〉 and t is the stage at

which the witness was attached.

(b) x ≥ t, where t is the last stage at which α _ 〈o′, σ′〉 was last accessible.

Go to step (3).

(3) Consider the finite set of witnesses w in W e such that w < s and ΘD[s](w) ↓= 0

and such that w has not been attached to an edge at some stage u < s. Perform the

following case analysis for every such witness in turn (under the order <), until one

witness is attached successfully to an edge or until no more witnesses are available.

(a) Suppose that Rα,s > 0. End stage s, and go to stage s+ 1.

(b) Suppose that Rα,s = 0 and that noR strategy β ⊂ α is active for α. If there is an

edge α _ 〈d, σ′〉 such that:

(i) α _ 〈d, σ′〉 has been accessible during a previous stage.

(ii) α _ 〈d, σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈d, σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

(iv) w > Rα′,s for every S strategy α′ ⊂ α.

234

(v) w > d(β′ _ 〈o′, σ′〉, s), for everyR strategy β′ ⊂ α with edge β′ _ 〈o′, σ′〉

on the path leading to α.

(vi) w > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _ 〈o′, σ′〉

on the path leading to α.

(vii) as < w < bs.

(viii) as < θs(w) < bs.

(ix) w is greater than the upper bound of the work interval at stage s defined for

any edge α _ 〈o′′, σ′′〉 which was previously accessible and which lies to the

left of α _ 〈d, σ′〉.

(x) w > t, where t is the last stage at which the edge α _ 〈d, σ′〉 was initialised.

(xi) w > w′, where w′ is any witness which has been attached to α _ 〈d, σ′〉 at

some stage t < s.

Then attach w to the leftmost such α _ 〈d, σ′〉.

(c) Suppose that Rα,s = 0, that one R strategy β ⊂ α is active for α and that

φ1[s](w) > γβ_〈i,σ〉[s](w). If there is an edge α _ 〈h, σ′〉 such that:

(i) α _ 〈h, σ′〉 has been accessible during a previous stage.

(ii) α _ 〈h, σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈h, σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

(iv) w > Rα′,s for every S strategy α′ ⊂ α.

(v) w > d(β′ _ 〈o′, σ′〉, s), for everyR strategy β′ ⊂ α with edge β′ _ 〈o′, σ′〉

on the path leading to α.

(vi) w > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _ 〈o′, σ′〉

on the path leading to α.

(vii) as < w < bs.

(viii) as < θs(w) < bs.

(ix) w is greater than the upper bound of the work interval at stage s defined for

any edge α _ 〈o′′, σ′′〉 which was previously accessible and which lies to the

left of α _ 〈hi, σ′〉.

235

(x) w > t, where t is the last stage at which the edge α _ 〈h, σ′〉 was initialised.

(xi) w > w′, where w′ is any witness which has been attached to this edge at

some stage t < s.

Attach w to the leftmost such α _ 〈h, σ′〉. Define the work interval of the edge

α _ 〈h, σ′〉 to be (w, γβ′_〈i,σ′〉[s](w)).

(d) Suppose that Rα,s = 0, that one R strategy β ⊂ α is active for α and follows a

Γ-strategy and that φ1[s](w) ≤ γβ_〈i,σ〉[s](w). If there is an edge α _ 〈g, σ′〉

such that:

(i) α _ 〈g, σ′〉 has been accessible during a previous stage.

(ii) α _ 〈g, σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈g, σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

(iv) w > Rα′,s for every S strategy α′ ⊂ α.

(v) w > d(β′ _ 〈o′, σ′〉, s), for everyR strategy β′ ⊂ α with edge β′ _ 〈o′, σ′〉

on the path leading to α.

(vi) w > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _ 〈o′, σ′〉

on the path leading to α.

(vii) as < w < bs.

(viii) as < θs(w) < bs.

(ix) α _ 〈g, σ′〉 is in open mode.

(x) The work interval for the edge α _ 〈g, σ′〉 is defined.

(xi) w is greater than the upper bound of the work interval for the edge α _

〈g, σ′〉.

(xii) w > t, where t is the last stage at which the edge α _ 〈g, σ′〉 was initialised.

(xiii) w > w′, where w′ is any witness which has been attached to this edge at

some stage t < s.

Then attach w to the leftmost such α _ 〈g, σ′〉.

(e) Suppose that Rα,s = 0, that one R strategy β ⊂ α is active for α and follows a

236

Γ̂-strategy and that φ1[s](w) ≤ γβ′_〈i,σ′〉[s](w). If there is an edge α _ 〈d, σ′〉

such that:

(i) α _ 〈d, σ′〉 has been accessible during a previous stage.

(ii) α _ 〈d, σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈d, σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

(iv) w > Rα′,s for every S strategy α′ ⊂ α.

(v) w > d(β′ _ 〈o′, σ′〉, s), for everyR strategy β′ ⊂ α with edge β′ _ 〈o′, σ′〉

on the path leading to α.

(vi) w > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _ 〈o′, σ′〉

on the path leading to α.

(vii) as < w < bs.

(viii) as < θs(w) < bs.

(ix) w is greater than the upper bound of the work interval at stage s defined for

any edge α _ 〈o′′, σ′′〉 which was previously accessible and which lies to the

left of α _ 〈d, σ′〉.

(x) w > t, where t is the last stage at which the edge α _ 〈d, σ′〉 was initialised.

(xi) w > w′, where w′ is any witness which has been attached to this edge at

some stage t < s.

Then attach w to the leftmost such α _ 〈d, σ′〉.

If a witness w has been attached to some edge α _ 〈o′, σ′〉, consider every edge α _

〈o′′, σ′′〉 lying to the right of α _ 〈o′, σ′〉. If some witness w′ is attached to α _

〈o′′, σ′′〉, detach the witness from the edge. If some work interval is defined for α _

〈o′′, σ′′〉, undefine the work interval. If o′′ is equal to d, w or g, set the edge to open

mode. If o′′ is equal to h, set the edge to Part I mode.

Go to step (4).

(4) Determine the edge α _ 〈o, σ〉 which the strategy should visit at stage s.

Go to step (5).

237

(5) Define the attachment procedure restraint a(α _ 〈o′, σ′〉, s) for every edge α _

〈o′, σ′〉 which was previously accessible. If the strategy has not attached a witness w to

some edge α _ 〈o′′, σ′′〉 <L α _ 〈o′, σ′〉 at stage s, define a(α _ 〈o′, σ′〉, s) = 0.

Otherwise define a(α _ 〈o′, σ′〉, s) = θs(w).

Also define the downward restraint d(α _ 〈o, σ〉, s) as the least element x such that:

(a) x ≥ sup{r(α _ 〈o′, σ′〉, s) | α _ 〈o′, σ′〉 <L α _ 〈o, σ〉 ∧

α _ 〈o′, σ′〉 has been previously accessible}.

(b) x ≥ a(α _ 〈o, σ〉, s).

(c) x ≥ d(α _ 〈o, σ〉, t) for all t < s.

Go to step (6).

(6) Consider the edge α _ 〈o, σ〉 being visited by the strategy at stage s. Take action

according to the value of o through the following case analysis.

(a) o = w.

(i) Suppose that α _ 〈w, σ〉 is in open mode, and s is not an α-open stage. End

the stage s, and go to stage s+ 1.

(ii) Suppose that α _ 〈w, σ〉 is in open mode, and s is an α-open stage. Set the

edge to close mode. Go to the next substage.

(iii) Suppose that α _ 〈w, σ〉 is in close mode, and s is an α-close stage. End the

stage s, and go to stage s+ 1.

(iv) Suppose that α _ 〈w, σ〉 is in close mode, and s is an α-close stage. Set the

edge to open mode. Go to the next substage.

(b) o = g.

(i) Suppose that Rα,s > 0. End stage s, and go to stage s+ 1.

(ii) Suppose that Rα,s = 0, and the work interval for the edge α _ 〈g, σ〉 is

undefined. If there is some least threshold v < s in V e such that:

(A) v > sup{r(α _ 〈o′, σ′〉, s) | α _ 〈o′, σ′〉 <L α _ 〈g, σ〉 ∧

α _ 〈o′, σ′〉 has been previously accessible}.

238

(B) v > a(α _ 〈g, σ〉, s).

(C) v > Rα′,s for every S strategy α′ ⊂ α.

(D) v > d(β′ _ 〈o′, σ′〉, s), for every R strategy β′ ⊂ α with edge β′ _

〈o′, σ′〉 on the path leading to α.

(E) v > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _

〈o′, σ′〉 on the path leading to α.

(F) as < v < bs.

(G) v is greater than the upper bound of a work interval defined for an edge

α _ 〈o′, σ′〉 lying to the left of α _ 〈o, σ〉.

(H) v > t, where t is the stage at which the edge α _ 〈g, σ〉 was last

initialised.

Define the work interval of the edge α _ 〈g, σ〉 to be (v, γβ_〈i,σ〉[s](v)).

End stage s, and go to stage s+ 1.

(iii) Suppose that Rα,s = 0, a work interval is defined for the edge 〈g, σ〉 and the

edge is in open mode, but no witness w is attached to the edge. End stage s,

and go to stage s+ 1.

(iv) Suppose that Rα,s = 0, a work interval is defined for the edge 〈g, σ〉, the

edge is in open mode and a witness w is attached to the edge, but φ1[s](w) >

γβ_〈i,σ〉[s](w). Detach w from α _ 〈g, σ〉. End stage s, and go to stage

s+ 1.

(v) Suppose that Rα,s = 0, a work interval is defined for the edge 〈g, σ〉, the

edge is in open mode, a witness w is attached to the edge and φ1[s](w) ≤

γβ_〈i,σ〉[s](w), but s is not an α-open stage. End stage s, and go to stage

s+ 1.

(vi) Suppose that Rα,s = 0, a work interval is defined for the edge 〈g, σ〉, the

edge is in open mode, a witness w is attached to the edge, φ1[s](w) ≤

γβ_〈i,σ〉[s](w) and s is an α-open stage. Enumerate w into A. Set the edge

〈g, σ〉 to close mode. Go to the next substage.

(vii) Suppose that Rα,s = 0, a work interval is defined for the edge 〈g, σ〉, the

239

edge is in close mode and s is not an α-close stage. End stage s, and go to

stage s+ 1.

(viii) Suppose thatRα,s = 0, a work interval is defined for the edge 〈g, σ〉, the edge

is in close mode and s is an α-close stage. Enumerate γβ_〈i,σ〉[s](v) into D.

Set the edge 〈g, σ〉 to open mode. Go to the next substage.

(c) o = h.

(i) Suppose that Rα,s > 0. End stage s, and go to stage s+ 1.

(ii) Suppose that Rα,s = 0, but the edge 〈h, σ〉 has no witness w attached to it.

End stage s, and go to stage s+ 1.

(iii) Suppose that Rα,s = 0, and the strategy has attached a witness w to the edge

〈h, σ〉 during this stage s. End stage s, and go to stage s+ 1.

(iv) Suppose that Rα,s = 0, the work interval for the edge 〈h, σ〉 is defined and

the edge 〈h, σ〉 is in Part I mode, but s is not an α-close stage. End stage s,

and go to stage s+ 1.

(v) Suppose that Rα,s = 0, the work interval for the edge 〈h, σ〉 is defined, the

edge 〈h, σ〉 is in Part I mode, and s is an α-close stage, but φ1[s](w) ≤

γβ_〈i,σ〉[s](w). End stage s, and go to stage s+ 1.

(vi) Suppose that Rα,s = 0, and the work interval for the edge 〈h, σ〉 is defined,

the edge 〈h, σ〉 is in Part I mode, s is an α-close stage, and φ1[s](w) >

γβ_〈i,σ〉[s](w). Enumerate γβ_〈i,σ〉[s](w) into D. Set the edge 〈h, σ〉 to Part

II mode. Go to the next substage.

(vii) Suppose that Rα,s = 0, the edge 〈h, σ〉 has a witness w attached to it, the

edge is in Part II mode and s is not an α-open stage. End stage s, and go to

stage s+ 1.

(viii) Suppose that Rα,s = 0, the edge 〈h, σ〉 has a witness w attached to it, the

edge is in Part II mode and s is an α-open stage. Set the edge 〈h, σ〉 to Part I

mode. Go to the next substage.

(d) o = d.

(i) Suppose that Rα,s > 0. End stage s, and go to stage s+ 1.

240

(ii) Suppose that Rα,s = 0, that there is no R strategy β ⊂ α active for α, and

that no witness w is attached to this edge. End stage s, and go to stage s+ 1.

(iii) Suppose that Rα,s = 0, that there is no R strategy β ⊂ α active for α and

that a witness w is attached to this edge, but that s is not an α-open stage.

End stage s, and go to stage s+ 1.

(iv) Suppose that Rα,s = 0, that there is no R strategy β ⊂ α active for α,

that a witness w is attached to this edge, and that s is not an α-open stage.

Enumerate w into A. End stage s, and go to stage s+ 1.

(v) Suppose that Rα,s = 0, that there is one R strategy β ⊂ α active for α

following a Γ̂-strategy and that no witness w is attached to this edge. End

stage s, and go to stage s+ 1.

(vi) Suppose that Rα,s = 0, that there is one R strategy β ⊂ α active for α

following a Γ̂-strategy and that a witness w is attached to this edge, but

φ1[s](w) > γβ_〈i,σ〉[s](w). Detach the witness w from the edge. End stage

s, and go to stage s+ 1.

(vii) Suppose that Rα,s = 0, that there is one R strategy β ⊂ α active for α

following a Γ̂-strategy, that a witness w is attached to this edge and that

φ1[s](w) ≤ γβ_〈i,σ〉[s](w), but s is not an α-open stage. End stage s, and go

to stage s+ 1.

(viii) Suppose that Rα,s = 0, that there is one R strategy β ⊂ α active for

α following a Γ̂-strategy, that a witness w is attached to this edge, that

φ1[s](w) ≤ γβ_〈i,σ〉[s](w) and that s is an α-open stage. End stage s, and go

to stage s+ 1. Enumerate w into A. End stage s, and go to stage s+ 1.

(viii) Suppose that Rα,s = 0 and that there is one R strategy β ⊂ α active for α

following a Γ-strategy. End stage s, and go to stage s+ 1.

241

3.5.8 Analysis of Outcomes

We shall now consider the effect of the S strategy α on the satisfaction of the requirements R

and S . When certain edges of the strategy α are on the true path, it may be the case that certain

requirements are left unsatisfied. We shall show that the relationship between the outcome on the

true path and the requirements which are left unsatisfied is the same as the one for the Lachlan

Non-Splitting Theorem. The immediate consequence of this will be that the priority tree can be

structured in an analogous way to the priority tree of the Lachlan Non-Splitting Theorem. This

will allow us to perform a similar analysis in order to show that all requirements are actually

satisfied at a later stage.

In order to analyse the effect of the S strategy α on the satisfaction of the requirementsR and S ,

we consider the leftmost edge α _ 〈o, σ〉 which is visited infinitely often by the strategy α. The

following case analysis can then be made depending on the outcome 〈o, σ〉

w Suppose that the outcome is 〈w, σ〉.

Then the answer to question Q1 must be ‘No’.

If condition (i) of questionQ1 fails, we have that there are only finitely many witnessesw ∈W e

and stages s ∈ Nα such that ΘD[s](w) ↓= 0. Then there must be some stage t ∈ Nα such

that for every t′ ∈ Nα with t′ > t and every element x ∈ W e, we have that ΘD[t′](x) ↑ or

ΘD[t′](x) ↓= 1. Now, if ΘD(x) ↑ for some x ∈ W e, we have that ΘD(x) 6= A(x) and the S

requirement is satisfied. On the other hand, if ΘD(x) ↓= 1 for some x ∈ W e, we have that

the strategy will never enumerate x into A. This means that ΘD(x) 6= A(x) and that the S

requirement is also satisfied.

If condition (i) of question Q1 holds but condition (ii) of question Q1 fails, we have that there

are infinitely many witnesses w ∈ W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0, but

as < w < bs for only finitely many of these witnesses and stages. This means that there is

some stage t ∈ Nα such that for all t′ ∈ Nα with t′ > t and every element x ∈ W e such

that at′ < x < bt′ we have that ΘD[t′](w) ↓= 1 or that ΘD[t′](w) ↑. Now since the strategy

imposing this work interval is on the true path, there is some stage s0 such that for all s′ > s0 its

edge on the true path is no longer initialised. Hence once this strategy defines its work interval

242

at some least stage u > s0, we have that au = au′ for all u′ ≥ u. In addition, the upper bound

of the work interval will become unbounded. It follows that there is some element x′ ∈ W e

and some stage p ∈ Nα such that for all stages p′ ∈ Nα with p′ > p, p′ > t and p′ > u we have

that ap′ < x′ < bp′ and that ΘD[p′](x′) ↑ or ΘD[p′](x′) ↓= 1. Now, if ΘD(x′) ↑, we have that

ΘD(x′) 6= A(x′) and the S requirement is satisfied. On the other hand, if ΘD(x′) ↓= 1, we

have that the strategy will never enumerate x′ into A. This means that ΘD(x′) 6= A(x′) and

that the S requirement is also satisfied.

If conditions (i) and (ii) of question Q1 hold but condition (iii) of question Q1 fails, we have

that there are infinitely many witnesses w ∈ W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0

and as < w < bs, but as < θs(w) < bs for only finitely many of these witnesses and stages.

This means that there is some stage t ∈ Nα such that for all t′ ∈ Nα with t′ > t and every

element x ∈ W e such that at′ < x < bt′ we have that θt′(x) > bt′ . Now since the strategy

imposing this work interval is on the true path, there is some stage s0 such that for all s′ > s0 its

edge on the true path is no longer initialised. Hence once this strategy defines its work interval

at some least stage u > s0, we have that au = au′ for all u′ ≥ u. In addition, the upper bound

of the work interval will become unbounded. It follows that there is some element x′ ∈ W e

and some stage p ∈ Nα such that for all stages p′ ∈ Nα with p′ > p, p′ > t and p′ > u we have

that bp′ < θp′(x
′). But since the upper bound of the work interval is unbounded, it must be the

case that ΘD(x′) ↑, which means that the S requirement is satisfied.

If conditions (i) and (ii) and (iii) of question Q1 hold but condition (iv) of question Q1 fails,

we have that there are infinitely many witnesses w ∈ W e and stages s ∈ Nα such that

ΘD[s](w) ↓= 0, as < w < bs and as < θs(w) < bs. However there are only finitely many

stages q ∈ Nα such that (∀q′ < q)[lq′(Θ
D, A) < lq(Θ

D, A)], where q′ ranges over Nα. But in

this case there must be some x such that ΘD(x) 6= A(x), meaning that the S requirement is

satisfied.

Hence if 〈w, σ〉 is the outcome of the edge lying on the true path we have that the S requirement

is satisfied, whilst theR strategy can build its functional without interference after some stage,

satisfying the R requirement as well. It is important to note that one way for this outcome to

be on the true path is for the strategy to diagonalise successfully.

243

h Suppose that the outcome is 〈h, σ〉.

(This outcome is only present if there is some strategy β above α which is active for α).

In this case, we have that the answers to questions Q1 and Q2 guarantee that there are infinitely

many witnesses w ∈ W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0, as < w < bs

and as < θs(w) < bs. However only finitely many of these witnesses w will give honest

computations ΓU,Dβ_〈i,σ〉[s](w). It follows that there is some stage t′ such that for every s > t′,

we have that the computations ΓU,Dβ_〈i,σ〉[s](w) are dishonest. Finally we also have that the

length of agrement between ΘD and A increases infinitely often.

Now since α _ 〈h, σ〉 is the leftmost edge which is accessible infinitely often, we have that

there is a stage s0 after which no edge to its left is accessible. Hence only finitely many edges

to the left of α _ 〈h, σ〉 can have been accessible at stages s < s0. Suppose that the edge

α _ 〈h, σ〉 does not have a witness giving a dishonest computation attached at some stage

s1 > s0. Since witnesses giving a dishonest computation are attached to the leftmost edge of

the form α _ 〈h, σ〉 which has no other witness attached, and since there are infinitely many

such witnesses, it follows that a witness satisfying these conditions is eventually attached to

α _ 〈h, σ〉 at some stage s2 > s1.

In addition we claim that it is possible to ensure that the edge α _ 〈h, σ〉 is visited during

infinitely many α-open stages and infinitely many α-close stages. We address this claim when

we discuss fairness in section 3.7.1.

Hence, if the edge α _ 〈h, σ〉 does not have a witness giving a dishonest computation attached

at some stage, it must be the case that such a witness will eventually be attached to the edge at

some stage s. This defines a work interval (w, γβ_〈i,σ〉[s](w)) for the edge. If the edge is in

Part I mode, we have that the strategy visits the edge during an α-close stage. This allows the

strategy to honestify and to change the mode of the edge to Part II mode. If the edge is in Part

II mode, we have that the strategy visits the edge during an α-open stage, and that it changes

the mode of its edge back to Part I mode.

Now it could be the case that a witness w which was attached to α _ 〈h, σ〉 at stage s

gave a dishonest computation ΓU,Dβ_〈i,σ〉[s](w), but then started giving an honest computation

244

ΓU,Dβ_〈i,σ〉[s
′](w) at some stage s′ > s at which the strategy visited the edge once again. In this

case we have that the strategy would be blocked from honestifying. However, we have already

seen that there is some greatest stage t′ such that ΓU,Dβ_〈i,σ〉[t](w) is dishonest at every stage

t > t′. Therefore the strategy will not be blocked from honestifying after stage t′.

Therefore the strategy will honestify during infinitely many stages u, by enumerating

γβ_〈i,σ〉[u](w) into D. Hence we have that lim
q→∞

γβ_〈i,σ〉[q](w) is unbounded and that

ΓU,Dβ_〈i,σ〉(w) ↑. In addition to this we also have that lim
q→∞

φ1[q](w) is unbounded and that

ΦU,V
1 (w) ↑.

Hence if 〈h, σ〉 is the outcome of the edge lying on the true path we have that theR requirement

is satisfied trivially. Finally the S requirement remains unsatisfied as well because the strategy

does not diagonalise. For if this were the case, is would contradict the fact that the length of

agrement between ΘD and A increases infinitely often.

g Suppose that the outcome is 〈g, σ〉.

(This outcome is not present unless there is some strategy β above α which is active for α and

which is following a Γ-strategy).

In this case, we have that the answers to questions Q1, Q2 and Q3 guarantee that there are

infinitely many witnesses w ∈ W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0, the

computation ΓU,Dβ_〈i,σ〉[s](w) is honest, as < w < bs and as < θs(w) < bs. Infinitely many of

these witnesses w will also enter the set A at stage s, but only finitely many of them will cause

a U � φ1[s](w) change to occur by the leastR -expansionary stage t > s. Finally we also have

that the length of agrement between ΘD and A increases infinitely often.

Now since α _ 〈g, σ〉 is the leftmost edge which is accessible infinitely often, we have that

there is a stage s0 after which no edge to its left is accessible. Hence only finitely many

edges to the left of α _ 〈g, σ〉 can have been accessible at stages s < s0. Suppose that the

edge α _ 〈g, σ〉 does not have a witness giving a honest computation attached at some stage

s1 > s0. Since witnesses giving an honest computation are attached to the leftmost edge of

the form α _ 〈g, σ〉 which has no other witness attached, and since there are infinitely many

such witnesses, it follows that a witness satisfying these conditions is eventually attached to

245

α _ 〈g, σ〉 at some stage s2 > s1.

In addition we claim that it is possible to ensure that the edge α _ 〈g, σ〉 is visited during

infinitely many α-open stages and infinitely many α-close stages. We address this claim when

we discuss fairness in section 3.7.1.

We also claim that if a witness w is attached to the edge α _ 〈g, σ〉 at some stage s and

the witness gives an honest computation ΓU,Dβ_〈i,σ〉[s](w), it is possible to stop elements from

entering A or D � φ2[s](φ1[s](w)) and A or D � φ3[s](φ1[s](w)) at some stage s′ ≥ s. In

this way the honesty of the witness can be preserved until the strategy determines that it should

enumerate it into the set A. We address this claim when we discuss honesty preservation in

section 3.7.2.

Now if the edge α _ 〈g, σ〉 does not have a work interval defined at some stage s > s0,

the strategy will choose a threshold v and define a work interval (v, γβ_〈i,σ〉[s](v)) for the

edge. Once the work interval has been defined, a witness w giving an honest computation will

eventually be attached to α _ 〈g, σ〉. Then if the edge is in open mode, we have that the

strategy eventually visits the edge during an α-open stage, enumerating w into A and changing

the mode of the edge to close mode.

Now consider the least R -expansionary stage t > s, and suppose that U � φ1,s(w) 6= U �

φ1,t(w). Then once the strategy α becomes accessible again at some stage u ≥ t it diagonalises

and sets the restraint Rα,u = θs(w). But this would mean that ΘD(w) 6= A(w), contradicting

the fact that the length of agreement between ΘD(w) and A expands infinitely often. It follows

that V � φ1,s(w) 6= V � φ1,t(w) instead and that α does not diagonalise.

Since the edge is in close mode, we have that the strategy eventually visits the edge during

an α-close stage s′, performing capricious destruction and enumerating γβ_〈i,σ〉[s′](v) into D,

while changing the mode of the edge to open mode again.

Since the strategy performs capricious destruction infinitely often, we have that

lim
q→∞

γβ_〈i,σ〉[q](v) is unbounded and that ΓU,Dβ_〈i,σ〉(v) ↑.

Hence if 〈g, σ〉 is the outcome of the edge lying on the true path we have that theR requirement

is not satisfied. This will require the next R strategy attempting to satisfy the requirement on

246

the true path to switch to following a Γ̂-strategy. Finally the S requirement remains unsatisfied

as well because the strategy does not diagonalise. For if this were the case, is would contradict

the fact that the length of agrement between ΘD and A increases infinitely often.

d Suppose that the outcome is 〈d, σ〉.

Three different cases have to be considered.

(a) Suppose that there is noR strategy β above α which is active for α.

In this case the strategy has no edge with outcome 〈h, σ〉 or 〈g, σ〉. Hence the analysis is

identical to the one for the 〈d, σ〉 outcome of the S strategy found in Section 3.4.

(b) Suppose that there is some R strategy β above α which is active for α, but every such

strategy follows a Γ̂-strategy.

In this case the strategy has edges with outcome 〈h, σ〉, but no edges with outcome 〈g, σ〉.

We also have that the answers to questions Q1, Q2 and Q3 guarantee that there are

infinitely many witnesses w ∈ W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0, the

computation ΓU,Dβ_〈i,σ〉[s](x) is honest, as < w < bs and as < θs(w) < bs.

Now since α _ 〈d, σ〉 is the leftmost edge which is accessible infinitely often, we have

that there is a stage s0 after which no edge to its left is accessible. Hence only finitely

many edges to the left of α _ 〈d, σ〉 can have been accessible at stages s < s0. Suppose

that the edge α _ 〈d, σ〉 does not have a witness giving a honest computation attached

at some stage s1 > s0. Since witnesses giving an honest computation are attached to the

leftmost edge of the form α _ 〈d, σ〉which has no other witness attached, and since there

are infinitely many such witnesses, it follows that a witness satisfying these conditions is

eventually attached to α _ 〈d, σ〉 at some stage s2 > s1.

In addition we claim that it is possible to ensure that the edge α _ 〈d, σ〉 is visited during

infinitely many α-open stages and infinitely many α-close stages. We address this claim

when we discuss fairness in section 3.7.1.

We also claim that if a witnessw is attached to the edgeα _ 〈d, σ〉 at some stage s and the

witness gives an honest computation ΓU,Dβ_〈i,σ〉[s](w), it is possible to stop elements from

entering A or D � φ2[s](φ1[s](w)) and A or D � φ3[s](φ1[s](w)) at some stage s′ ≥ s.

In this way the honesty of the witness can be preserved until the strategy determines that

247

it should enumerate it into the set A. We address this claim when we discuss honesty

preservation in section 3.7.2.

Now the strategy will eventually attach a witness w giving an honest computation to

α _ 〈d, σ〉. If the edge is in open mode, we have that the strategy eventually visits the

edge during an α-open stage, enumerating w into A at some stage u. Hence when the

strategy becomes accessible again at some stage s′ ≥ u, we have that it diagonalises and

sets Rα,s′ = θu(w). The strategy will in fact have diagonalised successfully because the

priority tree will be arranged such that a U � φ1[u](w) change cannot take place at the

least R expansionary stage u′ > u without α becoming inaccessible. Since α is on the

true path, it will then follow that a U � φ1[u](w) change has instead taken place at the

leastR expansionary stage u′ > u.

However since the strategy has diagonalised we have that ΘD[s′′](w) 6= As′′(w) for all

s′′ > s′, which contradicts the fact that the length of agreement between ΘD(w) and A

expands infinitely often.

(c) Suppose that there is someR strategy β above α which is active for α, and which follows

a Γ-strategy.

In this case the strategy has edges with outcome 〈h, σ〉 and edges with outcome 〈g, σ〉. We

also have that the answers to questions Q1, Q2 and Q3 guarantee that there are infinitely

many witnesses w ∈ W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0, the computation

ΓU,Dβ_〈i,σ〉[s](x) is honest, as < w < bs and as < θs(w) < bs. In addition infinitely many

of these witnesses are enumerated into the set A at stage s and each of these causes a

U � φ1[s](w) change to take place by the least R -expansionary stage t > s. Finally we

have that the length of agreement between ΘD(w) and A expands infinitely often.

Now, suppose that the strategy opens a gap by enumerating a witness w into A at some

stage u, and that a U � φ1[u](w) change takes place at some least R expansionary stage

u′ > u. If the strategy becomes accessible again at some stage s′ ≥ u′, we have that it sets

Rα,s′ > θu(w). But this would mean that ΘD[s′′](w) 6= As′′(w) for all s′′ > s′, which

contradicts the fact that there are infinitely many stages such that the length of agreement

between ΘD(w) and A expands.

248

Since in each of the above three cases we have a contradiction, it follows that no edge with

outcome 〈d, σ〉 can be on the true path. In fact, only edges with outcome 〈w, σ〉 can be on the

true path if the strategy diagonalises successfully. This is the only outcome for which Q1 can

have a negative answer, which in turn allows the length of agreement between ΘD and A to be

finite in length.

3.5.9 Organisation of Priority Tree

We shall now organise a priority tree in order to satisfy an S requirement below anR requirement.

The following notation shall be used when depicting the priority tree shown in figure 3.1. Note

that when we say that some strategy γ takes into consideration another strategy γ′, we mean that

γ′ is active for γ.

• βU will denote anR strategy which is following a Γ-strategy.

• βV will denote anR strategy which is following a Γ̂-strategy.

• αU will denote an S strategy which needs to take into consideration one R strategy

following a Γ-strategy lying above it.

• αV will denote an S strategy which needs to take into consideration one R strategy

following a Γ̂-strategy lying above it.

• α will denote an S strategy which does not need to take into consideration any R strategy

lying above it.

When presenting the priority tree we omit the infinitely many edges of a givenR strategy, focusing

on just one edge with outcome 〈i, σ〉. Similarly, we omit the infinitely many edges of a given

S strategy, focusing on just one edge with outcome 〈w, σ〉, one with outcome 〈d, σ〉, one with

outcome 〈h, σ〉 and one with outcome 〈g, σ〉 (whenever the last two kinds of edge are present). To

simplify our presentation we shall simply write σ to denote the use of any outcome being depicted.

We also recall that the infinitely many edges of each strategy are ordered by the value of σ and not

by the value of o. The outcomes will thus be depicted on the priority tree as being in no particular

order.

249

We have already seen that the effect of the various outcomes of an S strategy on the satisfaction

of the R and S requirements is similar to the effect of an S strategy in the original Lachlan Non-

Splitting Theorem. Hence it is possible to build the priority tree in this section in an analogous

way to the priority tree for the Lachlan Non-Splitting Theorem.

As is the case with the priority tree of the Lachlan Non-Splitting Theorem, the highest priority

unsatisfied requirement at a given node can be determined though the analysis of the outcomes

covered in the previous section. As before, the highest priority unsatisfied requirement at a given

node causes a strategy of the corresponding kind to appear at that node. When an S strategy has

an edge with outcome 〈g, σ〉 it will cause the corresponding R requirement to switch its mode

of satisfaction from a Γ-strategy to a Γ̂-strategy below the edge. This will cause any R strategy

below the edge to follow a Γ̂-strategy instead of a Γ-strategy. In addition, we have already seen that

S strategies will follow S-Synchronisation. As in the construction of the Lachlan Non-Splitting

Theorem, the combination of switching and S-Synchronisation will allow an S requirement below

an R requirement to be satisfied when strategies are organised according to the priority tree in

figure 3.1.

The resulting modified priority tree is shown below.

3.5.10 Satisfaction of Requirements

We shall now examine the simultaneous satisfaction of theR and S requirements by the strategies

and priority tree found in this section. For our purposes it shall be sufficient to consider the most

complex situation, which occurs when the strategy αV is on the true path and the leftmost edge

visited infinitely often by the strategy is α _ 〈w, σ〉.

w Suppose that the edge αV _ 〈w, σ〉 is on the true path.

The analysis for showing that the S requirement is satisfied is identical to the one found in

Section 3.5.8 for the case where the outcome 〈w, σ〉 of the strategy is on the true path.

We now consider the satisfaction of theR requirement by the strategy βV .

If αV never enumerates a witness w into the set A, then we have that it cannot interfere with

250

βU

αU

.α

....

〈d, σ〉 〈w, σ〉

..βV

αV

..α

....

〈d, σ〉 〈w, σ〉

..
〈w, σ〉

〈h, σ〉
〈d, σ〉

〈i, σ〉

.

〈g, σ〉 〈w, σ〉 〈d, σ〉
〈h, σ〉

〈i, σ〉

Figure 3.1: Priority tree for S belowR

βV building ΓV,D
βV_〈i,σ〉 = A and satisfying the R requirement. On the other hand, suppose

that αV has enumerated a witness w into the set A at stage u. Then by S -Synchronisation the

strategy αU must also have enumerated some witness w′ into the set A at stage u.

Now at stage u, the strategy αV lies inside the work interval (v, γβU_〈i,σ〉[u](v)) of the edge

αU _ 〈g, σ〉, and therefore both w and θu(w) must lie inside this work interval. On the other

hand, αU can only choose witnesses w′ which are greater than the upper bound of its work

interval. Hence we have that w < w′. The enumeration of w and w′ into the set A at stage u

therefore create least disagreements ΓU,D
βU_〈i,σ〉(w) 6= A(w) and ΓV,D

βV_〈i,σ〉(w) 6= A(w).

Now, in order for αV to lie on the true path, it must become accessible again. But for this

to be the case, the strategy βU must have visited the edge βU _ 〈i, σ〉 and continued to the

next substage at some least stage u′ > u. Since ΓU,D
βU_〈i,σ〉[u

′](w) 6= Au′(w), βU can only

have gone to the next substage whilst visiting the edge if a β-expansionary stage u′′ such that

u < u′′ ≤ u′ has been attached to the edge.

We now make two considerations.

251

Firstly, in order for αV to have enumerated w into A at stage u, the edge βU _ 〈i, σ〉 must

have been in open mode at stage u, and the strategy must have gone to the next substage when

visiting the edge at stage u. This means that the strategy must have changed the mode of the

edge to close mode at stage u. Therefore when βU visits the edge βU _ 〈i, σ〉 at stage u′,

it will see the disagreement ΓU,D
βU_〈i,σ〉[u

′](w) 6= Au′(w) and enumerate γβU_〈i,σ〉[u′](v) into

D so as to remove it. Now the uses of the functional must be non decreasing with respect

to stages, and therefore we have that γβU_〈i,σ〉[u′](v) ≥ γβU_〈i,σ〉[u](v). Now both αV and

βV lie inside the work interval of the edge αU _ 〈g, σ〉 and have not been accessible since

stage u. It follows that θu(w) < γβU_〈i,σ〉[u
′](v), and that any use chosen in defining the

functional ΓV,D
βV_〈i,σ〉 at or prior to stage u must also be smaller than γβU_〈i,σ〉[u′](v). Hence

the enumeration of γβU_〈i,σ〉[u′](v) into D has no effect on the strategies αV and βV .

Secondly, from the fact that a β-expansionary stage u′′ has been attached to βU _ 〈iσ〉, we

can infer that there has been some least R -expansionary stage t such that u < t ≤ u′′. If

U � φ1,u(w) 6= U � φ1,t(w), we have that αU determines that it has diagonalised when it is

accessible again at some least stage u′′′ ≥ u′. This causes αU to detach every witness attached

to one of its edges, stop attaching witnesses and to set RαU ,u′′′ > 0. But the latter means that

αU will start terminating the stage whenever it visits the edge αU _ 〈g, σ〉 at and after stage

u′′′, making the strategy αV inaccessible, which is a contradiction.

Hence it must be the case that V � φ1,u(w) 6= V � φ1,t(w). From this it follows that

ΓV,D
βV_〈i,σ〉(w) becomes undefined at stage t, meaning that it no longer disagrees with A(w).

Hence once the strategy βV visits its edge βV _ 〈i, σ〉 again at some least stage u′′′′ ≥ u′, there

will be no need to repair a disagreement and the strategy will not enumerate γβV_〈i,σ〉[u′′′′](v)

into D. Thus when αV becomes accessible again at some least stage u′′′′′ ≥ u′′′, we have

that the strategy αV has diagonalised and preserved this diagonalisation. Therefore the S

requirement is satisfied.

Similarly, the functional being built by the strategy βV no longer disagrees with the set A,

and the strategy βV is now able to build ΓV,D
βV_〈i,σ〉 = A without the interference of αV , thus

satisfying theR requirement.

252

3.6 S BelowR2 BelowR1

In this section we shall show how one can satisfy one S requirement below one R requirement

labeledR2 below oneR requirement labeledR1.

Similarly to the previous section, this will require the use of multipleR and S strategies organised

into a priority tree. In this section we shall introduce R strategies which are able to take into

consideration one other R strategy lying above them, and S strategies which are able to take

into consideration two other R strategies lying above them. These strategies can then be used in

conjunction with the simpler strategies found in Section 3.5 to satisfy the requirements.

We shall now consider the new R strategies which will be required. We start by defining the

questions needed for theR strategy to determine its outcome at any given stage.

3.6.1 Questions for theR Strategy

The R strategy β, will need to ask one question, which we denote by Q1. The question asks

whether the strategy β sees infinitely many β-expansionary stages:

(1) Are there infinitely many q ∈ Nβ such that the following holds?

(i) (∀q′ < q)[β-stage(q′)⇒ lq(Φ
U,V
1 , A) > lq′(Φ

U,V
1 , A)].

(ii) (∀q′ < q)[β-stage(q′) ∧ (∀q′′ < q′)[β-stage(q′′)⇒ lq′(Φ
U,V
1 , A) > lq′′(Φ

U,V
1 , A)]⇒

lq(Φ
A,D
2 , U) > lq′(Φ

A,D
2 , U)].

(iii) (∀q′ < q)[β-stage(q′) ∧ (∀q′′ < q′)[β-stage(q′′)⇒ lq′(Φ
U,V
1 , A) > lq′′(Φ

U,V
1 , A)]⇒

lq(Φ
A,D
3 , V) > lq′(Φ

A,D
3 , V)].

If the strategy is accessible at some stage s, it will guess the answer to Q1 by computing the

apparent limit o and apparent use σ for lim
t→∞

ΨH0(f(Q1), t) at stage s. If the answer corresponding

to o is ‘No’, we denote the outcome by 〈f, σ〉. On the other hand, if the answer corresponding to

o is ‘Yes’, we denote the outcome by 〈i, σ〉.

We now describe theR strategy itself.

253

3.6.2 TheR Strategy

The R strategy β will work as follows. First of all, it can either be following a Γ-strategy or a

Γ̂-strategy which will depend on its location on the priority tree. The outcomes of the strategy will

be of the form 〈i, σ〉 and 〈f, σ〉. If the strategy is following a Γ-strategy, it will build a different

functional ΓU,Dβ_〈i,σ〉 below every edge β _ 〈i, σ〉 leaving β. Similarly if the strategy is following

a Γ̂-strategy, it will build a different functional ΓV,Dβ_〈i,σ〉 below every edge β _ 〈i, σ〉 leaving β.

On the other hand, the strategy will not build any functional below edges of the form β _ 〈f, σ〉,

irrespectively of whether it is following a Γ-strategy or a Γ̂-strategy.

Each edge of the form β _ 〈i, σ〉 will have a separate set of uses U e,β_〈i,σ〉 from which the

strategy will choose uses when defining the functional associated to the edge β _ 〈i, σ〉. Note

that e is the index of the strategy β in the total ordering of the R strategies lying on the priority

tree. The most important difference from the R strategy described in the previous section is that

the R strategy β will now lie below at most one R strategy β1 which is active for β, and which

the latter must now take into consideration.

The strategy goes through the following steps at stage s.

During its first step, the strategy β will calculate a rightward restraint r(β _ 〈o′, σ′〉) for every

edge β _ 〈o′, σ′〉 which has been previously accessible, exactly as in the previous section.

Similarly during its second step, the strategy β will perform its attachment procedure as in the

previous section, attaching the stage s to a suitable edge if s is a β-expansionary stage.

During its third step the strategy β will calculate its attachment restraint a(β _ 〈o′, σ′〉) for every

edge β _ 〈o′, σ′〉 which has been previously accessible as in the previous section.

This is followed by its fourth step, where the strategy will calculate the outcome β _ 〈o, σ〉 to

visit during the present stage.

Once the outcome has been determined, the strategy will perform its fifth step by calculating the

downward restraint d(β _ 〈o, σ〉, s) for the edge β _ 〈o, σ〉 as in the previous section.

During the final and sixth step, the strategy will take action depending on the outcome of the edge

β _ 〈o, σ〉. This will be mostly identical to the procedure found in the previous section, with one

254

important exception. If there is anR strategy β1 above β which is active for β, we have that β must

now R-Synchronise with β1. Thus if the strategy β1 has an edge β1 _ 〈i, σ1〉 on the path leading

to β, and β defines the functional associated to some edge β _ 〈i, σ〉 at some element x at stage

s by choosing some use γβ_〈i,σ〉[s](x), we must have that γβ_〈i,σ〉[s](x) > γβ1_〈i,σ1〉[s](x).

We shall now formalise theR strategy.

TheR Strategy

The strategy β labeled Ri will either be following a Γ-strategy or a Γ̂-strategy. Every edge

β _ 〈i, σ〉 has a functional ΓUi,Dβ_〈i,σ〉 (or ΓVi,Dβ_〈i,σ〉 resp.) associated to it, which the strategy

will build when it visits that edge. Each edge β _ 〈i, σ〉 will also have its own set of uses

U e,β_〈i,σ〉 from which uses will be chosen when defining the respective functionals.

The strategy β lies below a number of R strategies β′. Each such strategy β′ imposes a

downward restraint d(β′ _ 〈o′, σ′〉, s) on β at stage s, where β′ _ 〈o′, σ′〉 is the edge of

β′ on the path leading to β. One of these R strategies will be active for β. In this case we

denote thisR strategy by β1 and its edge lying on the path leading to β by β1 _ 〈i, σ1〉. This

strategy will either be following a Γ-strategy or a Γ̂-strategy.

The strategy β may also lie below a number of S strategies α′. Each such strategy α′ imposes

a downward restraint d(α′ _ 〈o′, σ′〉, s) on β at stage s, where α′ _ 〈o′, σ′〉 is the edge of α′

on the path leading to β. The strategy α′ also imposes the diagonalisation restraint Rα′,s on

β at stage s. The strategy α′ may also impose a work interval on β at stage s, depending on

its outcome on the path leading to β. Finally let α′′ ⊂ β be the greatest S strategy (under ⊂)

which imposes a work interval on β. We shall denote the work interval imposed by α′′ on β

at stage s by (as, bs).

(1) Define the rightward restraint r(β _ 〈o′, σ′〉, s) for every edge β _ 〈o′, σ′〉 which was

previously accessible as the least element x such that:

(a) x ≥ t where t is some β-expansionary stage attached to β _ 〈o′, σ′〉.

(b) x ≥ t where t is the last stage at which β _ 〈o′, σ′〉 was accessible.

255

Go to step (2).

(2) If stage s is a β-expansionary stage, and there is some edge β _ 〈i, σ′〉 which has been

previously accessible and which has no β-expansionary stage attached to it, attach s to

the leftmost such edge.

If a β-expansionary stage s has been attached to some edge β _ 〈i, σ′〉, consider every

edge β _ 〈i, σ′′〉 lying to the right of β _ 〈i, σ′〉. If some β-expansionary stage s′ is

attached to β _ 〈i, σ′′〉, detach the β-expansionary stage from the edge.

Go to step (3).

(3) Determine the edge β _ 〈o, σ〉 which the strategy should visit at stage s.

Go to step (4).

(4) Define the attachment procedure restraint a(β _ 〈o′, σ′〉, s) for every edge β _ 〈o′, σ′〉

which was previously accessible. If the strategy has not attached a β-expansionary stage

s to some edge β _ 〈o′′, σ′′〉 <L β _ 〈o′, σ′〉 at stage s, define a(β _ 〈o′, σ′〉, s) = 0.

Otherwise define a(β _ 〈o′, σ′〉, s) = s.

Also define the downward restraint d(β _ 〈o, σ〉, s) as the least element x such that:

(a) x ≥ sup{r(β _ 〈o′, σ′〉, s) | β _ 〈o′, σ′〉 <L β _ 〈o, σ〉 ∧

β _ 〈o′, σ′〉 has been previously accessible}.

(b) x ≥ a(β _ 〈o, σ〉, s).

(c) x ≥ d(β _ 〈o, σ〉, t) for all t < s.

Go to step (5).

(5) Consider the edge β _ 〈o, σ〉 being visited by the strategy at stage s. Take action

according to the value of o through the following case analysis.

(a) o = f .

(i) β _ 〈f, σ〉 is in open mode and s is not a β-open stage. End the stage s, and

go to stage s+ 1.

256

(ii) β _ 〈f, σ〉 is in open mode and s is a β-open stage. Set the edge to close

mode. Go to the next substage.

(iii) β _ 〈f, σ〉 is in close mode and s is not a β-close stage. End the stage s, and

go to stage s+ 1.

(iv) β _ 〈f, σ〉 is in close mode and s is a β-close stage. Set the edge to open

mode. Go to the next substage.

(b) o = i.

(i) β _ 〈i, σ〉 is in open mode and there is no β-expansionary stage attached to

the edge. End the stage s, and go to stage s+ 1.

(ii) β _ 〈i, σ〉 is in open mode and there is a β-expansionary stage attached to

the edge and s is not a β-open stage. End the stage s, and go to stage s+ 1.

(iii) β _ 〈i, σ〉 is in open mode and there is a β-expansionary stage attached to

the edge and s is a β-open stage.

If there is some element m such that ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m) (or

ΓVi,Dβ_〈i,σ〉[s](m) resp.), set the edge to close mode. End the stage s, and go to

stage s+ 1.

Otherwise, detach the stage s from the edge. Consider every x <

ls(Φ
Ui,Vi
1 , A) such that ΓUi,Dβ_〈i,σ〉[s](x) ↑. Define the axiom ΓUi,Dβ_〈i,σ〉[s](x) =

As(x). Consider the least element u < s in U e,β_〈i,σ〉 such that:

(A) u ≥ γβ_〈i,σ〉[t](x) for all t < s.

(B) u > γβ_〈i,σ〉[s](y) for all y < x.

(C) u > sup{r(β _ 〈o′, σ′〉, s) | β _ 〈o′, σ′〉 <L β _ 〈o, σ〉 ∧

β _ 〈o′, σ′〉 has been previously accessible}.

(D) u > a(β _ 〈i, σ〉, s).

(E) u > Rα′,s, for every S strategy α′ ⊂ β.

(F) u > d(β′ _ 〈o′, σ′〉, s), for every R strategy β′ ⊂ β with edge β′ _

〈o′, σ′〉 on the path leading to β.

(G) u > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ β with edge α′ _

〈o′, σ′〉 on the path leading to β.

257

(H) as < u < bs.

(I) u 6∈ D.

(J) u > y, where y is a constraint imposed by some S strategy α below β.

(K) u > t, where t is the last stage at which the edge β _ 〈i, σ〉 was last

initialised.

(L) u > γβ1_〈i,o1〉[s](x).

If u does not exist, ΓUi,Dβ_〈i,σ〉(x) is not defined.

Otherwise let t′ < s be the greatest stage such that ΓUi,Dβ_〈i,σ〉[t
′](x) ↓, and let

u′ be the greatest use which the strategy has chosen so far when defining its

functional at some element.

If t′ does not exist, define γβ_〈i,σ〉[s](x) = u.

If t′ exists and u > γβ_〈i,σ〉[t
′](x), define γβ_〈i,σ〉[s](x) to be the least

element in U e,β_〈i,σ〉 which is greater than u′.

Otherwise define γβ_〈i,σ〉[s](x) = γβ_〈i,σ〉[t
′](x).

Set the edge to close mode. Go to the next substage.

(ΓV,D resp.)

(iv) β _ 〈i, σ〉 is in close mode and there is an element m such that

ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓVi,Dβ_〈i,σ〉[s](m) resp.) and there is no β-

expansionary stage attached to the edge. End the stage s, and go to stage

s+ 1.

(v) β _ 〈i, σ〉 is in close mode and there is an element m such that

ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓVi,Dβ_〈i,σ〉[s](m) resp.) and there is a β-

expansionary stage attached to the edge and s is not a β-close stage. End

the stage s, and go to stage s+ 1.

(vi) β _ 〈i, σ〉 is in close mode and there is an element m such that

ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓVi,Dβ_〈i,σ〉[s](m) resp.) and there is a β-

expansionary stage attached to the edge and s is a β-close stage. Enumerate

γβ_〈i,σ〉[s](m) into D. Set the edge to open mode. End the stage s and go to

stage s+ 1.

258

(vii) β _ 〈i, σ〉 is in close mode and there is no element m such that

ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓVi,Dβ_〈i,σ〉[s](m) resp.) and s is not a β-close

stage. End the stage s, and go to stage s+ 1.

(viii) β _ 〈i, σ〉 is in close mode and there is no element m such that

ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓVi,Dβ_〈i,σ〉[s](m) resp.) and s is a β-close stage.

Set the edge to open mode. Go to the next substage.

3.6.3 Analysis of Outcomes

The analysis is identical to the one found in Section 3.5.

We shall now consider the new S strategies which will be required. We start by defining the

questions needed for the S strategy to determine its outcome at any given stage.

3.6.4 Questions for the S Strategy

The S strategy α will need to ask a number of questions, which take the context of the strategy

into consideration. We assume that the strategy α lies below two R strategies βi for 1 ≤ i ≤ 2

which are active for α and which can follow a Γ-strategy or a Γ̂-strategy. The strategy βi will have

an outgoing edge βi _ 〈i, σi〉, which lies on the path leading to the strategy α. In addition S

strategies α′ lying above α may impose a work interval on α. The work interval imposed at stage

s by the greatest strategy α′ (under ⊂) above α is denoted by (as, bs). In addition, we shall also

use the notation φi,1[s](w) for 1 ≤ i ≤ 2 to denote the use of the computation ΦUi,Vi
i,1 [s](w).

The strategy starts by asking question Q1. This question asks whether there are infinitely many

witnesses w and stages s such that w and θs(w) lie inside the work interval (as, bs) at stage s and

such that the computation ΘD[s](w) ↓= 0 holds. In addition the question also asks whether the

length of agreement between the functional ΘD and the set A expands infinitely often.

(1) Are there infinitely many w ∈W e, s ∈ Nα and q ∈ Nα such that the following hold?

(i) ΘD[s](w) ↓= 0.

259

(ii) as < w < bs (if a work interval is imposed on the strategy).

(iii) as < θs(w) < bs (if a work interval is imposed on the strategy).

(iv) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

The strategy then proceeds by asking question Q2.1. A positive answer to question Q1 asserts

that there are infinitely many witnesses w and stages s such that w and θs(w) lie inside the work

interval (as, bs) and such that the computation ΘD[s](w) ↓= 0 holds. Question Q2.1 asks whether

infinitely many of these witnesses w and stages s give rise to computations ΓU1,D
β1_〈i,σ1〉[s](w) (or

ΓV1,Dβ1_〈i,σ1〉[s](w) resp.) which are honest.

(2.1) Are there infinitely many w ∈W e, s ∈ Nα and q ∈ Nα such that the following hold?

(i) ΘD[s](w) ↓= 0.

(ii) as < w < bs (if a work interval is imposed on the strategy).

(iii) as < θs(w) < bs (if a work interval is imposed on the strategy).

(iv) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

(v) φ1,1[s](w) ≤ γβ1_〈i,σ1〉[s](w).

The strategy then proceeds by asking questionQ2.2. A positive answer to questionQ1 and question

Q2.1 asserts that there are infinitely many witnesses w and stages s such that w and θs(w) lie

inside the work interval (as, bs), the computation ΘD[s](w) ↓= 0 holds and the computation

ΓU1,D
β1_〈i,σ1〉[s](w) (or ΓV1,Dβ1_〈i,σ1〉[s](w) resp.) is honest. QuestionQ2.2 asks whether infinitely many

of these witnesses w and stages s give rise to computations ΓU2,D
β2_〈i,σ2〉[s](w) (or ΓV2,Dβ2_〈i,σ2〉[s](w)

resp.) which are also honest.

(2.2) Are there infinitely many w ∈W e, s ∈ Nα and q ∈ Nα such that the following hold?

(i) ΘD[s](w) ↓= 0.

(ii) as < w < bs (if a work interval is imposed on the strategy).

(iii) as < θs(w) < bs (if a work interval is imposed on the strategy).

(iv) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

(v) φ1,1[s](w) ≤ γβ1_〈i,σ1〉[s](w).

(vi) φ2,1[s](w) ≤ γβ2_〈i,σ2〉[s](w).

260

Subsequently, if β1 is following a Γ-strategy, we proceed by asking question Q3.1. A positive

answer to questionsQ1,Q2.1 andQ2.2 asserts that there are infinitely many witnessesw and stages

s such that w and θs(w) lie inside the work interval (as, bs), the computation ΘD[s](w) ↓= 0

holds and the computations ΓU1,D
β1_〈i,σ1〉[s](w) and ΓU2,D

β2_〈i,σ2〉[s](w) (or ΓV2,Dβ2_〈i,σ2〉[s](w) resp.) are

honest. Question Q3.1 asks whether infinitely many of these witnesses w enter A at stage s, and

whether a U1 � φ1,1[s](w) change occurs by the leastR1-expansionary stage t1 > s.

(3.1) Are there infinitely many w ∈ W e s ∈ Nα, t1 ∈ N and q ∈ Nα such that the following

hold?

(i) ΘD[s](w) ↓= 0.

(ii) as < w < bs (if a work interval is imposed on the strategy).

(iii) as < θs(w) < bs (if a work interval is imposed on the strategy).

(iv) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

(v) φ1,1[s](w) ≤ γβ1_〈i,σ1〉[s](w).

(vi) φ2,1[s](w) ≤ γβ2_〈i,σ2〉[s](w).

(vii) As(w) = 0.

(viii) As+1(w) = 1.

(ix) t1 > s.

(xi) (∀s < t′ < t1)[U1,t′ � φ1,1[s](w) = U1,s � φ1,1[s](w)].

(xii) (∀s < t′ < t1)[V1,t′ � φ1,1[s](w) = V1,s � φ1,1[s](w)].

(xiii) U1,t1 � φ1,1[s](w) 6= U1,s � φ1,1[s](w)].

Finally if β2 is following a Γ-strategy, we proceed by asking question Q3.2. A positive answer to

questions Q1, Q2.1 and Q2.2 asserts that there are infinitely many witnesses w and stages s such

that w and θs(w) lie inside the work interval (as, bs), the computation ΘD[s](w) ↓= 0 holds and

the computations ΓU1,D
β1_〈i,σ1〉[s](w) (or ΓV1,Dβ1_〈i,σ1〉[s](w) resp.) and ΓU2,D

β2_〈i,σ2〉[s](w) are honest.

Now if question Q3.1 is asked and answered positively we also have that infinitely many of these

witnesses w enter A at stage s, and infinitely many of these cause a U1 � φ1,1[s](w) change to

occur by the leastR1-expansionary stage t1 > s. Question Q3.2 would then ask whether infinitely

261

many of the witnesses causing a U1 � φ1,1[s](w) change also cause a U2 � φ2,1[s](w) change to

occur by the leastR2-expansionary stage t2 > s.

On the other hand, if questionQ3.1 is not asked, we have that questionQ3.2 asks whether infinitely

many of the witnesses w enter A at stage s, and whether infinitely many of these cause a U2 �

φ2,1[s](w) change to occur by the leastR2-expansionary stage t2 > s.

(3.2) Are there infinitely many w ∈ W e, s ∈ Nα, t1 ∈ N, t2 ∈ N and q ∈ Nα such that the

following hold?

(i) ΘD[s](w) ↓= 0.

(ii) as < w < bs (if a work interval is imposed on the strategy).

(iii) as < θs(w) < bs (if a work interval is imposed on the strategy).

(iv) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

(v) φ1,1[s](w) ≤ γβ1_〈i,σ1〉[s](w).

(vi) φ2,1[s](w) ≤ γβ2_〈i,σ2〉[s](w).

(vii) As(w) = 0.

(viii) As+1(w) = 1.

(ix) t1 > s.

(x) t2 > s.

(xi) β1 exists and follows a Γ-strategy ⇒ (∀s < t′ < t1)[U1,t′ � φ1,1[s](w) = U1,s �

φ1,1[s](w)].

(xii) β1 exists and follows a Γ-strategy ⇒ (∀s < t′ < t1)[V1,t′ � φ1,1[s](w) = V1,s �

φ1,1[s](w)].

(xiii) β1 exists and follows a Γ-strategy⇒ U1,t1 � φ1,1[s](w) 6= U1,s � φ1,1[s](w)].

(xiv) (∀s < t′ < t2)[U2,t′ � φ2,1[s](w) = U2,s � φ2,1[s](w)].

(xv) (∀s < t′ < t2)[V2,t′ � φ2,1[s](w) = V2,s � φ2,1[s](w)].

(xvi) U2,t2 � φ2,1[s](w) 6= U2,s � φ2,1[s](w)].

If the strategy is accessible at some stage s, it will guess the answer to questions Q1, Q2.1, Q2.2,

Q3.1 and Q3.2 (where applicable). This is done by computing an apparent limit oi and an apparent

262

use σi for each lim
t→∞

ΨH0(f(Qi), t) at stage s. Let σ be the apparent use of greatest length. The

outcome visited by the strategy at stage s is calculated as follows.

• If the answer corresponding to o1 is ‘No’, we denote the outcome by 〈w, σ〉.

• If β1 exists, the answer corresponding to o1 is ‘Yes’, and the answer corresponding to o2.1

is ‘No’, we denote the outcome by 〈h1, σ〉.

• If β1 and β2 exist, the answer corresponding to o1 is ‘Yes’, the answer corresponding to o2.1

is ‘Yes’, and the answer corresponding to o2.2 is ‘No’, we denote the outcome by 〈h2, σ〉.

• If β1 and β2 exist, β1 is following a Γ-strategy, the answer corresponding to o1 is ‘Yes’,

the answer corresponding to o2.1 is ‘Yes’, the answer corresponding to o2.2 is ‘Yes’, and the

answer corresponding to o3.1 is ‘No’, we denote the outcome by 〈g1, σ〉.

• If β1 and β2 exist, β1 is following a Γ-strategy, β2 is following a Γ-strategy, the answer

corresponding to o1 is ‘Yes’, the answer corresponding to o2.1 is ‘Yes’, the answer

corresponding to o2.2 is ‘Yes’, the answer corresponding to o3.1 is ‘Yes’, and the answer

corresponding to o3.2 is ‘No’, we denote the outcome by 〈g2, σ〉.

• If β1 and β2 exist, β1 is following a Γ-strategy, β2 is following a Γ-strategy, the answer

corresponding to o1 is ‘Yes’, the answer corresponding to o2.1 is ‘Yes’, the answer

corresponding to o2.2 is ‘Yes’, the answer corresponding to o3.1 is ‘Yes’, and the answer

corresponding to o3.2 is ‘Yes’, we denote the outcome by 〈d, σ〉.

• If β1 and β2 exist, β1 is following a Γ̂-strategy, β2 is following a Γ-strategy, the answer

corresponding to o1 is ‘Yes’, the answer corresponding to o2.1 is ‘Yes’, the answer

corresponding to o2.2 is ‘Yes’, and the answer corresponding to o3.2 is ‘No’, we denote

the outcome by 〈g2, σ〉.

• If β1 and β2 exist, β1 is following a Γ̂-strategy, β2 is following a Γ-strategy, the answer

corresponding to o1 is ‘Yes’, the answer corresponding to o2.1 is ‘Yes’, the answer

corresponding to o2.2 is ‘Yes’, and the answer corresponding to o3.2 is ‘Yes’, we denote

the outcome by 〈d, σ〉.

• If β1 and β2 exist, β1 is following a Γ̂-strategy, β2 is following a Γ̂-strategy, the answer

corresponding to o1 is ‘Yes’, the answer corresponding to o2.1 is ‘Yes’ and the answer

263

corresponding to o2.2 is ‘Yes’, we denote the outcome by 〈d, σ〉.

We shall now proceed to discuss the S strategy.

3.6.5 The S Strategy

The S strategy α has an infinite set of witnesses W e, and an infinite set of thresholds V e, where

e is the index of the strategy α in the total ordering of the S strategies lying on the priority tree.

At any given stage s it will also be able to impose a restraint Rα,s on all lower priority strategies.

Initially, we have that Rα,0 is equal to 0. The strategy α shall use the fact that Rα,s > 0 to signal

that it has diagonalised. Once this restraint has been set, it will keep its value during subsequent

stages.

The strategy α lies below two R strategies βi for 1 ≤ i ≤ 2 which are active for α and which

can follow a Γ-strategy or a Γ̂-strategy. In this case the strategy βi will have an outgoing edge

βi _ 〈i, σi〉, which lies on the path leading to the strategy α. The outcomes of the strategy will

be of the form 〈d, σ〉, 〈h1, σ〉, 〈h2, σ〉 and 〈w, σ〉, while the outcome 〈g1, σ〉 will be present if β1

is following a Γ-strategy, and the outcome 〈g2, σ〉 will be present if β2 is following a Γ-strategy.

The strategy goes through the following steps at stage s.

During its first step, the strategy determines whether it has enumerated some witness w′ into the

set A during the last stage t at which it was accessible (assuming it was accessible at least once

before, and that it has not been initialised in the meantime). Suppose that this has been the case.

Then the strategy needs to determine the way in which the disagreements ΦU1,V1
1,1 (w′) 6= A(w′)

and ΦU2,V2
2,1 (w′) 6= A(w′) which were introduced when the strategy enumerated w′ into A at stage

t were removed.

In order to do this, the strategy determines two things. Firstly, whether a U1 � φ1,1[t](w′) change

has occurred between stage t and the least R1-expansionary stage t1 > t. Secondly, whether a

U2 � φ2,1[t](w′) change has occurred between stage t and the leastR2-expansionary stage t2 > t.

If both are the case, the strategy has diagonalised and the strategy sets Rα,s = θt(w), so as to

protect the use of the computation. Note that the first check is required only if the strategy β1

264

exists and is active for α and is following a Γ-strategy, whilst the second check is required only if

the strategy β2 exists and is active for α and is also following a Γ-strategy.

During its second step, the strategy α will calculate a rightward restraint r(α _ 〈o′, σ′〉, s) for

every edge α _ 〈o′, σ′〉 which has been previously accessible, exactly as in the previous section.

During its third step, the strategy α will perform its attachment procedure.

If the strategy has already diagonalised (Rα,s > 0), no further action needs to be taken and the

attachment procedure will be terminated.

Otherwise the attachment procedure will consider in turn every witness w in W e which at stage

s yields a computation ΘD[s](w) ↓= 0 and which has not been attached to an edge so far. The

attachment procedure will be seeking to attach one of these witnesses to an edge, and will stop

considering further witnesses once this has been achieved.

In order to decide which edge the witness under consideration should be attached to, the strategy

will first consider the kind of outcomes which the strategy has. These are determined by the

position of the strategy on the priority tree.

There are three cases to consider.

In the first (and most general) case the S strategy α lies below two R strategies β1 and β2 which

are active for α and which follow a Γ-strategy. In this case, α has edges with outcomes d, g1,

g2, h1, h2 and w. Hence the strategy has to determine whether the computations ΓU1,D
β1_〈i,σ1〉[s](w)

and ΓU1,D
β2_〈i,σ2〉[s](w) are honest. The first computation is honest if φ1,1[s](w) ≤ γβ1_〈i,σ1〉[s](w),

while the second computation is honest if φ2,1[s](w) ≤ γβ2_〈i,σ2〉[s](w). The strategy will then

attach the witness to the appropriate edge depending on the result.

In this case the attachment procedure will consider every witness w which at stage s yields

a computation ΘD[s](w) ↓= 0. The strategy will then determine whether the witness

w gives computations ΓU1,D
β1_〈i,σ1〉[s](w) (or ΓV1,Dβ1_〈i,σ1〉[s](w) resp.) and ΓU2,D

β2_〈i,σ2〉[s](w) (or

ΓV2,Dβ2_〈i,σ2〉[s](w) resp.) which are honest.

If both of these computations are honest, the strategy attaches the witness w to the leftmost edge

of the form α _ 〈g1, σ〉 or α _ 〈g2, σ〉 which does not have a witness attached. In either of these

265

two cases this witness also has to satisfy a number of constraints, similar to the ones described in

the previous section.

If the attachment procedure sees that the witnessw gives a dishonest computation ΓU1,D
β1_〈i,σ1〉[s](w)

(or ΓV1,Dβ1_〈i,σ1〉[s](w) resp.), the strategy will attach the witness w to the leftmost edge of the

form α _ 〈h1, σ〉, subject to the witness satisfying a number of constraints, similar to the ones

described in the previous section. The attachment of a witness to this edge also defines the work

interval (w, γβ1_〈i,σ1〉[s](w)) for this edge.

On the other hand, if the witness w gives an honest computation ΓU1,D
β1_〈i,σ1〉[s](w) (or

ΓV1,Dβ1_〈i,σ1〉[s](w) resp.), and a dishonest computation ΓU2,D
β2_〈i,σ2〉[s](w) (or ΓV2,Dβ2_〈i,σ2〉[s](w) resp.),

the strategy will attach the witness w to the leftmost edge of the form α _ 〈h2, σ〉, subject to the

witness satisfying a number of constraints similar to the ones described in the previous section.

The attachment of a witness to this edge also defines the work interval (w, γβ2_〈i,σ2〉[s](w)) for

this edge.

We now consider two special cases of the S strategy which may appear lower down the priority

tree in this section as backup S strategies, and which are not of a form covered in the previous

section.

In the second case we consider the special case where one of the strategies β1 or β2 is following

a Γ̂-strategy. If β1 is following a Γ̂-strategy, the strategy α will have edges d, h1, h2, g2

and d. The attachment procedure will therefore attach witnesses w giving honest computations

ΓV1,Dβ1_〈i,σ1〉[s](w) and ΓU2,D
β2_〈i,σ2〉[s](w) to edges with outcome g2 satisfying the usual constraints.

On the other hand if β2 is following a Γ̂-strategy, the strategy α will have edges d, h1, h2,

g1 and d. Hence the attachment procedure will attach witnesses w giving honest computations

ΓU1,D
β1_〈i,σ1〉[s](w) and ΓV2,Dβ2_〈i,σ2〉[s](w) to edges with outcome g1 satisfying the usual constraints.

In the third case we consider the special case where both of the strategies β1 and β2 are following

a Γ̂-strategy. In this case there are no edges with outcomes g1 or g2 to which the strategy can

attach witnesses w giving honest computations ΓV1,Dβ1_〈i,σ1〉[s](w) and ΓV2,Dβ2_〈i,σ2〉[s](w). Hence

the attachment procedure will instead attach these witnesses to the leftmost edge with outcome d

which has been visited previously and which presently has no witness attached. The witness will

266

also have to satisfy an appropriate subset of the constraints described above for edges with g1 or

g2 outcomes.

During its fourth step the strategy α calculates the edge α _ 〈o, σ〉 to visit during the present

stage. It then takes action according to the outcome of this edge.

This is followed by its fifth step, where the strategy α will calculate the attachment restraints and

the downward restraint as in the previous section.

During the final and sixth step, the strategy takes action depending on the outcome of the edge

α _ 〈o, σ〉 visited by the strategy at stage s.

Suppose that the strategy visits an outcome of the form α _ 〈w, σ〉 and the edge is in open mode.

If the present stage is not an α-open stage, we terminate the stage so as to wait for an α-open stage.

Otherwise the strategy will count visiting the edge as having taken action successfully, changing

the mode of the edge back to close mode and going to the next substage.

On the other hand, suppose that the outcome is w and the edge is in close mode. If the present

stage is not an α-close stage, we terminate the stage so as to wait for an α-close stage. Otherwise

the strategy will count visiting the edge as having taken action successfully, changing the mode of

the edge back to open mode and going to the next substage.

Suppose that the strategy visits an outcome of the form α _ 〈gi, σ〉 for some 1 ≤ i ≤ 2. If the

strategy has diagonalised as a result of enumerating some witness w′ into A at some prior stage,

the stage is terminated. Otherwise we have that the edge is either in open mode or in close mode.

If the edge is in open mode, the strategy will first determine whether a work interval for the edge is

defined. If this is not the case, the strategy will choose a threshold v so as to define a work interval

(v, γβi_〈i,σi〉[s](v)) for the edge. This threshold has to obey certain constraints as detailed in the

previous section.

Once a work interval is defined for the edge, the strategy will determine whether a witness is

attached to the edge. If this is not the case, the strategy will terminate the stage and wait for a

witness to be attached. If a work interval is defined for the edge, a witness w is attached to the

edge, the strategy will determine whether the witness still gives an honest computation, that is

267

whether φ1,1[s](w) ≤ γβ1_〈i,σ1〉[s](w) and φ2,1[s](w) ≤ γβ2_〈i,σ2〉[s](w). If this is no longer the

case, the witness is detached from the edge. If a work interval is defined for the edge, a witness

has been attached to the edge and the witness gives an honest computation, the strategy determines

whether the present stage is an α-open stage. If this is not the case, the strategy will terminate the

stage and wait for an α-open stage. If the strategy visits the edge, a work interval has been defined,

a witness w has been attached, the witness is honest, and the present stage is an α-open stage, the

strategy can finally take action and open a gap by enumerating the witness w into the set A. Since

the strategy has taken action successfully, it changes the mode of the edge to close mode and goes

to the next substage.

If the edge is in close mode, the strategy will determine whether the present stage is an α-close

stage. If this is not the case, the strategy will terminate the stage and wait for an α-close stage.

If the strategy visits the edge and the present stage is an α-close stage, the strategy will perform

capricious destruction for ΓU1,D
βi_〈i,σi〉 by enumerating the upper bound of the work interval of the

edge γβi_〈i,σi〉[s](v) into the set D. Since the strategy has taken action successfully, it changes

the mode of the edge to open mode and goes to the next substage.

Suppose now that the strategy visits an outcome of the form α _ 〈hi, σ〉 for some 1 ≤ i ≤ 2.

If the strategy has diagonalised as a result of enumerating some witness w′ into A at some prior

stage, the stage is terminated. Otherwise we have that the edge is either in Part I mode or in Part

II mode.

If the edge is in Part I mode, the strategy will determine whether a witness is attached to the

edge. If this is not the case, the strategy will terminate the stage and wait for a witness to be

attached. If a witness w has been attached to the edge during the present stage, the work interval

(w, γβ_〈i,σ〉[s](w)) is defined for the edge and the stage is terminated. If a work interval is defined

for the edge and a witness has been attached to the edge, the strategy will determine whether the

present stage is an α-close stage. If this is not the case, the strategy will terminate the stage and

wait for an α-close stage. Otherwise, the strategy will determine whether the witness w attached

to the edge still gives the appropriate dishonest computations.

Hence if the outcome is h1, the strategy will determine whether ΓU1,D
β1_〈i,σ1〉[s](w) (or

268

ΓV1,Dβ1_〈i,σ1〉[s](w) resp.) is still dishonest at the present stage s. If this is not the case, the strategy

will terminate the stage and wait for a stage until the computation becomes dishonest again.

On the other hand if the outcome is h2, the strategy will determine whether the computation

ΓU2,D
β2_〈i,σ2〉[s](w) (or ΓV2,Dβ2_〈i,σ2〉[s](w) resp.) is still dishonest at the present stage s. If this is not

the case, the strategy will terminate the stage and wait for a stage until the computation becomes

dishonest again. It is important to note that in this case it is sufficient to ensure that the computation

ΓU2,D
β2_〈i,σ2〉[s](x) (or ΓV2,Dβ2_〈i,σ2〉[s](w) resp.) remains dishonest. The reason for this is that if

the edge α _ 〈h2, σ〉 is on the true path, the goal of the strategy will only be to honestify the

functional ΓU2,D
β2_〈i,σ2〉 (or ΓV2,Dβ2_〈i,σ2〉 resp.) so as to make ΦU2,V2

2,1 partial as a consequence.

If the strategy visits the edge, a work interval is defined, a witness has been attached to the edge,

the present stage is an α-close stage, and the witness w gives a dishonest computation as described

above, it will perform honestification for ΓUi,Dβi_〈i,σi〉 by enumerating γβi_〈i,σi〉(w) into the set D.

Since the strategy has taken action successfully, it changes the mode of the edge to Part II mode

and goes to the next substage.

If the edge is in Part II mode, the strategy will determine whether the present stage is an α-open

stage. If this is not the case, the strategy will terminate the stage and wait for an α-open stage.

Otherwise, the strategy will take no action. This will count as the strategy having taken action

successfully, changing the mode of the edge back to Part I mode and going to the next substage.

Finally suppose that the strategy visits an outcome of the form α _ 〈d, σ〉. We have to distinguish

between two cases.

If at least one of the strategies β1 and β2 are following a Γ-strategy, we do nothing and terminate

the stage. On the other hand, if both of the strategies β1 and β2 are following a Γ̂-strategy, we

have that α does not have edges of the form 〈gi, σ〉 for some 1 ≤ i ≤ 2, and that strategies can

enumerate witnesses into A when visiting edges of the form 〈d, σ〉.

Thus suppose that the strategy visits an outcome of the form α _ 〈d, σ〉 and the edge has

no witness attached. Then the strategy terminates the stage and waits for a witness to become

attached. Once a witness becomes attached to the edge, the strategy will determine whether

the witness still gives an honest computation, that is whether φ1,1[s](w) ≤ γβ1_〈i,σ1〉[s](w) and

269

φ2,1[s](w) ≤ γβ2_〈i,σ2〉[s](w). If the computation has become dishonest since it was attached, the

witness is detached from the edge. If a witness has been attached to the edge and the computation

is honest, the strategy determines whether the present stage is an α-open stage. If this is not the

case, the strategy will terminate the stage and wait for an α-open stage. If the strategy visits the

edge, a witness w has been attached, the computation is honest, and the present stage is an α-open

stage, the strategy can finally take action and open a gap by enumerating the witness w into the set

A. The strategy terminates the stage.

We shall now formalise the S strategy.

The S Strategy

The strategy α has a set of witnesses W e and a set of thresholds V e, and at every stage s is

able to impose a restraint Rα,s on lower priority strategies. Initially we have that Rα,0 = 0,

and if the strategy sets Rα,s > 0 during some stage s, the restraint will maintain this value

unless the strategy has been initialised.

The strategy α lies below a number of R strategies β′. Each such strategy β′ imposes a

downward restraint d(β′ _ 〈o′, σ′〉, s) on α at stage s, where β′ _ 〈o′, σ′〉 is the edge of β′

on the path leading to α. Two of these R strategies, which we denote by βi for 1 ≤ i ≤ 2

will be active for α. Similarly the corresponding edges lying on the path leading to α will be

denoted by βi _ 〈i, σi〉 for 1 ≤ i ≤ 2. Each of these strategies may either be following a

Γ-strategy or a Γ̂-strategy.

The strategy α may also lie below a number of S strategies α′. Each such strategy α′ imposes

a downward restraint d(α′ _ 〈o′, σ′〉, s) on α at stage s, where α′ _ 〈o′, σ′〉 is the edge of α′

on the path leading to α. The strategy α′ also imposes the diagonalisation restraint Rα′,s on

α at stage s. The strategy α′ may also impose a work interval on α at stage s, depending on

its outcome on the path leading to α. Let α′′ ⊂ β be the greatest S strategy (under ⊂) which

imposes a work interval on α. We shall denote the work interval imposed by α′′ on α at stage

s by (as, bs).

(1) Consider the last stage t at which α was accessible. If t does not exist, or the strategy α

270

has been initialised at some stage t′ such that t < t′ < s, go to step (2).

If t exists, has α enumerated some witness w into A at stage t?

(a) (No) Go to step (2).

(b) (Yes) Is it the case that for every R strategy βi ⊂ α which is active for α, and is

following a Γ-strategy we have that Ut � φi,1[t](w) 6= Uti � φi,1[t](w), where ti

be the leastRi-expansionary stage greater than t?

(i) (No) Go to step (2).

(ii) (Yes) Set the restraint Rα,s to θt(w). Consider every edge α _ 〈o′, σ′〉 of α

which has been previously accessible. If a work interval is defined for α _

〈o′, σ′〉, cancel the work interval. If some witness is attached to α _ 〈o′, σ′〉,

detach the witness. If o′ is equal to d, g1, g2 or w, set the edge to open mode.

If o′ is equal to h1 or h2, set the edge to Part I mode. Go to step (2).

(2) Define the rightward restraint r(α _ 〈o′, σ′〉, s) for every edge α _ 〈o′, σ′〉 which was

previously accessible as the least element x such that:

(a) x ≥ θt(w), where w is a witness attached to α _ 〈o′, σ′〉 and t is the stage at

which the witness was attached.

(b) x ≥ t, where t is the last stage at which α _ 〈o′, σ′〉 was last accessible.

Go to step (3).

(3) Consider the finite set of witnesses w in W e such that w < s and ΘD[s](w) ↓= 0

and such that w has not been attached to an edge at some stage u < s. Perform the

following case analysis for every such witness in turn (under the order <), until one

witness is attached successfully to an edge or until no more witnesses are available.

(a) Suppose that Rα,s > 0. End stage s, and go to stage s+ 1.

(b) Suppose that Rα,s = 0 and that there is some least (under ⊂) R strategy βi ⊂ α

which is active for α such that φi,1[s](w) > γβi_〈i,σi〉[s](w), where 1 ≤ i ≤ 2. If

there is an edge α _ 〈hi, σ′〉 such that:

271

(i) α _ 〈hi, σ′〉 has been accessible during a previous stage.

(ii) α _ 〈hi, σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈hi, σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

(iv) w > Rα′,s for every S strategy α′ ⊂ α.

(v) w > d(β′ _ 〈o′, σ′〉, s), for everyR strategy β′ ⊂ α with edge β′ _ 〈o′, σ′〉

on the path leading to α.

(vi) w > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _ 〈o′, σ′〉

on the path leading to α.

(vii) as < w < bs.

(viii) as < θs(w) < bs.

(ix) w is greater than the upper bound of the work interval at stage s defined for

any edge α _ 〈o′′, σ′′〉 which was previously accessible and which lies to the

left of α _ 〈hi, σ′〉.

(x) w > t, where t is the last stage at which the edge α _ 〈hi, σ′〉was initialised.

(xi) w > w′, where w′ is any witness which has been attached to this edge at

some stage t < s.

Attach w to the leftmost such α _ 〈hi, σ′〉. Define the work interval of the edge

α _ 〈hi, σ′〉 to be (w, γβi_〈i,σi〉[s](w)).

(c) Suppose that Rα,s = 0 and that there is some R strategy which is active for α

and is following a Γ-strategy, and that φi,1[s](w) ≤ γβi_〈i,σi〉[s](w) for every R

strategy βi ⊂ α which is active for α, where 1 ≤ i ≤ 2. If there is an edge

α _ 〈gj , σ′〉 with 1 ≤ j ≤ 2 such that:

(i) α _ 〈gj , σ′〉 has been accessible during a previous stage.

(ii) α _ 〈gj , σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈gj , σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

(iv) w > Rα′,s for every S strategy α′ ⊂ α.

(v) w > d(β′ _ 〈o′, σ′〉, s), for everyR strategy β′ ⊂ α with edge β′ _ 〈o′, σ′〉

272

on the path leading to α.

(vi) w > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _ 〈o′, σ′〉

on the path leading to α.

(vii) as < w < bs.

(viii) as < θs(w) < bs.

(ix) α _ 〈gj , σ′〉 is in open mode.

(x) The work interval for the edge α _ 〈gj , σ′〉 is defined.

(xi) w is greater than the upper bound of the work interval for the edge α _

〈gj , σ′〉.

(xii) w > t, where t is the last stage at which the edge α _ 〈gj , σ′〉was initialised.

(xiii) w > w′, where w′ is any witness which has been attached to this edge at

some stage t < s.

Then attach w to the leftmost such α _ 〈gj , σ′〉.

(d) Suppose that Rα,s = 0 and that there is some R strategy which is active for

α, and that every such strategy is following a Γ̂-strategy, and that φi,1[s](w) ≤

γβi_〈i,σi〉[s](w) for everyR strategy βi ⊂ α which is active for α, where 1 ≤ i ≤

2. If there is an edge α _ 〈d, σ′〉 such that:

(i) α _ 〈d, σ′〉 has been accessible during a previous stage.

(ii) α _ 〈d, σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈d, σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

(iv) w > Rα′,s for every S strategy α′ ⊂ α.

(v) w > d(β′ _ 〈o′, σ′〉, s), for everyR strategy β′ ⊂ α with edge β′ _ 〈o′, σ′〉

on the path leading to α.

(vi) w > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _ 〈o′, σ′〉

on the path leading to α.

(vii) as < w < bs.

(viii) as < θs(w) < bs.

(ix) w is greater than the upper bound of the work interval at stage s defined for

273

any edge α _ 〈o′′, σ′′〉 which was previously accessible and which lies to the

left of α _ 〈d, σ′〉.

(x) w > t, where t is the last stage at which the edge α _ 〈d, σ′〉 was initialised.

(xi) w > w′, where w′ is any witness which has been attached to this edge at

some stage t < s.

Then attach w to the leftmost such α _ 〈d, σ′〉.

If a witness w has been attached to some edge α _ 〈o′, σ′〉, consider every edge α _

〈o′′, σ′′〉 lying to the right of α _ 〈o′, σ′〉. If some witness w′ is attached to α _

〈o′′, σ′′〉, detach the witness from the edge. If some work interval is defined for α _

〈o′′, σ′′〉, undefine the work interval. If o′′ is equal to d, g1, g2 or w, set the edge to open

mode. If o′′ is equal to h1 or h2, set the edge to Part I mode.

Go to step (4).

(4) Determine the edge α _ 〈o, σ〉 which the strategy should visit at stage s.

Go to step (5).

(5) Define the attachment procedure restraint a(α _ 〈o′, σ′〉, s) for every edge α _

〈o′, σ′〉 which was previously accessible. If the strategy has not attached a witness w to

some edge α _ 〈o′′, σ′′〉 <L α _ 〈o′, σ′〉 at stage s, define a(α _ 〈o′, σ′〉, s) = 0.

Otherwise define a(α _ 〈o′, σ′〉, s) = θs(w).

Also define the downward restraint d(α _ 〈o, σ〉, s) as the least element x such that:

(a) x ≥ sup{r(α _ 〈o′, σ′〉, s) | α _ 〈o′, σ′〉 <L α _ 〈o, σ〉 ∧

α _ 〈o′, σ′〉 has been previously accessible}.

(b) x ≥ a(α _ 〈o, σ〉, s).

(c) x ≥ d(α _ 〈o, σ〉, t) for all t < s.

Go to step (6).

(6) Consider the edge α _ 〈o, σ〉 being visited by the strategy at stage s. Take action

according to the value of o through the following case analysis.

274

(a) o = w.

(i) Suppose that α _ 〈w, σ〉 is in open mode, and s is not an α-open stage. End

the stage s, and go to stage s+ 1.

(ii) Suppose that α _ 〈w, σ〉 is in open mode, and s is an α-open stage. Set the

edge to close mode. Go to the next substage.

(iii) Suppose that α _ 〈w, σ〉 is in close mode, and s is not an α-close stage. End

the stage s, and go to stage s+ 1.

(iv) Suppose that α _ 〈w, σ〉 is in close mode, and s is an α-close stage. Set the

edge to open mode. Go to the next substage.

(b) o = gj , for 1 ≤ j ≤ 2.

(i) Suppose that Rα,s > 0. End stage s, and go to stage s+ 1.

(ii) Suppose that Rα,s = 0, and the work interval for the edge α _ 〈gj , σ〉 is

undefined. If there is some least threshold v < s in V e such that:

(A) v > sup{r(α _ 〈o′, σ′〉, s) | α _ 〈o′, σ′〉 <L α _ 〈gj , σ〉 ∧

α _ 〈o′, σ′〉 has been previously accessible}.

(B) v > a(α _ 〈gj , σ〉, s).

(C) v > Rα′,s for every S strategy α′ ⊂ α.

(D) v > d(β′ _ 〈o′, σ′〉, s), for every R strategy β′ ⊂ α with edge β′ _

〈o′, σ′〉 on the path leading to α.

(E) v > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _

〈o′, σ′〉 on the path leading to α.

(F) as < v < bs.

(G) v is greater than the upper bound of a work interval defined for an edge

α _ 〈o′, σ′〉 lying to the left of α _ 〈o, σ〉.

(H) v > t, where t is the stage at which the edge α _ 〈gj , σ〉 was last

initialised.

Define the work interval of the edge α _ 〈gj , σ〉 to be (v, γβj_〈i,σj〉[s](v)).

End stage s, and go to stage s+ 1.

(iii) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉 and the

275

edge is in open mode, but no witness w is attached to the edge. End stage s,

and go to stage s+ 1.

(iv) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉, the

edge is in open mode and a witnessw is attached to the edge, but φi,1[s](w) >

γβi_〈i,σi〉[s](w) for some βi ⊂ α which is active for α, where 1 ≤ i ≤ 2.

Detach w from α _ 〈gj , σ〉. End stage s, and go to stage s+ 1.

(v) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉, the

edge is in open mode, a witness w is attached to the edge and φi,1[s](w) ≤

γβi_〈i,σi〉[s](w) for every βi ⊂ α which is active for α, where 1 ≤ i ≤ 2, but

s is not an α-open stage. End stage s, and go to stage s+ 1.

(vi) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉, the

edge is in open mode, a witness w is attached to the edge, φi,1[s](w) ≤

γβi_〈i,σi〉[s](w) for every βi ⊂ α which is active for α, where 1 ≤ i ≤ 2

and s is an α-open stage. Enumerate w into A. Set the edge 〈gj , σ〉 to close

mode. Go to the next substage.

(vii) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉, the

edge is in close mode and s is not an α-close stage. End stage s, and go to

stage s+ 1.

(viii) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉, the

edge is in close mode and s is an α-close stage. Enumerate γβj_〈i,σj〉[s](v)

into D. Set the edge 〈gj , σ〉 to open mode. Go to the next substage.

(c) o = hj , for 1 ≤ j ≤ 2.

(i) Suppose that Rα,s > 0. End stage s, and go to stage s+ 1.

(ii) Suppose that Rα,s = 0, but the edge 〈hj , σ〉 has no witness w attached to it.

End stage s, and go to stage s+ 1.

(iii) Suppose that Rα,s = 0, and the strategy has attached a witness w to the edge

〈hj , σ〉 during this stage s. End stage s, and go to stage s+ 1.

(iv) Suppose that Rα,s = 0, the work interval for the edge 〈hj , σ〉 is defined and

the edge 〈hj , σ〉 is in Part I mode, but s is not an α-close stage. End stage s,

276

and go to stage s+ 1.

(v) Suppose that Rα,s = 0, the work interval for the edge 〈hj , σ〉 is defined, the

edge 〈hj , σ〉 is in Part I mode, and s is an α-close stage, but φj,1[s](w) ≤

γβj_〈i,σj〉[s](w). End stage s, and go to stage s+ 1.

(vi) Suppose that Rα,s = 0, and the work interval for the edge 〈hj , σ〉 is defined,

the edge 〈hj , σ〉 is in Part I mode, s is an α-close stage, and φj,1[s](w) >

γβj_〈i,σj〉[s](w). Enumerate γβj_〈i,σj〉[s](w) into D. Set the edge 〈hj , σ〉 to

Part II mode. Go to the next substage.

(vii) Suppose that Rα,s = 0, the edge 〈hj , σ〉 has a witness w attached to it, the

edge is in Part II mode and s is not an α-open stage. End stage s, and go to

stage s+ 1.

(viii) Suppose that Rα,s = 0, the edge 〈hj , σ〉 has a witness w attached to it, the

edge is in Part II mode and s is an α-open stage. Set the edge 〈hj , σ〉 to Part

I mode. Go to the next substage.

(d) o = d.

(i) Suppose that Rα,s > 0. End stage s, and go to stage s+ 1.

(ii) Suppose that Rα,s = 0, that there is some R strategy βi ⊂ α active for α

where 1 ≤ i ≤ 2, that every such strategy is following a Γ̂-strategy and that

no witness w is attached to this edge. End stage s, and go to stage s+ 1.

(iii) Suppose that Rα,s = 0, that there is some R strategy βi ⊂ α active for α

where 1 ≤ i ≤ 2, that every such strategy is following a Γ̂-strategy and that a

witness w is attached to this edge, but φi,1[s](w) > γβi_〈i,σi〉[s](w) for some

βi ⊂ α active for α. Detach the witness w from the edge. End stage s, and

go to stage s+ 1.

(iv) Suppose that Rα,s = 0, that there is some R strategy βi ⊂ α active for α

where 1 ≤ i ≤ 2, that every such strategy is following a Γ̂-strategy, that a

witness w is attached to this edge and that φi,1[s](w) ≤ γβi_〈i,σi〉[s](w) for

every βi ⊂ α active for α, but s is not an α-open stage. End stage s, and go

to stage s+ 1.

277

(v) Suppose that Rα,s = 0, that there is some R strategy βi ⊂ α active for α

where 1 ≤ i ≤ 2, that every such strategy is following a Γ̂-strategy, that

a witness w is attached to this edge, that φi,1[s](w) ≤ γβi_〈i,σi〉[s](w) for

every βi ⊂ α active for α and that s is an α-open stage. Enumerate w into A.

End stage s, and go to stage s+ 1.

(vi) Suppose that Rα,s = 0 and that there is some R strategy βi ⊂ α active for

α which is following a Γ-strategy, where 1 ≤ i ≤ 2. End stage s, and go to

stage s+ 1.

3.6.6 Analysis of Outcomes

We shall now consider the effect of the S strategy α on the satisfaction of the requirements S

below R2 below R1. When certain edges of the strategy α are on the true path, it may be the

case that certain requirements are left unsatisfied. We shall show that the relationship between the

outcome on the true path and the requirements which are left unsatisfied is the same as the one for

the Lachlan Non-Splitting Theorem. The immediate consequence of this will be that the priority

tree for satisfying the requirements S below R2 below R1 can be structured in an analogous way

to the priority tree of the Lachlan Non-Splitting Theorem as described in Chapter 2. This will

allow us to perform a similar analysis in order to show that all requirements are actually satisfied

at a later stage.

In order to analyse the effect of the S strategy α on the satisfaction of the requirementsR and S ,

we consider the leftmost edge α _ 〈o, σ〉 which is visited infinitely often by the strategy α. The

following case analysis can then be made depending on the outcome 〈o, σ〉.

w Suppose that the outcome is 〈w, σ〉.

The analysis for showing that the S requirement is satisfied is identical to the one found in

Section 3.5.8 for the case where the outcome 〈w, σ〉 of the strategy is on the true path.

Hence if 〈w, σ〉 is the outcome of the edge lying on the true path we have that the S requirement

is satisfied, whilst the R strategies β1 and β2 above α can build their functional without

278

interference after some stage, satisfying the R requirements R1 and R2 respectively as well.

It is important to note that one way for this outcome to be on the true path is for the strategy to

diagonalise successfully.

h1 Suppose that the outcome is 〈h1, σ〉.

In this case, we have that the answers to questionsQ1 andQ2.1 guarantee that there are infinitely

many witnesses w ∈ W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0, as < w < bs and

as < θs < bs. However only finitely many of these witnesses w will give honest computations

ΓU1,D
β1_〈i,σ1〉[s](w). It follows that there is some stage t′ such that for every s > t′, we have that

the computations ΓU1,D
β1_〈i,σ1〉[s](w) are dishonest.

Now since α _ 〈h1, σ〉 is the leftmost edge which is accessible infinitely often, we have that

there is a stage s0 after which no edge to its left is accessible. Hence only finitely many edges

to the left of α _ 〈h1, σ〉 can have been accessible at stages s < s0. Suppose that the edge

α _ 〈h1, σ〉 does not have a witness attached at some stage s1 > s0. Since witnesses giving a

dishonest computation ΓU1,D
β1_〈i,σ1〉[s](w) (or ΓV1,Dβ1_〈i,σ1〉[s](w) resp.) are attached to the leftmost

edge of the form α _ 〈h1, σ〉which has no other witness attached, and since there are infinitely

many such witnesses, it follows that a witness satisfying these conditions is eventually attached

to α _ 〈h1, σ〉 at some stage s2 > s1.

In addition we claim that it is possible to ensure that the edge α _ 〈h1, σ〉 is visited during

infinitely many α-open stages and infinitely many α-close stages. We address this claim when

we discuss fairness in Section 3.7.1.

Hence, if the edge α _ 〈h1, σ〉 does not have a witness attached at some stage, it must be

the case that a witness w giving a dishonest computation ΓU1,D
β1_〈i,σ1〉[s](w) will eventually be

attached to the edge at some stage s. This defines a work interval (w, γβ1_〈i,σ1〉[s](w)) for the

edge. Now if the edge is in Part I mode, we have that the strategy eventually visits the edge

during an α-close stage, honestifying and changing the mode to Part II mode. If the edge is

in Part II mode, we have that the strategy eventually visits the edge during an α-open stage,

changing the mode of its edge back to Part I mode.

Now, it could be the case that a witness w which was attached to α _ 〈h1, σ〉 at stage s gave

a dishonest computation ΓU1,D
β1_〈i,σ1〉[s](w) (or ΓV1,Dβ1_〈i,σ1〉[s](w) resp.), but that at some stage

279

s′ > s the computation ΓU1,D
β1_〈i,σ1〉[s

′](w) (or ΓV1,Dβ1_〈i,σ1〉[s
′](w) resp.) becomes honest again.

In this case the strategy would be blocked from honestifying. However, we have already seen

that there is some greatest stage t′ such that ΓU1,D
β1_〈i,σ1〉[t](w) (or ΓV1,Dβ1_〈i,σ1〉[t](w) resp.) is

dishonest at every stage t > t′. This means that the strategy will be able to honestify after stage

t′.

Therefore the strategy will honestify during infinitely many stages s′, by enumerating

γβ1_〈i,σ1〉[s
′](w) into D. As a result of this infinite honestification we have that both

lim
q→∞

γβ1_〈i,σ1〉[q](w) and lim
q→∞

φ1,1[q](w) are unbounded. Hence we have that ΓU1,D
β1_〈i,σ1〉(w) ↑

(or ΓV1,Dβ1_〈i,σ1〉(w) ↑ resp.) and ΦU1,D
1,1 (w) ↑. On the other hand, the R-Synchronisation of β2

with β1, results in lim
q→∞

γβ2_〈i,σ2〉[q](w) also becoming unbounded, without any guarantee that

this will be the case for lim
q→∞

φ2,1[q](w).

Hence if h1 is the outcome of the edge lying on the true path we have that theR1 requirement is

satisfied trivially. On the other hand we have that the R2 requirement may remain unsatisfied.

Finally the S requirement remains unsatisfied as well because the strategy does not diagonalise.

For if this were the case, is would contradict the fact that the length of agrement between ΘD

and A increases infinitely often.

h2 Suppose that the outcome is 〈h2, σ〉.

In this case, we have that the answers to questions Q1 and Q2.1 and Q2.2 guarantee that

there are infinitely many witnesses w ∈ W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0,

the computation ΓU1,D
β1_〈i,σ1〉[s](w) (or ΓV1,Dβ1_〈i,σ1〉[s](w) resp.) is honest, as < w < bs and

as < θs < bs. However only finitely many of these witnesses w and stages s will give

computations ΓU2,D
β2_〈i,σ2〉[s](w) (or ΓV2,Dβ2_〈i,σ2〉[s](w) resp.) which are honest. It follows that

there is some stage t′ such that for every s > t′, we have that the computations ΓU2,D
β2_〈i,σ2〉[s](w)

(or ΓV2,Dβ2_〈i,σ2〉 resp.) are dishonest.

Now since α _ 〈h2, σ〉 is the leftmost edge which is accessible infinitely often, we have

that there is a stage s0 after which no edge to its left is accessible. Hence only finitely many

edges to the left of α _ 〈h2, σ〉 can have been accessible at stages s < s0. Suppose that the

edge α _ 〈h2, σ〉 does not have a witness attached at some stage s1 > s0. Since witnesses

giving an honest computation ΓU1,D
β1_〈i,σ1〉[s](w) and a dishonest computation ΓU2,D

β2_〈i,σ2〉[s](w)

280

(or ΓV2,Dβ2_〈i,σ2〉[s](w) resp.) are attached to the leftmost edge of the form α _ 〈h2, σ〉 which

has no other witness attached, and since there are infinitely many such witnesses, it follows

that a witness satisfying these conditions is eventually attached to α _ 〈h2, σ〉 at some stage

s2 > s1.

In addition we claim that it is possible to ensure that the edge α _ 〈h2, σ〉 is visited during

infinitely many α-open stages and infinitely many α-close stages. We address this claim when

we discuss fairness in Section 3.7.1.

Hence, if the edge α _ 〈h2, σ〉 does not have a witness attached at some stage, it must be the

case that a witness giving an honest computation ΓU1,D
β1_〈i,σ1〉[s](w) and a dishonest computation

ΓU2,D
β2_〈i,σ2〉[s](w) (or ΓV2,Dβ2_〈i,σ2〉[s](w) resp.) will eventually be attached to the edge at some

stage s. This defines a work interval (w, γβ2_〈i,σ2〉[s](w)) for the edge. If the edge is in Part I

mode, we have the strategy visits the edge during an α-close stage, honestifying and changing

the mode to Part II mode. If the edge is in Part II mode, we have that the strategy visits the

edge during an α-close stage, changing the mode of its edge back to Part I mode.

Now, it could be the case that a witness w which was attached to α _ 〈h2, σ〉 at stage s gave

a dishonest computation ΓU2,D
β2_〈i,σ2〉[s](w) (or ΓV2,Dβ2_〈i,σ2〉[s](w) resp.), but that at some stage

s′ > s the computation ΓU2,D
β2_〈i,σ2〉[s

′](w) (or ΓV2,Dβ2_〈i,σ2〉[s
′](w) resp.) becomes honest again.

In this case the strategy would be blocked from honestifying. However, we have already seen

that there is some greatest stage t′ such that ΓU2,D
β2_〈i,σ2〉[t](w) (or ΓV2,Dβ2_〈i,σ2〉[t](w) resp.) is

dishonest at every stage t > t′. Therefore the strategy will not be blocked from honestifying

after stage t′.

Therefore the strategy will honestify during infinitely many stages s′, by enumerating

γβ2_〈i,σ2〉[s
′](w) into D. As a result of this infinite honestification we have that both

lim
q→∞

γβ2_〈i,σ2〉[q](w) and lim
q→∞

φ2,1[q](w) are unbounded. Hence we have that ΓU2,D
β2_〈i,σ2〉(w) ↑

(or ΓV2,Dβ2_〈i,σ2〉(w) ↑ resp.) and ΦU2,D
2,1 (w) ↑.

Hence if h2 is the outcome of the edge lying on the true path we have that the R2 requirement

is satisfied trivially. On the other hand we have that the strategy β1 can continue to build the

functional ΓU1,D
β1_〈o,σ1〉(w) so as to ensure its agreement with the set A, and thus in the absence

of further interference, the R1 requirement is satisfied. Finally the S requirement remains

281

unsatisfied as well because the strategy does not diagonalise. For if this were the case, is would

contradict the fact that the length of agrement between ΘD and A increases infinitely often.

g1 Suppose that the outcome is 〈g1, σ〉.

In this case, we have that the answers to questions Q1, Q2.1, Q2.2 and Q3.1 guarantee that

there are infinitely many witnesses w ∈ W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0,

the computations ΓU1,D
β1_〈i,σ1〉[s](w) and ΓU2,D

β2_〈i,σ2〉[s](w) (or ΓV2,Dβ2_〈i,σ2〉[s](w)resp.) are honest,

as < w < bs and as < θs < bs. In addition we have that infinitely many of these witnesses

w enter the set A at stage s, but only finitely many of these witnesses cause a U1 � φ1,1[s](w)

change between stage s and the least R1-expansionary stage t1 > s. Finally we also have that

the length of agreement between ΘD and A expands infinitely often.

Now since α _ 〈g1, σ〉 is the leftmost edge which is accessible infinitely often, we have

that there is a stage s0 after which no edge to its left is accessible. Hence only finitely many

edges to the left of α _ 〈g1, σ〉 can have been accessible at stages s < s0. Suppose that the

edge α _ 〈g1, σ〉 does not have a witness attached at some stage s1 > s0. Since witnesses

giving honest computations ΓU1,D
β1_〈i,σ1〉[s](w) and ΓU2,D

β2_〈i,σ2〉[s](w) (or ΓV2,Dβ2_〈i,σ2〉[s](w) resp.)

are attached to the leftmost edge of the form α _ 〈gi, σ〉 for 1 ≤ i ≤ 2 which has no other

witness attached, and since there are infinitely many such witnesses, it follows that a witness

satisfying these conditions is eventually attached to α _ 〈g1, σ〉 at some stage s2 > s1.

In addition we claim that it is possible to ensure that the edge α _ 〈g1, σ〉 is visited during

infinitely many α-open stages and infinitely many α-close stages. We address this claim when

we discuss fairness in Section 3.7.1.

Finally we claim that if a witness w is attached to the edge α _ 〈g1, σ〉 at some stage s and the

witness gives honest computations ΓU1,D
β1_〈i,σ1〉[s](w) and ΓU2,D

β2_〈i,σ2〉[s](w) (or ΓV2,Dβ2_〈i,σ2〉[s](w)

resp.), it is possible to stop elements from entering A or D up to φ1,2[s](φ1,1[s](w)) and

φ1,3[s](φ1,1[s](w)), and up to φ2,2[s](φ2,1[s](w)) and φ2,3[s](φ2,1[s](w)) at some stage s′ ≥ s.

In this way the honesty of the witness can be preserved until the strategy determines that it

should enumerate it into the setA. We address this claim when we discuss honesty preservation

in Section 3.7.2.

Now if the edge α _ 〈g1, σ〉 does not have a work interval defined at some stage s, the strategy

282

will choose a threshold v and define a work interval (v, γβ1_〈i,σ1〉[s](v)) for the edge. Once

the strategy has taken this step, an honest witness w will eventually be attached to α _ 〈g1, σ〉.

Then if the edge is in open mode, we have that the strategy eventually visits the edge during an

α-open stage, enumerating w into A and changing the mode of the edge to close mode.

Now consider the least R1-expansionary stage t1 > s, and the least R2-expansionary stage

t2 > s. Since α has edges with outcome g1, it must be the case that β1 is following a Γ-

strategy. Suppose that β2 is following a Γ-strategy. Then we claim that it cannot be the case

that U1 � φ1,1[s](w) 6= U1 � φ1,1[t1](w) and U2 � φ2,1[s](w) 6= U2 � φ2,1[t2](w). Similarly

if β2 is following a Γ̂-strategy we claim that it cannot be the case that U1 � φ1,1[s](w) 6= U1 �

φ1,1[t1](w) and V2 � φ2,1[s](w) 6= V2 � φ2,1[t2](w). For in either case the strategy α would

diagonalise and impose the restraint Rα,u > 0 when it becomes accessible again at some stage

u ≥ t. But this would mean that ΘD(w) 6= A(w), contradicting the fact that the length of

agreement between ΘD(w) and A expands infinitely often.

Hence once the edge is in close mode, we have that the strategy eventually visits the edge during

an α-close stage s′, performing capricious destruction and enumerating γβ1_〈i,σ1〉[s
′](v) into

D, while changing the mode of the edge to open mode again.

Since the strategy performs capricious destruction infinitely often, we have that

lim
q→∞

γβ1_〈i,σ1〉[q](v) is unbounded and that ΓU1,D
β1_〈i,σ1〉(v) ↑. However this does not imply

that ΦU1,V1(v) ↑ as well. On the other hand, the R-Synchronisation of β2 with β1, results in

lim
q→∞

γβ2_〈o,σ2〉[q](w) also becoming unbounded, meaning that ΓU2,D
β2_〈o,σ2〉(v) ↑ (or ΓV2,Dβ2_〈o,σ2〉

resp.) without ΦU2,V2(v) ↑ having to be the case as well. Hence both the R1 and the R2

requirements remain unsatisfied, although the g1 outcome will cause the nextR strategy labeled

R1 on the true path to switch to following a Γ̂-strategy.

Finally the S requirement remains unsatisfied as well because the strategy does not diagonalise.

For if this were the case, is would contradict the fact that the length of agrement between ΘD

and A increases infinitely often.

g2 Suppose that the outcome is 〈g2, σ〉.

Two different cases have to be considered.

283

(a) (β1 is following a Γ-strategy).

In this case the answer to questionsQ1, Q2.1, Q2.2 andQ3.1 andQ3.2 guarantee that there

are infinitely many witnesses w and stages s such that ΘD[s](w) ↓= 0, the computations

ΓU1,D
β1_〈i,σ1〉[s](w) and ΓU2,D

β2_〈i,σ2〉[s](w) are honest, as < w < bs and as < θs < bs. We

also have that infinitely many of these witnesses w enter the set A at stage s, and that

infinitely many of these witnesses cause a U1 � φ1,1[s](w) change to occur between stage

s and the least R1-expansionary stage t1 > s. However, only finitely many of these

witnesses cause a U2 � φ2,1[s](w) change to occur between stage s and the least R2-

expansionary stage t2 > s. Finally we also have that the length of agreement between

ΘD and A expands infinitely often.

Now since α _ 〈g2, σ〉 is the leftmost edge which is accessible infinitely often, we have

that there is a stage s0 after which no edge to its left is accessible. Hence only finitely

many edges to the left of α _ 〈g2, σ〉 can have been accessible at stages s < s0. Suppose

that the edge α _ 〈g2, σ〉 does not have a witness attached at some stage s1 > s0. Since

witnesses giving honest computations ΓU1,D
β1_〈i,σ1〉[s](w) and ΓU2,D

β2_〈i,σ2〉[s](w) are attached

to the leftmost edge of the form α _ 〈gi, σ〉 for 1 ≤ i ≤ 2 which has no other witness

attached, and since there are infinitely many such witnesses, it follows that a witness

satisfying these conditions is eventually attached to α _ 〈g1, σ〉 at some stage s2 > s1.

In addition we claim that it is possible to ensure that the edge α _ 〈g2, σ〉 is visited

during infinitely many α-open stages and infinitely many α-close stages. We address this

claim when we discuss fairness in Section 3.7.1.

Finally we claim that if a witness w is attached to the edge α _ 〈g2, σ〉 at some

stage s and the witness gives honest computations ΓU1,D
β1_〈i,σ1〉[s](w) and ΓU2,D

β2_〈i,σ2〉[s](w),

it is possible to stop elements from entering A or D up to φ1,2[s](φ1,1[s](w)) and

φ1,3[s](φ1,1[s](w)), and up to φ2,2[s](φ2,1[s](w)) and φ2,3[s](φ2,1[s](w)) at some stage

s′ ≥ s. In this way the honesty of the witness can be preserved until the strategy

determines that it should enumerate it into the set A. We address this claim when we

discuss honesty preservation in Section 3.7.2.

Now if the edge α _ 〈g2, σ〉 does not have a work interval defined at some stage s,

284

the strategy will choose a threshold v and define a work interval (v, γβ2_〈i,σ2〉[s](v)) for

the edge. Once the strategy has taken this step, a witness w giving honest computations

ΓU1,D
β1_〈i,σ1〉[s](w) and ΓU2,D

β2_〈i,σ2〉[s](w) will eventually be attached to α _ 〈g2, σ〉. Then

if the edge is in open mode, we have that the strategy eventually visits the edge during an

α-open stage, enumerating w into A and changing the mode of the edge to close mode.

Consider the least R1-expansionary stage t1 > s, and the least R2-expansionary stage

t2 > s. Since both β1 and β2 are following Γ-strategies, we claim that it cannot be the

case that U1 � φ1,1[s](w) 6= U1 � φ1,1[t1](w) and U2 � φ2,1[s](w) 6= U2 � φ2,1[t2](w).

Otherwise the strategy α would diagonalise successfully and impose the restraint Rα,u >

0 when it becomes accessible again at some stage u ≥ t. But this would mean that

ΘD(w) 6= A(w), contradicting the fact that the length of agreement between ΘD(w) and

A expands infinitely often.

Since the edge is now in close mode, we have that the strategy eventually visits the

edge during an α-close stage s′, performing capricious destruction and enumerating

γβ2_〈i,σ2〉[s
′](v) into D, while changing the mode of the edge to open mode again.

Now since the strategy performs capricious destruction infinitely often, we have that

lim
q→∞

γβ2_〈i,σ2〉[q](v) is unbounded. This means that ΓU2,D
β2_〈i,σ2〉(v) ↑ is unbounded,

without ΦU2,V2(v) ↑ having to be the case as well. Hence the R2 requirement is

unsatisfied, and the next R strategy labeled R2 to appear on the priority tree will switch

to following a Γ̂-strategy. On the other hand we have that the strategy β1 can continue to

build the functional ΓU1,D
β1_〈i,σ1〉(w) so as to ensure its agreement with the set A, and thus

in the absence of further interference, theR1 requirement will be satisfied.

Finally the S requirement remains unsatisfied as well because the strategy does not

diagonalise. For if this were the case, is would contradict the fact that the length of

agrement between ΘD and A increases infinitely often.

(b) (β1 is following a Γ̂-strategy).

Then the answer to questions Q1, Q2.1, Q2.2 and Q3.2 guarantee that there are

infinitely many witnesses w and stages s such that ΘD[s](w) ↓= 0, the computations

ΓU1,D
β1_〈i,σ1〉[s](w) and ΓU2,D

β2_〈i,σ2〉[s](w) are honest, as < w < bs and as < θs < bs.

285

In addition, infinitely many of these witnesses w and stages s give rise to computations

ΓV1,Dβ1_〈i,σ1〉[s](w) and ΓU2,D
β2_〈i,σ2〉[s](w) which are honest. We also have that infinitely

many of these witnesses w enter the set A at stage s, but only finitely many of these

witnesses cause a U2 � φ2,1[s](w) change between stage s and the leastR2-expansionary

stage t2 > s. Finally we also have that the length of agreement between ΘD and A

increases infinitely often.

Now since α _ 〈g2, σ〉 is the leftmost edge which is accessible infinitely often, we have

that there is a stage s0 after which no edge to its left is accessible. Hence only finitely

many edges to the left of α _ 〈g2, σ〉 can have been accessible at stages s < s0. Suppose

that the edge α _ 〈g2, σ〉 does not have a witness attached at some stage s1 > s0. Since

witnesses giving honest computations ΓV1,Dβ1_〈i,σ1〉[s](w) and ΓU2,D
β2_〈i,σ2〉[s](w) are attached

to the leftmost edge of the form α _ 〈g2, σ〉 which has no other witness attached, and

since there are infinitely many such witnesses, it follows that a witness satisfying these

conditions is eventually attached to α _ 〈g2, σ〉 at some stage s2 > s1.

In addition we claim that it is possible to ensure that the edge α _ 〈g2, σ〉 is visited

during infinitely many α-open stages and infinitely many α-close stages. We address this

claim when we discuss fairness in Section 3.7.1.

Finally we claim that if a witness w is attached to the edge α _ 〈g2, σ〉 at some stage

s and the witness gives honest computations ΓV1,Dβ1_〈i,σ1〉[s](w) and ΓU2,D
β2_〈i,σ2〉[s](w) it is

possible to preserve its honesty as in the previous case.

Now if the edge α _ 〈g2, σ〉 does not have a work interval defined at some stage s,

the strategy will choose a threshold v and define a work interval (v, γβ2_〈i,σ2〉[s](v)) for

the edge. Once the strategy has taken this step, an honest witness w will eventually be

attached to α _ 〈g2, σ〉. Then if the edge is in open mode, we have that the strategy

eventually visits the edge during an α-open stage, enumerating w into A and changing

the mode of the edge to close mode.

Consider the least R1-expansionary stage t1 > s, and the least R2-expansionary stage

t2 > s. We claim that it cannot be the case that V1 � φ1,1[s](w) 6= V1 � φ1,1[t1](w) and

U2 � φ2,1[s](w) 6= U2 � φ2,1[t2](w). For in this case the strategy α would diagonalise

286

successfully and impose the restraint Rα,u > 0 when it becomes accessible again at some

stage u ≥ t. But this would mean that ΘD(w) 6= A(w), contradicting the fact that the

length of agreement between ΘD(w) and A increases infinitely often.

Hence once the edge is in close mode, we have that the strategy eventually visits the

edge during an α-close stage s′, performing capricious destruction and enumerating

γβ2_〈i,σ2〉[s
′](v) into D, while changing the mode of the edge to open mode again.

Since the strategy performs capricious destruction infinitely often, we have that

lim
q→∞

γβ2_〈i,σ2〉[q](v) is unbounded. This means that ΓU2,D
β2_〈i,σ2〉(v) ↑ is unbounded,

without ΦU2,V2(v) ↑ having to be the case as well. Hence the R2 requirement is

unsatisfied, and the next R strategy labeled R2 to appear on the priority tree will switch

to following a Γ̂-strategy. On the other hand we have that the strategy β1 can continue to

build the functional ΓV1,Dβ1_〈i,σ1〉(w) so as to ensure its agreement with the set A, and thus

in the absence of further interference, theR1 requirement will be satisfied.

Finally the S requirement remains unsatisfied as well because the strategy does not

diagonalise. For if this were the case, is would contradict the fact that the length of

agrement between ΘD and A increases infinitely often.

d Suppose that the outcome is 〈d, σ〉.

Four different cases have to be considered.

(a) (β1 and β2 are active for α and follow a Γ-strategy).

In this case we have that the answers to the questions Q1, Q2.1, Q2.2, Q3.1 and Q3.2

guarantee that there are infinitely many witnesses w and stages s such that ΘD[s](w) ↓=

0, the computations ΓU1,D
β1_〈i,σ1〉[s](w) and ΓU2,D

β2_〈i,σ2〉[s](w) are honest, as < w < bs and

as < θs < bs. In addition we have that infinitely many of these witnesses w enter the

set A at stage s, and infinitely many of these witnesses cause a U1 � φ1,1[s](w) change

between stage s and the least R1-expansionary stage t1 > s, and a U2 � φ2,1[s](w)

change between stage s and the leastR2-expansionary stage t2 > s. Finally we have that

the length of agreement between ΘD and A expands infinitely often.

Now suppose that the strategy opens a gap by enumerating a witness w into A when

visiting some edge of the form α _ 〈gi, σ〉 for 1 ≤ i ≤ 2 at some stage u, and that a

287

U1 � φ1,u(w) change takes place at some least R1 expansionary stage u1 > u and that

a U2 � φ2,u(w) change takes place at some least R2 expansionary stage u2 > u. If the

strategy becomes accessible again at some stage s′ ≥ u′, we have that it sets Rα,s′ > 0.

But this would mean that ΘD[s′′](w) 6= As′′(w) for all s′′ > s′, which contradicts the

fact that the length of agreement between ΘD(w) and A expands infinitely often.

(b) (β1 and β2 are active for α, β1 is following a Γ-strategy and β2 is following a Γ̂-strategy).

In this case we have that the answers to the questions Q1, Q2.1, Q2.2 and Q3.1 guarantee

that there are infinitely many witnesses w and stages s such that ΘD[s](w) ↓= 0, the

computations ΓU1,D
β1_〈i,σ1〉[s](w) and ΓV2,Dβ2_〈i,σ2〉[s](w) are honest, as < w < bs and as <

θs < bs. In addition we also have that infinitely many of these witnesses w enter the setA

at stage s, and infinitely many of these witnesses cause a U1 � φ1,1[s](w) change between

stage s and the leastR1-expansionary stage t1 > s.

Now suppose that the strategy opens a gap by enumerating a witness w into A when

visiting some edge of the form α _ 〈d, σ〉 at some stage u, and that a U1 � φ1,u(w)

change takes place at some least R1 expansionary stage u1 > u. If the strategy becomes

accessible again at some stage s′ ≥ u, we have that it sets Rα,s′ > 0. The strategy will

in fact have diagonalised successfully because the priority tree will be arranged such that

a U2 � φ2,u(w) change could not have taken place at the least R2 expansionary stage

u2 > u without α becoming inaccessible. Since α is on the true path, it will then follow

that a V2 � φ2,u(w) change has instead taken place at the least R2 expansionary stage

u2 > u.

However since the strategy has diagonalised we have that ΘD[s′′](w) 6= As′′(w) for all

s′′ > s′, which contradicts the fact that the length of agreement between ΘD(w) and A

expands infinitely often.

(c) (β1 and β2 are active for α, β1 is following a Γ̂-strategy and β2 is following a Γ-strategy).

In this case we have that the answers to the questions Q1, Q2.1, Q2.2 and Q3.2 guarantee

that there are infinitely many witnesses w and stages s such that ΘD[s](w) ↓= 0, the

computations ΓV1,Dβ1_〈i,σ1〉[s](w) and ΓU2,D
β2_〈i,σ2〉[s](w) are honest, as < w < bs and as <

θs < bs. In addition we also have that infinitely many of these witnesses w enter the setA

288

at stage s, and infinitely many of these witnesses cause a U2 � φ2,1[s](w) change between

stage s and the leastR2-expansionary stage t2 > s.

Now suppose that the strategy opens a gap by enumerating a witness w into A when

visiting some edge of the form α _ 〈d, σ〉 at some stage u, and that a U2 � φ2,u(w)

change takes place at some least R2 expansionary stage u2 > u. If the strategy becomes

accessible again at some stage s′ ≥ u, we have that it sets Rα,s′ > 0. The strategy will

in fact have diagonalised successfully because the priority tree will be arranged such that

a U1 � φ1,u(w) could not have taken place at the least R1 expansionary stage u1 > u

without α becoming inaccessible. Since α is on the true path, it will then follow that a

V1 � φ1,u(w) change has instead taken place at the leastR expansionary stage u1 > u.

However since the strategy has diagonalised we have that ΘD[s′′](w) 6= As′′(w) for all

s′′ > s′, which contradicts the fact that the length of agreement between ΘD(w) and A

expands infinitely often.

(d) (β1 and β2 are active for α and follow a Γ̂-strategy).

In this case we have that the answers to the questions Q1, Q2.1, Q2.2 guarantee that there

are infinitely many witnesses w and stages s such that ΘD[s](w) ↓= 0, the computations

ΓV1,Dβ1_〈i,σ1〉[s](w) and ΓV2,Dβ2_〈i,σ2〉[s](w) are honest, as < w < bs and as < θs < bs.

Now since α _ 〈d, σ〉 is the leftmost edge which is accessible infinitely often, we have

that there is a stage s0 after which no edge to its left is accessible. Hence only finitely

many edges to the left of α _ 〈d, σ〉 can have been accessible at stages s < s0. Suppose

that the edge α _ 〈d, σ〉 does not have a witness attached at some stage s1 > s0. Since

witnesses giving honest computations ΓV1,Dβ1_〈i,σ1〉[s](w) and ΓV2,Dβ2_〈i,σ2〉[s](w) are attached

to the leftmost edge of the form α _ 〈d, σ〉 which has no other witness attached, and

since there are infinitely many such witnesses, it follows that a witness satisfying these

conditions is eventually attached to α _ 〈d, σ〉 at some stage s2 > s1.

In addition we claim that it is possible to ensure that the edge α _ 〈d, σ〉 is visited during

infinitely many α-open stages and infinitely many α-close stages. We address this claim

when we discuss fairness in Section 3.7.1.

Finally we claim that if a witnessw is attached to the edge α _ 〈d, σ〉 at some stage s and

289

the witness gives honest computations Γβ1_〈i,σ1〉[s]
V1,D(w) and Γβ2_〈i,σ2〉[s]

V2,D(w), it

is possible to stop elements from entering sets A or D up to φ1,2[s](φ1,1[s](w)) and

φ1,3[s](φ1,1[s](w)), as well as up to φ2,2[s](φ2,1[s](w)) and φ2,3[s](φ2,1[s](w)). In this

way the honesty of the witness can be preserved until the strategy determines that it should

enumerate it into the set A. We address this claim when we discuss honesty preservation

in Section 3.7.2.

Now the strategy will eventually attach an honest witness w attached to α _ 〈d, σ〉. Then

if the edge is in open mode, we have that the strategy eventually visits the edge during an

α-open stage, enumerating w into A at some stage u.

Now suppose that the strategy opens a gap by enumerating a witness w into A when

visiting some edge of the form α _ 〈d, σ〉 at some stage u. If the strategy becomes

accessible again at some stage s′ ≥ u, we have that it sets Rα,s′ > 0. The strategy

will in fact have diagonalised successfully because the priority tree will be arranged so

that α would become inaccessible if a U1 � φ1,u(w) change takes place at the least R1

expansionary stage u1 > u, or if a U2 � φ2,u(w) change takes place at the least R1

expansionary stage u2 > u. Since α is on the true path, it will then follow that a V1 �

φ1,u(w) change has instead taken place at the least R1 expansionary stage u1 > u and

that a V2 � φ2,u(w) change has instead taken place at the least R2 expansionary stage

u2 > u.

However since the strategy has diagonalised we have that ΘD[s′′](w) 6= As′′(w) for all

s′′ > s′, which contradicts the fact that the length of agreement between ΘD(w) and A

expands infinitely often.

Since in each of the above three cases we have a contradiction, it follows that no edge with

outcome 〈d, σ〉 can be on the true path. In fact, only edges with outcome 〈w, σ〉 can be on the

true path if the strategy diagonalises successfully. This is the only outcome for which Q1 can

have a negative answer, which in turn allows the length of agreement between ΘD and A to be

finite in length.

290

3.6.7 Organisation of Priority Tree

We shall now organise a priority tree in order to satisfy an S requirement below theR2 requirement

below the R1 requirement. The following notation shall be used when depicting the priority tree

shown in Figure 3.2. Note that when we say that some strategy γ takes into consideration another

strategy γ′, we mean that γ′ is active for γ.

• βU1 will denote anR strategy labeledR1 which is following a Γ-strategy.

• βV1 will denote anR strategy labeledR1 which is following a Γ̂-strategy.

• βU2 will denote anR strategy labeledR2 which is following a Γ-strategy.

• βV2 will denote anR strategy labeledR2 which is following a Γ̂-strategy.

• αU1,U2 will denote an S strategy which needs to take into consideration an R strategy

labeledR1 and anR strategy labeledR2 above it, each of which are following a Γ-strategy.

• αU1,V2 will denote an S strategy which needs to take into consideration anR strategy labeled

R1 and an R strategy labeled R2 above it, with the first following a Γ-strategy and the

second following a Γ̂-strategy.

• αV1,U2 will denote an S strategy which needs to take into consideration anR strategy labeled

R1 and an R strategy labeled R2 above it, with the first following a Γ̂-strategy and the

second following a Γ-strategy.

• αV1,V2 will denote an S strategy which needs to take into consideration anR strategy labeled

R1 and anR strategy labeledR2 above it, each of which are following a Γ̂-strategy.

When multiple strategies of the same kind appear on the same branch of the priority tree, we shall

use primed versions of the notation above to distinguish between them.

When presenting the priority tree we omit the infinitely many edges of a givenR strategy, focusing

on just one edge with outcome 〈i, σ〉. Similarly, we omit the infinitely many edges of a given S

strategy, focusing on just one edge of each of the following kinds 〈w, σ〉, 〈d, σ〉, 〈h1, σ〉, 〈h2, σ〉,

〈g1, σ〉 and 〈g2, σ〉 (whenever the last two kinds of edge are present). To simplify our presentation

we shall simply write σ to denote the use of any outcome being depicted. We also recall that the

291

infinitely many edges of each strategy are ordered by the value of σ and not by the value of o. The

outcomes will thus be depicted on the priority tree as being in no particular order.

We have already seen that the effect of the various outcomes of an S strategy on the satisfaction

of the R and S requirements is similar to the effect of an S strategy in the original Lachlan Non-

Splitting Theorem. Hence it is possible to build the priority tree in this section in an analogous

way to the priority tree for the Lachlan Non-Splitting Theorem as described in Chapter 2.

As is the case with the priority tree of the Lachlan Non-Splitting Theorem, the highest priority

unsatisfied requirement at a given node can be determined though the analysis of the outcomes

covered in the previous section. As before, the highest priority unsatisfied requirement at a given

node causes a strategy of the corresponding kind to appear at that node.

When an S strategy has an edge with outcome g1 it will cause the R1 requirement to switch its

mode of satisfaction from a Γ-strategy to a Γ̂-strategy below the edge. This will cause any R

strategy labeled R1 below the edge to follow a Γ̂-strategy instead of a Γ-strategy. In addition it

will cause a restart of theR2 by changing its mode of satisfaction to a Γ-strategy below the edge.

Similarly when an S strategy has an edge with outcome g2 it will cause the R2 requirement to

switch its mode of satisfaction from a Γ-strategy to a Γ̂-strategy below the edge. This will cause

anyR strategy labeledR2 below the edge to follow a Γ̂-strategy instead of a Γ-strategy.

In addition, we have already seen that S strategies will follow both S-Synchronisation and R-

Synchronisation. As in the construction for the Lachlan Non-Splitting Theorem, the combination

of switching and S-Synchronisation will allow the S requirement below theR2 requirement below

the R1 requirement to be satisfied when strategies are organised according to the priority tree in

Figure 3.2.

The resulting priority tree is shown below.

292

βU1
1

βU2
2

αU1,U2

.βV22

αU1,V2

.βV11

βU2′
2

αV1,U2

.βV2′2

αV1,V2

..
....

....

〈h1, σ〉

〈d, σ〉

〈h2, σ〉 〈w, σ〉

〈i, σ〉

.

〈g2, σ〉

〈i, σ〉

〈i, σ〉

.

〈g1, σ〉

〈i, σ〉

.

〈g2, σ〉

〈i, σ〉

〈i, σ〉

Figure 3.2: Priority tree for S belowR2 belowR1 - path leading to αV1,V2 .

293

3.6.8 Satisfaction of Requirements

We shall now examine the simultaneous satisfaction of an S requirement below anR2 requirement

below anR1 requirement by the strategies and priority tree found in this section. For our purposes

it shall be sufficient to consider the most complex situation, which occurs when the edge of the

strategy αV1,V2 on the true path is of the form αV1,V2 _ 〈w, σ〉.

w The analysis for showing that the S requirement is satisfied is identical to the one found in

Section 3.5.8 for the case where the outcome 〈w, σ〉 of the strategy is on the true path.

We now consider the satisfaction of theR1 requirement by the strategy βV1′ and the satisfaction

of theR2 requirement by the strategy βV2′.

Suppose that αV1,V2 never enumerates a witness w into the set A. Then βV11 can build

ΓV1,D
β
V1
1 _〈i,σ〉

= A without interference, thus satisfying the R1 requirement. Similarly βV2′2 can

build ΓV2,D
β
V2′
2 _〈i,σ〉

= A without interference, thus satisfying theR2 requirement.

On the other hand, suppose that αV1,V2 has enumerated a witness w into the set A at stage s.

Then by S-Synchronisation the strategies αU1,U2 , αU1,V2 , αV1,U2 must also have enumerated

witnesses w′, w′′ and w′′′ into the set A during the same stage s. Since αV1,V2 lies inside the

work interval imposed by the aforementioned strategies down the path leading to αV1,V2 , we

have that w is smaller than either of w′, w′′ or w′′′, each of which is greater than the upper

bound of the corresponding work interval. The enumeration of these elements then creates a

least disagreement at the element w between the set A and every functional associated to an

edge with outcome 〈i, σ〉 lying on the path leading to αV1,V2 .

Now, in order for αV1,V2 to lie on the true path, the strategy must eventually become accessible

again. For this to be the case, the strategy βU1
1 must have visited its outcome βU1

1 _ 〈i, σ〉

and proceeded to the next substage. This means that some β1-expansionary stage s1 > s must

have been attached to this edge, which implies that some least R1-expansionary stage t1 such

that s < t1 ≤ s1 must also have taken place. Similarly, the strategy βV2′2 must have visited

its outcome βV2′2 _ 〈i, σ〉 and also proceeded to the next substage. This means that some

294

expansionary stage s2 > s must have also been attached to this edge, which implies that some

leastR2-expansionary stage t2 such that s < t2 ≤ s2 must also have taken place.

Now, if U1,s � φ1,1[s](w) 6= U1,t1 � φ1,1[s](w) and U2,s � φ2,1[s](w) 6= U2,t2 � φ2,1[s](w),

we have that αU1,U2 has diagonalised. Hence the strategy αU1,U2 would terminate the stage

whenever it visits the edge αU1,U2 _ 〈g2, σ〉, making the strategy αV1,V2 inaccessible, which

is a contradiction.

Similarly, if U1,s � φ1,1[s](w) 6= U1,t1 � φ1,1[s](w) and U2,s � φ2,1[s](w) = U2,t2 � φ2,1[s](w),

we have that αU1,V2 has diagonalised making αV1,V2 inaccessible. The same happens if U1,s �

φ1,1[s](w) = U1,t1 � φ1,1[s](w) and U2,s � φ2,1[s](w) 6= U2,t2 � φ2,1[s](w), which causes

αV1,U2 to diagonalise, making αV1,V2 inaccessible. Hence both of these situations also lead to

a contradiction.

Thus it follows that it must be the case that U1,s � φ1,1[s](w) = U1,t1 � φ1,1[s](w) and

U2,s � φ2,1[s](w) = U2,t2 � φ2,1[s](w). Hence we must have that V1,s � φ1,1[s](w) 6=

V1,t1 � φ1,1[s](w) and V2,s � φ2,1[s](w) 6= V2,t2 � φ2,1[s](w). This means that the functionals

ΓV1,D
β
V1
1 _〈i,σ〉

and ΓV2,D
β
V2′
2 _〈i,σ〉

no longer disagree with the set A at w, because they have been

undefined at this element. Hence these functionals do not need to remove the disagreement

by enumerating some element into D. Thus we have that the strategy αV1,V2 has not only

diagonalised but also successfully preserved its diagonalisation.

Hence the strategy αV1,V2 has satisfied the S requirement, while the strategies βV11 and βV2′2

can now build the corresponding functionals which lie on the true path to agree with the set A

without interference. Hence we have that the requirementsR1 andR2 are satisfied as well.

295

3.7 The General Case

In this section we shall show how one can satisfy many R and many S requirements

simultaneously. In order to deal with many R and many S requirements, we shall generalise the

approach found in Section 3.6, which we have used to successfully satisfy an S requirement below

two R requirements. The formalised R and S strategies which we shall present in this section

will be comprehensive enough to represent every possible strategy which shall be required on the

priority tree for some given list of requirements. However prior to introducing these strategies we

shall have to address two problems which we have so far postponed.

In Section 3.7.1 we consider the problem of fairness. SinceR and S strategies γ are now guessing

the outcome which they should visit at any given stage, it may be the case that the leftmost outcome

chosen infinitely often by the strategy is only visited during finitely many γ-open or γ-close stages,

which stops the strategy from working correctly. In order to resolve the problem we introduce a

solution based on suspending the guessing until certain conditions are met.

In Section 3.7.2 we address the problem of preserving the honesty of the witnesses which an S

strategy attaches to edges with an outcome gi (if there is an R strategy following a Γ-strategy

which is active for the S strategy) or to edges with an outcome d (if there is an R strategy active

for the S strategy but no such strategy is following a Γ-strategy). This problem will be resolved

by having R strategies take the length of honesty preservation into account when defining their

functionals, by modifying the restraints imposed by S strategies and by introducing the notion of

H-Synchronisation.

Following this, the general modified R strategy will be formalised in Sections 3.7.3 and 3.7.4.

Similarly, the general modified S strategy will be formalised in Sections 3.7.5 and 3.7.6. We

proceed to consider the general modified priority tree in Section 3.7.7, formalising the way in

which it is generated. We conclude by formalising the modified construction in Section 3.7.8. The

verification of the entire modified construction, which proves that every requirement can satisfied

by the resulting system is postponed to Section 3.8.

296

3.7.1 Fairness

In previous sections we have seen that a strategy γ will guess the edge γ _ 〈o, σ〉 which it will

visit at any given stage. It is thus possible that the leftmost outcome chosen infinitely often by the

strategy is only visited during finitely many γ-open or γ-close stages.

In this case the strategy γ will eventually become unable to take actions which require a certain

kind of stage when visiting this edge. In addition it will also start terminating the stage early when

visiting the edge, making all the strategies lying below it inaccessible. Both of these reasons can

cause the construction to fail.

In order to avoid this situation, we shall proceed as follows. Suppose that at some stage s the

strategy guesses that it should visit a given edge γ _ 〈o, σ〉. In addition suppose that any elements

which are required for the strategy to take the action associated with visiting that edge have already

been attached to the edge.

If the edge γ _ 〈o, σ〉 finds itself in some given mode, and stage s does not match the kind

of stage required by this mode, the guessing will be suspended. This means that whenever the

strategy becomes accessible again at some stage t > s, it will visit the edge γ _ 〈o, σ〉 once

again. This will keep taking place until one of the following two conditions are met.

Firstly it could be the case that stage t is of the kind required by the mode of the edge. Then the

strategy is able to take the action associated with the mode of the edge. Having taken this action,

the strategy will change the mode of the edge. It can also resume guessing the edges which it

should visit when it becomes accessible.

Secondly it could be the case that if the guessing were not suspended at stage t, the strategy would

have visited an edge γ _ 〈o′, σ′〉 lying to the left of γ _ 〈o, σ〉. In this situation the guessing

will no longer be suspended and the edge γ _ 〈o′, σ′〉 will be visited instead. We shall then go

through the same procedure with edge γ _ 〈o′, σ′〉.

The reason for resuming the guessing in the second condition is that otherwise the strategy might

only guess to visit the leftmost edge chosen infinitely often during those stages at which the

guessing is suspended, leading the construction to fail.

297

It is important to note that since the strategy guesses to visit some leftmost edge infinitely often

we have that access to this edge cannot be stopped through suspending the strategy’s guessing. In

addition once the strategy guesses to visit this edge, it will keep visiting the edge until a stage of

the required kind has occurred, allowing the strategy to take the appropriate action.

3.7.2 Honesty Preservation

We start by describing the honesty preservation problem.

Consider an S strategy α lying below a number ofR strategies βi for 1 ≤ i ≤ m which are active

for α, and let βi _ 〈i, σi〉 denote the edge of βi on the path leading to α.

Then if there is some βi is following a Γ-strategy we have that α will only attach a witness w

to an edge of the form α _ 〈gj , σ〉 at some stage t if the witness gives honest computations

ΓUi,Dβ_〈i,σ〉[t](w) (or ΓVi,Dβ_〈i,σ〉[t](w) resp.) for every 1 ≤ i ≤ m. On the other hand, if no βi

is following a Γ-strategy, we have that α will only attach a witness w to an edge of the form

α _ 〈d, σ〉 if the witness gives honest computations ΓUi,Dβ_〈i,σ〉[t](w) (or ΓVi,Dβ_〈i,σ〉[t](w) resp.) for

every 1 ≤ i ≤ m.

Thus in both of these cases, the strategy α will determine whether φi,1[t](w) ≤ γβi_〈i,σi〉[t](w)

for every 1 ≤ i ≤ m prior to attaching w to one of the aforementioned edges at stage t.

Now suppose that the strategy α does attach a witness w to an edge of the form α _ 〈gj , σ〉

or α _ 〈d, σ〉 as detailed above at some stage t. Then if the strategy visits the edge at some

stage s ≥ t it will only be able to enumerate w into A if the witness is still honest, that is if

φi,1[s](w) ≤ γβi_〈i,σi〉[s](w) for all 1 ≤ i ≤ m.

However, the honesty of the witness might not be preserved between stage t and stage s. This

can be the case if at some stage t′ such that t < t′ ≤ s there is an A � φi,2[t′](φi,1[t′](w)) or

A � φi,3[t′](φi,1[t′](w)) change for some for 1 ≤ i ≤ m , or alternatively aD � φi,2[t′′](φi,1[t′](s))

or D � φi,3[t′](φi,1[t′](s)) change for some 1 ≤ i ≤ m. Thus the honesty of the computations

will need to be preserved by ensuring that no strategy can enumerate such an element into A or D

once the witness w has been attached to an edge lying on the true path.

298

In order to implement honesty preservation we shall need to introduce a number of new constraints,

which will be considered below.

Length of Honesty Preservation Constraint

The R strategies shall be required to take the length of honesty preservation into account when

defining their functionals. In particular at any given stage s, a strategy β labeledRi will only define

a functional ΓUi,Dβ_〈i,σ〉 (or ΓVi,Dβ_〈i,σ〉 resp.) associated to one of its edges β _ 〈i, σ〉 at some element

x if this lies within the length of honesty preservation, that is if x < hs(Φ
Ui,Vi
i,1 ,ΦA,D

i,2 ,ΦA,D
i,3). In

this manner if the element x is chosen by some S strategy α below β as a witness giving certain

honest computations, we have that α knows which elements need to be kept out of A and D in

order to protect the honesty of these computations.

We shall also require that if the R strategy β labeled Ri defines ΓUi,Dβ_〈i,σ〉[s](x) (or

ΓVi,Dβ_〈i,σ〉[s](x) resp.) during some stage s, it chooses a use γβ_〈i,σ〉[s](x) which is greater

than φi,2[s](φi,1[s](x)) and φi,3[s](φi,1[s](x)). This additional constraint shall be required to

implement H-Synchronisation, as will be described further below.

Honesty Preserving Restraints

The S strategies shall also be required to observe additional constraints when defining their

attachment restraints, rightward restraints and downward restraints.

We start by considering the attachment restraints imposed by an S strategy.

At the moment we have that if an S strategy α attaches a witness w giving honest computations to

an edge α _ 〈gj , σ〉 or α _ 〈d, σ〉 at some stage s, every witness attached to an edge lying to its

right is detached, and any work interval defined for an edge lying to its right is undefined.

Now if the strategy α attaches a witness w giving honest computations to an edge of the form

α _ 〈gj , σ〉 or α _ 〈d, σ〉 at some stage t, we shall require the strategy to impose an attachment

restraint a(α _ 〈o′, σ′〉, t) which is greater than φi,2[t](φi,1[t](w)) and φi,3[t](φi,1[t](w)) for all

1 ≤ i ≤ m on every edge α _ 〈o′, σ′〉 lying to the right of α _ 〈gj , σ〉 or α _ 〈d, σ〉.

In this way if α tries to choose a threshold v to define a work interval for the edge α _ 〈o′, σ′〉 at

299

stage t itself, we shall have that v > φi,2[s](φi,1[s](w)) and v > φi,3[s](φi,1[s](w)) for 1 ≤ i ≤ m.

It follows that if at some stage s > t the strategy enumerates γβj_〈i,σj〉[s](v) into D for

some R strategy βj above α which is active for α and which follows a Γ-strategy, we have

that γβj_〈i,σj〉[s](v) > φi,2[s](φi,1[s](w)) and that γβj_〈i,σj〉[s](v) > φi,3[s](φi,1[s](w)) for

all 1 ≤ i ≤ m. But since uses are non-decreasing with respect to stages, we also have

that φi,2[s](φi,1[s](w)) > φi,2[t](φi,1[s](w)) and φi,3[s](φi,1[s](w)) > φi,3[t](φi,1[s](w)),

meaning that the honesty of the computations cannot be compromised by the enumeration of

γβj_〈i,σj〉[s](v) into D, as required.

Next we shall consider the rightward restraints imposed by an S strategy.

When calculating restraint r(α _ 〈o′, σ′〉, s) for some edge α _ 〈o′, σ′〉 at some stage s, we shall

require the restraint to be greater than φi,2[t](φi,1[t](w)) and φi,3[t](φi,1[t](w)) for 1 ≤ i ≤ m,

where w is the witness attached to the edge and t is the stage at which the witness was attached.

Thus if a witness w′ is attached to some edge α _ 〈gk, σ′〉 lying to the right of α _ 〈gj , σ〉 at

some stage t′ > t, we have that w′ must be greater than the supremum of the rightward restraints

imposed by edges lying to the left of α _ 〈gk, σ′〉. The same holds if the witness w′ is attached

to an edge of the form α _ 〈d, σ′〉 lying to the right of α _ 〈d, σ〉 instead. This gives that

w′ > φi,2[t](φi,1[t](w)) and that w′ > φi,3[t](φi,1[t](w)) for all 1 ≤ i ≤ m. It follows that

the honesty of w is not compromised if the strategy enumerates w′ into the set A by visiting

α _ 〈gk, σ′〉 or α _ 〈d, σ′〉 at some stage u > t′.

Similarly if a witness w′ is attached to some edge α _ 〈hk, σ′〉 lying to the right of α _ 〈gj , σ〉

at some stage t′ > t, we have that w′ > φi,2[t](φi,1[t](w)) and that w′ > φi,3[t](φi,1[t](w)) for

all 1 ≤ i ≤ m. It follows that if the strategy enumerates γβj_〈i,σj〉[u](w′) into the set D at some

stage u > t′, we have that γβj_〈i,σj〉[u](w′) > φi,2[t](φi,1[t](w′)) and that γβj_〈i,σj〉[u](w) >

φi,3[t](φi,1[t](w)) as required.

On the other hand if a threshold v is chosen to define a work interval for some edge α _ 〈gk, σ′〉

lying to the right of α _ 〈gj , σ〉 at some stage t′ > t, we have that v must be greater than the

supremum of the rightward restraints imposed by edges lying to the left of α _ 〈gk, σ′〉. This

gives that v > φi,2[t](φi,1[t](w)) and that v > φi,3[t](φi,1[t](w)) for all 1 ≤ i ≤ m as required.

300

It follows that if the strategy enumerates γβj_〈i,σj〉[u](v) into the set D at some stage u > t′, we

have that γβj_〈i,σj〉[u](v) > φi,2[t](φi,1[t](w)) and that γβj_〈i,σj〉[u](v) > φi,3[t](φi,1[t](w)) as

required.

Finally we consider the downward restraints imposed by an S strategy.

In this case we have that the strategy α will impose a downward restraint d(α _ 〈o′, σ′〉, s) on the

edge α _ 〈o′, σ′〉 which is visited during the current stage s as before. Recall that this restraint is

the maximum of the supremum of every rightward restraint r(α _ 〈o′′, σ′′〉, s) imposed by edges

lying to the left of α _ 〈o′, σ′〉, the attachment restraint a(α _ 〈o′, σ′〉, s) and any downward

restraint previously computed for the edge. Since honesty preserving constraints have been added

to the calculation of the rightward restraint, these will also be reflected in the following effects

caused by the downward restraint.

Suppose that some witness w has been attached at some stage t to some edge α _ 〈o′′, σ′′〉 which

lies to the left of, or is equal to α _ 〈o′, σ′〉. Then when an S strategy α′ lying below the edge

α _ 〈o′, σ′〉 notes that the downward restraint imposed upon it has increased at some stage t′ ≥ t,

it will detach all witnesses from its edges and undefine all work intervals associated to its edges.

Hence if α′ attaches some witness w′ to one of its edges or chooses some threshold v to define a

work interval for one of its edges at some stage u ≥ t′, it will choose w′ or v to be greater than

d(α _ 〈o′, σ′〉, u). This means that both w′ and v will be greater than φi,2[t](φi,1[t](w)) and

φi,3[t](φi,1[t](w)) for all 1 ≤ i ≤ m as required.

Thus if α′ visits some edge of the form α′ _ 〈gk, σ〉 or α′ _ 〈d, σ〉 and enumerates an attached

witness w′ into A at some stage u′ ≥ u, we have that the honesty of the witness w cannot be

compromised. On the other hand suppose that α′ visits some edge of the form α′ _ 〈hk, σ〉

at some stage u′ > u which has a work interval (w′, γβk_〈i,σk〉[u
′](w′)) defined. Then if α′

enumerates γβk_〈i,σk〉[u
′](w′) intoD at stage u′, we have that the honesty of the witness w cannot

be compromised either. Finally suppose that α′ visits some edge of the form α′ _ 〈gk, σ〉 at some

stage u′ > u which has a work interval (v, γβk_〈i,σk〉[u
′](v)) defined. Then if α′ enumerates

γβk_〈i,σk〉[u
′](v) into D, we have that the honesty of the witness w cannot be compromised once

again as required.

301

The situation is similar for an R strategy β′ lying below the edge α _ 〈o′, σ′〉. If β′ determines

that the downward restraint has increased at some stage t′ > t, it will detach all β′-expansionary*

stages (see Definition ??) from its edges and cancel every functional associated to one of its edges.

Furthermore at any stage u ≥ t′, the strategy β′ will only choose uses which are greater than

d(α _ 〈o′, σ′〉, t′). Hence we have that any use chosen will be greater than φi,2[t](φi,1[t](w)) and

φi,3[t](φi,1[t](w)) for all 1 ≤ i ≤ m. It follows that if at some stage u′ > u the strategy β′ visits

some edge of the form β′ _ 〈i, σ′〉 and enumerates some use into D, we have that the honesty of

the witness w cannot be compromised as required.

H-Synchronisation

The last important notion which needs to be introduced is that of H-Synchronisation.

Consider an S strategy α lying below a number ofR strategies βi for 1 ≤ i < m which are active

for α, and let βi _ 〈i, σi〉 be the edge of βi lying on the path to α.

In the present arrangement α will attach a witness w to an edge of the form α _ 〈hj , σ〉 at stage s

in order to define a work interval (w, γβj_〈i,σj〉[s](w)) for it. Similarly αwill choose a threshold v

at stage s in order to define a work interval (v, γβj_〈i,σj〉[s](v)) for edges of the form α _ 〈gj , σ〉.

We shall modify this scheme by having the strategy α define a boundary ns for every such edge

during every stage s. Initially we have that ns = 0, and the boundary will keep its value until it is

changed by the strategy. On the other hand if the strategy is initialised or reset during some stage

s′, we shall have that ns′ = 0.

If the strategy α visits the edge α _ 〈hj , σ〉 at some stage u and enumerates the upper bound of its

work interval γβj_〈i,σj〉[u](w) intoD, we shall increment the corresponding boundary by defining

nu+1 = nu + 1. The strategy α will also constrain the strategy βj to henceforth H-Synchronise

with every strategy βk such that 1 ≤ k < j by choosing uses γβj_〈i,σj〉[u
′](w) to be greater than

γβk_〈i,σk〉[u
′](w + (nu + 1)) for every 1 ≤ k < j and during all stages u′ > u.

Similarly if the strategy α visits the edge α _ 〈gj , σ〉 at some stage u and enumerates the upper

bound of its work interval γβj_〈i,σj〉[u](v) intoD, we shall increment the corresponding boundary

302

by defining nu+1 = nu+1. The strategy α will also constrain the strategy βj to henceforth choose

uses γβj_〈i,σj〉[u
′](v) to be greater than γβk_〈i,σk〉[u

′](v + (nu + 1)) for every 1 ≤ k < j and

during all stages u′ > u.

The function of the boundary at stage s is to create a subinterval (w,w + ns) inside the work

interval (w, γβj_〈i,σj〉[s](w)) defined for edges α _ 〈hj , σ〉, and a subinterval (v, v + ns) inside

the work interval (v, γβj_〈i,σj〉[s](v)) defined for edges α _ 〈gj , σ〉.

These subintervals can then be used to protect the honesty of the computations given by witnesses

w′ which are chosen by an S strategy α′ lying below the edge α _ 〈hj , σ〉 or α _ 〈gj , σ〉. This

is achieved in the following way.

Firstly if α′ lies below the edge α _ 〈hj , σ〉 it will only attach a witness w′ to one of its edges at

some stage t if w < w′ < w + nt. Similarly if α′ lies below the edge α _ 〈gj , σ〉 it will only

attach a witness w′ to one of its edges at some stage t if v < w′ < v + nt.

Secondly we observe that every strategy βk such that 1 ≤ k < j is not only active for α, but

also potentially active for α′. Therefore we need to ensure that the honesty of the computations

ΓUk,Dβk_〈i,σk〉[t
′](w′) (or ΓVk,Dβk_〈i,σk〉[t

′](w′) resp.) is preserved for every 1 ≤ k < j during all stages

t′ > t, unless α′ is initialised or reset.

Now if α visits the edge α _ 〈hj , σ〉 at some stage t′ > t and enumerates the upper bound of its

work interval γβj_〈i,σj〉[t
′](w) into D, we shall have that γβj_〈i,σj〉[t

′](w) > γβk_〈i,σk〉[t
′](w +

nt′) for every 1 ≤ k < j by H-Synchronisation. We also have that γβk_〈i,σk〉[t
′](w + nt′) >

γβk_〈i,σk〉[t
′](w′) for all 1 ≤ k < j because w < w′ < w + nt ≤ w + nt′ . In addition

γβk_〈i,σk〉[t
′](w′) ≥ γβk_〈i,σk〉[t](w

′) for every 1 ≤ k < j, because the strategy βk chooses

uses which are non-decreasing with respect to stages for any given element when defining its

functionals. But γβk_〈i,σk〉[t](w
′) is greater than φk,2[t](φk,1[t](w′)) and φk,3[t](φk,1[t](w′)) for

every 1 ≤ i < j, which means that the honesty of the aforementioned functionals cannot be

compromised by the enumeration of γβj_〈i,σj〉[t
′](w) into D.

Similarly if α visits the edge α _ 〈gj , σ〉 at some stage t′ > t it may enumerate γβj_〈i,σj〉[t
′](v)

into D, or else enumerate some witness w attached to the edge into A. Since we have that

w > γβj_〈i,σj〉[t
′](v) it will suffice to consider the first case only. In this case we have

303

that γβj_〈i,σj〉[t
′](v) > γβk_〈i,σk〉[t

′](v + nt′) for every 1 ≤ k < j by H-Synchronisation.

Now γβk_〈i,σk〉[t
′](v + nt′) > γβk_〈i,σk〉[t

′](w′) for every 1 ≤ k < j because v < w′ <

v + nt ≤ v + nt′ . In addition γβk_〈i,σk〉[t
′](w′) ≥ γβk_〈i,σk〉[t](w

′) for every 1 ≤ k < j,

because for any given element the strategy βk chooses uses which are non-decreasing with respect

to stages. But γβk_〈i,σk〉[t](w
′) is greater than φk,2[t](φk,1[t](w′)) and φk,3[t](φk,1[t](w′)) for

every 1 ≤ i < j, which means that the honesty of the aforementioned functionals cannot be

compromised by the enumeration of γβj_〈i,σj〉[t
′](v) into D, or by the enumeration of some

witness w > γβj_〈i,σj〉[t
′](v) into A.

In addition to the above we have that the honesty of computations ΓUk,Dβk_〈i,σk〉[t
′](w) (or

ΓVk,Dβk_〈i,σk〉[t
′](w) resp.) for R strategies βk lying above α′ but below α must also be preserved at

stages t′ > t. In this case we claim that α cannot compromise the honesty of such computations

by enumerating the upper bound bt′ of its work interval into D, nor by enumerating some witness

w > bt′ into A at some stage t′ > t. Once again it shall suffice to consider the first case

only. Since βk chooses uses which lie inside the work interval imposed by α when defining

its functionals, and since the upper bound of this work interval can only increase, we must have

that γβk_〈i,σk〉[t
′](w′) < bt′ . In addition γβk_〈i,σk〉[t

′](w′) ≥ γβk_〈i,σk〉[t](w
′), because for any

given element the strategy βk chooses uses which are non-decreasing with respect to stages. But

γβk_〈i,σk〉[t](w
′) is greater than φk,2[t](φk,1[t](w′)) and φk,3[t](φk,1[t](w′)), which means that the

honesty of the aformentioned functionals cannot be compromised by the enumeration of bt′ into

D or by the enumeration of some witness w > bt′ into A at some stage t′ > t.

We are now in a position to define the questions needed for the generalR strategy.

3.7.3 Questions for theR Strategy

The R strategy β, will need to ask one question, which we denote by Q1. The question asks

whether the strategy β sees infinitely many β-expansionary* stages:

(1) Are there infinitely many stages q ∈ Nβ such that the following holds?

(i) (∀q′ < q)[β-stage(q′)⇒ lq(Φ
U,V
1 , A) > lq′(Φ

U,V
1 , A)].

304

(ii) (∀q′ < q)[β-stage(q′) ∧ (∀q′′ < q′)[β-stage(q′′)⇒ lq′(Φ
U,V
1 , A) > lq′′(Φ

U,V
1 , A)]⇒

lq(Φ
A,D
2 , U) > lq′(Φ

A,D
2 , U)].

(iii) (∀q′ < q)[β-stage(q′) ∧ (∀q′′ < q′)[β-stage(q′′)⇒ lq′(Φ
U,V
1 , A) > lq′′(Φ

U,V
1 , A)]⇒

lq(Φ
A,D
3 , V) > lq′(Φ

A,D
3 , V)].

(iv) (∀q′ < q)[β-stage(q′) ∧ (∀q′′ < q′)[β-stage(q′′)⇒ lq′(Φ
U,V
1 , A) > lq′′(Φ

U,V
1 , A)]⇒

hq(Φ
U,V
1 ,ΦA,D

2 ,ΦA,D
3) > hq′(Φ

U,V
1 ,ΦA,D

2 ,ΦA,D
3)].

If the strategy is accessible at some stage s, it will guess the answer to Q1 by computing the

apparent limit o and apparent use σ for lim
t→∞

ΨH0(f(Q1), t) at stage s. If the answer corresponding

to o is ‘No’, we denote the outcome by 〈f, σ〉. On the other hand, if the answer corresponding to

o is ‘Yes’, we denote the outcome by 〈i, σ〉.

We now describe theR strategy itself.

3.7.4 TheR Strategy

The general R strategy β labeled Ri will either be following a Γ-strategy or a Γ̂-strategy,

depending on its location on the priority tree. The strategy will have outcomes of the form 〈i, σ〉

and 〈f, σ〉. If it is following a Γ-strategy, it will build a different functional ΓUi,Dβ_〈i,σ〉 below every

edge β _ 〈i, σ〉 leaving β. Similarly if the strategy is following a Γ̂-strategy, it will build a

different functional ΓVi,Dβ_〈i,σ〉 below every edge β _ 〈i, σ〉 leaving β. Every edge has a separate

set of uses U e,β_〈i,σ〉, from which the strategy will choose uses when defining the functional

associated to the edge β _ 〈i, σ〉. Note that e is the index of the strategy β in the total ordering

of the R strategies lying on the priority tree. The strategy β may also lie below a number of R

strategies βi for 1 ≤ i ≤ m which are active for β, with which it will need to R-Synchronise.

In order to implement fairness the strategy will need to keep track of whether it should suspend

the guessing at the present stage. For this purpose we shall use a Boolean variable suspend, which

is initialised to the value false. When the variable suspend is false, the strategy calculates which

edge to visit as normal. When the variable suspend is true, the strategy will also calculate the

edge it should visit. However if this edge lies to the right of the edge which was visited when the

strategy was last accessible, the strategy will visit the latter edge instead.

305

The strategy goes through the following steps at stage s.

During its first step, the strategy β will calculate a rightward restraint r(β _ 〈o′, σ′〉, s) for every

edge β _ 〈o′, σ′〉 which has been previously accessible, as in the previous section.

Similarly during its second step, the strategy β will perform its attachment procedure as in the

previous section, attaching the stage s to a suitable edge if s is a β-expansionary* stage.

This is followed by its third step, where the strategy will calculate the edge β _ 〈o, σ〉 which will

be visited at stage s. The strategy will start by calculating the edge β _ 〈oλ, σλ〉 which should be

visited at stage s as usual, but will then consider the value of the variable suspend. If suspend is

false the edge β _ 〈o, σ〉 is set to β _ 〈oλ, σλ〉. On the other hand if suspend is true the strategy

determines the edge β _ 〈o′, σ′〉 which the strategy has visited when it was last accessible. Then

if β _ 〈o′, σ′〉 is to the left of β _ 〈oλ, σλ〉, the edge β _ 〈o, σ〉 is set to β _ 〈o′, σ′〉. Otherwise

the edge β _ 〈o, σ〉 is set to β _ 〈oλ, σλ〉.

Once the edge β _ 〈o, σ〉 has been determined, the strategy will perform its fourth step by

calculating the attachment restraint a(β _ 〈o′, σ′〉, s) for every edge β _ 〈o′, σ′〉 which has

been previously accessible, as in the previous section. The strategy also calculates the downward

restraint d(β _ 〈o, σ〉, s), as in the previous section.

During the final and fifth step, the strategy will take action depending on the outcome of β _

〈o, σ〉. This is mostly identical to the procedure found in the previous section, with the following

four exceptions.

The first exception is that the value of the variable suspend must now be taken into consideration.

Thus in the case where the outcome of the edge is f , the strategy will set suspend to true if the

present stage does not match the mode of the edge. Otherwise, the strategy will set suspend to

false.

In the case where the outcome of the edge is i we have the following.

If the edge is in β-open mode but has no β-expansionary* stage attached, the strategy will set

suspend to false, since the edge is not yet ready for the strategy to take action when visiting it.

On the other hand if the edge has a β-expansionary* stage attached but the present stage is not

306

a β-open stage, we set suspend to true to wait for an appropriate stage. Once the edge has a β-

expansionary* stage attached and the present stage is a β-open stage, the strategy can take action

and sets suspend to false, independently of whether there is a disagreement between the functional

associated to the edge and the set A.

If the edge is in close mode and there is a disagreement between the functional associated to the

edge and the set A, but there is no β-expansionary* stage attached to the edge, the strategy will

set suspend to false, since the edge is not yet ready for the strategy to take action when visiting

it. On the other hand if the edge has a β-expansionary* stage attached but the present stage is

not a β-close stage, we set suspend to true to wait for an appropriate stage. Once the edge has

a β-expansionary* stage attached and the present stage is a β-close stage, the strategy can take

action and sets suspend to false.

Finally if the edge is in close mode and there is no disagreement between the functional associated

to the edge and the setA, but the present stage is not a β-close stage, we set suspend to true to wait

for an appropriate stage. Once the present stage is a β-close stage, the strategy can take action and

sets suspend to false.

The second exception is that the strategy β will only define a functional ΓUi,Dβ_〈i,σ〉 (or ΓVi,Dβ_〈i,σ〉

resp.) associated to one of its edges β _ 〈i, σ〉 at some element x at stage s if it lies within the

length of honesty preservation, that is if x ≤ h[s](ΦU,V
i,1 ,ΦA,D

i,2 ,ΦA,D
i,3).

The third exception is that the strategy β must now R-Synchronise with every R strategy βi for

1 ≤ i ≤ m. Thus if the strategy βi has an edge βi _ 〈i, σi〉 lying on the path leading to β, and β

defines the functional ΓUi,Dβ_〈i,σ〉[s](x) (or ΓVi,Dβ_〈i,σ〉[s](x) resp.) associated to some edge β _ 〈i, σ〉

by choosing some use γβ_〈i,σ〉[s](x), we must have that γβ_〈i,σ〉[s](x) > γβi_〈i,σi〉[s](x) for

every 1 ≤ i ≤ m.

The fourth exception is that the strategy β must now obey H-Synchronisation constraints imposed

by S strategies α lying below some edge β _ 〈i, σ〉 of the strategy β. These constraints are

imposed when α visits some edge of the form α _ 〈gj , σ〉 or α _ 〈hj , σ〉which has an associated

boundary n. Thus whilst defining the functional ΓUi,Dβ_〈i,σ〉(x)[s] (or ΓVi,Dβ_〈i,σ〉(x)[s] resp.), we have

that β could be constrained to choose uses γβ_〈i,σ〉[s](x) > γβk_〈i,σk〉[s](x + ns) for every βk

307

such that 1 ≤ k < j.

We shall now formalise the modifiedR strategy.

TheR Strategy

The strategy β labeled Ri will either be following a Γ-strategy or a Γ̂-strategy. Every edge

β _ 〈i, σ〉 has a functional ΓUi,Dβ_〈i,σ〉 (or ΓVi,Dβ_〈i,σ〉 resp.) associated to it, which the strategy

will build when it visits that edge. Each edge β _ 〈i, σ〉 will also have its own set of uses

U e,β_〈i,σ〉 from which uses will be chosen when defining the respective functionals.

The strategy β may lie below a number of R strategies β′. Each such strategy β′ imposes a

downward restraint d(β′ _ 〈o′, σ′〉, s) on β at stage s, where β′ _ 〈o′, σ′〉 is the edge of

β′ on the path leading to β. A number of these R strategies may be active for β. We denote

these R strategies by βi for 1 ≤ i ≤ m. Similarly the corresponding edges lying on the path

leading to β will be denoted by βi _ 〈i, σi〉 for every 1 ≤ i ≤ m. Each of these strategies

may either be following a Γ-strategy or a Γ̂-strategy.

The strategy β may also lie below a number of S strategies α′. Each such strategy α′ imposes

a downward restraint d(α′ _ 〈o′, σ′〉, s) on β at stage s, where α′ _ 〈o′, σ′〉 is the edge of α′

on the path leading to β. The strategy α′ also imposes the diagonalisation restraint Rα′,s on

β at stage s. The strategy α′ may also impose a work interval on β at stage s, depending on

its outcome on the path leading to β. Finally let α′′ ⊂ β be the greatest S strategy (under ⊂)

which imposes a work interval on β. We shall denote the work interval imposed by α′′ on β

at stage s by (as, bs).

Finally the strategy β has a Boolean variable suspend which is initialised to the value false.

(1) Define the rightward restraint r(β _ 〈o′, σ′〉, s) for every edge β _ 〈o′, σ′〉 which was

previously accessible as the least element x such that:

(a) x ≥ t where t is some β-expansionary* stage attached to β _ 〈o′, σ′〉.

(b) x ≥ t where t is the last stage at which β _ 〈o′, σ′〉 was accessible.

Go to step (2).

308

(2) If stage s is a β-expansionary* stage, and there is some edge β _ 〈i, σ′〉which has been

previously accessible and which has no β-expansionary* stage attached to it, attach s

to the leftmost such edge.

If a β-expansionary* stage s has been attached to some edge β _ 〈i, σ′〉, consider

every edge β _ 〈i, σ′′〉 lying to the right of β _ 〈i, σ′〉. If some β-expansionary*

stage s′ is attached to β _ 〈i, σ′′〉, detach the β-expansionary* stage from the edge.

Go to step (3).

(3) Determine the edge β _ 〈o, σ〉 which is to be visited during stage s as follows.

Calculate the edge β _ 〈oλ, σλ〉 which the strategy should visit at stage s, and consider

the value of the variable suspend.

(a) If suspend is true, let β _ 〈o′, σ′〉 be the edge which was accessible when the

strategy was last visited at stage t. If β _ 〈o′, σ′〉 is to the left of β _ 〈oλ, σλ〉,

let β _ 〈o, σ〉 = β _ 〈o′, σ′〉. Otherwise, let β _ 〈o, σ〉 = β _ 〈oλ, σλ〉.

(b) If suspend is false, let β _ 〈o, σ〉 = β _ 〈oλ, σλ〉.

Go to step (4).

(4) Define the attachment procedure restraint a(β _ 〈o′, σ′〉, s) for every edge β _ 〈o′, σ′〉

which was previously accessible. If the strategy has not attached a β expansionary*

stage s to some edge β _ 〈o′′, σ′′〉 <L β _ 〈o′, σ′〉 at stage s, define a(β _

〈o′, σ′〉, s) = 0. Otherwise define a(β _ 〈o′, σ′〉, s) = s.

Also define the downward restraint d(β _ 〈o, σ〉, s) as the least element x such that:

(a) x ≥ sup{r(β _ 〈o′, σ′〉, s) | β _ 〈o′, σ′〉 <L β _ 〈o, σ〉 ∧

β _ 〈o′, σ′〉 has been previously accessible}.

(b) x ≥ a(β _ 〈o, σ〉, s).

(c) x ≥ d(β _ 〈o, σ〉, t) for all t < s.

Go to step (5).

309

(5) Consider the edge β _ 〈o, σ〉 being visited by the strategy at stage s. Take action

according to the value of o through the following case analysis.

(a) o = f .

(i) β _ 〈f, σ〉 is in open mode and s is not a β-open stage. Set suspend to true.

End the stage s, and go to stage s+ 1.

(ii) β _ 〈f, σ〉 is in open mode and s is a β-open stage. Set the edge to close

mode, and set suspend to false. Go to the next substage.

(iii) β _ 〈f, σ〉 is in close mode and s is not a β-close stage. Set suspend to true.

End the stage s, and go to stage s+ 1.

(iv) β _ 〈f, σ〉 is in close mode and s is a β-close stage. Set the edge to open

mode, and set suspend to false. Go to the next substage.

(b) o = i.

(i) β _ 〈i, σ〉 is in open mode and there is no β-expansionary* stage attached

to the edge. Set suspend to false. End the stage s, and go to stage s+ 1.

(ii) β _ 〈i, σ〉 is in open mode and there is a β-expansionary* stage attached to

the edge and s is not a β-open stage. Set suspend to true. End the stage s,

and go to stage s+ 1.

(iii) β _ 〈i, σ〉 is in open mode and there is a β-expansionary* stage attached to

the edge and s is a β-open stage.

If there is some element m such that ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m), set the edge

to close mode and set suspend to false. End the stage s, and go to stage s+ 1.

Otherwise, detach the stage s from the edge. Consider every x <

ls(Φ
Ui,Vi
i,1 , A) such that ΓUi,Dβ_〈i,σ〉[s](x) ↑. If x < hs(Φ

Ui,Vi
i,1 ,ΦA,D

i,2 ,ΦA,D
i,3),

define the axiom ΓUi,Dβ_〈i,σ〉[s](x) = As(x).

Consider the least u < s such that:

(A) u ≥ γβ_〈i,σ〉[t](x) for all t < s.

(B) u > γβ_〈i,σ〉[s](y) for all y < x.

(C) u > sup{r(β _ 〈o′, σ′〉, s) | β _ 〈o′, σ′〉 <L β _ 〈o, σ〉 ∧

310

β _ 〈o′, σ′〉 has been previously accessible}.

(D) u > a(β _ 〈i, σ〉, s).

(E) u > Rα′,s, for every S strategy α′ ⊂ β.

(F) u > d(β′ _ 〈o′, σ′〉, s), for every R strategy β′ ⊂ β with edge β′ _

〈o′, σ′〉 on the path leading to β.

(G) u > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ β with edge α′ _

〈o′, σ′〉 on the path leading to β.

(H) as < u < bs.

(I) u 6∈ D.

(J) u > y, where y is a constraint imposed by some S strategy α below β.

(K) u > t, where t is the last stage at which the edge β _ 〈i, σ〉 was last

initialised.

(L) u > γβj_〈i,σj〉[s](x), for all 1 ≤ j ≤ m.

(M) u > φi,2[s](φi,1[s](x)).

(N) u > φi,3[s](φi,1[s](x)).

If u does not exist, ΓUi,Dβ_〈i,σ〉(x) is not defined.

Otherwise let t′ < s be the greatest stage such that ΓUi,Dβ_〈i,σ〉[t
′](x) ↓, and let

u′ be the greatest use which the strategy has chosen so far when defining its

functional at some element.

If t′ does not exist, define γβ_〈i,σ〉[s](x) = u.

If t′ exists and u > γβ_〈i,σ〉[t
′](x), define γβ_〈i,σ〉[s](x) to be the least

element in U e,β_〈i,σ〉 which is greater than u′.

Otherwise define γβ_〈i,σ〉[s](x) = γβ_〈i,σ〉[t
′](x).

Set the edge to close mode and suspend to false. Go to the next substage.

(ΓVi,D resp.).

(iv) β _ 〈i, σ〉 is in close mode and there is an element m such that

ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓVi,Dβ_〈i,σ〉[s](m) resp.) and there is no β-

expansionary* stage attached to the edge. Set suspend to false. End the stage

s, and go to stage s+ 1.

311

(v) β _ 〈i, σ〉 is in close mode and there is an element m such that

ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓVi,Dβ_〈i,σ〉[s](m) resp.) and there is a β-

expansionary* stage attached to the edge and s is not a β-close stage. Set

suspend to true. End the stage s, and go to stage s+ 1.

(vi) β _ 〈i, σ〉 is in close mode and there is an element m such that

ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓVi,Dβ_〈i,σ〉[s](m) resp.) and there is a β-

expansionary* stage attached to the edge and s is a β-close stage. Enumerate

γβ_〈i,σ〉[s](m) into D. Set the edge to open mode. Set suspend to false. End

the stage s and go to stage s+ 1.

(vii) β _ 〈i, σ〉 is in close mode and there is no element m such that

ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓVi,Dβ_〈i,σ〉[s](m) resp.) and s is not a β-close

stage. Set suspend to true. End the stage s, and go to stage s+ 1.

(viii) β _ 〈i, σ〉 is in close mode and there is no element m such that

ΓUi,Dβ_〈i,σ〉[s](m) 6= As(m) (or ΓVi,Dβ_〈i,σ〉[s](m) resp.) and s is a β-close stage.

Set the edge to open mode. Set suspend to false and go to the next substage.

3.7.5 Questions for the S Strategy

The S strategy α will need to ask a number of questions, which take the context of the strategy

into consideration. The strategy α may lie below a number of R strategies βi for 1 ≤ i ≤ m

which are active for α and which can follow a Γ-strategy or a Γ̂-strategy. Every strategy βi will

have an outgoing edge βi _ 〈i, σi〉, which lies on the path leading to the strategy α. In addition S

strategies α′ lying above α may impose a work interval on α. The work interval imposed at stage

s by the greatest strategy α′ (under ⊂) above α is denoted by (as, bs), and the boundary imposed

by this strategy on α at stage s is denoted by ns.

The strategy starts by asking question Q1. This question asks whether there are infinitely many

witnesses w and stages s such that w and θs(w) lie inside the work interval (as, bs), w lies inside

the subinterval (as, as +ns), and the computation ΘD[s](w) ↓= 0 holds. In addition the question

312

also asks whether the length of agreement between the functional ΘD and the set A expands

infinitely often.

(1) Are there infinitely many w ∈W e, s ∈ Nα and q ∈ Nα such that the following hold?

(i) ΘD[s](w) ↓= 0.

(ii) as < w < bs (if a work interval is imposed on the strategy).

(iii) as < θs(w) < bs (if a work interval is imposed on the strategy).

(iv) as < w < as + ns (if a work interval is imposed on the strategy).

(v) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

If there is someR strategy βi ⊂ αwhich is active for α, we ask questionQ2.i for every 1 ≤ i ≤ m.

A positive answer to question Q1 asserts that there are infinitely many witnesses w and stages s

such thatw and θs(w) lie inside the work interval (as, bs),w lies inside the subinterval (as, as+ns)

and the computation ΘD[s](w) ↓= 0 holds. Question Q2.i asks whether infinitely many of these

witnesses w and stages s give rise to computations Γ
Uj ,D

βj_〈i,σj〉[s](w) (or Γ
Vj ,D

βj_〈i,σj〉[s](w) resp.)

which are honest for every 1 ≤ j ≤ i.

(2.i) Are there infinitely many w ∈W e, s ∈ Nα and q ∈ Nα such that the following hold?

(i) ΘD[s](w) ↓= 0.

(ii) as < w < bs (if a work interval is imposed on the strategy).

(iii) as < θs(w) < bs (if a work interval is imposed on the strategy).

(iv) as < w < as + ns (if a work interval is imposed on the strategy).

(v) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

(vi) (∀ 1 ≤ j ≤ i)[φj,1[s](w) ≤ γβj_〈i,σj〉[s](w)].

If there is someR strategy βi ⊂ α which is active for α and follows a Γ-strategy, we ask question

Q3.i for every 1 ≤ i ≤ m such that βi follows a Γ-strategy. A positive answer to question

Q1 and questions Q2.i for 1 ≤ i ≤ m asserts that there are infinitely many witnesses w and

stages s such that w and θs(w) lie inside the work interval (as, bs), w lies inside the subinterval

(as, as + ns) the computation ΘD[s](w) ↓= 0 holds, and the computations ΓUi,Dβi_〈i,σi〉[s](w) (or

ΓVi,Dβi_〈i,σi〉[s](w) resp.) are honest for every 1 ≤ i ≤ m. Question Q3.i asks whether infinitely

313

many of these witnesses w enter A at stage s. In addition it asks whether a Uj � φj,1[s](w) change

has occurred by the least Rj-expansionary* stage tj > s for every strategy βi with 1 ≤ j ≤ i

which is following a Γ-strategy.

(3.i) Are there infinitely many w ∈ W e, s ∈ Nα, t1, . . . tj ∈ N and q ∈ Nα such that the

following hold?

(i) ΘD[s](w) ↓= 0.

(ii) as < w < bs (if a work interval is imposed on the strategy).

(iii) as < θs(w) < bs (if a work interval is imposed on the strategy).

(iv) as < w < as + ns (if a work interval is imposed on the strategy).

(v) (∀q′ < q)[α-stage(q′)⇒ lq′(Θ
D, A) < lq(Θ

D, A)].

(vi) (∀ 1 ≤ i ≤ m)[φi,1[s](w) ≤ γβi_〈i,σi〉[s](w)].

(vii) As(w) = 0.

(viii) As+1(w) = 1.

(ix) (∀ 1 ≤ j ≤ i)[tj > s].

(x) (∀ 1 ≤ j < i)[βj follows a Γ-strategy ⇒ (∀s < t′ < tj)[Uj,t′ � φj,1[s](w) = Uj,s �

φj,1[s](w)]].

(xi) (∀ 1 ≤ j < i)[βj follows a Γ-strategy ⇒ (∀s < t′ < tj)[Vj,t′ � φj,1[s](w) = Vj,s �

φj,1[s](w)]].

(xii) (∀ 1 ≤ j < i)[βj follows a Γ-strategy ⇒ (∀s < t′ < tj)[Uj,tj � φj,1[s](w) 6= Us �

φj,1[s](w)]].

(xiii) (∀s < t′ < ti)[Ui,t′ � φi,1[s](w) = Ui,s � φi,1[s](w)].

(xiv) (∀s < t′ < ti)[Vi,t′ � φi,1[s](w) = Vi,s � φi,1[s](w)].

(xv) Ui,ti � φi,1[s](w) 6= Us � φi,1[s](w).

If the strategy is accessible at some stage s, it will guess the answer to questions Q1, Q2.i for

every 1 ≤ i ≤ m and to questions Q3.i for every 1 ≤ i ≤ m (where is applicable). This is done

by computing an apparent limit oi and an apparent use σi for each lim
t→∞

ΨH0(f(Qi), t) at stage

s. Let σ be the apparent use of greatest length. The outcome visited by the strategy at stage s is

calculated as follows.

314

• If the answer corresponding to o1 is ‘No’, we denote the outcome by 〈w, σ〉.

• If the answer corresponding to o1 is ‘Yes’, there is anR strategy βi ⊂ α which is active for

α, there is some 1 ≤ j ≤ m such that the answer corresponding to o2.i is ‘Yes’ for every

1 ≤ i < j, and the answer corresponding to o2.j is ‘No’, we denote the outcome by 〈hj , σ〉.

• If the answer corresponding to o1 is ‘Yes’, there is anR strategy βi ⊂ α which is active for

α, the answer corresponding to o2.i is ‘Yes’ for every 1 ≤ i ≤ m, there is an R strategy

βi ⊂ α which is active for α and is following a Γ-strategy, there is some 1 ≤ j ≤ m

such that the answer corresponding to o3.i is ‘Yes’ for every 1 ≤ i < j, and the answer

corresponding to o3.j is ‘No’, we denote the outcome by 〈gj , σ〉.

• If the answer corresponding to o1 is ‘Yes’, there is anR strategy βi ⊂ α which is active for

α, the answer corresponding to o2.i is ‘Yes’ for every 1 ≤ i ≤ m, there is an R strategy

βi ⊂ α which is active for α and is following a Γ-strategy, and the answer corresponding

to o3.i is ‘Yes’ for every 1 ≤ i ≤ m such that βi is following a Γ-strategy, we denote the

outcome by 〈d, σ〉.

• If the answer corresponding to o1 is ‘Yes’, and there is no strategy βi ⊂ α which is active

for α we denote the outcome by 〈d, σ〉.

• If the answer corresponding to o1 is ‘Yes’, there is anR strategy βi ⊂ α which is active for

α, the answer corresponding to o2.i is ‘Yes’ for every 1 ≤ i ≤ m, and there is noR strategy

βi ⊂ α which is active for α and is following a Γ-strategy, we denote the outcome by 〈d, σ〉.

We shall now proceed to discuss the modified S strategy.

3.7.6 The S Strategy

The general S strategy α has an infinite set of witnesses W e, and an infinite set of thresholds V e,

where e is the index of the strategy α in the total ordering of the S strategies lying on the priority

tree. At any given stage s it will also be able to impose a restraint Rα,s on all lower priority

strategies. Initially, we have that Rα,0 is equal to 0. The strategy α shall use the fact that Rα,s > 0

to signal that it has diagonalised. Once this restraint has been set, it will keep its value during

subsequent stages.

315

The strategy α may lie below a number of R strategies βi for 1 ≤ i ≤ m which are active for α

and which can follow a Γ-strategy or a Γ̂-strategy. In this case the strategy βi will have an outgoing

edge βi _ 〈i, σi〉, which lies on the path leading to the strategy α. The outcomes of the strategy

will be of the form 〈d, σ〉, 〈hi, σ〉 for 1 ≤ i ≤ m (assuming some R strategy βi ⊂ α active for α

exists), 〈gi, σ〉 for every 1 ≤ i ≤ m such that βi follows a Γ-strategy (assuming some R strategy

βi ⊂ α active for α and following a Γ-strategy exists) and 〈w, σ〉.

In order to implement fairness the strategy will need to keep track of whether it should suspend

the guessing at the present stage. For this purpose we shall use a Boolean variable suspend, which

is initialised to the value false. When the variable suspend is false, the strategy calculates which

edge to visit as normal. When the variable suspend is true, the strategy will also calculate the

edge it should visit. However if this edge lies to the right of the edge which was visited when the

strategy was last accessible, the strategy will visit the latter edge instead.

The strategy goes through the following steps at stage s.

During its first step, the strategy determines whether it has enumerated some witness w′ into the

set A during the last stage t at which it was accessible (assuming it was accessible at least once

before, and that it has not been initialised in the meantime). Suppose that this has been the case.

Then the strategy needs to determine the way in which the disagreements ΓUi,Dβi_〈i,σi〉(w
′) 6= A(w′)

(or ΓVi,Dβi_〈i,σi〉(w
′) resp.) which were introduced when the strategy enumerated w′ into A at stage

t were removed for all 1 ≤ i ≤ m.

In order to do this, the strategy will determine whether a Ui � φi,1[s](w) change has occurred

between stage t and the least Ri-expansionary* stage ti > t for every 1 ≤ i ≤ m. If this is the

case, the strategy has diagonalised and the strategy sets Rα,t = θt(w) so as to protect the use of

the computation. Since the strategy has diagonalised and does not need to take further action, it

will detach every witness, undefine every work interval, set every boundary to zero, set the mode

of every edge to its initial mode and set suspend to false.

During its second step, the strategy α will calculate a rightward restraint r(α _ 〈o′, σ′〉, s) for

every edge α _ 〈o′, σ′〉 which has been previously accessible, exactly as in the previous section.

If a witness w′ is attached to an edge α _ 〈d, σ′〉 or α _ 〈gi, σ′〉 for 1 ≤ i ≤ m, we shall

316

require r(α _ 〈o′, σ′〉, s) to be greater than or equal to φi,2[t](φi,1[t](w)) and φi,3[t](φi,1[t](w))

for 1 ≤ i ≤ m where t is the stage at which the witness was attached to the edge. This is done so

as to preserve the honesty of w′.

During its third step, the strategy α will perform its attachment procedure.

If the strategy has already diagonalised (Rα,s > 0), no further action needs to be taken and the

attachment procedure will be terminated.

Otherwise the attachment procedure will consider in turn every witness w in W e which at stage

s yields a computation ΘD[s](w) ↓= 0 and which has not been attached to an edge so far. The

attachment procedure will be seeking to attach one of these witnesses to an edge, and will stop

considering further witnesses once this has been achieved.

In order to decide which edge the witness under consideration should be attached to, the strategy

will consider the kind of outcomes possessed by the strategy, and the honesty of the computations

ΓUi,Dβi_〈i,σi〉[s](w) (or ΓVi,Dβi_〈i,σi〉[s](w) resp.) for all 1 ≤ i ≤ m.

If no R strategy βi ⊂ α is active for α, we have that the strategy has no edges with outcomes

〈gi, σ〉 or 〈hi, σ〉 for some 1 ≤ i ≤ m. Hence we shall attach the witness w to the leftmost

edge of the form α _ 〈d, σ〉 which does not have a witness attached, and which obeys the usual

constraints.

If there is some R strategy βi ⊂ α which is active for α, we have that the strategy has edges with

outcomes 〈hi, σ〉 for some 1 ≤ i ≤ m, and may also have edges with outcomes 〈gi, σ〉 for some

1 ≤ i ≤ m.

In this case the strategy determines whether the computations ΓUi,Dβi_〈i,σi〉[s](w) (or ΓVi,Dβi_〈i,σi〉[s](w)

resp.) are honest for every 1 ≤ i ≤ m. If this is not the case, there is some least j such that

the computation Γ
Uj ,D

βj_〈i,σj〉[s](w) (or Γ
Vj ,D

βj_〈i,σj〉[s](w) resp.) is dishonest. Hence we attach the

witness w to the leftmost edge of the form α _ 〈hj , σ〉 which does not have a witness attached,

and which obeys the usual constraints.

On the other hand if the computations ΓUi,Dβi_〈i,σi〉[s](w) (or ΓVi,Dβi_〈i,σi〉[s](w) resp.) are honest for

every 1 ≤ i ≤ m, the strategy will determine whether there is some strategy βi ⊂ α active for α

317

which is following a Γ-strategy.

If this is not the case, the strategy does not have any edges with outcome 〈gi, σ〉. Hence we attach

the witness w to the leftmost edge of the form α _ 〈d, σ〉 which does not have a witness attached,

as long as it satisfies as < w < as + ns in addition to the usual constraints.

On the other hand if there is some strategy βi ⊂ α which is active for α and is following a

Γ-strategy, we have that the strategy has edges with outcome 〈gi, σ〉. Hence it will attach the

witness w to the leftmost edge of the form α _ 〈gi, σ〉 for some 1 ≤ i ≤ m where βi is

following a Γ-strategy, as long as this edge does not have a witness attached and the witness

satisfies as < w < as + ns in addition to the usual constraints. In this case we do not distinguish

between gi outcomes with different values of iwhen deciding the edge to which the witness should

be attached.

Before proceeding we remark that edges with outcomes of the form 〈w, σ〉, 〈d, σ〉 or 〈gi, σ〉 will

either be in open mode or in close mode, while edges with outcomes of the form 〈hi, σ〉 will either

be in Part I mode or in Part II mode. Edges of the first form are initially in open mode, while edges

of the second form are initially in Part I mode.

This is followed by the fourth step, where the strategy will calculate the edge α _ 〈o, σ〉 which

will be visited at stage s. The strategy will start by calculating the edge α _ 〈oλ, σλ〉 which

should be visited at stage s as usual, but will then consider the value of the variable suspend. If

suspend is false the edge α _ 〈o, σ〉 is set to α _ 〈oλ, σλ〉. On the other hand if suspend is

true the strategy determines the edge α _ 〈o′, σ′〉 which the strategy has visited when it was last

accessible. Then if α _ 〈o′, σ′〉 is to the left of α _ 〈oλ, σλ〉, the edge α _ 〈o, σ〉 is set to

α _ 〈o′, σ′〉. Otherwise the edge α _ 〈o, σ〉 is set to α _ 〈oλ, σλ〉.

This is followed by its fifth step, where the strategy α will calculate its attachment restraint and

downward restraint as in the previous section. If a witness w′ has been attached to some edge with

outcome 〈gi, σ′〉 or 〈d, σ′〉 at stage s, and α _ 〈o′′, σ′′〉 lies to the right of this edge, we shall

require a(α _ 〈o′′, σ′′〉) to be greater than or equal to φi,2[t](φi,1[t](w)) and φi,3[t](φi,1[t](w))

for 1 ≤ i ≤ m, where t is the stage at which the witness was attached to the edge. This is done

so as to preserve the honesty of w′. On the other hand the downward restraint implicitly contains

318

the required honesty preservation constraints and no further constraints need to be imposed in this

case.

During the final and sixth step, the strategy takes action depending on the the outcome of the edge

α _ 〈o, σ〉 being visited during stage s.

We start by considering the case where the S strategy α lies below some R strategy βi which

is active for α and which is following a Γ-strategy. In this case, the strategy α has edges with

outcomes 〈hi, σ〉 for 1 ≤ i ≤ m and 〈gi, σ〉 for 1 ≤ i ≤ m such that βi is following a Γ-strategy.

Suppose that the strategy visits an edge with outcome 〈w, σ〉 and that the edge is in open mode.

If the present stage is not an α-open stage, we terminate the stage and set suspend to true so as

to wait for an α-open stage. Otherwise the strategy will count visiting the edge as having taken

action successfully, changing the mode of the edge back to close mode, setting suspend to false

and going to the next substage.

On the other hand, suppose that the outcome is 〈w, σ〉 and the edge is in close mode. If the present

stage is not an α-close stage, we terminate the stage and set suspend to true so as to wait for an α-

close stage. Otherwise the strategy will count visiting the edge as having taken action successfully,

changing the mode of the edge back to open mode, setting suspend to false and going to the next

substage.

Suppose that the strategy visits an edge with outcome 〈gi, σ〉. If the strategy has diagonalised

as a result of enumerating some witness w′ into A at some prior stage, the stage is terminated.

Otherwise we have that the edge is either in open mode or in close mode.

If the edge in open mode, the strategy will first determine whether a work interval for the edge is

defined. If this is not the case, the strategy will choose a threshold v so as to define a work interval

(v, γβi_〈i,σi〉[s](v)) for the edge. This threshold has to obey certain constraints as detailed in the

previous section. The variable suspend is set to false because the strategy is not yet ready to take

action when visiting the edge.

Once a work interval is defined for the edge, the strategy will determine whether a witness is

attached to the edge. If this is not the case, the strategy will terminate the stage and wait for a

witness w giving honest computations ΓUi,Dβi_〈i,σi〉[s](w) (or ΓVi,Dβi_〈i,σi〉[s](w) resp.) to be attached.

319

The variable suspend is set to false because the strategy is not yet ready to take action when visiting

the edge.

If a work interval is defined for the edge and a witnessw has been attached to the edge, the strategy

will determine whether the witness is still honest, that is whether φi,1[s](w) ≤ γβi_〈i,σi〉(w)[s]

for all 1 ≤ i ≤ m. If this is no longer the case, the witness is detached from the edge. The variable

suspend is set to false because the strategy is not yet ready to take action when visiting the edge.

If a work interval is defined for the edge, a witness has been attached to the edge and the witness

gives honest computations, the strategy determines whether the present stage is an α-open stage.

If this is not the case, the strategy will terminate the stage, set suspend to true and wait for an

α-open stage. If the strategy visits the edge, a work interval has been defined, a witness w has

been attached, the witness gives honest computations, and the present stage is an α-open stage,

the strategy can finally take action and open a gap by enumerating the witness w into the set A.

Since the strategy has taken action successfully, it changes the mode of the edge to close mode,

sets suspend to false and goes to the next substage.

If the edge is in close mode, the strategy will determine whether the present stage is an α-close

stage. If this is not the case, the strategy will terminate the stage, set suspend to true and wait

for an α-close stage. If the strategy visits the edge and the present stage is an α-close stage, the

strategy will perform capricious destruction for ΓUi,Dβi_〈i,σi〉 by enumerating the upper bound of the

work interval of the edge γβi_〈i,σi〉[s](v) into the set D. The strategy constrains βi to choose uses

γβi_〈i,σi〉[t](v) > γβj_〈i,σj〉[t](v + n′s) for all 1 ≤ j < i and t > s, where n′s is the boundary of

the work interval at stage s, and also increments the boundary by one. Since the strategy has taken

action successfully, it changes the mode of the edge to open mode, sets suspend to false and goes

to the next substage.

Suppose now that the strategy visits an edge with outcome 〈hi, σ〉. If the strategy has diagonalised

as a result of enumerating some witness w′ into A at some prior stage, the stage is terminated.

Otherwise we have that the edge is either in Part I mode or in Part II mode.

If the edge in Part I mode, the strategy will determine whether a witness is attached to the edge.

If this is not the case, the strategy will terminate the stage and wait for a witness to be attached.

320

The variable suspend is set to false as the strategy is not yet ready to take action when visiting

the edge. If a witness w has been attached to the edge at the present stage, the work interval

(w, γβ′_〈i,σ′〉[s](w)) is defined for the edge and the stage is terminated. The variable suspend is

set to false as the strategy is not yet ready to take action when visiting the edge. If a witness w

is attached to the edge and the work interval is defined for the edge, the strategy will determine

whether the present stage is an α-close stage. If this is not the case, the strategy will terminate the

stage, set suspend to true and wait for an α-close stage.

Otherwise, the strategy will determine whether the witness w is attached to the edge still gives a

dishonest computation ΓUi,Dβi_〈i,σi〉[s](w) (or ΓVi,Dβi_〈i,σi〉[s](w) resp.) at the present stage s. If this

is not the case, the strategy will terminate the stage and wait for a stage until the computation

becomes dishonest again. Suspend is set to false as the strategy is not yet ready to take action.

If the strategy visits the edge and a witness which has been previously attached is still attached, the

present stage is an α-close stage, and the witnessw gives a dishonest computation ΓUi,Dβi_〈i,σi〉[s](w)

(or ΓVi,Dβi_〈i,σi〉[s](w) resp.), the strategy will perform honestification for ΓUi,Dβi_〈i,σi〉 (or ΓVi,Dβi_〈i,σi〉

resp.), by enumerating the upper bound γβi_〈i,σi〉[s](w) of the work interval defined for the edge

into the set D. The strategy constrains βi to choose uses γβi_〈i,σi〉[t](w) > γβj_〈i,σj〉[t](w + n′s)

for every 1 ≤ j < i and t > s, where n′s is the boundary of the work interval at stage s. The

strategy also increments the boundary of the work interval by one. Since the strategy has taken

action successfully, it changes the mode of the edge to Part II mode, sets suspend to false and goes

to the next substage.

If the edge is in Part II mode, the strategy will determine whether the present stage is an α-open

stage. If this is not the case, the strategy will terminate the stage, set suspend to true and wait for

an α-open stage. Otherwise, the strategy will take no action. This will count as the strategy having

taken action successfully. The strategy thus changes the mode of the edge back to Part I mode,

sets suspend to false and goes to the next substage.

Finally suppose that the strategy visits an edge with outcome 〈d, σ〉. The strategy first determines

whether it has already diagonalised, and in this case terminates the stage.

Otherwise, we have to consider three cases.

321

If there is no R strategy βi ⊂ α which is active for α, we have that witnesses are attached to

the edges of the form α _ 〈d, σ〉, and that they can be enumerated into A when such edges are

visited. Thus if the edge has a witness attached and is in open mode, but the present stage is not

an α-open stage, the strategy will terminate the stage, set suspend to true and wait for an α-open

stage. If the edge has a witness attached and is in open mode and the present stage is an α-open

stage, it will enumerate this witness into A, set suspend to false and terminate the stage.

If there is some R strategy βi ⊂ α which is active for α but no such strategy is following a

Γ̂-strategy we have that witnesses are attached to the edges of the form α _ 〈d, σ〉, and that

they can be enumerated into A when the edge is visited at stage s, this time on condition that

they give honest computations ΓUi,Dβi_〈i,σi〉[s](w). Thus if the edge has a witness giving honest

computations attached and is in open mode, but the present stage is not an α-open stage, it will

terminate the stage, set suspend to true and wait for an α-open stage. If the edge has a witness

giving honest computations attached and is in open mode and the present stage is an α-open stage,

it will enumerate this witness into A, set suspend to false and terminate the stage.

Finally, if there is some strategy βi ⊂ α which is active for α and which is following a Γ-strategy

we have that the strategy α has edges of the form α _ 〈gi, σ〉 for some 1 ≤ i ≤ m, and that

witnesses are attached to these edges, and not to edges of the form α _ 〈d, σ〉. Thus there is

no action to take when the strategy visits an edge of the form α _ 〈d, σ〉, and the stage will be

terminated when this happens.

The S Strategy

The strategy α has a set of witnesses W e and a set of thresholds V e, and at every stage s is

able to impose a restraint Rα,s on lower priority strategies. Initially we have that Rα,0 = 0,

and if the strategy sets Rα,s > 0 during some stage s, the restraint will maintain this value

unless the strategy has been initialised.

The strategy α may lie below a number of R strategies β′. Each such strategy β′ imposes a

downward restraint d(β′ _ 〈o′, σ′〉, s) on α at stage s, where β′ _ 〈o′, σ′〉 is the edge of

β′ on the path leading to α. A number of these R strategies may be active for β. We denote

322

these R strategies by βi for 1 ≤ i ≤ m. Similarly the corresponding edges lying on the path

leading to β will be denoted by βi _ 〈i, σi〉 for 1 ≤ i ≤ m. Each of these strategies may

either be following a Γ-strategy or a Γ̂-strategy.

The strategy α may also lie below a number of S strategies α′. Each such strategy α′ imposes

a downward restraint d(α′ _ 〈o′, σ′〉, s) on α at stage s, where α′ _ 〈o′, σ′〉 is the edge of α′

on the path leading to α. The strategy α′ also imposes the diagonalisation restraint Rα′,s on α

at stage s. Finally the strategy α′ may also impose a work interval on α at stage s, depending

on its outcome on the path leading to α. The work interval imposed at stage s by the greatest

strategy α′ (under ⊂) which lies above α and which does impose a work interval is denoted

by (as, bs). Since these work intervals are nested, it will be sufficient for α to observe this

work interval during the course of its computation.

Finally the strategy α has a Boolean variable suspend which is initialised to the value false.

(1) Consider the last stage t at which α was accessible. If t does not exist, or the strategy α

has been initialised at some stage t′ such that t < t′ < s, go to step (2).

If t exists, has α enumerated some witness w into A at stage t?

(a) (No) Go to step (2).

(b) (Yes) Is it the case that (i) there is no R strategy βi ⊂ α which is active for α,

or that (ii) for every R strategy βi ⊂ α which is active for α, and is following a

Γ-strategy, where 1 ≤ i ≤ m we have that Ut � φi,1[t](w) 6= Uti � φi,1[t](w),

where ti be the leastRi-expansionary stage greater than t?

(i) (No) Go to step (2).

(ii) (Yes) Set the restraint Rα,s to θt(w). Consider every edge α _ 〈o′, σ′〉 of

α which has already been accessed. If a work interval is defined for α _

〈o′, σ′〉, cancel the work interval and reset the boundary to 0. If some witness

is attached to α _ 〈o′, σ′〉, detach the witness. If o′ is equal to d, w or gi for

some 1 ≤ i ≤ m, set the edge to open mode. If o′ is equal to hi for some

1 ≤ i ≤ m, set the edge to Part I mode. Set suspend to false. Go to step (2).

323

(2) Define the rightward restraint r(α _ 〈o′, σ′〉, s) for every edge α _ 〈o′, σ′〉 which was

previously accessible as the least element x such that:

(a) x ≥ θt(w), where w is a witness attached to α _ 〈o′, σ′〉 and t is the stage at

which the witness was attached.

(b) x ≥ t, where t is the last stage at which α _ 〈o′, σ′〉 was last accessible.

(c) x ≥ φi,2[t](φi,1[t](w)) for all 1 ≤ i ≤ m, where w is a witness attached to

α _ 〈o′, σ′〉 and t is the stage at which the witness was attached.

(d) x ≥ φi,3[t](φi,1[t](w)) for all 1 ≤ i ≤ m, where w is a witness attached to

α _ 〈o′, σ′〉 and t is the stage at which the witness was attached.

Go to step (3).

(3) Consider the finite set of witnesses w in W e such that w < s and ΘD[s](w) ↓= 0

and such that w has not been attached to an edge at some stage u < s. Perform the

following case analysis for every such witness in turn (under the order <), until one

witness is attached successfully to an edge or until no more witnesses are available.

(a) Suppose that Rα,s > 0. End stage s, and go to stage s+ 1.

(b) Suppose that Rα,s = 0 and that noR strategy βi ⊂ α is active for α. If there is an

edge α _ 〈d, σ′〉 such that:

(i) α _ 〈d, σ′〉 has been accessible during a previous stage.

(ii) α _ 〈d, σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈d, σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

(iv) w > Rα′,s for every S strategy α′ ⊂ α.

(v) w > d(β′ _ 〈o′, σ′〉, s), for everyR strategy β′ ⊂ α with edge β′ _ 〈o′, σ′〉

on the path leading to α.

(vi) w > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _ 〈o′, σ′〉

on the path leading to α.

(vii) as < w < bs.

324

(viii) as < θs(w) < bs.

(ix) w is greater than the upper bound of the work interval at stage s defined for

any edge α _ 〈o′′, σ′′〉 which was previously accessible and which lies to the

left of α _ 〈d, σ′〉.

(x) w > t, where t is the last stage at which the edge α _ 〈d, σ′〉 was initialised.

(xi) w > w′, where w′ is any witness which has been attached to α _ 〈d, σ′〉 at

some stage t < s.

Then attach w to the leftmost such α _ 〈d, σ′〉.

(c) Suppose that Rα,s = 0 and that there is some least (under ⊂) R strategy βi ⊂ α

which is active for α such that φi,1[s](w) > γβi_〈i,σi〉[s](w), where 1 ≤ i ≤ m.

If there is an edge α _ 〈hi, σ′〉 such that:

(i) α _ 〈hi, σ′〉 has been accessible during a previous stage.

(ii) α _ 〈hi, σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈hi, σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

(iv) w > Rα′,s for every S strategy α′ ⊂ α.

(v) w > d(β′ _ 〈o′, σ′〉, s), for everyR strategy β′ ⊂ α with edge β′ _ 〈o′, σ′〉

on the path leading to α.

(vi) w > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _ 〈o′, σ′〉

on the path leading to α.

(vii) as < w < bs.

(viii) as < θs(w) < bs.

(ix) w is greater than the upper bound of the work interval at stage s defined for

any edge α _ 〈o′′, σ′′〉 which was previously accessible and which lies to the

left of α _ 〈hi, σ′〉.

(x) w > t, where t is the last stage at which the edge α _ 〈hi, σ′〉was initialised.

(xi) w > w′, where w′ is any witness which has been attached to this edge at

some stage t < s.

Consider the leftmost such edge α _ 〈hj , σ′〉 and define the work interval of the

325

edge to be (w, γβj_〈i,σj〉[s](w)) and its boundary to be 0.

(d) Suppose that Rα,s = 0 and that there is some R strategy which is active for α

and is following a Γ-strategy, and that φi,1[s](w) ≤ γβi_〈i,σi〉[s](w) for every R

strategy βi ⊂ α which is active for α, where 1 ≤ i ≤ m. If there is an edge

α _ 〈gj , σ′〉 with 1 ≤ j ≤ m such that:

(i) α _ 〈gj , σ′〉 has been accessible during a previous stage.

(ii) α _ 〈gj , σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈gj , σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

(iv) w > Rα′,s for every S strategy α′ ⊂ α.

(v) w > d(β′ _ 〈o′, σ′〉, s), for everyR strategy β′ ⊂ α with edge β′ _ 〈o′, σ′〉

on the path leading to α.

(vi) w > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _ 〈o′, σ′〉

on the path leading to α.

(vii) as < w < bs.

(viii) as < θs(w) < bs.

(ix) as < w < as + ns.

(x) α _ 〈gj , σ′〉 is in open mode.

(xi) The work interval of the edge α _ 〈gj , σ′〉 is defined.

(xii) w is greater than the upper bound of the work interval for the edge α _

〈gj , σ′〉.

(xiii) w > t, where t is the last stage at which the edge α _ 〈gj , σ′〉was initialised.

(xiv) w > w′, where w′ is any witness which has been attached to this edge at

some stage t < s.

Then attach w to the leftmost such α _ 〈gj , σ′〉.

(e) Suppose that Rα,s = 0 and that there is some R strategy which is active for

α, and that every such strategy is following a Γ̂-strategy, and that φi,1[s](w) ≤

γβi_〈i,σi〉[s](w) for everyR strategy βi ⊂ α which is active for α, where 1 ≤ i ≤

m. If there is an edge α _ 〈d, σ′〉 such that:

326

(i) α _ 〈d, σ′〉 has been accessible during a previous stage.

(ii) α _ 〈d, σ′〉 has no witness attached to it.

(iii) w > sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈d, σ′〉 ∧

α _ 〈o′′, σ′′〉 has been previously accessible}.

(iv) w > Rα′,s for every S strategy α′ ⊂ α.

(v) w > d(β′ _ 〈o′, σ′〉, s), for everyR strategy β′ ⊂ α with edge β′ _ 〈o′, σ′〉

on the path leading to α.

(vi) w > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _ 〈o′, σ′〉

on the path leading to α.

(vii) as < w < bs.

(viii) as < θs(w) < bs.

(ix) as < w < as + ns.

(x) w is greater than the upper bound of the work interval at stage s defined for

any edge α _ 〈o′′, σ′′〉 which was previously accessible and which lies to the

left of α _ 〈d, σ′〉.

(xi) w > t, where t is the last stage at which the edge α _ 〈d, σ′〉 was initialised.

(xii) w > w′, where w′ is any witness which has been attached to this edge at

some stage t < s.

Then attach w to the leftmost such α _ 〈d, σ′〉.

If a witness w has been attached to some edge α _ 〈o′, σ′〉, consider every edge α _

〈o′′, σ′′〉 lying to the right of α _ 〈o′, σ′〉. If some witness w′ is attached to α _

〈o′′, σ′′〉, detach the witness from the edge. If some work interval is defined for α _

〈o′′, σ′′〉, undefine the work interval of the edge and reset the boundary to 0. If o′′ is

equal to d, w or gi for some 1 ≤ i ≤ m, set the edge to open mode. If o′′ is equal to hi

for some 1 ≤ i ≤ m, set the edge to Part I mode.

Go to step (4).

(4) Consider the value of the variable suspend.

(a) If suspend is true, let β _ 〈o′, σ′〉 be the edge which was accessible when the

327

strategy was last visited at stage t. Determine the edge β _ 〈o, σ〉 which the

strategy should visit at stage s. If β _ 〈o′, σ′〉 is to the left of β _ 〈o, σ〉, let

β _ 〈o, σ〉 = β _ 〈o′, σ′〉.

(b) If suspend is false, determine the edge β _ 〈o, σ〉 which the strategy should visit

at stage s.

Go to step (5).

(5) Define the attachment procedure restraint a(α _ 〈o′, σ′〉, s) for every edge α _

〈o′, σ′〉 which was previously accessible. If the strategy has not attached a witness w to

some edge α _ 〈o′′, σ′′〉 <L α _ 〈o′, σ′〉 at stage s, define a(α _ 〈o′, σ′〉, s) = 0.

Otherwise define a(α _ 〈o′, σ′〉, s) as the least element x such that:

(a) x ≥ θs(w).

(b) x ≥ φi,2[s](φi,1[s](w)) for all 1 ≤ i ≤ m.

(c) x ≥ φi,3[s](φi,1[s](w)) for all 1 ≤ i ≤ m.

Also define the downward restraint d(α _ 〈o, σ〉, s) as the least element x such that:

(a) x ≥ sup{r(α _ 〈o′, σ′〉, s) | α _ 〈o′, σ′〉 <L α _ 〈o, σ〉 ∧

α _ 〈o′, σ′〉 has been previously accessible}.

(b) x ≥ a(α _ 〈o, σ〉, s).

(c) x ≥ d(α _ 〈o, σ〉, t) for all t < s.

Go to step (6).

(6) Take action according to the outcome of α _ 〈o, σ〉.

(a) o = w.

(i) Suppose that α _ 〈w, σ〉 is in open mode, but s is not an open stage. Set

suspend to true. End the stage s, and go to stage s+ 1.

(ii) Suppose that α _ 〈w, σ〉 is in open mode, and s is an open stage. Set the

edge to close mode, and set suspend to false. Go to the next substage.

328

(iii) Suppose that α _ 〈w, σ〉 is in close mode, but s is not an α-close stage. Set

suspend to true. End the stage s, and go to stage s+ 1.

(iv) Suppose that α _ 〈w, σ〉 is in close mode, and s is an α-close stage. Set the

edge to open mode, and set suspend to false. Go to the next substage.

(b) o = gj , for some 1 ≤ j ≤ m.

(i) Suppose that Rα,s > 0. Set suspend to false. End stage s, and go to stage

s+ 1.

(ii) Suppose that Rα,s = 0, and the work interval for the edge α _ 〈gj , σ〉 is

undefined. If there is some least threshold v < s in V e such that:

(A) v > sup{r(α _ 〈o′, σ′〉, s) | α _ 〈o′, σ′〉 <L α _ 〈gj , σ〉 ∧

α _ 〈o′, σ′〉 has been previously accessible}.

(B) v > a(α _ 〈gj , σ〉, s).

(C) v > Rα′,s for every S strategy α′ ⊂ α.

(D) v > d(β′ _ 〈o′, σ′〉, s), for every R strategy β′ ⊂ α with edge β′ _

〈o′, σ′〉 on the path leading to α.

(E) v > d(α′ _ 〈o′, σ′〉, s), for every S strategy α′ ⊂ α with edge α′ _

〈o′, σ′〉 on the path leading to α.

(F) as < v < bs.

(G) v is greater than the upper bound of the work interval at stage s defined

for any edge α _ 〈o′, σ′〉 which was previously accessible and which

lies to the left of α _ 〈gj , σ〉.

(H) v > t, where t is the stage at which the edge α _ 〈gj , σ〉 was last

initialised.

Define the work interval of the edge α _ 〈gj , σ〉 to be (v, γβj_〈i,σj〉[s](v))

and the boundary to be 0. Set suspend to false. End stage s, and go to stage

s+ 1.

(iii) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉 and the

edge is in open mode, but no witness w is attached to the edge. Set suspend

to false. End stage s, and go to stage s+ 1.

329

(iv) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉, the

edge is in open mode and a witnessw is attached to the edge, but φi,1[s](w) >

γβi_〈i,σi〉[s](w) for some βi ⊂ α which is active for α, where 1 ≤ i ≤ m.

Detach w from α _ 〈gj , σ〉. Set suspend to false. End stage s, and go to

stage s+ 1.

(v) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉, the

edge is in open mode, a witness w is attached to the edge, and φi,1[s](w) ≤

γβi_〈i,σi〉[s](w)for every βi ⊂ α which is active for α, where 1 ≤ i ≤ m,

but s is not an open stage. Set suspend to true. End stage s, and go to stage

s+ 1.

(vi) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉, the

edge is in open mode, a witness w is attached to the edge, φi,1[s](w) ≤

γβi_〈i,σi〉[s](w) for every βi ⊂ α which is active for α, where 1 ≤ i ≤ m

and s is an open-stage. Enumerate w into A. Set the edge 〈gj , σ〉 to close

mode. Set suspend to false. Go to the next substage.

(vii) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉, the

edge is in close mode and s is not an α-close stage. Set suspend to true. End

stage s, and go to stage s+ 1.

(viii) Suppose that Rα,s = 0, a work interval is defined for the edge 〈gj , σ〉, the

edge is in close mode and s is an α-close stage. Enumerate γβj_〈i,σj〉[s](v)

intoD. Increment the boundary n′ of the edge by 1. Constrain the strategy βj

to choose uses γβj_〈i,σj〉[t](v) > γβk_〈i,σk〉[t](v+n′) for all k < j at stages

t > s. Set the edge 〈gj , σ〉 to open mode. Set suspend to false. Continue with

the next substage.

(c) o = hj , for some 1 ≤ j ≤ m.

(i) Suppose that Rα,s > 0. Set suspend to false. End stage s, and go to stage

s+ 1.

(ii) Suppose that Rα,s = 0, but the edge 〈hj , σ〉 has no witness w attached to it.

Set suspend to false. End stage s, and go to stage s+ 1.

330

(iii) Suppose that Rα,s = 0, and the strategy has attached a witness w to the edge

〈hj , σ〉 during this stage s. Set suspend to false. End stage s, and go to stage

s+ 1.

(iv) Suppose that Rα,s = 0, the work interval for the edge 〈hj , σ〉 is defined and

the edge 〈hj , σ〉 is in Part I mode, but s is not an α-close stage. Set suspend

to true. End stage s, and go to stage s+ 1.

(v) Suppose that Rα,s = 0, the work interval for the edge 〈hj , σ〉 is defined, the

edge 〈hj , σ〉 is in Part I mode, and s is an α-close stage, but φj,1[s](w) ≤

γβj_〈i,σj〉[s](w). Set suspend to false. End stage s, and go to stage s+ 1.

(vi) Suppose that Rα,s = 0, and the work interval for the edge 〈hj , σ〉 is

defined, the edge 〈hj , σ〉 is in Part I mode, s is an α-close stage, and

φj,1[s](w) > γβj_〈i,σj〉[s](w). Enumerate γβj_〈i,σj〉,s(w) intoD. Increment

the boundary n′ of the edge by 1. Constrain the strategy βj to choose uses

γβj_〈i,σj〉[t](w) > γβk_〈i,σk〉[t](w+n′) for all k < j at stages t > s. Set the

edge 〈hj , σ〉 to Part II mode. Set suspend to false. Go to the next substage.

(vii) Suppose that Rα,s = 0, and the edge 〈hj , σ〉 has a witness w attached to it,

the edge is in Part II mode and s is not an open-stage. Set suspend to true.

End stage s, and go to stage s+ 1.

(viii) Suppose that Rα,s = 0, and the edge 〈hj , σ〉 has a witness w attached to it,

the edge is in Part II mode and s is an open-stage. Set the edge 〈hj , σ〉 to Part

I mode. Set suspend to false. Go to the next substage.

(d) o = d.

(i) Suppose that Rα,s > 0. Set suspend to false. End stage s, and go to stage

s+ 1.

(ii) Suppose that Rα,s = 0, that there is no R strategy βi ⊂ α active for α, and

that no witness w is attached to this edge. Set suspend to false. End stage s,

and go to stage s+ 1.

(iii) Suppose that Rα,s = 0, that there is no R strategy βi ⊂ α active for α and

that a witness w is attached to this edge, but that s is not an open stage. Set

331

suspend to true. End stage s, and go to stage s+ 1.

(iv) Suppose that Rα,s = 0, that there is noR strategy βi ⊂ α active for α, that a

witness w is attached to this edge, and that s is an open stage. Enumerate w

into A. Set suspend to false. End stage s, and go to stage s+ 1.

(v) Rα,s = 0. Suppose thatRα,s = 0, that there is someR strategy βi ⊂ α active

for α where 1 ≤ i ≤ m, that every such strategy is following a Γ̂-strategy

and that no witness w is attached to this edge. Set suspend to false. End stage

s, and go to stage s+ 1.

(vi) Suppose that Rα,s = 0, that there is some R strategy βi ⊂ α active for α

where 1 ≤ i ≤ m, that every such strategy is following a Γ̂-strategy and that

a witness w is attached to this edge, but φi,1[s](w) > γβi_〈i,σi〉[s](w) for

some βi ⊂ α active for α. Detach the witness w from the edge. Set suspend

to false. End stage s, and go to stage s+ 1.

(vii) Suppose that Rα,s = 0, that there is some R strategy βi ⊂ α active for α

where 1 ≤ i ≤ m, that every such strategy is following a Γ̂-strategy, that a

witness w is attached to this edge and that φi,1[s](w) ≤ γβi_〈i,σi〉[s](w) for

every βi ⊂ α active for α, but s is not an open stage. Set suspend to true.

End stage s, and go to stage s+ 1.

(viii) Suppose that Rα,s = 0, that there is some R strategy βi ⊂ α active for α

where 1 ≤ i ≤ m, that every such strategy is following a Γ̂-strategy, that

a witness w is attached to this edge, that φi,1[s](w) ≤ γβi_〈i,σi〉[s](w) for

every βi ⊂ α active for α and that s is an open stage. Enumerate w into A.

Set suspend to false. End stage s, and go to stage s+ 1.

(ix) Suppose that Rα,s = 0 and that there is some R strategy βi ⊂ α active for α

which is following a Γ-strategy, where 1 ≤ i ≤ m. Set suspend to false. End

stage s, and go to stage s+ 1.

332

3.7.7 Organisation of the Priority Tree

We shall now describe formally how the priority tree T is organised in general. The layout of the

strategies on the priority tree is not uniform and will be different for each path through the tree.

To build the priority tree T we first assign the following priority ordering to the requirements:

R0 <p S0 <p R1 <p S1 <p . . .

Every node on the tree will be labeled with the highest priority requirement which is unsatisfied

at that node. Each node will then be assigned a strategy of the appropriate kind in order to satisfy

this requirement. Thus nodes which are labeledRi for some i ∈ N will be assigned anR strategy,

while nodes which are labeled Si for some i ∈ N will be assigned an S strategy. The strategies

are said to be labeled with the requirement which they are trying to satisfy.

The set of outcomes of an R strategy β labeled Ri can then be defined as the set of outcomes

obtained by following the procedure in Section 3.7.3 at every stage s. The ordering β _ 〈o, σ〉 <L

β _ 〈o′, σ′〉 between any two edges of the strategy β will depend only on the apparent uses σ

and σ′, and is determined according to the conditions (1) and (2) of the ordering <L as defined in

Section 3.1.2.

The situation for an S strategy α labeled Si is more complex. In order to define the edges leaving

this strategy, we shall first need to introduce a number of auxiliary concepts.

Firstly we define the concept of a strategy being restarted. Let p be a finite path.

A strategy γ ⊂ p labeled Ri is restarted on p if there is some S strategy α ⊂ p such that γ ⊂ α

and α has outcome α _ 〈hj , σ〉 or α _ 〈gj , σ〉 with j < i on p.

A strategy γ ⊂ p labeled Si is restarted on p if there is some S strategy α ⊂ p such that γ ⊂ α

and α has outcome α _ 〈hj , σ〉 or α _ 〈gj , σ〉 with j ≤ i on p.

Secondly we define the concept of a strategy following a Γ-strategy or a Γ̂-strategy. Let p be a

finite path. We shall say that a strategy β labeledRi on p is following a Γ̂-strategy if there is some

greatest (under ⊂) strategy β′ ⊂ p labeledRi such that:

• β′ ⊂ β.

333

• There exists some S strategy α such that β′ ⊂ α ⊂ β and α has outcome α _ 〈gi, σ〉 on p.

• β′ is not restarted on β.

In this case we say that the strategy α has caused a switch in the manner of satisfying the

requirement Ri, forcing the β strategy to start following a Γ̂-strategy. If an R strategy β lying

on a finite path p is not following a Γ̂-strategy, then we shall say that β is following a Γ-strategy.

Thirdly we define the concept of an active strategy. Let p be a finite path. We shall say that a

strategy β ⊂ p labeledRj is active on p if:

• β has outcome 〈i, σ〉 on p.

• There is no S strategy α ⊂ p such that β ⊂ α and α has outcome 〈hi, σ〉 or 〈gi, σ〉 on p.

• β′ is not restarted on p.

If γ is some R or S strategy and there is some R strategy β ⊂ γ which is active on γ, we shall

simply say that β is active for γ.

With these concepts having been defined, the set of outcomes of an S strategy α labeled Si can

then be defined as the set of outcomes obtained by following the procedure in Section 3.7.5 at

every stage s. The ordering α _ 〈o, σ〉 <L α _ 〈o′, σ′〉 between any two edges of the strategy α

will depend only on the apparent uses σ and σ′, and is determined according to the conditions (1)

and (2) of the ordering <L as defined in Section 3.1.2.

On any finite path p, there will be at most one strategy γ which is managing to satisfy a given

requirement, while all other strategies attempting to satisfy this requirement will be failing to do

so. This leads us to the concept of a strategy representing a requirement on a path.

AnR strategy β labeledRi such that β ⊂ p representsRi on p if the following conditions hold:

• β has outcome 〈f, σ〉 on p.

• There exists an S strategy α ⊂ p such that β ⊂ α and α has outcome 〈hi, σ〉 on p.

• β is active on p.

An S strategy α labeled Si such that α ⊂ p represents Si on p if the following conditions hold:

334

• α has outcome 〈w, σ〉 on p.

• α is not restarted on p.

Note that although a strategy may represent some requirement on p, it may stop doing so on some

p′ ⊃ p.

In addition, we shall say that a strategy represents some requirement on an infinite path p if it

represents the requirement on p � m for every natural number m.

The priority tree T is approximated as a sequence of trees Ts, where s is a natural number. During

the stage s = 0, we define T0 as the set containing only the empty path. During stage s + 1, we

define a set Ps+1 of extended paths as follows. Consider every finite path p ∈ Ts. Every such path

p ends in an unlabeled node, which we label with the highest priority requirement which is not

represented on p. A strategy of the appropriate kind is then assigned to the node, and an extended

path p′ is obtained by determining the outcome of the strategy at stage s and appending it to p. Let

Ps+1 be the set of all such extended paths obtained during stage s + 1. Then Ts+1 is defined as

Ts ∪ P .

We shall now formalise the construction which decides which strategies on the priority tree are

accessible during a given stage.

3.7.8 The Construction

During each stage s, we will generate a current path δs in T of length s by recursion, consisting

of the edges visited by the construction during stage s. Whilst generating δs in this manner, we

implicitly obtain the strategies lying on this path, which we declare to be accessible. The current

path δs is generated by going through a sequence of substages t ≤ s. During each substage,

one chooses the last strategy on the path and computes its outcome at stage s. This outcome

corresponds to the next edge on the path, unless the strategy terminates the stage early and goes to

the next stage.

The following procedure is followed to generate δs.

1. Base case (t = 0). Let δs = ∅. Declare δs � 0 to be accessible.

335

2. Recursive case (t+ 1).

If t+ 1 > s, the path δs has been constructed. Go to the next stage s+ 1.

Otherwise consider the strategy γ = δs � t.

Execute the strategy γ and compute its outcome Os(γ) at stage s.

If γ goes to the next stage, the path δs has been constructed. Go to stage s+ 1.

Otherwise γ goes to the next substage at stage s. Let δs = δs � t ̂ Os(γ). Declare δs � t+1

to be accessible.

If γ′ = δs � t+ 1 was accessible prior to stage s, let u < s be the greatest stage at which γ′

was accessible. Otherwise, let u = 0.

The strategy γ′ has been reset at stage s if one of the following is the case.

(a) Rα,s > Rα,u for some S strategy α = δs � t′ such that t′ < t+ 1.

(b) d(α _ 〈o, σ〉, s) > d(α _ 〈o, σ〉, u) for some S strategy α = δs � t′ with t′ < t+ 1

and edge α _ 〈o, σ〉 with α _ 〈o, σ〉 = δs(t
′).

(c) d(β _ 〈o, σ〉, s) > d(β _ 〈o, σ〉, u) for some R strategy β = δs � t′ with t′ < t+ 1

and edge β _ 〈o, σ〉 with β _ 〈o, σ〉 = δs(t
′).

Go to the next substage.

If a strategy γ is accessible at stage s, we shall say that s is a γ-stage.

If γ is anR strategy and is reset at stage s, every stage attached to any one of its edges is detached,

and every functional associated to one of its edges is canceled. Every edge of the form γ _ 〈f, σ〉

or γ _ 〈i, σ〉 is set to open mode, and the variable suspend is set to false.

If γ is an S strategy and is reset at stage s, every witness attached to one of its edges is detached,

and every work interval and boundary associated to one of its edges is undefined. Every edge of

the form γ _ 〈d, σ〉, γ _ 〈gi, σ〉 or γ _ 〈w, σ〉 is set to open mode, every edge of the form

γ _ 〈hi, σ〉 is set to Part I mode and the variable suspend is set to false.

If a strategy γ is accessible at stage s, every strategy to its right is initialised at stage s.

336

If γ is an R strategy and is initialised at stage s, every stage attached to any one of its edges is

detached, and every functional associated to one of its edges is canceled. Every edge of the form

γ _ 〈f, σ〉 or γ _ 〈i, σ〉 is set to open mode, and the variable suspend is set to false. The strategy

and its edges are regarded as not having been accessible prior to stage s.

If γ is an S strategy and is initialised at stage s, every witness attached to one of its edges is

detached, and every work interval and boundary associated to one of its edges is undefined. Every

edge of the form γ _ 〈d, σ〉, γ _ 〈gi, σ〉 or γ _ 〈w, σ〉 is set to open mode, every edge of the

form γ _ 〈hi, σ〉 is set to Part I mode and the variable suspend is set to false. The strategy and its

edges are regarded as not having been accessible prior to stage s and we have that Rγ,s = 0.

Whenever some edge γ _ 〈o, σ〉 of the strategy γ is on the current path δs, we have that every

edge γ _ 〈o′, σ′〉 with γ _ 〈o, σ〉 <L γ _ 〈o′, σ′〉 is initialised. If γ is an R strategy, any stage

attached to the edge is detached and every functional associated to the edge is canceled. If γ is

an S strategy, any witness attached to the edge is detached and any work interval and boundary

defined for the edge is undefined. If the edge is of the form γ _ 〈d, σ〉, γ _ 〈gi, σ〉 or γ _ 〈w, σ〉

the edge is set to open mode and if γ _ 〈hi, σ〉 the edge is set to Part I mode.

3.8 Verification

3.8.1 Definitions

The true path f is defined as follows. The edge f(n) is determined by identifying the strategy

γ lying at the terminal node of the true path of length n, and choosing the leftmost edge visited

infinitely often by this strategy (provided the strategy is in fact accessible at infinitely many stages).

Note that the strategy lying at the terminal node of the true path of length 0 is the strategy located

at the root node of the priority tree, which is accessible during every stage.

Definition 3.8.1. (True Path). The true path f is defined by induction as follows. Let f � n = γ.

If there are finitely many γ-stages, f(n) is undefined. Otherwise f(n) = lim infsOs(γ), where s

ranges over γ-stages.

337

Note that according to this definition, it is possible for the true path to be finite. In fact it could

be the case that the terminal strategy on a true path of a certain length is not accessible infinitely

often. This could result from the previous strategy going to the next substage only finitely often

when visiting its edge on the true path.

We shall now define the concepts of a γ-open stage and a γ-close stage for a given strategy γ. A

stage is a γ-open stage if the strategy is accessible during this stage and every edge with outcome

d, gn and w of an S strategy above γ is in open mode and every edge with outcome hn of an S

strategy above γ is in Part II mode. In addition no functional associated to an edge of anR strategy

above γ disagrees with the set A. On the other hand a stage is a γ-close stage if γ is accessible

during this stage and if every edge with outcome d, gn and w of an S strategy above γ is in close

mode and every edge with outcome hn associated to an S strategy above γ is in Part I mode.

Definition 3.8.2. (Open-Stages and Close-Stages) Let γ be anR or S strategy.

A stage s is a γ-open stage if it satisfies conditions (O1)-(O3).

(1) (Condition O1). γ is accessible at s.

(2) (Condition O2). If α is an S strategy with an edge α _ 〈d, σ〉, α _ 〈w, σ〉 or α _ 〈gn, σ〉

for some n and σ above γ, then this edge is in open mode at stage s. On the other hand, if α

is an S strategy with edge α _ 〈hn, σ〉 for some n and σ above γ, then this edge is in Part

II mode at stage s.

(3) (Condition O3). If β is an R strategy with edge β _ 〈i, σ〉 above γ for some σ, then there

is no m such that As(m) 6= ΓU,Dβ_〈i,σ〉[s](m) (orΓV,Dβ_〈i,σ〉[s](m)resp.).

A stage t is a γ-close stage for γ if it satisfies conditions (C1)-(C2).

(1) (Condition C1). γ is accessible at t.

(2) (Condition C2). If α is an S strategy with edge α _ 〈d, σ〉, α _ 〈w, σ〉 or α _ 〈gn, σ〉 for

some n and σ above γ, then the edge is in close mode at stage t. On the other hand, if α is

an S strategy with edge α _ 〈hn, σ〉 for some n and σ above γ, then the edge is in Part I

mode at stage t.

338

3.8.2 Representation Lemma

The Representation Lemma shows that given any requirement and any infinite path through the

priority tree, there will eventually be a strategy which represents that requirement on the infinite

path.

Lemma 3.8.3. (Representation Lemma). Let U be a requirement, and let p be an infinite path.

Suppose that there is no S strategy α with edge α _ 〈d, σ〉 on p. Then for every requirement U

there is some strategy γ and some natural number v such that:

(i) γ represents U on p � v.

(ii) For every m ≥ v, γ represents U on p � m.

Proof. In generating the priority tree, we are using almost the same procedure used to generate

the priority tree for the Lachlan Non-Splitting Theorem in Section 2.9.5. While it is the case that

each strategy γ now has infinitely many edges of the form γ _ 〈o, σ〉, it is also the case that in

building the tree below this edge it is only the outcome o of the edge which is considered. In fact,

with one exception, building the priority tree below an edge γ _ 〈o, σ〉 is identical to building the

priority tree below γ _ o in the Lachlan Non-Splitting Theorem.

The exception which has been mentioned when building the priority tree is the following. Let γ

labeled Si have outcome γ _ 〈d, σ〉 on some infinite path p through the priority tree, and let γ+

be the successor strategy of γ on p. Then we have that γ does not represent the requirement Si on

γ+. However note that the Representation Lemma (Lemma 3.8.3) has now been qualified so that

its does not need to apply to infinite paths p with strategies such as γ lying on them. This will have

no effect on the satisfaction of requirements by strategies lying on the true path, because edges of

the form γ _ 〈d, σ〉 can never lie on the true path.

Hence we have that the proof of Lemma 3.8.3 follows the proof of Lemma 2.10.3 and will not be

repeated.

339

3.8.3 Leftmost Path Lemma

The Leftmost Path Lemma shows that if a strategy lies on the true path, the current path generated

by the construction at each stage can only lie to its left finitely often.

Lemma 3.8.4. (Leftmost Path Lemma). Let f be the true path. If f � n is defined, there are only

finitely many stages s such that δs <L γ, where γ = f � n.

Proof. We prove the lemma by Induction on n.

For the Base Case n = 0 we consider f � 0. In this case we have that f � 0 is defined and is the

strategy γ0 located at the root of the priority tree. Hence there is no stage s such that δs <L γ0.

For the Inductive Case we assume that the lemma holds for n = k. Thus we have that if f � k is

defined, there are only finitely many stages s such that δs <L γk, where γk = f � k.

We then prove that the lemma holds for n = k + 1. Thus we need to show that if f � k + 1 is

defined, there are only finitely many stages s such that δs <L γk+1, where γk+1 = f � k + 1.

Now if f � k + 1 is not defined, the lemma holds trivially.

Otherwise suppose that f � k + 1 is defined. This can only be the case if f � k is defined and if

f(k) is defined.

Since f � k is defined, by the Inductive Hypothesis we have that there is some stage t such

that δt′ 6<L γk for all t′ > t. In addition, since f(k) is defined, it must either be the case that

f(k) = lim infsOs(γk), where γk = f � k.

Hence there must be some stage u > t such that Ou′(γk) 6<L f(k) for all u′ > u. Since f �

k + 1 = f � kˆf(k), we have that δs 6< γn+1 for all s > u as required.

From the previous lemma it follows that for every strategy γ on the true path f there is some least

stage s0 such that γs 6< γ for all stages s > s0.

340

3.8.4 Attachment Procedure Lemma

Suppose that the attachment procedure of a strategy γ attaches certain elements to edges of a

specific kind. The Attachment Procedure Lemma shows that if an edge lies on the true path and

does not have an element attached at some given stage, an element will eventually be attached to

the edge at some subsequent stage.

In the lemma, X is the set from which elements which need to be attached are chosen, P (γ _

〈o′, σ′〉, s) is a relation which tells us whether the edge γ _ 〈o′, σ′〉 is suitable to receive the

elements in question at stage s and R(x, s) is a relation which determines whether an element x is

suitable to be attached to an edge for which P (γ _ 〈o′, σ′〉, s) holds at stage s.

In practice, the set X will be a set of witnesses, thresholds, uses or β-expansionary* stages. The

relation R(x, s) will determine whether a witness w gives a computation ΘD[s](w) ↓= 0 and

whether this is honest; or whether a given stage is a β-expansionary* stage. Finally the relation

P (γ _ 〈o′, σ′〉, s) will determine whether the edge has an outcome of a certain kind or whether a

work interval is defined for an edge.

Lemma 3.8.5. (Attachment Procedure Lemma). Let γ be some strategy, E be its set of edges

γ _ 〈o′, σ′〉, Nγ be the set of γ-stages and γ _ 〈o, σ〉 be the edge on the true path. In addition

let X be some computable subset of N, R(x, s) be a computable relation over N×Nγ and P (γ _

〈o′, σ′〉, s) be a computable relation over E× Nγ .

Suppose that the following conditions hold.

(1) There are infinitely many elements x ∈ X and γ-stages s such that R(x, s) holds.

(2) Let x ∈ X be the least element such that R(x, s) holds and such that the strategy γ has not

attached x to an edge at some stage t < s. Suppose that if s is a γ-stage, the attachment

procedure attaches x to the leftmost edge of the form γ _ 〈o′, σ′〉 such that:

(a) γ _ 〈o′, σ′〉 has been visited at some stage t′ < s.

(b) γ _ 〈o′, σ′〉 does not have some x′ ∈ X attached at stage s.

(c) P (γ _ 〈o′, σ′〉, s) holds.

341

(3) Let γ _ 〈o′, σ′〉 be an edge in E. If γ _ 〈o′, σ′〉 ≤L γ _ 〈o, σ〉 and there exists a stage

s > s0 such that P (γ _ 〈o′, σ′〉, s) holds, then P (γ _ 〈o′, σ′〉, t) holds for every t > s.

(4) P (γ _ 〈o, σ〉, s1) holds for some stage s1 > s0.

Then if γ _ 〈o, σ〉 is accessible at stage s1 and does not have a witness attached at stage s1, there

is some stage s2 > s1 such that some element y ∈ X for which R(y, s2) holds will be attached to

γ _ 〈o, σ〉 at stage s2.

Proof. Consider the stage s1 > s0 and suppose that there is no witness attached to the edge

γ _ 〈o, σ〉 at stage s1.

Since the edge γ _ 〈o, σ〉 lies on the true path, we have that strategies and edges to the left of

γ _ 〈o, σ〉 are inaccessible at stages s > s0 by the Leftmost Path Lemma (Lemma 3.8.4).

Consider the finitely many edges γ _ 〈o′, σ′〉 lying to the left of the edge γ _ 〈o, σ〉, which have

been accessible at some stage t < s1 and for which P (γ _ 〈o′, σ′〉, s1) holds.

Then by (3) we have that P (γ _ 〈o′, σ′〉, t) holds for all t > s1. In addition by (4) we have that

P (γ _ 〈o′, σ′〉, s1) holds. Hence by (3) we also have that P (γ _ 〈o′, σ′〉, t) holds for all t > s1.

In addition since no strategy or edge to the left of γ _ 〈o, σ〉 is accessible after stage s0, we

have that γ _ 〈o′, σ′〉 cannot be initialised after s0. It is also the case that since γ _ 〈o′, σ′〉 is

inaccessible after stage s0 we have that no element can be detached by γ from γ _ 〈o, σ〉 after

stage s0.

Now by (1) there are infinitely many elements x ∈ X and infinitely many γ-stages s such that

R(x, s) holds. Therefore by (2) we must have that there is some stage u > s1 such that a witness

is attached to every edge of the form γ _ 〈o′, σ′〉 for which P (γ _ 〈o′, σ′〉, u) holds.

Let s2 ≥ u be the least stage such that γ _ 〈o, σ〉 has been accessible at some stage t ≤ s2. Such

a stage must exist because γ _ 〈o, σ〉 is on the true path and is thus visited infinitely often.

Then by (2) the strategy γ attaches the least y ∈ X such thatR(y, s2) holds to the edge γ _ 〈o, σ〉

as required.

342

3.8.5 Honesty Preservation Lemma

The Honesty Preservation Lemma shows that once an honest witness is attached to an edge lying

on the true path, it cannot become dishonest prior to becoming enumerated into the set A.

Lemma 3.8.6. (Honesty Preservation Lemma). Let α be an S strategy lying below some non-

empty sequence of active R strategies (β1, . . . , βm), and let the edge α _ 〈o, σ〉 lie on the true

path. Suppose that one of the following is the case.

(1) Every strategy βi ∈ (β1, . . . , βm) is following a Γ̂-strategy, and the edge on the true path is

of the form α _ 〈d, σ〉.

(2) Some strategy βi ∈ (β1, . . . , βm) is following a Γ-strategy, and the edge on the true path is

of the form α _ 〈gi, σ〉, for some 1 ≤ i ≤ m.

Suppose that a witness w is attached to α _ 〈o, σ〉 at stage s. Then if some element x is

enumerated into the set A or D at some stage t ≥ s, one of the following must be the case.

(a) x > φi,2[s](φi,1[s](w)) and x > φi,3[s](φi,1[s](w)) for all 1 ≤ i ≤ m.

(b) w is enumerated into A at some stage t′ ≤ t.

(c) w is detached from the edge at some stage u > s due to some S strategy α′ ⊂ α setting

Rα′,t′ > Rα′,s for some t′ such that s < t′ < u.

Proof. We consider every possible way in which a strategy can enumerate an element x ≤

φi,2[s](φi,1[s](w)) or x ≤ φi,3[s](φi,1[s](w)) for some 1 ≤ i ≤ m into the set A or D at a

stage t ≥ s, and show that none of these can be the case.

(1) Consider the strategy α itself. Let the edge α _ 〈o′, σ′〉 lie to the right of α _ 〈o, σ〉.

Then when the strategy α attaches the witness w to the edge α _ 〈o, σ〉 at stage s, we must

have that every witness attached to edge α _ 〈o′, σ′〉 is detached. Similarly, every work

interval defined for the edge α _ 〈o′, σ′〉 is undefined.

We now proceed by performing the following case analysis.

343

(1.1) Suppose that everyR strategy βi ∈ (β1, . . . , βm) above α which is active for α is following

a Γ̂-strategy. Then the strategy α must have attached w to an edge of the form α _ 〈d, σ〉

at stage s.

Since only one witness can be attached by the strategy α at any given stage, we have that no

witness can be attached to an edge α _ 〈d, σ′〉 lying to the right of α _ 〈d, σ〉 at stage s.

On the other hand, suppose the strategy α attaches a witness w′ to an edge α _ 〈d, σ′〉

lying to the right of α _ 〈d, σ〉 at some stage u > s. Then α must have chosen w′ to

be greater than sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈d, σ′〉 ∧ α _

〈o′′, σ′′〉 has been previously accessible}. Since w is attached to α _ 〈d, σ〉 at stage s,

and α _ 〈d, σ〉 <L α _ 〈d, σ′〉 we have that w′ > φi,2[s](φi,1[s](w)) and w′ >

φi,3[s](φi,1[s](w)) for all 1 ≤ i ≤ m as required.

Similarly, suppose that the strategy α attaches some witness w′ to an edge α _ 〈hi, σ′〉

lying to the right of α _ 〈d, σ〉 at some stage u > s so as to define a work interval

(w′, γβ_〈i,σ〉[u](w′)) for the edge at stage u. If the strategy α enumerates γβ_〈i,σ〉[t](w′)

into D at some stage t ≥ u, we must have that γβ_〈i,σ〉[t](w′) > w′. Hence by

the above it follows that γβ_〈i,σ〉[t](w′)) > φi,2[s](φi,1[s](w)) and γβ_〈i,σ〉[t](w
′) >

φi,3[s](φi,1[s](w)) for all 1 ≤ i ≤ m as required.

(1.2) Suppose that someR strategy βi ∈ (β1, . . . , βm) above α which is active for α is following

a Γ-strategy. Then the strategy α must have attached w to an edge of the form α _ 〈gi, σ〉

for some 1 ≤ i ≤ m at stage s.

Since only one witness can be attached by the strategy α at any given stage, we have that no

witness can be attached to an edge α _ 〈gj , σ′〉 for some 1 ≤ j ≤ m lying to the right of

α _ 〈gi, σ〉 at stage s.

On the other hand, suppose the strategy α attaches a witness w′ to an edge α _ 〈gj , σ′〉

for some 1 ≤ j ≤ m lying to the right of α _ 〈gi, σ〉 at some stage u > s. Then α

must have chosen w′ to be greater than sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _

〈gj , σ′〉 ∧ α _ 〈o′′, σ′′〉 has been previously accessible}. Since w is attached to α _

〈gi, σ〉 at stage s, and α _ 〈gi, σ〉 <L α _ 〈gj , σ′〉 we have that w′ > φi,2[s](φi,1[s](w))

and w′ > φi,3[s](φi,1[s](w)) for all 1 ≤ i ≤ m as required.

344

Similarly, suppose that the strategy α attaches some witness w′ to an edge α _ 〈hj , σ′〉 for

some 1 ≤ j ≤ m lying to the right of α _ 〈gi, σ〉 at some stage u > s so as to define

a work interval (w′, γβ_〈i,σ〉[u](w′)) for the edge at stage u. If the strategy α enumerates

γβ_〈i,σ〉[t](w
′) into D at some stage t ≥ u, we must have that γβ_〈i,σ〉[t](w′) > w′. Hence

by the above it follows that γβ_〈i,σ〉[t](w′)) > φi,2[s](φi,1[s](w)) and γβ_〈i,σ〉[t](w′) >

φi,3[s](φi,1[s](w)) for all 1 ≤ i ≤ m as required.

Finally, suppose that the strategy α chooses some threshold v to define a work interval

(v, γβ_〈i,σ〉[u](v)) for some edge α _ 〈gj , σ′〉 for some 1 ≤ j ≤ m lying to the right of

α _ 〈gi, σ〉 at some stage u ≥ s.

Then if u = s, we have that the strategy α must choose v to be greater than a(α _

〈gj , σ′〉). But since α has attached the witness w to the edge α _ 〈gi, σ〉 at stage s,

and α _ 〈gi, σ〉 <L α _ 〈gj , σ〉 it must be the case that v > φi,2[s](φi,1[s](w)) and

v > φi,3[s](φi,1[s](w)) for all 1 ≤ i ≤ m.

On the other hand, if u > s, α must have chosen v to be greater than

sup{r(α _ 〈o′′, σ′′〉, s) | α _ 〈o′′, σ′′〉 <L α _ 〈gj , σ′〉 ∧ α _

〈o′′, σ′′〉 has been previously accessible}. Since v is attached to α _ 〈gi, σ〉 at stage s,

and α _ 〈gi, σ〉 <L α _ 〈gj , σ′〉 we also have that v > φi,2[s](φi,1[s](w)) and

v > φi,3[s](φi,1[s](w)) for all 1 ≤ i ≤ m.

Then if the strategy α enumerates γβ_〈i,σ〉[t](v) into D at some stage t ≥ u, we must

have that γβ_〈i,σ〉[t](v) > v. Hence by the above it follows that γβ_〈i,σ〉[t](v)) >

φi,2[s](φi,1[s](w)) and γβ_〈i,σ〉[t](v) > φi,3[s](φi,1[s](w)) for all 1 ≤ i ≤ m as required.

(2) Consider the strategy α′ such that α ⊂ α′. Let α _ 〈o, σ〉 be the edge of α on the true path,

and let (β′1, . . . , β
′
n) be the sequence ofR strategies above α′ which are active for α′.

We perform the following case analysis.

(2.1) Suppose that α′ lies below α _ 〈o, σ〉.

In order for α′ to enumerate some element into the set A or the set D at some stage t ≥ s, it

must first be the case that α′ is accessible at stage t. But this means that the edge α _ 〈o, σ〉

must be of the form α _ 〈gi, σ〉 for some 1 ≤ i ≤ m. For α never goes to the next

345

substage when visiting an edge of the form α _ 〈d, σ〉meaning that α′ could never become

accessible.

We now perform the following case analysis.

(2.1.1) Suppose that every βi ∈ (β′1, . . . , β
′
n) is following a Γ̂-strategy.

Consider an edge of the form α′ _ 〈d, σ′〉. Then we have that α′ can enumerate a witness

w′ which was attached to the edge α′ _ 〈d, σ′〉 into A when it visits the edge at stage t.

In order for this to be the case, we must have that the edge α′ _ 〈d, σ〉 is in open mode at

stage t and that stage t is an α′-open stage. But in order for t to be an α′-open stage, we

must have that t is also an α-open stage.

Now the only way for α to go to the next substage during the α-open stage t is for α to be

in open mode at stage t. But this means that α enumerates w into A at stage t when visiting

the edge α _ 〈gi, σ〉 and the lemma is satisfied trivially.

On the other hand consider an edge of the form α′ _ 〈hj , σ′〉 for some βj ∈ (β′1, . . . , β
′
n),

where the latter is the sequence ofR strategies which are above α′ and are active for α′.

Suppose that a witness w′ is attached to the edge α′ _ 〈hj , σ′〉 and that α′ enumerates

γβj_〈i,σ〉[t](w
′) into D at some stage t ≥ s.

In order for this to be the case, the edge α′ _ 〈hj , σ′〉 must be in Part I mode at stage t, and

t must be an α′-close stage.

But t can only be an α′-close stage if it is also an α-close stage. In addition for α to go

to the next substage when visiting the edge α _ 〈hj , σ〉 during an α-close stage, the edge

α _ 〈hj , σ〉 must be in close mode during stage t.

Now the edge α _ 〈hj , σ〉 can only be in close mode at stage t if it was in open mode at

some greatest α-open stage t′ < t, and α also enumerated some witness z into A during

stage t′.

But the strategy α does not attach another witness z′ to the edge α _ 〈hj , σ〉 if the edge is

not in open mode. But we have already determined that t′ < t is the greatest stage such that

the edge α _ 〈hj , σ〉 is in open mode. Hence it follows that w cannot be attached to the

edge α _ 〈hj , σ〉 at stage t. Hence the lemma is satisfied trivially.

346

(2.1.2) Suppose that some βi ∈ (β′1, . . . , β
′
n) is following a Γ-strategy.

Consider an edge of the form α′ _ 〈gj , σ′〉 for some βj ∈ (β′1, . . . , β
′
n), where the latter is

the sequence ofR strategies which are above α′ and are active for α′.

Suppose that a witness w′ is attached to the edge α′ _ 〈gj , σ′〉 and that α′ enumerates w′

into A when visiting the edge at some stage t ≥ s.

In order for this to be the case, we must have that the edge α′ _ 〈gj , σ′〉 is in open mode

at stage t and that stage t is an α′-open stage. But in order for t to be an α′-open stage, we

must have that t is also an α-open stage.

Now the only way for α to go to the next substage during the α-open stage t is for α to be

in open mode at stage t. But this means that α enumerates w into A at stage t when visiting

the edge α _ 〈gi, σ〉 and the lemma is satisfied trivially.

In addition we also have that α′ can enumerate elements into D by visiting some edge of

the form α _ 〈gj , σ′〉 for some βj ∈ (β′1, . . . , β
′
n).

Suppose that a work interval (v, γβj_〈i,σ〉[t](w
′)) is defined for an edge α′ _ 〈gj , σ′〉 at

stage t, and that α′ enumerates γβj_〈i,σ〉[t](w
′) into D at stage t.

In order for this to be the case, the edge α′ _ 〈gj , σ′〉 must be in close mode at stage t, and

t must be an α′-close stage.

Now t can only be an α′-close stage if it is also an α-close stage. In addition for α to go

to the next substage when visiting the edge α _ 〈gi, σ〉 during an α-close stage, the edge

α _ 〈gi, σ〉 must be in close mode during stage t.

However the edge α _ 〈gi, σ〉 can only be in close mode at stage t if it was in open mode

at some greatest α-open stage t′ < t, and α also enumerated some witness z into A during

stage t′.

But the strategy α does not attach another witness z′ to the edge α _ 〈gi, σ〉 if the edge is

not in open mode. But we have already determined that t′ < t is the greatest stage such that

the edge α _ 〈gi, σ〉 is in open mode. Hence it follows that w cannot be attached to the

edge α _ 〈gi, σ〉 at stage t. Hence the lemma is satisfied trivially.

347

Finally we also have that α′ can enumerate elements into D by visiting some edge of the

form α _ 〈hj , σ′〉 for some βj ∈ (β′1, . . . , β
′
n).

Suppose that a witness w′ is attached to the edge α′ _ 〈hj , σ′〉 and that α′ enumerates

γβj_〈i,σ〉[t](w
′) into D at some stage t ≥ s.

In order for this to be the case, the edge α′ _ 〈hj , σ′〉 must be in Part I mode at stage t, and

t must be an α′-close stage.

But t can only be an α′-close stage if it is also an α-close stage. In addition for α to go

to the next substage when visiting the edge α _ 〈hj , σ〉 during an α-close stage, the edge

α _ 〈hj , σ〉 must be in close mode during stage t.

Now the edge α _ 〈hj , σ〉 can only be in close mode at stage t if it was in α-open mode

at some greatest α-open stage t′ < t, and α also enumerated some witness z into A during

stage t′.

But the strategy α does not attach another witness z′ to the edge α _ 〈hj , σ〉 if the edge is

not in open mode. But we have already determined that t′ < t is the greatest stage such that

the edge α _ 〈hj , σ〉 is in open mode. Hence it follows that w cannot be attached to the

edge α _ 〈hj , σ〉 at stage t. Hence the lemma is satisfied trivially.

(2.2) Suppose that α′ lies below some α _ 〈o′, σ′〉 where α _ 〈o′, σ′〉 lies to the right of

α _ 〈o, σ〉.

In order for the strategy α to attach the witness w to the edge α _ 〈o, σ〉 at stage s,

it must be the case that φi,2[s](φi,1[s](w)) ↓ and φi,3[s](φi,1[s](w)) ↓ for every strategy

βi ∈ (β1, . . . , βn). In addition, the strategy α must have been accessible at stage s.

Now in order for α′ to be accessible at some least stage u ≥ s it must be the case that α has

visited the edge α _ 〈o′, σ′〉 at stage u. If w is no longer attached to the edge α _ 〈o, σ〉

at stage u, the lemma is satisfied trivially. Otherwise we have that α imposes the downward

restraint d(α _ 〈o′, σ′〉, u) on strategies lying below the edge α _ 〈o′, σ′〉.

Now α′ is not accessible at any stage t such that s < t < u and w has been attached to

α _ 〈o, σ〉 at stage s. Suppose α′ had been accessible at some greatest stage s′ < s. Then

when it becomes accessible at stage u it notes that d(α _ 〈o′, σ′〉, u) > d(α _ 〈o′, σ′〉, s′),

348

where s′ is the greatest stage less than s such that β was accessible. Hence at stage u we

have that α′ will detach every witness which was attached to one of its edges, and undefine

every work interval which was defined for one of its edges. Otherwise we have that α′ was

never accessible prior to stage s, and that it has never attached a witness to some edge or

defined a work interval for some edge.

Therefore if some witness w′ is attached to α′ _ 〈o′, σ′〉 at some stage u′ ≥ u, we must

have that w′ > φi,2[s](φi,1[s](w)) and that w′ > φi,3[s](φi,1[s](w)) for every strategy

βi ∈ (β1, . . . , βm). Similarly if the strategy chooses a threshold v to define a work interval

for the edge α′ _ 〈o′, σ′〉 at some stage u > s we have that v > φi,2[s](φi,1[s](w)) and that

v > φi,3[s](φi,1[s](w)) for every strategy βi ∈ (β1, . . . , βm).

Hence, if α′ _ 〈o′, σ′〉 has outcome d or gj and α′ enumerates a witness w′ into

the set A at some stage t ≥ u′ ≥ s we have that w′ > φi,2[s](φi,1[s](w)) and that

w′ > φi,2[s](φi,1[s](w)) for every strategy βi ∈ (β1, . . . , βm).

Similarly if α′ _ 〈o′, σ′〉 has outcome gj and α′ enumerates γβj_〈i,σ〉[t](v) into the set

D at some stage t ≥ u′ ≥ s we have that γβj_〈i,σ〉[t](v) > φi,2[s](φi,1[s](w)) and that

γβj_〈i,σ〉[t](v) > φi,2[s](φi,1[s](w)) for every strategy βi ∈ (β1, . . . , βm).

Finally if α′ _ 〈o′, σ′〉 has outcome hj and α′ enumerates γβj_〈i,σ〉[t](w
′) into the set

D at some stage t ≥ u′ ≥ s we have that γβj_〈i,σ〉[t](w
′) > φi,2[s](φi,1[s](w)) and that

γβj_〈i,σ〉[t](w
′) > φi,2[s](φi,1[s](w)) for every strategy βi ∈ (β1, . . . , βm) as required.

(3) Consider a strategy α′ such that α′ ⊂ α.

Let (β′1, . . . , β
′
n) be the sequence ofR strategies above α′ which are active for α′.

We perform the following case analysis.

(3.1) Suppose that every βi ∈ (β′1, . . . , β
′
n) is following a Γ̂-strategy.

In this case we have that α′ can only enumerate elements into A by visiting some edge of

the form α′ _ 〈d, σ′〉. On the other hand, α′ can enumerate elements into D by visiting

some edge of the form α′ _ 〈hi, σ′〉 for some βi ∈ (β′1, . . . , β
′
n). We perform the following

case analysis.

349

(3.1.1) Consider an edge α′ _ 〈d, σ′〉 lying above α.

If the strategy α′ visits such an edge, it will never go to the next substage. Thus α is never

be accessible and cannot attach the witness w to the edge α _ 〈o, σ′〉 at stage s, which is a

contradiction.

(3.1.2) Consider an edge α′ _ 〈d, σ′〉 lying to the right of α.

Suppose that α′ enumerates a witness w′ attached to the edge α′ _ 〈d, σ′〉 into A at a stage

t ≥ s.

Now every βi ∈ (β′1, . . . , β
′
n) is following a Γ̂-strategy. Hence when α′ becomes accessible

again at some stage t′ > t, we have that the functional built by each such βi becomes

undefined at w′ due to a Vi � φi,1[t](w′) change.

Hence we have that α′ sets Rα′,t′ > 0 at stage t′ to preserve its successful diagonalisation.

But when α becomes accessible again at some stage t′′ > t it will determine that α′ ⊂ α

has set its restraint Rα′,t′′ > 0.

Hence α will detach every witness attached to any of its edges, which includes the witness

w attached to α _ 〈o, σ〉.

(3.1.3) Consider an edge α′ _ 〈hi, σ′〉 lying above α.

We have already seen that (β′1, . . . , β
′
n) is the sequence of R strategies which are above α′

and active for α′.

Now since α lies below the edge α′ _ 〈hi, σ′〉, we have that no strategy β′j ∈ (β′1, . . . , β
′
n)

is active for α if i ≤ j ≤ n.

On the other hand it is possible for strategies β′j ∈ (β′1, . . . , β
′
n) to be active for α if 1 ≤

j < i.

Suppose that α′ enumerates γβi_〈i,σ〉[t](w
′) into D at a stage t > u, where w′ is a

witness which is attached to the edge. Then we shall need to show that γβi_〈i,σ〉[t](w
′) >

φj,2[t](φj,1[t](w)) and γβi_〈i,σ〉[t](w
′) > φj,3[t](φj,1[t](w)) for all 1 ≤ j < i.

To prove this we observe that in order for α to attach the witness w to the edge α _ 〈o, σ〉

at stage s, α must have been accessible at stage s. In addition we have that a work interval

350

(w′, γβi_〈i,σ〉(w
′)[u]) must have been defined for the edge α′ _ 〈hi, σ′〉 at some stage

u < s.

Hence it must be that case that w′ < w < w′ + nβ_〈i,σ〉[s]. But this means that there is

some stage p < s such that a constraint to the effect that γβi_〈i,σ〉(w
′)[p′] > γβj_〈i,σ〉(w

′+

nβi_〈i,σ〉[s])[p
′] has been imposed on βi for all stages p′ > p and 1 ≤ j < i.

In addition, γβi_〈i,σ〉[p](w
′) must have been enumerated into D at stage p, undefining

the functional ΓUi,Dβi_〈i,σ〉(w
′). Since the functional is redefined in accordance with the

constraints it follows that γβi_〈i,σ〉(w
′)[t] > γβj_〈i,σ〉(w)[t] for all 1 ≤ j < i and for

all t ≥ s.

Now suppose that α′ enumerates γβi_〈i,σ〉(w
′)[t] whilst visiting the edge α′ _ 〈hi, σ′〉 at

some stage t ≥ s. Then we have that γβi_〈i,σ〉(w
′)[t] > γβj_〈i,σ〉(w)[t] for all 1 ≤ j < i.

In addition γβj_〈i,σ〉(w)[t] > φj,2[t](φj,1[t](w)) and γβj_〈i,σ〉(w)[t] > φj,3[t](φj,1[t](w))

for all 1 ≤ j < i, as required.

In addition to the above we also have to consider the sequence ofR strategies (β′′1 , . . . , β
′′
n)

which are active for α and lie below α′.

Suppose that α′ enumerates γβi_〈i,σ〉[t](w
′) into D at a stage t > u, where w′ is a

witness which is attached to the edge. Then we shall need to show that γβi_〈i,σ〉[t](w
′) >

φj,2[t](φj,1[t](w)) and γβi_〈i,σ〉[t](w
′) > φj,3[t](φj,1[t](w)) for every β′′j ∈ (β′′1 , . . . , β

′′
n).

To prove this we observe that every such β′′j lies below the edge α′ _ 〈hi, σ′〉 of the

strategy. We have already determined that α′ defines the work interval (w′, γβi_〈i,σ〉(w
′)[u])

at some stage u. Then if at some stage u′ ≥ u the strategy β′′j defines the functional

associated with the edge β′′j _ 〈i, σ〉 at the element w, we have that it must choose

some use w′ < γβj_〈i,σ〉[u
′](w) < γβi_〈i,σ〉[u

′](w′). Now suppose that α′ enumerates

γβi_〈i,σ〉(w
′)[t] whilst visiting the edge α′ _ 〈hi, σ′〉 at some stage t ≥ s. Then we

have that γβi_〈i,σ〉(w
′)[t] > γβj_〈i,σ〉(w)[t]. But γβj_〈i,σ〉[t](w) > φj,2[t](φj,1[t](w)) and

γβj_〈i,σ〉[t](w) > φj,3[t](φj,1[t](w)), as required.

(3.1.4) Consider an edge α′ _ 〈hi, σ′〉 lying to the right of α _ 〈o, σ〉.

In order for the strategy α to attach the witness w to the edge α _ 〈o, σ〉 at stage s,

351

it must be the case that φj,2[s](φj,1[s](w)) ↓ and φj,3[s](φj,1[s](w)) ↓ for every strategy

βj ∈ (β1, . . . , βn). Hence we have that φj,2[s](φj,1[s](w)) < s and φj,3[s](φj,1[s](w)) < s

for every such βj . In addition, the strategy α must have been accessible at stage s.

But this means that the edge α′ _ 〈hi, σ′〉, which lies to the right of α is initialised at stage

s. Hence any witness attached to the edge α′ _ 〈hi, σ′〉 is detached at stage s. Now, if

some witness w′ is attached to the edge α′ _ 〈hi, σ′〉 at some stage u > s, we must have

that w′ > s. But this also means that γβi_〈i,σ〉(w
′) > s.

Hence, if α′ enumerates γβi_〈i,σ〉(w
′) into the set D at some stage t ≥ s, we have that

γβi_〈i,σ〉(w
′) > φj,2[s](φj,1[s](w)) and that γβi_〈i,σ〉(w

′) > φj,2[s](φj,1[s](w)) < s for

every strategy βj ∈ (β1, . . . , βn).

(3.2) Suppose that some β′j ∈ (β′1, . . . , β
′
n) is following a Γ-strategy.

In this case we have that α′ can only enumerate elements into A by visiting some edge

of the form α′ _ 〈gi, σ′〉, for some β′i ∈ (β′1, . . . , β
′
n) such that β′i follows a Γ-strategy.

On the other hand, α′ can enumerate elements into D by visiting some edge of the form

α′ _ 〈gi, σ′〉 for some β′i ∈ (β′1, . . . , β
′
n) following a Γ-strategy, or else by visiting some

edge of the form α′ _ 〈hi, σ′〉 for some β′i ∈ (β′1, . . . , β
′
n). We perform the following case

analysis.

(3.2.1) Consider an edge α′ _ 〈gi, σ′〉 lying above α.

Firstly, we consider the strategies β′j ∈ (β′1, . . . , β
′
n). Since α lies below the edge α′ _

〈gi, σ′〉, we have that no strategy β′j for i ≤ j ≤ m is active for α. On the other hand it

is possible for strategies β′j for 1 ≤ j < i to also be active for α. Hence we shall need

to show that if α′ enumerates some witness w′ into A at stage t, it must be the case that

w′ > φj,2[t](φj,1[t](w)) and w′ > φj,3[t](φj,1[t](w)) for all 1 ≤ j < i.

To prove this we observe that in order for α to attach the witnessw to the edge α _ 〈o, σ〉 at

stage s, α must have been accessible at stage s. But this means that α′ must also have been

accessible at stage s and that a work interval (v, γβ′
i_〈i,σ〉(v)[u]) must have been defined for

the edge α′ _ 〈gi, σ′〉 at some stage u < s.

But this means that v < w < v + nβ′
i_〈i,σ〉[s]. Hence there is some stage p < s such that

352

a constraint to the effect that γβ′
i_〈i,σ〉(v)[p′] > γβ′

j_〈i,σ〉(v + nβ′
i_〈i,σ〉[s])[p

′] has been

imposed on β′i for all stages p′ > p and 1 ≤ j < i.

In addition, γβ′
i_〈i,σ〉[p](v) is enumerated into D at stage p, undefining the functional

ΓUi,D
β′
i_〈i,σ〉

(v). Hence it follows that when the functional is redefined we have that

γβ′
i_〈i,σ〉(v)[t] > γβ′

j_〈i,σ〉(w)[t] for all 1 ≤ j < i and for all t ≥ s.

Now suppose that α′ enumerates a witness w′ attached to the edge α′ _ 〈gi, σ′〉 at some

stage t ≥ s. Then we have that w′ > γβ′
i_〈i,σ〉(v)[t]. But γβ′

i_〈i,σ〉(v)[t] > γβ′
j_〈i,σ〉(w)[t]

for all 1 ≤ j < i. In addition γβ′
j_〈i,σ〉(w)[t] > φj,2[t](φj,1[t](w)) and γβ′

j_〈i,σ〉(w)[t] >

φj,3[t](φj,1[t](w)) for all 1 ≤ j < i. Hence it follows that w′ > φj,2[t](φj,1[t](w)) and

w′ > φj,3[t](φj,1[t](w)) for all 1 ≤ j < i as required.

Secondly, we consider the sequence of R strategies β′′j ∈ (β′′1 , . . . , β
′′
l) which are active

for α and lie below α′. In this case we shall need to show that if α′ enumerates some

witness w′ into A at stage t, it must be the case that w′ > φj,2[t](φj,1[t](w)) and w′ >

φj,3[t](φj,1[t](w)) for every β′′j .

To prove this we observe that such a β′′j lies below the edge α′ _ 〈gi, σ′〉 of the strategy.

We have already determined that α′ defines the work interval (v, γβ′
i_〈i,σ〉(v)[u]) at some

stage u. Then if at some stage u′ ≥ u the strategy β′′j defines the functional associated

with the edge leading to α at the element w, we have that it must choose some use v <

γβ′′
j_〈i,σ〉[u

′](w) < γβ′
i_〈i,σ〉[u

′](v). It is also the case that s > u′ since α can only attach its

witness w to α _ 〈o, σ〉 after the work interval is defined at stage u and after ΓU,D
β′′
j_〈i,σ〉

(w)

has been defined for every β′′j ∈ (β′′1 , . . . , β
′′
l).

Now suppose that α′ enumerates a witness w′ attached to the edge α′ _ 〈gi, σ′〉 at some

stage t ≥ s. Then we have that w′ > γβ′
i_〈i,σ〉(v)[t]. But γβ′

i_〈i,σ〉(v)[t] > γβ′′
j_〈i,σ〉(w)[t]

for all 1 ≤ j < i. In addition γβ′′
j_〈i,σ〉(w)[t] > φj,2[t](φj,1[t](w)) and γβ′′

j_〈i,σ〉(w)[t] >

φj,3[t](φj,1[t](w)) for all 1 ≤ j < i. Hence it follows that w′ > φj,2[t](φj,1[t](w)) and

w′ > φj,3[t](φj,1[t](w)) for all β′′j ∈ (β′′1 , . . . , β
′′
n) such that 1 ≤ j < i as required.

We also need to consider the situation where α′ enumerates some element into D when it

visits some edge of the form α′ _ 〈gi, σ′〉 at some stage t ≥ s.

353

In the third paragraph of case (3.2.1) we determined that in order for w to be attached to

α _ 〈o, σ〉 at stage s, it must be the case that some work interval (v, γβ′
i_〈i,σ〉(v)) must

have been defined for the edge α′ _ 〈gi, σ′〉 at some stage u < s.

We have also seen that for all t ≥ s we have that γβ′
i_〈i,σ〉[t](v) > γβ′

j_〈i,σ〉[t](w) for

all β′j ∈ (β′1, . . . , β
′
n) with 1 ≤ j < i. Hence if α′ enumerates γβ′

i_〈i,σ〉[t](v) into D at

some stage t ≥ s we have that γβ′
i_〈i,σ〉[t](v) > φ2[s](φ1[s](w)) and that γβ′

i_〈i,σ〉[t](v) >

φ3[s](φ1[s](w)) as required.

Similarly we have also seen that for all t ≥ swe have that γβ′
i_〈i,σ〉[t](v) > γβ′′

j_〈i,σ〉[t](w)

for all β′′j ∈ (β′′1 , . . . , β
′′
l). Hence if α′ enumerates γβ′

i_〈i,σ〉[t](v) intoD at some stage t ≥ s

we have that γβ′
i_〈i,σ〉[t](v) > φ2[s](φ1[s](w)) and that γβ′

i_〈i,σ〉[t](v) > φ3[s](φ1[s](w))

as required.

(3.2.2) Consider an edge α′ _ 〈gi, σ′〉 lying to the right of α _ 〈o, σ〉.

Let (β′1, . . . , β
′
n) be the sequence ofR strategies lying above α′ and which are active for α′.

In order for the strategy α to attach the witness w to the edge α _ 〈o, σ〉 at stage s,

it must be the case that φj,2[s](φj,1[s](w)) ↓ and φj,3[s](φj,1[s](w)) ↓ for every strategy

βj ∈ (β1, . . . , βn). Hence we have that φj,2[s](φj,1[s](w)) < s and φj,3[s](φj,1[s](w)) < s

for every strategy βj ∈ (β1, . . . , βn) which is active for α.

In addition the strategy α must have been accessible at stage s. But this means that the edge

α′ _ 〈gi, σ′〉, which lies to the right of α is initialised at stage s. Hence any work interval

defined for the edge α′ _ 〈gi, σ′〉 is undefined at stage s.

Now, if some work interval (v, γβ′
i_〈i,σ′〉[u](v)) is defined for the edge α′ _ 〈gi, σ′〉 at

some stage u > s, we must have that v > s. But this also means that γβ′
i_〈i,σ′〉[u](v) > s.

In addition if a witness w′ is attached to the edge α′ _ 〈gi, σ′〉 at some stage u′ > u we

have that w′ > γβ′
i_〈i,σ′〉[u

′](v).

Therefore if α′ enumerates w′ into the set A at some stage t > u′, we have that

γβ′
i_〈i,σ′〉[t](v) > φj,2[s](φj,1[s](w)) and that γβ′

i_〈i,σ′〉[t](w
′) > φj,3[s](φj,1[s](w)) for

every strategy βj ∈ (β1, . . . , βn).

Similarly if α′ enumerates γβ′
i_〈i,σ′〉[t

′](v) into the set D at some t′ > u, we have that

354

γβ′
i_〈i,σ′〉[t

′](v) > φj,2[s](φj,1[s](w)) and that γβ′
i_〈i,σ′〉[t

′](v) > φj,3[s](φj,1[s](w)) for

every strategy βj ∈ (β1, . . . , βn).

(3.2.3) Consider an edge α′ _ 〈hi, σ′〉 lying above α.

In this case the proof is the same as the one for case 3.1.3.

(3.2.4) Consider an edge α′ _ 〈hi, σ′〉 lying to the right of α _ 〈o, σ〉.

In this case the proof is the same as the one for case 3.1.4.

(4) Consider a strategy α′ such that α <L α′.

In order for the strategy α to attach the witness w to the edge α _ 〈o, σ〉 at stage s,

it must be the case that φi,2[s](φi,1[s](w)) ↓ and φi,3[s](φi,1[s](w)) ↓ for every strategy

βi ∈ (β1, . . . , βn). Hence we have that φi,2[s](φj,1[s](w)) < s and φi,3[s](φi,1[s](w)) < s

for every such βi. In addition, the strategy α must have been accessible at stage s.

Let α′ _ 〈o′, σ′〉 be an edge of the strategy α′. Since the strategy α′ is initialised at

stage s we have that any witness attached to α′ _ 〈o′, σ′〉 is detached at stage s. Now,

if some witness w′ is attached to α′ _ 〈o′, σ′〉 at some stage u > s, we must have that

w′ > s. Similarly if the strategy chooses a threshold v to define a work interval for the edge

α′ _ 〈o′, σ′〉 at some stage u > s we have that v > s.

Hence, if α′ _ 〈o′, σ′〉 has outcome d or gj and α′ enumerates a witness w′ into the set A

at some stage t ≥ s we have that w′ > φi,2[s](φi,1[s](w)) and that w′ > φi,2[s](φi,1[s](w))

for every strategy βi ∈ (β1, . . . , βm).

Similarly if α′ _ 〈o′, σ′〉 has outcome gj and α′ enumerates γβj_〈i,σ〉[t](v) into the

set D at some stage t ≥ s we have that γβj_〈i,σ〉[t](v) > φi,2[s](φi,1[s](w)) and that

γβj_〈i,σ〉[t](v) > φi,2[s](φi,1[s](w)) for every strategy βi ∈ (β1, . . . , βm).

Finally if α′ _ 〈o′, σ′〉 has outcome hj and α′ enumerates γβj_〈i,σ〉[t](w
′) into the set

D at some stage t ≥ s we have that γβj_〈i,σ〉[t](w
′) > φi,2[s](φi,1[s](w)) and that

γβj_〈i,σ〉[t](w
′) > φi,2[s](φi,1[s](w)) for every strategy βi ∈ (β1, . . . , βm) as required.

(5) Consider the strategy β such that α ⊂ β.

Let α _ 〈o, σ〉 be the edge of α on the true path.

355

We perform the following case analysis.

(5.1) Suppose that β lies below α _ 〈o, σ〉.

In order for the strategy β to enumerate some element into the set D at some stage t ≥ s, it

must be the case that the strategy α visits its edge α _ 〈o, σ〉 at stage t and that it goes to

the next substage.

Now α attaches the witness w to α _ 〈o, σ〉 at stage s. Hence we have that this edge is

in open mode at stage s. Let u ≥ s be the least stage such that β is accessible at stage u.

For this to be the case, u must be an α-open stage. But this means that α visits its edge

α _ 〈o, σ〉 at an α-open stage while it is in open mode. Hence α enumerates w into A into

stage u.

Hence we have that if β enumerates some element intoD at some stage t ≥ s, α has already

enumerated w into A at some stage t′ ≤ t.

(5.2) Suppose that β lies below some α _ 〈o′, σ′〉 where α _ 〈o′, σ′〉 lies to the right of α _

〈o, σ〉.

In order for the strategy α to attach the witness w to the edge α _ 〈o, σ〉 at stage s,

it must be the case that φi,2[s](φi,1[s](w)) ↓ and φi,3[s](φi,1[s](w)) ↓ for every strategy

βi ∈ (β1, . . . , βn). In addition, the strategy α must have been accessible at stage s.

Now in order for β to be accessible at some least stage u ≥ s it must be the case that α has

visited the edge α _ 〈o′, σ′〉 at stage u. If w is no longer attached to the edge α _ 〈o, σ〉

at stage u, the lemma is satisfied trivially. Otherwise we have that α imposes the downward

restraint d(α _ 〈o′, σ′〉, u) on strategies lying below the edge α _ 〈o′, σ′〉.

Now β is not accessible at any stage t such that s < t < u and w has been attached to

α _ 〈o, σ〉 at stage s. Suppose β had been accessible at some greatest stage s′ < s. Then

when it becomes accessible at stage u it notes that d(α _ 〈o′, σ′〉, u) > d(α _ 〈o′, σ′〉, s′),

where s′ is the greatest stage less than s such that β was accessible. Hence at stage u we

have that β will cancel every functional attached to each of its edges. Otherwise we have

that β was never accessible prior to stage s, and that it has never defined any functional at

any element.

356

Therefore if β defines the functional associated to an edge β _ 〈i, σ〉 by choosing some

use x at some stage u′ ≥ u, we must have that x > φi,2[s](φi,1[s](w)) and that x >

φi,3[s](φi,1[s](w)) for every strategy βi ∈ (β1, . . . , βm). Hence, if β enumerates the use

x into the set D at some stage t ≥ u′ ≥ s we have that x > φi,2[s](φi,1[s](w)) and that

x > φi,2[s](φi,1[s](w)) for every strategy βi ∈ (β1, . . . , βm), as required.

(6) Consider a strategy β such that β ⊂ α.

Let β _ 〈i, σ〉 be the edge of the strategy β above α.

The strategy α attaches the witness w to the edge α _ 〈o, σ〉 at stage s. In order for α to

attach this witness at stage s, we have that α has to be accessible at stage s.

But this means that β must visit the edge β _ 〈i, σ〉 at stage s and go to the next substage.

This can only be the case if β does not enumerate any element into D at stage s.

Now, in order for β to enumerate an element at some stage t > s into the set D, it must

be the case that some strategy α′ below β has enumerated some element w′ into the set A

at some stage t′ such that s ≤ t′ < t, creating a disagreement between ΓU,Dβ_〈i,σ〉(w
′) and

A(w′). This would cause β to enumerate γβ_〈i,σ〉[t](w′) at stage t in order to undefine

ΓU,Dβ_〈i,σ〉(w
′).

We perform the following case analysis.

(6.1) Suppose that α′ is above α. Then by cases 3.1.1, 3.1.2, 3.2.1 and 3.2.2 we have that if α′

enumerates a witness w′ into A at stage t′, it must be the case that w′ > φj,2[s](φj,1[s](w))

and w′ > φj,3[s](φj,1[s](w)) for every βj ∈ (β1, . . . , βn).

But γβ_〈i,σ〉[t](w′) > w′. Hence if β enumerates γβ_〈i,σ〉[t](w′) into the set D at stage

t, it must be the case that γβ_〈i,σ〉[t](w′) > φj,2[s](φj,1[s](w)) and γβ_〈i,σ〉[t](w
′) >

φj,3[s](φj,1[s](w)) for every strategy βj ∈ (β1, . . . , βn) as required.

(6.2) Suppose that α′ is to the right of α.

In order for the strategy α to attach the witness w to the edge α _ 〈o, σ〉 at stage s,

it must be the case that φi,2[s](φi,1[s](w)) ↓ and φi,3[s](φi,1[s](w)) ↓ for every strategy

βi ∈ (β1, . . . , βn). Hence we have that φi,2[s](φj,1[s](w)) < s and φi,3[s](φi,1[s](w)) < s

for every such βi. In addition, the strategy α must have been accessible at stage s.

357

Let α′ _ 〈o′, σ′〉 be an edge of the strategy α′. Since the strategy α′ is initialised at stage

s we have that any witness attached to α′ _ 〈o′, σ′〉 is detached at stage s. Now, if some

witness w′ is attached to α′ _ 〈o′, σ′〉 at some stage u > s, we must have that w′ > s.

Hence, if α′ _ 〈o′, σ′〉 has outcome d or gj and α′ enumerates a witness w′ into the set A at

some stage u′ > s we have that w′ > φi,2[s](φi,1[s](w)) and that w′ > φi,2[s](φi,1[s](w))

for every strategy βi ∈ (β1, . . . , βm).

But γβ_〈i,σ〉[t](w′) > w′. Hence if β enumerates γβ_〈i,σ〉[t](w′) into the set D at stage

t, it must be the case that γβ_〈i,σ〉[t](w′) > φi,2[s](φi,1[s](w)) and γβ_〈i,σ〉[t](w
′) >

φi,3[s](φi,1[s](w)) for every strategy βi ∈ (β1, . . . , βn) as required.

(7) Consider a strategy β such that α <L β.

In order for the strategy β to attach the witness w to the edge α _ 〈o, σ〉 at stage s,

it must be the case that φi,2[s](φi,1[s](w)) ↓ and φi,3[s](φi,1[s](w)) ↓ for every strategy

βi ∈ (β1, . . . , βn). Hence we have that φi,2[s](φj,1[s](w)) < s and φi,3[s](φi,1[s](w)) < s

for every such βi. In addition, the strategy α must have been accessible at stage s.

Let β _ 〈i, σ′〉 be an edge of the strategy β. Since the strategy β is initialised at stage s,

we have that the functional associated to β _ 〈i, σ′〉 is canceled at stage s.

Hence if β visits the edge β _ 〈i, σ′〉 at some stage u > s and defines the corresponding

functional at some element x, it must choose a use γβ_〈i,σ′〉[u](x) which is greater than s.

This means that if the strategy β enumerates γβ_〈i,σ′〉[t](x) into D at some stage t > s, we

have that γβ_〈i,σ′〉[t](x) > s. It follows that γβ_〈i,σ′〉[t](x) > φj,2[s](φj,1[s](w)) and that

γβ_〈i,σ′〉[t](x) > φj,3[s](φj,1[s](w)) for every βi ∈ (β1, . . . , βm) as required.

3.8.6 Synchronisation Lemma

The Synchronisation Lemma shows that if γ is a strategy on the true path and there are no edges

with outcome d on the path leading to γ we have that γ is accessible during infinitely many γ-open

stages and infinitely many γ-close stages.

358

Lemma 3.8.7. (Synchronisation Lemma). Let f be the true path and let γ = f � n for some n. If

f(m) is defined and not equal to 〈d, σ〉 for every m < n, we have that there are infinitely many

γ-open stages and infinitely many γ-close stages.

Proof. We prove this lemma by induction on n.

For the Base Case n = 0 we have that the antecedent holds trivially. Therefore we need to

show that there are infinitely many γ0-open stages and infinitely many γ0-close stages, where

γ0 = f � 0.

Now the strategy γ0 is located at the root of the priority tree. Hence it is accessible at every stage.

In addition since γ0 has no other R or S strategy above it, it follows that every stage satisfies

conditions (O1)-(O3) and (C1)-(C2) for γ0. Hence there are infinitely many γ-open stages and

infinitely many γ-close stages as required.

For the Inductive Case we proceed as follows.

First we assume that the lemma holds for n = k as our Inductive Hypothesis.

Let γk = f � k. Then we have that if f(m) is defined and not equal to 〈d, σ〉 for every m < k,

there are infinitely many γk-open stages and infinitely many γk-close stages.

We then prove that the lemma holds for n = k + 1.

Let γk+1 = f � k + 1. Then we have to prove that if f(m) is defined and not equal to 〈d, σ〉 for

every m < k + 1, we have that there are infinitely many γk+1-open stages and infinitely many

γk+1-close stages.

Assume that f(m) is defined and not equal to 〈d, σ〉 for everym < k+1. Then we have that f(m)

is defined and not equal to 〈d, σ〉 for every m < k as well. Hence by the Inductive Hypothesis we

have that there are infinitely many γk-open stages and infinitely many γk-close stages.

We shall now show that there are infinitely many γk+1-open stages and infinitely many γk+1-close

stages.

Let γk _ 〈o, σ〉 be the edge lying on the true path. We shall show that the strategy γk visits the

edge γk _ 〈o, σ〉 at infinitely many γk-open stages and at infinitely many γk-close stages such

359

that it goes to the next substage in each case. This makes γk+1 accessible during infinitely many

γk+1-open stages and infinitely many γk+1-close stages.

If γk is anR strategy we perform a case analysis depending on the outcome of edge γk _ 〈o, σ〉.

(1) Suppose γk _ 〈f, σ〉 is on the true path. By the Leftmost Path Lemma (Lemma 3.8.4) there

is some stage s0 after which edges to the left of γk _ 〈f, σ〉 are inaccessible.

We start by noting the following fact. Suppose that γk visits the edge γk _ 〈f, σ〉 at some

stage t and sets the variable suspend to true at stage t. Let t′ > t be the least stage such

that γk sets the variable suspend to false at stage t′. Then we have that γk visits the edge

γk _ 〈f, σ〉 at every γk-stage t′′ such that t < t′′ ≤ t′.

Now suppose that at some stage s1 > s0, the strategy γk visits the edge γk _ 〈f, σ〉, and

that the edge is in open mode at stage s1. If stage s1 is not a γk-open stage the variable

suspend is set to true at stage s1. Hence the edge will be visited again by the strategy until

it sets the variable suspend to false.

Since there are infinitely many γk-open stages we have that there is some stage s2 > s1

such that γk visits the edge γk _ 〈f, σ〉 at stage s2, the stage s2 is an γk-open stage and

γk _ 〈f, σ〉 is in open mode at stage s2.

Hence we have that the strategy γk visits the edge γk _ 〈f, σ〉 at stage s2 and goes to the

next substage. Since the strategy γk does not build any functional whilst visiting the edge

γk _ 〈f, σ〉, we also have that conditions (O1)-(O3) are satisfied for γk+1, and that stage

s2 is a γk+1-open stage.

In addition the strategy will also change the mode of the edge to close mode and set the

variable suspend to false at stage s2. This means that the strategy is now free to visit any

other edge.

Now, let s3 be the least γk-stage greater than s2 such that the strategy visits the edge γk _

〈f, σ〉. If stage s3 is not a γk-close stage, the variable suspend is set to true at stage s3.

Hence the edge will be visited again by the strategy until it sets the variable suspend to

false.

Since there are infinitely many γk-close stages we have that there is some stage s4 > s3

360

such that γk visits the edge γk _ 〈f, σ〉 at stage s4, the stage s4 is a γk-close stage and

γk _ 〈f, σ〉 is in close mode at stage s4.

Hence we have that the strategy γk visits the edge γk _ 〈f, σ〉 at stage s4 and goes to the

next substage. This means that conditions (C1)-(C2) are now satisfied for γk+1, and that

stage s4 is a γk+1-close stage.

In addition the strategy will also change the mode of the edge to open mode and set the

variable suspend to false at stage s4. Hence the strategy γk is now able to visit other edges

once again.

Now s0 is the least stage such that no edge to the left of γk _ 〈f, σ〉 is accessible after stage

s0. This also means that s0 is the greatest stage such that the edge γk _ 〈f, σ〉 is initialised.

When the edge is initialised at stage s0, it is set to open mode. Therefore if u is the least γk-

stage greater than s0, we have that γk _ 〈f, σ〉 must be in open mode at stage u. Therefore

we can use our earlier argument to generate a γk+1-open stage and a γk+1-close stage. But

the strategy γk+1 returns to its original state once it generates the γk+1-close stage.

Therefore the argument can be repeated to show that there are infinitely many γk+1-open

stages and infinitely many γk+1-close stages as required.

(2) Suppose γk _ 〈i, σ〉 is on the true path. By the Leftmost Path Lemma (Lemma 3.8.4) there

is some stage s0 after which edges to the left of γk _ 〈i, σ〉 are inaccessible.

We start by noting the following fact. Suppose that γk visits the edge γk _ 〈i, σ〉 at some

stage t and sets the variable suspend to true at stage t. Let t′ > t be the least stage such

that γk sets the variable suspend to false at stage t′. Then we have that γk visits the edge

γk _ 〈i, σ〉 at every γk-stage t′′ such that t < t′′ ≤ t′.

Suppose that γk visits its edge γ _ 〈i, σ〉 at some stage s1 > s0. Let ΓU,Dγk_〈i,σ〉 be the

functional which is associated to the edge γk _ 〈i, σ〉.

We now perform a case analysis depending on whether the edge γk _ 〈i, σ〉 is in close

mode or in open mode at stage s1.

(2.1) Suppose γk _ 〈i, σ〉 is in close mode at stage s1. We need to consider the following two

cases.

361

(2.1.1) Suppose there is no m such that ΓU,Dγk_〈i,σ〉[s1](m) 6= A[s1](m).

If there is no γk-expansionary* stage attached to γk _ 〈i, σ〉 at stage s1 we make the

following observations.

The edge γk _ 〈i, σ〉 is on the true path. Hence the answer to question Q1 of the γk-

strategy must be ‘Yes’ and there are infinitely many γk-expansionary* stages. In addition

the strategy γk always attaches γk-expansionary* stages to the leftmost edge which has

already been visited and which has no γk-expansionary* stage attached.

Therefore by the Attachment Procedure Lemma (Lemma 3.8.5) there must be some least

γk-stage s2 > s1 such that a γk-expansionary* stage is attached to γk _ 〈i, σ〉.

If s2 is not a γk-close stage we have that the strategy γk sets suspend to true at stage s2 and

goes to the next stage. Hence the edge will be visited again by the strategy until it sets the

variable suspend to false.

Since there are infinitely many γk-close stages we have that there is some stage s3 > s2

such that γk visits the edge γk _ 〈i, σ〉 at stage s3, the stage s3 is a γk-close stage and

γk _ 〈i, σ〉 is in close mode at stage s3.

Hence we have that the strategy γk visits the edge γk _ 〈i, σ〉 at stage s3 and goes to the

next substage. This means that conditions (C1)-(C2) are satisfied for γk+1, and that stage s3

is a γk+1-close stage.

Now at stage s3 the strategy γk sets suspend to false and sets the mode of the edge to open

mode and set the variable suspend to false at stage s4. Hence the strategy γk is now able to

visit other edges once again.

We also note that since the edge is in close mode for every stage t such that s1 ≤ t ≤ s2 we

have that no S strategy α below γ is accessible during stage t. Hence no such strategy α can

enumerate an elementm′ into the setA during stage t. This means that no new disagreement

ΓU,Dγk_〈i,σ〉(m
′) 6= A(m′) can be created at stage t.

Now suppose that the strategy γk visits γk _ 〈i, σ〉 again at some least stage s4 > s3.

If there is no γk-expansionary* stage attached to γk _ 〈i, σ〉 at stage s4 then by the

Attachment Procedure Lemma (Lemma 3.8.5) there must be some least γk-stage s5 > s4

362

such that a γk-expansionary* stage is attached to γk _ 〈i, σ〉 as before.

If s5 is not a γk-open stage we have that the strategy γk sets suspend to true at stage s4 and

goes to the next stage. Hence the edge will be visited again by the strategy until it sets the

variable suspend to false.

Since there are infinitely many γk-open stages we have that there is some stage s6 > s5

such that γk visits the edge γk _ 〈i, σ〉 at stage s6, the stage s6 is an γk-open stage and

γk _ 〈i, σ〉 is in open mode at stage s6. Hence we have that the strategy γk goes to the next

substage at stage s6.

In addition the strategy does not go to the next substage for every stage t such that s5 ≤

t ≤ s6. Hence no S strategy α below γ is accessible during stage t. It follows that no

such strategy α can enumerate an element m′ into the set A during stage t, and that no new

disagreement ΓU,D(m′) 6= A(m′) can be created at stage t.

Hence we have that conditions (O1)-(O3) are satisfied for γk+1, and that stage s5 is a γk+1-

open stage.

Also note that the strategy γk sets the edge to close mode and the variable suspend to false

at stage s6 allowing the strategy to visit other edges once again. This means that the strategy

γk has returned to the state which it started from.

(2.1.2) Suppose there is some m such that ΓU,Dγk_〈i,σ〉[s1](m) 6= A[s1](m).

If there is no γk-expansionary* stage attached to γk _ 〈i, σ〉 at stage s1 we make the

following observations.

The edge γk _ 〈i, σ〉 is on the true path. Hence the answer to question Q1 of the γk-

strategy must be ‘Yes’ and there are infinitely many γk-expansionary* stages. In addition

the strategy γk always attaches γk-expansionary* stages to the leftmost edge which has

already been visited and which has no γk-expansionary* stage attached.

Therefore by the Attachment Procedure Lemma (Lemma 3.8.5) there must be some least

γk-stage s2 > s1 such that a γk-expansionary* stage is attached to γk _ 〈i, σ〉.

If s2 is not a γk-close stage we have that the strategy γk sets suspend to true at stage s2 and

goes to the next stage. Hence the edge will be visited again by the strategy until it sets the

363

variable suspend to false.

Since there are infinitely many γk-close stages we have that there is some stage s3 > s2

such that γk visits the edge γk _ 〈i, σ〉 at stage s3, the stage s3 is a γk-close stage and

γk _ 〈i, σ〉 is in close mode at stage s3.

Therefore the strategy γk will enumerate γγk_〈i,σ〉[s3](m) into the set D so as to undefine

ΓU,Dγk_〈i,σ〉(m). The strategy will also set the edge to open mode and set suspend to false and

will terminate the stage.

Now since the edge is in close mode for every stage t such that s1 ≤ t ≤ s3, we have that

no S strategy α below γ is accessible during stage t. Hence we have that no such strategy

α can enumerate an element m′ into the set A during stage t. This means that no new

disagreement ΓU,D(m′) 6= A(m′) can be created at stage t.

Let s4 be the least γk-stage greater than stage s3. Then at stage s4 the strategy γk finds itself

in case 2.1.1. It follows that we can use the analysis found in that case to obtain a γk+1-close

stage followed by a γk+1-open stage.

(2.2) γ _ 〈i, σ〉 is in open mode at stage s1.

(2.2.1) Suppose there is no m such that ΓU,Dγk_〈i,σ〉[s1](m) 6= A[s1](m).

If there is no γk-expansionary* stage attached to γk _ 〈i, σ〉 at stage s1 we make the

following observations.

The edge γk _ 〈i, σ〉 is on the true path. Hence the answer to question Q1 of the γk-

strategy must be ‘Yes’ and there are infinitely many γk-expansionary* stages. In addition

the strategy γk always attaches γk-expansionary* stages to the leftmost edge which has

already been visited and which has no γk-expansionary* stage attached.

Therefore by the Attachment Procedure Lemma (Lemma 3.8.5) there must be some least

γk-stage s2 > s1 such that a γk-expansionary* stage is attached to γk _ 〈i, σ〉.

If s2 is not an γk-open stage we have that the strategy γk sets suspend to true at stage s2 and

goes to the next stage. Hence the edge will be visited again by the strategy until it sets the

variable suspend to false.

364

Since there are infinitely many γk-open stages we have that there is some stage s3 > s2

such that γk visits the edge γk _ 〈i, σ〉 at stage s3, the stage s3 is an γk-open stage and

γk _ 〈i, σ〉 is in open mode at stage s3.

Hence we have that the strategy γk visits the edge γk _ 〈i, σ〉 at stage s3. It will therefore

set the edge to close mode and set suspend to false, allowing the strategy γk to visit other

edges once again. The strategy will then end the stage.

Note that for every stage t such that s1 ≤ t ≤ s3, we have that no S strategy α below γ is

accessible during stage t. This follows from the fact that during these stages there is either

no γk-expansionary* stage attached to the edge, or that t is not a γk-open stage, or that γk

notes that there is a disagreement between the functional and the set A.

Hence we have that no such strategy α can enumerate an element m′ into the set A during

stage t. This means that no new disagreement ΓU,D(m′) 6= A(m′) can be created at stage

t. Therefore we can conclude that stage s3 satisfies conditions (O1)-(O3) for γk+1 and thus

that s3 is a γk+1-open stage.

Now, since strategies below γk are accessible at stages s3 it could be the case that one

of these strategies enumerates a witness m′ into A at stage s3, creating a disagreement

ΓU,Dγk_〈i,σ〉(m
′) 6= A(m′).

If this is not the case let s4 be the least γk-stage greater than s3. Then at stage s4 the

strategy γk finds itself in case 2.1.1. It follows that we can use the analysis found in that

case to obtain a γk+1-close stage as required, followed by yet another γk+1-open stage.

Otherwise if this is the case let s4 be the least γk-stage greater than s3. Then at stage s4 the

strategy γk finds itself in case 2.1.2. It follows that we can use the analysis found in that

case to obtain a γk+1-close stage as required, followed by yet another γk+1-open stage.

(2.2.2) Suppose there is an m such that ΓU,Dγk_〈i,σ〉[s1](m) 6= A[s1](m).

If there is no γk-expansionary* stage attached to γk _ 〈i, σ〉 at stage s1 we make the

following observations.

The edge γk _ 〈i, σ〉 is on the true path. Hence the answer to question Q1 of the γk-

strategy must be ‘Yes’ and there are infinitely many γk-expansionary* stages. In addition

365

the strategy γk always attaches γk-expansionary* stages to the leftmost edge which has

already been visited and which has no γk-expansionary* stage attached.

Therefore by the Attachment Procedure Lemma (Lemma 3.8.5) there must be some least

γk-stage s2 > s1 such that a γk-expansionary* stage is attached to γk _ 〈i, σ〉.

If s2 is not a γk-open stage we have that the strategy γk sets suspend to true at stage s2 and

goes to the next stage. Hence the edge will be visited again by the strategy until it sets the

variable suspend to false.

Since there are infinitely many γk-open stages we have that there is some stage s3 > s2

such that γk visits the edge γk _ 〈i, σ〉 at stage s3, the stage s3 is a γk-open stage and

γk _ 〈i, σ〉 is in open mode at stage s3.

Hence we have that the strategy γk visits the edge γk _ 〈i, σ〉 at stage s3 and notes the

disagreement ΓU,Dγk_〈i,σ〉[s1](m) 6= A[s1](m). It will therefore set the edge to close mode

and set suspend to false, allowing the strategy γk to visit other edges once again. The

strategy will then end the stage.

Let s4 be the least γk-stage greater than s3. Then at stage s4 the strategy γk finds itself in

case 2.1.2. It follows that we can use the analysis found in that case to obtain a γk+1-close

stage followed by a γk+1-open stage.

If γk is an S strategy we proceed as follows.

Suppose that the edge γk _ 〈o, σ〉 is on the true path. Then by the Leftmost Path Lemma (Lemma

3.8.4) there is some stage s0 after which edges to the left of γk _ 〈o, σ〉 are inaccessible.

We also note the following fact. Suppose that γk visits the edge γk _ 〈o, σ〉 at some stage t and

sets the variable suspend to true at stage t. Let t′ > t be the least stage such that γk sets the

variable suspend to false at stage t′. Then we have that γk visits the edge γk _ 〈o, σ〉 at every

γk-stage t′′ such that t < t′′ ≤ t′.

We then perform a case analysis depending on the outcome of edge γk _ 〈o, σ〉.

(1) Suppose γ _ 〈w, σ〉 is on the true path.

Consider the situation where the edge γ _ 〈w, σ〉 is in open mode at stage s1.

366

If s1 is not a γk-open stage we have that the strategy γk sets suspend to true at stage s1 and

goes to the next stage. Hence the edge will be visited again by the strategy until it sets the

variable suspend to false.

Since there are infinitely many γk-open stages we have that there is some stage s2 > s1

such that γk visits the edge γk _ 〈w, σ〉 at stage s2, the stage s2 is a γk-open stage and

γk _ 〈w, σ〉 is in open mode at stage s2.

Hence we have that the strategy γk visits the edge γk _ 〈w, σ〉 at stage s2.

Now s2 is a γk-open stage which must satisfy condition (O3) for γk. Let β be anyR strategy

with an edge of the form β _ 〈i, σ′〉 above γk+1, and let ΓU,Dβ_〈i,σ′〉 be its corresponding

functional. Then it must be the case that there is no elementm such that ΓU,Dβ_〈i,σ′〉[s2](m) 6=

As2(m).

But since γk+1 is not an R strategy, we still have that there is no element m such that

ΓU,Dβ_〈i,σ′〉[s2](m) 6= As2(m) for some R strategy β with an edge of the form β _ 〈i, σ′〉

above γk+1. Therefore stage s2 satisfies conditions (O1)-(O3) for γk+1 and is a γk+1-open

stage.

In addition to the above we have that at stage s2, the strategy γk will set the edge to close

mode and set suspend to false, allowing the strategy γk to visit other edges once again. The

strategy will then go to the next substage.

Let s3 be the greatest γk stage greater than s2. If s3 is not a γk-close stage we have that the

strategy γk sets suspend to true at stage s3 and goes to the next stage. Hence the edge will

be visited again by the strategy until it sets the variable suspend to false.

Since there are infinitely many γk-open stages we have that there is some stage s4 > s3

such that γk visits the edge γk _ 〈w, σ〉 at stage s4, the stage s4 is a γk-close stage and

γk _ 〈w, σ〉 is in close mode at stage s4.

Hence we have that s4 satisfies conditions (C1)-(C2) and that s4 is a γk+1-close stage.

(2) Suppose γ _ 〈gi, σ〉 is on the true path for some 1 ≤ i ≤ m.

If there is no work interval is defined for γk _ 〈gi, σ〉 at stage s1 we make the following

observations.

367

After stage s0, we have that no strategy or edge to the left of γk is accessible at stages

s > s0. Hence at any such stage s, we have that there are only finitely many edges of the

form γk _ 〈gi, σ′〉 lying to the left of γk _ 〈gi, σ〉 whose work interval is defined at stage

s.

In addition, we have that the edge γ _ 〈gi, σ〉 is on the true path. Therefore it must be the

case that the answer to question Q1 is ‘Yes’ and that the answers to questions Q2.j for every

1 ≤ j ≤ m are also ‘Yes’.

Let (β1, . . . , βn) be the sequence of active R strategies above γk. Also, let α∗ ⊂ γk be

the greatest (under ⊂) S strategy which imposes a work interval on γk, (as, bs) be the

work interval it imposes on γk at stage s and ns be the boundary of the work interval at

stage s. Then the positive answer to question Q1 guarantees there must be infinitely many

witnesses w and stages s such that ΘD[s](w) ↓= 0, as < w < bs, as < θs(w) < bs,

as < θs(w) < as + ns and such that the computations ΓU,Dβj_〈i,σ〉[s](w) are honest for every

1 ≤ j ≤ n.

Now, the strategy γk will always attach witnesses of the above form to the leftmost edge of

the form γk _ 〈gi, σ′〉 which has been already visited and whose work interval is already

defined.

In addition we have that after stage s0 no work interval defined for an edge lying to the

left of γk _ 〈gi, σ〉 can be undefined, and that no witness attached to such an edge can be

detached. This follows from the fact that no edge to the left of γk _ 〈gi, σ〉 is accessible

after stage s0.

Hence there must be some least γk-stage s2 > s1 such that γk visits the edge γk _ 〈gi, σ〉

at stage s2 and such that every edge lying to the left of γk _ 〈gi, σ〉 whose work interval is

defined at stage s2 has a witness attached to it. This means that at stage s2 the strategy γk will

choose a threshold v and define the work interval (v, γi[s2](v)) for the edge γk _ 〈gi, σ〉.

Now if there is no witness w attached to γk _ 〈gi, σ〉 at stage s2 we have that there is

some stage s3 > s2 such that a witness is attached to the edge. This follows from the fact

that the work interval has now been defined for the edge, and the fact that we have already

determined that every edge to the left of γk _ 〈gi, σ〉 which has a work interval defined,

368

already has a witness attached.

Now consider the situation where the edge γk _ 〈gi, σ〉 is in open mode at stage s3.

If s3 is not a γk-open stage we have that the strategy γk sets suspend to true at stage s3 and

goes to the next stage. Hence the edge will be visited again by the strategy until it sets the

variable suspend to false.

Since there are infinitely many γk-open stages we have that there is some stage s4 > s3

such that γk visits the edge γk _ 〈gi, σ〉 at stage s4, the stage s4 is a γk-open stage and

γk _ 〈gi, σ〉 is in open mode at stage s4.

Now s4 is a γk-open stage which must satisfy condition (O3) for γk. Let β be anyR strategy

with an edge of the form β _ 〈i, σ′〉 above γk+1, and let ΓU,Dβ_〈i,σ′〉 be its corresponding

functional. Then it must be the case that there is no elementm such that ΓU,Dβ_〈i,σ′〉[s4](m) 6=

As4(m).

But since γk+1 is not an R strategy, we still have that there is no element m such that

ΓU,Dβ_〈i,σ′〉[s4](m) 6= As4(m) for some R strategy β with an edge of the form β _ 〈i, σ′〉

above γk+1. Therefore stage s4 satisfies conditions (O1)-(O3) for γk+1 and is a γk+1-open

stage.

In addition to the above we have that at stage s4, the strategy γk will set the edge to close

mode and set suspend to false, allowing the strategy γk to visit other edges once again. The

strategy will then go to the next substage.

Let s5 be the greatest γk stage greater than s4. If s5 is not a γk-close stage we have that the

strategy γk sets suspend to true at stage s5 and goes to the next stage. Hence the edge will

be visited again by the strategy until it sets the variable suspend to false.

Since there are infinitely many γk-open stages we have that there is some stage s6 > s5

such that γk visits the edge γk _ 〈gi, σ〉 at stage s6, the stage s6 is a γk-close stage and

γk _ 〈gi, σ〉 is in close mode at stage s6.

Hence we have that the strategy γk visits the edge γk _ 〈gi, σ〉 at stage s6. Since stage s6

satisfies conditions (C1)-(C2) for γk+1 we have that s6 is a γk+1-close stage.

In addition to the above we have that at stage s6, the strategy γk will set the edge to open

369

mode and set suspend to false, allowing the strategy γk to visit other edges once again. The

strategy will then go to the next substage.

(3) Suppose γ _ 〈hi, σ〉 is on the true path for some 1 ≤ i ≤ m.

If there is no witness w attached to γk _ 〈hi, σ〉 at stage s1 we make the following

observations.

The edge γk _ 〈hi, σ〉 is on the true path. Hence the answer to question Q1 of the γk-

strategy is ‘Yes’, the answer to questions Q2.j for all j < i is ‘Yes’ and the answer to

question Q2.i is ‘No’.

Let (β1, . . . , βn) be the sequence of active R strategies above γk. Also, let α∗ ⊂ γk be

the greatest (under ⊂) S strategy which imposes a work interval on γk, (as, bs) be the

work interval it imposes on γk at stage s and ns be the boundary of the work interval at

stage s. Then the positive answer to question Q1 guarantees there must be infinitely many

witnesses w and stages s such that ΘD[s](w) ↓= 0, as < w < bs, as < θs(w) < bs,

as < θs(w) < as +ns and such that the computations ΓU,Dβj_〈i,σ′〉[s](w) are honest for every

j < i. However, there must also be some stage t such that for all stages s > t and every

witness w, we have that the computation ΓU,Dβi [s](w) is dishonest.

In addition the strategy γk always attaches a witness w giving rise to honest computations

ΓU,Dβj_〈i,σ′〉[s](w) for every j < i and a dishonest computation ΓU,Dβi_〈i,σ′〉[s](w) to the

leftmost edge of the form γk _ 〈hi, σ〉 which has already been visited and which has

no such witness attached.

Therefore by the Attachment Procedure Lemma (Lemma 3.8.5) there must be some least

γk-stage s2 > s1 such that a witness w giving rise to honest computations ΓU,Dβj_〈i,σ′〉[s2](w)

for every j < i and a dishonest computation ΓU,Dβi_〈i,σ′〉[s2](w) is attached to the edge γk _

〈hi, σ〉.

Now consider the situation where the edge γk _ 〈hi, σ〉 is in Part I mode at stage s2.

If s2 is not a γk-close stage we have that the strategy γk sets suspend to true at stage s2 and

goes to the next stage. Hence the edge will be visited again by the strategy until it sets the

variable suspend to false.

370

Since there are infinitely many γk-close stages we have that there is some stage s3 > s2

such that γk visits the edge γk _ 〈hi, σ〉 at stage s3, the stage s3 is a γk-close stage and

γk _ 〈hi, σ〉 is in Part I mode at stage s3.

Hence we have that the strategy γk visits the edge γk _ 〈hi, σ〉 at stage s3. Since stage s3

satisfies conditions (C1)-(C2) for γk+1 we have that s3 is a γk+1-close stage.

In addition to the above we have that at stage s3, the strategy γk will set the edge to Part II

mode and set suspend to false, allowing the strategy γk to visit other edges once again. The

strategy will then go to the next substage.

Let s4 be the greatest γk stage greater than s3. If s4 is not a γk-open stage we have that the

strategy γk sets suspend to true at stage s4 and goes to the next stage. Hence the edge will

be visited again by the strategy until it sets the variable suspend to false.

Since there are infinitely many γk-open stages we have that there is some stage s5 > s4

such that γk visits the edge γk _ 〈hi, σ〉 at stage s5, the stage s5 is a γk-open stage and

γk _ 〈hi, σ〉 is in Part II mode at stage s5.

Now s5 is a γk-open stage which must satisfy condition (O3) for γk. Let β be anyR strategy

with an edge of the form β _ 〈i, σ′〉 above γk+1, and let ΓU,Dβ_〈i,σ′〉 be its corresponding

functional. Then it must be the case that there is no elementm such that ΓU,Dβ_〈i,σ′〉[s5](m) 6=

As5(m).

But since γk+1 is not an R strategy, we still have that there is no element m such that

ΓU,Dβ_〈i,σ′〉[s5](m) 6= As5(m) for some R strategy β with an edge of the form β _ 〈i, σ′〉

above γk+1. Therefore stage s5 satisfies conditions (O1)-(O3) for γk+1 and is a γk+1-open

stage.

In addition to the above we have that at stage s5, the strategy γk will set the edge to Part I

mode and set suspend to false, allowing the strategy γk to visit other edges once again. The

strategy will then go to the next substage.

(4) Suppose γ _ 〈d, σ〉 is on the true path.

In the Inductive Case we assumed that f(m) is defined and not equal to 〈d, σ〉 for every

m < k + 1. Since the outcome of γk on the true path is f(k), we have that f(k) cannot

371

be of the form 〈d, σ〉 which gives us a contradiction. Hence we do not need to consider this

case.

3.8.7 Qualified Infinite True Path Lemma

We now show that the true path is infinite in length, as long as there are no strategies γ with

outcomes of the form γ _ 〈d, σ〉 on the true path. We shall be able to remove this qualification

once we prove the Pseudo Outcome Lemma (Lemma 3.8.12). It will then follow that the true path

is infinite in length.

Lemma 3.8.8. (Infinite True Path Lemma). Let f be the true path. If f(m) is defined and not

equal to 〈d, σ〉 for every m < n, we have that f(n) is defined as well.

Proof. We start by noting that to prove that f(n) is defined for some n, we need to show two

things. The first is that there are infinitely many γn-stages, where γn = f � n. The second is that

lim infsOs(γn) exists.

We now prove the lemma by induction on n.

For the Base Case n = 0 we have that the antecedent holds trivially. Therefore we need to prove

that f(0) is defined. Consider f � 0. Then we have that the strategy γ0 = f � 0 is located at

the root of the priority tree. This means that the strategy is accessible at every stage. Hence there

are infinitely many γ0-stages. In addition by the Collation Lemma (Lemma 3.1.7) we have that

lim infsOs(γ0) exists. This means that f(0) is defined as required.

For the Inductive Case we proceed as follows.

As the Inductive Hypothesis we shall assume that the lemma holds for n = k as the Inductive

Hypothesis. Then we have that if f(m) is defined and not equal to 〈d, σ〉 for every m < k, then

f(k) is defined as well.

We then prove that the lemma holds for n = k+ 1. Hence we need to show that if f(m) is defined

and not equal to 〈d, σ〉 for every m < k + 1, we have that f(k + 1) is defined as well.

Suppose that f(m) is defined and not equal to 〈d, σ〉 for every m < k + 1. Then f(m) is also

defined and not equal to 〈d, σ〉 for every m < k. Hence by the Inductive Hypothesis we have

372

that f(k) is defined. This means that there are infinitely many γk stages and that lim infsOs(γk)

exists.

We shall now prove that there are infinitely many γk+1-open stages and infinitely many γk+1-close

stages.

Since f(m) is defined and not equal to 〈d, σ〉 for everym < k+1, we have that γk+1 is accessible

at infinitely many γk+1-open stages and infinitely many γk+1-close stages by the Synchronisation

Lemma (Lemma 3.8.7). Hence there are infinitely many γk+1 stages as required. Furthermore by

the Collation Lemma (Lemma 3.1.7) we have that lim infsOs(γk+1) exists.

Therefore we have that f(k + 1) is defined, as required.

3.8.8 Restraint Lemma

In the following lemma we shall show that the sum of the restraints which are imposed on any

edge lying on the true path will eventually converge to some finite number.

Lemma 3.8.9. (Restraint Lemma). Let γ be a strategy with edge γ _ 〈o, σ〉 on the true path, and

let the total restraint r̂(γ _ 〈o, σ〉, s) imposed on the edge at stage s be the sum of:

(1) sup{r(γ _ 〈o′, σ′〉, s) | γ _ 〈o′, σ′〉 <L γ _ 〈o, σ〉 ∧ γ _ 〈o′, σ′〉 has been previously

accessible}.

(2) a(γ _ 〈o, σ〉, s).

(3) max{d(γ1 _ 〈o1, σ1〉, s) . . . d(γm _ 〈om, σm〉, s)}, where each γi ∈ (γ1, . . . , γm) is a

strategy on the true path leading to γ, and γi _ 〈oi, σi〉 is its corresponding edge on the

true path.

(4) max{Rα1,s, . . . , Rαn,s}, where (α1, . . . , αn) are the S strategies on the true path leading

to γ.

Then lims r̂(γ _ 〈o, σ〉, s) exists and is finite.

Proof. By the Leftmost Path Lemma (Lemma 3.8.4) there is a least stage s0 such that no strategy

and no edge to the left of γ _ 〈o, σ〉 is accessible at stages s > s0.

373

We consider the restraints imposed under conditions (1), (2) and (3) and (4) in turn.

(1) Consider the restraint imposed under condition (1).

We perform a case analysis depending on whether the strategy γ is an R strategy or an S

strategy.

(1.1) Suppose γ is anR strategy.

We claim that there is some stage s1 > s0 such that for every stage s > s1 we

have that: sup{r(γ _ 〈o′, σ′〉, s) | γ _ 〈o′, σ′〉 <L γ _ 〈o, σ〉 ∧ γ _

〈o′, σ′〉 has been previously accessible} = sup{r(γ _ 〈o′, σ′〉, s1) | γ _ 〈o′, σ′〉 <L

γ _ 〈o, σ〉 ∧ γ _ 〈o′, σ′〉 has been previously accessible}. Consider sup{r(γ _

〈o′, σ′〉, t) | γ _ 〈o′, σ′〉 <L γ _ 〈o, σ〉 ∧ γ _ 〈o′, σ′〉 has been previously accessible}

for any stage t > s0. For each edge γ _ 〈o′, σ′〉 <L γ _ 〈o, σ〉 we have that

r(γ _ 〈o′, σ′〉, t) is the least number which is greater than the following two constraints.

Firstly, r(γ _ 〈o′, σ′〉, t) is greater than the greatest stage t′ < t such that the edge was

accessible at stage t′. Since γ _ 〈o′, σ′〉 lies to the left of the true path, we have that the

edge is inaccessible at stages t′′ > s0. Hence the first constraint contributes a constant value

to the restraint r(γ _ 〈o′, σ′〉, t′′) at all stages t′′ > s0.

Secondly, r(γ _ 〈o′, σ′〉, t) is greater than any γ-expansionary* stage attached to the edge

γ _ 〈o′, σ′〉. Suppose that the edge γ _ 〈o′, σ′〉 has no γ-expansionary* stage attached to

it at some stage t′ > s0. Then it is either the case that no γ-expansionary* stage will ever

be attached, or that one will be attached at some stage u ≥ t′.

In the latter case we have that the edge γ _ 〈o′, σ′〉 is inaccessible after stage s0. Therefore

we have that once attached, the γ-expansionary* stage is never detached from the edge.

Similarly, the edge γ _ 〈o′, σ′〉 is never initialised at stages s > s0. It follows that the

second constraint contributes a constant value to the restraint r(γ _ 〈o′, σ′〉, t) at all stages

s ≥ u.

Therefore given an edge γ _ 〈o′, σ′〉 lying to the left of γ _ 〈o, σ〉, we have that r(γ _

〈o′, σ′〉, s) = r(γ _ 〈o′, σ′〉, u) for all s > u.

Since this argument holds for every edge γ _ 〈o′, σ′〉 lying to the left of γ _ 〈o, σ〉,

374

and only finitely many such edges are accessible at stages s ≤ s0, it follows that there

is some stage s1 such that for all s > s1 we have that: sup{r(γ _ 〈o′, σ′〉, s) | γ _

〈o′, σ′〉 <L γ _ 〈o, σ〉 ∧ γ _ 〈o′, σ′〉 has been previously accessible} = sup{r(γ _

〈o′, σ′〉, s1) | γ _ 〈o′, σ′〉 <L γ _ 〈o, σ〉 ∧ γ _ 〈o′, σ′〉 has been previously accessible}

as required.

(1.2) Suppose γ is an S strategy.

We claim that there is some stage s1 > s0 such that for every stage s > s1 we

have that: sup{r(γ _ 〈o′, σ′〉, s) | γ _ 〈o′, σ′〉 <L γ _ 〈o, σ〉 ∧ γ _

〈o′, σ′〉 has been previously accessible} = sup{r(γ _ 〈o′, σ′〉, s1) | γ _ 〈o′, σ′〉 <L

γ _ 〈o, σ〉 ∧ γ _ 〈o′, σ′〉 has been previously accessible}.

To show this we proceed as follows. Consider sup{r(γ _ 〈o′, σ′〉, t) | γ _ 〈o′, σ′〉 <L

γ _ 〈o, σ〉 ∧ γ _ 〈o′, σ′〉 has been previously accessible} for any t > s0. For each edge

γ _ 〈o′, σ′〉 <L γ _ 〈o, σ〉 we have that r(γ _ 〈o′, σ′〉, t) is the least number which is

greater than the following four constraints.

Firstly, r(γ _ 〈o′, σ′〉, t) is greater than θt′(w′), where w′ is any witness attached to the

edge γ _ 〈o′, σ′〉 and t′ is the stage at which the witness was attached to the edge. Suppose

that the edge γ _ 〈o′, σ′〉 has no witness attached to it at some stage t′′ > s0. Then it is

either the case that no witness w′ will ever be attached, or that one will be attached at some

stage u ≥ t′′.

In the latter case we have that the edge γ _ 〈o′, σ′〉 is inaccessible at stages s > s0.

Therefore w′ is never detached from the edge once it is attached. Similarly, the edge γ _

〈o′, σ′〉 is never initialised after stage s0. It follows that the first constraint contributes a

constant value to the restraint r(γ _ 〈o′, σ′〉, s) at all stages s > u.

Secondly, r(γ _ 〈o′, σ′〉, t) is greater than the greatest stage t′ < t such that the edge was

accessible at stage t′. Since γ _ 〈o′, σ′〉 lies to the left of the true path, we have that the

edge is inaccessible at stages s > s0. Hence the second constraint contributes a constant

value to the restraint r(γ _ 〈o′, σ′〉, s) at all stages s > s0.

Thirdly and fourthly, r(γ _ 〈o′, σ′〉, t) is greater than φi,2[t′](φi,1[t′](w′)) and

φi,3[t′](φi,1[t′](w′)) for every R strategy βi ⊂ γ labeled Ri active for γ and w′ is some

375

witness attached to the edge and t′ is the stage at which the witness was attached to the

edge. Suppose that the edge α _ 〈o′, σ′〉 has no witness attached to it at some stage

t′′ > s0. Then it is either the case that no witness w′ will ever be attached, or that one will

be attached at some stage u′ with u′ > t′′.

In the latter case the edge γ _ 〈o′, σ′〉 is inaccessible at stages s > s0. Therefore we have

that w′ is never detached from the edge. Similarly, the edge γ _ 〈o′, σ′〉 is never initialised

after stage s0. Since there are only finitely many such edges which are accessible at some

stage s ≤ s0, it follows that the third and fourth constraints contribute a constant value to

the restraint r(γ _ 〈o′, σ′〉, s) at all stages s > u′.

Therefore given an edge γ _ 〈o′, σ′〉 lying to the left of γ _ 〈o, σ〉, we have that there is

a stage v = max{u, u′} such that for all s > v we have that r(γ _ 〈o′, σ′〉, s) = r(γ _

〈o′, σ′〉, v).

Since this argument holds for every edge γ _ 〈o′, σ′〉 lying to the left of γ _ 〈o, σ〉,

and only finitely many such edges are accessible at stages s ≤ s0, it follows that there

is some stage s1 such that for all s > s1 we have that: sup{r(γ _ 〈o′, σ′〉, s) | γ _

〈o′, σ′〉 <L γ _ 〈o, σ〉 ∧ γ _ 〈o′, σ′〉 has been previously accessible} = sup{r(γ _

〈o′, σ′〉, s1) | γ _ 〈o′, σ′〉 <L γ _ 〈o, σ〉 ∧ γ _ 〈o′, σ′〉 has been previously accessible}

as required.

(2) Consider the restraint imposed under condition (2).

We claim that there is some stage s1 > s0 such that for every stage s > s1 we have that

a(γ _ 〈o, σ〉, s) = 0. To show this we proceed as follows. We perform a case analysis

depending on whether the strategy γ is anR strategy or an S strategy.

(2.1) Suppose γ is anR strategy.

Consider the restraint a(γ _ 〈o, σ〉, t) for any t > s0. Then we have that a(γ _

〈o, σ〉, t) > 0 if some γ-expansionary* stage has been attached to some edge γ _ 〈i, σ′〉

lying to the left of γ _ 〈o, σ〉 at stage t.

Suppose that the edge γ _ 〈i, σ′〉 has no γ-expansionary* stage attached to it at some stage

t′ > s0. Then it is either the case that no γ-expansionary* stage will ever be attached, or

376

that one will be attached at some stage u ≥ t′.

In the latter case we have that the edge γ _ 〈i, σ′〉 is inaccessible at stages s > s0. It is

also the case that the edge γ _ 〈i, σ′〉 is never initialised after stage s0. Hence we have that

the γ-expansionary* stage which is attached to the edge at stage u is never detached by the

strategy.

Since this argument holds for every edge γ _ 〈i, σ′〉 lying to the left of γ _ 〈o, σ〉, and

only finitely many such edges are accessible at stages s ≤ s0, and the strategy γ attaches a

γ-expansionary* stage only to those edges which have been previously accessible, it follows

that there is some stage s1 such that for all s > s1 we have that a(γ _ 〈o, σ〉, s) = 0, as

required.

(2.2) Suppose γ is an S strategy.

Consider the restraint a(γ _ 〈o, σ〉, t) for any t > s0.

If there is no R strategy β ⊂ γ which is active for γ and is following a Γ-strategy, we have

that a(γ _ 〈o, σ〉, t) > 0 if some witness w has been attached to some edge γ _ 〈d, σ′〉

lying to the left of γ _ 〈o, σ〉 at stage t.

Consider every edge γ _ 〈d, σ′〉 <L γ _ 〈o, σ〉 which has been accessible at some stage

s ≤ s0. If the edge γ _ 〈d, σ′〉 has no witness attached to it at some stage t′ > s0, then it is

either the case that no witness w′ will ever be attached, or that one will be attached at some

stage u ≥ t′. In the latter case we have that the edge γ _ 〈d, σ′〉 is inaccessible at stages

s > s0. It is also the case that the edge γ _ 〈d, σ′〉 is never initialised after stage s0. Hence

we have that any witness which is attached to the edge at stage u is never detached by the

strategy.

Since this argument holds for every edge γ _ 〈d, σ′〉 lying to the left of γ _ 〈o, σ〉, and

only finitely many such edges are accessible at stages s ≤ s0, and the strategy γ attaches

a witness only to those edges which have been previously accessible, it follows that there

is some stage s1 such that for all s > s1 we have that a(γ _ 〈o, σ〉, s) = 0 for all stages

s > s1, as required.

On the other hand, if there is someR strategy β ⊂ γ which is active for γ and is following a

377

Γ-strategy, we have that a(γ _ 〈o, σ〉, t) > 0 if some witness w has been attached to some

edge γ _ 〈gi, σ′〉 lying to the left of γ _ 〈o, σ〉 at stage t.

Consider every edge γ _ 〈gi, σ′〉 <L γ _ 〈o, σ〉 which has been accessible at some stage

s ≤ s0. If the edge γ _ 〈gi, σ′〉 has no witness attached to it at some stage t′ > s0, then

it is either the case that no witness w′ will ever be attached, or that one will be attached at

some stage u ≥ t′. In the latter case we have that the edge γ _ 〈gi, σ′〉 is inaccessible at

stages s > s0. It is also the case that the edge γ _ 〈gi, σ′〉 is never initialised after stage s0.

Hence we have that any witness which is attached to the edge at stage u is never detached

by the strategy.

Since this argument holds for every edge γ _ 〈gi, σ′〉 lying to the left of γ _ 〈o, σ〉, and

only finitely many such edges are accessible at stages s ≤ s0, and the strategy γ attaches

a witness only to those edges which have been previously accessible, it follows that there

is some stage s1 such that for all s > s1 we have that a(γ _ 〈o, σ〉, s) = 0 for all stages

s > s1, as required.

(3) Consider the restraint imposed under condition (3).

We claim that there is some stage s1 > s0 such that for every stage s > s1 we have that

d(γi _ 〈oi, σi〉, s) = d(γi _ 〈oi, σi〉, s1), for every γi ⊂ γ, where γi _ 〈oi, σi〉 lies on

the path leading to γ.

Consider d(γ′ _ 〈o′, σ′〉, t) for some γ′ ⊂ γ with edge γ′ _ 〈o′, σ′〉 lying on the true path

for any t ≥ s0. Then we have that d(γ′ _ 〈o′, σ′〉, t) is the least number which is greater

than the following two constraints.

Firstly, d(γ′ _ 〈o′, σ′〉, t) is greater than sup{r(γ′ _ 〈o′′, σ′′〉, t) | γ′ _ 〈o′′, σ′′〉 <L γ′ _

〈o′, σ′〉 ∧ γ′ _ 〈o′′, σ′′〉 has been previously accessible}. But γ′ and γ′ _ 〈o′, σ′〉 are on

the true path. Therefore by the proof for condition (1) of the lemma there must be some

stage u > s0 such that for all s > u we have that: sup{r(γ′ _ 〈o′′, σ′′〉, s) | γ′ _

〈o′′, σ′′〉 <L γ′ _ 〈o′, σ′〉 ∧ γ′ _ 〈o′′, σ′′〉 has been previously accessible} =

sup{r(γ′ _ 〈o′′, σ′′〉, u) | γ′ _ 〈o′′, σ′′〉 <L γ′ _ 〈o′, σ′〉 ∧ γ′ _

〈o′′, σ′′〉 has been previously accessible}.

378

Secondly, d(γ′ _ 〈o′, σ′〉, t) is greater than or equal to a(γ′ _ 〈o′, σ′〉, t). But γ′ and

γ′ _ 〈o′, σ′〉 are on the true path. Therefore by the proof for condition (2) of the lemma

there must be some stage u′ > s0 such that for all s > u′ we have that a(γ′ _ 〈o′, σ′〉, s) =

a(γ′ _ 〈o′, σ′〉, u′) = 0.

Therefore we have that there is a stage v = max{u, u′} such that for all s > v we have that

r(γ′ _ 〈o′, σ′〉, s) = r(γ _ 〈o′, σ′〉, v).

Since this argument can be applied to the finitely many strategies γi ⊂ γ, there must be a

stage s1 such that for every s > s1 we have that d(γi _ 〈oi, σi〉, s) = d(γi _ 〈oi, σi〉, s1),

for every γi ⊂ γ, where γi _ 〈oi, σi〉 lies on the path leading to γ.

(4) Consider the restraint imposed under condition (4).

We claim that there is some stage s1 > s0 such that for every S strategy αi ⊂ γ and every

stage s > s1 we have that Rαi,s = Rαi,s1 .

Consider Rα′,t for some S strategy α′ ⊂ γ at any stage t > s0. Since the strategy α′ lies on

the true path, we have that no strategy γ′ <L α′ is accessible at stages s > s0 and that the

strategy α′ cannot be initialised at stages s > s0. Now if Rα′,t = 0 at some stage t > s0, it

is either the case that Rα′,t′ = 0 for all t′ ≥ t, or else that there is some stage u ≥ t such

that Rα′,u > 0. In the latter case we also have that Rα′,u′ = Rα′,u for all u′ > u, because

α′ cannot be initialised at stages s > s0.

Since there are only finitely many S strategies αi ⊂ γ, we have that there must be some

stage s1 > s0 such that Rαi,s = Rαi,s1 for every stage s ≥ s1 and every S strategy αi ⊂ γ,

as required.

Since for each of the restraints imposed by conditions (1), (2) (3) and (4) we have found some stage

s1 such that the corresponding restraints become constant after stage s1, we have that lims r̂(γ _

〈o, σ〉, s) exists and is finite, as required.

3.8.9 Injury Lemma for S Strategies

The Injury Lemma for S Strategies shows that if an S strategy α lying on the true path enumerates

a witness w into A at some stage t after it can no longer be initialised, and finds that it has

379

diagonalised successfully when it becomes accessible again at some stage t′ > t, we have that no

element smaller than or equal to θt(w) can enter into D after stage t. Hence the diagonalisation of

the S strategy is preserved.

Lemma 3.8.10. (Injury Lemma for S Strategies) Let α be an S strategy on the true path f . Let s0

be the least stage such that for all s ≥ s0, no strategy γ <L α is accessible at s. Suppose that the

following is the case:

(i) There is some stage t ≥ s0 such that α enumerates a witness w into A.

(ii) t′ > t is the least stage such that α is accessible at t′.

(iii) Rα,t′ > 0.

Then no strategy γ enumerates some x ≤ Rα,t′ into D at some stage s ≥ t.

Proof. Let t be the stage defined in condition (i), that is the least stage such that t ≥ s0 and α

enumerates a witness w into A. By condition (ii), the strategy α will then diagonalise successfully

during the next stage t′ at which it is accessible again, and by condition (iii) we have that it sets

the restraint Rα,t′ on D to θt(w).

Now, if any strategy enumerates some element x ≤ θt(w) intoD at some stage s ≥ t, it will injure

and cancel this diagonalisation. Hence, we need to show that no S or R strategy on the priority

tree enumerates such an x into D at some stage s ≥ t.

We start by considering S strategies α′ located to the left, below, above and to the right of α.

(1) Suppose that α′ <L α.

Then α′ is no longer accessible after stage s0. Since we have that t ≥ s0, it follows that α′

cannot enumerate elements into the set D at some stage s ≥ t.

(2) Suppose that α ⊂ α′.

Since t is an α-open stage we have that t cannot be an α′-close stage. Hence α′ cannot

enumerate any element into D at stage t. On the other hand when α becomes accessible

again at some least stage t′ > t, we have that α sets the restraint Rα,t′ to θt(w).

380

Suppose that the strategy α′ becomes accessible again at some least stage u ≥ t. Then we

have that α′ detaches all its witnesses and cancels every work interval at stage u. In order

for α′ to attach a witness w′ to one of its edges at some stage u′ ≥ u it must be the case that

w′ > Rα,t′ . Similarly in order for α′ to choose a threshold v so as to define a work interval

for one of its edges at at some stage u′ ≥ u it must be the case that v > Rα,t′ .

Now in order for the strategy α′ to enumerate an element into D at some stage u′ ≥ u, one

of two things must be the case.

The first is for α′ to visit some edge of the form α′ _ 〈hi, σ〉 which already has some

witness w attached. This causes α′ to enumerate γi,u′(w) into D. But in this case we have

that γi,u′(w) > w > Rα,t′ as required.

The second is for the strategy to visit some edge of the form α′ _ 〈gi, σ〉 whose work

interval has already been defined. In this case the strategy will enumerate γi,u′(v) into D,

where v is the threshold and lower bound of the work interval. Once again we must then

have that γi,u′(v) > v > Rα,t′ , as required.

It follows that α′ cannot enumerate an element x ≤ θt(w) at some stage s ≥ t.

(3) Suppose that α′ ⊂ α.

Consider the outcome of the edge α′ _ 〈o, σ〉 lying on the true path.

(3.1) Suppose that the outcome is w.

If the strategy α′ visits the edge α′ _ 〈w, σ〉, it will not enumerate any element in the set

D at some stage s ≥ t.

On the other hand suppose the strategy α′ visits some edge α′ _ 〈o′, σ′〉 lying to the

right of the edge α′ _ 〈w, σ〉. We claim that the strategy cannot enumerate some element

x ≤ θt(w) when visiting such an edge at some stage s ≥ t.

To see why this is the case, consider the stage t at which the strategy α enumerates its

witness w into the set A. Since α is accessible at stage t, we have that α′ is also accessible

at stage t. Hence we have that edges to the right of α′ _ 〈w, σ〉 are initialised at stage

t. This means that any witness attached to the edge α′ _ 〈o′, σ′〉, and any work interval

defined for the edge α′ _ 〈o′, σ′〉 is canceled at stage t.

381

Therefore, if α′ attaches a witness w′ to the edge α′ _ 〈o′, σ′〉 at some stage u > t, we

have that w′ > t. Similarly if α′ chooses a threshold v to define a work interval for the edge

α′ _ 〈o′, σ′〉 at some stage u > t, we have that v > t.

In addition it is important to note that in order for α to have enumerated w into A at stage t,

it must be the case that θt(w) < t.

Now in order for the strategy α′ to enumerate an element into D at some stage u > t, one

of two things must be the case.

The first is for the strategy to visit some edge of the form α′ _ 〈hi, σ′〉 which has some

witness w′ attached, in which case it enumerates γi,u(w′) into D. In this case we have that

γi,u(w′) > w′ > θt(w) as required.

The second is for the strategy to visit some edge of the form α′ _ 〈gi, σ′〉 whose work

interval has already been defined. In this case the strategy will enumerate γi,u(v) into D,

where v is the threshold and lower bound of the work interval. Once again we must then

have that γi,u(v) > v > θt(w), as required.

It follows that α′ cannot enumerate an element x ≤ θt(w) at some stage s ≥ t.

(3.2) Suppose that the outcome is hi for some i.

Consider the witness w enumerated by α into A at stage t. Then the strategy α must have

attached w to one of its edges at some stage u ≤ t. Now α works inside the work interval

imposed by the edge α′ _ 〈hi, σ〉. This means that when α attached the witness w to its

edge at stage u, the work interval for α′ _ 〈hi, σ〉 must have been defined. Let this work

interval be (w′, γi,u(w′)) for some witness w′. Then we have that α must have chosen w

such that w′ < θ(w) < γi,u(w′).

Now suppose that α′ visits the edge α′ _ 〈hi, σ〉 at some stage s ≥ t, enumerating γi,s(w′)

into D. Since the uses chosen when defining ΓU,Di (w′) are non-decreasing, we must have

that w′ < θt(w) < γi,s(w
′). Hence it follows that α′ does not enumerate any x ≤ θt(w)

into D when visiting the edge α′ _ 〈hi, σ〉. at some stage s ≥ t.

The argument for showing that α′ does not enumerate any element x ≤ θt(w) into D when

visiting an edge α′ _ 〈o′, σ′〉 lying to the right of α′ _ 〈hi, σ〉 at some stage s ≥ t is

382

similar to the one found in case 3.1.

(3.3) Suppose that the outcome is gi for some i.

Consider the witness w enumerated by α into A at stage t. Then the strategy α must have

attached w to one of its edges at some stage u ≤ t. Now α works inside the work interval

imposed by the edge α′ _ 〈gi, σ〉. This means that when α attached the witness w to its

edge at stage u, the work interval for α′ _ 〈hi, σ〉 must have been defined. Let this work

interval be (v, γi,u(v)) for some threshold v. Then we have that α must have chosen w such

that v < θ(w) < γi,u(v).

Now suppose that α′ visits the edge α′ _ 〈gi, σ〉 at some stage s ≥ t, enumerating γi,s(v)

into D. Since the uses chosen when defining ΓU,Di (v) are non-decreasing, we must have

that v < θt(w) < γi,s(v). Hence it follows that α′ does not enumerate any x ≤ θt(w) into

D when visiting the edge α′ _ 〈gi, σ〉 at some stage s ≥ t.

The argument for showing that α′ does not enumerate any element x ≤ θt(w) into D when

visiting an edge α′ _ 〈o′, σ′〉 lying to the right of α′ _ 〈gi, σ〉 at some stage s ≥ t is

similar to the one found in case 3.1.

(3.4) Suppose that the outcome is d.

If the strategy α′ visits the edge α′ _ 〈d, σ〉, it will not enumerate any element in the set D

at any stage s ≥ t.

The argument for showing that α′ does not enumerate any element x ≤ θt(w) into D when

visiting an edge α′ _ 〈o′, σ′〉 lying to the right of α′ _ 〈d, σ〉 at some stage s ≥ t is similar

to the one found in case 3.1.

(4) Suppose that α <L α′.

When α enumerates its witness w into A at stage t, it initialises the strategy α′ which lies to

its right. Hence when α′ becomes accessible again after stage t, we have that any witness

attached to one of its edges, as well as any threshold chosen to define the work interval of

any one of its edges, must now be greater than t. Then the argument for showing that α′

does not enumerate any element smaller than θt(w) into D when visiting one of its edges at

some stage s ≥ t is similar to the one found in case (a).

383

We now considerR strategies β located to the left, below, above and to the right of α.

(1) Suppose that β <L α.

Then β is no longer accessible after stage s0. Since we have that t ≥ s0, it follows that β

cannot enumerate elements into the set D at some stage s ≥ t.

(2) Suppose that α ⊂ β.

Since t is an α-open stage we have that t cannot be a β-close stage. Hence β cannot

enumerate any element into D at stage t. On the other hand when α becomes accessible

again at some least stage t′ > t, we have that α sets the restraint Rα,t′ to θt(w).

Therefore when the strategy β becomes accessible again at some least stage u ≥ t we

have that β cancels every functional built by the strategy whilst visiting one of its edges.

In addition in order for β to define one of its functionals at some stage u′ ≥ u, it must

choose uses which are greater than the restraint Rα,t′ . Hence it follows that if the strategy β

becomes accessible at some stage s ≥ t and enumerates some use into D, this element must

be greater than θt(w), as required.

(3) Suppose that β ⊂ α.

Let α lie below the edge β _ 〈i, σ〉 of the strategy β, and let ΓU,Dβ_〈i,σ〉 (or ΓV,Dβ_〈i,σ〉 resp.)

be the functional corresponding to this edge.

Then we need to consider the following two cases. The first concerns the enumeration of

elements intoA occuring at stage t itself, which may cause a disagreement between ΓU,Dβ_〈i,σ〉

andA (or ΓV,Dβ_〈i,σ〉 resp.). The second concerns the enumeration of elements intoA occuring

after stage t, which may also cause a disagreement between ΓU,Dβ_〈i,σ〉 and A (or ΓV,Dβ_〈i,σ〉

resp.).

(3.1) When the strategy α enumerates the witness w into the set A at stage t, it is possible that S

strategies α′ with α ⊂ α′ also enumerate some witness w′ < w into A during stage t. Let

w∗ be the least witness enumerated into A at stage t. Then the enumeration of this witness

could create a least disagreement disagreement between A(w∗) and ΓU,Dβ_〈i,σ〉(w
∗). Hence it

is possible for β to enumerate γβ_〈i,σ〉(w∗) ≤ θt(w) into D at some stage s > t in order to

remove this disagreement.

384

Before showing that β cannot enumerate such an element into D at some stage s > t we

make two preliminary remarks.

The first is that edges β _ 〈i, σ′〉 located to the right of β _ 〈i, σ〉 are initialised at stage

t. Hence every functional associated to such an edge is canceled at stage t. This also means

that if β defines such a functional after stage t, it must choose uses which are greater than t.

But since θt(w) < t, it follows that β can never enumerate a use into D which is smaller or

equal to θt(w) when visiting such an edge at some stage s > t. One should also note that

β does not enumerate any use into D when visiting edges of the form β _ 〈f, σ′〉, because

no functional is associated to such an edge.

We shall now return to the original problem and show that it is not possible for β to

enumerate γβ_〈i,σ〉(w∗) ≤ θt(w) into D at some stage s > t in order to remove the

disagreement between A(w∗) and ΓU,Dβ_〈i,σ〉(w
∗) created at stage t.

We split the analysis into two cases, the first where β is active for α and the second where

β is inactive for α.

(3.1.1) Suppose that β labeledRi is active strategy for α.

In order for α to be accessible at stage t, the strategy β must have visited the edge β _ 〈i, σ〉

and gone to the next substage. But this is only possible if a β-expansionary* stage was

attached to the edge at stage t. In addition such a β-expansionary* stage must have become

detached from the edge when the strategy β moved to its next substage.

Once α becomes accessible at stage t, it enumerates its witness w into A. Other S strategies

α′ with α ⊂ α′ could also enumerate some witness w′ < w into A during stage t. Let w∗ be

the least witness enumerated intoA at stage t. Suppose that this creates a least disagreement

between A(w∗) and ΓU,Dβ_〈i,σ〉(w
∗).

Now, in order for α to become accessible again at some least stage t′ > t, it follows that the

strategy β must have visited the edge β _ 〈i, σ〉 and gone to the next substage. But this is

only possible if a β-expansionary* stage p such that t < p ≤ t′ is attached to the edge at

stage t′.

Similarly suppose that β enumerates some use γβ_〈i,σ〉,s(w∗) into D at a stage t′′ > t to

385

remove the disagreement between A(w∗) and ΓU,Dβ_〈i,σ〉(w
∗). This can only take place if

the strategy β has visited the edge β _ 〈i, σ〉 and a β-expansionary* stage q such that

t < q ≤ t′′ is attached to the edge at stage t′′.

But in both of these cases, the existence of a β-expansionary* stage p or q implies the

existence of some least Ri-expansionary* stage r such that t < r ≤ p and t < r ≤ q.

The existence of such an Ri-expansionary* stage r means that a Ui � φi,1[t](w∗) or a

Vi � φi,1[t](w∗) change has taken place at some stage u such that t < u ≤ r.

Now, when the strategy α becomes accessible again at stage t′ it sets the restraint Rα,t to

θt(w).

If β is following a Γ-strategy, we have that a Ui � φi,1[t](w∗) change must have taken place

at stage u, or otherwise α would not have set the restraint at stage t′. Hence ΓU,Dβ_〈i,σ〉(w
∗)

must have become undefined at stage u.

On the other hand, if β is following a Γ̂-strategy, we have that a Vi � φi,1[t](w∗) change

must have taken place at stage u. Otherwise some S strategy α′ ⊂ α would have set its

restraint Rα′,q > 0 at some stage q < t′. This would have caused α to become initialised at

stage t′ meaning that α would not set its restraint Rα,t′ > 0 at stage t′. Hence ΓV,Dβ_〈i,σ〉(w
∗)

must have become undefined at stage u once again.

But we have already determined that β can only enumerate γβ_〈i,σ〉,s(w∗) into D if the

disagreement between A(w∗) and ΓU,Dβ_〈i,σ〉(w
∗) is present at some stage r ≥ u. Since in

both of the above cases ΓU,Dβ_〈i,σ〉(w
∗) becomes undefined at stage u, we have that β does

not enumerate γβ_〈i,σ〉,s(w∗) element into the set D at some stage s > t.

Note that since the Ui � φi,1[t](w∗) or Vi � φi,1[t](w∗) change which takes place at stage

u undefines ΓU,Dβ_〈i,σ〉(x) (or ΓV,Dβ_〈i,σ〉(x) resp.) for every x ≥ w∗, it also follows that if

w′ > w∗ is some witness which was enumerated into A at stage t, we have that β does not

enumerate γβ_〈i,σ〉,s(w′) into the set D at some stage s > t.

(3.1.2) Suppose that β labeledRi is not an active strategy for α.

For the strategy β to be inactive for α, there must exist some R strategy β′ labeled Rj and

some S strategy α′ such that we have β′ ⊆ β ⊂ α′ ⊂ α, and that α′ has an edge of the form

386

α′ _ 〈gj , σ〉 or α′ _ 〈hj , σ′〉 lying on the true path, for some j ≤ i.

Before proceeding we shall need to show that β is R-Synchronised with β′. We start from

the observation that for α′ to have an edge of the form α′ _ 〈gj , σ〉 or α′ _ 〈hj , σ〉

lying on the true path, β′ has to be active for α′. Now, assume for contradiction that β was

not R-Synchronised with β′. Then β′ is not active for β. This means that there must be

some intervening strategy α′′ between β′ and β with an edge of the form α′′ _ 〈gk, σ〉 or

α′′ _ 〈hk, σ〉 lying on the true path, with k ≤ j. This would make β′ inactive for α′, giving

a contradiction.

Once α becomes accessible at stage t, it enumerates its witness w into A. Other strategies

α′′′ ⊃ α′ could also enumerate some witness w′ < w into A during stage t. Let w∗ be

the least witness enumerated into A at stage t, and let α∗ ⊇ α be the strategy which has

enumerated w∗ into A at stage t. Suppose that this creates a disagreement between A(w∗)

and ΓU,Dβ_〈i,σ〉(w
∗).

Suppose α′ has an edge of the form α′ _ 〈gj , σ〉 lying on the true path, for some j ≤ i.

In order for α to enumerate w into A at stage t, the strategy must have first attached w to

one of its edges at some stage u ≤ t. Similarly in order for α∗ to enumerate w∗ into A

at stage t, the strategy must have first have attached w∗ to one of its edges at some stage

u′ ≤ t. These stages u and u′ must be greater than s0, or otherwise both α and α∗ would be

initialised after s0 and these witnesses would be canceled, meaning that they would not be

enumerated into A at stage t.

Now α can only attach its witness w to one of its edges at stage u if the work interval

associated to the edge α′ _ 〈gj , σ〉 is defined at stage u. Similarly, α∗ can only attach

its witness w∗ to one of its edges at stage u′ if the work interval associated to the edge

α′ _ 〈gj , σ〉 is defined at stage u′. Let umin = min{u, u′} and umax = max{u, u′}.

Then we have that the work interval for the edge α′ _ 〈gj , σ〉 is defined at stage umin,

and is not initialised after stage umin. Let the work interval defined at this stage be

(v, γβ′_〈i,σ〉,umin(v)) for some threshold v. Since for each element the use function of

the functional ΓU,Dβ′_〈i,σ〉 (or ΓV,Dβ′_〈i,σ〉 resp.) is monotonically increasing over the set of

stages, we must then have that v < w < θt(w) < γβ′_〈i,σ〉,umax(v) and that v < w∗ <

387

γβ′_〈i,σ〉,umax(v).

Now suppose that β visits the edge β _ 〈i, σ〉 at some stage s ≥ t, enumerating

γβ_〈i,σ〉,s(w
∗) into D. Since for a given stage the use function of a functional is strictly

increasing over the set of elements, we have that γβ_〈i,σ〉,s(v) < γβ_〈i,σ〉,s(w
∗). In addition

since β is R-Synchronised with β′, we have that γβ′_〈i,σ〉,s(v) < γβ_〈i,σ〉,s(v). Finally we

have that for each element the use function of a functional is monotonically increasing over

the set of stages, giving that γβ′_〈i,σ〉,umax(v) ≤ γβ′_〈i,σ〉,s(v). By transitivity, we thus

have that θt(w) < γβ_〈i,σ〉,s(w).

Now γβ_〈i,σ〉,s(x) > γβ_〈i,σ〉,s(w
∗) for all x > w∗, it follows that if w′ > w∗ is some

witness which was enumerated into A at stage t, we have that β does not enumerate

γβ_〈i,σ〉,s(w
′) into the set D at some stage s > t either.

Similarly suppose that α′ has an edge of the form α′ _ 〈hj , σ〉 lying on the true path, for

some j ≤ i.

In order for α to enumerate w into A at stage t, the strategy must have first attached w to

one of its edges at some stage u ≤ t. Similarly in order for α∗ to enumerate w∗ into A

at stage t, the strategy must have first have attached w∗ to one of its edges at some stage

u′ ≤ t. These stages u and u′ must be greater than s0, or otherwise both α and α∗ would be

initialised after s0 and these witnesses would be canceled, meaning that they would not be

enumerated into A at stage t.

Now α can only attach its witness w to one of its edges at stage u if the work interval

associated to the edge α′ _ 〈hj , σ〉 is defined at stage u. Similarly, α∗ can only attach

its witness w∗ to one of its edges at stage u′ if the work interval associated to the edge

α′ _ 〈hj , σ〉 is defined at stage u′. Let umin = min{u, u′} and umax = max{u, u′}.

Then we have that the work interval for the edge α′ _ 〈hj , σ〉 is defined at stage umin,

and is not initialised after stage umin. Let the work interval defined at this stage be

(w′, γβ′_〈i,σ〉,umin(w′)) for some witness w′. Since for each element the use function

of the functional ΓU,Dβ′_〈i,σ〉 (or ΓV,Dβ′_〈i,σ〉 resp.) is monotonically increasing over the set

of stages, we must then have that w′ < w < θt(w) < γβ′_〈i,σ〉,umax(w′) and that

w′ < w∗ < γβ′_〈i,σ〉,umax(w′).

388

Now suppose that β visits the edge β _ 〈i, σ〉 at some stage s ≥ t, enumerating

γβ_〈i,σ〉,s(w
∗) into D. Since for a given stage the use function of a functional is strictly

increasing over the set of elements, we have that γβ_〈i,σ〉,s(w′) < γβ_〈i,σ〉,s(w
∗). In

addition since β is R-Synchronised with β′, we have that γβ′_〈i,σ〉,s(w
′) < γβ_〈i,σ〉,s(w

′).

Finally we have that for each element the use function of a functional is monotonically

increasing over the set of stages, giving that γβ′_〈i,σ〉,umax(w′) ≤ γβ′_〈i,σ〉,s(w
′). By

transitivity, we thus have that θt(w) < γβ_〈i,σ〉,s(w).

Now γβ_〈i,σ〉,s(x) > γβ_〈i,σ〉,s(w
∗) for all x > w∗, it follows that if w′′ > w∗ is

some witness which was enumerated into A at stage t, we have that β does not enumerate

γβ_〈i,σ〉,s(w
′′) into the set D at some stage s > t either.

(3.2) When some strategy α′ enumerates some witnessw′ intoA at some stage u > t it may create

a disagreement between ΓU,Dβ_〈i,σ〉(w
′) andA(w′). Hence β could enumerate γβ_〈i,σ〉[s](w′)

into D at some stage s > u in order to remove this disagreement. We shall show that if α′

enumerates a witness w′ into A at some stage u > t, it must be the case that w′ > θt(w).

Hence for every stage s > u, we have that γβ_〈i,σ〉[s](w′) > w′ > θt(w) as required. We

consider S strategies α′ located to the left, below, above and to the right of α.

(3.2.1) Suppose that α′ <L α.

Then α′ is no longer accessible after stage s0. Since we have that t′ > t > s0, we cannot

enumerate elements into the set D at some stage s > t′.

(3.2.2) Suppose that α ⊂ α′.

Then α′ is only accessible if α is also accessible at the same stage. Now α enumerates the

witness w into A at stage t. When α becomes accessible again at some least stage t′ > t

it sets Rα,t′ to θt(w). This initialises the strategy α′. Thus when the strategy α′ becomes

accessible again at some least stage s ≥ t′, we have that α′ detaches every witness attached

to its edges. Furthermore at all stages s′′ > t we have that α′ will only attach a witnesses w′

to one of its edges if w′ > Rα,t′ . Hence we have that every such w′ > θt(w) as required.

(3.2.3) Suppose that α′ ⊂ α.

There are two cases to consider.

389

In the first case, there is no activeR strategy β ⊂ α′ which is following a Γ-strategy. In this

case, the strategy α′ does not have any edges of the form α′ _ 〈gi, σ〉. Hence, the only way

for the strategy α′ to enumerate witnesses into the set A is for the witness to be attached to

an edge of the form α′ _ 〈d, σ〉.

Now, in order for α to be accessible at stage t, α′ also has to be accessible at stage t. In

addition, α′ must have visited the edge α _ 〈d, σ〉 at stage t and gone to the next substage.

But α can never go to the next substage when visiting the outcome α _ 〈d, σ〉. But this

means that α cannot be accessible at stage t, which gives a contradiction.

Hence the edge α _ 〈d, σ〉 cannot lie on the true path. Therefore it follows that α′ has some

edge of the form α′ _ 〈w, σ〉 or α′ _ 〈hi, σ〉 for some i on the true path. But this means

that α′ cannot enumerate any witness into A when visiting such an edge.

Let α′ have edge α′ _ 〈o, σ〉 on the true path. We now consider the situation concerning

edges α′ _ 〈o, σ〉 lying to the right of α′ _ 〈o, σ〉. If α enumerates w into A at stage t, α′

must also have been accessible at stage t. Therefore edges of the form α′ _ 〈o′, σ′〉must be

initialised at stage t. Hence we have that every witness w′ which is attached to some edge

lying to the right of α′ _ 〈o, σ〉 must be greater than stage t. Since θt(w) < t, we have that

w′ > θt(w), as required.

In the second case, there is some active R strategy β ⊂ α′ which is following a Γ-strategy.

In this case the only way for the strategy α′ to enumerate witnesses into the set A is for the

witness to be attached to an edge of the form α′ _ 〈gi, σ〉 for some i.

Suppose that α′ has such an edge on the true path. In order for α to have enumerated

witness w into A at stage t, α′ must have first defined a work interval for its edge at some

stage u < t. Let this work interval be (v, γβ,u(v)) for some threshold v. Then α must have

chosen the witness w such that θt(w) lies inside the work interval. Therefore we have that

v < θt(w) < γβ,u(v). But for α′ to attach a witness w′ to the edge α′ _ 〈gi, σ〉, it must be

greater than γβ,u(v). Hence we have that w′ > θt(w), as required.

On the other hand, suppose that α′ does not have such an edge on the true path. Then α′

cannot enumerate a witness w′ into A when visiting this edge. On the other hand α′ might

enumerate some witness w′ whilst visiting some edge which lies to the right of the true path.

390

Now when α enumerates w into A at stage t, α′ must also have been accessible. This means

that whenever α′ attaches some witness w′ to an edge lying to the right of the true path after

stage t, it must be the case that w′ > t. Since θt(w) < t, we have that w′ > θt(w), as

required.

(3.2.4) Suppose that α <L α′.

When α enumerates its witness w into A at stage t, every strategy to the right of α is

initialised. This means that all witnesses are detached from the edges of α′ at stage t. In

addition when α′ becomes accessible again, it will choose witnesses w′ which are greater

than stage t. Since θt(w) < t we have that w′ > θt(w) as required.

(4) Suppose that α <L β.

When α enumerates its witness w into A at stage t, every strategy to the right of α is

initialised. Hence every functional built by the β when visiting its edges is canceled at stage

t. In addition when β chooses some use in order to define a functional associated to one of

its edges, we have that these uses must be greater than stage t. Since θt(w) < t we have that

β cannot enumerate an element x ≤ θt(w) into D at some stage s > t. In addition since

and β is not accessible at stage t, we have that β cannot enumerate an element x ≤ θt(w)

into D at some stage s ≥ t as required.

3.8.10 Injury Lemma forR Strategies

We now show that if anR strategy represents anR requirement on the true path by being active on

the true path, we have that the functional built by the strategy will be equal to the set A. To prove

this fact, we first show that if the strategy redefines the functional whenever it becomes undefined,

there will be some stage after which the functional will never become undefined again.

Lemma 3.8.11. (Injury Lemma for R Strategies) Let β be an R strategy on the true path f .

Suppose that β represents requirement Ri on f by being active on f . Then we have that the

following holds for every x.

(a) If there are infinitely many stages s such that ΓU,Dβ_〈i,σ〉[s](x) ↓, there is some stage u such

that for all u′ ≥ u, ΓU,Dβ_〈i,σ〉[u
′](x) ↓ (ΓV,Dresp.)

391

(b) A(x) = ΓU,Dβ_〈i,σ〉(x) (ΓV,Dβ_〈i,σ〉(x) resp.)

Proof. Lemma 3.8.11, Part (a). By the Leftmost Path Lemma (Lemma 3.8.4), we have that there

exists some stage s0 such that strategies and edges to the left of β are inaccessible after stage s0.

Suppose that there are infinitely many stages s such that ΓU,Dβ [s](x) ↓. Our approach will be to

classify every strategy on the priority tree into one of the following four cases depending on its

behaviour after stage s0.

(i) The strategy cannot enumerate any element z into D after stage s0.

(ii) The strategy can only enumerate elements z > γβ_〈i,σ〉[s](x) into D at stages s > s0.

(iii) The strategy can enumerate elements z ≤ γβ_〈i,σ〉[s](x) into D at stages s > s0, but

imposes no constraint γβ_〈i,σ〉[t](x) > γβ_〈i,σ〉[s](x) for stages t > s.

This means that the strategy β can redefine its functional by choosing the same use

γβ_〈i,σ〉[s](x). Since there are only finitely many elements less than γβ_〈i,σ〉[s](x), there

is some stage u such that for all u′ > u we have that the strategy cannot enumerate some

z′ ≤ γβ_〈i,σ〉[s](x) into D at u′. It follows that the strategy can only enumerate elements

z ≤ γβ_〈i,σ〉[s](x) into D at some stage s > s0 finitely often.

(iv) The strategy can enumerate elements z ≤ γβ_〈i,σ〉[s](x) into D at stages s > s0, and can

impose a constraint γβ_〈i,σ〉[t](x) > γβ_〈i,σ〉[s](x) for stages t > s.

In this case we shall prove that the following two facts hold.

Firstly that the strategy in question only enumerates such a z at some stage s if a work

interval based on a witness w ≤ x or threshold v ≤ x is defined for one of its edges at stage

s. Secondly that if such a work interval is defined at stage s, it must become undefined at

some stage s′ > s.

Since there are only finitely many witnesses and thresholds less than x, there must be a

stage u after which no such constraint can be imposed by the strategy. Thus after stage u,

we can use the analysis in case (iii) to show that the strategy can only enumerate elements

z ≤ γβ_〈i,σ〉[u](x) into D at some stage s > s0 finitely often.

Now each strategy classified into cases (iii) and (iv) can only undefine ΓU,Dβ_〈i,σ〉(x) finitely often.

392

To ensure that ΓU,Dβ_〈i,σ〉(x) is undefined finitely often one also has to show that only finitely many

strategies will be classified into cases (iii) and (iv).

For a strategy to be classified into cases (iii) and (iv), it must be able to enumerate elements

z > γβ_〈i,σ〉[s](x) into D at stages s > s0.

We first consider why only finitely many strategies can be classified into case (iv). In the analysis

for case (iv) we have stated that a strategy can only enumerate an elements z > γβ_〈i,σ〉[s](x)

into D at stage s if a work interval based on a witness w ≤ x or a threshold v ≤ x is defined for

one of the edges of the strategy. Since there are only finitely many such witnesses and thresholds,

we have that only finitely many strategies are able to enumerate elements z > γβ_〈i,σ〉[s](x) into

D at stages s > s0. Hence only finitely many strategies can be classified into case (iv).

We now consider why only finitely many strategies can be classified into case (iii). Since there

are only finitely many case (iv) strategies, and since each strategy can only impose finitely

many constraints, we have that there is some stage v such that the use of ΓU,Dβ_〈i,σ〉(x) is no

longer constrained to increase. Since there are only finitely many elements below γβ_〈i,σ〉[u](x)

it follows that there are only finitely many strategies which can enumerate elements z ≤

γβ_〈i,σ〉[s](x) into D at stages s > s0. Hence only finitely many strategies can be classified

into case (iii).

We now show that every strategy on the priority tree can be classified into cases (i)-(iv) above.

Consider the strategy β itself.

(1) The strategy β can enumerate γβ_〈i,σ〉[s](w) into D at stage s in order to repair a

disagreement between As(w) and ΓU,Dβ_〈i,σ〉[s](w).

If w > x we have that γβ_〈i,σ〉[s](w) > γβ_〈i,σ〉[s](x). Therefore β cannot undefine

ΓU,Dβ_〈i,σ〉(x) by enumerating γβ_〈i,σ〉[s](w) into D at stage s.

If w ≤ x we have that γβ_〈i,σ〉[s](x) ≤ γβ_〈i,σ〉[s](w). Therefore if β enumerates

γβ_〈i,σ〉[s](w) into D, it also undefines ΓU,Dβ_〈i,σ〉(x).

Now when β redefines ΓU,Dβ_〈i,σ〉(x) at stage t, we have that γβ_〈i,σ〉[t](w) > γβ_〈i,σ〉[s](w)

because γβ_〈i,σ〉[s](w) is now an element of D. But this means that it is possible for

393

γβ_〈i,σ〉[t](x) > γβ_〈i,σ〉[s](x) to be the case as well.

Since there are only finitely many elements w ≤ x, it follows that such a disagreement

can only occur and be removed finitely often. Thus it follows that β can only undefine

ΓU,Dβ_〈i,σ〉(x) finitely many times.

Thus we can classify the strategy β into case (iii).

ConsiderR strategies β′ lying to the left, below, above or to the right of β.

(2) Suppose that β′ <L β.

Then β′ is no longer accessible after stage s0. Hence after stage s0 we have that β′ cannot

enumerate any element z into D, and thus cannot undefine ΓU,Dβ_〈i,σ〉(x).

Thus we can classify the strategy β′ into case (i).

(3) Suppose that β ⊂ β′.

Then β′ can enumerate some element z ≤ γβ_〈i,σ〉[s](x) into D at some stage s ≥ s0,

undefining ΓU,Dβ (x). However β′ does not constrain β to choose a use γβ_〈i,σ〉[t](x) >

γβ_〈i,σ〉[s](x) when redefining its functional at some stage t > s. Hence β will redefine

ΓU,Dβ (x) by choosing γβ_〈i,σ〉[t](x) to be equal to γβ_〈i,σ〉[s](x).

Thus we can classify the strategy β′ into case (iii).

(4) Suppose that β′ ⊂ β.

Let β′ _ 〈i, σ′〉 be the edge of β′ on the true path f , and let β′ _ 〈i, σ′′〉 be an edge lying

to its right.

We start by showing that β′ cannot enumerate some element z ≤ γβ_〈i,σ〉[s](x) when

visiting the edge β′ _ 〈i, σ′′〉 at some stage s > s0.

Suppose that β defines ΓU,Dβ_〈i,σ〉(x) at some stage t. Then we have that it must choose a use

γβ_〈i,σ〉(x) < t. In addition since β is accessible at stage t, the strategy β′ must also have

been accessible at stage t, and must have visited the edge β′ _ 〈i, σ′〉.

This means that the edge β′ _ 〈i, σ′′〉 must have been initialised at stage t and that the

functional attached to it must have been canceled at stage t. Hence if β defines the functional

ΓU,Dβ′_〈i,σ′′〉 at some stage t′ > t, it must choose some use which is greater than t. It follows

394

that β′ cannot enumerate some element z ≤ γβ_〈i,σ〉[s](x) when visiting the edge β′ _

〈i, σ′′〉 at stage s > s0.

We now show that β′ cannot enumerate some element z ≤ γβ_〈i,σ〉[s](x) when visiting the

edge β′ _ 〈i, σ′〉 at some stage s > s0. We start by observing that β′ can enumerate

some γβ′_〈i,σ′〉[s](w) into D in order to remove a disagreement between As(w) and

ΓU,Dβ′_〈i,σ′〉[s](w).

Now it is either the case that β′ is active for β, or else that β′ is inactive for β.

(4.1) Suppose that β′ is active for β.

Then we have that β is R-Synchronised with β′, and thus that γβ′_〈i,σ′〉(x) < γβ_〈i,σ〉(x)

for every x.

If w > x, the enumeration of γβ′_〈i,σ′〉[s](w) into D at some stage s may undefine

ΓU,Dβ_〈i,σ〉(x). However when the strategy β redefines its functional ΓU,Dβ_〈i,σ〉(x) at some

stage t > s, it can choose the use γβ_〈i,σ〉[t](x) to be equal to γβ_〈i,σ〉[s](x) because R-

Synchronisation only requires that γβ_〈i,σ〉(x) > γβ′_〈i,σ′〉(x), and ΓU,Dβ′_〈i,σ′〉(x) has not

been undefined at stage s.

If w ≤ x, the enumeration of γβ′_〈i,σ′〉[s](w) into D at some stage s may undefine

ΓU,Dβ′_〈i,σ′〉(x). Since β is R-Synchronised with β′ we have that γβ_〈i,σ〉[s](x) >

γβ′_〈i,σ′〉[s](x). This means that Γβ_〈i,σ〉(x) will become undefined as well at stage s.

Since γβ′_〈i,σ′〉[s](w) has been enumerated into D, we have that β′ redefines the functional

at stage t such that γβ′_〈i,σ′〉[t](w) > γβ′_〈i,σ′〉[s](w). But this means that β′ could

choose γβ′_〈i,σ′〉[t](x) > γβ′_〈i,σ′〉[s](x) as well. We also have that when the strategy

β defines ΓU,Dβ_〈i,σ′〉(x) at stage t′ > t it must choose γβ_〈i,σ〉[t′](x) > γβ′_〈i,σ′〉[t](x) by

R-Synchronisation.

Now there are only finitely many elements w ≤ x. This means that only finitely many

disagreements of the form A(w) 6= ΓU,Dβ′_〈i,σ′〉(x) can occur for w ≤ x. Thus there must

be some stage u such that for all u′ ≥ u β′ can only enumerate γβ′_〈i,σ〉[u
′](x) into D for

some x′ > w.

If β′ enumerates γβ′_〈i,σ〉[u
′](x′) into D at some stage u′ ≥ u, it is possible that

395

ΓU,Dβ_〈i,σ〉(x) may also become undefined at stage u′. But this means that β can redefine

the functional at stage u′′ > u′ by choosing γβ_〈i,σ〉[u′′](x) to be equal to γβ_〈i,σ〉[u](x)

whilst still observing R-Synchronisation. This follows from the fact that R-Synchronisation

requires only that γβ_〈i,σ〉[u′′](x) > γβ′_〈i,σ′〉[u
′′](x) and that ΓU,Dβ′_〈i,σ′〉(x) has not been

undefined at stage u.

Thus we have that β′ cannot cause the use of ΓU,Dβ_〈i,σ〉(x) to increase after stage u. Hence

there must be some stage v such that for all v′ ≥ v we have that β′ cannot enumerate some

z ≤ γβ_〈i,σ〉[u](x) into D at stage v′ either.

Thus we can classify the strategy β′ into case (iii).

(4.2) Suppose that β′ is inactive for β.

Then when β′ enumerates γβ′_〈i,σ〉[s](w) into D at some stage s, it may undefine

ΓU,Dβ_〈i,σ〉(x). But β′ does not constrain β to choose a use γβ_〈i,σ〉[t](x) > γβ_〈i,σ〉[s](x)

when redefining its functional at some stage t > s. This follows from the fact that β is not

R-Synchronised with β′.

Thus we can classify the strategy β′ into case (iii).

(5) Suppose that β <L β′.

If β defines ΓU,Dβ_〈i,σ〉(x) at some stage t we have that it must choose a use γβ_〈i,σ〉(x) < t.

In addition since β is accessible at stage t, the strategy β′ must have been initialised at stage

t. This means that every functional associated to one of the edges of β′ is canceled at stage

t. Hence if β defines a functional at some stage t′ > t, it must choose some use which is

greater than t. It follows that β′ cannot enumerate some element z ≤ γβ_〈i,σ〉[s](x) when

visiting one of its edges at some stage s > s0.

Thus we can classify the strategy β′ into case (ii).

We now consider the case where some S strategy α lying to the left, below, above or to the right

of β enumerates some element into D.

(6) Suppose that α <L β.

396

Then α is no longer accessible after stage s0. Hence after stage s0 we have that α cannot

enumerate any element z into D, and thus cannot undefine ΓU,Dβ_〈i,σ〉(x).

Thus we can classify the strategy α into case (i).

(7) Suppose that β ⊂ α, and that α is on the true path. The lemma assumes that the strategy β

has an edge of the form β _ 〈i, σ〉 on the true path, and that β represents the requirement

Ri on the true path by being active on the true path.

Therefore, we have that the strategy α cannot have outcomes of the form α _ 〈hj , σ〉 or

α _ 〈gj , σ〉 on the true path, for any j ≤ i. Hence the edge leaving α which lies on the true

path must be of the form α _ 〈w, σ〉, α _ 〈hj , σ〉 for j > i or α _ 〈gj , σ〉 for j > i. This

also means that the strategy β is active for α.

Now, the strategy α will have a sequence of active R strategies (β1, . . . , βn) above it, with

βm ∈ (β1, . . . , βn) being labeled Rm. The strategy βm corresponds to edges of the form

α _ 〈hm, σ〉 and (if βm follows a Γ-strategy) edges of the form α _ 〈gm, σ〉 of the

strategy α. Let the strategy β labeledRi correspond to the strategy βi in the aforementioned

sequence.

We shall now perform a case analysis based on the edge leaving α on the true path.

(7.1) Suppose that the edge on the true path is α _ 〈w, σ〉. Then the strategy α does not

enumerate any element into D when it visits the edge.

Thus we can classify the strategy β′ into case (i).

(7.2) Suppose that the edge on the true path is α _ 〈gj , σ〉 for j > i. If α visits this edge at

some stage s and a work interval (v, γβj_〈i,σj〉[s](v)) is defined for some threshold v, it

may enumerate γβj_〈i,σj〉[s](v) into D. This could make ΓU,Dβ_〈i,σ〉(x) undefined. However

since j > i we have that α does not impose any constraint on βi to increase its use for

ΓU,Dβ_〈i,σ〉(x). Hence we have that at stage t > s the strategy β redefines ΓU,Dβ_〈i,σ〉(x) by

choosing γβ_〈i,σ〉[t](x) to be equal to γβ_〈i,σ〉[s](x). Since the use of ΓU,Dβ_〈i,σ〉(x) does

not increase, it follows that there is some stage u such that for all u′ ≥ u, β′ can no longer

undefine ΓU,Dβ_〈i,σ〉(x) by enumerating γβj_〈i,σj〉[u
′](v) into D.

Thus we can classify the strategy β′ into case (iii).

397

(7.3) Suppose that the edge on the true path is α _ 〈hj , σ〉 for j > i. If α visits this edge at

some stage s and a work interval (w, γβj_〈i,σj〉[s](w)) is defined for some witness w, it

may enumerate γβj_〈i,σj〉[s](w) into D. This could make ΓU,Dβ_〈i,σ〉(x) undefined. However

since j > i we have that α does not impose any constraint on βi to increase its use for

ΓU,Dβ_〈i,σ〉(x). Hence we have that at stage t > s the strategy β redefines ΓU,Dβ_〈i,σ〉(x) by

choosing γβ_〈i,σ〉[t](x) to be equal to γβ_〈i,σ〉[s](x). Since the use of ΓU,Dβ_〈i,σ〉(x) does

not increase, it follows that there is some stage u such that for all u′ ≥ u, β′ can no longer

undefine ΓU,Dβ_〈i,σ〉(x) by enumerating γβj_〈i,σj〉[u
′](w) into D.

Thus we can classify the strategy β′ into case (iii).

(7.4) Suppose that the edge on the true path is α _ 〈d, σ〉. By Lemma 3.8.12 we have that this

cannot be the case, so this situation does not need to be considered.

Now, suppose that α _ 〈o, σ〉 is the edge on the true path. Consider an edge α _ 〈o′, σ′〉 lying

to the right of α _ 〈o, σ〉. If the edge α _ 〈o, σ〉 becomes accessible at stage t, we have that the

edge α _ 〈o′, σ′〉 is initialised at stage t. This means that any work interval defined for this edge

is undefined at stage t. In addition, if α _ 〈o′, σ′〉 is accessible at some stage t′ > t, α will only

choose witnesses w and thresholds v which are greater than stage t when defining a work interval

for this edge.

Since the edge α _ 〈o, σ〉 is visited infinitely often, we must have that α _ 〈o′, σ′〉 is initialised

infinitely often. Hence there must be some stage q such that for all q′ ≥ q, α chooses only

witnesses w > x and thresholds v > x when defining a work interval for the edge α _ 〈o′, σ′〉.

Now, edges to the right of the true path can be of the form α _ 〈d, σ〉, α _ 〈w, σ〉, α _ 〈gj , σ〉

for 1 ≤ j ≤ m or α _ 〈hj , σ〉 for 1 ≤ j ≤ m. When α visits edges of the form α _ 〈d, σ〉 or

α _ 〈w, σ〉, it does not enumerate any element into D. On the other hand if α visits an edge of

the form α _ 〈gj , σ〉 during some stage s it can cause an element of the form γβj_〈gj ,σj〉[s](v) to

enter D. Similarly if α visits an edge of the form α _ 〈hj , σ〉 during some stage s it can cause an

element of the form γβj_〈gj ,σj〉[s](w) to enter D.

Suppose that γβj_〈gj ,σj〉[s](v) or γβj_〈gj ,σj〉[s](w) has been enumerated into D at some stage

s ≥ q, meaning that w and v are both greater than x.

398

If i < j we have that γβi_〈i,σi〉[s](x) < γβj_〈i,σj〉[s](x) by R-Synchronisation. In addition

γβj_〈i,σj〉(x) is less than both γβj_〈gj ,σj〉[s](v) and γβj_〈gj ,σj〉[s](w). Hence we have that

ΓU,Dβi_〈i,σi〉(x) cannot be undefined at stage s.

If i = j, we have that γβi_〈i,σi〉[s](x) is less than both γβi_〈i,σi〉[s](v) and γβi_〈i,σi〉[s](w).

Hence we have that ΓU,Dβi_〈i,σi〉(x) cannot b-e undefined at stage s.

If j < i, let k be the least natural number such that j < k < m and the functional ΓU,Dβk_〈i,σk〉(x)

is undefined at stage s. If there is no such k, or i < k, we have that ΓU,Dβi_〈i,σi〉(x) cannot be

undefined at stage s.

On the other hand if k exists and i ≥ k we have that for every strategy βn ∈ (βk, . . . , βm),

γβn_〈i,σn〉[s](x) > γβj_〈i,σj〉[s](x) due to R-Synchronisation. Hence, ΓU,Dβn_〈i,σn〉(x) is undefined

at stage s.

In addition we have that for every strategy βn′ ∈ (β1, . . . , βk−1), ΓU,Dβn′_〈i,σn′ 〉
(x) remains defined

at stage s. This means that every strategy βn ∈ (βk, . . . , βm) can redefine ΓU,Dβn_〈i,σn〉(x) at some

least stage tn > s by choosing a use γβn_〈i,σn〉[tn](x) = γβn_〈i,σn〉[s](x) and still satisfy all its

R-Synchronisation constraints.

Since i ≥ k and the use of ΓU,Dβi_〈i,σi〉(x) does not increase there must be some stage u such that for

all u′ ≥ u, α can no longer undefine ΓU,Dβi_〈i,σi〉(x) by enumerating elements into D when visiting

edges α _ 〈o′, σ′〉lying to the right of α _ 〈o, σ〉.

(8) Suppose that β ⊂ α, and that α is to the right of the true path.

If β defines ΓU,Dβ_〈i,σ〉(x) at some stage t we have that it must choose a use γβ_〈i,σ〉(x) < t.

In addition since the edge β _ 〈i, σ〉 on the true path is accessible at stage t, the strategy

α must have been initialised at stage t. This means that every work interval associated to

one of the edges of α is canceled at stage t. We also have that if α chooses a witness w or a

threshold v at some stage t′ > t it follows that w > t and v > t.

Therefore if α visits an edge with work interval (v, γβ′_〈i,σ′〉(v)) at some stage t′ > t and

enumerates γβ′_〈i,σ′〉(v) into D for some strategy β′, we must have that γβ′_〈i,σ′〉(v) > t.

Similarly, if α visits an edge with work interval (w, γβ′_〈i,σ′〉(w)) at some stage t′ > t and

399

enumerates γβ′_〈i,σ′〉(w) into D for some strategy β′, we must have that γβ′_〈i,σ′〉(w) > t.

It follows that α cannot enumerate some element z ≤ γβ_〈i,σ〉[s](x) when visiting one of

its edges at some stage s > s0.

Thus we can classify the strategy α into case (ii).

(9) Suppose that α ⊂ β. In order for the strategy α to enumerate some element into the set D,

there must be some R strategy β′ ⊂ α which is labeled Ri and is active for α, and α must

visit some edge of the form α _ 〈gi, σ〉 or α _ 〈hi, σ〉 during some stage s at which the

work interval of these edges is defined.

Suppose that an edge of the form α _ 〈gi, σ〉 or α _ 〈hi, σ〉 lies on the true path. Then at

stage swe have that the strategy β lies inside a work interval of the form (v, γβ′_〈i,σ′〉[s](v))

where v is some threshold, whilst in the second it lies inside a work interval of the form

(w, γβ′_〈i,σ′〉[s](w)) where w is some witness. In either case, whenever the strategy β

defines a functional at some element whenever it visits an edge, it must choose uses which

lie inside the appropriate work interval.

Now if α visits the edge α _ 〈gi, σ〉 at some stage s and the work interval is defined the

strategy enumerates γβ′_〈i,σ′〉[s](v) into D. Similarly, if α visits the edge α _ 〈hi, σ〉 at

some stage s and the work interval is defined, the strategy enumerates γβ′_〈i,σ′〉[s](w) into

D. Since we have that these elements are greater than any use chosen by the strategy β, we

have that the strategy α cannot undefine ΓU,Dβ_〈i,σ〉(x).

Now suppose α _ 〈o, σ〉 lies on the true path, and let α _ 〈o′, σ′〉 be some edge lying to

its right. If β is accessible at some stage t and defines ΓU,Dβ_〈i,σ〉(x), it must choose some use

γβ_〈i,σ〉[t](x) < t.

In addition for β to be accessible at stage t, αmust have visited the edge α _ 〈o, σ〉 at stage

t. This means that the edge α _ 〈o′, σ′〉 must have been initialised at stage t. Hence any

work interval defined for this edge becomes undefined at stage t. In addition if α defines

some work interval for the edge at some stage t′ > t we have that the work interval must be

based on some threshold v > t or witness w > t.

Therefore if α visits an edge with work interval (v, γβ′_〈i,σ′〉(v)) at some stage s >

400

t and enumerates γβ′_〈i,σ′〉[s](v) into D for some strategy β′, we must have that

γβ′_〈i,σ′〉[s](v) > γβ_〈i,σ〉[t](x). Similarly, if α visits an edge with work interval

(w, γβ′_〈i,σ′〉[s](w)) at some stage s > t and enumerates γβ′_〈i,σ′〉[s](w) into D for some

strategy β′, we must have that γβ′_〈i,σ′〉[s](w) > γβ_〈i,σ〉[t](w). It follows that α cannot

enumerate some element z ≤ γβ_〈i,σ〉[s](x) when visiting an edge of the form α _ 〈o′, σ′〉

at some stage s > s0.

(10) Suppose that β <L α.

If β defines ΓU,Dβ_〈i,σ〉(x) at some stage twe have that it must choose a use γβ_〈i,σ〉[t](x) < t.

In addition since β is accessible at stage t, the strategy αmust have been initialised at stage t.

This means that every work interval associated to one of the edges of α is canceled at stage t.

Hence if α defines a work interval (v, γβ′_〈i,σ〉[t
′](v)) or (w, γβ′_〈i,σ〉[t

′](w)) at some stage

t′ > t for some strategy β′, it must be the case that v > t and w > t respectively. Hence

it follows that γβ_〈i,σ〉[t′](v) > γβ_〈i,σ〉[t](x) and that γβ_〈i,σ〉[t′](v) > γβ_〈i,σ〉[t](x). It

follows that α cannot enumerate some element z ≤ γβ_〈i,σ〉[s](x) when visiting one of its

edges at some stage s > s0.

Proof. Lemma 3.8.11, Part (b). We shall now show that for all xwe have thatA(x) = ΓU,Dβ_〈i,σ〉(x)

(ΓV,Dβ_〈i,σ〉 resp.)

We prove the above fact by Strong Induction. Suppose that for every y < x, there exists some

stage ty such that for all s ≥ ty, ΓU,Dβ_〈i,σ〉[s](y) = ΓU,Dβ_〈i,σ〉[ty](y) = A(y). Then we prove that

for x there exists some stage t such that for all s ≥ t, ΓU,Dβ_〈i,σ〉[s](x) = ΓU,Dβ_〈i,σ〉[t](x) = A(x).

Let y′ = max{ty | 1 ≤ y < x}. Then y′ > s0, where s0 is the least stage after which strategies

to the left of β become inaccessible, and after which β cannot be initialised. For if this was not

the case, β would be initialised at or after y′, resulting in the functional ΓU,Dβ_〈i,σ〉[s](y) becoming

undefined at all elements and contradicting the inductive hypothesis.

We now perform a case analysis, depending on whether A(x) = 0 or A(x) = 1.

(A) A(x) = 0. Suppose that ΓU,Dβ_〈i,σ〉[u](x) ↑ for some stage u ≥ y′. We distinguish between

two cases, depending on whether β _ 〈i, σ〉 is in open mode or in close mode at stage u.

(i) β _ 〈i, σ〉 is in open mode at stage u.

401

Then since β has outcome β _ 〈i, σ〉 on the true path, we have that this outcome

will be visited infinitely often. For this to be the case, β must reach reach step (5)(b)

infinitely often. Suppose that the strategy reaches step (5)(b) at stage u1 > u.

If the edge β _ 〈i, σ〉 does not have a β-expansionary* stage attached at stage u1, we

have that there is some stage u2 > u1 such that a β-expansionary* stage is attached to

this edge by the Attachment Procedure Lemma (Lemma 3.8.5).

Suppose that the strategy reaches step (5)(b) again at stage u3 > u2. Then if u3 is not

a β-open stage, we have that the edge is accessible during some β-open stage u4 > u3

by the Synchronisation Lemma (Lemma 3.8.7).

By the inductive hypothesis, the strategy β will then see that there is no disagreement

between the functional and the set A, reach step (5)(b)(iii) and define the computation

ΓU,Dβ_〈i,σ〉[u4](x) to be equal to Au4(x) = A(x).

(ii) β _ 〈i, σ〉 is in close mode at stage u.

Then since β has outcome β _ 〈i, σ〉 on the true path, we have that this outcome

will be visited infinitely often. For this to be the case, β must reach reach step (5)(b)

infinitely often.

Suppose that the strategy reaches step (5)(b) at stage u1 > u. If there is no β-

expansionary* stage attached to the edge, one will be attached at some stage u2 > u1

by the Attachment Procedure Lemma (Lemma 3.8.5).

If the strategy reaches step (5)(b) again at some stage u3 ≥ u2 and finds that u3 is not a

β-close stage, we have that the strategy visits the edge at some β-close stage u4 > u3

by the Synchronisation Lemma (Lemma 3.8.7).

It will then go through step (5)(b)(viii) and set the edge β _ 〈i, σ〉 to open mode.

Case (A)(ii) of the proof then reduces to case (A)(i), which means that ΓU,Dβ_〈i,σ〉[u
′](x)

is defined as being equal to A(x) at some stage u′ > u4 by the strategy β.

(B) A(x) = 1. Suppose that ΓU,Dβ_〈i,σ〉[u](x) ↑ for some stage u ≥ y′.

We distinguish between two cases, depending on whether β _ 〈i, σ〉 is in open mode or in

close mode at stage u.

(i) β _ 〈i, σ〉 is in open mode at stage u.

402

Since β has outcome β _ 〈i, σ〉 on the true path, we have that this outcome will be

visited infinitely often. For this to be the case, β must reach reach step (5)(b) infinitely

often. Suppose that the strategy reaches step (5)(b) at stage u1 > u.

If the edge β _ 〈i, σ〉 does not have a β-expansionary* stage attached at stage u1,

by the Attachment Procedure Lemma (Lemma 3.8.5) we have that there is some stage

u2 > u1 such that a β-expansionary* stage is attached to this edge.

Suppose that the strategy reaches step (5)(b) again at stage u3 ≥ u2. Then if u3 is not

a β-open stage, we have that the edge is accessible during some β-open stage u4 > u3

by the Synchronisation Lemma (Lemma 3.8.7).

By the inductive hypothesis, the strategy β will see that there is no disagreement

between the functional and the set A, reach step (5)(b)(iii) and define the computation

ΓU,Dβ_〈i,σ〉[u4](x) to be equal to Au4(x), changing the mode of the edge to close mode

and detaching the β-expansionary* stage from the edge.

Hence if Au4(x) = 1, we have that the strategy β defines ΓU,Dβ_〈i,σ〉[u4](x) to be equal

to A(x).

On the other hand, it could be the case that Au4(x) = 0. Then we have that

ΓU,Dβ_〈i,σ〉[u4](x) is equal to Au4(x). However, there must be some least stage

u5 > u4 such that Au5(x) = 1. This means that a disagreement will arise between

ΓU,Dβ_〈i,σ〉[u5](x) and Au5(x).

Now suppose that the strategy reaches step (5)(b) again at stage u6 > u5. Then the

strategy β will see the disagreement between the functional and the set A. If there is

no β-expansionary* stage attached to the edge β _ 〈i, σ〉 at stage u6, we have that

one will be attached to this edge at some stage u7 > u6 by the Attachment Procedure

Lemma (Lemma 3.8.5).

Suppose that the strategy β reaches step (5)(b) again at some stage u8 ≥ u7.

We now perform a case analysis depending on whether the edge β _ 〈i, σ〉 is in close

mode or in open mode at stage u8.

(I) β _ 〈i, σ〉 is in close mode at stage u8.

If no β-expansionary* stage is attached to β _ 〈i, σ〉 at stage u8, we have that a

403

β-expansionary* stage will be attached to this edge at some stage u9 > u8 by the

Attachment Procedure Lemma (Lemma 3.8.5).

Suppose that the strategy reaches step (5)(b) again at stage u10 ≥ s9. If u10 is not

a β-close stage, we have that the strategy will visit the edge again during some

close stage u11 > u10 by the Synchronisation Lemma (Lemma 3.8.7).

The strategy will then pass through step (5)(b)(vi) and enumerate γβ,u11(x) into

D, undefining ΓU,Dβ_〈i,σ〉(x), and changing the mode of the edge to open mode.

Suppose that the strategy reaches step (5)(b) again at stage u12 > u11. If u12 is

not a β-open stage, we have that the strategy will visit the edge again during some

close stage u13 > u12 by the Synchronisation Lemma (Lemma 3.8.7).

By the inductive hypothesis, the strategy β will then see that there is no

disagreement between the functional and the set A, reach step (5)(b)(iii) and

define the computation ΓU,Dβ_〈i,σ〉[u13](x) to be equal to Au13(x) = A(x).

(II) β _ 〈i, σ〉 is in open mode at stage s8. Then if u8 is not a β-open stage, we have

that the strategy will visit the edge again during some open stage u9 > u8 by the

Synchronisation Lemma (Lemma 3.8.7). The strategy will then pass through step

(5)(b)(iii) and change the mode of the edge to close mode, and will detach the

β-expansionary* stage from the edge.

Case (B)(i)(II) of the proof then reduces to case (B)(i)(I), which means that

ΓU,Dβ_〈i,σ〉[u
′](x) is defined as being equal to A(x) at some stage u′ > u9 by the

strategy β.

(ii) β _ 〈i, σ〉 is in close mode at stage u.

Since β has outcome β _ 〈i, σ〉 on the true path, we have that this outcome will be

visited infinitely often. For this to be the case, β must reach reach step (5)(b) infinitely

often. Suppose that the strategy reaches step (5)(b) at stage u1 > u.

If β _ 〈i, σ〉 is in close mode at stage u1 and there is no β-expansionary* stage

attached to the edge, one will be attached at some stage u2 > u1 by the the Attachment

Procedure Lemma (Lemma 3.8.5).

If the strategy visits the edge again at some stage u3 ≥ u2 and finds that u3 is not a β-

404

close stage, we have that the strategy will visit the edge at some β-close stage u4 > u3.

It will then go through step (5)(b)(viii) and set the edge to open mode. Case (B)(ii)

then reduces to case (B)(i), which means that ΓU,Dβ_〈i,σ〉[u
′](x) is defined as being equal

to A(x) at some stage u′ > u4.

Hence we have that if the functional is undefined at some stage u ≥ y′, the strategy will eventually

redefine it to be equal to A(x). But then by Lemma 3.8.11, Part (a), we must have that there is

some stage v such that for all v′ > v, ΓU,Dβ [v′](x) ↓. It follows that there exists some stage t such

that for all s ≥ t, ΓU,Dβ [s](x) = ΓU,Dβ [t](x) = A(x), as required.

3.8.11 Pseudo Outcome Lemma

The Pseudo Outcome Lemma shows that there is in fact no edge of the form 〈d, σ〉 on the true

path.

Lemma 3.8.12. (Pseudo Outcome Lemma). Let α be an S strategy on the true path f . Then no

edge of the form α _ 〈d, σ〉 is on the true path f .

Proof. Assume for contradiction that an outcome of the form α _ 〈d, σ〉 lies on the true path.

We perform the following case analysis.

(1) (There is no active β ⊂ α). In this case the strategy α asks only question Q1, which must

have a ‘Yes’ answer. Let α∗ ⊂ α be the greatest (under ⊂) S strategy which imposes

a work interval on α, (as, bs) be the work interval it imposes on α at stage s and ns be

the boundary of the work interval at stage s. Then the positive answer to question Q1

guarantees there must be infinitely many witnessesw and stages s such that ΘD[s](w) ↓= 0,

as < w < bs, as < θs(w) < bs, as < θs(w) < as + ns. In addition this answer ensures

that lim
q→∞

lq(Θ
D, A) =∞.

By the Leftmost Path Lemma (Lemma 3.8.4) there is some stage s0 such that no strategy

γ <L α is accessible. By the Restraint Lemma (Lemma 3.8.9), we have that there is some

405

stage s1 > s0 such that Rα′,s = Rα′,s1 for every strategy α′ ⊂ α and every stage s ≥ s1. It

follows that α is not initialised after stage s1.

Now, the edge α _ 〈d, σ〉 is on the true path. Hence we have that lim infsO(α) = d.

Then by the Attachment Procedure Lemma (Lemma 3.8.5), we have that if no witness w is

attached to the edge at some stage t > s1, a witness will be attached to the edge at some

stage t′ > t. But this means that the strategy will enumerate infinitely many witnesses when

visiting the edge throughout the construction.

Now suppose that α has enumerated some witness at stage u > s1, and that α has become

accessible again at some least stage u′ > u. Since α is not initialised after stage s1, it must

be the case that α sets Rα,u′ to θu(w). But by the Injury Lemma for S Strategies (Lemma

3.8.10), this means that no strategy γ can enumerate any x ≤ Rα,u′ at some stage v ≥ u. In

addition since u′ > u > s1, we have that Rα,v = Rα,u′ for all v > u′. Hence we must have

that ΘD(w) 6= A(w).

But this contradicts the fact that lim
q→∞

lq(Θ
D, A) = ∞. Hence it cannot be the case that the

answer to question Q1 is ‘Yes’. It follows that the edge α _ 〈d, σ〉 cannot lie on the true

path, as required.

(2) (Every active β ⊂ α follows a Γ̂-strategy). In this case the strategy α lies below some

sequence of active R strategies (β1, . . . , βn), each of which is following a Γ̂-strategy. In

this case the strategy asks question Q1 and questions Q2.i for every βi ∈ (β1, . . . , βn).

Each of these questions which must have a ‘Yes’ answer.

Let α∗ ⊂ α be the greatest (under⊂) S strategy which imposes a work interval on α, (as, bs)

be the work interval it imposes on α at stage s and ns be the boundary of the work interval at

stage s. Then the positive answer to question Q1 guarantees there must be infinitely many

witnesses w and stages s such that ΘD[s](w) ↓= 0, as < w < bs, as < θs(w) < bs,

as < θs(w) < as + ns. In addition this answer ensures that lim
q→∞

lq(Θ
D, A) =∞.

The positive answer to question Q2.i for every βi ∈ (β1, . . . , βn), ensures that infinitely

many of these witnesses w and stages s give rise to honest computations ΓUi,Dβi_〈i,σi〉[s](w)

for every βi ∈ (β1, . . . , βn).

406

By the Leftmost Path Lemma (Lemma 3.8.4) there is some stage s0 such that no strategy

γ <L α is accessible. By the Restraint Lemma (Lemma 3.8.9), we have that there is some

stage s1 > s0 such that Rα′,s = Rα′,s1 for every strategy α′ ⊂ α and every stage s ≥ s1. It

follows that α is not initialised after stage s1.

Now, the edge α _ 〈d, σ〉 is on the true path. Hence we have that lim infsO(α) = d.

Then by the Attachment Procedure Lemma (Lemma 3.8.5), we have that if no witness w

is attached to the edge at some stage t > s1, a witness w giving honest computations

ΓUi,Dβ_〈i,σ〉(w) for all 1 ≤ i ≤ n will be attached to the edge at some stage t′ > t. By

the Honesty Preservation Lemma (Lemma 3.8.6) we have that these computations remain

honest at all stages t′′ ≥ t′. But this means that the strategy will enumerate infinitely many

witnesses when visiting the edge throughout the construction.

Now suppose that α has enumerated some witness at stage u > s1, and that α has become

accessible again at some least stage u′ > u. Since α is not initialised after stage s1, it must

be the case that α sets Rα,u′ to θu(w). But by the Injury Lemma for S Strategies (Lemma

3.8.10), this means that no strategy γ can enumerate any x ≤ Rα,u′ at some stage v ≥ u. In

addition since u′ > u > s1, we have that Rα,v = Rα,u′ for all v > u′. Hence we must have

that ΘD(w) 6= A(w).

But this contradicts the fact that lim
q→∞

lq(Θ
D, A) = ∞. Hence it cannot be the case that the

answer to question Q1 is ‘Yes’. It follows that the edge α _ 〈d, σ〉 cannot lie on the true

path, as required.

(3) (Some active β ⊂ α follows a Γ-strategy). In this case the strategy α lies below some

sequence of active R strategies (β1, . . . , βn) which may be following either a Γ-strategy

or a Γ̂-strategy. In addition, there is some subsequence of active R strategies (β′1, . . . , β
′
m)

above α which are following a Γ-strategy.

In this case the strategy asks question Q1, questions Q2.i for every βi ∈ (β1, . . . , βn) and

questions Q3.j for every β′j ∈ (β′1, . . . , β
′
m) and each of these questions must have a ‘Yes’

answer.

Let α∗ ⊂ α be the greatest (under⊂) S strategy which imposes a work interval on α, (as, bs)

be the work interval it imposes on α at stage s and ns be the boundary of the work interval at

407

stage s. Then the positive answer to question Q1 guarantees there must be infinitely many

witnesses w and stages s such that ΘD[s](w) ↓= 0, as < w < bs, as < θs(w) < bs,

as < θs(w) < as + ns. In addition this answer ensures that lim
q→∞

lq(Θ
D, A) =∞.

The positive answer to question Q2.i for every βi ∈ (β1, . . . , βn), ensures that infinitely

many of these witnesses w and stages s give rise to honest computations ΓUi,Dβi_〈i,σi〉[s](w)

for every βi ∈ (β1, . . . , βn)

The positive answer to question Q3.j for every β′j ∈ (β′1, . . . , β
′
m), guarantees that infinitely

many of the witnesses w giving rise to honest computations ΓUi,Dβi_〈i,σi〉[s](w) for every βi ∈

(β1, . . . , βn) are enumerated into A at stage s, and infinitely many of these cause a Uj �

φj,1[s](w) change to occur by the least Rj-expansionary* stage tj > s, for every βj ∈

(β′1, . . . , β
′
m).

Now since there are activeR strategies β ⊂ α following a Γ-strategy, we have that witnesses

giving honest computations can only be enumerated into the setA by first becoming attached

to edges of the form α _ 〈gj , σ〉, for some βj ∈ (β′1, . . . , β
′
m). The ‘Yes’ answers to

questions Q3.j for every β′j ∈ (β′1, . . . , β
′
m) guarantee that this takes place infinitely many

times, and that infinitely many witnesses are enumerated into A.

By the Leftmost Path Lemma (Lemma 3.8.10) there is some stage s0 such that no strategy

γ <L α is accessible. By the Restraint Lemma (Lemma 3.8.9), we have that there is some

stage s1 > s0 such that Rα′,s = Rα′,s1 for every strategy α′ ⊂ α and every stage s ≥ s1. It

follows that α is not initialised after stage s1.

Now suppose that α has enumerated some witness at stage u > s1, and that α has become

accessible again at some least stage u′ > u. Since α is not initialised after stage s1, it must

be the case that α sets Rα,u′ to θu(w). But by the Injury Lemma for S Strategies (Lemma

3.8.10), this means that no strategy γ can enumerate any x ≤ Rα,u′ at some stage v ≥ u. In

addition since u′ > u > s1, we have that Rα,v = Rα,u′ for all v > u′. Hence we must have

that ΘD(w) 6= A(w).

But this contradicts the fact that lim
q→∞

lq(Θ
D, A) = ∞. Hence it cannot be the case that the

answer to question Q1 is ‘Yes’. It follows that the edge α _ 〈d, σ〉 cannot lie on the true

path, as required.

408

Having determined that edges of the form 〈d, σ〉 cannot lie on the true path, we can now remove

the qualification in the True Path Existence Lemma (Lemma 3.8.8) and conclude that the true path

is infinite.

Corollary 3.8.13. The true path f is infinite.

3.8.12 Truth of Outcome Theorem

The Truth of Outcome Theorem shows that every requirement is satisfied by the strategy which

represents it on the true path.

Theorem 3.8.14. (Truth of Outcome Theorem). Let f be the true path and let U be a requirement.

Then there exists a strategy γ on f which satisfies U .

Proof. We start by considering the case where U is a requirementRi.

By the Pseudo Outcome Lemma (Lemma 3.8.12) we have that no edges of the form γ _ 〈d, σ〉

lie on the true path f . By Corollary 3.8.13 we also have that the true path f is infinite. Hence

by the Representation Lemma (Lemma 3.8.3) there is some R strategy β which represents the

requirement Ri on the true path. For the strategy β to represent the requirement Ri on the true

path, one of the following must be the case.

• β has an edge β _ 〈f, σ〉 on the true path.

• β is labeled Ri and there is some S strategy α such that β ⊂ α and α has an edge α _

〈hi, σ〉 on the true path.

• β is labeledRi and has an edge β _ 〈i, σ〉 on the true path, and β is active on the true path.

We consider these three cases in turn.

(1) Suppose that β has an edge β _ 〈f, σ〉 on the true path. Then the answer to question Q1 of

the strategy must be ’No’. Hence we have that there are only finitely many β-expansionary*

stages. This means that l(ΦUi,Vi
i , A) is finite, and thatRi is satisfied trivially.

(2) Suppose that β is labeled Ri and there is some strategy α such that β ⊃ α and α has an

edge α _ 〈hi, σ〉 on the true path. Suppose that α lies below some sequence (β1, . . . , βn)

409

of R strategies, with βi = β. Then we have that the answer to question Q1 of the strategy

must be ’Yes’, the answers to questions Q2.j with j < i must be ’Yes’, and the answer to

question Q2.i must be ’No’.

Let α∗ ⊂ α be the greatest (under⊂) S strategy which imposes a work interval on α, (as, bs)

be the work interval it imposes on α at stage s and ns be the boundary of the work interval at

stage s. Then the positive answer to question Q1 guarantees there must be infinitely many

witnesses w and stages s such that ΘD[s](w) ↓= 0, as < w < bs, as < θs(w) < bs,

as < θs(w) < as + ns and such that the computations Γ
Uj ,D

βi_〈j,σ〉[s](w) are honest for all

1 ≤ j < i. However only finitely many of these witnesses and stages give computations

ΓUi,Dβi_〈i,σ〉[s](w) which are honest.

Now, by the Attachment Procedure Lemma (Lemma 3.8.5) we have that a witness w which

gives honest computations Γ
Uj ,D

βi_〈j,σ〉[s1](w) for all 1 ≤ j < i and a dishonest computation

ΓUi,Dβi_〈i,σ〉[s1](w) is attached to the edge at stage s1. Moreover since questionQ2.i has a ‘No’

answer we have that there is some stage s2 ≥ s1 such that the computation ΓUi,Dβi_〈i,σ〉[s](w)

is dishonest for every stage s ≥ s2.

Now since there are infinitely many stages such that α visits the edge during an α-close

stage when it is in Part I mode, we have that α enumerates γβi_〈i,σ〉(w) into D infinitely

often. Since βi cannot redefine ΓUi,Dβi_〈i,σ〉(w) without choosing a larger use, we have

that limt γβi_〈i,σ〉[t](w) → ∞. But since after stage s2 we have that the computation

ΓUi,Dβi_〈i,σ〉(w) is always dishonest, it must be the case that limt φi,1[t](w) → ∞ as well.

Hence we have that ΦUi,Vi
i,1 (w) ↑, andRi is satisfied trivially.

(3) Suppose that β is labeled Ri, has an edge β _ 〈i, σ〉 on the true path and β is active on

the true path. This means that there is no S strategy α such that β ⊂ α and α has an edge

α _ 〈hj , σ〉 for j < i or an edge α _ 〈gj , σ〉 for j ≤ i on the true path. Then by the

Injury Lemma for R Strategies (Lemma 3.8.10) we have that the strategy β is able to build

a functional ΓU,Dβ_〈i,σ〉 such that for all elements x, ΓUi,Dβ_〈i,σ〉(x) = A(x). Hence we have that

β satisfies the requirementRi.

We now consider the case where U is a requirement Si.

410

By the Pseudo Outcome Lemma (Lemma 3.8.12) we have that no edges of the form γ _ 〈d, σ〉

lie on the true path f . By Corollary 3.8.13 we also have that the true path f is infinite. Hence

by the Representation Lemma (Lemma 3.8.3) we have that there is some S strategy α on f which

represents the requirement Si on the true path. Let e be the index of the strategy α in the total

ordering of all S strategies on the priority tree.

In order for the strategy α to represent the requirement Si on the true path, we must have that α

has an edge α _ 〈w, σ〉 on the true path. But this means that the answer to question Q1 of the

strategy α must be ‘No’. Hence one or more of the conditions of question Q1 have failed.

Let α∗ ⊂ α be the greatest (under ⊂) S strategy which imposes a work interval on α, (as, bs) be

the work interval it imposes on α at stage s, ns be the boundary of the work interval at stage s and

α∗ _ 〈o′, σ′〉 be the edge of α∗ lying on the true path.

If condition (i) of question Q1 fails, we have that there are only finitely many witnesses w ∈ W e

and stages s ∈ Nα such that ΘD[s](w) ↓= 0. Then there must be some stage t ∈ Nα such

that for every t′ ∈ Nα with t′ > t and every element x ∈ W e, we have that ΘD[t′](x) ↑ or

ΘD[t′](x) ↓= 1. Now, if ΘD(x) ↑ for some x ∈ W e, we have that ΘD(x) 6= A(x) and the S

requirement is satisfied. On the other hand, if ΘD(x) ↓= 1 for some x ∈ W e, we have that the

strategy will never enumerate x intoA. This means that ΘD(x) 6= A(x) and that the S requirement

is also satisfied.

If condition (i) of question Q1 holds but condition (ii) of question Q1 fails, we have that there are

infinitely many witnesses w ∈W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0, but as < w < bs

for only finitely many of these witnesses and stages. This means that there is some stage t ∈ Nα

such that for all t′ ∈ Nα with t′ > t and every element x ∈ W e such that at′ < x < bt′ we

have that ΘD[t′](x) ↓= 1 or that ΘD[t′](x) ↑. Now since α is on the true path, there is some

stage s0 such that for all s′ > s0, the edge α∗ _ 〈o′, σ〉 is no longer initialised. Hence once α∗

defines a work interval for the edge α∗ _ 〈o′, σ′〉 at some least stage u > s0, we have that au =

au′ for all u′ ≥ u. In addition, since α is accessible infinitely often, we have that α∗ must have

visited α∗ _ 〈o′, σ〉 during infinitely many close stages and gone to the next substage. It follows

that the upper bound of the work interval is enumerated into the set D infinitely often, giving that

411

lim
v→∞

bv → ∞. Hence there is some element x′ ∈ W e and some stage p ∈ Nα such that for all

stages p′ ∈ Nα with p′ > p, p′ > t and p′ > u we have that ap′ < x′ < bp′ and that ΘD[p′](x′) ↑

or ΘD[p′](x′) ↓= 1. Now, if ΘD(x′) ↑, we have that ΘD(x′) 6= A(x′) and the S requirement is

satisfied. On the other hand, if ΘD(x′) ↓= 1, we have that the strategy will never enumerate x′

into A. This means that ΘD(x′) 6= A(x′) and that the S requirement is also satisfied.

If conditions (i) and (ii) of question Q1 hold but condition (iii) of question Q1 fails, we have that

there are infinitely many witnesses w ∈ W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0 and

as < w < bs, but as < θs(w) < bs for only finitely many of these witnesses and stages. This

means that there is some stage t ∈ Nα such that for all t′ ∈ Nα with t′ > t and every element

x ∈ W e such that at′ < x < bt′ we have that θt′(x) > bt′ . Now since α is on the true path, there

is some stage s0 such that for all s′ > s0, the edge α∗ _ 〈o′, σ〉 is no longer initialised. Hence

once α∗ defines a work interval for the edge α∗ _ 〈o′, σ′〉 at some least stage u > s0, we have

that au = au′ for all u′ ≥ u. In addition, since α is accessible infinitely often, we have that α∗

must have visited α∗ _ 〈o′, σ〉 during infinitely many close stages and gone to the next substage.

It follows that the upper bound of the work interval is enumerated into the set D infinitely often,

giving that lim
v→∞

bv →∞. Hence there is some element x′ ∈W e and some stage p ∈ Nα such that

for all stages p′ ∈ Nα with p′ > p, p′ > t and p′ > u we have that bp′ < θp′(x
′). But since the

upper bound of the work interval is unbounded, it must be the case that ΘD(x′) ↑, which means

that the S requirement is satisfied.

If conditions (i) and (ii) and (iii) of question Q1 hold but condition (iv) of question Q1 fails, we

have that there are infinitely many witnessesw ∈W e and stages s ∈ Nα such that ΘD[s](w) ↓= 0

and as < w < bs and as < θs(w) < bs, but that as < w < as +ns for only finitely many of these

witnesses and stages. This means that there is some stage t ∈ Nα such that for all t′ ∈ Nα with

t′ > t and every element x ∈ W e such that at′ < x < at′ + nt′ we have that ΘD[t′](x) ↓= 1 or

that ΘD[t′](x) ↑. Now since α is on the true path, there is some stage s0 such that for all s′ > s0,

the edge α∗ _ 〈o′, σ〉 is no longer initialised. Hence once α∗ defines a work interval for the edge

α∗ _ 〈o′, σ′〉 at some least stage u > s0, we have that au = au′ for all u′ ≥ u. In addition since

α is accessible infinitely often, we have that α∗ must have visited α∗ _ 〈o′, σ〉 during infinitely

many close stages and gone to the next substage. It follows that the boundary of the work interval

412

is incremented infinitely often, giving that lim
v→∞

nv → ∞. Hence there is some element x′ ∈ W e

and some stage p ∈ Nα such that for all stages p′ ∈ Nα with p′ > p, p′ > t and p′ > u we have

that ap′ < x′ < ap′ + np′ and that ΘD[p′](x′) ↑ or ΘD[p′](x′) ↓= 1. Now, if ΘD(x′) ↑, we have

that ΘD(x′) 6= A(x′) and the S requirement is satisfied. On the other hand, if ΘD(x′) ↓= 1, we

have that the strategy will never enumerate x′ into A. This means that ΘD(x′) 6= A(x′) and that

the S requirement is also satisfied.

If conditions (i) and (ii) and (iii) and (iv) of question Q1 hold but condition (v) of question Q1

fails, we have that there are infinitely many witnesses w ∈ W e and stages s ∈ Nα such that

ΘD[s](w) ↓= 0, as < w < bs, as < θs(w) < bs and as < w < as + ns. However there are

only finitely many stages q ∈ Nα such that (∀q′ < q)[lq′(Θ
D, A) < lq(Θ

D, A)], where q′ ranges

over Nα. But in this case there must be some x such that ΘD(x) 6= A(x), meaning that the S

requirement is satisfied.

Either way we have that A 6= ΘD, and that the requirement Si is satisfied.

3.8.13 High Permitting Theorem

The High Permitting Theorem shows that the sets A and D lie below H0.

Theorem 3.8.15. (High Permitting Theorem). The following are the case.

(I) A ≤T H0.

(II) D ≤T H0.

Proof. Theorem 3.8.15, Part (I). In order to show that A can be computed with the help of H0 we

shall proceed as follows. Given some w, we shall want to determine whether w ∈ A or w 6∈ A in

some finite amount of time and in finitely many queries to H0.

In order to do this we set in motion the construction from Section 3.7, whilst simultaneously

enumerating the set Y in H0 from Lemma 3.1.8. Since only S strategies can enumerate witnesses

w into the set A, we also identify the S strategy α which has the witness w in its witness set W e.

We then wait for a stage s such that one of the following cases occurs.

413

(1) The witness w is attached to an edge α _ 〈o, σ〉 at stage s.

If the edge is of the form α _ 〈hi, σ〉, we have that the strategy will never enumerate the

witness w into A whilst visiting the edge. Hence we have that w 6∈ A.

Otherwise we wait for a stage t ≥ s with the following properties:

(a) The strategy has attached the witness w to an edge of the form α _ 〈gi, σ〉 or α _

〈d, σ〉 at stage s, and enumerates the witness w into A when it visits this edge at stage

t. Then we have that w ∈ A.

(b) Some strategy γ with γ <L α has become accessible at stage t, or alternatively some

edge γ _ 〈o′, σ′〉 with γ _ 〈o′, σ′〉 <L α _ 〈o, σ〉 becomes accessible at stage t.

This means that the edge α _ 〈o, σ〉 is initialised at stage t and that the witness w

is detached from the edge at stage t. Therefore α cannot enumerate w into A and we

have that w 6∈ A.

(c) Some strategy γ with α <L γ enters Y at stage t, or alternatively some edge γ _

〈o′, σ′〉 with α _ 〈o, σ〉 <L γ _ 〈o′, σ′〉 enters Y at stage t. In this case we have

that the edge α _ 〈o, σ〉 is no longer accessible at stages t′ > t. Therefore α cannot

enumerate w intoA at stages t′ > t. We also have that α cannot enumerate w intoA at

stage t = s either, because otherwise case (a) would hold. Then we have that w 6∈ A.

(2) The strategy α visits an edge α _ 〈o′, σ′〉 at stage s, some edge α _ 〈o′, σ′〉 has entered Y

at some stage t < s and s > w. In addition one of the following conditions holds.

(a) o′ = w.

(b) o′ = d and no R strategy β above α which is active for α is following a Γ-strategy.

In addition we have that some witness w′ > w has been attached to the edge at some

stage t′ such that t < t′ ≤ s.

(c) o′ = d and there is some R strategy β above α which is active for α and is following

a Γ-strategy.

(d) o′ = gi and we have that some witness w′ > w has been attached to α _ 〈gi, σ′〉 at

some stage t′ such that t < t′ ≤ s.

(e) o′ = hi and we have that some witness w′ has been attached to α _ 〈hi, σ′〉 at some

stage t′ such that t < t′ ≤ s.

414

We now show that if case (2) holds, we have that w 6∈ A.

Suppose a stage s satisfying condition (2) exists. Then we have that edges α _ 〈o′′, σ′′〉

lying to the left of α _ 〈o′, σ′〉 are not accessible at stages t′ > t. Since s > t we have that

if w is attached to some edge α _ 〈o′′, σ′′〉 lying to the left of α _ 〈o′, σ′〉 at some stage

s′ > s, the strategy α cannot enumerate it into the set A. Note that w cannot have become

attached to such an edge at some stage s′ ≤ s, or we would have that case (1) holds instead

of case (2).

In addition we have that edges α _ 〈o′′, σ′′〉 lying to the right of α _ 〈o′, σ′〉 are initialised

at stage s. This means that only witnesses w > s can be attached to an edge α _ 〈o′′, σ′′〉

lying to the right of α _ 〈o′, σ′〉 at stages s′ ≥ s.

Now consider the value o′ of the edge α _ 〈o′, σ′〉.

If o′ = w, we have that no witness is ever attached to the edge. Hence the witness w cannot

become attached to the edge.

If o′ = d, and there is some R strategy β above α which is active for α and is following a

Γ-strategy, we have that no witness is ever attached to the edge. Hence the witness w cannot

become attached to the edge.

If o′ = d, and there is no R strategy β above α which is active for α and is following a

Γ-strategy, we have that some witness w′ has been attached to the edge at some stage t′ such

that t < t′ ≤ s. It follows that only witnesses which are greater than w′ can be attached to

the edge at stages s′ ≥ s. Hence the witness w can no longer be attached to the edge.

If o′ = gi, we have that some witness w′ has been attached to the edge at some stage t′ such

that t < t′ ≤ s. It follows that only witnesses which are greater than w′ can be attached to

the edge at stages s′ ≥ s. Hence the witness w can no longer be attached to the edge.

If o′ = hi, we have that a witness w′ has been attached to the edge at some stage t′ such that

t < t′ ≤ s. Since the edge is never initialised at stages s′ > t we have that the witness w′ is

never detached from the edge and that the witness w cannot become attached to the edge.

Thus we can conclude that w 6∈ A as required.

It follows that A is computable in H0.

415

Proof. Theorem 3.8.15, Part (II). In order to show that D can be computed with the help of H0

we proceed as follows.

Given some use u, we shall want to determine whether u ∈ D or u 6∈ D in some finite amount

of time and in finitely many queries to H0. We set up the construction from Section 3.7, whilst

simultaneously enumerating the set Y in H0 from Lemma 3.1.8. We also identify the R strategy

β labeledRi and the edge β _ 〈i, σ〉 such that u ∈ U e,β_〈o,σ〉.

We then wait for a stage s such that one of the following cases occurs.

(1.1) The strategy defines ΓUi,Dβ_〈i,σ〉[s](z) for some z by choosing γβ_〈i,σ〉[s](z) = u at stage s.

(1.2) Some strategy γ with β <L γ enters Y at stage s, or alternatively some edge γ _ 〈o′, σ′〉

with β _ 〈i, σ〉 <L γ _ 〈o′, σ′〉 enters Y at stage s. In this case we have that the edge β _

〈i, σ〉 is no longer accessible at stages s′ > s. Therefore β cannot define ΓUi,Dβ_〈i,σ〉[s
′](z) for

some z by choosing γβ_〈i,σ〉[s′](z) = u at stages s′ > s.

(1.3) Some strategy γ with γ <L β has become accessible at some stage s > u, or alternatively

some edge γ _ 〈o′, σ′〉 with γ _ 〈o′, σ′〉 <L β _ 〈i, σ〉 becomes accessible at some stage

s > u. This means that the edge β _ 〈i, σ〉 is initialised at stage s and that the functional

associated to the edge is canceled at stage s. In addition if β defines ΓUi,Dβ_〈i,σ〉[s
′](z) for

some z at stages s′ > s, it must choose a use which is greater than s, and hence greater than

u.

(1.4) Some strategy γ with γ ⊂ β has reset the strategy β and imposed a restraint on β which

greater than u at stage s. This means that the functional associated to the edge β _ 〈i, σ〉

is canceled at stage s. In addition if β defines ΓUi,Dβ_〈i,σ〉[s
′](z) for some z at stages s′ > s, it

must choose a use which is greater than this restraint, and hence greater than u.

(1.5) The strategy defines ΓUi,Dβ_〈i,σ〉[s](z) for some z by choosing γβ_〈i,σ〉[s](z) > u at stage

s. Suppose that the strategy needs to define ΓUi,Dβ_〈i,σ〉[s
′](z′) for some z′ at some stage

s′ > s. Then the strategy will compute the least use which is compatible with conditions

(5)(b)(iii)(A) - (5)(b)(iii)(L) of the R strategy as defined in section 3.7. If it finds that the

least use can be equal to γβ_〈i,σ〉[s](z′) it will choose this use once again. Otherwise it will

find that the least use compatible with these conditions has to be greater than γβ_〈i,σ〉[s](z′).

416

In this case it will choose the least use which is greater than all previous uses chosen by the

strategy when defining the functional. But since the strategy has already chosen some use

greater than u when defining ΓUi,Dβ_〈i,σ〉[s](z), we have that the strategy can never choose u

at some stage s′ > s.

Now if stage s follows one of cases (1.2), (1.3), (1.4) or (1.5), we have that the use u can no longer

be chosen by the strategy β when defining ΓUi,Dβ_〈i,σ〉[s
′](z) for some z at some stage s′ > s. This

means that no strategy can ever enumerate u into D after stage s. Hence we have that u 6∈ D.

On the other hand if stage s follows case (1.1) we proceed as follows. We identify the S strategy

α which has z as a witness in its witness set W e or which has z as a threshold in its threshold set

V e.

We then have to determine whether the strategy attaches witness z to an edge or whether the

strategy chooses threshold z to define a work interval for some edge.

In order to determine whether α attaches witness z to some edge in finite time and in finitely many

queries to H0, we wait for a stage t ≥ s such that one of the following cases occurs.

(2.1) The strategy α attaches witness z to an edge α _ 〈gi, σ〉 at stage t.

(2.2) The strategy α attaches witness z to an edge α _ 〈d, σ〉 at stage t.

(2.3) The strategy α attaches witness z to an edge α _ 〈hi, σ〉 at stage t.

(2.4) The strategy α visits an edge α _ 〈o′, σ′〉 at stage t, the edge α _ 〈o′, σ′〉 has entered Y at

some stage t′ < t and t > z. In addition one of the following conditions holds.

(a) o′ = w.

(b) o′ = d and no R strategy β above α which is active for α is following a Γ-strategy.

In addition we have that some witness w′ > z has been attached to the edge at some

stage t′′ such that t′ < t′′ ≤ t.

(c) o′ = d and there is some R strategy β above α which is active for α and is following

a Γ-strategy.

(d) o′ = gi and we have that some witness w′ > z has been attached to α _ 〈gi, σ′〉 at

some stage t′′ such that t′ < t′′ ≤ t.

417

(e) o′ = hi and we have that some witness w′ has been attached to α _ 〈hi, σ′〉 at some

stage t′′ such that t′ < t′′ ≤ t.

On the other hand in order to determine whether α chooses threshold z to define a work interval

for some edge in finite time and in finitely many queries to H0, we wait for a stage t ≥ s such that

one of the following things occurs.

(3.1) The strategy α chooses threshold z to define a work interval for some edge α _ 〈gi, σ〉 at

stage t.

(3.2) The strategy α visits an edge α _ 〈o′, σ′〉 at stage t, edge α _ 〈o′, σ′〉 has entered Y at

some stage t′ < t and t > z. In addition one of the following conditions holds.

(a) o′ = w.

(b) o′ = d.

(c) o′ = gi and we have that some threshold v′ > z has been used to define a work interval

for α _ 〈gi, σ′〉 at some stage t′′ such that t′ < t′′ ≤ t.

(d) o′ = hi.

The fact that the occurrence of clause (2.4) is sufficient to show that the witness z will not be

attached to any edge is identical to the argument given in Part I of the proof. The fact that the

occurrence of clause (3.2) is sufficient to show that the threshold z will not be chosen to define the

work interval of any edge is a straightforward variation on the same argument. Hence if we have

that case (2.4) holds for the witness z, or that case (3.2) holds for the threshold z it follows that

u 6∈ D.

Otherwise we have that α has taken one of the following actions.

(4.1) The strategy α has chosen threshold z for some edge α _ 〈gi, σ〉 at some stage t ≥ s,

defining a work interval for this edge.

(4.2) The strategy α has attached witness z to some edge α _ 〈hi, σ〉 at some stage t ≥ s,

defining a work interval for this edge.

(4.3) The strategy α has attached witness z to some edge α _ 〈gi, σ〉 at some stage t ≥ s.

(4.4) The strategy α has attached witness z to some edge α _ 〈d, σ〉 at some stage t ≥ s.

418

Suppose that one of cases (4.1) or (4.2) has taken place. Let α _ 〈o, σ〉 denote the edge for which

the work interval has been defined, and let (z, γβ′_〈i,σ′〉)[t](z) be the work interval, where β′ is

someR strategy labeledRj such that β′ ⊂ α, and γβ′_〈i,σ′〉[t](z) is the use of the functional built

by β′ for the edge β′ _ 〈i, σ′〉.

Then if γβ_〈i,σ〉(z) 6= u, we have that u 6= D.

Otherwise we have that γβ_〈i,σ〉(z) = u, and wait for a stage p ≥ t such that one of the following

takes place:

(5.1) The strategy α enumerates the upper bound γβ_〈i,σ〉[t](z) of the work interval into D.

(5.2) Some strategy γ with α <L γ enters Y at stage p, or alternatively some edge γ _ 〈o′, σ′〉

with α _ 〈o, σ〉 <L γ _ 〈o′, σ′〉 enters Y at stage p. In this case we have that the edge

α _ 〈o, σ〉 is no longer accessible at stages p′ > p.

(5.3) Some strategy γ with γ <L α has become accessible at stage p, or alternatively some edge

γ _ 〈o′, σ′〉 with γ _ 〈o′, σ′〉 <L α _ 〈o, σ〉 becomes accessible at stage p. This means

that the edge α _ 〈o, σ〉 is initialised at stage p. Hence any work interval defined for the

edge is undefined at stage p.

(5.4) Some strategy γ with γ ⊂ α has reset the strategy α at stage p. Hence any work interval

defined for the edge is undefined at stage p.

Now if (5.1) is the case, we have that u ∈ D. Otherwise, if one of cases (5.2), (5.3) or (5.4) holds,

we have that u 6∈ D.

Now suppose (4.3) or (4.4) holds. Let α _ 〈o, σ〉 denote the edge to which the witness z has

been attached at stage t. In this case we wait for a stage p ≥ t such that one of the following takes

place:

(6.1) The strategy α enumerates the witness z into A at stage p.

(6.2) Some strategy γ with α <L γ enters Y at stage p, or alternatively some edge γ _ 〈o′, σ′〉

with α _ 〈o, σ〉 <L γ _ 〈o′, σ′〉 enters Y at stage p. In this case we have that the edge

α _ 〈o, σ〉 is no longer accessible at stages p′ > p.

419

(6.3) Some strategy γ with γ <L α has become accessible at stage p, or alternatively some edge

γ _ 〈o′, σ′〉 with γ _ 〈o′, σ′〉 <L α _ 〈o, σ〉 becomes accessible at stage p. This means

that the edge α _ 〈o, σ〉 is initialised at stage p. Hence the witness z is detached from the

edge at stage p.

(6.4) Some strategy γ with γ ⊂ α has reset the strategy α at stage p. Hence the witness z is

detached from the edge at stage p.

(6.5) The strategy α visits the edge α _ 〈o, σ〉 at stage p and determines that the witness z is

dishonest, thus discarding the witness z.

If one of cases (6.2), (6.3), (6.4) and (6.5) holds, we have that u 6∈ D.

Otherwise, we have that case (6.1) holds and that a disagreement now exists between ΓU,Dβ_〈i,σ〉(z)

and A(z).

Therefore we will wait for a stage q > p such that one of the following takes place:

(7.1) The strategy β visits the edge β _ 〈i, σ〉 at stage q, determines that ΓU,Dβ_〈i,σ〉[q](z) 6= Aq(z)

and self-repairs by enumerating γβ_〈i,σ〉(z) into D.

(7.2) Some strategy γ with β <L γ enters Y at stage p, or alternatively some edge γ _ 〈o′, σ′〉

with β _ 〈i, σ〉 <L γ _ 〈o′, σ′〉 enters Y at stage q. In this case we have that the edge

β _ 〈i, σ〉 is no longer accessible at stages q′ > q.

(7.3) Some strategy γ with γ <L β has become accessible at stage q, or alternatively some edge

γ _ 〈o′, σ′〉 with γ _ 〈o′, σ′〉 <L β _ 〈i, σ〉 becomes accessible at stage q. This means

that the edge β _ 〈i, σ〉 is initialised at stage q. Hence the functional ΓU,Dβ_〈i,σ〉 is canceled

at stage q.

(7.4) Some strategy γ with γ ⊂ β has reset the strategy β at stage p. Hence the functional

ΓU,Dβ_〈i,σ〉 is canceled at stage q.

(7.5) The strategy β visits the edge β _ 〈i, σ〉 at stage q and determines that ΓU,Dβ_〈i,σ〉[q](z) ↑, or

that γβ_〈i,σ〉[q](z) 6= u.

Then in case (7.1) we have that u ∈ D, while in cases (7.2), (7.3), (7.4) and (7.5) we have that

u 6∈ D.

420

It follows that D is computable in H0.

421

422

Bibliography

[Ambos-Spies and Fejer, 2014] Ambos-Spies, K. and Fejer, P. A. (2014). Degrees of

unsolvability. In Siekmann, J. H., editor, Computational Logic, volume 9 of Handbook of

the History of Logic, pages 443–494. Elsevier.

[Cooper, 2004] Cooper, S. B. (2004). Computability Theory. Chapman and Hall/CRC.

[Cooper et al., 2002] Cooper, S. B., Li, A., and Yi, X. (2002). On the distribution of Lachlan

nonsplitting bases. Archive for Mathematical Logic, 41(5):455–482.

[Friedberg, 1957] Friedberg, R. M. (1957). Two recursively enumerable sets of incomparable

degrees of unsolvability. Proceedings of the National Academy of Sciences of the United States

of America, 43(2):236–238.

[Friedberg, 1958] Friedberg, R. M. (1958). Three theorems on recursive enumeration. i.

decomposition. ii. maximal set. iii. enumeration without duplication. The Journal of Symbolic

Logic, 23(3):309–316.

[Harrington, 1980] Harrington, L. A. (1980). Understanding Lachlan’s monster paper.

Handwritten Notes.

[Kleene, 1936] Kleene, S. C. (1936). General recursive functions of natural numbers.

Mathematische Annalen, 112:727–742.

[Kleene, 1943] Kleene, S. C. (1943). Recursive predicates and quantifiers. Transactions of the

American Mathematical Society, 53(1):41–73.

423

[Kleene, 1952] Kleene, S. C. (1952). Introduction to Metamathematics. Bibliotheca

Mathematica. Wolters-Noordhoff.

[Kleene and Post, 1954] Kleene, S. C. and Post, E. L. (1954). The upper semi-lattice of degrees

of recursive unsolvability. Annals of Mathematics, 59(3):379–407.

[Lachlan, 1966] Lachlan, A. H. (1966). Lower bounds for pairs of recursively enumerable

degrees. Proceedings of the London Mathematical Society, s3-16(1):537–569.

[Lachlan, 1976] Lachlan, A. H. (1976). A recursively enumerable degree which will not split over

all lesser ones. Annals of Mathematical Logic, 9(4):307–365.

[Lachlan, 1980] Lachlan, A. H. (1980). Decomposition of recursively enumerable degrees.

Proceedings of the American Mathematical Society, 79(4):629–634.

[Leonhardi, 1996] Leonhardi, S. D. (1996). Nonbounding and Slaman triples. Annals of Pure

and Applied Logic, 79(2):139 – 163.

[Leonhardi, 1997] Leonhardi, S. D. (1997). Generalized nonsplitting in the recursively

enumerable degrees. The Journal of Symbolic Logic, 62(2):397–437.

[Martin, 1966] Martin, D. A. (1966). Classes of recursively enumerable sets and degrees of

unsolvability. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 12(1):295–

310.

[Miller, 1981] Miller, D. P. (1981). The relationship between the structure and the degrees of

recursively enumerable sets. PhD thesis, The University of Chicago, Chicago, Illinois.

[Muc̆nik, 1956] Muc̆nik, A. A. (1956). On the unsolvability of the problem of reducibility in the

theory of algorithms. Doklady Akademii Nauk SSSR (Russian), 108(2):194–197.

[Post, 1944] Post, E. L. (1944). Recursively enumerable sets of positive integers and their decision

problems. Bulletin of the American Mathematical Society, 50(5):284–316.

[Post, 1948] Post, E. L. (1948). Degrees of recursive unsolvability: preliminary report (abstract).

Bulletin of the American Mathematical Society, 54(7):641–642.

424

[Post, 1965] Post, E. L. (1965). Absolutely unsolvable problems and relatively undecidable

propositions - account of an anticipation. In Davis, M. D., editor, The Undecidable. Basic

Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, pages

338–433. Raven Press, Hewlett, N.Y.

[Robinson, 1971] Robinson, R. W. (1971). Interpolation and embedding in the recursively

enumerable degrees. Annals of Mathematics, 93(2):285–314.

[Sacks, 1963] Sacks, G. E. (1963). On the degrees less than 0’. Annals of Mathematics,

77(2):211–231.

[Sacks, 1964] Sacks, G. E. (1964). The recursively enumerable degrees are dense. Annals of

Mathematics, 80(2):300–312.

[Shore and Slaman, 1990] Shore, R. A. and Slaman, T. A. (1990). Working below a low2

recursively enumerably degree. Archive for Mathematical Logic, 29(3):201–211.

[Shore and Slaman, 1993] Shore, R. A. and Slaman, T. A. (1993). Working below a high

recursively enumerable degree. The Journal of Symbolic Logic, 58(3):824–859.

[Slaman, 2015] Slaman, T. A. (2015). Personal communication (Oct. 29, 2015).

[Soare, 1987] Soare, R. I. (1987). Recursively Enumerable Sets and Degrees. Springer-Verlag

New York, Inc.

[Soare, 2016] Soare, R. I. (2016). Turing Computability, Theory and Applications. Springer-

Verlag Berlin Heidelberg.

[Turing, 1936] Turing, A. M. (1936). On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265.

[Turing, 1939] Turing, A. M. (1939). Systems of logic based on ordinals. Proceedings of the

London Mathematical Society, s2-45(1):161–228.

[Yates, 1966] Yates, C. E. M. (1966). A minimal pair of recursively enumerable degrees. The

Journal of Symbolic Logic, 31(2):159–168.

425

