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Abstract

The dissertation presents the research work on the inference of cerebral white

matter fibres from diffusion tensor MR images. It also describes some pre-

liminary work on sulci characterisation in structural MR images, in order

to explore the graph based methods for shape analysis. The methodology

is subsequently extended to diffusion MRI analysis. The overall research

involves computer vision and statistical pattern recognition techniques.

We propose a framework for inferring white matter fibres from diffusion

MR images. Graph based methods are used to represent the diffusion MR

images and to extract features. Feature selection and machine learning tech-

niques are used for the classification of the white matter fibres. An evaluation

of the methodology is conducted.

In the white matter fibre inference, four similarity measures are adopted

for fibre classification, namely the Riemannian affine invariant metric and

Log-Euclidean metric; and the proposed shape-angle measure and the heuris-

tic method. Among them, the heuristic method achieves the best average

classification rates. On an average, they are 74.58% using one brain, 85.56%

using two brains and 87.86% using three brains, based on diffusion tensor

MR images.

As a preliminary study, we also propose a framework for sulci character-

isation. Graph based methods are explored; and the average classification

accuracy rate in 30 runs is 86.56% using the heat kernel signature, and it is

87.33% using the zeta function traces.
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Chapter 1

Introduction

1.1 Background

The main theme of this dissertation is the inference of the white matter

fibres in diffusion tensor magnetic resonance (MR) images of the brain. It

starts with a preliminary study on the sulci characterisation in structural

MR images, exploring the feasibility of using graph based methods.

This chapter describes the core concepts of shape analysis and medical

imaging techniques, the aim and motivation of the research, and the structure

of the dissertation.

We live in the world surrounded by objects: trees, buildings, cars and

people, etc. The geometry of an object is known as a shape. A shape

can be represented by identifiable points known as landmarks. An object

can be depicted by a boundary model using points, curves or surfaces, or

a transformation model like splines or a graph. A structure of the brain is

considered as a shape, too.
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The study of shape and structure is a fundamental topic in computer

vision and pattern recognition. Kendall gives a definition in mathematical

terms: shape is “what is left when the differences which can be attributed to

translations, rotations, and dilations have been quotiented out”[40]. Human

vision is capable of recognising shapes, no matter how they are arranged,

projected and even partially occluded. Computer vision aims to replicate

such a remarkable functionality of the human vision system to some extent.

The concept of shape was realised early in scientific research. In 1638,

Galileo [36] illustrated the difference in shape of the bones of small and large

animals (Fig.1.1).

Figure 1.1: Differences of animal bone shapes [36]

Shape analysis plays an important role in object classification and scien-

tific research. For example, the shapes of human skulls assist archaeologists

to identify the races and time; and the shapes of leaves can identify cer-

tain plant species [32]. In neuroscience, a change in brain structure could

be an indicator of neural degeneration or a damage. Early diagnosis is cru-

cial for a better treatment response and prognosis. For instance, cerebral

atrophy, enlarged ventricles are associated with Alzheimer’s disease. In psy-

chiatry, studies suggest that white matter diseases and unusual neural fi-
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bre organisation are linked to abnormal human behaviors[61][49]. As Crow

states, “schizophrenic symptoms have their origin in the variations in inter-

hemispheric connections”[24].

The detection of white matter fibres is not trivial. Before magnetic res-

onance imaging MRI was invented in the 1980s, invasive methods were ap-

plied for the detection. For example, postmortem dissections were used to

find the white matter tracts [18]. In 1795, Johann Reil (1759-1813), Pro-

fessor of anatomy, developed a method based on soaking a specimen of the

human brain in alcohol to make it easier for dissections [58]. He found the

white matter bundles running beneath the major convolutions of the brain,

which were confirmed by Karl Burdach a decade later. Reil and Burdach

discovered a number of major white matter tracts, laying a foundation of

neuroscience. Theodor Meynert (1833-1892), Professor of psychiatry, further

advanced the discoveries and associated the white matter tracts with brain

function and mental illness. Meynert also categorised the white matter fibres

as project fibres that consist of ascending and descending pathways arising

and terminating in the cortex, commissural fibres connecting cortex between

the cerebral hemispheres, and association fibres connecting cortical regions

within a hemisphere [50]. These studies were conducted on cadaver brains.

Some of the neural fibre tracts are illustrated in Figure 1.2.

The first water self-diffusivity measurements using nuclear magnetic res-

onance were reported by Carr and Purcell in 1954 [16]. This led to the

discovery of diffusion MRI in the mid-1980s, also its successful application

to tissue characterisation [66]. Diffusion MRI can be used for noninvasive

examination of the living brain, called in vivo. Derived from diffusion MRI,
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Figure 1.2: An illustration of the white matter tracts in human brain, showing
the U-shaped fibres (red) and the long association bundles (blue). [18].

diffusion tensor MR images provide new means to explore tissue structure at

different levels of hierarchical human brain organisation.

In structural MR images, the white matter is shown as a uniform grey

mass, no white matter fibres can be seen. To exploit fully the potential of

diffusion MRI, and provide a new paradigm of characterising white matter

fibres, this dissertation describes how white matter fibres can be inferred by

using computer vision, statistical pattern recognition, and machine learning

(Chapters 4-6). These techniques are initially used for the characterisation

of the sulci in the simpler case of T1-weighted MR images (chapter 3).

1.2 Aim and motivation

The first mathematical model of diffusion MRI was proposed by Basser et

al. in 1994 [7]. It provides useful geometrical information for quantitative

measurements of the three-dimensional anisotropy in tissues.
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However, the diffusion model has its limitations. It assumes a single

diffusing process that propagates in time and space in a Gaussian manner,

which does not reflect reality. This can result in inaccurate quantitative

measurements. The diffusion model is also unable to deal with the white

matter fibre crossing problem, but the diffusion model itself is not the subject

of this study.

Furthermore, partial volume effect exists in MR images, meaning multiple

types of tissues and/or multiple white matter fibres occupy one image voxel.

Given these obstacles, this study aims to find a way of characterising white

matter fibres, using the geometric information derived from diffusion tensor

MR images.

The aim of this research is to develop a graph based framework for the

inference of the cerebral white matter fibres from diffusion tensor MR images,

and develop novel shape descriptors to produce features for machine learning

and MR image analysis. A preliminary study on sulci detection in structure

MR images is also conducted.

The motivation is to assist the diagnosis of neurological diseases and psy-

chiatric disorders related to the white matter fibres, and presurgical planning.

The primary goal of the research is to develop a workable framework and cre-

ating shape descriptors for inferring white matter fibres from diffusion MRI.

1.3 Research questions

The research questions are

(1) can spectral graph approaches and machine learning methods be used
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for sulci characterisation? if so, how to establish a framework for that?

(2) can spectral graph approaches and machine learning methods be ex-

tended for the white matter fibre inference? if so, how to establish a frame-

work for that?

(3) can feature selection be used for the white matter fibres classification

on a manifold? if so, how to select the best features? and what is the optimal

number of features?

1.4 Contributions

The contributions described in this dissertation are

(1) proposing a novel graph based framework of characterising the sulci

in structural MR images of the brain, and creating useful features, from

both the heat kernel signature and the zeta function trace, for discriminant

analysis classification.

(2) proposing a novel graph based framework of inferencing white matter

fibres from diffusion MR images of the brain, and creating useful features

from the elementary symmetric polynomials for the inference of white matter

fibres.

(3) using a feature selection method for the white matter fibre classifi-

cation on manifolds; with small numbers of features, optimal classification

results are achieved.

(4) developing a semi-automatic system for the diffusion tensor sample

labelling.

(5) evaluating the methodology of the inference of white matter fibres us-
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ing real diffusion MR images. With small numbers of datasets, the evaluation

proves that the methodology is useful.

1.5 Methodology

The research work begins with a preliminary study for the characterisation

of the sulci in structural MR images, to gain insight into how well the graph

based approaches work for MR image analysis. After a successful trial, the

methodology is then extended to the inference of the white matter fibres in

diffusion tensor MR images.

The methodology of this research includes

(1) statistical shape analysis. The structural MR images (sMRI) are

analysed in Euclidean space; while the diffusion tensor MR images (DT-

MR) are analysed on the Riemannian manifold, where angular data can be

expressed and computed properly. This is needed because diffusion tensor

images have both magnitudes and angles.

(2) spectral graph theory is used for shape representation and analysis.

The heat kernal signature and the zeta function are used as features extracted

from structural MR images, while symmetric elementary polynomials are

used as features, extracted from diffusion tensor MR images.

(3) Linear discriminant analysis is applied to the sulci classification, while

feature selection and support vector machine (SVM) are used for the fibre

classification, while linear discriminant analysis is applied to the sulci classi-

fication.
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1.6 Overview of the dissertation

The structure of the dissertation is:

Chapter 2 is a review of the literature. The first part is about the theoret-

ical aspects, such as the anatomy of the human brain, MR physics, diffusion

MRI, graph theory, and machine learning. The second part reviews the re-

lated methodologies, including shape analysis techniques for diffusion MRI,

especially those for inferring the white matter fibres and detecting the sulci.

Chapter 3 presents a preliminary study, concerning the detection of the

brain sulci in structural MRI. Both the heat kernel signature and the zeta

function trace are used to extract features respectively. The results of clas-

sification are presented.

Chapter 4 presents the experimental work on inferring white matter fibres

from diffusion tensor MR images. It describes the work on exploring the

properties of diffusion MRI, which could be useful for the white matter fibre

inference.

Chapter 5 describes a framework for the inference of white matter fibres

from diffusion tensor MRI. Elementary symmetric polynomials are used to

extract features. Feature selection and support vector machine are used for

classification. The results of fibre classification are shown and analysed.

Chapter 6 presents an evaluation of the methodology used to infer the

white matter fibres, which is conducted on real diffusion tensor MR images

of several brains.

Chapter 7 is a conclusion, discussions and the future work.
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1.7 Summary

This chapter describes the context of research and some core concepts. It

also describes the aim and the motivation of the research, as well as the

contributions, and the structure of the dissertation.

The research concerns the inference of the white matter fibres from dif-

fusion tensor MR images, driven by its medical relevance. We believe that

the research outcomes not only can be applied to deepen our understanding

of the human brain, but also benefit neurological and psychiatric studies.
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Chapter 2

Literature Review

The goal of the research is to characterise the white matter fibres in diffusion

MR images. White matter fibres cannot be detected directly, however they

could be inferred by diffusion tensor image analysis.

As a preliminary study, the characterisation of the sulci in structural MRI

is also explored. The related work is first reviewed briefly.

To appreciate the related state-of-the-art methodologies and to identify

the gaps in MRI research, a review of literature is presented. It covers the

following main topics:

1. The anatomy of the human brain, which introduces the sulci and the

white matter fibres.

2. Neuroimaging modalities, leading to the importance of magnetic reso-

nance imaging, especially diffusion MRI and structural MRI.

3. Statistical pattern recognition, focusing on structure detection and clas-

sification in image analysis. This includes feature selection and machine

learning.

25



4. Spectral graph theory for shape analysis.

2.1 The anatomy of the human brain

The human brain is the most complex organ in the body. Brain structures

vary in shape across individuals. Hence the detection and classification of

brain structures are technically demanding. The human brain comprises of

the white matter, grey matter and the cerebrospinal fluid (CSF).

The brain has around 100 billion neurons [10], which are the most impor-

tant cells of the central nervous system. A neuron is an electrically excitable

cell that receives, processes and transmits information through electrical and

chemical signals. It has the main cell body, a bundle of axon or white mat-

ter fibres and a branch of synapses (Fig.2.1). Neurons are linked together

electrically and chemically through synaptic connections, which form the

neural network that allows information passing. In short, neurons sense the

changes, communicate the changes to other neurons and command the body’s

responses to these sensations[10].

Figure 2.1: White matter in the human brain [75].

Figure 2.1 (left) shows the structure of a neuron. It consists of the cell
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body with the nucleus, the synaptic terminals for inputting signals, the axon

for conducting signals, and the dendritic branches for outputting signals.

The axon is known as the white matter fibre, which is 5-10 micrometer (µm)

in diameter. Figure 2.1 (right) shows that neurons are wired together by the

axons. White matter fibres in an image element (voxel) are referred as a fibre

bundle.

White matter fibres enable the communication of different regions of the

brain, receive information and control the biological systems in the human

body. The white matter fibres develop over a person’s lifetime. They can be

damaged by brain injuries, diseases and ageing.

The neural network plays an important role in normal cognition, percep-

tion and motor skills. Any damage to the neural network can have devastat-

ing consequences, such as schizophrenia[35]. Currently, little is known about

human brain connectivity. Therefore the identification of the white matter

fibres in medical images is crucial for neuroscience in general, and for brain

connectivity studies in particular.

This identification is a long-standing and challenging task, due to the

large number of regions, pathways and individual variability in the brain

anatomy, and also the complex relationship between region and interregional

connectivity, as well as the limitations of neuroimaging technologies and im-

age analysis methods.
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2.2 Neuroimaging modalities

Neuroimaging is used to examine the brain structures, in order to develop

effective therapeutic interventions, and improve our ability to correlate be-

havioural deficits with structural or functional dysfunction.

For different purposes, a number of neuroimaging modalities have been

used for imaging the brain, such as computed tomography (CT), positron

emission tomography (PET), electroencephalography (EEG), magnetoen-

cephalography (MEG), and magnetic resonance imaging (MRI)[10].

CT captures a series of X-ray images of the head from different directions.

It produces good quality images of the brain within a few minutes. A CT

scan is able to show swelling from tissue damage in the brain, bleeding and

the ventricle size. It is often used in an emergency as a diagnostic imaging

modality for head trauma, stroke and haemorrhage, due to its accuracy,

reliability, safety and wide availability.

PET is a functional imaging modality that produces three dimensional

images of the body. It requires a positron-emitting radionuclide (tracer) to be

injected into the body to enable the concentrations of tracer to be detected,

which reflects the tissue metabolic activity. This is useful for assisting tumor

and cancer diagnosis.

EEG is the recording of the brain’s spontaneous electrical activity in the

scalp over time (20-40 minutes). It is primarily used to diagnose epilepsy,

sleep disorders, coma and brain death.

MEG is a functional neuroimaging technique that records the magnetic

field produced by electrical currents occurring naturally in the brain. MEG is

used for determining the function of different regions of the brain, so it is also
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called functional MRI (fMRI). fMRI measures blood-oxygen-level dependent

(BOLD) signals which reflect the brain activity [37].

MRI includes structural MRI (sMRI), diffusion MRI (dMRI) and func-

tional MRI. sMRI shows the general appearance of the anatomical structures

in the brain, such as the ventricles, grey matter and white matter. However,

the white matter fibres cannot be seen in MR images.

Diffusion MRI (dMRI) is able to capture the diffusion process of water

molecules in biological tissues in vivo and noninvasively. The intensity of

each image element (voxel) reflects the best estimate of the rate of water

diffusion at that location. In the early days, dMRI was used to detect acute

brain ischemia successfully [52]. Later it has been used for cancer detection

and the investigation of the brain connectivity, in order to understand certain

brain diseases and neurological disorders [29].

These imaging modalities offer opportunities for us to deepen our un-

derstanding of the human brain. They have advantages and disadvantages.

EEG equipment cost is low but it cannot detect electrical signals in the deep

brain. PET and fMRI can measure localised changes in cerebral blood flow

that is related to neural activity, but PET requires positron-emitting ra-

dioisotopes with short half-lives, produced by a cyclotron close to the PET

imaging facility. EEG and MEG have high temporal resolution when mea-

suring brain activity, but it is difficult to localise that activity. fMRI is

better at localising brain activity with good spatial resolution, but provides

little information about temporal interactions between the brain regions.

These imaging modalities are complementary. For example, in the human

connectome project, fMRI, dMRI, MEG and EEG data are all used to char-
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acterise the brain function and connectivity, and their variability in healthy

adults[70].

For shape analysis of the human brain, structural MRI and diffusion MRI

provide more superior and relevant information. Diffusion MRI is unique in

probing water diffusion in tissue micro structure, so it can be used to infer

the white matter fibers in the living brain.

2.3 Magnetic resonance imaging

In 1945, nuclear magnetic resonance (NMR or MR) was discovered by Purcell

et al.[56]. In the following year, Bloch et al. independently investigated

nuclear induction and nuclear magnetic resonance [14]. Purcell and Bloch

received the 1952 Nobel Prize in Physics for their work on nuclear magnetic

induction.

In 1973, Lauterbur proposed the mathematical formation for MR images

[42]. In 1977, Mansfield created the slice selection imaging technique for spin

based MRI [46]. The following year, Mansfield produced the first MR im-

ages of the whole live human body successfully[47]. Lauterbur and Mansfield

jointly won the Nobel Prize in Physiology or Medicine in 2003, for the devel-

opment of magnetic resonance imaging. This is one of the most important

breakthroughs in modern medicine.

The principles of MRI are described as follows: The human body consists

of around 65% water; when the body is placed in a strong and highly uniform

magnetic field, interactions of the protons (namely hydrogen-1 nuclei) of

the water within the body and the magnetic field occur. The spins of the
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protons of free water generate the signal of a tissue. After a high radio

frequency pulse is applied to excite the spins, the incurred net magnetisation

starts to precess around the main magnetic field with a resonant frequency

[72]. Then the MR signals are amplified and collected for the MR image

reconstruction. By using different imaging protocols, or sequences, a variety

of MR images with different image contrast can be generated, and certain

tissues and structures can be emphasised. For example, T1-weighted MR

images show detailed tissues and bone structures, while T2-weighted MR

images depict fluid, ligaments and fatty tissues very well.

2.3.1 Diffusion MRI

Diffusion MRI is a type of magnetic resonance imaging, related to water

diffusion. In 1827, Robert Brown first noticed particles of pollen floating in

water moving randomly [15]. It was named as Brownian motion (Fig.2.2). In

1905, Albert Einstein explained the molecular diffusion, based on the random

motion of molecules caused by their thermal energy.

Figure 2.2: Left: Biological cells may hinder the Brownian motion of extra-
cellular water molecules; Right: Inside each cell, diffusion may be restricted
by the cellular membranes [8].
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In 1985, the pioneering work of Le Bihan and Breton showed that water

diffusion in the brain could be imaged through magnetic resonance imag-

ing, and that water diffusion could provide unique information on the tissue

architecture [29]. These are the principles of diffusion nuclear magnetic res-

onance.

In 1990, Moseley et al. discovered that water diffusion in white matter

fibres was anisotropic, faster in the direction of the fibres and slower per-

pendicularly to them [52]. The experiments were carried out on cats. These

discoveries established the theoretical foundation of inferring the existence

of neural fibres in the human brain by examining the rate of water diffusion

[28].

In 1994, Basser et al. proposed the first mathematical model of diffusion

MRI[7]. It can be used to extract fibre direction in the brain images, but fails

in regions containing multiple fibre orientations. The limitation of the model

is due to the fact that it describes a white matter population in one voxel, and

assumes a single Gaussian diffusion compartment for each voxel. Therefore,

it is unable to adequately describe diffusion functions when there are white

matter crossings [69]. Several studies have been conducted to improve the

diffusion model, but this has not been successful[28]. The limitation could

affect the inference of the white matter fibers.

2.3.2 Diffusion tensor MRI

To determine the true direction of the highest diffusivity properly, Basser et

al. published their experimental work on diffusion tensor imaging (DTI)[7].

DTI is a special form of diffusion MRI, it can be mathematically transformed
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from diffusion-weighted MR images.

In a diffusion tensor image, every image element (voxel) is a positive

definite tensor, defined as a 3× 3 symmetric matrix. The tensor is depicted

by an ellipsoid, or a sphere in a special case. The tensor can be decomposed to

produce 3 eigenvalues and 3 eigenvectors. The eigenvalues describe the axis

lengths of the ellipsoid, while the eigenvectors indicate the directions of the 3

perpendicular axes [1]. The tensor has both magnitude and orientation. The

direction of the longest axis length is indicated by the principal eigenvector,

which determines the orientation of the tensor.

Diffusion tensor images contain information about the orientation of cere-

bral white matter fibres, it can be used to study human brain connectivity,

which can be visualised by DTI fibre tractography [68]. DTI fibre tractogra-

phy can produce coherently ordered fibre tract trajectories within the brain.

This is based on the idea that in ordered fibrous tissues, the eigenvector

associated with the largest eigenvalue within a voxel is parallel to the local

fibre direction [7]. There are deterministic tractography and probabilistic

tractography. For the former, the streamline tractography algorithm inte-

grates voxelwise fibre orientations into fibre pathways [51]; the seed point

is required and error propagation can occur. For the latter, the accuracy

of the probability distribution model can be affected by the diffusion from

non-principal orientations [39]. There is high uncertainty in the principal

diffusion direction where fibre crossing exists. Image noise can also affect the

DTI fibre trajectories [11].

Algorithms were developed at the end of 1990s to enable fibre tracking

by connecting those tensor voxels. However, fibre tracking is not the goal
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of this study. As stated, this dissertation focuses on the inference of the

white matter fibres. We hope that the combination of new shape descriptors

derived from diffusion MR images, feature selection and machine learning

techniques could create a new paradigm for the characterisation of the white

matter fibres.

2.4 Statistical pattern recognition for shape

analysis

Statistical pattern recognition, especially together with machine learning,

is a powerful paradigm for shape analysis. The theories are expressed by

Devijver and Kittler [26].

Statistical learning theories [71] state:

(a) in some instances mathematical models can be derived from the data, as

the variability of the pattern representation;

(b) statistical distributions are often used as a model for the pattern gener-

ation, and the classification problem can be treated as a test of hypothesis,

or a special case of the statistical decision theory problem;

(c) statistical decision theory applies statistical decision functions, their mer-

its and optimality criteria.

There are limitations to the theories. The outcomes of classification usu-

ally are a clear-cut (yes or no) answer, and it is therefore unable to deal

with contextual or structural information. For this reason, some conditions

are specified for a classification task. For example, the distance between two
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pattern representations, as a similarity measurement, is usually integrated

into a decision making process in machine learning. This assumes that a

one-to-one relationship between the condition and the similarity exists, but

this is not realistic in some circumstances.

Statistical pattern recognition is useful for detecting anatomical struc-

tures in medical images. It is sometimes related to statistical shape model-

ing. In 1992, Cootes et al. proposed the point distribution models (PDM)

for shape variability modeling [22]. It assumes that points in a shape tend

to move in a correlated way. A set of aligned shapes is then described by (1)

finding the mean shape and the deviations from it; (2) calculating the covari-

ance matrix of the data, and computing the eigenvalues and eigenvectors of

the matrix; and (3) finding the modes of variation defined by eigenvectors.

With a set of training images, geometric variability of the anatomical struc-

tures can be modeled through parameterisation. However, shape variations

and image noise can make point-to-point correspondence difficult.

The work of sulci line automatic detection is described by Caunce and

Taylor in 2001[19]. Both the PDM and the active shape models (ASM) [21]

are applied for statistical modeling. The ASM iteratively deforms to fit to

an example of the object in a new image, while the iterative closest point

(ICP) algorithm [12] is used to find the global alignment of the points and

the specific point correspondences. Although these examples are about shape

modeling, the use of the eigensystem is thought provoking.

Most work on statistical shape analysis has applied linear methods. The

drawback is that the assumptions of multivariate Gaussian model cannot

always be met. For instance, there is the intrinsic heterogeneity within the
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tissue classes in the MR images. This imposes a difficulty in the process of

statistical pattern recognition.

2.5 Graph theory for shape analysis

In the 18th century, the problem of the seven bridges of Königsberg led to

the development of Eulerian graph theory and topology [31]. It was about

finding a path through the seven bridges in the city and crossing each bridge

once only. For this, a graph was produced in which each area serves as a node,

and each bridge becomes an edge (Figure 2.3). In this example, an object

or a scene is represented by a graph, which describes the relation between

objects at an abstract level. This was the root of graph theory; a graph can

be a mathematical model for analysing real world problems topologically,

being used in physics, chemistry and medical images.

Relational graphs are an important representation of image structure in

high level computer vision tasks [76]. In 1971, Barrow and Popplestone [6]

described their seminal work on using a relational graph representation of

the scenic structure. Since then graph representations for computer vision

research have been flourishing. One of the advantages of using a graph based

approach is that image processing relies on topological relations, rather than

on exact scene measurements. However, the computation would be expensive

when it is based on pairwise graph nodes.

With a graph representation, mathematical methods can be performed

concisely. This is the rationale of using graph based approaches in this study,

for the detection of the brain structures in MR images.

36



Figure 2.3: Königsberg seven bridges and a graph.(a) a map of Königsberg
in Euler’s time, with the Pregel River and seven bridges highlighted. Four
areas are represented as A, B, C and D; (b) is a graph for (a). The nodes
denote the four areas and the graph edges depict the seven bridges. Modified
from en.wikipedia.org.

Graph characterisation refers to the study of graph properties, which

is related to shape analysis. Graph properties have been explored in the

literature. e.g. the heat kernel trace is used to specify the flow of information

across a network [65], or on a manifold [79]. The solution to the heat kernal

is computed by the exponentiation of the Laplacian eigensystem over time

[60]. Graph approaches can be coupled with machine learning.

Next, we discuss three important aspects of shape analysis using graph

theory: (a) shape descriptor; (b)(dis)similarity measurement; and (c) appli-

cations.

2.5.1 Shape descriptor

A shape descriptor contains geometrical information of the shape of an ob-

ject, which is used for (semi)automatic object recognition in image analysis.
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Some existing shape descriptors are:

Heat kernel signature

In 2009, Sun et al. proposed a shape descriptor called the heat kernel signa-

ture (HKS) to depict shape properties [65]. Geometric information is derived

from the graph Laplacian matrix.

In 2011, Castellani et al. describe a new shape descriptor for brain struc-

ture classification in MR images [17]. The structures are characterised by

pairwise dissimilarities. The local heat kernel values at each data point are

used to construct a histogram, and the histograms from all the data points

are merged into a feature vector, known as the global heat kernel signature

(GHKS):

GHKS(M) = bhist(Ht(M), ...hist(Htn(M))c

where Hti(M) = {hti(x, x),∀x ∈ M} and M is a manifold; and hist(.)

is the histogram operator. This shape descriptor encodes the distribution

of local heat kernel values. The Jensen-Shannon divergence is used as the

dissimilarity measure on histograms. This method is, however, sensitive to

image noises.

Zeta function trace

In 2009, Xiao et al. report that the trace of the zeta function can be

used for graph characterisation[79]. Some useful permutation invariants are

identified:

1. the trace of the heat kernel;

2. the heat content, which can be expanded as a power series in time; and
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3. the derivative of the zeta function.

McKay also found that the derivative of the zeta function at the origin is

linked to the number of spanning trees in a graph [48]. Ren et al. propose

a spectral analysis method for graph characterisation, using the polynomial

coefficients of Ihara zeta function [59].

Wave kernel signature

The heat kernel signature (HKS) has a limitation. It is dominated by

information from low frequencies that describe the global properties of the

shape, so that high precision shape analysis is difficult to achieve. To over-

come this problem, Aubry et al. create the wave kernel signature as a shape

descriptor [3]. The Schrödinger equation is used to express the temporal

evolution of quantum mechanical particles.

In 2014, Furqan et al. developed the Gaussian wave packet to provide

richer structural information, using the eigenfunctions of the edge based

Laplacian matrix derived from the data [4]. The drawback is that the compu-

tational cost for the Laplacian matrix is much higher than that using vertex

based methods.

2.5.2 Dissimilarity measurement

In computer vision, dissimilarity measures the difference of two shapes. Given

a descriptor is formulated, the distance between two shapes can be computed

as the distance between the associated descriptors.

Normalised weighted spectral distance

Konukoglu et al. proposed the normalized weighted spectral distance
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(nWSD)[41]. For two closed bounded domains with smooth boundaries,

Ωλ,Ωξ ⊂ Rd, their spectra are given as the sequences {λn}∞n−1 and {ξn}∞n−1

respectively.

Denote ρ(Ωλ,Ωξ)
.
=
[∑ ∣∣∣ 1

λn
− 1

ξn

∣∣∣p] 1
p

, where p > d/2,

The nWSD is defined as ρ̄(Ωλ,Ωξ)
.
=

ρ(Ωλ,Ωξ)

W (Ωλ,Ωξ)
∈ [0, 1]

where W (Ωλ,Ωξ)
.
=
{
C +K

[
ς(2p

d
)− 1

(
−1

2

) 2p
d

]} 1
p

ς(.) represents the Riemannian zeta function, and C and K are the shape

based coefficients. Noticeably, the nWSD contains the zeta function in W ,

using the shape information encoded in the Laplace spectra, and also the

entire eigenvalue sequence. Thus, the geometrical information is better used

than that of some other discrepancy measurements, e.g. the root-mean-

square error (RMS).

2.5.3 Graph theory in medical image analysis

In medical image analysis, some graph based approaches have been proposed

for classification and detection in MRI. Cocosco reports that the minimum

spanning tree is used for brain tissue classification [20]. Crum describes a

spectral clustering method for tissue classification in brain MRI [25], where

a label fusion technique is proposed to reduce the errors of random labeling

and image registration (alignment). Criminisi et al. propose the random

regression forests for the automatic detection of anatomical structures in

3D CT scans. An information theoretic metric is used for the regression tree

learning [23], but the computational cost can be very high, and the detection

errors could be propagated from one level to the next.
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2.6 Shape analysis in non-Euclidean space

Non-Euclidean space can be a manifold, or a curved surface. It is a topolog-

ical space that is regarded as Euclidean space locally. Riemannian geometry

is applicable to such a manifold; it plays an important role in many computer

vision tasks, including shape analysis. Statistical characterisation of medical

data is best modeled as elements of a Riemannian manifold [34].

Diffusion tensor images are suitable to be studied in non-Euclidean space,

namely the Riemannian manifold. This is because the tensor resides on a

curved manifold naturally, where its magnitude and the principal angle can

be expressed conveniently. However, some standard statistical formula for

shape analysis are no longer applicable, such as the mean, distance and

variance. Therefore, “curved statistics” is needed.

In 2006, Pennec et al. proposed a Riemannian framework for tensor com-

puting [55]. The initial intention was to deal with the negative eigenvalues

in tensor computing and interpretation.

Here the tensor refers to a 3× 3 symmetric positive definite matrix. The

Riemannian manifold for the tensors is a convex half-cone space, where the

conventional additive operation is not suitable.

For tensor computing, Pennec et al. define an affine invariant Riemannian

metric. It is a continuous collection of scalar products (or norms) on each

tangent space, where at least one minimising geodesic between any two points

on the manifold exists [55]. The geodesic distance between two tensors D1

and D2 on the Riemannian manifold is denoted as

dD1,D2 = ‖log(D
−1
2

1 D2D
−1
2

1 )‖F ,

where ‖.‖F refers to the Frobenius norm of a matrix.
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In Riemannian geometry, the transformation between the manifold and

the tangent space must be invertible, to ensure the tensor computing on both

a manifold and the tangent plane is equivalent.

Let the vector (pq) be a vector of the tangent space at point p, such a

vector may be identified to a point on the manifold using the exponential

map q = Expp(pq). Conversely, the logarithmic map is used to map almost

any bi-point (p, q) into a vector pq = Logp(q) of TpM [30]. This suggests

that the distance of two tensors can be computed on a manifold, as well as

on the tangent plane.

The basic operation in Riemannian manifolds is the scalar product. The

exponential map, or Exp operator, is for geodesic shooting parameterised by

the initial tangent; while the logarithm map, or Log operator, is for unfolding

the manifold in the tangent space along geodesics. They work in the local

domain but can depict a shape in the global domain, although it is limited

by the cut locus. Nevertheless, it covers the entire manifold if geodesically

complete, meaning the geodesic shooting is within the boundary [55].

The following examples demonstrate image analysis in non-Euclidean

space.

Zhang describes the smoothing of structural and diffusion MR images in

the non-Euclidean space [80]. The heat kernel signature is applied. The Rie-

mannian weighted mean is computed iteratively using the gradient descent

algorithm.

Lenglet et al. develop a Riemannian framework for the white matter
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connectivity mapping, using diffusion tensor MRI [45]. The MRI images are

treated as a Riemannian manifold M, and the Laplace-Beltrami operator is

applied on M. Then the diffusion properties are used to derive its geometry.

By using the facial surface normal data, Smith presents his work on face

modeling using shape from shading techniques [63]; while Wu reports hers

on gender classification applying feature selection [78].

2.7 Summary

In this chapter, firstly, we introduce medical imaging techniques and the

concepts of shape analysis and Riemannian geometry; secondly, we review

the literature on shape analysis, focusing on statistical pattern recognition

using graph based approaches. As an example, a Riemannian framework for

tensor computing is described. Finally, some examples are presented.

There are few studies using graph based methods for MR image analysis,

especially for the characterisation of white matter fibres in diffusion MR

images. There are also few studies of the sulci detection in structural MR

images. The related work with graph based methods commonly use 2D

images of general 3D objects, rather than medical data. Therefore, there is

a research gap to be filled.

This dissertation describes how the graph based methods are extended

to three dimensional structural and diffusion MR images, and new shape de-

scriptors for statistical pattern recognition are produced. Most importantly,

a novel framework for inferencing white matter fibres in diffusion tensor im-

ages is presented, in which spectral graph approaches, feature selection and
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machine learning are combined. First of all, a study on sulci classification is

presented in the next chapter.
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Chapter 3

Characterising the Sulci in

Structural MR Images

This chapter presents a preliminary study, focusing on structural MR image

analysis using spectral graph approaches. The objective is to test the graph-

based methods using a system simpler than full diffusion tensor MRI: we

apply this approach to characterise sulci in conventional structural MRI of

the brain, and explore the potential of the methodology for diffusion MRI.

Structural MRI data are three dimensional scalar data, while the DT-

MRI data is five dimensional data. The latter not only has magnitude but

also has tensor direction, hence it is more complicated to compute.

The heat kernel and the zeta function, derived from a graph representing

the MR images, are both used to generate features. Machine learning meth-

ods are then applied to the feature for the classification tasks, to classify the

sulci from the background in brain MR images.

This chapter presents the work on, and the results of, the semi-automatic
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suici detection using graph based methods.

3.1 The sulci of the human brain

The sulci are important anatomical structures of the human brain. A sulcus

(pl. sulci)(Fig.3.1) is a depression in the cerebral cortex, the outer layer of

the brain, which surrounds a gyrus (pl. gyri). This creates the distinctive

folded appearance of the brain in humans and other mammals. The sulci

and fissures are both the depressions in the cortex, but fissures are deeper

and larger, which divide the two hemispheres of the brain [10].

Many of the sulci divide functional areas, providing a basis for anatomical

labeling of the cortical surface, and for analysing structural and functional

changes in disease [57]. However, automatic detection of the sulci is difficult,

due to the complex sulcal configurations.

3.2 Methodology of the sulci classification in

MR images

This section describes the methodology of the sulci classification in struc-

tural MRI. This includes image pre-processing, graph representation of the

MRI data, feature extraction, graph characterisation using the heat kernel

signature and the zeta function trace. Statistical pattern recognition meth-

ods, namely supervised machine learning, are used for the classification of

the sulci structures and the background in the MR images.
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Figure 3.1: The sulci of the human brain, visible as the dark areas. The
T1-weighted MRI image is visualised using Matlab; and the MRI data used
are provided by the York NeuroImaging Centre.

3.2.1 MRI data and preprocessing

The T1-weighted structural MR image dataset of the single brain used in

this study has the size of 256 × 256 × 176 image voxels, with the voxel size

of 1mm3, provided by the York Neuroimaging Centre. The MR images are

captured at the magnetic strength of 3 Tesla.

To make the MR images of the brain useful for analysis, image prepro-

cessing is carried out. This includes

(a) striping the skull from the MR images and applying eddy current correc-

tion, using FSL software; and

(b) re-scaling the MR image intensities to the range of 0 to 255, and shifted

to satisfy the Matlab indexing convention, so the MRI data can be displayed

and processed by using Matlab.
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3.2.2 Graph representation and sampling

A graph is represented as G = (V,E), where V = {v1, v2, ..., vn} denotes the

nodes of the graph, and E = {e1, e2, ...em} denotes the edges of the graph

(Figure 3.2). If the objects in an image are related, they are connected by

an edge in the graph.

Figure 3.2: A regular graph representing an image of 3×3 pixels. The graph
nodes are represented by circles, while the graph edges are depicted by lines.
The nodes have no particular orders.

Graph characterisation is performed on feature vectors, which contain

feature values. To extract the features, 100 samples are manually selected

from different regions of the brain in the MR images, in which 50 samples are

from the sulci areas, while the other 50 samples are from their background

area.

A sample is a small subset of the MR images, 3 × 3 × 3 image voxels in

size. It is expressed as a regular graph, similar to Figure 3.3. Each voxel is

regarded as a node in the graph. The central point of the sample is manually

localised by using the 3-view software.

Figure 3.4 shows the three medical orthogonal planes: the sagittal, coro-

nal and transverse planes respectively. The coordinates of the central point

are chosen at the intersection of the cross hair. Together with the neighbor-
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Figure 3.3: A regular graph representing 3×3×2 MR images (2 slices). The
nodes are connected based on the adjacent image voxel. For a structural MR
image, each node can be assigned with an intensity value of the image voxel.
The nodes have no particular order.

ing points (voxels) surrounding the central point, a sample of 3× 3× 3 MR

images is selected. It is used to construct a graph of 27 nodes. Similarly, 100

graphs are produced from the 100 samples.

3.2.3 Spectral graph theory and Laplacian matrix

Graph theory is a branch of mathematics. The spectral graph theory com-

putes the eigenvalues and eigenvectors, known as the spectrum or eigensys-

tem, of the Laplacian matrix of a graph. They are used to determine the

properties of the shape under study, and can be used to create a shape de-

scriptor.

The Laplacian matrix can be used to represent a graph. How to produce

the Laplacian matrix from a graph? Consider a graph G = (V,E), where V

is the set of nodes and E ⊆ V ×V is the set of graph edges. According to the
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Figure 3.4: The coordinates of a point in 3D MR images are chosen at
the cross hair position. There are 3 views: the coronal (top-left), sagittal
(top-right) and transverse (bottom-left) planes. This is visualised from the
structural MRI images under study.

graph theory, there is an adjacency matrix, A, describing the connectivity of

the nodes as below:

A(u, v) =

 1 if (u, v) ∈ E

0 otherwise
(3.1)
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The diagonal degree matrix D has its elements obtained by

D(u, u) =
∑
v∈V

A(u, v) (3.2)

The graph Laplacian matrix, L, is defined by L = D−A. The normalised

graph Laplacian matrix is given by

L̂ = D−
1
2LD−

1
2 , (3.3)

and the eigendecomposition of the normalised Laplacian matrix is

L̂ = ΦΛΦT , (3.4)

where Λ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the elements

of eigenvalues in an ascending order, and Φ = (φ1|φ2|...|φ|V |) is the matrix

with the corresponding eigenvectors as its columns. ΦT is the transpose of

Φ.

The Laplacian matrix is symmetric and positive semi-definite, so all the

eigenvalues of the Laplacian matrix are positive. After sorting the eigenval-

ues in a ascending order, the eigenvector associated with the second smallest

eigenvalue is called the Fiedler vector, which is useful in graph characterisa-

tion [79][62].

However, a simple unweighted graph is insufficient to reflect the changes

of information flow in the graph based diffusion method used. A weighted

graph encodes richer information, in which a weight is computed for every

edge of the graph. When the weight is large, the information flow (also called

the heat flow) can pass through easily, or vice versa.
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The Gaussian weight function, denoted by w(i, j), is used for character-

ising the relationship between different voxels. It is computed by

w(i, j) = exp(
−
∑
d2

k2
); (3.5)

where d is a similarity distance measure. Here
∑
d2 refers to the sum of

the squared intensity differences of the 26 paired adjacent voxels with respect

to the central voxel of the sample. The total 27 intensity values of a given

3×3×3 sample are stored in a vector, and the intensity values of two adjacent

points are stored in two vectors. k is the parameter of the Gaussian width.

Figure 3.5: The second smallest eigenvalues of 100 graphs derived from the
100 samples. Each point represents a second smallest eigenvalue. The two
horizontal lines indicate the means of 0.06 for sulci and 0.14 for the others;
the standard deviation is 0.03 for both the sulci and its background.

Based on an image sample, a weighted Laplacian matrix is computed from

a data graph for shape analysis. For each weighted Laplacian matrix, a set of
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eigenvalues and eigenvectors are obtained by eigendecomposition. Figure 3.5

shows all the second eigenvalues, or the smallest non-zero eigenvalues, calcu-

lated from 100 normalised weighted Laplacian matrices, which are associated

with the 100 samples. The red circles denote the second smallest eigenvalues

derived from the Laplacian matrices that represent the sulci samples, while

the blue stars denote the second smallest eigenvalues from the ones that rep-

resent the background tissues. Figure 3.5 also shows that the two means are

significantly different, suggesting that the sulci and the background may be

separable.

3.2.4 Graph characterisation using heat kernel signa-

ture

The sulci characterisation is equivalent to the characterisation of the graph,

which represents the structural MR images of the brain. In this section, the

heat kernel signature (HKS) from a weighted graph is described.

100 samples are selected from the structural MRI dataset, half from the

sulci areas and the other half from the background regions. They are given

a label: either “sulci” or “the others”. 100 graphs from these samples are

produced. Next, the heat kernel values are computed for a graph of each

sample, based on the formula below.

ht =

|V |∑
i=1

e−λitφiφ
T
i (3.6)

where λi (i = 2, 3, ...n) are the non-zero and not repeated eigenvalues

and φi(x) are the respective eigenvectors. They are decomposed from the
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normalized weighted Laplacian matrix. The heat kernel, ht, is a |V | × |V |

matrix. t refers to the time intervals of the heat diffuse, and φTi is the

transpose of φi.

The heat kernel is a function of time. The chosen time scale and the time

intervals depend on the data and the purpose. When the t is large, the HKS

is better at describing the global shape, while when t interval is small, the

HKS values can capture local structural information [65].

In particular, when the first few time steps are small enough, the heat

kernel signature values could be distinguishable. For example, we choose 30

exponentially increasing time intervals (Fig. 3.6), based on the minimum

and the maximum of the eigenvalues, setting the upper bound and the lower

bound of the t range. This yields a 27 × 27 matrix containing all the heat

kernel signature values.

For all 100 graphs derived from the 100 samples, a feature vector contain-

ing average HKS values at each time interval is computed, giving a 100× 30

matrix of average HKS values. Each column is a feature vector.

There is a need to condense the matrix of the average HKS values, as

visualisation is more easily performed in two or three dimensions.

Principal component analysis (PCA) is used for data condensation. After-

wards, the HKS values are projected onto lower dimension. The first two or

three columns of the condensed heat kernel signature values have the largest

variances of the data. They are used for visualisation.
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Figure 3.6: The t interval value used during the heat kernel signature value
production.

3.2.5 Graph characterisation using zeta function trace

Inspired by the work of Xiao et al.[79], we use the zeta function trace values

to characterise the graph derived from the 3D MR images of the brain, rather

than from 2D images of 3D general objects that the authors do.

The purpose of the study is to identify the sulci and other surrounding

brain tissues. However, the brain images have complex structures, and dif-

ferent brain structures may have similar intensity values in MR images. This

makes the shape analysis challenging.

The zeta function is the moment generating function, from which the heat

kernel trace is calculated. Then the trace of the zeta function for each graph

is computed as a feature vector. For this, 100 samples are selected from the

MRI images in the same way as using the HKS. 50 samples are manually
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selected from the sulci regions, and another 50 samples are selected from the

background areas. They are represented by 100 weighted indirect regular

graphs.

For each graph, a normalised Laplacian matrix is produced. The eigenval-

ues and eigenvectors are computed, the eigenvalues are sorted in ascending

order, and the corresponding eigenvectors are re-arranged. The heat kernel

trace is calculated by

Z(t) = Tr [ht] =

|v|∑
i=1

e−λit (3.7)

where λi refers to the ith eigenvalue and t is the time. Tr denotes the

trace of the heat kernel, ht. Equivalently, the trace of the zeta function is

defined as

ζ(s) =
∑
λi 6=0

(−λi)−s (3.8)

where s represents the sth moment of the zeta function. The graph

characterisation can be achieved by using the moments of the zeta function

trace over time.

In this example, the zeta function traces of 5 moments are computed. As

we have 100 samples, each moment generates 100 zeta function trace values.

Although more moments can be used to compute the zeta function trace, 5

moments are sufficient for classification here.

Statistical pattern recognition techniques are applied to the generated

zeta function values, to classify the sulci and the non-sulci tissues in the MR

images.
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Figure 3.7: The zeta function trace values of the first moment. For the
samples of manually labeled the sulci and their background, the means of
zeta function trace values are 62.73 and 43.81 respectively; and their standard
deviations are 12.98 and 4.47.

The Laplacian spectrum derived from a graph, namely the eigenvalues

and eigenvectors, has a close relationship with the heat kernel trace. It is

permutation invariant, which is important for the characterisation of a graph

representing a shape.

Figure 3.7 shows that the means (horizontal lines) of the zeta function

trace values of the labelled sulci samples and that of the labelled background

are very different. This suggests that the sulci samples could be separated

from the background samples.
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3.2.6 Graph characterisation using zeta function deriva-

tive at the origin

The derivative of the zeta function at the origin is also computed (Fig.3.8).

It is another permutation invariant calculated from the product of the eigen-

values. It has a potential for graph characterisation, because the difference

between the derivative of sulci and that of the background is obvious.

The statistical measurements are summarised in Table 3.1. The mean

values of the zeta function traces of the first moment for the sulci and the

background are significantly different, implying that the zeta function trace

has a strong discriminative power, as does the zeta function derivative at the

origin.

Second eigenvalue Zeta function trace Zeta function derivative
Type sulci others sulci others sulci others
Mean 0.06 0.14 62.73 43.81 6.00 4.32
SD 0.03 0.03 12.98 4.47 0.94 0.65

Table 3.1: Mean and standard deviation of three types of features: the second
eigenvalues, the first moment of zeta function trace values, and the derivatives
of the zeta function.

3.3 Principal component analysis

Principal component analysis (PCA) is a conventional data reduction method

(see Appendix). Both the HKS and the zeta function trace values are high

dimensional data, so the principal component analysis is applied to reduce
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Figure 3.8: The zeta function derivative values at origin. The means is 6.00
for the sulci and 4.32 for the background. The standard deviations are 0.94
for the sulci and 0.65 for the background.

the dimension of the feature data, then the 3 leading features (components)

are used for visualisation.

Figures 3.9 and 3.10 show that the two classes (the sulci and the other

tissues) may be separable after the data projection. By visual assessment,

the PCA performance on the trace zeta function values seems better than

that of the heat kernel signature values. However, only when the feature

data are large, is the application of PCA necessary.

3.4 Linear discriminant analysis

Linear discriminant analysis (LDA), also known as Fisher’s linear discrimi-

nant analysis, aims to project the original data matrix onto a lower dimen-
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Figure 3.9: Projected heat kernel signature values using PCA.

Figure 3.10: Projected zeta function trace values using PCA.
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sional space. The algorithm of LDA [67] is:

(1) calculating the separability between different classes, e.g. the distance of

the means of classes, called the between- class variance (matrix);

(2) calculating the distance between the mean and the samples of each class,

known as the within-class variance (matrix);

(3) constructing the lower dimensional space that maximises the between-

class variance and minimises the within-class variance.

LDA assumes the conditional density functions p(x|y = 0) and p(x|y =

1) are both normally distributed. The transformation matrix, WTran, is

obtained by maximising the ratio of the between-class matrix and the within-

class matrix:

WTran = argmaxW
Trace(W TSbW )

Trace(W TSwW )
(3.9)

where Sb is the between class scatter matrix, and Sw is the within class

scatter matrix. The solution is

WTran = [w1|w2|...|wn], where wi(i = 1...n) are the eigenvectors satisfying

Sbwi = λiSiwi, (i = 1, 2, ...n) (3.10)

which can be resolved by eigendecomposition of the matrix S−1
w Sb. More

details are described in [26].
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3.5 Sulci classification and evaluation

The sulci classification has two stages: (1) using linear discriminant analysis

to project the feature data, so that they can be more easily separated; (2)

using the label information in the training set to build a classifier; then the

classifier is used to predict new label for the test set.

Three quantities are used for the label prediction on a test set: posterior

probability, prior probability and cost. The objective of classification is to

minimise the expected classification cost:

ŷ = argminy=1,...,K

K∑
k=1

P̂ (k|x)C(y|k) (3.11)

where ŷ is the predicted classification;

K is the number of classes;

P̂ (k|x) is the posterior probability of class k for observation x;

C(y|k) is the cost of classifying an observation as y when its true class is k.

Posterior Probability: Let P (k) denote the prior probability of class

k, the posterior probability that an observation x belongs to class k is:

P̂ (k|x) =
P (x|k)P (k)

P (x)
, (3.12)

where P (x) is a constant of normalisation.

The multivariate normal density function with mean µk and covariance
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∑
k at a data point x is

P (x|k) =
1

(2π|
∑

k |)
1
2

exp(−1

2
(x− µk)T )(

∑
k

)−1(x− µk), (3.13)

where |
∑

k | is the determinant of
∑

k, and (
∑

k)
−1 is the inverse matrix

of
∑

k . T is transpose operation.

Prior probability (empirical): The numbers of training samples of

class k divided by the total number of the training samples.

Cost: For true misclassification cost per class, it is 0 for correct classifi-

cation, and 1 otherwise. For expected misclassification cost per observation,

cost(n,k) is
K∑
i=1

P̂ (i|Xnew(n))C(k|i) (3.14)

where K is the number of classes; n is the number of samples. P̂ (i|Xnew(n))

is the posterior probability of class i for observation Xnew(n); C(k|i) is the

cost of classifying an observation as k when its true class is i.

Sulci classification: We denote k = {sulci, non−sulci} as the classes of

the sulci and non-sulci; x is a test sample, satisfying a Gaussian distribution

for the class. The definition of the mean and covariance are the same as

mentioned. According to the Bayes rule, the probability that a test sample

belongs to class k can be computed by using equations 3.12 and 3.13. If the

posterior probability P̂ (sulci|x) > P̂ (non− sulci|x), the sample is classified

as the sulci; otherwise, it is classified as non-sulci.
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The sulci characterisation belongs to discriminant analysis classification.

Both heat kernel signature and zeta function trace values are used as features

respectively. In each experiment, 30% (or 35%), 40%, 50%, 60%, 70% and

80% of the total feature data are randomly selected as a training set respec-

tively, while the rest of the feature data as a testing set, with an intention of

exploring how the size of a training set affects the classification performance.

30 runs are carried out for each case, using a different random selection; and

the mean classification accuracy rate, mean false positive rate and mean false

negative rate are computed.

3.6 Results of sulci classification

3.6.1 The confusion matrix

The evaluation of the classification models is based on the confusion matrix,

which contains information about actual and predicted classifications. It is

the outcome of linear discriminant analysis and classification. The confusion

matrix is defined as:

Predicted: non-sulci Predicted: sulci
Actual: non-sulci true negative (TN) false positive (FP)

Actual: sulci false negative (FN) true positive (TP)

Table 3.2: A confusion matrix for two-class classification

TN: the number of correct predictions that an instance is negative;

FP: the number of incorrect predictions that an instance is positive;

FN: the number of incorrect predictions that an instance is negative; and
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TP: the number of correct predictions that an instance is positive.

The classification performance measures, namely accuracy rate (ACR),

false positive rate (FPR), false negative rate (FNR), are defined as

ACR = TP+TN
TP+TN+FP+FN

; FPR = FP
FP+TN

; and FNR = FN
FN+TP

.

3.6.2 Classification using heat kernel signature

Table 3.3 shows the results of classification using the heat kernel signature

values. 35 %, 40 %, 50 %, 60 %, 70 % and 80 % of the data are randomly

selected for training a classifier, while the rest of the data are used for testing

the classier. 30 runs are performed respectively, and the classification accu-

racy rate is computed. Then the mean is calculated. Among them, the best

mean classification accuracy rate achieved is 86.56%, with standard error of

1.09% (70% of the data are used for the training). Hence, the 95% confidence

intervals for the true population mean are 86.56 ± 2.14 (%), computed by

using the formula: mean± 1.96×SE.

Classification using heat kernel signature
Size of training set 35% 40% 50% 60% 70% 80%
mean accuracy rate 0.7031 0.7656 0.8273 0.8425 0.8656 0.8650
SE of accuracy rate 0.0172 0.0115 0.0082 0.0081 0.0109 0.0136

mean FNR 0.2875 0.2256 0.1707 0.1433 0.0978 0.1067
SE of FNR 0.0182 0.0170 0.0162 0.0135 0.0123 0.0143
mean FPR 0.3063 0.2433 0.1747 0.1717 0.1711 0.1633
SE of FPR 0.0229 0.0181 0.0152 0.0166 0.0183 0.0206

Table 3.3: Results of classification using HKS features. 30 runs in total.
Different dataset percentages show different training accuracy. SE: standard
error; FNR: false negative rate; FPR: false positive rate.
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3.6.3 Classification using zeta function trace

Table 3.4 shows the results of classification using zeta function trace values.

30 %, 40 %, 50 %, 60 %, 70 % and 80 % of the data are randomly selected

for training a classifier, while the rest of the data are used for testing the

classier. 30 runs are performed respectively, and the classification accuracy

rate is computed. Then the mean is calculated. Among them, the best mean

classification accuracy rate achieved is 87.33% (80% of the data are used for

the training). Hence, the 95% confidence intervals for the true population

mean are 87.33 ± 2.08 (%).

Classification using zeta function traces
Size of training set 30% 40% 50% 60% 70% 80%
mean accuracy rate 0.8252 0.8361 0.8433 0.8525 0.8400 0.8733
SE of accuracy rate 0.0061 0.0068 0.0076 0.0074 0.0137 0.0106

mean FNR 0.1229 0.0922 0.0867 0.0983 0.1089 0.0800
SE of FNR 0.0132 0.0131 0.0098 0.0116 0.0206 0.0169
mean FPR 0.2267 0.2356 0.2267 0.1967 0.2111 0.1733
SE of FPR 0.0110 0.0181 0.0128 0.0138 0.0189 0.0179

Table 3.4: Results of classification using zeta function trace features. 30 runs
in total. Different dataset percentages show different training accuracy. SE:
standard error; FNR: false negative rate; FPR: false positive rate.

3.7 Summary and discussions

Chapter 3 presents the preliminary work of shape analysis for structural MRI

images, which involves the classification of the sulci and the background in

the MR images, based on the features derived from heat kernel signature

and zeta function trace. They imply that the spectral graph approaches are

66



useful for the characterision of the sulci in 3D MRI images. The results of

classification and evaluation are promising. The following observations are

made:

Firstly, it is workable to represent the 3D MR images using a weighted reg-

ular undirected graph, and the method of computing the weight of the graph

edge is acceptable. The spectral graph theory approaches can be adopted to

compute the graph Laplacian matrix and its eigenvalues (called the graph

spectrum).

Secondly, the heat kernel signatures and the zeta function trace can be

computed from the graph spectrum, respectively. They are useful as features

for classification tasks. Good classification results are obtained: by using

the HKS and 70% of the feature data for training, the mean classification

accuracy rate are 86.56% and SE is 1.09 %, and the 95% confidence intervals

for the population mean classification accuracy rate are 86.56 ± 2.14 (%);

while using the zeta function trace and 80% of the feature data for training,

the mean classification accuracy rate is 87.33% and SE is 1.06%, and the

95% confidence intervals for the population mean classification accuracy rate

are 87.33 ± 2.08 (%). They have strong discriminative power.

Thirdly, the results show that the sulci in structural MR images can be

characterised by discriminant analysis classification.

When computing the HKS values, it is important to start with small time

intervals (e.g. t=0.050, 0.053...). When the time interval is small enough,

then the local geometric information can be obtained; while larger time in-

tervals enable the global geometric information to be captured. This is an

empirical task.
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The zeta function trace is also useful. Only 5 moments of the zeta function

are used, and the features produced are very good for classification.

Both the HKS and the zeta function trace are computed from the graph

spectrum. They are invariant of shape rotation and translation, which are the

requirements for quantitative measurements in different coordinate systems.

Most importantly, the features can be stored in a vector with indeces, making

computing and analysis more efficient. This overcomes the limitation of

graph representation which has no natural order in the nodes.

There are some factors that can degrade the accuracy of classification.

(1) additive noise in MRI data and artifacts incurred by the inhomogeneous

magnetite field; (2) the motion of the subject being imaged; and (3) sampling

error due to the fact that the 100 samples are manually localised.

The work presented in this chapter has established a solid foundation

for the next part of the research. It is our intention to use spectral graph

approaches for inferencing brain white matter fibres in diffusion MR images.

structural MRI data are scalar, image processing and analysis can be done

in Euclidean space; while diffusion MRI data are directional, non-Euclidean

space and “curved statistics” are called for. Diffusion MRI analysis are the

highlights of chapter 4. Additionally, the classification needs to be validated

against unseen data to demonstrate the learning has not over-fitted the data.

We have more diffusion MRI data available, allowing for the inclusion of this

validation step.
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Chapter 4

Shape Analysis for Diffusion

MR images

The aim of the research is to infer white matter fibres from diffusion MR

images. Diffusion MRI is the non-invasive imaging technique for probing

micro-structures in the living brain. Diffusion tensor MR (DT-MR) images,

which are transformed from diffusion-weighted MR images, are very useful

for machine learning on a manifold (curved surface).

This chapter describes the theory and methodology for the DT-MR image

shape analysis, with examples.

First, we explain theoretical aspects focusing on shape analysis for diffu-

sion MR images. They are

(a) the principles of diffusion MRI;

(b) the formation of diffusion-weighted MR images and that of diffusion ten-

sor MR images;

(c) Riemannian geometry, the metrics and the mappings between the mani-
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fold and the tangent plane;

The methodology covers

(1) diffusion MR image processing;

(2) feature extraction using spectral graph theory;

(3) feature selection for classification;

(4) inferring white matter fibres from diffusion tensor MR images;

(5) supervised machine learning;

(6) the evaluation methods.

Second, tests are carried out to explore the properties of diffusion MR

images. The Riemannian metrics are studied, namely, the affine invariant

metric and the Log-Euclidean metric; also the proposed shape-angle measure

and heuristic method. The concepts of diffusion MRI are described, and the

mappings of Riemannian manifold to the tangent plane are presented.

4.1 Theory and concepts of diffusion MRI

4.1.1 Diffusion MR imaging

Diffusion is a process of random water molecular motion, called Brownian

motion, caused by a thermal flux between different molecular species. This

is characterised by a diffusion coefficient. Diffusion coefficients may be de-

termined by measuring the concentration of molecular species, physically or

chemically, at different intervals[27].

Diffusion-weighted magnetic resonance imaging (diffusion MRI) uses the

diffusion of water molecules to generate contrast in MR images. It captures
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the diffusion process of water molecules in biological tissues in vivo and non-

invasively. Water molecular diffusion in tissues is not free; it diffuses much

quicker in the direction aligned with the internal structures. Therefore, water

diffusion pattern can reveal the micro-structure of the brain tissues.

During diffusion MR imaging, gradient pulses in a specific direction are

applied for signal encoding. In order to obtain richer water diffusion infor-

mation, multiple gradient directions can be used. As a result, multiple three

dimensional diffusion MRI datasets are generated. They are merged into

one dataset mathematically. This technique is known as high angular reso-

lution diffusion-weighted imaging (HARDI). The HARDI data are used for

this research.

HARDI data can be transformed into diffusion tensor MR images (DTI

or DT-MRI) for shape analysis. The DTI associates the covariance matrix

of the water diffusivity at each voxel of a 3D MRI volume. It approximates

the probability density function modeling the water molecules Brownian mo-

tion [44]. The DTI data have both magnitudes and angles, they should be

computed in non-Euclidean space, like the Riemannian manifold.

4.1.2 The diffusion tensor

The diffusion tensor is defined as a 3× 3 symmetric positive definite matrix,

referred to as for the tensor, meaning that all its eigenvalues are positive.

The space of symmetric positive definite matrices is endowed by a regular

geometrically complete (without boundaries) manifold.

Diffusion-weighted MR images are used to produce diffusion tensor im-

ages, from which the geometrical information is very useful for shape analysis.
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The definition of the diffusion tensor is a covariance matrix:

D =

∣∣∣∣∣∣∣∣∣
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

∣∣∣∣∣∣∣∣∣
Diffusion tensor D is symmetric and semi-positive definite defined. x,y

and z represent the three orthogonal axes. The covariance matrix fully de-

scribes molecular mobility along each direction and the correlation between

these directions [13]. It reflects the fact that diffusion is a three dimensional

process, and molecular mobility in tissues may not be the same in all direc-

tions.

4.1.3 Diffusion tensor estimation

Diffusion tensor estimation is performed by solving the Stejskal and Tanner

diffusion equation [64]:

Sj = S0e
−bj ĝTj Dĝj (4.1)

where D represents the diffusion tensor; ĝj represents the non-colinear

and non-coplanar gradient direction, and j denotes different direction along

which diffusion weighting is applied. ĝTj is the transpose of ĝj. All the

gradient directions, e.g. (1,1,0), (0,1,1) and (1,0,1), are given, together with

the diffusion weighted MR images. The b-value, bj, are the MR imaging

parameters. S0 is the intensity without diffusion gradient being applied.

The effect of diffusion on the MRI signal (a spin-echo signal) is an atten-
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uation, denoted as A:

A = e−bD (4.2)

The attenuation depends on diffusion tensor D and the b-value that chara-

terises the gradient pulses applied to the MRI sequence, such as the timing,

amplitude and the shape of the pulses.

Since the MR signal measurements are made in the reference frame of

the MRI scanner gradients, which is not identical to the diffusion frame

of the tissue, thus the coupling of the non-diagonal elements: bij of the b-

matrix (containing gradient information) and Dij (i = j) must be taken into

consideration. This gives a new expression [9]:

A = exp(−(bxxDxx + byyDyy + bzzDzz + 2bxxDxy + 2bxzDxz + byzDyz)) (4.3)

The estimation of diffusion tensor is done by solving the above equation using

multiple linear regression. Since the diffusion tensor is symmetric, so only

6 variables need solving, and at least 6 simultaneous equations are required

to estimate a tensor. Therefore, at least 6 diffusion weighted images are

required to produce one tensor image.

4.1.4 Parameters derived from the diffusion tensor

The diffusion tensor can be visualised as an ellipsoid geometrically, which

was introduced by Basser et al. in 1994 [7]. It uses the scalar parameters

derived from the diffusion tensor.

Given the diffusion tensor D, a 3 × 3 matrix, its real eigenvalues λ1 ≥

λ2 ≥ λ3, and the corresponding eigenvectors vi(i = 1, 2, 3) can be obtained
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by eigendecomposition. The shape of the tensor can be depicted by the

eigenvalues; and the eigenvectors describe principal diffusion direction and

the apparent diffusivity along these directions [43].

In diffusion tensor images, for simplicity, only 3 types of shapes are dis-

cussed. If λ1 = λ2 = λ3, then the tensor shape is spherical; if λ1 � λ2 = λ3,

it is anisotropic and is depicted as a prolate ellipsoid (linear, like a pencil);

if λ1 � λ2 = λ3, it is oblate (planar, like a pancake) shaped (Fig.4.1).

Figure 4.1: Diffusion tensor shapes. (a) A general ellipsoid; (b) In isotropic
media, diffusion ellipsoid is spherical; in anisotropic media, it is prolate (c)
or oblate (d). e1, e2 and e3 denote the eigenvectors decomposed from the
tensor.

A quantitative method of measuring the shape of a tensor is proposed by

Westin[74]:

CL =
λ1 − λ2

λ1

, (4.4)

74



Cp =
λ2 − λ3

λ1

, (4.5)

Cs =
λ3

λ1

(4.6)

CL, Cp, and Cs are called the Westin indices, representing the linear, pla-

nar and spherical shaped of the ellipsoid, respectively. The value is between

0 to 1, and Cl + Cp + Cs = 1.

4.1.5 Riemannian geometry

Shape analysis for diffusion MRI is based on differential geometry; particu-

larly, one of its branches known as Riemannian geometry is applied to this

study. Developed by Bernhard Riemann in the 19th century, Riemannian

geometry studies smooth manifolds linked to a Riemannian metric.

A Riemannian manifold is a real, smooth topological space, M . It is

equipped with an inner product on the tangent space TpM ar each point p.

A Riemannian metric measures local information on angles, length of curves

and volumes. Riemannian geometry is particularly suitable for studying

curves and surfaces [44].

Anatomical objects are usually considered in non-Euclidean spaces, or on

a manifold, where conventional statistical tools may not be valid for shape

analysis [55]. In contrast, a Riemannian manifold consists of symmetric pos-

itive definite matrices that constitute a convex half-cone in the vector space

of matrices, where statistical operations, such as the mean and variance, are

stable.
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Figure 4.2: The connection
structure for a manifold. From
Lê N. Hoang, science4all.org

Diffusion tensor MR images have both magnitude and orientation, which

can be naturally expressed on a Riemannian manifold. DT-MR image analy-

sis can be performed on Riemannian manifolds. To understand Riemannian

geometry and DT-MR images, we explain the core concepts of differential

geometry as, including the connection structure, geodesic distance, metrics

and the mappings of a point on a Riemannian manifold to its tangent plane.

On the tangent plane, conventional statistics can be applied for data analysis.

4.1.6 The connection structure

The differential properties of the manifold can be separated from the geom-

etry and the metrics. The local structure of a manifold M can be specified

by neighboring points and the tangent vectors[55]. This permits simple, con-

sistent, smooth functions on the manifold to be differentiated, and defines

continuous paths on the manifold. The paths are constructed by a geomet-

ric structure known as a connection, enabling the use and a comparison of

neighboring tangent spaces.
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4.1.7 Exponential and logarithmic maps

Assuming the Riemanian manifold is geodesically complete, a one-to-one

mapping between the manifold and the tangent plane is available locally

around zero in the tangent space, or around point y on the manifold. In-

versely, the logarithmic mapping is a vector of the tangent space at point

y. The exponential and logarithmic mappings are different for each manifold

and for each metric.

Figure 4.3: Exponential and logarithmic maps. M : a manifold, TxM : the
tangent plane to the manifold at the point x. y is another point on the man-
ifold. Point y can be mapped onto the tangent plane using the logarithmic
map, while a point of the tangent plane can be mapped onto the manifold
by the exponential map[54].

4.1.8 Riemannian metrics and other measures

In Riemannian geometry, the shortest distance on the manifold is called the

geodesic distance. It is a curve on the surface. A Riemannian metric is defined

by a continuous collection of scalar products on each tangent space at point

p of the manifold. On any Riemannian manifold there is a unique connection
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that is compatible with the metric, known as the Levi-Civita connection, on

which the shortest path are geodesics. A Reimannian metric can be used to

compute the statistical mean and the covariance matrix.

Affine invariant metric

Pennec et al. propose an affine invariant Riemannian metric defined as fol-

lows [55]. Given two tensors, D1 and D2, their geodesic distance on the

Riemannian manifold is defined as

dD1D2 =
√
Tr(log2(DM)) =

√√√√ 3∑
i=1

log2λi (4.7)

where λi are the eigenvalues of the matrix DM = D1
− 1

2D2D1
− 1

2 .

Let S+ denote the manifold, the geodesic distance has the following prop-

erties:

1. Positivity: dD1D2 > 0

2. Symmetry: dD1D2 = dD2D1

3. Triangle inequality: dD1D3 ≤ dD1D2 + dD2D3

4. Invariance under congruence transformations: ∀p ∈ S+

5. Invariance under inversion: dD1D2 = dD−1
1 D−1

2

Log-Euclidean metric

To reduce the computational cost for the Riemannian geodesic distance mea-

surement, while preserving many of their properties, Arsigny et al. define the

Log-Euclidean metric for the tensor distance measure [2]. It enables vector

space structures to be carried from the tangent space to the manifold.
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Compared with the affine invariant metric, the Log-Euclidean metric also

has some invariant properties: namely inversion, scaling, transformation in

the log space, and orthogonal transformations.

The Log-Euclidean metric for Riemannian geodesic distance measure is:

dD1D2 = ‖logD1 − logD2‖ (4.8)

where D1 and D2 denote two diffusion tensors. logD1 means the matrix-

logarithm of the tensor D1. The computation of geodesic distance is simpler

than that using the affine invariant metric [2].

Shape-Angle measure

The proposed shape-angle measure is influenced by information theory. It

is used to measure the similarities between the distance of tensors. The

shape-angle measure consists two parts, representing the tensor shape and

the angle of two tensors. This measure is to compute: (1) the difference of

the eigenvalues of the two tensors; and (2) the angle between the principal

eigenvectors of the two tensors.

The descriptor takes the physical meaning of the tensor, both the shape

and orientation, into account.

The differences of the eigenvalues derived from two tensors represent the

difference of their shapes; while the angle of two tensors is the angle of their

principal eigenvectors. Hence, the distance of the two tensors, D1 and D2, is

denoted as
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dD1D2 = Eshape + Eangle (4.9)

where

Eshape =
3∑
i=1

4(λiD1 − λiD2)
2

(λiD1 + λiD2)
2

(4.10)

and

Eangle = cos−1φ1
D1
φ1
D2

(4.11)

where λiD1 (i=1,2,3) are the eigenvalues of the tensor D1, while λiD2

(i=1,2,3) are the eigenvalues of the tensor D2. Eangle represents the angle

of the principal directions of the two tensors, φ1
D1

and φ1
D2

are the principal

eigenvectors of D1 and D2 respectively.

Heuristic method

One of the contributions of this study is that we propose a heuristic method,

which is a similarity measure for the tensors. It measures the geodesic dis-

tance of two tensors in this way:

(1) computing the angle of the principal eigenvectors of two tensors; if the

angle is less than a threshold (e.g. 10 or 12 degrees), then the angle is com-

puted as the distance; otherwise

(2) using the Riemannian affine invariant metric to compute the geodesic

distance.

The reason is that angle can be a similarity measure, and the principal

eigenvectors of two tensors have an angle . When the angle is small, the two

tensors tend to be parallel to each other, or vice versa.
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4.1.9 Spectral graph theory

Algebraic graph theory is a branch of mathematics, studying graphs by using

algebraic properties of associate matrices.

Spectral graph theory studies the relation between graph properties, the

spectrum of the adjacency matrix and that of the Laplacian matrix. The

spectrum refers to the set of eigenvalues and their corresponding eigenvec-

tors, known as the eigensystem, produced through eigendecomposition of the

matrix.

Geometrical information can be derived from the spectrum of the asso-

ciated matrix, for example, the adjacency spectrum provides rich structural

information [77]. Spectral graph theory can be used for graph character-

isation. For example, using the heat kernel trace derived from the graph

Laplacian matrix [79], or the graph edge based wave kernel [3][4]. Spectral

graph theory can also be applied to image segmentation. Shi proposed a

graph cut approach using the second smallest eigenvector, called the Fiedler

vector, for image segmentation [62]. The idea is that a graph can be parti-

tioned into two separate node sets by removing edges connecting them.

Spectral graph theory is useful in shape analysis. A disadvantage is that

the computation may be intensive, when computing between pairwise voxels.

This prevents spectral graph theory from being applied widely to 3D medical

image analysis[25].

The existing applications of spectral graph theory are usually non-medical;

we wish to explore its use for medical MR images.
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4.1.10 Support vector machine

In machine learning, support vector machines (SVMs) are supervised learn-

ing models; SVMs use associated learning algorithms for data analysis and

pattern recognition. Given training examples that are labelled with one of

two categories, an SVM training algorithm builds a model that assigns new

examples to one category or the other.

support vector refers to the training examples nearest to the decision

boundary, and the margin is defined as m
||w|| , where w is a weight vector and

m represents the distance between the decision boundary and the nearest

training instances.

A supervised learning algorithm analyses the training data and produces

an inferred function, which can be used for mapping new instances. Ideally,

the algorithm could correctly determine the class labels for unseen instances,

which requires the learning algorithm to generalise from the training data to

unseen situations [33].

The SVMs can be used for linear and non-linear data classification. As

diffusion MRI data are non-linear by nature, they are assumed as Gaussian

distribution, hence SVMs with the Gaussian kernel are used for the white

matter fibre classification:

K(xi, xj) = e
−||Xi−Xj ||

2

2σ2 , (4.12)

where Xi, Xj are the training samples, and σ is the kernel width.

For non-separable data, the SVMs are considered as the dual optimisation
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problem formulated as the Lagrange multipliers below, and this function is

maximised under positivity constraints and one equality constraint [33]:

α∗1, ..., α
∗
n = argmax

n∑
i=1

n∑
j=1

αiαjyiyjxi.xj +
n∑
i=1

αi, (4.13)

subject to 0 ≤ αi ≤ C and
∑n

i=1 αiyi = 0,

Here C is a user defined parameter, trading off margin maximisation

against the margin errors. The higher the C value, the higher the penalty,

while the lower the C value, the more margin errors are allowed in order to

achieve a large margin. In this study, the optimisation problems are solved

by the sequential minimal optimisation (SMO).

Equation 4.13 implies that searching for the maximum-margin decision

boundary is the same as searching for the support vectors, which are the

training examples with non-zero Lagrange multipliers; and the decision bound-

ary is determined by w =
∑n

j=1 αiyixi. The optimisation problem is defined

by pairwise dot products between training instances [33].

With a kernel SVM, the kernel implicitly maps the inputs into high-

dimensional feature spaces, and an optimal separating hyperplane is con-

structed. However, when the dimensionality of the feature space is large, a

hyperplane that separates the training data does not necessarily generalise

well [71].
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4.2 Methodology for diffusion MRI analysis

4.2.1 The HARDI data

High angular resolution diffusion MRI (HARDI) data are diffusion-weighted

MR images (DWI). Five HARDI datasets, each comprising data from a whole

human brain, are used for this study. Among them, four datasets are pro-

vided by the York Neuroimaging Centre, and one dataset is from the Human

Connectome Project (https://db.humanconnectome.org/).

The HARDI datasets are acquired using multiple imaging gradient direc-

tions, so multiple volumes of data are produced. The echo planar imaging

(EPI) pulse sequence is applied, the b-value is 1000 s/(mm)2, and the mag-

netic field strength is 3.0 Tesla.

For example, dataset1 is acquired under 62 gradient directions, along

which the diffusion weightings are isotropically distributed. Sixty-two datasets

are produced and merged into one dataset across all the corresponding vox-

els. Each DWI volume, 128× 128× 44, is acquired using a different gradient

direction. A full data description of all datasets is presented in Table 6.1.

An important step of image preprocessing is image registration (align-

ment). In the above example, each voxel of the 62 datasets is aligned spa-

tially. Then the eddy current correction is conducted, and the brain in the

MR images is extracted completely and the skull is removed from the MR

images. These are achieved by using the FMRIB software library (FSL)[38].
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4.2.2 Data transformation from HARDI to DTI im-

ages

The FSL software is also used to achieve the transformation of DWI to DTI.

The process is illustrated as Fig.4.4.

Figure 4.4: Image transformation: from diffusion-weighted MR images to dif-
fusion tensor image (Dataset1). The Stejskal and Tanner diffusion equation
is used [74].

Based on the HARDI images, the Gaussian diffusion profiles can be con-

structed. Generally, the more gradient directions are used, the more precisely

the variation of diffusion along different directions can be detected, but more

image noise can be introduced. The purpose of statistical estimation is to

define the magnitude and predominant orientation of the tensor, also for

other diffusion directions. Thus a 3 × 3 tensor (matrix) is created for that

voxel position. In such a manner, all voxels are estimated. For each gradient
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direction, a set of MR images are generated.

In the case of dataset1, 62 gradient directions are applied, and 62 sets of

diffusion weighted MR images are created. They are combined to form one

set of 3D diffusion tensor MR images.

4.2.3 Diffusion tensor visualisation

Diffusion tensor visualisation is important for computer labelling the sub-

samples. The diffusion tensor can be visualised geometrically as an ellipsoid,

which was introduced by Basser et al. in 1994 [7]. The quantitative parame-

ters derived from the diffusion tensor are used. By eigendecomposition of the

tensor matrix, 3 eigenvalues and 3 eigenvectors are obtained. The eigenvalues

describe the shape of the tensor, and the eigenvectors indicate the directions

of the 3 orthogonal axes.

A visualisation tool originally developed by Barmpoutis et al. [5] is able

to visualise a two dimensional tensor image. We have modified it, so it can

visualise tensor images in three orthogonal view (see Figures 4.5 and 4.6).

In these tensor images, the spherical tensors represent the grey matter

and the cerebrospinal fluid (CSF), while the linear shaped tensors represent

the white matter fibre bundles. It is impossible to show a single neural fibre

with a tensor, as the fibre diameter is only around 5-10 µm, and a voxel size

is usually at least 1mm3.

4.2.4 Extracting quantitative parameters from DTI

A number of diffusion parameters derived from DTI can describe the proper-

ties of diffusion MRI. They are used to depict the shape of the tensor. They
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Figure 4.5: A diffusion tensor image of the human brain (axial view);
Dataset1 with a voxel size of 2.5 (mm)3.
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(a)

(b)

Figure 4.6: A diffusion tensor images of the human brain; (a) coronal view
and (b) saggital view. Dataset1 with a voxel size of 2.5 mm3
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are also used for assisting clinical studies.

Diffusion tensor images analysis can provide information on tissue mi-

crostructure for each voxel. The information can be described as scalar

quantitative measurements. Most diffusion parameters are derived from the

eigenvalues of the diffusion tensor through eigendecomposition.

The diffusion tensor may be used to characterise the magnitude and the

degree of anisotropy, and the orientation of directional diffusion. There are

two important measurements of diffusion MRI:

(1) Mean diffusivity (MD):

λ̄ =
1

3
Trace(D), (4.14)

where Trace(D) = λ1 + λ2 + λ3, and

(2) Fractional anisotropy (FA):

FA(D) =

√
3

2

√
(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2√

λ2
1 + λ2

2 + λ2
3

(4.15)

where λi (i=1,2,3) are the eigenvalues of the diffusion tensor. FA takes

on values between 0 (isotropic diffusion) and 1 (infinite anisotropy). MD

and FA are invariant scalar measures. They are the popular scalar measures

in clinical studies (see Figure 4.7). FA characterises the degree of out-of-

roundness of the diffusion ellipsoid [9]. However, FA value sometimes lacks

of specificity. It is lower in some brain regions where there is fibre crossing,

such as near the lateral cerebra-ventricles.

FA is also used to determine irrelevant brain tissues, such as the grey
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(a) FA image (b) MD image

Figure 4.7: (a) A fractional anisotropy (FA) image; (b) A mean diffusion
(MD) image. Dataset1.

matter or the cerebrospinal fluid (CSF). We use FA and other measures to

assist sample labelling (Chapter 5).

The diffusion is highly anisotropic in fibrous tissues such as white matter.

The direction of greatest diffusivity is generally assumed to be parallel to

the local direction of white matter fibre [9]. With diffusion tensor images,

the directional information of white matter fibre can be derived. Hence, the

white matter fibre bundle underlying can be inferred.

Figures 4.8 and 4.9 illustrates the principal eigenvectors (lines or points)

in the diffusion tensor images. The red, green and blue colors indicate the

different directions of the principal eigenvectors. With the principal eigen-

vector values of the tensors, white matter tracts can be estimated to form a

neural connectivity map.
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Figure 4.8: A brain MR image overlaid by the principal eigenvectors of the
tensor and the FA values. The line colors indicate the directions of the prin-
cipal eigenvectors; red: left-right; green: anterior-posterior; blue: foot-head.
A short line represents a principal eigenvector of the tensor within a voxel,
and a dot point depicts the principal eigenvector of the tensor perpendicular
to the paper. (axial view, voxel size: 2.5 mm3, Dataset1.)

4.3 Tests: the brain structure detection

Some tests are carried out to explore the use of the spectral graph method to

characterise the brain strictures in DTI, to deepen our understanding of the

methodology of inferring the white matter fibres. This is a simplified version

of using spectral graph theory for brain structure detection, using DT-MR
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(a)

(b)

Figure 4.9: A brain MR image overlaid by the principal eigenvectors of the
tensor and FA values. The line colors indicate the directions of the principal
eigenvectors; red: left-right; green: anterior-posterior; blue: foot-head. (a)
coronal view; and (b) saggital views. Dataset1.
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images and eigenvector images.

The steps of the algorithm are:

(1) Creating a regular graph representation of diffusion tensor images,

where nodes represent the tensors and the edges are assigned weights. For

two non-zero tensors, the edge weight of the Laplacian graph is determined

by

weight = e−
d(D1,D2)

2

K2 ,

where d denotes the geodesic distance between tensors D1 and D2; K

is the width of the Gaussian kernel. Here the Riemannian affine invariant

metric [55] is used to compute the geodesic distance.

(2) Generating the Laplacian matrix (degree matrix minus adjacent ma-

trix) of the graph and normalising it. The Laplacian matrix represents a

graph derived from diffusion tensor images.

(3) Computing the eigenvalues and eigenvectors of the normalised Lapla-

cian matrix, using eigendecomposition. The eigenvalues are arranged in an

ascending order, and their corresponding eigenvectors are re-arranged.

(4) Producing the eigenvector images for the brain structure detection,

using the first few eigenvectors. For visualisation, each eigenvector is re-

shaped to form a grey image in the same size of the associated diffusion MR

image.

Figures 4.10 and 4.11 display a sequence of diffusion tensor images of

the corpus callusom (CC) on the sagittal plane. The DTI images of the

white matter fibre bundle are on the left, while the corresponding second

eigenvector (EV) images are on the right.
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(a) Tensor image: slice 60 (b) Eigenvector image: slice 60

(c) Tensor image: slice 61 (d) Eigenvector image: slice 61

(e) Tensor image: slice 62 (f) Eigenvector image: slice 62

(g) Tensor image: slice 63 (h) Eigenvector image: slice 63

(i) Tensor image: slice 64 (j) Eigenvector image: slice 64

Figure 4.10: Left: A sequence of diffusion tensor images of corpus cal-
luson(slices 60-64, sagittal); Right:their second eigenvector images. The
eigenvector images reproduce the structures contained in the tensor im-
ages.(Dataset1)
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(a) Tensor image: slice 65 (b) Eigenvector image: slice 65

(c) Tensor image: slice 66 (d) Eigenvector image: slice 66

(e) Tensor image: slice 67 (f) Eigenvector image: slice 67

(g) Tensor image: slice 68 (h) Eigenvector image: slice 68

(i) Tensor image: slice 69 (j) Eigenvector image: slice 69

Figure 4.11: Left: A sequence of diffusion tensor images of corpus callu-
son (slices 65-69, sagittal); Right: their second eigenvector images. The
eigenvector images reproduce the structures contained in the tensor images.
(Dataset1)
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(a) Tensor image: slice 20 (b) Eigenvector image: slice 20

(c) Tensor image: slice 21 (d) Eigenvector image: slice 21

(e) Tensor image: slice 22 (f) Eigenvector image: slice 22

(g) Tensor image: slice 23 (h) Eigenvector image: slice 23

Figure 4.12: Left: A sequence of diffusion tensor images of corpus calluson
(slices 20-23, axial); Right: their second eigenvector images. The eigenvector
images reproduce the structures contained in the tensor images. (Dataset1)
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(a) A tensor image (b) 2nd EV image

(c) 3th EV image (d) 4th EV image

(e) 5th EV image (f) 6th EV image

Figure 4.13: A diffusion tensor image of the ventricle (a), and its first five
eigenvectors’ (EV) images (b - f). The eigenvector images reproduce the
structures contained in the tensor images, with different levels of clarity of
the structures (axial view).

97



(a)

(b)

Figure 4.14: The shape-angle measure is used for computing the pairwise
distances between the tensors (Dataset1). (a) A tensor image of the corpus
callusom (CC) and the ventricle; (b) the second eigenvector image of (a)
(axial view).
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On the sagittal plane, the EV images show the corpus callusom consis-

tently. To compute the graph edge weights for the weighted Laplacian ma-

trix, the Riemannian affine invariant metric is used to calculate the pairwise

geodesic distance.

Similarly, Fig.4.12 displays a sequence of tensor images of the CC and

the corresponding second eigenvector images on the axial plane.

Fig.4.13 compares the EV images using the first 5 non-zero eigenvectors.

The shape of the ventricle is visible. The geometrical information in the EV

images are different, so the choice of the eigenvector used is important.

Fig.4.14 shows a tensor image of part of CC and the ventricle, when

calculating the weights, the shape-angle measure is used for computing the

pairwise geodesic distances.

4.3.1 The effects of graph size

Spectral graph theory is based on the eigensystem (eigenvalues and eigen-

vectors), computed from the graph Laplacian matrix.

Given a graph representing a 3D DT-MR image with N nodes, the size of

the Laplacian matrix is N ×N . By definition, the eigenvectors of the graph

Laplacian matrix ought to be orthogonal to each other. If N is large enough,

the eigenvectors of the Laplacian matrix may become unstable. To observe

this potential problem, tests are conducted at different scales, to examine the

effects of the graph size.

All the regions of interest are selected from the same set of DT-MR im-

ages.

Their sizes of the chosen graphs are:
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Sample 1: 20× 26× 4 (4 axial slices), 2080 graph nodes.

Sample 2: 24× 31× 7 (7 axial slices), 5208 graph nodes.

Sample 3: 25× 16× 19 (19 sagittal slices), 7600 graph nodes.

Sample 4: 24× 31× 13 (13 axial slices), 9672 graph nodes.

For each of these samples, a Laplacian matrix of N × N derived from

a graph of N nodes is computed. By eigendecomposition, the eigenvalues

and eigenvectors are obtained. Each eigenvector is used to construct an

eigenvector image.

Figures 4.10 - 4.12 show a sequence of diffusion tensor images, alongside

their second eigenvector images. The brain structures, such as the main

ventricle and the corpus callusom, are identifiable.

Figure 4.13 displays the first 5 eigenvector images derived from a tensor

image. The eigenvector images show the geometric information at different

levels of clarity.

Figure 4.14 shows (a ) a diffusion tensor image and (b) the second eigen-

vector image of (a). The shape-angle measure is used to compute the pairwise

tensor distance. A pattern of the ventricle can be seen in (b).

Although the graph sizes are different, they can produce eigenvector im-

ages showing visible anatomical structures. The size of the eigenvector images

can be 24× 31× 13, with 9672 nodes, for instance.
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4.3.2 Distribution of voxelwise geodesic distances in

DT-MR images

To explore the relationship between the voxelwise geodesic distances of the

tensors and the structures in a diffusion tensor MR image, the geodesic dis-

tance maps, both horizontal and vertical pairwise connections, are produced.

In the distance map, the light color suggests a relatively large distance, and

the dark color indicates a small distance. The two histograms display the

distance distributions in the horizontal and vertical connections, respectively.

Fig.4.15 (a) shows a tensor image of CSF in part; (b) displays a light

strip in column 3, indicating a gap in the tensor image, and the horizontal

distance are bigger; (c) shows the vertical pairwise geodesic distance are het-

erogeneous; in the histogram (d) based on (b), the smallest geodesic distance

values have a narrow range of high frequency, which are related to wider hor-

izontal connections, and suggest that anisotropic tensors are aligned along

the gap. The distribution is more skew in (d) than that in (e). This suggests

that there is a sharp contrast in the geodesic distance distribution, hinting

that a coherence structure may exist in the DT-MR image.

Fig.4.16 (a) shows the background area in a tensor image; similarly, (b)

and (c) are the vertical and horizontal geodesic distance maps respectively.

In both cases the trends of frequency are spreading out, suggesting there are

no obvious anatomical structures.

Fig.4.17 (a) shows a tensor image of the corpus callusom and its back-

ground; in the column 7 of (b), there is a dark strip,, indicating horizontal

voxelwise distances are small there. In (c), a few bright pixels are aligned

obliquely, suggesting there is an edge along that direction; (d) shows that
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most of the horizontal distances are not very small; (e) shows that some

small vertical distances are in high frequency, implying that some tensors

may align in the vertical direction.

We can conclude that a distance map and a histogram are able to reveal

structural information in DT-MR images. To produce an eigenvector image

as seen, edge weights are computed for the weighted graph representing the

diffusion tensor image, and the pairwise geodesic distances of the tensors are

measured using the Riemannian affine invariant metric[55].

4.4 Conclusion

In Chapter 4, we describe the theory and core concepts of diffusion (tensor)

MRI. Tests are conducted to explore the properties of the DTI. They show

that the spectral graph methods are applicable to real diffusion MR images.

The eigenvector images of the Laplacian matrix, derived from a graph rep-

resenting DT-MR images, show the brain structures, they match those in

diffusion tensor images. This provides evidence that the EV images encode

geometrical information. Therefore, the spectral graph approach could be

useful for the inference of the white matter fibres.

The quality of some of the eigenvector images is not satisfactory. This

may be because there is noise in the nuclear MR signals, which are used for

the re-construction of the diffusion-weighted MR images. The quality of the

similarity measure can also affect the results. In these tests, the Riemannian

affine invariant metric[55] is applied to compute geodesic distance.

The next chapter describes how spectral graph method is used to infer
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(a)

(b)
(c)

(d) (e)

Figure 4.15: Tensor distance maps and histograms. (a)A tensor image of the
CSF; (b),(c) are horizontal and vertical geodesic distance maps respectively;
(d),(e) are the histograms of (b) and (c). The affine invariant metric is used
to compute the pairwise tensor distance.(Dataset1)
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(a)

(b)
(c)

(d) (e)

Figure 4.16: Tensor distance maps and histograms. (a) A tensor image of
the background; (b),(c) are horizontal and vertical geodesic distance maps
respectively; (d),(e) are the histograms of (b) and (c). The affine invariant
metric is used to compute the pairwise tensor distance.(Dataset1)104



(a)

(b)
(c)

(d) (e)

Figure 4.17: Tensor distance maps and histograms. (a) A tensor image
of the CSF in part and its background; (b),(c) are horizontal and vertical
geodesic distance maps respectively; (d),(e) are the histograms of (b) and
(c).The affine invariant metric is used to compute the pairwise tensor dis-
tance.(Dataset1) 105



the white matter fibres from diffusion tensor MR images. Futher similarity

measures are adopted.
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Chapter 5

Feature Selection for Inferring

White Matter Fibres from DTI

In this chapter, we propose a framework for the inference of white matter

fibres from diffusion tensor MR images of the human brain. In Chapter 6,

we evaluate the proposed methodology on datasets from several brains.

The framework has the following characteristics:

• The HARDI data are used and represented by a 3D regular indirect graph

• The DTI data are computed on non-Euclidean space, namely Riemannian

manifold

• Spectral graph theory is applied to generate features

• Feature selection is adopted to select the best features

• Machine learning techniques are used for the white matter fibre classifica-

tion
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5.1 Contributions

The contributions are: we design and implement a successful framework for

inferring the white matter fibres from diffusion tensor MR images, which

are transformed from diffusion MR images. Spectral graph theory is used

to extract useful features from diffusion tensor data. Feature selection is

applied to select the most relevant features; and machine learning is applied

for inferring the cerebral white matter fibres. The proposed heuristic method,

as a similarity measure, is able to achieve very good classification results. A

novel methodological contribution is made.

5.2 An outline for inferring the white matter

fibres from DTI

There are three stages: (a) image processing and data representation; (b)

feature selection using spectral graph theory; and (c) feature selection and

machine learning for neural fibre classification.

Stage1: Image processing and data representation

1. Data preprocessing : High angular resolution diffusion-weighted imag-

ing (HARDI) data are processed, including image registration and the eddy

current correction.

2. Data transformation: The HARDI images are transformed into dif-

fusion tensor images (DTI). It is possible to extract quantitative geometric

information from the DTI.
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3. Data representation: The DTI data are represented by a weighted

regular graph. The Laplacian matrix is computed, and decomposed into the

eigenvalues and eigenvectors.

Stage2: Feature extraction using spectral graph theory

4. Sample selection and labelling : Based on each of the DTI datasets, 80

- 228 samples of 3×3×3 voxels (tensors) are selected and semi-automatically

labelled for machine learning.

5. Similarity measure: The similarity measure is a geodesic distance

measure. It is required when computing the graph edge weight, or labelling

a sample. Two Riemannian metrics and two proposed measures are applied.

6. Feature extraction: a weighted Laplacian matrix and its the graph

spectrum are computed, and features are extracted from the elementary sym-

metric polynomial coefficients.

Stage3: Feature selection and machine learning

7. Feature selection: the best features are chosen by using the sequential

forward selection algorithm.

8. Infering white matter fibres from DTI : The support vector machine

(SVM) is used for two-class classification, which is a supervised learning

process.

9. Cross validation of the SVM : ten-fold cross validation is used to train

the SVM and select the best classification parameters; the resulting trained

system is applied to unseen data to evaluate the performance of the classifi-

cation.
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The following sections describe the framework in detail.

5.3 The detailed framework of inferring white

matter fibres from DTI

This section describes in detail the process of inferring white matter fibres

from diffusion MR images.

The algorithm seeks to train the support vector machine for the white

matter fibre classification, using the best features from feature selection. This

is a process of supervised learning. The trained SVM is then applied to the

unseen data, to predict new labels or classes. The algorithm is detailed as

below.

5.3.1 The HARDI data and samples

Five diffusion-weighted MR image datasets are used for the study; they are

denoted as dataset1, dataset2,... dataset5. The datasets 1-4 are provided

by the York Neuroimaging Centre, and dataset5 is from the Human Con-

nectome Project website (http://www.humanconnectomeproject.org/data/).

They are diffusion-weighted MR images of healthy human brains. A descrip-

tion of the datasets is presented in Table 6.1.

All the HARDI datasets are transformed into diffusion tensor images

(DTI) datasets, which are still called as dataset1, dataset2,...dataset5 for

convenience. Each dataset covers a whole brain.

Samples are selected semi-automatically from each DTI dataset, for fibre
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classification through machine learning. A sample refers to 3× 3× 3 image

voxels, 27 tensors in total. The higher the image resolution, the more samples

can be selected. For the 5 datasets, 80, 160, 160, 148, 228 samples are selected

respectively. They are labelled afterwards.

5.3.2 Semi-automatic sample labelling

Labelling a tensor sample, as fibre or non-fibre, is crucial for supervised learn-

ing in this study. The labelling is for training a classifier, it also provides

the baseline for computing the accuracy of classification. To label a sample

semi-automatically, a few selection criteria are applied, both the shape and

the orientation of the tensor are considered. The tensor is described as a

physical object[7], which can be spherical, prolate (linear) and oblate (pla-

nar) shaped. Only the linear shaped tensors are relevant to the inference of

the white matter fibres.

The semi-automatic labelling algorithm is described as follows:

1. With the diffusion tensor images, a label map is produced for every 3

images, from which a 3× 3× 3 sample of 27 tensors is labelled, one sample

after another, as if a three dimensional window is sliding from one sample

to the next. For every sample, a graph is produced to represent the data.

By eigendecomposition, 27 eigenvalues and eigenvectors are produced. The

eigenvalues are sorted by ascending order and their corresponding eigenvec-

tors are found.

2. To depict the tensor orientations in a sample (27 tensors), the variance

of the tensor angles about the mean is calculated.
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For each sample, based on the principal eigenvectors of the tensors, the

mean principal eigenvector P is computed. Afterwards, the angle between

each tensor’s principal eigenvector M about the mean principal eigenvector

P is computed respectively, and an average taken.

The sign of the principal eigenvector has uncertainty, and so an extra step

is needed to check the sign. If the inner product of M and P is negative, then

the sign is flipped. Thus, the variance of angles of the sample is computed.

3. To extract the shape information, the Fractional Anisotropy (FA) and

the Westin shape indices [74] are integrated (see section 4.2.3).

The shape and the orientation of the tensor are depicted by its eigen-

values and eigenvectors respectively. The eigenvectors describe the principal

diffusion directions and apparent diffusivity along these directions [43], while

the eigenvalues describe the shape of the tensor.

Westin indices can be used to approximately indicate the tensor shapes.

As mentioned, we consider the tensor having one of the 3 types of shapes:

spherical, ellipsoidal (prolate) or oblate. If λ1 = λ2 = λ3, then the shape

of the tensor is spherical; if λ1 � λ2 = λ3, it is a prolate ellipsoid; if

λ1 � λ2 = λ3, it is oblate, or planer. Their values are between 0 and 1.

4. The threshold used for identifying the shape of the tensor is chosen

as below: If the Cs value is greater than 0.40 the tensor is considered as a

spherical in shape and excluded; otherwise if both the Westin index[74], Cl

value, is greater than 0.35 and FA values are greater than 0.45, the tensor

is considered as prolate in shape, so the number of prolate shaped tensor is

increased by one. For every sample of 27 tensors, a prolate score is computed,

which is the ratio of the number of the prolate shaped tensors to the 27
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tensors.

5. Labelling a sample with the shape and orientation information. For

each sample, if the variance of all the tensor angles about the mean angle is

less than or equal to a threshold (e.g. 10 or 12 degrees) and if the prolate

score is greater than 0.5, then this sample is labelled as fiber, otherwise as

non-fiber.

6. Repeat the above. Finally, a label map is created (Figure 5.1 (a)),

based on the three tensor images (Figure 5.1 (b))

The label map is consistent with visual observation of the tensor image.

Although only one tensor image is displayed, 3 tensor images are used to

produce a label map.

5.3.3 Feature extraction from the elementary symmet-

rical polynomials

Features are the essential elements for machine learning. In this study, the

elementary symmetric polynomials (ESPs) are used to generate the features,

which are used to infer the whit matter fibres.

The overall procedure consists

(a) computing the weight Laplacian matrix, and constructing the feature

matrix.

(b) computing the ESP values, based on the feature matrix.

(c) constructing the ESP feature matrix.
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(a) A lable map

(b) One of the three tensor images used for
creating the label map.

Figure 5.1: A label map and an associated tensor image (Dataset2). Three
diffusion tensor images are used to create the label map.
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Computing the weighted Laplacian matrix

Each of the samples is represented by a regular graph, where a node repre-

sents an image element, namely a diffusion tensor. The weight of a graph

edge is associated with the geodesic distance between the two adjacent nodes

(tensors).

First, the weighted adjacency matrix representing a sample is computed,

and the weight is calculated by

weight = e−
(dD1D2

)2

K2 (5.1)

where D1 and D2 represent two 3 × 3 tensors, K is a parameter for the

Gaussian distribution (the width of the Gaussian kernel), and dD1D2 is a

geodesic distance between D1 and D2.

Second, the Laplacian matrix, L, is produced:

L = D −W (5.2)

where D is the degree matrix and W is the weighted graph adjacency matrix.

The steps of the computation of W are:

1. Based on the adjacency matrix of the graph, the indices are assigned to the

nodes. For the pairwise nodes, their indices are stored in a N × 2 matrix, N

denotes the number of the pairs of direct connected nodes, and 6-connection

is applied.

2. The graph edge weight is computed for each pair of nodes and stored in

a vector.
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3. By using the edge weights and the node indices, a weighted graph, W , is

constructed.

Computing the spectral matrix

The Laplacian matrix can be decomposed into eigenvalues and eigenvectors,

known as the graph spectrum, which are combined to form a spectral matrix

[77]:

Φ = (
√
λ1e1,

√
λ2e2, ...

√
λnen) (5.3)

where λi and ei (i = 1, 2, 3, ..., n) are the eigenvalues and eigenvectors of

the Laplacian matrix L, given by

L =
n∑
i=1

λieiei
T (5.4)

T means the transpose operation.

Computing the values of the elementary symmetric polynomials

The elementary symmetric polynomials are created by using the spectral

graph theory; they can be used to produce pattern vectors. This is described

by Wilson et al.[77] as follows.

The spectral matrix consists n scaled eigenvectors as columns (see Equa-

tion 5.3), which is used for feature extraction. As shown in Figures 4.10 -

4.12, the eigenvalues and eigenvectors contain geometric information of shape

and orientation. We need the features containing structural information of

the DT-MR images, in particular,those of the white matter fibres.

For a set of variables v1, v2, ..., vn, The ESPs are defined as below
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S1(v1, v2, ..., vn) =
n∑
i=1

vi,

S2(v1, v2, ..., vn) =
n∑
i=1

n∑
j=i+1

vivj,

...

Sr(v1, v2, ..., vn) =
r∑

i1<i2<...<ir

vi1vi2...vir,

...

Sn(v1, v2, ..., vn) =
n∏
i=1

vi.

The power symmetric polynomial functions are

P1(v1, v2, ..., vn) =
n∑
i=1

vi,

P2(v1, v2, ..., vn) =
n∑
i=1

v2
i ,

...

Pr(v1, v2, ..., vn) =
n∑
i=1

vri ,

...

Pn(v1, v2, ..., vn) =
n∑
i=1

vni ,

Here vi =
√
λ2ei and vri means that for vector vi the pointwise raise to

power. The arguments of the polynomials above are the elements of the

spectral matrix. The values of the symmetric polynomials are used to con-

struct the feature matrix. The two sets of polynomials are associated by the

Newton-Girard formula:
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Sr =
(−1)r+1

r

r∑
i=1

(−1)k+rPkSr−k (5.5)

For each sample, a graph Laplacian matrix is created. The spectral matrix

and the ESP feature matrix are computed.

Constructing the ESP feature matrix

For each sample of a DTI dataset, the values of the first 6 polynomials,

S1, S2, ...S6, are computed and stacked to form a long feature vector. All the

samples’ long feature vectors are computed and form an ESP value matrix,

which can be used for feature selection. Any number of the polynomials can

be used to construct a feature vector, but the feature dimension should be

less than the number of samples.

The first value of the Si(i = 1, 2, ..., 6) is always zero, so it is discarded.

Then these feature vectors are merged column by column into a two di-

mensional matrix, known as the feature data matrix or feature matrix. In

practice, the feature matrix is truncated to preserve the useful values, and

those polynomial values corresponding to the very small eigenvalues are re-

moved. This ensures that the eigenvalues of the covariance matrix of the

feature matrix are real numbers.

A feature matrix is useful, since every element of it has an index, which

overcomes the difficulty of indexing in an unordered graph structure. The

feature matrix is used for classification. The feature matrix can be very

large. For example, Dataset1 has 80 samples; half of them are chosen as the

training set, and the other half are the testing set. The feature matrix of

polynomial values hence has the size of 156×40, as the ESP values are from
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the first 6 items, S1, S2, ...S6, each of the Si(i = 1, 2, ..., 6)) has 26 values,

corresponding to 26 non-zero eigenvalues.

Figure 5.2 shows that the eigenvalues of the covariance matrix of the

feature data matrix are well separated into two parts. Here we use 80 samples

of dataset1, in which 40 samples are for training and the other 40 samples

are for testing.

Figure 5.2: A histogram of the log10 eigenvalues of the covariance matrix
of the feature data matrix. The figure shows that the log10 eigenvalues are
clearly separated into two parts, this suggests that the left part with very
small eigenvalues can be discarded.

Given the feature matrix has the size of 156×40, the covariance matrix

of the feature matrix has the size of 156×156. By eigendecomposition, 156

eigenvalues and eigenvectors are obtained. However, only a small portion of

them are real numbers. We produce a histogram of these log10 eigenvalues

(Figure 5.2) to see if it is possible to split them into useful and non-useful
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parts. The log10 eigenvalues are naturally divided by two distinctive parts:

the small part represents 39 real eigenvalues, while the rest are complex

eigenvalues although only the real parts are displayed. Thus, we choose 39

rows of the feature data matrix, which are the polynomial values.

In general, if the number of samples is N , then the chosen number of

features, or feature dimension, would be N − 1. The size of an ESP feature

matrix is (N − 1)×N . This feature matrix can be the input for the feature

selection algorithm.

5.3.4 Feature selection

When humans perform object classification and pattern recognition prob-

lems, only a few attributes, called features, are needed. For example, the

nose, the eyes and the mouth can be the features for face recognition.

Feature selection can make machine learning more effective. Although

the number of features being used is unlimited, keeping this number to a

minimum is necessary to avoid the curse of dimensionality [71]. Feature

selection removes redundant and irrelevant information that may have an

adverse effect on the classifier performance. The purpose of feature selection

is to select the best subset X of d features.

The sequential forward selection algorithm is used to achieve feature se-

lection; and the criterion used for that is the Fisher discriminant ratio.

Sequential forward selection algorithm

The Sequential Forward Selection (SFS) algorithm [26] is a simple bottom-

up search procedure.
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Mathematically, the SFS algorithm is initialised by setting a vector X0 as

an empty set, k features are then selected to form a feature set Xk. Ranking

the elements, ζj , of the set of available measurements, Y −Xk , so that

J(Xk + ζ1) ≥ J(Xk + ζ2) ≥ ... ≥ J(Xk + ζD−K).

The feature set Xk+1 is given as Xk+1 = Xk + ζ1. J represents the selec-

tion criterion, namely the Fisher discriminant ratio (equation 5.8).

The SFS algorithm selects successive features with reference to the cur-

rent set of features, and the new enlarged feature set generates a maximum

value of the criterion function used. The statistical dependence between mea-

surements is considered, so the features set selected is good. The best subset

is produced by the combination of d features that optimises a criterion func-

tion. Using different criteria can result in selecting different features. How-

ever, the SFS has the nesting phenomenon: the feature sets Xk, k = 1, 2, ...d

are nested[26].

Search strategy for feature selection

A search strategy is applied to determine the best combinations of d

features out of D measurements, by evaluating each individual feature set.

The number of evaluations, q, is given by the combination formula:

q =

 D

d

 = D!
d!(D−d)!

where D is the number of features, d is the number of features to be

selected. Since q can be a large value of combinations, direct exhaustive

search is not a practical solution, thus a computationally feasible algorithm

is sought.
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Fisher discriminant ratio

The Fisher discriminant ratio is a well known criterion for class separa-

bility, which is used here. It maximises the ratio of the between-class data

separation to the within-class data separation. It is described as the following

by Devijver and Kittler [26].

The mixture population covariance matrix is denoted by

Σ = E{(x− µ)(x− µ)T}, (5.6)

where E is the expected value. x is the d -dimensional feature vector,

and µ is the class population mean. T means transpose. Then the total

covariance matrix, also known as the total scatter matrix, ST , is denoted as

ST = |Σ| = |Sw + Sb|, (5.7)

where |Σ| is the determinant of Σ, Sw represents the within-class scatter

matrix, and Sb represents the between-class scatter matrix. The greater the

ratio of the between- and within-class scatter, or of the total- and within-class

scatter, the greater the spatial separation of classes. The ratio is depicted as

J(ζ) =
|Σ|
|Sw|

, (5.8)

Alternatively,

J(ζ) = Πd
j=1(1 + λ̃), (5.9)

where λ̃ is an eigenvalue of the product S−1
w Σ = I + S−1

w Sb. The Σ is the

covariance matrix of the data matrix and I is the identity matrix. S−1
w is the
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pseudo-inverse of Sw.

5.3.5 Machine learning and SVM classification

There are two strands of categorising data in machine learning: (a) super-

vised learning and (b) unsupervised learning. The former uses labelled data

to train a classifier, which is applied to the unseen data to predict the new

labels, or the classes, this process is known as classification; while the latter

does not require the data to be labelled, certain rules are applied to the group

data, called clustering. In this study, supervised learning is adopted for fibre

classification.

The support vector machine (SVM) is used for supervised learning [33].

The trained SVM is applied to the unseen testing data to predict new labels

for them. The prediction accuracy rate, or classification accuracy rate, is

the ratio of the number of correctly predicted new labels against the number

of assigned labels. The classification accuracy indicates how well the SVM

classifier would perform on the new data.

5.3.6 Cross validation of the SVM

The purpose of cross validation is to examine the accuracy and the robustness

of a SVM, and to select the best parameters for the SVM.

Ten-fold cross validation is carried out. The samples of a training set are

divided into 10 equal portions, from which 9 portions are used to train a

SVM classifier, while the rest is for testing. For each fold, a different portion

is chosen as a testing set, and the rest are the training set.
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The SVM is trained through ten-fold validation; the best parameters are

applied to the training set to build a SVM that can then be used for classify-

ing the unseen data. The ten-fold validation results in 10 classification rates;

a set of the best parameters are identified if they achieve the best classifica-

tion accuracy rate.

So far, we have explained the framework of inferring the white matter

fibres in length. This is a pipeline, from HARDI data process, feature ex-

traction, feature selection, to machine learning and classification. This frame-

work is evaluated by applying it to real world data in chapter 6. But first,

we explore certain properties of stages in the pipeline.

5.4 Exploring geometric relationship of the

tensors

The inference of the white matter fibre is associated with the pairwise tensor

distance measured on the Riemannian manifold; statistic measurements are

on the curved surface. Hence, it is necessary to examine what impact would

be on the similarity measure for shape analysis.

In this section, several tests are carried out, to study the spatial rela-

tionship between the tensor angle, geodesic distance, the metrics and the

ratio of eigenvalues. These properties are useful for similarity measurement.

Dataset1 is used for all the tests unless stated.
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5.4.1 Test 1: Shape-angle distance vs. affine invariant

distance

The Riemannian metrics and the proposed measures are introduced in Chap-

ter 4. They are used to compute the geodesic distance of the tensors. This

test further explores their spatial relationship. The affine invariant metric[55]

and the proposed shape-angle measure are examined.

Figure 5.3: The relationship between geodesic distance and the angle of
pairwise tensors of a data graph. The affine invariant Riemannian metric is
used to compute the tensor distance. The X-axis is the Riemannian geodesic
distance, the Y-axis is the angle.

Figures 5.3 and 5.4 show that the geodesic distance computed by the
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Figure 5.4: The relationship between geodesic distance and the angle of
pairwise tensors of a data graph. The shape-angle measure is used to compute
the geodesic distance of paired tensors.

affine invariant metric and the shape-angle measure, they are proportional

to the angle of tensors. This reveals that the angle measure is compatible

with the distance measure of the tensors, or vice versa. So the angle of tensors

can be used for similarity measure for shape analysis. When two tensors are

parallel or near parallel to each other, the distance and the angle tend to be

small. They can be indicators of the white matter fibres lying underneath

the tensor images.

Figure 5.5 shows the relationship between the tensor distance using affine

invariant metric and the tensor distance using the shape-angle measure. They

are largely positively related.
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Figure 5.5: The relationship between the affine invariant distance and the
shape-angle distance, different measures are used.

5.4.2 Test 2: The effects of changing the angle of the

tensor

This test is to explore the relationship between angle of the tensor and cur-

vature of the circular tensor field.

Figure 5.6 shows that when the radius of the circle becomes larger, the

principal directions of the two adjacent tensors on the same radial line tend to

be parallel; while when the radius is small and near the center of the circle,

the principal directions of the tensors change rapidly. This simulates the

situation when a fibre bundle gradually changes its direction with different
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Figure 5.6: Tensors in the circular field. The tensors sit along the tangents
of the circle at different points, with different radii. The tangent direction is
parallel to the principal eigenvector direction of the tensor.

curvatures. The test suggests that the principal eigenvector of the tensor can

be used to depict the curvature of the white matter fibre tracts.

Eigenvalues of the tensor can be useful for structure detection in DTI

image analysis. Figure 5.7 describes the changes of the second and third

eigenvalues along the X-axis in the tensor field. The former has no noise

added, while the latter has Gaussian noise added with a standard deviation

of 0.005.
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(a)

(b)

Figure 5.7: The second and the third eigenvalues vs. radial distance along
the X-axis.(a) without adding noise; (b) Gaussian noise is added to the eigen-
values(sd.0.005). 129



In the test, a set of 3×3 samples are selected along the X-axis, the eigen-

values and eigenvectors of the tensor are computed via eigendecomposition.

When the radial distance increases, the eigenvalues of the tensor changes

smoothly, and the curvature of the tensor’s trajectory changes smoothly,

too. After the Gaussian noise is added, this trend largely remains the same.

In the circular tensor field, the second eigenvalue increases when the radii

distance getting bigger along the X-axis (or Y-axis). The curve of the third

eigenvalue is quite flat. The two curves are distinguishable, even when Gaus-

sian noise is added. Figure 5.7(b) shows that by adding the Gaussian noise,

the trend of the curves remain similar. It reveals that the second eigenvalues

change smoothly along the radial distance, and are useful for distinguishing

the tensors as different in position and orientation.

5.4.3 Test 3: The effects of the ratio of eigenvalues

This test is to examine if the ratio of the eigenvalues derived from the tensor

can characterise the white matter fibres. Figures 5.8 and 5.9 are the images of

the ratio of eigenvalue1 to eigenvalue2, and that of eigenvalue1 to eigenvalue3.

The major white matter bundles (e.g. genu/splenium of the corpus callosum)

in the two images appear in the bright light blue.

A few negative eigenvalues (the dark spots) appear at the edge of the

brain images. They may be a result of MRI signal truncation.

Figure 5.10 shows the images of the ratio values of eigenvalue2 to eigen-

value3; the contrast of the white matter fibre tracts to the background in the

image is relatively weak. This is because the difference of their values are

small, so they are not suitable for inferencing the fibres.
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Figure 5.8: A map of the ratio values of eigenvalue1 to eigenvalue2

Figure 5.9: A map of the ratio values of eigenvalue1 to eigenvalue3
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Figure 5.10: A map of the ratios of eigenvalue2 to eigenvalue3

By comparison, the ratio of eigenvalue1 to eigenvalue2 and the ratio of

eigenvalue1 to eigenvalue3 can be useful for inferring the white matter fibres.

5.4.4 Test 4: Affine invariant metric vs. shape-angle

measure

Pennec et al. propose the affine invariant Riemannian metric [55]; while

we develop the shape-angle measure for computing the geodesic distance of

tensors. Their compatibility is examined here.

Figure 5.11 shows that all the curves computed by using the affine in-

variant metric are smooth, stable, continuous and sensitive to small change

in distance. The angle of the tensor is changed from 0 to 360 degrees with

a 10-degree interval. The tensor’s radial axes are changed from 0.1 to 1,
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meaning its shape changes from linear to spherical. This is reflected by the

different colours of the curves.

In Figure 5.11, the geodesic distance between the two adjacent tensors are

computed, using the shape-angle measure. The tensor angle changes from

0 to 180 degrees at a 20-degree interval, and the tensor shape also changes

from linear to spherical.

Figure 5.11: The curves show the changing geodesic distance, measured by
Pennec’s affine invariant metric. The tensor angle is changed from 0 to 360
degrees, at an interval of 10 degrees. Different curves show the distances
while the tensor’s radial axes (L2 and L3) changing from 0.1 to 1.0, or from
linear to spherical shaped.
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Figure 5.12: The tensor distance computed by the shape-angle measure. The
curve shows the distance values changing smoothly, while the tensor angle
changes from 0 to 180 degrees at an interval of 20 degrees; the principal
eigenvalue of the tensor changes from 2.0 to 1.0, meaning that the tensor
shape changes from linear to spherical.

5.5 Summary

Chapter 5 presents a framework for inferring the white matter fibres from

diffusion tensor images. The highlights of this framework are:

• The spectral graph theory is used for the characterisation of white mat-

ter fibres in 3D diffusion tensor MRI images of the human brain

• Useful features are extracted from the elementary symmetrical polynomial

values, derived from the eigensystem of the spectral matrix, which is associ-

ated with the Laplacian matrix of the data graph
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• Feature selection and machine learning techniques are applied, for the in-

ference of the white matter fibres

Tests are conducted prior to the implementation of the framework. The

qualitative results show that the change of the geodesic distance between the

tensors are smooth. The ratios of the eigenvalues derived from the tensor are

geometrically informative.

Tests are applied to explore the relationship between the geodesic distance

and the angle of paired tensors; the changing curvatures of the angles of the

tensors in a circular tensor field; and the effects of the ratio of eigenvalues.

The results suggest that both eigenvalues and eigenvectors would be useful

for shape analysis in diffusion tensor MR images.

135



Chapter 6

Evaluation of Methodology for

Inferring White Matter Fibres

In Chapter 5, we present the methodology of inferring the cerebral white

matter fibres from diffusion tensor MR images. The inference is achieved

through graph based feature extraction, feature selection, supervised machine

learning for classification, to distinguish the white matter fibres from the

background.

This chapter describes an evaluation of the methodology. It studies the

techniques of feature extraction and feature selection; the use of the sup-

port vector machine (SVM) models and their performance; the use of cross

validation to select the best parameters; the classification accuracy on DTI

samples; and the generalisibility of the SVM models - how well the SVM

models can be used to predict the white matter fibres in new data.
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6.1 Datasets and experiment design

The evaluation of the inference methodology is based on diffusion tensor

MR images, derived from diffusion-weighted MR images, namely the HARDI

data. Five DTI datasets with different image resolution are used. A descrip-

tion of the datasets used in this study is displayed in Table 6.1.

The HARDI image acquisition used diffusion weightings (isotropic b =

1000 s/mm2) in multiple directions (e.g. 62, 69, 288), with a magnetic field of

3 Tesla. Along each diffusion direction, a 3D volume of diffusion weighted MR

dataset is produced. For example, Dataset1 (diffusion weighted MR data)

has 62 volumes, since 62 gradient directions were applied respectively during

data acquisition; all the volume has the same size: 128× 128× 44 voxels (44

slices), meaning that there are 44 slices of images with 128× 128 resolution.

The number of diffusion directions is equal to that of data volumes.

Table 6.1: Data Description

Dataset Volume size (voxel) Voxel size (mm3) Dataset size (volume)
1 128× 128× 44 2.5× 2.5× 2.5 62
2 98× 103× 74 2.0× 2.0× 2.0 69
3 98× 103× 74 2.0× 2.0× 2.0 69
4 98× 103× 74 2.0× 2.0× 2.0 69
5 145× 174× 145 1.25× 1.25× 1.25 288

The inference of the white matter fibres is based on supervised machine

learning. The DTI samples of 3× 3× 3 tensors are selected as described in

section 5.3.2. The overall strategy of the evaluation is designed as belows:

Firstly, using the DTI samples from one brain: 50% were randomly

sampled 30 times for the experiments, which are used for training a SVM
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model, while the rest of the samples are used as a testing set, or the unseen

data. Datasets 1, 2,..., 5 are used for these experiments. This evaluates how

well a model trained on part of a brain generalises to a different part of the

same brain.

Secondly, using the DTI samples from two brains: the samples obtained

from one brain form a training set, while that from the other brain are used

as a testing set. The datasets 2, 3, 4 have the same image resolution, so they

are suitable for a comparison of the performance of the SVM classification.

To test the generalisibility of the inference methodology, the samples of each

brain become in turn the training set, with the samples of the other brain

used for testing. This evaluates how well a model trained on one brain

generalises to a different brain.

Thirdly, using the DTI samples from three brains: the samples of two

brains are used as a training set, while the samples of the other brain are

used as a testing set. This evaluates how well a model trained on multiple

brains generallises to a further brain.

In cases 2 and 3, different brains are used in a combinational manner,

as the training and the testing sets. More details are given in the following

sections.

6.2 Selection of samples

A DT-MR dataset of the human brain can be used to collect some samples

to study. In this study, a sample is defined as a grid of 3× 3× 3, having 27

tensors. The samples are chosen for machine learning and classification.
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After a visual inspection of the DT-MR images, slice by slice, the region

of interest (ROI) is defined. The ROI is mainly in the deep brain. In brain

anatomy, the surface layer of the brain is known as the cortex, where the grey

matter and the cerebral fluid appear as spherical tensors in DT-MR images.

Some short U-shaped white matter fibres may exist in the cortex. Within the

ROI, DT-MR images are used for computer labelling. The labelling method

is described in section 5.5.2.

For example, given that the ROI in the 3 DT-MR images has 45× 54×

3 voxels, 15 × 18 samples can be produced. They are semi-automatically

labelled as fibre or non-fibre (the background) based on the criteria. “Non-

fibre” here means that there are no coherence fibres in the sample.

The criteria of sample labelling are described in Chapter 5. They involve

the calculation of the fractional anisotropy (FA) value [9], the Westin index

[74], Cl, indicating the degree of a linear tensor shape, and the variance of

angles of the principal eigenvectors within the DTI samples.

To calculate the variance of angles in a sample, the average principal

eigenvector of the 27 tensors is first computed. The angle of two tensors is

considered to be between 0 and 90 degrees. For every tensor, its principal

eigenvector, P , about the mean principal eigenvector, M , is also computed.

Sometimes, the sign of the principal eigenvector needs flipping if P ×M < 0.

This is because the eigenvector could point in the opposite direction.

Figure 6.1 shows the characteristics of the samples of dataset5; each point

shown in the figure is: (a) the mean FA values of a sample; (b) the mean

Westin index, or Cl values; and (c) the mean variance angle values. These

figures display a distinctive two-part pattern, indicating they are separable.
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Based on the label map (e.g. Figure 5.1(a)),“fibre” samples are selected

in a bottom-to-top order; and then the “non-fibre” samples are chosen from

the background. In fact, no particular order is required. The sample set

is arranged as the first half consisting of the “fibre” samples, while the sec-

ond half are the “non-fibre” samples, both halves have the same number of

samples.

6.3 Training of SVM models

The training of SVM models is used to build a useful classifier for the predic-

tion of classes for new data. The training is based on the DTI training set.

Ten-fold cross validation is performed to estimate the parameters for build-

ing the best model. The objectives are: (a) to examine the classification

accuracy and the robustness of the SVM models, measured by the misclassi-

fication rate during ten-fold cross validation; (b) to test to what extent the

trained SVM models can be used to predict new instances (classes) in unseen

data.

The validation process is divided into two stages: 1. training the SVM

model; 2. testing the model on the unseen data.

6.3.1 Choosing parameters

Training an SVM model is used to find the optimal parameters from the

SVM algorithm which enable new data to be classified. The principles of the

SVM are described in section 4.1.10.

There are 3 parameters to be chosen: (i) the box constraint called C
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(a) Mean FA values

(b) Mean Cl values

(c) Mean variance angle values

Figure 6.1: The characteristics of the samples from dataset5. The mean FA,
mean Cl, and mean variance angle values of each sample are represented by
the points. 141



value, for computing the margin of the SVM model; (ii) the number of best

features, BFs; and (iii) the K value, for computing the graph edge weight.

When training the SVM model, all the feature data points are first stan-

dardised, and then mapped onto the low dimension space using the Gaussian

kernel. A set of BFs, K and C parameters is chosen in a combinational

manner from the follows: the BFs are 1, 2, 3,... 12; the K values are 0.15,

0.16, 0.17, ... 0.24; and the C values are chosen to be exponential: 0.01,

0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 5.0, 8.0 and 10.0. These numbers are decided

experimentally.

During the ten-fold evaluation, 10 misclassification accuracy rates are

computed, and the corresponding parameters used are recorded. By finding

the minimum misclassification rate, the parameters used are considered as

the optimal parameters.

In Figure 6.2, the parameters BF and K are shown with error bars; these

parameters are used to produce the ESP feature matrix. Seven features at

the top-left and K=0.22 at the top-right are on the lowest points of the

curves, suggesting that they can produce the lowest misclassification rates.

At the bottom, the 7th C value also produces the lowest misclassification.

Thus they are considered as the optimal parameters.

Figures 6.2 - 6.5 display the parameter curves and their neighbourhood;

different metrics and measures are adopted. Among them the misclassifica-

tion rates in Figure 6.5 are the lowest (the mean values are less than 0.1), for

which the heuristic method is used. Noticeably, the error bars are very short,

meaning that the range of the misclassification rates is very small. Figure

6.5 shows the SVM classifier is robust and stable with the heuristic method.
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Figure 6.2: Choosing parameters with affine invariant metric. Dataset2.

Figure 6.3: Choosing parameters with Log-Euclidean metric. Dataset2.
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Figure 6.4: Choosing parameters with Shape-Angle measure. Dataset2.

Figure 6.5: Choosing parameters with Heuristic method. Dataset2.
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6.3.2 Ten-fold cross validation

At the training phase, ten-fold cross validation is used to examine the robust-

ness of the SVM and to find the best parameters (Figure 6.6). The testing

phase is described in section 6.4.

Figure 6.6: A diagram of ten-fold cross validation. It shows two phases:
training and testing. The dataset is divided into training data and testing
data. Training is to select the best parameter set through ten-fold validation,
using the training data only. The best parameter set is then applied to the
training data to produce an optimal SVM model, which is applied to the
unseen data to compute a classification accuracy rate.

For example, 160 samples of Dataset2 are used in a ten-fold validation.

The dataset is equally divided into 10 portions. In each fold, 9 portions
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are randomly selected for training a SVM classifier, while the other portion

is used for validation. This is performed in a rotation fashion, giving 10

estimates for the model parameter values. The parameters achieving the

best classification results are considered to be the best parameters.

Figures 6.7 - 6.10 show the results of the SVM training. For example, in

Figure 6.7(a) different coloured curves represent different K values used for

tensor distance measures, which affects the graph edge weight. The classifi-

cation accuracy rates very with the different number of features used. The

affine invariant metric is used to compute the geodesic distance of the tensors.

Figure 6.7(b) shows vertical lines with colours representing different K

values. The two horizontal short bars at the ends of the vertical line indicate

the highest and the lowest misclassification rates. This bar is called an error

bar. In a ten-fold evaluation, with a given amount of feature(s), 10 misclas-

sification rates are computed and represented as an error bar. The shorter

an error bar is, the less spread out the errors, hence the more robust the

SVM model. These figures assist with the choice of parameters. We ideally

look for a small number of features that can produce the low misclassification

rate, and the SVM is robust enough. In this example, 3 best features and

K=0.23 are good parameters.

To compute the geodesic distance of the tensors, four different similarity

measures are adopted: the affine invariant metric, the Log-Euclidean metric,

the shape-angle measure and the heuristic method. Comparing Figures 6.7 -

6.10, we can see that the heuristic method achieves the lowest misclassifica-

tion rates in training, and the highest classification accuracy rate in testing.

These are desirable outcomes.
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(a) Classification accuracy

(b) Misclassification rates

Figure 6.7: Ten-fold cross validation in SVM training: the affine invariant
metric is used for tensor distance measure. 1 to 10 leading features are used
respectively.
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(a) Classification accuracy

(b) Misclassification rates

Figure 6.8: Ten-fold cross validation in SVM training: the Log-Euclidean
metric is used for tensor distance measure. 1 to 10 leading features are used
respectively.
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(a) Classification accuracy

(b) Misclassification rates

Figure 6.9: Ten-fold cross validation in SVM training: the shape-angle mea-
sure is used for tensor distance measure. 1 to 10 leading features are used
respectively.
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(a) Classification accuracy

(b) Misclassification rates

Figure 6.10: Ten-fold cross validation in SVM training: the heuristic method
is used for tensor distance measure. 1 to 10 leading features are used respec-
tively.
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6.4 Testing of SVMs on the unseen data

As mentioned, DTI samples are divided evenly for training and testing. Af-

ter training an SVM model, it is tested to examine its performance, e.g.

classification accuracy.

Ten-fold cross validation is done on training set only, resulting in a set of

optimal parameters; and class posterior probabilities are estimated. Based

on the likelihood measures and the Bayes rule, the SVM model uses the best

parameters to predict new labels on the unseen data (Figure 6.6).

The classification results are displayed in Table 6.2 to Table 6.15. Clas-

sification accuracy rate, false negative rate (FNR) and false positive rate

(FPR) are computed, as defined in section 3.6.1. In the one-brain case, ran-

dom selection for both the training and testing sets is performed, 30 runs are

carried out and average classification results are produced.

Classification accuracy rate = Number−of−correctly−predicted−labels
Number−of−known−labels

To examine the generalisibility of the SVM model to the unseen data, a

classification error is computed by

Misclassification rate= 1− Classification accuracy rate.

6.5 Experimental methods

There are 3 cases in the experiments: called one-brain case, two-brain case

or three-brain case, meaning that the DTI samples used for fibre classifica-

tion are selected from one brain, two brains and three brains respectively.

In each case, four different similarity measures are used to compute the

geodesic distance of pairwise tensors. They are the affine invariant met-
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ric, the Log-Euclidean metric, the proposed shape-angle measure and the

heuristic method.

The trained SVM model is applied to the testing set and new labels are

predicted. A classification accuracy (or misclassification) rate is computed.

The evaluation results are presented in the following section.

(1) One-brain case

The Datasets 1 - 5 are used for the experiments. They produce 80, 160,

160, 148 and 228 DTI samples respectively. In each experiment, a dataset

covering the whole brain is used for both training a SVM model and testing

the model. 50% of the sample are randomly selected for training, while the

other 50% of the samples are used for testing. 30 runs are completed.

(2) Two-brain case

The assessment process is the same as that of the one-brain case. How-

ever, the training set and the testing set used are acquired from different

brains: the samples from one brain are used for training a model, while the

samples from another brain are used for testing the model.

Datasets 2, 3, 4 having the same image resolution of 2.0× 2.0× 2.0 mm3

are used for this experiment, with different combinations. There are 6 as-

sessments: dataset2 is for training while dataset3 is for testing, and vice

versa; dataset2 is for training while dataset4 is for testing, and vice versa; or

dataset3 is for training while dataset4 is for testing, and vice versa.

(3) Three-brain case

The samples from DTI datasets of two brains are merged into one training

set, while that of the other brain becomes the testing set. For datasets 2, 3,

4, all the combinations are considered when constructing a training set and
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a testing set. This means: the datasets 2, 3 are merged for training while

dataset4 is for testing; datasets 2, 4 are merged for training while dataset3 is

for testing; datasets 3, 4 are merged for training while dataset2 is for testing.

6.6 Results

The SVM classification results are presented in Tables 6.2 - 6.15. The DTI

datasets used are derived from real diffusion-weighted MR images of the

human brains. Four different similarity measures are applied for computing

the tensor distance, which is used to compute the graph edge weight.

For the one-brain case, 30 runs are conducted. The mean classification

accuracy rate, mean false negative rate, mean false positive rate, and their

standard deviations are computed. The results are displayed in Tables 6.2 -

6.6.

For the two-brain case, the samples from the dataset of one brain are

used for training, and the samples from that of the other brain are used for

testing. Tables 6.7 - 6.15 consist of two parts: the upper part displays the

training results: the mean accuracy rate, the standard error, and the best

parameters; while the lower part displays the classification outcomes of the

testing phase.

For the three-brain case, the samples from DTI datasets of two brains are

merged together for training, while the samples from that of the other brain

are used for testing. The results are shown in Tables 6.13 - 6.15.
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Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.5092 0.4892 0.5475 0.7900
SD of accuracy 0.1047 0.0960 0.0887 0.0684

Mean FN 0.5317 0.61 0.3667 0.2217
SD of FN 0.2291 0.1940 0.2361 0.1448
Mean FP 0.4500 0.4117 0.5383 0.1983
SD of FP 0.2403 0.1879 0.2735 0.1118

Table 6.2: One-Brain Case 1: SVM training and testing both using
Dataset1 (50% samples for each.); 30 runs in total.

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.5000 0.5054 0.5479 0.7517
SD of accuracy 0.0637 0.0563 0.0732 0.1455

Mean FN 0.4342 0.3292 0.5100 0.2608
SD of FN 0.3255 0.2981 0.3065 0.2928
Mean FP 0.5658 0.6600 0.3942 0.2358
SD of FP 0.3061 0.2964 0.2733 0.2205

Table 6.3: One-Brain Case 2: SVM training and testing both using
Dataset2 (50% of samples for each.); 30 runs in total.

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.5363 0.5563 0.521 0.7675
SD of accuracy 0.0734 0.0883 0.0603 0.1109

Mean FN 0.4750 0.4258 0.5008 0.1633
SD of FN 0.3232 0.2749 0.4159 0.1508
Mean FP 0.4525 0.4617 0.4950 0.3017
SD of FP 0.2835 0.2586 0.4229 0.2796

Table 6.4: One-Brain Case 3: SVM training and testing both using
Dataset3 (50% of samples for each.); 30 runs in total.
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Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.5207 0.5360 0.5419 0.7730
SD of accuracy 0.0444 0.0620 0.0610 0.1203

Mean FN 0.4793 0.2514 0.1505 0.2432
SD of FN 0.4186 0.3427 0.2033 0.2271
Mean FP 0.4793 0.6766 0.7658 0.2108
SD of FP 0.4238 0.3671 0.2715 0.2497

Table 6.5: One-Brain Case 4: SVM training and testing both using
Dataset4 (50% of samples for each.); 30 runs in total.

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.5067 0.5167 0.5126 0.6468
SD of accuracy 0.0310 0.0442 0.0427 0.0838

Mean FN 0.2099 0.2158 0.5357 0.2474
SD of FN 0.2262 0.2352 0.3345 0.2360
Mean FP 0.7766 0.7509 0.4392 0.4591
SD of FP 0.2431 0.2623 0.3207 0.2825

Table 6.6: One-Brain Case 5: SVM training and testing both using
Dataset5 (50% of samples for each.); 30 runs in total.
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SVM Training Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.700 0.6750 0.7875 0.9687
Standard error 0.0382 0.0415 0.0340 0.0140

Best K 0.22 0.24 0.24 0.17
No.of BestFeatures 7 7 2 8

Best C 1 1 5 5

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Accuracy rate 0.4932 0.5068 0.5608 0.8378
False negative 0.4324 0.0135 0.2297 0.1486
False positive 0.5811 0.9730 0.6486 0.1757

Table 6.7: Two-Brain Case 1: SVM training using the samples from
Dataset2; testing on the samples from Dataset3.

SVM Training Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.7062 0.6687 0.6812 0.9687
Standard error 0.0476 0.0373 0.0237 0.0104

Best K 0.22 0.24 0.23 0.17
No.of BestFeatures 6 8 10 9

Best C 1 0.2 1 8

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Accuracy rate 0.6067 0.5067 0.5000 0.8667
False negative 0.24 0 1 0.16
False positive 0.5467 0.9867 0 0.1067

Table 6.8: Two-Brain Case 2: SVM training using the samples from
Dataset2; testing on the samples from Dataset4.
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SVM Training Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.7181 0.7090 0.6881 0.9052
Standard error 0.0556 0.048 0.0331 0.0307

Best K 0.19 0.23 0.18 0.16
No.of BestFeatures 4 10 8 2

Best C 5 1 10 1

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Accuracy rate 0.5467 0.5467 0.5 0.8667
False negative 0.44 0.2933 1 0.1867
False positive 0.4667 0.6133 0 0.08

Table 6.9: Two-Brain Case 3: SVM training using the samples from
Dataset3; testing on the samples from Dataset4.

SVM Training Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.6562 0.725 0.6937 0.9187
Standard error 0.0477 0.0312 0.0218 0.0163

Best K 0.18 0.21 0.22 0.22
No.of BestFeatures 4 6 9 5

Best C 0.5 0.5 1 5

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Accuracy rate 0.4875 0.5125 0.5188 0.8000
False negative 0.1875 0.2625 0.0125 0.0125
False positive 0.8375 0.7125 0.95 0.3875

Table 6.10: Two-Brain Case 4: SVM training using the samples from
Dataset3; testing on the samples from Dataset2.
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SVM Training Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.7467 0.7467 0.6933 0.9200
Standard error 0.0239 0.0239 0.0374 0.0166

Best K 0.21 0.18 0.23 0.15
No.of BestFeatures 7 10 1 8

Best C 5 10 0.05 1

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Accuracy rate 0.5000 0.4875 0.5375 0.925
False negative 1.000 0.8750 0.8750 0.0625
False positive 0 0.1500 0.0500 0.088

Table 6.11: Two-Brain Case 5: SVM training using the samples from
Dataset4; testing on the samples from Dataset2.

SVM Training Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.7533 0.7533 0.7267 0.9267
Standard error 0.0315 0.0299 0.0336 0.0185

Best K 0.21 0.18 0.18 0.15
No.of BestFeatures 6 7 6 8

Best C 8 1 1 5

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Accuracy rate 0.5000 0.5000 0.5875 0.8375
False negative 0 0.0375 0.2750 0.1875
False positive 1.0000 0.9625 0.5500 0.1375

Table 6.12: Two-Brain Case 6: SVM training using the samples from
Dataset4; testing on the samples from Dataset3.
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SVM Training Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.6395 0.6492 0.6820 0.9223
Standard error 0.0284 0.0194 0.0231 0.0174

Best K 0.22 0.23 0.23 0.17
No.of BestFeatures 10 7 10 3

Best C 0.5 5 1 10

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Accuracy rate 0.5733 0.5067 0.5600 0.8600
False negative 0.4 0.0133 0.36 0.0933
False positive 0.4533 0.9733 0.52 0.1867

Table 6.13: Three-Brain Case 1: SVM training using the samples from
Dataset2 and Dataset3; testing on the sample from Dataset4.

SVM Training Results
Similarity Metrics Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.6516 0.6484 0.6677 0.9355
Standard error 0.00271 0.0148 0.0373 0.0167

Best K 0.2 0.17 0.23 0.15
No.of BestFeatures 7 11 10 6

Best C 1 0.03 1 10

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Accuracy rate 0.5878 0.5676 0.5405 0.8446
False negative 0.4324 0.3649 0.7027 0.2297
False positive 0.3919 0.5 0.2162 0.0811

Table 6.14: Three-Brain Case 2: SVM training using the samples from
Dataset2 and Dataset4; testing on the sample from Dataset3.
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SVM Training Results
Similarity Metrics Affine Invariant Log-Euclidean Shape-Angle Heuristic

Mean accuracy 0.6968 0.7032 0.6516 0.9097
Standard error 0.0211 0.0292 0.0258 0.0151

Best K 0.2 0.19 0.22 0.15
No.of BestFeatures 7 10 6 3

Best C 10 1 1 1

Classification Results
Similarity Measure Affine Invariant Log-Euclidean Shape-Angle Heuristic

Accuracy rate 0.4688 0.4250 0.5625 0.9313
False negative 0.3750 0.4375 0.2375 0.0625
False positive 0.6875 0.7125 0.6375 0.0750

Table 6.15: Three-Brain Case 3: SVM training using the samples from
Dataset3 and Dataset4; testing on the sample from Dataset2

6.7 Summary

Tables 6.2-6.15 show that our proposed heuristic method consistently out-

performs the other measures used; a high prediction rate (around 86%) is

achieved.

As the similarity measure, two Riemannian metrics and two proposed

measures are applied to compute the geodesic distance of the pairwise or

paired tensors. They are the affine invariant metrics, the Log-Euclidean

metrics, the proposed shape-angle measure and the heuristic method. The

heuristic method is the most suitable for the fibre inference.

The proposed heuristic method is associated with the affine-invariant met-

rics. It uses a selective criterion: if the angle between two tensors is below

a threshold (e.g.10 degrees), then the angle itself becomes the geodesic dis-

tance of the tensors, otherwise the affine invariant metrics is used to compute

the geodesic distance. This enables the graph edge weight to be more dis-
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criminative. The weight determines the weighted Laplacian matrix of the

data graph representing the DTI images. The weighted Laplacian matrix is

used to produce the eigenvalues and eigenvectors, which are used to generate

features. The features are the key to machine learning and fibre classifica-

tion. This is the procedure of inferring the white matter fibres from diffusion

MRI, also the procedure of methodological evaluation. If any error occurs, it

could degrade the accuracy of the next step. In contrast, the affine invariant

metric, the Log-Euclidean metric and the shape-angle measure do not work

so well. The affine-invariant Riemannian metric was originally evaluated on

synthetic data and it may not be applicable to real MR images.

The Log-Euclidean metric is computationally simpler than the affine in-

variant metric. However, it does not have all the properties that the affine-

invariant Riemannian metric possesses. The Log-Euclidean metrics would

show tensor swelling effects, because the determinant of the Euclidean mean

of the tensors can be larger than that of the original tensors [2]. The affine-

invariant and the Log-Euclidean metrics achieve similar classification results.

The proposed heuristic method achieves the best classification results among

them. The inference of the white matter fibres is non-trivial, particularly

when the HARDI data are used, due to image noise, the partial volume

effect and the complicated brain structures.

The quality of features plays a crucial part in the success of the neural

fibre classification. They are associated with the geodesic distance metric or

measure. Figure 6.11 shows that different metrics or measures can generate

features of different characteristics. In Figure 6.11 (a),(b),(c) two-class fea-

tures are inseparable, while in (d) they are separable and generated by the
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proposed heuristic method.

The importance of these experiments is the use of real diffusion MR im-

ages, which is clinically relevant. Diffusion MR images are noisy and compli-

cated, which can degrade the classification accuracy. Although the inference

of the white matter fibers is challenging, this methodological evaluation pro-

vides strong supportive evidence for the framework of the inference of the

white matter fibers from diffusion tensor MR images of the human brain.
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(a) (b)

(c) (d)

Figure 6.11: Features generated from the elementary symmetric polynomi-
als, derived from spectral graph theory. Different measures are used to com-
pute the graph edge weight. They are (a) affine invariant metric; (b) Log-
Euclidean metric; (c) shape-angle measure; and (d) heuristic method. Kernel
PCA [73] is used to condense the data and extract features. (d) shows that
the feature points generated by using the heuristic method are much easier
to be separated into two classes: fibre and non-fibre. (Dataset2)
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Chapter 7

Conclusion and future work

Chapter 5 presents a framework for inferring white matter fibres in diffusion

tensor images; and Chapter 6 describes the implementation of the framework

in detail. Four measures are applied for the similarity measure, namely the

affine invariant and Log-Euclidean metrics, and the proposed shape-angle

measure and the heuristic method. Among them, the heuristic method sig-

nificantly outperforms the other methods.

The similarity measure is crucial for labelling tensor samples. It affects

the quality of feature extraction and feature selection. The classification

results indicate that the features produced with the heuristic method have

stronger discriminative power than using other distance measures. This is

because the geodesic distance implies parallelism of prolate shaped tensors;

alternatively, only when the variance of the principal eigenvectors of the

tensors of a sample is small, can the sample be labelled as “fibre”. If the

labelling of the samples is incorrect, the classification outcome will degrade.

In short, the similarity measure is important to successful inference of the
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white matter fibres.

The cerebral white matter fibres cannot be seen in diffusion MR images

with the naked eye. Histologists have been using chemical dyes and/or dis-

section to isolate the white matter fibres from a cadaver’s brain. In this

thesis, we identify the fibres in the live human brain through diffusion DT-

MR images, statistical pattern recognition techniques and supervised ma-

chine learning. This is achieved by implementing the proposed framework

and procedures, data transforming DWI to DTI, carrying out feature extrac-

tion and feature selection. Useful features are created for the classification

of white matter fibres and their background in DTI.

The heuristic method significantly outperforms the other 3 similarity mea-

sure methods. It achieves excellent mean classification accuracy rates (with

standard deviation) when 2 or 3 brains are used:

0.7458 ± 0.0570 (one-brain case, 5 tests; see Tables 6.2 - 6.6);

0.8556 ± 0.0419 (two-brain case, 6 tests; see Tables 6.7 - 6.12);

0.8786 ± 0.0463 (three-brain case, 3 tests; see Tables 6.13 - 6.15).

The heuristic method is used to compute the geodesic distance of a pair of

tensors, which is for computing the graph edge weight later. When the angle

is less than a threshold (e.g. 10 degrees), the angle is used as the similarity

measure; otherwise the affine invariant metric is adopted. This approach is

able to identify linear shaped tensors, which improves the accuracy of DTI

sample labelling, leading to high classification accuracy.

The heuristic method successfully captures the fundamental aspect for

machine learning: being able to produce discriminative features first. It
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focuses on the similarity measure for computing the right graph weights; as

a result, an appropriate label is given to a sample. However, it is difficult

to find the ground truth. The classification results are largely based on the

correctness of the labelling of the DTI samples. For this reason, the brain

anatomy atlas is used to understand the labelling, for both confirmation and

triangulation and experts in the York Neuroimaging Centre were consulted.

The work covering shape analysis for diffusion MRI images of the human

brain is more challenging than that for structural MRI. Structural MRI data

are 3 dimensional, while diffusion MRI data have 5 dimensions: each voxel is

a 3× 3 symmetric positive definite matrix. Structural MRI are scalar data,

diffusion MRI data have both magnitudes and orientations. They can be

used for inferencing the white matter fibers, which enables further studies of

the brain connectivity.

The work presented in chapter 6 also shows the usefulness of graph rep-

resentation; and the graph spectrum has a potential for the shape analysis

of diffusion tensor images.

7.1 Summary of contributions

The contributions described in the thesis are:

(1) Proposing a spectral graph based framework for inferring white mat-

ter fibres. This is successfully applied to diffusion tensor images, derived

from real diffusion-weighted MR images, namely the High Angular Resolu-

tion Diffusion Imaging (HARDI) data.

(2) Creating useful features from DT-MR images through the symmetric
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elementary polynomial values and the spectral graph theory.

(3) Proposing a semi-automatic labelling system to select DTI samples,

which are used for supervised machine learning.

(4) Proposing two methods for similarity measures: the heuristic method

and the shape-angle measure. Both are for pairwise tensor distance measures.

The former is very good, while the latter does not work well.

(5) With only a small number of diffusion tensor image datasets, an eval-

uation of the methodology for inferring white matter fibres is conducted

successfully, and useful classification results are produced.

(6) Applying spectral graph theory to 5D diffusion tensor MR image

analysis. With the heuristic method, feature selection and machine learn-

ing on Riemannian manifold, excellent fibre classification accuracy rates are

achieved (around 86%).

(7) Feature selection techniques are successfully applied to diffusion MR

images, and choosing the best features for the fibre inference, or fibre classi-

fication; only a small number of features are chosen (up to 10), so the search

space for features is considerably reduced.

(8) Identifying the suitable SVM classifiers for DTI classification, together

with the useful heuristic approach for feature similarity measure, excellent

classification results for the white matter fibres are achieved.

(9) Obtaining excellent results of the sulci classification based on struc-

tural MRI analysis, with the combination of spectral graph theory and sta-

tistical machine learning. Useful features are extracted from the heat kernel

signature and the zeta function trace.

(10) This study has proven that the Fisher discriminant ratio has a strong
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discriminative power. It is useful not only for the sulci characterisation in

structural MR images, but also for inferring white matter fibres from diffusion

tensor images as the feature selection criterion.

7.2 The factors that could affect the infer-

ence of white matter fibres

There are a number of factors that could affect the inference of white matter

fibres.

MR imaging bias: noise can be caused by the heterogeneous magnetic

field, causing geometrical distortion of (diffusion) MR images, hampered by

individual difference.

Image registration error: in this study, up to 288 MR image volumes

are aligned to produce a single set of HARDI dataset. Due to physiological

movement like breathing, the quality of imaging can be degraded and blurred.

Diffusion tensor measurement errors: usually, the FA value is lower

than it should be in fibre crossing; conventional statistics is not naturally

applicable to the tensors; and the choice of metric or measure is application

dependent. These can cause tensor quantitative measurement errors. As a

result, sample labelling might be affected.

Diffusion tensor modelling error: the tensor model is assumed to be

a Gaussian model but in reality it is not; the model assumes at most one fibre

exists in an image voxel but this may not be true, since the white matter

fibre is only 5-10 µm in diameter, and the image voxel sizes of the datasets

are 2.5 mm3, 2.0mm3 or 1.25mm3, which being much bigger than the fibre
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diameter, could contain a large number of fibres.

Graph spectrum computing error: a 3 × 3 × 3 sample is used to

generate a graph and so the Laplacian matrix of the graph thus has a size of

27× 27. In the process of eigendecomposition, numerical errors could occur

when computing the eigenvalues and eigenvectors, such as overflow or under-

flow, as their values are very small. This also can occur when performing the

pseudo-inverse of a large (feature) data matrix.

Small sample size: the number of datasets is small; and the number

of samples selected is also small. This could affect the SVM training result,

as the variance of the classification accuracy in the ten-fold validation can

fluctuate. In general, machine learning tends to use large datasets. However,

HARDI acquisition can take a long time (around 1 hour), which can make

the subject feel claustrophobic, and cause body motion inside the scanner,

resulting in geometric distortion in MR images.

The datasets in the public domain might not always be suitable for fi-

bre inference. For instance, the datasets might use different MR imaging

sequences, different diffusion b-value and magnetic field strength.

Image resolution: Dataset5 comes from the website of the Human

Connenectome Project; the voxel size is 1.25 mm3. This is the highest dif-

fusion image resolution used in this study. However, when the samples from

DTI dataset5 are used for evaluation, in the one-brain case, the classification

accuracy rate is only 64.68% (Table 6.6); while with samples from datasets

1-4, the classification accuracy rates are over 75%. This may be because the

signal-to-noise ratio is low when the image resolution is high.
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Shape analysis for diffusion MR images is non-trivial, particularly for

brain structure detection. The white matter fibres cannot be detected di-

rectly, as they are invisible in both structural and diffusion MR images. They

can be inferred through measuring water diffusion, but there is a limitation

as mentioned above.

Nevertheless, this dissertation provides a novel graph based framework for

inferring white matter fibres from DT-MR images. Although this is mathe-

matically and technically challenging, the research outcomes are promising.

7.3 Future work

Based on the analysis in section 7.2, the future work is identified as improving

all the aspects mentioned. These include improvements of the metrics of

geodesic distance of the tensors, feature generation, feature selection, and

finding more samples and more diffusion MR datasets.

To improve the metrics, both the characteristics of diffusion MR and the

angular component of the data should be taken into account. For feature

generation, different shape descriptors can be applied to diffusion tensor MR

images, such as the heat kernel signature and the trace of zeta function. For

feature selection, other methods can be used to reduce the feature nesting

problem; and different selection criteria can be applied or invented.

We are excited by the new technical advances this thesis presents. Most

importantly, the whole image processing and analysis pipeline is workable,

and the novel methodology has been tested successfully on real diffusion MR

images, particularly on HARDI data. The study proves a proposed heuristic
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method works much better than the other existing similarity measures.

Diffusion MRI is a unique non-invasive brain imaging modality. The

research outcomes are significant for diffusion MR image analysis. It is an

important step forward for the inference of brain white matter fibres, which

will certainly be beneficial for white matter pathological studies, such as

psychiatric disorders and neurological diseases; and also for computer assisted

neurosurgery in the future.
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Appendices
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Principal component analysis

(PCA)

Principal component analysis (PCA) is a data projection method that is

used for data reduction. It is an orthogonal transformation to convert a

set of observation values of possibly correlated variables into a set of values

of linearly uncorrelated variables, called principal components; and the first

principal component has the largest possible variance [53].

Given a data matrix D with dimensions of M × N , where M is data

dimension and N is the number of observations or of samples, as a standard

algorithm, the algorithm of PCA is:

1. Data centering: computing the mean for each column of the data, and

subtract that mean from the each column value, resulting in a zero mean

new data matrix U ;

2. Computing the covariance matrix of the new data matrix: Σ = UTU ;

3. Obtaining the eigenvalues and eigenvectors of the covariance matrix

by eigendecomposition;

4. Sorting the columns of the covariance matrix, so that they correspond

to the eigenvalues in a descending order. This create a projection matrix.
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5. Using the projection matrix to project the original data onto a new

subspace.
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