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I 

Abstract 

The atrioventricular node (AVN) of the heart is responsible for the important 

conduction delay between atrial systole and ventricular systole. The anatomical 

architecture and functional properties of the AVN are complex. Ionic currents have been 

characterised in the AVN at both the whole tissue level and single cell level. However, 

little is known about the molecular basis of these ionic currents. There were two aims of 
this research: 1) to generate an accurate three-dimensional reconstruction of the rabbit 
AVN conduction axis and 2) to use real time PCR and in situ hybridisation to measure 
levels of mRNA for specific ion channels and membrane proteins in the rabbit AVN 

and surrounding atrial and ventricular tissue. Neurofilament-M (NF-M) 

immunolabelling revealed a tract of cells extending from the posterior nodal extension 
through the compact node to the common bundle. The PNE appeared to correspond to 

the slow pathway. Loosely packed atrial muscle comprised the anterior region of the 

AVN conduction axis closest to the enclosed part of the AVN and most likely 

represents the fast pathway. Lower nodal cells extended from the common bundle to the 

lower extremities of the compact node and PNE. Significant differences in the mRNA 

levels between the PNE and atrial muscle for the pacemaker channel HCN4, INa 

channels Na,, l. 1 and Na, 1.5, the Ica, L channel Ca, 1.3, the I, ) channel ß-subunit KChIP2 

and Cx43 were found. HCNI, Na,, 1.1, Ca�1.3 and NF-M mRNA were significantly 

higher in the PNE, compact node and common bundle compared to the atrium and 

ventricle. Ki, 2.1 mRNA was significantly higher in the ventricular muscle compared to 

the PNE and atrial muscle. Atrial natriuretic peptide (ANP) mRNA, was significantly 
higher in the atrial muscle compared to other tissues. For mRNAs for the Igo channels, 
K,, 4.2 and K,, 4.3, the delayed rectifier K+ channels, K,, 1.5, ERG, K, LQTI and minK, the 

inward rectifier K+ channels, Ki, 2.2, K; r6.2 and (3-subunit SUR2A, and the Ca2+ handling 

proteins, RYR2, RYR3, NCXI and SERCA2a, there were no significant differences 

between tissues. In situ hybridisation staining revealed further complexity of the AVN 

conduction axis tissue. A region of loosely packed atrial tissue immediately adjacent to 

the nodal tissue was KChIP2 negative and Na�1.5 negative, and the lower nodal cells 

were both Ca�1.2 and Ca, 1.3 positive. This study has described a complex architecture 

of the AVN and added further complexity by providing a detailed account of ion 

channel expression throughout this tissue. 
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Chapter 1 

General introduction 

1.1 Atrioventricular node (AVN) 

1.1.1 The cardiac conduction system 

The sinoatrial node (SAN) is the primary pacemaker in the heart; the SAN centre is the 

leading pacemaker site capable of generating spontaneous action potentials. These impulses 

propagate to the periphery of the SAN to excite the working atrial muscle. Electrical 

excitation continues throughout the atria and eventually reaches the AVN where there is a 
delay in impulse propagation sufficient to allow atrial systole to occur and fill the ventricles 

during ventricular diastole. The impulse proceeds through the bundle of His/common 

bundle to the bundle branches and Purkinje fibres permitting excitation of the ventricles 

and ventricular systole to occur. 

1.1.2 Role of the atrioventricular node in cardiac function 

The atrioventricular node (AVN) is well known as the structure which is responsible for the 

conduction delay in the cardiac cycle thereby allowing ventricular filling to occur prior to 

ventricular systole (Dagget et al., 1970). In addition, the AVN can prevent ventricular 

tachycardia during fast rates of atrial excitation, for example, during atrial fibrillation 

(Dreifus et al., 1971) and also act as a subsidiary pacemaker if the sinoatrial node (SAN) 

fails. The AVN is located at the base of the right atrial septum immediately adjacent to the 

tricuspid valve annulus and the ostium of the coronary sinus (Anderson and Ho, 1998). 

1.1.3 Anatomical and histological classification 

The classification of the AVN is one of major debate with conflicting anatomical and 
functional definitions (Anderson et al., 1974; Billette et al., 1976). In terms of anatomical 
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landmarks, the triangle of Koch, describes the collective AVN area. The triangle is 

demarcated superiorly by the Tendon of Todaro, which extends from the union of the 

Eustachian and Thebesian valves to enter the aortic root. The ventricular aspect is the hinge 

of the septal cusp of the tricuspid valve. Finally, the coronary sinus and inferior part of the 

right atrium comprise the base of the triangle (Fig. 1.1). 

1.1.4 Nomenclature used to describe AVN structures 

The discrepancies which have arisen over the years to describe the AVN structures both 

functionally and histologically are due to the fact that the heart is situated differently in the 

human compared to animals. Ultimately, the correct description of the AVN should be 

based on human orientation, since, this structure is clinically very important and therefore 

to aid clinicians in their treatment of AVN pathologies such as catheter ablation, 

experimental findings from animals should be described with the human nomenclature in 

mind. In animals, the AVN is described with the membranous septum being anterior and 

the coronary sinus being posterior; with the tendon of Todaro and tricuspid valve annulus 
being left and right lateral, respectively. In humans, however, the membranous septum is 

located superiorly and the coronary sinus inferiorly; the tendon of Todaro anteriorly and the 

tricuspid valve annulus posteriorly, these descriptions are based on the fact that in humans 

the apex of the triangle of Koch points up and not to the front. A common AVN 

nomenclature based on human descriptions has been requested by a panel of experts in this 

field (Cosio et al., 1999), however, in this thesis when describing the findings of landmark 

papers in AVN research which have been carried out on animals I have used the 

nomenclature given in that text due to the obvious problems of rewording the text to agree 

with human nomenclature. Histological decriptions of subcellular groups within serial 

sections of the AVN have also been described by different means. The compact node is the 

"half-oval" shaped group of cells originally described by Tawara (1906) as the "knot" or 

"knoten" group of cells, however, this structure has been further separated into 

circumferential transitional cells, mid-nodal cells and lower nodal cells (Anderson, 1972; 

Fig. 1.4). 

1.1.5 Histological descriptions 



Interventricular 
septum 

Purkinje fibers 

Figure 1.1 Schematic diagram of the mammalian heart showing the major components of 
the conduction system. A depolarising action potential originates from the the SA node in 
the upper right atrium. The action potential propagates throughout the right and left atria to 
reach the AVN, where a delay occurs to allow ventricular filling before ventricular systole. 
Eventually the impulse is propagated to the His bundle and then down the bundle branches 
to the Purkinje fibres with ultimate excitation of the ventricular muscle From McGraw-Hill, 
2006. 
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Figure 1.2 Anatomical landmarks surrounding the AVN region. Arising from the area of 
the inferior vena cava is the Eustachian valve which extends to form the tendon of Todaro 
passing posteroanteriorly to embed itself within the central fibrous body. Located on the 
lateral side of the tendon of Todaro are the Oval fossa and coronary sinus. Most inferiorly 
is the inferior isthmus which comprises the inferior approaches to the AVN such as the 
septal isthmus; morphological structures which lead into this area have been implicated in 
the genesis of atrioventricular nodal reentrant tachycardia, in particular, the slow pathway. 
More anteriorly an impulse can arrive at the AVN via a fast pathway. Making up the final 
(right-side) border of the AVN is the tricuspid valve annulus mainly formed from the fusing 
of the septal cusp of the tricuspid valve to the right ventricular wall. The star indicates the 
approximate location of the compact node. From Anderson and Ho (2006). 
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Figure 1.3 Schematic diagram of the AVN showing landmarks and structures. Red area: 
tract of NF-M positive cells extending from the common bundle (right most), through the 
compact node (circular structure) to the posterior/inferior nodal extension. The orange area 
represents the area where AVN pacemaking originates. Blue area: region of lower nodal 
cells. 
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Figure 1.4 Schematic diagram showing the complex architecture of the AVN. Upper panel 
shows a section perpendicular to the tricuspid valve annulus through the superior part of the 
node at the level shown by the black line in the lower panel. Lower panel shows regions 
where action potentials from the various cell types (AN, N and NH) are present in the 
rabbit AVN. From Meijler and Janse, (1988). 
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Histological descriptions vary between species. Historically, the rabbit has been the animal 

of choice for investigating cardiac function since its electrophysiology most closely 

resembles that of human. His, (1893) was the first to suggest the presence of an 

atrioventricular bundle that conducted impulses through the atrioventricular junction to the 

ventricles. However, it was not until the turn of the 20th century when Sunao Tawara, whilst 

working in the laboratory of Ludwig Aschoff, first decsribed the AVN (Tawara, 1906). 

Aschoff (1910) and Mockenberg (1910) set out anatomical rules for defining conduction 

tract structures. They suggested that conduction tract structures should be histologically 

discrete from the working myocardium, serially traceable from section to section and 
insulated from adjacent working myocardium by a sheath of fibrous tissue. The nodal 

structures of the heart, however, only meet two of these criteria: they are histologically 

discrete and can be traced serially from section to section, but are not encapsulated by a 

fibrous sheath throughout. The most anterior/superior part of the AVN junction is the 

bundle of His/common bundle (BoH/CB) and its branches, both of which are encased in a 

fibrous capsule; this contacts more posteriorly/inferiorly the "true" or compact node (a 

dense "knot" of cells; Tawara, 1906). In the human, the compact node occurs where the 

cells emerge from the insulating tissues of the central fibrous body. The cells sit 

collectively as a half oval of branching fascicles (bundles) of densely packed small cells set 

in a fibrous matrix. In addition, the compact node in rabbit is surrounded by 

"circumferential transitional cells", which are more prominent when the node is enclosed in 

the central fibrous body, forming a "collar" around the compact node (Anderson, 1972). 

More posteriorly/inferiorly, the circumferential transitional cells form a connection with the 

atrial myocardium. 

Any cell type beyond the compact node can then be subclassified into particular 

histologically distinct areas that are collectively referred to as the "AV junction". In rabbits, 

a large proportion of the AV conduction axis is encased within the fibrous tissues of the 

AV junction. However, these cells, unlike man and dog, show marked histological 

heterogeneity (Anderson, 1972). For example, in the rabbit, the segment closest to the atrial 

tissue shows a layered arrangement, with a tract of cells extending back into the atrial 

musculature. These cells are known as lower nodal cells (LNCs) and are a small bundle of 
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histologically distinct cells, which form a continuity from the penetrating bundle passing 

parallel to tricuspid valve annulus to contact the atrial myocardium inferiorly (Fig. 1.3). 

Beyond the tract of densely packed cells are loosely arranged, transitional cells, which, as 

the name suggests, have a histological appearance in-between that of typical atrial and 

nodal cells. The area in which these cells lie is often referred to as the Atrial/Atrio-nodal 

(A/AN) region (Meijer and Janse, 1988). Toward the base of the triangle of Koch, at the 

level of the coronary sinus and inferior septal isthmus, a layer of transitional cells form the 

full thickness of the atrial wall (Anderson, 1972). 

In rabbit there is a lack of atrial myocardial overlay cells. This is because the segments of 

elongated transitional cells, interspersed between fibrous tissue, form the full thickness of 

the atrial wall. 

In humans the AVN architecture is slightly different whereby the compact node continues 

to penetrate the AV junction posteriorly, however, it bifurcates in two different directions, 

one travelling anterosuperiorly and one posteroinferiorly, with the former extension being 

much shorter than the latter (Inoue and Becker, 1998). 

The well-formed inferior extension of the node represents the ring of histologically 

specialised cells from which the node itself is derived. In the developing heart this ring 

encircles the vestibule of the tricuspid valve (see below - development of heart). 

1.1.6 Structural abnormalities - Mahaim fibres 

On occasions, in the newborn, small bundles of nodal cells can penetrate the central fibrous 

body (in addition to the normal compact node and common bundle). If these persist into 

adulthood and actually form connections with the crest of the ventricular septum, they are 

referred to as paraspecific or "Mahaim" fibres first described by Mahaim and Winston 

(Anderson et al., 1996). In these cases, premature atrial stimuli which normally produce a 

prolongation of the P-R interval fail to do so i. e. the P-R interval remains short because the 

AVN is bypassed (Brechenmacher et al., 1976). 
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1.1.7 Blood Supply 

The AVN is supplied with oxygenated blood from the posterior septal artery, a branch of 

the right coronary artery. In the human, this passes between the inferior nodal extensions 

and penetrates the AV junction at the level of the compact node (Anderson and Ho, 1972). 

1.1.8 Functional classification of the AVN 

Functional classification of the AVN is historically based on electrophysiological studies of 

the AVN and is different from traditional histological classification. Functionally, the AVN 

encompasses the whole area within the triangle of Koch, because this area is accountable 
for the electrophysiological behaviour attributed to the AVN. 

1.1.8.1 Dual pathway physiology 

1.1.8.1.1 Anterograde conduction 

Moe (1956) and Mendez and Moe (1966), using electrophysiological techniques, described 

a dual-conduction system in the AVN of rabbit hearts. Mendez and Moe (1966) postulated 

that the presence of two distinct pathways could explain AVN reentrant tachycardia 

(AVNRT), a common pathophysiological condition of the heart. Janse (1969) further 

characterised the dual-pathways in the rabbit by determining the direction from which the 

pathways entered the enclosed part of the node. One pathway travels superiorly/anteriorly 

along the interatrial septum and the second, travels along the crista terminalis to pass 

posteriorly/inferiorly, at the level of the inferior septal isthmus, just below the coronary 

sinus (Fig. 1.2, arrows). These findings were later found to be similar in dog (Spach et al., 

1971; Spach et al., 1979). Furthermore, the anterior input to the AVN curves in a posterior 
direction to join the posterior input. The activation sequence of the compact node is harder 

to interpret since some superficial cells can be activated up to 40 ms earlier than deeper 

cells and the speed of propagation is slow; it takes 60 ms for the action potential to cover a 
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distance of approximately 1mm (Janse et al., 1978). Activation in the last part of the 

conduction axis (common bundle) is rapid and synchronous. 

The dual pathways can be used to explain the discontinuous AVN conduction curve which 
is a characteristic feature of AVN conduction (Fig. 1.5; Moe et al., 1956). To obtain a 

conduction curve, the atria are regularly stimulated at a basic cycle length (Si) and then a 

premature stimulus (S2) is applied. The conduction curve is a plot of the atrial-His 

conduction time for the premature beat (A2H2) as a function of the preceding atrial 

prematurity (A1A2). The earlier the premature beat, the longer the conduction time (Fig. 

1.4). In human, there is a profound "jump" in the conduction curve (Fig. 1.5) at a given 

prematurity (Yamashiro et al., 1998). In the rabbit, the curve is smoother (Tchou et al., 
1997). Conduction at longer A1A2 intervals reflects conduction along the anterior pathway. 
Conduction at shorter A1A2 intervals reflects conduction along the posterior pathway. The 

point at which there is a jump in the conduction curve is the effective refractory period 
(ERP) of the anterior pathway. 

Due to the difficulty in performing experimental procedures on humans it was long thought 

that only a single "upper-common pathway" existed i. e. dual pathways do not exist. The 

application of radiofrequency ablation for the successful elimination of the slow pathway in 

AVNRT suggested that an additional inferior input maybe crucial in the human AVN 

(Perry and Garson, 1993; Fig. 1.5). The dual pathways can also be referred to as "slow" and 
"fast" pathways. The slow- and fast-pathways correspond to the posterior and anterior 

pathways, respectively (Denes et al., 1975). This terminology was chosen in relation to 

conduction times obtained during premature stimulation. The inferior pathway is termed 

"slow" because of the slow conduction times at short AlA2 intervals, whereas, the anterior 

pathway is termed "fast" because of the faster conduction times at longer A1A2 intervals. 

The names "fast" and "slow" can be misleading, however, since these names relate to 

premature stimulation. Indeed, Mendez and Moe (1966), during basic stimulation, found 

very similar activation times along both anterior and posterior pathways and, in fact, 

postulated that the normal basic beat is propagated along the posterior pathway to excite the 

compact node and eventually common bundle, whereas, the anterior pathway only serves 
during reentry to conduct the impulse in a retrograde manner. Although dual pathway 
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physiology best explains AVN function, slow-pathway conduction is not solely limited to 
the posterior nodal extension, especially during arrhythmias (Ross et al., 1985). Indeed, 

patients treated for AVNRT using catheter ablation in which the region of the inferior 

septal isthmus is ablated still show discontinuous AVN conduction curves, suggestive of an 
intact slow-pathway (Ruder et al., 1991). It is thought that a molecular substrate for 

AVNRT may exist. Indeed, Medkour et al. (1998) proposed that in rabbits the posterior 

nodal extension was the molecular substrate underlying the slow-pathway. If dual pathways 

are responsible for AVNRT, it is possible that a unique expressional pattern of cbnnexins, 
ion channels or exchangers confer these pathways more vulnerable to conduction in a slow 

manner. Pathophysiological studies have also provided us with clues as to how the AVN 

functions normally, Scherlag et al., (1995) concluded: "that the persistence of AV 

conduction, albeit modified, after SP and FP ablation, suggests the existence of multiple 
AV nodal inputs, whereas retrograde conduction (see section 1.9.1) relies on a dual exit 
from the AV node to the atria". Stein and Lerman (1994) using patients with AVNRT 

undergoing slow pathway ablation showed: 1) Both inputs are necessary for normal 

conduction 2) anterior atrial input had a longer refractory period and that Wenckebach 

cycle length were increased 3) Both inputs summate to stimulate the central node. 

1.1.9 Arrhythmias associated with the AVN 

The AVN is the major site responsible for two major arrythmias, paroxysmal 

supraventricular tachycardia and atrioventricular nodal reentrant tachycardia (AVNRT). In 

addition to the slow- and fast-pathways, it is generally believed that the perinodal tissue 

(transitional tissue) is necessary for circuit formation and successful AVN reentry (Mendez 

and Moe, 1966; linuma et al., 1983). There are three types of reentry: slow-fast, fast-slow 

and slow-slow. Slow-fast reentry is the most common. In this case, an impulse travels along 

the slow pathway anterogradely and enters the compact node and then proceeds 

retrogradely along the fast pathway to re-excite the atrial tissue which, in turn, forms a 

continuous connection for the impulse to re-emerge at the area of inferior septal isthmus, to 

complete the circuit (Yamabe et al., 1999). In the case of fast-slow reentry, an impulse 

travels anterogradely along the fast pathway and enters the AVN at the compact node; it 

then proceeds retrogradely along the slow-pathway to excite the atria around the inferior 
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septal isthmus. Since the atrium forms a continuous connection this excites the whole atria 

around the triangle of Koch allowing an impulse to re-enter at the fast pathway, thus 

forming the circuit (Goldberger et al., 1992). Slow-slow reentry is rare in the human. An 

impulse travels anterogradely along the slow-pathway and then travels retrogradely along 
its original path (Silka et al., 1994). Nikloski and Efimov (2001), using potentiometric dyes 

and fluorescent imaging elegantly showed the dual-pathway AVN conduction system 
during reentry (Fig. 1.6). Clinical treatment of AVNRT is by the way of catheter ablation of 

the slow pathway, since a portion of this area can be destroyed without impairing normal 
AVN function (Jackman et al., 1992). 

1.1.9.1 Wenckebach cycles 

In 1899, the cardiologist, Karel Frederik Wenckebach, first described this cardiac 

phenomena. It is a form of incomplete atrioventricular heart block in which there is a 

progressive lengthening of the AH conduction time and the P-R increasing until there is not 

a ventricular response. This is followed by a conducted beat with a short AH conduction 

time and P-R interval, and then the cycle repeats itself. 

1.1.9.2 Atrioventricular block 

Atrioventricular conduction can be delayed, intermittently blocked, or completely blocked 

and this is classified as first, second, or third degree block, respectively. 

1.1.9.2.1 First degree block 

In first degree block, there is a delay in conduction of the atrial impulse to the ventricles, 

usually at the level of the AVN. This results in prolongation of the PR interval to >0.2 s. A 

QRS complex follows each P wave, and the PR interval remains constant. 

1.1.9.2.2 Second-degree block 

There are three types of second degree block. Mobitz type I block (Wenckebach 

phenomenon) is usually at the level of the AVN, producing intermittent failure of 
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Figure 1.5 Discontinuous AVN conduction curve. A2H2 interval is plotted against the 
prematurity of atrial impulses (A1A2) in a human patient with dual AVN pathways. 
Successful conduction was achieved at all coupling intervals. However, note the "jump" in 
the conduction curve (A1A2 -330-320 ms). Open circles represent conduction before slow 
pathway ablation. Filled squares represent conduction after slow pathway ablation. Note, 
after slow pathway ablation, the failure to conduct at shorter A1A2 intervals. From Sheahan 
et al., (1996). 
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transmission of the atrial impulse to the ventricles. As discussed above, initial PR interval is 

normal but progressively lengthens with each successive beat until eventually 

atrioventricular transmission is blocked completely and the P wave is not followed by a 

QRS complex. The PR interval then returns to normal, and the cycle repeats. Mobitz type II 

block is less common but is more likely to produce symptoms. There is an intermittent 

failure of conduction of P waves. The PR interval is constant, though it may be normal or 

prolonged. The block is often at the level of the bundle branches and is therefore associated 

with wide QRS complexes. 2: 1 atrioventricular block is difficult to classify, but it is usually 

a Wenckebach variant. High degree atrioventricular block, which occurs when a QRS 

complex is seen only after every three, four, or more P waves, may progress to complete 

third degree atrioventricular block. 

1.1.9.2.3 Third-degree or complete block (AV Block) 

In third degree block, there is complete failure of conduction between the atria and 

ventricles, with complete independence of atrial and ventricular contractions. The P waves 

bear no relation to the QRS complexes and usually proceed at a faster rate. A pacemaker in 

the bundle of His produces a narrow QRS complex, whereas more distal pacemakers tend 

to produce broader complexes. These subsidiary pacemakers trigger ventricular 

contractions. Occasionally no escape rhythm occurs and asystolic arrest ensues. The rate 

and QRS morphology of an escape rhythm vary depending on the site of the pacemaker. 

Complete heart block is most often caused in adults by heart disease or as a side effect of 

drug toxicity. Heart block also can be present at or even before birth. This is called 

congenital heart block. 

1.1.10 Dead-end pathways 

There are cells that have been shown to be activated but not to participate in the 

transmission of the impulse through the AVN. Anderson et al. (1974) described a layer of 

atrial overlay cells which terminated at the beginning of the septal cusp of the tricuspid 

valve. The tract of lower nodal cells which extend posteriorly from the compact node and 

can be considered part of the posterior nodal extension has been described as a dead-end 

pathway (Van Capelle et al., 1972). Van Capelle et al. (1974) described the existence of an 
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action potential in the anterior portion (presumably lower nodal cells) of the AVN even in 

the presence of AV block during Wenckebach phenomena. This suggests that the impulse 

in the lower nodal cells is insufficient to activate the much larger anterior portion of the 

node. Dead-end pathways are thought to draw local circuit current during normal 

conduction and therefore facilitate the slowing of impulse propagation (Weidmann, 1974). 

1.1.11 Histological evidence for the existence of dual pathways 

Anderson et al. (1997) have produced detailed accounts of AVN architecture and structures 

potentially involved in AVN function during normal and disease states (Sanchez-Quintana 

et al., 1997; Anderson and Ho, 1998; Ho and Anderson, 1998). Combined anatomical and 

electrophysiological studies have provided evidence about the orientation of cells 

comprising major AVN anatomical areas (Hocini et al., 1998; Anderson et al., 1974). Inoue 

and Becker (1998) provided the first morphological evidence for the existence of a slow 

pathway in humans, an inferior extension of the compact node. This was also confirmed in 

rabbits (Medkour et al., 1998). Anatomically, identification of the fast pathway, however, 

has proved more elusive. It is widely thought that this pathway is not morphologically 

distinct, and that one of the many anterior atrionodal inputs could provide the substrate for 

reentry. Lin et al. (2001) using rabbit AVN preparations ablated the region believed to be 

the fast-pathway and showed the posterior nodal extension to sustain conduction at all cycle 

lengths. Furthermore, additional lesions to the posterior nodal extension caused third- 

degree AV block illustrating the role played by the posterior nodal extension in slow- 

pathway conduction and concealment. 

1.1.12 Concealed pathways 

To add to the electrophysiological complexity of the AVN, a phenomena known as 

concealed conduction has been described. With concealed conduction, an impulse 

travelling from the atria penetrates the AVN but fails to traverse it completely (Langendorf, 

1948; Langendorf and Pick, 1956). Although concealed conduction fails to excite the AVN, 

it has subsequent effects on following impulses and is thought to have profound effects on 

AVN impulse propagation during atrial fibrillation (Meijler et al., 1996). 
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1.1.13 Properties of slow conducting cardiac tissue 

The AVN is specialised for slow conduction. The conduction velocity of the action 

potential is affected by many factors. Here I will consider four factors relevant to the AVN: 

1) Fibre orientation has long been considered an important determinant of the speed of 

conduction: conduction is generally faster in the longitudinal direction as opposed to the 

transverse direction (Spach et al., 1971,1981,1982). 2) Shaw and Rudy (1997) using 

mathematical models to simulate the cardiac action potential have demonstrated that a lack 

of Naa channels leads to reduced membrane excitability, which effectively slows 

conduction. For example, in ventricular cells during ischemia, the external K+ concentration 

rises. This depolarises the membrane potential to about -60 mV, which inactivates the 

majority of the Na+ channels, leading to a decrease in the upstroke velocity of the action 

potential. The action potential upstroke is now generated mainly by L-type Ca2+ channels 

(Shaw and Rudy, 1997). As a result, the conduction velocity of the action potential is 

reduced from - 500 cm/s to as low as 17 cm/s (before the onset of conduction block 

(Kagiyama et al., 1982). 3) Intercellular coupling of cells is the result of gap junctions 

formed by connexins, between cells. Gap junctional conductance determines the speed of 

conduction velocity. 4) Decreased coupling in cells leads to an increase in safety factor, 

because the leakage of current is reduced - which allows for very slow conduction 

velocities, below l cm/s (Shaw and Rudy, 1997). When SF is combined with the degree of 

electrical coupling, conduction can proceed as low as 0.26 cm/s (Rohr et al., 1998). A long 

persistent current is necessary for safe conduction when there is poor cell-cell coupling, 

since it provides a depolarising current over the entire period of the coupling delay. These 

conditions are likely to be necessary for impulse propagation through the slow-pathway. 

1.1.14 Microelectrode recordings 

Numerous studies exist which make use of microelectrode techniques to investigate action 

potential recordings throughout the entire triangle of Koch region (e. g. Matsuda et al., 

1958; Hoffman et al., 1958; Anderson et al., 1974). These studies showed various action 

potential configurations in different regions of the tissue (Fig. 1.7). Action potentials 
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Figure 1.6 Fluorescent visualisation of the dual pathways in the rabbit AVN during slow- 
fast reentry. Using the voltage-sensitive dye, di-4-ANNEPS, it is possible to visualise the 
route of impulse propagation during reentrant tachycardia in isolated rabbit AVN 
preparations. During slow-fast reentry, an impulse conducts along the slow pathway 
anterogradely to excite the compact node. The impulse is then able to exit the node by 
passing retrogradely along the fast-pathway to re-excite the adjoining atrial septal tissue 
and form a reentrant circuit From Nikolski et at., (2003). 
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Figure 1.7 Action potentials recorded from the three main regions in the AVN: AN - 
atrionodal, N- nodal and NH - nodal-His. Clearly, N cells have the slowest rate of rise 
during phase 0 and a more depolarised maximum diastolic potential. A small notch is 
evident in the AN cells. NH cells have a large plateau phase and show similarities in action 
potential morphology to ventricular cells. From Billette, 1987. 
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recorded from the posterior nodal extension area have slow upstrokes and a low diastolic 

membrane potential (-60 mV) typical of nodal action potentials (Billette, 1987; McGuire et 

al., 1996). In contrast, the major characteristics of the atrial myocyte action potential are a 

relatively negative resting membrane potential of - 80 mV and a rapid upstroke (phase 0) 

of > 100 V/s. Three distinct cell types are present in the AVN based on action potential 

morphology and functional characteristics: 1) AN cells, display an action potential 

intermediate between that of "true" atrial cells and those of typical nodal cells with a 

relatively negative resting membrane potential (-. -72 mV), fast upstroke (- 102 V/s) and a 

distinct notch (phase 1). 2) N cells are "true" nodal cells and have a high maximum 

diastolic potential of, with a pacemaker potential (. - -64 mV) and a very slow upstroke 

velocity (- 18 V/s). 3) NH cells have a resting potential of - -64 mV and a slow upstroke 

velocity of 17 V/s (Billette, 1987). N and NH cells are distinguished by their action 

potential duration which at 80% repolarisation is - 80 ms for N cells and - 92 ms for NH 

cells. Uncovering ion channel distribution throughout specific cellular subgroups 

comprising the triangle of Koch, with regards to a cells action potential morphology, will 

provide us with a better understanding of the physiology and possibly the pathophysiology 

of the AVN. However, a major drawback of microelectrode recordings using multicellular 

AVN preparations is the major interference generated from adjacent cells which can lead to 

misleading results regarding the electrical properties of a single cell. 

1.1.15 Single cell recordings 

Single AVN cells from rabbit and guinea-pig have been isolated which retain normal 

morphology, and their action potentials and ionic currents characterised (Hancox and Levi, 

1993; Hancox and Levi, 1994a; Hancox and Levi, 1994b; Hancox et al., 1997; Munk et al., 

1996; Mitcheson and Hancox, 1999a; Mitcheson and Hancox, 1999b; Convery and 

Hancox, 2000). These studies describe two distinct cell types: 1) Rod cells, which possess 

action potentials like the AN cells and have the unique ability to be stimulated before 

repolarisation is complete (Munk et al., 1996). These cells have If which is activated at 

more negative potentials than that of their counterpart (ovoid/spindle) cells, however, at 

x25 fold less If density. All cells have a rapid inward Naa current (INa) and L-type Ca2+ 
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Figure 1.8 Formation of the cardiac tube. The stages a-f show the devlopment of the 
cardiac tube from the flat cardiogenic crescent. It can be seen that the myocardial crescent 
(grey) grows around the fusing endocardial vesicles (yellow) to form the cardiac tube. AP: 
anterior pole. VP: venous pole. V: future ventricle. From Moorman et al., (1998). 
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Figure 1.9 Cardiac development from the cardiac crescent. Cardiogenic precursors form a 
crescent (day 15) that is arranged to form specific segments of the linear heart tube. Each 
cardiac chamber develops from the outer curvature of the looped heart tube. Neural crest 
cells are predominantly located in the aortic arch arteries (III, IV and VI) and the aortic sac 
(AS). Mesenchymal cells form the cardiac valves from the conotruncal (CT) and 
atrioventricular valve (AVV) segments. A, atrium; Ao, aorta; DA, ductus arteriosus; LA, 
left atrium; LCC, left common carotid; LSCA, left subclavian artery; LV, left ventricle; PA, 
pulmonary artery; RA, right atrium; RCC, right common carotid; RSCA, right subclavian 
artery; RV, right ventricle; V, ventricle. From Srivastava and Olson, (2000). 
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current (ICaL) which contribute to the action potential upstroke. Repolarisation is achieved 
by the presence of a transient outward current (Ito) and the delayed rectifier current, IK, In 

addition IKr is thought to contribute to pacemaker depolarisation. INCX is present over the 

pacemaker potential range making this a possible contributor to pacemaking in these cells. 

2) Ovoid/spindle cells, have action potential morphologies similar to N and NH cells and 

show post-repolarisation refractoriness (Munk et al., 1996). If is activated around -60 to - 
90 mV however, is x25 fold greater current density than that of rod cells. ICa, L is present, 

however only - 30% of cells display INa, suggesting ICa, L is the main contributor to the 

action potential upstroke in some ovoid/spindle cells. IK, appears to be the main 

repolarising current in ovoid/spindle cells since only - 50% of cells display Ito. Similar to 

rod cells, INCX is measurable over the pacemaker potential range making this a potential 

contributor to pacemaking in these cells. Unfortunately, a major limitation of the single cell 

studies is that the precise location of where the cells arose, within the triangle of Koch, is 

uncertain, therefore to our overall understanding of AVN physiology these studies are 

limited somewhat. 

1.1.16 Development of the conduction system of the heart 

Historically, the avian heart has been the species most studied to understand the early 

development of conduction system in the heart (Lamers et al., 1991). 

The primordial heart begins to form in the cardiogenic plate at the cranial end of the 

embryo. Angiogenic cell clusters, which lie in the plate, fuse to form the heart tube (Patten 

and Kramer, 1933; Fig. 1.8). The primary heart tube is a peristaltic pump that moves blood 

in one direction due to a unidirectional wave of contractions along the tube (Patten, 1949). 

This slow-conducting heart tube then develops fast-conducting regions flanking either side 

of it; these eventually become the atria and ventricles (Fig. 1.9). 

This configuration guarantees that the ventricles never contract before the atria have 

finished contracting. The SAN and AVN will eventually arise from the inflow tract (IFT) 

and atrioventricular canal (AVC) of the slow-conducting myocardium. The first signs of 

pacemaking in the avian heart come from the IFT (Hirota et al., 1979) and is initially found 
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Figure 1.10 Development of the ventricular conduction system. a: schematic diagram 
showing all regions of the ventricular conduction system which are all retained in the adult 
chicken heart (in the adult mammalian heart only some components remain). b: section 
through a5 week old human heart immunolabeled for GIN2. c. d and e: development of 
ventricular conduction system in human 5 (c), 6 (d) and 7 (e) week old embryos 
immunolabeled for GIN2. RAORB, retroaortic root branch; SB, septal branch; AVB, 
atrioventricular bundle; RAVRB, right atrioventricular ring bundle; AVN, atrioventricular 
node; LBB, left bundle branch; RBB, right bundle branch; PPN, purkinje network. From 
Moorman et al., (1998). 
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on the left-side (Sakai et al., 1983). The IFT eventually becomes incorporated into the right 

atrium. The heart takes on an anteroposterior position whereby the anterior primordia 
differentiate to become the ventricles and the posterior primordia develop into the atria. 
Retinoic acid plays an important part in this development including expression of certain 

genes (induction of alpha-MHC; Yutzey et al., 1994) and direction of growth and most 

importantly the development of an atrial phenotype (Yutzey et al., 1994). 

The SAN is found towards the posterior extremities of the tube (deGroot et al., 1988). 

In the early stages of heart development the CCS is not fully developed into subcellular 

regions. However, the embryonic heart can still initiate and conduct impulses. In the 

embryonic chick heart spontaneous action potentials are generated in the primordial 

sinoatrial region and are propagated from posterior-anterior throughout the myocardium 

where cells are coupled via gap junctions. The heart tube then undergoes a loop and at this 

point does AN delay become apparent and cells of the myocardium become contractile. 

The presence of typical neural proteins in cells of the conduction system (Gorza, et al., 

1994) has led to the suggestion that these cells have a neural crest origin (Gorza and 

Schiaffino, 1988). Moorman et al. (1997) state "Regarding the origin of the SAN, it is more 

probable that it originates from existing myocardium, because its function has been shown 

from the first heartbeat onward". Vassal-Adams (1982) points out that the atria and 

ventricles develop from the primary myocardium between which a delay can be detected on 

the ECG; there is no additional recruitment of neural crest cells for this function to occur. 

Keith and Flack in (1907) were the first to describe the ventricular conduction system 

(Keith and Flack, 1907; Fig. 1.10) and stated that it formed from the "remains of the 

primitive cardiac tube" and this has become known as the "escape" hypothesis (Moorman 

and Christoffels, 2003). An alternative hypothesis also exists which is termed the 

"recruitment" hypothesis, whereby the cells of the conduction system differentiate locally 

from myocytes that have already differentiated into working myocardium (Gourdie et al., 

1995). Much of the work investigating the origin of the cells comprising the cardiac 

conduction system have involved work at the molecular level, such as, the role of gene 

expression in the differentiation of myocardial cells into working myocardium and 

conduction system tissue. 
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1.1.17 Molecular basis for cardiac cell specialisation 

In mammals there is the formation of an early linear heart tube very soon after the 
formation of the cardiac chambers occurs (Moorman et al., 1998). The chick embryo has 

undergone detail analysis for cardiac chamber formation since the heart in this species 
develops more slowly. The developing heart, at the stage of the embryonic tube, each 

myocardial cell has the ability to be a pacemaking cell (Moorman et al., 1998). Each cell 

possesses inherent rhythmical activity and is poorly coupled to its neighbours due to a lack 

of Cx45 gap junctions (Delorme et al., 1997). The action potentials recorded from this 

region have slow upstrokes similar to pacemaker action potentials, due to the predominance 

of Ca2+ currents (Galper and Caterall, 1978). This myocardium is referred to as "primary 

myocardium". Once the cardiac chambers have formed this is referred to as "secondary 

myocardium" (Moorman and Lamers, 1994). Secondary myocardium can be distinguished 

from the primary myocardium by an abundance of the gap junctional proteins Cx40 and 
Cx43, and also atrial natriuretic factor (NppA). Action potentials with fast upstrokes, due to 

the presence of Na+ channels, can be recorded from these regions (Galper and Caterall, 

1978). 

AVN delay can be recorded before the identification of a morphologically distinct AVN 

(Vassal-Adams, 1982). It is the function of the atrioventricular canal to delay impulses 

before the full development of a true AVN (Arguello et al., 1988). The AVN is the primary 

myocardium remaining between the atria and ventricles (de Jong et al., 1992). The 

morphologically distinct AVN in mouse does not appear until Carnegie stage 15 (-5 weeks 
human development; Viragh and Challice, 1977). The tissues of the SAN, AVN and bundle 

of His, retain their primary myocardium phenotype. The molecular mechanisms underlying 

this are being investigated. The T box (Tbx) family of transcription factors have particular 
importance in the development of the cardiac conduction system (Brand, 2003). Tbx2, 

Tbx3 and Tbx5 are the most important of these. Tbx5 for instance is necessary for the 

activation of the gene that encodes Cx40 and NppA (Hiroi et al., 2001; Habets et al., 2002). 

Basson et al. (1995) showed that mutations in the gene encoding this transcription factor 

cause serious cardiac conduction malformations. In contrast, Tbx2 and Tbx3 are repressors 
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of transcription and in association with another transcription factor, Nkx2-5, are able to 

repress expression of NppA and Cx40 genes, suggestive of a role for these transcription 

factors in preventing formation of secondary myocardium (Paxton et al., 2002; He et al., 

1999). Interestingly, the expression patterns of Tbx2 and Tbx3 and also Cx40, Cx43 and 

Cx45 match very closely the anatomic descriptions of the AVN given by Keith and Flack in 

(1907) (Fig. 1.11). Mouse Tbx2 is a potent repressor of gene expression and weak activator 

of gene expression. Two repressor domains exist (one at the amino-terminal and one at the 

carboxy-terminal), and one amino-terminal activator domain exists (although this is largely 

dependent on the DNA promoter context; Paxton et al., 2002). 

Other factors exist regarding the origin of cardiac myocytes. Hall et al. (2004) have 

postulated that the differentiation of myocytes is influenced by hemodynamic factors. 

1.1.18 Development of the nodal phenotype 

Nodal cells of the heart display a number of characteristics similar to those of early cardiac 

cells, most notably: small size; poorly organized actin and myosin filaments, and a poorly 

developed sarcoplasmic reticulum. There is a scarcity of connexins in SAN and AVN 

tissues (Van Kempen et al., 1991). The AVN of cow (Komuro et al., 1987), chicken 

(deGroot et al., 1987) and human (Kuro-o et al., 1986) shows co-expression of the 

contractile proteins, a- and ß- myosin heavy chain, whereas only expression of ß-myosin 

heavy chain was found in rats (deGroot et al., 1989). The cytoskeletal protein, desmin, has 

been shown to delineate the conduction system in cow (Ossthoek et al., 1993). Gorza and 

Vitadello (1989) and Vitadello et al. (1996) have elegantly shown neurofilament -L and -M 
delineates the rabbit conduction system. 

1.2 From DNA to Protein 

1.2.1 basic processing of proteins/ion channels 

1.2.1.1 DNA structure 
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Figure 1.11 Three-dimensional reconstructions of the T-box transcription factor, Tbx3, 
expression in the embryonic heart. Serial sections through E12.5 mouse hearts were stained 
for TBX3 (B) and three-dimensionally reconstructed (A, C-F) Tbx3 clearly delineates the 
conduction system of the mouse heart. These data indicate that Tbx3 is an important 
molecule in the development of the conduction system morphology. From Hoogars et al., 
(2004). 
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Deoxyribose nucleic acid (DNA) sequence forms our genetic code. It is made up of various 

combinations of four nucleotides, adenine (A), thymine (T), cytosine (C) and guanine (G), 

to form genes. It is structured into a double-helix (two complementary DNA strands linked 

together in a 5'-3' or non-template strand and 3'-5' or template strand) with the bases 

(nucleotides) lining the inside of this structure in a favoured complementary, A-T and G-C, 

manner. In addition, DNA contains a sugar-phosphate backbone on the outside of the 

double-helix (Watson and Crick, 1953). Major and minor grooves are formed which play 

an important role in protein-DNA interactions which regulate cellular processes such as 
DNA replication, transcriptional control and DNA repair. The DNA sequences inherited 

from our parents ultimately decide the function of our heart as these encode the proteins 

comprising the cells of the heart. For a functional protein to be made, firstly a gene has to 

be switched on. 

1.2.1.2 DNA replication 

DNA is transcribed by the enzyme RNA polymerase. The RNA polymerase moves 

stepwise along the DNA, unwinding the DNA helix in front of it. As it progresses, the 

polymerase adds nucleotides (small "T" shapes) one by one to the RNA chain at the 

polymerisation site. The polymerase rewinds the two DNA strands behind this site to 

displace the newly formed RNA. A short region of DNA/RNA helix is therefore formed 

only transiently, and the RNA transcript is a single-stranded complementary copy of the 

template strand of DNA. The incoming nucleotides are in the form of ribonucleoside 

triphosphates (ATP, UTP, CTP and GTP), whose hydrolysis provides the energy for the 

polymerisation reaction. RNA polymerase copies DNA into RNA (transcription) and is a 

large subunit protein. It binds randomly to DNA but strongly to a specific promoter 

sequence. This promoter contains the start signal for transcription. RNA polymerase will 

stop when it reaches a termination or stop signal. It will only polymerise RNA in the 5' to 

3' direction (DNA is read from 3' to 5'). Since the promoter sequences are asymmetric, the 

promoter will bind the polymerase in only one orientation, thus determining which strand 

of the DNA will be transcribed. Therefore, the RNA is complementary to the template 

DNA strand and equivalent (except for the T's which have been replaced by U's) to the non- 

template strand 
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Four types of RNA are produced in a cell: mRNA (coding information), tRNA (adaptor 
between mRNA and amino acids), rRNA (part of ribosome; participates in protein 
synthesis), and some small non-coding RNAs (used in splicing, RNAi and other cellular 
processes). 

1.2.1.3 mRNA translation 

tRNA molecules are adaptors for the translation of RNA into protein. Each amino acid has 

at least one tRNA. tRNA is specific for codons (three nucleotides) in the RNA and brings 

correct amino acids to the matching codons. Protein production is catalysed on ribosomes. 
Ribosomes are structures that are similar (but not the same) in eukaryotes and prokaryotes. 
Ribosomes are large complexes of proteins and rRNAs. They consist of two subunits: a 
large subunit which catalyses peptide bond formation and a small subunit (e. g. 18S and 
28S) which binds mRNA and tRNAs 

Ribosomes move along the mRNA from the 5' end to the 3' end and the protein is 

subsequently produced from the N112-terminal to the COOLI-terminal. Three codons, UAA, 

UGA and UAG are used as stop-codons to terminate translation. 

1.2.1.4 Protein transport 

When protein synthesis begins, the polypeptide chain starts with a "hydrophobic signal 

sequence" which initially inhibits protein synthesis. However, this allows association with 
the endoplasmic reticulum (ER), which, at the point of ribosome attachment is known as 

rough endoplasmic reticulum (RER). thereby facilitating entry of the polypeptide into the 
lumen of the RER. Once this signal sequence is detected then protein synthesis can resume 

at a normal rate. Eventually the signal sequence is cleaved by a signal peptidase leaving 

only the protein with its N112- and COOII-terminal (Neuhof et al., 1998). From the RER the 

proteins are transported to the Golgi complex by way of vesicles; these vesicles require 
ATP in order to transport to the Golgi complex. The Golgi complex traffic the proteins to 
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their final destination, which in terms of ion channels is the plasma membrane. ER to Golgi 

transport can be controlled by scaffold proteins such as PDZ (PSD95/DLG/ZO-1) domain- 

containing proteins and Homer proteins (Standley et al., 2000; Ma et al., 2001; Fig. 1.12). 

Interestingly, the region of the ion channel to be located outside the plasma membrane is 

already being arranged at the level of the RER: this portion of the protein will always be 

inside the vesicle. The inside of the vesicle then becomes continuous with the inside of the 
Golgi cistemae. Carbohydrate groups are attached and any subunits may be joined in these 

cisternae. The protein is then passed to the final region of the Golgi called the "trans face". 

There it is placed in vacuoles that bud from this region of the Golgi complex. These may be 

a certain size or density, characteristic of the cell itself. The vacuoles continue to condense 

the proteins and the final mature secretory granule is then moved to the membrane for 

secretion. 

Release of a completed polypeptide chain from a ribosome is often not the last chemical 

step in the formation of a protein. Various covalent modifications often occur, either during 

or after assembly of the polypeptide chain. Most proteins undergo co- and /or post- 

translational modifications. Knowledge of these modifications is important, because they 

may alter the physical and chemical properties (folding, conformation distribution, stability, 

activity) and, consequently, function of the proteins. Moreover, the modification itself can 

act as an added functional group. Examples of the biological effects of protein 

modifications include phosphorylation for signal transduction, ubiquitination for 

proteolysis, attachment of fatty acids for membrane anchoring and association, 

glycosylation for protein half-life, targeting, cell: cell and cell: matrix interactions. 

Consequently, the analysis of proteins and their post-translational modifications is 

particularly important for the study of heart diseases such as heart failure and cardiac 

hypertrophy. There are many points at which the expression of an ion channel at the 

surface can be post-transcriptionally altered: mRNA processing; mRNA translation; protein 

processing; assembly of subunits; transport to cell membrane; assembly into channel 

complex; as functional channels in the cell membrane; and degradation of assembled 

proteins. 

1.2.1.5 Factors regulating gene expression 



Figure 1.12 The surface densities of receptors and ion channels can be controlled by the 
rate of their ER to Golgi transport. ER export signals increase surface expression and ER 
retention/retrieval signals decrease it. PDZ domain-containing proteins and Homer proteins 
can potentially regulate the effectiveness of these trafficking signals. TGN, trans-Golgi 
network. From Ma and Jan, (2002) 
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There are numerous effectors of gene expression. The link between electrical activity of a 

cell and subsequent alterations in gene expression is of major importance in the 

understanding of major cardiac events such as, development and progression of disease 

states (e. g. cardiac hypertrophy). Ca2+ ions enter myocytes through voltage-gated ion 

channels (see below) and are well-known to alter the expression of genes in excitable cells 
(West et al., 2001). They influence gene expression through their effects on certain 
transcription factors, such as CREB, NFAT and MEF2 families (West et al., 200; 

McKinsey et al., 2002; Hogan et al., 2003). In addition, alterations in gene expression in the 
heart can be induced by mechanical stress via the activation of mechanoreceptors and 

autocrine/paracrine pathways (Sadoshima and Izumo, 1997; Tarone and Lembo, 2003). To 

add to the complexity, neurohumoral factors are well known to exert an influence on 

cardiac gene expression via various signalling molecules: angiotensin II, catecholamines, 

endothelin-1, glucocorticoids, NPY and thyroid hormones. These come from a range of 

sources including neuronal release and autocrine/endocrine/paracrine systems. In the heart, 

norepinephrine and NPY regulate ion channel expression (Bru-Mercier et al., 2003; Protas 

et al., 2003). 

1.3 Role of ion channels and ion exchangers in electrical and contractile 
function 

1.3.1 Cardiac action potential 

As previously described, electrical activity in the heart originates in the centre of the SAN 

(Boyett et al., 2000) from which an action potential propagates throughout the heart 

resulting in contraction. The typical cardiac action potential can be divided in to different 

phases numbered 0-4. 

1.3.2 Phase 4 (resting potential) 

Phase 4 represents the resting phase of atrial and ventricular cells (upper panel, Fig. 1.13). 

The resting membrane potential of working myocardial cells is approximately -80 mV for 
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Figure 1.13 Cardiac action potentials. The upper action potential is typical of ventricular 
cells; phase 4 represents the resting potential which is - -80 mV; this is followed by a rapid 
upstroke, phase 0; early repolarisation produces a marked notch appearance in phase 1; this 
is proceeded by the plateau phase or phase 2; late repolarisation or phase 3 brings the 
membrane potential back to its resting state. In contrast, the lower action potential trace 
represents that seen in pacemaker cells of the SAN or AVN; phase 4 of the action potential 
is also known as the pacemaker potential (there is no resting membrane potential) and is 
largely due to the presence of If current carried by HCN channels; this is followed by 
slowly rising depolarization phase during phase 0; repolarisation or phase 3 then pursues to 
bring the cell to its maximum diastolic potential. From www. cvphysiology. com. 
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ventricular and atrial cells. Cells of the conduction system however, do not have a stable 

resting membrane potential and their maximum diastolic potential is approximately -40 to - 
50 mV in the case of SAN and AVN cells (lower panel, Fig. 1.12). The ionic current 

responsible for the resting potential in the working myocardium is IK, i, a strong inward 

rectifying K+ current. The ion channel subunits responsible for this current are members of 
Kir2 family. Of this family, three family members have been detected in cardiac muscle: 
K;, 2.1, K112.2 and K12.3. The resting membrane potential for working myocardial cells is 

near the equilibrium potential for K+ (EK; Fig. 1.13). 

1.3.3 Phase 0 (action potential upstroke) 

Myocardial cells are coupled such that an cell, which is electrically active, can 

electrotonically exert a depolarizing effect on its neighbour that is sufficient to activate Naa 

channels, allowing the passage of an inward Na+ current, 'Na. In the working myocardium, 

the major ion channel underlying this current is Na�1.5 and the associated Na+ influx along 

the Na+ electrochemical gradient induces the sharp upstroke of the action potential during 

phase 0 (Fig. 1.13). Further depolarisation leads to activation of Ica at approximately -40 

mV causing Ca2+ to flow down its concentration gradient into the cell. As the membrane 

becomes increasingly depolarised, the Na+ channels inactivate rapidly and eventually the 

action potential peak is reached. 

Phase 0 of SAN and AVN action potentials is markedly different from that of working 

myocardial cells (Fig. 1.13). There is an absence of a rapid upstroke due to the lack of the 

rapid inward Na+ current carried by Na,, 1.5 channels. The more positive maximum diastolic 

potential of SAN and AVN cells (- -60 to -50 mV) render the majority of Na�1.5 channels 

inactive and therefore are unable to pass current. The neuronal isoforms of sodium 

channels, in particular, Na,, 1.1 are thought to play a role in the action potential upstroke due 

to their more positive voltage-dependence of inactivation. In addition, it is thought that the 

Ica, L contributes substantially to the upstroke of SAN and AVN action potentials due to its 

positive voltage-dependence profile. 

1.3.4 Phase 1 (early repolarisation) 



Figure 1.14 Schematic diagram to show the arrangement of subcellular structures involved 
in EC-coupling in the typical atrial or ventricular myocyte. Transverse-tubule (t-tubule) 
invaginations are essential for efficient transmission of action potential deep into the cell. 
Depolarization of the t-tubule allows Ca 2+ to enter the cells via. L-type Ca 2+ channels 
resulting in Ca 2+ release from the SR Ca 2+ stores. This Ca 2+ activates myofilaments 
resulting in contraction and also Ca 2+ regulatory proteins on the cell surface including NCX 
and Ca 2+ ATPase which extrude Ca 2+ from the cytosol. In addition, mitochondria also act as 
a store for internal Ca 2+ ions. Inset shows the time course of an action potential, Ca 2+ 

transient and contraction measured in a rabbit ventricular myocyte at 37 °C. NCX, Na+/ 
Ca2 exchange; ATP, ATPase; PLB, phospholamban; SR, sarcoplasmic reticulum. From 
Bers et al., (2002). 
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Phase 1 is the initial repolarisation phase following the upstroke (Fig. 1.13). As the 

membrane potential becomes more positive during the upstroke, Naa channels are 
inactivated and there is an activation of the transient outward current (Ito) which causes the 

rapid early repolarisation phase and the development of the "notch" and the "spike-and- 

dome" morphology of the action potential. This is most evident in ventricular epicardial 

cells (Litovsky and Antzelevitch, 1988). Ito can have two components: a fast component 

(Ito, fast) and slow component (Ito, slow)" Kv4.2 and Kv4.3 are thought to the responsible for 

Ito, fast while Kvl. 4 is thought to be responsible for Ito, slow. The ß-subunit K+ channel 

interacting protein 2 (KChIP2) alters the kinetics and trafficking of the K�4 channels. 

Transmural differences in Ito across the ventricular wall are responsible for the different 

action potential morphologies in endocardial, midmyocardial and epicardial layers. Ito 

density is greatest in the epicardial cells which display a profound phase 1 or "notch"; and 

decrease gradually through midmyocardial cells to the endocardial cells which are absent of 

phase 1. In humans and dogs a gradient in KChIP2 is responsible for this difference in Ito 

with a x25 fold greater expression in the epicardium compared to endocardium (Rosati et 

al., 2001). In rats, however, the transmural gradient in Ito appears to be due to a gradient of 

K,, 4.2 and K,, 4.3 subunits (Dixon and McKinnon, 1994). 

Ito in SAN cells shows fast and slow time courses of inactivation at intervals which suggest 

the presence of both KJ. 4 and K,, 4 channels (Lei et al., 2001). In AVN cells the time 

course of inactivation is biexponential - 14 ms and - 112 ms at a holding potential of 0 

mV, suggesting contribution from predominantly Kv4 channels (Mitcheson and Hancox, 

1999). Ito in both the SAN and AVN cells plays an important role in action potential 

repolarisation. 

In addition to the voltage-dependent components of Ito, a Cat+-dependent transient outward 

current carried by Cl- ions, IcI(ca), is also present in the heart (Kawano et al., 1995). The 

underlying channel has no voltage-dependence but is activated by a rise in intracellular 

Ca2+ during the Ca2+ transient and has been extensively characterised in rabbit (Kawano et 

al., 1995), ferret (Campbell et al., 1993) and dog (Litovsky and Antzelevitch, 1988) 

myocytes. 



23 

1.3.5 Phase 2 (plateau) 

The plateau phase accounts for the long duration of the cardiac action potential (Fig. 1.13). 

The major current underlying the plateau phase is the L-type Ca2+ current, Ice, L. The a- 

subunit, Ca,, 1.2, is the major Ca2+ channel isoform in the atria and ventricles, although 
Ca,, 1.3 been shown to be expressed in the SAN. A increase in the intracellular Ca2+ 

concentration during the Ca2+ transient induces extrusion of Ca2+ from the cell via the Na+- 

Ca2+ exchanger in a 3Na+: 1 Ca2+ fashion. The exchanger is electrogenic and it generates a 

net inward current during the plateau phase. In addition to the inward currents, outward K+ 

currents are activated during the plateau phase. Three delayed rectifier K+ currents have 

been described in cardiac tissue based on their activation properties: ultra-rapid (IK, u, ), rapid 
(IK, r) and Slow (IK, s) delayed rectifier currents. The plateau phase is the result of a near 
balance of the various inward and outward currents. 

1.3.6 Phase 3 (late repolarisation) 

Eventually the Ica, L inactivates and the outward K+ currents predominate, thereby allowing 

the cell to repolarize (Fig. 1.13). The three delayed rectifier currents, IK, ur, IK, r, IK, s are also 
involved in the final stages of repolarization. The ion channel underlying IK, ur, is Kß, 1.5, 

which displays rapid activation kinetics (Wang et at., 1993; Fedida et at., 1993). IK, r is 

mediated by the K+ channel, human ether-a-go-go related gene, HERG. Interestingly, 

mutations in HERG, which alter the kinetics of the channel, have been shown clinically to 

be responsible for "long-QT syndrome", which is manifested as a prolongation of the QT- 

interval in the ECG of affected individuals. Furthermore, at the cellular level, an increase 

in action potential duration can be detected. This illustrates the role of IK, r in ventricular 

repolarization. The a-subunit, KvLQTI, and the (3-subunit, minK are thought to underlie 
IK, s. As the name suggests, mutations in KvLQTI, also cause a prolongation of the QT 

interval (Wang et al., 1999). The final stages of cardiac repolarization are achieved by the 

inward rectifier K+ current, IK, 1, which, as well as being responsible for the resting 

membrane potential, activates at potentials near to the equilibrium potential for K+ 

therefore returning the cell to its resting membrane potential. 
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1.3.7 Excitation-Contraction coupling 

In the heart, "excitation-contraction (EC) coupling" describes the cellular process by which 

the spread of electrical activity leads to the generation of contractile force (Fig. 1.14). 

During the cardiac action potential Ca2+ enters the cell down its electrochemical gradient 

via L-type Ca2+ channels which are found predominantly in the transverse tubules (t- 

tubules) of cardiac myocytes (Kawai et al., 1999; Fig. 1.14). Ca2+ entry via Ica, L triggers 

further release of Ca2+ from the sarcoplasmic reticulum (SR), in a process known as Ca2+ 

induced Ca2+ release (CICR) (Fabiato and Fabiato, 1978; Fig. 1.14). The Ca2+ release 

channels on the SR are known as ryanodine receptors because of their sensitivity to the 

plant alkaloid, ryanodine. They are co-localised with the Ca2+ channels in the t-tubules 

enabling a rapid Ca2+ release upon excitation (Franzini-Armstrong and Protasi, 1997). Ca2+ 

entry through L-type Ca2+ channels will result in a local subsarcolemmal increase in Ca2+ 

concentration which leads to the opening of ryanodine receptors; further release of Ca2+ 

from the SR will then lead to even more opening of ryanodine receptors, which is known as 

"positive-feedback". Cheng et al. (1993) first coined the phrase "Ca2+ sparks" to describe 

local release of Ca2+ as a result of spontaneous openings of single or a few ryanodine 

receptors on the SR. Ca2+ sparks can be induced via opening of L-type Ca2+ channels or 

spontaneously as a result of the ryanodine receptor open probability being non zero at rest 

(Niggli, 1999). The co-localisation of L-type Ca2+ channels with ryanodine receptors for 

efficient uniform CICR, leads to the formation of most Ca2+ sparks in the vicinity of t- 

tubules (Lopez-Lopez et al., 1995; Fig. 1.14) with numerous sparks comprising a typical 

Ca2+ transient. 

Excitation-contraction coupling is thought to play a role in SAN and AVN pacemaking. 

However, the extent of this contribution to pacemaking in these regions is somewhat 

controversial. Ryanodine has been shown to reduce spontaneous activity in the rabbit SAN, 

in particular, with depression of the later part of diastolic depolarization (Hata et al., 1996). 

Similar findings by Rigg et al. (2000) in guinea-pig with 2 µM ryanodine have been shown. 

The effect of sarcoplasmic reticulum Ca2+ release on ionic currents in rabbit SAN has been 

shown by Li et al. (1997) where 10 pM ryanodine abolished inward INCx which is thought 
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to contribute to the pacemaker potential and could therefore explain the reduced 

spontaneous activity in these studies. In contrast, the findings of Bogdanov et al. (2001) 

show that 30 µM ryanodine abolishes spontaneous beating of rabbit SAN cells. However, 

Honjo et al. (2003) have shown, in intact preparations and single cells from SAN, that 

relatively high (30 µM) concentrations of ryanodine to reduce spontaneous firing by - 20% 

which is consistent with the notion that sarcoplasmic reticulum release of Ca2+ has a minor 

role to play in SAN pacemaking. The discrepancies between studies could be due to the 

type of cells (i. e. "large" or "small") used for the effects of ryanodine on spontaneous 

activity. There is limited data concerning sarcoplasmic reticulum Ca2+ AVN pacemaking. 
Hancox et al. (1994) have showed that the sarcoplasmic reticulum Ca2+ release is 

stimulated by L-type Ca2+ channels but failed to investigate the effect of ryanodine on 

spontaneous activity. 

1.3.7.1 The sarcoplasmic reticulum (SR) 

The cardiac SR is an intracellular membrane compartment which is responsible for the 

storage and release of Ca2+ during the cardiac cycle (Fig. 1.14). During an action potential, 

a wave of depolarization travels along the cell's surface membrane and descends into the t- 

tubules, ultimately activating L-type Ca2+ channels. L-type Ca2+ channels in the t-tubule 

membrane and ryanodine receptors on the surface of the sarcoplasmic reticulum are 

colocalised and there is a stoichiometry of 4 ryanodine receptors: 10 L-type Ca2+ channels 

(Bers et al., 1993; Fig. 1.14). The cardiac SR also contains the SR Ca2+-ATPase 

(SERCA2a) protein (Stewart and MacLennan, 1974; Zarain-Herzberg, 1990), which pumps 

Ca2+ from the cytoplasm back into the SR with the use of ATP. SERCA2a activity is 

regulated by phospholamban which exerts an inhibitory influence on SERCA2a restricting 

its ability to pump Ca2+. In addition, phospholamban is itself regulated as a result of 

phosphorylation by cAMP dependent protein-kinases (Fig. 1.14). In the phosphorylated 

state, phospholamban's effectiveness at inhibiting the SERCA2a pump is impaired thereby 

allowing Ca2+ ions to be pumped back into the SR (Ambudkar et al., 1984). 

1.3.7.2 Contractile proteins 
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Myofilaments convert chemical energy (ATP) in to mechanical force in a Cat+-dependent 

manner. Myofilaments are composed of thick (myosin) and thin filaments. The thin 
filaments are made up of actin, tropomyosin and the troponin complex. Actin is a globular 

protein arranged in repeating subunits. Tropomyosin molecules are made up of two helical 

peptide chains, which lie in the groove between the actin molecules and add to the 

structural rigidity of the thin filament. Attached to the tropomyosin molecules at regular 
intervals are troponin complexes which are composed of troponin-T (TnT; which attaches 

to the tropomysoin), troponin-I (TnI; which blocks the myosin binding site on the actin) 

and troponin-C (TnC; which binds Ca2+ during excitation-contraction coupling). Ca2+ 

released by the SR increases the intracellular Ca2+ concentration from about 10"7 to 10'5 M. 

The free Ca2+ binds to troponin-C (Tn-C) and induces a conformational change in the 

regulatory complex such that troponin-I (Tn-I) exposes a site on the actin molecule that is 

able to bind to the myosin ATPase located on the myosin head (Wegner and Walsh, 1981). 

This binding results in ATP hydrolysis (due to the presence of myosin ATPase) that 

supplies energy for a conformational change to occur in the actin-myosin complex. The 

result of these changes is a movement ("ratcheting") between the myosin heads and the 

actin, such that the actin and myosin filaments slide past each other thereby shortening the 

sarcomere length. Ratcheting cycles occur as long as the cytosolic Ca2+ remains elevated. 

Cytosolic Ca2+ levels must be reduced to resting levels (-10'7 M) to allow relaxation to 

occur. When cytoplasmic Ca2+ falls, Ca2+ is released from TnC and the troponin- 

tropomyosin complex reverts to its original configuration preventing an actin-myosin 

interaction. To restore resting levels, Ca2+ is primarily sequestered back into the SR via 

SERCA2a (Periasamy et al., 2001) and extruded from the cell via Na+- Ca2+ exchange 

(NCX) and Ca2+-ATP-ase (McDonald et al., 2000; Seckin et al., 2001). 

1.3.7.3 Calcium extrusion 

Reuter and Seitz (1968) were the first to describe a Na/Ca2+ exchanger (NCX) in guinea-pig 

heart muscle (Reuter and Seitz, 1968). It has since been shown to be the primary method of 

Ca2+ extrusion in myocytes (Blaustein and Lederer, 1999; Fig. 1.14). The stoichiometry of 

Na'- Ca2+ exchange is in the ratio of 3Na+: 1Ca2+ (Reeves and Hale, 1984). In humans, 
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NCX is responsible for removing -37 % of Ca2+ from the cytoplasm (although the 
importance of the NCX is species-dependent). The activity of the Na+-Ca2+ exchanger is 

altered by intracellular concentrations of Na+ and Ca2+ and ion flow can be reversed leading 

to Ca2+ influx and Na+ efflux. The plasma membrane Ca2+-ATPase (PMCA) is also a Ca2+ 

extrusion mechanism, but this makes up a very small percentage of the total Ca2+ extruded 
from the cell (Monteith and Roufogalis, 1995). 

1.4 Aims and Objectives 

The AVN is complex and electrically heterogeneous. It has multiple action potential 

morphologies (Billette, 1987) and various cell types (Hancox et al., 1993; Munk et al., 
1996). An anatomically accurate 3D model of AVN would be a valuable educational tool 
for studying the complex morphology of the AVN. In addition, a 3D model of the AVN 

could be used to build up a virtual representation of the right atrium or even the whole heart 

since a 3D model of the SAN already exists (Dobrzynski et al., 2005). Furthermore, 

accurate anatomical 3D models can be used for building mathematical models to study 

electrophysiological phenomena and further our understanding of cardiac 

physiology/pathophysiology. 3D models of the rabbit AVN exist but are limited in their use 

since cellular subgroups can only be defined by certain histological criteria and fail to 

provide any indication of conduction properties of the AVN. NF-M has been elegantly 

shown by Gorza and Vitadello (1989) and Gorza et al. (1994) to delineate the conduction 

system of the rabbit. Cx43 is the major connexin in cardiac tissue and is a good marker for 

deducing conduction properties of cardiac tissue. Firstly, by combining histology, and 
immunohistochemical labeling of NF-M and Cx43 we aimed to build a 3D model which 

provided information regarding distinct cellular subgroups and their conduction properties 

together with a full reconstruction of nodal cells throughout the AVN conduction axis. 

The electrical properties of cardiac tissue i. e. action potential morphologies are ultimately 
determined by the currents that pass through the cell and therefore by the expression of ion 

channels and ion exchangers. Functional work regarding electrical properties of the AVN 

has taken two approaches to date: 1) intact AVN preparations, which are limited to 

providing information about nodal conduction time and refractory periods (Mendez and 
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Moe, 1966) and to a certain extent action potential characteristics of certain regions 
(Billette, 1987) and, 2) single cell studies which give a good idea of the different action 

potentials and ionic currents in certain cell types (Hancox et al., 1997; Munk et al., 1996) 

but are limited in their application to the overall understanding of AVN function due to a 
lack of specific localization of the cell type to an area within the triangle of Koch. Our 

second aim therefore, was to provide an idea of electrical activity in specific regions of the 

rabbit AVN by accurately quantifying and localizing mRNA transcripts encoding the major 

cardiac ionic currents and exchangers in specific subcellular groups throughout the rabbit 
AVN conduction axis using real time PCR and in situ hybridization. 
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Chapter 2 

Materials and Methods 

I have used a number of approaches in this study in order to elucidate the molecular 

composition of the rabbit AVN. These included histology, immunhistochemistry, real- 
time polymerase chain reaction, riboprobe synthesis and in situ hybridisation. This 

chapter describes the methods, reagents and equipment used to carry out these 

techniques. 

2.1 AVN tissue preparation 

2.1.1 Obtaining animals for AVN preparations 

Male New Zealand white rabbits (1.5-2.5 kg) and Sprague-Dawley rats were used in 

this research. The animals were obtained through the University of Leeds, Central 

Biomedical Services and University of Manchester, Biomedical Services Unit. All 

procedures were carried out under licence in accordance with the regulations of the 

United Kingdom Animals (Scientific Procedures) Act 1986. The rabbits were humanely 

killed by lethal injection with sodium iso-pentaborbitone (90mg/kg) into the marginal 

ear vein. 

2.1.2 Gross dissection of structures within AVN 

A step-by-step guide to the dissection of the rabbit AVN is shown in Fig. 2.1. Whole 

hearts were removed and superfused with oxygenated Tyrode's solution, the 

composition of which is shown in table 2.1, warmed to 37°C in a water bath. The hearts 

were then pinned to a dissection chamber. Surrounding fatty and connective tissue was 

removed. A large horizontal incision was made through the ventricles (Fig. 2.1A) to 

remove the apex thereby leaving only the base of the ventricles, atria and accompanying 

vessels (Fig. 2.1B). A vertical incision immediately toward the left side of the heart was 

made to remove the remaining left ventricle and left atrium (Fig. 2.1B). The aorta and 
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Figure 2.1 Schematic flow diagram illustrating the procedure for gross dissection of AVN 
preparations from rabbit hearts. Red dashed lines indicate where incisions were made with 
microdissection scissors. SVC, superior vena cava; A, atrium; PV, pulmonary vein; LA, left atrium; 
LV, left ventricle; DA, descending aorta; RV, right ventricle; IVC, inferior vena cava; RA, right 
atrium; PA, pulmonary artery; PASW, posterior atrial septal wall; MS, membranous septum; TV, 
tricupsid valve; CS, coronary sinus; FO, fossa ovalis; tT, tendon of Todaro. 
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pulmonary artery were removed. The inside of the right atrium was exposed by making 

a cut along the fold of the right atrial free wall (Fig. 2.1 C) then pinning back the free- 

wall (endocardial surface up) onto silicon rubber (Fig. 2.1D). The landmark tendon of 
Todaro was clearly visible, which allowed two final major incisions to made to remove 
the remaining regions of the right atrium including superior vena cava, inferior vena 

cava and bulk of posterior atrial wall (Fig. 2.1D). The rabbit AVN dissections were 

carried out by myself and Dr. Halina Dobrzynski. Rat ventricular muscle samples were 
kind donations from Dr. Mark Fowler. 

Table 2.1 Tyrode's solution composition for AVN dissection 

Chemical Concentration (mM) Supplier 

NaCI 93 BDH 

NaHCO3 20 BDH 

Na2HPO4 1 BDH 

KCI 5 BDH 
CaC12 2 BDH 

MgSO4 I Sigma 

Sodium acetate 20 Sigma 

Glucose 10 Sigma 

Insulin 5 units/ml Sigma 

2.1.3 Microdissection of the AM, PNE, CN, CB and VM of rabbit AVN conduction 

axis 

Once the AVN preparation had been dissected from the rabbit heart, further 

microdissection was necessary to obtain the AVN subcellular structures 
The method used for microdissection is shown in Fig. 2.2. The accuracy of the 

microdissection was crucial in order to obtain pure nodal samples, free from 

contamination from surrounding regions, to enable accurate determination of gene 

expression patterns. 
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Figure 2.2 Schematic diagram illustrating microdissection procedure for isolating AVN regions. A. 
a typical AVN preparation is dissected from the rabbit heart as explained in figure 2.1; blue lines 
indicate plane in which sections were cut; AS, atrial septum; VM, ventricular muscle; TVA, 
tricuspid valve annulus; CS, coronary sinus; tT, tendon of Todaro. B, 10µm serial sections are taken 
and stained for Masson's trichrome to identify subcellular structures; AM, atrial muscle; CN, 
compact node; VM, ventricular muscle; MV, mitral valve. C, 3x 60µm sections are taken adjacent 
to the Masson's trichrome stained sections and are subjected to freeze-drying overnight. D, Specific 
tissue regions are microdissected out of the freeze-dried tissue and total RNA is isolated. 
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2.2 Fixation and embedding of the AVN tissue 

2.2.1 Frozen tissue 

Whole AVN preparations were immersed in optimal cutting compound (OCT) (Sakura) 

before being dropped into a container of isopentane suspended in liquid nitrogen. This 

ensured rapid freezing of the tissue. The tissue was stored at -80 °C until it was 

required. 

2.2.2 Paraffin embedded AVN tissue 

The AVN preparation, while still pinned onto silicon rubber, was fixed in 4% PFA in 

PBS overnight at 4 °C. After fixation, the tissue was washed in 90 % ethanol for 

4 hr, followed by a 100 % ethanol wash for 3 hr. The tissue was then washed in 

chloroform for 30 min, before being placed in fresh chloroform overnight. The pins and 

silicon rubber were removed and the tissue was then embedded in molten paraffin. The 

paraffin embedded tissue was left for 24 hr to allow the paraffin to infiltrate the tissue 

and solidify. 

2.3 Sectioning of AVN tissue 

2.3.1 Cryo-sectioning 

Frozen AVN preparations were secured on a chuck using OCT (Sakura). Sections were 

cut at a thickness of 10 or 60 µm using a cryostat (Leica CM 1900). The cryostat 

temperature was set between - -20 °C. The tissue sections were cut perpendicular to the 

tricuspid valve annulus (see Fig. 2.2A). Multiple sections were taken throughout the 

AVN preparation, running from the anterior to posterior. The tissue sections were 

mounted onto superfrost plus microscope slides (BDH) and stored at -80 °C until further 

use. 

2.3.2 Paraffin sectioning 

The paraffin block was melted onto the chuck and trimmed with reference to the tissue 

inside. Serial 10 µm sections were cut in the same orientation using a rotary microtome 
(As500 Universal/Semithin, Anglia Scientific). Multiple sections were taken throughout 
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the AVN preparation, running from the anterior to posterior part of the tissue. As the 

sections were cut, short ribbons were formed and placed in a 10 °C water bath. The 

sections were collected from the water bath on superfrost plus microscope slides (BDH) 

and dried for a minimum of 24 hr at 37 °C. 

2.4 Histology 

Masson's trichrome 10 pm cyro-sections or 12 µm paraffin sections were cut 

perpendicular to the crista terminalis and subsequently mounted on Superfrost Plus 

glass slides (BDH). The sections were fixed in Bouin's fluid for 15 min, and washed 

three times in 70 % ethanol (each wash 10 min). Masson's trichrome staining was 

carried out on these fixed sections: staining in ceslestine blue (5 min), rinsing with 
deionised water, staining in Cole's alum haematoxylin (5 min), washing out with tap 

water (15 min), acid fuschin stain (10 min), rinsing with deionised water, 

phosphomolybdic acid (5 min), draining off and staining with methyl blue (90 sec), 

rinsing with deionised water and treatment with I% acetic acid (2 min). After staining, 

the tissue sections were dehydrated through graded ethanol washes (70 to 100 

cleared in two xylene washes (each wash 5 min), and mounted glycerol jelly (BDH). 

2.5 Immunohistochemsitry 

Antibodies. Antibodies used were: (a) mouse monoclonal anti-neurofilament-M (160 

kD; catalogue number MAB5254; Chemicon, Harrow, UK); (b) mouse monoclonal 

anti-Cx43 (catalogue number MAB3068; Chemicon) (c) Biotinylated anti-mouse 

(Chem icon). 

Immunoenzyme labelling: Immunoenzyme experiments were carried out on paraffin- 

embedded intact AVN preparations. -10 µm sections were cut (perpendicular to the 

coronary sinus) and subsequently mounted on Superfrost Plus glass slides. Prior to the 

immunoenzyme technique, tissue sections were dewaxed in xylene and treated with 100 

% ethanol for 10 min. Tissue sections were then treated with H2O2 in methanol (0.6%) 

for 30 min. The tissue sections were then treated with an antigen unmasking solution 

(Vector; H-3300; Vector Labs) in a microwave for 10 min at boiling point. They were 

then treated with 0.2 % Triton-X 100 diluted in 0.0 IM PBS for 30 min, washed in PBS 
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three times (each wash 10 min) and blocked with normal horse serum (diluted in PBS 

according to the instructions in the Vectastain ABC kit, PK-6102, Vector Labs) for 60 

min. The sections were then incubated with the anti-mouse neurofilament and anti- 

mouse Cx43 primary antibodies for 24 h at 4°C. Each primary antibody was diluted in 1 

% BSA in PBS at a dilution of 1: 100. After incubation in the primary antibodies, the 

sections were washed three times in PBS over 30 min, and incubated with biotinylated 

anti-mouse secondary antibody for -2 h and washed again three times in PBS over 30 

min. The sections were then incubated in ABC reagents for 60 min and this was again 
followed by three washes in PBS over 30 min. The biotinylated anti-mouse secondary 

antibody and ABC reagents were prepared according to the instructions in the 

Vectastain ABC kit (Vector Labs). The sections were developed in DAB solution for 5- 

10 min. The DAB solution was prepared according to the instructions in the Vector 

Peroxidase Substrate Kit (SK-4100; Vector Labs). Finally, the sections were washed in 

distilled H2O for 10 min, dehydrated in graded ethanols (50 to 100 %), cleared in 

xylene, and mounted in a permanent mounting medium (VectaMount; H-5000; Vector 

Labs). No labelling above background was obtained when the primary antibodies were 

omitted (data not shown). Immunoenzyme labelled sections were stored at room 

temperature for subsequent viewing with the Leica Materials Workstation. 

2.6 3 Three-dimensional reconstruction 

10 pm serial sections from paraffin-embedded AVN preparation were Masson's 

trichrome stained at 200 µm intervals. The stained sections were imported into Corel 

Draw 10 and distinct tissue regions were selected to produce digitised images at each 

level. The digitised images were then incorporated into MATLAB by Jue Li to produce 

the final 3-dimensional model. 

2.7 Real time polymerase chain reaction (real time PCR) 

The high sensitivity of real time PCR makes this method an ideal tool to study the 

expression of ion channels in cardiac tissue, where mRNA expression is considered to 

be low. In addition, real time PCR requires a relatively low input of RNA as opposed to 
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other techniques such as northern blotting and RNAse protection assays. Furthermore, 

this technique is extremely sensitive and specific. It is therefore possible to study the 

RNA extracted from tiny tissue samples, such as the AVN pieces used in this study. In 

addition, whole genome arrays were not able to be used due to the lack of gene 

sequence data available for rabbit. 

This technique made use of technological advancements, in the way of precision optics 

and intercalating fluorescent dyes. The amplification of cDNA is measured in real-time 

as the reaction proceeds, by measuring the progress of amplification through each step. 
This enables us to follow later stages of an amplification precisely. Thus, allowing for 

very small differences in initial gene target to be measured. 

Due to the sensitivity of the procedure, there are issues regarding variability. These 

come under two main groups: Biological and technical. Biological is defined as that 

such as differences in gene expression due to differences in genetic make-up, 

physiological states, gender, inter-individual variability etc. Technical variation can also 
be referred to as noise or "measurement-error" introduced into the experiment and this 

could be due to a number stages in RNA/cDNA preparation such as, RNA quality, 

reverse transcription (RT), PCR efficiency and cDNA priming. High variability can 

reduce the measurement of small differences between samples and also decreases the 

power of statistical tests. 

2.7.1 Variability of the system: 

It is essential to keep real time PCR conditions as constant as possible especially the 

quantity of RNA input for each sample into the RT and also the RT conditions. This 

includes: cycle conditions, reaction volume and primer design. 

Housekeeping genes try to eliminate experimental variability during the reverse- 

transcription, amplification etc. because these genes should not vary in their expression. 

2.7.2 RNA isolation from the AVN 
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Histological analysis of the atrioventricular conduction axis (Chapter 3) revealed a 

complex architecture. Together with functional data regarding the rabbit AVN, it is 

clear that three important tissue structures lie within the Triangle of Koch: the common 

bundle (CB; most anterior); the compact node (CN) and the posterior nodal extension 

(PNE; most posterior). The anatomical landmarks demarcating the triangle of Koch, 

notably the tendon of Todaro, central fibrous body (CFB), tricuspid valve annulus 

(TVA) and the inferior septal isthmus can be visualized easily within the right atrium. 

With fresh AVN tissue it is difficult to visualise the major components of the AVN 

conduction axis and therefore using conventional methods of RNA isolation on fresh 

tissue would make it impossible to accurately dissect the major components without 

contaminating the samples with surrounding tissue. The most feasible way we could 
identify and locate the conduction system structures for each preparation was either with 

a histological approach and/or using immunohistochemistry with a neurofilament-M 
(NF-M) antibody to delineate the nodal structures. Histology was cheaper, quicker and 

more convenient than immunhistochemistry. The methods available to use in 

conjunction with serial sections were: 1) frozen tissue which could be used with thick 

(60µm) sections which could then be microdissected in a cold room after Masson's 

trichrome staining of adjacent 10µm sections, however, the thick sections would be hard 

to manipulate when frozen and there would be a risk of the tissue thawing, 2) using 

fixed tissue, however, the RNA isolated from fixed tissue is highly degraded and 

therefore would be unsuitable for real-time PCR analysis, 3) Freeze-drying the tissue, 

which is less harsh a treatment than fixation and based on experience of using this tissue 

by Dr. Rudi Billeter (Billeter, 1980) whereby he was able to measure enzyme activity 

and show that substrates were not metabolised thus indicating a lack of enzyme activity 

which in terms of RNA integrity is favourable since RNases will be inactive (probably 

due to the removal of the hydration shell surrounding the enzyme) and therefore the 

RNA isolated should be relatively intact; even upon rehydration (addition of RLT; see 

section 2. ) during the RNA isolation procedure the RLT reagent contains RNase 

inhibitors and therefore should prevent any RNA degradation. Therefore, by uniquely 

combining histological staining with freeze-drying of adjacent cryosections (Fig. 2) we 

were able to: 1) Determine the level along the AVN conduction axis which we were. 2) 

Identify the sub-cellular structures within the confines of the AVN conduction axis 3) 

Accurately dissect the major components of the rabbit AVN without contamination 

from surrounding tissues. 4) Obtain good quality RNA for real-time PCR analysis. 
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2.7.3 Freeze-drying 

The fundamental principle in freeze-drying is sublimation, the shift from a solid directly 

into a gas. Water will sublime from a solid (ice) to a gas (vapour) when the molecules 

have enough energy to break free but the conditions aren't right for a liquid to form. 

There are two major factors that determine what phase (solid, liquid or gas) a substance 

will take: heat and atmospheric pressure. For a substance to take any particular phase, 

the temperature and pressure must be within a certain range. The freeze-dryer consists 

of a freeze-drying chamber in which the samples are placed, a cold-trap which is 

essentially a metal coil which is cooled to --80 C and attached is a vacuum pump which 

generates a negative pressure of _10-2 Bar. Under these conditions water is extracted 
from the tissue in its frozen state directly into the gaseous phase. 

2.7.4 Optimisation of RNA Isolation from freeze-dried AVN tissue 

Firstly, we needed to be able to extract RNA from freeze-dried tissue. A rabbit AVN 

preparation was cut like previously described (section 2. ) with 10 µm sections subjected 

to Masson's trichrome staining followed by three adjacent 60 pm sections which were 

immediately frozen in liquid nitrogen and subsequently freeze-dried overnight. 

RNA was extracted (See total RNA tissue extraction) and run on a 4% formaldehyde- 

agarose RNA gel (Fig. 2.3) to check for integrity. 18S and 28S bands are clearly visible 

in lanes 2 and 3, for atrial myocardium (AM) and ventricular myocardium (VM), 

respectively. No visible 18S and 28S bands are detectable for AVN (compact node) 

sample - lane 4. This is due to the amount of RNA contained in this particular sample 
being below the level of detection for an RNA gel (< 100 ng). These are good reasons to 

assume that the nodal sample was of similar integrity to the AM and VM samples i. e. 

good yield and integrity from AM and VM. 

2.7.5 RNA Quantification 

RNA from those samples were then quantified on the Lightycler (Roche) using 

RiboGreen Quanitification Kit (Molecular Probes). A standard curve of ribosomal RNA 

was run alongside the three tissue samples. Indeed, the AVN sample was significantly 
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Figure 2.3 First attempt at RNA isolation from freeze-dried AVN, AM and VM tissue. Lane I. 
RNA ladder; Lane 2, AM sample; Lane 3, VM sample: Lane 4, AVN sample. AM (lane 2) and VM 
(lane 3) samples are visible and there appears good 18S: 28S ratio with little sign of degradation 
(forward smear). Lane 4 containing the AVN sample appears absent of 18S and 28S hands which is 
due to the relatively small yield from this sample due to significantly less tissue being used for 
RNA extraction. 
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lower (12.2 ng) compared to that of the AM (158 ng) and VM (387 ng) thus explaining 

why the AVN sample was not detected on the RNA gel. 

2.7.6 Reverse Transcription 

Although the AVN sample RNA could not be detected the integrity of the AM and VM 

samples appeared very good with good 18S: 28S ratios. It could therefore be assumed 

that the AVN sample, albeit at a lower quantity, was good quality RNA. Therefore, this 

RNA was subsequently reverse-transcribed using SuperScript II first strand-synthesis 
(Invitrogen) according to the manufacturers instructions. 

2.7.7 Real Time PCR 

Finally, real lime PCR was performed on the cDNA generated for each sample. The 

housekeeping gene 28S showed no significant difference between samples. 
Neurofilament-M (NF-M) was significantly higher in the AVN sample (Ct = 23) when 

compared to AM and VM (Ct = 30) samples, indicating accurate dissection. The L-type 

calcium channel (Ca�1.3; alphalD) was significantly higher in the AVN (Ct = 32) than 

VM (Ct = 36) and failed to be detected in the AM. The alpha subunit KvLQTI 

underlying the slow component of the delayed rectifier channel was not significantly 
different in any sample (Ct = 30), as expected. 

The next step was to accurately dissect AVN, AM and VM samples from seven rabbits 
in order to obtain statistically sound real time PCR data. The same procedures were 
followed as above. however, upon real time PCR analysis of all ion channel transcripts 
for which primers had been optimised the real-time results were extremely variable. 
More abundant transcripts and markers such as 28S, NF-M, ANP, IICN4, Caj. 3 

(alphalD), could be measured to a certain extent (in some samples transcripts failed to 
be detected). However, other ion channel transcripts which are known to be present 

could be measured in some samples and not others. In particular, Ca�I. 2 mRNA 
(alphalC) which should be highly abundant in the AM failed to be detected, suggesting 

that this transcript had been degraded. On the other hand, it could be that certain ion 

channel transcripts are more susceptible to degradation when subjected to these 

extraction methods (Nc%%bury, 2006). 

LEEDS UNIVERSITY LIBRARY 
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2.7.8 Testing RNA-later and RNA-later ICE on freeze-dried tissue 

We concluded that the RNA might be partially degraded during the freeze-dry process. 
Therefore, we set out to try and protect the RNA during the freeze-dying process using 
RNA later and RNA-later ICE which are RNA stabilising agents for fresh and frozen 

samples, respectively. We dissected three fresh pieces of rat ventricular myocardium 

and placed them in RNA-later. At the same time we submerged four pieces of frozen rat 

ventricular myocardium in RNA-later ICE. Control VM samples were also processed. 
All VM samples were subjected to freeze-drying overnight and total RNA was isolated 

the next day. The three RNA-later-treated VM samples varied in RNA quality, with one 

sample yielding very high amounts (Fig. 2.4; lane 6) and the other two (Fig. 2.4; lanes 5 

& 7) low yields and poor I8S: 28S ratio. RNA later-ICE- treated VM samples provided 
higher RNA yields and 18S: 28S ratio (Fig. 2.4; lanes 8-11). In contrast, the RNA 

isolated from control (normal) VM samples was of poor quality and lower yield (Fig. 

2.4; lanes 1-3). 

In light of these findings, it was decided RNA later-ICE should be tested on the AVN. 

There were certain issues regarding penetrability of the RNA later-ICE into tissue. 

However, it was another area which proved to be a major problem. Once the AVN 

preparation had been subjected to RNA-later ICE its physical properties changed 

somesthat, in particular, the freezing point of the tissue had been lowered, most 

probably, due to the ethanol in the RNA later-ICE. The tissue became very "rubbery" in 

consistency, therefore, it was impossible to cut it on the cryostat after RNA later-ICE 

treatment. Due to the ingredients of the RNA later-ICE being proprietary information, it 

was difficult to understand exactly what properties the reagent had. 

Assuming that RNases in the tissue had been inhibited by the RNA later-ICE, if we 

could remove the ethanol from the tissue without removing the RNase inhibitor we 

would be able to cut the tissue and preserve RNA integrity. Therefore, by soaking a 

piece of rat VAt previously treated with RNA later-ICE in DEPC-treated PBS solution 

we aimed to remove the ethanol from the tissue, whilst maintaining RNA protection. 
However, after RNA extraction, the RNA was completely degraded (Fig. 2.5; lane 4). 
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2.7.9 Time-dependence of RNA integrity in freeze-dried tissue 

The initial freeze-drying procedure was carried out at the University of Nottingham, 

which meant cutting the tissue in Leeds then transporting the samples on dry ice in 

order to be freeze-dried overnight. Then the samples would be transported back to 

Leeds in a sealable bag containing Si02 to keep the samples dry. We came up with the 

idea that the tissue, once exposed to the air may absorb moisture in the form of water 

vapour and that this was sufficient to provide a hydration shell for the RNases and thus 

activate them; over time this would lead to RNA degradation. 

Control, RNA-later treated and RNA-later ICE-treated AVN tissue were subjected to 

freeze-drying overnight. These pieces of tissue were left on the bench for 5 days then 

the RNA was isolated. Upon running the samples on an RNA gel (Fig. 2.6), the control 

tissue was entirely degraded, the RNA-later-treated sample showed a typical smear of 
degraded RNA and the RNA later-ICE-treated sample showed partial degradation with 

18S and 28S bands visible, but a poor 2: 1 ratio. 

RNA gels provide limited information with regards to the quality of RNA obtained and 

the sensitivity of detection. Therefore, to be certain of the quality of the RNA we were 

extracting we decided the RNA needed to undergo more stringent testing for potential 

degradation. This was achieved in the way of Agilent NanoLabChips (which are more 

sensitive and better standardised) run on the Agilent 2100 Bioanalyser. I µI samples of 

AM and VM from all seven rabbits were analysed to produce electropherogram plots of 
18S: 28S ratios. Upon inspection the plots were smooth and showed very little sign of 

degradation (additional noise bands in between 18S and 28S peaks; Fig. 2.7). 

2.7.10 Interference of cry otube electrostatic charge 

The nodal tissue samples are very small in size (less than 1 mm in diameter and 2 mm 

in length, making them difficult to handle. Electrostatic charges carried by the 

Cryotubes (Nunc. Denmark) causes the nodal tissue pieces to stick to the side of the 

tubes. The initial step in the RNA isolation procedure is the addition of a 



1 23 

I'Igtlrt' 2.6 I ICl'/i dlliýl \cIllll. tll, lt tl-llc litl on 14'll'Il l,, l ýkI. 1\, I. Inr, I 
, 111d 2. \iillilillhl 

luu.. Ic kit on hcnrh tor 5 daýN: lane 3. RNA ladder. It can he rlrarlý seen that the RNA is of poor 

yuaitt\ ddlth ioN leid and ISS and _'SS 
hands d, f Roor intevritN. 



ýn 

100 
S 
Xý 

ýý 

n 

a 

9 

36 

Ja 
w4 

st 

High Quality RNA 

V "ý, Y 
. ý, T 

24 29 31 J9 11 49 
T. m1 IsRmA1I 

Marginally Degraded RNA 

24 29 34 39 

w 

f 

k _. L. _-1 __ t-I- t- i t- f 
MaaaaM1Ma 

n.. a+.. " 

t- }. 

Figure 2.7 Examples of electropherogram plots obtained from the Agilent 2100 Bioanalyser. Upper 
2 panels show examples of high quality RNA (upper) and marginally degraded RNA (middle). 
Lower panel, example of one of our VM samples; note, the lack of interference between peaks of 
the VM sample indicating the isolation of good quality RNA from freeze-dried tissue. 

A 

i-ý-t 
59 W 69 

III 
M6 54 !D 64 do 

ftrr fetafWý 

VMS 

I 



40 

RLT/betamecaptoethanol solution. In order to transfer the tissue pieces from the side to 

the bottom of the tube, it was assumed by adding the RLT/BME solution directly above 

these pieces would be sufficient; this would effectively submerge the tissue in the 

RLT/BME solution. However, on closer inspection this proved not to be the case and in 

fact, on addition of the RLTBME the tissue pieces were gelatinizing and sticking to the 

side of the tube, becoming semi-transparent. This makes it almost impossible to see 

them and also making it difficult for the homogenizer to make contact with. Therefore it 

was very unlikely that those particular tissue pieces were being submerged in the 

RLTBME mixture which would ultimately lead to reduced RNA yields. 

Our results had shown that rather than the RNA being degraded during the freeze- 

drying process, the quality of the RNA depended on: 1) the time taken from extraction 

of the freeze-dried pieces of AVN tissue to the actual RNA extraction and, 2) 

Minimising the amount of tissue loss due to material adhering to the side of the 

cryotube. Two critical procedures were then added to the protocol, namely: 1) rapid 

processing of tissue samples from the point of freeze-drying to RNA extraction, in order 

to reduce possible RNA degradation over time and, 2) Using a rotary oven during the 

RLTBeta-mercaptoethanol/proteinase K step in order to bring into contact the mixture 

with any tissue samples adhered to the side of the tube. 

2.7.11 Rotary Oven 

The conventional approach to RLTBeta-mercaptoethanol/proeinase K incubation is to 

use a water bath in which the cryotubes are placed vertically. However, there is the risk 

that pieces of tissue which are adhered to the side of the tube fail to exposed to the 

solution. The use of a rotary oven overcomes this. A rotary oven consists of an oven 

which is pre-heated to incubation temperature (55 C); within the oven is a cylindrical 

chamber which rotates and therefore can be used to attach the cryotubes containing the 

tissue samples and RLTBeta-mercaptoethanol/proeinase K solution; this allows each 

part of the inside of the cryotube to be continually exposed to the RLTBeta- 

mercaptoethanol/proeinase K solution which overcomes the problem of tissue pieces 

potentially sticking to the side of the tube and not being exposed to the RLTBeta- 

mercaptoethanol/proeinase K solution. 
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2.7.12 Total RNA tissue extraction 

Total RNA was extracted from rabbit AVN tissue samples (the dissection of which is 

described in section 2.1.2.1) using the Qiagen RNeasy Mini isolation kit with a 

modified manufacturer's protocol. Each AVN preparation was cut into three or four 10 

pm sections followed by 3x 60 pm sections using a cryostat (Leica CM1900, UK). This 

method of tissue allowed for the identification of subcellular nodal structures using 

Masson's trichrome staining (see below) of the 10 pm sections. The 3x 60 µm sections 

were placed in a crytoube (nunc) filled with liquid nitrogen and placed in a liquid 

nitrogen filled dewar. Pierced caps were put onto the cryotubes before they were placed 

in a freeze-dryer overnight (Thermo MicroModulyo). The freeze-dried sections were 

then microdissected using a dissecting microscope and optical light source. 
Microdissected material for each tissue type was pooled into separate cryotubes. Beta- 

mercaptoethanol was added to RLT buffer (1: 100). To each cryotube containing the 

microdissected samples, 333 µl of the RLT/beta-mercaptoethanol mixture was added 

together with 617 µl of RNase free H2O and proteinase K (Qiagen) stock solution (50 

µl). The mixture was vortexed and tubes were incubated in a rotary oven, at 55 °C, for 

1-3 hr. This allowed a vast majority of proteins (including RNases) to be digested and 

allowed contact of the mixture with any material which may have adhered to the side of 

the tube (see below). The sample was then centrifuged at 13000 rpm for 5 min and the 

supernatant transferred to a 15 ml tube. Another 1 ml of RLT/mercaptoethanol was 

added to this and the tube vortexed. This increases the salt concentration to favour RNA 

over DNA precipitation upon the addition of alcohol. 1 ml of 100% ethanol was applied 

and the mixture vortexed again. The samples were spun in several batches of 730 µl 

through Qiagen columns, at 13000 rpm, the flow-through decanted. DNase stock was 

made up containing DNase and RDD. 700 µl of RWI buffer was applied to the spin 

columns and spun through at 13000 rpm for 15 s, the flow-through decanted and the 

step repeated in order to ensure proteinase K is washed out and so prevent reduction of 

the DNase activity in the next step. 80 µl of RDD/DNase mix (2.7 Kunitz units/µl) was 

carefully added to the middle of the silica matrix of the column for % to 1 hr. This 

allowed the digestion of genomic DNA. RW1 buffer was applied to the spin columns 

and spun through at 13000 rpm for 15 s, followed by addition of RPE buffer (500 µl) 

and a 15 s spin at 13000 rpm. A further spin for 2 min with RPE buffer (500 µl) was 

carried out and the sample re-eluted in 50 gl DEPC-treated Millipore H20.0.5 µl 
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glycogen (Roche), 3M sodium acetate (0.1 volumes) pH 5.4 was added, followed by 

100 % ethanol (2.5 volumes). Glycogen was added to aid RNA precipitation and for 

visualisation of the RNA pellet. The mixture was precipitated overnight at -20°C and 

spun the next day at 13000 rpm at 4 °C for 30 min. The pellet was washed with 70 % 

ethanol and spun again at 13000 rpm for 5 min. The sample was then allowed to air dry 

for 30 min and re-eluted in 20 µl of RNase free H2O. 

2.7.13 RNA quality control and quantification 

It has been well established that in order to achieve reliable real time PCR results, good 

quality RNA is required i. e. non-degraded RNA. If RNA is partially degraded, then the 

cDNA synthesised will not be completely representative of the extracted RNA and 

misleading results can be generated (Bustin, 2002). It is important that equal amounts of 

RNA from the different tissue samples are used as template for the reverse transcription 

reaction used to generate the cDNA. 

Nano LabChips for the Agilent 2100 Bioanalyser were used whereby each Nano 

LabChip is pre-loaded with a gel-dye mix to fill the microchannels. 1 µl of each RNA 

sample is loaded into one of twelve wells in the Nano LabChips obtained together with 

a standard curve (RNA 600 ladder). The dye contained within the microchannels 

intercalates with the RNA and an electropherogram plot of the RNA is obtained thus 

allowing 18S: 28S determination and also the quality of RNA to be interpreted by the 

amount of interfering noise peaks between 18S: 28S peaks. This method provides a more 

accurate determination of RNA quality and quantity over RNA gels. 

2.7.14 Formaldehyde gel electrophoresis 

Formaldehyde gels were used to assess both the quality and quantity of the RNA 

extracted (Fig. 2.8). The preparation of the RNA gel (1 % agarose, lx MOPS, 0.7% 

formaldehyde) involved dissolving 1% of low melting point NuSieve GTG agarose 

(BMA products) in 88% (v/v) of RNase free H2O. This was allowed to cool to -55 °C 

and MOPS buffer was added to a lx concentration (Eppendoff). Finally, deionised 37 % 

formaldehyde was added to a final concentration of 0.7% and the gel solution poured 



12 3456789 10 11 12 13 14 15 

Figure 2.8 Freeze-dried atrial (AMI-8) and ventricular tissue (VMI-6) samples. Lanes 1-8, atrial 
tissue samples I-8: lanes 9- 14. ventricular samples 1-6: lane 15, RNA ladder. Note, only AM 
samples in lanes 3&4 are visible, the other AM samples are beyond the level of detection. All VM 
samples can be clearly visualised with good 18S: 28S ratios. 
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into a pre-prepared plate and comb mould. The gel was allowed to set at 4 °C. It was 

then transferred to an electrophoresis tank containing running buffer (Ix MOPS, 0.7 % 

formaldehyde). A mixture of lx MOPS and 0.25 µg/µ1 EtBr was made up with 10x 

MOPS (40 µl), and ethidium bromide (10mg/ml; 10 µl). To the RNA sample (1 µl) the 

following was added: deionised formamide (10 µl), 37 % deionised formaldehyde, (3.3 

µl), lx MOPS and 0.25 pg/pl EtBr (2.5 µl) and RNase free H2O (3.2 µl). The mixture 

was thoroughly vortexed and incubated at 55 °C for 15 min. The sample (20 µl) was 

mixed with loading buffer (43.5 % Glycerol, 2M EDTA, 0.02 % bromophenol blue), (2 

µl) and loaded into the wells along side a 0.24 - 9.5 kb RNA ladder (Invitrogen) which 
had be prepared in the same way as the RNA sample. The RNA gel was ran for 20 min 

at 130 mA. Samples were viewed using a UV illuminator (BIORAD Gel Doc EQ 

system). Ethidium bromide intercalates with the RNA molecules which upon exposure 

to UV light emits fluorescence. The quality of RNA can be assessed by observing if the 

RNA bands present on the gel smear forwards. If so, this indicates that the RNA is 

partially degraded (Fig. 2.5, lane 4; Fig. 2.6, lane 1). If little smearing was present the 

RNA was considered to be of an acceptable quality. The quantity of RNA present in the 

sample could be estimated, as the amount of fluorescence emitted is proportional to the 

amount of RNA present. The amount of RNA present in the sample could be calculated 

by comparing the fluorescence emitted from the sample with the RNA ladder. This was 
done with Quantity One software. 

2.7.15 RiboGreen RNA quantitation assay 

In order to obtain accurate quantitation of RNA yields from small AVN samples the 

ribogreen assay (Molecular Probes) was used which provides fast and good estimates of 
RNA yields before generating eDNA. Standard curves were constructed by generating 

ribosomal RNA standards (0,100,500,1000 and 2500 ng/ml) and measuring the 

fluorescence. 

The LightCycler in fluorimeter mode (470 nm excitation, 530 nm emission) or the 

Flexstation (490 nm excitation, 515 nm cut-off and 540 emission; Molecular devices) 

were the instruments used to read fluorescent measurements of ribogreen. The standards 

were diluted in RNase free Tris EDTA (TE). Ribogreen was diluted 1: 200 (High-range 

assay) or 1: 2000 (low range assay) in TE and samples were loaded into glass capillaries 

(LightCycler) or 96-well plates (Flexstation), 10 µl 1: 200 or 1: 2000 ribogreen and 10 µl 
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standard (LightCycler), or, 25 pI 1: 200 or 1: 2000 ribogreen and 25 µl standard 

(Flexstation). Following 5 min incubation at room temperature fluorescence emissions 

were measured. Test samples of RNA were diluted appropriately in TE and prepared in 

the same way. 

2.7.16 Reverse transcription (RT) 

The RT step generates the first strand of cDNA from the extracted RNA which is used 

as the DNA input in the real time PCR reaction. It is therefore important that great care 

is taken with the RT step in order to achieve accurate quantification. The input for the 

RT for each sample was 200 ng of total RNA based on the ribogreen quantification 

since all samples had to be equivalent to the sample of the lowest yield (which was 

200 ng). The Superscript III First Stand cDNA Synthesis System (Invitrogen) was used 

with random hexamer primers, following the manufacturer's protocol. Random hexamer 

primers were chosen over Oligo-dT since there was a chance that the RNA we are using 

is 1) slightly degraded and therefore since the poly-A tail is highly likely to be cleaved 

then oligo-dT would fail to prime, and 2) some of the RNA molecules are likely to have 

a high secondary structure which is more likely to inhibit oligo-dT priming than random 

hexamer 3) we only need to generate small amplicons during real time PCR so only 

require short stretches of cDNA which random hexmaer priming would provide better 

chance of obtaining over oligo-dT priming. All RNA samples which were to be 

compared through real time PCR underwent RT at the same time using the same master 

mix. The cDNA samples were diluted I in 10 with molecular biology grade H2O and 

stored at -80 °C. 

This system was chosen because the Superscript III reverse transcriptase contains a 

point mutation which disables RNase H activity and is more active than other reverse 

transcriptases at higher temperatures which allows for the reverse transcription of 

mRNAs with high secondary structures. This prevents degradation of the RNA template 

during first strand cDNA synthesis, allows the RT to be carried out at higher 

temperatures and results in a greater yield of cDNA. 
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Random hexamers were used to prime the RT reaction even though it has been argued 

that these are less sensitive than the use of specific primers or oligo-dT priming 
(Lekanne Deprez et al., 2002). For this study, where the aim was to screen the cDNA 
for many different transcripts, specific priming would not be suitable. In the case of 

specific priming, a separate RT reaction would have had to be performed for each 

transcript which requires too much RNA. This would have required further dilution of 

the RNA and resulted in a low chance of success for the experiment. Oligo-dT priming 

was deemed not to be appropriate, as it requires the 3' polyA tail to be present. This is 

susceptible to degradation that would lead to under-representation of that mRNA in the 

cDNA. In addition, the reverse transcriptase can `fall off' the RNA when it encounters 

strong secondary structures, so that if the mRNA is primed for RT at the 3' end of the 

mRNA then the RNA downstream of the secondary structure will not be transcribed. In 

addition, ribosomal RNA can not be used as a housekeeper gene with oligo-dT primed 

cDNA as it does not have a 3' polyA tail. 

2.7.17 Real Time PCR 

Real time PCR measures the fluorescence emitted during the reaction as an indicator of 

the DNA amplified during each PCR cycle (i. e. in real time). The fluorescence is 

generated by a reporter dye. The signal increases in direct proportion to the amount of 

DNA in the reaction. Recording the amount of fluorescence emitted at each cycle 

enables the monitoring of the PCR reaction during the late exponential phase where the 

first detectable increase in the amount of target template occurs. The greater the starting 

copy number of cDNA target, the sooner a significant increase in fluorescence occurs 
(Fig. 2.11). 

In this study two different fluorescent reporter systems were used: 

2.7.18 TaqMan Probes 

A TaqMan Probe is a labelled oligonucleotide which is usually 20 to 25 bases in length 

and is specific for the DNA sequence between the two primer sites on the target DNA 

fragment (Fig. 2.9). The probe is labelled at the 5' end with a fluorescent group, while a 

quenching group is attached to the 3' end. The TaqMan probe is added to the PCR along 
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Figure 2.9 A probe specific to the amplicon sequence is designed with the reporter and quencher 
dye system. When the probe is intact (Denature) there is no fluorescence since the quencher lies 

close enough the reporter dye to quench its fluorescence. However, during extension (extend) the 
Taq polymerase cleaves the probe thus allowing the reporter dye to move away from the quencher 
and emit fluoresence. 
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Figure 2.10 SYBR green PCR detection system. SYBR green molecules only fluoresce when 
bound to double-stranded DNA therefore during the denaturation phase no fluorescence is emitted. 
During annealing and extension more SYBR green molecules can bind and fluoresce, therefore 
fluorescence in a reaction is proportional to the amount of double-stranded DNA present. This 
allows us to measure DNA amplification in real-time. 
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Figure 2.11 Amplification curves for KChIP2 cDNA from rabbits 5678. Fluorescence is plotted 
against cycle number. The greater the abundance of the transcript in a particular sample the lower 
the cycle number. Exponential phases of amplification are clearly visible. 
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with the primers required to amplify the specific DNA fragment. When both the 

fluorescent and quenching groups are present in close proximity to each other, as is the 

case on the intact probe, any fluorescence released by the fluorescent group is absorbed 

by the quenching group. As the PCR progresses, it generates more target DNA for the 

probe to hybridise to, which occurs right after the denaturing step of the PCR cycle. 

During the next extension phase, the 5' to 3' exonuclease activity of the DNA 

polymerase degrades the hybridised probe, thus the fluorescent and quenching groups 

are no longer held close together and the fluorescence is no longer absorbed by the 

quencher resulting in increased fluorescence emissions. The intensity of fluorescence is 

therefore directly proportional to the amount of target DNA generated by the PCR. 

TaqMan real time PCR was carried out using an ABI 7900 HT system (Applied 

Biosystems). See table 2.3 for primers and probe sequences for targets. 

2.7.19 SYBR-green 

SYBR-green is an agent which, when unbound in solution, emits little fluorescence. 

However, when SYBR-green binds to the minor grove of double stranded DNA 

(dsDNA), it emits a strong fluorescent signal (Fig. 2.10). Therefore, the intensity of 

fluorescence emitted is directly proportional to the amount of dsDNA present. SYBR- 

green real time PCR was performed with a LightCycler (Roche). See table 2.2 for a list 

of primer sequences and targets. 

2.7.20 Primer and probe design 

For accurate quantification, it is important that the PCR primers used amplify 

the desired DNA fragment both specifically and efficiently. To achieve this, the 

following steps were followed when designing PCR primers: 

1. The target transcript nucleotide sequence was compared to the entire Genbank 

database using BLAST (Altshul and Lipman, 1990). This identified regions 

which were specific for the target of interest thus preventing non-specific 

amplification. 

2. These stretches of unique sequence were also assessed for the ability to form 

RNA secondary structures using the mfold program (Zuker, 2003). This is 

important as it has been shown that an RNA with strong secondary structure in 

the fragment chosen for PCR is not efficiently reverse transcribed (Pallansch et 
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al., 1990). Such a fragment will at best be under-represented in the cDNA or in a 

worse case yield aberrant relative quantities. Therefore, sequences with 

generated secondary structures for which enfold calculated free energies less 

than -16 kcal/mol were not considered for primer design. 

3. For primers used with the SYBR-green detection system on the LightCycler, 

primer design was undertaken with the aid of Primer 3 software. For the design 

of primers and probes used for the TaqMan quantification system on the ABI 

7900 HT system Primer Express software was used. The following parameters 

were considered important: 

a. Size of PCR fragment: A fragment size of -100 bp was considered 

optimal, larger PCR fragments may amplify at lower efficiencies and it 

may be difficult to differentiate between primer dimers and specific PCR 

products of shorter lengths using the melting curve. 

b. Primer size: The primer should be made up of 23 bases to optimise 

accuracy and specificity (Beasley et al., 1999). 

c. T. of primer/probe: This is the temperature at which half of the 

primer/probe and target hybrids will dissociate. The optimum 

temperature has been determined as 62 °C for primers (Beasley et al., 

1999) and 10°C greater than the primers Tm, for probes (Applied 

Biosystems, 1999). 

d. GC content of the primer/probe: G/C bonds are stronger than A/T bonds. 

The optimum GC content is considered to be -50 %, which should 

enable a primer Tm of 62 °C to be achieved. Any greater GC content can 

lead to non-specific binding of the primer/probe. 

e. No GC clamp: The final two bases at the 3' end should not both be G or 

C, as this can more frequently lead to mispriming and primer dimers. 

f. Minimal 3' self complementarity: Both primers should not contain any 

sequence which is complementary to the final three base at the 3' end of 

each primer. This prevents the formation of primer dimers, which occur 

when the 3' ends of the primers bind to complementary sequences within 

the primer allowing DNA polymerase primer extension to occur. Primer 

dimer amplification competes with the specific PCR for regents and so 

can reduce the efficiency of the specific reaction and hence the accuracy 

of the real time PCR. 
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g. DNA secondary structure: DNA sequences around the target sequence of 

the primers were checked for secondary structures using the mfold 

program; these secondary structures can inhibit primer binding and 

therefore prevent efficient amplification of product. 

The primers were synthesised by MWG Biotech and the probes were 

synthesised by Applied Biosystems. It should be noted that the performance of primers 

can vary depending on the source of synthesis. The primer sequences and PCR 

conditions used with the SYBR-green detection system on the LightCycler are listed in 

Table 2.3 and the sequences of primers and probes used with the TaqMan detection 

system on the ABI 7900 HT system are listed in Table 2.3. 

2.7.21 Primer optimisation 

The optimal PCR primer and Mg2+ concentrations were determined with rabbit whole 
heart cDNA diluted I in 50, which was prepared as described above to 2.3. Optimal 

conditions should amplify the specific product with the lowest threshold cycle (C1) 

value without non-specific product amplification such as primer dimers. The specificity 

of the reaction was assessed using the melting curve and running the PCR products on a 

2% agarose gel and sequencing of products in some cases. 

2.7.22 Primer concentration 

The concentration of the primers used for real time PCR is a key variable for successful 

quantification. If the primer concentration is too high it can result in primer-dimer 

formation. If the primer concentration is too low, the sensitivity of the PCR may be 

compromised. Therefore, for each transcript, the optimal primer concentration was 

determined by testing a range of primer concentrations. The primer concentrations 

tested with LightCycler were between 0.5 and 2 µM and for the ABI 7900 HT Sequence 

Detection system 50 and 900 nM. The resulting optimal primer concentrations are 

shown in Tables 2.2 and 2.3. 

2.7.23 Mg 2+ concentration 
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DNA polymerase is active at 2 mM Mg 2+ (Lawyer et al., 1989). It is advantageous to 

optimise the Mg2+ concentration, as Mg2+ is a key ionic component of the PCR reaction 

mixture. It has two roles in PCR: firstly to promote DNA/DNA interactions and 

secondly to form the complexes with dNTPs that are the actual substrates for Taq 

Polymerase. When Mg2+ is too low, primers are less likely to anneal to the target DNA. 

When Mg 2+ is too high, the base pairing can become too strong and can lead to non- 

specific primer binding. Therefore, between 2 and 6 mM Mg2+ concentrations were 

tested with each primer pair for the LightCycler. The resulting optimal concentrations 

are shown in Table 2.2. The master mix used with the ABI 7900 HT system already 

contained Mg2+, therefore the Mg2+ concentration was not adjusted for these assays. 

2.8 Specificity of PCR 

2.8.1 Melting curves 

In contrast to the Taqman probe, which is specific for a sequence, SYBR-green will 

bind to all double stranded DNA present. It is important for accurate quantification with 

SYBR-green that the PCR is only amplifying the specific PCR fragment. This can be 

determined by running a melting curve after the PCR reaction, where the DNA products 

are denatured. Different DNA species will denature different temperatures, due to 

varying characteristics such as fragment length and base composition. The temperature 

at which the DNA denatures can be determined as the mid-point of the sigmoid curve 

produced by the SYBR-green fluorescence with increasing temperature. Its second 

derivative is a peak in a Gaussian curve (Fig. 2.12). 

2.8.2 DNA gel 

The specificity of the PCR can also be checked by running the PCR products on an 

agarose gel alongside a DNA ladder to determine that only one DNA fragment has been 

generated and that it is of the correct size. This is especially useful when using TaqMan 

probes since a melting curve can not be performed with that system since the detector is 

also cleaved. However with SYBR-green, melting curves of two products can have 

similar profiles, so that running the PCR products on a gel gives a more accurate view 

of the products generated by the PCR. 



A 13A- 

120- 

110- 

10.0 - 

9.0- 

8A- 

7A- 

eo- 
5A- 

40- 

3A- 

2A- 

1A- 

, 00-ý i111111111iiiý1- ý 
720 730 740 76.0 700 770 780 700 80.0 810 82.0 830 84.0 860 800 870 880 

Temperature (°C) 

B 
3S- 

35- 

3A- 

25- 

20- 

1.6- 

1A- 

os- 

0.0- 

-02-,; ,1411111111# 730 740 75.0 700 77.0 780 790 900 910 920 830 84.0 850 

Temperature (°C) 

&A 

9o 00.0 01 .0 02A 03.0 

870 880 870 GOA 

Figure 2.12 Melting curve (A) and peak (B) for KChIP2 cDNA from AM8 and water control. 
Fluorescence is plotted against temperature. A, As the temperature rises sample AM8 the bound 
SYBR Green molecules bound to the double-stranded DNA gradually fall off as the melting point 
of the cDNA is reached thereby producing a decline in fluorescence. Note, fluorescence is zero for 
water control as no double-stranded DNA is generated. B, the derivative of fluorescence over time 
is plotted against temperature. A peak can be seen when the melting point of the cDNA fragment is 
reached. Note, since no cDNA is present in the water control, no peak is seen. 
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The DNA gel is composed of 2% agarose (BDH), 0.5x TBE (45 mM Tris base, 45 mM 
Boric acid, 1mM EDTA) and 0.7 pg/ml ethidium bromide. The DNA samples and 100 

bp DNA ladder (New England BioLabs) were mixed with 3 pl of gel loading buffer 

(43.5 % Glycerol, 2M EDTA, 0.02 % bromophenol blue) to a final concentration of 

33% Glycerol, 1.5m EDTA, 0.015% bromophenol blue, and loaded into individual 

wells in the gel. The gel was run in 0.5x TBE running buffer for 18 min at 200 V. The 

DNA bands were then scanned using a UV illuminator (BIORAD Gel Doc EQ system). 
When the amount of DNA present on the gel required quantifying, this was done by 

comparing the fluorescence of the DNA band of a known concentration (from the DNA 

ladder) with the DNA band of an unknown concentration using Quantity One software. 
Real time PCR protocol 

2.9 LightCycler 

10 µl reactions were set up consisting of lx SYBR-green I master mix (Roche), I µl of 

cDNA template, between 2 and 6 mM MgC12 and 0.5 and 2 µM of each primer. The 

following PCR protocol was set up: hot start, 10 min at 95 °C; 40 cycles of: 
denaturation (28S real time PCR was 23 cycles), 15 s at 95 °C; annealing, 5s at optimal 

temperature determined during optimisation of primers; extension, 1s per 25 bases of 

product size at 72 °C. At the end of the final cycle a melting curve was generated by 

heating to 95 °C. Fluorescence was measured at the end of each extension step and 

continuously throughout the melting curve. The reaction was carried out in glass 

capillaries (Roche), which have a large surface area to volume ratio that allows rapid 

heating or cooling between cycles. 

2.10 ABI 7900HT 

50 pl reactions were set up, consisting of lx TaqMan Universal PCR master mix 
(Applied Biosystems), 1 pl of cDNA template, 50,300 or 900 nM of each primer and 

50 nM TaqMan Probe. The following PCR protocol was used: i) AmpErase uracil-N- 

glycosylase activation, 2 min at 50 °C. ii) hot start, 10 min at 95 °C. iii) 40 cycles of. 

denaturation, 15 s at 95 °C; annealing/extension, 1 min at 62 T. The PCR was carried 

out in a MicroAmp optical 96-well reaction plate (Applied Biosystems) sealed with an 

optical adhesive cover (Applied Biosystems). 



51 

2.11 Relative quantification using a calibrator sample 

To determine the relative number of target transcript cDNA molecules present in each 

sample cDNA, a calibrator sample which contains a mixture of cDNA which is 

representative of each tissue type, was run alongside the samples in the PCR reaction. 

2.12 Real time PCR quantification 

The following equation was used to calculate the relative abundance of cDNA in each 

sample for ABI 7900HT (since a reaction efficiency of 2 is achieved): 

No. of input molecules for S, (target) x tut = No. of molecules generating fluorescence 

Therefore, for a given fluorescence (X): 

X= No. of input molecules for SI (target) x 2ct1 = No. of input molecules for S2 

(control) x 2Ct2 

Rearrange equation so that: 

X= No. of input molecules for S, (target) = 2c`i =2 CU-02 or 2'ct 

No. of input molecules for S2 (control) 2Ct2 

We use the actual calculated efficiency for the LightCycler, therefore: 

X= E'C' 

The efficiency was determined from the fluorescence recorded at the end of each 

elongation step, using the following equation: 

E=I FnNn-2 

Where F is fluorescence measured and n is cycle number. 
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To correct for variation of RNA input into the RT, the number of cDNA 

molecules quantified was normalised to the average of the number of molecules 

quantified for three housekeeper genes namely, GAPDH, 28S and Na/K pump. 

2.13 Statistical analysis 

Significant differences between the number of cDNA molecules of a specific transcript 

from a certain tissue were identified using One-way ANOVA. Statistical comparisons 
for individual variables were done by Student-Newman-Keuls method. 
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2.14 In situ hybridisation (ISH) 

ISH is a method by which specific mRNA sequences can be detected within the 

cytoplasm of a cell, through hybridising the sequence of interest to a labelled 

complementary strand of a RNA probe. ISH is a very useful technique for 

investigating regional variations in the expression of a specific mRNA within tissues. 

When the ISH technique was first developed, the only way to detect nucleotide probes 

was by labelling them with radioisotopes and detecting by autoradiography (Gall and 

Pardue, 1969; John et al., 1969). This method had several disadvantages: long 

development periods (several weeks); relatively short shelf life of the radiolabelled 

probe; safety issues when working with radioactive probes; and the scatter of the 

radioactive signal prevented high resolution localization of the probe. More recently, 

non-radioactive labelling and detection systems have been developed for ISH, such as 

digoxigenin labeled probes, which have the same sensitivity of radiolabelled probes 

(Komminoth, 1992) and overcome the above mentioned problems. For this study, 

digoxigenin labelled uridine was used to label the probes. An anti-digoxigenin 

antibody was then be used to detect it. Digoxigenin is a steroid isolated from the 

digitalis plant. As its blossoms and leaves are the only known source of digoxigenin, 

the chances of the anti-digoxigenin antibody, for which digoxigenin is a potent 

hapten, cross-reacting in animal tissue is very low (Farquharson et al., 1990). 

Different types of nucleotide probes can be used with ISH, such as oligonucleotide 

probes, single stranded DNA probes and/or double stranded DNA probes. For this 

study, RNA probes (riboprobes) were used, since RNA-RNA hybrids are more stable 

at higher temperatures and allow more stringent hybridisation conditions and are 

cheaper than their DNA probe counterparts. In addition, RNA-RNA hybrids are also 

resistant to RNase degradation, which allows RNase to be used to destroy any 

unhybridised probe after hybridisation, thus reducing the potential for a background 

signal. 

2.14.1 Riboprobe synthesis 
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Riboprobes were synthesed by in vitro transcription of the corresponding DNA 

fragment by the SP6 or T7 RNA polymerase. Therefore, to successfully synthese a 

riboprobe, a template DNA fragment of the desired sequence is required to be flanked 

by SP6 and T7 RNA polymerase promoter sites to initiate RNA transcription. 

2.14.2 Template DNA synthesis 

The DNA required for the synthesis of the riboprobe can be generated through PCR. 

The primer design for the PCR follows the same rules as described in section 2.7.20, 

except that the required PCR fragment length is preferably -500 bp. cDNA 

synthesised in the same manner as described previously was used as an input into the 

PCR. Two PCR methods were used during the course of this study. Both approaches 

used the Whatman Biometra thermocycler. 

2.14.3 Standard hot start PCR 

The PCR was carried out in a 50 pl reaction volume consisting of the following: lx 

Promega PCR buffer, MgC12 (2 mM), forward and reverse primers (0.5 µM), cDNA 

(2 µl), dNTPs (0.2 mM), Promega Taq polymerise (2.5 U). Taq polymerase was 

added while the reaction temperature was held at 80 °C for 3 min, which occurred 

after the initial 3 min 94 °C denaturation step in order to prevent primer dimer 

formation as the reaction mixture heated to 94 °C. The PCR then followed a set cycle 

programme for 20-40 cycles: denaturation, 30 s at 94 °C; annealing, 45 s at 5 °C 

below primer Tm; extension, 75 s at 72 °C. 

2.14.4 AccuPrime PCR 

The AccuPrime master mix contains an accessory protein which inhibits non-specific 

hybridisation of the PCR primer during every cycle of the PCR. This should increase 

the specificity and yield of the PCR. The PCR was carried out in a 25µl reaction 

volume consisting of the following: lx Invitrogen AccuPrime Super Mix I, forward 

and reverse primers (0.5 µM), cDNA (I µl). The reaction mixture underwent an initial 

denaturation step (2 min at 94 °C) and then followed a set cycle programme for 20-40 
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cycles: denaturation, 30 s at 94 °C; annealing, 45 s at 5 °C below primer T,, as stated 
in Table 2.3; extension, 75s s at 68 °C. 

2.14.5 Addition of RNA polymerase promoter sites 

Once the correct DNA fragment has been amplified by PCR, RNA polymerase 

promoter sites must be added to the ends of the DNA fragment to enable the 

transcription of DNA to synthese the riboprobe. I found it advantageous to clean the 

PCR amplified DNA fragment using the PCR purification MinElute kit (Qiagen) 

before it was manipulated further. The concentration of this purified DNA was 
determined. 

2.14.6 Lign'scribe non-cloning promoter addition 

Lign'scribe involves the ligation of a T7 promoter sequence to the ends of the DNA 

fragment, followed by PCR amplification of the ligated DNA fragments with the T7 

promoter in specific orientations. In an attempt to increase ligation efficiency, both SI 

nuclease and proteinase K treatments were originally tried before ligation to create 

blunt ends and remove the Taq polymerase from the ends of the DNA fragment. 

However, these pretreatments were determined to have no beneficial effects on the 

ligation therefore the manufacturer's (Ambion) protocol was followed. PCR 

amplification of the ligated fragments was often problematic, marred by the 

generation of DNA fragments of incorrect size and band smearing (Fig. 2.11). In 

some cases, this could be alleviated by extracting the specific DNA band from a DNA 

gel as described below, and reamplifying the DNA through PCR. The PCR conditions 
for the amplification of the lign'scribe ligated DNA fragments were the same as those 

described in section 2.14.3, a 55 °C annealing temperature was used. 

2.14.7 pGEM-T Easy vector system 

An alternative approach for adding RNA polymerase promoter sites to the DNA 

fragment was provided by the pGEM-T Easy vector system. This involved cloning the 

DNA fragment into the pGEM-T Easy plasmid where the multiple cloning site was 

flanked by the T7 and SP6 promoter sequences (Fig. 2.13). 
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Figure 2.13 p-GEM T-easy vector used to generate riboprobes. Once the insert has been ligated 
into the vector it can be sub-cloned and thus amplified several fold in colonies. Furthermore, the 
target insert can be manipulated using the various restriction enzyme recognition motifs to cut the 
fragment, PCR amplified using M13 forward and reverse primer sites, or used to generate 
riboprobes using the 717 or SP6 RNA polymerase recognition sites. 
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2.14.8 Ligation 

DNA fragments were ligated into pGEM-T Easy plasmids (Promega) according to the 

manufacturer's protocol. The plasmid had been cut by the manufacturer, adding a 3' 

terminal thymine to both ends producing complementary ends to the adenine 

overhangs normally present on the PCR DNA fragment. 

2.14.9 Transformation of competent E. coli bacterial cells 

10 ng of DNA, in a2 pl volume, was mixed with 50 µl of JM109 competent cells 

(Promega), gently mixed and left on ice for 20 min. The mixture was then heat 

shocked for 45-50 s at exactly 42 °C (this allows permeabilisation of the cell 

membrane allowing uptake of the plasmid DNA). Following heat shock, the mixture 

was left on ice for 2 min, mixed with 950 µl of SOC medium (Flowgen) and 

incubated for 1.5 hr at 37 °C while shaking at 150 rpm. The transformed cells were 

then evenly spread out on LB plates (containing: ampicillin, 100 µg/ml; IPTG, 100 

mM; X-gal, 50 mg/ml) and incubated overnight at 37 °C to allow the formation of 

individual bacterial colonies. 

2.14.10 Selection and screening of colonies 

The presence of amplicillin on the LB plates only allows cells that have been 

transformed with the intact pGEM-T Easy plasmid to survive, multiply and form 

colonies, as the pGEM-T Easy plasmid contains an ampicillinase gene which confers 

amplicillin resistance on the host bacteria. As a result, all colonies present on the plate 

should contain the plasmid. 

To select a colony that contains plasmid with the PCR DNA fragment, blue-white 

screening is utilised. This involves the inactivation of the lacZ gene, on the pGEM-T 

Easy plasmid when the PCR DNA fragment is inserted into the gene sequence (Fig. 

2.13). The lacZ promoter is activated by the IPTG present on the LB plates. In case 

of an uninterrupted lacZ gene this leads to the synthesis of an enzyme which uses X- 

gal as a substrate to synthese a blue product. Insertional inactivation of the lacZ gene 
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prevents the development of the blue colour, hence all white colonies should possess 
the plasmid with the PCR DNA fragment inserted. 

PCR can be used to screen the white colonies to check if an insert is present and of the 

correct size and therefore is the correct insert. This is done using M13 primers that 

flank the T7 and SP6 promoter sequences on the plasmid (Fig. 2.13). A pipette with 
disposable tips was used to pick the colony from the plate and insert it directly into 

the PCR buffer. The PCR protocol used was the same as described in section 2. The 

high temperatures of the PCR along with the detergents present in the PCR buffer 

lyses the bacterial cells, exposing the DNA for PCR amplification. PCR conditions 

and primer sequences are shown in Table 2.4. 

2.14.11 Preparation for insert transcription 

The PCR fragment generated when the colonies were screened for the correct insert 

was used to generate the template for transcription. This was done by diluting the 

PCR product I in 100 with molecular biology grade H2O and repeating the PCR, in 

order to generate pure PCR fragments with minimal presence of the whole plasmid. It 

is advantageous if the rest of the plasmid sequences are not present in the transcription 

reaction, since the whole sequence of the plasmid will be transcribed, generating 
longer than necessary riboprobes. 

2.14.12 In vitro RNA transcription 

Prior to transcription, the DNA templates were cleaned using the PCR purification 
MinElute kit (Qiagen), which removed contaminants which may inhibit the 

transcription. This process increased the concentration of the DNA, as only 10 µl of 
EB buffer were required for elution of the DNA from the column. A DNA template 

concentration of >30 ng/pl was desirable for input into the transcription. DNA 

templates prepared with lign'scribe was transcribed with T7 Megascript kit (Ambion) 

and DNA templates prepared from pGEM-T Easy plasmid cloning were transcribed 

either with SP6 or T7 Megascript kits (Ambion). A modified manufacturer's protocol 

was used: The RNA transcription was performed with a5 µl reaction volume. The T7 

reaction was composed of template DNA (1 µQ, lx reaction buffer, ATP (7.5 mM), 
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CTP (7.5 mM), GTP (7.5 mM), UTP (4.8 mM), digoxigenin-l1-UTP (2 mM) and T7 

RNA polymerase (0.5 µl). The SP6 reaction was composed of. template DNA (1 µl), 

lx reaction buffer, ATP (5 mM), CTP (5 mM), GTP (5 mM), UTP (3.2 mM), 
digoxigenin-ll-UTP (1.4 mM) and SP6 RNA polymerase (0.5 µl). Both reactions 

were incubated overnight at 37 T. The digoxigenin-11-UTP (Roche) used in the 

transcription was added so that approximately every fourth uridine incorporated into 

the RNA strand was digoxigenin labelled. Both sense and antisense riboprobes were 

synthesed for each target. 

2.14.13 Riboprobe clean-up 

After the completion of the transcription the reaction mixture was purified to remove 

the DNA template and unused digoxigenin-11-UTP which could increase the 

background signal in subsequent ISH. The procedure was: Molecule grade H2O (96 

µl), RLT (350 µl) and 100% ethanol (250 µI) were added to the transcription, mixed 

well and left for 10 min. The mixture was then applied to a Qiagen mini column and 

spun in a centrifuge at 13000 rpm for 15 s. The elute was collected and reapplied to 

the column and spun again at 13000 rpm for 15 s. This was repeated four times to 

maximise the amount of riboprobe sticking to the column matrix. RPE (500 µl) was 

then added to the column and spun at 13000 rpm for 15 s, the elute was discarded and 

RPE (500 µl) was again added to the column and spun for at 13000 rpm for 2 min. 30 

µl of molecule grade H2O was carefully added to the centre of the silica matrix, left 

for 1 min before being spun at 13000 rpm for 1 min. The elute was collected and 

stored at -20 °C until required. The riboprobes were quantified on a formaldehyde gel 

(see section 2.7.14). 

2.14.14 Modified Braissant ISH Protocol 

10 pm cryosections of AVN tissue were mounted on superfrost plus slides, stored -80 
°C were fixed in 4% paraformaldehyde for 10 min at room temperature and washed 

twice for 10 min in Acetic Anhydride/TEA solution. Acetylation of positively charged 

amino groups in the tissue sections decreases background labelling by reducing the 

electrostatic binding of the riboprobes to the tissue, and acetylation also inactivates 

endogenous RNases. A microwaving step is required to allow riboprobe tissue 
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penetration, which involves heating to boiling point in 10 mM Na Citrate pH 6 for 2.5 

min. This step is repeated 3 times. This is followed by 15 min equilibration in 5x SSC 

(0.75 M NaCl, 75 mM Na Citrate, pH 7) before 2 hour prehybridisation at 58 °C, in 

50 % formamide, 5x SSC, 40 µg/ml herring sperm DNA The prehybridisation was 

performed in a sealed moist chamber. Sections are hybridized for 40 to 64 hr at 58 °C, 

with 0.3 ng/pl of DIG-labelled probe, in 50 % formamide, 5x SSC, 40 µ1/ml herring 

sperm DNA. Hybridisation was performed in a sealed moist chamber with parafilm 

covering the sections to prevent evaporation. Formamide counteracts RNA secondary 

structures by reducing the melting temperature of RNA-RNA hybrids thus allowing 

the riboprobe to bind, and also acts against non-specific hybridisation of the probe, 

SSC provides monovalent cations which stabilizes nucleic acid interactions and 

herring sperm DNA reduces background labeling by blocking non-specific riboprobe 

binding sites. The sections are washed for 30 min in 2x SSC, at room temperature, 

before two 1 hr washes at 65 °C, the first with 2x SSC and the second with 0.1x SSC. 

This is followed by RNase treatment, 0.5 pg/ml for 30 min, to degrade any unbound 

probe. The sections are twice washed in 2x SSC for 5 min, before a stringent wash, 

0.5x SSC, 20% formamide at 60 °C for 10 min. The sections are twice washed in 2x 

SSC for 5 min. This is followed by washing in buffer 1 (100mM Tris, 150 mM NaCl, 

pH 7.5) for 5 min and buffer 2 (bufferl with 1% Boehringer blocking reagent) for 1 

hour, before application for 2 hours of anti-DIG Fab-fragment, alkaline phosphatase 

coupled (Roche), 1: 5000 in buffer 2. Unbound Fab-fragment was washed off by two 

15 min DIG buffer 1 washes. The sections were incubated for 5 min in DIG buffer 3 

(100mM Tris, 100mM NaCl, 50 mM MgC12, pH 9.5), before colour development in 

sealed coplin jars containing buffer 3,10 % PVA (Sigma), 0.2 mM NBT (Roche) and 

0.2mM BCIP (Roche). Signal development occurred overnight at room temperature. 

The staining reaction was stopped with three 15 min washes in stop buffer (0.1 M 

Tris, 1 mM EDTA, pH 8.0). The sections were embedded in Kaiser's gelatine (BDH). 

Image capture and processing 

Bright field images of the ISH labelling were taken using a Zeiss LSM 5 Pascal 

microscope, with Zeiss Axioscope software. Images underwent further processing 

using Adobe Photoshop 7.0 and Corel Photo-Paint 10 software. 



60 

2.14.15 Isolation of rabbit sequences 

The rabbit nucleotide sequences for the majority of ion channel mRNAs were not 

available as entries on the Entrez-nucleotide database. These sequences were 

therefore obtained by PCR with degenerate primers. A sequence of approximately 

1000 bp was optimal for riboprobe synthesis plus to have enough options for real time 

PCR primer design. A degenerate primer is a mixture of primers with similar 

sequences that vary at one or more positions. The principle underlying degenerate 

primer design is based on the fact that homologous genes have high levels of 

sequence similarity. PCR with degenerate primers is an established approach for the 

isolation of similar sequences (Nunberg et al., 1989). For the design of degenerate 

primers the following steps were followed: 

1. Sequences unique to the target were identified by running a BLAST search 

with the known sequence as many known vertebrate sequences as possible. 

2. Sequences identified in step 1 were then aligned using ClustalW to identify 

areas of high homology suitable for primer design. 

3. Stretches of approximately 30 bases were identified as potential primer 

sequences, the sequences chosen as primers followed the below criteria: 

a. At least 85 % similarity between the homologous sequences. 
b. No more than 50 % GC content, over 50 % would increase the chances 

of non-specific priming. 

c. The final two bases at the 3' end should not both be G or C, otherwise 

this could lead to mispriming. 
d. The final two bases at the 3' end should be completely homologous 

between all species. This is important as perfect binding of the 3' end 

of the primer to the target sequence is vital for the primer extension in 

the PCR. 

e. The final base at the 3' end of the primer should be the first or second 

base in the codon encoding for the amino acid, as the third base of the 

codon is most variable. 

f. Where a base varies between species, all possible bases should be 

included at that position in reference to the variation of the codon 

sequence. 
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A list of the degenerate primers used are shown in Table 2.4. 
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Chapter 3 

Three-dimensional reconstruction of the rabbit atrioventricular node 

3.1 Introduction 

The tissues of the atrioventricular conduction axis lie within the confines of the triangle 

of Koch. Histological and electrophysiological studies (e. g. Anderson et at., 1974) to 

date have described multiple cell types and subcellular regions that vary from species to 

species and have a certain degree of ambiguity. How can the different cell types and 

regions be distinguished? Masson's trichrome staining allows the visualisation of 

distinct tissue subgroups due to differential attachment of dyes to certain tissue types. 

Cardiac myocytes (of the working myocardium as well as nodal cells) appear red and 

can be readily distinguished from connective tissue, which stains blue. The cardiac 

conduction system in rabbit can be delineated from normal working myocardium by 

using neurofilament-M (NF-M) as a marker; antibodies directed against the NF-M 

epitope have routinely been used for this purpose (Gorza et al., 1988; Dobrzynski et at., 

2005). The propagation of impulses through cardiac tissue is largely dependent on the 

presence of gap junctions at the intercalated discs of adjacent myocytes. These are 

formed by connexins (Cx) of which there are multiple isoforms (Vozzi et at., 1999). 

Cx43 is the major cardiac gap junctional protein and can be used as a predictive marker 

of conduction properties in specific regions of cardiac tissue. Historically, the rabbit has 

been the animal of choice for investigations into the AVN. We aimed to 3- 

dimensionally reconstruct the rabbit AVN conduction axis by combining histology and 

immunhistochemical analysis of NF-M and Cx43 proteins to delineate the nodal tissue 

from the working myocardium and provide an understanding of conduction properties 

throughout the AVN conduction axis. 

3.2 Methods 

3.2.1 Histology and immunohistochemistry for Cx43 and neurofilament-M 
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A single rabbit AVN preparation was dissected (see section 2.1.2) and dehydrated 

through a series of alcohols and xylene. The preparation was then submerged in molten 

paraffin overnight and left to set (see section 2.2.2). 10 µm serial sections were cut 

using a standard microtome (see section 2.3.2). At 200 µm intervals, sections were 

either stained with Masson's trichrome (see section 2.4) or immunohistochemically 

labelled for Cx43 and NF-M (see section 2.5). Images of the sections were taken using a 

Zeiss LSM 5 Pascal microscope. The images were imported into Corel Draw 10 

software and subcellular groups identified based on histological and/or immunological 

data, in order to build detailed two-dimensional schematic diagrams of each section 

(Fig. 3.1). Finally, two-dimensional schematic diagrams were imported into MATLAB 

software by Dr. Jue Li to generate a three-dimensional model of the AVN (Fig. 3.7; Li 

et al., 2004). 

3.3 Results 

The following cellular subgroups were chosen based on tissue location, histology and 

NF-M and/or Cx43 immunolabeling: ventricular muscle; connective tissue; adipose 

tissue; tendon of Todaro; upper nodal cells; lower nodal cells; loosely packed atrial 

muscle; atrial muscle; vein; ganglia/nerve. Figure 3.1A shows an example of a 

Masson's trichrome-stained section in which cardiac myocytes are stained red, 

connective tissue blue and adipose tissue as a grey/white colour; a large piece of 

ventricular muscle clearly makes-up the base of the section with the tricuspid valve 

attached on the endocardial surface; lying on the crest of the ventricular muscle is the 

central fibrous body which stains blue, and extending to the right from this is part of the 

mitral valve; lying immediately adjacent to the central fibrous body are the nodal cells 

which are hard to distinguish from the rest of the cardiac myocytes; superior to the 

nodal cells are bundles of densely packed atrial tissue running on the epicardial side 

towards the bulk of densely packed atrial muscle which lies upper most in the section; 

loosely packed atrial muscle occupies the region in between the densely packed atrial 

muscle and nodal cell region; finally, embedded within the loosely packed atrial muscle 

is a small blue area representing the tendon of Todaro. Figure 3.1 B is a two-dimensional 

schematic with each cellular subgroup designated a specific colour in order to 

distinguish it from other structures; the large proportion of ventricular muscle is in light 

red; all connective tissue including the central fibrous body, mitral valve and tricuspid 
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Figure 3.1 Transition from Masson's trichrome stained section to 2D schematic diagram with 
subcellular groups defined. Light red, ventricular muscle; Dark red, densely packed atrial 
muscle; Pink, loosely packed atrial muscle; light blue, tendon of Todaro; Dark blue, connective 
tissue including central fibrous body and tricuspid valve; cream, adipose tissue; yellow, 
neurofilament-M positive cells. 
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valve are designated a dark blue colour; however, the tendon of Todaro although 

connective tissue due to its importance as a landmark structure was given a light blue 

colour; the neurofilament-M positive cells are collectively shown in yellow; densely 

packed atrial muscle is in dark red whereas that of the loosely packed atrial muscle 

appears as pink; finally the adipose tissue was depicted in a beige/cream colour and is 

most evident around the mitral valve and central fibrous body. 

Figure 3.2 shows NF-M labelling (brown colouration) throughout the AVN conduction 

axis: the common bundle (Fig. 3.2A), compact node (Fig. 3.2B), open node (Fig. 3.2C) 

and posterior nodal extension (Fig. 3D) can clearly be delineated from the surrounding 

working myocardium and connective tissue. At the level of the common bundle (Fig. 

3.2A) the bifurcating bundle branches can be seen descending down the lateral sides of 

the ventricular crest; a less intense brown staining can be seen more superiorly in the 

section overlying the atrial septum which represents a nerve. The typical oval shaped 

collection of cells representing the compact node shows intense brown staining (Fig. 

3.2B). NF-M staining at the level of the open node shows the group of nodal cells 

diverging towards and possibly making contact with the superiorly located atrial 

bundles (Fig. 3.2C). Figure 3.2D shows the full extent of the posterior nodal extension 

with NF-M staining extending from close to the attachment of the tricupsid valve to the 

ventricular muscle superiorly beyond the ventricular crest and into the atrial septum; 

note the presence of a vein travelling through the centre of the NF-M positive cell 

region. 

Cx43 immunolabeling (dark brown colouration) throughout the AVN conduction axis is 

shown in Figure 3.3; Abundant immunolabeling of Cx43 is present in the atrial muscle 

(Fig. 3.3A), lower nodal cells (Fig. 3.3D), common bundle (Fig. 3.3B) and ventricular 

muscle (Fig. 3.3E). In contrast, sparse immunolabelling of Cx43 is present in the 

compact node (Fig. 3.3C) and open node (Fig. 3.3F). 

Figure 3.4 shows the histology, together with the Cx43 immunolabelling, of different 

regions of the AVN conduction axis. Densely packed atrial muscle (Fig. 3.4A) and 

ventricular muscle (Fig. 3.4C) is densely packed with large cells with abundant Cx43 

immunolabelling. Loosely packed atrial muscle (Fig. 3.4B) contains scattered cells 

with, however, a. abundant Cx43 immunolabelling. Figure 3.4G shows cells from the 

CB which are relatively tightly packed with abundant Cx43 immunolabelling. In 
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Figure 3.2 Neurofilament-M (NF-M) labelling at various levels of the AVN conduction axis. A, 
NF-M delineates the nodal tissue highlighting the bifurcation of the bundle branches. B, 

compact node. C, open node. D, posterior nodal extension. Scale bars, 400 µm. 
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Figure 3.3 Immunolabelling of Cx43 throughout the AVN conduction axis. A, atrial muscle. B, 

common bundle. C, compact node. D, lower nodal cells. E, ventricular myocardium. F, posterior 
nodal extension. Scalebars, 50. 
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Figure 3.4 High power images of Masson's trichrome-staining and adjacent Cx43 
immunolabelling throughout the AVN conduction axis. A, densely packed atrial muscle. B, 
loosely packed atrial muscle. C, ventricular muscle. D, posterior nodal extension. E, compact 
node. F, lower nodal cells. G, common bundle. Scale bars, 40 µm (unless stated). 
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Figure 3.5 Two-dimensional schematic diagrams used to build the three-dimensional 
reconstruction of the AVN conduction axis. Numbers in white at the bottom of each two- 
dimensional schematic diagram represent the distance in "mm" along the AVN conduction axis 
from 0.00 mm, at its most posterior point, to 8.67 mm at its most anterior point. 
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Figure 3.7 Three-dimensional reconstruction of the rabbit AVN conduction axis. A, full three- 
dimensional model showing views from the right and left atrium. B, same as A but with 
connective tissue removed. C, same as B but with ventricular muscle removed. D, three- 
dimensional model with loosely packed atrial muscle removed. E, three-dimensional model with 
densely packed atrial muscle removed. F, three-dimensional model with densely packed atrial 
and ventricular muscle removed. G, three-dimensional model with densely and loosely packed 
atrial and ventricular muscle removed. 
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contrast, cells of the PNE are scattered and appear "spindle" like with little or no Cx43 

immunolabelling (Fig. 3.4D). Compact node cells are tightly packed but small in size 

with abundant nuclei and sparse Cx43 immunolabelling (Fig. 3.4E). Figure 3.4F shows 
lower nodal cells, which are relatively tightly packed with a mixture of "spindle" shaped 

cells and "ovoid" cells and abundant Cx43 immunolabelling. 

Figure 3.5 (low magnification) and 3.6 (high magnification) shows the two-dimensional 

schematic diagrams, which were used to generate the final three-dimensional model. A 

total of 65 two-dimensional schematics from all levels were used to construct the three- 

dimensional model. The levels are numbered in Figure 3.5 and 3.6 from 8.67 at the most 

anterior point of the AVN conduction axis where the bifurcating bundle branches can be 

seen in purple, through the compact node area at level 5.32, and finally terminating at 

0.00 toward the posterior end of the AVN conduction axis where nodal cells are absent. 

Figure 3.6 shows images from all levels (8.67 to 0.00) at higher magnification to 

highlight the major nodal structures throughout the AVN conduction axis. Lower nodal 

cells are shown in purple, extending from 3.68 to 5.67, where they merge with cells of 

the common bundle. Compact node cells are shown in yellow from 5.73 to 5.32. Upper 

nodal cells merge with cells of the posterior nodal extension, shown as red, to extend for 

a large proportion of the AVN conduction axis from 5.17 to 0.82. Along the length of 

the upper nodal cells the transitional cells (green; 4.97 to 2.08) can be seen to comprise 

a large proportion of the atrial septum and contact the upper nodal cells at certain 

regions along their length (4.38 to 3.94). 

The three-dimensional model of the rabbit AVN conduction axis is shown in series of 

images in Figure 3.7. Figure 3.7 "right" shows views from the right atrium/ventricle, 

whereas Figure 3.7A "left" shows views from the left atrium/ventricle. Figure 3.7A 

shows the complete model. The base of the model is made up largely of ventricular 

muscle (purple) and the bulk of the upper portion is made of densely packed atrial 

muscle (pink); the tendon of Todaro (blue region), located superiorly in the model, and 

the tricuspid valve annulus, located inferiorly, are clearly evident to demarcate the upper 

and lower margins of the triangle of Koch; within this area the anterior aspect of the 

AVN conduction axis shows a tract of cells (purple region) running toward the compact 

node; there is also a bulk of loosely packed atrial muscle (green region) which overlaps 
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the proximal portion of the posterior nodal extension; more posteriorly, the posterior 

nodal extension (red region) can be seen to extend to the level of the coronary sinus; the 

margins of the coronary sinus appear to made up of densely packed atrial muscle; and a 

nerve (white) appears to descend towards the mid-portion of the posterior nodal 

extension. Figure 3.7B is the same as Figure 3.7A, but with the connective tissue 

removed to highlight the major nodal regions of the conduction axis, in particular, the 

lower nodal cells (maroon), compact node (yellow), loosely packed atrial muscle 

(green), posterior nodal extension (red) and ventricular muscle (pink). After the removal 

of the loosely packed atrial muscle, a region of densely packed atrial muscle can be seen 

to progress from the anterior part of the posterior nodal extension towards the upper 

margins of the coronary sinus to connect to the bulk of densely packed atrial muscle 

(Figure 3.7D). Figure 3.7E shows the full extent of the loosely packed AM which 

appears to comprise a large portion of the upper part of the triangle of Koch. With the 

removal of the loosely packed atrial muscle, major nerves (shown in white), for 

example, running along the tendon of Todaro can be seen (Fig. 3.7G). 

3.4 Discussion 

Histological analysis of serial sections throughout the AVN conduction axis revealed 

atrial tissue which was either loosely arranged densely packed and this marked 

difference in appearance was used to divide the atrial tissue into two subgroups (Fig. 

3.4A and B). The difference in organisation may have an influence on conduction 

properties: the densely packed tissue may conduct faster than the loosely arranged 

tissue. The term "transitional cells" has been used to describe the cells comprising the 

area between the compact node and "true" atrial cells. Transitional cells histologically 

appear intermediate in size and shape between those of typical nodal cells and true atrial 

cells (Anderson, 1972). It is possible that the loosely arranged atrial muscle is made of 

transitional cells. 

The loosely arranged atrial muscle was extensive throughout the AVN conduction axis 

(Fig. 3.7; green), with this tissue comprising the whole thickness of the wall in places 

(Fig. 3.5; e. g. 2.87 mm). However, a small bundle of densely packed atrial tissue, was 

present in the region of the loosely arranged atrial muscle; it travelled horizontally from 

the anterior portion of the posterior nodal extension to the upper margins of the 
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coronary sinus to join with the bulk of densely packed atrial muscle (Figs. 3.7D and 3.5, 
4.38 to 1.66 mm). This is the first description of this bundle of densely arranged atrial 

muscle in the rabbit AVN. It could be an additional input into the AVN (as opposed to 

the PNE and the more anterior atrial septal input). This bundle is similar to a Cx43- 

positive bundle at the AVN of the rabbit shown by Nikolski et al., (2003). Nikolski et 

al., (2003) suggested that this bundle is one of the dual pathways and plays a role in 

AVNRT. 

Reconstruction of the three-dimensional distribution of NF-M positive cells (nodal 

cells) has revealed a tract of nodal cells running from the common bundle at the most 

anterior position (Fig. 3.7G, maroon), where it is embedded within the central fibrous 

body, to the oval shaped compact node (Fig. 3.7G; yellow), to the PNE at the most 

posterior position (Fig. 3.7G, red). This structure is remarkably similar to that described 

by Ko et al. (2004). Ko et al., (2004) used desmin expression as a marker of nodal cells. 
It is highly likely that this structure is the molecular substrate for slow pathway action 

potential propagation (Inoue and Becker, 1998). At the level of the open node, the group 

of NF-M positive nodal cells diverge towards bundles of loosely packed atrial tissue 

(Fig. 3.2C). This may allow entry of an action potential traversing the atrial septum into 

the AVN i. e. this may be the point of entry of the fast pathway. The PNE (NF-M 

positive nodal cells extending posteriorly from the compact node) appears to join with 

true atrial muscle at its most posterior point (Fig. 3.7B and G). This may be the entry 

point into the slow pathway. As already stated, the most anterior portion of the PNE lies 

adjacent to the loosely arranged atrial muscle (Fig. 3.7F). However, at the mid-portion 

of the PNE, the nodal cells are located below a vein, which appears to provide a barrier 

between the PNE cells and the loosely arranged atrial muscle (Fig. 3.7G). This is the 

first time this vein has been described. We have consistently seen this vein in multiple 

AVN preparations. Whether this structure is functionally significant (i. e. prevents action 

potential transmission from the PNE to the loosely arranged atrial muscle) remains to be 

seen. Finally, the PNE appears to be continuous with the lower nodal cells, which is in 

agreement with Ko et al., (2004). 

Cx43 immunolabelling in the lower part of the compact node and also to a certain extent 

in the lower regions of the PNE (Figs. 3.3D and 3.4F). The cells positive for Cx43 in 

these areas were collectively referred to as "lower nodal cells". 
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The three-dimensional reconstruction showed that at the level of the common bundle 

the tract of NF-M positive nodal cells runs just above the ventricular crest (Fig. 3.5, 

8.67-8.00 mm), at the level of the CN the tract of NF-M positive cells lies just below the 

crest of the ventricular septum on the right-hand side (Fig. 3.5,5.17-4.22 mm) and at 

the level of the PNE the tract of NF-M positive cells occupies a region on the right side 

of the ventricular septum (Fig. 3.5,3.94-0.92 mm). In the atrial septal wall, at the level 

of the coronary sinus, there is a progression from an abundance of loosely packed atrial 

muscle occupying the thickness of the wall, to the majority of this area being of densely 

packed atrial muscle (Fig. 3.5,2.25-0.00 mm). The tricuspid valve lies just below the 

tract of NF-M positive nodal cells throughout the AVN conduction axis (Fig. 3.7A). 

NF-M, as well as labelling myocytes of nodal origin, labels neuronal structures. This 

allowed us to track the pathway of certain nerves into the AVN conduction axis. 

Anteriorly, numerous ganglia were observed and appeared to innervate the anterior 

structures of the AVN conduction axis such as the compact node and common bundle 

(Fig. 3.7G). In addition, towards the mid-portion of the PNE a ganglia/nerve appeared 

to make contact with cells in this area. The nerve may influence pacemaker output from 

the AVN, because this region of the PNE has been shown in previous work from our 

laboratory to be the leading pacemaker site (Fig. 3.7G; Dobrzynski et al., 2003). 
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Chapter 4 

Hyperpolarisation-activated, cyclic nucleotide-gated channels 

4.1 Introduction 

The pacemaker and conduction system of the heart, in particular the SAN and AVN, 

contains cells with the ability to show pacemaking and beat spontaneously. These 

"pacemaker cells" have a unique phase of slow diastolic depolarisation, which is driven 

by the "funny-current" (If) - so named due to its unusual features (DiFrancesco., 1993). 

One unusual feature is that it is activated at hyperpolarised potentials of about -40/-50 

mV in SAN cells. Unlike most other currents, If is carried by both Na+ and K+ ions. 

If possibly mediates the autonomic control of heart rate by the sympathetic and 

parasympathetic nervous systems. The sympathetic neurotransmitter noradrenaline once 

bound to ß-adrenoceptors on the cell surface initiates a cascade of events that ultimately 

leads to a rise in intracellular concentration of cAMP. Upon binding to the COOH 

terminus of the channel it causes a shift in the activation curve of If to more positive 

potentials, thus allowing more current to be passed at diastolic potentials; this increases 

the slope of diastolic depolarisation without affecting any other phases of the action 

potential (Accili et al., 1997). On the other hand, acetylcholine released by 

parasympathetic nerve fibres, binds to muscarinic receptors and shifts the activation 

curve to more negative potentials, thereby allowing less current to pass during the 

diastolic range of potentials; this decreases the slope of diastolic depolarisation and thus 

slows the heart rate (Accili et al., 1997). 

Underlying If are thought to be the hyperpolarisation-activated, cyclic nucleotide-gated 

channels. Four different isoforms (HCNI-4) have been cloned and shown to be 

expressed in a variety of tissues (for review see Accili et al., 2002). When expressed in 

heterologous (Ishii et al. 1999; Ludwig et al. 1999; Seifert et al. 1999; Moroni et al. 

2000; Moosmang et al. 2001; Viscomi et al. 2001) and in homologous (Qu et al. 2001) 

systems, these channels exhibit properties typical of If, although differences exist in 

both the kinetics and the cAMP sensitivity (Santoro & Tibbs, 1999; Altomare et al. 

2001; Kaupp & Seifert, 2001). The channel currents represented by the various isoforms 
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have different rates of activation and deactivation. HCN1 is the fastest followed by 
HCN2 and HCN4 (Altomare et al., 2001). Heteromeric assembly of HCN channels is 
thought to exist since single isoforms of HCN channels fail to fully reproduce native If 
(Chen et al., 2001; Ulens and Tytgat, 2001). 

Evidence also exists suggesting HCN channel isoforms co-express with ß-subunits, in 

particular, minK-related peptide I (MIRP1 or KCNE2); this subunit has been shown to 
increase the magnitude of expressed currents (Yu e al., 2001; Altomare et al., 2003). 

HCN channels have a similar structure to most voltage-gated K+ channels. They have 

six transmembrane domains, with a positively charged S4 domain, and the signature G- 

Y-G sequence which confers K+ selectivity. In addition, they have a cyclic-nucleotide 
binding domain in their C-terminus (Accili et al., 2002). 

All major isoforms of HCN channels have been shown to be expressed in the heart 

(Ludwig et al., 1998; Moosmang et al., 2001; Santoro et al., 1998). The SAN has been 

the tissue most studied for HCN channel isoform expression, because HCN4 was 

originally cloned from the SAN (Ishii et al., 1999) and because of its primary 

pacemaking role. The mouse SAN has been shown using in situ hybridisation to contain 

predominantly HCN4 mRNA but also low levels of HCN1 and HCN2 mRNA 

(Moosmang et al., 2001). Electrophysiological evidence from the rabbit SAN suggests 
heteromultimers may exist in this tissue because activation kinetics are intermediate 

between those of HCN1 and HCN4 (Moroni et al., 2001). 

4.2 Methods 

4.2.1 Real time PCR 

Real time PCR was performed on HCNI and HCN4 cDNAs generated from total RNA 

isolated from five rabbit AVN tissue types: atrial muscle, PNE, compact node, common 
bundle and ventricular muscle (n =8 rabbits). Real time PCR was carried out using a 

Roche LightCycler 1.0. 

4.2.2 In situ hybridisation 
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The riboprobes for HCN1 and HCN4 were designed by Dr. James Tellez using 
fragments cloned from rabbit SAN cDNA (Tellez, 2005). 

4.3 Results 

4.3.1 Real time PCR 

Real time PCR revealed significantly (P <0.05) higher amounts of HCN4 in the PNE (as 

compared to the ventricular muscle and common bundle) and compact node (as 

compared to the ventricular muscle) (Fig. 4.1). The compact node, common bundle and 
PNE showed significantly (P <0.05) higher levels of HCNI as compared to the 

ventricular muscle (Fig. 4.1). 

4.3.2 In situ hybridisation 

Perinuclear staining for HCN4 was most abundant in the PNE (Figs. 4.2C and 4.3). In 

contrast the atrial muscle, compact node, common bundle and ventricular muscle were 

completely negative for HCN4 labelling (Figs. 4.2A, B, D, E, 4.3-4.5). The riboprobe 

for HCNI was tested but failed to produce a signal. 

4.4 Discussion 

I have shown abundant expression of HCNI mRNA in the PNE, compact node and 

common bundle of the rabbit. In contrast, HCN4 mRNA was abundantly expressed only 
in the PNE (Figs. 4.2C and 4.3). The high level of HCN4 mRNA expression in the PNE 

is consistent with previous findings at the protein level and with the PNE being the 

origin of the pacemaking in the AVN (Dobrzynski et al., 2003). 

The presence of HCN1 and HCN4 mRNA agrees with numerous electrophysiological 

studies which have shown spontaneously active AVN cells to contain If (Kokubun et al., 
1980; Habuchi and Giles, 1993; Hancox and Levi, 1994; Munk et al., 1996). 
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Figure 4.1 Real time PCR results for HCN channel mRNAs. 2 and 5, significantly different from 
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However, Yuill and Hancox (2000), using guinea-pig AVN cells, measured a time- 

dependent inward current during hyperpolarising pulses from -40 mV, but the current in 

the diastolic depolarisation range of potentials was small, which suggests a negligible 

contribution of If to diastolic depolarisation in the AVN compared to the SAN (Habuchi 

et al., 1995). The contribution of If to pacemaking in the rabbit AVN was measured by 

Hancox and Levi (1994), who found 80-90 % of isolated single cells from rabbit AVN 

to be absent of If but still had the ability to generate spontaneous activity; they termed 

these cells "type-1". 10-20 % of cells did possess If, which was significantly enhanced 

by 100 nM isoprenaline; they termed these cells "type-2". It is likely that type-2 cells 

originate from the PNE, because I have shown these cells to contain significantly higher 

HCN4 mRNA levels than other cells within the AVN region. Furthermore, in terms of 

cell populations in the triangle of Koch area, the PNE cell population will be relatively 

small. In contrast, Munk et al. (1996) isolated two populations of single cells from the 

rabbit AVN: ovoid and rod shaped cells, and found If in the majority of both cell 

populations. If in ovoid cells was activated between -60 and -90 mV whereas If in rod 

shaped cells was activated at more negative potentials; the magnitude of If in ovoid cells 

was 25 times that in rod shaped cells (Munk et al., 1996). The activation threshold of If 

may provide insights into the different isoforms present in different cell populations: If 

activated at less negative voltages in ovoid cells and this could reflect the HCNI 

isoform, which has been shown to have a half-maximal activation voltage of -73 mV; 

rod shaped cells have a more negative If activation range and this could reflect the 

HCN4 or even the HCN2 isoform, which have half-maximal activation voltages of -81 

and -92 mV, respectively (Chen et al., 2001; Ishii et al., 1999; Accili et al., 2002). 

These discrepancies regarding If from isolated single AVN cells (Hancox and Levi, 

1994; Munk et al., 1996) could be the result of the harsh conditions of the cell isolation 

procedure leading to disruption of ionic currents and misleading results. Another 

limitation of these studies is that the exact location of the cells studied (type 1, type 2, 

ovoid, rod shaped) within the triangle of Koch cannot be determined. 

Marionneau et al. (2005) have carried out similar mRNA expression analyses on the 

mouse AVN. HCN4 mRNA was found to be significantly higher in the SAN as 

compared to AVN, atrial muscle and ventricular muscle and ventricular muscle HCN4 

mRNA was found to be were significantly lower than the SAN, AVN and atrial muscle. 

HCN1 mRNA was found to be significantly higher in the SAN compared to the AVN, 
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atrial muscle and ventricular muscle; ventricular muscle was found to have a 

significantly lower level of HCNI mRNA (Marionneau et al., 2005). My finding of 

significantly low levels of HCN1 and HCN4 mRNA in the rabbit ventricular muscle 

(Figs. 4.1,4.2D, 4.3-4.5) is consistent with the findings in mouse ventricular muscle. 

My findings of a higher expression of HCN4 mRNA in the PNE does not agree with the 

findings of Marionneau et al. (2005) who did not observe significantly higher amounts 

in the AVN compared to the atrial muscle and ventricular muscle. It is possible that a 

high level of HCN4 mRNA in the PNE of mouse in the study of Marionneau et al. 

(2005), was masked by the crude method of sampling tissue from the entire triangle of 

Koch region. 
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Chapter 5 

Inward Na+ current 

5.1 Introduction 

In the working myocardium the inward Na+ current ('Na) is responsible for the sharp 

upstroke of the action potential (phase 1). In contrast, the typical nodal action potential 
lacks a sharp upstroke. The rate of rise of a nodal action potential is about 5-10 V/s 

compared to >100 V/s for an atrial or ventricular action potential. 

Na' channels are heteromeric complexes made up of a single, pore-forming, a-subunits 

together with two p-subunits. Ten a-subunits and four p-subunits (p1-4) have currently 

been identified (Caterall et al., 2000; Goldin et al., 2001). The p-subunits alter Na+ 

channel gating, cell surface expression and function as cell adhesion molecules (Isom, 

2001). 

The a-subunit has four repeats, labelled I through IV. Each repeat contains six 

membrane-spanning regions labelled SI through S6. The highly conserved S4 region 

acts as a voltage sensor, due to the presence of a positive amino acid at every third 

position, with hydrophobic residues inbetween. It is thought that when stimulated by a 

depolarisation of the membrane, this region moves within the membrane towards the 

extracellular side of the cell, causing the channel to become activated (i. e. open and 

permeable to Na+ ions). On depolarisation, following activation of the channel, the 

channel is inactivated. The ability to inactivate is due to an inactivation gate (formed by 

a linker between domains III and IV), that blocks the inside of the channel shortly after 

it has been activated. The inactivation is removed when the membrane is 

hyperpolarised. 

Rogart et al. (1989) cloned the first cardiac Na+ channel from rat and named it rHl; in 

addition, a neuronal isoform was also detected but was not investigated further. A 

cardiac Na+ channel isoform was also cloned from human heart (HI; Gellens et al., 
1992). These channels were later identified as the major cardiac Na+ channel isoform, 

Na�1.5 (Malhotra et al., 2001). Na�1.5 currents are resistant to nM concentrations of 
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tetrodotoxin (TTX), unlike neuronal isoforms (Na�1.1, Na,, 1.2, Na, 1.3 and Na�1.6), and 

require pM concentrations for effective inhibition (Brown et al., 1981). In rat and 

mouse ventricular myocytes, Na, 1.5 is expressed at the intercalated disc, whereas 
Na�1.1, Na, 1.3 and Na"1.6 are expressed in the T-tubules (Maier et al., 2001). The 

function of neuronal Na+ channels in the mammalian working myocardium is 

controversial: Maier et al. (2002) reported that nM concentrations of TTX caused a 

decrease in mouse left ventricular function, whereas Brette and Orchard (2006) detected 

no significant role for these channels in excitation-contraction coupling in isolated rat 

ventricular myocytes. 

The role of Na' channels in pacemaker function is not clear. A TTX-sensitive current 

was detected in newborn rabbit SAN by Baruscotti et al. (1997). Half-maximal 

inhibition was achieved with a TTX concentration of 26 nM - this is characteristic of 

neuronal Na+ channel isoforms, and it was thought this current was carried by Na�1.1 

channels. In situ hybridisation revealed expression of Na, 1.1 mRNA in newborn rabbit, 

although not in adult rabbit sinoatrial node (Baruscotti et al., 1997). Maier et al. (2003) 

showed that Na�1.1 and Na,, 1.3 are expressed in the adult mouse SAN and Na, 1.1 is 

expressed in the adult rat SAN. In addition, Na�1.5 is not expressed in the adult mouse 

SAN. 100 nM TTX slowed the spontaneous activity of the adult mouse SAN (Maier et 

al., 2003). Interestingly, no effect of nM concentrations of TTX was seen on the P-R 

interval in adult mice suggesting a negligible role for neuronal Na+ channels in AVN 

conduction (Maier et al., 2003). 

The voltage-dependence of steady-state inactivation of Na, 1.5 is more negative than 

that of skeletal and neuronal isoforms (Makielski et al., 1996). Qu et al. (1995) using the 

rHl Na+ channel isoform investigated the effects of the ß-1 subunit on cardiac Na' 

current, and found no alteration in the kinetics of the current, but up to six-fold increase 

in current expression. 

Genetic mutations to SCN5A, the gene that encodes the Na, 1.5 channel, cause varying 

degrees of inactivity of the channel that manifest as different cardiac phenotypes. Long 

QT syndrome patients can have mutations in SCN5A that lead to impairments in 

inactivation of the channel (Wang et al., 1995). Schott et al. (1999) identified a mutation 

in SCN5A which was the underlying cause of Brugada syndrome. The patients showed 

a significant slowing of the heart rate (Schott et al., 1999). Papadatos et al. (2002) 
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generated a heterozygous SCN5A knockout mouse, SCN5A+i which displayed an 

extreme prolongation of the P-R interval, and some cases of type II AVN block. 

Additional insights into the role of Na, 1.5 channels in AVN function have been gained 
from the identification of various mutations in the SCN5A gene that lead to varying 
degrees of AVN block and location of block (Brink et al., 1995; Schott et al., 1999; Tan 

et al., 2001; Wang et al., 2002; Viswanathan et al., 2003). Wang et al. (2002) describe 

two mutations in SCN5A that result in a decrease in the upstroke velocity in a 

simulation of the cardiac action potential. This would lead to a decrease in the 

conduction velocity during AVN conduction, possibly explaining the second degree AV 

block seen in patients with these mutations (Wang et al., 2002). 

Kokubun et al. (1982) using microelectrode recordings from multicellular AVN 

preparations found 10 µM TTX to exert little effect on AVN upstroke velocity, which 

suggests that the Na+ current does not play a major role in the AVN action potential. 

Hancox et al. (1993) also showed that the upstroke velocity of the AVN action 

potentials is slow suggesting a negligible role for the Na+ current in the upstroke of the 

AVN action potential. Munk et al. (1996) reported that in isolated AVN cells, ovoid 

cells (possibly N-type cells) do not express Na+ current, where rod cells (possibly AN- 

type or NH-type cells) do express Na+ current. The aim of this chapter is to examine the 

expression of Na+ channels in the rabbit AVN. 

5.2 Methods 

Real time PCR was performed using cDNA generated from total RNA isolated from 

five tissue types at the AV junction: atrial muscle, PNE, compact node, common bundle 

and ventricular muscle. A Na,, 1.1 fragment was cross-species cloned using degenerate 

primers on rabbit cortex cDNA and a Na�1.5 fragment was cross-species cloned using 

degenerate primers on rabbit whole heart cDNA. These fragments were sequenced and 

LightCycler primers were designed and optimised to amplify a fragment - 120-150 bp. 

Riboprobes were transcribed from pGEM T-easy vectors containing the specific Na�1.1 

and Na, 1.5 PCR fragments obtained using degenerate primers. In situ hybridisation was 

carried out using these riboprobes. 

5.3 Results 
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5.3.1 Real time PCR 

Na�1.1 mRNA was significantly more abundant in the PNE, compact node and common 
bundle compared to the ventricular muscle (p < 0.05; Fig. 5.1A). There was also a 
tendency for Na, l. l mRNA to be more abundant in the nodal tissues compared to the 

atrial muscle (Fig. 5. IA). Na�1.5 mRNA, in contrast, was more abundant in the atrial 

muscle compared with the PNE (p <0.05; Fig. 5.1B). 

5.3.2 In situ hybridisation 

In situ hybridisation for Na, 1.5 mRNA revealed an abundance of perinuclear staining in 

atrial muscle (Fig. 5.2A), compact node (Figs. 5.2C and 5.5) common bundle (Figs. 

5.2D and 5.6) and ventricular muscle (Fig. 5.2F). At certain levels of the compact node 

and PNE some atrial muscle immediately anterior to the nodal tissue was devoid of 

Na, 1.5 perinuclear staining. The staining pattern in the compact node revealed an 

abundance of Na, 1.5 mRNA in the majority of this structure with a small group of cells 

(lower nodal cells) being largely devoid of Na, 1.5 perinuclear staining (Figs. 5.2D and 

5.5). Na, 1.5 perinuclear staining in the PNE was largely absent (Figs. 5.3 and 5.4). 

However, in the proximal PNE (immediately adjacent to the CN), the cells lying 

endocardial most, were positive for Na, 1.5 mRNA, whereas those lying immediately 

adjacent to the ventricular crest were largely absent of Na, 1.5 perinuclear staining (Fig. 

5.2E). 

A riboprobe for Na, l. I mRNA was tested but failed to detect any mRNA in the AVN 

tissue sections. This Na, l. I riboprobe was tested on rabbit brain tissue sections and 

which produced strong perinuclear labelling in different brain regions. This 

demonstrates that the Na, l. I riboprobe is functional and thus the absence of Na, l. I 

staining at the AV junction is likely to be the result of a low abundance of Na, l. I 

mRNA. 

5.4 Discussion 

I have shown that mRNA for the cardiac Na+ channel isoform, Na, 1.5, as well as the 

mRNA of the neuronal Na+ channel isoform, Na,, 1.1, is expressed at the rabbit AV 

junction. 
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Figure 5.3 In situ hybridisation image for Na, 1.5 mRNA at the level of the PNE. Boxes indicate 

regions where the high power images in Fig. 5.2A, B, E and F were taken. Red dashed line 

outlines cells comprising PNE. Grey dashed line shows border of Na,. l. 5 positive region (above 
the line). 
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Figure 5.5 In situ hybridisation image for Na, 1.5 mRNA at the level of the compact node. Box 
indicates region where the high power image in Fig. 5.2D was taken. Red dashed line outlines 
cells comprising compact node. 
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The high abundance of Na,, 1.5 mRNA in the AM and VM is consistent with previous 
findings showing that Na�1.5 is the major isoform responsible for the Na+channel in the 

working myocardium (Rogart et al., 1989; Gellens et al., 1992; Petrecca et al., 1997; 

Malhotra et al., 2001). The presence of Na, 1.5 in the atrial and ventricular muscle is 

compatible with the more negative resting membrane potential (-. -80 mV) in these 

tissues, because the Na, 1.5 channels will be available for activation. In nodal tissues 

with a more positive membrane potential (- -50 mV) Na, 1.5 channels will be largely 

inactivated. 

The common bundle showed similar levels of Na, 1.5 mRNA as the atrial muscle, 

compatible with its fast conduction. These data suggest that the AVN delay occurs 

prior to the common bundle, because upon reaching the common bundle the action 

potential will be rapidly conducted towards the bundle branches and Purkinje fibres to 

eventually excite the ventricles. 

Petrecca et al. (1997) using immunofluorescence labelling of Na' channels showed the 

rabbit compact node to express Na+ channels. However, Petrecca et al. (1997) reported 

that the circumferential transitional cells showed labelling, whereas the `mid-nodal' 

cells were largely devoid of labelling. Furthermore, using semi-quantitative 

immunofluorescent analysis, Petrecca et al. (1997) found similar levels of Na+ channel 

expression in the circumferential transitional cells and lower nodal cells compared to 

ventricular muscle. The presence of Na' channels in the circumferential transitional 

cells is consistent with my observation of abundant Na, 1.5 mRNA in this region. 

However, I also show an abundance of Na�1.5 mRNA in the cells described by Petrecca 

et al. (1997) as the mid-nodal cells. If the mid-nodal cells are largely devoid of Na' 

channels then it is likely that a post-transcriptional mechanism regulates the surface 

expression of Na+ channels at the membrane in the mid-nodal cell region. The presence 

of Na+ channel protein in the lower nodal cells (Petrecca et al., 1997) is in contrast to 

my finding of a lack of Na�1.5 mRNA in this area. However, it must be stressed that in 

the study of Petrecca et al. (1997), the antibody used was targeted to an epitope in a 

highly conserved region of Na+ channels and, therefore, the antibody will not 

discriminate between different Na+ channel isoforms. It is, therefore, a possibility that 

the immunofluorescent labelling observed by Petrecca et al. (1997) in the lower nodal 

cells represents labelling of Na+ channel isoform other than Na,, 1.5, such as Na, l. 1 (I 
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show that Na�1.1 mRNA to be higher in the compact node tissue compared to 

ventricular muscle and atrial muscle using real time PCR). Alternatively, the 

discrepancies between my findings and those of Petrecca et al. (1997) are possibly due 

to an alternative interpretation of the anatomy. For instance, they subclassify the area of 

the AVN I describe as the compact node into circumferential transitional cells, mid- 

nodal cells and lower nodal cells based on the histological definition first used by 

Anderson (1972). However, the group of cells they refer to as lower nodal cells appears 

in a section at the level of the compact node as an oval-shaped group of cells with 

abundant immunolabeling of Na' channels. However, this structure appears to be the 

whole compact node and not the small collection of cells in the lower region of the 

compact node; the abundance of fluorescent labelling throughout this structure (the 

compact node) contradicts their conclusions regarding an absence of Na' channel 

immunolabeling in the mid-nodal cells. Secondly, the cells they refer to as lower nodal 

cells appear to be located towards the middle of the oval-shaped group of cells rather 

than towards the tail of the compact node. 

The lack of perinuclear staining for Na,, 1.1 mRNA using in situ hybridisation suggests 

that, although real time PCR detected significantly more Na�1.1 mRNA in the PNE, 

compact node and common bundle, than in the atrial and ventricular muscle, that 

mRNA levels are relatively low and, therefore, the role of the Na, 1.1 channel in AVN 

function is likely to be negligible. This agrees with previous work in mice in which nM 

concentrations of TTX had little effect on the P-R interval (Maier et al., 2003). The 

significantly higher amount of Na, 1.1 mRNA detected in the nodal regions (PNE, 

compact node and common bundle) is consistent with previous findings from mouse 

AVN, in which there was a significantly higher level of Na, 1.1 mRNA as compared to 

the SAN, AM and VM (Marionneau et al., 2005). In the study of Marionneau et al. 

(2005) the abundance of Na,, 1.1 mRNA was than that of Na, 1.5 mRNA. In the study of 

Marionneau et al. (2005) there was a high level of Na�1.5 mRNA in the AVN sample; 

this can be accounted for by the large contamination of the AVN sample with atrial 

myocytes (43 %). In the present study there was little or no contamination of the AVN 

samples because of the sampling technique used. In addition, Marionneau et al. (2005) 

also found significantly higher levels of mRNA for Na, 1.7, and the Na' channel ßt and 

ß3 subunits. P1 and ß2 subunits are known to speed up the normally slow inactivation of 

neuronal Na' channels (Tamkun et al., 1984; Hartshorne et al., 1985; Isom et al., 1992; 

Morgan et al., 2000). Studies involving familial mutations in the gene encoding the 
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Na�1.1 channel, SCNIA, have focused on the profound CNS abnormalities that exist, 

such as epilepsy and febrile seizures (Escayg et al., 2000; Alekov et al., 2000). In these 

studies no mention is made of any cardiac abnormalities in these subjects. In the light of 

my findings, it would be interesting, however, to produce transgenic mice with similar 
loss of function mutations in SCN1A or complete gene knock-out to gain a better 

understanding of Na, 1.1 function in the AVN. 

Dobrzynski et at., (2002) showed the leading pacemaker site in the AVN to be the PNE. 

The properties of this region can be compared to those of the leading pacemaker region 
in the SAN (SAN centre): in the SAN centre, there is little Na,, 1.5 mRNA (or protein) 

(Tellez, 2005; Maier et al., 2004) as in the PNE. In the SAN centre, there is a greater 

abundance of Na,, l. I mRNA (Tellez et al., 2005) as in the PNE. 

Familial mutations in the SCN5A channels and mice heterozygous, Na�1.5+1 for Na, 1.5 

channels display profound AVN conduction disturbances. Why do mutations in the 

Na, 1.5 channel alter AVN conduction? Na+ channels are responsible for the upstroke of 

the action potential and therefore determine upstroke velocity. In turn, upstroke velocity 

is a major contributor to conduction velocity. Our anatomical findings (see chapter 3) 

suggest that the PNE most likely represents the slow pathway since optical mapping of 

AVN preparations showing conduction along the slow pathway correlate with the 

anatomical boundaries for the PNE. Billette (1987) showed this area of the rabbit AVN 

to contain mainly NH cells which have an upstroke velocity of - 17 V/s, suggesting a 

lack of a Na+ current. The findings of Billette (1987) agree with my findings at the PNE 

which I have shown to be largely absent of Na, 1.5 mRNA. Collectively, these findings 

indicate that an action potential would travel slowly along the slow pathway and that 

mutations in Na, 1.5 would be unlikely to effect conduction along the slow pathway. 

The entry point of the fast pathway into the AVN is from an anterior direction which 

most likely corresponds to loosely packed atrial muscle based upon our anatomical 

findings (chapter 3). Using in situ hybridisation I have shown an area of loosely packed 

atrial muscle to be largely absent of Na, 1.5 mRNA. Billette (1987) showed an area of 

transitional cells to contain mainly AN cells which have an upstroke velocity of - 40 

V/s which, again, suggests a lack of a Na+ current. These data indicate that mutations in 

Na, 1.5 would be unlikely to effect conduction through the loosely packed atrial muscle. 

The fast pathway most likely travels via densely packed atrial muscle. Atrial muscle has 

an action potential upstroke velocity of > 100 V/s and therefore is likely to contain 
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Na, 1.5 channels. I have shown densely packed atrial muscle to contain an abundance of 

Na, 1.5 mRNA. These data suggest that conduction through densely packed atrial 

muscle could be slowed due to a decrease in the upstroke velocity of atrial action 

potentials due to mutations in Na, 1.5 channels. I have shown the compact node and 

common bundle to contain an abundance of Na, 1.5 mRNA. Billette (1987) showed that 

the majority of cells comprising these areas were N and NH cells with upstroke 

velocities of - 18 V/s, which suggests an absence of Na+ channels. The relatively low 

maximum diastolic potential of the N and NH cells (- -60 mV; Billette, 1987) would 

inactivate Na, 1.5 channels. These data suggest that, although, I have shown Na, 1.5 

mRNA to be abundant in the compact node and common bundle, Na, 1.5 channels are 

unlikely to play a significant role in conduction through these structures. Collectively, 

these data suggest that mutations in Na, 1.5 channels would impair action potential 

propagation at a point prior to its entry into the AVN. 

There is the possibility that another Na' channel isoform such as, Na�1.1, which I have 

shown the mRNA encoding this channel to be abundantly expressed in the PNE, 

compact node and common bundle, provides significant inward Na' current in these 

regions. Marionneau and colleagues (2005) showed in mouse AVN there to higher 

expression of Na,, 1.7 mRNA compared to SAN, atrial muscle and ventricular muscle; in 

addition, they showed greater abundance of the Na' channel ß-subunits, Na, -ß, and -ß3, 

which are known to speed up Na' channel current kinetics (Isom et al., 1992; Morgan et 

al., 2000). The combination of Na�1.1 or Na, 1.7 with either of the ß-subunits may be 

sufficient to provide an inward current for the upstroke of the action potential in the 

absence of Na, 1.5 channels. However, based on findings in the SAN, whereby µM 

concentrations of TTX have little effects on SAN spontaneous activity, it is likely that 

Na' channel contribution to AVN function is negligible. 
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Chapter 6 

Ca 2+ current 

6.1 Introduction 

Reuter (1967) was the first to detect an inward Ca2+ current (Ica) in sheep Purkinje 

fibres after the removal of extracellular Na+ (Reuter, 1967). This current became known 

as the "slow" or "secondary inward" current ('Si) as opposed to the original fast 

activating and inactivating inward Na+ current (Noble, 1984). Brown et al. (1979) found 

this current to be activated in the diastolic depolarisation range of pacemaker cells and 

to be significantly enhanced by adrenaline. Hagiwara et al. (1988) using rabbit SAN 

pacemaker cells dissected the Ca2+ current into two major components: the "transient", 

T-type, and the "long-lasting", L-type, Ca2+ currents based on their fast and slow 
inactivation, respectively. The T-type Ca2+ channels activate at - -50 mV, as opposed to 

-40 mV for the L-type Ca2+ channels and have a smaller single channel conductance 

(T-type, 8 pS, L-type, 16 pS). The more negative voltage-dependence of T-type Ca2+ 

channels suggests a greater role for these channels during the diastolic depolarisation 

phase of pacemaker cells. Indeed, 40 µM Ni2+ (blocks T-type Ca2+ channels) leads to a 

reduction in the spontaneous activity of pacemaker tissue (Hagiwara et al., 1988). Huser 

et al. (2000) using cat pacemaker cells showed that T-type Ca2+ channels contribute to 

pacemaking by inducing subsarcolemmal Ca2+ release from SR stores, which in turn 

generates a net inward current via Na+-Ca2+ exchange (INCX); inward INCX contributes to 

diastolic depolarisation. Three different a subunits for T-type Ca2+ channels exist: 

Ca, 3.1, Ca� 3.2 and Ca� 3.3. Of these channels, it appears Ca, 3.1 is the most abundant 

isoform, at least in the murine SAN (Bohn et al., 2000). 

In mammals the a-subunit of the voltage-dependent L-type channel is encoded by four 

genes (Ertel et al., 2000): Ca� 1.1 (a 1 S), Cap 1.2 (a l C), Cap 1.3 (a 1 D) and Ca,, 1.4 (a l F). 

L-type Ca2+ channels show very little inactivation in extracellular Ba 2+ (Nowycky et al., 
1985). However, in the presence of extracellular Cat+, L-type Ca 2+ channels show Cat+- 

dependent inactivation (Soldatov et al., 1997). These channels are the target for 

downstream signalling complexes as a result of ß-adrenoceptor stimulation. Activation 

of adenylate cyclase leads to rises in camp, which in turn stimulates protein kinase A- 
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mediated phosphorylation of L-type Ca 2+ channels causing an enhancement of ICa, L 
(Kemp and Hell, 2000; Qu et al. ). Ca,, 1.2 and Ca�1.3 unlike the other members of the 

voltage-dependent Ca 2+ channels show no G-protein mediated modulation (Bell et al., 
2001). L-type Ca2+ current carried by the Ca�1.3 a-subunit activates at voltages 

approximately 30 mV more hyperpolarized than that carried by Ca�1.2. Additionally, 

Ca�1.3-mediated currents show sensitivity to dihydropyridines in the µM range 

compared to nM concentrations for currents carried by Ca,, 1.2 channels (Bell et al., 
2001; Xu and Lipscombe, 2001; Mangoni et al., 2003). The relative negative voltage- 
dependence of activation of Ca�1.3 channels suggests that they may contribute to 
inward current during the diastolic depolarisation phase in pacemaker cells. Zipes and 
Mendez (1973) first studied the role of ICa, L in the AVN using Mn 2+ as a blocker of Ica,, 

they showed this current to be important for the action potential upstroke in AVN cells. 
Noma (1980) was first to make ICa recordings in AVN tissue. However, these findings 

have to be treated with caution since voltage-clamping multicellular preparations is 

difficult and can be inaccurate. Hancox and Levi (1994) using single AVN myocytes 

showed ICa to be greatly reduced by nifedipine. Steady-state activation and inactivation 

curves showed half-maximal activation at -3.6 mV and half-maximal inactivation at - 
25.8 mV; both, the time course of decay from a depolarising pulse and recovery from 

inactivation were biexponential (Hancox and Levi, 1994). Zipes and Fischer (1974) 

injected Ca2+ channel blockers into the AVN artery of dogs and saw a development of 

AVN block, suggestive of a major role for this current in AVN conduction. 

In mouse SAN cells, Ica, L is activated at -50 mV and peaks around -10 mV (Mangoni et 

al., 2003). Even though the sensitivities of Ca, 1.2 and Ca, 1.3 to the L-type Ca 2+ channel 

blockers, 1,4-dihydropyridines (DHPs), is - 1000-fold different, L-type Ca2+ channel 

agonists such as BayK8644 fail to distinguish between the two isoforms. The lack of 

isoform specific agonists and antagonists, together with the advent of transgenic mice, 

has made the genetic alteration of genes encoding Ca,, 1.2 and Ca, 1.3 channels the 

preferred approach to studying L-type Ca2+ channel function in the mouse heart, in 

particular, in the SAN and AVN. Seisenberger et al. (2000) generated heterozygous 

(+/-) and homozygous mice (-/-) for Ca�1.2 and found there to be no difference in the 

frequency of cardiac contraction; other Caj channels were ruled out and it was 

suggested that a novel isoform of Ca,, 1 channel may exist in the mouse heart. 

Platzer et al. (2000) were the first to directly show a major functional role for Ca, 1.3- 

mediated L-type Ca2+ current in cardiac pacemaker tissue by generating a Ca,, 1.3 knock- 
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out mouse. This displayed sinus bradycardia and a prolonged P-R interval (Platzer et al., 
2000). Furthermore, Mangoni et al. (2003) using the same line of Ca�1.3 null mice 
isolated single cells from the mouse SAN and found a slowing of pacemaker function 

and a tendency for irregular activity. Interestingly, a depolarising shift in the voltage- 
dependence of ICa, L in Ca,, 1.3"" mice compared to wild-type Ca, 1.3+i+ mice was recorded 

suggesting residual ICa, L, possibly carried by Ca, 1.2 channels. In addition, they provided 

evidence for the expression of Caj. 3 mRNA in the human AVN (Mangoni et al., 
2003). In a similar study, again using transgenic mice with targeted disruption of the 

Ca�1.3 gene, a slowing of the spontaneous firing rate, in particular the diastolic 

depolarisation phase in intact SA node preparations, was shown (Zhang et al. 2002). 

Moreover, Zhang et al. (2002) detected the presence of second-degree AV Block using 
ECG recordings in the Ca�1.3"" mice(Zhang et al., 2002). More recent evidence for the 

important role of Ca�1.3 channels in AVN function comes from Matthes et al. (2004) 

again using homozygous Ca�1.34 mice. Mathes et al. (2004) who found that the AVN 

conduction time (P-R interval) was significantly prolonged and could not be overcome 

with isoprenaline (unlike the SAN) (Matthes et al., 2004). The aim of this chapter is to 

examine the expression of L-type Ca2+ channels in the rabbit AVN. 

6.2 Methods 

6.2.1 Real time PCR 

Real time PCR for Caj. 2, Ca�1.3 and Ca,, 3.1 was performed using cDNA generated 

from total RNA isolated from five rabbit AVN tissue types: atrial muscle, PNE, 

compact node, common bundle and ventricular muscle. (n =8 rabbits). As described in 

chapter 2. Real time PCR was carried out using a Roche LightCycler 1.0. Primers were 

designed against Caj. 2 and Ca,, 1.3 fragments which had been cross-species cloned 

from rabbit brain or whole heart cDNA by Dr. James Tellez. 

6.2.2 In situ hybridisation 

Riboprobes for Ca, 1.2 and Ca, 1.3 were generated by James Tellez using methods 

similar to those described in section 2 (Riboprobe Synthesis; Tellez et al., 2005). 

In situ hybridisation was carried out using a modified version of the Braissant protocol, 
described in chapter 2 (n=2). No riboprobe was synthesised for Ca, 3.1. 
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6.3 Results: 

6.3.1 Real time PCR 

Real time PCR data for Caj. 2 mRNA showed no significant differences between 

different tissue regions (Fig. 6. IA). In contrast, real time PCR for Caj. 3 mRNA 

showed significantly (P < 0.05) higher amounts in the PNE, compact node and common 
bundle compared to ventricular muscle (Fig. 6.1B). In addition, atrial muscle showed a 
tendency for higher expression of Ca,, 1.3 mRNA compared to ventricular muscle (Fig. 

6.1 B). Ca� 3.1 transcripts failed to be detected. 

6.3.2 In situ hybridisation 

In situ hybridisation revealed an abundance of Caj. 3 perinuclear staining in the PNE 

(Figs. 6.6C and 6.7), compact node (Figs. 6.6B and 6.8) and common bundle (Figs. 

6.6A and 6.9). In contrast, the atria and ventricles were largely absent of Caj. 3 

staining. The AM and VM showed an abundance of perinuclear staining for Caj. 2 

mRNA (Figs. 6.2-6.5), whereas the PNE (Figs. 6.2E and 6.3), CN (Figs. 6.2C and 6.4) 

and CB (Figs. 6.2B and 6.5) were devoid of Caj. 2 mRNA. Interestingly, the small 

group of lower nodal cells at the level of the PNE and CN (Fig. 6.2D) showed abundant 

Caj. 2 perinuclear staining. 

6.4 Discussion 

My findings show that the predominant L-type Ca2+ channel isoform in the AVN is 

Ca, 1.3. These findings are consistent with a major role for this ion channel in the 

pacemaker action potential upstroke and for normal AVN conduction (Platzer et al., 

2000; Zhang et at., 2002; Mangoni et al., 2003; Matthes et at., 2004; Zhang et al., 2005). 

I have shown the PNE and CN to be highly abundant for Ca�1.3 mRNA which supports 

evidence from Ca, 1.3"' mice which display a prolonged PR interval (Matthes et at., 

2004). The detection of abundant Ca, 1.3 mRNA in the AVN tissues agrees with 

findings from human and mouse AVN tissue (Mangoni et at., 2003; Marionneau et al., 

2005). This suggests that the Ca, 1.3 channel may be important in the rabbit, mouse and 

human AVN. In addition, separate studies using Ca,, 1.3"' mice show a slowing of 
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Figure 6.1 Real-time PCR results for Ca 2+ channel mRNAs. The relative abundance of Caj. 2 
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Figure 6.3 In situ hybridisation image of Ca, 1.2 mRNA at the level of the PNE. Boxes show 
regions from which high power images were taken for Fig. 6.2. Red dashed lines outline cells 
comprising the PNE. Black dashed line outlines tissue border of section. 
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spontaneous firing rate in SAN preparations suggestive of a major role for this channel 
in generating pacemaker activity. Therefore, it is highly likely that Ca�1.3 channels are 
crucial for pacemaking in the AVN. The PNE has been shown to be the leading 

pacemaker site (Dobrzynski et al., 2003) and I have shown this region to be abundant 
for Ca, 1.3 mRNA. 

Real time PCR measurements of Caj. 2 mRNA show no significant differences 

between tissue samples. This suggests of an important role for Caj. 2 in AVN function. 

These data are in agreement with the in situ hybridisation findings for atrial muscle, 

common bundle and ventricular muscle in which there is abundant Caj. 2 perinuclear 

staining for Ca�1.2 mRNA (Figs. 6.2-6.5). However, they contradict the in situ 
hybridisation findings for the compact node and PNE. The most likely explanation for 

the conflicting findings for Caj. 2 mRNA in the PNE and compact node by real time 

PCR and in situ hybridisation is contamination from lower nodal cells in the case of real 

time PCR. I have shown using in situ hybridisation that the lower nodal cells are 

abundant in Caj. 2 mRNA. Unfortunately, during the microdissection sampling 

procedure, the lower nodal cells could not be removed from the tissue sample for the 

PNE and compact node due to the small size of the tissues. However, the positive real 

time PCR results for Caj. 2 mRNA in the compact node and PNE agree with a similar 

study on mouse AVN in which no significant difference in Caj. 2 mRNA was detected 

between atrial muscle, ventricular muscle, SAN and AVN (Marionneau et al., 2005). 

One limitation of the study of Marionneau et al. (2005), however, was a significant 

contamination of the AVN sample with AM cells (43 %), which could account for the 

larger expression of Ca,, 1.2 mRNA in the nodal samples. 

I have shown a tract of lower nodal cells at the level of the PNE and compact node to 

contain the same complement of L-type Ca2+ channel isoforms as the atrial muscle and 

ventricular muscle: Ca, 1.2 is the major isoform, but Ca,, 1.3 is also present (Figs. 6.2- 

6.4; 6.6-6.8). This emphasises the need to combine real time PCR with in situ 

hybridisation to localise mRNA transcripts to specific cellular subgroups which fail to 

be distinguished from other structures with conventional sampling procedures for real 

time PCR especially in complex tissue structures such as the AVN. 

I have shown the atrial muscle and ventricular muscle to predominantly express the 

Ca�1.2 channel isoform. This is consistent with a wealth of functional and expression 
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data using atrial muscle and ventricular muscle tissues from a variety of species 
(Mangoni et al., 2005; Marrioneau et al., 2005). 

Detection of Caj. 3 mRNA in the rabbit atria, albeit at a somewhat lower level than in 

nodal tissues (Fig. 6.1B), is in agreement with real time PCR data from rat, mouse, and 
human atria (Takimoto et al., 1997; Mangoni et al., 2003; Qu et al., 2005; Zhang et al., 
2005). However, our in situ hybridisation data do not reveal an expression of Caj. 3 

mRNA in the atria (Figs. 6.6-6.9), which contradicts the findings from mouse atrial 

tissue of Zhang et al. (2005) who used a similar in situ hybridisation protocol. Possible 

explanations for this difference is a species difference and also the region of atrial tissue 

sampling: I sampled atrial tissue immediately superior to the AVN whereas Zhang et al. 
(2005) may have sampled atrial tissue from the free-wall. It is possible that the atrial 

tissue that I sampled (in close proximity to the AVN) was composed of AN cells 
(Billette et al., 1987) with features intermediate between those of the compact node and 

atrial muscle. 

The predominance of Ca�1.2 mRNA in the common bundle is consistent with fast 

conduction properties in this region (Na� 1.5 mRNA is abundant here). 

The overall importance of the L-type Ca2+ current in AVN function was shown by an 

investigation into congenital heart block: a mother with autoimmune disease produced 

antibodies that ultimately impaired the L-type Ca2+ current, including that mediated by 

Ca, 1.3 (Qu et al., 2003) in the newborn; the result was varying degrees of AV Block 

(Boutjdir, 2000). 

With respect to the T-type Ca2+ channels, I was unable to detect Ca,, 3.1 mRNA. This 

suggests a negligible role (if any) for Ca,, 3.1 channels in rabbit AVN function. 

However, the mouse AVN was shown to express significantly higher amounts of Ca, 3.1 

mRNA than the SAN, atrial muscle and ventricular muscle (Marionneau et al., 2005). 

Therefore, Ca,, 3.1 currents could function during the diastolic depolarisation phase in 

the mouse AVN. The difference between this study and the study of Marionneau et al. 

(2005) could be a species difference in the expression of T-type Ca2+ channels in AVN 

function. 



88 

Chapter 7 

Voltage-gated K+ channels 

7.1 Transient outward current 

7.1.2 Introduction 

The transient outward current is one of the major repolarizing currents of the heart. This 

current has two components: a Cat+-independent, 4-aminopyridine-sensitive component 

and a Cat+-dependent, 4-aminopyridine-insensitive component (Ito, 2) (Kenyon and 

Gibbons, 1979; Coraboeuf and Carmeliet, 1982). Ito, l is carried by K+ ions, whereas Ico, 2 
is carried by Cl" ions. 

Two components of Ito,, have been described: a fast component, Ito, f and a slow 

component, Ito,,, based on their recovery from inactivation. Both currents activate and 

inactivate rapidly. However, Ito, f recovers from inactivation quickly, whereas Ito,, shows 

slow recovery from inactivation (Xu et al., 1991). 

Whereas, certain features of Ito are common to all species and cell-types, (e. g. activation 

kinetics) there are marked differences in some biophysical characteristics of Ito between 

species and cell types. For instance, the recovery from inactivation is rapid in rat 

(Apkon and Nerbonne, 1991) and human (Wettwer et at., 1993) ventricular myocytes, 

but slow in rabbit myocytes (Giles and Imaizumi, 1988). Furthermore, ventricular tissue 

shows profound regional differences in Ito density (Barry and Nerbonne, 1996). The 

species/regional differences in density and the biophysical nature of Ito are best 

explained by species/regional variations in expression of specific a- and ß-channel 

isoforms. 

The transient outward current is responsible for phase I or the spike-and-dome 

morphology of the atrial and ventricular action potentials. The SAN and AVN have also 

been shown to have It,, (Lei et al., 2000; Mitcheson and Hancox, 1999). 
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The molecular correlates of Ito have been extensively studied. The voltage-gated K+ 

channel, K,, 1.4 is related to the Shaker family of ion channels and was the first 

inactivating channel suggested to underlie Ito (Tseng-Crank et al., 1990; Comer et al., 
1994). However, the kinetics of this current (the slow recovery from inactivation) fails 

to match those of Ito (Fermini et al., 1992). 

Voltage-gated K+ channels related to the Shal family mediate rapidly inactivating 

outward fast-recovering currents (K, 4) that can more closely resemble It,, (Fiset et al., 

1997; Faivre et al., 1999). 

K�4.2 and K�4.3 a-subunits have been shown to functionally exist as heteromers in 

HEK-293 cells, with gating properties that more closely resemble those of native mouse 

ventricular Ito, f (Guo et al., 2002). tsa-201 cells expressing both Kß, 4.2 and K�4.3 

isoforms reproduce the fast recovering component measured in the right free wall of the 

rat ventricle (Wickenden et al., 1999). Additionally, K�4.2 mRNA and protein 

expression correlated with Ito density in the right ventricular free-wall, whereas K�4.3 

was expressed uniformly. When KJ. 4 was expressed in tsa-201 cells, currents had 

recovery kinetics similar to the slow recovering component measured in the rat 

ventricular free-wall. KJ. 4 mRNA and protein also correlated with the density of the 

slow recovering component of Ito in the right ventricular free-wall and interventricular 

septum (Wickenden et al., 1999). 

In intact rabbit SAN preparations, the Ito blocker, 4-aminopyridine (4-AP), exerts a 

number of effects: a shift in the leading pacemaker site and the abolition of the action 

potential notch in the periphery of the SAN (Boyett et al., 1998). The effects of 4-AP 

are greater on the periphery of the SAN than on the centre (Boyett et al., 1998). These 

data suggest a non-uniform distribution of It. in the SAN (Boyett et al., 1998). Boyett et 

al. (1988) using single cells isolated from the rabbit SAN, measured recovery of Ito from 

inactivation and showed recovery occurred over a double-exponential time-course with 

time constants of 43 and 1434 ms. These kinetics resemble those of K�4.2/K, 4.3 and 

KJ. 4 a-subunits, respectively. Similar effects of 4-AP were seen in single AVN cells; 5 

mM 4-AP abolished spontaneous pacemaker activity in some cells (Mitcheson and 
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Hancox, 1999). Mitcheson and Hancox (1999) suggested that Ito in the AVN could 

contribute to action potential repolarization. 

K, channel interacting proteins (KChIP) proteins were first described in neurones in 

which they have various functions. They act as Ca2+ sensors that bind to the N-terminus 

of K, 4 channels; they modulate surface expression of the channel; they hasten the onset 

of inactivation and increase the rate of recovery from inactivation (An et al., 2000; 

Decher et al., 2001). In humans and dogs (Litovsky and Antzelevitch, 1988) there is a 

transmural gradient of KChIP2 that correlates with a transmural gradient in Ito, whereas 

in rodents there is a transmural gradient in K�4 that correlates with the transmural 

gradient in I, o (Rosati et at., 2001). Seven different splice variants of KChIP2 have now 

been cloned and shown to exhibit differing modulatory properties (Deschens et at., 

2002; Patel et at., 2002; Decher et at., 2004). 

In addition, a group of voltage-gated K+ channel ß-subunits (K43) can exert modulatory 

effects on K+ channels (Pongs et al., 1999). Three genes encoding Kv(3 subunits (Kvß1, 

Kvß2, Kvß3) exist, which also give rise to splice variants (Leicher et al., 1998). 

Marionneau et al. (2005) using mouse AVN mRNA showed higher expression of the 

K,, ß1 subunit compared to SAN. Moreover, Marionneau et al. (2005) also showed 

higher expression in mouse AVN of the neuronal a-subunit isoforms, K,, 1.1 and K�1.6; 

these isoforms are known to have slow inactivation kinetics (Klump et at., 1991), but in 

the presence of K, P1 become rapidly inactivating (Jing et al., 1999). 

The K+ channel chaperone protein, KChAP, also exists, but fails to modulate current 

kinetics. It may alter cell surface expression of Ky, -channel a-subunits (Wible et al., 

1998). 

The aim of this investigation was to determine the relative expression of a- and ß- 

subunits responsible for Ito throughout the tissues of the AVN conduction system and 

relate this to previous AVN electrophysiological findings. 

7.1.3 Methods 

7.1.3.1 Real time PCR 
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Real time PCR was performed on Kv1.5, Kv4.2, Kv4.3 and KChIP2 cDNAs generated 
from total RNA isolated from five rabbit AVN tissue types: atrial muscle, PNE, 
compact node, common bundle and ventricular muscle (n =8 rabbits). Real time PCR 
was carried out using a Roche LightCycler 1.0. 

7.1.3.2 In situ hybridisation 

The riboprobe for KChIP2 was generated by Dr. Gillian Graham using a PCR fragment 

cloned from rabbit whole heart cDNA. The KChIP2 PCR product used for riboprobe 
synthesis was in a conserved region for KChIP2 mRNA sequences. 

7.1.4 Results 

7.1.4.1 Real time PCR 

The relative expression of mRNA transcripts encoding a- (K�1.4, K�4.2 and K�4.3) and 
P- (KChIP2) subunits of I� in the heart were investigated. K�1.4 expression was 

significantly higher in the atrial and ventricular muscle (P <0.05) compared to the PNE 

(Fig. 7.1A). In contrast, K�4.2 (Fig. 7.1C) and K�4.3 (Fig. 7.1B) expression levels were 
found not to be significantly different between tissues. The K�4. x ß-subunit, KChIP2, 

was found to be significantly lower in the compact node compared to the atrial and 

ventricular muscle (P<0.05; Fig. 7.1D). 

7.1.4.2 In situ hybridisation 

In situ hybridisation for KChIP2 revealed a more complex staining pattern than 

anticipated. The rabbit atrial muscle was largely positive for KChIP2 in the most 

superior regions (Figs. 7.2A and 7.3-7.6). However, a region of negative staining was 
apparent in the atrial muscle immediately adjacent to the nodal tissue at the level of the 
PNE and compact node (Figs. 7.3-7.5). The ventricular muscle showed a unique pattern 
of KChIP2 staining; a transmural gradient was apparent with an abundance of positive 

staining on one side and no staining on the other (Figs. 7.3-7.6). In contrast, the PNE, 
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compact node and common bundle were negative for KChIP2 staining (Figs. 7.2B, C, 
D, and 7.3-7.6). 

An attempt to generate riboprobes for Kß, 1.4, K, 4.2 and K, 4.3 was made previously by 
Dr. James Tellez. The riboprobes were tested, but were unsuccessful. Therefore, no in 

situ hybridisation results for K,, 1.4, K, 4.2 and Kß, 4.3 mRNAs were obtained. 

7.1.5 Discussion 

In rabbit atrium, Ito recovers slowly from activation with time constants of - 650 ms and 
8s (Fermini et al., 1992). This is characteristic of K, 1.4 and Fig. 7.1A shows Kß, 1.4 to 

be abundant in the atrial muscle. A low expression level of K,, 1.4 mRNA in the AVN 

suggests this current has a small role to play in Ito in the AVN. Hancox and Mitcheson 

(1999) showed that Ito in the rabbit AVN has two components. They measured a 
flecainide-insensitive component with slow recovery from inactivation in single cells 

from the rabbit AVN and suggested KJ. 4 could be the molecular correlate, because it 

shows slow recovery from inactivation and it has been shown in mammalian cell lines 

to be insensitive to flecainide (Yeola and Snyders, 1997). However, there is the 

possibility that other Kj channel isoforms could underlie the slow component of Ito in 

the AVN. Indeed, Marionneau et al. (2005) showed significantly higher expression of 

KJ. 1 and K, 1.6 channel isoforms in the murine AVN compared to atrium and 

ventricle. 

Real time PCR data presented here suggest a role for Kß, 4.2 in AVN Ito - Kv4.2 mRNA 

is present and there is a suggestion that it is more abundant in the AVN than in the 

working myocardium (Fig. 7.1C). This is consistent with the properties of Ito 

(Mitcheson and Hancox, 1999; Munk et al., 1996) in single cells isolated from the rabbit 

AVN. K�4.2 when expressed in mammalian cell lines was shown to be both quinidine- 

and flecainide-sensitive (Yeola and Snyders, 1997). The major component of Ito 

measured in single rabbit AVN cells is also very sensitive to both quinidine and 

flecainide and recovers rapidly from inactivation (Mitcheson and Hancox, 1999). This 

suggests that Kv4.2 does play a substantial role in Ito in the rabbit AVN. 
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Atrial and ventricular expression patterns of mRNAs encoding cardiac Ito a-subunits 

appear relatively similar according to real time PCR (Fig. 7.1). This is consistent with 

the findings of Imaizumi and Giles (1987) they showed that the sensitivity of rabbit 

atrial and ventricular Ito to quinidine is similar (IC5o, 7 µM). 

In the AVN, there is the possibility that other subunits are involved in Ito: MIRP1 has 

been shown to interact with K, 4.2 in Xenopus oocytes and slow the rate of activation 

and inactivation as well as shifting the voltage-dependence of activation and 

inactivation to more positive potentials (Zhang et al., 2001). In addition, Deschenes and 

Tomaselli (2002) using HEK-293 cells demonstrated modulating effects of MIRP1 on 

K, 4.3 channels. Finally, there is substantial evidence for the existence of additional 

modulatory K�4 channel subunits known as dipeptidyl-aminopeptidase-like proteins 

(DPPX) in neurones. They are thought to form ternary complexes with K, 4.2/K�4.3 and 

KChIPs to produce subthreshold A-type currents (Nadal et al., 2003). Furthermore, 

Radicke et al. (2005) using real time PCR showed high expression of DPPX-6 in the 

human ventricle and found it to produce a current closely resembling human cardiac Ito 

when expressed with Kß, 4.3 and KChIP2a in CHO cells. 

7.2 Delayed rectifier current 

7.2.1 Introduction 

Cardiac delayed rectifier K+ currents are the major repolarizing currents in the heart. 

Specifically, they are responsible for repolarisation during phase 3 of the atrial and 

ventricular action potential (Yue et al., 1996; Mitcheson and Hancox, 1999). Two types 

of delayed rectifier K+ current were first described in guinea-pig atrial cells (Horie et al., 

1990; Sanguinetti and Jurkiewicz, 1991). These were termed "rapid" (IK,, ) and "slow" 

(IK, s) based on their time- and voltage-dependent properties. In addition, a further 

rapidly activating component termed the "ultra-rapid" (IK, ur) delayed recitifier has been 

described in the heart, predominantly, in atrium (Wang et al., 1993). During 

electrophysiological studies, delayed rectifier K+ currents can be seen as deactivating 
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outward "tail" currents apparent upon depolarization of a cell to positive test potentials 
(-20 to +40 mV) followed by repolarization back to the holding potential (generally -40 
MV). 

The slow component of the delayed rectifier K+ current becomes apparent after 

application of the class III antiarrhythmic or IKr blockers, E-4031 or ibutilide, when 

small tail currents remain (Howarth et al., 1996; Sato et al., 2000). 

Single cells isolated from the guinea-pig AVN show both IK, and IKs (Yuill and Hancox, 

2002). Sato et al. (2000) using ibutilide, a class III anti-arrhythmic agent and specific 
blocker of IKr, on single SAN and AVN cells showed evidence for the presence of IK, r in 

both SAN and AVN cells, but found IK, s only to be present in SAN cells. 

IKr is likely to contribute to repolarisation in the SAN and AVN. Deactivation of IKr is 

also likely to contribute to the depolarisation of the membrane during the pacemaker 

potential (the `IK delay' hypothesis). This will be helped by the high input resistance of 

AVN cells (Hancox et al., 1993; Munk et al. 1996). 

Mitcheson and Hancox (1999) have suggested that IKrý could vary between the SAN and 

AVN: IKr in AVN myocytes activates at -30 to -20 mV (Mitcheson and Hancox, 1999), 

whereas it activates at -60 to -40 mV in SAN myocytes (Ono and Ito, 1995). The 

molecular make-up of the channel underlying IKr in these tissues may, therefore, be 

different. 

The a-subunit underlying IKr, ERG, was originally cloned from human brain (Trudeau 

et al., 1995). However, the time constants of activation and deactivation of ERG are four 

to 10 times slower than those of native IK, r in guinea pig and mouse cardiac myocytes 

(Sanguinetti and Jurkiewicz, 1990). Abbott et al. (1999) identified a ß-subunit for ERG, 

minK-related peptide 1 (MIRPI), and found complexes of ERG and MIRPI to closely 

reproduce properties of cardiac IK, r (the time constants of activation and deactivation are 

more similar). 
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To add to electrophysiological complexity, evidence for splice variants of ERG exist. 
Lees-Miller et al. (1997) cloned a truncated NH2-terminal isoform of ERG from mouse 
AT-1 cDNA library and showed it to be highly expressed in mouse and human heart. 

minK was originally cloned from rat kidney (Takumi et al., 1988) and later found to be 

expressed in the heart (Folander et al., 1990). The small size of the mink protein (130 

amino acids in length) with one transmembrane domain suggests it is likely to be a 

regulatory ß-subunit rather than major pore forming unit (Goldstein and Miller, 1991). 

Sanguinetti et al. (1996) identified the a-subunit underlying IK, s, K�LQT1, using 

positional cloning techniques. When K�LQT1 is co-expressed with minK the resulting 

current closely resembles native IK, s. 

The biophysical characteristics and high-sensitivity of IK, ur to 4-AP are similar to these 

of K, 1.5 (Fedida et al., 1993; Wang et al., 1993) suggesting that this subunit underlies 

IK, ur in cardiac tissue. Indeed, K�1.5 mRNA has been shown to be highly abundant in 

pacemaker and working myocardial tissue of mouse hearts, in particular in ventricular 

tissue (Marionneau et al., 2005). 

7.2.2 Methods 

7.2.2.1 Real time PCR 

Real time PCR was performed using cDNA generated from total RNA isolated from 

five rabbit AVN tissue types: atrial muscle, PNE, compact node, common bundle and 

ventricular muscle (n =8 rabbits). Primers for ERG and Kß, 1.5 were designed and 

optimised by Dr. James Tellez (Tellez, 2005). See Chapter 2 for detailed methods of 

primer design and optimisation of KV, LQTI and mink primers. Only a partial mRNA 

coding sequence for rabbit MIRPI exists. Attempts were made to optimise primers 

using this sequence but unfortunately the primer pairs tested had a tendency for primer- 

dimer formation and were not used. 

7.2.2.2 In situ hybridisation 
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The riboprobe for rabbit ERG mRNA was generated by Dr. James Tellez using a clone 

obtained from Professor Harry Witchell (Tellez, 2005). 

7.2.3 Results: 

7.2.3.1 Real time PCR 

The relative expression of mRNA transcripts encoding a- (K, 1.5, ERG and K, LQT1) 

and ß- (minK) subunits of the delayed rectifier K+ currents was investigated in tissues of 

the AVN conduction system, as well as surrounding atrial and ventricular tissue. 

Expression levels for K�1.5, ERG, K, LQT1 and the ß-subunit minK, were found not to 

be significantly different between experimental groups (Fig. 7.7). 

7.2.3.2 In situ hybridisation 

The in situ hybridisation results for ERG showed an abundance of perinuclear staining 

in the PNE, compact node and common bundle (Figs. 7.8-7.10). There was an absence 

of perinuclear staining for ERG mRNA in the atria and ventricles (Figs. 7.8-7.10). 

Attempts to obtain in situ hybridisation results for K,, 1.5, KVLQTI and minK riboprobes 

were undertaken by Dr. James Tellez; however, no signal was detected. 

7.2.4 Discussion 

The real time PCR data presented here provide evidence for the existence of a- and P. 

subunits comprising IK, ur, IK., and IK, s in all tissue types. However, the real time PCR 

technique only allows the relative abundance of mRNAs in diffeent tissues to be 

assessed; it does not measure the absolute abundance of mRNAs. Using single cells 

isolated from rabbit AVN, Howarth et al. (1996) and Mitcheson and Hancox (1999) 

observed only a single exponential time constant for deactivation of delayed rectifier K+ 

current. The data suggest only the presence of IK, r in rabbit AVN. However, in 

multicellular rabbit AVN preparations, Kokubun et al. (1982) observed a bi-exponential 

decline of the current tail with time constants of 133 and 1234 ms. This could be 

consistent with the presence of both IK, r and IK, s in rabbit AVN. With investigations 

involving single cells isolated from the AVN, it is impossible to determine exactly 
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where single cells originate from within the confines of the triangle of Koch and given 
the complex electrical heterogeneity of the rabbit AVN the cells retaining morphology 

and function in these studies may originate from an area other than the PNE, compact 

node or common bundle. In addition, it is possible that the cells not expressing IK,, are 

more Ca2+ tolerant and therefore more likely to survive. Indeed, Yue et al. (1996) 

suggested that IK is sensitive to the isolation methods used to isolate single cells. Using 

canine atrium, they found only 4% of cells isolated using "chunk" pieces of tissue to 

contain recordable IK compared to 99 % of cells obtained using arterial perfusion of a 

collagenase-containing solution. Multicellular preparations may allow a greater survival 

of those cells expressing both IK., and IK, s. On the other hand, it is possible that, although 

mRNAs encoding KVLQTI and mink are present in the AVN (Fig. 7.7C), they fail to 

produce functional protein complexes needed to generate IK, s. 

Howarth et al. (1996) using single cells from rabbit AVN and ventricle showed IK, r to be 

similar in both tissues (in terms of steady state activation for example). However, 

deactivation of tail currents upon repolarization was more rapid in cells from the AVN 

(time constant, 230 ms) than ventricle (time constant, 480 ms). This suggests a different 

molecular composition of the rabbit AVN IK, r channel compared to the ventricular IK, r 

channel. One possibility is that in the AVN there is a modulatory ß-subunit, such as 

MIRP1, which could possibly confer faster deactivation than in the ventricle. 

Unfortunately, I was unable to optimise primers for MIRPI to test this possibility. 

I observed no significant differences of K,, 1.5 mRNA levels throughout the AVN tissue. 

It is possible that IK, ur is present in all AVN tissues. This is in contrast to the study of 

Marrionneau et at. (2005) who showed significantly higher levels of K�1.5 mRNA in 

the mouse ventricle compared to atrial muscle, SAN and AVN. Immunocytochemistry 

and Western blot for K,, 1.5 protein have shown it to be present in the SAN of guinea-pig 

and ferret (Dobrzynski et at., 2000). However, there is no electrophysiological (or 

protein expression) evidence supporting the existence of functional IK, ur in the AVN. 

The contrasting findings of Marrioneau et at. (2005) could be due to species differences 

in the expression patterns of K, 1.5 mRNA. 
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7.3 Inward rectifier K+ current, IK, l 

7.3.1 Introduction 

The channels for inward rectifier K+ current were first described in skeletal muscle 
(Katz et al., 1949) and later found in Purkinje fibres (Weidmann, 1955). They determine 

the resting membrane potential in cardiac cells and also contribute to repolarization. 
Depolarisation causes a reduction in conductance. The term inward rectification refers 

to the fact that these channels conduct K+ ions into the cell (at hyperpolarized 

potentials) more readily than out of the cell (at depolarised potentials). This is because 

the conductance of the channels is high at hyperpolarized potentials, but low at 

depolarised potentials. Inward rectification occurs at voltages between -60 and -20 mV 

and is the result of block of the channel pore by intracellular Mg 2+ and polyamines, such 

as spermine. 

There are currently six Kip subfamilies (Kirl to Kin6) classified according to similarities 

in amino acid sequence The inward rectifier K+ channels contain two-transmembrane 

domains and a pore-forming loop (P-loop). These channels assemble as tetramers to 

form functional channels (Nichols and Lopatin, 1997). 

The first of the Ki, 2. x subfamily of inward rectifier K+ channels was cloned from mouse 

macrophages and when expressed heterologously was shown to closely resemble 

properties of native IKI (Kubo et al., 1993). Recombinant Kir2.1 channels have single 

channel conductances of 20-29 pS, which closely matches that of native IK, I channels 

(28 pS; Burnashev at al., 1986). Like all K+ channels, the Ki, 2. x subfamily contains the 

G-Y-G signature sequence, which confers K+ selectivity. 

Further molecular insights into the a-subunits encoding IK, I was provided by Zaritsky et 

al. (2001) using a transgenic mouse with targeted deletion of the K1r2.1 gene. Zaritsky et 

al. (2001) showed IK, 1 to be absent from ventricular myocytes from the knock-out mice. 

However, there was a residual current present, which suggests that alternative isoforms 

are also present. When they knocked-out K;, 2.2, there was a 50 % reduction in IK, I 

which suggests that there are contributions from both isoforms. Various studies using 
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electrophysiological and molecular biological approaches have investigated IK, i in the 

heart and shown Ki, 2.1 and Kir2.2 to be the major isoforms underlying IK, I, with a 

negligible contribution from K; 12.3 (Wang et al., 1998; Liu et al., 2001; Zobel et al., 

2003). 

Single cells isolated from the AVN fail to display inwardly rectifying K+ currents 

(Hancox et al., 1993; Hancox and Levi, 1994). SAN cells also do not possess IK, I 
(Boyett et al., 2000). 

7.3.2 Methods 

7.3.2.1 Real time PCR 

Real time PCR was performed on K;, 2.1 and Kir2.2 cDNAs generated from total RNA 

isolated from five rabbit AVN tissue types: atrial muscle, PNE, compact node, common 

bundle and ventricular muscle (n =8 rabbits). Real time PCR was carried out using a 

Roche LightCycler 1.0. Primers for K; r2.1 and K; r2.2 were designed and optimised by 

Dr. James Tellez (Tellez, 2005). 

7.3.2.2 In situ hybridisation 

The riboprobe for Ki, 2.1 mRNA was designed by Dr. James Tellez (Tellez, 2005). 

7.3.3 Results 

7.3.3.1 Real time PCR 

The relative expression of mRNA transcripts encoding the a-subunits, K;, 2.1 and Ki, 2.2, 

were investigated in the tissues of the AVN conduction system, as well as surrounding 

atrial and ventricular tissue. 

The expression level of K;, 2.1 mRNA was significantly higher in the ventricle compared 

to the PNE, compact node, common bundle and atrial muscle (P <0.05; Fig. 7.11A). In 
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contrast, there were no significant differences among the expression levels of K1r2.2 

mRNA in the different tissues (Fig. 7.11B). 

7.3.3.2 In situ hybridisation 

In situ hybridisation for Kir2.1 mRNA revealed an abundance of perinuclear staining for 

Kir2.1 in the ventricular muscle (Figs. 7.12-7.15). In contrast, the atrial muscle, PNE, 

compact node and common bundle were largely absent of K;, 2.1 perinuclear staining 
(Figs. 7.12-7.15). 

7.3.4 Discussion 

The real time PCR data (Fig. 7.11) show the presence of both K;, 2.1 and K; 12.2 in the 

ventricles, which is consistent with the presence in the ventricles of a negative resting 

potential of - -80 mV and a sharp repolarization phase at the end of the plateau. In the 

atrial muscle, both Ki, 2.1 and K;, 2.2 were also present, but K1r2.1 was less abundant than 

in the ventricular muscle. The density of IK, 1 is known to be less in the atria than in the 

ventricles (Bouchard et al., 2004) and this may be the result of the lower expression of 

K; 12.1 in the atria. 

Our findings are consistent with those of previous studies: Ishii et al. (1994) cloned an 

inward rectifier K+ channel from rabbit heart with homology to K;, 2.1 and showed it to 

be highly abundant in the rabbit ventricle and absent from rabbit atrium using RNA blot 

analysis. Zobel et al. (2003) showed the expression of both K;. 2.1 and K; r2.2 protein 

with Western blots in rabbit ventricular tissue. Furthermore, dominant-negative 

constructs of both K; 12.1 and K12.2, resulted in a 70 % reduction in IK, I, suggesting that 

both K; r2.1 and K;, 2.2 carry IK, I. 

The real time PCR data for K;, 2.2 show it to be present in the PNE, compact node and 

common bundle as well as the working myocardium. This is somewhat surprising, 

because IK, I is known not to be present in the AVN. However, the absolute abundance 

of Kir2.2 mRNA is not known and it may not be sufficient to result in significant IK,! in 

the AVN. As expected, the level of Ki, 2.1 mRNA was low in the AVN (Figs. 7.11 and 

7.12-7.15). Unexpectedly, however, the level of K; r2.1 and K; r2.2 mRNA was the same 
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Figure 7.12 High power (x20 magnification) in situ hybridisation images of K; r2.1 mRNA. A, 
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in the AVN and atrial muscle. Perhaps K12.3 mRNA is present in the atrial muscle, but 

not the AVN. 

7.4 ATP-sensitive potassium current (IK, ATP) 

7.4.1 Introduction 

The adenosine-tri-phosphate (ATP) sensitive K+ current (IK, ATP) is present in various 

organs of mammals including the heart, brain, pancreas, kidney and blood vessels 

(Aguilar-Bryan and Bryan, 1999). In the heart, the major pore-forming a-subunit of 

IK, ATP is Kir6.2. Kir6.2 forms a complex with a j3-subunit known as the sulphonylurea 

receptor, SUR2A (Babenko et al., 1998; Haider et al., 2005). The channel complex is 

formed with the following stoichiometry: four a-subunits (K;, 6. x) are combined with 

four ß-subunits (SUR). During normal physiological conditions, IKATP is inactive due to 

the presence of ATP; only upon removal of ATP during ischemia does the channel pass 

current (Goldhaber et al., 1991). 

Noma (1983) was the first to demonstrate the existence of an outward K+ current in 

isolated guinea-pig ventricular myocytes under hypoxic conditions; the current is 

blocked by a rise in intracellular ATP (Noma, 1983). Furthermore, Wilde et al. (1990) 

showed that ischaemia-induced opening of these channels caused an increase in 

extracellular K+ concentration and shortening of the cardiac action potential, both of 

which were prevented by the application of the specific IK, ATP blocker, glibenclamide. 

Kakei and Noma (1984) showed the presence of an ATP-sensitive K+ current in single 

AVN myocytes. 

Samanbori et al. (1995) studied the effects of hypoxia and metabolic inhibition on AVN 

conduction properties and the induction of AV block. Hypoxic solutions caused a 

prolongation of AVN conduction time (A-H interval). However, when hypoxia was 

combined with a glucose-free solution, second-degree or higher AV block was evident 

possibly suggesting an effect of IK, ATP on AVN function under these conditions. 

However, the role of IK, ATP in normal AVN function is probably negligible. 
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7.4.2 Methods 

7.4.2.1 Real time PCR 

Real time PCR was performed using cDNA generated from total RNA isolated from 

five rabbit AVN tissue types: atrial muscle, PNE, compact node, common bundle and 

ventricular muscle (n =8 rabbits). Primers for K16.2 and SUR2A were designed and 

optimised by Dr. James Tellez (Tellez, 2005). 

7.4.2.2 In situ hybridisation 

A riboprobe against K116.2 or SUR2A was not generated and therefore no in situ 
hybridisation results are present for these transcripts. 

7.4.3 Results 

7.4.3.1 Real time PCR 

The relative expression of mRNA transcripts encoding the a-subunit, Kir6.2, and the ß- 

subunit, SUR2A, of the IK, ATP were investigated in the tissues of the AVN conduction 

system, as well as the surrounding atrium and ventricle. Expression levels for SUR2A 

mRNA were significantly higher in the ventricle than in the PNE (Fig. 7.16B). No 

significant differences among K116.2 mRNA levels were detected (Fig. 7.16A). 

However, there was a tendency for higher expression of this transcript in atrium and 

ventricle compared to the PNE, compact node and common bundle (Fig. 7.16A). 

7.4.4 Discussion 

The greater level of SUR2A in the ventricle suggests a greater expression of KATP 

channels in the ventricles versus other tissues since SUR2A subunits are necessary for 

Kir6.2 subunits to traffic to the membrane and form functional channels. However, it 

could be that there is a surplus of SUR2A in the ventricle as opposed to other tissues 

and that the levels of SUR2A do not directly reflect the levels of functional channels 

formed with SUR2A - this has been suggested previously (Van Bever et al., 2004). If, 
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indeed, the greater level of SUR2A mRNA in the ventricle as compared to the atria do 

reflect a greater abundance of functional channels at the membrane, then these data are 
in contrast to experimental findings: the atria (as compared to the ventricles) have been 

shown to be more sensitive to metabolic inhibition, diazoxide-induced opening and 

propafenone-induced blockade; collectively, the functional data suggest that the atria 

have a greater sensitivity to ischaemia than the ventricles (Poitry et al., 2003; Christie et 

al., 1999). The presence of K116.2 mRNA in the ventricle is consistent with previous 

findings in rabbit ventricular myocytes: it has been shown that adenoviral-mediated 

transduction of mutated K; 16.1 channels has no effect on IK, ATP in ventricular myocytes 

(Seharaseyon et al., 2000). 

The detection of K116.2 and SUR2A mRNA in the common bundle, compact node and 

PNE, albeit at lower levels than in the working myocardium, is consistent with 

electrophysiological findings showing the presence of IK, ATP in the rabbit AVN (Kakei 

and Noma, 1984). However, there is the possibility that K, 6.1 a-subunit is expressed in 

these tissues, because the measured single channel conductance of IK, ATP in the 

investigation of Kakei and Noma (1984) was -40 pS, which is intermediate between 

that of K16.2 homotetramers (67 pS) and Kir6.1 homotetramers (34 pS; Kono et al., 

2000). 

Our data suggest there is a tendency for lower levels of I1ATP in the rabbit AVN 

conduction tissue, which is consistent with previous findings from our laboratory: 

rabbits were shown to have lower level of K116.2 mRNA in the SAN (unpublished data). 
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Chapter 8 

Cat+-handling proteins 

8.1 Introduction 

8.1.1 Ca 2+ release 

Ca2+ handling in cardiac muscle involves Cat+-release units (CRUs) (Franzini- 

Armstrong et al., 2005). CRUs consist of SR, L-type Ca2+ channels, ryanodine 

receptors, triadin and junctin. In addition to CRUs, important Ca 2+ handling proteins 
include SERCA2a, Ca2+-ATPase, Na+-Ca 2+ exchanger (NCX), plasma membrane Ca2+- 

ATPase (PMCA), calsequestrin and inositol 1.4.5-triphosphate (IP3) receptors. Ca 2+ 

release from the SR occurs via ryanodine (Inui et al., 1987) or IP3 receptors (Berridge 

and Irvine, 1989). 

The cardiac SR can be divided into three: 1) "dyads" (junctional SR forms a close 

association with the T-tubules of the myocyte) 2) peripheral SR which lies immediately 

adjacent to the surface membrane/sarcolemma and 3) corbular SR which fails to form 

any associations with the membrane and is located deep in the cytosol (Franzini- 

Armstrong et al., 2005). Calsequestrin binds Ca2+ in the SR and effectively acts as a 

Ca2+ sink. Triadin and junctin are important proteins in the SR since they form 

quarternary structures with ryanodine receptors and calsequestrin (for review see Niggli, 

1999). 

Technological advances in confocal imaging, in particular laser scanning confocal 

microscopy with improved resolution concomitant with developments in Cat+- 

dependent fluorescent dyes (Minta et al., 1989) took us from Ca 2+ waves (Takamatsu 

and Wier, 1990) and to the phenomena of "Ca 2+ sparks" (Fig. 8.1). Ca 2+ sparks are 

subcellularly localized releases of Ca2+, which have a short duration (100 ms), an 

amplitude of -170 nM and limited spatial diffusion (Cheng et al., 1993; Lipp and 
Niggli, 1994). Ca2+ sparks most likely represent the opening of one or a few ryanodine 

receptors (Cheng et al., 1993). However, during excitation-contraction coupling, Ca2+ 



Figure 8.1 An example of Ca 2+ sparks from a rat cardiac myocyte. A surface plot of fluo-3 
fluorescence (a measure of intracellular Ca 2+) was constructed from a confocal line scan image. 
Localized Ca 2+ signals are shown along one spatial dimension whereas the other dimension 

corresponds to time. From Niggli (1999). 



105 

sparks summate to produce the overall Ca2+ transient, which is detected with more 

coarse measurements of Ca2+ concentration (Cheng et al., 1995). Ca 2+ sparks are linked 

to the opening of single L-type Ca2+ channels. 

Removal of CaZ+ from the cytosol is achieved predominantly via two mechanisms: 1) a 

CaZ+ ATP-ase located on the SR (SERCA2a) and 2) a Na+-CaZ+ exchanger (NCX) 

located on the plasma membrane/sarcolemma. Ryanodine receptors, once excited, 

become refractory and this explains various phenomena: 1) CaZ+-induced CaZ+ release 

(CICR) can be described as positive feedback and ryanodine receptor refractoriness 

prevents uncontrollable CaZ+ release and 2) if two propagating CaZ+ waves collide there 

is an annhilation of the waves (Cheng et al., 1996). 

Major differences between atrial and ventricular EC coupling exist. Di-2-ANEPEQ 

staining of ventricular cells reveals, in addition to strong sarcolemmal staining, a 

network of T-tubules, whereas staining atrial cells shows only sarcolemmal staining 

indicating a lack of T-tubules in atrial myocardium (Tanaka et al., 2001). The sensitivity 

of contractile force in rat (Tanaka et al., 2001), guinea-pig (Agata et al., 1994) and 

rabbit (Bers, 1989) to ryanodine is greater in atrial compared to ventricular cells. This 

suggests that the SR plays a greater role in atrial as compared to ventricular cells. SR 

architecture in SAN and AVN tissue lacks the organized structural make-up of the 

working myocardium (Shimada et al., 1986). 

8.1.2 Sarcoplasmic/endoplasmic reticulum Ca 2+ ATPase (SERCA2a) 

The sarco(endo)plasmic reticulum Cat+-ATPase (SERCA) family of proteins is encoded 

by three separate genes: SERCAI, SERCA2 and SERCA3. Each of these isoforms 

shows tissue specific expression. Furthermore, alternative splicing results in six 

different splice variants: SERCAIa is predominant in fast-twitch skeletal muscle 

(Stewart and Maclennan, 1976); SERCA2a is mainly found in cardiac muscle and slow- 

twitch skeletal muscle (Brandl et al., 1986); SERCA2b is expressed ubiquitously 

(Lytton et al., 1989); and SERCA3 is found predominantly in non-muscle cells (Papp et 

al., 1992). SERCA2a is responsible for the removal of accumulated cytosolic Ca2+ (as a 

result of myocyte depolarization) back into the lumen of the SR for use in a subsequent 

contraction. SERCA2a lies adjacent to a protein called phospholamban (PLB), which 

exerts an inhibitory influence on SERCA2a whereby SERCA2a's affinity for Ca2+ is 
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reduced. This is the result of direct protein interaction (Caroni and Carafoli, 1981). 
Furthermore, if PLB becomes phosphorylated as a result of protein kinase activity, it 
loses its ability to inhibit SERCA2a and therefore Ca 2+ pumping efficiency is improved 
(Toyofuku et al., 1994). Ji et al. (2000) showed in transgenic mice heterozygous for a 
null mutation in SERCA2a profound decreases in contraction and relaxation properties; 

compensatory upregulation of NCX was also detected. Minajeva et al. (1997) 

investigated Ca2+ handling in rabbit atria and ventricles and found relative abundance of 
SERCA2a mRNA to be 38% higher in the atria compared to ventricles. 

8.1.3.1 Na+-Ca2+ Exchanger (NCX) 

Reuter and Seitz (1968) were the first to report the presence of a Na+ and Ca 2+ exchange 

mechanism in cardiac muscle (Reuter and Seitz, 1968). Kieval et at. (1992) showed that 

the expression level of NCX in the sarcolemma was the same in the T-tubules, the 

surface membrane and intercalated discs in rat and guinea-pig myocytes (Kieval et at., 

1992). In contrast, rabbit ventricular myocytes have been suggested to contain more 

NCX protein in the T-tubules (Chen et al., 1995). The discrepancies between the two 

studies may be accounted for by greater folding of the T-tubules compared to the 

surface membrane and limitations in the resolution of confocal microscopy (Kieval et 

at., 1992). Bridge et at. (1993) using a rapid solution exchange system and specific 

blockers of NCX estimated the Ca2+ entering the cells from IC, ' upon membrane 

depolarisation was extruded via the NCX. Bassani et at. (1994) using rat and rabbit 

myocytes estimated that -7 % and -25-30 %, respectively, of the decay of the Ca 2+ 

transient was due to removal of Ca2+ from the cytosol via NCX (Bassani et at., 1994). 

NCX can influence EC coupling profoundly, since NCX determines the level of 

intracellular Ca2+. The NCX has -10-fold less affinity for Ca 2+ than the sarcolemmal 

Ca2+-ATPase (PMCA) but has a 40- to 50-fold greater turnover rate (Bassani et at., 

1994). 

8.1.3.2 Role of the NCX during cardiac action potential 

As explained above NCX is located in the sarcolemma and is a major mediator of Ca2+ 

extrusion from cardiac myocytes. However, it also has the capability to generate a 

current, INCx. The current-voltage relationship for INCx indicates that the reversal 

potential, ENCX, is between -10 and -50 mV under diastolic conditions. During the initial 
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phase of myocyte depolarization during the action potential the membrane potential 
becomes more positive than ENCx and, therefore, a brief outward current (corresponding 

to Ca2+ influx) is generated. Eventually, the intracellular Ca 2+ level rises as a result of 
CICR. This causes ENCX to become more positive than the membrane potential and, 
therefore, an inward current (corresponding to Ca2+ efflux) is generated by NCX. 

Atrial cells display two plateau phases: a high plateau and a low plateau. Using 

mathematical models, Hilgemann and Noble (1987) showed that the low plateau of the 

atrial action potential is generated by inward INCx, which is activated by the Ca 2+ 

transient (Hilgemann and Noble, 1987). Experimentally, Earm et al. (1990) showed in 

isolated rabbit atrial myocytes that the inward INCX current was prevented when the CaZ+ 

transient was abolished with EGTA (Earm et al., 1990). Furthermore, substituting 

extracellular Na+ by Li+ (which cannot be transported by NCX) reduced the duration of 
the low plateau in rabbit and human atrial cells (Earm et al., 1990; Coraboeuf and 
Nargeot, 1993). 

The role of INCx during the ventricular action potential is less important than during the 

atrial action potential. The plateau phase in the ventricular action potential and peak of 

the Ca2+ transient occur at relatively positive voltages. For this reason, the driving force 

for inward INCx is weak. Janvier et al. (1997) using ferret ventricular cells estimated 

inward INCx (BAPTA-sensitive current) to be -0.16 nA in amplitude; when this current 

was blocked by BAPTA or by replacing Na' with Li+ the ventricular action potential 

was significantly shortened, indicating this current has a significant role to play in the 

ventricular action potential (Janvier et al., 1997). Furthermore, Leitch and Brown (1996) 

using a BAPTA-AM detected no change in inactivation of ICa and found a significant 

shortening of guinea-pig action potential duration, which they attributed to a reduction 
in inward INCx" 

8.1.5 Role of INCX in pacemaker function 

Inward INCx is known to play a role in pacemaker activity in the SAN (Bogdanov et al., 
2001). Convery and Hancox (2000) investigated INCX in rabbit AVN and ventricular 

cells; similar densities of INCx were detected in AVN and ventricular cells. 

8.1.6 Molecular properties of NCX 
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NCX was first cloned from dog heart (Nicoll et at., 1990). Since then, three genes have 

been shown to encode NCX in mammals: NCXI, NCX2 and NCX3 (Nicoll et al., 

1996). Regional expression patterns of the three different isoforms indicate that NCX1 

is the major isoform expressed in the heart (Kofuji et al., 1992). In contrast, NCX2 and 

NCX3 appear to be restricted to the brain and skeletal muscle (Li et al., 1994; Nicoll et 

at., 1996). All three isoforms share structural similarities, with I1 transmembrane 

domains and a large intracellular loop between transmembrane domains 5 and 6. This 

large intracellular loop is responsible for regulatory Ca2+ binding (Levitsky et al., 1994) 

and alternative splicing, giving rise to tissue specific splice variants (Kofuji et at., 

1994). 

8.1.7 Ryanodine receptor 

Ryanodine receptors (RYRs) belong to a superfamily of Cat release channels, which 

also includes the inositol 1,4,5-triphosphate receptor (IP3Rs). RYRs form functional 

complexes as tetramers (Lai et al., 1989). They play an important role in excitation- 

contraction coupling in the heart (Berridge et al., 2000). Three genes have been cloned 

which encode the three RYR isoforms: RYR1, RYR2 and RYR3. RYR1 is 

predominantly found in skeletal muscle, RYR2 is mostly found in cardiac (Anderson et 

al., 1989) and brain tissues and RYR3 is found in a variety of tissues such as brain, 

diaphragm and smooth muscle (Franzini-Armstrong and Protasi, 1997). However, more 

recent findings have revealed further complexity, whereby some tissues express all three 

receptor isoforms (Giannini et al., 1995). 

Xiao et al. (2002) using HEK293 cells demonstrated the ability of ryanodine receptors 

to form heteromers, in particular RYR1 with RYR2 and RYR2 with RYR3. Moreover, 

in vascular smooth muscle cells that have been shown to express all three RYR 

isoforms, antisense removal of either RYRI or RYR2 prevented Ca2+ sparks and a 

global Ca2+ response; in the same study removal of RYR3 had no effect on 

depolarization- or caffeine-induced Ca2+ responses (Coussin et al., 2000). It appears that 

RYR3 only plays a role, at least in vascular smooth muscle cells, during SR Ca 2+ 

overload (Marionneau et al., 2001). However, immunoprecipitation studies using 

extracts from various tissues have failed to show co-expression of any two isoforms 

(Murayama and Ogawa, 1996). 
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Munch et al. (2000) using explanted human hearts to investigate the expression of the 

three RYR isoforms found protein levels for RYR2 to be significantly lower in the right 

ventricle as compared to other chambers of the heart. In contrast, RYRI and RYR3 

protein levels were found to be equally abundant in all chambers (Munch et al., 2000). 

In contrast to the findings of Munch et al. (2000), Cote et al. (2000) using a 

[3H]ryanodine binding assay found the density of binding 4.5 times lower in human 

atrial versus ventricular tissue. Masumiya et al. (2003) using an RNase protection assay 

and in situ hybridization on mouse SAN tissue showed RYR2 mRNA to be abundantly 

expressed in all regions of the heart, whereas RYR3 mRNA expression was 

predominant in the SAN and right atrium with low levels in the right ventricle. 

Until recently, investigations into SR function in cardiac tissue have focused on 

working myocardium. However, recent work has implicated the SR (as well as NCX - 

see above) in pacemaker function. Bogdanov et al. (2001) and Vinogradova et al. (2002) 

using single cells isolated from rabbit SAN have suggested that RYRs play a major role 

in pacemaking in the heart. However, Honjo et al. (2003) demonstrated with both 

multicellular preparations and single cells that ryanodine had caused a -20 % reduction 

in spontaneous beating rate in both preparations; this is less than that showed by 

Bogdanov et al. (2001) and Vinogradova et al. (2002) but still significant. 

8.2 Methods 

8.2.1 Real time PCR 

Real time PCR was performed using cDNA generated from total RNA isolated from 

five rabbit AVN tissue types: atrial muscle, PNE, compact node, common bundle and 

ventricular muscle (n =8 rabbits). Primers for NCXI, SERCA2a, RYR2 and RYR3 

were designed and optimised by Dr. James Tellez (Tellez, 2005). 

8.2.2 In situ hybridisation 

No riboprobes for NCXI and SERCA2a were generated. Riboprobes for RYR2 and 

RYR3 were generated; however, upon testing they failed to produce a good signal and 

were, therefore, not used. 
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8.3 Results 

8.3.1 Real time PCR 

The relative expression of mRNA encoding isoform 1 of NCX (NCXI), SERCA2a, and 

the cardiac and neuronal ryanodine receptors (RYR2 and RYR3)were investigated in 

tissues of the AVN conduction system, as well as the surrounding atrial and ventricular 

muscle (Fig. 8.2). Expression levels for SERCA2a mRNA were significantly higher in 

the atrial muscle and ventricular muscle compared to the compact node (P < 0.05; Fig. 

8.2). No significant differences among NCX1, RYR2 and RYR3 mRNAs were seen 
between tissues (Fig. 8.2). 

8.4 Discussion: 

Similar levels of NCX mRNA were detected in all tissues (Fig. 8.2A), which is 

consistent with the important role of this protein in both Na+ and Ca 2+ regulation and 

generating current during the action potential and pacemaker potential of both working 

myocardium and pacemaker tissue (Janvier and Boyett, 1996; Reuter et al., 2005). This 

finding is consistent with the study of Convery and Hancox (2000) who found little 

difference in INCx density between rabbit AVN and ventricular cells. The isolation 

technique used by Convery and Hancox (2000) fails to identify the exact location within 

the triangle of Koch region of the cells isolated. However, because the study of 

Dobrzynski et al. (2003) showed the leading pacemaker site to be in the PNE, it is likely 

that the spontaneously active cells used in their study originate, at least in part, from the 

PNE (Dobrzynski et al., 2003). 

I have shown SERCA2a to be significantly higher in the atrial muscle compared to the 

compact node (Fig. 8.2B). In addition, there was a tendency for SERCA2a mRNA 

levels to be higher in the working myocardium than in all the nodal tissues. This 

suggests that the dependence of the Ca2+ transient on the SR will be less in nodal cells 

than in atrial and ventricular cells; instead, in nodal cells the Ca2+ transient will be more 

dependent on NCX and Ca2+ movement across the sarcolemma. However, Hancox et al. 

(1994) using FURA-2 measurement of [Ca2+]; showed that the Ca2+ transient was 
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Figure 8.2 Real time PCR results for Cat handling protein mRNAs. The relative abundance of 
NCX1 (A), SERCA2A (B), RYR3 (C) and RYR2 (D) mRNAs was quantified in AVN tissue 
samples. 1, significantly different from compact node (P < 0.05; one-way ANOVA). AM, atrial 
muscle; PNE; CN, compact node; CB, common bundle; VM, ventricular muscle. 
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abolished by ryanodine (demonstrating that the role of the SR in the AVN is still 
important). 

The presence of SERCA2a mRNA in the working myocardium is consistent with 

previous findings from rabbit heart (Mearow et al., 1993). However, Mearow et al. 

(1993) found greater levels of SERCA2A mRNA in the atrium compared to the 

ventricle. 

I have shown that the AVN expresses RYR2 and RYR3 mRNA, albeit at lower levels 

than in the atrial and ventricular tissue (Fig. 8.2C and D). These data are consistent with 

the ability of ryanodine to abolish the Ca2+ transient in isolated AVN cells (Hancox et 

al., 1994). Because I have shown both RYR2 and RYR3 are expressed in nodal tissue 

and working myocardium, it is possible that the channels exist as heteromers with 

different Ca2+ release properties to the homorners. 

Vinogradova et at. (2004) have recently suggested that rhythmical release of Ca2+ from 

the SR of SAN cells plays a major role in the generation of spontaneous activity. If this 

is the case, then based on the mRNA levels detected here for the Ca2+ handling proteins 

it is possible that NCX, SERCA2a, RYR2 and RYR3 all are involved in the generation 

of spontaneous activity in the leading pacemaking region of the PNE. The relative 

expression levels I have shown here are similar to those described by Tellez (2005): in 

the rabbit SAN, Tellez (2005) observed significantly higher levels of RYR3 mRNA in 

the centre of the SAN compared to SAN periphery and right atrium; RYR2 mRNA, on 

the other hand, was more abundant in the right atrium compared to SAN centre and 

periphery. 

In conclusion, Ca2+ handling in the AVN is likely to be qualtitatively similar to that in 

the working myocardium. For example, in rabbit AVN cells there is a Ca2+ transient and 

this is largely the result of SR Ca2+ release via ryanodine receptors triggered by ICa, L or 

INCX (Hancox et al., 1994). However, there are likely to be differences in Ca2+ handling 

between the AVN and working myocardium, because of the differences in Ca 2+ 

handling proteins between the two tissues (Fig. 8.2) as well as the less organized nature 

of the SR in the AVN as compared to the working myocardium (Shimada et al., 1986). 
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Chapter 9 

Gap junctions and markers 

9.1.1 Gap junctions 

Gap junctions are channels linking the cytoplasms of neighbouring cells, which enable 
the diffusion of small molecular weight substances that are important for many cellular 
activities, including cell-cell communication and conduction in a longitudinal direction 

(Goodenough et al., 1996; Kumar & Gilula, 1996; Alexander & Goldberg, 2003). These 

structures are essential for the heart to function as a syncytium. Cardiac myocytes are 
held together by intercalated discs which contain gap junctions. These gap junctions 

allow propagation of the action potential. They provide low electrical resistance 

pathways between adjacent cells. 

These junctions can be closed by acidosis (protons) and high cytosolic Cat+. Such 

conditions are encountered during ischaemia, e. g. due to coronary occlusion. Closure of 

gap junctions during ischaemia can be a protective mechanism, because it isolates 

damaged cells. Closure of gap junctions impairs the normal conduction of the action 

potential. Propagation of the action potential is accelerated due to ATP and protein- 
kinase phosphorylation, which open these channels. 

A gap junction channel is formed by the docking of two hemichannels (connexons) 

from opposing cells. Each connexon consists of six connexin (Cx) subunits, which are 

the sole proteins required to form functional gap junctions. A connexin spans the 

plasma membrane four times, and contains two extracellular loops, a cytoplasmic N- 

terminal region, and a cytoplasmic C-terminal region. The most significant differences 

between connexin isoforms are in the lengths and sequences of the N- and C-terminal 

regions, which are thought to be important in connexin regulation i. e. by 

phosphporylation (Lampe and Lau, 2004). The connexin gene family has been reported 

to contain at least 20 members in the human and 19 in the mouse. 

The discontinuous nature of conduction in cardiac tissue is thought to be due to delays 

in gap junctions (Spach et al., 1985). Decreased gap junctional coupling can lead to 
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slow propagation of electrical impulses through cardiac tissue (Shaw and Rudy, 1997; 

Rohr et al., 1998). 

It is well known that the gap junctions in the SAN and AVN are very small and sparse 

compared to those in the atria, ventricles or bundle branches (Severs, 1990). Cx43 is the 

major cardiac isoform in the mammalian heart. However, additional isoforms have been 

shown to be expressed: Cx37, Cx40, Cx45 and Cx46 (Davis et al., 1995; Verheule et al., 

1997). Recently, the slowest conducting of all gap junctional proteins, Cx30.2, has also 
been shown to be highly expressed in the mouse conduction system (Kreuzberg et al., 
2005). 

Davis et al. (1995) showed that the human AVN contains Cx40, Cx43 and Cx45. Cx45 

has been shown to be abundantly expressed in the AVN and common bundle of rats 
(Coppen et al., 1999). In the study of Gourdie et al. (1993), an increase in the expression 

levels of Cx40 from the AVN to His bundle has been reported; Cx40 and Cx43 were 

colocalised in the AVN. 

Insights into the role of gap junctions in AVN function have been gained from 

transgenic mice engineered to lack the gap junctional protein, Cx40; the mice have a 

prolonged P-R interval, suggesting a major role for Cx40 in the formation of gap 

junctions in the AVN and propagation of the action potential through the AVN (Simon 

et al., 1998). In addition, there is the Holt-Oram syndrome, in which there is a genetic 

defect in the homeobox gene, Tbx 5, which leads to a lack of Cx40 and manifests as 

first-degree AV block and/or prolonged P-R interval (Bruneau et al., 2001). Pollack 

(1976), using a fluorescent tracer dye to measure intercellular coupling in the rabbit 

heart, showed that the passage of dye in the AVN is three orders of magnitude slower as 

compared to other areas of the heart. 

9.1.2 AVN markers 

Expressional analysis requires the use of tissue markers in order to differentiate between 

tissue types. The conduction tissue of the heart has been shown to express certain genes 

at significantly different levels than the surrounding atrial and ventricular tissue 

(Gourdie et al., 2003). 
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9.1.3 Atrial natriuretic peptide 

Atrial natriuretic peptide/atrial natriuretic factor (ANP/ANF) is specifically expressed in 

the atrial tissue of cardiac muscle and can therefore act as a positive marker of atrial 
tissue (de Bold, 1985). ANP is a peptide hormone which is released from the atrial cells 
in response to stresses (predominantly an increase in blood pressure) placed upon the 

atria. ANP in turn, reduces blood volume and increases Na+ secretion and excretion by 

its actions on the kidney. Specifically, ANP decreases Na+ resorption in the distal 

convoluted tubule and cortical collecting duct. All the actions of ANP are mediated by 

the transmembrane form of ANP receptor, via cGMP generated by the guanylyl cyclase 
in the cytosolic domain of the receptor. In addition, ANP causes vasodilatation and fluid 

volume reduction by direct actions on vascular smooth muscle cells, and inhibition of 

secretion of hormones, such as aldosterone from the adrenal cortex and norepinephrine. 

Since ANP expression is limited to the atrial muscle under normal conditions, it can be 

used as a positive marker of atrial tissue. 

9.1.4 Neurofilament-M 

There are three neurofilament isoforms with molecular weights of 115 kDa (NF-H), 95 

kDa (NF-M), and 68 kDa (NF-L). NF-M is a neuronal cytoskeletal protein found 

predominantly in the brain. However, using an anti-NF-M antibody, this protein has 

been shown to delineate the conduction system of the rabbit heart (Gorza et al., 1988; 

Gorza & Vitadello, 1989). NF-M can, therefore, be used as a positive marker of 

conduction system tissue in the rabbit heart. 

9.1.5 Housekeeper genes: 28S/GAPDH/NaK pump 

When quantifying cDNA from different tissue samples by real time PCR, it is vital that 

the mRNA input into each reverse transcription reaction is the same. However, 

quantification of RNA can be prone to inaccuracies. Therefore, in order to allow for 

variations in mRNA input, the quantities of the transcripts measured can be normalised 

to the quantities of a housekeeper transcript that is equally distributed throughout tissue. 

The suitability of two housekeeper genes was assessed in this study: glyceraldehyde 3 

phosphate dehydrogenase (GAPDH) and 28S rRNA, which are both established 

housekeeper genes (Thellin et al., 1999; Zhong & Simons, 1999; Bustin, 2000). 



115 

9.2 Methods 

9.2.1 Real time PCR 

Real time PCR was performed using cDNA generated from total RNA isolated from 

five rabbit AVN tissue types: atrial muscle, PNE, compact node, common bundle and 

ventricular muscle. (n =8 rabbits). The Roche LightCycler was used to measure 28S, 

ANP and NF-M transcripts, whereas the ABI 7900 HT was used to measure GAPDH 

transcripts. 

9.2.2 In situ hybridisation 

Riboprobes for NF-M, ANP and GAPDH were generated by Dr. James Tellez (Tellez, 

2005). A modification of the Braissant protocol was used as described in chapter 2 (n=4 

rabbits). 

9.3 Results 

9.3.1 Real time PCR 

Real time PCR showed for Cx40 and Cx45 no significant differences between tissues 

(Fig. 9.1A and 9.1C); Cx43 was significantly higher in the atrial muscle compared to 

PNE and compact node (P < 0.05; Fig. 9.1B). NF-M mRNA was significantly more 

abundant in the PNE, compact node and common bundle compared to the ventricular 

and atrial muscle (P < 0.05; Fig. 9.6A). ANP mRNA was significantly more abundant in 

the atrial muscle compared to the other tissues (P <0.05; Fig. 9.6B). GAPDH and 28S 

mRNA levels showed no significant differences between tissues (data not shown). 

9.3.2 In situ hybridisation 

Cx43 perinuclear staining was abundant in the atrial and ventricular muscle throughout 

the AVN conduction axis (Figs. 9.2-9.5). In addition, there was abundant Cx43 

perinuclear staining in the common bundle (Figs. 9.2B and 9.5) with progressively less 

staining in the compact node (Figs. 9.2C and 9.4) and little in the PNE (Fig. 9.3). 



A 

B 

1. " 

IA 

1.2 

1.0 

o. e 

0.4 

OA 

02 

0.0 

Cx43 

Cx45 

C 
Cx40 

Figure 9.1 Real time PCR results for connexin mRNAs. A, Cx45. B, Cx43. C, Cx40.1 & 3, denote 
significantly different from CN (p < 0.05; One-way ANOVA); AM, atrial muscle; PNE, posterior 
nodal extension; CN, compact node; CB, common bundle; VM, ventricular muscle. 
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Figure 9.2 High power (x20 magnification) in situ hybridisation images for Cx43 mRNA. A, atrial 
muscle; B. common bundle. C, compact node: D. posterior nodal extension; E, ventricular muscle. 
Red dashed line outlines nodal cells. 
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Figure 9.3 In situ hybridisation image for Cx43 mRNA at the level of the PNE. Red dashed line 

outlines cells comprising PNE. 
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Figure 9.4 In situ hybridisation image for Cx43 mRNA at the level of the compact node. Red 
dashed line outlines cells comprising compact node. 
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In situ h? tvidisaticrtt fcr ti'F-! ºt ma. ti a mtaled an abundance of perinuclear staining at 
the krcls of the t'NF (Fig. 9. n cccnp. -t node (Fig. 9.8) and common bundle (Fig. 9.9); 

this ckart2 drlincatcd thcsc nodal strtctuscs. 

Strong pcrinuclcar staining of ASP mRNk %%3S detected in the atrial septum region of 

the tissue srrtions throughout the AV\' conduction axis (Figs. 9.10-9.12); at the level of 
the PtiE this Labelling as strangest on the left of the septum with cells on the right 
being Lugtly ncgatitc for ANP pcrinwkar staining (Fig. 9.10). The opposite was seen 

at the krcl of the cc npact rWc %%hcrm cells on right contained abundant ANP mRNA 

and the cells on the kt1 acre Largely negative for AN'P staining (Fig. 9.11). 

Pctinucicsr stsining fx GAPDI I was uniform throughout tissue sections at all levels of 
the AV": ̀ cvnJ action axis (Fig. 9.13). 

9A I)iKitvibn 

Roa! tjow rCR shoucd no dif cttr cs for Cx40 bct%%ccn tissue samples (Fig. 9.1); this 

is consistcnt a ith a major role ,. vv this gap junctional protein in AVN function (Simon et 
A. 199*; Ilruncau ct A. 2001). In contrast. Scccrs ct al. (2004) found no Cx40 protein 

cxptcssicxt along the rslbit AVN cocnJt tion axis; the discrepancy between our data at 

the mRNA k+cl ay! the f inJings of Scccrs ct al. (2004) at the protein level could be 

due to: 1) a past"eraas. -rirt; otisl regulatory mechanism for Cx40, preventing the 

production of ptu cin at the all surfs., or 2) the use of a suboptimal antibody 

eonccntration for CY40; in the study of Severs ct al. (2004) the authors fail to comment 

on v hcthcr a stung signal was dctcctcd in the surrounding atrial or ventricular septal 

tissue r. hcte Cx40 should tic rrescnt (Ko et a1.2004). 

The abunJancc of Ca1S mR A in all rcgions (PNE, compact node, common bundle) of 

the rabbit A%N. ccaluak'm axis (Fig. 9. IC) agcy %%ith protein observations from mice, 

rst anJ rabbit AVN (Cccpcn ct a1., 1998; Coppcn ct al., 1999; Ko et al., 2004). More 

spccifically°, the abundant Ca1S mR. NA in the P`E (Fig. 9. IA) is consistent with 
findings at the pratcin lc%ci in rabbit (tX*rt)nsi et al., 2003; Ko ct at., 2004). 
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Figure 9.8 In situ hybridisation image for NF-M mRNA at the level of the compact node. Red 
dashed line outlines cells comprising compact node. 
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dashed line outlines cells comprising common bundle. 
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outlines cells comprising PNE. 
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Figure 9.12 In situ hybridisation image for ANP mRNA at the level of the common bundle. Red 
dashed line outlines cells comprising common bundle. 
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In situ hybridisation for Cx43 mRNA revealed an abundance of staining in the 

ventricular and atrial tissue at all levels throughout the AVN conduction axis, consistent 

with its role as the major cardiac gap junctional protein (Gourdie et al., 1991; Verheule 

et al., 1997). The abundance of Cx43 mRNA perinuclear staining in the common bundle 

is consistent with fast conduction through this structure. The presence of Cx43 mRNA 

perinuclear staining in the compact node, albeit at lower level than in the common 

bundle, is in agreement with the immunohistochemical findings described in Chapter 3. 

It is possible that conduction through the common bundle is faster than through the 

compact node. The significantly lower amount of Cx43 mRNA in the PNE (Fig. 9.1B) 

is consistent with slow conduction through this tissue (Nikolski and Efimov, 2001). The 

apparent gradient in Cx43 mRNA expression from common bundle>compact 

node>PNE agrees with a similar study investigating the levels of Cx43 protein 

throughout the AVN conduction axis (Ko et al., 2004). 

The presence of Cx40, Cx43 and Cx45 in all tissues of the AVN conduction axis (with 

the exception of Cx43, which is absent from the PNE) possibly suggests that the gap 
junctions exist as heteromers with different conduction properties the homomer i. e. gap 
junctions. Co-expression localisation of Cx43 and Cx45 has been detected in the rabbit 

SAN (Coppen et at., 1999). This would add to the already complex architecture of the 

node and would allow for subtle variations in speed of impulse propagation within the 

confines of the triangle of Koch. 

The real time PCR findings for ANP mRNA were as predicted, with abundant 

expression of mRNA in the atrial muscle and virtually no detection of ANP mRNA in 

the other tissue samples (Fig. 9.2B) confirming its role as a negative marker for the 

rabbit conduction system (Gorza et al., 1988; Gorza and Vitadello, 1989). These 

findings are consistent with previous studies (Mercadier et al., 1989; Sharma et al., 

2003). In situ hybridisation for ANP mRNA, however, revealed a greater complexity of 

ANP mRNA expression, at the level of the PNE: the atrial tissue lying on the left side of 

the atrial septum possessed abundant ANP mRNA perinuclear staining, whereas the 

tissue lying on the right was negative for ANP mRNA (Fig. 9.10). At the level of the 

compact node, the reverse was seen, with abundant ANP mRNA perinuclear staining on 

the right side of the atrial septum whereas the atrial tissue lying on the left was largely 

negative for ANP mRNA (Fig. 9.11). The ANP-positive tissue could be "true" atrial 

tissue, whereas the ANP-negative tissue could represent a region occupied by 
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transitional cells. If correct, ANP would be a good marker in AVN experiments to 
distinguish between "true" atrial muscle and transitional cells. 

NF-M mRNA staining of the AVN tissues (Figs. 9.7-9.9) was remarkably similar with 
our findings at the protein level described in Chapter 3; the PNE appears as a thin 

elongated collection of cells positive for NF-M mRNA (Fig. 9.7); the compact node 
appears as a typical oval-shaped collection of cells (Fig. 9.8) and the common bundle 
Fig. 9.9), as a more cylindrical bundle of positively stained cells lying near the crest of 
the ventricle. 

I have shown GAPDH and 28S to be uniformly distributed throughout the various 
tissues. This justifies their use as housekeepers in real time PCR experiments. 
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Chapter 10 

Summary 

Electrophysiology studies of the AVN of various species have described various 
electrophysiological phenomena including reentry, concealed conduction, facilitation 

and fatigue, amongst others. In addition, single cell studies and microelectrode studies 
have described a multitude of action potentials and cell types. Both of these 

electrophysiological means of studying the AVN show that the electrical activity of the 
AVN in all mammalian species is complex and heterogeneous. On the other hand, 

morphological studies have shown that the structure of the AVN is also heterogeneous 

and complex. To date, electrophysiological and morphological investigations, alone or 
combined (Anderson et al., 1976), have failed to provide detailed information regarding 
the electrophysiological properties of the specific sub-cellular compartments - which 

ultimately determine the overall function of the node. Therefore, by investigating the 

mRNA encoding ion channels and membrane proteins, and localising these mRNAs to 

specific subdomains by real time PCR analysis and in situ hybridisation I have provided 
further insights into the electrophysiological properties of specific regions of the rabbit 

atrioventricular node and therefore to overall AVN function. 

By grouping tissue types based on histological appearance, Cx43- and neurofilament-M 

labelling and subsequent three-dimensional reconstruction of these regions, I have 

provided a simplified understanding of AVN structure. Moreover, I have shown the full 

extent of the PNE, in contrast to the study of Ko et al. (2005), by using an antibody 

against neurofilament-M, which delineates conduction system tissue in the rabbit 
(Chapter 3- Fig. 3). Previous studies have failed to provide a distinct anatomical entity 

representing the fast-pathway. However, I have shown that the atrial septum 
immediately above the compact node is composed of densely- and loosely-packed atrial 

tissue and this area would likely contribute to fast pathway conduction. In addition, the 

three-dimensional reconstruction also acts as a mathematical model which can be used 

to study re-entry properties of the node (for example see Boyett et al. 2006). 

Furthermore, this accurate three-dimensional model can be built upon to ultimately 

produce a virtual heart which would act as a valuable anatomical educational tool for 

relating cardiac anatomy to function. 
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The posterior nodal extension has been implicated in the genesis of AVNRT and has 
been suggested to be the molecular substrate for slow pathway conduction (Inoue and 
Becker, 2000). It is of major importance, therefore, to elucidate ion channel expression 
patterns throughout this structure in order to provide insights into the ion channels 
governing the electrical properties of this structure such as the shorter effective 
refractory period compared to the fast-pathway and the relatively slow conduction (7 
cm/sec) of an action potential through this tissue. 

I have provided for the first time clues as to the electrical nature of the fast pathway by 

showing that 1) the atrial septal tissue likely to be the substrate for the fast-pathway is 

composed of both densely- and loosely-packed atrial tissue and 2) regions of this atrial 
septal tissue have a heterogeneous mRNA distribution for certain ion channels (for 
instance there are regions which are positive and negative for KChIP2 and Na�1.5 

mRNAs). These insights into electrical properties of the pathway could explain the 
longer refractory period of this pathway compared to the slow-pathway and could lead 

to pharmacological interventions for the cessation of re-entry. 

Additional re-entry pathways other than the fast- and slow-pathways have been shown 

electrophysiologically to enter the AVN from the superior margins of the coronary 

sinus. I have shown for the first time a bundle of densely packed, Cx43-positive, atrial 

tissue travelling from the region of the compact node to the superior margins of the 

coronary sinus which would provide an ideal molecular substrate for such a pathway. 
This structure was not mentioned by Ko et al. (2005). A possible explanation for this 
discrepancy could be due to the fact that both studies are based on a single heart and 
that there could be inter-individual variation, especially since this electrophysiologically 

determined pathway fails to be seen in every patient/preparation. 

There has been very little in the way of uncovering ion channel expression patterns in 

the atrioventricular node. Petrecca et at. (1997) using an antibody against a common 

region of sodium channels used immunohistochemistry to show Na+ channel expression 
in the compact node of the rabbit. Marionneau et at. (2005) carried out a real tine PCR 

study on mouse AVN but, however, their sampling procedure for the AVN was crude 

and there was a significant amount of atrial contamination (47 %) which could lead to 

misleading results regarding AVN function. An additional limitation of the study of 
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Figure 10.1 A schematic diagram to summarise the in situ hybridisation findings 
from the various AVN tissue regions. Arrows show the region where in situ 
hybridisation data was gathered. Contours show loosely packed muscle. Blue region, 
cells comprising the common bundle and lower nodal cells. Red region, cells 
comprising PNE and compact node. Yellow, leading pacemaker region in the PNE. +, 
means positive for given mRNA. -, means negative for given mRNA. +/-, means this 
tissue was positive in some regions and negative in others for the given mRNA. 
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Marionneau et al. (2005) is that the sampling procedure failed to take into account the 

complex architecture of the node and there was no information regarding subcellular 

structures within the AVN conduction axis. Therefore, the work I present here is novel 
due to the fact that I present ion channel expression patterns throughout the subcellular 

compartments of the AVN conduction axis including the PNE, which is important for 

understanding overall AVN function during health and disease. 

The posterior nodal extension in rabbit is likely to be identical to the inferior nodal 

extension described by Inoue and Becker (2000) for the human AVN. I have shown this 

structure to be largely absent of Cx43 and Na, 1.5, to be devoid of KChIP2 and to 

express Ca� 1.3 as the predominant L-type Ca 2+ channel isoform. The implication of 
these findings is poor coupling and a slow upstroke velocity of the action potential in 

this region. This in turn will result in slow conduction through this tissue. 

Tawara (1906) made the first report of a dense knot or "knoten" of atrioventricular cells, 

which later Anderson (1972) described in more detail and termed the compact node. 

Petrecca et al. (1997) have looked at ion channel expression pattern at the level of the 

compact node using an antibody common to all known Na+ channel isoforms. As in the 

early studies, I have described mid-nodal (or compact) and lower nodal cells. Moreover, 

I have shown the mid-nodal cells to be largely absent of Cx43 suggesting slow 

conduction through this region and to be devoid of KChIP2 mRNA suggesting a lack of 

or altered I,, in this region. These data suggest that a component of AVN delay could 

occur when an action potential reaches the compact node. 

Lower nodal cells, which lie in close proximity to cells of the PNE, have been suggested 

to act as a current sink for action potentials travelling along the PNE which would 

effectively slow conduction. In addition, these cells have been shown to display fully 

formed action potentials even when most of the tissue around these cells is refractory. 

The electrical properties allowing such activity to date has been unknown. I have shown 

these cells to have a unique ion channel expression profile, in that, both Caj. 2 and 

Ca�1.3 mRNA are expressed and they are absent of Na, 1.5 and KChIP2 mRNA. 

This work has uncovered the expression of the major ion channel subunits throughout 

functionally distinct areas of the AVN conduction axis. These data provide a better 

understanding of AVN function than previous studies (Petrecca et al. 1997). 
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The AVN has been described using the words of Sir Winston Churchill as "a riddle, 

wrapped in a mystery, inside an enigma". I would like to think that my work has 

contributed towards solving the "riddle", "mystery" and "enigma". 
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