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Abstract

Osteoporosis related bone fractures and osteoarthritis affect the lifes ofmillions of

people in the world and constitute a significant burden on the healthcare systems

of several countries. It is believed that mechanical factors such as excessive joint

loading during daily activities might play a role in their onset. Predictive meth-

ods based on computational modelling could identify the early development of

such diseases and, among these techniques, the multiscale modelling approach

shows promising potential in view of its capability to describe themusculoskeletal

(MSK) system across different spatial and temporal levels. The development of

a multiscale model of the MSK system, however, poses great computational chal-

lenges and requires the determination of multiscale links such as the joint con-

tact pressure, which is typically predicted by means of computationally expensive

methods such as the finite element method. An accurate low cost alternative is

represented by the discrete element method (DEM), a computational method in

which a spring mattress is used to describe the contact interactions within the

joints. The method, however, has been developed for static cases and does not

offer the possibility of tracking the physiological motion of the contacting bones

over time. Furthermore, time dependent properties such as viscoelasticity are of-

ten neglected within these frameworks. This thesis aims at extending the discrete

element method (EDEM) to track the bone motion and include the viscoelastic

phenomena. The methodology is used, in conjunction with subject specific MSK

models, for the development of subject specific anklemodels to compute the con-
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tact pressure during gait. Evaluation of EDEM and DEM outputs found that not

considering the physiological displacement of the talus causes an underestimation

of the joint pressure distribution, while the peak values remain substantially un-

affected. Comparison against experimental pressure data shows that EDEM can

identify the patterns of pressure in cadaveric ankle specimens. Finally, the vis-

coelastic formulation of EDEM proved successful in describing the typical creep

behaviour of articular cartilage.
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1
Introduction

1.1 Motivation

Thehumanmusculoskeletal system is a complex systemof organswhich, thanks to
the close cooperation of bones, muscles and connective tissue, gives humans the
ability to move. It provides form, support, stability and movement to the body.
Despite its extreme resilience, events can happen during life which trigger the on-
set of diseases which limit the functions of the musculoskeletal system, causing
pain, discomfort and in some cases even reduced mobility to the affected people.

Bone fractures and osteoarthritis (OA) are two among the most common dis-
eases which can greatly affect the musculoskeletal system. Bone fractures can oc-
cur either following traumatic events, such as falls [203], or because of natural
processes which weaken the bones, such as osteoporosis [55, 191]. In the for-
mer case the bones are not strong enough to resist to the force generated during
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falling [192], while in the latter case they cannot resist the forces which muscles
exert on the bone during walking [154].

Osteoarthritis is a degenerative joint disease which causes breakdown of all the
joint structures, including the articular cartilage and both subchondral and trabec-
ular bone [89], leading to joint pain [160], stiffness [60] and reductionof the range
of jointmotion [12, 158]. Its etiology is still debated and uniform consensus is yet
to be reached. It is believed, however, that traumas [205, 235] and biomechanical
factors such as excessive joint loading [52, 73] can trigger the onset of the dis-
ease. Even though the joints most susceptible to OA are the hip, knee and shoul-
der [104], it is reported than 1% of the world population suffers from ankle OA as
well [188].

In addition to thepain anddiscomfort caused to single individuals, thesepatholo-
gies represent also a significant burden on the healthcare system. The annual in-
cidence of hip fractures in the UK, 79 000 cases [105], is estimated to cost the
NHS approximately £1.1 billion [138]. Because of the increasingly ageing popula-
tion this number is expected to grow in the future, also considering that older age
groups are more susceptible to osteoporosis related hip fractures [72].

Recent estimates suggest that approximately 54million adults in the US [107]
and 8.5 million in the UK [76] show symptoms related to OA. The incidence is
related to age: 7.1% of adults aged 18 to 44 and 29% of subjects between 45 and 65
years show signs of OA in at lest one joint. The prevalence grows to 49.6% when
considering individuals older than 65 years [18]. These percentages are expected
to increase in view of the again population [107]. OA related costs in the UK are
estimated at £3.2 billions [40].

Whereas for bone fracture the treatment consists essentially of immobilisation
of the affected region [216, 243], existing therapies for OA involve management
of the symptoms [48, 157] and the administration of pain killers[16]. Most severe
cases are treatedwith total joint replacement surgery [235], which represents a sig-
nificant burden on the healthcare system. The cost of over 400 000 total knee re-
placement surgeriesperformedevery year in theUS is estimated to$10billions [128].

Adopted treatment strategies have been developed in the course of the years
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after analysing the outcomes from large cohorts of subject and selecting the ones
which had the better results in the majority of cases [4]. This approach has unde-
niably led to important progresses, although the very evident fact that each human
being is unique was rarely if never taking into consideration. Also, ex-post strate-
gies do not offer prevention against the arise of a disease.

Predictive methods can identify the features of a disease before it completely
develops, giving the doctors greater possibilities to successfully tackle the prob-
lem. Image-based predictive methods are diffused in the clinical practice. In re-
cent years the research community has started to apply mathematical modelling
to clinical problems. The development of a mathematical model requires first to
identify a certain phenomenon, and then to use mathematical equations to cor-
rectly describe it and, possibly, identify its causes [238, 240]. Because of the im-
portant role that mechanical stimuli play in the onset and development of OA and
bone fractures, the determination of themechanical environment within themus-
culoskeletal system is fundamental. Forces in the body can be estimated by using
simple engineering principles [254]. Recently, themultiscalemodelling approach
has gained popularity among researchers of the musculoskeletal system in view
of its capability to model different sub-parts of the musculoskeletal system and at
the same time to describe their mutual interactions [24, 238]. As shown in Fig-
ure 1.1.1, within the context of modelling of the musculoskeletal systems one can
identify the following scales: environment, population, body, organ, tissue, cell
and molecule.

The population level is comprised of several individuals which, even though
they may vary for gender or ethnic origin, share some common features. The hu-
man motion is described at the body level, where the human body is modelled as
composed merely of bones and muscle [238]. Muscle forces and joint load are
computed at this scale. The organ level is responsible for the description of the
mechanical response of the bones when subject to external load [238]. At the tis-
sue level the bone remodelling unit is modelled: it is responsible for bone appo-
sition and resorption [238]. The cells forming the bone tissue are described at
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Figure 1.1.1: Hierarchy and connections of the scales.

the cell level [238], which characterise the material properties of the tissue [238].
Figure 1.1.2 shows a diagram of scale separation with the characteristic time and
space lengths of each scale. The full integration of all the scales of musculoskeletal
system shows promising potential for application to clinical problems such as the
prediction of the risk of hip fracture [240].

However, developing such a multiscale model of musculoskeletal system poses
many great challenges and one of them is that the simultaneous numerical treat-
ment of equations spanning several order of magnitudes in time and space is cur-
rently beyond the available computational capacity. It also requires the definition
ofmultiscale linkswhich carry information across the scale. In the context of study
of osteoporosis and osteoarthritis wewill focus on the body and organ level which,
asFigure 1.1.3 shows, canbe connectedbymeansof the joint contact pressure. The
bones (organ level)which articulate to form the joints are covered, at their extrem-
ities, by a layer of articular cartilage. Forces generated during movement activities
(body level) press the bones one against each other, causing the layer of cartilage
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Figure 1.1.2: Scale separation in multiscale musculoskeletal biomechanics.

to make contact. It is the contact pressure generated between the cartilage layers
that transmits the external load to the boneswhich then respond according to their
mechanical properties. Since modifications of the structure of the cartilage affect
the load transmission within the joint it is clear that the joint contact pressure acts
as a multiscale link between the two scales.

This project will focus on developing a computationally efficientmodelling and
simulation methodology to build a link between body and organ. This study is an
indispensable part of multiscale modelling of musculoskeletal system, which will
provide quantitative knowledge related to the risk of fracture and better under-
standing of themechanical factors contributing to articular stress induced by joint
motion.

The estimation of joint contact pressure, originally performed through analyti-
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Figure 1.1.3: Coupling between body and organ levels

cal techniques on simplified geometries [25, 90, 113, 116], has received great im-
petus from the advance in medical imaging and the increase in available compu-
tational power which allowed the simulation of increasingly complex scenarios.
At the same time researchers acknowledged that each individual is different and,
thanks to technological advances, were able to develop the first subject specific
models of the human joints [123, 228, 239, 250]. Today, most of the available
subject specific joint models focused either on the hip [8, 69, 97, 118, 195] or the
knee [37, 125, 135] joints. Such models involved descriptions of the bone and
cartilage geometries built from medical images, and were written in terms of par-
tial differential equations (PDE), typically solved using the finite element (FE)
method.

However, despite the availability of powerful computing machines, the devel-
opment of subject specific FEmodels of the joints remains a time consuming task,
both in the pre-processing and the computation phases [1, 122]. Furthermore, the
coupling betweenbody andorgan levels requires the simultaneous solutions of the
PDEs describing the deformation of the cartilage and of the equations describing
the motion of the body. The solution of a PDE is usually found through a series
of intermediate steps, which have to be performed multiple times if the equation
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is coupled with body level equations, making the solution of the coupled problem
more challenging.

Even restricting the reasoning to the investigation of contact patterns in the
joints, it is clear that costly simulations restrict the applicability of subject specific
modelling techniques to small cohorts and datasets , whereas fast but still accurate
computational methods could be of use for preliminary evaluation of the state of
the joints in subject specific scenarios, or for population-wide investigation [9]. In
a possible scenario fast methods are used to compute the contact pressure distri-
bution, which is then passed as boundary conditions for FE simulations, making
possible to avoid costly FE contact simulations. The reduced computational cost
would enhance the coupling between the scales, and make possible to run such
analyses in shorter time [1] and on population-wide datasets [9].

An example of such fast methods is the discrete element method (DEM), a fast
and reliable technique primarily used for static contact modelling in the human
joints [1, 122]. It considers the bones as rigid bodies, interconnected by a mat-
tress of springswhichmodels the articular cartilage. Thesemodelling assumptions
drastically reduces the number of degrees of freedom of the system and lead to a
description of the problem bymeans of ordinary differential equations, whose so-
lution is significantly less computationally expensive.

1.2 Scope of thework and summary of chapters

Thiswork is devoted to the applicationofDEM, andof a timedependent extension
we developed, to the subject specific modelling of the ankle joint.

This thesis is organized as follows.
Chapter 2 presents the relevant literature, discussing the anatomy of the ankle

joint and its components. In addition, details on the techniques for the analysis of
the humanmotion and the development ofmusculoskeletalmodels are also given.
After a review of the existing joint models the aims and objectives are stated.

Chapter 3presents themathematical theorybehind thediscrete elementmethod
(DEM), exposes its limitation and presents the extended discrete elementmethod
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(EDEM).
In Chapter 4 the details of the development of subject specific ankle joint mod-

els are presented. Outputs fromDEMandEDEMare compared on simplified and
subject specific geometries in static and dynamic situations.

In Chapter 5 the predictions of EDEM in terms of contact pressure are com-
pared against experimental data collected at KU Leuven, Belgium.

Chapter 6 extends EDEM to viscoelastic systems, and presents a simple appli-
cation.

Chapter 7 draws the conclusions of the study, exposes the limitations and future
directions, and highlights the contributions of the thesis.
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2
Literature review

As discussed in Chapter 1, osteoarthritis and osteoporosis represent a common
disorder of the humanmusculoskeletal system. It is estimated that 1%of the world
population suffers from osteoarthritis related pathologies at the ankle joint [188].
Mathematical modelling can be used with the purpose of preventing the onset of
such disorders, or at the very least to understanding their causes. Among the pos-
sible choices for modelling the human musculoskeletal system, the multiscale ap-
proach shows great potential. It has been shown that the musculoskeletal system
canbe subdivided indifferent levels, or scales, and that thebody andorganones are
the more relevant to the determination of the mechanical environment within the
joints. The joint forces are computed at the body level using multibody dynamics
and optimisation techniques, commonly grouped under the name musculoskele-
tal modelling, and then transferred to the organ level bymeans of the joint contact
pressure, which acts as a multiscale link.
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Theaimof this chapter is to present a literature review onmusculoskeletalmod-
elling and joint contact mechanics. Firstly, the anatomy of the foot and its com-
ponents, including bones, muscles, ligaments and articular cartilage is introduced.
Themain features of the human gait cycle are then explained, followed by a review
of the techniques commonly used in the analysis of the human motion. Results
from experimental and computational studies of the contact mechanics of the an-
kle joint precede the statement of the aims and objectives of the work.

2.1 Foreword

To study human movement and musculoskeletal systems, the definition of a ter-
minology to indicate the different parts of the body is essential. To this end three
planes are defined which divide the human body into sections. Figure 2.1.1 shows
the anatomical planes of the human body.

The sagittal plane divides the body into a right and a left parts. The frontal, or
coronal plane, identifies an anterior and aposterior part. The transverse plane is or-
thogonal to the sagittal and coronal. The three planes have in common one point,
which is the centre of mass of the human body.

2.2 Ankle joint structure and function

Theankle joint complex is comprised of the lower leg and foot forming the kinetic
linkage between them which allows the lower limb to interact with the ground, a
key requirement for human locomotion. This sectionwill highlight key anatomical
bony structures and soft tissue that form the ankle joint complex.

2.2.1 Anatomy of the ankle joint

Thehuman foot is a complex system, whose global behaviour is determined by the
coordinated action of different parts: bones, capsules, tendons, muscles, synovial
fluid and articular cartilage [248] are just a few of the components. It is usually

10



Figure 2.1.1: Anatomical planes of the human body. Figure adapted
from [251].

subdivided into three segments: the hindfoot, the midfoot and the forefoot [83]
and consists of 26 bones associatedwith 33 joints [29]. Five bones and three joints
constitutewhat it is commonly referred to as ankle joint. These joints are the subta-
lar joint, the transverse tarsal joint and the tibiotalar joint, formed by the junction
of talus and calcaneus, talus and navicular, talus and tibia respectively.

The subtalar joint is formed by the articulation of the inferior part of the talus
with the anteriorportionof the calcaneus, andprovides attachment for theAchilles
tendon. The two bones articulate in two regions , on the anterior and posterior
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parts of the calcaneus, respectively, through a stable concave-convex connections.
Besides, further stability is provided by a number of ligaments.

The transverse tarsal joint, also known as Chopart’s joint, is formed at the junc-
tion between the talus and navicular. Studies from functional anatomy revealed
that its axis of motion is the same as the subtalar axis [159].

The main load bearing joint in the ankle complex is the tibiotalar joint, formed
at the junction of the distal end of the tibia and fibula with the superior part of the
talus. The distal end of the tibia presents, on its medial compartment, a process
named medial malleolus. The distal end of the fibula, located on the lateral side
of the joint, forms the lateral malleolus. In between the two malleoli there is the
tibial plafond, which is the inferior part of the distal end of the tibia. These three
constitute the articular joint with the talus. The talus presents a head, a neck and a
body. The talar dome, the superior aspect of the body, is the part which ultimately
articulates with tibia and fibula. Figure 2.2.1 shows the distal tibia and the talus.
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Figure 2.2.1: Right tibia (left) and talus (right). Figure from [248].

Seen in its lateral profile the talar dome has the aspect of a circle and, as illus-
trated in Figure 2.2.2, the whole talar dome can be approximated with a cylin-
der [19]. Physiological measures of the radius are approximately 20mm [99].

As shown in Figure 2.2.3, several ligaments span the ankle complex providing
connectionbetween thebones and stabilityduring themovement. Talus andfibula
are connected at the anterior side by the anterior talofibular ligament and at the
posterior side by the posterior talofibular ligament. Anterior and posterior tibio-
talar ligaments join the talus and tibia. Tibia, talus and calcaneus are further con-
nected by branches of the deltoid ligament.

The ability of the foot to perform a large variety of complexmovements is guar-
anteed, in addition to the highly specialised bone geometry, by twelve extrinsic
muscles [29]. Thesemuscles canbegrouped into compartments according to their
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Figure 2.2.2: Lateral view of the ankle joint. Figure from [159].

function. A possible classification distinguishes between anterior (tibialis ante-
rior, extensor digitorum longus, extensor hallucis longus, peroneus tertius), pos-
terior (gastrocnemius, soleus, plantaris), lateral (peroneus longus, preoneus bre-
vis) and deep (tibialis posterior, flexor digitorum longus, flexor hallucis longus)
compartments [194] but different ways of grouping are possible [173].

2.2.2 Articular cartilage

The extremities of the articulating bones are covered by layer of articular cartilage,
which provides lubrication and smooth transmission of the loads generated dur-
ing living activities [77, 104]. It is avascular and aneural [46, 178], and owes its
remarkablemechanical properties to its internal composition. It is considered as a
porous compositematerial [168] composed of cells, chondrocytes and their precur-
sors chondroblasts, and a solid matrix, called extracellular matrix, which is mostly
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Figure 2.2.3: Ligaments of the foot. Figure from [248].

formed of water, type 2 collagen fibres and various proteins.
Articular cartilage exhibits a layered structure which can be subdivided into

four main zones: superficial tangential zone, middle zone, deep zone and calci-
fied zone [165]. The separation between these zones is not neat, as they are distin-
guished according to the predominant orientation of the collagen fibres. As shown
in Figure 2.2.4, the fibers are parallel to the surface in the superficial zone, and ro-
tate in the middle zone until reaching an orientation orthogonal to the bone sur-
face in the deep zone [190].

Chondrocytes, which represent just a small portion of cartilage’s volume, are
the living heart of the tissue. During their lifetime these cells are responsible for
constructing and deconstructing the surrounding matrix through the synthesis of
Type II collagen and proteoglycans. Because of the avascular, aneural and alym-
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Figure 2.2.4: The layered structure of articular cartilage. Figure from [165]

phatic nature of the cartilage the cells can not be fed directly andmust resort to dif-
fusion processes within the extracellular matrix [77, 178]. Wastes are then taken
away by the synovial fluid that flows within the matrix.

The mechanical behaviour of the articular cartilage under loading arises from
its complex structure. The tissue can be thought as composed of two phases: a
fluid phase and a solid phase. As said above, water constitutes roughly 80% of its
wet weight. The sudden application of a compressive load such as those generated
during gait causes an immediate increase of the interstitial fluid pressure, which
pushes the fluid out of the extracellular matrix. Because of the low permeability
of the matrix, however, large frictional drag forces are generated which oppose
to a quick exudation of the fluid [167–169]. The release of the load allows the
fluid to flow back into the tissue. These dissipative processes confer the cartilage
two different viscoelastic properties. It is possible to identify both flow dependent
and flow independent viscoelastic effects. The flow dependent effect is due to the
movement of the interstitial fluid and to the frictional forces which are generated
when the fluid is moving inside the tissue [13, 168], while the flow independent
effect is generated by the motion of the macromolecules which form the collagen
fibres of the extracellular matrix [102].
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2.3 The human gait cycle

A gait cycle is the time period, the sequence of events, or the movements during
human movement in which one foot contacts the ground to when that same foot
again contacts the ground. The human gait cycle is divided into two phases [124]:
the stance phase and the swing phase. The stance phase occupies around 60% of
the gait cycle, while the swing phase comprises the remaining 40%. One gait cycle
is normally defined as theperiodof timebetween twoconsecutive events, typically
the heel strike of the same foot.

The stance phase begins with the contact between the heel and the ground. The
foot then rotates to increase the contact with the ground, leading to the instant of
foot flat, at around 15%of the gait cycle andwith the ankle typically in dorsiflexion.
The foot remains flat until the instant of heel rise, which is then followed by push
off. Immediately afterwards, the toe-off concludes the stance phase at about 60%
of the gait cycle. During swing the foot is off the ground and undergoes a series
of dorsiflexion, plantarflexion, inversion and eversion until it touches the ground
again. Figure 2.3.1 schematises the phases of the gait cycle.

2.4 Musculoskeletal modelling of the lower limb

During gait the articular cartilage can be subject to a variety of loads of different
magnitude and direction. In the previous sections we have explained the basic
deformationmechanism of the cartilage but we did not provide any details on the
origin of such loads.

2.4.1 Direct and inverse modelling of the musculoskeletal system

In this section, themusculoskeletalmodellingmethodologies and themodellingof
the ankle joint will be reviewed. The investigation of how joint loads are generated
is the main aim of musculoskeletal modelling. Musculoskeletal models typically
describe the human body as composed of rigid segments representing different
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Figure 2.3.1: Subdivision of the gait cycle. Figure from [120].

parts of the body, interconnected by joints with various properties and put in mo-
tion by actuators, i.e. muscles. Two approaches are possible: direct and inverse.
Direct methods compute the body kinematics resulted from a set of muscle acti-
vation patterns through direct integration of the equation of motion [238]. The
knowledge of themuscle activation pattern is a delicate issue: surface electromyo-
graphy (EMG) can provide an estimate, but they fail with deep muscle and suffer
fromnoise [44]. Also, numerical instability when integrating the equations ofmo-
tion can be common [175].

Inverse approaches, instead, start fromtheobservationof thekinematics to com-
pute the muscle activation pattern responsible for the generation of the observed
movement [254]. A typical pipeline of the inverse approach, is depicted in Fig-
ure 2.4.1. The first stage is the data collection, followed by inverse kinematics, in-
verse dynamics, static optimisation and joint reaction analysis. In what follows we
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Figure 2.4.1: Typical pipeline of inverse methods in musculoskeletal mod-
elling.

will discuss each of these stages.
During data collection the input data, which can be categorised into anatomi-

cal, kinematic and kinetic data, are collected. Anatomical data are used to assign
each segment its length, mass, centre of mass and tensor of inertia. Rough esti-
mates can be obtained from regression equations [54, 183], or statistical analysis
of data from cadavers [39]. These values, useful for the generation of so-called
“generic” musculoskeletal models [36, 58, 162] are of little use when conducting
subject specific investigations. Subject specific data are typically collected using
medical imaging techniques such as magnetic resonance imaging (MRI) [163] or
computed tomography (CT) [152]. The images are then segmented [223] and
used, through mapping of the grey level of the voxels into the density of the tis-
sues [65, 66], to estimate inertial properties such as mass, centre of mass and mo-
ments of inertia. Kinematics data are gathered through flashing LEDs [54, 153]
or reflective markers [103, 163] attached to the skin of the subject during a mo-
tion. Their trajectories are recorded using photographic cameras [54], infrared
cameras [103] or optoelectric systems [255].

During the inverse kinematicsmodelling stage the recorded trajectories areused,
in conjunction with the chosen joint definition, to compute the joint angles. It is
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common to model the hip as a ball and socket joint, and knee and ankle as ideal
hinges. The trajectories of the experimental markers are first imported into a soft-
ware formusculoskeletalmodelling, and then a set of virtualmarkers is defined. At
each time frame a least square minimisation algorithm is used to place the virtual
markers in a position as close as possible to the measured ones, at the same time
guaranteeing that the segments move coherently with the adopted joint represen-
tation [59]. The choice of the locations of the experimental markers is crucial as it
can affect the estimation of the joint angles, especially when multi-segments foot
models are adopted [182]. Ground reaction force, which is the force that the body
exerts on the ground while making contact with it during walking and, because of
Newton’s third law [177], is also the force that the ground exerts on the body, is
recorded using force platforms or insole pressure sensors [50, 117].

The inverse kinematics stage allows to position the rigid segments in space and
to orient them relatively to each other accordingly to the measured kinematics.
By taking the time derivatives of the position the velocity and acceleration of the
segments can be computed, leading to a full knowledge of the kinematic state of
the system. The aim of the inverse dynamics stage is to compute the internal joint
contact forces andmoments which are exchanged among the segments during the
dynamic activity[184]. To this end the original link-segmentmodel is broken into
its elementary parts, which are then examined separately and solved sequentially
from the ankle towards the hip. Together with the joint kinematics, the ground re-
action forces served as input for the determination of internal forces andmoments.
Figure 2.4.2 shows the free body diagram of each segment of the lower limb at a
generic time instant during gait.

After inverse dynamics the joint moments responsible for the generation of the
observedmotion are known. Theentities responsible for the generationof themo-
tion are the articular muscles, which contract and exert a force at a given distance
from the centre of rotation of the joint. In a musculoskeletal model the number
of muscles is typically higher than the number of total degrees of freedom they
control, making the determination of the muscle forces an indeterminate prob-
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Figure 2.4.2: Free body diagram of the lower limb during walking. Green
arrow is the ground reaction force, blue arrows represent the inertia of the
rigid segments, black arrow is the gravity. Red arrows represent the unknown
joint contact forces.

lem[115]. Thismeans that there exist an infinitenumberof possiblemuscle activa-
tion patterns which generate the desired joint moments and observed kinematics.
Two main methods have been developed to deal with this problem: the reduc-
tion method [114, 184] and the optimisation method [54, 210]. In the reduction
method, muscles with similar functions are grouped together until the number of
unknown forces to be determinedmatches the number of available degrees of free-
dom. Optimisation methods were first used in 1973 by Seireg and Arvikar [210].
In this approach, a function of the muscle forces is minimised or maximised, sub-
ject to the constraint that the computed activation pattern of the muscle forces
generates the observed joint moments. Typically, the sum of squared muscle acti-
vation is minimised [47, 87, 163], but formulations where the objective function
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involves the sum of the nth powers of the muscles forces [53] or the weighted sum
ofmuscle forces [201, 218] are also used. After themuscle forces have been deter-
mined, the total joint load is determined as the sum of the muscle forces and the
joint contact force [221, 254].

2.4.2 Kinematics of the ankle joint

The complex anatomical structure of the foot allows for several different move-
ments tobeperformed. Thekeymovementof the ankle joint complex is theplantar-
/dorsiflexion, which happens in the sagittal plane about an inclined axis which
passes through the two malleoli. The ab-/adduction motion, also known as inter-
nal/external rotation, happens in the transverse plane around the long axis of the
tibia. Inversion/eversion, the movement in the frontal plane, are permitted by the
subtalar joint [260]. Figure 2.4.3 summarises the elementary motion of the foot.

Figure 2.4.3: Axes of rotation of the foot-ankle complex. Figure from [29].

Since the foot and ankle complex are able to performa variety of differentmove-
ments, the possible modelling choices are numerous as well. Estimation of the
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joint kinematics relies on the collectionofmarker trajectories, which are thenpost-
processed using an inverse kinematics approach where the experimental trajecto-
ries of themarkers arematchedwith the trajectories of virtual markers compatible
with the chosen description of the joint.

Single segment foot models represent the simplest idealisation of the geometry
of the foot: they consider the foot as a rigid body connected to the tibia through
the ankle joint, which can be assigned different degrees of freedom. In [119] Kad-
aba and colleagues, using a small set of markers, developed a single segment foot
model able to capture the motions of ankle rotations and plantar-/dorsiflexion.
Fewmarkerswere also used in [56] todefine a single degree of freedomankle joint.

Single segment models, although useful for preliminary evaluation of the kine-
matics of the ankle and foot complex [119], fail to provide a more realistic repre-
sentation of their structure and kinematics. Multi segments models have proven
able to accurately describe the motion of the foot in both healthy and diseased
conditions [181]. They are obtained by grouping several neighbouring bones to-
gether, creating the so called foot segments. Such segments are interconnected by
joints which allow rigidmotion between them. Through the use of a two segments
model, Scott and colleagues [209] measured in-vivo ankle angles ranging from 10◦

plantarflexion to 10◦ dorsiflexion.
Several models are based on a three segments foot model plus one segment for

the tibia. Kidder et al. [126] subdivided the foot into calcaneus, talus and navic-
ular, cuneiforms, cuboid and metatarsal, and hallux. Observed kinematics in the
sagittal plane showed dorsiflexion for the whole duration of the gait cycle, with
values ranging from 5◦ to 25◦. Carson and colleagues [38] developed a three seg-
ments foot model, comprising of hindfoot (calcaneus and talus), forefoot (five
metatarsal) and hallux (hallux proximal phalanx) and investigated the gait patterns
in healthy adults, finding angles of plantar-/dorsiflexion ranging from−10◦ to 5◦.
Similar ranges ofmotion were found by Stebbins et al. [220] when applying a sim-
ilar model to a population of 14 healthy children, and byOkita [181] using frozen
cadaveric feet. A similarmodels, which drew analogue conclusions, was presented
in [200]
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Despite three segments models succeeded in giving an insight on the kinemat-
ics of the ankle-foot complex, more complex and detailedmodels were also devel-
oped to deal with inaccuracies arising from lack of rigid body motion [170, 176]
and motion artefacts due to skin and soft tissues [181]. Cobb [45] presented a
four segments foodmodel, and Leardini and coworkers showed that their five seg-
ment shank-foot model guaranteed high repeatability of the measured kinematics
among different subjects [139].

The model developed by Simon [215] included seven segments and showed a
kinematics of the tibiotalar joint in good agreementwith that fromsimplermodels.
In 2003 MacWilliams and coauthor presented a nine segments foot model able to
predict the load transmission between the rigid segments, in addition to the usual
study of their kinematics [150]. An eight segments model was proposed by Scott
andWinter in 1993 [209]: the joints between the segmentswere described as ideal
hinges, and a set of springs and dampers was used to simulate the contact between
the foot and the ground.

Although different modelling strategies can lead to different definition of the
neutral positionof the ankle joint, the amplitudeof its rangeofmotion is consistent
over the model existing in the literature. During the majority of stance the ankle
increases its state of dorsiflexion. The trend reverses towards the instant of heel-
off, reaching its most plantarflexed position at toe-off. The ankle angle increases
again during half of the swing to then decrease until heel strike. A typical pattern
is shown in Figure 2.4.4.

2.4.3 Kinetics

The movement of the body would not be possible without the propulsive action
forces and moments. Forces and moments are generated by muscles and then
transmitted through the joint. Instrumented prostheses exist for in-vivo estima-
tion of the joint load, and they have been used to measure the joint loading at the
hip [23] and the knee [61]. Their use however is restricted to a limited number of
situation, and researchers have often to rely on musculoskeletal models to obtain
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Figure 2.4.4: Ankle angle during gait. The blue vertical line indicates the
instant of toe-off. Figure adapted from [163].

an estimation of such loads, especially when investigating the ankle joint.
In 1975 Seireg and Arvikar [211] used generic input data to compute analyt-

ically the ankle load acting on a foot modelled as a single rigid segment, obtain-
ing values of peak force around 6 body weights (BW). Similar results have been
obtained in [219], with the ankle being subject to 6 BW. The use of penalisation
methods led Komistek and colleagues [131] to predict 1.5 BW at the ankle. Re-
cently, several subject specific models of the musculoskeletal system have been
proposed, with studies focusing on the investigation of the effect uncertain pa-
rameters have on the quantification of the output. Valente et al. [236] predicted
the peak ankle reaction force to be 6 BW and relatively insensitive to a number of
parameters such as position of bony landmarks and tendon andmuscles paths and
insertion points. Similarly, Martelli et al. [155] evaluated the maximum force as
4 BW, being affected by 10% from modification of the joint axes. In [193] sub-
ject specific lower limbs model of juvenile individuals was presented, with joint
forces peaking around 6 BW.The investigation of inter and intra-operator variabil-
ity in [95] showed that the prediction of muscle forces and ankle contact forces
in subject specific lower limbs models can be affected up to 64% and 23% respec-
tively. Maximum reported values of ankle contact pressure ranged from 4 to 8 BW.
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Modenese and colleagues [163] developed a series of fully subject specific lower
limb models of children to investigate their gait features, obtaining forces from 5
to 8 BW.

A typical ankle joint reaction force is shown in Figure 2.4.5, where it can be ob-
served that the ankle force increases steadily duringmost of the stance, reaching its
peak value in proximity of toe-off and then sharply decreasing afterwards. Resid-
ual force is still present during swing, due to themuscles driving the rotation of the
foot as the leg swings.

Figure 2.4.5: Ankle reaction forces during gait.

2.5 Ankle contact mechanics

During gait, or physical activities in general, the force generated by the muscles
causes the bones forming the joint to be pushed one against the other, causing
the interposed layers of articular cartilage to make contact [90]. This field of con-
tact pressure is themultiscale link ultimately responsible for the load transmission
within the joints. It is speculated that deviations of the contact pressure distribu-
tion from physiological patterns may be related to the onset of degenerative joint
diseases such a osteoarthritis [27]. The determination of such patterns, however,
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is not feasible in in-vivo scenarios, and researchers had to either measure it in-vitro
or to estimate it in-silico.

2.5.1 Experimental studies

Experimentalmeasures are generallyperformedoncadaveric specimensusingpres-
sure sensitivefilms, placed inbetween the articular surfacesof talus and tibia, which
allow the collection of data regarding contact area and pressure.

In [129], eight cadaveric specimens from adult subjects were placed into a static
loading devices which applied loads ranging from 200N to 1500N. Recorded val-
ues of pressure varied between specimens , but in all cases they were reported to
increase with load. Values ranged from 2MPa to 13MPa. A similar trend was ob-
served in the contact area, which increasedwith load fromaminimumof 1.5 cm2 to
a maximum of 5.5 cm2. The maximum loading was observed in the anterior com-
partment of the joint, and grew towards the medial part as the load increased.

Bruns and Rosenbach [32] investigated a variety of different joint positions be-
fore and after ligaments resection in 13 cadaveric ankle joints. The pressure dis-
tribution and the location of its maximumwere found dependent on the joint po-
sition, with the maximum being attained at the centre of the joint when in neu-
tral position and posteriorly when in dorsiflexed position. These observations also
held after ligament resection. The obtained values of contact area varied with the
position,with averagevaluesof 1.6 cm2. Peakvaluesof contactpressurewere around
5MPa in dorsiflexion and 2.7MPa in plantarflexion, and increased slightly after lig-
aments resection. Similar trends were also observed in [64, 133].

Contact area in non-weight bearing conditions in twenty cadaveric feet was in-
vestigated in [253]. Thespecimenswere studiedunder a varietyof dorsiflexionand
plantarflexion configurations . Cartilage engagement was high, on average above
50%. Contact patterns were dependent on the local cartilage thickness, a result
also confirmed in [161]

Hunt and colleagues [110] applied 700N of axial load on eight amputated feet
specimens, finding that the average contactpressure increased from 2MPa to 5MPa
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when an external rotation is superimposed to the vertical load.
Recently, despite the limitation of long acquisition times which might induce

scanning errors, advanced imaging techniques havemade it possible to estimate in
vivo some features of the ankle contact. Wan et al. [244] studied ankle contact area
at heel strike, mid-stance and toe-off using a fluoroscopic system which measured
the in-vivo bone kinematics. The contact area was then computed as the intersec-
tion of estimated cartilage volumes. Average values ranged from 2.7 cm2 at heel
strike to 4.16 cm2 at mid stance. A comparison against experimental data showed
that the imaging technique tended to underestimate the contact area. In a follow-
ing study [245] the fluoroscopic system was used to measure cartilage thickness
and strain. The thickness varied with the location in the joint and the maximum
strain was observed in the anteromedial part of the joint, where also the thickness
was minimum.

Eight specimens from adult subjects were used for a dynamic study in [224],
where the stance kinematics and kinetics were simulated by means of a dynamic
loading device. Under a 350N vertical load, 4.8MPa of peak pressure were mea-
sured in the anterolateral section of the joint. Overall, the behaviour of the peak
pressure resembled the shape of a typical ankle contact force during stance.

2.5.2 Computational studies

Because of costs, ethical issues, availability of specimens and complex setup, ex-
perimental studies of joint contact mechanics have been limited in the variety of
scenarios they can reproduce. They are usually performed on specimens collected
ex-vivo and simulate only a limited range of activities. Moreover, such studies are
performed in conditions which are substantially different from the in-vivo scenar-
ios they are trying tomimic. The use of devices for the in-vivomeasurement of the
joint contact pressure is limited to the hip joint [106, 132], knee joint [79] and
intervertebral discs [252].

Computational models make possible to run a virtually infinite number of sim-
ulations of the same phenomenon, varying the input parameters and studying sit-
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uations whichwould be too complex to study experimentally. This is paidwith the
long time needed to build and run themodels. Also, results from in-silico can rarely
be trusted as they are, and need to pass a stage of comparison against experimental
data collected in similar situations.

To develop a computer model it is indispensable to describe the physical phe-
nomenonunder investigationusingmathematical equations,which are then solved
using a variety of techniques. Continuous or discrete modelling philosophies can
be adopted. In the former case, the behaviour of the bodies is described by means
of the equations of elasticity. These are a system of partial differential equations
(PDEs)whichdescribe how thebodies generate an internal stress fieldwhich equi-
librates the applied loads, accompanied by information on the kinematics of the
deformation process and on the relationship between stress and deformation [42,
80]. In the simplest case the deformations, also called strains, are assumed to be
small when compared to the characteristic length of the problem, and the stress-
strain relationship, also known as constitutive relationship, is taken as linear [92].
It is the constitutive relationship that discriminates whether the behaviour of the
body ismodelled as isotropic or anisotropic, and homogeneous or heterogeneous.
Under these assumptions, the resulting system of PDEs is linear [6, 7, 69, 97].
Contact conditions are usually expressed through inequalities formulated on the
contact region whose location, however, is not known a priori as its location de-
pends on the solution of the elastic problem [217, 257]. Inequalities and solution
dependent conditions are common in nonlinear problems and, indeed, the for-
mulation of a contact problem will always be nonlinear, even when the strongest
modelling assumptions aremadeon the linearity of themechanical response of the
bodies. Adopting more complex constitutive relationships, hyperelastic [30, 189]
ormultiphasic [136, 185] are commonoptions tomodel the cartilage, or loosening
the hypothesis of small displacements will further increase the degree of nonlin-
earity of a formulation which was nonlinear from the beginning.

The increasing complexity of the models makes the problems extremely hard if
not impossible to solve analytically, and lead to the development of techniques for
the numerical treatment of the equations. Inmost implementations the equations
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of contact are usually solved through the finite element method (FEM) [26], a
well-established, mature and general technique for solving differential equations.
It relies on projecting the solution of a PDE from its original infinite dimensional
solution space into a finite dimensional one [196]. This latter space is built on a
finite set of basis functions, which in turn are defined over a discretised version
of the physical domain under consideration. This projection yields a system of
algebraic equations whose solution, under general hypotheses, converges to the
solution of the original PDE when the discretisation step converges to zero [88,
196].

The numerical solution of a differential problem, the load transmission within
the joint is no exception, can be subdivided into three phases: preprocessing, solu-
tion and post-processing [88]. The preprocessing stage is concerned with the dis-
cretisation of the physical domain, better known as meshing, and with the choice
of the basis of the approximating space, this step is commonly referred to as the
choice of the element type. After this, the discrete system of equations is assem-
bled and passed to the solution stage. A variety of algorithms can be used to solve
the resulting system of equations, which is typically large and nonlinear [257].
After the solution has been found it can be manipulated in the post-processing
phase to extract quantities of interest such as stress and strain, and visualised on
the meshed domain.

As FEM is a general and powerful technique, its applications spanmany fields of
biomechanics [28, 74, 81, 98, 108, 208]. Restricting only to joint contact mechan-
ics, several studies exist in the literature, heterogeneous for adopted constitutive
models and simulated loading conditions. Most of the studies, however, focus ei-
ther on the hip [1, 6, 31, 69, 97, 199, 234, 247] or the knee [63, 143]. They typically
make use of elastic representation of the cartilage, either linear [1] or hyperelas-
tic [69, 97], which is an appropriate assumption for short loading times [104], but
multiphasic representations have also been adopted [91, 144, 185].

Limited literature is available regarding computational ankle contact mechan-
ics. Anderson and colleagues [7] proposed a subject specific FE model of the
tibiotalar joint for the prediction of the contact pressure. The articular cartilage
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was modelled as a linear elastic isotropic material. The geometry of the cartilage
layers was estimated after extrusion from the underlying subchondral bone. A se-
lection of 13 time points from the stance phase were selected and simulated. The
talus was weakly constrained, and able to change its orientation when seeking for
the equilibrium configuration. Reported values of peak contact pressure were be-
tween 9MPa and 14MPa.

In 2007 the same authors developed two specimen specific static FE models of
two cadaveric ankles, and compared the patterns and values of contact pressure
against collected experimental data, finding a good agreement.

Li and colleagues [147] extended the previous studies to predict, in addition
to pressure patterns, also the contact stress exposure over time in FEmodels of 11
intact and fractured ankles. The contact pressure was found higher in the fractured
case. Similar results were reported in [9].

Chitsazan and colleagues in 2015 [41] applied compressive loads increasing
from 0N to 1000N in 70 seconds and then decreasing at the same rate to a ca-
daveric sample. Five different positions were investigated. The strain of the bones
was measured using strain gauges and then compared to prediction from the cor-
responding FE model, finding high values of correlation. Although the contact
pressure was not measured experimentally, the FEmodel predicted peak values of
4MPa in the anterolateral region of the joint.

Peak pressure of 6MPa in plantarflexion and 2.4MPa in dorsiflexion are pre-
dicted by the FE ankle model presented in [3].

Predictions from this powerful tool are paid with time consuming preprocess-
ing phase and resource intensive solution algorithms [137, 257], making FEMnot
suitable for the integrationwithin amultiscalemodelling framework. For this pur-
pose discrete modelling strategies can be used as alternative. Such modelling ap-
proach does not consider the bodies as continuous, and gives a simplified repre-
sentation of the contact interactions [104]. On one hand, this restricts the spec-
trum of possible scenarios that can be simulated. On the other hand, it can give
valuable answers in a short time and, if its field of validity is well delineated, these
answers can be as valid as those from continuous models [142]. The discrete ele-
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ment method (DEM) is a computational technique developed for the solution of
static contact problems, whose fields of application span from the elbow joint [5],
to the hip joint [1, 51, 85, 122, 231, 259], the patellofemoral joint [2, 25, 71, 134],
the knee joint [22, 25, 207] and the ankle joint [96, 122], which has shown its ca-
pacity to produce predictions of joint contact pressure in good agreement with FE
results [1, 122, 142] and experimental measurements [2, 71]. Its main assump-
tions are that the bodies can be considered as rigid, while the interposed layers of
cartilage can be regarded as a bed of non-interacting springs.

These assumptions make possible the description of a joint as a low degrees of
freedom system, with substantial savings in terms of solution time. The joint con-
tact pressure computed using DEM could then be used as boundary condition for
FE simulations of the bones, avoiding the time consuming nonlinear part of the
solution. Furthermore, its low computational cost wouldmake DEM ideal for the
integrationwith themultibody systems used at the body level, favouring the devel-
opment of amultiscalemodel of themusculoskeletal system. One of themain lim-
itations of DEM, however, is that it has been developed for static problems. When
used in time dependent problems every time point is considered independent of
the others, which implies that the implicit assumption that the position of the con-
tact bodies does not change over time. However, the use of intra-cortical bone-
pins [78, 197], skin reflective markers [148] and in-vivo imaging [212, 214, 232]
have shown that translations happen in the joints during daily activities. The dis-
tance of the contacting bones is therefore not constant, and affects the contact
pressure distribution [198]. The translations of the bones can be described at the
body level by using appropriate joint models [59]. The coupling of such models
with the computation of the joint pressure requires a contact method able to in-
clude the effects of bone kinematics but the DEM, in its original formulation, is
not capable of this. Also, as pointed out in [22], time dependent behaviour such
as viscoelasticity cannot be included within DEMwithout adding additional vari-
ables which track the contact status of the cartilage over time.
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2.6 Aims and objectives

The development of a time dependent extension of the DEM would make possi-
ble to overcome the aforementioned limitations while at the same time preserving
the features which makes DEM a powerful fool in view of the development of a
multiscale model of the human musculoskeletal system. In this thesis we will de-
velop such an extension, and present its applications to the study of the contact
mechanics of the ankle joint.

The aim of this study is the development of reliable and fast to run subject spe-
cific ankle joint models able to include time dependent effects during the simula-
tion of the gait cycle using subject specific input data.

Objectives of this study are:

• To implement a static version of DEM.

• To develop a time dependent extension of DEM (EDEM).

• To implement the EDEM in a computationally efficient manner.

• To compare the predictions on idealised and subject specific geometries.

• To compare the outcomes of DEM and EDEM.

• To assess the sensitivity of EDEM to input parameters which may be not
well determined.

• To compare the outcomes of EDEM against experimentally collected data.

• To simulate the viscoelastic behaviour of the articular cartilage in simplified
scenarios.
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3
Discretemodelling in joint contact

mechanics

3.1 Introduction

As mentioned in Chapter 2, the finite element method (FEM) is the most used
method for the estimation of the joint contact pressure. The mathematical the-
ory behind the FEM involves the use of partial differential equations to describe
the mechanical behaviour of the contacting bodies. On one side, this permits a
detailed representation of the contact process but, on the other, it requires the
use of large computational resources to solve the problem. This led the research
community to develop alternative low cost, but still accurate, techniques such as
the discrete element method (DEM). DEM is a methodology to treat static con-
tact problems in which the contacting bodies are assumed to be rigid, while the
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contact interactions are described by a mattress of non-interacting springs. These
modelling assumptions drastically reduce the number of degrees of freedomof the
system and lead to a description of the problem by means of ordinary differential
equations, whose solution is significantly less computationally expensive. Being
developed for static problems, DEM can not be used for the simulation of time
dependent contact processes which physiologically happens within the joints of
the musculoskeletal system, whereas the use of FEM in time dependent scenar-
ios results even more challenging from a computational point of view. The aim of
this chapter is therefore to present an extension of DEM which is suitable for the
simulation of time dependent contact processes.

This chapter will begin with a detailed presentation of the mathematical theory
behind the Discrete Element Method (DEM), an existing technique for the com-
putation of the pressure between two contacting bodies in static scenarios. The
presentation of a simple problem will highlight some of the limitations of DEM
and lead to the formulation of the Extended Discrete Element Method (EDEM),
a novel technique for the treatment of time dependent contact problems andmain
theoretical contribution of this thesis.

3.2 TheDiscrete ElementMethod

In this section the main hypotheses and features of the DEM, as originally devel-
oped in [5], [85] and [241], are discussed. In what follows the method will be
described for the case of two contacting rigid bodies only, andwithoutmaking ref-
erence to a specific biomechanical problem. Generalisation to the n-bodies case
is straightforward and will not be treated here. DEM is a static method, therefore
the discussion in this section will refer to a single time point.

The main hypothesis in DEM is that the contact of two elastic bodies can be
modelled using two rigid bodies connected by a mattress of springs. The springs
represent the tendency of the two bodies of opposing to the deformation conse-
quent upon the application of an external load. When dealing with contact prob-
lems in biomechanics the bones will be modelled as rigid bodies, whereas the ar-
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ticular cartilage is represented by a layer of springs. In continuum mechanics the
contact state of a point is expressed through inequalities which prescribe the direc-
tion of the reaction force a point can exert, and specify that a point in non-adhesive
contact experiences a state of compression [217]. These properties are enforced
withinDEMbygiving the springs purely compressive resistance. Theexternal load
causes the rigidbody todisplace fromtheir initial position, and this displacement is
then translated to the individual spring which reacts by exerting a force. The force
expressed by the spring is related to the contact pressure at that specific point.

Let {O; e1, e2, e3} be a Cartesian frame for a three dimensional space. The two
contactingbodieswill be representedby twodisjoint subsetsF andMof the three
dimensional space. We will considerF to be stationary in space, whileMwill be
allowed to move to reach the mechanical equilibrium with the external applied
loads. The position vector of the centroid G of the moving body, shown in Fig-
ure 3.2.1, is expressed in Cartesian coordinates as rTG = (xG, yG, zG). The contact
region is estimated through a two stage procedure, one geometrical and one me-
chanical. The geometrical stage provides the first estimate of the contact region,
based on the specific surface shapes of the two contacting bodies, determining its
maximal extension, and will be discussed in details in Chapter 4. This maximal
extension estimate is then refined during the mechanical stage. Throughout this
section we will assume the maximal estimate to be known and describe the me-
chanical considerations that are drawn for estimating the contact region.

Let S ⊂ M denote the maximal contact region. Within the framework of
DEM, contact interactionsbetween twobodiesF andM aremodelledby springs,
which carry compressive and shear resistance in response to the external loading.
The springs are defined to have initial direction normal to S, with one end attached
to S ⊂ M and the other toF . The un-deformed length of each spring depends on
its location on S, and varies according to the shape of the surfaces and the location
of the spring. A representative point of S, that is the attachment point of a generic
contacting spring, can be denoted by the vector rT = (x, y, z). A complete defini-
tion of the springs requires also the definition of their stiffness parameters, which
link the deformation of the springs to the force they express when deformed. The
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resistance to compressive loads is modelled by the parameter kd, while the resis-
tance to shear loads is modelled by ks. This scalar field is not homogeneous over
the surface S and varies according to the local length of the springs and to the local
material properties of the contacting bodies.

Theapplicationof external forces andmomentswill causeM todisplace, rigidly,
from its original position, reaching the equilibrium configuration B(M). Such
displacement can be characterised through two additive components: a transla-
tion, common to all the points, and a rotation. Themagnitude of the displacement
induced by the rotation varies from point to point, according to the distance with
respect to the centre of rotation of the rigid body. Using the centroid G as centre
of rotation and assuming the rotations to be infinitesimal, the displacement ur of
a point on the surface S identified by the position vector r can be expressed as

ur = uG + q × (r − rG). (3.1)

InEq. 3.1, the vectoruG ∈ R3 denotes the rigid translationofM, and the vector
q ∈ R3 denotes its infinitesimal rigid rotation, as shown in Figure 3.2.1.

To derive the contact equilibrium equation we will here introduce two opera-
tors, the particulariser operator and the displacement-to-stress operator, which will
provide clearer physical insight of the method. First, note that for each v ∈ R3 it
is possible to find a skew-symmetric matrix Wv such that, for a given a ∈ R3, one
has

Wva = v × a, (3.2)

where “×” denotes the standard vector product in R3. The meaning of Eq. 3.2 is
that the rotationof a vector a canbe characterised either using the skew-symmetric
matrixWv or its axial vector v. This, however, holds only for infinitesimal rotations.
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Figure 3.2.1: The kinematics of the discrete element method. The transfor-
mation B(M) which brings M to its equilibrium position is described by the
translation uG and the rotation q. S indicates the articular part of body M, r
is a generic point on S, G is the centroid of M and F is the fixed body.

If v = (l,m, n) one has

Wv =

 0 −n m
n 0 −l

−m l 0

 .

Now we define the particulariser operator as the following 3× 6matrix

Br =
(
I3×3 WrG−r

)
,

where I3×3 is the 3 × 3 identity matrix and Wr−rG is the skew-symmetric matrix
associated with the vector (r − rG). Br is called particulariser because it links the
rigid displacement of the body, which is a global quantity, to the local displacement
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of its points and allows to rewrite Eq. 3.1 in a more concise form

ur = Bru. (3.3)

The vector u = (uT
G qT)T ∈ R6 collects the components of the rigid displace-

ment.
Toconstruct the equilibriumequation it is necessary to computehowthe springs

deform and how, following the deformation, they generate the associated normal
and shear forces. Since the bodyF is assumed to be fixed, the deformation of the
springs is driven by the displacement of M only. Thus the deformation of the
spring located in position r coincides with its own displacement:

δr = ur = Bru. (3.4)

Todeterminehow the springs carry the applied load it is necessary todefinehow
thedeformation is translated into forces. This information is providedby adiscrete
form of the elastic tensor from the linearised theory of elasticy [92], which wewill
call displacement-to-stress operator. To construct the displacement-to-stress operator
consider that, given two vectors a, b in R3 their dyadic product is defined as the
matrix a ⊗ b such that

(a ⊗ b)c = (b · c)a, ∀c ∈ R3. (3.5)

The application of (a ⊗ b) results in a vector parallel to a, whose magnitude de-
pends on the combined magnitudes of a, b and c.

Now we introduce a second operator, the displacement-to-stress operator, as

Dr = kdnr ⊗ nr + ks(I3×3 − nr ⊗ nr), (3.6)

where nr is the unit vector normal to the plane tangent to the contact point r, kd is
the stiffness of the contact in the same direction, and ks is the stiffness on the tan-
gent plane, due to the friction between the two layers[84]. The normal stiffness kd
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is not homogeneous over the contact domain as it depends on local un-deformed
length h and material properties of the springs [1, 85, 96, 122]:

kd =
E(1− ν)

(1+ ν)(1− 2ν)
1
h

(3.7)

HereE and ν are theYoung’smodulus andPoisson’s ratio of thematerialswhich are
making contact. The tangent stiffness ks depends on the local length of the springs
and on the shear modulus C as

ks =
C
h

(3.8)

Because of the dyadic products, the action of the displacement-to-stress operator
is in projecting the displacement of a point into its components over the normal
direction and the tangent plane, and then scaling these components according to
the stiffness values. The stress in the spring is then computed as

σr = Drδr = DrBru. (3.9)

Because of the definition of Dr, the stress has one component along the direction
normal to S and one on the tangent plane:

σrn = kdBru · nr

τr = ks
√

∥δr∥2 − δ2n
(3.10)

where δn = Bru · nr is the normal component of the strain.
The equilibrium equation can be derived using an energetic approach. To this

end first notice that the strain energy density is the scalar product between stress
and deformation σr · δr. The strain energy, which is in this case the energy due to
the contact, is the integral of the strain energydensity over the contact regions. The
total energy of the system takes into account also the contribution of the applied
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generalised external load T, containing forces and moments, and is therefore

E(u;T) = 1
2

∫∫
S
σr · δr dS− u · T

=
1
2

∫∫
S
BT

r DrBr dSu · u − u · T

=
1
2
Ku · u − u · T.

(3.11)

The vector T = (FT MT)T ∈ R6 contains the force F and moment M acting
on the mobile bodyM. The matrix

K =

∫∫
S
BT

r DrBr dS (3.12)

is the stiffness matrix of the system. It is a 6 × 6 symmetric and positive definite
matrix, which encompasses the global geometrical and mechanical properties of
the system.

The equilibrium equation is obtained under the conditionwhichminimises the
total energy of the system. Imposing that the gradient of the energy is identically
zero yields

∇uE(u;T) = Ku − T = 0. (3.13)

Eq. 3.13 must be solved for the displacement of the rigid body. The unilateral na-
ture of the contact [217], however, imposes that the solution umeets the require-
ment that any of the springs is stretched:

DrBru · nr ≥ 0. (3.14)

DEMdeals with the constraints by solving Eq. 3.13 iteratively. After u has been
determined, it is checked that all the springs are compressed by verifying the sign
of the normal stress σrn . If a spring is found to be in tension it is removed from the
load bearing domain. After this, the matrices are computed again and the equilib-
rium equation is formulated on the new estimate of the contact region. The proce-

41



dure continues until the normal stress is non-negative everywhere. The resulting
domain represents the active contact region.

3.3 The ExtendedDiscrete ElementMethod

This section will explain the limitations of DEM, in particular in tracking the rela-
tivemovement of the contacting bodies over time, and how they can be overcome
by modifying its original formulation. This will lead to EDEM, whose details are
presented at the end of the section.

Consider the joints of the human body. They are formed by articulating bones,
whoseextremities are coveredby layersof articular cartilagewhichprovide lubrica-
tion and smooth transmissionof the loads generatedduring the gait [77, 104]. This
process causes the layers of cartilage to come in contact and be compressed one
against the other. The resultant field of contact pressure can be estimated through
the methodology of DEM with underlying assumptions that the bones are rigid,
their role is played by M and F , and that the contact interactions between the
layers of cartilage can be modelled using springs. The length of the springs is es-
timated according to the distance of the bodies and physiological considerations,
as it will be presented in greater details in Chapter 4, and is crucial for the deter-
mination of the contact region. The algorithm presented in Section 3.2 applies to
problems determined by a single time point. The loads acting in the human joints,
however, are not constant and vary in direction and magnitude depending on the
activities, such as walking or running, the individual is performing. The articulat-
ing bones are continuously displaced from their resting position [197, 212, 214],
moving closer or further to each other andmodifying their relative distance during
the contact process. Since inDEM the estimation of the contact region is based on
the estimation of the distance between the contacting bodies, it appears necessary
for amore realistic estimation to keep track of themodification of their distance as
time progresses. In addition to this, the modelling of complex mechanical proper-
ties as the strain dependent stiffness shownby the articular cartilage [146] requires
the capability to follow the evolution of cartilage strain over time. We will now
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present an example inspired by the load transmission in the human joints, without
making reference to any in particular, to explain what are the limitation of DEM in
dealing with such situations.

To introduce the problem imagine two elastically deformable bodies in contact.
We will call the stationary oneF and the mobile oneM. The external load, com-
posed of force F and moment M, pushesM against F and will be denoted as T.
For simplicity we will consider the applied moments M to be zero and the line of
action of F to be fixed. The magnitude of F varies in time as shown in Figure 3.3.1
and reaches its maximum for t = t∗. As long as the applied load is increasing, that
is for t < t∗,M is displaced towardsF . At the same time, because of the increas-
ing force and reduceddistancebetween thebodies, the contact region enlarges and
reaches itsmaximumextensionwhen the force ismaximum. As timegoes to t > t∗

the force decreases: it is still pushing, although to a minor extent, causing M to
move back towards its resting position. Wewant to describe this phenomenon and
compute the contact pressure using aDEMbased approach, neglecting the inertial
effects. This will clarify what are the limitations of DEM when dealing with time
dependent problems and why an extension is needed.

To this endwewill model the two contacting bodies as discussed in Section 3.2,
that is two rigid bodies connected by a mattress of springs which model the con-
tact interaction. As the time plays a role in this problem, the applied force will be
discretised in a finite number N of time points. When needed, we will make use
of a superscript to indicate to position of the bodies at time point t and the load
which is acting at that time. With this notation the initial position of the mobile
body isM0, and that at a generic time t is identified byMt. We will not consider
in this example the case thatF changes position with time. For example,F could
represent the tibia, which articulates together with the talus to form the tibiotalar
joint. During the gait cycle the tibia rotates about the talus of angles known from
experimental measures, assuming different orientations over time. Such change
of the orientations ofF can be included in themodelling process by imposing the
position F t as a boundary condition which defines the configuration of the sys-
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Figure 3.3.1: Time behaviour of the magnitude of the compressive force ap-
plied to F . The maximum is reached at t = t∗.

tem. Theposition ofF t is notmodifiedduring the computation of the equilibrium
position within a time step, but can change from time to time to reflect the orien-
tation of the joint. The kinematics ofF will be used as input data in Chapter 4. All
the following reasoning applies in the sameway, with the additional consideration
that in that case the contact region depends on the movement of F through its
instaneous positionF t.

A possible approach to compute the contact pressure using the static features of
DEM is to solve N independent contact problems, one for each time point. This
means that at every time instant t the loadTt is applied toM0 to compute its equi-
librium displacement ut. Then, although the displacement is used to compute the
tensional state of the springs according to Section 3.2, the body is notmoved from
its positionM0, which is used as initial configuration for all the time points.
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However, this is not what is happening in reality. As discussed previously, the
articulatingbones are continuouslydisplaced fromtheir restingposition [197, 212,
214], moving close or further to each other modifying their relative distance dur-
ing the contact process. Therefore, new methods need to be developed to tackle
this problem.

A naive solution to this problem is simply to update the position ofMt at each
time instant of computation. More specifically, once ut is known at time t, the
position of Mt is updated by applying the rigid displacement to all of its points,
producingMt+1 which is then loadedwithTt+1 to compute the displacementut+1

used to obtain the next configuration, and to iterate this procedure until the solu-
tion for t = t∗ + 1 is to be found. What we expect to happen is thatMt∗+1 moves
back because the force, which is still pushing but less than before, is decreasing.
The application of Tt∗+1, however, would push the two bodies further closer be-
cause the force points towardsF . The desired displacement could be obtained if
the applied force pointed towards M0, but in that case all the springs would be
evaluated as stretched and removed from the load bearing domain, leading to a
failure of the algorithm.

Thekey for solving these issues lies in the observation thatwhen an elasticmate-
rial is compressed it exerts a force which tries to restore its original configuration.
When the system is in equilibrium under a load Tt it is exerting a force equal and
opposite to the applied load. If then a loadTt+1 of greatermagnitude is applied, the
springs, already exertingTt, will only have to equilibrate the differenceTt+1 − Tt.
This behaviour can be enforced bymodifying Eq. 3.9, the constitutive relationship
of the springs, so that they exert at time t + 1 the same force they were in equilib-
rium with at time t, plus an increment of force due to the difference of magnitude
at the two consecutive time points. Note that now at t = t∗ + 1 the system is sub-
ject to external force Tt∗+1, pushingMt∗+1 towardsF , and to the force expressed
by the springs, which has a magnitude greater than that of the applied force. The
resulting force pushes the two bodies apart. The preexisting compression of the
springs gives margin for the decompression due to the decrement of force to hap-
pen, without reaching a tensile state. Figure 3.3.2 shows the free body diagrams
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for EDEM.

Figure 3.3.2: Free body diagram of EDEM. The force Tt∗ pushes the spring
towards its rest position, depicted in grey. The force Tt∗+1 compresses the
spring. Although Tt∗ > Tt∗+1 causes an release of compression, the pre-
existing compression state impedes the overall tension of the spring.

The problem of determining the contact pressure over time is solved by adopt-
ing an incremental description, computing the increments of force and displace-
ment with respect to the configuration attained by the system at the previous time
point.

This section will present the details on the EDEM. EDEM can be formulated
within theDEM framework by using an energetic approach. Although the springs
used to model the contact are still purely compressive, their energy density con-
tains an additional term derived from the tensional state at previous time steps,
which allows them to reduce their compressive state without being removed from
the computational domain.

As the time plays a role in this formulation the variables and operator are time
dependent and, as in the previous paragraphs, we will indicate this dependency
with a superscript. The details on how the contact problem at time t is solved, and
how the algorithm is set for the solution at time t+ 1will now be given.

For a given time instant t define the contacting bodies in the three-dimensional
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space and, for a point r in the contact region St, the particulariser operator Bt
r as in

Sec. 3.2. This operator allows to relate the generalised displacement ut of the rigid
body to the deformation δtr = ut

r = Bt
rut of the corresponding spring at time t. To

include the additional term in the strain energy wewill extend the displacement-to-
stress operator. The push back force needed to reformulate DEM in an incremental
fashion is introduced as the accumulated stress σ0r and contribute to redefine the
stress as

σ tr = D0
rB

t
ru

t = σ0r + Dt
rB

t
ru

t. (3.15)

HereDt
r is defined as in standard DEM, but the direction of the normal vectors

and the values of the stiffness (Eq. 3.6) are updated as time progresses.
The strain energy of a single spring [241] is defined as

εtr(u
t) =

∫
σ tr · dδtr =

∫
D0

rB
tut · dBt

ru
t

= BtT
r σ

0 · ut +
1
2
BtT

r Dt
rB

t
ru

t · ut
(3.16)

The total energy of the system is formed of the total energy of deformation, ob-
tained integrating Eq. 3.16 over the contact area St, plus the energy of the external
load

E t(ut;Tt) =

∫∫
St
εtr dS− ut · Tt =

1
2
Ktut · ut + pt · ut − ut · Tt (3.17)

The vector pt =
∫∫

St B
tT
r σ0r dS is the total push-back force exerted by all the

springs in the contact region and contains, directly through the time dependent
operatorBt

r and indirectly through the vector σ0r , information fromall the previous
time points. Because of the hypothesis of continuous equilibrium between the
spring systems and the external load one has pt = Ft−1.

As in Section 3.2, the equilibrium equation is derived by imposing that the de-
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formed configuration is that of minimum energy:

∇uE t = Ktut + pt − Ft = 0. (3.18)

After the generalised displacement is computed one can compute the stress in
eachof the springs in the contact region. Like inDEM, the component of the stress
along the normal direction is computed as

σ trn = σ tr · nt = σ0r · nt + Dt
rB

t
ru

t · nt. (3.19)

After the evaluation of their pressure status, the springs which are found to be
in tension are removed from the computational domain, the contact region is up-
dated and the equations formulated on the new contact domain. The procedure
continues until only compressed springs are left.

Once the displacementut is known one canmove the body from its original po-
sition to obtain the configuration that will be used as reference for the application
of Tt+1. The stress σ tr plays in t + 1 the same role σ0r had in t. If at a certain time t∗

the applied load decreases,Mt∗ will be displaced back and the springs will reduce
their degree of compression.

The algorithm of EDEM is shown in Figure 3.3.3.

3.4 Discussion

As Eq. 3.19 shows, two terms contribute to the determination of the contact pres-
sure: the secondone,Dt

rBt
rut ·nt, is what in traditionalDEM is regarded as the only

termwhich determines the pressure in r. InsteadEDEM, being an incremental for-
mulation, sees it as a modification of the pressure σ0r already exerted by the spring,
which is the first term in Eq. 3.19. If the external applied force is such that the
resulting displacement has negative scalar product with the normal vector, then
DEM would consider the corresponding spring as in tension and would remove
it from further calculations, whereas EDEM would see the increment as negative
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Figure 3.3.3: Algorithm of EDEM.

and, to decide whether the spring is still compressed or not, would compute the
sum in Eq. 3.19.

The cooperative action of the pre-existing pressure and its increment allows
EDEM to describe the push-back effect shown by elastic systems, and at the same
time to track the motion of the contacting bodies. As it will be shown in Chap-
ter 4, this has important consequences on the determination of contact patterns.
Finally, unlike DEM, EDEM is able to deal with tensile forces if the springs are
sufficiently pre-compressed.

It is important tomention that the operators representing the kinematics of the
contact, as well as the mechanical response of the material, are to be computed
again at each time point. This happens because as the computed displacement is

49



applied to the system the relative distance of the contacting bodies changes and,
as Eq. 3.7 shows, this affects the stiffness of the springs.

It isworthnoticing that since timedependencyhasbeen introduced, themethod
can be further extended to include viscoelasticity. Thiswill be the subject ofChap-
ter 6.

3.5 Conclusions

This chapter has presented the main features of the DEM, a computational tech-
nique that can be used for the estimation of the joint contact pressure in static sce-
narios. Themodelling technique assumes that it is possible to describe the contact
interactions using linear springs, although generalisations to nonlinear springs are
possible [241]. As several authors have shown, the main advantage of the method
is the short computing time required, together with the high accuracy of the out-
comes when compared against results from finite element simulations or experi-
mental studies [1, 122, 231].

The DEM however shows limitations in dealing with time dependent scenar-
ios, and needs to be extended to correctly describe cases of consecutive loading
and unloading. We have presented here an extension, termed EDEM, andwe have
shown that it can handle a larger set of applied external loads than DEM can. This
is possible to the introduction of the push-back force and the formulation of the
contact problem in an incremental fashion. Finally, the EDEM can be extended to
model the viscoelastic effect of the articular cartilage.
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4
Subjectspecificmodelling of the ankle

joint

4.1 Introduction

This chapter will describe in details how the Extended Discrete Element Method
(EDEM), introduced in Chapter 3, is implemented and personalised for subject-
specific applications. Two applications are presented: first, a static application of
DEMon idealised and subject specific geometries; second, a comparison of DEM
and EDEM when applied to the prediction of the ankle contact pressure during
stance. The experimental data used in this chapter have been collected at the Is-
tituto Giannina Gaslini (Genoa, Italy). The musculoskeletal models used to gen-
erate the inputs for the EDEM and DEM simulations have been developed by re-
searchers within the INSIGNEO Institute for in-silico medicine (Sheffield, UK).
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4.2 Implementation

In this section, the general framework for obtaining the initial contact from ideal
and real geometry of the ankle joint and their implementation will be presented.

4.2.1 Personalisation of a model

In the previous chapter we have introduced the theory of the DEM and of its ex-
tension, the EDEM . The main underlying hypothesis is that the bones forming
the joints can be considered as rigid bodies connected by a layer of springs, which
mediate the transfer of loads andmodel thematerial behaviour of the articular car-
tilage. We have mentioned that the contact region is estimated through a twofold
procedure based on a first geometrical stage followed by mechanical considera-
tions on the equilibrium and deformation of the springs. We have given the details
of the mechanical considerations used to refine the initial estimate. After the ap-
plication of the external load, the rigid displacement of the contacting bodies and
the deformation of the springs are computed: the springs found being in tension
are removed from the estimated contact region.

In this section we will describe the procedure for obtaining the initial estimate,
and how this contributes to the personalisation of the contact model. Although
the algorithm applies identically to both DEM and EDEM, the initial estimate is
in general different for the twomethods because in EDEM the position of the con-
tacting bodies is updated over time and influences the relative distance of the bod-
ies.

Amodel is personalised by describing how the pointwise features of the springs,
namely their directions and thicknesses, change over the contact domain. They
enter the definition of the stiffness (Eq. 3.7) and displacement-to-stress operator
(Eq. 4.6) and, together with the kinematic information contained in the partic-
ulariser operator, determine the global stiffness matrix of the system (Eq. 3.12). In
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addition to the identification of these features, we need to set rules to discrimi-
nate whether a spring is to be considered as representative of a potential contact-
ing point or not. In [49] and [122] two new surfaces were defined, one for each
body, extruding every point of the subchondral bone towards its local normal di-
rection: they represent the boundaries of the cartilage layer. The intersection of
the extruded surface, and the interposed volume, are regarded as the contact re-
gion. The springs placed in the contact region exert a force proportional to the
interposed volume.

The approach followed here is based on the definition of one single layer of
springs [1]. One of the two bodies is set as reference surface, from which nor-
mal vectors are cast and intersected with the target surface. The distance of the
bodies along the normal direction is identified with the local length of the spring.
In what follows, the details of this procedure for ideal and real geometries will be
given.

Let the two bodies M and F be defined in the three dimensional Euclidean
space, and the basis of the space be {e1, e2, e3}. As described in Section 3.2 one of
them,M, is allowed tomove in search of the equilibrium configuration under the
externally applied load. This body is also taken as reference for the computation of
the local cartilage thickness. Wedenote the local cartilage thickness as the distance
between the two contacting bodies, computed along the vectors normal to the ref-
erence body. First, assume that the analytical expression for the external surface of
the bodies is know. In this case, they can be described in parametric form [62] as

fM = xM(u, v)e1 + yM(u, v)e2 + zM(u, v)e3

fF = xF(u, v)e1 + yF(u, v)e2 + zF(u, v)e3
(4.1)

for some parameters u and v. Unit normal vectors to the mobile body are com-
puted as the vector product

nF =
fMu × fMv

∥fMu × fMv∥
, (4.2)
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where fMu is a vector on the plane tangent toM and is defined as

fMu =
∂xM
∂u

(u, v)e1 +
∂yM
∂u

(u, v)e2 +
∂zM
∂u

(u, v)e3. (4.3)

The same holds, modifying the index, for fMv .

Figure 4.2.1: Estimation of the thickness in the case the analytical equations
of the surfaces are known. fM represents the fixed body, from which normal
the vectors nF is projected towards fF .

The length of the springs is directly related to the local thickness of the layers of
cartilage in the joint. Since in our implementation we condense two layers of car-
tilage into one layer of springs, themaximum allowed spring length will be double
the length of themaximum thickness of the cartilage layer. If themaximum length
is denoted by hMAX then fM + hMAXnF identifies the surface at the maximum al-
lowed distance from the mobile body. The intersection

{fM + hMAXnF} ∩ fF (4.4)

defines the boundaries of themaximal contact region. It can happen that, because
of the geometries and orientation of the bodies, Eq. 4.4 has multiple solutions h
for a given normal vector nF : in this case the solution of minimum length is taken
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as the value of cartilage thickness. A sketch of the procedure is depicted in Fig-
ure 4.2.1.

Figure 4.2.2: Contact surface between two articulating bodies. Dashed black
line is the surface of the rigid bodies. Solid black line is the cartilage layer.
Solid blue line represents the springs whose estimated thickness is below the
given threshold, and constitute the maximal contact region.

After the maximal contact region has been defined, the actual length is com-
puted by solving for the values h(u, v) that satisfy the equality

fM(u, v) + h(u, v)nF(u, v) = fF(u, v). (4.5)

This yields themaximal contact region, also shown inFigure 4.2.2, which is then
shrunk during the mechanical stage as explained in Section 3.2 and 3.3.

When dealing with realistic cases, analytical equations describing the bone sur-
faces are no longer available andnumerical techniques have to be used for the com-
putation of the thickness. Yet, the idea of casting normal vectors from a reference
surface towards a target one still holds.
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Thegeometries of the bones are generally acquired through imaging techniques
suchasmagnetic resonance imaging (MRI)andcomputed tomography(CT)[104].
Such medical images contain also soft tissues such as muscles and ligaments and
must be segmented to extract the actual bone geometry [86, 163]. Figure 4.2.3
shows the results of the segmentation process from the initial medical images.

Figure 4.2.3: Segmentation of the bone geometries (right) from medical im-
ages (left). Adapted from [82].

After segmentation the geometries are available formeshing, a procedurewhich
provides a discrete approximation of the real geometries. In our implementation
both the surfaces are meshed using triangular elements. We estimate the cartilage
length using ray casting techniques, in particular the Möller-Trumbore algorithm
for ray-triangle intersection [164]. First, the centroid of each triangle of the mo-
bile mesh is computed as the average position of the edges of the triangle. Since
the triangle is a planar element it is immediate to compute its outer normal vector
through the cross product of two appropriate vectors parallel to two edges. The
outer normal, applied to the centroid of the corresponding triangle on the refer-
ence body, is then prolonged indefinitely: we will call this object a “ray”. The in-
tersection of the ray with all the triangles of the target bodies are then sought. Like
in the analytical case, if the shape and the relative position of the target body are
such that the intersection is not unique, the intersectionwith theminimum length
is considered to be the length of the spring at that point.

In the numerical implementation we associate two matrices Bi and Di to the
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centroid of the i-th triangle of the discretised reference body. Here the subscript i
takes the role that rhad in the continuousdescription. Inparticular,Bi contains the
coordinate of the centre of rotation of the reference body, which is its centroid and
is common to all its points, and the coordinate of the centroid of the i-th triangle.
Similarly, the discrete counterpart of Eq. 3.6 is

Di = kdini ⊗ ni + ks(I3×3 − ni ⊗ ni). (4.6)

In Eq. 4.6 ni is the outer normal vector to the i-th triangle. Normal and tangential
stiffnesses are defined as in Eqs. 3.7 and 3.8.

4.2.2 Dependence of computed thickness on mesh size

The use of geometries from medical images poses the problem of choosing an ap-
propriatemesh size. Themesh sizewas selected after convergence study, analyzing
the variability of certain parameters of interest when the average size of the dis-
cretisation is changed [63]. Themesh is considered to be converged when further
reduction of the element size has a limited effect on the variation of the parame-
ters. Since in contact problem two differentmeshes, reference and target, are used,
it is necessary to run two different convergence analyses. The element size on the
reference body is chosen using the peak contact pressure and the active contact
area as metrics of convergence. In this section wewill focus on the selection of the
element size for the mesh of the target body and on the effects that it has on the
estimation of the springs’ length, illustrating the problem adopting ideal geome-
tries. We used as reference body a semisphere of adimensional radius 1, obtained
after 6 subdivisions of an icosahedron [20]. It resulted in a mesh of 10 388 triangu-
lar elements. As target bodies we constructed 6 different meshes by subdividing
an icosahedron of adimensional radius 1.5, which were then cut with an equatorial
plane to obtain six semispheres. As the subdivision depth increased, the resulting
meshes approximated increasingly better an ideal semisphere. Target meshes are
shown in Figure4.2.4. The length of the springs was estimated bymeans of the ray
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Figure 4.2.4: Ideal target meshes: half spheres obtained through successive
subdivisions of the initial icosahedron.
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casting algorithm exposed in Section 4.2.1.
Since the two bodies were derived from known ideal geometries, the theoreti-

cal distance between the bodies was known as well, being 0.5 for each point of the
reference body. Coarsely discretised geometries, however, differed substantially
from their ideal counterparts, leading to the computed length far from the theo-
retical values. Because the distance is uniform the convergence of the mesh could
be evaluated using aggregated quantities such as mean and standard deviation of
the thickness.

Figure 4.2.5 shows the mean and the standard deviation of the thickness, as a
function of the subdivision depth, for the ideal case. Values of mean thickness
increasedwith subdivisions, reaching a converged value of adimensional 0.499. At
the same time a decrease of the standard deviation was observed, with final value
of 1.5× 10−5.

Figure 4.2.5: Convergence study of ideal target meshes. Mean, on the left,
and standard deviation of computed length show that the estimated length
converges to the theoretical value. Values are adimensional.

Figure 4.2.6 shows the estimated thickness distribution on twodifferentmeshes
(1 and 3 subdivisions). One can observe that, in both cases, peaks are present in
correspondence of the corners of the target domain. Although they are more evi-
dent in the coarse case, they are visible also in the refined one. The appearance of
such artifacts is inevitable in the estimation of the thickness, but is mitigated by a
finer discretisation of the target mesh.
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Figure 4.2.6: Estimated thickness on ideal target meshes: 1 and 3 subdivi-
sions.

4.3 Development ofDEMand EDEMankle models

In this section we will present two studies. The first one aims at comparing the
differences in prediction from DEM when applied to idealised and real ankle ge-
ometries. In the second one, both DEM and EDEM are used to predict the ankle
contact pressure distribution during stance, using subject-specific input data from
medical images and gait experiments.

4.3.1 Data collection and general pre-processing

Gait data and medical images were collected from one female subject (age: 16
years, weight: 68 kg, height: 160 cm). Thedata collection took place at the Istituto
Giannina Gaslini (Genoa, Italy) within the European Project MD-PAEDIGREE
(FP7-ICT Programme, Project ID: 600932). Written informed consent was ob-
tained by the participant and/or her parents. The study was approved by the local
medical ethics committees of the participating centres and conducted according
to good clinical guidelines and the declaration of Helsinki [180].

The subject performed a static trial and one walking trial at self selected speed.
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Ground reaction forces were collected using two force platforms (AMTI OR6-
6,1000Hz). A total of 51 reflectivemarkers, whose locationswere chosen according
to the Vicon PlugIn Gait (Vicon Motion System Ltd, Oxford, UK) and the mod-
ified Oxford Foot Model [220], was attached to the skin of the participant. Their
trajectories during the gait were recorded using a stereo-photogrammetric system
(Vicon Motion System Ltd, Oxford, UK; 200Hz). A subset of the markers, 28,
was retained during the acquisition of MRI images as their position was used in a
later stage to construct the reference framesneeded for themusculoskeletalmodel.
MRI of the lower limbs were acquired in supine position with Multi-slice Multi-
echo 3DGradient Echo, with 1 mm slice thickness and 0.5mm in-plane resolution.

Geometries of talus and tibia were segmented and imported in MeshLab [43],
where the articular regions of the two boneswere identified. The bodies were then
imported inBlender (https://www.blender.org),meshed into7617 and 2974
triangular elements respectively, and made ready for being exported to the soft-
ware used for the contact modelling, MATLAB (MathWorks, Natick, MA) . The
number of mesh elements was chosen after convergence study.

4.3.2 Musculoskeletal modelling

Data collected during the experimental phase have been processed by collabora-
tors within the INSIGNEO Institute for in-silico medicine (Sheffield, UK), who
finally provided the input data for the contact simulations.

Segmented bone geometries were imported inMeshLab [43] to identify the ar-
ticular surfaces of hip, knee and ankle. Then, through a custom written MATLAB
script, the best least-square fitting surfaces were computed. The ankle was fitted
to a cylinder. Bone geometries and best fitting geometrical shapes were imported
into NMSBuilder [237] and used for the definition of the axes of the joints to be
used in the multibody simulations. The ankle joint was defined as an ideal hinge,
whose axis of rotation was parallel to the axis of the cylinder which best fitted the
articular surface of the talus. Using MRI images the attachment points of muscles
and ligaments were determined and included in the model. Relevant reference
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frames were defined according to the recommendations of the International Soci-
ety of Biomechanics [258].

Ground reaction forces andmarkers trajectories were used as input for themus-
culoskeletal simulations inOpenSim[59]. The joint kinematicswas reconstructed
through a standard inverse kinematics (IK) approach, whilst the estimation of
joint contact forces [221] relied on the computation of muscle forces through
static optimisation, minimising the sum of the squared activations of all the mus-
cles [53]. Further details on the data collection and themusculoskeletalmodel are
provided in [163].

4.3.3 DEM: application to static loading cases

4.3.3.1 Methods

The meshes of right talus and tibia were imported in MATLAB, together with
the location and orientation of the ankle axis of rotation identified in the pre-
processing step.

The real geometries of talus and tibia were used as reference for the construc-
tion of the ideal meshes. The ideal talus was modelled as a portion of a cylinder,
whose radius and axis were identified through a least-square fitting algorithm, and
meshed into 2974 triangular elements. The ideal tibia was modelled as two dis-
tinct planes, computed through least-square fitting of the tibial plafond and me-
dial malleolus. Because of its piece-wise planar geometry, 4 triangular elements
were sufficient for a successful estimation of the cartilage thickness. Figure 4.3.1
shows the real and idealised geometries of talus and tibia, superimposed. Both real
and ideal models included four ligaments (anterior and posterior tibiotalar, ante-
rior and posterior talofibular), characterised by a Young’smodulus of 255MPa and
represented as bundles of linear springs. The location of their attachment points
was identified from the MRI images.

To simulate the two loading scenarios, standing position and toe-off, it was es-
sential to correctly orient the tibia with respect to the talus. To this end two refer-
ence frames, one located on the distal part of the tibia and the other one centred
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on the talus, were particularly important. The tibial reference framewas able to ro-
tate about one of its axis which was coincident with one axis of the talar reference
frame. The angle between these reference frame coherent with the ankle angle
computed during the IK stage, andwas used to drive the relative orientation of the
tibia with respect to the talus [147]. These angles were 0◦and 16.31◦for standing
and toe-off configurations, respectively. The axis and angle of rotation were the
same for real and ideal geometries.

Following the correct orientationof the twomeshes, apurely compressive spring
was placed at the centroid of each triangular element of the talus. The Möller-
Trumbore algorithm was used to assign to the springs their initial length. The
quality of theMRI scans did not allow tomeasure the cartilage thickness from the
medical images, thus we had to define a threshold based on the data from the liter-
ature. It has been set to 3.5mm, this value being twice the thickness of a typical un-
deformed layer of cartilage in the ankle joint [70, 161]. The stiffness of the springs
was defined as in Eq.3.7. Young’s modulus and Poisson’s ratio, 10.35MPa [85] and
0.42 [7] respectively, were considered to be homogeneous over the articular sur-
face of the joint [122].

Half a body weight, 333N, was applied on the vertical direction to simulate the
standing position. A total force of 4190N, with direction identified from the mus-
culoskeletal model, was applied to simulate the toe-off configuration.

4.3.3.2 Results

In the ideal case the contact region computed in the standing position was regu-
lar and well delimited, and occupied 4.68 cm2 of the total 11.15 cm2 available talar
articular surface (42%). The most loaded region, located on the lateral part of the
talus, was subject to 0.6MPa of maximum pressure. Contact pressure decreased
towards the medial side of the joint.

Similar features can be observed in the real model. Active contact area summed
to 7.61 cm2, 48% of the total talar surface. The maximum pressure, 0.76MPa, was
attained on the lateral compartment of the joint, and decreased towards themedial
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Figure 4.3.1: Superimposition of the ideal (blue) and real (beige) geometries
of right talus and tibia.

part. Two relatively large areaswhich did notmake contactwere present, the larger
on the lateral border of the articular region of the talus and the smaller in a more
lateral position. Figure 4.3.2 shows the computed pressure during standing, when
the only component of the applied force pointed towards the superior direction.

Figure 4.3.2: Pressure distribution during standing, shown on the right talus:
ideal (left) and real (right) models of the right ankles.

As shown in Figure 4.3.3, the situation did not differ substantially when simu-
lating the toe-off. Themore dorsiflexed position of the ankle implied that the tibia
was located more anteriorly than it was during standing, localising the contact re-
gion more anteriorly. Interestingly, in the simplified case the active contact area
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decreased to 36.7%, whereas an increase to 51.8%was observed on the realistic do-
main. Resulting peak value of pressure were 7.69MPa in the ideal case and 8MPa
in the real one, attained on the posterior part of the active region and slightly to-
wards to lateral direction.

Figure 4.3.3: Pressure distribution at toe-off, shown on the right talus: ideal
(left) and real (right) models.

4.3.3.3 Discussion

Although predictions from ideal and realmodels showed general agreement, some
local effects could be caught only by the real one. The springs seen as inactive are
such that because their length exceeded the threshold value. Because of the simple
geometrical setup, the algorithm converged at the first iteration without produc-
ing stretched springs. The reason for the pressure distribution being asymmetric,
despite the load having only the vertical component, can be explained with the tilt
of the talar cylinder with respect to the applied load. Furthermore, the geometry
of the tibia was such that the estimated cartilage thickness had a minimum in the
proximity of the lateral section of the joint. According to Eq. 3.7, a minor value of
h causes a local increase of the normal stiffness kd during the computation. Springs
with higher stiffness absorbed a higher share of the applied load, causing the pres-
sure distribution to peak.
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Thesame features and behaviour can be observed in the realmodel. Active con-
tact area summed to 48% of the total articular surface. The maximum pressure,
0.76MPa, was attained on the lateral compartment of the joint, and decreased
towards the medial part because of the orientation of the tibia. Also in this sit-
uation the computed thickness showed local minima, responsible for the higher
values of stiffness and pressure. Values are higher than in the ideal case because
of the less smooth geometry. Two relatively large areas which did not make con-
tact were present, the larger on the lateral border of the articular region of the talus
and the smaller in a more lateral position. The tibial plafond of the subject un-
der examination presented two depressions, whose effect was in increasing the
computed thickness behind the predetermined threshold and making the corre-
sponding spring considered to be as representative of a non-contacting point. In
vivo [245] and in silico [122] investigations of ankle contact mechanics have re-
ported the existence of such inactive regions.

As shown in Figure 4.3.3, the situation did not differ substantially when simu-
lating the toe-off. Differences in the setup were that in this situation the applied
force had alsomedial and anterior components, and the ankle was in amore dorsi-
flexed position. Thedorsiflexion implied that the tibia was locatedmore anteriorly
than it was during standing, localising the contact regionmore anteriorly. Interest-
ingly, in the simplified case the active contact area decreased to 36.7%, whereas an
increase to 51.8% was observed on the realistic domain. This opposite behaviour
has its roots, again, in the geometry of the systems: the simplified tibia is a portion
of a plane, therefore the estimated thickness depended linearly on the orientation
of the tibia. In the real case this dependence was nonlinear because of the com-
plex geometries, with different regions able to make contact according to the im-
posed joint angle. Nevertheless, in both cases the most loaded region was located
in the proximity of the centre of the talus. Resulting peak values of pressure were
7.69MPa in the ideal case and 8MPa in the real one.
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4.3.4 EDEM and DEM: comparison during stance phase

4.3.4.1 Methods

Medical images and gait data collected and processed as explained in Section 4.3.1,
were processed to obtain the input data for the contactmodel. The ankle joint was
modelled as a single degree of freedom hinge with the axis of rotation aligned to
the axis of the least-square cylinder fitted to the articular surface of the talus [163].
Tibiotalar angles were estimated using the IK tool in OpenSim [59], while static
optimisation [53] and joint reaction analysis [221]provided an estimationofmus-
cle forces and joint reaction forces, respectively. The IK and the joint reaction
analysis were performed every 0.01 s, resulting in 65 time points for the subdivi-
sion of the stance. The ankle angle and reaction force during the entire stance
are displayed in Figure 4.3.4, while values at specific time points are shown in Ta-
ble 4.3.4.1.

Figure 4.3.4: Kinematics of the ankle joint and applied ankle contact force.
The force is applied on the talus. HS indicates the heel strike (0% of stance),
FF the foot flat (13% of stance), HO the heel off (70% of stance), TO the
toe off (100% of stance).
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% of stance Ankle angle
Medial/Lateral

+/-
Posterior/Anterior

+/-
Superior/Inferior

+/-
12 -0.57◦ 13.64 N 21.7 N 72.5 N
20 5.37◦ 65.25 N 143.87 N 1071 N
55 10.7◦ 106.86 N -22.14 N 2047
69 12.92◦ 158.82 N -35.45 N 3209.7 N
78 16.31◦ 159.94 N -52.52 N 4078.26 N
87 17.1◦ 89.32 N -33.88 N 3714.94 N
92 15.1◦ 28.2 N -29.24 N 2741.62 N

The real geometries presented in the previous sections were used to represent
the ankle joint. At each time point, the tibia was rotated about its axis of rota-
tion to align the tibial and talar references frames with the joint angle computed
during IK. Each triangular element on the talus was then endowed with a purely
compressive spring oriented accordingly to the local normal vector to the discre-
tised surface. One end of the springs was located on the talus, while the location of
the second one was estimated using theMöller-Trumbore algorithm [164], which
also provided an estimate of the local cartilage thickness. The cartilage thickness
threshold was set to 3.5mm, twice the thickness of a typical undeformed layer of
cartilage in the tibiotalar joint [161]. Four ligaments (anterior and posterior tibio-
talar, anterior and posterior talofibular), whose attachment points were identified
from the MRI, were included as bundles of linear springs. Their Young’s modu-
lus was set to 255MPa [213]. The geometry of the right ankle joint is shown in
Figure 4.3.5.

Following the application of the ankle force the talus was allowed to translate
in three directions in search for an equilibrium configuration. The rotations of the
taluswere constrained to zero to keep the ankle axis of rotationparallel to itself dur-
ing the entire simulation. This behaviour was enforced by minimising the energy
of the system, Eq. 3.10 and Eq. 3.17 in case of DEM and EDEM respectively, with
the constraint that the rotational components of the generalised displacement are
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Figure 4.3.5: Geometries of talus and tibia in the real ankle model.

equal to zero.
The contact features of the joint during stance were computed using DEM and

EDEM. In case of DEM, after the computation of the solution at time t, the talus
was not displaced from its initial position and the configurations of the system at
two time points differed only because of the orientation of the tibia. In EDEM, in-
stead, the equilibriumdisplacementwas used toupdate the positionof the talus for
the following time step. Only after this had been done the tibia was then rotated.
In each case the length of the springs was computed at the beginning of each time
step to determine the global stiffness matrix of the system. The schematic pipeline
of the musculoskeletal and contact models is shown in Figure 4.3.6.
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Figure 4.3.6: Schematic pipeline of the interaction between subject specific
musculoskeletal model and subject specific ankle contact model.

Weassessed thedependencyof thepeakcontact pressure, as computedbyEDEM,
on two input parameters whichwere determined from the literature: the thickness
of the undeformed layer of cartilage [161], used to define the spring length thresh-
old, and the ligaments’ Young’s modulus [213]. We did not investigate the effect
of the cartilage Young’smodulus, as under ourmodelling assumption the effect on
the contact pressure was essentially linear. The spring length threshold and the
Young’s modulus of the ligaments were varied uniformly within the input space
[2.5, 4.5] mm and [200, 350] MPa respectively. The parameter space was discre-
tised into 20×20 points. Sensitivity to the inputs was assessed by evaluating the
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gradient of the peak pressure.

4.3.4.2 Results

Forwhat concerns EDEM, it predicted a steady displacement of the talus in the su-
perior direction, towards the tibia. At about 80%of the stance, immediately before
toe-off, the talus was located 0.57mm superiorly with respect to its original posi-
tion. Displacements in the other direction were substantially smaller, with maxi-
mum values smaller than 0.1 mm. After toe-off the talus was then displaced back
towards its initial position, driven by the decrease of the applied force. The contact
region showed a smooth time evolution: as the gait progressed it moved forwards
from the posterior to the anterior part of the joint. At the same time it enlarged
and reached its maximum extension, 5.2mm2 at the toe-off, sharply shrinking af-
terwards. The maximum peak contact pressure was attained at 80% of stance on
the anterior part of the talus. In this individual, at 9.25◦ of dorsiflexion the dis-
tance between tibia and talus wasminimum. High values of contact pressure were
shown in the anterior and anterolateral part of the joint as well. These three zones
encircled a region, close to the centre of the articular surface of the talus, whichwas
always inactive. Figure 4.3.7 shows the pressure distribution at selected instants of
time.

The pattern of contact pressure predicted by EDEM and DEM showed sim-
ilarities and differences. The average contact area was 4.67 cm2 for EDEM and
4.18 cm2, 11% smaller, for DEM (Figure 4.3.8)

Theanteriorpart of the taluswas recognisedbybothmethods as themost loaded
from both methods. However, as shown in Figure 4.3.9 for the instant of maxi-
mum loading this holds for every time points of the simulation, DEM predicted
a more evenly distributed field of contact pressure, whereas in EDEM local peaks
were present. Maximum values were 7.3MPa and 6.92MPa for EDEMandDEM,
respectively.
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Figure 4.3.7: Pressure distribution on the talus at selected time points of the
stance, computed using EDEM. The arrows indicate the progression of stance.
The pressure increased as the talus was displaced towards the tibia, reaching
its maximum at 78% of the stance phase, and then decreased as the talus was
displaced backwards.
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Figure 4.3.8: Active contact area during the stance, comparison between
EDEM and DEM.
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Figure 4.3.9: Pressure distribution at the instant of maximum loading, as
computed from EDEM (left) and DEM (right).

The sensitivity analysis showed that the parameter which influencedmostly the
contact pressure was the thickness threshold, whilst the ligaments’ Young’s mod-
ulus had a less pronounced effect (Figure 4.3.10). Keeping the threshold constant
to hT =3.5mm and varying the Young’s modulus of the ligaments from 200MPa
to 350MPa, an increase of 175%, affected the contact pressure of 3% only. Con-
versely, asFigure4.3.11 illustrates, the increaseof threshold from 2.5mm to4.5mm
reduced the pressure by 30%. As shown by Figure 4.3.8, the same effect of the in-
put parameters can be identified on the extension of the contact area and the corre-
sponding pressure distribution. Increasing the length threshold allows the system
to recruit more springs, therefore increasing the contact area, whereas modifica-
tionof theYoung’smodulusof the ligaments affect the contact areaonlymarginally.

4.3.4.3 Discussion

Global measures reported in the literature, such as peak contact pressure or con-
tact area, tend to be homogeneous and easier to compare than local ones, which
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Figure 4.3.10: Dependency of the peak contact pressure on the Young’s
modulus of the ligaments and on the springs’ length threshold.

are comparable only in a qualitative manner. The contact features of cadaveric an-
kles have been investigated by several authors [35, 64, 149, 222, 230, 242], who
performed studies under a large variety of applied load, geometries, experimen-
tal setups and joint configuration. Calhoun and colleagues [35] reported an in-
crease of the contact area when the ankle went from plantarflexion to dorsiflexion.
Macko and collaborators confirmed this results, measuring values from 3.81 cm2

to 5.40 cm2, whilst some others [21] observed opposite behaviours. Following
the application of loads ranging from 200N to 1500N on eight cadaveric ankles,
Kimizuka and colleagues [129] reported contact areas from 1.96 cm2 to 6.18 cm2.
In vivomeasurements during stance, using imaging techniques, were performed by
Wanet al. [245], whoobserved values between 2.72 cm2 and4 cm2. The subject in-
vestigated in our study presented a gait patternmostly in dorsiflexion. The contact
area increasedwith the dorsiflexion angle, and had an average value of 4.67 cm2, in
line with experimental results reported in the literature.

According to EDEM, two regions in the central part of the talus were never in-
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Figure 4.3.11: Line plots of the behaviour of the maximum pressure when
only one input parameter is varied. In the top image the Young’s modulus
of the ligaments is fixed to 255MPa, in the bottom one the springs’ length
threshold is kept to 3.5mm.
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Figure 4.3.12: Dependency of the contact pressure distribution on the
Young’s modulus of the ligaments and on the springs’ length threshold. The
range of variation of peak values, from 6 to 10.5MPa did not allow for the in-
clusion of the scale.
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volved in contact during stance. In vivo [245] and computational [122] studies
have reported the existence of such regions. Their existence depends strongly on
the geometry of the individual under investigation. The subject investigated in
our study presented two depressions on the tibial plafond. During the estimation
of the cartilage thickness, the springs whose target attachment point was located
inside these depression were assigned a value of computed thickness higher than
the fixed threshold, which made them inactive for all the duration of the contact
process.

Tochigi et al. [230] applied 600N of axial load on a set of cadaveric ankles, mea-
suring 5MPa of peak pressure, with the most loaded region in the anterolateral
part of the joint. Similar results, with 10MPa of peak pressure, were obtained by
Kimizuka and colleagues [129]. Vrahas et al. [242], instead, observed peak values
from 1.9MPa to 12.4MPa concentrated in the anteromedial part of their speci-
mens. In a dynamic study on eight cadaveric joints, Suckel et al. [224] reported
the maximum pressure to be located on the lateral side in half of the cases, and
on the medial in the remaining. Average values were 4MPa. Results from in sil-
ico studies are similarly variegated, with peak contact pressure of 3.74MPa [147],
4MPa [8], 8MPa [3] and 14MPa [7] obtained under a wide variety of applied
loads. Given that the results from the literature were obtained under many differ-
ent conditions only qualitative comparisons are possible. Maximum value of the
predicted peak contact pressure, 7.3MPa, and its location, the anterior part of the
talus, are aligned with the values found in the literature.

Despite similarities in the peak values, the twomethods predicted different con-
tact regions and pressure distributions. The reason for that is the displacement of
the talus, which in EDEM is allowed while in DEM is not. Pushed by the ankle
contact force, in EDEM the talus was displaced towards the tibia: this resulted in
an estimated cartilage thickness lower for EDEM than it was for DEM.The imme-
diate consequence was that in EDEM more springs could be recruited in the con-
tact area. Despite a larger contact area, EDEM predicted higher peak values and a
less uniform pressure distribution. According to Eq. 3.7, strained springs present
an higher value of stiffness during the computation. When subject to an external
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force they tend to hold a larger part of the load, leaving the remaining springs with
aminor share of the applied load to hold. Regions of concentration of strains were
also observed byWan et al. [245]. DEMdid not allow for the talus to be displaced,
therefore estimating a more uniform thickness and pressure distribution.

As shownby theglobal sensitivity analysis, EDEMismore sensitive to the spring
thickness threshold than to the ligaments’ Young’s modulus. Increasing the stiff-
ness of the ligaments reduced the contact pressure by a small amount, coherently
with observations in the literature that the main contributor to the motion of the
ankle is the topology of the articular cartilage [230, 249]. An alteration of the
spring threshold changes radically, and non-linearly, the contact pressure because
it changed the number of candidate springs to be recruited into the contact region.

This study has some limitations. First of all, despite the inclusion of the strain
dependent properties of the cartilage, the material was still treated as elastic. This
is a relatively commonhypothesis in the development of computationalmodels of
the joints [2, 85, 97, 122], often considerate appropriate to the loading and time
scales considered [14]. This modelling assumption, although reasonable in most
cases, limits the range of loading scenarios that canbe simulated. Second, the carti-
lage thicknesswas estimated rather thanmeasured from clinical data and, since the
MRIs were acquired in supine position, thismight lead to an overestimation of the
values. Third, themodel does possesses time dependent features such as the track-
ing of the position of tibia and talus and the update of the values of cartilage stiff-
ness, but it is not dynamic anddoes not include the effects do the inertia. However,
in their DEM based model of the patellofemoral joint Akbar and colleagues [2]
have shown that quasi-static and dynamic predictions are nearly equivalent in the
simulation of daily activities. Further investigationsmust be conducted on the an-
kle joint. Fourth, our results might benefit from a more detailed representation of
the behaviour of the ligaments of the ankle joints. The sensitivity analysis however
shows that the stiffness of the ligaments has a limited effect on thedeterminationof
the contact pressure, suggesting that this is not crucial for the simulation of phys-
iological movements. Finally, only one subject has been analysed, not permitting
the investigation of the effects that the variability of certain factors (i.e. age, gen-
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der, joint status) could have on the final outputs of the model.
Despite the above mentioned limitations, the presented study showed the the

EDEM is able to produce results in line with the experimental and computational
literature on the behaviour of the ankle joint during physiological activities.

4.4 Discussion

In this chapter we have discussed some aspects related to the implementation and
personalisation of ankle joint models based on DEM and EDEM. A simple case
has been presented to test that the DEM was implemented correctly. Finally, pre-
dictions of DEM and EDEM have been compared on subject specific ankle ge-
ometries, and the sensitivity of EDEM output to two input parameters has been
evaluated.
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5
Comparison of EDEMoutputs against

experimental data

5.1 Introduction

Osteoarthritis (OA) is a common clinical problem which frequently affects the
ankle [188], profoundly influences the quality of life of the peoplewho suffer from
it [60, 158, 160], and constitutes a heavyburdenon thehealthcare systemsofmany
countries in the western world [40, 76, 107]. Although an uniform consensus on
its etiology has not been reached yet it is generally acknowledged that altered joint
loading characteristicsmight trigger the onset and development of the disease [52,
73]. The forces generated during the gait are transmitted to the articular cartilage
which covers the extremities of the articulatingbones. Thefieldof contact pressure
which generates within the tissue is responsible for the transmission of the load
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and, if outsidephysiological ranges, cancause thedegradationof the cartilage [156,
204].

Thepattern of joint contact pressure distribution carries important information
on the behaviour of the joint. Its estimation, however, poses several challenges.
Except for rare occasions where in-vivo measurements are available through in-
strumented prostheses [106, 132, 252] , researchers and physicians have to rely
on estimations obtained either from computational models of the joint or from
in-vitro experiments performed using cadaveric specimens . Computational mod-
els have been used and validated at the hip [6], knee [143] and ankle [8] joints,
mostly in static scenarios.

Although computer simulations are extremely versatile because allow for the
investigation of situations which could be difficult to obtain in-vivo, there is a gen-
eral lack of experimental data to assess their predictions. Data can be gathered by
using pressure sensitive sheets which are inserted inside cadaveric joint specimens
by experienced surgeons. Several authors have used this technique [8, 17, 21, 35,
206, 222, 225] in a variety of scenarios, investigating healthy joints [129, 253] or
the effect of ligament resection [32] and fracturesmalunion [229, 242]. Common
limitations of this approach are the use of an external loading device which applies
a single external force to the specimen, and measurements are often performed in
static situations. Dynamic simulations of the movement of the foot complex are
possible using cadaveric gait simulators (CGS) [68, 94, 111, 127, 130, 140, 171,
179, 187]. These devices can differ for the design and the number of degrees of
freedom they can control, but all share the possibility of applying gait kinematics
and muscle forces to cadaveric foot specimens. The simulation of the kinematics
is achieved by means of linear and rotational motors, while muscle forces are ap-
plied through hydraulic actuators which pull the muscle tendon units to produce
the desired force. CGSs are usually controlled real-time in feedback loops and al-
low to measure gait parameters such as the individual bone kinematics, ligaments
strain or contact pressure distribution which would otherwise be inaccessible.

In this studyweuse the pressure data collectedbyNatsakis and colleagues atKU
Leuven (Leuven, Belgium)using aCGS theyhavedeveloped in recent years [171],
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to assess the performance of the computational model we have developed in this
thesis. Natsakis and colleagues performed the data collection from the living sub-
ject, the acquisition of the scans of the cadaveric specimen and the experiments
described in Section 5.2.1, and provided us with the geometries, forces and kine-
matics used for the contact study described in Section 5.2.2.

5.2 Material andmethods

This section is divided into two parts: the first provides the details of the experi-
mental study, performed at KU Leuven, and the second presents the details of the
computational simulations. The pipeline of the study is depicted in Figure 5.2.1.

Figure 5.2.1: Workflow of the validation study.

5.2.1 In vitro gait simulations

The input variables for the CGS, namely the joint kinematics, ground reaction
force and muscle force, were obtained after processing of in-vivo data collected
from a 47.9 kg female individual who performed a walking trial at self selected
speed. Standard inverse kinematics and static optimisation [53] were performed
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on a generic OpenSim model [59] to estimate the ankle kinematics and the mus-
cle forces. Prior to simulations themodel was scaled tomatch the anthropometric
measures of the subject.

Three components are essential in the analysis of the human motion: the kine-
matics, the ground reaction force and the muscle forces. TheCGS permits the ap-
plication of these three to a specimen of the human foot. A cadaveric specimen of
the left foot, amputatedmid-tibially, was placed in theCGSdeveloped byNatsakis
et al.[174]. The specimen was attached, at its most superior point, to a carriage
hinged to a moving rail. The carriage was able to slide horizontally and constrain
the motion of the specimen in the vertical direction. Because of the hinge con-
nection to the rail, the carriage could also rotate simulating the flexion-extension
movement of the knee. Thecentre of rotationwas approximately correspondent to
the knee. A representation of the cadaveric gait simulator is shown in Figure 5.2.2.

The sole of the foot was in contact with a moving platform, actuated by pneu-
matic actuators and able to translate vertically, which simulated the vertical kine-
matics of the foot-tibia complex and the application of the vertical ground reac-
tion force. The amplitude of the displacement of the platform and, indirectly, the
magnitude of the vertical ground reaction force, were controlled by modulating
the input pressure of the actuators. A feedback loop guaranteed that the force
measured by pressure sensors and load cells matched the ground reaction force
obtained through analytical modelling [172]. Figure 5.2.3 shows the free body
diagram of the foot specimen when in contact with the moving platform.

The horizontal kinematics was imposed by translating the carriage over the rail
using an electric servo motor (Bosch Rexroth AG, typeMSK061C, Bosch Group,
Germany). The imposed tibial kinematics was derived by means of a specimen-
specific kinematic model which used as inputs the measures of tibia and foot to
produce the horizontal translation of the knee and the tibiotalar angle [171].

Muscle activation, thedriving forcebehindhumanmotion,was simulated through
six pneumatic actuators (Festo, AF & Co. KG, Sankt Ingbert, Germany). Com-
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Figure 5.2.2: The cadaveric gait simulator and its components. Figure
from [172].

puted muscle forces were then downscaled by a factor of 2 to be used as input by
the actuators. The scalingwas performed in order not to damage the sample, and it
is a common operation when performing in-vitro gait simulations[15, 224]. In ad-
dition to the scaling, themuscle forcesweremodified to obtain a spectrumofmus-
cle activations able to generate different kinematics. A total of 5 trials were simu-
lated. The actuators were clamped to the muscle tendons, which were grouped in
six groups of tendons with similar functions [173] as shown in Table 5.2.1.
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Figure 5.2.3: The force Fp expressed by the platform matches the force Ws,
defined by the weight of the platform, of the foot specimen and a scaling
functon. Adapted from [172].

Group number Group name Muscles

1 Peroneal muscles
Peroneus longus
Peroneus brevis

2 Tibialis anterior
Tibialis anterior

Extensor digitorum
Extensor hallucis

3 Tibialis posterior Tibialis posterior
4 Flexor hallucis longus Flexor hallucis longus
5 Flexor digitorum longus Flexor digitorum longus

6 Triceps surae
Gastrocnemius

Soleus

The typical magnitude of the force expressed by themuscle groups during a the
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stance phase of the gait cycle, as computed from static optimisation and after the
linear scaling, is shown in Figure 5.2.4.

Figure 5.2.4: Norm of applied muscle force.

Thespecimenwasfittedwithfive intracortical bonepins (diameter: 4mm, length:
50mm, ICOS,NewDeal, France), attached to tibia, talus, calcaneus, navicular and
cuboid. An anterior vertical incision was performed through the skin, inferior ex-
tensor retinaculum and joint capsule to allow the insertion of a pressure sensitive
Tekscan #5033 sensor (Tekscan Inc, Boston, MA). The sensor covered the artic-
ular part of the tibia, and was attached through a screw placed on a non-sensitive
area. These operations were performed by an experienced foot surgeon.

Computed tomography (CT) scansof the specimenwere then acquired to iden-
tify the bone geometry and the precise location of the pressure sensor and the
bone pins. The three dimensional kinematics of tibia and talus during the simu-
lated gait was measured using a Krypton optoelectronic motion capture system
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(K 600, Metris, Belgium; 100Hz). Four active markers were attached to the tip
of each bone pin, making possible to define orthogonal reference frames for the
determination of the three dimensional kinematics of the bones during the simu-
lated activity. At the same time, the pressure sensor recorded the contact pressure
between talus and tibia. Figure 5.2.5 shows the geometries of tibia and talus as
obtained from the CT scans.

Figure 5.2.5: Anterior view of the full geometries of talus and tibia.

5.2.2 Contact modelling

Thecontactmodellingpart of the studywasperformedat the INSIGNEOInstitute
for in-silicomedicine (Sheffield, UK) .The geometries obtained from the CT scan
were converted into stereo lithography interface format (STL), resulting inmeshes
of 46 154 and 63 390 triangular elements for talus and tibia, respectively. Contact
simulations were run on a subset of the full meshes, namely the articular part of
the tibia (3268 triangles) and the subset of the full talar mesh where the pressure
sensorwas located. Themeshwas originally composed of 2325 triangular elements
but, since the number was not adequate for the contact simulation, we performed
3 iterations of Laplacian smoothing [75] inBlender and remeshed the domain into
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Figure 5.2.6: Superior view of the computational domains before and after
refinement. Left: original mesh, 2325 triangles. Right: final mesh, 27631 tri-
angles.

27 631 elements. Figure 5.2.6 shows the meshes before and after the refinement.
Bone geometries of tibia and talus were imported intoMATLAB (MathWorks,

Natick,MA) for the contact simulation. Anatomical landmarks were identified on
the bony surfaces of talus and tibia to allow the definition of two references frames
RSTL

Tal andRSTL
Tib whichwere used to express the relativemotion of the talus with re-

spect to the tibia during the contact simulation. The first landmark of the tibia was
located on the medial malleolus, the second on the lateral malleolus and the third
at the centre of the fibula. The origin was in the middle between the two malleoli.
The first landmark on the talus was the centre of the talus head, the secondwas the
most posterior point of the bone and the third its most lateral point. Because of
the structure of the data, preliminary operations were required to impose to the
meshes the measured kinematics. When they were imported in MATLAB, in a
configuration which we call the “STL configuration”, the two meshes were repre-
sentative of the bones in their physiological position: their reference frames were
not aligned and their origins were not coincident, and they were not located at the
origin of the global MATLAB reference frame. A different linear transformation
was then applied to each of the reference frames in order to make them coinci-
dent with the global one, bringing the two bodies in a configuration which we call
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“HOME configuration”: these transformations TSTL→H
Tal and TSTL→H

Tib bring RTal

and RTib into RH
Tal and RH

Tib respectively. The nature of the transformations was
such that the two systems were now coincident, causing the two meshes to inter-
sect in several regions. The kinematics at time twas expressed with respect to this
configuration using a transformation TH→t

Tal , composed of a translational and a ro-
tational part, which acted on the talusmovingRH

Tal to the desired “KINEMATICS
configuration”Rt

Tal. The tibia was kept in its HOME configuration for the whole
simulation. Figure 5.2.7 illustrates the STL, HOME and KINEMATICS configu-
rations by showing the different positions of the reference frames.

Figure 5.2.7: Original kinematics of the system. The motion of the talus
with respect to the tibia is expressed as a transformation from the HOME
configuration. Note that the tibia is not moved in this process.

It happened, however, that for some time points the reconstructed kinematics
caused intersection of the meshes, especially in the antero-lateral compartment of
the ankle joint. To avoid this we decided to disregard the translational part of the
kinematics and define new kinematic transformations. From the STL configura-
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tions both the meshes were displaced using TSTL→H
Tib : after this step they were in

the same relative position as they were in the STL configuration, but the refer-
ence frame of the tibia was coincindent with the global. We then computed the
transformation between the current talus position and the desired one, which was
Rt

Tal, and removed the translational part to guarantee that no penetrations hap-
pened generating the final transformation T̃H→t. A sketch of the new kinematics
is shown in Figure 5.2.8.

Figure 5.2.8: Modified kinematics of the system. The motion of the talus
with respect to the tibia is expressed as a transformation from the HOME
configuration. The movement of the talus is purely rotational.

With the rotational kinematics of the gait being defined, the next step was the
definition of the applied force. Using an anatomic atlas we identified the attach-
ment points of the muscles used in the OpenSim simulation and defined in MAT-
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LAB their lines of action . At each time point, after the contact region was com-
puted as in Chapter 4, the muscle lines of action were also updated to reflect the
physiological orientation. Contact simulations were performed using the EDEM
algorithm explained in Chapter 3. At each time step, after the talus was first ori-
ented through the imposition of the rotational kinematics, the position of the talus
was refined by applying the displacement computed at the previous time point.
Young’s modulus, Poisson’s ratio and maximum cartilage thickness are taken as
10.35MPa [85], 0.42 [7] and 3.5mm [161] respectively.

5.3 Results

Experimentalmeasures of the contact pressure variedwith time, depending on the
phase of stance, but were consistent across the trials. After a small plateau in cor-
respondence of the heel strike, 0.59 ± 0.036MPa, the peak values raised steadily
until the end of the simulated stance with final values of 0.69 ± 0.02 MPa. The
computational model tended to overestimate the contact pressure, with similar-
ities and difference to the experimental one. The overall trend resembles that of
the applied muscle forces: after a local peak in correspondence of the heel strike
the pressure raised constantly until the maximum reached at the toe off, and then
decreased until the end of the stance. As top of Figure 5.3.1 shows, the variability
in the peak pressure from both experimental measures and computational model
is limited with respect to the attained values. Figure 5.3.1 bottom, however, shows
that the two fields of pressure are separated by one order of magnitude.

Theexperimental pressuremeasures showmulti-centric patterns of contact dur-
ing simulated stance, consistent across trials. The main centre, loaded during the
entire stance, is located on the lateral part of the talus. The second is located ante-
riorly with respect to the first one, and is mostly active during the midstance. The
third centre appears on the medial part of the joint: depending on the trial the
contact pressure can be higher or lower, but essentially it is in contact duringmost
of stance. The computational model predicts this multi-centric patterns: it is able
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Figure 5.3.1: Plots of peak pressure from experimental and computational.
Two different scales are used in the top plots, the same scale is used in the
bottom one.

to identify that the first centre is the most loaded region, and most of the activity
of the third centre, but it is not capable of predicting the second one. The pressure
distribution at selected instant of time from one trial is shown in Figure 5.3.2. The
differences in range between computational and experimental values did not allow
for the use of the same scale in Figure 5.3.2.
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Figure 5.3.2: Pressure distribution at selected instants of time: results from
EDEM are on left, experimental measures are on the right.

Theexperimentallymeasured contact region occupiesmost of the articular sur-
face of the talus, with the three centres clearly active duringmidstance. According
to the computational model the joint is initially loaded in its central part, with the
maximum being located towards the lateral side and a branch towards the medial

94



part which can be identified as the third centre. As time progresses, both exper-
imental measures and computational predictions show a greater involvement of
the anterior part of the joint.

5.4 Discussion

The current study has presented results on the intra-articular contact pressure dis-
tribution in cadaveric ankle joints during simulated gait activities. The specimen
was placed in a cadaveric gait simulator actuated using as input kinematics and
muscle forces within physiological ranges, despite the need to downscale by 50%
the muscle forces in order to preserve the structural integrity of the specimen.

Curves of peak contact pressure are consistent along trials, and share similarities
over time. Two main differences are present: EDEM results predict the contact
pressure to decrease after the heel strike, driven by the decrease in muscle forces.
Experimental measures however show a continuous growing trend. Various mod-
elling assumption can play a role in this. Although in the experiment the pressure
sensitive filmwas located at the interface between talus and tibia, the specimenwas
formed of an entire foot and a portion of the tibia. Several joint can be identified
in the foot and they all contribute to holding the applied load [57, 246]. These
joints were not present in the computational model, where the only load bearing
joint was the tibiotalar joint. Furthermore, passive structures such as ligament and
bones absorb part of the applied load, the former stretching and the latter deform-
ing during gait activities. Finally, the moving platform placed underneath the ca-
daveric specimen provided an active force on the foot. We speculate that the com-
bination of these factors resulted in an effective force applied to the tibiotalar joint
which was different in shape and smaller in magnitude from the one we actually
used in the computational model. Dynamic investigations of joint contact pres-
sure in dissected cadaveric ankles, a condition which more closely resembles the
one we simulated here, have shown peak pressure with behaviour similar to the
one we predicted here [224]. Further investigation and refinement of the model
will be needed to address this point.
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The computational model was able to predict the activation of areas in good
agreement with the measured ones. Validated FE studies have reported the lateral
sector of the ankle joint to be the most loaded during gait activities [8], and var-
ious authors [129, 224, 230] have confirmed it through in-vitro gait simulations.
The computational model correctly identifies this region as the most loaded, and
the predicted peak values fall within the physiological ranges. The same can be
said for the loading in the medial part of the joint [224, 242]. Despite reports in
the literature exist on the loading of the anterior part of the joint [129, 230, 242],
which is also observed in the experimental study, the computationalmodel did not
predict the activation of the anterior part of the joint, especially in its lateral com-
partment. Themain reason for this is the procedure followed for the estimation of
the contact domain, which is based on the computation of the distance between
tibia and talus. Thegeometries of the articulating bones are such that in that partic-
ular region the estimated cartilage thickness falls often behind the threshold value,
set at 3.5mm. Theprocedurewe adopted tomodify the kinematics and discard the
translational part of the input has certainly played a role in the estimation of the
thickness, but it was required to avoid undesired intersections.

To conclude, this chapter has compared the outcomes of the EDEM against ex-
perimentally collected pressure data from cadaveric specimen. EDEMhas proven
able to predict patterns of pressure in reasonable agreement with the experimental
data, and to identify the contact of certain areas during the stance. It is however to
remark that the match is far from being perfect and further work, on both experi-
mental and computational sides, is needed to improve the predictions.

96



6
Viscoelasticmodel of the ankle joint

6.1 Introduction

The remarkablematerial properties of the articular cartilage are due to its complex
inner structure, which comprises water, collagen fibrils and proteoglycan macro-
molecules [168]. The viscoelastic properties of articular cartilage can be divided
into two main categories, called flow-independent and flow-dependent viscoelas-
ticity. The first mechanism is caused by the intrinsic viscoelastic behaviour of the
collagen fibres [102], while the second appears because of the frictional drag en-
countered by the water when it flows in and out the collagen matrix [13, 168].

Themost evident viscoelastic properties the cartilage exhibits are the creep and
stress-relaxation. The application of a constant load on the cartilage causes its
deformation to increases with time until an equilibrium value is reached. Stress-
relaxation is the dual behaviour of creep, and is concerned with the gradual reduc-
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tion of the stress in thematerial when subject to a constant deformation [77]. The
velocity of such decrease is characterised by the relaxation time of the material.

Experimental studies have determined that the articular cartilage exhibits vis-
coelastic behaviour in a variety of different scenarios, ranging from uniaxial ten-
sion [256], compression [11], either confined or unconfined, shear [102] and in-
dentation [121]. Also it has been shown that the cartilage exhibits a spectrum of
relaxation times [100]. Also, its stiffness has been identified as frequency depen-
dent [186, 227]

Over the years, several constitutive models have been proposed [33, 101, 166],
and the resulting computational model were able to describe indentation [190],
confined [226] and unconfined [145] compression.

To the author’s knowledge, however, this large variety of constitutive relation-
ship has not been used in the development of computational joint contact mod-
els which include the viscoelastic properties of the articular cartilage. The aim of
this chapter is to further contribute to the theory of the Extended discrete ele-
ment method (EDEM) by presenting a reformulation capable of describing the
viscoelastic behaviour of the cartilage, and to test its performance in a subject-
specific model of the ankle joint subject to simple loads.

6.1.1 1D viscoelasticity

Springs model purely elastic behaviour, while dashpots model purely viscous be-
haviour. Intermediate behaviours can be described by combinations of these two
elementary constituents.

The Kelvin-Voigt rheological model of viscoelasticity is comprised of a spring,
characterised by a stiffness value k, put in parallel to a dashpot of damping constant
η. The elastic force σe generated by the spring is proportional to its deformation ε
as

σe = kε, (6.1)

while the viscous damper exerts a force σv proportional to its velocity of deforma-
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tion ε̇:

σv = ηε̇. (6.2)

Throughout this chapter we will denote with a superscript dot the derivative
with respect to time, i.e. ε̇ = dε

dt . Let the viscoelastic element be constrained at
one extremity, and loaded with an applied force σ at the other one, as shown in
Figure 6.1.1.

Figure 6.1.1: The Kelvin-Voigt model for viscoelasticity. The springs is char-
acterised by the elastic constant k, the dashpot by the damping parameter η.
The applied external force is σ.

The elastic and viscous elements both contributes to the equilibrium, which
means

σ = σe + σv. (6.3)

Using Eq. 6.1 and 6.2 the equilibrium condition can be rewritten as

ηε̇ + kε = σ (6.4)

or in its canonical form

ε̇ +
1
τ
ε =

σ
η
, (6.5)
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where we introduce the relaxation time τ = η
k , a parameter which describes how

“fast” the system is. The solution to Eq. 6.5 can be found analytically by means of
the integrating factormethod [112], which allows the introduction of exact differ-
ential making the solution easier. To this end, introduce the integrating factor for
Eq. 6.5 as

M(t) = e
∫ t
t0

1
τ ds (6.6)

and multiply by it both sides of the equation to obtain

e
∫ t
t0

1
τ ds(ε̇ +

1
τ
ε) = e

∫ t
t0

1
τ ds

σ
η
. (6.7)

The use of the integrating factor makes the left hand side an exact differential:

d
dt
(e

∫ t
t0

1
τ dsε) = e

∫ t
t0

1
τ ds(ε̇ +

1
τ
ε). (6.8)

By integrating right and left hands one obtains

e
∫ t
t0

1
τ dsε =

∫ t

t0
e
∫ s
t0

1
τ dw

σ
τ
ds+ C (6.9)

and finally the solution

ε = e−
∫ t
t0

1
τ ds

∫ t

t0
e
∫ s
t0

1
τ dw

σ
τ
ds+ Ce−

∫ t
t0

1
τ ds. (6.10)

The initial conditions of Eq. 6.5 determine the value of the constant of inte-
gration C. Despite the existence of an analytical solution, depending on the na-
ture of the applied load σ, Eq. 6.5 and Eq. 6.10 can require a numerical treatment:
throughout this chapter we will make use of 2nd order Runge-Kutta method [34].

In what follows, some features of the solution of Eq. 6.5 for different loads and
values of the relaxation time will be discuss qualitatively. The origin of the refer-
ence frame is set in the point where the free extremity of the system is located at
t = t0.

The first row of Fig. 6.1.2 shows the response of a Kelvin-Voigt material when
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subject to a step force. After an initial rest phase, at t = t1 the force activates the
system and causes the free extremity to move. The promptness of the response
depends on the relaxation time: the dark blue system shows the fastest response
and is able to reach an equilibrium position before the loads goes to zero at t = t2,
whereas slower systems are still being displaced towards their equilibrium config-
uration. Higher values of |t2 − t1| would allow also the slower systems to reach
the equilibrium. For t > t2 the systemsmove back towards their original position,
each of them according to their relaxation time. The same core features are shown
also when the system is subject to other types of loadings.

As discussed in Chapter 3, the elastic solution follows instantaneously the ap-
plied load. Such behaviour is not observed in viscoelastic systems which exhibit a
delay in their response. However, as Eq. 6.5 shows, elastic and viscoelastic systems
have the same solution at equilibrium, which is when ε̇ = 0.

6.2 ViscoelasticityandExtendedDiscreteElementMethod

This section, which is the coreof this chapter, will presents a novel reformulationof
EDEMable to include the viscoelastic behaviour of cartilage within themodelling
framework. First, the equilibrium equation for viscoelastic DEM will be derived,
and then modified into the EDEM equation to allow for tracking of the motion
of the contacting bodies. The notation and terminology will be the same as in
Section 3.2.

Introduce a Cartesian frame {O; e1, e2, e3} and two bodiesF andM, the for-
mer stationary in space and the latter able to move. Let them be in contact over
a region S ⊂ M, whose generic point is denoted as r, and denote the position
vector of the centroid ofMwith rG. For each point on Swe introduce a viscoelas-
tic load bearing element, parallel to the normal vector nr, constituted by a spring
and a dashpot in parallel. The particulariser operatorBr is defined as in Section 3.2.
Equilibrium considerations dictate to define two different operators for the com-
putation of the stress. The first one,Dr, computes the part of stress induced by the
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Figure 6.1.2: Behaviour of Kelvin-Voigt viscoelastic materials under different
loads.
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displacement of the spring and is defined as

Dr = kdnr ⊗ nr + ks(I3×3 − nr ⊗ nr), (6.11)

where kd, ks are the normal and tangent stiffness respectively, and nr ⊗ nr is the
projector in the direction of nr. As in three-dimensional elasticity [217], the part
of stress induced by the velocity of the dashpot has the same structure:

Vr = ηdnr ⊗ nr + ηs(I3×3 − nr ⊗ nr), (6.12)

where ηd and ηs, the normal and tangent damping, and are related to the stiffness
by the relaxation time τ as

ηd = τkd

ηs = τks.
(6.13)

The total stress in the viscoelastic element is then computed using the gener-
alised displacement u ofM as follows:

σr = σer + σvr = DrBru + VrBru̇. (6.14)

Proceeding as in Section 3.2 the total energy of the systemunder an applied load
T can be computed as

E(u, u̇;T) = 1
2

∫∫
S
BT

r DrBr dSu · u +

∫∫
S
BT

r VrBr dSu̇ · u − u · T

=
1
2
Ku · u + Hu̇ · u − u · T.

(6.15)
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The matrices

K =

∫∫
S
BT

r DrBr dS

H =

∫∫
S
BT

r VrBr dS
(6.16)

are the elastic and viscous stiffness of the system, respectively. The elasticmatrix is
responsible for storing energy into the system, whereas the viscous is responsible
for the dissipation of the energy. Minimisation of the total energy leads to the
global equilibrium equation

Hu̇ + Ku = T. (6.17)

This formulationmust be extended to allow for tracking the motion of the con-
tact bodies: as in Section 3.3 this is done by including the push-back force in the
constitutive relationship of the viscoelastic elements. After integration over the
contact area anminimisation of the energy this yields to the incremental viscoelas-
tic equation for EDEM

Hu̇ + Ku = T − p. (6.18)

Eq. 6.18 is solved at each time point t using the 2nd order Runge-Kutta algo-
rithm, which produces the displacement and the velocity of the rigid body M,
needed for the computation of the stress. As in elastic EDEM, stretched elements
are removed from the computational domain and the solution sought until all the
elements are in a non tensile state.

6.3 Application to 3D problems

In this section the presented reformulation of EDEM for viscoelastic problems is
implemented with the aim of investigating the contact pressure in a viscoelastic
ankle model. Rather than the development of a realistic viscoelastic ankle model,
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the scope of this study is the assessment of the performances of the viscoelastic
model in a 3D scenario.

6.3.1 Methods

The same dataset of Chapter 4 was used for the development of the viscoelas-
tic model. MRI images of the lower limbs of a juvenile subject (16 years, 68 Kg,
160 cm) were collected at the Istituto Giannina Gaslini (Genoa, Italy) and seg-
mented to identify the bone geometries. The articular surface of talus and tibia
was identified from the segmented geometries, which were then meshed. A total
of 2974 Kelvin-Voigt contact elements was posed on the articular surface of the
talus. Ligaments were not included in the model.

We simulated a simple loading scenario, consisting in a 5 s ramp increasing from
200N to 1800N, followed by 10 s of constant load and then a 5 s descending ramp
from 1800N to 200N. In this simulation the ankle was kept in a neutral position
and the relative orientation of talus and tibia was not modified. The applied force
acted on the talus and pushed in the superior and posteromedial directions.

To test the behaviour of the viscoelasticmodelwe selected three different values
of relaxation time, one obtained from the literature and two increasingly larger:
τ1 = 1.4 s [67], τ2 = 7 s, τ3 = 14 s.

6.3.2 Results

Results from the simulationof the ramp scenario are shown inFigure 6.3.1 as norm
of the distance of the talus from its original position and norm of the incremental
displacement. During the first phase the talus is displaced towards the tibia. The
actual magnitude of the displacement of the talus depends on the magnitude of
the damping parameter, which is directly proportional to the relaxation time. It is
evident that for τ = 1.4 the system is responsive enough to reach a plateau at the
end of the constant loading phase, whereas larger time constants caused a slower
response. As the lower image of Figure 6.3.1 shows, the computed displacement
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Figure 6.3.1: Response of the viscoelastic ankle model to ramp loading.
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Figure 6.3.2: Peak contact pressure as predicted by the viscoelastic model.
The relaxation time is set to 1.4 s, but the same behaviour is obtained for dif-
ferent relaxation times.

is the time derivative of the position.
Despite the presence of the viscoelastic elements the plot of the peak contact

pressure shows exactly the same behaviour of the applied force, with a maximum
value of 18MPa (Figure 6.3.2).

As Figure 6.3.3 themost loaded region of the joint is its posterior part and, since
the relativeorientationof tibia and talus is notmodifiedduring the loadingprocess,
this holds for the entire simulation.

6.4 Discussion

In this chapterwehave shownhowviscoelastic phenomena canbe includedwithin
the framework of EDEM, andwe have presented an anklemodel where the articu-
lar cartilagewasmodelled usingKelvin-Voigt viscoelastic element. Themodel, not
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Figure 6.3.3: Contact pressure distribution at 2, 10 and 16 s. The relaxation
time is set to 1.4 s, but the same pressure distribution is obtained for different
relaxation times.

including ligaments, was tested with a ramp force to evaluate the performance of
the viscoelastic solver. In terms of displacement, the solution shows the creep be-
haviour characteristic of viscoelastic materials: the application of the force caused
to talus tobedisplaced towards the tibia, but theKelvin-Voigt elements introduced
a delay in the response of the system. As anticipated from the theory, the intro-
duced delay grew larger with the increasing of the relaxation time, which is a mea-
sure of the slowness of the system. For the smallest relaxation time, τ =1.4 s, the
system was able to reach an equilibrium configuration before the decrease of the
applied force drove it backwards towards its original position, whereas for higher
relaxation time the strength of the viscous part of the response did not allow the
talus to reach an equilibrium configuration. Computed displacement is the time
derivative of the position. Figure 6.3.1 bottom shows an apparent lack of derivabil-
ity of the displacement for instants of time following the decrease of the applied
force. This is however not true, as the graph shows the norm of the displacement
vector, whose components are negative when the force is decreasing.

Despite the clear viscoelastic effects shown by displacement and position, the
behaviour of the peak contact pressure is the same as it would be predicted by
purely elastic theories. This canbe explainedby recurring to the definition of stress
in viscoelastic EDEM.Thepressure on a point r is the projection along the normal
direction nr of the stress σr, which is composed of an elastic part proportional to
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the displacement, a viscous part proportional to the velocity and the push-back
force. The push-back force and the sum of these two last components, weighted
according to the elastic stiffness and viscous damping, is equal to the externally
applied force. This explains why viscoelastic effects are not visible in the pressure
distribution. Peak values of pressure are higher than those predicted by simulation
of standing in Chapter 4 because of the higher magnitude of the applied load and
the absence of ligaments.

The presented description, although being able to catch the basic viscoelastic
behaviour of the articular cartilage, is based on a simplified constitutive relation-
ship. More general constitutive relationships based on higher order derivatives of
both stress and strain [233] or convolution integrals [202] can describe a wider
range of phenomena but require more parameters to be determined experimen-
tally. The developed viscoelastic cartilage model shows potential for being incor-
poratedwithinmultibody systems for the aimofmultiscale body-organ integration
and, therefore, it is to be kept at a reasonable level of complexity. It is however to
consider that the gait is a relatively short activity during which the cartilage does
not have time to fully express the complexity of its behaviour. Further studies will
determine the optimal constitutive relationship which guarantees a compromise
between the accuracy of the response and the computational demands.

Despite its resistance, the articular cartilage is particularly sensitive to high fre-
quency loads, such as those generated during impacts, which can induce damages
to its structure and carry its degeneration [? ]. As [10] has shown, 1D linearly
viscoelastic models (i.e. Kelvin-Voigt, Maxwell and standard solid) can easily be
adopted to treat impulsive forces. The viscoelastic contact model proposed in this
chapter makes no exception, provided that the method is further extended the in-
clude the non-negligible inertial effects.

Theadditionof inertial terms to theequilibriumequationofEDEMwould favour
the integration of the contact model withinmultibody dynamics systems. The use
of viscoelastic contact models in conjunction withmusculoskeletal models would
lead to predictions of the relative motion of the bones which differ from the one
computed using purely elastic contact models and, since the relative position of
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the articulating bones is crucial for the determination of the joint centre andmus-
cle lever arms, this would ultimately affect the determination of the muscle forces
and the total joint load [109, 141].

To conclude, in this chapterwehave shown that it is possible to integrate the vis-
coelastic behaviour of the articular cartilage within the framework of EDEM. The
proposed methodology was able to describe the creep behaviour of the articular
cartilage and shows promising potential for integration with multibody systems.
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7
Conclusions and future work

The multiscale modelling approach has gained popularity among researchers of
the musculoskeletal system in view of its capability to describe musculoskeletal
system across different spatial and temporal levels. The full integration of all the
scales of the musculoskeletal shows promising potential for applications to clini-
cal problems such as the prediction of the risk of fracture and the progress of os-
teoarthritis. However, developing such a multiscale model of the musculoskeletal
system poses computational challenges due to its requirements of intensive com-
puting resources.

The aim of the work was the development of computationally efficientmethod-
ologies for the computational estimation of the contact pressure in the human
joints, as integratedpart ofmultiscalemusculoskeletal systemmodelling and simu-
lation. To this end, the primary objective of this dissertationwas to develop a com-
putationally efficientmodelling framework for generic contactmechanics, apply it
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for ankle contact modelling driven by highly accurate, subject-specific kinematics
of human motion, and validated its framework with experimental data. These ob-
jectives were achieved by carrying out several studies through Chapters 3- 6.

The static theory of the Discrete element method (DEM) for the modelling
of contact mechanics has been presented in Chapter 3 and, after the exposition
of its limitations, the Extended discrete element method (EDEM) for the treat-
ment of joint contact problem involving time-dependent phenomena, in particu-
lar, the joint contact behaviour duringmotionof human, has been introduced. The
two methods have been implemented and their outputs compared in Chapter 4,
where they were used to simulate joint contact during stance on subject specific
geometries. Input data from subject-specific musculoskeletal models were inte-
grated within the EDEM model to guarantee, at each time point, that the rota-
tional kinematics of the contactmodel was coherent with the in-vivo kinematics of
the subject. Results have shown that the static methods tended to underestimate
the joint contact region, whereas EDEM predicted the activities of larger parts of
the joints. Predictions from EDEM were evaluated in good agreement with the
existing literature on ankle joint contact. The sensitivity analysis on EDEM inputs
has shown that the parameter which greatly influences the output is the estimated
cartilage length.

In Chapter 5 the cadaveric foot gait simulator used for the collection of kine-
matic and pressure data during simulated stance was presented. An EDEMmodel
has been developedwhich used themeasured kinematics to drive the angular con-
figuration of the contact model. The EDEM model was used to predict the con-
tact pressure during stance, and its predictions compared with the collected data.
Despite some discrepancies in the prediction of peak values, the model was able
to identify the activation of the same regions measured as active by the pressure
sensor. However, it failed in identifying the activation of the antero-lateral com-
partment of the joints.

Chapter 6has shown thatEDEMcanbe further extended to include viscoelastic
constitutive relationships. Simulations of simplified loading scenarios proved that
the extension is capable of describing the characteristic creep behaviour shown by
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articular cartilage, and to predict how the mechanical response of the tissue varies
with variation of the relaxation time.

7.1 Contributions

The main contributions of this work are outlined here.
Amethodology for the fast treatment of time dependent joint contact problems

has been developed. The details of the theory behind the extension have been ex-
tensively discussed. To the authors knowledge few time dependent contact mod-
els exist in the literature, none of them applied to the ankle joint, and details on
their formulation are usually not provided.

An optimised code for subject specific modelling of the human joint has been
developed and tested, and will soon be released on GitHub (https://github.
org), together with documentation, user manual and examples, to foster collabo-
rations with researcher within the joint modelling community.

The use of dynamic data with the purpose of validation of computational con-
tact models is new in the literature regarding contact mechanics and this study has
shown that, despite minor discrepancies, the EDEM is able to predict the contact
pressure distribution in cadaveric joints during simulated gait.

7.2 Limitations

The proposed methodology certainly lacks several features. The most important
are listed below.

At each time point of the simulation the maximal contact region is estimated
ex-novo using the location of the contact bodies, and then shrunk to its final value.
An additive contact detection algorithm which allows the recruitment of contact
springs within the simulation of a given time point would better reflect the nature
of the contact between real bodies, and strengthen the dependence of the contact
area on the applied load.
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The articular cartilage has been modelled as an elastic material, whose consti-
tutive relationship was based on Hooke’s law and, implicitly, the assumption of
small deformation of the contact springs. Although appropriate for the simulation
of most of the daily activities, such hypothesis can be relaxed to allow for large
deformations of the cartilage layer by using a nonlinear constitutive relationship.

Similar considerations can be made on the viscoelastic modelling. We adopted
a simple Kelvin-Voigt model, able to depict the creep behaviour of the cartilage,
but less effective in describing more complex properties of the cartilage such as
the fluid-matrix interaction.

The analysis of the contact patterns during the gait cycle has been performed
on a single subject in Chapter 4 and on a single specimen in Chapter 5. The use of
a small cohort such as this does not permit a thorough investigation of the sensi-
tivity of the model to certain input parameters such as the bones geometry or the
cartilage thickness, which could varywidely according to the age, gender, degree of
joint degeneration and other characteristics of the subject. Extending the study to
larger datasets would give the possibility to test themodel and assess its sensitivity
to a variety of input data.

7.3 Future directions

One possible theoretical framework behind the use of general nonlinear constitu-
tive relationship in springs based contactmodels has been presented in [241], and
logarithmic constitutive relationships have appeared in [22, 93]. Future develop-
ments will include the use of nonlinear spring models. Ateshian and colleagues
has shown that an exponential stress-strain relationship is appropriate to describe
the behaviour of compressed cartilage subject to large deformations [13]. Expo-
nential functions, however, are not suitable for numerical implementation: to this
end a Taylor expansion can be performed, leading to a polynomial equilibrium
equation which can be solved via the Newton-Raphson method. The iterative
criterion to decide whether a spring is to be kept or removed from the compu-
tational domain does not require to be modified. Nonlinear spring models de-
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scribe the behaviour of articular cartilage more accurately than linear model, but
require the determination of a larger number of parameters. When not available in
the literature, the parameters of the nonlinear model can be determined bymeans
of optimisation techniques and parameters fitting of stress-strain curves obtained
from compression tests of the articular cartilage. With respect to viscoelasticity,
generic Boltzmann elements are able to cover a wider spectrum of viscoelastic ef-
fect than pureMaxwell or Kelvin-Voigt elements can. Thismodelling choice, how-
ever, could introduce further problems in the determination of the parameters.
Fractional derivatives viscoelasticity [151], although still under development, is
characterised by a limited number of parameters but nonetheless canmodel awide
variety of viscoelastic effects and represents a promising direction of investigation.

As mentioned earlier, the actual contact area is estimated through successive
shrinking of the maximal estimate. Future extensions of this research will modify
the contact detection algorithm by including an additive refinement within the
computations at each time step. Related to this aspect, the maximal contact are is
currently determined using a single layer of contact springs, whereas in the joints
two layer of cartilage are engaged in contact. Future studies will investigate the
level of similarities in the EDEM predictions of contact patterns when these two
different modelling strategies are adopted.

Thesensitivity study inChapter 4has shown thatEDEMoutputs are sensitive to
the springs’ length threshold which, after the estimation of the cartilage thickness,
contributes to the definition of the active contact area. The cartilage thickness is
estimated through projection of the normal vectors to the surface of the talusmesh
towards the tibiamesh, and can therefore be influenced by the quality of themedi-
cal images andof the segmentation. Poorly segmented images are likely to produce
irregular meshes, whose scattered normal vectors lead to a degraded the quality of
the solution. Similarly, the quality of the segmentation affects also the determina-
tion of the joint axes which are fundamental for the determination of forces and
kinematics during musculoskeletal simulations [95] which provide the inputs for
the contact model. Future works will extend the sensitivity studies performed in
this thesis, assessing how the quality of the segmentation of medical images can
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induce errors which propagate throughout the pipeline, ultimately influencing the
determination of the joint contact pressure.

The use of input data from a large population of individuals differentiated for
genders, age, weight and other parameters would open the possibility to perform
correlation studies. The objective of such studies is to investigate the correlation
between outputs of themodel and features of the dataset (i.e. correlation between
weight andmaximumcontact pressure, age and extension of the contact area,max-
imumpressure andmedical assessment of the status of the joint). This would then
help to identifymarkers useful for preliminary diagnosis of osteoarthritis, or at the
very least for an improved classification based on risk classes.

As the finite element (FE)method is currently considered the gold standard for
the computational prediction of joint contact, the development of a FE model for
comparison purposes would add further strength to the results computed using
the EDEM methodology.

The low computational time required by EDEM makes it ideal for integration
withinmultibody systems for the simultaneouspredictionof joint kinematics, joint
pressure andmuscle forces. This would open perspectives with respect to themul-
tiscalemodelling of themusculoskeletal system in terms of body-organ levels cou-
pling, making the coupling bidirectional and giving the possibility to investigate
the effect that bone motion has on the determination of joint kinematics.
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A
MATLAB code

This appendix contains a simplified version of some of the developed MATLAB
code used for the simulations in Chapter 5.

A.1 Main

t i c
c l e a r
c l o s e a l l
c l c
%% Load t h e k i n em a t i c s , p r e s s u r e and t r a n s f o r m a t i o n

m a t r i c e s f o r t h e STL f i l e s
s u b j e c t _ i d =37 ;
mu s c l e _ i d =[1 2 5 ] ;
i n p u t _ p a t h = s t r c a t ( ’C : \ U s e r s \ uos \ Dropbox \

Un i v e r s i t y _ and_PhD \ M u l t i s c a l e _m o d e l l i n g \ W r i t i n g \
Leuven \ Data \ S i m u l a t i o n \ i n p u t \ f o o t ’ , num2s t r (
s u b j e c t _ i d ) , ’ \ ’ ) ;

o u t p u t _ p a t h = s t r c a t ( ’C : \ U s e r s \ uos \ Dropbox \
Un i v e r s i t y _ and_PhD \ M u l t i s c a l e _m o d e l l i n g \ W r i t i n g \
Leuven \ Data \ S i m u l a t i o n \ o u t p u t \ f o o t ’ , num2s t r (
s u b j e c t _ i d ) , ’ \ ’ ) ;
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l o a d ( s t r c a t ( i n p u t _ p a t h , ’ K i n em a t i c s _ f o o t ’ , num2s t r (
s u b j e c t _ i d ) , ’ . mat ’ ) ) ;

l o a d ( s t r c a t ( i n p u t _ p a t h , ’ P r e s s u r e _ f o o t ’ , num2s t r (
s u b j e c t _ i d ) , ’ . mat ’ ) ) ;

l o a d ( s t r c a t ( i n p u t _ p a t h , ’ T r a n s f o r m a t i o nM a t r i c e s _ f o o t ’ ,
num2s t r ( s u b j e c t _ i d ) , ’ . mat ’ ) ) ;

l o a d ( s t r c a t ( i n p u t _ p a t h , ’ s e n s o r _ f a c e s ’ ) ) ;
l o a d ( s t r c a t ( i n p u t _ p a t h , ’ m u s c l e s v o e t ’ , num2s t r (

s u b j e c t _ i d ) , ’ . mat ’ ) ) ;

%% Load t h e f a c e s and v e r t i c e s o f t h e STL f i l e s
[ V_Tib , F i x F a c e s ] = s t l R e a d ( s t r c a t ( i n p u t _ p a t h , ’

T i b i a _ e x t r em e _ c u t _m a l l e o l u s 1 . s t l ’ ) ) ;
[ V_Tal , F_Tal ] = s t l R e a d ( s t r c a t ( i n p u t _ p a t h , ’ T a l u s . s t l ’

) ) ;
%% Ob t a i n t h e s e n s o r mesh i n STL
[ Mo b i l e V e r t i c e s , Mob i l e F a c e s ] = ob t a i n_ r e du c e d_me s h (

V e r t i c e s . Ta l u s , V_Tal , F_Tal , v a l i d _ t r i a n g l e ) ;
[ Mo b i l e V e r t i c e s , Mob i l e F a c e s ] = s t l R e a d ( s t r c a t (

i n p u t _ p a t h , ’ t a l u s _ s u b 3 5 . s t l ’ ) ) ;
%% Load mu s c l e a t t a c hm e n t p o i n t s i n STL
l o a d ( ’ a t t a c h _m u s c l e s . mat ’ ) ;
%% Move b o d i e s t o HOME
V_Tal_Home = t r a n s f o r mV e c t o r ( i n v ( t r a n s f om a t _ S t l B o n e .

Tek s c an . T i b i a ) , M o b i l e V e r t i c e s ) ;
V_Tib_Home = t r a n s f o r mV e c t o r ( i n v ( t r a n s f om a t _ S t l B o n e .

Tek s c an . T i b i a ) , V_Tib ) ;
% Put mu s c l e s i n home
g a s t r o c_home = t r a n s f o r mV e c t o r ( i n v ( t r a n s f om a t _ S t l B o n e .

Tek s c an . T i b i a ) , g a s t r o c ) ;
t i b_an t_home= t r a n s f o r mV e c t o r ( i n v ( t r a n s f om a t _ S t l B o n e .

Tek s c an . T i b i a ) , t i b _ a n t ) ;
t i b_po s t_home = t r a n s f o r mV e c t o r ( i n v ( t r a n s f om a t _ S t l B o n e .

Tek s c an . T i b i a ) , t i b _ p o s t ) ;
%% I n p u t d e f i n i t i o n : T i b i a
geom . t i b i a . v e r t i c e s =V_Tib_Home ;
geom . t i b i a . f a c e s = F i x F a c e s ;
%% I n p u t d e f i n i t i o n : T a l u s ( i n T i b i a home )
geom . t a l u s . v e r t i c e s =V_Tal_Home ;
geom . t a l u s . f a c e s =Mob i l e F a c e s ;
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geom . t a l u s . c e n t r e = z e r o s ( 1 , 3 ) ;
%% I n p u t d e f i n i t i o n : mu s c l e s
mu s c l e s . t i b_po s t_home = t i b_po s t_home ;
mu s c l e s . t i b_ an t_home= t i b_an t_home ;
mu s c l e s . g a s t r o c_home = g a s t r o c_home ;
mu s c l e s . mu s c l e _ i d =mu s c l e _ i d ;
%% I n p u t d e f i n i t i o n : r e f e r e n c e f r am e s
r e f e r e n c e _ f r a m e s . R_Tal_Home=R_Tal_Home ;
r e f e r e n c e _ f r a m e s . R_Tal=R_Tal ;
%% I n p u t d e f i n i t i o n : m a t e r i a l p r o p e r t i e s and gap
N= l e n g t h ( Mob i l e F a c e s ) ;
m a t e r i a l _ p r o p . Ey= one s (N, 1 ) * 1 0 . 3 5 e6 ;
m a t e r i a l _ p r o p . nu = 0 . 4 2 ;
m a t e r i a l _ p r o p . k s = one s (N, 1 ) *1 e3 * 0 ;
gap = 3 . 5 ;
%% I n p u t d e f i n i t i o n : f o r c e
t ime_max =100 ;
m u s c l e s v o e t 3 7 = mu s c l e s v o e t 3 7 ( 1 : t ime_max , : ) ;
%% RUN SIMULATION AND SAVE RESULTS
ou t p u t =Hammurabi ( gap , r e f e r e n c e _ f r am e s ,

t r a n s f om a t _ P r o xD i s t , t r a n s f om a t _ S t l B o n e ,
mu s c l e s v o e t 3 7 , mu s c l e s , geom , m a t e r i a l _ p r o p ) ;

t o c

A.2 Solver

f u n c t i o n [ o u t p u t ] = Hammurabi ( gap , r e f e r e n c e _ f r am e s ,
t r a n s f om a t _ P r o xD i s t , t r a n s f om a t _ S t l B o n e ,
mu s c l e s v o e t 3 7 , mu s c l e s , geom , m a t e r i a l _ p r o p )

%% DEFINE t ime_max
t ime_max= s i z e ( mu s c l e s v o e t 3 7 , 1 ) ;
%% IMPORT MESHES
% T i b i a
V_Tib_Home = geom . t i b i a . v e r t i c e s ;
F i x F a c e s = geom . t i b i a . f a c e s ;
% T a l u s
V_Tal_Home = geom . t a l u s . v e r t i c e s ;
Mob i l e F a c e s = geom . t a l u s . f a c e s ;
N= l e n g t h ( Mob i l e F a c e s ) ;
% T a l u s c e n t r e
Mob i l eC en t r e =geom . t a l u s . c e n t r e ;
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%% PRELOAD
f p r e v i o u s = z e r o s ( 3 ,N) ;
%% IMPORT REFERENCE FRAMES
R_Tal_Home= r e f e r e n c e _ f r a m e s . R_Tal_Home ;
R_Tal= r e f e r e n c e _ f r a m e s . R_Tal ;
%% IMPORT MATERIAL PROPERTIES
Ey= m a t e r i a l _ p r o p . Ey ;
nu= m a t e r i a l _ p r o p . nu ;
%% DEFINE OUTPUT
s t r e s s S t o r y = z e r o s (N, t ime_max ) ;
d i s p S t o r y = z e r o s ( 6 , t ime_max ) ;
h s t o r y = z e r o s (N, t ime_max ) ;
C e n t r e S t o r y = z e r o s ( 3 , t ime_max ) ;
C e n t r e S t o r y ( : , 1 ) =Mob i l eCen t r e ’ ;
k e e p s t o r y = z e r o s (N, t ime_max ) ;
s p r i n g _ s t o r y = z e r o s ( l e n g t h ( Mob i l e F a c e s ) , 3 , t ime_max ) ;
m a x S t r e s s = z e r o s ( 1 , t ime_max ) ;
a c t i v e A r e a = z e r o s ( 1 , t ime_max ) ;
d i f f _ e r r = z e r o s ( 1 , t ime_max ) ;
i t e r _ s t o r y = z e r o s ( 1 , t ime_max ) ;
a c t i v e E l em = z e r o s ( 1 , t ime_max ) ;
k i n = z e r o s ( 4 , 4 , t ime_max ) ;
%% MUSCLE ATTACHMENT POINTS
t i b_po s t_home = mu s c l e s . t i b_po s t_home ;
t i b_an t_home = mu s c l e s . t i b_ an t_home ;
g a s t r o c_home = mu s c l e s . g a s t r o c_home ;
mu s c l e _ i d =mu s c l e s . mu s c l e _ i d ;
%% FOR CYCLE
U= z e r o s ( 6 , 1 ) ;
f o r k =1 : t ime_max

% I n p u t t r a n s f o r m a t i o n m a t r i x
T= t r a n s f om a t _ P r o x D i s t . Tek s c an . Tek s c an_10 .

T i b i a _T a l u s { k } ;
% Ob t a i n t h e i n p u t k i n em a t i c p o s i t i o n
R_Tal_New= t r a n s f o r mV e c t o r (T , t r a n s f o r mV e c t o r ( i n v (

t r a n s f om a t _ S t l B o n e . Tek s c an . T a l u s ) , R_Tal ) ) ;
% Compute t r a n s f o r m a t i o n m a t r i x b e tween t h e

k i n e m a t i c s p o s i t i o n and t a l u s i n T i b i a Home
TT= t r a n s f o r m _ r e f e r e n c e _ f r a m e s (R_Tal_Home , R_Tal_New

) ;
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k i n ( : , : , k )=TT ’ ;
% Ob t a i n d e s i r e d p o s i t i o n o f t h e t a l u s
VV_Tal_New= t r a n s f o r mV e c t o r (TT ’ , V_Tal_Home ) ;
VV_Tal_New=VV_Tal_New+ r epma t ( sum ( d i s p S t o r y ( 1 : 3 , : )

, 2 ) ’ , s i z e (VV_Tal_New , 1 ) , 1 ) ;
% Ob t a i n f i n a l mu s c l e a t t a c hm e n t s
t i b _ p o s t _ k i n =[ t i b_po s t_home ( 1 , : ) ; t r a n s f o r mV e c t o r (

TT ’ , t i b_po s t_home ( 2 , : ) ) ] ;
t i b _ a n t _ k i n =[ t i b_an t_home ( 1 , : ) ; t r a n s f o r mV e c t o r (TT

’ , t i b_ an t_home ( 2 , : ) ) ] ;
g a s t r o c _ k i n =[ g a s t r o c_home ( 1 , : ) ; t r a n s f o r mV e c t o r (TT

’ , g a s t r o c_home ( 2 , : ) ) ] ;
% Compute f o r c e
F= compu t e_ f o r c e ( t i b _ p o s t _ k i n , t i b _ a n t _ k i n ,

g a s t r o c _ k i n , m u s c l e s v o e t 3 7 ( k , mu s c l e _ i d ) ) /2 * s c a l (
k ) ;

%% LOAD BEARING ELEMENTS
% De f i n e s p r i n g s
MMob i l e Sp r i n g s =Compu t eSp r i n g s (VV_Tal_New ,

Mob i l e F a c e s ) ;
% De f i n e d i r e c t i o n o f no rma l v e c t o r s t o mob i l e

body
[ Area , No rma lMa t r i x ]= ComputeArea (VV_Tal_New ,

Mob i l e F a c e s , MMob i l e Sp r i n g s ) ;
%% S t o r e c o n f i g u r a t i o n a t t ime k
mo b i l e _ s t o r y ( : , : , k )=VV_Tal_New ;
s p r i n g _ s t o r y ( : , : , k )=MMob i l e Sp r i n g s ;
%% Compute c a r t i l a g e t h i c k n e s s
h= z e r o s ( l e n g t h ( MMob i l e Sp r i n g s ) , 1 ) ;
p a r f o r i =1 :N

[ i n t e r s e c t , t , ~ , ~]= T r i a n g l e R a y I n t e r s e c t i o n (
MMob i l e Sp r i n g s ( i , : ) , No rma lMa t r i x ( i , : ) ,
V_Tib_Home ( F i x F a c e s ( : , 1 ) , : ) , V_Tib_Home (
F i x F a c e s ( : , 2 ) , : ) , V_Tib_Home ( F i x F a c e s ( : , 3 )
, : ) ) ;

i f sum ( i n t e r s e c t ) >0
h ( i )=min ( t ( i n t e r s e c t ==1) ) ;

end
end
% De f i n e s e r v i c e v a r i a b l e s
k eep =h >0 ;
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hh=h ;
keep (h> gap ) =0 ;
h ( h==0)= I n f ;

upda t eE l em=keep >0 ;
No rm a l S t r e s s=−one s (N, 1 ) ;

% De f i n e no rma l s t i f f n e s s o f t h e c a r t i l a g e
kd=(1−nu ) /((1+ nu ) *(1−2* nu ) ) * Ey . * A r e a . / h ;
% Impo r t s h e a r s t i f f n e s s o f t h e c a r t i l a g e
k s = m a t e r i a l _ p r o p . k s ;
%% COMPUTE SOLUTION
i t e r a t i o n =0 ;

w h i l e ( f i n d ( No rma l S t r e s s <0) ~=0)

% Co n s t r u c t c a r t i l a g e m a t r i c e s
[BB ,DD]= BDMa t r i c e s ( MMob i l eSp r i ng s , Mob i l eCen t r e

, No rma lMa t r i x , kd , ks , upda t eE l em , keep ) ;
% Co n s t r u c t s t i f f n e s s m a t r i c e s
Kprov= G l o b a lM a t r i x (BB ,DD) ;

% De f i n e a p p l i e d f o r c e
F p r e v i o u s =[ sum ( f p r e v i o u s ’ ) ’ ; z e r o s ( 3 , 1 ) ] ;
F=[F ’ ; z e r o s ( 3 , 1 ) ] ;
U=Kprov \(F−F p r e v i o u s ) ;

%% Compute c a r t i l a g e and l i g am e n t f o r c e s
[ f , No rma l S t r e s s , upda t eE l em , f p r e v i o u s ]=

Compu t e F o r c e S t r e s s (BB ,DD, Norma lMa t r i x , U ,
f p r e v i o u s , upda t eE l em , A r e a ) ;

i t e r a t i o n = i t e r a t i o n +1 ;
end
d i f f _ e r r ( k )=norm ( sum ( f ’ ) ’−F ( 1 : 3 ) ) ;
i t e r _ s t o r y ( k )= i t e r a t i o n ;
a c t i v e E l em ( k )=sum ( keep ) ;
d i s p S t o r y ( : , k )=U;
m a x S t r e s s ( k )=max ( No rm a l S t r e s s ) *1 e6 ;
normF ( k )=norm (F) ;
n o rm f c a r t ( k )=norm ( sum ( f ’ ) ’ ) ;
m a x _ p r e s s u r e _ l o c a t i o n ( k )= f i n d ( No rm a l S t r e s s ==max (
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No rm a l S t r e s s ) ) ;
a c t i v e A r e a ( k )=Area ’ * upda t eE l em ;
h s t o r y ( : , k )=hh ;
k e e p s t o r y ( : , k )= keep ;
F s t o r y ( : , k )=F ;
u p d a t e S t o r y ( k )=sum ( upda t eE l em ) ;
% Update s t a t u s
f p r e v i o u s = f ;
C e n t r e S t o r y ( : , k +1)=Mob i l eCen t r e ’ +U( 1 : 3 ) ;

c l c
% PROGRESS BAR
c p r i n t f ( ’ * b l u e ’ , s t r c a t ( r epma t ( ’ = ’ , 1 , k ) , ’ ’ ) ) ;
c p r i n t f ( ’ * e r r ’ , s t r c a t ( r epma t ( ’ = ’ , 1 , t ime_max−k ) , ’ \ n

’ ) ) ;

end

o u t p u t . s t r e s s S t o r y = s t r e s s S t o r y ;
o u t p u t . d i s p S t o r y = d i s p S t o r y ;
o u t p u t . a c t i v e E l em = a c t i v e E l em ;
o u t p u t . h s t o r y = h s t o r y ;
o u t p u t . C e n t r e S t o r y = C e n t r e S t o r y ;
o u t p u t . k e e p s t o r y = k e e p s t o r y ;
o u t p u t . m o b i l e _ s t o r y = mo b i l e _ s t o r y ;
o u t p u t . s p r i n g _ s t o r y = s p r i n g _ s t o r y ;
o u t p u t . m a x S t r e s s = m a x S t r e s s ;
o u t p u t . a c t i v e A r e a = a c t i v e A r e a ;
o u t p u t . u p d a t e S t o r y = u p d a t e S t o r y ;
o u t p u t . d i f f _ e r r = d i f f _ e r r ;
o u t p u t . normF=normF ;
o u t p u t . mob_ f a c e s =Mob i l e F a c e s ;
o u t p u t . f i x _ f a c e s = F i x F a c e s ;
o u t p u t . F s t o r y = F s t o r y ;
o u t p u t . n o rm f c a r t = n o rm f c a r t ;
o u t p u t . m a x _ p r e s s u r e _ l o c a t i o n = m a x _ p r e s s u r e _ l o c a t i o n ;
o u t p u t . i t e r _ s t o r y = i t e r _ s t o r y ;
o u t p u t . k i n = k i n ;
o u t p u t . A r e a =Are a ;
end
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A.3 Meshing

f u n c t i o n [ V_Talus , F_Ta lu s ] = ob t a i n_ r e du c e d_me s h (
V e r t i c e s _ T a l u s , V_Tal_Home , F_Tal , v a l i d _ t r i a n g l e )

v e r t i c e s = un i q u e ( V e r t i c e s _ T a l u s ) ;
s e n s o r _ p o i n t s =V_Tal_Home ( v e r t i c e s , : ) ;
F_Sen so r = F_Tal ( v a l i d _ t r i a n g l e , : ) ;
f o r i =1 : s i z e ( F_Sensor , 1 )

c ( i , 1 ) = f i n d ( v e r t i c e s == F_Sen so r ( i , 1 ) ) ;
c ( i , 2 ) = f i n d ( v e r t i c e s == F_Sen so r ( i , 2 ) ) ;
c ( i , 3 ) = f i n d ( v e r t i c e s == F_Sen so r ( i , 3 ) ) ;

end
V_Ta lus = s e n s o r _ p o i n t s ;
F_Ta lu s =c ;

A.4 Linear transformations

f u n c t i o n T = t r a n s f o r m _ r e f e r e n c e _ f r a m e s ( R i n i t i a l ,
R t a r g e t )

R i n i t i a l O r i g i n = p l o t _ i n _ t h e _ o r i g i n ( R i n i t i a l , 1 , 1 , 0 ) ;
R t a r g e t O r i g i n = p l o t _ i n _ t h e _ o r i g i n ( R t a r g e t , 1 , 1 , 0 ) ;
Rot = R t a r g e t O r i g i n * i n v ( R i n i t i a l O r i g i n ) ;
t r a n s l = R t a r g e t ( 1 , : ) ’− R i n i t i a l ( 1 , : ) ’ ;
T=[ Rot t r a n s l / 2 ; 0 0 0 1 ] ;

f u n c t i o n V = t r a n s f o r mV e c t o r (M, V)
V = M* [V ’ ; one s ( 1 , s i z e (V , 1 ) ) ] ;
V = V ( 1 : 3 , : ) ’ ;
end

A.5 Attachment points

f u n c t i o n s p r i n g s =Compu t eSp r i n g s (V , F )
f o r i =1 : s i z e (F , 1 )

s p r i n g s ( i , : ) =mean (V(F( i , : ) , : ) ) ;
end

A.6 Areas
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f u n c t i o n [ Area , No rma lMa t r i x ]= ComputeArea ( F emu rV e r t i c e s
, FemurFaces , F emu r S p r i n g s )

t o l =1e−9;
N= l e n g t h ( F emu r S p r i n g s ) ;
No rma lMa t r i x = z e r o s (N, 3 ) ;
A r e a = z e r o s (N, 1 ) ;

p a r f o r i =1 : s i z e ( FemurFaces , 1 )
V f a c e = F emu r V e r t i c e s ( FemurFace s ( i , : ) , : ) ;
v1= V f a c e ( 2 , : )−V f a c e ( 1 , : ) ;
v2= V f a c e ( 3 , : )−V f a c e ( 1 , : ) ;
% Compute a r e a
A r e a ( i ) = 0 . 5 * norm ( c r o s s ( v1 , v2 ) ) ;
% Normal v e c t o r
no rma l = c r o s s ( v1 , v2 ) /norm ( c r o s s ( v1 , v2 ) ) ;
% Check o u t e r no rma l
i f no rma l * F emu r S p r i n g s ( i , : ) ’ <0

no rma l=−no rma l ;
end

% As s emb l e o u t p u t
i f A r e a ( i ) <= t o l

No rma lMa t r i x ( i , : ) = z e r o s ( 1 , 3 ) ;
e l s e

No rma lMa t r i x ( i , : ) = no rma l ;
end

end

A.7 Local matrices

f u n c t i o n [B ,D]= BDMa t r i c e s ( MMob i l eSp r i ng s , Mob i l eCen t r e
, No rma lMa t r i x , kd , ks , upda t eE l em , keep )

% Number o f e l em e n t s
N= l e n g t h ( MMob i l e Sp r i n g s ) ;
% B and D
B= z e r o s ( 3 , 6 *N) ;
D= z e r o s ( 3 , 3 *N) ;
f o r i =0 :N−1
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i f k e ep ( i +1) ==1
% Lo c a l B m a t r i x
B i =[ e y e (3 ) [0 0 0 ; 0 0 −1; 0 1 0 ] * (

MMob i l e Sp r i n g s ( i + 1 , 1 : 3 )−Mob i l eC en t r e ) ’ [0 0
1 ; 0 0 0 ; −1 0 0 ] * ( MMob i l e Sp r i n g s ( i + 1 , 1 : 3 )

−Mob i l eC en t r e ) ’ [0 −1 0 ; 1 0 0 ; 0 0 0 ] * (
MMob i l e Sp r i n g s ( i + 1 , 1 : 3 )−Mob i l eC en t r e ) ’ ] *
upda t eE l em ( i +1) ;

% Un i t i−t h s p r i n g
n i =No rma lMa t r i x ( : , i +1) ;
% i−t h p r o j e c t o r
Di=kd ( i +1) * n i * n i ’ + k s ( i +1) * ( e y e (3 )−n i * n i ’ ) ;

e l s e
% E l i m i n a t e s t r e t c h e d s p r i n g s
Di= z e r o s ( 3 ) ;
B i = z e r o s ( 3 , 6 ) ;

end
% As s emb l e
D( : , i * 3 + 1 : ( i +1) * 3 ) =Di ;
B ( : , i * 6 + 1 : ( i +1) * 6 ) =B i ;

end

A.8 Stiffness matrix

f u n c t i o n K= G l o b a lM a t r i x (B ,D)

% Number o f s p r i n g s and i n i t i a l i s a t i o n
N= l e n g t h (B) / 6 ;
K= z e r o s ( 6 ) ;
% I n t e g r a t e
f o r i =0 :N−1

% Lo c a l m a t r i c e s
B i =B ( : , i * 6 + 1 : ( i +1) * 6 ) ;
Di=D( : , i * 3 + 1 : ( i +1) * 3 ) ;
% I n d i v i d u a l c o n t r i b u t i o n
Ki =( Bi ’ * Di * B i ) ;
% Sum
K=K+Ki ;

end
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A.9 Pressure computation

f u n c t i o n [ f , No rma l S t r e s s , upda t eE l em , f p r e v i o u s ]=
Compu t e F o r c e S t r e s s (BB ,DD, Norma lMa t r i x , U , f p r e v i o u s ,
upda t eE l em , A r e a )

N= l e n g t h (BB) / 6 ;
f = z e r o s ( 3 ,N) ;
N o rm a l S t r e s s = z e r o s (N, 1 ) ;
f o r i =0 :N−1

% Fo r c e i n t h e i−t h s p r i n g
f e l a s t i c =DD( : , i * 3 + 1 : ( i +1) * 3 ) *BB ( : , i * 6 + 1 : ( i +1) * 6 ) *U

* upda t eE l em ( i +1) ;
f ( : , i +1)= f e l a s t i c + f p r e v i o u s ( : , i +1) ;
% P r e s s u r e
No rm a l S t r e s s ( i +1)=No rma lMa t r i x ( : , i +1) ’ * f ( : , i +1) /

Ar e a ( i +1) ; % Th i s i s t h e p r e s s u r e on t h e i−t h
s p r i n g

end
% E l i m i n a t e s t r e t c h e d s p r i n g s f o r t h e n e x t i t e r a t i o n
upda t eE l em ( No rma l S t r e s s <=0) =0 ;
end
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