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Abstract 
 

This thesis focuses on the modelling and adaptive tracking problem of both linear 

and nonlinear time-varying processes. Approaches for the estimation of 

time-varying parameters can broadly be classified into two categories: the adaptive 

recursive algorithm methods and the basis function approximation methods. 

Adaptive algorithms such as block least mean squares (LMS), recursive least 

squares (RLS) and Kalman filtering, are applied to estimate the time-varying 

parameters and are capable of tracking the transient variation providing that the 

variation is slow and smooth. For the basis function method, time-varying 

parameters are expanded as a finite sequence of predetermined basis functions; the 

problem of time-varying estimation can then be reduced to a time invariant 

parameter estimation problem. The basis function expansion approaches are able to 

track process parameter changes even those with jumps, provided that appropriate 

basis functions are used. In this thesis, an attractive approach is to expand the 

time-varying parameters using wavelets as basis functions. Wavelets provide 

powerful tools for signal processing, with excellent approximation properties and 

are well suited for approximating general nonstationary signals. 

 

In this work, the application of data-based modelling techniques provides a 

powerful tool for electrophysiological data modelling and analysis, where a wavelet 

based modelling approach was applied to model the dynamics of nonstationary 

signals and capture its transient variations. The work in this thesis contains two 

parts. The first part deals with the estimation of time-varying linear models in both 

the time and frequency domains. The performance of tracking and capturing the 

transient changes of nonstationary systems by using time-varying system 

identification and modelling in the time-frequency domain has been verified to be 

an effective approach which outperforms other existing traditional methods such as 

sliding-window recursive least squares and Kalman filter algorithms. This 
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technique has been used to investigate and interpret the properties of EEG 

oscillations of epileptic patients. 

 

The second part deals with the estimation of nonlinear time-varying models, where 

a novel common model structure selection (CMSS) algorithm has been adapted and 

extended to identify a robust time-varying common-structured (TVCS) model as a 

solution to time-varying nonlinear systems identification problems using an online 

sliding-window approach. The main advantages of the proposed TVCS method are: 

1) it produces a less biased or preferably unbiased robust model with better 

generalisation properties; 2) it enables rapid tracking of transient variations of 

varying parameters and is more suitable for the estimation of parameters of 

inherently nonstationary processes. Results on time-varying nonlinear Granger 

causality analysis have also been investigated to detect and track nonlinear 

dynamical Granger causalities features. 

 

A main contribution of this thesis is that linear and nonlinear models time-varying 

modelling techniques have been developed and applied to analyse and interpret 

multi-frequency signals in both the time and frequency domains. Novel wavelet 

adaptive tracking algorithms were developed to track both linear and nonlinear 

system behaviours and the algorithms provide a new tool that can help clinicians 

interpret EEG signals. In addition, the newly developed methods are generally also 

applicable to other neuroscience signals. For example, possible applications of our 

proposed technique could be applied to describe and analyse the coding of speech 

signals into nerve-action potentials by the inner ear. 
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Chapter 1 

 

Introduction 
 

1.1 Research Background 

 

Parametric model identification of time-varying systems has many applications in 

diverse engineering fields such as seismic analysis, speech processing and 

biomedical systems. System identification is the process of detecting model 

structure and estimating model parameters based on available observation or 

measured input and output data. Most system identification schemes were 

developed under the assumption of linear time invariance or stationarity (Johansson 

1993; Ljung 1999). Most of the signals encountered e.g. biomedical signals, 

however, do not meet the stationarity assumptions. Thus, there is a growing interest 

for dealing with nonstationary signals that arise naturally in these application areas. 

 

There are mainly two classes of approaches to identify and process a time varying 

(TV) system. Conventionally, the most popular method for dealing with a TV 

system is to employ an adaptive algorithm such as the recursive least squares (RLS) 

or Kalman filtering algorithm (Ljung 1999), provided that the system is slowly 

varying compared to the algorithm‘ convergence time. For parameters that change 

fast enough, the adaptive algorithm cannot handle and track systems which vary 

rapidly. It should be noted that there are three significant deficiencies when the 

RLS procedure is used to identify TV systems: parameter drift in the case of 

non-persistent excitation (Sripada & Fisher 1987), varying alertness to system 

parameter variations, and problems with parameter estimation when using 

forgetting factors less than 1.  
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To overcome these aforementioned problems, another common approach for the 

identification of time-varying systems with quick changing coefficients is to use a 

basis function expansion that has excellent capability on tracking system variations 

with time. Many types of basis functions, such as the Legendre polynomial 

(Niedzwiecki 1988), Fourier series (Pachori & Sircar 2008), Walsh and Haar 

functions and wavelets (Billings & Wei 2005b; Chon et al. 2005; Tsatsanis & 

Giannakis 1993; Wei & Billings 2002) are available and capable of representing 

TV model coefficients. The choices of basis functions have significant effects on 

the change speeds and smoothness of the estimated parameters. But there is no 

uniform selection guideline on how to select the appropriate basis functions from 

the large-family of available basis functions. Wavelet analysis, which has a 

distinctive property of multiresolution and enables capturing the global as well as 

local characteristics of TV systems, has been proven a valuable tool for signal 

processing and successfully applied in various applications including nonlinear 

signal processing, parametric identification and nonlinear approximation (Billings 

& Coca 1999; Billings & Wei 2005a; Chon et al. 2005; Chui 1992; Li et al. 2011a; 

Mallat 1989; Tsatsanis & Giannakis 1993; Wei et al. 2006; Wei et al. 2010; Wei et 

al. 2008). It is worth stressing that the major question of basis function expansion 

method is how to select and use only a number of significant basis functions to 

obtain a parsimonious model of time varying systems and an effective method is 

always needed to determine how many basis functions should be applied. 

 

Tsatsanis and Giannakis (1993) employed a multiresolution idea for TV system 

identification by expanding the TV coefficients onto a set of pre-defined linear and 

nonlinear combinations of wavelet perfect reconstruction filter banks (PRFBs). The 

F-test and Akaine‘s information criterion (AIC) approach based on multiresolution 

procedures were then used to determine the significant terms. The proposed 

approach was limited to the use of the F-statistics that is dependent on the 

‗subjectivity‘ of choosing a threshold. Niedzwiecki (2000) introduced a weighted 

basis function method to avoid these problems, but the proposed scheme has an 
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inherent severe deficiency of computational inefficiency in estimating parameters.  

 

Numerous numerical modelling experiences indicated that the first and second 

order B-splines are non-smooth piecewise functions, which would perform well for 

the coefficients that change with sharp transients and burst-like spikes over time, 

whereas the B-splines of higher order would work well on smoothly changing 

signals. Motivated by this consideration, the B-splines multi-wavelet basis 

functions as multiresolution wavelet series expansion with different orders for TV 

model identification are used to capture nonstationary behaviour of biomedical 

signals such as EEG signals in this thesis. The orthogonal least squares (OLS) 

procedure and the error reduction ratio (ERR) criteria were then used to select the 

significant model terms and perform the parametric estimation in the TV expansion 

(Billings et al. 1989; Chen et al. 1989; Korenberg et al. 1988; Wei & Billings 2002; 

Wei et al. 2010). Simulation examples and practical applications are given to 

illustrate the capability and effectiveness of the proposed approach in tracking and 

capturing various types of nonstationary behaviour of TV systems. Finally, it 

should be worth stressing that one inherent disadvantage of TV system 

identification procedure including the adaptive algorithms as well as the basis 

function approach is that the beginning and endpoints of the data are commonly not 

accurate. This is a well-documented phenomenon and there are not enough samples 

in both endpoints of the data. 

 

Biomedical signals such as EEG recordings commonly involve both rapidly and 

slowly changing behaviours. A novel TV modelling method using a multiwavelet 

basis function expansion framework is proposed to track and capture the properties 

of nonstationary EEG signals. Some characteristics of EEG signals and data 

acquisition procedure are introduced as follows. 

 

Electroencephalography (EEG) recording is an essential clinical tool for the 

evaluation and treatment of neurophysiologic disorders related to epileptic seizures 
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that are transient periods of neural activity. It is also widely used as a biomedical 

signal for the identification and interpretation of different mental states in the 

human brain. Careful analyses of EEG records can provide valuable insights and 

improve understanding of the mechanisms causing epileptic disorders. The 

detection of epileptic discharges in EEG is a significant element in the diagnosis of 

epilepsy. EEG is the recording of the electrical potentials (activity) produced by the 

brain, and can be captured by relatively inexpensive equipment. Acquisition 

procedures are non-invasive and simple. Electrodes are uniformly distributed over 

the scalp and hooked by wires to a computer; the EEG signals can then be acquired 

as shown in the flow chart in Figure 1.1. It is worth stressing, in this thesis, that 

EEG signals or channels shown in Figure 1.1, are generated by taking the 

difference between measured potentials from two electrodes. For instance, the 

channel 3 7F F  is generated by taking the difference between the measured 

potentials from the electrodes 3F  and 7F . Each EEG channel summarizes 

localized activity within a region of the brain, for example, the channel 3 7F F  

indicates neural activity originated from the frontal lobe of the left hemisphere. 

 

EEG visual patterns are correlated with functions and dysfunctions of the central 

neural system, which is regarded as one of the most significant diagnostic tools of 

neurophysiology. One of most significant applications of EEG technique is to 

diagnose, classify, synchronize and localize epilepsy, which is a nervous system 

disorder that produces intense, abnormal electrical activity (spikes) in the brain. 

Absence seizure is mainly one of the generalized seizures and the underlying 

pathophysiology is not completely understood. Neurologists make an absence 

seizure epileptic diagnosis mainly through visual identification of a 3-Hz spike and 

wave complex (Subasi & Ercelebi 2005). Recently the EEG technique has been the 

most useful tool for its evaluation. An EEG medical diagnostic framework diagram 

is briefly described in Figure 1.2. The basic procedure is described as follows: The 

subjects or patients will be connected to a Jackbox, Electrode montage selector, and 
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Amplifier. From the amplifier, EEG signal will be acquired, then, some signal 

processing techniques, for example, notch filtering, will be used to remove some 

noise and artifacts. Some time-frequency analysis approaches can then be used to 

analyze and extract the signal features to understand the brain neural activities. The 

most popular method is typically short time Fourier transform (STFT). In this 

time-frequency analysis method, there is an issue of time-frequency resolution 

according to the Heisenberg Uncertainty Principle (HUP). That is, the 

time-frequency resolution depends on the sliding-window size. If the window size 

is too narrow, there is a good time resolution, but there is poor frequency resolution. 

On the contrary, if the window size is too wide, there is a good frequency 

resolution, but poor time resolution is obtained. Another time-frequency method is 

the Hilbert Huang transform (HHT) for dealing with the nonstationary and 

nonlinear signals (Huang et al. 2008). It is also a traditional method to extract the 

feature of time-frequency resolution from the EEG signal. In this method, there is 

also a limitation that it only deals with the narrow-band signal. So in this thesis our 

main goal is to try to find a novel method to extract the signal features with good 

time-frequency resolution. A novel time-varying parametric modelling method will 

be investigated to get the good time-frequency resolution from the signal which 

will be discussed in detail in the following chapter of my thesis. If we can get good 

time-frequency resolution from the signal, we can then capture and track some 

more accurate transient information to understand the brain neural activities. 

Furthermore, these results help the clinician to do some medical diagnosis tasks. 

Then the analysis diagnosis results will feedback to the subjects or volunteer 

patients. It should be noted that this diagnostic framework diagram is also suitable 

for other biomedical signal diagnosis framework. 

 

Electroencephalographers describe the EEG brain activity from the spatial 

distribution on the scalp including the localized region frontal, posterior, lateral and 

bilateral as well as the dominant frequency components. The study of different 

types of rhythmicities of the brain and their relation with different pathologies and 
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functions has been an important subject of neuroscience, physiology and 

neurophysiology research (Quiroga 1998). An EEG wave is commonly divided into 

a wide range of frequency components. However, the range of clinical and 

physiological interest is between 0.5 and 30 Hz. This range is divided into a 

number of frequency band components (Cohen 1986; Cohen 2000) shown in Table 

1.1. Most of the cerebral oscillation observed in the scalp EEG is distributed in the 

range of 1–20 Hz. For instance, the predominant physiological Alpha frequency 

component appears most prominently on posterior channels during the relaxed state 

of healthy subjects with their eyes closed. Frequency activity below or above the 

range of 1 – 20 Hz probably is contaminated by an artefact from clinical recording 

techniques. Some EEG artifacts have specific activity and scalp topography which 

can be more identified in the frequency domain. EEG signals contaminated by 

artifacts with very low amplitudes normally require more rigorous recording 

technique to interpret the EEG signals easily. For example, the power line 

frequency in Europe is 50 Hz, while in North America it is 60 Hz. Some signal 

processing techniques are applied to remove the artifacts prior to analysis and 

applications of the EEG signals.
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Figure 1.1 The flow chart of EEG acquisition from the locations of 32-channel 

surface electrodes placed on the brain cortex scalp on the basis of a 10% or 20% of a 

measured length from a known landmark on the skull. Notation: F represents frontal; 

T, temporal, and O, occipital. 
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indicates Short Time Fourier transform; HHT: Hilbert Huang transform, TV: 
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Table 1.1 Comparison of EEG frequency components. 

Type Frequency (Hz) Location and Pathology 

Delta 0.5 – 3.5 

frontally in adults, posteriorly in children; 

locations are correlated with different 

pathologies such as metabolic 

encephalopathy hydrocephalus. 

Theta 3.5 – 7.5 

found in locations not related to task at 

hand, associated with inhibition of 

elicited response; pathology: metabolic 

encephalopathy and deep midline 

disorders. 

Alpha 7.5 – 12.5 

posterior regions of head, most 

pronounced in occipital and posterior 

locations, both sides; pathology: coma. 

Beta 12.5 – 30 

best defined in central and frontal 

locations;  

both sides, symmetrical distribution; 

pathology: benzodiazepines. 

Gamma 30 – 60 

somatosensory cortex;  

pathology: in gamma band activity, a 

decrease may be associated with 

cognitive decline. 

 
Cohen (1986). Biomedical Signal Processing. 
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1.2 Motivations and Goals of the Project 

 

Signal processing techniques are commonly used for feature extraction in medical 

diagnosis, fault detection and many other application fields. The main purpose of 

signal processing is to reveal underlying information on specific problems in these 

applications. Signal processing techniques based on modern system identification 

algorithms can be classified as time, frequency, and time-frequency domain 

methods. In real-world applications and signal processing, a signal is normally 

assumed to be stationary. However, in many practical applications such as 

electrophysiological data this assumption is not always accurate, because relevant 

statistical characteristics change over the time course, depending on the mental 

states that are active at any given time instant. Signals with time-varying frequency 

components are highly nonstationary. Modelling of nonstationary signals is very 

difficult and reliable parametric models normally do not exist. In practice most of 

the signals encountered cannot satisfy the stationary assumption conditions, which 

explains the growing interest in nonstationary signal processing and applications. 

Time-frequency analysis (TFA) of nonstationary signals is of great interest and is 

very significant since the time history of frequency is a very powerful method in 

signal characterization. The TFA approaches are most popularly performed by 

STFT, wavelet and HHT. The main drawbacks of these approaches have been 

briefly described in section 1.1.  

 

This thesis was motivated by the desire to take advantage of linear and nonlinear 

system identification techniques and some estimation algorithms to obtain the 

time-varying linear and nonlinear models of the biomedical signals that can further 

capture the dynamics of the signals, and extract the time-frequency feature analysis. 

Good frequency resolution should be possible by means of autoregressive (AR) or 

autoregressive moving average (ARMA) parametric models. The parametric 

method of spectral estimation for stationary signals has been investigated (Kay 
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1988). The spectral estimation results have shown that, even if the available signal 

is very short, the parametric method can yield good high frequency resolution. 

Therefore, this parametric approach also has been adapted so that it can be 

extended to spectral estimation of nonstationary signals. The time-frequency 

analysis scheme encompasses signal processing approaches for nonstationary 

signals. Various methods are proposed to resolve such a task. Considering the 

adaptive parametric model method as a feature in the time-frequency domain, the 

approaches for feature extraction are diverse and range from simple, such as the 

adaptive RLS algorithm, to more complex, such as basis function expansion 

approach. These methods are applied since they can provide more accurate results 

than the traditional STFT method. 

 

If the parametric model of nonstationary signals for both linear and nonlinear 

models in the time-frequency domain is applied as a feature for extraction or 

recognition, the following questions have to be answered in this thesis. For instance, 

how can we select the model structure and parameter estimation? More generally, 

is it possible to improve the accuracy of the time-varying estimation and enhance 

the adaptive tracking capability of nonstationary signals using linear and nonlinear 

models? Also, if the rapid tracking of estimated time-varying parameters is used as 

a feature in a feature extraction process, how can we carry out the time-frequency 

resolution map in a certain time-frequency band? Should the existing adaptive 

algorithm techniques be used? Or should new basis function expansion schemes for 

time-varying parameters estimation be developed which depend on the existing 

algorithms? How can we improve the robustness of identified models based on the 

orthogonal least squares algorithm (OLS)? In particular, if the time-varying 

parametric model identified is used to analyse the EEG signals of causal influence 

between different channels, what are the advantages for the proposed time-varying 

model compared to the existing linear and nonlinear parametric model approaches? 

The goal of this thesis is to provide some answers to these questions. 
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1.3 Organization of the Thesis 

 

The main purpose of the thesis deals with the application of system identification 

techniques to model the dynamic relationships and capture the transient variations 

of nonstationary signals adaptively between EEG signals. The thesis is divided into 

two parts. The first part deals with the estimation of time-varying linear models in 

both time and frequency domain, and the second part deals with the estimation of 

nonlinear EEG signal models that provide a substitute for the family of linear 

models estimated previously. Nonlinear model estimation approaches and some 

applications are discussed in the final stage of the thesis. 

 

The thesis is organized as follows. 

 

The main body of the thesis starts in Chapter §2 with a literature review of the 

parametric modelling and time-frequency domain analysis. Chapter §2 provides an 

in-depth analysis and comparison of the existing adaptive algorithms for estimating 

the time-varying parametric model. Some time-frequency analysis techniques are 

also discussed for extraction of the considered feature. This literature review 

attempts to consider and review the issue from different angles, and it mainly 

provides an overview of contributions in the following three subfields: 

 

 Design of new time-frequency analysis of nonstationary signals; 

 Robust algorithm of nonlinear system identification; 

 Framework of Granger causality for nonlinear models. 

 

As a special analysis case, Chapter §2 comments on the transient frequency 

estimation on the basis of the time-frequency analysis approach for nonstationary 

signals. The estimation procedure considered is based on a multi-wavelet basis 

function expansion scheme. In addition, some of the existing problems or 
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disadvantages in the parametric estimation field are also discussed. The problems 

are presented, and their significance is further explained. Time-frequency analysis 

with high frequency resolution of nonstationary signals is defined by using the 

parametric method with time-varying coefficients. Information about the nonlinear 

dynamics is introduced by analysing the estimated models in the frequency domain 

by calculating their generalised frequency response functions (GFRFs). The 

detection of linear and nonlinear causality between signals is also presented and 

reviewed briefly. 

 

Chapter §3 introduces the fundamental concepts and model structure relating to the 

modelling and parametric estimation of linear time varying systems in the time 

domain. A new time-varying parametric modelling approach has been developed, 

where the associated time-dependent coefficients are approximated using the 

multi-wavelet basis functions including the cardinal B-splines basis functions. One 

advantage of the proposed approach is that it can be used to track rapidly or even 

sharply varying processes, while traditional adaptive algorithms such as the LMS 

and RLS approaches cannot track the system‘s time evolution if the coefficients 

change fast enough. Another advantage is that the proposed approach can track 

rapid time variation and is more suitable for the estimation of process parameters of 

inherently nonstationary processes. Two examples, one for a simulation signal, and 

another of a mechanical system, are given to show the effectiveness and 

applicability of the new TVARX modelling method. So we advocate the use of a 

multi-wavelet basis functions because of its flexibility in capturing the signal‘s 

characteristics at different scales. 

 

Chapter §4 introduces a novel time varying model identification scheme based on 

multiwavelet basis functions. A single input/output TVARX model was used to 

illustrate the model structure and an orthogonal least squares (OLS) algorithm was 

applied to estimate multi-wavelet coefficients. A time-dependent spectrum function 

was defined, which is very useful to accurately characterize the frequency-domain 
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properties of the EEG signals. The numerical properties of the proposed 

time-varying modelling method are investigated by using a set of test signals. The 

simulation results showed the proposed approach outperforms the traditional 

adaptive algorithms such as the LMS and RLS method. In addition, two illustrative 

practical examples with application to real EEG data are considered. The TVARX 

model can capture well the rapid dynamics of EEG data. Notably the transient 

time-dependent spectrum estimated from the model shows very interesting 

activities from different frequency bands. 

 

Chapter §5 presents a novel common model structure selection (CMSS) algorithm, 

which can be used to identify a robust time-varying common- structured (TVCS) 

model. Once the common-structured model has been determined, relevant time- 

varying model parameters can then be estimated using a SWRLS algorithm. The 

proposed approach in this Chapter has mainly two advantages which are described 

as below. 

 

 First, the TVCS model can produce less biased or preferably an unbiased 

robust model with better generalisation properties. The ‗hold-out‘ or ‗split- 

sample‘ data partitioning methods are commonly used in identification, where 

the available observed data are conventionally partitioned into two parts: the 

training data that are used for model identification and the test data that are 

used for model performance validation. Generally, the hold-out data 

partitioning approach is very convenient and the associated model 

identification procedure is easy to implement. However, it should be noted that 

the resultant model obtained from such a once-partitioned single training 

dataset may occasionally lack robustness and generalisation to represent future 

unseen data, because the performance of the identified model may be highly 

dependent on how the data partition is made. This problem will be even more 

exaggerated when the system is time varying. To overcome the drawback of 

the hold-out data partitioning approach, in this Chapter, a new common model 
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structure selection (CMSS) algorithm is proposed to produce less biased or 

preferably unbiased robust models. For the case where the sliding-window size 

is equal to the available observed data length, the new CMSS approach will 

simplify to the case of the hold-out data partitioning method.  

 

 Another advantage is that the approach can be used to track rapid changes and 

capture transient variations of varying parameters and is more suitable for the 

estimation of process parameters of inherently nonstationary processes. Two 

examples, one based on simulation data and the other using a real EEG signal, 

are given to show the effectiveness and applicability of the new TVCS 

modelling method using an online sliding-window approach. We can fit 

individual models to each window, but there are many applications such as 

fault detection, biomedical engineering where the underlying system 

characteristics can be revealed by one common model over a series of 

windows. 

 

This is a more challenging problem and is addressed in this Chapter to achieve a 

parsimonious identified TVCS model. The TVCS model is different from the 

traditional multi-input and multi-output (MIMO) model structure, where each 

subsystem model may not need to share the same common model structure and 

which often involves one single data set. 

 

Chapter §6 investigates Granger causality, which is a fundamental tool for the 

description of the causal interaction of two signals. In this Chapter, a novel linear 

and nonlinear time-varying parametric modelling and identification approach using 

data-driven methods is proposed for the adaptive estimation of nonstationary EEG 

Granger causality processes to detect the transient dynamic causal directional 

interactions between EEG signals. The time-varying model proposed allows 

identification of the direction of information flow between brain areas, extending 

the Granger causality concept to transient time-varying processes. A numerical 
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example demonstrates a good performance of the time-varying Granger causality of 

detecting transient dynamical causal relations over the time course. This approach 

is applied to analyse EEG signals to track and detect the causal influences between 

EEG signals. One advantage of the proposed model is that our results can be more 

interpretable and yield new insights into the transient directed dynamical Granger 

causality interactions. 

 

As a summary, the main contribution of this thesis and the suggestions for future 

studies are given in Chapter §7. 

 

  



 

 

Chapter 2 

 

Literature Review 
 

2.1 Introduction 

 

Nonstationary signals and time-varying systems are often applied to numerous 

applications including speech recognition, process control, fault detection, medical 

diagnosis, biomedical signal processing and many other fields, where the 

underlying time-varying systems are subject to fast and abrupt changing 

environments (Wellstead & Zarrop 1991). The primary objective of time-varying 

signal processing in these applications is to provide underlying information on 

specific problems. These techniques can be classified either as time, frequency, or 

time-frequency domain based on different algorithms. In general, adaptive 

algorithms have been used to track the system‘s variations provided that the system 

change is slow in comparison with the algorithm‘s convergence time. Parametric 

identification algorithms and signal processing can be used for feature extraction if 

an accurate model of the signal exists in a selected representation space (Manolakis 

et al. 2005). The models may be used to analyse the time-varying signals, leading 

to an estimation of the power spectral density (PSD) of the signal, and subsequently 

a recovered signal from the identified model having the same spectral 

characteristics as the original one may be synthesized. This is the reason that the 

time-varying parametric approach has received much attention for speech 

processing as well as for various other electrophysiological fields such as ECG, 

EEG, and seismography. However, such modelling techniques have some 

limitations as well, for example, a strong limitation of these techniques needs to 

assume a stationary signal. In practical analysis, one way to relax this limitation is 

to perform the identification of the model over short segments; however, this 
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requires a compromise between the accuracy that can be achieved with a short data 

segment and the faithfulness with which the spectrum must be followed. This is 

one reason why parametric methods need to be proposed for nonstationary signals. 

Modelling of nonstationary signals is more difficult and reliable parametric models 

often do not exist, except in very few special cases, e.g. multi component chirp 

signals (Mukhopadhyay & Sircar 1997). Most of the signals encountered in 

practice do not satisfy the stationary conditions (Cohen 1995), which explain the 

growing interest in nonstationary signal processing.  

 

Several approaches have been proposed to deal with the time-varying modelling 

problems (Bouzeghoub et al. 2000). One of the most popular approaches for 

identification of time-varying systems is to adopt an adaptive algorithm provided 

that the time variations are slow so that the system changes can be tracked. The 

adaptive recursive estimation methods are a stochastic approach, where the 

coefficients of the associated models are regarded as random processes with some 

stochastic model structure, the most popular methods to deal with this class of 

random models include the LMS, RLS and Kalman filtering (KF) algorithms. It 

should be noted that a potential problem using the Kalman filtering for parameter 

estimation assumes an appropriate model for the parameter trajectories (Hayes 

1996; Tsatsanis & Giannakis 1993). Opposite to the adaptive algorithms, the basis 

function expansion and regression approach for parametric identification of linear 

and nonlinear time-varying systems is a deterministic parametric modelling method, 

where the associated time-varying coefficients can be expanded using pre-defined 

finite basis functions. Here these coefficients are expressed using a linear or 

nonlinear combination of a finite number of basis functions. The time-varying 

identification problem then becomes time invariant with respect to the parameters 

in the expansions. Hence, the initial time-varying modelling problem can be 

simplified to deterministic regression selection and parameter estimation. The two 

main basis problems encountered when this approach is applied to general 

time-varying parametric modelling problems include how to choose the basis 
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functions and how to select the significant ones from the family of the basis 

functions. If these issues can be solved, the final model can be expressed using 

these ‗significant‘ basis functions.  

 

Parametric spectral estimation has received much attention over the last several 

years. The main advantages of parametric spectral estimation are an improved 

accuracy at high signal-to-noise ratios, especially for short data samples, and the 

flexibility of analysis. This has led to a growing interest in nonstationary signal 

processing including time-frequency distribution and time-varying parametric 

spectrum estimation methods. In contrast with most non-parametric methods of 

nonstationary spectrum estimation including narrow-band filtering, short-time 

Fourier transforms (STFT), Wigner distribution (Wigner 1932) and several 

transformations leading to time-frequency representations which are relatively well 

developed, alternative parsimonious descriptions can be adopted in cases where the 

signal can be represented by a time-varying parametric spectral estimator. 

 

2.2 Adaptive algorithms 

 

The time-varying model identification is commonly utilized to represent an 

input-output relationship of time-varying linear and nonlinear systems from the 

dynamic responses and input forces. The adaptive recursive algorithms such as 

LMS and RLS are one of the most popular techniques to estimate time-dependent 

coefficients of the time-varying linear and nonlinear model. 

 

2.2.1 Least mean squares and Block least mean squares 

algorithms 

 

The LMS algorithm, which is an online approach, was well described by (Hayes 
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1996). The LMS algorithm is an important stochastic gradient algorithm. A 

significant feature of the LMS algorithm is its simplicity, which does not require 

matrix inversion, nor does it require measurements of the pertinent correlation 

functions. The LMS algorithm is simple compared to other adaptive recursive 

algorithms such as RLS algorithms. In spite of the computational efficiency of the 

LMS algorithm, additional simplifications may be necessary in some applications 

including high speed digital communication and biomedical applications. However, 

several modified approaches of LMS algorithms may be applied to reduce the 

computational requirements. One of the most popular of these is the block LMS 

algorithm, which is identical to the LMS algorithm except that the TV coefficients 

in the mathematical model that needs to be identified are updated only once for 

each block of L  samples (Clark et al. 1981). For example, the TV coefficients are 

held constant over each block of L  samples, and the desired output  d̂ n  and 

the estimation error  e n  for each value of sample index n  within the block are 

calculated using the coefficients for each block. At the end of each block, the 

coefficients are then updated using an average of the L  gradient estimates over 

the block. The procedure of the block LMS algorithm is given in Chapter 3 in detail. 

It should be noted that some other simplification of the LMS algorithms, such as 

the sign algorithm where the LMS coefficient update equation is modified by 

applying the sign operator to both of the error or the data, variable step-size 

algorithm, gradient adaptive lattice filter that the gradient adaptive lattice has some 

important advantages over the LMS algorithm structure, have discussed in (Hayes 

1996). 

 

2.2.2 Recursive least squares and sliding-window recursive 

least squares 

 

The RLS algorithm, which is also a traditional online approach, was well discussed 
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by (Ljung 1999). Although the RLS method has high computational efficiency 

when estimating TV parameters, the traditional RLS algorithm can show slow 

tracking capability for time-varying coefficients and is highly sensitive to the 

additive noise and initial conditions. To improve these shortcomings, variable 

forgetting factors (Fortescue et al. 1981; Leung & So 2005; Toplis & Pasupathy 

1988), covariance matrix resetting (Jiang & Cook 1992; Park & Jun 1992), the 

sliding window techniques (Belge & Miller 2000; Choi & Bien 1989) have been 

incorporated into the RLS algorithm to improve the tracking ability for TV systems. 

Compared to exponentially weighted RLS, the sliding window RLS requires about 

twice the number of multiplications and additions and additionally requires the 

initial values to be stored, which storage requirement may potentially be a problem 

for long windows. 

 

2.2.3 Comparison with least means squares and recursive 

least squares 

 

In this subsection, the technique performances of LMS algorithm and RLS 

approach for processing nonstationary signals will be discussed. These techniques 

have been extensively applied to a variety of applications such as signal modelling, 

nonlinear approximation, spectrum estimation, system identification, adaptive 

equalization and noise cancellation. The LMS algorithm, which is simple and often 

effective, does not require any ensemble averages to be known. Several 

modifications of the LMS algorithm then have been discussed. For example, the 

normalized LMS algorithm can simplify the selection of the step size to ensure that 

the coefficients converge. The leaky LMS algorithm is useful in overcoming the 

problems that occur when the autocorrelation matrix of the input process is singular. 

The block LMS algorithm, which is designed to increase the efficiency of the LMS 

algorithm, has also been discussed in the literature. In the block LMS algorithm, 

the filter coefficients are held constant over blocks of length L , which allows for 
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the use of fast convolution algorithms to calculate the filter output. The lattice 

adaptive algorithm converges more rapidly than the LMS adaptive approach, and 

tends to be less sensitive to the eigenvalue spread in the autocorrelation matrix of 

input signals. The RLS algorithm minimizes a deterministic least squares error. It 

could be that, since the RLS approach is recursive, it is possible for the TV 

coefficients estimations to become unstable. As a result, adaptive recursive 

approaches are not as widely used in applications as LMS approaches. The 

exponentially weighted RLS algorithm and the sliding window RLS algorithm have 

been given, although computationally more complex than the LMS adaptive 

algorithm, for wide-sense stationary processes the exponentially weighted RLS 

algorithm convergences much more rapidly. The adaptive lattice algorithm for 

recursive filters presented in (Fallah & Ramachandran 1992; Parikh et al. 1980) 

indicated that it could be made to remain stable and convergence fast during the 

adaptation process while the computational complexity is encountered. However, in 

order to track a nonstationary process effectively, it is necessary to use either the 

exponentially weighted RLS algorithm or the sliding window RLS approach. 

 

The treatment of adaptive algorithm in this chapter is, by no means, complete. 

Many other adaptive approaches have been developed and many papers have been 

published that analyze the performance of adaptive algorithms and evaluate their 

effectiveness in different applications. Some notable omissions include the fast 

RLS recursive algorithm, the RLS lattice algorithm, and the nonlinear adaptive 

algorithm (Zheng & Lin 2003). 

 

Generally speaking, the RLS algorithm approach is less sensitive to eigenvalue 

disparities in the autocorrelation matrix of the input signal for stationary processes 

than LMS. On the other hand, the RLS algorithm does not perform very well in 

tracking nonstationary processes without exponential weighting. This is the reason 

that, with forgetting factor to be equal 1, all of the data is equally weighted in 

estimating the correlations. Note that, although exponential weighting improves the 
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tracking characteristics of RLS, there is no a selection guideline on how to choose 

the suitable forgetting factor, hence in some cases, the LMS algorithm may have 

better tracking properties. For a more detail discussion of the RLS algorithm and 

the LMS algorithm, the readers can refer to the literatures (Haykin 2003; Ljung 

1999). 

 

2.3 Time-frequency analysis approaches  

 

In this section, there are two different approaches, Fast Fourier Transform 

(FFT)-based methods (called non-parametric methods), and model-based methods 

(also called parametric methods), which are discussed. 

 

2.3.1 Fast Fourier transform (FFT)-based methods 

 

The classical methods make no assumption about how the data were generated and 

hence are called nonparametric. Although the spectral estimates are expressed as a 

function of the continuous frequency variable f , in practice, the estimates are 

computed at discrete frequencies via the FFT algorithm. The periodogram and 

Welch method are the FFT-based methods. The Welch spectral estimator can be 

efficiently computed via FFT and is one of the most frequently used PSD 

estimation methods. In the Welch method, signals are divided into overlapping 

segments, each data segment is windowed, periodograms are calculated and then 

the average of the periodograms is found. The Welch spectral estimator is defined 

as 

       
2

1

0

1ˆ exp 2 / , 0,1, , 1,
M

i i s

n
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
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  ,                                  (2.1) 

where  ˆ
iP f  is the periodogram estimate of each signal interval,  w n  is the 

data window, U  is the normalization factor for the power in the window function 

 w n  given as  
1

2

0

1 M

n

U w n
M





  , and sf  is the sampling frequency.  ˆ
WP f  is 

the Welch PSD estimate, M  is the length of each signal interval and K  is the 

number of signal interval (Proakis & Manolakis 1996). 

 

2.3.2 Model-based methods 

 

Model-based methods for spectral estimation consist of choosing an appropriate 

model, estimating the parameters of the model, and then substituting these 

estimated values into the theoretical PSD expressions. The models discussed are 

rational transfer function models. They include the autoregressive (AR) model, and 

the autoregressive with an exogenous (ARX) model. In the Yule-walker method, 

PSD estimation is formed as (Proakis & Manolakis 1996; Subasi 2007): 
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                          (2.2) 

where 2ˆ
wp  is the estimated minimum mean-square value for the p th order 

predictor,  â k  are the AR model parameters estimation, and sf  is the sampling 

frequency, respectively. The Burg method is based on minimization of the forward 

and backward predicted errors and estimation of the reflection coefficient. From the 

estimates of the AR parameters, PSD estimation is formed as (Proakis & Manolakis 

1996; Subasi 2007) 
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where ˆ f

pE  and ˆ b

pE  indicate the least-squares estimate of the forward and 

backward errors, ˆ ˆ ˆf b

P p pE E E   is the total least squares error, respectively. 

 

2.3.3 Time-frequency methods based on wavelets 

   

The electrophysiological signals including EEG signal are TV and have highly 

complex time-frequency characteristics. In practice, the stationary condition for the 

TV signals can be satisfied by dividing the signal into blocks of short segments in 

which the signal segment can be assumed to be stationary. This method is referred 

to as the STFT that is very typically time-frequency analysis approach. However, 

there exists an issue of time-frequency resolution according to the Heisenberg 

Uncertainty Principle. Namely, the problem with the STFT is the length of desired 

segment and the time-frequency resolution depends on the sliding-window size. 

Choosing a short analysis window may lead to poor frequency resolution. On the 

other hand, a long analysis window may improve the frequency resolution but 

compromises the assumption of stationarity within the window. The most popular 

time-frequency analysis method for biomedical signal study may be the continuous 

wavelet transform (CWT). The advantage of the CWT is that it compromises the 

time-frequency resolution tradeoff problem using a short window at high 

frequencies and a wide window at low frequencies. However, the CWT has a 

degraded frequency resolution for high-frequency components and a degraded time 

resolution for low-frequency components. Herein, the CWT approach, which is a 

nonparametric time-frequency analysis approach, maybe cannot precisely identify 

and acquire temporal and spectral information for fast variations of 

electrophysiological signals. Another time-frequency analysis method is the Hilbert 

Huang transform (HHT) for dealing with the nonstationary and nonlinear signals. It 
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should be noted that the HHT approach is an empirical approach that use empirical 

mode decomposition (EMD) method to decompose a signal into intrinsic model 

function (IMF) components (Huang et al. 1998; Yang et al. 2003), where the 

instantaneous frequency can be calculated using the Hilbert Transform, and then a 

Hilbert spectral analysis (HSA) approach is used to obtain instantaneous frequency 

data from each IMF component. However, it should been noted that the EMD is 

only limited to narrow-band signals for distinguishing different components. The 

narrow band discussed here may include components either having adjacent 

frequencies or not being adjacent in frequency but where one of the components 

has a much higher energy intensity than the other components. 

 

An alternative way to analyze the time-varying biomedical signals to obtain the 

good time-frequency resolution is the time-dependent spectral estimation method: 

The p th order time-varying AR model, TVAR  p , is formulated as below 

       
1

,
p

i

i

y t a t y t i e t


                                (2.4) 

and the time-varying ARX (TVARX  ,p q ) is given by 

           
1 0

,
p q

i l
i l

y t a t y t i b t u t l e t
 

                     (2.5) 

where t  is the time instant or sampling index of the signal  y t , and the input 

signal  u t  and the output signal  y t  are measurable;  ia t  and  lb t  are 

the time-varying ARX  ,p q  model parameters to be determined; p  and q  are 

the model orders for the output and input, respectively. It is assumed that the model 

orders (maximum lags) are time invariant. The term  e t  represents the model 

residual or modelling error that can often be treated as a stationary white noise 

sequence with zero mean and variance 2 ,e
  ia t  and  lb t

 
are the TV 

coefficients.  
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The proposed method is to expand the TV parameters  ia t  and  lb t  onto 

multi-wavelet basis function  m t  for 1,2, , .m R   such that the following 

expressions hold: 
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,
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i m mi
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   ,

1

R

l m ml
m

b t t 


                                     (2.6) 

where 
,i m  and 

,l m  represent the expansion parameters, R  is the maximum 

number of basis sequences,   ,m t 1,2, ,m R   are a set of basis functions. 

Substituting (2.6) into (2.5) yields, 
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      ,   (2.7) 

Once proper basis functions have been chosen, new variables can be defined such 

that 

     ,m my t i t y t i  
 

     .m mu t l t u t l             (2.8) 

Substituting (2.8) into (2.7), yields,  
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i m m l m m
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The model in (2.9) can be written down in the following form: 

       Ty t t t e t                                    (2.10) 

where  

 
         1 , , , 1 , ,

T

m m m mt y t y t p u t u t q        
             

    (2.11) 

is the regression vector and 

  1, , 1, ,, , , , ,
T

m p m m q mt                                 (2.12) 

is the model coefficient vector, and the upper script ' 'T  indicates the transpose of 

a vector or a matrix. Note that all the entries 
,i m  and 

,l m
 
in the coefficient 
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vector are now constants. Thus, the original time-varying AR model (2.4) and ARX 

model (2.5) have now been converted into a time invariant model (2.10). 

 

Equation (2.10) is a standard linear regression model that can be solved by using a 

linear least squares algorithm. Let  ˆ
ia t ,  ˆ

lb t  be the estimate of  ia t ,  lb t  

and 2ˆ
e  be the estimate of 2

e , respectively. The time-dependent spectral function 

associated to the TVAR model (2.4) and TVARX model (2.5) are defined as, 

respectively,  
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                          (2.13) 

where 1,j    i.e. j  is the square root of -1, and sf  is the sampling frequency. 

Note that the spectral function (2.13) is continuous with respect to the frequency 

f  and thus can be used to produce spectral estimates at any desired frequencies up 

to the Nyquist frequency / 2.sf  However, the frequency resolution is primarily 

not infinite, but is determined by the underlying model order and the associated 

parameters. 

 

2.3.4 Multi-wavelet basis functions 

 

When a time-varying system is subject to rare but abrupt jumping, the estimated 

parameters from conventional adaptive algorithms cannot track the variations of the 

true system parameters in the vicinity of these jumping locations, resulting in the so 
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called ―lag‖ in the estimation. The common parametric approach, for establishing 

the time-varying model based on the basis function expansion approach, which 

shows excellent capability on tracking coefficients changing over time, can be used 

to mitigate the effect of ―lag‖ estimation. Various basis functions including the 

Fourier series (Pachori & Sircar 2008), Legendre polynomial (Niedzwiecki 1988), 

Walsh function (Tsatsanis & Giannakis 1993; Zou et al. 2003), Haar wavelet and 

multi-wavelet (Chen et al. 2006; Ghanem & Romeo 2000; Tsatsanis & Giannakis 

1993; Wei & Billings 2002; Wei & Billings 2004; Wei & Billings 2006a; Wei & 

Billings 2006b; Wei et al. 2004a), have been applied to describe time-varying linear 

and nonlinear model coefficients. Selecting the proper basis functions is a key to 

the success of this approach. In practice, each family of basis functions possess its 

own unique tractability and accuracy. Zou et al. (2003) has investigated that the 

Legendre polynomial performed well for the coefficients that change smoothly with 

time, the Walsh and Haar functions, however, were good for piecewise stationary 

TV coefficients that have sharp variations or piecewise changes. Wei and Billings 

(2002) has introduced a TV modelling approach approximated by a finite number 

of multi-wavelet functions which outperforms many other approximation schemes 

and the results have shown the effectiveness and applicability of this method. 

 

2.3.5 The orthogonal least squares algorithm 

 

In system identification and modelling, especially in nonlinear system 

identification, modelling and signal processing, the orthogonal least square 

regression (OLS) algorithm (Billings et al. 1989; Chen et al. 1989; Wei & Billings 

2004; Wei & Billings 2006a; Wei & Billings 2006b; Wei et al. 2006; Zhu & 

Billings 1996) has been proved to be a very effective algorithm to deal with 

multiple dynamical regression problems, which involve a great number of 

candidate model terms or regressors that may be highly correlated, and determine 

significant model terms or the model structure and the associated parameter 
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estimates. The OLS algorithm involves a stepwise orthogonalization of the 

regressors and a forward selection of the relevant terms based on the error 

reduction ratio (ERR) criterion (Billings et al. 1989; Chen et al. 1989). Recently, 

the OLS algorithm and its variants have been successfully applied in a variety of 

fields including system identification and modelling.  

 

The most difficult problem in linear and nonlinear system identification and 

modelling is determining the structure or architecture of the model based on a 

limited set of observed or measured data. Assuming that no a priori knowledge of 

the form of the nonlinear functional is available, a practical solution is to 

approximate the system from the available data using a known set of basis 

functions or regressors that belong to a given function class. Typical regressor 

classes used in linear and nonlinear system identification and modelling include 

polynomial and rational functions, radial basis functions (RBF) and wavelet neural 

networks. 

 

The classical OLS regression algorithm includes the following steps: 

1) Orthogonalize the regressors to remove the correlations between these 

variable; 

2) Select significant terms using the ERR criterion; 

3) Estimate the corresponding parameters for the selected terms; 

4) Validate Model. 

 

Model validation is an essential and important step in system identification and 

modelling. Model validation for linear systems is well established. The residuals 

should be an unpredictable sequence if the model structure is correct and the 

estimated parameters are unbiased. Hence the auto-correlation function of the 

residuals and the cross-correlation function between the residuals and the input 

have been widely used in linear model validation. Model validation methods based 
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on higher order correlation test were introduced for nonlinear systems (Billings & 

Voon 1986; Billings & Zhu 1994). Model validation of systems identified 

determines and confirms whether the model can adequately describe the underlying 

dynamics. Several methods are used to test the model validity of the system 

identified. The most used method is judging the quality of the one step ahead 

prediction (OSA) errors or the model predicted output (MPO). An alternative 

method is to compare specific dynamical characteristics of real systems and the 

model, for example, largest Lyapunov exponent, bifurcation dimension, correlation 

dimension and the wavelet entropy etc. 

 

The application of the common model structure selection approach that involves 

model structure selection and model parameter estimation based on the OLS 

algorithm is also investigated in Chapter 5. Once a common model structure has 

been obtained, an online sliding-windowing recursive least squares (SWRLS) 

algorithm can then be applied to estimate the time-varying model parameters. The 

time varying common structure (TVCS) model can then be obtained and applied to 

dynamically track and capture the transient variation of the nonstationary signals. 

The central purpose of obtaining the TVCS model is focused on nonlinear 

time-varying parametric modelling in the frequency domain. For example, the 

time-varying parameter results estimated from the TVCS model cannot only 

provide the transient local information of the biomedical signals, but can also be 

applied in nonlinear time-dependent parametric spectral analysis in the frequency 

domain to extract more features from the electrophysiological signals. 

 

As to the issue of the model order determination, this can be solved by using some 

model order determination criteria such as the well-known Akaike information 

criterion (AIC) (Akaike 1974), Bayesian information criterion (BIC) (Schwarz 

1978)(Schwarz 1978) and the modified generalized cross-validation (GCV) criteria 

(Billings & Wei 2007).  
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2.4 Frequency-domain analysis of nonlinear      

systems 

 

A NARMAX model in the frequency domain can be computed by the nonlinear 

frequency response functions also called the generalised frequency response 

functions (GFRFs). The traditional representation of nonlinear systems based on 

the Volterra series can be defined by 
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Taking the multiple Fourier transform of the p th order Volterra kernel yields the 

p th order GFRFs function expression 
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We can obtain the nonlinear p th order impulse response formula with the inverse 

Fourier transform 
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Substituting equation (2.17) into equation (2.15) and carrying out the multiple 

integrals on 1, , p  , we can then obtain 
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where  U f  indicates the input spectrum. 

Billings and Jones (1990) proposed the probing method to calculate the GFRFs. For 

example, Let the input  u t  be a sum of K  sinusoids 
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where kA  means the amplitudes and kf  is any real number. According to 

equation (2.15), the p th order output can be shown as follows 
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Substituting impulsive response equation (2.17) into equation (2.20) yields 
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It should be worth stressing that the Fourier transform of equation (2.21) is a sum 

of delta functions. Setting K p  and amplitude 1kA   for all 1, ,k p  , for 

equation (2.21), we can then obtain  
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When the system input is given by equation (2.19) with K p  and 1kA  , then 

the GFRFs can be obtained by equating the coefficients of   1! 2 pp j f f    

in the system output. 

 

2.5 EEG Granger Causality analysis  

 

Mathematical measures including coherence, correlation, phase synchronization or 

mutual information are usually applied to evaluate and describe the interactions 

between groups of neurons to investigate neural connections. However, in 

neurobiology, the analytical results from these methods cannot distinguish 

directions of flow between two cortical sites or causality. To assess the 

directionality of neuronal interactions and understand the cooperative nature of 
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neural computation, Granger causality is a fundamental tool for the description of 

causal interaction of two time series. Especially, if the prediction error of the first 

time series at the present time is reduced by including past measures of the second 

time series in the linear regressor model, then the second time series is said to have 

a causal influence on the first one. By exchanging the role of the two time series, 

we can address the question of causal influence in the opposite direction. From the 

definition of causality, the flow of time plays a significant role in allowing 

inferences from the time series. It should be noted that Granger causality was 

formulated for the linear model case, its application to nonlinear systems may not 

be appropriate. Recently some attempts have been proposed to extend the linear 

Granger causality to the nonlinear case. For example, Ancona et al. (2004) has 

investigated that a radial basis function (RBF) method has been applied to model 

data to evaluate the causality. Gourevitch et al. (2006) have evaluated the measures 

of Granger causality on some linear and nonlinear models, and they have also 

investigated some of the properties and drawback for linear and nonlinear Granger 

causality.  

 

All the previous methods are based on the time-invariant linear and nonlinear 

models to evaluate the Granger causality. Some evolution of nonlinear time series 

models has shown that standard linear vector autoregression models cannot capture 

the dynamics behaviour of many electrophysiological data adequately. However, a 

lot of components of neural systems are not linear and are nonlinear at a stationary 

level. Ding et al. (2000) used a short-time windows technique, which only requires 

the stationarity of the signal within short-time windows, and enables the 

construction of a time-varying Granger causality. Hesse et al. (2003) studied and 

focused on the recursive TV estimation of the Granger causality. The proposed 

approach is based on the adaptive recursive fit of the VAR model with TV 

parameters by means of a generalised RLS algorithm, and overcomes the 

requirement of stationarity of the signals and thus captures the observation of 

transient directed causal networks. It is worth stressing that the most important 
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property of the Granger causality is its positivity. However, negative values of 

Granger causality appeared in (Hesse et al. 2003). The main reasons of occurrence 

of negative values include the following. Firstly, the RLS algorithm applied to 

estimate the TV parameters in the VAR models results in a tracking of the 

autoregressive parameters around their theoretical values. Negative values of 

estimated Granger causality are possible due to the non-consistency of the 

parametric estimations. Second, the order in the VAR model investigated is fixed. 

This order may be not optimal for single EEG channel pairs. Third, the causal 

method discussed is only based on TV linear VAR models and considers transient 

linear causality. However, a lot of components of neural systems such as 

electrophysiological data are not linear. Some authors have showed evidence of 

nonlinearities in EEG time series (Palus 1996). 

 

To solve the issues aforementioned, in Chapter 6, a novel linear and nonlinear TV 

parametric modelling approach on the basis of data-driven methods is investigated 

for the adaptive estimation of nonstationary EEG Granger causality processes to 

detect the transient dynamic causal directional interactions between EEG signals 

within time intervals. The approach proposed allows identification of the directed 

information flow between brains areas. Two numerical examples, one for an 

artificial signal, where the exact answers of causal influences are known, and 

another for EEG signals are given to show the effectiveness and applicability of the 

proposed TV linear and nonlinear Granger causality method between EEG 

single-channel pairs. The more detail information such as methods and result 

discussions can be discussed in Chapter 6. 

 

2.6 Nonlinearity detection for time series 

  

To illustrate the necessity to evaluate the nature of a real-world signal comprising 

both linear and nonlinear components prior to choosing a mathematically tractable 
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model, recently, a great number of different measure approaches have been 

investigated to detect nonlinearity in time series such as approximate entropy, 

correlation dimension, largest Lyapunov exponents, higher order statistics and 

nonlinear prediction error (NPE) (Farmer & Sidorowich 1987; Sugihara & May 

1990). However, some of the measure approaches cannot distinguish chaos from 

coloured noise due to the low discrimination power or the correlation dimension, or 

requirement of long time series that is generally not available in the real world. 

Particularly, the NPE approach based on phase-space reconstruction can give either 

better or comparable performance than other approaches (Schreiber & Schmitz 

1997).  

 

The surrogate data method that belongs to the family of statistical tests known as 

hypothesis testing can also provide a rigorous statistical approach to nonlinear 

feature detection of a time series. The approach of surrogate data has been 

extensively used in the context of statistical nonlinearity testing underlying 

experimental data and is widely exploited for evaluating the capability of nonlinear 

indexes to test the presence of nonlinearity providing that the observed time series 

is stationary. Due to the assumption of stationarity, the surrogate time series 

approach is a time-invariant method that has statistical distribution properties 

which are invariant to translation of the original time series. However, stationary 

time sequences to be analyzed in electrophysiological data are often impossible to 

find even in short-term recordings. With regard to the approach of surrogate data, 

ambiguities between nonlinearity and nonstationarity might arise when the null 

hypothesis of a time-invariant linear process is rejected with a nonlinear 

discriminating statistics. 

 

To provide a unifying method for detecting the nature of electrophysiological 

experimental data in real-world signals, Mandic et al. (2008) have investigated a 

new delay vector variance (DVV) approach for characterizing a time series, and 

have also assessed the performance in the presence of nonlinearity detection. The 
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case studies discussed illustrated the effectiveness of the proposed method for the 

qualitative assessment of functional magnetic resonance imaging (fMRI) data. In 

order to detect the presence of nonlinear dynamics of nonstationary time series 

potentially, Fase et al. (2009) studied an approach based on generating TV 

surrogated data according to the null hypothesis of TV linear stochastic process. 

The proposed method is that first fitting a TV autoregressive (AR) model to the 

original time series, and then regressing the model coefficients estimated with 

random replacements of the model residuals to generate the TV surrogated time 

series. Model identification procedure is expanded the TV model coefficients onto 

a finite set of pre-defined basis functions, the classical nonlinear index criteria, for 

example, iterative amplitude adjusted Fourier transform (iAAFT) method that 

produces surrogates with identical signal distributions and approximately identical 

amplitude spectra as the original time series (Schreiber & Schmitz 1996), is applied 

as a discriminating statistic. The analysis results have been shown that using TIV 

surrogate, linear nonstationary time series may be regarded as nonlinear 

erroneously and weak TV nonlinearities may still not be revealed, while the 

application of TVAR surrogates increases the probability of a correct interpretation 

markedly. In the following of our research work, we can also apply the TVAR 

method with the basis function expansion in our research group to detect the 

nonlinearity of time series, and nonlinearity analysis results should increase the 

probability of a more accurate interpretation with respect to the definition of 

linearity that has been adopted. 

 

2.7 Summary 

 

In real-world applications, most biomedical signals are nonstationary and often 

involve numerous TV and transient components associated with underlying 

psychological or physiological activities. Therefore, the time-varying NARMAX 

polynomial model scheme that is simple and effective is one of the commonly 
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popular approaches to describe the dynamics of nonstationary signals or capture the 

transient variation of such signals in both time and frequency domains. 

Time-varying model coefficients can be applied to estimate time-frequency 

distribution of biomedical signals. Generally, identification and estimation of a 

time-varying model can commonly be classified into two categories, namely: 1) 

classical adaptive recursive algorithm and Kalman filtering and 2) basis function 

expansion scheme that uses pre-defined deterministic basis expansion to model the 

coefficient variations where the TV coefficients are approximated by a linear or 

nonlinear combination of known basis functions. The recursive algorithms or basis 

functions expansion approach is highly dependent on the unknown parameters and 

the performance will be degraded when parameters are estimated inappropriately. 

 

In this chapter, the adaptive recursive algorithms and its performance comparison 

have been investigated and basis function expansion method with OLS algorithm 

has also been discussed to estimate the TV model coefficients. The identification 

model is then applied to various applications using time-frequency analysis 

techniques that have been systematically and extensively applied to the study of 

biomedical signals. Different time-frequency distribution approaches for linear and 

nonlinear cases have been discussed. The time-frequency analysis of the parametric 

modelling method has a more accurate time-frequency resolution than conventional 

time-frequency distribution analysis methods like HHT, STFT and CWT. 

 

Granger causality for linear and nonlinear models has been developed in recent 

years. Some model and evaluated methods have even been applied to assess the 

directed causal influence in electrophysiological signals. However, there are 

virtually no results on identification and modelling of TV nonlinear systems to 

analyse the Granger causality influence between biomedical channel pairs. The 

different analytical approaches of nonlinearity detection for time series have been 

introduced briefly. All these topics will be discussed in detail in the following 

chapters. 



 

 

Chapter 3 

 

Identification of Time-Varying Systems 

Using Multi-wavelet Basis Functions 
 

3.1 Introduction 

 

Many processes are inherently TV and cannot effectively be characterised using 

time invariant models. Modelling and analysis of TV systems is often a challenging 

problem. One feature of TV systems is that such signals contain nonstationary 

transient events. One approach to characterise such nonstationary processes is to 

employ TV parametric models for example the TV autoregressive with exogenous 

input (TVARX) model (Peng et al. 2007), or simply the TVAR model (Chowdhury 

et al. 2006). Two main classes of methods can be used to resolve the TVARX and 

TVAR model estimation problem. The first popular approaches including 

traditional RLS algorithm (Ljung & Gunnarsson 1990), the Kalman filter and the 

Random Walk Kalman Filter (RWKF) algorithms (Chowdhury 2000; Morbidi et al. 

2008; Niedzwiecki 1994) have been derived and applied to analyse time varying 

dynamics of linear systems, and the second class of approaches treat the evolution 

of the time-varying coefficients to be linear or nonlinear combinations of a number 

of basis functions with some good properties; this allows the associated TV 

coefficients to be expanded as a finite sequence of pre-determined basis functions 

for example wavelet basis functions (Chon et al. 2005; Wei & Billings 2002; Wei 

et al. 2010).  

 

An attractive approach is to expand the TV coefficients using wavelets as the basis 

functions. Wavelets have been proved to be a valuable tool for signal processing 

and have been shown to possess excellent linear or non-linear approximation 
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properties which outperform many other approximation schemes and are well 

suited for approximating general nonstationary signals, even those with very sharp 

or abrupt discontinuities. Wavelets have also successfully been used in system 

identification and modelling (Billings & Wei 2005a; Chang & Liu 2006; 

Chowdhury & Aravena 1998; Tsatsanis & Giannakis 1993). 

 

In this Chapter a new wavelet multi-resolution parametric modelling and 

identification technique for the identification of systems with TV parameters is 

proposed, where the associated time dependent parameters are approximated using 

a set of multi-wavelet basis functions, which transforms the TV identification 

problem into a time-invariant parametric expansion. The identification of the model 

parameters can then be achieved by adopting a block LMS algorithm. One 

advantage of the proposed approach, which combines wavelet approximation 

theory with a block LMS algorithm, is that the new wavelet based algorithm can be 

used to track very rapidly or even sharply varying processes. The novel approach 

proposed can thus track rapid time variation and is more suitable for the estimation 

of process parameters of inherently nonstationary processes. A multi-wavelet basis 

function approach is used because of the ability to capture the signals 

characteristics at different scales. Two examples, one for a synthetic data set and a 

second for a mechanical system are given to illustrate the capability and efficacy of 

the proposed method. It is shown that the proposed method can produce much 

better tracking performance compared with traditional LMS and RLS approaches. 

 

3.2 Methodology 

 

Consider an input-output relationship of a TVARX process which is described by 

the following equation: 

               
1 1

p q

i l

i l

y t a t y t i b t u t l e t
 

      ,              (3.1) 
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where ,u  y  and  e t  are the sampled measurable input, output and prediction 

error signals,  ia t  and  lb t  are the TV parameters to be determined, p  and 

q  are the maximum model orders, and t  represents discrete time. The proposed 

method expands the TV parameters  ia t  and  lb t  onto multi-wavelet basis 

functions  m t  for 1,2, , ,m R   such that the following expressions hold: 

   ,

1

,
R

i m mi
m

a t t 


       ,

1

R

l l m m

m

b t t 


 ,              (3.2) 

where   ,m t
 

1, 2, ,m R   are wavelet basis functions, ,i m  and ,l m  are the 

expansion parameters, R  is the maximum number of basis sequences. 

Substituting (3.2) into (3.1), yields (3.3), 

           , ,

1 1 1 1

p qR R

i m m l m m

i m l m

y t t y t i t u t l e t   
   

      ,   (3.3) 

Once basis functions have been chosen (see next section), new variables can be 

defined as below 

         
     ,p my t i t y t i           .q mu t l t u t l  

 
        (3.4) 

Substituting (3.4) into (3.3) yields,  

       , ,

1 1 1 1

,
p qR R

i m p l m q

i m l m

y t y t i u t l e t 
   

                 (3.5) 

Model (3.5) can be rewritten as 

         Ty t t t e t   ,                                 (3.6) 

where                                 

         1 , , , 1 , ,
T

p p q qt y t y t p u t u t q         ,        (3.7) 

and 

  1, , 1, ,, , , , ,
T

m p m m q mt        
,
                        (3.8) 

 t  and  t  are the regression vector and coefficient vector, respectively, and 

the upper script ' 'T  indicates the transpose of a vector or a matrix. Eq. (3.5) and 
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Eq. (3.6) show that the TVARX  ,p q  model can now be treated as a time 

invariant model, since ,i m  and ,l m  are now time-invariant. 

 

3.3 The Multi-Wavelet Basis Functions 

 

From wavelet theory (Chui 1992; Mallat 1989), a signal can be decomposed into 

components spanned by the scaling and shifting wavelet basis functions at different 

resolutions. As defined by (Mallat 1999), any finite energy function  f x , i.e., 

functions for which the integral  
2

f x dx


  exists with a finite value, can be 

arbitrarily approximated by 

          
0 , 0 ,

0

, ,k kj j j k j k

k j j k

f x x x   
  

  

    ,                 (3.9) 

where    0 0

0

/ 2

, 2 2
j j

j k x x k    and    / 2

, 2 2j j

j k x x k    are the scaled 

and translated version of the scaling function  x  and the mother wavelet 

 ,x
0 ,j k  and 

,j k  are the wavelet decomposition coefficients at the scale 

level 0j  and ,j  respectively. The first summation indicates a low resolution or 

coarse approximation of  f x  at the scale level 0j  in Eq. (3.9). For each j , a 

finer or higher resolution function including more detail of  f x  is added in the 

second summation. Like in any regression representation of functions,  
0 ,j k x  

and  ,j k x  can be interpreted as regressions. Eq. (3.9) can be reduced to  

 
0

0

J

j j

j j

f x A D


  ,                                   (3.10) 

where 
0 0 0, ,j j k j k

k

A c 




   is the approximation at level 0j  and , ,j j k j k

k

D d 




   

is the detail at level j . When the higher resolution components make little 
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contribution to  f x , the function can be approximated by a truncated multi- 

resolution wavelet expansion from 0j  up to J  0j J  as given in Eq. (3.10). It 

is worth stressing that the multi-resolution wavelet of a signal is not unique and 

depends on the type of mother wavelet and scaling function that are used. In 

(Ahuja et al. 2005), properties of various types of wavelets including orthogonality, 

support, regularity and time-frequency localization window were discussed for 

various wavelet types. It was concluded that B-spline mother wavelets could be 

justified for wavelet-based high resolution image sequences. Cardinal B-splines are 

an important class of basis functions that can form multi-resolution wavelet 

decompositions (Chui 1992). The first order cardinal B-spline is the well-known 

Haar function defined as 

   

 
1 0,1

1, 0,1 ,

0, .

x
B x

otherwise


 
  


                         (3.11) 

The second, third and fourth order cardinal B-splines  2 ,B x   3B x  and  4B x  

are given in (Wei & Billings 2006a). Note that the polynomial degree of mth order 

B-spline is equal to ( m -1). For detailed discussions on cardinal B-splines, the 

associated wavelets and details of the excellent approximation properties, see (Chui 

1992). 

 

One attractive feature of cardinal B-splines is that these functions are completely 

supported, and this property enables the operation of the multi-resolution 

decomposition (3.9) to be much more convenient. For example, the m th order 

B-spline is defined on  0,m , with the scale and shift indices j  and k , for the 

family of the functions 

   / 2

, 2 2 , 0 2 .j j j

j k mx B x k x k m                     (3.12) 

Assume that the function  f x  that is to be approximated with decomposition 

(3.9) is defined within  0,1 , then for any given scale index (resolution level) ,j  
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based on  0,1x  and 0 2 j x k m   , the effective values for the shift index 

,k  are restricted to the collection  : 2 jk m k    with the   0mB m  . 

 

Note that while the first and second order B-splines  1B x  and  2B x  are 

non-smooth piecewise functions, which would perform well for signals with sharp 

transients and burst-like spikes, B-splines of higher order would work well on 

smoothly changing signals. Motivated by this consideration, this study proposes 

using multi-wavelet basis functions for TVARX model identification. Two 

examples of the new multi-wavelet based algorithm are given in the following. 

 

Take the B-splines of order from 1 to 4 as an example, and consider the 

decomposition (3.10). Let  : 2 , 1,2,3,4j

m k m k m    
 
and    m

k x   

 / 22 2 ,j j

m mB x k k  . The TV coefficients  ia t  and  lb t  in model (3.1) 

can then be approximated using a combination of functions from the families 

  : 1, ,4;
m

k mm k   .
 

 Several criteria for the determination of j  were 

given in (Wei & Billings 2002). For the B-splines wavelet used in this Chapter, the 

lower level 0j  and higher level j  in Eq. (3.10) can be chosen 0 3j j  . 

However, the higher level j  can be chosen as larger than 0j  as possible 

provided that the computation effort is not a concern. Therefore, one such 

combination can be represented as,   

       

             
, , ,

r r

r r s s

i i k k i k k i k k

k k k

t t t
a t c c c

N N N


 
  

  

     
       

     
  

     (3.13)

 

             
, , ,

r r

r r s s

l j k k j k k j k k

k k k

t t t
b t d d d

N N N


 
  

  

     
       

     
  

          

where 1 4,r s     1,2, ,t N  , and N  is number of observations of the 

signal. Modelling experiences and simulation results with a large number of 
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experiments have shown that for most TV problems, the choice of 2,   3r   

and 4s   works well to recover the TV coefficients. Note that when choosing 

B-splines it should try to include different types of polynomials, for example, the 

second order B-spline performs well for time varying coefficients that have sharp 

variations or piecewise changes, while the third and fourth order B-splines can 

work well for most smoothly and slowly varying coefficients, to track both fast and 

slowly varying trends in this Chapter. If, however, there is strong evidence that the 

time-dependent coefficients have sharp changes, then the inclusion of the first and 

second order B-splines would work well. The decomposition (3.13) can easily be 

converted into the form of (3.2), where the collection   : 1,2, ,m t m R    is 

replaced by the union of the three families: 
    : ,k t k


   
    :
r

k rt k   

and
 

    :
s

k t sk .
 

Further derivation can then lead to the standard linear 

regression equation (3.5). Eq. (3.13) and Eq. (3.5) indicate that the initial full 

regression equation (3.5) may involve a great number of free time-dependent TV 

parameters, and least squares type algorithms may fail to produce reliable results 

for such ill-posed problems. These problems, however, can easily be overcome by 

performing an effective online block LMS algorithm, the resulting recursive 

coefficient estimates ,i kc  and ,l kd  in Eq. (3.13) will then be used to recover the 

TV coefficients  ia t  and  lb t  in the TVARX in model (3.1). 

 

3.4 Model Identification and Parameter 

Estimation with A Block Least Mean 

Square Approach 

 

The conventional LMS algorithm and normalized LMS (Haykin 2003; Shynk 1992) 

have been proven to be very effective to deal with dynamic regression problems. 

However, the performance of these algorithms is sensitive to the selection of step 
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sizes and additional noise. In this Chapter we introduce a block LMS algorithm to 

estimate the TV parameters in the model. Table 3.1 presents a summary of the 

block LMS algorithm, where the step size   is divided by the maximum 

eigenvalue of the correlation matrix C  for a potentially-faster algorithm 

convergence time. An important issue that needs to be considered in the design of a 

block adaptive filter is how to choose the block size L . From Table 3.1 we observe 

that the operation of the block LMS algorithm holds true for any integer value of 

L  equal to or greater than unity. Nevertheless, the option of choosing the block 

size L  equal to the filter length (that is, the number of TV parameter coefficients 

in model (3.1)) M  is referred in most applications as block adaptive filtering. 

This choice has been justified by Clark et al. (1981) based on the following 

observations: When L M , redundant operations are involved in the adaptive 

process, because then the estimation of the gradient vector (computed over L  

points) uses more input information than the filter itself. When L M , some of 

the tap weights in the filter are wasted, because the sequence of tap inputs is not 

long enough to feed the whole filter. 

 

It thus appears that the most practical choice is L M . For 1L , the block LMS 

algorithm simplifies to the normalized LMS algorithm, where C  is a scalar. For 

1L , Table 3.1 summarizes the block LMS algorithm, where C  is a square 

matrix. 

 

The block LMS approach leads to two significant advantages over the conventional 

LMS algorithm: 1) for 1L , potentially-faster convergence speeds for both 

correlated and whitened input data (Clark et al. 1981), and stable behaviour for a 

known range of parameter values ( max0 2 /   , stability condition) independent 

of the input data correlation statistics (Goodwin & Sin 1984; Nagumo & Noda 

1967); 2) for 1L , block processing of data samples, a block of samples of the 

filter input and desired output are collected and then processed together to obtain a 
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block of output samples. A good measure of computational complexity in a block 

processing system is given by the number of operations required to process one 

block of data divided by the block length. An implementation of the block LMS 

algorithm is more computationally efficient. 
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Definition 

    1 , 2 , ,u u        input signal samples 

    1 , 2 , ,y y       desired signal samples correlated with input signal samples 

L                    block size 

,M                   filter length ( M is equal to the sum of p  and q  in model (1)), 

,                   step-size, 

,a                    a small positive constant, 

  max max ,eig C 
 
maximum eigenvalue of the correlation matrix

     ,TC E X k X k  

     1 , , ,
T

MW k w k w k     a vector of weights. 

 

Initial Conditions: 

  1
ˆ 0 0 ,MW   

 

Computation: at the k th iteration, for each new block of M  input samples, compute 

 

    

    

1 1

,

1 1

u kM u k M

X k

u k M u kM

  
 

  
    



  



 

      , , 1 1 ,
T

d k d kM d k M      

     ˆ ,y k X k W k  

     ,e k d k y k   

     ,Tk X k e k   

   
 

 
max

ˆ ˆ1 .W k W k k
a





  


  

Dimensions: 

 Ŵ k  1M  ;   X k  M M ;     d k  1M  ;     y k  1M  ;   a  1 1 ; 

 e k  1M  ;    k   1M  ;        1 1 ;        C  M M ;   max  1 1 . 

 

Table 3.1 Summary of the block least mean square algorithm 
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In the present study, the block LMS algorithm described above is applied to refine 

and solve the regression equation (3.5). This includes a model identification and 

time-dependent TV parameter estimation. The resultant estimates will then be used 

to recover the TV coefficients  ia t  and  lb t  in the TVARX model (3.1). 

 

To determine the proper model size selection for the TVARX case given by 

Equation (3.5), we exploited the fact that time-dependent or TV coefficients are 

expanded onto multi-wavelet basis functions to give a time invariant system. Hence, 

the modified generalized cross-validation (GCV) criteria (Billings et al. 2007) can 

be employed to account for the increased number of time invariant coefficients for 

the system (3.5). This modified criterion allowed us not only to select the proper 

model size, but also to choose an appropriate number of multi-wavelet basis 

functions onto which the TV coefficients are expanded. 

 

3.5 Simulation Examples 

 

To verify the performance of the multi-wavelet basis functions approach, two 

examples will be studied. The first is a simulated experiment with measurement 

SNR‘s (Signal to Noise Ratio) presented. Consider the following TVARX  1,1  

model, 

           1 11 1y t a t y t b t u t e t     ,                   (3.14) 

The process parameters  1a t  and  1b t  will be varied in different ways and the 

output  y t  is observed for the system input  u t  which was a Pseudo-Random 

Binary Sequence (PRBS) (Leontaritis & Billings 1987) where  e t  is a discrete 

white noise sequence. The system parameters are estimated using the normalized 

LMS approach, RLS approach and the block LMS approaches based on 

multi-wavelet basis functions, respectively, so that these three methods can be 
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compared. 

 

The TV parameter variations were designed to change in an abruptly varying 

manner as 

 1

0.1 0 0.3

0.9 0.3 0.5
,

0.5 0.5 0.7

0.6 0.7 1.

t

t
a t

t

t

  


 
 

  
  

     1

0 . 1 0 0 . 2

0 . 5 0 . 2 0 . 4

0 . 8 0 . 4 0 . 7

0 . 3 0 . 7 1 .

t

t
b t

t

t

 

  

 
 

  

 ,  (3.15) 

The PRBS input signal  u t  is a frequency rich signal. The input signal is of 1 

second duration and the sampling frequency was 1000 Hz. The output is a 

nonstationary signal with a SNR = 19.4024dB. Figure 3.1 shows the true and 

estimated values of parameters  1a t  and  1b t  respectively for the noise 

measurement of SNR = 19.4024dB using the normalized LMS algorithm with

1, 0.6L   . The estimated parameters follow the true parameter variations quite 

well. Figure 3.2 shows the results of the true and estimated values for parameters 

 1a t  and  1b t  respectively with the same noise measurement of 19.4024 dB 

using the RLS algorithm with forgetting factor
 

0.90  . The RLS approach 

obtains smoother estimates but does not faithfully track the rapidly changing TV 

parameters. Figure 3.3 shows the results of true and estimated values for 

parameters  1a t  and  1b t  respectively with the noise measurement of 19.4024 

dB using the new block LMS based algorithm with 2, 1L    using multi- 

wavelet basis functions. The estimated parameters follow the true parameters 

variations extremely well picking up the abrupt changes very quickly. Estimates 

were calculated for the given TV coefficients in (3.15). The standard deviations of 

the parameter estimates (with respect to the true parameters) and the statistics of the 

obtained results are presented in Table 3.2. The mean absolute error (MAE) of the 

parameter estimates, with respect to the corresponding true values, are also 

estimated and shown in Table 3.2. Compared with the normalized LMS estimates 
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and RLS estimates, the variance for the multi-wavelet basis functions block LMS 

method estimates is much smaller. The mean absolute error is defined by 

   
1

1
ˆ

N

k

MAE a k a k
N 

  ,                              (3.16) 

where  â k
 
represents the estimates of  a k

 
in model (3.1), and N  is the 

length of the data. 

 

 

 

Table 3.2 statistically confirms the better performance of the block LMS 

multi-wavelet basis functions method. Compared with the traditional normalized 

LMS and RLS approaches, the simulation results above really show that the new 

method based on multi-wavelet basis functions proposed in this Chapter is more 

adaptive and possesses much better tracking ability in that it still can track the 

time-varying trend of the parameters even with noise contamination.  

Table 3.2 A comparison of the model performance  

for Example 1 (SNR = 19.4024dB). 

 

Approach         Estimated coefficient          MAE            Std          

 

                            
 1̂a t  

              
0.0616             0.1072        

NLMS  1, 0.6L                1b̂ t                0.0559           0.0968        

 

                             1̂a t                0.0993           0.2180 

RLS  0.9                   1b̂ t                0.0418           0.1070 

 

BLMS  2, 1L   with
        

 1̂a t                  0.0443             0.0901          

multi-basis method                1b̂ t                   0.0557             0.0884        
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(a) 

 

 

(b) 

 

Figure 3.1 Time-varying parameter estimation using a 

normalized LMS approach with 1, 0.6L    and SNR of 

19.4024 dB for Example 1.  

(a) Estimated and true parameter a1 (t), and  

(b) Estimated and true parameter b1 (t). 
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(a) 

 

 

(b) 

 

Figure 3.2 Time-varying parameter estimation using a RLS  

with forgetting factor 0.9   and SNR of 19.4024 dB for  

simulation example. 

(a) Estimated and true parameter a1 (t), and 

(b) Estimated and true parameter b1 (t). 
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    (a) 

 

 

   (b) 

 

Figure 3.3 Time-varying parameter estimation using the block 

LMS approach based on multi-wavelet basis functions with 

2,L  1   and SNR of 19.4024 dB for simulation Example. 

(a) Estimated and true parameter a1 (t), and  

(b) Estimated and true parameter b1 (t). 
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3.6 Application—tracking of a mechanical 

system 

 

The proposed modelling scheme has been applied to the analysis of a mechanical 

system to illustrate the application and tracking ability of the proposed 

multi-wavelet basis function method based TVARX modelling approach. The 

second-order continuous linear system equation subject to a general excitation

 f t  as formulated in (Ghanem & Romeo 2000) is given by 

             m t y t c t y t k t y t f t    ,                  (3.17) 

The parameters   ,m t   c t  and  k t  represent the TV mass, damping and 

stiffness of the system, respectively. The properties and parameters of system are 

described in (Ghanem & Romeo 2000). An idealized model of damage 

characterized by an abrupt change in the stiffness is considered, which is to assess 

the suitability of the identification procedure to abrupt variations in the 

time-dependent parameters. The damped Mathieu equation is given by 

         ,my t cy t k t y t u t                             (3.18) 

where   1.0m t  ,   1.0c t   are the parameter measuring the strength of the 

parametric excitation, and the excitation is given by    1sinu t A t   

 2sin ,A t
 
where 1.0,A   1 6.91 /rad s 

 
and 2 5.65 / ,rad s   the step 

time used is 0.06t s  , the initial conditions for the free vibrations are 

 0 0.1x  ,  0 0x  . The abrupt stiffness changes are given as   0k t k  for 

/ 4t T ,   00.75k t k  for / 4 3/8T t T  ,   00.9k t k  for 3/8T t   

4.5/8T ,
 

  00.75k t k  for 4.5/8 5/8T t T  , and   00.9k t k  for 5/8T t  

T . The value of parameter is 0 39.0k   and T  is periodic. The difference 

equation for the system (3.18) using the approximations  y t 
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   y t t y t

t

    


 and  

   y t t y t
y t

t

    


 
  can be approximated by  

         22 1 1y k t t y k t t t k t        
                  

     22 1y k t t u k t      ,          (3.19) 

Eq. (3.19) can be considered as a discrete model approximation of (3.18). The 

selection of the order of B-splines, with the resolution level (scale index), is the 

same as in the previous example. Comparison with Eq. (3.1), the linear TVARX 

model (3.19) with 2p  , and 1q   can be estimated by the proposed approach, 

with    2

2
ˆ 1a t t t k t    , then the stiffness estimation value of the 

time-varying parameter in model (3.19)  k̂ t  can be represented by 

    
  2

2

ˆ1
ˆ

t a t
k t

t

   



,                               (3.20) 

The stiffness estimate of the TV parameter  k t  with the new approach is given 

in Figure 3.4. Compared with the result given in (Ghanem & Romeo 2000), the 

parameter estimate here follows the true parameter variation very well and traces 

the abrupt changes quickly.  
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3.7 Conclusions 

 

Time-varying parameters in ARX models have been estimated using a new 

multi-wavelet basis function approach with a block LMS algorithm introduced in 

this Chapter, where the associated time-dependent coefficients are expanded using 

multi-wavelet basis functions. Parameter variations including abrupt or sharp 

changes have been considered. Performance measures of the estimated parameters 

have been calculated. The experimental results indicate that the new approach 

based on multi-wavelet basis functions with the block LMS algorithm gives much 

better results for fast and abrupt changing parameters than the method which uses 

the traditional normalized LMS algorithm or the RLS algorithm directly. 

Furthermore, from the results above, it can be concluded that time-varying 

 

Figure 3.4 Time-varying abrupt stiffness parameter estimation 

 k t  using the block LMS approach based on multi-wavelet 

basis functions with 2, 0.78L   . Solid (blue) line, the 

dashed (red) line and the dashed (black) line indicate the true 

value, estimate value (no noise) and estimate value with SNR 

(5.9735 dB), respectively. 
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systems can be modelled using a TVARX and the identification problem of 

modelling fast and abrupt changing time-varying parameters is possible with good 

accuracy. The identification procedure has been shown to be effective in tracking 

time evolutions of the unknown parameters. 

 

The wavelet method is especially powerful for nonstationary signal analysis. We 

advocate the use of a multi-wavelet basis functions to identify and model 

time-varying signals including mechanical systems because of the flexibility in 

capturing the signal characteristics at different scales.  

 

The time-varying model with multi-wavelet basis functions is able to track and 

capture the parameter changes even those with jumps. In this time-varying 

modelling approach, the time varying coefficients were expressed using a 

combination of a number of wavelet basis functions. However, it should be pointed 

out that in many applications, not all these candidate wavelet basis functions need 

to be simultaneously involved in a same time varying coefficient approximation, 

some wavelet basis functions which play a more important role need be included in 

the expression, some other wavelet basis functions, however, may only play some 

little role and can be exclude from the expression. In the next Chapter, another 

novel multi-wavelet basis function expansions will be introduced and the 

orthogonal least squares (OLS) algorithms will then be applied to determine which 

wavelet basis functions should be included in the final approximation expression 

and which candidate wavelet basis functions should be eliminated from the 

dictionary.  

 

  



 

 

Chapter 4 

 

Time-Varying Model Identification for 

Time- Frequency Feature Extraction 

from EEG data 
 

4.1 Introduction 

 

Time-varying processes encountered in different engineering applications such as 

biomedical signal processing can be characterised by parametric representations 

(Chen & Chowdhury 2007; Chon et al. 2005; Wei & Billings 2002; Wei et al. 2010). 

Thus, the need to identify TV systems has naturally led to a growing interest in 

these areas. Parameter identification and modelling is now established based on the 

ARX model. The ARX model, which can match the structure of many real-world 

processes, is one of the most widely applied linear dynamic models. The popularity 

and wide application of the ARX model comes mainly from its easy-to-compute 

parameters (Burke et al. 2005; Nells 2001; Wei et al. 2009).  

 

In Chapter 2 a solution to the identification of time varying system has been 

investigated by introducing a multi-wavelet basis function scheme. This Chapter 

will consider the time-varying modelling problem from another perspective, where 

a multi-wavelet basis function expansion approach is applied to EEG signal 

modelling and the orthogonal least squares (OLS) algorithm is then used to select 

the significant candidate model terms (formed by wavelet expansion) to form a 

parsimonious model structure and estimate the relevant model parameters. 

 

It should be noted that the choice of basis functions can significantly affect the 



Chapter 4 Time-Varying Model Identification for Time-Frequency Feature Extraction from EEG data 

60 
 

performance of the parameter estimates. However, there is no guideline on how to 

choose the appropriate basis functions for a specific modelling problem. 

Conventionally, the basis functions have been chosen to be polynomials (including 

Chebyshev and Legendre types), prolate spheroidal sequences which are the best 

approximation to bandlimited functions (Chon et al. 2005; Niedzwiecki 2000; Wei 

& Billings 2002; Zou & Chon 2004) and wavelets that have a distinctive property 

of multi-resolution in both the time and frequency domains (Ansari-Asl et al. 2005; 

Cakrak & Loughlin 2001; Wei et al. 2010). In fact, each family of basis functions 

has its own properties of accuracy and tractability, for example, polynomial and 

Fourier basis functions can work well for most smoothly and slowly varying 

coefficients; wavelet basis functions, however, perform well for time-varying 

coefficients of abrupt changes or piecewise variations. Basis function expansion 

methods have been widely applied to solve various engineering problems. For 

example, a TVAR model can be expanded over a Fourier–Bessel (FB) series to 

constitute a feature vector for segmentation of the EEG signal, and then to find a 

simple model for the parametric representation of EEG signals (Pachori & Sircar 

2008). A good choice of the basis functions should allow abruptly or rapidly 

changing parameters to be tracked. 

 

Wavelets have distinctive approximation properties and are well suited for 

approximating general nonstationary signals (Chui 1992; Mallat 1989; Wei & 

Billings 2002; Wei & Billings 2006a; Wei et al. 2004b; Wei et al. 2010), and thus 

have been successfully applied to many areas including nonlinear signal processing 

and parametric identification (Adeli et al. 2003; Forte et al. 2008; Ng & 

Raveendran 2009; Tsatsanis & Giannakis 1993; Wei et al. 2004b). However, to our 

knowledge, not much work has been done to exploit the inherent approximation 

properties of wavelets to identify TV coefficient parameter estimation. The 

objective of this Chapter is to present a novel TVARX modelling approach, where 

the time-dependent coefficients are expanded using a finite set of multi-wavelet 

basis functions. Based on a multi-wavelet expansion scheme, a new method for 
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time-dependent parameter estimation is then proposed. The term ‗multi-wavelet‘ 

here has a twofold meaning. Firstly, the TV coefficients of the ARX model are 

approximated using several types of wavelet basis functions (i.e. the TV parameter 

estimation involves multiple wavelets). Secondly, these wavelet basis functions are 

combined in a form of multi-resolution wavelet decomposition. The advantage of 

the proposed method, compared with a method involving only a single type of 

wavelets, is that the multi-wavelet expansion scheme is much more flexible in that 

it exploits the excellent properties of both non-smooth and smooth wavelet basis 

functions and thus can effectively track both rapid and slow variations of TV 

coefficients. In addition, the expansion of TV parameters onto multi-wavelet basis 

functions is more accurate and effective for dealing with nonstationary signal 

modelling than traditional power spectral estimation approaches and classical 

time-invariant parameter models.  

 

Brain signals involved in neuro-physiological techniques such as EEG and MEG 

are inherently nonlinear and nonstationary processes which exhibit complex 

dynamics. Conventional time-domain analysis methods such as FFT and PSD 

estimation methods, where it is assumed that signals to be studied are stationary, 

are not ideal when applied to EEG data analysis. While traditional adaptive 

parameter estimation algorithms for example the RLS, LMS and Kalman filer 

approaches can be applied to track TV trends, these algorithms can often produce 

lagged tracking of TV parameters (for example in TVARX model estimation). The 

objective of this study is thus twofold: 1) to develop a TV modelling framework 

that exploits the excellent approximation property of wavelets so that the resultant 

time-varying models can track severely nonstationary processes with sharp changes 

in the system parameters; and 2) to apply the TV modelling algorithm to EEG data 

analysis where the proposed algorithm can provide almost instant tracking 

performance and the resultant time-frequency resolution produced by the identified 

model is extremely high; this is usually very important for feature extraction from 

EEG signals in both the time and frequency domains. 
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4.2 Problem formulation 

 

4.2.1Time-Varying ARX Model and Multi-wavelet 

Coefficient Expansions 

 

The TVARX  ,p q  model for a single-input/output system can be represented as  

           
1 1

p q

i l

i l

y t a t y t i b t u t l e t
 

      ,               (4.1) 

where t  is the time instant or sampling index of the signal  y t ,  y t i  and 

 u t l  are the measured response, respectively.  ia t  and  lb t  are the TV 

coefficient functions to be determined in the model; the term  e t  is the residual 

error accommodating the effects of measurement noise, and modelling noise that 

can be viewed as a stationary white noise sequence with zero mean and variance 

2

e . The proposed method is to expand the TV parameters  ia t  and  lb t  onto 

multi-wavelet families cardinal B-splines basis functions, 
  : 3,4,5;
m

k m 
 

mk , such that the following expression hold:  

             
, , ,

r s

r r s s

i i k k i k k i k k

k k k

t t t
a t

N N N


 
     

  

     
       

     
   ,         

             
, , ,

r s

r r s s

l l k k l k k l k k

k k k

t t t
b t

N N N


 
     

  

     
       

     
   ,   (4.2) 

where ,i k  and ,l k  represent the expansion parameters,  :m k m k      

2 1j   for 3,4,5m  , 3j   is the wavelet scale, 3  , 4r  , and 5s  , 

1,2, , ,t N   and N  is the number of observations of the measurement data, 

respectively. Substituting (4.2) into (4.1), it yields,  
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             , ,

1 1m m

p q
m m m m

i k k l k k

i k l k

t t
y t y t i u t l

N N
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    , (4.3) 

From (4.3), the original TVARX model in Eq. (4.1) has now been converted into a 

time invariant (TIV) regression model with respect to the time invariant coefficients 

 
,

m

i k  and  
,

m

l k . In this Chapter, cardinal B-splines wavelets, which have been 

proved to have several excellent properties including orthogonality, support, 

regularity and time-frequency localization in a window which enables the operation 

of the multi-resolution decomposition to be much more convenient, are considered 

and will be employed for TV parameter expansion. Detailed discussion how to 

build the associated multi-wavelet model using B-splines can be found in (Wei & 

Billings 2002) and (Wei et al. 2010). 

 

4.2.2 Time-Dependent Spectrum Estimation 

 

Eq. (4.3) can be solved by using linear least squares algorithms. Let
 

 ˆ
ia t ,  ˆ

lb t  

be the estimates of  ia t  and  lb t , and 
2ˆ
e  is the estimate of 2

e . The 

time-dependent spectral function associated to the TVARX model in Eq. (4.1) is 

defined as,  
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,                           (4.4) 

where 1,j    and sf  is the sampling frequency. Note that the spectral function 

(4.4) is continuous with respect to the frequency f  and thus can be used to 

produce spectral estimates at any desired frequency up to the Nyquist frequency

/ 2sf . The frequency resolution is not infinite, but is determined by the underlying 

model order and the associated parameters. 
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4. 3 Model Identification and Parameter 

Estimation 

 

In general, the estimation of TIV system parameters is formulated as an 

overdetermined problem. Then the least squares solution is the optimal estimate of 

the parameters in the sense of minimum residual error. However, if the parameters 

are time-varying, the problem of parameter estimation becomes underdetermined, 

and it is much more difficult to find the ‗best‘ solution. Expanding the TV 

parameters onto a linear or nonlinear combination of a set of basis functions can 

solve the underdetermined problem. Consequently, the parameter estimation of 

unknown variables can be reduced to a set of constant coefficients of the basis 

functions. However, the multi-wavelet expansion model (4.3) involves a large 

number of candidate model terms that may be highly correlated. The resultant 

parameter estimates may be over-fitted. Modelling experience suggests that most of 

the candidate model terms can be removed from the model, and that only a small 

number of significant model terms are needed to provide a satisfactory 

representation for most linear and nonlinear dynamical systems. Many approaches 

have been introduced to eliminate the possible linear dependency of candidate 

model terms by selecting best bases, for example, Kaipio and Karjalainen (1997) 

introduced a principal-component-analysis (PCA)-type approximation scheme to 

select the ‗optimal basis‘. The mutual correlation of the coefficients is also taken 

into account in their approach.  

 

In this work, TV coefficients are expanded by multi-resolution cardinal B-splines 

wavelet series, and then the forward OLS algorithm (Billings et al. 1989; Billings 

& Wei 2007; Chen & Billings 1989; Wei & Billings 2008), which have been proven 

to be a very effective to deal with multiple dynamical regressions problems, is 

applied to determine the forms in model (4.3). The orthogonal least squares (OLS) 

algorithm is one of the most efficient techniques that can be used to detect the 
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model structure. The OLS algorithm orthognalizes all the regression terms in Eq. 

(4.3), step by step, in a forward stepwise manner, by introducing an auxiliary 

orthogonal model. The error reduction ratio (ERR) values can then be applied as a 

measure of the significance of each candidate model terms. The OLS algorithm has 

been widely applied to select the model structure selection for nonlinear system 

identification (Billings et al. 1989; Chen et al. 1989) and has already become a 

standard algorithm for system identification, nonlinear function approximation and 

neural network training (Harris et al. 2002; Haykin 2003).  Detailed discussions 

and derivation of the procedure of the forward OLS can be found in (Billings et al. 

1989; Billings & Wei 2007; Chen & Billings 1989; Wei & Billings 2008; Wei et al. 

2004b). The TV coefficients  ia t  and  nb t  in Eq. (4-1) can be recovered by 

the resultant estimates from model (4.3). A brief introduction of the OLS algorithm 

is given in the Appendix 4.1 

 

4.4 Simulation example 

 

Consider a TVARX (2, 2) model below 

                   1 2 1 21 2 1 2y t a t y t a t y t b t u t b t u t e t         , (4.5)
 

where  e t  is zero-mean Gaussian white noise. The TV parameters in Eq. (4.5) 

are given by: 
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                        (4.6) 

 2 0.6, 1 ,b t t N                                                

where the length of data N  is 512. Model (4.5) was simulated by setting the input 

 u t  as a Pesudo-Random Binary Sequence (PRBS) (Leontaritis & Billings 1987). 

The variance of the noise  e t  was chosen to be 0.04, and this made the 

signal-to-noise ratio (SNR) to be around 13 dB. Both the input and the associated 

output sequences were recorded and were used for subsequent model estimation. 

Figure 4.1 compares three different methods, that is, the RLS algorithm, the RLS 

algorithm with B-splines basis functions, and the OLS algorithm with B-splines 

basis functions. Panel (a) shows the results using the RLS estimation algorithm 

(forgetting factor (ff) 0.92) (Ljung & Gunnarsson 1990). Panel (b) gives the results 

of the RLS (ff: 0.9998, using B-splines wavelets and selecting scale index 3j  ) 

algorithm and Panel (c) shows the OLS identification results (using B-spline 

wavelets and selecting scale index 3j  ). Obviously, The RLS approach attains 

smooth but relatively poor estimates that cannot track the rapidly changing TV 

parameters, the parameter estimates are underdetermined. The RLS approach with 

B-splines obtains irregular estimates with large variances (over-fitted), however, 

compared with RLS method, the resultant estimates from the RLS method with 

B-splines can track the sharp changes of the TV parameters. These interesting 

results have been verified by Li et al. (2011a). The OLS method with B-splines 

appears to outperform the RLS approach and the RLS approach with B-splines. The 

results using the OLS approach with B-splines is impressive because it is able to 

track three quite different waveforms: the constant value, an abrupt change, and the 

sinusoidal waveform. The proposed method (the OLS with B-splines) can attain 
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smooth estimates while providing rapid tracking. The mean absolute error (MAE), 

normalized root mean squared error (RMSE) and the standard deviations (Std) of 

the parameter estimates (with respect to the true parameters) are estimated and 

shown in Table 4.1.  

 

Compared with the RLS approach and the RLS approach with B-splines estimates, 

Table 4.1 statistically confirms that the MAE, RMSE and Std estimates produced 

by the OLS approach with B-splines yield smallest. The MAE and RMSE are both 

defined by 

   
1

1
ˆ ,

N

t

MAE a t a t
N 

                                  (4.7) 
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 
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ˆ1 N

t

a t a t
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N a t


  ,                            (4.8) 

where  â t
 
represents estimates of coefficients  a t

 
in the TVARX model (4.3), 

and N  is the length of the data set. 

Table 4.1 A comparison of the model performance  

for TVARX (2, 2) model with SNR 13 dB. 

Approach   Estimated coefficients     MAE           RMSE         Std 

                      
 1̂a t            0.0917           2.3104         0.1199          

                    2â t            0.1030           1.8667         0.1292 

RLS  0.92         1b̂ t            0.1080           1.2315         0.2172  

                    2b̂ t            0.0627           0.7260         0.0863 

 1̂a t            0.2045           3.0639         0.2623   

RLS with B-splines    2â t            0.2047           1.9951         0.2746  

   0.9998           1b̂ t            0.1411           1.3973         0.2084   

                2b̂ t            0.1803           1.0434         0.2900 

     
 1̂a t  

          
0.0893           2.1750         0.1112   

 2â t            0.0614           1.3520         0.0865 

OLS with B-splines    1b̂ t             0.0642           0.8638         0.1133   

                    2b̂ t            0.0246           0.2250         0.0305 

where   represents the forgetting factor. 
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                   (a) RLS method 
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(b) RLS method with B-splines 
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(c) OLS method with B-splines 

 

Figure 4.1 One implementation of the TVARX (2, 2) system 

identification results with a SNR of 13 dB using the different 

approaches. Blue curve represents the true value of the TV 

parameters; red curve indicates the estimation value of the TV 

parameters.  

(a) the RLS method;  

(b) the RLS method with B-splines;  

(c) the OLS method with B-splines. 
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4.5 Application—EEG data modelling and 

analysis 

 

4.5.1 Time-varying ARX model for EEG 

 

The proposed TVARX modelling scheme has been applied to analyse dynamic 

relationships from EEG recordings to illustrate the application of the proposed 

multi-wavelet basis function method based on TV parametric modelling. Scalp 

EEG signals are synchronous discharges from cerebral neurons detected by 

electrodes attached to the scalp. The EEG signals considered here were recorded, 

with the same 32-channel amplifier system. An XLTEK 32 channel headbox 

(Excel-Tech Ltd) with the international 10-20 electrode placement system was used 

in the Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire 

Hospital, UK. The sampling frequency of the device was 500 Hz. Andrzejak et al. 

(2001) has discussed in detail dynamical properties of brain electrical activity from 

different extracranial and intracranial recording regions and from different 

physiological and pathological brain states. The central objective of EEG signal 

processing here is to propose an empirical and data-based modelling framework 

that can produce an accurate but simple description of the dynamical relationships 

between different recording regions during brain activity. This is a complicated 

black box system where the true model structure is unknown, and thus, needs to be 

identified from available experimental data. Simulation examples have shown that 

proposed approach is more capable of tracking severely nonstationary processes 

with sharp changes, compared to the traditional adaptive method including RLS 

algorithm. The proposed time varying modelling algorithm can then be applied to 

EEG data analysis to extract the time-frequency feature and help clinicians to 

interpret EEG signals. As an example, the symmetrical two channels (F3, located 

over the left superior frontal area of the brain, and F4 located over the same area on 

the right) of EEG recorded from a patient with an absence of seizure epileptic 
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discharge was investigated. Channel F3 was treated as the input, denoted by  u t , 

and Channel F4 was treated as the output, denoted by  y t , note that Channel F3 

is the signal input and Channel F4 is the signal output, the main reason is that the 

phase of Channel F4 is related to the phase of Channel F3. The objective is to 

investigate, from the available Channel F3 and Channel F4 recordings, if an 

identified TVARX model is suitable to describe the dynamical characteristics by 

using the time-dependent spectrum analysis approach. A data set, consisting of 

3500 input-output data point pairs of EEG signals representing one seizure epoch 

recorded for a total of 7 seconds with a sampling rate of 500 Hz, was analysed in 

this example. The plots of the associated samples are shown in Figure 4.2.  

 

Similar to the simulation example given in section 4.3, the third, fourth and fifth 

order B-splines were adopted to establish TVARX models for the EEG recordings. 

Several TVARX models with different model orders were estimated using the OLS 

approach with B-splines, the classical generalized cross-validation (GCV) criteria 

(Billings et al. 2007) suggested that the model order can be chosen to be 4p   

and 3q   when using the B-splines as building blocks to represent the 

time-varying coefficients in the TVARX model. 

 

The time-varying coefficients estimated  ia t  with 1,2, ,4i    and  lb t  with 

1,2,3l   are depicted in Figure 4.3. Figure 4.4 shows the recovered signal, 

recovered by the TVARX model from the estimated time-varying coefficients 

 ia t  and  lb t . The topographical diagram of the time-dependent spectrum 

estimated from the TVARX (4, 3) model is shown in Figure 4.5, and the 2-D image 

diagram and the contour plot of the time-dependent spectrum produced from the 

3-D topographical diagram are given in Figure 4.6. 
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From Figure 4.5 and Figure 4.6, the distribution scale of the power spectrum of the 

EEG signal considered here is mainly from zero to around 18 Hz. Two frequency 

bands can clearly be observed as: 1) the low frequency band (about the 3 Hz, 

namely, a spike at 3-Hz); 2) around 18 Hz represents the high frequency band 

component. The contour plot of the time-dependent spectrum given in Figure 4.6(b) 

clearly reflects the distribution of these frequency components along with the time 

course. It is clear that the variations of the time course signals can be observed 

from the contour diagram of the transient spectrum. For instance, the power 

spectrum is mainly distributed by a 3-Hz spike frequency component during the 

period from 5 to 6s, while the high frequency (around 18 Hz) activity is dominated 

by the time course from 0.2 to 0.3s. Any time-invariant parametric modelling 

framework such as the commonly applied ARX models cannot attain these 

properties which are only possessed by the TVARX model proposed. 

 

Note that in order to avoid any distortion of the EEG signals, no filtering was 

applied to pre-process the raw EEG signals here (and in the example below) apart 

from the notch frequency (50Hz) being removed.  

 

4.5.2 Time-varying AR model for EEG 

 

This example presents some illustrations to demonstrate the applicability of the 

proposed modelling framework for characterising epileptic seizure EEG signals by 

using time-varying AR models. Again, channel C3 of the EEG signal of a subject 

for an epileptic seizure activity lasting 20 seconds, was considered. A total of 10000 

samples, recorded with a sampling rate of 500Hz, are shown in Figure 4.7. 

 

Similar to the previous example, the third, fourth and fifth order B-splines were 

adopted to establish TVAR models for the EEG recordings. Numerical experiments 

have suggested that a TVAR model of order 4p   is appropriate for representing 
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the EEG recordings here. The topographical diagram of the time-dependent 

spectrum estimated from the TVAR (4) model is shown in Figure 4.8, and the 2-D 

image diagram and the contour plot of the time-dependent spectrum produced from 

the 3-D topographical diagram are given in Figure 4.9. 

 

From Figures 4.8 and 4.9, the power spectrum of the EEG signal with an epileptic 

seizure activity of 20 seconds is mainly distributed in the frequency range from 

zero to 10 Hz. Three frequency bands, i.e. Delta band (0-4 Hz), Theta band (4-7 Hz) 

and Alpha band (8-12 Hz), can clearly be observed as follows: 1) the low frequency 

band (around 3 Hz); 2) the frequency band that is centralized around 6 Hz; 3) 

around 10 Hz representing the high frequency band component. The image and 

contour plot of the time-dependent spectrum shown in Figure 4.9 clearly reflects 

the distribution of these frequency components along with the time course. It is 

clear that the variations of the time course signals can be observed from the contour 

diagram of the transient spectrum. For example, the power spectrum is mainly 

dominated by a 3-Hz frequency component during the period of the first 2 seconds, 

7 to 8 seconds, and 11 to 12 seconds, respectively, while the high frequency 

(around 10 Hz) activity is dominated by the time course from 16 to 18 seconds. 

Any time-invariant parametric modelling framework such as the commonly applied 

conventional AR models cannot reveal these properties. 
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Figure 4.3 Estimates of the time-varying coefficients  ia t
 

for 1,2,3,4i   and  nb t  for 1,2,3n   for the EEG signal. 

 

Figure 4.2 The EEG recordings (F3 Channel: Input signal, F4 

Channel: Output signal), for a seizure activity of a patient, 

recorded over 7 seconds, with a sampling rate of 500 Hz. 
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Figure 4.5 The 3-D topographical map of the time-dependent 

spectrum estimated from the TVARX model for the EEG signal. 

 

Figure 4.4 A comparison between the recovered signal from the 

identified TVARX (4, 3) model and the original observations 

for the EEG signal. Solid (blue) line represents the observations 

and the dashed (red) line represents the signal recovered from 

the TVARX (4, 3) model with One-Step-Ahead prediction. For 

a clear visualization only the data points of the period from 0 to 

2 seconds are displayed. 
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(a) 

 

 

(b) 

 

Figure 4.6 The 2-D image and the contour diagram of the 

time-dependent spectrum produced by the 3-D topographical 

map for the EEG signal given in Figure 4.2.   

(a) the 2-D image;   

(b) the contour diagram. 
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Figure 4.8 The 3-D topographical map of the time- dependent 

spectrum estimated from the TVAR (4) model for the EEG 

signal given in Figure 4.7. 

Figure 4.7 The EEG recordings of C3 Channel, for a seizure 

activity of an epileptic patient, recorded over 20 seconds, with a 

sampling rate of 500 Hz. 
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(a) 

 

(b) 

 

Figure 4.9 The 2-D image and the contour diagram of the 

time-dependent spectrum produced by the 3-D topographical 

map for the EEG signal given in Figure 4.7.  

(a) The 2-D image; 

(b) The contour diagram. 
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4.6 Conclusions 

 

In this Chapter, a novel TV parametric modelling approach has been presented 

based on time-dependent coefficients approximated multi-wavelet basis functions 

to account for the transient spectrum information, whereas the basis functions 

involved are locally defined. Using the method given in Chapter 3, a time varying 

multi-wavelet basis function expansion model can be constructed. The orthogonal 

least squares algorithm is then applied to select significant model terms (wavelet 

basis functions) from the initially pre-specified model set. Finally, the time-varying 

model parameters can be recovered by using the selected significant wavelet basis 

functions. 

 

The time-dependent spectrum based on TVARX and TVAR model, with 

multi-wavelet basis functions, can reflect the global frequency behaviour of the 

signal and to reveal the local variations of the signal along the time course. One 

advantage of the proposed model, compared with traditional time-invariant models, 

is that it can capture much more transient information of the inherent nonstationary 

dynamics of the associated processes. 

 

It is believed that the proposed time-varying modelling framework, coupled with 

results obtained from some other useful nonparametric methods for example 

higher-order statistics approach (Zhou et al. 2008), can promise significant new 

results which can reveal new and important features buried in EEG signals, which 

can in turn enable further studies and analysis, for example for disease detection 

and diagnosis. In addition, it is well known that EEG signals are nonlinear 

processes, and thus linear models may not be sufficient to represent such nonlinear 

processes; nonlinear representations should be more suitable for EEG data 

modelling and analysis. Time varying nonlinear modelling and identification of 

EEG signals will be discussed in the next Chapter. 
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Appendix 4.1 Forward Orthogonal Least 
Squares algorithm 

 

In this subsection, a brief introduction of the OLS algorithm is given as follows. 

Consider the linear-in-the-parameters polynomial model 

     
1

M

i i

i

y t t e t 


  ,                                (4.1.1) 

where i  are unknown parameters,  i t  are model terms. Assume the data 

length t  is N . The matrix form of Eq. (4.1.1) can be represented by 

Y  ,                                            (4.1.2) 

The matrix   is often referred to as the regression matrix.  The regression 

matrix can be orthogonally decomposed as 

WA ,                                            (4.1.3) 

where A  is an M M  unit upper triangular matrix and  

 1, , MW w w  ,                                     (4.1.4) 

is a N M  matrix with orthogonal columns that satisfy 

TW W D ,                                          (4.1.5) 

and D  is a positive diagonal matrix  1 2, , , MD diag d d d   with ,i i id w w , 

where the symbol .,.  denotes the inner product of two vectors, that is 

   
1

,
N

i i t i

t

w w w t w t


 ,                                (4.1.6) 

Eq. (4.1.2) can now be expressed as 

  1Y PA A WG   ,                                (4.1.7) 

Rewrite Eq. (4.1.7) as 

1

M

i i

i

Y w g


 ,                                         (4.1.8) 

and calculate the inner product ,iw Y , substituting Y  by Eq. (4.1.8) yields 
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1 1

, , , ,
M M

i i i i i i i i i i

i i

w Y w w g w w g g w w
 

    ,           (4.1.9) 

Calculate the inner product ,Y Y  from the Eq. (4.1.8) 

2

1 1 1

, , , ,
M M M

i i i i i i i

i i i

Y Y w g Y w g Y g w w
  

     ,         (4.1.10) 

Dividing both sides of Eq. (4.1.10) by ,Y Y , then yields 

2

1

,
1

,

M
i i i

i

g w w

Y Y

 ,                                    (4.1.11) 

The error reduction ratio iERR  due to iw  is can be presented by 

2 ,

,

i i i

i

g w w
ERR

Y Y
 ,                                   (4.1.12) 

From the Eq. (4.1.9), 

,

,

i

i

i i

w Y
g

w w
 ,                                        (4.1.13) 

The error reduction ratio often provides a simple and effective means for select a 

subset of significant terms from a large number of candidate terms in a forward 

regression manner. A term can be selected if it produces the largest value of iERR  

among the rest of the candidate terms. The selection procedure will be terminated 

when  

0

1

1
M

i

i

ERR 


  ,                                     (4.1.14) 

where   is a desired tolerance, and this leads only to a subset model of 0M  

terms  0M M . The detail procedure can be seen Billings and Chen (1989). 

 



 

 

Chapter 5 

 

Identification of nonlinear time-varying 

systems using an online sliding-window 

and common model structure selection 

(CMSS) approach with applications to 

EEG 
 

5.1 Introduction 

 

In Chapters 3 and 4, time varying linear model identification methods were 

investigated. However, many processes in engineering systems and biomedical 

neuroscience exhibit both time-varying and nonlinear behaviours. The 

identification of mathematical models of dynamical nonlinear systems is vital in 

many fields. During recent years, much attention has been devoted to the problem 

of identification of time-varying systems. In many practical cases, the system 

parameters are unknown and are time varying. When the system is given in 

state-space form, a classical approach consists of applying Kalman filter based 

algorithms for estimation of time-varying parameters (Morbidi et al. 2008). The 

application of the sliding-window recursive least squares (SWRLS) algorithm to 

the estimation of nonlinear system parameters often requires the nonlinear model 

outputs to be expressed linearly in terms of the unknown parameters. A discussion 

about performance of SWRLS identification and related adaptive control schemes 

can be found in (Choi & Bien 1989). Schilling et al. (2001) introduced parameter 

estimation methods based on a radial basis functions (RBF) neuronal predictor. 

 

Although different approaches have been investigated for nonlinear system state 
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estimation in (Chen & Billings 1989; Choi & Bien 1989; Leontaritis & Billings 

1985; Morbidi et al. 2008; Schilling et al. 2001), only partial and quite weak results 

have been obtained in terms of time-varying function approximation and 

time-varying parameter estimation. Estimation of the states using artificial neural 

networks (ANN) has been presented in (Schilling et al. 2001). 

 

The main contribution of this Chapter is the introduction of a new time-varying 

common-structured (TVCS) modelling scheme as a solution to the time-varying 

nonlinear systems identification problem, where the selection of the common 

model structure is the critical step throughout the modelling procedure. A new 

efficient CMSS algorithm is investigated to select a common model structure using 

an online sliding window approach. Once the common-structured model has been 

determined, relevant time-varying model parameters can then be estimated using a 

SWRLS algorithm. The novel study of common-structured model identification is 

particularly useful for engineering system design and control, where only a fixed 

common model structure is involved but with time-varying parameters.  

 

The advantage of the proposed method is that first, even without a priori 

knowledge of the nonstationary system, a TVCS model can produce less biased or 

preferably an unbiased robust model with better generalisation properties. Second, 

the proposed model can be used to track fast and capture transient variations of 

varying parameters and can also be applied to study the performance of the 

behaviour of the underlying dynamical system characteristics. A simulated example 

and an application to real EEG data are included to demonstrate the performance of 

the new method. 

 

5.2 The time-varying linear-in-the-parameter 

regression model 
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The identification problem of a nonlinear dynamical system is based on the 

observed input-output data     
1

,
N

t
u t y t


, where  u t  and  y t are the 

observations of the system input and output, respectively (Leontaritis & Billings 

1985). This Chapter considers a class of discrete stochastic nonlinear systems 

which can be represented by the following nonlinear autoregressive with 

exogenous inputs (NARX) structure below (Chen et al. 2008; Wei & Billings 

2009): 

             1 , , , 1 , , ,y uy t f y t y t n u t u t n t e t       ,  (5.1)
 

where  u t  and  y t  are the system input and output variables, respectively, un

and 
yn

 
are the maximum input and output lags, respectively,  f   is the 

unknown system mapping, and the observation noise  e t
 
is an uncorrelated zero 

mean noise sequence providing that the function  f 
 
gives a sufficient description 

of the system.          1 , , , 1 , ,
T

y uX t y t y t n u t u t n     
   denotes the system 

‗input‘ vector with a known dimension y ud n n  , and  t  is an unknown 

parameter vector. The NARX model (5.1) is a special case of the polynomial 

NARMAX model that takes the form below (Billings et al. 2007) 

        1 , , , 1 , ,yy t f y t y t n u t    
                          

         , 1 , , ;u eu t n e t e t n t e t    ,           (5.2) 

The NARMAX model (5.2) was developed and discussed in (Chen & Billings 

1989). 

 

The non-linear mapping  f   can be constructed using a class of local or global 

basis functions including radial basis functions (RBF), neural networks, 

multi-wavelets and different types of polynomials (Billings & Wei 2005b; Billings 

et al. 2007; Chen & Billings 1989; Chen et al. 2008; Leontaritis & Billings 1985; Li 

et al. 2011a; Wei et al. 2009). The polynomial model representation of a nonlinear 
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time-varying NARX is represented below 

1 1 1 2 1 2

1 1 2 1

0 ,

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
d d d

i i i i i i

i i i i

y t t t x t t x t x t  
  

    

                 

1 1

1 1

, ,

1

( ) ( ) ( ) ( )
d d

d d

d d

i i i i

i i i

t x t x t e t
 

      ,             (5.3) 

where  0 t ,  
1 , , mi i t   

 1,2, ,m d   are time-varying parameters and 

 
 

  

1

1

y

k

y y

y t k k n
x t

u t k n n k d

  


 
    

,                     (5.4) 

The degree of a multivariate polynomial is defined as the highest order amongst the 

terms. If the number of regressors is d  and the maximum polynomial degree is 

 , the number of polynomial terms is  

 

 

!

! !
t

d
n

d







 . For large lags and the 

regression model (5.1) often involves a large number of candidate model terms, 

even if the nonlinear degree is not very high. For example, if 10d   and 3  , 

then 
  286
t

n


 . Modelling experience has shown that an initial candidate model 

with a large number of candidate model terms can often be drastically reduced by 

including in the final model only the effectively selected significant model terms. 

The main motivation of this Chapter is to select significant common-structured 

model terms to form a parsimonious common model structure which generalises 

well (Aguirre & Billings 1995a). 

 

A general form of the time-varying linear-in-the-parameter regression model is 

given as (Wei & Billings 2009)  

       
1

M

m m

m

y t t t e t 


                                          

       T t t e t   ,                                (5.5) 

where M  is the total number of candidate regressors.     m mt X t   

 1, ,m M   are nonlinear functions and  m t   1, ,m M   represents the 
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model time-varying parameters.        1 , ,
T

Mt X t X t       and  t  

are the associated regressor and parameter vectors, respectively. It should be noted 

that in most cases the initial full regression Eq. (5.5) might be highly redundant. 

Some of the regressors or model terms can be removed from the initial regression 

equation without any effect on the predictive capability of the model, and this 

elimination of the redundant regressors usually improves the model performance 

(Aguirre & Billings 1995a). For most nonlinear dynamical system identification 

problems, only a relatively small number of model terms are commonly required in 

the regression model. Thus an efficient model term selection algorithm is highly 

desirable to detect and select the most significant regressors. 

 

5.3 TVCS model identification 

 

The CMSS algorithm is a critical step in TVCS identification. Once the 

common-structured model has been identified, relevant model parameters for each 

window data set can then be estimated, and the transient properties of the model 

parameters on the associated data set can thus be deduced. The identification 

procedure for TVCS models contains the following steps. 

 

5.3.1 Data acquisition 

 

For an original N -sample observational input-output data     
1

,
N

N t
D u t y t


 , 

the 1K   datasets can be obtained by using an online sliding window size W , 

with 50% overlap, where the parameter 1K   is equal to
 

 / / 2 1N W     and 

x    denotes taking the upper integer part of the variable x . Note that how to 

choose the suitable choice of window size W  is discussed in (Hwang et al. 2002). 
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5.3.2 The common model structure selection (CMSS) 

algorithm 

 

Assume that a total of  1K 
 
data sets, where the first K  represent the training 

data sets, and the last data set is used as a test data set, obtained by the online 

sliding-window have been carried out on the same system. Also, assume that a 

common model structure of Eq. (5.5) can be best fit to all the training data sets. 

Denote the observed input-output sequences for the k th data set by 
kND   

    
1

,
kN

k k t
u t y t


 for 1, , 1k K  . Thus the k th ‗input‘ vector is represented by 

             ,1 ,, , 1 , , , 1 , ,
T T

k k k d k k y k k uX t x t x t y t y t n u t u t n            . 

Assume that all the K  training data sets can be represented using a common 

model structure for the different parameters, then the initial candidate multiple 

regression model can be formulated as (Wei & Billings 2009; Wei et al. 2008) 

      ,

1

M

k k m m k k

m

y t X t e t 


 
                                

   , ,

1

M

k m k m k

m

t e t 


  ,
                     

        (5.6) 

where the parameters 
,k m  in Eq. (5.6) are time-independent constants, Eq. (5.6) 

will be called the time-invariant common structured model. If the parameters 
,k m  

are time-dependent, the time-varying common structure (TVCS) model is 

represented by 

        ,

1

M

k k m m k k

m

y t t X t e t 


 
                               

     , ,

1

M

k m k m k

m

t t e t 


  ,                             (5.7) 

where     ,k m m kt X t   for 1,2, , ,k K   1,2, , ,m M   and 1,2,t    
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, kN .
 
The representation of Eq. (5.7) using a compact matrix form can be expressed 

as 

,k k k k                                            (5.8) 

where    1 , ,
T

k k k ky y N     ,
 

   ,1 ,, ,
T

k k k Mt t      ,
 

 1 , ,k ke     

 
T

k ke N  ,  and
 ,1 ,, ,k k k M     

 
with    , , ,1 , ,

T

k m k m k m kN      , for 

1,2, ,k K   and 1,2, ,m M  . 

 

A new CMSS algorithm will be developed to select a common-structured sparse 

model from the multiple regressions shown in Eq. (5.6) and (5.7). Let 

 1,2, ,I M 
 
and denote  :mD m I   as the dictionary of candidate 

model terms. For the k th window data set, the dictionary D  can be used to form 

a dual dictionary
 

 , :k k m m I  
 
note that the m th candidate basis vector 

,k m  is formed by the m th candidate model term m D  . Thus the CMSS 

problem is equivalent to finding a subset  
1 2
, , ,

np p p D   
 
(normally 

n M ). So that 
k   1,2, ,k K   can be approximated using a linear 

combination of regression terms  
1, ,, ,

nk p k p k    below 

   
1,1 , , , nk k k p k n k p kt t        ,                    (5.9) 

The next step of the CMSS algorithm selects significant model terms in a forward 

stepwise way. The first significant common model term can be selected as the 1p th 

element, 
1p D   by maximising the sum of error reduction ration (ERR) (Wei et 

al. 2008) values for all the K  data sets from I . Thus the first significant basis 

vector for the k th regression model is
 1,1 ,k k p  , and the associated orthogonal 

basis vector can be chosen as 
1,1 ,k k pq  . Generally, the m th significant model 

term of k th regression model , mk p  can be chosen by the following steps. It is 
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assumed that at the  1m th step,  1m  significant model terms, namely, 

 ,1 , 1, ,k k m   , have been selected by maximising the  1m th average ERR 

(AERR) for all the K  data sets from I , which guarantees that the variation of 

the outputs in all the K  data sets with the highest percentage, compared with 

choosing any other candidate model term D . The AERR criterion provides a 

way to select significant vectors one by one. Once the first  1m  basis vectors 

 ,1 , 1, ,k k m    have been determined, and the associate orthogonal vectors 

 ,1 , 1, ,k k mq q   can be obtained, then these  1m  vectors together with the m th 

vector , , mk m k p  , and the associated orthogonal vector ,k mq , can be selected 

step-by-step. Further details and derivation of the procedure of the CMSS 

algorithm can be found in (Wei et al. 2008). It should be noted that, in this Chapter, 

a time varying common structure model as a solution to time varying nonlinear 

system identification problems can be obtained with the CMSS algorithm using an 

online sliding window approach to track the variations and capture the transient 

information for the EEG signals, which is totally different from the CMSS 

approach based on several data sets collected from different experiments discussed 

in (Wei et al. 2008). 

 

To determine the proper common model size, the generalized cross-validation 

(GCV) criterion (Billings et al. 2007) can be adopted to terminate the CMSS 

procedure. Specially, for the l -term model, the GCV of single regression model is 

defined as    
2

m

N
GCV l MSE l

N l

 
  

 
, where MSE is the mean squared error, 

 max 1,m N   and 0 0.01  . As a rule of thumb, a good choice for m  is 

to use a value from the range of 5 10m  .  The average GCV (AGCV) is 

formulated by 
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   [ ]

1

1 K
k

k

AGCV l GCV l
K 

  ,                            (5.10) 

where    k
GCV l  is the value for the GCV criterion associated to the k th data 

set. If the AGCV reaches the minimum at l n , then the CMSS procedure is 

terminated, yielding an n -term model. 

 

5.3.3 Model parameter estimation 

 

The parameters for the common structured model (5.6) can be easily calculated by 

, , ,k n k n k nA Q R ,                                       (5.11) 

where , 1 ,, ,
nk k p k pA      , ,k nQ  is an kN n  matrix with orthogonal columns 

,1 ,2 ,, , ,k k k nq q q , and ,k nR  is an n n  unit upper triangular matrix whose entries 

are calculated during the orthogonalisation procedure. For TVCS model of Eq. 

(5.7), it is also easy to calculate the value of the unknown time-dependent 

parameters by SWRLS algorithm (Choi & Bien 1989) for each data window of the 

 1K  th data sets. A sliding window adaptation algorithm is similar to the RLS 

algorithm in terms of both the derivation and convergence characteristics. Here the 

SWRLS algorithm is applied to estimate the time varying parameters in the model 

(5.7) that to be able to more easily track nonstationary processes. The finite sliding 

window allows for any data outliers to be forgotten after a finite number of 

iterations. The sliding window RLS algorithm provides much increased 

convergence rate at the expense of increased computational complexity. The 

transient variation properties of the observational data can thus be deduced by the 

transient parameter values for the associated data set. 

 

5.4 Case study 
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Two examples are provided to illustrate the performance of the proposed TVCS 

model identification procedure. The data used in the first example are simulated 

from a known nonstationary model; this is a severely nonstationary process. The 

objective here is to illustrate the capability of novel TVCS approach for tracking 

and capturing the transient variation for the time-varying parameters. The second 

example involves a practical modelling problem of EEG data. 

 

5.4.1 Example 1: Simulation data 

 

Prior to applying the proposed TVCS modelling approach to real EEG data, an 

artificial time-varying signal was considered. The signal below was simulated 

   
7

0

1

cos 2i i

i

y t A f t 


  ,                             (5.12) 

where 
 

1

2 1
A

k



 with 1,2, ,7,k     50,150,250,350,450,600,750f  ,

 

initial phase shift 
0

3

2


  , and sample time t  is 0.08 second, respectively. The 

above signal was sampled with a sampling interval 0.0001, and thus a total of 800 

observations were obtained. A Gaussian white noise sequence, with mean zero and 

variance of 0.04, was then added to the 800 data points. 

 

The objective is to identify a TVCS model, and then the transient dynamical 

properties of the analytical signal can be deduced from the time-varying parameters. 

Denote the system output sequences using   
1

N

t
y t


, with N  = 800. The sliding 

window size W  = 200 is applied to obtain the  1 / / 2 1K N W    = 7 data sets. 

Here from the properties of the simulation signal，the sliding window length should 

be chosen as W  = 200, with 50% overlap. First 6 training data sets were used for 

the common-structured model identification, and the 7
th

 data set was used to test 

the performance of the identified model. The predictor vector for all the 
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common-structured models was chosen to be
 

     1 5, ,
T

X t x t x t    , where 

   kx t y t k    for 1, ,5k   . The initial common structure for all the first 6 

training data sets was chosen to be a NAR model below 

          
5 5 5

0 ,

1 1

i i i j i j

i i j i

y t x t x t x t e t  
  

     ,             (5.13) 

This candidate model involves a total of 21 candidate model terms. Based on the 

candidate common model structure, the novel CMSS algorithm was applied to the 

first 6 training data sets. The AGCV criterion, shown in Figure 5.1, suggests that a 

common model structure, with 6 model terms, is preferred. The 6 selected common 

model terms, ranked in order of significance are shown in Table 5.1. Now consider 

the performance of the identified model, whose parameters are determined by Eq. 

(5.11) and Table 5.1. The 7
th

 test data set, which has never been used in the 

identification procedure, was applied to test the performance of the identified 

model. Figure 5.2 presents a comparison between the recovered signal from the 

identified common structured model and the original measurements. 

 

To measure the identified models, the normalized root-mean-squared-error (RMSE) 

is defined as follows: 

   

 

1

2

11

ˆ1 KN

tK

y t y t
RMSE

N y t






  ,                          (5.14) 

where 1KN   is the data sliding window length of the  1K  th test data set, 

 ŷ t is the predicted value from the identified model. The RMSE criteria in Eq. 

(5.14) can also be provided to select a proper sliding window size W  provided 

that the RMSE value is very small. The value for RMSE, for the identified models, 

over the test window data set, was calculated as 2.2051. Clearly identified model 

provides an excellent presentation for the test data set. 

 

The TVCS model was thus represented by 
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             
4

0 5

1

2 3i

i

y t t t y t i y t y t e t  


       ,      (5.15) 

where the parameter  t  depends on the data sets from the sliding window. The 

parameters can be directly estimated using the SWRLS algorithm. Figure 5.3 shows 

the estimated values for  t  for the test data set given in Figure 5.2 using the 

SWRLS algorithm with a forgetting factor of 0.998. The time-varying coefficients 

estimates in Figure 5.3 can give more transient information, for example, there are 

two clear abrupt changes of the estimated coefficients at sample index interval from 

60 to 80, and from 100 to 120, respectively, which show that the original signal 

shown in Figure 5.2 undergoes transient changes. Furthermore, the proposed 

method can also track and detect variation of each training data block dynamically, 

for example, Figure 5.5 shows the rapid change of coefficient estimation at sample 

index about from 60 to 65 and about 100, respectively, which implies that the 

corresponding original training data block given in Figure 5.4 changed at sample 

index from 60 to 65 and about 100, respectively. The results discussed are shown 

that the CMSS algorithm is effective. 

 

 

 

Table 5.1 Identification results for the simulation data 

with the CMSS algorithm for NAR model representation 

Step  model term        Parameters for test data sets                AERR (%) 

    Data01   Data 02    Data 03  Data 04   Data 05   Data 06 

1     1y t         0.4662   0.4884     0.4401    0.4930    0.4304     0.5612    88.3984 

2     3y t        0.3078    0.2663     0.2249    0.2770    0.3887     0.2567    1.5840 

3     2y t        0.2279    0.1766     0.1830    0.2274    0.3187     0.2176    0.4903 

4     4y t        0.2096    0.2385     0.1769    0.0665    0.0159     0.0406    0.0667 

5    Const        -0.0790    0.0224    -0.1046    0.0075    -0.0586     0.0108    0.0118 

6     2 3y t y t      0.1098    -0.0246    0.1577    -0.0033    0.0803     -0.0053    0.0826 

RMSE = 2.205 
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Figure 5.2 A comparison of the recovered signal from the 

identified TVCS model (5.15) and the original observations. 

Solid (blue) line indicates the observations and the dashed line 

indicates the signal recovered from the TVCS model (5.15). 
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Figure 5.1 AGCA versus model size for common model 

structure selection models over the output signals. 
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Figure 5.4 The simulation training data block output for the 4
th
 

window block data set. 
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Figure 5.3 The time-varying coefficients estimation for test 

data set of NAR identified Common- structured model in Eq. 

(5.15) using the SWRLS algorithm with a forgetting factor of 

0.998. 
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5.4.2 Example 2: modelling EEG data 

 

5.4.2.1 EEG datasets 

 

EEG series provides an illustrative analysis to highlight key features of the 

methodology. Scalp EEG series are synchronous discharges from cerebral neurons 

detected by electrodes attached to the scalp. An XLTEK 32 channel headbox 

(Excel-Tech Ltd) with the international 10-20 electrode placement system was 

applied to record EEG data in the Sheffield Teaching Hospitals NHS Foundation 

Trust, Royal Hallamshire Hospital, UK. 32 parallel EEG series were recorded in 

parallel from 32 electrodes located on epileptic seizure patient‘s scalp using the 

same-32 channel amplifier system using bipolar montages reference channels. The 

 

Figure 5.5 The time-varying coefficients estimation of NAR 

identified common-structured model in Eq. (5.15) for training 

data set given in Figure 5.4 using the SWRLS algorithm with a 

forgetting factor of 0.998. 
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sampling frequency of the device was 500 Hz. Dynamical properties of brain 

electrical activity from different extracranial and intracranial recording regions has 

been discussed in (Andrzejak et al. 2001). The time-frequency decomposition 

method aided by the time-varying autoregressive (TVAR) model for EEG series to 

extract and estimate latent EEG components in various key frequency bands was 

also investigated in (Li et al. 2011b; West et al. 1999). The central objective of this 

paper for the EEG signals is to propose an empirical and data-based TVCS 

modelling scheme to track and capture the transient variations of EEG signals from 

model identification that can produce an accurate but simple description of the 

dynamical relationships between different recording regions during brain activity. 

This is a complicated and challenging black box system where the true model 

structure is unknown, and thus, needs to be identified from the available 

experimental data. As an example, symmetrical two bipolar channels (F3, located 

over the left superior frontal area of the brain and F4, located over the same area on 

the right) of EEG recorded from a patient with absence seizure epileptic discharge 

is investigated. Channel F3 was treated as the input, denoted by  u t , and 

Channel F4 was treated as the output, denoted by  y t , note that Channel F3 is the 

signal input and Channel F4 is the signal output, the main reason is that the phase 

of Channel F4 is related to the phase of Channel F3. The objective is to investigate, 

from the available Channel F3 and F4 recordings, if an identified TVCS model is 

suitable to describe the dynamical characteristics and adaptively track and capture 

the transient variations of time-varying parameters using the proposed approach. 

The input-output EEG signals of N  = 3000 data points pairs of one seizure, which 

are for a sort of epileptic seizure activity of a patient, with a sampling rate of 500 

Hz, recording during 6 seconds, were analysed in this example. This analysis 

represents the first application of TVCS modelling to epileptic seizure EEG data 

and was intended to determine feasibility and identify its potential for tracking 

transient variations over time in seizure EEG data. 
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5.4.2.2 TVCS Model identification 

 

Similar to the previous simulation example, the objective is to identify a TVCS 

model which can be used to analyse and detect transient variation properties of 

EEG signals and dynamically track and capture the variation of the EEG signals. 

Simulation results have shown that, the choice of sliding window size W  = 600 

data points, gives good model identified results. So the parameter 1K   was equal 

to 9. The first 8 datasets will be considered as training data sets for the model 

identification, and the 9
th

 test data set which has never been used in the 

identification procedure was then used to test the performance of the identified 

model. Denote the system input and output sequence using     
1

,
N

N t
D u t y t


  

with N  = 3000 data pairs. The predictor vector for all the common-structured 

models was chosen to be
 

     1 10, ,
T

X t x t x t    ,
 
where

 
   kx t y t k   for 

1,2, ,5k    and    5kx t u t k    for 6,7, ,10k   . The initial candidate 

common model structure for all the 8 training data sets was chosen to be a NARX 

model below 

         
10 10 10

0 ,

1 1

i i i j i j

i i j i

y t x t x t x t e t  
  

     ,            (5.16) 

This candidate model involves a total of 66 candidate model terms. Based on the 

candidate common model structure, the new CMSS algorithm was applied to the 8 

training data sets to identify a TVCS model. The AGCV index, shown in Figure 5.6, 

suggests that a common model structure, with 8 model terms is preferred. The 8 

selected common model terms, ranked in order of the significance, are shown in 

Table 2.2. The common model structure for the 8 training data sets was identified 

as 

       
4

0 5 6

1

1 5i

i

y t y t i u t y t   


      
                  

 

       71 5 5u t y t u t e t      ,               (5.17) 
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The corresponding coefficient parameters in (5.17) for each training window block 

data set are given in Table 5.2. Figure 5.7 presents a comparison between the 

recovered signal and the associated measurements, where the relevant normalized 

RMSE, with respect to the test data set, was calculated to be 0.2755. Clearly, the 

TVCS model can provide an excellent representation for the test data set. 

 

The common structured model (5.17) was then employed to form a TVCS model 

             
4

0 5 6

1

1i

i

y t t t y t i t u t t   


                        

 

     
           75 1 5 5y t u t t y t u t e t       ,          (5.18) 

where  i t  ( 0,2, ,7i   ) are now time-dependent parameters which can then be 

estimated by using the SWRLS algorithm. The associated parameter estimates are 

shown in Figure 5.8. The time-varying model estimation results here, in 

combination with an extension of the concept of the generalized frequency 

response functions (GFRFs) (Billings & Jones 1990; Jones & Billings 1989), can 

be used to form some nonlinear parametric time-frequency formulas, which can 

then be used to generate nonlinear time-frequency properties that are useful for 

feature extraction from EEG data.  

 

Note that polynomial models may be intrinsically unstable in some cases (Ozaki et 

al. 1999) if a full model is directly used in a simple manner. The proposed approach 

would be to only select the appropriate polynomial terms which then avoid the 

unstable problems. This is why term selection becomes so important in nonlinear 

system identification. 
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Figure 5.6 AGCV versus model size for common model 

structure models of the input-output EEG signals. 
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Table 5.2 Identification results for the EEG data with 

the CMSS algorithm for NARX model representation 

 

Step  Model term              Parameters for the EEG data sets                         AERR (%) 

 

Data01  Data 02  Data 03  Data 04  Data 05  Data 06  Data 07   Data 08 

 

1     1y t       1.9406  1.8059   1.8513   1.7979  1.4649   1.2945   1.3323   1.7458   97.1551 

2     2y t      -1.3804  -1.2920  -1.3627  -1.2635  -0.7640  -0.4772  -0.5121   -1.1687  1.0140 

3     3y t       0.6155  0.6372   0.6665   0.5496  0.3049   0.2344   0.2097   0.5779   0.0688 

4     4y t      -0.2304  -0.2151  -0.2299  -0.1315  -0.0542  -0.0761   -0.0250  -0.1549   0.0381 

5    5 1y t u t    -0.0001  -0.0001  -0.0001  -0.0002  -0.0003  -0.0003   -0.0005  -0.0003   0.0149 

6    Const      -2.9959  -6.7214  -9.5099   -5.8357  -5.3187 -2.9343    1.6203  -0.3837   0.0138 

7     1u t       0.0283  0.0344  0.0433   0.0291   0.0288   0.0079   -0.0164   -0.0049   0.0371 

8    5 5y t u t   0.0001  0.0001  0.0001   0.0002   0.0004   0.0004    0.0005   0.0004   0.0351 

 

RMSE is 0.2755%. 
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Figure 5.8 The time-varying coefficient estimates of nonlinear 

common-constructed model Eq. (5.18) for the 9
th
 EEG test data 

set with a SWRLS algorithm with a forgetting factor of 0.98. 
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Figure 5.7 A comparison of the recovered signal from the 

identified TVCS model (5.18) and the original observations 

over the test data set. Solid (blue) line indicates the observations 

and the dashed line indicates the signal recovered from the 

TVCS model.  
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5.5 Conclusions 

 

Time varying nonlinear system identification using the new CMSS algorithm and 

online sliding-window approach was studied in this chapter. The application of the 

new CMSS approach involves two critical steps: model structure selection and 

model parameter estimation. When the CMSS algorithm is applied in model 

structure selection, a multiple regression search procedure, over a number of 

partitioned data sets using an online sliding-window approach, is performed. 

Initially the implementation of a multiple search appears to be very complex. But 

the introduction of the new multiple orthogonal regression search algorithm 

provides an attractive solution to this problem. It should be noted that the 

computational complexity of the CMSS algorithm depends on the block data sets 

K , where the parameter K  depends on the sampled data length N  and the 

sliding window size W . The choice of the sliding window size W  depends on the 

properties of the observational data. The true model structure of the underlying 

system will in many cases be unknown and only the input and output observations 

are available. But the algorithms derived in this Chapter show that a common 

model structure can be deduced from the available observations. In the two 

examples, polynomial models were employed to form the common-structured 

models. However, it should be noted that the CMSS approach can also apply to any 

other parametric or non-parametric modelling problems where the initial full 

models can be written as a linear-in-the- parameters form.  

 

Once a common model structure has been obtained, an online sliding-windowing 

recursive least squares (SWRLS) algorithm is then applied to estimate the 

time-varying model parameters. But note that other online methods for example a 

sliding-window Kalman filtering algorithm can also be employed to estimate the 

unknown time-varying parameters. While the tracking ability of RLS is achieved 

by performing a forgetting operation on the information matrix, the tracking 
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capability of Kalman filtering is obtained by adding a nonnegative definite matrix 

to the covariance matrix. The main reason for employing RLS in the present 

Chapter is mainly because of its simple calculation and good convergence 

properties, but this does not exclude the introduction of a Kalman filtering 

algorithm in our future comparative studies. 

 

The TVCS model can be applied to analyze and reflect the transient properties of 

nonstationary signals, and also to dynamically track and capture the transient 

variation of the nonstationary EEG signals. The main purpose of this Chapter at 

this stage is focused on nonlinear time-varying parametric modelling, which forms 

the basis of some important developments for further application in medical 

applications including EEG data modelling, analysis, and feature extraction. For 

example, the time-varying parameter results estimated from the TVCS model 

cannot only provide the transient local information of the EEG signals, but can also 

be applied in nonlinear time-dependent parametric spectral analysis in the 

frequency domain to extract more features from the EEG signals, so that the results 

can provide further applications for EEG data analysis. 

 

In the next Chapter, the time-varying linear and nonlinear Granger causality will be 

investigated using the NARMAX approach to analyse the directed connections 

between EEG channels. 

 

  



 

 

Chapter 6 

 

Time-Varying Linear and Non-linear 

Parametric Models for Granger 

Causality Analysis 
 

6.1 Introduction 

 

This chapter aims to establish a time-varying cause-effect modelling approach 

based upon the NARMAX model identification techniques, with application to 

EEG data to detect the directed causal influence between EEG channels. 

 

In cognitive neuroscience, as in many other science and engineering research fields, 

the investigation of EEG data is usually carried out by using measures of 

correlation, coherence and mutual information (Quiroga et al. 2002). These 

measures, however, provide little insight into the directionality of information flow. 

A question of great interest is whether there exist causal relations among a set of 

measured variables. Several recent works based on vector autoregressive (VAR) 

models have begun to consider this problem (Verdes 2005). Causal relations 

between different components of a multi-dimensional signal can be analysed in the 

context of multivariate autoregressive modelling. The most popular approach to 

deal with the causal relations is the so-called Granger causality method (Granger 

1969). The major approach to causality examines if the prediction of one series 

could be improved by incorporating information of the other, as discussed by 

Granger. Particularly, if the prediction error of the signal X  is reduced by 

including measurements from the signal Y  in the regressor model, then the signal 

Y  is said to have a causal influence on the signal X . Granger causality was 

originally investigated for linear systems (Granger 1969). Recently this concept has 
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been extended to the nonlinear case. The application of Granger causality to 

neuroscience data has been discussed for fMRI (Sato et al. 2006), EEG (Blinowska 

et al. 2004; Hesse et al. 2003) and MEG experiments (Gow et al. 2008).  

 

Linear time-varying causality was previously investigated on scalp EEG (Hesse et 

al. 2003). Hesse et al. (2003) has studied the linear recursive time-variant 

estimation of the Granger causality based on the adaptive recursive fit of a VAR 

model with time-varying parameters using a recursive least squares (RLS) 

algorithm, where the assumption of stationarity of the signals can be removed. 

Recently the Granger causality definition has been extended to nonlinear bivariate 

time series (Ancona et al. 2004; Marinazzo et al. 2006). 

 

All traditional Granger causality detection methods are based on the time-invariant 

linear ARX models or time-invariant nonlinear models. It follows that standard 

linear VAR models may not always be able to capture the dynamic behavior of 

many nonstationary time series. To the best of our knowledge, results on 

time-varying nonlinear Granger causality analysis have seldom been reported in the 

literature. In this Chapter, we will introduce a novel nonlinear method that can be 

used to detect and track nonlinear dynamical Granger causalities. A delay vector 

variance (DVV) method based on the examination of local predictability (Mandic 

et al. 2008) is first applied to detect the presence of nonlinearity for EEG epileptic 

data. We will then use time-varying Granger causality to obtain dynamic 

characterizaiton of causal interaction estimates among cortical areas based on the 

adaptive recursive fit of a VAR model with time-varying parameters using a 

recursive least squares algorithm. To illustrate the performance of the new method, 

several examples are presented: one for artificial data where the exact causal effect 

feature is known, and another two for real EEG data sets where the hidden causality 

feature is revealed by the new method. 
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6.2 Method 

 

6.2.1 Time-varying linear Granger causality 

 

The Granger causality is a fundamental tool for the description of causal 

interactions of two time series. We detail the bivariate case of the Granger causality 

in this Chapter.  

 

6.2.1.1 Time-invariant Granger causality 

 

Let X  and Y  be the two signals whose time observations are noted  x t  and 

 y t  with 1,2, ,t N  . In order to show the improvement of the prediction of 

one signal by taking into consideration the past of the second signal, the univariate 

AR and bivariate ARX models are fitted to the signals, respectively. If the temporal 

dynamics of  x t  and  y t  are suitably represented by a time-invariant 

univariate AR model of order p , we can obtain 

     1, 1

1

p

i

i

x t a x t i u t


   ,                               (6.1) 

     1, 2

1

p

i

i

y t b y t i u t


   ,                               (6.2) 

where the model prediction error 1u  and 2u  depend only on the past of the own 

signal. The time-invariant bivariate ARX  ,p q  models are represented by 

       2, 2, 1

1 1

p q

i l

i l

x t a x t i c y t l v t
 

      ,                   (6.3) 

       2, 2, 2

1 1
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i l
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y t b y t i d x t l v t
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      ,                   (6.4) 
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where the prediction error 1v  and 2v  depend on the past of the signal itself and 

additionally on the past of the second signal. The coefficients in the model 

(6.1)-(6.4) are generally estimated by solving the Yule-Walker equations (Proakis & 

Manolakis 1996; Subasi 2007) which require the stationarity of the signals and 

result in a time-invariant VAR model analysed over the time course. 

 

Let us begin with the bivariate case of causality X Y . The reciprocal case is 

similar. The accuracy of prediction in model (6.1) and (6.2) may be evaluated by 

the unbiased variance of the prediction errors 
y y  where y  symbolizes y  

past 

   2

2 2

1

1
var

N
y y

y y
t

RSS
u t u

N p N p







  
 

  ,                 (6.5) 

where 
y y

RSS   is the residual sum of squares in the model (6.2). For the bivariate 

model (6.3) and (6.4), we can obtain 

   
,2

2 2,
1

1
var

N
y y x

y y x
t

RSS
v t v

N p q N p q

 

 



  
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  ,           (6.6) 

If the signal X  causes the signal Y  in the Granger sense, the variance of the 

prediction error 
,y y x   must be smaller than prediction error

 y y . The 

linear Granger causality X Y  is then defined by (Gourevitch et al. 2006) 

,

ln
y y

x y

y y x

LGC


 

 



,                                   (6.7) 

Correspondingly, the linear Grange causality of Y X  is evaluated by 

,

ln
x x

y x

x x y

LGC


 

 



,                                   (6.8) 

Generally, the most important property of the Granger causality is the positivity, 

when a signal X  causes a second signal Y . The Eq. (6.7) and (6.8) represent a 

simple measure for the strength of directional interaction.  
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6.2.1.2 Time-varying Causality measure 

 

The time-varying fit of a VAR model is required to detect the transient directed 

interactions. Ding et al. (2000) investigated a VAR model fitting algorithm to 

obtain the time-varying Granger causality which requires to assume that the the 

signals to be studied are stationary within a short-time window, and the changes fro 

one window to another is smooth. There is a limitation in the effectiveness for this 

approach. First, if the processes are varying rapidly, a process assumed to be 

stationary may be too small to allow for sufficient accuracy in the estimation of the 

relevant parameters over the window. Second, this approach would not easily 

accommodate the step changes with the analysis intervals. Third, this solution 

imposes an incorrect model on the observal data, that is, piecewise stationary. 

Therefore, An adaptive recursive fit of a VAR model with time-dependent 

parameters by means of some adaptive filtering procedures such as recursive least 

squares (RLS), least mean squares (LMS) and Kalman filtering algorithms is 

proposed to capture the transient Granger causality. The time-varing VAR model 

fitting can yield time-varying autoregressive parameters. Consequently, by contrast 

with the model (6.1)-(6.4), the time-varying VAR models are represented by 

       1, 1

1

p

i

i

x t a t x t i u t


   ,                            (6.9) 

       1, 2

1

p

i

i

y t b t y t i u t


   ,                           (6.10) 

and  

           2, 2, 1

1 1

p q

i l

i l

x t a t x t i c t y t l v t
 

      ,            (6.11) 

           2, 2, 2

1 1

p q

i l

i l

y t b t y t i d t x t l v t
 

      ,            (6.12) 

The time-varying fit of VAR models yields time-varying variance of prediction 

error. A general recursive variance computational formula can be defined by 
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       2 2 21 1t c t c t      ,                         (6.13) 

where the constant lies at 0 1c  , and  t
 
is one of  1u t ,  2u t ,  1v t , or 

 2v t  which represent the time-varying variances of the corresponding prediction 

errors  
x x

t ,  
y y

t ,  
,x x y

t  , and  
,y y x

t  . 

 

Therefore, the representation of time-varying linear Granger causality is then 

evaluated as 

 
 

 
,

ln
y y

x y

y y x

t
LGC t

t



 

 



,                             (6.14) 

 
 

 
,

ln
x x

y x

x x y

t
LGC t

t



 

 



,                              (6.15) 

The calculation of the time varying Granger causalities in Eq. (6.14) and (6.15) is 

analogous to Eq. (6.7) and (6.8). The time varying strength of interaction may be 

quantified by the maximum at each time point from Eq. (6.14) and (6.15). 

 

6.2.2 Time-varying nonlinear Granger causality 

 

In this subsection, our main purpose is to find the general VAR models suitable to 

evaluate Granger causality, thus extending the RBF model results discussed in 

(Marinazzo et al. 2006). 

 

6.2.2.1 NARX model 

 

The identification problem of a nonlinear dynamical system is based on the 

observed input-output data     
1

,
N

t
x t y t


, where  x t  and  y t  are the 

observations of the system input and output, respectively (Leontaritis & Billings 

1987). This Chapter considers a class of discrete stochastic nonlinear systems 
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which can be represented by the following nonlinear autoregressive with 

exogenous inputs (NARX) structure below (Chen et al. 2008; Leontaritis & 

Billings 1985; Ljung 2001; Wei & Billings 2004): 

            1 , , , 1 , , ,y xy t f y t y t n x t x t n e t       ,  (6.16) 

where  f   is the unknown typically nonlinear system mapping,  x t ,  y t  

and  e t  are the system input, output variables and the prediction error, 

respectively, xn  and yn  are the maximum input and output lags, respectively. 

And the observation noise  e t  is an uncorrelated zero mean noise sequence 

providing that the function
 

 f   gives a sufficient description of the system. If the 

function  f 
 
is specified as a polynomial function, model (6.16) can then be 

represented by 

      y t f t e t  ,                                 (6.17) 

where          1 , , , 1 , ,
T

y xt y t y t n x t x t n      
 

   is the process 

regressor vector. The polynomial NARX model is a special case of the polynomial 

NARMAX model (Chen et al. 1990; Chen et al. 1989). The non-linear mapping 

 f   of Eq. (6.17) can also be constructed using a class of local or global basis 

functions including radial basis functions (RBF), kernel functions, neural networks, 

multi-resolution wavelet such as B-splines and different types of polynomials such 

as the Chebyshev and Legendre types (Billings & Wei 2005a; Billings & Wei 2007; 

Billings et al. 2007; Chen et al. 1990; Chon et al. 2005; Harris et al. 2002; Li et al. 

2011a; Liu 2001; Marinazzo et al. 2006; Niedzwiecki 1988; Pachori & Sircar 2008; 

Wei et al. 2009).  

 

The polynomial bivariate model representation of NARX is represented by a 

compact matrix below 
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     2

1

M

m m

m

y t t e t


   ,                              (6.18) 

where     m mt t   are model terms generated from the regressor vector
 

         1 , , , 1 , ,
T

y xt y t y t n x t x t n      
 

  , m  are unknown parameters 

and M  is the total number of potential model terms. Note that the candidate 

model terms  m t  are of the form    1

1 , ,
ii

x t x t

 , where   refers to the 

nonlinear degree of the NARX model (6.18),       1 , , ,ki

k yx t y t y t n    

   1 , , xx t x t n   for 1, ,k   , 0 ki  
 
and  10 di i     . The 

maximum lag of the polynomial model (6.17) is determined by 
yn  and xn . The 

number of possible terms could be very large, and the number of polynomial terms 

(number of parameters) is 
 
 

!

! !

y x

p

y x

n n
n

n n





 



, for example, if 5yn  , 5xn  , and 

4  , 1001pn  . Particularly, if the non-linear degree   of the NARX model 

(6-18) is reduced to 1, the NARX model simplifies to a linear ARX model 

described in Eq. (6.1) and Eq. (6.2). 

 

The corresponding polynomial univariate NAR model can also be expressed by 

     
0

1

1

M

m m

m

y t t e t


   ,                              (6.19) 

where     *

m mt t   are model terms generated from the regressor vector 

     * 1 , ,
T

yt y t y t n    
 , m  are unknown parameters and 0M  is the 

total number of potential model terms.  

 

The prediction error of the bivariate NARX model (6.18) (we assume
 

y xM n n  ) can be expressed by 
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   
2

,
1

1 M

m my y x
m

y t t
M

 



      ,                      (6.20) 

We can also consider the univariate NAR model (6.19) and obtain the 

corresponding prediction error 

   
0

2

10

1
M

m my y
m

y t t
M





      ,                       (6.21) 

If the prediction of y  improves by incorporating the past value of x , i.e., 

,y y x   is smaller than
 y y , then x  is said to have a causal influence on y . 

 

Modelling experience has shown that in most cases the initial full regression Eq. 

(6.18) might be highly redundant. Some of the regressors or model terms can be 

removed from the initial regression equation without any effect on the predictive 

capability of the model, and this elimination of the redundant regressors usually 

improves the model performance (Aguirre & Billings 1994). The ordinary least 

squares algorithm may fail to produce reliable parametric estimate results for such 

ill-posed problems. For most nonlinear dynamical system identification problems, 

only a relatively small number of model terms are commonly required in the 

regression model. Thus an efficient model term selection algorithm is highly 

desirable to detect and select the most significant regressors. 

 

6.2.2.2 Model Structure Identification 

 

The well-known orthogonal least squares (OLS) type of algorithms (Aguirre & 

Billings 1994; Aguirre & Billings 1995b; Billings & Wei 2007; Billings et al. 2007; 

Chen et al. 1989; Wei & Billings 2007; Wei et al. 2006; Wei et al. 2004b) have been 

proven to be very effective to solve multiple dynamical regression problems, where 

a great number of candidate model terms or regressors may be highly correlated 

and include in the regressor model. In the present study, the OLS algorithm 

discussed in (Billings & Wei 2007) is applied to deal with the regression model 
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(6.18). This involves a model refinement procedure including the selection of 

significant regressor or model terms. 

 

6.2.2.3 Time-varying nonlinear model and parameter estimation 

 

The time-varying (TV) VAR model fitting for bivariate NARX and univariate NAR 

model yields time-varying autoregressive parameters. Consequently, after the 

model refinement procedure, Eq. (6.18) and Eq. (6.19) are modified as follows: 

TVNARX model:            
*

* * *

2

1

M

m m

m

y t t t e t


   ,                  (6.22) 

TVNAR model:             
*
0

* * *

1

1

M

m m

m

y t t t e t


   ,                  (6.23) 

where 
*M , 

*

0M
 
are the total number of the selected or significant regressors for 

the bivariate NARX and the univariate NAR model, respectively, ( * *

0,M M M ),

*  and 
*  are time-varying parameters, *  and *  are new model terms 

selected from the regression vector  t  and  
*

t , *

2e  and *

1e  are the 

time-varying model prediction errors, respectively. An online recursive least 

squares (RLS) algorithm is then applied to estimate the time-varying model 

parameters. But other online methods, for example a Kalman filtering algorithm, 

can also be employed to estimate the unknown time-varying parameters. While the 

tracking ability of RLS is achieved by performing a forgetting operation on the 

information matrix, the tracking capability of Kalman filtering is obtained by 

adding a non-negative definite matrix to the covariance matrix. The main reason for 

employing RLS in the present study is because of its simple calculation and good 

convergence properties. 

 

6.2.2.4 Time-varying nonlinear Granger causality measure 
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Similar to the definition of the linear Granger causality, let us begin with the 

bivariate case of causality x y . For model (6.18) and (6.19), the unbiased 

variance may be evaluated by the variance of prediction error described in Eq. 

(6.20) and (6.21). The time-varying estimation of VAR model (6.22) and (6.23) 

leads to time-varying prediction error. A general time-varying recursive variance 

computation is given in Eq. (6.13). If x  causes y  in the Granger causality sense, 

,y y x   must then be smaller than
 y y . Therefore, for the time-varying model 

(6.22) and (6.23), the calculation of time-varying nonlinear Granger causality can 

be evaluated by 

 
 

 
,

ln
y y

x y

y y x

t
NLGC t

t



 

 



,                            (6.24) 

where  
,y y x

t   and  
y y

t  are the time-varying variance of the 

corresponding prediction error for the model (6.22) and (6.23), respectively.  

Exchanging the two time series, one may analogously study the time-varying 

nonlinear Granger causality influence of y  on x . It is worth stressing that, within 

the definition of causality, for the time series data, directed flow of time plays a key 

role in making inference and depends on the direction. Note that Granger causality 

was initially formulated for linear models which may not be suitable for causality 

evaluation for nonlinear time series. Ancona et al. (2004) and Marinazzo et al. 

(2006) extended the Granger causality definition to nonlinear bivariate time series, 

and proposed that any prediction scheme providing a nonlinear extension of 

Granger causality should satisfy the following property: if a time series   
1

N

t
x t


 

is statistically independent of   
1

N

t
y t


, then 

,y y x y y    ;  if   
1

N

t
y t


 is 

statistically independent   
1

N

t
x t


, then

 
,x x y x x    , the property holds at 

least for M  . The polynomial NARX structure model is the class of nonlinear 

parametric models suitable to evaluate causality (Chen & Billings 1989). Ancona et 

al. (2004) introduced the nonlinear parametric model to evaluate the causality 
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based on a class of RBF models as a special case of a polynomial NARX structure 

model. It also should be noted that time-varying linear Granger causality is a 

special case of a time-varying NARX model to evaluate the Granger causality 

where the nonlinear degree d  in the NARX model is equal to 1. 

 

6.2.3 Choice of the model order 

 

As to the issue of model order determination, this can be solved by using some 

model order determination criteria like Akaike information criterion (AIC), 

Bayesian information criterion (BIC) (Wei et al. 2010), Minimum description 

length (MDL) principle (Rissanen 1978), the Generalized cross-validation (GCV) 

criterion (Billings et al. 2007) or the visual fitting quality of the model (Brovelli et 

al. 2004). 

 

6.2.4 Detection of nonlinearity in time series 

 

In real-world applications, complex biomedical signal processes such as EEG time 

series probably comprise both linear and nonlinear components, together with 

stationary and nonstationary components. However, how to confirm whether the 

activity of the neural systems measured is regarded as linear/nonlinear or not is a 

challenging and controversial question. If the nature of the analysed signals was 

actually low-dimensional, the analytical results can be of great importance for 

theoretical neuroscience and clinical practice. However, confidence in results 

obtained from the detection of nonstationary nonlinearity including finite 

dimension, and positive Lyapunov exponents have also come into question, and 

alternative methods such as surrogate data technique for identifying possible 

nonlinear determinism in experimental data have been discussed and showed 

evidence of weak nonlinearity in nonstationary EEG time series (Palus 1996). 
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Although there are some different approaches to detecting the nonlinearity, the 

characterization of neural processes and brain signals from the mathematically 

tractable model is still an open issue. Some approaches for signal nonlinearity 

detection are usually set within a hypothesis-testing framework. Consequently, the 

rejection of the null hypothesis should be interpreted with due caution because the 

complex biomedical signals are subject to uncertainty and noise. 

 

Therefore, in this Chapter, a delay vector variance (DVV) approach for the 

simultaneous characterization of nonstationary EEG signals in terms of nonlinearity 

is applied to detect the presence of nonlinearity (Mandic et al. 2008). For a given 

embedding dimension l  and time series   
1

N

t
x t


, the DVV procedure of 

detection for nonlinearity can be summarised as follows: 

 

1) The mean d , and standard deviation d  are computed over all pairwise 

distances between delay vectors,    x i x j  for i j ; 

2) The set  k dr  is generated subject to         k d dr x i x k x i r    , 

namely, the sets that consist of all delay vectors which lie closer to  x k
 

than a certain distance dr , taken from the interval  max 0, ,d d dn 

d d dn  , where dn  is a parameter controlling the span over which to 

perform the DVV analysis; 

3) For every set
 

 k dr , compute the variance of the corresponding targets 

 2

k dr . The average over all sets
 

 k dr , normalized by the variance of 

the time series
 

2

x , yields the target variance  
2*

dr  as following 

 
 

2

2

* 1

2

1 N

k d

k
d

x

r
N

r









,                                (6.25) 
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If the set  k dr  contains at least 30 delay vectors, a valid variance measurement 

is considered, since having too few points for computing a sample variance yields 

unreliable estimates of the true variance. A sample of 30 data points for estimating 

a mean or variance is a general rule of thumb. 

 

6.3 Simulation Example 

 

In this section, we consider a simulation example that shows the ability of the 

time-varying Granger causality to react on changes in the directed influences 

between two signals. Consider the following time-varying ARX (2, 2) model: 

           2,1 2,2 2,11 2x t a t x t a t x t c t    
                       

       2,2 11 2y t c t y t v t     ,                 (6.27)

           2,1 2,2 2,11 2y t b t y t b t y t d t    
                       

       2,2 21 2x t d t x t v t     ,                       

where  

 2,1

0.6, 1 400,

0.3, 400 1000,

t
a t

t

  
 

     
 2 , 1

0 . 3 , 1 4 0 0 ,

0 . 6 , 4 0 0 1 0 0 0 ,

t
b t

t

 
 

    

 

 2,2 0.1, 1 1000,a t t            2 , 2 0 . 1 , 1 1 0 0 0 ,b t t                 

 2,1

0.2, 1 300,

0, 300 1000,

t
c t

t

 
 

      
 2 , 1

0 , 1 7 0 0 ,

0 . 2 , 7 0 0 1 0 0 0 ,

t
d t

t

 
 

 
      (6.27) 

     2 , 2

0 . 1 , 1 3 0 0 ,

0 , 3 0 0 1 0 0 0 ,

t
c t

t

 
 

        
 2 , 2

0 , 1 7 0 0 ,

0 . 1 , 7 0 0 1 0 0 0 ,

t
d t

t

 
 

 
   

and  

1v , 2v  are Gaussian white noise processes with zero means and variances 

 1

0.9, 1 600,
var

2.0, 600 1000,

t
v

t

 
 

 
    2

2 . 0 , 1 6 0 0 ,
v a r

0 . 9 , 6 0 0 1 0 0 0 .

t
v

t

 
 

 
,    (6.28) 

respectively. From the construction of the model, we can see, for the first 300 
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sample points, signal y  causes signal x  and, beginning with the sample point 

700, signal x  causes signal y . From sample point 301 up to sample point 699, 

no dependence exists between the two signals x  and y . The results of 

time-varying Granger causalities are shown in Figure 6.1. 

  

From Figure 6.1, the time-limited influence of x y  beginning with the sample 

index point 700 is detected by the positivity of  x yLGC t  
(thick blue curve). 

The time-limited influence of y x  for the first 300 sample index points is 

identified by the positivity of  y xLGC t  
(black curve).  Obviously both 

Granger causalities are nearly zero within the time interval ( 300 700t  ) without 

any dependence between the two signal components. Moreover, time-varying 

Granger causalities vary around the estimation of corresponding time-invariant 

Granger causality (for example, thin black and blue curves) within the stationary 

time intervals 0 300t   and 700 1000t  . In this simulation example, the 

time behaviour of time-varying Granger causality demonstrates the ability to react 

on changes in directed dependencies between two signals. 
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6.4 Application to real EEG signal 

 

A number of studies in the neuroscience literature have investigated the issue of 

causal effects in neural data (Brovelli et al. 2004; Ding et al. 2000; Gow et al. 2008; 

Marinazzo et al. 2006). In this example, we analyze a data set consisting of an 

epileptic sample of scalp EEGs recorded by Dr Sarrigiannis at the EEG Laboratory 

of Neurophysiology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal 

Hallamshire Hospital. 

 

6.4.1 Data acquisition 

 

 

Figure 6.1 Time-varying Granger causalities  x yLGC t  

(thick blue curve) and  y xLGC t  
(black curve) from model 

(6.26) with time-varying parameters given in Eq. (6.27) are 

shown above. The thin blue and black step functions show that 

the correspondent estimated time-invariant Granger causalities 

x yLGC   
and y xLGC  .  
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Scalp EEG signals are synchronous discharges from cerebral neurons detected by 

electrodes attached to the scalp. The EEG signals analyzed here were recorded by 

the same 32-channel amplifier system. A NeuroScan Medical System (NeuroSoft 

Inc., Sterling, VA) with the international 10-20 electrode coupling system 

(Rechtschaffen & Kales 1968) was used. An important issue in the EEG data 

acquisition is the problem of the reference electrode. There are several ways to 

define a reference electrode in scalp EEG recordings, as described in (Kaminski et 

al. 2001), not every type is suitable for the Granger causality analysis. Especially, 

the ―common average‖ reference that involves all the channels as reference, and 

mixes signals from all of them. Generally, all operations where part of the signal 

from one channel appears in another channel will lead to spurious connections. In 

the present case study, the ―bipolar montage‖ reference was used. Two examples 

are discussed in the real EEG application.  

 

EEG data set 1:  two bipolar montage channels ―F3-C3‖ and ―F4-C4‖ of EEG 

recorded from patient 1 with absence seizure epileptic discharge are investigated in 

this study, where the channel ―F3-C3‖ represents the voltage difference between F3 

and C3, and channel ―F4-C4‖ means the voltage difference F4 and C4, respectively. 

The EEG signals between bipolar electrode channel ―F3-C3‖ and channel ―F4-C4‖ 

of 3500 data points pairs of one seizure, shown in Figure 6.2, which are for a sort 

of epileptic seizure activity of a patient, with a sampling rate of 500 Hz, recording 

during 7 seconds, were obtained for time-varying Granger causality analysis.  

 

EEG data set 2: similarly, two bipolar montage channels ―C3-T3‖ and ―C4-T4‖ of 

EEG recorded from patient 2 with absence seizure epileptic discharge are also 

studied, where the channel ―C3-T3‖ represents the voltage difference between C3 

and T3, and channel ―C4-T4‖ indicates the voltage difference C4 and T4, 

respectively. The EEG signals between bipolar electrode channel ―C3-T3‖ and 

channel ―C4-T4‖ of 5000 data points pairs of one seizure, shown in Figure 6-3, 

which are for a sort of epileptic seizure activity of a patient, with a sampling rate of 
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250 Hz, recording during 20 seconds, were obtained for time-varying Granger 

causality analysis. The reason for the selection of two group channels to analyse the 

causal influence is following advice from the clinician. Here the bipolar channel 

―F3-C3‖ indicates the new electrode channel
 

*

3F , the channel ―F4-C4‖ means the 

new electrode channel
 

*

4F , and the bipolar channel ―C3-T3‖ indicates the new 

electrode channel
 

*

3C , and the channel ―C4-T4‖ means the new electrode channel
 

*

4C , respectively. 

 

 

 

 

Figure 6.2 The EEG signals, for a sort of seizure activity of an 

epileptic patient 1, recorded during 7 seconds, with a sampling 

rate of 500 Hz, for both electrode channels 
 

*

3F  (above) and 

*

4F
 
(below).  
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6.4.2 Nonlinear detection for EEG signals 

 

The general time-varying linear model is still widely used in neuroscience (Li et al. 

2011b; Pachori & Sircar 2008). Here our central aim is that the signal nonlinearity 

analysis should be undertaken prior to applying the proposed NARX modelling 

approach to real EEG signals for time-varying Granger causality. To achieve this, 

the DVV method discussed above is applied to the EEG signals acquired in section 

6.4.1. The linear or nonlinear nature of the two bipolar EEG series is examined by 

performing DVV analyses on both the original and a number of surrogate time 

series, using the optimal embedding dimension of the original time series. Due to 

the standardisation of the distance axis, the DVV diagram can be combined in a 

scatter diagram, where the horizontal axis represents the original time series, and 

the vertical indicates the surrogate time series. If the surrogate time series is similar 

to the original series, the DVV scatter plot coincides with the bisector line, and the 

 

Figure 6.3 The EEG signals, for a sort of seizure activity of an 

epileptic patient 2, recorded during 20 seconds, with a sampling 

rate of 250 Hz, for both electrode channels 
*

3C  (above) and 

*

4C  (below). 
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original series is regarded as linear approximately. Conversely, the deviation from 

the bisector line is an indication of nonlinearity. In Figure 6.4, the DVV scatter 

diagrams for EEG signals *

3F  and *

4F  are nonlinear.  

 



Chapter 6 Time-Varying Linear and Non-linear Parametric Models for Granger Causality Analysis 

125 
 

 

 

 

 

(a) 

 

 

(b) 

 

Figure 6.4 DVV scatter plot for the EEG time series given in 

Fig 6.2.  

(a) The EEG Channel *

3F  
(above),  

(b) The EEG Channel *

4F  
(below). 
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6.4.3 Time-varying nonlinear Granger causality for EEG 

signals 

  

Generally, the most significant property of the Granger causality is its positivity, 

when a signal X causes a second signal Y. From the discussion in section 6.2.2.3, 

the time-varying NARX modelling approach under definition (6.22) and (6.23) is 

applied to real EEG signals to study the causal relationship for EEG signals *

3F  

and
 

*

4F , *

3C  and
 

*

4C , respectively.  

 

The Granger causality analysis for EEG data set 1. The NARX model with a 

non-linear degree 2d  , maximum lags 5yn   and
 

5xn  , and the total number 

of potential 66 regressor terms, for different model orders were estimated using the 

OLS algorithm (Billings & Wei 2007), and both the AIC and BIC criteria suggested 

that the model size can be chosen to be 7 from the total number of 66 regressor 

terms, with the bivariate case *

3F  *

4F  ( x y ), Hence time-varying NARX 

model and univariate NAR model can be represented by, respectively 

TVNARX:             
3

2

1 , 1 , 1

1

1i

i

y t t y t i t y t 


   

                      

           2

2,1 2,5 5,51 5 5t x t t x t t x t        ,    (6.29) 

TVNAR:              
3

* * 2

1 , 1

1

1i

i

y t t y t i t y t 


    ,                (6.30) 

Due to Eq. (6.29), (6.30) and (6.13), the transient estimations of time-varying 

nonlinear Granger causality  * *
3 4F F

NLGC t


 can be obtained. Similarly, 

exchanging the two EEG signals, for bivariate *

4F  *

3F , the time-varying Granger 

causality  * *
4 3F F

NLGC t


 can also be obtained for both cases for 0.01c  . The 

time-varying bivariate and univariate model for case *

4F  *

3F
 
( y x ) can be 
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shown as follows. 

       
5

2

0 1, 2,1 2,5

1

1 5i

i

x t x t i y i x i   


       ,           (6.31) 

      
5

2

0 1, 2,5

1

5i

i

x t x t i x i  


       ,                     (6.32) 

Time-varying Granger causality in both directions was calculated for electrode 

pairs between *

3F  and
 

*

4F . A directed influence for a determined time interval is 

stated. Figure 6.5 illustrates a typical result for the electrode pair
 

* *

3 4/F F .  In 

Figure 6.5, we depict the directed interactions  * *
3 4F F

NLGC t


 (blue curve, 

measuring the influence of *

3F
 
on

 
*

4F ) and  * *
4 3F F

NLGC t


 (black curve, 

measuring the influence of *

4F  on
 

*

3F ), as a function of sample time, for a sort of 

epileptic seizure activity of a patient. From Figure 6.5, two directed Granger 

causalities can be clearly observed. 1) The Granger causality  * *
3 4F F

NLGC t


 is 

significantly larger in the time interval 0.5-2s than
 

 * *
4 3F F

NLGC t


. Thus, a 

superior influence from *

3F  to *

4F  is present within this time interval, especially, 

compared to the original EEG time series given in Figure 6.2, there is a very strong 

Granger causality influence observed at the time point of 1 second; 2) during the 

period from 3.5 to 3.8s, the Granger causality influence from *

4F  to *

3F  is 

dominant. It is also worth noting that these causal relationships are not evidenced in 

terms of cross correlation which is defined as 

         1
2 2

[ ( ) ][ ( ) ]

[ ( ) ] [ ( ) ]

t

t t

x t x y t y
c

x t x y t y




  


 



 
,                      (6.33) 

and 

 2
2 2

[ ( ) ][ ( ) ]

[ ( ) ] [ ( ) ]

t

t t

x t x y t y
c

x t x y t y




  


 



 
,                      (6.34) 

         

 

c1(τ) and c2(τ) for some specific epileptic patient data are depicted in Figure 6.6, 
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which gives no interesting patterns that are possessed by the proposed time-varying 

NARX model.   

 

The Granger causality analysis for EEG data set 2 is similar to the discussion of 

EEG data set 1. Hence the time-varying NARX model and the univariate NAR 

model with the bivariate case *

3C  *

4C  ( x y ) can be represented by, 

respectively 

TVNARX:               
3

1 , 5 , 2

1

5i

i

y t y t i y t 


   
                       

     3,12 1 1x t y t x t     ,

             

(6.35) 

TVNAR:              
3

1,

1

i

i

y t y t i


  ,                           (6.36) 

Due to Eq. (6.35), (6.36) and (6.13), the transient estimations of time-varying 

nonlinear Granger causality  * *
3 4C C

NLGC t


 can be obtained. Similarly, 

exchanging the two EEG signals, for bivariate *

4C  *

3C , the time-varying Granger 

causality  * *
4 3C C

NLGC t


 can be also obtained for both cases for 0.005c  . Also, 

the time-varying bivariate and univariate model for case *

4C  *

3C
 
( y x ) can be 

represented by 

         
3

2 2 2

1, 2,5 3,1 3,2

1

5 1 2i

i

x t x t i y t y t y t   


        ,  (6.37)

 

   
3

1,

1

,i

i

x t x t i


                                      (6.38) 

Time-varying Granger causality in both directions was calculated for electrode 

pairs between *

3C  and *

4C . A directed influence for a determined time interval is 

stated. Figure 6.7 illustrates a typical result for the electrode pair
 

* *

3 4/C C .  In 

Figure 6.7, we depict the directed interactions  * *
3 4C C

NLGC t


 (blue curve, 
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measuring the influence of *

3C
 
on

 
*

4C ) and  * *
4 3C C

NLGC t


 (black curve, 

measuring the influence of *

4C  on
 

*

3C ), as a function of sample time, for a sort of 

epileptic seizure activity of a patient. From Figure 6.7, two directed Granger 

causality can be clearly observed. 1) For the chosen electrode pair
 

* *

3 4/C C , the 

interaction is directed from left central area ( *

3C ) to right central area ( *

4C ) during 

the whole time interval, and the Granger causality  * *
3 4C C

NLGC t


 is significantly 

larger than  * *
4 3C C

NLGC t
  

in the whole of the time interval. Thus, a superior 

influence from *

3C  to *

4C  is present within this time interval; 2) during the period 

from 10 to 12s, the Granger causality influence between *

4C  and *

3C  is weaker, 

especially, about the time point 20s, the interaction is very small. It is worth noting 

that these causal relationships for the electrode pair * *

3 4/C C  are not evident in 

terms of cross correlation that the cross correlation can only be applied to detect the 

relationship between EEG signals in linear model case. However, the identified 

model for the EEG signals is nonlinear model. The cross correlation functions c
*

1(τ) 

and c
*
2(τ) for both electrode, depicted in Figure 6-8 for epileptic patient data, do 

not show interesting patterns. These properties, possessed by the proposed 

time-varying NARX model, cannot be obtained using any time-invariant 

parametric modelling framework for linear and nonlinear Granger causality of time 

series. It should also be stressed that, in the case of an optimal fit to the true 

autoregressive parameters of univariate and bivariate models, Granger causality is a 

non-negative value. Compared to the Granger causality analysis of the occurrence 

of negative values mainly due to not having optimal models in (Hesse et al. 2003), 

our proposed approach in this study is novel and effective. The results can help 

clinicians interpret EEG signals. 
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Figure 6.6 The cross correlations  1c   (black curve) and 

 2c   (blue curve) are shown versus   between EEG signals 

*

3F  and 
*

4F  given in Figure 6.2.  
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Figure 6.5 The time-varying non-linear Granger causality 

 * *
3 4F F

NLGC t


 (blue curve)  * *
4 3F F

NLGC t


 (black curve) 

and are plotted versus the time courses for EEG signals shown 

in Figure 6.2.  
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Figure 6.8 The cross correlations  1c   (black curve) and 

 2c   (blue curve) are shown versus   between EEG signals 

*

3C  and 
*

4C  given in Figure 6.3.  
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Figure 6.7 The time-varying non-linear Granger causality 

 * *
3 4C C

NLGC t


 (blue curve)  * *
4 3C C

NLGC t


 (black curve) 

and are plotted versus the time courses for EEG signals shown 

in Figure 6.3.  
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6.5 Conclusions 

 

In this Chapter we have introduced the polynomial mathematical formalism and 

studied the problem of how to evaluate time-varying linear and nonlinear Granger 

causal relations in neural systems. Demonstrations of the technique have been 

carried out on both simulated data, where the patterns of interactions are known, 

and on real EEG signals. This Chapter mainly illuminates four essential aspects as 

follows. First, the proposed method for time-varying linear estimation of Granger 

causality permits the detection of temporal causal interactions. Second, we have 

generalized the nonlinear parametric approach to Granger causality: the proposed 

model can approximate any functions such as RBF, neural networks, 

multi-resolution wavelet and different types of polynomials including the 

Chebyshev and Legendre types. Third, prior to applying the method to the actual 

EEG data to analyse the time-varying Granger causality, a delay vector variance 

(DVV) approach is applied to detect the presence of nonlinearity in the EEG 

signals and show that the nonstationary EEG recording convey nonlinearity. Finally, 

temporally directed interactions were detected successfully for electrophysiological 

data of two epileptic patients on the basis of transient Granger causality.  

 

This Chapter demonstrates the possibility of the detection and description of 

transient directed interactions for the bivariate case. In fact, the presented approach 

can be extended to the multivariate case and be suitable for the study of causal 

interactions between electrophysiological data of different sites on the scalp, 

occurring during the cognitive processes. 

 



 

 

Chapter 7 

 

Conclusions and Future Work 
 

This chapter summaries the main work and key contributions of the thesis, and then 

provides some suggestions for future study. 

 

7.1 Contributions 

 

The main purpose of this thesis is that modelling and adaptive tracking of 

nonstationarities for both linear and nonlinear systems has been investigated on the 

basis of the NARMAX model and wavelet basis expansion in both time and 

frequency domains. The work of this thesis focuses on the investigation of methods 

and algorithms for modelling and tracking nonstationary processes of both linear 

and nonlinear systems in both the time and frequency domains. The main 

contributions are summarized below: 

 

 Linear modelling and adaptive tracking: In Chapter 3 we introduced a new 

parametric modelling and identification method for linear time-varying 

systems using a block least mean square (LMS) approach where the 

time-varying parameters are approximated using multi-wavelet basis functions. 

This approach can be applied to track rapidly or even sharply varying 

processes and is developed by combining wavelet approximation theory with a 

block LMS algorithm. Numerical examples are provided to show the 

effectiveness of the proposed method for dealing with severely nonstationary 

processes. Application of the proposed approach to a mechanical system 

indicates better tracking capability of the multi-wavelet basis function 

algorithm compared with the normalized least squares or recursive least 
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squares routines. 

 

 Time-frequency feature extraction: In Chapter 4 a novel modelling scheme 

that can be used to estimate and track time-varying properties of nonstationary 

signals was investigated. This scheme is based on a class of time-varying 

autoregressive with exogenous input (TVARX) models where the associated 

time-varying parameters are represented by multi-wavelet basis functions. The 

orthogonal least square (OLS) algorithm is then applied to refine the model 

parameter estimates of the TVARX model. The main features of the 

multi-wavelet approach is that it enables smooth trends to be tracked but also 

to capture sharp changes in the time-varying process parameters. Simulation 

studies and applications to real EEG data show that the proposed algorithm can 

provide important transient information on the inherent dynamics of 

nonstationary processes. 

 

 CMSS structure algorithm: In Chapter 5 the identification of nonlinear 

time-varying systems using linear-in-the-parameter models was investigated. A 

new efficient common model structure selection (CMSS) algorithm is proposed 

to select a common model structure. The main idea and key procedure is first to 

generate 1K   data sets (the first K  data sets are used for training, and the 

 1K  th one is used for testing) using an online sliding window method; then 

detect significant model terms to form a common model structure which fits 

over all the K  training data sets using the new proposed CMSS approach, and 

finally, estimate and refine the time-varying parameters for the identified 

common-structured model using sliding-window recursive least squares 

(SWRLS) approach. The new method can effectively detect and adaptively track 

the transient variation of nonstationary signals. Two examples are presented to 

illustrate the effectiveness of the new approach including an application to an 

EEG data set. 
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 Time-varying linear and nonlinear Granger causality: In Chapter 6, 

mathematical measures such as coherence, mutual information or correlation are 

usually applied to evaluate and describe the interactions between groups of 

neurons to investigate neural connections. However, these methods cannot 

distinguish directions of flow between two cortical sites or causality. Being able 

to assess the directionality of neuronal interactions is thus a highly desired 

capability for understanding the cooperative nature of neural computation. 

Granger causality, which is a fundamental tool for the description of causal 

interaction of two signals, is a key technique to furnish this capability. The main 

topic of this Chapter is that a novel linear and nonlinear time-varying parametric 

modelling and identification approach using data-driven methods was proposed 

for the adaptive estimation of nonstationary EEG Granger causality processes to 

detect the transient dynamical causal directional interactions between EEG 

signals within time intervals in the time domain. The time-varying model 

proposed allows identification of the direction of information flow between 

brain areas, extending the Granger causality concept to transient time-varying 

processes. A numerical example, where the exact answers of causal influences 

are known, demonstrates a good performance of the time-varying Granger 

causality for detecting transient dynamical causal relations over the time course. 

The application of this novel approach is then applied to analyse EEG signal 

local field potentials to track and detect the causal influences between EEG 

signals. One advantage of the proposed model, compared with traditional 

Granger causality assuming the stationarity of the signals, is that our results can 

be more interpretable and yield new insights into the transient directed 

dynamical Granger causality interactions. 

 

7.2 Future Work 

 

Data-based identification and modelling of nonstationary signals are very complex 
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and difficult. Although there are some powerful methods such as the adaptive 

algorithms and the OLS method, some important issues still need to be 

investigated further, for example, 

 

 As mentioned in Chapter 4, the time varying AR and ARX identification and 

modelling method based on multi-wavelet basis function expansion 

investigated outperforms the time invariant modelling approach. Furthermore 

these methods should be extended to the time-varying NARMAX model and to 

capture and extract the time-frequency properties in the time-frequency domain. 

It should be noted that the existing generalised frequency response functions 

(GFRFs) can only analyse the time-invariant models estimated in the 

frequency domain. 

 

 These methods can be extended to a time-varying nonlinear autoregressive 

(TVNAR) model, but mapping to the frequency domain may be difficult 

because the time-varying nonstationary signal investigated can be treated as 

not Gaussian, and higher-order statistical information to deal with such things 

as degrees of nonlinearity and deviations from normality, should be considered. 

The higher-order spectrum (HOS), called the polyspectrum, which is defined in 

terms of the higher-order statistics of a signal, can provide additional 

information and, in some applications, has been proved to be a very effective 

tool, especially for ‗non‘ processes and systems: non-Gaussian, non-linear, 

non-stationary, non-minimum phase, non-causal and non-additive ones.  

 

 In Chapter 5, the common model structure selection approach has been 

investigated and designed to identify a robust time-varying common-structured 

(TVCS) model as a solution to time-varying nonlinear systems identification 

problems using an online sliding-window approach. Furthermore, the TVCS 

mode can also be estimated on the basis of multi-wavelet basis function 

expansion to improve the tracking ability of the nonstationary systems.  
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 In Chapter 6, the time-varying linear and nonlinear Granger causality in the 

time domain was presented. The directed detection of Granger causality on the 

basis of basis function expansion should also be studied to improve the 

detection capability of Granger causality. Especially, the issue of occurrence of 

negative values may be solved due to the non-consistency of the model 

parameters estimation and fluctuation from the RLS algorithm that the 

negative values of estimated Granger causality are possible. Another future 

work is that the measure causality in Chapter 6 is not only considered between 

two components, but we are able to estimate autoregressive models for an 

arbitrary number of time series, the direct or indirect influences can also be 

identified from other components. 

 

 Regarding nonstationarities and nonlinearity detection, electrophysiological 

data including EEG data are generally regarded as non-stationary because their 

statistical characteristics change over the time course, depending on the mental 

states which are active at any time instant. For the issue of nonlinearities of the 

time series, some authors have investigated using different detection criteria 

such as largest Lyapunov exponent, correlation integral, delay vector variance 

(DVV) and time-varying surrogate data to detect the presence of nonlinear 

dynamics. In our future work, we can use the time-varying NARMAX 

methodology to test the presence of nonlinear dynamics in nonstationary time 

series, and hopefully obtain more interesting results compared to the existing 

detection approaches. 
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