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Abstract

Air pollution modelling is one of the key tools for researchers, scientists, and urban planners to

support the sustainable development of the urban environment. This modelling tool is critical for

the users in the age of rapid urbanization to understand pollution distribution in the modelling

area. Recent updates in air quality regulations are challenging the state-of-the-art air pollution

modelling techniques by requiring accurate predictions on a high temporal level, i.e. predictions

at the hourly level rather than the annual level. Current state-of-the-art models are designed to

have good prediction accuracy on the low temporal resolution by assuming that the pollution is

in steady state. Making predictions on higher temporal resolution violates this assumption and

cause inaccurate predictions. There are existing statistical modelling approaches for air pollution

modelling, however, these approaches also struggle to make accurate predictions on higher tem-

poral resolution. This work is looking into the development of a statistical regression based air

pollution model which produces accurate high temporal level predictions by utilizing advanced

regression algorithm to exploit the hidden knowledge in data with high temporal resolution. The

analysis of the predictions of multiple advanced statistical regression algorithms is investigated

to determine the most accurate approach hence the Random Forest Regression method is pro-

posed for the given regression task. A novel model ensemble method is then developed to utilize

multiple Random Forest Regression models trained on the different subset of the available input

data. Motivated by the high computational requirement of the developed methods, this thesis also

investigates the scalability and the robustness of the developed methods. Based on the experience

gained from this investigation, this work proposes further model ensemble methods to improve

the accuracy of the statistical regression approach for air pollution modelling. The developed

air pollution model presented in this thesis produces more accurate hourly concentration level

predictions than the current state-of-the-art method, hence, the approach gives the opportunity

for better understanding of the pollution in the urban area.
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CHAPTER 1

Introduction and Motivation

Air pollution modelling is a crucial tool available for scientist, researchers and urban planners

in the age of rapid urbanization. The pollution models allow the users to predict the pollution

changes caused by the changes in the urban environment (such as building new housing areas or

changing the traffic flows in the urban area). The aim of the air pollution models is to accurately

predict pollution concentration levels for the complete urban area (often as a pollution concentra-

tion level heatmap) which prediction is the base of further environmental analysis. These models

help urban planners to investigate the effect of certain changes in the urban environment, there-

fore, these type of air pollution models must generate pollution concentration levels for the entire

urban area considering the changes applied by the urban planners.

According to the European Environment Agency [Guerreiro et al. (2013)] and the World

Health Organization [WHO (2009)], one of the most concerning pollutant in the urban area is the

Nitrogen Dioxide (NO2). Modelling the concentration levels of NO2 accurately is one of the

most challenging tasks compared to modelling other pollutants. These challenges include the fact

that theNO2 pollutant has multiple sources (e.g. traffic and industry) and the concentration level

depends on many factors (e.g. wind speed, wind direction, traffic volume) and NO2 pollutant is

reacting with other gases in the air (e.g. ozone, nitrogen monoxide) it is forming from ozone in

some circumstances) [Seinfeld & Pandis (2016)]. The thesis is focusing on this pollutant only

because it is one of the most challenging tasks, however, the developed method in this thesis can

be applied to any other pollutant. Applying the developed approach to modelling other pollutants

is possible because the pollution concentration levels prediction task is based on the similar

principle: pollution emission sources are emitting the pollution into the air and the pollution is

13



14 Introduction and Motivation Chapter 1

dispersed based on the given meteorological conditions.

Air pollution dispersion models are the state-of-the-art model for air pollutant concentration

level predictions [Stocker et al. (2012)]. These methods calculate the concentration levels based

on the emission rate of the pollutant and using a dispersion technique to distribute the pollution in

the modelling area using the weather conditions (e.g. wind speed, wind direction). Air pollution

dispersion models are capable of accurately predicting the annual concentration levels in the

urban area [Vardoulakis et al. (2007)].

Recent updates in the air pollution regulations define limits on high-temporal (hourly) con-

centration levels along with the limits on low-temporal (annual) concentration levels [WHO

(2000)]. These high-temporal concentration level limits are challenging the state-of-the-art air

pollution models as the dispersion models were developed assuming that the pollution is in steady

state which assumption is not necessarily valid on the high-temporal level [Berkowicz et al.

(2008)]. Also, air pollution dispersion models depend on datasets such as emission inventory

databases and traffic amount to calculate the emission levels which datasets often contain un-

certain data [Owen et al. (2000)]. The uncertainty in the input data causes uncertainty in the

generated predictions, therefore, the air pollution dispersion model struggles to make accurate

concentration level predictions on the high-temporal levels [Vardoulakis et al. (2007)].

The Land Use Regression (LUR) method is a different approach for air pollution concen-

tration level prediction in the urban area [Briggs et al. (2000)]. The main idea of the Land Use

Regression model is to extract relevant information (for the pollutant) around the monitoring sta-

tion and turn this problem into a statistical regression task by using the extracted data as input

for the regression and use the observed concentration levels as the target of the regression. Land

Use Regression models are capable of accurately predicting the annual concentration levels in

the urban area without using uncertain data necessary for the air pollution dispersion models

[Brauer et al. (2003)]. Studies indicate that using the Land Use Regression struggle to make

accurate predictions on high-temporal level due to the nature of the input data and the applied

Linear Regression statistical regression method [Hochadel et al. (2006)].

Recent advances in the machine learning field produced new algorithms for solving regres-

sion problems more accurately [Nasrabadi (2007)]. Studies indicating that algorithms such

as Nearest Neighbour Regression [Nasrabadi (2007)], Neural Network Regression [Gardner &

Dorling (1999)], Support Vector Regression [Sánchez et al. (2011)], Decision Tree Regression

[Tso & Yau (2007)] and Random Forest Regression [Champendal et al. (2014)] methods can pro-

duce more accurate predictions on similar regression task than the standard Linear Regression

method. These methods use hyperparameters to build their internal data structures for predic-

tions, therefore, the accuracy of the prediction by these methods are sensitive to these hyperpara-

meters.

The thesis aims to reduce the error of the hourly NO2 concentration level prediction for

the urban area by applying high-temporal input data and advanced machine learning regression
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algorithms. The current state of the art methods in high temporal resolution air pollution concen-

tration level predictions are using air pollution dispersion techniques which require reliable input

data to make accurate predictions. It is difficult to collect accurate input data on high temporal

resolution. The method presented in this thesis reduces the prediction error of the current state of

the art air pollution models by utilizing advanced machine learning algorithms to efficiently ex-

ploit the hidden relationship between the input data and air pollution concentration levels. This

method can utilize the input data more efficiently because it can ignore unreliable data which

only introduces prediction error into the prediction.

1.1 Hypothesis and research objectives
This thesis aims to investigate the challenges of the development of a statistical regression ap-

proach for hourlyNO2 concentration level prediction for the urban area using advanced machine

learning regression techniques and the hypothesis is defined as the following:

Through the appropriate ensembling of state of the art statistical regression methods, a

more accurate, robust and scalable high-temporal environmental model can be created

than the current state-of-the-art air pollution dispersion techniques

1.1.1 Evaluation Criteria

The accuracy of the air pollution models is defined in multiple ways in the literature, however,

the aim of the thesis is to increase the accuracy by every accuracy evaluation method presented

in the literature for all the range of the observation spectrum. These accuracy evaluation methods

include the mean absolute error, root mean squared error, normalised mean squared error, correl-

ation coefficient, fractional bias, geometric mean bias, geometric variance, predictions are within

a factor of two of observations.

1.1.2 Research objectives

To investigate the hypothesis, the thesis aims to carry out research investigating the following

research objectives:

Research Objective 1: Establish an evaluation framework to investigate the feasibility of

using a statistical regression approach for hourly NO2 concentration level predictions

Research Objective 2: Evaluate the accuracy of advanced statistical regression algorithms

using the evaluation framework to compare predictions of the most accurate statistical

regression and the state-of-the-art air pollution dispersion methods

Research Objective 3: Evaluate the sensitivity to the input data of the statistical regression

approach using the developed evaluation framework
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Research Objective 4: Develop a model ensemble method to efficiently combine multiple

Random Forest statistical regression models

Research Objective 5: Evaluate the scalability of the developed statistical regression meth-

ods (including the Random Forest Regression and the Random Forest ensemble methods)

Research Objective 6: Develop an efficient ensemble of the statistical regression approach

for large-scale dataset

1.1.3 Contribution

The work in this thesis contributes to the Environmental Science and Computer Science fields.

The novel air pollution statistical regression model developed in this thesis contributes to the

Environmental Science field as it provides an accurate model for hourly NO2 concentration

level predictions. The novel ensemble regression method contributes to the Computer Science

field as it is general regression technique which can be used to solve any regression task.

1.2 Thesis structure
The rest of the thesis is organized as follows. Chapter 2 explains a comprehensive literature

review on the field of air pollution modelling including the challenges of modelling NO2 con-

centration levels and the state-of-the-art methods then the chapter introduces the recent advances

in the machine learning field including the developed regression algorithms for solving regression

problems more accurately.

Next, Chapter 3 presents the work for the Research Objective 1. It describes the development

of the evaluation framework where one of the state-of-the-art air pollution dispersion model,

then the existing Land Use Regression method are evaluated. The chapter then presents the work

for the Research Objective 2 which includes the sensitivity analysis of the advanced statistical

regression algorithms to the given regression task using the developed evaluation framework.

The chapter summarizes the result and presents the most accurate statistical regression algorithm

for the hourly NO2 concentration level prediction.

Chapter 4 presents the work for the Research Objective 3. It introduces the accuracy sensit-

ivity study of the applied data which provides an insight into the statistical regression prediction

generation process and it helps to understand what data is important for the model to make ac-

curate predictions. This analysis leads to the work for the Research Objective 4 as the analysis

reveals how the different data sources providing

Chapter 5 introduces the work for the Research Objective 5. It presents the scalability and

robustness analysis of the developed statistical regression methods by applying them on a large-

scale high-temporal environmental modelling scenario. The finding of this analysis leads to the

work of the Research Objective 6.
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The thesis concludes in Chapter 6 with the summary of all contributions that the thesis

presents and the list of limitations of the developed statistical regression models. Finally, the

future work is presented in the last section of this chapter.



CHAPTER 2

Literature Review

The aim of this chapter to introduce the existing literature related to the work that will be presen-

ted in this thesis. In the first section (Section 2.1), a general introduction to the air pollution is

presented highlighting the relevant knowledge to understand the air pollution and the problems

introduced by the air pollution. The second section (Section 2.2) focuses on the air pollution

modelling and the existing methods for predicting concentration levels for air pollution model-

ling. It also highlights the recent challenges in the field of air pollution modelling. The following

section (Section 2.3) discusses the statistical regression algorithms in the machine learning field

which can be utilized for a novel statistical regression approach. Finally, the Section 2.4 finalizes

the chapter.

2.1 Air pollution in the urban area
The World Health Organisation (WHO) reported that more than 50% of the human population

lives in cities from 2010 and the urbanization process is increasing. This urbanization process

leads to the large development of cities and managing this development is getting more important

than ever was before. The increased amount of population living in the urban area cause larger

traffic inside the city, but the urbanization process comes with the increased amount of construc-

tions and renovations to improve cities capacity for handling the increased amount of population.

Increased traffic is generating more pollution and also the heavy urbanization process requires

new factories which will also generate more pollution [WHO (2009)].

A very good illustration of the pollution issues in the urban area is the pollution emission

levels in the United Kingdom. According to a report by the Department for Environment, Food

18
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and Rural Affairs (Defra), between 1980 and 2007 car traffic in the United Kingdom increased

from 215 billion to 404 billion vehicle kilometres and the number of cars per UK household from

0.76 to 1.11 [Faulkner & Russell (2010)]. In the past 10 years, the statistics show a very high,

but constant level of traffic volumes on the roads, however, high traffic volumes simple mean

high pollution emission levels on the roads. Fortunately, some technological inventions (e.g. the

catalytic converter) and regulations to develop engines with less emission (e.g. EURO vehicle

emission standards) can help to reduce the emission levels of one vehicle, however, the observed

average pollution levels are still increasing in the urban area [Pilling et al. (2007)].

There are regulations to keep to pollution levels to a certain amount to avoid the health con-

sequences of the exposure of the high pollution levels. These regulations are controlled by the

environmental protection agencies around the world (e.g. the European Environmental Agency

(EEA) is defining the accepted pollution levels for the countries in the European Union).

According to the European Environment Agency [Guerreiro et al. (2013)] and the World

Health Organization [WHO (2009)], one of the most concerning pollutant in the urban area is the

Nitrogen Dioxide (NO2).

Nitrogen dioxide is a reactive gas generated mostly by high-temperature combustion pro-

cesses (e.g. burning fuel in car engines and in power plants). Usually just a small fraction of the

nitrogen oxides emission is NO2, however, studies show that the usage of exhaust after treat-

ment systems and the increased penetration of diesel vehicles increasing this fraction from 5-10

percent to 70 percent [Nova et al. (2007)]. This leads to serious problems in traffic hotspots due

to the fact that public transport is using mostly diesel vehicles. NO2 primarily affects the res-

piration system. Short-term exposure can result in changed lung function, long-term exposure

can result in symptoms of bronchitis in asthmatic children, however, NO2 is highly correlated

with other pollutants, therefore, it is difficult to differentiate the single effect of the NO2 [WHO

(2003)].

There are regulations in place for the nitrogen dioxide concentration levels. In Europe, the

annual average concentration level must be below 40 µgm−3 and the 200 µgm−3 hourly concen-

tration level must not be exceeded 18 times a year. It is the only pollutant which has regulation

to control the hourly concentration level as even short-term exposure to high concentration levels

(200 µgm−3) can result in adverse health effects [Guerreiro et al. (2013)].

The traffic and the industy are the two of the main sources of theNO2 pollutant, however, the

nitrogen dioxide also has a complex chemical lifecycle. Figure 2.1 shows the simplified version

of the chemical lifecycle of the NO2 gas. There are three major chemical processes that control

the concentration of the NO2 in the atmosphere:

NO2 + hv → NO +O• (2.1)

and
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Figure 2.1: NO2 chemical life cycle [Corbitt (1990)]

O• +O2 + V OC → O3 + V OC (2.2)

and

NO +O3 → NO2 +O2, (2.3)

where hv, O•, NO, O2 and V OC represent sunlight, ionized oxygen, nitrogen monoxide,

molecular oxygen and volatile organic compounds, respectively. Equation 2.1 represents the

process when sunlight interacts with the NO2 molecule and decomposes it to NO and ionized

oxygen. Equation 2.2 describes the process when the ionized oxygen and oxygen molecule

forms an ozone molecule using VOC as the catalyst. Equation 2.3 presents the process when

the nitrogen monoxide reacts with ozone and generates nitrogen dioxide and oxygen gas. Figure

2.1 also introduces peroxyacyl nitrates (PANs), nitric acid and other particles as the result of the

nitrogen dioxide transformation process due to nature of the actual volatile organic compounds

acting as catalyst in the process described in Equation 2.2. The complex chemical lifecycle of the

NO2 pollutant makes the prediction of the concentration level of the NO2 challenging because

it is not just emitted from the source and dispersed by the wind, but it is reacting with other gases

in the air.
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2.2 Air pollution modelling
Computational models of air pollution have been in existence for over 80 years [Daly & Zan-

netti (2007); Jerrett et al. (2004)]. Air pollution was modelled in different scales, with different

approaches and using different data sources depending on the geographical and meteorological

properties of the modelled area. Also, the development of the computational power of mod-

ern computers opened the way before new computational intense methods and the application

of large-scale wireless sensor networks created the possibility of new data collection techniques

[Kumar et al. (2015)]. To understand the principles of the air pollution modelling, first, the di-

mension scale of the method needs to be defined. Table 2.1 shows the five dimension categories

defined by [Srivastava & Rao (2011)]. The average dimension of the urban scale is 100x100x5km

with the resolution of 2 kilometres, but this depends on the population density of the given urban

area. The work in this thesis will only consider the urban scale because the recent updates in the

regulations are challenging the models on this spatial level.

Model Typical Domain Scale Typical resolution

Micro scale 200x200x100m 5m
Urban scale 100x100x5km 2km

Regional scale 1000x1000x10km 36km
Continental scale 3000x3000x20km 80km

Global scale 6500x6500x20km 200km

Table 2.1: Dimension scale of air pollution modelling [Srivastava & Rao (2011)]

A large number of different air pollution models were developed in the last couple of decades

for many reasons: different geological locations and different climate conditions require different

approaches, as well as the technology, allows the researchers to be able to run new, models with

higher computational requirements and analyse the output of the models in more efficient ways.

In terms of the urban scale air pollution modelling, the state-of-the-art methods follow the same

principle [Srivastava & Rao (2011)]:

• the models require knowledge about the pollution emission levels and characteristics (e.g.

point or line pollution source)

• the models require information about the weather around the modelling area

• the models use a mathematical model to estimate the concentration levels for the modelling

area based on the emission levels of the pollution sources and the observed weather state

• these models are called air pollution dispersion models, because, the models calculate the

concentration level by dispersing the pollution using these mathematical calculations
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The existing air pollution dispersion models differ from the underlying mathematical model

to calculate the pollution dispersion, but they all require the same input data groups: emission

levels of the pollution sources and weather information for the dispersion [Srivastava & Rao

(2011)].

Emission inventory databases are available for the scientists to provide the emission inform-

ation for the air pollution dispersion models [Gurjar et al. (2008)].

Weather information includes data about the wind speed and direction, temperature and hu-

midity and turbulent fluxes. Table 2.2 contains these factors with the ranking of the importance

considering air quality, urban climatology and urban planning.

Parameter Air Quality Urban Climatology Urban Planning

Wind speed Very important Important Very Important
Wind direction Very important Important Very Important

Temperature, humidity Important Extremely Important Very Important
Turbulent fluxes Very important Very important Very important

Table 2.2: Importance of weather parameter when modelling air pollution [Srivastava & Rao
(2011)]

2.2.1 The state-of-the-art modelling approach

Air pollution dispersion has been studied for decades. One of the most studied technique called

the Gaussian dispersion model [Hosker Jr (1975)]. It was one of the first models developed

to model pollutant dispersion and the popularity of this model is still significant thanks to the

simplicity of the underlying three-dimensional Gaussian distribution calculation. The model

assumes that the pollution distribution is following a three-dimensional Gaussian distribution.

This calculation does not require very complex equation systems or partial differential equations

which means the model can generate output without heavy, computational intense calculations.

Also, the model can handle a large number of pollution sources (as the sources are independent

and can be calculated concurrently) and the model is able to pinpoint these sources [Hosker Jr

(1975)]. Early implementation was only able to model static pollution conditions (for example

average means), but later on, researchers have implemented time-dependent Gaussian dispersion

models [Scire et al. (2000)].

Figure 2.2 shows the calculated air pollutant concentration distribution directed by the wind.

The equation to calculate spatial concentration levels includes wind speed, wind direction, emis-

sion rate and effective stack height (the height of the actual source).

The underlying three dimensional Gaussian distribution equation that drives the model is

defined as:

P (x, y, z) =
Q

2πσz(x)σy(x)
e
− y2

2σ2y

{
e
− (z−H0)2

2σ2z + e
− (z+H0)2

2σ2z

}
, (2.4)
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Figure 2.2: Gaussian air dispersion plume [Hosker Jr (1975)]

where P (x, y, z) is the rate of pollution generated by the source, Q is the emission rate, σz(x)

and σy(x) are the horizontal and vertical standard deviation of the plume, H0 is the height of the

emission source and x, y, z are the distances from the source along the three axis.

In practise, modellers are interested to calculate ground level pollution concentration levels

which can be expressed by the simplifcation of Equation 2.4:

P (x, y, 0) =
Q

πσz(x)σy(x)
e
− y2

2σ2y e
− H2

0
2σ2z . (2.5)

Both equations (Equation 2.4 and Equation 2.5) depends on vertical (σz) and horizontal (σy)

standard deviation. According the empirical experiments by Pasquill [Pasquill (1961)], they can

be calculated with the following equations [Martin (1976)]:

σy(x) = c0 ∗ xc1 , σz(x) = c2 ∗ xc3 + c4, (2.6)

where c0, c1, c2, c3, c4 are constants and they are depending on weather stability classes described

by Table 2.3.

To understand how the different stability classes affect the modelled concentration level spa-

tially, the visualization of the concentration levels by the Gaussian air pollution dispersion model

was generated. Figure 2.3 shows the visualization of a single point pollution source in different

weather stability classes.

In theory, the Gaussian dispersion technique is able to generate accurate hourly pollution
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TABLE 2.3. PARAMETERS FOR HORIZONTAL AND VERTICAL STANDARD DEVIATION CALCULATION [HOSKER JR
(1975)]

Stability class x <1.0km x >1.0km
c0 c1 c2 c3 c4 c2 c3 c4

A: very unstable 213 0.894 440.8 1.041 9.27 459.7 2.094 -9.6
B: unstable 156 0.894 106.6 1.149 3.3 108.2 1.098 2.0
C: slightly unstable 104 0.894 61.0 0.911 0.0 61.0 0.911 0.0
D: neutral 68 0.894 33.2 0.725 -1.7 44.5 0.516 -13.0
E: slightly stable 50.5 0.894 22.8 0.675 -1.3 55.4 0.305 -34.0
F: stable 34 0.894 14.35 0.740 -0.35 62.6 0.180 -48.6

Figure 2.3. Point pollution source dispersion under different stability classes (A,B,C,D)

concentration level predictions, however, this requires close the perfect emission data as well as

close to perfect weather condition data. It is practically impossible to collect close to perfect data

for emission and weather, therefore, scientists use approximate data to feed the models [Hosker Jr

(1975)].

Multiple implementations of the Gaussian dispersion model exist and studies were carried

out to investigate to prediction accuracy and other properties of the implementations Carruth-

ers et al. (1994); Scire et al. (2000). The Atmospheric Dispersion Modelling System (ADMS)

method generates good prediction accuracy for multiple pollutants in the study of [Hanna et al.

(2001)] which study includes the evaluation using multiple datasets. The CALPUFF method

[Levy et al. (2002)] indicates good annual prediction accuracy for multiple pollutants (including

sulphur dioxide, nitrogen oxides, and fine particles) produced by nine power plants. Carruthers

conducted a study about the validation of the ADMS model in London in 2003 [Carruthers et al.

(2003)]. According to the study, the model could reach very good annual concentration level ac-

curacy for NOx which shows that the method is feasible for concentration level prediction as it

has very low computational requirements. Kalhor at el. compared the predictions of AERMOD,

ADMS and ISC3 models for annual PM10 concentration levels in Mobarakeh steel complex,

Iran. They reported good accuracy on the annual average concentration level, but the models are

not sufficient to produce accurate concentration level predictions on higher temporal resolution
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(all three models are overpredicting the measured maximum hourly concentration levels) [Kalhor

& Bajoghli (2017)].

2.2.2 Other air pollution dispersion methods

There are other air pollution dispersion models in the literature which only differ in the under-

lying mathematical calculations. Gokhale and Khare defined 4 groups of air pollution models

[Gokhale & Khare (2004)]:

• Deterministic models: these models are based on mathematical description of the atmo-

spheric processes.

• Numerical models: these models are solving complex mathematical equation systems to

generate concentration level predictions.

• Statistical models: these models are based on semi-empirical statistical relations between

the available data (e.g. meteorological data and pollution concentration levels)

• Statistical distribution models: these models are mathematical models based on probability

distribution functions.

The introduced state-of-the-art air pollution models belong to the deterministic category as

they are drived by the Gaussian mathematical process. The rest of this section is dedicated to the

introduction of the other categories.

2.2.2.1 Numerical air pollution models

The Eulerian and Lagrangian dispersion models and the computational fluid dynamic models are

the most often applied numerical air pollution models.

Eulerian and Lagrangian dispersion models are also well-established air pollution dispersion

models as the first implementation originated in 1980’s. The modelled area is divided into “small

squares” (two-dimensional) or “small volumes” (three-dimensional) like grid cells. It is common

to use equivalent sized cells during the modelling. Using these grid cells, it is possible to create a

large set of mathematical expressions based on the position of each individual cell. These expres-

sions include chemical transformations as well as the movement of different pollutant over the

modelled area. Simulation is based on Eulerian method, where the model is assuming that pollu-

tion in one parcel is moving parallel to the wind direction with the velocity of speed. Simulation

can be executed via forward and backward calculations in time. The main difference between the

Eulerian and the Lagrangian models is that the Lagrangian model uses the Lagrangian method

to calculate the transition between the cells which method supports the variable size of the cells

(not just in terms of size but the shape by transforming the given coordinate space). Figure 2.4

shows an example visualization of the output of the applied Eulerian dispersion model [Reynolds

et al. (1973)].
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Figure 2.4. Visualization of the Eulerian dispersion model [Pedone et al. (2017)]

Multiple implementations of the models exist and there are studies evaluating the accuracy

and other properties of these implementations [Yamartino et al. (1992); Christensen (1997)]. The

CALGRID method [Yamartino et al. (1992)] provides a model with good prediction accuracy

to predict daily ozone concentration level [O’Neill & Lamb (2005)] and the Danish Eulerian

Hemispheric Model (DEHM) model [Christensen (1997)] indicates good prediction accuracy for

sulphur and nitrogen compound concentration level predictions [Hole et al. (2009)]. Oettl con-

ducted a study about Eulerian and Lagrangian dispersion models in 1995 [Oettl et al. (2001)].

This study utilizes the results of a previous measurement campaign near a major road at Eli-

maki in southern Finland, a campaign specifically designed for model evaluation purposes. He

concluded that the models are predicting pollution levels with a small amount of error, but the

calculation itself requires a huge amount of computational time.

Modelling the air pollution dispersion using computational fluid dynamic (CFD) models have

been widely studied due to the fact that modelling the movement of particles in the air can be

similar to the movement of particles in the fluids. It is possible to consider the air pollution

modelling problem as a huge system where the air is flowing in the same sense of the fluids

are flowing in those models except the air has slightly different physical properties [Craig et al.

(1999)].

With the development of computational performance, researchers were able to produce very

computational intense fluid dynamic models which turned out to be useful for modelling not just

fluid dynamics, but air pollution as well. Two mayor representatives of CFD models are FLUENT

[Riddle et al. (2004)] and RANS [Galmarini et al. (2009)]. While the first model is solving the

three dimensional Raynolds averaged equitation, RANS is solving the Reynold Averaged Navier-

Stokes equation. Both of them has an extremely high computational requirement and also it is

hard to validate the output of the models.

Researchers conducted a deep analysis of the CFD method where they analysed the NOx

concentration level in Stockholm using the CFD method. The model could achieve high accur-
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Figure 2.5. The FLUENT model showing a portion of the site layout (a) including the area where details of the
predicted wind field (b) and predicted gas concentration for 1.5 m above the ground (c) are shown [Riddle et al. (2004)]

acy on the hourly level, however, calculation of the prediction requires an enormous amount of

computational power [Gidhagen et al. (2004)].

2.2.2.2 Statistical air pollution models

Statistical air pollution models based on computation models which exploits the semi-empirical

statistical relationship between the available data (e.g. meteorological data) and the air pollution

concentration levels. The models utilize historical observations to build the internal representa-

tion of the extracted knowledge. This internal data then can be used to make predictions based

on any input data given to the model.

The models in this group differ in the way they extract the knowledge from the historical ob-

servations: many different statistical methods have been developed in the past and these methods

generates different

Mueller et al reported good prediction accuracy for average NO2 concentration level predic-

tions on two weeks average time-scale for the Zurich, Switzerland modelling area. They used

the Generalized Additive Models (GAM) to build their statistical model. Their input dataset con-

tains 26 monitoring stations’ observation data and they generated 26 independent model for each

monitoring station data and used the GAM to merge the models into a single prediction model

[Mueller et al. (2015)].

Pohata and Lungu reported good prediction accuracy for NO2 and other pollutant daily av-

erages for the Ploiesti, Romania modelling area. They have used the autoregressive integrated

moving average (ARIMA) method to process the concentration level time-series data and build
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the model. This method analyses the past concentration levels and build a regression model

based on the past time-series observations. This model then can be applied for predicting future

concentration levels [Pohoata & Lungu (2017)].

2.2.2.3 Statistical distribution air pollution models

The statistical distribution based air pollution models utilze mathematical distribution functions

to predict the air pollution conecntration levels. The models exploit the fact that frequency distri-

bution of the pollution concentration levels shows strong relation with the frequency distribution

of windspeed. This allows to model in this category to fit a mathematical distribution function

to the air pollution concentraiton levels and generate concentration level predictions with the

calculated functions.

Lu and Fang proposed a method to fit three theoretical distributions (log-normal, Weibull

and type V Pearson distributions) to estimate the PM10 and PM2.5 pollutant daily average con-

centration levels in the Sha-Lu, Taiwan modelling area. They reported good accuracy for their

method [Lu & Fang (2002)].

Giavis et al. developed a method to calculate the PM10 hourly concentration levels using

lognormal, gamma and Weibull theoretical distributions. They concluded that the lognormal

distribution is the most appropriate method for this prediction task and the Weibull distribution

is inapporopriate for this task [Giavis et al. (2008)].

2.2.3 Urban scale air pollution dispersion models

The importance of urban scale air pollution modelling resulted in a new set air pollution disper-

sion models specifically developed for the urban environment. These models are using the fact

that the majority of the air pollution is generated by the traffic in the urban area and the models

are using traffic data (such as volume, flow speed on roads, compound of the fleet inside the

city) and vehicular emission standards to determine the pollution concentration generated on the

roads. Also, the traditional dispersion methods do not work effectively as the urban geometry

has its own effect on the pollution concentrations [Vardoulakis et al. (2003)]:

• houses and buildings along the roads are creating special turbulences which can lead many

different situations depends on the weather (and mostly on the wind speed and the wind

direction).

The process which has an effect of the concentration levels in the urban street environment

is called as the urban canyons process (or street canyon process) as in some circumstances the

buildings are forming canyons along the roads. One of the most important property for canyons

is the geometry of the buildings and the length (L) of the road segment where aspect ratio (AR)

means the height of the canyon (H) divided by the width (W) of the canyon. It is possible to

classify them based on these properties into the following categories [Hunter et al. (1992)]:

• Wide canyon: AR is less than 0.3
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Figure 2.6. Daily average concentration level paired with the different distributions cumulative probability [Lu & Fang
(2002)]

Figure 2.7. Contour plot of London showing the annual average NO2 and O3 concentrations predicted by
ADMS-Urban for 2010 [McHugh et al. (1997)]
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Figure 2.8. Pollutant dispersion in a regular street canyon [Dabberdt et al. (1973)]

• Regular canyon: AR is approximately 1.0

• Deep canyon: AR is greater than 2.0

• Short canyon: L/H is approximately 3.0

• Medium canyon: L/H is approximately 5.0

• Long canyon: L/H is greater than 7.0

In the terms of weather, the climate in the urban canyons is controlled by the wind, because

the climate depends on the street geometry as the wind can cause alternated pollution dispersion.

The wind can alternate the climate of the street if the perpendicular or near-perpendicular wind

speed is larger than 1.5-2.0 m/s and the difference between the angle of the street and the wind

direction is larger than 30 degree [Vardoulakis et al. (2003)].

Three main dispersion conditions were identified based on these factors [Hunter et al. (1992);

Oke (1988)]:

• Isolated roughness flow: for wide canyons, the space between the buildings is enough for

the wind to enter into this space and pick up and carry over the pollution from the ground

level

• Wake interference flow: for those canyons which are between the wide canyons and regular

canyons, clearing effect of the wind is breaking down because there is not enough space

for the wind to enter and exit to and from the canyon
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Figure 2.9. Perpendicular wind dependant turbulence conditions in canyons [Oke (1988)]

• Skimming flow: in some extreme cases the wind can cause a single vortex in the canyon

which means the pollution is circulating back and cannot escape from the canyon.

The ADMS-Urban model is the extension of the ADMS model which specifically designed

to have good prediction accuracy in the urban area McHugh et al. (1997).

Many studies utilized the ADMS-Urban model to predict the concentration level of different

air pollutants. Righi et al. used the model to predict the concentration level of carbon monoxide

for Ravenna, Italy. They concluded that the achieved accuracy of the model is very good on the

low-temporal level (diurnal), however, the predictions generated by the model was underpredict-

ing slightly the actual concentration level observations [Righi et al. (2009)].

There is also Gaussian air pollution dispersion models specifically developed for predicting

the concentration levels in the urban area. The Operational Street Pollution Model (OSPM)

was designed to cope well with the urban canyon effect. The model was utilized for in many

modelling scenarios [Vardoulakis et al. (2007)].

Kukkonen et al. evaluated the OSPM model in one of the streets of Helsinki. He concluded

that it is possible to utilise the street canyon dispersion model with reasonable accuracy using

modelled urban background pollution and modelled meteorological data for carbon monoxide

concentration level prediction [Kukkonen et al. (2003)].

Rzeszutek et al. evaluated the OSPM model in one of the streets in Krakow, Poland. They

reported good prediction accuracy for PM10 and PM2.5 hourly conceration levels for the mod-
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elling street canyon [Rzeszutek et al. (2018)].

Dezzutti et al evaluated multiple dispersion techniques (including STREET, OSPM, AEOLI-

USF, STREET BOX and SEUS models) to predict hourly NOx concentration levels for one of

the street canyons in Buenos Aires, Argentina. They reported good prediction accuracy using the

SEUS model [Dezzutti et al. (2018)].

2.2.4 Land Use Regression approaches

Briggs et al. [Briggs et al. (1997)] developed an entirely new approach to air pollution mod-

elling. Their approach was considering topographical, geographical and pollution-related (e.g.

traffic emission information) information of the monitoring location and predicted pollution con-

centration levels based on these features using regression algorithm (which gives the name for

these type of models, land use regression models).

The central idea behind the land use regression model is to extract the essential features of the

monitoring station and the surrounding area (the buffer area) which include building numbers,

road length, traffic volumes, buildings’ height, land use and topographical information. Based

on these features, a linear regression model can be trained where each feature have weights

which describe how much contribution can be derived from that single feature (these weights

are learned by the Linear Regression algorithm which configures these weight to reduce the

prediction accuracy). This is quite an important property for the early models, because, with this

method, researchers could rank the features and evaluate their importance related to the observed

pollution concentration levels. This could help them identify the main pollution issues in the

target area [Briggs et al. (1997)].

Land use regression models were developed in the past and evaluation of them was carried

out:

• Cyrys et al. concluded that the land use regression model for Munich could achieve satis-

fying prediction for annual NO2 concentration level predictions [Cyrys et al. (2005)]

• Marshall et al. developed a land use regression model in the Greater Vancouver area and

their evaluation showed good correlation to monitoring data for annual NO and NO2

concentration level predictions [Marshall et al. (2008)]

• Gulliver et al. developed a land use regression model for London with good annual predic-

tion accuracy and they concluded that it is prediction quality is equivalent to prediction of

the existing air pollution dispersion models [Gulliver et al. (2011)]

• Liu at el. developed a land use regression model to predict the annual PM10 and NO2

concentration levels in the Shanghai, China modelling area. They reported good prediction

accuracy by that model [Liu et al. (2016)]
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Figure 2.10. Visualization of the prediction of the Land Use Regression method for annual NO and NO2 concentration
levels [Marshall et al. (2008)]

• De Hoogh et al. created a land use regression model for annual concentration level pre-

dictions for multiple pollutants (including NO2, PM2.5 and O3 for multiple modelling

area in Western Europe. They reported good accuracy for their approach [De Hoogh et al.

(2018)]

• Naughton et al. developed a land use regression model exploiting wind sector based data

for predictingNO2 concentration levels across Ireland. They reported good correlation for

this approach [Naughton et al. (2018)]

• Larkin et al. developed a land use regression model for annual NO2 concentraiton levels

using data from more than 5000 monitoring stations around the world. They validated the

model and concluded that it produced predictions with good correlation to the observations

[Larkin et al. (2017)]

Land use regression models are used only to predict annual and monthly averages because all

the features are insufficient to be able to predict hourly changes in concentration levels.

Hoek et al. indicated that developing Land Use Regression model which can produce predic-

tion with high temporal and spatial resolution is the interest of study [Hoek et al. (2008)].

Isakov et al. indicated that predicting hourly averages of pollutant concentration levels with

the Land Use Regression approach is challenging. They stated that one fundamental problem for

predicting hourly averages of concentration levels was to collect data with the necessary temporal

resolution but they were not considering the regression algorithm prediction capability used for
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the prediction. [Isakov et al. (2012)]

The existing Land Use Regression methods use the Linear Regression statistical regression

algorithm to learn the relationship between the input data (the land use related data) and the

observed concentration pollution levels. The next section introduces the Linear Regression al-

gorithm to understand how it learns from the input data and how the algorithm does generate the

predictions.

Linear regression is a method to create prediction based on the following equation:

ŷ(w, x) = w0 + w1x1 + ...+ wmxm, (2.7)

where ŷ is the prediction for the input feature vector x = {x1, x2, ..., xm}, xi are the features,

w0 called the intercept and wi are the coefficients [Weisberg (2005)].

There are multiple ways to calculate the internal weights, but the most often used method uses

the Ordinary Least Squares optimization where it solves the following mathematical equation

argmin(
∑
∀xi∈X

(ŷi(w, xi)− yi)2), (2.8)

where X = {x1, x2, ..., xn} is the set of the feature vectors of the observations and yi are the

target value for each observation.

Linear regression can only discover linear relations between the target value of the observa-

tion and the features, however, these relations (represented by the coefficients) can be ranked and

described very well if the input data is normalized. This property of the algorithm established

its popularity because researchers could understand the main factors of predictions [Weisberg

(2005)].

To understand how the Land Use Regression method utilizes the Linear Regression algorithm

for the concentration level prediction, Figure 2.11 shows modelling area and the generated con-

centration level prediction equations for a study which applied the model for Vienna [Alam &

McNabola (2015)].

The variables of the equations are described in the following list:

• V1: Major road length in the buffer

• V2: Open space area

• V3: Population density

• V4: Temperature (Celsius)

• V5: Rainfall/precipitation (mm)

• V6: Maximum sustained wind speed (km/h)
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Figure 2.11. The modelling area and the developed Linear Regression equations for daily fine particulate concentration
level predictions [Alam & McNabola (2015)]

The two equations cover different time periods, therefore, the observed concentration levels

and the input data are different.

2.2.5 High-temporal pollution modelling in the urban area

Recent updates in the air quality directives have generated interest in understanding the hourly

concentration level changes of the NO2 air pollution [WHO (2000)].

Air pollution dispersion models and Land Use Regression models have been used to predict

annual concentration level of many pollutants, however, there are only a small number of studies

investigating the high-temporal predictions of these models.

The air pollution dispersion models struggle to make accurate hourly concentration level

predictions because of the uncertainty in the input data [Berkowicz et al. (2008); Owen et al.

(2000); Vardoulakis et al. (2007); Morgenstern et al. (2007)]:

• uncertainty in the vehicle emission inventory data

• uncertainty in the fleet composition data

• uncertainty in the traffic estimation data
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One approach to overcome these uncertainties is to try different modelling scenarios with in-

creased and decreased numbers in different input data (such as increased emission per one vehicle

type or increased number of vehicles) to tune the prediction to get more accurate predictions

to the actual observations [Westmoreland et al. (2007)]. This approach, however, needs expert

knowledge to carefully tune the input parameters which makes it hard to implement for city-wide

modelling application.

The Land Use Regression method gives accurate concentration level predictions at low-

temporal level (e.g. annual and monthly) [Brauer et al. (2003); Briggs et al. (1997); Stedman

et al. (1997); Hochadel et al. (2006)] similarly to the air pollution dispersion models. The method,

however, struggles to make accurate predictions on the high-temporal level because:

• the input data only contains low-temporal data (e.g. the number of buildings within the

buffer area doesn’t change hourly)[Briggs et al. (2000)]

• the Linear Regression algorithm fails to provide an accurate statistical regression model

for the hourly concentration level predictions [Champendal et al. (2014); Sánchez et al.

(2011)]

2.2.6 Evaluation methods

The chapter introduced many air pollution prediction models including application case studies,

however, the chapter only described the models’ accuracy in general. This section of the thesis

is dedicated to introducing the accuracy metrics applied in these studies because reducing the

prediction error (in other words, improving the accuracy) is the main focus of this thesis.

The air pollution models can generate numeric concentration level predictions. These pre-

dictions can be then compared to the concentration level observations. This process defines the

accuracy of the given method. The literature has multiple methods to define the way of calcu-

lating the accuracy, but the following ones are the most frequently applied ones: mean absolute

error (MAE), root mean squared error (RMSE), normalised mean squared error (NMSE),

Pearson correlation coefficient (r), fractional bias (FB), geometric mean bias (MG), geometric

variance (V G), predictions are within a factor of two of observations (FAC2).

2.2.6.1 Mean absolute error

MAE is defined by the following equation:

MAE =
1

n

∑
|yi − ŷi| (2.9)

where n is the number of the observations, yi is the observed target value, ŷi is the prediction

produced by the model. Mean absolute error (MAE) indicates the expected average magnitude

of error for the prediction based on the validation process. It only describes the magnitude of the

error and not the direction. The perfect model (which model would produce exactly the same
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concentration level predictions as the observations) would produce MAE = 0. The zero MAE

accuracy level can be achieved only if the predictions are identical to the observations.

2.2.6.2 Root mean squared error

Root mean squared error (RMSE) is defined by the following equation:

RMSE =

√
1

n

∑
(yi − ŷi)2 (2.10)

.

RMSE tells us the average magnitude of error, but it has a special property because it gives

more penalty for larger errors. Analysing MAE and RMSE gives more information about the

variation of the error. If the difference of RMSE and MAE is low then the variation of the

error is low and the predictions have the same magnitude of the error. The perfect model would

produce RMSE = 0. The zero RMSE accuracy level can be achieved only if the predictions

are identical to the observations.

2.2.6.3 Normalised mean squared error

Normalised mean squared error (NMSE) is defined by the following equation:

NMSE =
1
n

∑
(yi − ŷi)2

1
n

∑
yi ∗ 1

n

∑
ŷi

(2.11)

.

Normalised mean squared error helps to understand the normalized prediction error. The

RMSE andMAE error levels are insensitive to the absolute value of the observations, therefore

the error contribution of a single prediction-observation pair is independent of the observation

value itself. The prediction of 101 µgm−3 when the observation is 100 µgm−3 contributes

with the same level as the prediction of 11 µgm−3 in the case of observation of 10 µgm−3 for

the RMSE and MAE accuracy levels. The first case only has 1 percent error, but the second

case has 10 percent error. To overcome this issue, NMSE uses the normalized error to the

observation and summarizes it. When two models need to be compared, combining the NMSE

with MAE or RMSE gives a nice understanding of how to two models introduce errors on the

different scale of the observation range (e.g. if the RMSE levels are the same, but the NMSE

shows lower value, then that implies that we have less error in the lower end of the observation

range). The perfect model would give the NMSE = 1 level and only the matching prediction-

observation pairs can achieve this level.

2.2.6.4 Correlation coefficient

Pearson correlation coefficient is defined by the following equation:

r =
cov(X,Y )

σXσY
, (2.12)



38 Literature Review Chapter 2

where cov(X,Y ) is the covariance of the X and Y and the σ is the standard deviation.

It expresses the strength of the linear correlation between the two variables. If it is close to

+1 or −1 then there is a strong linear relationship between them. In general, prediction with

higher r value has the better approximation of the observations.

2.2.6.5 Fractional bias

Fractional bias (FB) is defined by the following equation:

FB =
1
n

∑
yi − 1

n

∑
ŷi

2 ∗ ( 1n
∑
yi +

1
n

∑
ŷi)

(2.13)

.

Fractional bias expresses the average direction of the predictions against the observations.

The model is overpredicting if the FB is greater less than zero, otherwise, the model is un-

derpredicting. Fractional bias helps to understand the general prediction quality and gives a

clear explanation of the predictions relative to the observations. The perfect model would give

FB = 0, however, this value can be achieved by having non-matching prediction-observation

pairs as the errors can cancel out and result in zero FB value.

2.2.6.6 Geometric mean bias

Geometric mean bias (MG) is defined by the following equation:

MG = exp(
1

n

∑
ln(yi)−

1

n

∑
ln(ŷi)) (2.14)

.

The geometric mean bias represents the bias of the prediction to the observations, similarly

to the fractional bias (FB). It is less sensitive to the outliers compare to the fractional bias due

to the fact of the geometric nature. The perfect model would give MG = 1, however, this can be

achieved by having non-matching prediction-observation pairs as the errors can cancel out and

result in MG = 1 level.

2.2.6.7 Geometric variance

Geometric variance (V G) is defined by the following equation:

V G = exp[
1

n

∑
(ln(yi)− ln(ŷi))2] (2.15)

.

Geometric variance helps to understand the error level variance. Low values represent predic-

tions that have consistent error levels and high values correspond to the large variation of the er-

ror levels. The perfect model would give V G = 1 and only the matching prediction-observation

pairs can achieve this level.
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2.2.6.8 Predictions are within a factor of two of observations

Predictions are within a factor of two of observations (FAC2) is defined by the following equa-

tion:

FAC2 =
1

n

∑1, if 0.5 ≤ ŷi
yi
≤ 2.0

0, otherwise
(2.16)

.

This method gives an easily interpretable result of the prediction-observation data. The per-

fect model would give FAC2 = 1, however, this level doesn’t represent the perfect observation-

prediction match as the predictions only require to be a certain range of the observations.

2.2.6.9 Definition of the good air pollution model

Hanna and Chang have reported the definition of the good air pollution model in 2004 [Chang &

Hanna (2004)]. They defined the good model using the following criteria:

• The fraction of model predictions within a factor of two of observations is about 50 percent

(FAC2 > 0.5)

• The mean bias is within ±30 percent of the mean (0.7 ≤MG ≤ 1.3)

• The random scatter is about a factor of two of the mean (V G < 2)

The study analysed multiple case studies (e.g. [Allwine et al. (2002); Britter & Hanna (2003);

Hanna et al. (2003)]) and selected these criteria based on the models produced the most accurate

predictions by the accuracy metrics they have in common. The authors also stated that these

criteria levels need to be revised for new model evaluation exercises.

They have revised their first paper in [Hanna & Chang (2012)], however, the update con-

tains weaker criterias for urban air pollution models, because the investigated field studies [All-

wine et al. (2002); Allwine & Flaherty (2006); Watson et al. (2005); Allwine & Flaherty (2007)]

demonstrated less accurate prediction results:

• The fraction of model predictions within a factor of two of observations is about 50 percent

(FAC2 > 0.3)

• The mean bias is within ±67 percent of the mean (0.33 ≤MG ≤ 1.67)

• The random scatter is about a factor of three of the mean (V G < 3)

2.2.6.10 Summary of the evaluation methods

The introduced air pollution modelling studies have used various accuracy evaluation metrics.

Table 2.4 shows the summary of the applied accuracy evaluation method including the air pollu-

tion model category developed in the studies.



Literature Model Temporal level RMSE MAE NMSE R FB MG VG FAC2

Hanna et al. (2001) Deterministic Daily X X X X X
Levy et al. (2002) Deterministic Annual X

Carruthers et al. (2003) Deterministic Annual X X X X
Kalhor & Bajoghli (2017) Deterministic Annual X X X

Righi et al. (2009) Deterministic Annual X X X X
Vardoulakis et al. (2007) Deterministic Daily X X X X
Kukkonen et al. (2003) Deterministic Hourly X X
Rzeszutek et al. (2018) Deterministic Annual X X X X
Dezzutti et al. (2018) Deterministic Hourly X X X

Berkowicz et al. (2008) Deterministic Monthly X
Owen et al. (2000) Determinitic Hourly X
Christensen (1997) Numeric Weekly X

O’Neill & Lamb (2005) Numeric Hourly X X
Oettl et al. (2001) Numeric Hourly X X X X

Gidhagen et al. (2004) Numeric Hourly X
Mueller et al. (2015) Statistical Annual X X

Pohoata & Lungu (2017) Statistical Daily X
Briggs et al. (1997) Statistical Annual X X
Cyrys et al. (2005) Statistical Annual X X

Marshall et al. (2008) Statistical Annual X X
Gulliver et al. (2011) Statistical Annual X X

Liu et al. (2016) Statistical Annaul X
De Hoogh et al. (2018) Statistical Annual X X X
Naughton et al. (2018) Statistical Annaul X

Larkin et al. (2017) Statistical Annual X X X
Lu & Fang (2002) Statistical distribution Hourly X
Giavis et al. (2008) Statistical distribution Hourly X X

Table 2.4. Summary of the applied accuracy evaluation techniques in the literature
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2.3 Advanced statistical regression algorithms
The last section of the chapter introduces statistical regression algorithms from the machine learn-

ing field which algorithms can be the surrogate statistical regression algorithm for the Linear

Regression to increase the overall prediction accuracy for the Land Use Regression approach for

hourly concentration level predictions. The decision to which algorithm to include to this list

was based on previous studies where algorithms were solving similar environmental prediction

problems with better prediction accuracy (e.g. Neural Network Regression or Decision Tree Re-

gression methods, Random Forest Regression [Champendal et al. (2014); Sánchez et al. (2011)])

or algorithms were successfully applied to non-linear regression tasks (e.g. Nearest Neighbour

Regression, Support Vector Regression [Gardner & Dorling (1999); Tso & Yau (2007)]).

The section will also demonstrate that these algorithms can solve the challenging non-linear

concentration level prediction task by applying the algorithms to a very simple prediction ex-

ample. This example is based on [Sánchez et al. (2011)], where the authors discussed the intra-

day variation of the NO2 pollution concentration level. The example uses the simplified version

of this data (Figure 2.12), which only contains one independent variable (hour of the day) and

one dependent variable (pollution level concentration) only. This simple data helps to demon-

strate to the problem of the non-linear regression prediction task. This data will be feed into

the algorithms and the algorithms will be applied to the same data to see how the algorithms

can solve this simplified problem. Figure 2.12 also shows that the Linear Regression algorithm

struggles to make accurate predictions even in this simplified example because it can only fit a

single line to the observation and it is not sufficient for non-linear regression problem such as

pollution concentration level predictions.

2.3.1 Nearest neighbour regression

Nearest neighbour regression is a simple algorithm which uses the whole train dataset to find

the k closest observations to the record which needs a prediction. The parameter k defines the

number of closest neighbours for the method (e.g. k = 1 means that the method will consider the

closest neighbour, while k = 3 means that the method will find the three closest neighbours and

use them to make the prediction). The prediction ŷ is calculated based on the closest neighbours

observation y values by averaging them. The distance is defined by an equation and which

distance is expressed by the Minkowski distance function:

(d(xi, xj) = (

m∑
k=1

|xi,k − xj,k|p)p
−1

, (2.17)

where xi, xj are feature vectors) which can be used to express other distance functions (Manhat-

tan (p = 1), Euclidean (p = 2)) by simply changing the p parameter. The k parameter defines

the number of neighbours for the model [Altman (1992)].
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Figure 2.12. Simplified example data for the non-linear regression task (left) and the predictions on this example by the
Linear Regression algorithm (right)

Figure 2.13. Predictions by the nearest neighbour regression algorithm on the example dataset
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Figure 2.14. Visualization of an example neural network neuron structur [Wang et al. (2011)]

Figure 2.13 shows the predictions by the algorithm on the example dataset. It shows steps

in the predictions as the input dataset only contains discrete measurements for every hour. The

figure shows that the algorithm does not struggle to solve the non-linear regression task as the

prediction is generated by using the closest neighbour (the data point itself in this case) from the

input dataset.

2.3.2 Artificial neural network regression

Artificial neural network regression follows the idea of a cell located in brains called the neur-

ones. This cell has one output and many input connections and it creates an output signal (called

activation) if the signals from the inputs are strong enough. In theory, the brain is just a huge

network of neurons therefore, it is possible to create an artificial brain having a large number of

artificial neurons connected through as a weighted graph [Rumelhart et al. (1986)].

The artificial representation of the neuron is a node which has weights for each input and

simulates the activation process by having an activation function (φ(
∑
wiai) where ai is the ac-

tivation output of a node from the previous layer andwi is the corresponding weight). Figure 2.14

shows the connected layers of neurons. Neurons often have two types of different implementa-

tions depending their activation functions: linear (φ(x) = x) and sigmoid (φ(x) = 1
1+exp(−x) ).

Figure 2.15 shows the predictions by the algorithm on the example dataset. The predictions

are correlating well with the observations as the internal structure of the neural network contains

weights which allow the algorithm to produce non-linear predictions.
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Figure 2.15. Predictions by the artificial neural network regression algorithm on the example dataset

2.3.3 Support machine vector regression

The support vector machine regression creates a hyperplane or a set of hyperplanes to separate the

multi-dimensional input space. This hyperplane is calculated to have the largest margin between

the target feature’s minimum and maximum value since in general, the mathematical function

(which describes the hyperplane) which has the largest margin will have the best approximation

for the prediction target feature. A quadratic mathematical problem can be formulated to find

the best function which problem has an interesting property: it uses a kernel function to distort

the input features value space (for example the kernel can be linear, polynomial, gaussian, radial

basis function (rbf), etc.). This quadratic mathematical problem contains the penalty parameter

(C) for the wrong predictions and the problem maximizes the margin (ε) for the hyperplanes

(Figure 2.16). With custom kernel functions, non-linear problems can be predicted well with the

support vector machine regression [Smola & Schölkopf (2004)].

Figure 2.17 shows the predictions by the algorithm on the example dataset. The internal

kernel used by the algorithm is able to distort the feature input space (in this example, the hour

of the day data) to generate a mathematical function which fits the observed concentration level

through the day.

2.3.4 Decision tree regression

Decision tree regression is a decision tree induction based regression technique where tree induc-

tion algorithms create a decision tree and every leaf of this tree contains a prediction value and

every other internal node has decision criteria (for example x4 < 0.5). The decision tree is built
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Figure 2.16. Example of the input space transformation for the SVR method to minimalise the margin [Vapnik (2013)]

Figure 2.17. Predictions by the support vector machine regression algorithm on the example dataset
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Figure 2.18. Example decision tree for statistical regression prediction [Tso & Yau (2007)]

to have the best fit for the training dataset and every prediction starts at the root, evaluates it, then

decides to take the left or right children (if it is a binary decision tree) then evaluate all the internal

node until it ends at a leaf node where there is a prediction value. Figure 2.18 shows an example

of the decision tree regression model. There are many different tree induction algorithms in the

literature where the algorithms terminate the tree induction process based on different criteria

(e.g. depth of the tree or number of the observations in each node). Early termination of the

tree induction process helps to avoid the overfitting to the given data and it helps to increase the

generalization of the generated statistical regression model [Quinlan (2014)].

Figure 2.19 shows the predictions by the algorithm on the example dataset. The internal tree

structure is able to predict the concentration levels with good correlation, however, it is only able

to predict in steps as the input dataset only contains observations for discrete hours.

2.3.5 Random forest regression

Random forest regression is an ensemble method based on the decision tree regression. Instead

of training one large decision tree for the regression, it follows the idea of the ensemble methods

where the algorithms train models on the different random subsets of the train data (in terms of

observations as well as features) and rank the created sub-models on the efficiency based on the

other part of the training data (Figure 2.20). With this procedure, the method can randomly pick

up an interesting part of the data and have a large number of efficient sub-models. The prediction

is based on a voting procedure, where each sub-model has a vote (basically generates a predic-

tion) and based on the average of the individual predictions, the final prediction is calculated

[Breiman (2001)].

Figure 2.21 shows the predictions by the algorithm on the example dataset. The algorithm
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Figure 2.19. Predictions by the decision tree regression algorithm on the example dataset

Figure 2.20. Example of the Random Forest Regression method [Verikas et al. (2016)]
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Figure 2.21. Predictions by the random forest regression algorithm on the example dataset

generates predictions with good correlation, however, it struggles to make very accurate predic-

tions on this simple example because the available data is very small and the algorithm requires

larger dataset to be able to exploit the prediction power of multiple decision trees.

2.4 Summary
In this chapter, the literature survey of the air pollution modelling has been presented. The sur-

vey introduced the problem caused by air pollution in the urban area including the description

of the most concerning air pollutant, the nitrogen dioxide. This section includes important in-

formation for the rest of the thesis because the focus of this thesis is the high-temporal NO2

pollutant concentration level modelling. Next, the chapter reviewed the current methods in the

field of air pollution modelling including the state-of-the-art air pollution dispersion methods.

This section introduced the existing methods for the pollution modelling which will provide the

baseline predictions for the later comparisons. Then, the review of the Land Use Regression

approach has been presented. The challenges of the high-temporal air pollution modelling are

described in terms of the state-of-the-art air pollution dispersion and existing Land Use Regres-

sion approaches. This helps to form the experiments for the next chapter.

The literature reviewed in this chapter does not make it clear what is the prediction accuracy

of the existing methods for high-temporal air pollution modelling. The next chapter will look into

the investigation of the prediction accuracy of the existing methods and also the development of

an accurate Land Use Regression model for hourly concentration level prediction.



CHAPTER 3

Statistical Regression approach for high-temporal

environmental predictions

This chapter presents the empirical study to develop a statistical regression approach for hourly

NO2 concentration level predictions with comparable high-level accuracy rate to the current

state-of-the-art air pollution dispersion models. The first step of this development is to establish

an evaluation framework which supports the comparison of the different approaches. Using

this evaluation framework, it is possible to compare the high-temporal prediction accuracy of

state-of-the-art air pollution dispersion model and the existing Land Use Regression approach

and experiment with the advanced machine learning regression techniques. Moreover, it allows

determining the most accurate advanced machine learning technique for this given regression

task. This information is a contribution to the Environmental Science field, because it gives a

guideline on which existing model to use for the urban scale hourly NO2 concentration level

predictions to get the most accurate predictions.

In the first section (Section 3.1), the motivation of this work is explained which introduces the

problem domain and reviews the relevant literature for the work described in this chapter. The

application of a state-of-the-art air pollution dispersion model is then described along with the

necessary dataset to generate the concentration level predictions (Section 3.2). This prediction

output provides the necessary baseline for the models introduced in the rest of the chapter. The

following section (Section 3.3) introduces the application of the existing standard Land Use Re-

gression technique to the same area and discusses the difficulties of such a regression task. The

fourth section of this chapter (Section 3.4) covers the application of different computationally

intense regression methods including the hyperparameter tuning of these techniques to achieve

49



50 Statistical Regression approach Chapter 3

the best possible high-level prediction accuracy level. This section also compares the prediction

output of the most accurate method with the prediction output of the state-of-the-art air pollution

dispersion model. Finally, the Section 3.6 finalizes the chapter.

3.1 Motivation
The current state-of-the-art air pollution dispersion technique was developed to predict concen-

tration levels (not just NO2 but every type of air pollutants such as Particulate Matter (PM),

Sulphur Dioxide (SO2), etc.) on low-temporal resolution (e.g. annual or monthly) to under-

stand the average exposure of a particular pollutant in the modelling area. Studies [Stocker et al.

(2012); Namdeo et al. (2002); Berkowicz (2000); Cimorelli et al. (2005)] show that the imple-

mentations of this approach (e.g. ADMS [Carruthers et al. (1994)], OSPM [Vardoulakis et al.

(2007)] predict annual and monthly concentration levels sufficiently accurately to carry out the

required exposure analysis.

The air pollution dispersion models, however, struggle to make accurate hourly concentration

level predictions because of the uncertainty in the input data [Berkowicz et al. (2008); Owen et al.

(2000); Vardoulakis et al. (2007); Morgenstern et al. (2007)]:

• uncertainty in the vehicle emission inventory data

• uncertainty in the fleet composition data

• uncertainty in the traffic estimation data

One approach to overcome these uncertainties is to try different modelling scenarios with in-

creased and decreased numbers in different input data (such as increased emission per one vehicle

type or increased number of vehicles) to tune the prediction to get more accurate predictions

to the actual observations [Westmoreland et al. (2007)]. This approach, however, needs expert

knowledge to carefully tune the input parameters which makes it hard to implement for city-wide

modelling application.

There is an orthogonal modelling approach to the air pollution dispersion models for envir-

onmental concentration level predictions. The approach uses historical observations to build a

statistical regression model and applies this model to generate concentration level predictions.

The core idea of this statistical regression approaches [Briggs et al. (2000)] is to extract informa-

tion around the monitoring station (a rectangular shaped area called the buffer area) and use this

data to predict the concentration levels as a regression task. The data extracted from the buffer

area doesn’t include the uncertain data (e.g. vehicle emission inventory data or fleet composi-

tion data) used by the air pollution dispersion models which gives the advantage to avoid using

these input data. The Land Use Regression (LUR) method is the most popular implementation

of this approach [Brauer et al. (2003); Briggs et al. (1997); Stedman et al. (1997); Hochadel et al.

(2006)] where only land use related data used to train a Linear Regression algorithm. Using the
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Linear Regression algorithm is beneficial as it produces a statistical regression model which can

be interpreted easily (as the weights of each input feature explain the importance of the feature

to the concentration level).

The LUR method gives accurate concentration level predictions at low-temporal level (e.g.

annual and monthly) [Brauer et al. (2003); Briggs et al. (1997); Stedman et al. (1997); Hochadel

et al. (2006)] similarly to the air pollution dispersion models. The method, however, struggles to

make accurate predictions on the high-temporal level because:

• the input data only contains low-temporal data (e.g. the number of buildings within the

buffer area doesn’t change hourly)[Briggs et al. (2000)]

• the Linear Regression algorithm fails to provide an accurate statistical regression model

for the hourly concentration level predictions [Champendal et al. (2014); Sánchez et al.

(2011)]

The first point can be solved by adding high-temporal input data (e.g. weather data) to the

existing land use input data. This helps the underlying statistical regression algorithm to have the

required input data to discover the hidden relationship of the input data and the observer hourly

NO2 concentration levels. This addition, however, makes the regression problem complex as the

input data now has a mix of low-temporal and high-temporal input data. Studies [Champendal

et al. (2014); Sánchez et al. (2011)] indicate that the Linear Regression algorithm struggles to

make accurate hourly concentration level prediction using this complex input data. There are,

however, other statistical regression methods (e.g. Neural Network Regression or Support Vec-

tor Regression) as the advances in the machine learning field produced many different statistical

regression algorithms recently [Gardner & Dorling (1999); Sánchez et al. (2011); Tso & Yau

(2007); Champendal et al. (2014)]. Complex regression problems can be solved with these meth-

ods as they can extract the hidden relationship of the input data and the regression prediction

target using their computationally intense internal structure. These methods differ from the Lin-

ear Regression algorithm as they require a certain level of tuning the make predictions sensibly

as well as these methods require more computation to be able to make predictions.

The main goal of this chapter is to develop a statistical regression model capable of accurately

predicting the hourly NO2 concentration levels. Such a model would not rely on the uncertain

data (e.g. vehicle emission inventory data) used by the state-of-the-art air pollution dispersion

models and it would provide at least the same prediction accuracy level as the air pollution

dispersion models (which is not possible with the existing LUR models). To achieve this goal,

the following tasks have to be carried out:

• apply the air pollution dispersion model to generate prediction result. This result provides

a baseline for further accuracy comparison.
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Figure 3.1. Geographical map of York with the monitoring station locations (red stars)

• apply the existing LUR approach. This application provides predictions to validate the

outcome of the existing studies

• tune and apply other statistical regression approaches and compare the accuracy with previ-

ous model applications. This step provides an understanding of which algorithm provides

the most accurate predictions on the hourly NO2 concentration levels

3.2 Application of the Operational Street Pollution Model
The application of an air pollution dispersion model creates the baseline for further model com-

parison. Operational Street Pollution Model (OSPM) air pollution dispersion model was selected

as it produces hourlyNO2 predictions with the same accuracy as the state-of-the-art Atmospheric

Dispersion Modelling System (ADMS) air pollution dispersion model, but it is free to use for re-

search purposes [Vardoulakis et al. (2007)]. Using the OSPM method helps to generate research

materials which are reproducible and can be verified by other researchers easily. The WinOSPM

5.1.90 software contains the OSPM model including tools to convert the required data to the

correct format.

To carry out the model application, York has been selected for the modelling scenario (Figure

3.1).

3.2.1 Input data requirement

The software requires the following data to make hourly NO2 predictions and evaluate the pre-

diction accuracy:

• Geographical information for the monitoring stations
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Figure 3.2. The WinOSPM representation (left) and the map (right) of the Fishergate monitoring station

• Traffic volume data

• Emission inventory database

• Meteorological data

• Background pollution data

• Monitoring (observation) data (required to carry out the evaluation of the generated pre-

dictions)

Geographical information for the monitoring stations The WinOSPM software requires

the user to input the geographical data of the surroundings of the modelled receptor position

which receptor position defines the prediction target location for the dispersion model (therefore

the model is going to generate concentration level prediction at this specific location). This

surrounding data includes the width and the orientation of the street canyon and the height and

position of the buildings alongside the street. To calculate these data, building data from the

Ordnance Survey’s 2009 version of MastermapTM Topography layer was acquired. This layer

gives spatial information (e.g. geometry, surface area, etc.) about buildings within the area of

interest. Figure 3.2 shows the WinOSPM representation of the surrounding of the Fishergate

monitoring station.

Traffic volume data Traffic data was provided by the City of York Council’s Transportation

Managment Group where they developed a complete city scale traffic model. This model contains

predicted average traffic volumes for each road including car, light goods vehicle (LGV) and

heavy goods vehicle (HGV) counts. The dataset contains three time periods (morning peak

period (from 7 AM to 9 AM), inter-period (from 10 AM to 4 PM), afternoon peak period (from 5
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Figure 3.3. Hourly NO2 observation data in York from its 7 monitoring stations that covers the time period between 1st
January 2013 and 31st December 2013. The red line in the figure represents the median value of the available

observations.

PM to 8 PM)) and it contains an hourly average traffic volume for each time periods. This dataset

provides the geographical layout of the road network in York including the lane numbers and lane

directions. The closest roads for each monitoring station have been selected and converted the

traffic data into the right format.

Emission inventory database The National Atmospheric Emission Inventory group (http:

//naei.beis.gov.uk/) maintains the UK Vehicle Emission Inventory database which con-

tains the required emission information for the air pollution dispersion model (e.g. petrol and

diesel cars average emission data calculated for multiple years).

Meteorological data Meteorological data from the Weather Underground database (https:

//www.wunderground.com/weather/api/) has been acquired by using its API to down-

load data. This database contains hourly average observations for cities and includes temperat-

ure, relative humidity, wind speed, wind direction, and pressure measurements. The relevant

York dataset has been collected using this API. Unfortunately, this dataset does not contain solar

radiation data.

Monitoring (observation) data The City of York Council (CYC) operates a network of high

precision (chemiluminescence-based) instruments in York to monitor the air quality. Monitoring

data from 7 roadside stations and 1 background station have been acquired which covers the time

period between 1st January 2013 and 31st December 2013. Figure 3.3 shows a boxplot of the

observations produced by each station. These readings are considered to be as low pollution

levels as the higher percentile of observation data is below 55 ug/m3. Also, the observations at

each station do not differ very much as the pollution levels are low in the most cases.

3.2.2 Accuracy evaluation of the OSPM model

Figure 3.4 shows the prediction output of the applied OSPM model. It contains 55859 NO2

hourly concentration predictions resulting in 18.49 µgm−3 RMSE and 13.93 µgm−3 MAE high-

http://naei.beis.gov.uk/
http://naei.beis.gov.uk/
https://www.wunderground.com/weather/api/
https://www.wunderground.com/weather/api/
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level accuracy levels. The predictions also have 0.53 NMSE, 0.69 R, 0.46 FB, 1.71 MG, 1.99 VG

and 0.61 FAC2 levels. According to [Chang & Hanna (2004)], this model does not achieve the

good model classification, because the MG level is exceeding the 30 percent acceptance limit,

however the model meets the other criterias. The model fails to make accurate predictions at the

time of high concentration levels which is in line with other studies findings such as [Berkowicz

et al. (2008); Owen et al. (2000); Vardoulakis et al. (2007); Morgenstern et al. (2007)]. Accord-

ing to these studies, the main reason is the uncertainty in the underlying datasets (e.g. vehicle

emission inventory database, estimated fleet composition, estimated traffic volumes). To further

validate the result of this model application, this OSPM predictions result was compared at the

Gillygate station with the result of [Westmoreland et al. (2007)] study. The comparison indicates

19.32 µgm−3 RMSE error level for the OSPM model which is similar to the 18.5 µgm−3 (9.6

ppb) reported RMSE level in the paper. They have not used the definition of the good model

([Chang & Hanna (2004)]) to classify their model, however, they have done an extensive sens-

itivity analysis on the input dataset to understand how to change the input dataset to get more

accurate predictions.

3.3 Application of the standard Land Use Regression approaches
In the literature, there is an orthogonal approach to the air pollution dispersion modelling tech-

nique to generate concentration level predictions where a statistical regression model is trained

based on the historical observations. The core idea of the statistical regression approaches [Briggs

et al. (2000)] is to extract information around the monitoring station (a rectangular shaped area

called the buffer area) and use this data to predict the concentration levels as a regression task.

This regression task can discover the relationship between the input and the target data (in this

case the concentration levels) and it does not need to use uncertain datasets (e.g. emission in-

ventory data). The standard implementation of the Land Use Regression technique described

in [Brauer et al. (2003); Briggs et al. (1997); Stedman et al. (1997); Hochadel et al. (2006)]

was developed. This implementation includes the application of the hyperparameter-free Linear

Regression regression algorithm and the usage of the following data sources:

• Monitoring data: using the hourly NO2 concentration levels is essential for any prediction

model as this provides readings of the pollution levels and this data provides the target data

for the regression models

• Land use data: an example of this category is the area of green space within the specific

area. The high proportion of the green area indicates low pollution level (clean air) in

general as there is not much built-up area within the given area

• Building data: an example of this data category is the number of buildings which cor-

responds to the number of people living in the specific area. If we have high number of



56 Statistical Regression approach Chapter 3

buildings in one area then that can cause increased pollution levels (e.g. they commute

every day by cars or they visit businesses in the area by car)

• Road data: an example of this category is the length of the road within the area. If there

is large number of roads presented in one area that give the chance for heavy traffic during

the commute hours, therefore, the pollution level can be high in this area

• Traffic data: one of the primary sources of the NO2 pollutant is the vehicle emission,

therefore, the data describes the amount of the cars and lorries within the given area would

be an important information for any pollution model

• Meteorological data: distribution of the NO2 pollutant is highly depending on the current

weather circumstances. Strong wind can flush out all the pollution from the streets quickly

if the direction is optimal (for a given street geometry) as well as strong wind can close

down a street blocking the pollution to escape and allowing the pollution to slowly build

up. Also, the pollution concentration level can decrease if it is raining as it will clear out

the air from the pollutants as well as clouds during the rain can decrease the solar radiation

which decreases the formation of NO2 from other compounds in the air. Also, rain helps

to decrease the NO2 concentration levels because it flushes the pollution out of the air.

• Time related data: the regression model can have benefit having time related data for train-

ing such as hour of the day or month of the year as it can discover certain high-level

processes purely from the data (e.g. summer months where schools runs do not happen

therefore the pollution level can be lower in general comapred to the school periods)

To carry out the model application, York has been selected for the modelling scenario (Figure

3.1).

All the input data needs to be first converted to tabular format. The converted data then can be

feed into the statistical regression algorithm to generate a regression model. This model contains

all the internal information to generate the concentration level predictions.

3.3.1 Input data

The same data sources has been used as for the air pollution dispersion model application, how-

ever different data preprocessing was necessary to extract the data for the regression task. Also,

further data sources similarly to [Hochadel et al. (2006); Stedman et al. (1997); Briggs et al.

(1997)] were introduced as these studies provide a guideline on data used in previous studies.

The standard 100 meter rectangular shape buffer area was selected similarly to [Gilbert et al.

(2005); Morgenstern et al. (2007)].

Monitoring data The target of the regression task is to predict the hourlyNO2 concentration

levels. The same dataset as in Section 3.2 was used which dataset is maintained by the City
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Figure 3.4. Hourly prediction and observation scatter graph for the OSPM model

of York Council’s Air Management Group. This guarantees the fairness for model prediction

accuracy comparison.

Land use data One of the most often used data source is the land use data for the Land Use

Regression models [Briggs et al. (1997); Stedman et al. (1997); Sahsuvaroglu et al. (2006)]. Land

use data has been collected using the Open Street Map database. The available data describes

the areas (in polygons format) usage scenarios (e.g. leisure, green areas, farm, etc.). The fol-

lowing data for each buffer area (around the monitoring stations) were extracted: “landuse area”

and “leisure area” which are proportional area measurements of the specific subcategory of the

polygons to the buffer area in the database.

Building data The Ordnance Survey’s 2009 version of MastermapTM Topography layer data

was used (similarly to the previous air pollution dispersion model application) to obtain building

information for buffer area of each station. This layer gives spatial information (e.g. geometry,

surface area, etc.) about buildings within the area of interest. This database has been processed

and the number of the buildings and area of the buildings covered by each buffer area generated

the “buildings” and “buildings area” features.

Road and traffic data The same traffic data has been used as in the previous model ap-

plication. However, two different types of data from this data source have been extracted. The

first one only covers static (in time) information such as the length of all roads within the buffer

area (“road length”) as well as the calculated “road length” scaled to the roads’ lane number

(“road lane length”). The second type is the representation of the traffic amount appears within

the buffer area. The roads within the buffer area were selected, then the traffic volume informa-
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Feature Unit Source Data group

no2 level µgm−3 CYC -
road length meter Open Street Map R

road lane length meter Open Street Map R
buildings - OS Mastermap B

buildings area area OS Mastermap B
landuse area area Open Street Map L
leisure area area Open Street Map L
traffic car vehicle*meter/hour CYC V
traffic lgv vehicle*meter/hour CYC V
traffic hgv vehicle*meter/hour CYC V

wind direction degree (angle) Weather Underground W
wind speed m/s Weather Underground W
temperature celsius degree Weather Underground W

rain indicator Weather Underground W
pressure hPa Weather Underground W

hour - Generated T
day of week - Generated T

month - Generated T
bank holiday indicator Generated T

race day indicator Generated T

Table 3.1. Summary of the collected data

tion from the traffic model was calculated to generate the “traffic car”, “traffic lgv”, “traffic hgv”

information for each time periods (morning peak period (from 7 AM to 9 AM), inter-period (from

10 AM to 4 PM), afternoon peak period (from 5 PM to 8 PM)) available in the traffic model.

Meteorological data The same weather information data was used as in the previous model

application. This data includes temperature, relative humidity, wind speed, wind direction, and

pressure measurements.

Time related data Time-related indicators (e.g. hour of the day, day of the week, bank

holiday, etc.) for the statistical regression model are important because the regression models

can use this information to discover temporal patterns in the input data. Some York specific

event indicator was included such as event (e.g. York horse races when tens of thousands of

visitors come to the city leading to significantly higher traffic volumes than the normal at the

certain time of day) indicator which affects the traffic pattern in the whole city.

Figure 3.5 shows the surroundings and the buffer area of the Fishergate station. This buffer

area is a 100-meter wide rectangular area. This buffer area contains 31 buildings which are

covering 50.11% of the buffer area. Also, the area contains 248 meters of road (464 single lane
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Figure 3.5. Buffer area of the Fishergate monitoring station

meters). This buffer area does not contain any leisure nor landuse polygons. Table 3.1 contains

the summary of the data prepared for the land use regression task.

3.3.2 Evaluation methodology of the statistical regression methods

A validation framework was implemented to determine the general accuracy of the standard LUR

model. This framework consists the state-of-the-art location based leave one out cross validation

(LOOCV) similarly to [Briggs et al. (2000); Cyrys et al. (2005); Marshall et al. (2008)]. This

framework is an iteration based validation technique where one station data was left out from

the regression training phase to build the model and the model is applied to that station data

to generate predictions. Evaluation of the predictions and the observations is possible with this

framework by calculating the error levels for each iteration. Using this approach helps to under-

stand the average error level of the application of the method to a wider area as the framework

provides an understanding of the error level of applying the model to an unknown (at least to

an unknown area to the model) area. This validation framework is implemented using the scikit

learn library [Pedregosa et al. (2011)] which contains extensively tested implementation of a

large set of machine learning algorithm including regression algorithms as well as others.

3.3.3 Accuracy evaluation of the standard LUR model

The standard Land Use Regression model only uses land use data to train a Linear Regres-

sion model [Briggs et al. (2000)]. The method gives good accuracy level on the prediction of

low temporal resolution (e.g. annual and monthly level) however studies [Briggs et al. (2000);

Champendal et al. (2014); Sánchez et al. (2011)] suggest that this method struggle to make ac-

curate hourly NO2 concentration level predictions. Land use related data (building (B), land

use (L), road (R) and traffic(V)) was selected from the preprocessed dataset to generate a dataset
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Figure 3.6. Hourly predictions and observations for the standard Land Use Regression (left) and the Linear Regression
(right) models

which necessary for the standard Land Use Regression model and the Linear Regression method

from the scikit-learn machine learning library was used to train the underlying regression model.

The validation framework produced an overall 22.65 µgm−3 RMSE and 18.02 µgm−3 MAE

error levels which indicate higher error levels than the state-of-the-art OSPM model’s predic-

tion accuracy levels. The model achieved 0.46NMSE, 0.05 R, -0.06 FB, 0.83 MG, 1.90 VG

and 0.64 FAC2 accuracy levels. Figure 3.6 shows the predictions generated by the implemented

standard Land Use Regression model. This figure shows that using the standard approach for

hourly predictions struggle to make accurate predictions because the input data only contains

low-temporal knowledge (e.g. number of buildings) which confirms the outcome of the previous

studies [Champendal et al. (2014); Sánchez et al. (2011)]. This also explains why the correlation

coefficient is very low. To understand how this approach is generating the concentration level

predictions, the visualization of the observation-prediction pairs has been generated. Figure 3.6

shows this plot. The model generates an average concentration level prediction for each station

and generates that only concentration level value for every hour for a given station (that explains

the constant line-shaped prediction levels).

The Linear Regression method can be also trained using all the available preprocessed data

(which is all the data used for the standard Land Use Regression approach plus the high-temporal

time and weather-related data). The evaluation (using the cross-validation evaluation framework)

of this method shows that this approach can achieve 19.39 µgm−3 RMSE and 15.39 µgm−3

MAE error levels. These predictions also have 0.34 NMSE, 0.32 R, -0.04 FB, 0.87 MG, 1.89

VG, 0.69 FAC2 accuracy levels. Figure 3.6 shows the generated prediction for the Linear Re-

gression method. The result indicates that the approach creates more accurate hourly predictions

than the standard Land Use Regression method however it still produces less accurate model than

the state-of-the-art OSPM air pollution dispersion model. The prediction-observation (Figure
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3.6) graph shows a very wide cloud shape which indicates that the linear regression algorithm

struggles to learn the non-linear (e.g. concentration level and hours of the day) relationship

between the input and prediction target data. This result is in line with the previous studies find-

ings [Champendal et al. (2014); Sánchez et al. (2011)] as researchers reported that this algorithm

fails to make accurate predictions on the hourly levels due to its weak ability to learn non-linear

nature of the given regression problem.

3.4 Advanced statistical regression approaches
The Linear Regression algorithm provides a simple and elegant solution to discover the linear

relationship between the input and the regression target data. Extending the traditionally used

land use data with the high-temporal time and weather-related data generates a dataset which

contains non-linear relations to the concentration levels, therefore the Linear Regression method

struggles to make accurate hourly concentration level predictions (as suggested by [Briggs et al.

(2000)] and discovered in the previous section as Figure 3.6 indicates poor predictions quality

and the models produce high RMSE error levels). Having established that the existing Land

Use Regression approaches fail to generate accurate hourly NO2 concentration level predic-

tions, the application of advanced machine learning regression algorithms is investigated further

in the rest of this chapter. Studies [Champendal et al. (2014); Sánchez et al. (2011)] are sug-

gesting that similar environmental problems can be solved with better prediction accuracy using

other methods (e.g. Neural Network Regression or Decision Tree Regression methods, Random

Forest Regression) than the standard Linear Regression method. Other methods (e.g. Nearest

Neighbour Regression, Support Vector Regression) were successfully applied to non-linear re-

gression tasks in the past [Gardner & Dorling (1999); Sánchez et al. (2011); Tso & Yau (2007);

Champendal et al. (2014)]. This section investigates the potential prediction accuracy level of

the advanced regression techniques including the Nearest Neighbour Regression, Neural Net-

work Regression, Support Vector Regression, Decision Tree Regression and the Random Forest

Regression method. All of these methods require a certain level of tuning depending on their hy-

perparameter requirements (which makes them harder to use compared to the Linear Regression

method which is a hyperparameter-free method). The methods are highly sensitive to their hy-

perparameters which parameters control the process to build their inner structure in the phase of

training (generating) the regression model. These methods are only capable of extracting the re-

lationship between the input data and prediction target effectively if they are used with their tuned

hyperparameters. One method to find out these optimal configurations is the execute a grid-type

hyperparameter search which helps to understand the achievable accuracy level for each hyper-

parameter settings within a range. Using this method, a wide grid-type hyperparameter search

was executed to understand the sensitivity of the algorithms and the best hyperparameter for each

individual methods was selected to tune these algorithms to achieve the best possible prediction

accuracy level. This optimization helps to determine the prediction accuracy level boundary for
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each method by analysing the high-level RMSE error level trends according to the hyperpara-

meter search. Optimizing the algorithms to produce the lowest RMSE error level helps to reduce

the concentration level prediction errors in the situations of high observed concentration levels.

The RMSE penalizes the large differences of the observation and prediction concentration levels,

therefore, optimizing the methods to the lowest RMSE levels results in accurate predictions in the

case of high observation levels which helps to identify the interesting pollution episodes as these

episodes are the interest for urban planners and researchers. This optimization, however, gives

hyperparameters only valid for the applied input dataset (e.g. the dataset which feeds the leave

one out cross validation framework). Using a different dataset from the same domain (e.g. apply-

ing these techniques to a different modelling area) or from a different domain (e.g. a completely

different regression task) require another execution of this optimization. This other execution

gives valid hyperparameters to those other problems.

3.4.1 Nearest Neighbour Regression

The scikit-learn implementation of the Nearest Neighbour Regression has two hyperparameters:

• the number of the nearest neighbours to calculate the prediction

• the power (p) parameter for the Minkowski distance calculation

The generation of the regression model is sensitive to these hyperparameters and it is not

clear what is the optimal configuration to use for this specific regression task. The grid hyper-

parameter search was configured to find the RMSE prediction accuracy for the neighbour and

the p parameters between 1 and 100 and 1 and 5, respectively. Figure 3.7 shows the result of

this search. Each p parameter reaches its prediction accuracy minimum at a certain point within

the given neighbour parameter range, therefore, it is not possible to reach more accurate predic-

tions using any other parameter combination. The method is depending on its hyperparameter as

the different models generated by different hyperparameter configuration produces predictions

with the accuracy range of 21.5 and 20.2 µgm−3 RMSE error. The method gives its best RMSE

prediction accuracy using the neighbour=23 and p=2 providing 20.2 µgm−3 RMSE and 15.67

µgm−3 MAE, 0.41 NMSE, 0.26 R, 0.04 FB, 0.94 MG, 1.79 VG, 0.68 FAC2 error levels. This is

indicating that the method cannot provide more accurate model than the state-of-the-art OSPM

air pollution dispersion nor the Linear Regression statistical regression method.

3.4.2 Neural Network Regression

The scikit-learn implementation of the Neural Network Regression algorithm has a flexible way

to construct and train the internal neural network structure by providing the following hyperpara-

meters:

• number of hidden layers and the neurons in each hidden layer

• train iteration
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Figure 3.7. Hyperparameter investigation for Nearest Neighbour Regression method

• learning rate (alpha)

To train the Neural Network Regression model, the data has been normalized as suggested by

[Pedregosa et al. (2011)]. This transformation of the data helps the algorithm to avoid numerical

instability during the training phase.

It is clear that this algorithm also depends on the listed hyperparameters but it is not known

what hyperparameter configuration gives the best model (considering the model’s prediction ac-

curacy) to this prediction task. The grid hyperparameter search was configured to investigate the

high-level accuracy of the model using a different number of hidden layer configurations (from

1 to 5 hidden layers using sigmoid type neurons) with different neurons in each layer (from 5

to 500 neurons) with different train iterations (from 5 to 15) and different learning rates (from

0.00001 to 0.01).

Training the neural network regression model was able to produce numerically stable result

using the 0.00001 learning rate as setting the learning rate greater than this value made the train-

ing phase unstable and training the input weights of the neurons high ending up a model predicts

extremely high concentration levels independently from the input data. Also, applying more than

1 hidden layer generated the same numerical instability. Figure 3.8 shows high-level RMSE error

level depending on the number of train iterations and the number of the neurons in the hidden

layer. This indicates that increasing the number of train iterations helps to increase the predic-

tion accuracy, however, this rate is minor. Furthermore, increasing the number of neurons in the

hidden layer increases the prediction accuracy up to the 200 neurons where the model reaches its
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Figure 3.8. Hyperparameter investigation for Neural Network Regression method

most accurate state.

In summary, the algorithm is depending on the hyperparameters as the figure shows that

the RMSE high-level accuracy varies between 18.5 and 16.57 µgm−3 RMSE levels. Using the

230 neurons and 7 iterations hyperparameters generated a neural network regression model with

16.57 µgm−3 RMSE and 12.95 µgm−3 MAE, 0.26 NMSE, 0.49 R, 0.00 FB, 0.86 MG, 1.52 VG,

0.78 FAC2 high-level prediction accuracy.

3.4.3 Support Vector Regression

The scikit-learn library implements the epsilon Support Vector Regression algorithm which has

the epsilon (ε) and the error penalty (C) hyperparameters. The algorithm has very high computa-

tional requirements, therefore, the suggested method to apply this algorithm to a large regression

task (such as the hourly concentration level prediction) is to use bagging where the training data

is sampled n times and n models are built (then the average of the output of the n models is used

to generate the combined prediction). The bagging method, therefore, requires two additional

hyperparameters: the number of the models and the sample rate. The sensitivity of this algorithm

depends on these hyperparameters as they control the generation the underlying model. It is not

clear that what hyperparameter configuration produces the most accurate Support Vector Regres-

sion model for this regression task, therefore, a grid-type search was executed to find the optimal

configuration for the algorithms hyperparameters.

Before executing the search, the input and target data have been transformed into the required

normalized form as the method requires normalized input data ([Pedregosa et al. (2011)]).
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Figure 3.9. Hyperparameter investigation for Support Vector Regression method

The hyperparameter search was configured to calculate the accuracy level for the following

hyperparameter ranges:

• Epsilon from 0.0001 to 1.0

• C from 1 to 100

• Number of models from 5 to 100

• Sample rate from 50 to 5000

The hyperparameter search provided sufficient understanding of the algorithm’s prediction

behaviour. Overall, the epsilon hyperparameter had very little effect on the prediction accuracy,

therefore, the default 0.1 value was selected. Also varying the number of models had very little

effect on the high-level RMSE error levels, therefore, the default value of 10 was selected. Figure

3.9 shows the hyperparameter tuning for the C and sample rate. It confirms that the algorithm is

sensitive to its hyperparameters as the RMSE level varies between 19.1 and 15.9 µgm−3 RMSE.

The figure shows that the algorithm is unstable as changing the hyperparameters doesn’t cause

discrete increase or decrease in the high-level RMSE error level. There are two clear trends from

this figure:

• increasing the sample size results in more accurate predictions as this statistical regression

method has the chance to discover knowledge from more data
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• the algorithm reaches its prediction optima at C=42 which suggest that this is the best

accuracy level that the algorithm can reach

Increasing the sample size increases the prediction accuracy, however, this has an exponential

computational cost as the Support Vector Regression model doesn’t scale well with the input data

size (the algorithm time complexity is quadratic to the number of input observation data points).

The sample size hyperparameter search was limited using the 5000 upper boundary value as

increasing this parameter caused the cross-validation framework to finish the 7 iterations in 4

hours. Minor improvement can be achieved by increasing the sample rate further however it

produces a computationally expensive statistical regression model.

In summary, this method gives its best prediction using n=10, epsilon=0.1, C=40 sample rate=4200

providing 15.93 µgm−3 RMSE and 12.25 µgm−3 MAE, 0.24 NMSE, 0.55 R, 0.00 FB, 0.88 MG,

1.52 VG, 0.80 FAC2 error levels on this regression task.

3.4.4 Decision Tree Regression

The scikit-learn framework implementation of the Decision Tree Regression algorithm provides

multiple tree-induction termination methods:

• depth method which only grows a tree to a certain depth

• minleaf method which grows the tree’s branches until the leaf node has at least the given

min leaf number of observations

• maxleaf method which grows the tree until the number of leaf nodes in the tree reaches the

given max leaf parameter

The scikit-learn version of the Decision Tree Regression method optimizes the mean squared

error achievable by the decision tree regression model on the training data during the search for

the split in each iteration.

These methods generate different decision trees as they terminate the induction process differ-

ently. This termination process helps the model to avoid overfitting and increases the prediction

accuracy achievable by the model itself. It is not clear however which method can produce the

best decision tree in the terms of this regression task.

The method depends on its hyperparameters as they define how to build the internal decision

tree and when to terminate the induction of this tree, therefore, the method is sensitive to its

hyperparameters. A grid hyperparameter search was executed to find the optimal configuration of

these hyperparameters. The search was configured for each method to investigate the parameters

from value 2 to value 100.

Figure 3.10 shows the result of this investigation. It confirms that the method is sensitive to its

hyperparameters as the RMSE high-level accuracy varies between 18.4 and 16.18 µgm−3. The

accuracy of the depth method flats out around depth=42 as the decision tree reaches its maximum
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Figure 3.10. Hyperparameter investigation for the Decision Tree Regression method using its three (depth, minleaf,
maxleaf ) tree induction techniques

depth at this level (each leaf has 1 observation in this case). The other two methods (minleaf and

maxleaf ) show a flat RMSE accuracy level after parameter=30 configuration. The figure shows

that the best RMSE accuracy level can be achieved by using the depth method configured to

depth=12 which provides 16.18 µgm−3 RMSE and 12.30 µgm−3 MAE, 0.25 NMSE, 0.58 R,

0.01 FB, 0.95 MG, 1.49 VG, 0.79 FAC2 high-level errors.

3.4.5 Random Forest Regression

The scikit-learn framework implementation of the Random Forest Regression method provides

one additional parameter to the underlying Decision Tree Regression method’s hyperparameters:

the number of the decision tree models to train based on the random sampling of the input data

(this parameter called the “estimator” in the framework).

The method depends on its hyperparameters as they define the technique to build the internal

tree structures for the trees. It is not clear what hyperparameter configuration produces the most

accurate Random Forest Regression model on this regression task. Grid hyperparameter searches

were executed to find the optimal configurations for each method.

For the depth method, the depth parameter search range was set from 2 to 50 and the estimator

parameter range from 5 to 200. Figure 3.11 shows the result of the investigation. The depth tree

induction method of the Random Forest Regression algorithm shows similar behaviour than the

Decision Tree Regression’s one as the accuracy level flats out after the depth parameter of 35.

However, increasing the number of estimators helps to build more accurate regression model as
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Figure 3.11. Hyperparameter investigation for the Random Forest Regression method using the depth tree induction
technique

the algorithm has more chance to extract knowledge from the randomly presented sampled input

data. From this run, it is not clear however that what trend this increase does follow. To analyse

this trend, a second investigation was executed to find out that what is the trend of the accuracy

level if we increase the number of estimators for the Random Forest Regression’s depth method.

The search was configured to only investigate depth levels 10,15,20,25,30, but with increased

estimator range (from 5 to 500).

Figure 3.12 shows the result of the second investigation run for the depth method which

shows that increasing the number estimators indeed improves the high-level RMSE accuracy

level, however after 200 estimators the accuracy level flats out again.

In summary, the depth method gives its most accurate prediction using the depth=25 and

estimators=400 which produces 14.47 µgm−3 RMSE high-level error. It is possible to further

increase this accuracy level with some minor improvement however the computational cost of

this improvement makes it non-practical.

To find out the best hyperparameters for the maxleaf method, the hyperparameter search was

configured to max leaf parameter range from 5 to 7000 and the number of estimators parameter

range from 5 to 20. Figure 3.13 shows the result of this parameter search run. The high-level

RMSE accuracy flats out at parameter max leaf 5000, however, the increasing number of estim-

ators provides more accurate overall models (similarly to the previous depth method).

To understand the high-level accuracy trend of the estimators parameter for the maxleaf

method, the grid hyperparameter search was configured for a second run using only the 5000,
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Figure 3.12. Hyperparameter investigation for the Random Forest Regression method using the depth tree induction
technique

Figure 3.13. Hyperparameter investigation for the Random Forest Regression method using the maxleaf tree induction
technique
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Figure 3.14. Hyperparameter investigation for the Random Forest Regression method using the maxleaf tree induction
technique

6000, 7000 max leaf parameter and the range from 5 to 500 for the estimators parameter. Figure

3.14 shows the result of the second hyperparameter search run. There is not much high-level

RMSE accuracy difference in terms of using the 5000,6000,7000 max leaf parameters, however

increasing the number of estimators increases the accuracy up until the 400 estimators where the

accuracy level flats out.

In summary, the maxleaf method gives the most accurate using the maxleaf=7000 and estim-

ators=400 which model generates 14.47 µgm−3 RMSE high-level error. Again, this accuracy

level can be further improved by increasing the estimators however the improvement will imply

very high computational cost.

Lastly, the parameter search was configured to find out the best hyperparameters to achieve

to best high-level RMSE accuracy level for the minleaf. The minleaf parameter was set to range

from 2 to 200 and the number of estimators from 5 to 200. Figure 3.13 shows the result of

this hyperparameter search run. This result shows that using the minleaf method generates the

most accurate (in term of the high-level RMSE accuracy) model at the minleaf=2 parameter

(independently from the number of estimators). This means that it doesn’t stop to generate the

tree nodes until each leaf node only has 2 remaining observations. This allows the decison tree

induction method to generate large trees capable of prediction the concentration levels accurately.

Moreover, increasing the number of estimators increases the high-level RMSE accuracy however

it is not clear that what is the optimal number of estimators to use for the minleaf method.

Another hyperparameter search was executed to find out this number using only the 2, 3, 4
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Figure 3.15. Hyperparameter investigation for the Random Forest Regression method using the minleaf tree induction
technique

values for min leaf parameter and setting the range from 5 to 1000 for the number of estimators

parameter. Figure 3.16 shows the result of this run. It confirms that increasing the number of

estimators increases the high-level accuracy, however, the accuracy flats out at 500 estimators as

using more than 500 estimators does not give further improvement in the prediction accuracy.

In summary, the minleaf method gives its most accurate predictions using the minleaf=2

and estimators=600 parameters which model generates the prediction with 14.45 µgm−3 RMSE

high-level error.

The hyperparameter searches confirm that the method is sensitive to its hyperparameters as

the RMSE high-level accuracy varies between 17.5 and 14.45 µgm−3

The best hyperparameters for each decision tree induction method was selected based on the

introduced hyperparameter search runs:

• the depth method using depth=25 and estimators=400 gives 14.47 µgm−3 RMSE accuracy

level

• the maxleaf method using maxleaf=7000 and estimators=400 gives 14.47 µgm−3 RMSE

accuracy level

• the minleaf method using minleaf=2 and estimators=600 gives 14.45 µgm−3 RMSE ac-

curacy level

This result suggests that minleaf method provides the most accurate hourly concentration

level predictions within the many tree induction methods of the Random Forest Regression al-
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Figure 3.16. Hyperparameter investigation for the Random Forest Regression method using the minleaf tree induction
technique

gorithm. This method could exploit the prediction power of more estimators (as it has its peak

accuracy using 600 estimators instead of the other two methods 400 estimators) and the accuracy

flats out at that level. Therefore, the minleaf tree induction method was selected for the Ran-

dom Forest Regression algorithm which could provide a regression model with 10.75 µgm−3

MAE and 14.45 µgm−3 RMSE, 0.20 NMSE, 0.67 R, 0.03 FB, 0.97 MG, 1.40 VG, 0.83 FAC2

high-level errors.

3.5 Evaluation and discussion
Finding the best hyperparameters for each statistical regression method gives us well-tuned al-

gorithms to generate hourly concentration level prediction with the minimum achievable RMSE

high-level accuracy levels. All the used methods have different sensitivity to the hyperparamet-

ers, therefore, the most accurate (lowest RMSE level) hyperparameter settings were selected for

each algorithm. This also implies that MAE levels are close to the minimum (however it might

happen that there is a very slight hyperparameter difference in the models which have the min-

imum achievable RMSE and MAE levels, but the overall prediction levels are going to be very

close therefore it does not have any effect on this evaluation). The RMSE high-level accuracy

level does not provide information about the quality of the predictions. Figure 3.17 shows all

the observation-prediction pairs for each method which gives us more understanding of the indi-

vidual algorithms.

The Linear Regression algorithm struggles to make accurate concentration level predictions
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(a) Linear Regression model (b) Nearest Neighbour Regression model

(c) Neural Network Regression model (d) Support Vector Regression model

(e) Decision Tree Regression model (f) Random Forest Regression model

Figure 3.17. Hourly prediction and observation scatter graphs for the statistical regression methods
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greater than 70 µgm−3. The main reason for this behaviour is that the algorithm itself fails to

identify the non-linear relationship between the input and the prediction target data. Even though

the method produces predictions with low accuracy, it is classified as good model according the

[Chang & Hanna (2004)] because the FAC2, MG and VG levels are within the criteria range.

The Nearest Neighbour Regression algorithm shows even worse prediction-observation dia-

gram as the shape of the prediction-observation pairs covers a wider area. The driving reason for

this behaviour is that it is hard to make accurate predictions based on similarity of the historical

observations as very similar observations can have very different observation concentration levels

(e.g. concentration levels can accumulate at the observation stations prior to the observation hour

depending on the weather circumstances of the prior hours). All the high-level accuracy meas-

ures show weaker prediction quality compared to the Linear Regression model, however, this

result still classified as good model according to [Chang & Hanna (2004)].

The Neural Network Regression algorithm shows similar behaviour to the Linear Regression

model as it fails to make accurate hourly concentration level predictions at high concentration

level observations. This indicates that the algorithm fails to identify the non-linear relationship

in the data even though it has a much more complex internal structure (which structure gives

this algorithm the capability to discover complex relationship between the input and target data).

The high-level error levels show that the method can provide more accurate predictions than

the OSPM air pollution dispersion model, however, the low linear correlation coefficient value

shows that the generated predictions are weakly correlating with the actual observations (OSPM:

0.69, Neural Network Regression: 0.49), however the NMSE level is better (OSPM: 0.53, Neural

Network Regression: 0.26) which indicates that the method managed to decrease the normalized

prediction error.

The Support Vector Regression algorithm provided the most accurate result non-tree based

regression techniques. The method provides even lower high-level RMSE and MAE error levels

(compared to the previous methods) which is in line with its observation-prediction plot where

we can see that the model generates more accurate predictions at higher observation levels. It,

however, struggles to make predictions with the same correlation level as the state-of-the-art air

pollution dispersion pollution model (OSPM: 0.69, Support Vector Regression: 0.55).

The Decision Tree Regression algorithm provides concentration level predictions with high

accuracy as it produces 16.18 µgm−3 RMSE and 12.3 µgm−3 MAE levels. The observation-

prediction reveals the nature of the algorithm’s predictions. The observation-prediction pairs are

showing smaller pollution dispersion, however, it shows some flat prediction values for certain

observations which indicates that the regression decision tree reached its limitation and cannot

provide more detailed predictions in these cases. This also effects the linear correlation as it

has even lower level than the Support Vector Regression’s level (OSPM: 0.69, Decision Tree

Regression: 0.58).

The Random Forest Regression algorithm provided the most accurate model from all the
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Figure 3.18. Absolute error of the hourly concentration level predictions for all the investigated methods (red line shows
the median of the absolute prediction errors)

investigated methods as it produced predictions with 14.45 µgm−3 RMSE and 10.75 µgm−3

MAE levels (also including the most accurate NMSE, FB, MG, VG and FAC2 levels). It has

the smallest dispersion in the observation-prediction plot and it does not show the Decision Tree

Regression methods limitations as the high number of trees could produce very detailed concen-

tration level predictions at all observation levels. The model provided predictions with almost the

same linear correlation level as the OSPM air pollution dispersion model (OSPM: 0.69, Random

Forest Regression: 0.67) which makes this statistical regression model as good as the current

state-of-the-art air pollution dispersion model in terms of hourly NO2 concentration level pre-

dictions.

Looking at the observation-prediction chart helped to understand the statistical regression

models prediction behaviour however it did not provide a well-structured comparison between

prediction accuracy of the methods. To do that, the absolute error of the observation-prediction

pairs for each method ware plotted. Figure 3.18 shows the comparison of the absolute error box

plot of the predictions for each method. This result of this graph is in line with the Figure 3.17 as

it shows that the most accurate statistical regression model (the Random Forest Regression stat-

istical regression method) produces more accurate hourly NO2 concentration level predictions

than the OSPM state-of-the-art air pollution dispersion model.
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3.6 Summary
The aim of this chapter is to develop a statistical regression approach for hourly NO2 concentra-

tion level prediction providing the same high-level accuracy as the state-of-the-art air pollution

dispersion models.

As the baseline model application evaluation indicates, the OSPM air pollution dispersion

model produces 18.49 µgm−3 RMSE high-level accuracy using York as the modelling area.

The chapter discusses the application of this model including the validation of the prediction

results. Orthogonally to the state-of-the-art method, the existing statistical approaches provide

22.65 µgm−3 (standard LUR technique) and 19.39 µgm−3 (Linear Regression method using

the combination of low- and high-temporal input data) RMSE high-level accuracy. The chapter

investigates the result in details which result is in line with the outcome of previous studies of the

relevant literature [Briggs et al. (2000); Champendal et al. (2014); Sánchez et al. (2011)].

Using the sufficiently tuned Random Forest Regression technique, however, provides 14.45

µgm−3 RMSE accuracy which indicates that this statistical regression approach can reach even

more accurate prediction level than the current state-of-the-art method without using uncertain

data (e.g. emission inventory database). The chapter describes the hyperparameter tuning details

for this and many other methods which indicate that it is required to analyse the hyperparameters

for these methods as the accuracy is sensitive to the configured hyperparameters. This analysis,

however, is only valid for the York modelling area (which is represented by the York dataset).

In the case of a different modelling area (e.g. a dataset covers a different area), the hyperpara-

meter search needs to be re-executed to find out the hyperparameter configuration which sets

the models to generate the most accurate predictions. The result of this chapter is a contribution

to the Environmental Science field as it provides details of the application of the existing Ran-

dom Forest Regression technique to the urban-scale hourly NO2 concentration level predictions

which model is able to generate predictions with the same high-level accuracy as the current

state-of-the-art. The result indicates that it is possible to generate more accurate hourly NO2

concentration levels using the Land Use Regression approach by applying the Random Forest

Regression algorithm.

The Random Forest Regression technique, however, builds the underlying statistical regres-

sion model based on historical observations (both concentration level and other input data) which

raises the question how the actual algorithm uses the input data to make the hourly NO2 con-

centration level predictions and what data is introducing what type of error during the generation

of the predictions. The next chapter will investigate the different errors that introduced by the

different input data to give more understanding of the model’s prediction and in theory to allow

to develop even more accurate statistical regression model.



CHAPTER 4

Analysis and optimization of the Statistical Regression

approach

This chapter presents the detailed analysis of the application of the Random Forest statistical re-

gression method for hourlyNO2 concentration level predictions and introduces a novel approach

to exploit the knowledge extracted from the analysis to improve the accuracy of the statistical re-

gression approach. The chapter begins with analysing the accuracy sensitivity of the applied data

for building the Random Forest Regression method to understand what data (or data source) in-

troduces error to the concentration level predictions. The gained knowledge from this analysis

contributes to the Environmental Science field as the analysis provides a guideline for data col-

lection for applying the Random Forest Regression method for future applications. The second

part of this chapter analysis the prediction outcome of different Random Forest Regression mod-

els trained on different subsets of the available features of the original input data. Based on the

insight gained from this analysis, a novel ensemble method is proposed which ensemble method

contributes to the Computer Science field as the algorithm forms a general ensemble method

which can be used in any other regression task.

In the first section (Section 4.1), the motivation of this work is explained which introduces

the aim of the initial analysis. Section 4.2 describes the analysis and discusses the results. Based

on the findings of the second section, Section 4.3 carries out a new application using a new traffic

dataset and the results of the evaluation will be described there. The findings of this experiment

open the possibility of model ensembling to combine the prediction of the different Random

Forest Regression algorithms; this will be described in Section 4.4. Finally, the Section 4.5

finalizes the chapter.

77
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4.1 Motivation
The previous chapter provided the details of the efficient application of a statistical regression

approach for hourly NO2 concentration level predictions. The evaluation of the application

showed that the proposed method can achieve more accurate predictions than the current state-

of-the-art air pollution dispersion model. The underlying model, the Random Forest Regression

algorithm needs to be trained on historical observations which were covered by data collected and

extracted for the modelling area, York. The quality of the statistical regression model therefore

highly depends on the input data itself. The data collection was based on the input data appeared

in the literature and the model training used all the available data, however, this data itself can

contain errors and uncertainties (e.g. the digital map source used to extract land use features can

contain old information or the acquired meteorological data describes average weather conditions

in York which is the same as the conditions at the location of each monitoring station). It is not

known how these errors and uncertainties affect the quality of the statistical regression model

(and affect the accuracy of the prediction generated by the model).

The aims of the work presented in this chapter are

• to understand the effect of using data from different data sources to the prediction accuracy

generated by the Random Forest Regression algorithm

• exploit the knowledge extracted during the analysis to develop a model generating predic-

tions with higher accuracy

The first aim plans to give an understanding of the consequence of using data from different

data sources and extract knowledge on the Random Forest Regression sensitivity to the different

data sources (what data is important to make accurate predictions and what data is useful to this

statistical regression approach).

The second aim is targeting to exploit the knowledge gathered during this analysis to create a

statistical regression model which generates more accurate prediction than the already developed

statistical regression approach.

4.2 Input data analysis for the statistical regression method
The statistical regression approach can provide a similar accuracy level to that obtained by the

current state-of-the-art air pollution dispersion model for the hourlyNO2 concentration level pre-

dictions using the combination of high-temporal input data and the Random Forest Regression

algorithm. This method, however, requires historical observations to learn the hidden relation-

ship in the data. This implies that the underlying statistical regression model depends on the

given input data. It is unknown that what data source is the most beneficial to the hourly NO2

prediction task given the Random Forest algorithm. One way to evaluate the achievable predic-

tion accuracy of using data from the different data sources is to execute a feature analysis using
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groups of coherent features.

4.2.1 Feature analysis of the Random Forest method

The following data was used during the application of the statistical regression methods (includ-

ing the Random Forest Regression algorithm):

• Land use data (group code: L): this data source provided the landuse area and the leis-

ure area features

• Building data (group code: B): this covers the buildings and building area features

• Road data (group code: R): this contains the road length and road lane length features

• Traffic data (group code: V): this includes the traffic car, traffic lgv, traffic hgv features

• Time-related data (group code: T): this data source provided the hour, day of week, month,

bank holiday, race day features

• Weather data (group code: W): this covers the wind direction, wind speed, temperature,

rain (indicator), pressure features

It is not clear that how these data used by the Random Forest algorithm to generate the

internal decision trees during the training phase. It is possible to analyse the generated tree

models inside the Random Forest model to analyse the prediction process of this algorithm,

however, this analysis is practically unfeasible, because the model has 600 independent decision

trees over 19 input features. Another way to evaluate the benefit of using data from different

data sources to evaluate the accuracy of the Random Forest algorithm using all the subsets of

the available data features. The overall input data has 6 data groups which give 63 possible data

subsets. The high-level RMSE accuracy can be calculated by using the evaluation framework for

every 63 combinations. This evaluation helps to understand

• what are the data sources to use to train the Random Forest Regression to achieve the most

accurate hourly NO2 prediction level (e.g. RMSE)

• what are the data sources that introducing errors into the prediction by having uncertain

data causing less accurate predictions

Figure 4.1 shows the result of this experiment, where each data point has a label which label

explains the selected data sources by indicating a 0 (data source has not been selected) or a 1

(data source has been selected) after the code of the data source. An example of this label is

L0B0R0V 0W1T1 where weather and time-related data was used to train the model. The most

accurate predictions can be achieved by using only time and weather-related input data. The

visualization of all the data subsets also shows a trend:



80 Analysis and optimization Chapter 4

Figure 4.1. Accuracy investigation of the different input data subsets
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• not using time and weather-related data always gives a model which produces less accurate

predictions than

• using only time-related data, or

• using only weather-related data, or

• using both time and weather-related data

There is a periodic form in Figure 4.1 which also indicates this trend as the analysis of the

shape of the figure using groups of four reveals the trend.

This result is important as it suggests that using only the high-temporal data (the time and

weather-related data) will give an accurate statistical regression model. If similar model ap-

plication is required (e.g. developing a similar NO2 concentration level prediction model for

another urban area) then collecting only time and weather-related data, as well as air quality data

(the NO2 concentration level observations), would be sufficient to develop an accurate statistical

regression model which data sources are very easy to utilize, therefore, the model can be de-

veloped very quickly. This gives natural usability to this approach for developing initial models

very quickly compared to the air pollution dispersion models where users have to collect data

from various sources and investigate the uncertainty in these datasets (e.g. data in the emission

inventory database related to the specific model application area). Unfortunately, using weather

and time related data as the only input data also has the disadvantage of ignoring all the other im-

portant input data, therefore, urban planners are not able to investigate the effect of changing the

urban environment. For example, if the urban planners want to investigate the effect of building

a new school (which causes increased traffic on the surrounding roads) to the pollution concen-

tration levels, the model would ignore the increased traffic data information and would produce

the same pollution concentration level predictions to the base scenario.

The result makes sense in terms of the given regression task as these data are important for

the actual NO2 concentration levels:

• Weather data provides information about the wind and temperature conditions of an hour

which have direct effect on the NO2 concentration levels because the wind and rain can

flush out the pollution from an area and certain temperature levels allow to formNO2 from

other gases

• Time-related data provide crucial information for the statistical model as certain time of

the day has always higher concentration levels (e.g. school runs, afternoon traffic peak

period, ) what patterns can be learned from the this data

To investigate this trend even further, the Figure 4.2 shows the box plot of the observed

high-level RMSE accuracy levels of the evaluation of the Random Forest Regression method

trained firstly on data subsets without the time and weather-related data (e.g. land use, building,
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Figure 4.2. Prediction accuracy using the RFR method without Time and Weather data (w/o T, w/o W), using the Time
data (w/ T), using the Weather data (w/ W) and using both the Time and Weather data (w/ T+W)

etc. data), then on data subsets containing only the time-related data (and other non time and

weather-related data), thirdly on data subsets containing only the weather-related data and lastly

on data containing both time and weather-related data (as well as all the other data sources in any

combination). This plot indicates that the trend indeed exists and using time, weather and both

time and weather-related data introduces more accurate statistical regression models.

The evaluation suggests that time and weather-related data are important for the given regres-

sion task, however, it is not known what error is introduced if we use further data from other data

sources. Figure 4.3 shows the RMSE high-level accuracy for each combination of adding data

from data sources excluding the time and weather data sources relative to the case of the Ran-

dom Forest model using only the time and weather-related data. Again, the figure uses the same

label to encode the additional data sources as earlier where the label L1B1R0V 0 represents the

input data which contains data from the land use and the building data sources additionally to the

time and weather-related data. The figure shows that all the combination achieves greater than

1.0 relative RMSE level which suggests that using complete data groups does not provide more

value to the Random Forest Regression model as it produces less accurate predictions using these

additional data.

This evaluation was based on features from complete data sources (e.g. the land use data

source provided two features which are the landuse area and the leisure area) which evaluation

is good because it is possible to understand what data sources are important, however, it does

not give a clear understanding of what individual features are important to the given regression



Section 4.2 Input data analysis for the statistical regression method 83

Figure 4.3. Relative RMSE accuracy using datasets compared to RFR method using only the Time and Weather data

problem. It is not clear that weather and time-related features are important and others only

introduce errors, however, they introduce errors if they are given to the Random Forest Regression

algorithm in groups. There is a possibility that these additional data feature groups does not help,

but single individual features do (e.g. using the buildings area with the time and weather-related

data helps but because the evaluation used the building data source, the model had not just the

buildings area but the buildings feature which two features resulted in a less accurate model).

The number of possible combination of the data subsets using the 6 data sources gives 63

combinations. The number of possible combination of data subsets using the 19 individual fea-

tures gives 524287 possible combinations. There are two problems to evaluate all of these 524287

possible combinations:

• the first problem is that the computational requirement for evaluating all the 524287 pos-

sible combinations would take unfeasibly long time as the evaluation of one combination

takes approximately 10 minutes (which mean running all the evaluation on one machine

would take approximately 10 years). Of course, this large-scale evaluation can be executed

in a distributed computer network where multiple machines can execute the evaluation, but

it would still need significant resources to do that

• the second problem is processing the result as interpreting (e.g. visualzing) the result of

the large-scale evaluation is challenging as well as understanding the patterns from this

result (for example Figure 4.1 shows only 63 data points and it is difficult to understand

the patterns even in this small example)
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The large-scale evaluation of the available features is challenging, however, only part of the

result of the complete large-scale evaluation is important to understand what individual features

can be used (in addition to the time and weather-related features) to further improve the accuracy

of the Random Forest Regression statistical regression approach. This information can be col-

lected by executing a stepwise feature optimization method which method is an iteration based

algorithm including the following steps:

• the method calculates the accuracy of the model using all the available features and it starts

the first iteration from this state

• in the beginning of each iteration, the method creates the list of possible next states which

states include the addition of one currently not used (if it possible) single feature and the

substraction of one currently used single feature

• the method then evaluates the accuracy of all the possible next states and selects the most

accurate model

• finally, the method selects the most accurate state as its current state and it carries on with

the next iteration

• in the case of local minima (where the current possible states does not offer improvement

in the accuracy), it follows a simulated annealing approach and carries on with the non-

optimal next step

• after a given number of local minima, the method randomly makes steps to step out from

the local minima circle

The stepwise feature optimization method, therefore, produces the list of individual features

to use to train the Random Forest Regression algorithm to achieve the most accurate statistical

regression model. Figure 4.4 shows the result of this method on the current regression task.

The method selected the time (hour, month, day of week, bank holiday, race day) and weather-

related (wind direction, wind speed, rain, temperature, pressure) features which result is in line

with the findings of the previous analysis. The previous analysis was investigating the subset

of the input features based on their data source and it shows that using all the features of the

time and weather data source generates the most accurate Random Forest Regression model.

The current stepwise feature optimization analysis found the same features as the most optimal

subset of the features from the all available input features (but this method has the advantage of

cherry-picking any individual feature from the available features while the previous could only

use groups of features based on their data source). The figure also shows that the method stuck

in local minima in the first 75 iterations and find the global minima afterwards.

The Random Forest Regression algorithm using only the time and weather-related data pro-

duces a statistical regression model with 11.97 µgm−3 RMSE and 8.85 µgm−3 MAE accuracy
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Figure 4.4. RMSE error levels during the feature optimization technique

according to the developed evaluation framework. These predictions also indicate 0.13 NMSE,

0.78 R, 0.00 FB, 0.93 MG, 1.25 VG, 0.90 FAC2 high-level accuracy levels. These values indicate

that the model is more accurate than the previous RFR+ALL model as well as the state-of-the-art

OSPM air pollution dispersion model. This approach will be referred to as RFR+TW in the rest

of this chapter. Figure 4.5 shows the observation and prediction plot for the OSPM model, the

Random Forest Regression and the RFR+TW approaches to understand the high-level RMSE

accuracy difference in the terms of prediction-observation pairs. The plot shows that the predic-

tions of the RFR+TW approach are more accurate as the shape of the point cloud is thinner than

the shape of the cloud of the Random Forest Regression approach which result is in line with the

high-level accuracy differences.

Figure 4.6 shows the box plot of the absolute errors of the predictions by the OSPM, Random

Forest Regression and the RFR+TW approaches. The plot indicates that the RFR+TW model

generates hourly NO2 predictions more accurately than the state-of-the-art air pollution disper-

sion model (OSPM) having the same properties as the Random Forest Regression approach (e.g.

avoid the usage of uncertain data sources such as the vehicle emission inventory dataset)

The stepwise feature optimization technique gave the list of features to use to maximize the

achievable high-level accuracy by reducing the input data and keeping the features only matters

to the given regression task for the underlying Random Forest Regression technique. It only

selected the time and weather-related data which raises a question about the regression task:

• if the traffic is the primary source of the NO2 pollutant in the urban area, why does not the
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(a) OSPM (b) Random Forest Regression

(c) RFR+TW

Figure 4.5. Observation and prediction plot comparison for the OSPM, RFR and RFR+TW models
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Figure 4.6. Absolute error plot of the predictions of the OSPM, the Random Forest Regression and the RFR+TW models

traffic information help to the statistical regression model (how is it possible that using the

traffic data only introduces more error to the regression)

The next section is investigating this question by analysing the connection between the input

data and the hourly NO2 concentration levels.

4.2.2 Input data analysis

The Random Forest Regression approach gives its most accurate predictions for the hourly NO2

concentration levels if it uses only the time and weather-related input data. It is not clear, however,

that why the usage of traffic data (or data from other data sources) introduces more error for the

given regression task. The visualization of the input data and theNO2 concentration levels might

help to gather insight of the given regression problem.

Figure 4.7 shows the input data features grouped by their data source and the concentration

levels at the Fulford station for 24 hours of the day 24/07/2013.

Monitoring data The hourly NO2 concentration levels provided by the monitoring stations

are the prediction target for the regression algorithms. All of the plots include the concentration

levels to understand the correlation between the input data and the concentration levels. The given

example (24 hours of the day 24/07/2013 at Fulford station) shows low concentration levels in

the morning, then it peaks in the afternoon.

Land use data Land use data is a low temporal data source and the plot shows that the buffer

area around the Fulford station has neither any land-use area nor leisure area as both features

have the value of 0.0 across.
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(a) Land use data (b) Building data

(c) Road data (d) Car traffic data

(e) LGV traffic data (f) HGV traffic data

Figure 4.7. Concentration observation levels and different input data visualization
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(a) Time related data first part (b) Time related data second part

(c) Time related data third part (d) Weather related data first part

(e) Weather related data second part (f) Weather related data third part

Figure 4.8. Concentration observation levels and different input data visualization second part
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Building data Similarly to the land use data, the building data is a low temporal data source

and the plot shows that the buffer area has 30 buildings which cover approximately 35 percent of

the buffer area and these values do not change over the day

Road data The last low temporal data is the road data and the plot shows that the buffer area

has 195 meters of roads which roads are typical two-lane roads (showing the lane length value

of 380) and these features do not vary over the day

Time-related data The features in the time-related data group shows low variation in the

visualized 24-hour time period as most of the features are low-temporal data (e.g. month is only

changing once per month). These features, however, give information about the time and the

statistical regression approach can learn time-dependent knowledge purely from the available

observations (e.g. it can find out when the traffic is peaking at an average work day based on the

observable high pollution levels during these hours)

Weather-related data Weather related data is a high temporal data source which covers the

properties of the environment of the modelling area. The plot shows that features of this data

group varies highly depending on the environmental circumstances of the given hour.

Traffic data The original traffic data source provided traffic volumes for each road within

the modelling area and this dataset has been transformed into specific data for the buffer area by

extracting the traffic related to the roads within the buffer area and weighted by the length of the

roads (again roads only in the buffer area). These traffic volumes are artificially generated by a

traffic model developed and maintained by the City of York Council’s Transportation Manage-

ment Group. This model only contains volumes for three vehicle categories (car, LGV, HGV)

and only three time periods (and these time periods are extended to generate data for every hour

of a day). The plot shows these different time periods for each category.

The low temporal data sources (land use data, building data, road data) provided features

which are indicators of certain processes in the urban area which processes might cause an in-

creased amount of NO2 concentration levels in general. These indicators, therefore, do not have

sufficient accuracy for the Random Forest Regression algorithm to use during its prediction pro-

cess. The high-temporal data sources (traffic, time and weather-related data), however, provide

important hourly information for the statistical regression model. The time and weather-related

data are selected by the stepwise feature optimization method, however, the traffic data was not.

The plot helps to understand why the Random Forest Regression introduces more error in the

case of using the traffic data. The plot shows that in the morning time period of the given day,

the NO2 concentration levels are low, however, the traffic data shows a significant amount of

traffic for the same time period. If the NO2 concentration levels have a general build-up period

during the day, the statistical regression nature of the Random Forest Regression algorithm would

have allowed the algorithm to learn this process and the algorithm could apply this knowledge

during the prediction. This example is an edge-case scenario where to model fails to predict the

concentration level accurately. Comparing the information contents of the observation data and
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the traffic data reveals another important fact:

• the observation data actually represents the NO2 concentration level at a given hour

• the traffic data is just an estimate of traffic volumes on the street calculated based on certain

assumptions

The traffic data in its current form does not represent real-world (observed) traffic data as it

is only an estimate, therefore, it does not give detailed information on the actual traffic around

the monitoring station (or traffic in the buffer area) in the given hour. The real-time traffic data

is an important information because it can identify traffic jams and traffic jams often cause high

NO2 concentration levels as many vehicles on the road are emitting pollution into the air. It is

important to understand that an estimated traffic volume is a good indication of the average NO2

concentration level for a given hour, however, it leads uncertainty in the case of predicting actual

NO2 hourly concentration levels. This crucial information is not covered by the current traffic

data, however, it is possible to change this data source into another source which can provide the

right data.

4.3 Changing the traffic data source
The original traffic data provided by the City of York Council’s Transportation Management

Group only contains estimates of traffic volumes for the roads in the York area. This data does

not capture fine granularity of the actually observed traffic volumes which is required to give

real-world information for the statistical regression method to be able to incorporate this data

and exploit the information to make more accurate predictions. This data was originally selec-

ted because many previous studies included similar datasets to predict low-temporal pollution

concentration levels. The Transportation Management Group also maintains a passive sensor

network to count traffic volumes for roads in York. This simple traffic data count provides data

for their traffic model which model also uses other assumptions about the vehicle movements in

York.

4.3.1 Automated Traffic Count data

The Automated Traffic Count (ATC) data contains simple traffic count data because the passive

sensor network contains automated traffic count instruments. This data only contains one single

count value (compared to the three vehicle categories of the traffic model data) at the sensor loc-

ation. The locations of the sensors are also limited in York (compared to the data provided by

the traffic model which gives estimates for every road in York) as these sensors are real instru-

ments and they need to be maintained by the Transportation Management Group. Most of the

monitoring stations, however, have been co-located with an ATC instruments, therefore, the ATC

data can be extracted for certain monitoring stations. The data itself contains data gaps (as ex-

pected from real-world data). The data availability of the ATC data, therefore, creates a different
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regression task:

• Fulford station has 8228 observations using the ATC traffic data (8228 observations previ-

ously)

• Heworth station 7600 observations using the ATC traffic data (7600 observations previ-

ously)

• Fishergate station 8496 observations using the ATC traffic data (8496 observations previ-

ously)

• Gillygate station 6799 observations using the ATC traffic data (7490 observations previ-

ously)

• Lawrence station 7858 observations using the ATC traffic data (7948 observations previ-

ously)

• Nunnery station has no ATC station (7160 observations previously)

• Holgate station has no ATC station (8357 observations previously)

Figure 4.9 shows that the input data now can capture the real-world nature of the traffic which

can explain some of the unusual NO2 concentration levels observed by the monitoring stations.

The opportunity to learn the connection between the real-world traffic volumes and the NO2

concentration levels are given to the statistical regression approach, however, it is not clear what

is the error levels on this new regression problem.

4.3.2 Evaluation of the usage of ATC data

The visualization of the new ATC traffic data shows that the new data can provide real-world

observations of the traffic which can be an important information for the statistical regression

model as the traffic is the primary pollution source for the NO2 pollutant in the given modelling

area (in York). It is not clear whether the Random Forest Regression would be able to utilize this

data to make more accurate hourlyNO2 concentration level predictions, therefore, the evaluation

of the algorithm using the new data source was executed:

• the new data source has its own data gaps, therefore, the usage of the ATC data is creating

a slightly different regression problem

• the high-level accuracy of the Random Forest Regression method (using all the available

data excluding the new ATC) is not known on this regression task, therefore, evaluation of

the method is required by executing the developed evaluation framework

• the result of this execution will provide the baseline for further evaluation
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(a) Car traffic data (b) LGV traffic data

(c) HGV traffic data (d) ATC data

Figure 4.9. Data visualization of the old traffic data and the ATC data including the concentration observation levels
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• it is also not known that what high-level accuracy can be achieved by using the new ATC

data compared to the old traffic data and how these accuracy levels compare to the baseline

accuracy levels

To answer these questions, several evaluation runs were executed using the developed LOOCV

evaluation framework. The new regression task allowed only 5 iterations for the cross-validation

evaluation because the ATC data only have observations for 5 monitoring locations. All the runs

were using the Random Forest Regression algorithm for the generating the hourly NO2 concen-

tration level predictions and the high-level RMSE error was calculated to describe the achievable

error levels. The only difference between the runs was the input data given to the Random Forest

Regression algorithm.

• Using all the previously available data (from all the data sources excluding the new ATC

data) achieved 15.06 µgm−3 RMSE error level. This level is slightly higher than the

RMSE level observed in the previous regression task (14.45 µgm−3) and this result is

in line with the nature of the new regression task as this excludes two monitoring sta-

tions which have lower NO2 concentration levels, therefore the current regression task is

slightly harder as the observation levels are higher.

• Using only time and weather-related data (RFR+TW) generated a regression model with

12.68 µgm−3 RMSE accuracy which is again in line with the previous findings

• Using only time and weather-related data plus the old traffic data introduced more error to

the predictions as it generated a model with 14.38 µgm−3 RMSE level (again, this is in

line with the previous findings)

• Using the available time and weather-related data plus the new ATC data generated a stat-

istical regression model generating the hourlyNO2 concentration level with 13.57 µgm−3

error level. This result indicates that using the new ATC traffic data helps to make more

accurate predictions than a model which is using the old traffic data, however, the error

level is still greater than the error level of the RFR+TW model.

The result suggests that using the new ATC data (additionally to the time and weather-related

data) does not provide a more accurate statistical regression model. From the experiment, it is

not clear that using the ATC data with the existing features would give a more accurate model for

the hourly NO2 concentration level prediction task. The stepwise feature optimization task was

executed again on all the available features (now including the new ATC data). Figure 4.10 shows

the first 300 iterations of the feature optimization algorithm. The method found the global optima

after 20 iterations and it did not find a better feature subset afterwards. The optimal subset of the

features included again only the time and weather-related features (and it did contain neither the

old traffic nor the new ATC traffic data).
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Figure 4.10. Visualization of the calculated RMSE accuracy level during the iterations of the stepwise feature
optimization method

This result with the previous results (experimenting with the old and new traffic data) in-

troduce a new problem for the model evaluation. The model has been evaluated by using ob-

servations for 7 stations (or 5 stations) geographically distributed in the modelling area. The

weather and time-related data, however, only contains observations which are identical at each

observation station:

• Weather-related data is identical at each station because the data source provided a high-

level average weather condition for the whole city

• Time-related data is identical at each station because the features within this data group are

identifying the observation/prediction time (e.g. hour of the day, month of the year)

The developed statistical regression model will give the same NO2 concentration level pre-

diction for the whole modelling area if it is only using the time and weather-related data which

would give insufficient predictions as the main purpose of these models to understand the spatial

and temporal changes of the NO2 concentration levels in the modelling area.

The evaluation of the RFR+TW and RFR+TWA models introduced 12.68 µgm−3 and 13.57

µgm−3 high-level RMSE accuracy values, respectively. The difference between the RMSE val-

ues indicates that the RFR+TW model makes the hourly NO2 concentration levels predictions

more accurately, however, the high-level RMSE does not provide fine details of prediction errors

(e.g. the hourly prediction errors in details). To investigate these final detailed errors, the visu-

alization of the observation and prediction concentration levels of the RFR+TW and RFR+TWA
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(a) Fishergate station between 25th March 2013 and
31st March 2013

(b) Fulford station between 22nd July 2013 and 28th
July 2013

Figure 4.11. Visualization of the concentration level observations, predictions and prediction errors by the RFR+TW
and the RFR+TWA models

models has been created. This visualization revealed that the RFR+TW and RFR+TWA models

are mostly predicting the same hourly NO2 concentration levels, however, there are certain epis-

odes where one (RFR+TW) or the other (RFR+TWA) model generates predictions with higher

error levels. Figure 4.11a and Figure 4.11b show two examples of these error episodes:

• Figure 4.11a shows that the RFR+TW model manages to predict the concentration levels

accurately during the visualized period, but the RFR+TWA model generates a prediction

error episode in the middle of the period as it fails to predict the concentration levels

accurately (as it is using the additional ATC data and the model was trained on that data

as well which now introduces this error episode). This result is in line with the high-level

RMSE error level analysis as the RFR+TWA model is expected to produce more errors on

average.

• Figure 4.11b shows the opposite process to the previous example as the RFR+TWA model

generates more accurate predictions compared to the RFR+TW model. This was not ex-

pected from the high-level RMSE error analysis as this example shows that the RFR+TWA

model produces more accurate predictions in some cases, however, on average the accuracy

of this model is worse than the accuracy of the RFR+TW model.

Further investigation of the prediction error episodes of the RFR+TW and RFR+TWA mod-

els showed that these error episodes are non-overlapping. The second example (Figure 4.11b)

indicates that the RFR+TWA model can produce more accurate predictions, however, on average

the RFR+TWA is introducing more errors to the prediction. This finding is important as it means

that there is a benefit to using the RFR+TWA model in certain circumstances, however, these
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circumstances are not known. One possible explanation is that the traffic represented by the ATC

data helps (RFR+TWA is better) when there is traffic jam combined with some specified weather

condition, however, this case only represented a few times in the complete dataset, therefore, the

Random Forest Regression algorithm ignores it, because it treats this case as an outlier.

Having established that RFR+TW and RFR+TWA models generate non-overlapping error

episodes, the analysis of the input data was carried out to understand the prediction circumstances

for these prediction error episodes. It is important to understand these circumstances as this

knowledge can open the possibility of utilizing both models and set up the understanding of

choosing the right model for the right predictions.

The analysis of specific rules (rules to decide what model to use for certain input data) was

carried out which helps to create the systematic assessment of the prediction error of the two

models. The rules were developed by using prior knowledge about the modelling area. In general,

the RFR+TW model provides the most accurate predictions, however, it does not use information

about the traffic. In cities, traffic peaks twice a day when commuters flood the roads (so they

called morning and afternoon traffic peak period). We then separated two different time windows

focusing on days where the weather does not affect the pollution (e.g. the wind speed is low):

• morning: before the morning traffic peak period, when the pollution has been cleaned out

during the night (4AM-7AM)

• afternoon: during the afternoon traffic peak period, where traffic is high on the roads and

traffic jams are highly likely (4PM-7PM)

Figure 4.12 shows the results of analysis of absolute error in prediction during these time

windows using the model RFR+TW, RFR+TWA, and RFR+WA. The RFR+WA model was in-

cluded in this analysis to investigate the accuracy of a model which does not have information

about the time-related data. In the morning case, there is no benefit of using more data than the

T+W. Using RFR+TWA model, however, shows less error in prediction when the traffic is peak-

ing (afternoon case). Moreover, in this situation, using time-related data does not show relevance

as the RFR+TWA and RFR+WA show similar prediction accuracy.

This result motivates the usage of complex modelling system where multiple random forest

statistical regression models are being trained on different subsets of the input data and a model

selector decides what model to use in which situation to exploit the non-overlapping error epis-

odes of the different models.

4.4 Ensemble of the Random Forest statistical regression method
During analysing the detailed prediction errors of the RFR+TW and RFR+TWA models, the non-

overlapping error episodes and the possibility of using a model selector to select the prediction

output of the RFR+TW and RFR+TWA became apparent. Therefore in this section, an automated

systematic model combination is developed and evaluated.



98 Analysis and optimization Chapter 4

Figure 4.12. Absolute error plot of RFR+TW, RFR+TWA, and RFR+WA in the morning and afternoon time windows

4.4.1 Automated ensembling of the RFR+TW and RFR+TWA models

The process of using the predictions output of different machine learning models and combine

them together is often referred as model ensembling [Dietterich (2000); Kotsiantis et al. (2007)].

One of the simplest model combination methods is to generate a classifier which decides (based

on the input data plus the prediction output of the different models) when to use which model

(in this case either to use the output of the RFR+TW or the output of the RFR+TWA). One

of the advantages of using this model combination approach is to the possibility of calculating

the best case scenario. Using the already developed cross-validation evaluation framework, it

is possible to apply both RFR+TW and RFR+TWA models and select always the concentration

level prediction which prediction is closer (has the smaler absolute error value) to the observed

concentration level.

The perfect model combination of the RFR+TW and RFR+TWA model would give the fol-

lowing theoretical accuracy level:

• the current dataset using the ATC data contains data for 5 stations which contains 38981

data points

• using the RFR+TW model gives 12.68 µgm−3 RMSE high-level accuracy

• using the RFR+TWA model gives 13.57 µgm−3 RMSE high-level accuracy

• from the 38981 predictions the RFR+TW model gives more accurate predictions on 24558

occasions
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• from the 38981 predictions the RFR+TWA model gives more accurate predictions on

14423 occasions

• using the perfect RFR+TW and RFR+TWA model combiner would give a statistical re-

gression model with 5.83 µgm−3 RMSE high-level accuracy

This result indicates that a statistical regression model using the perfect RFR+TW and RFR+TWA

model selector can generate predictions with 5.83 µgm−3 RMSE accuracy level on the current

regression task, however, achieving this accuracy level needs a perfect classifier.

This result is promising as the achievable RMSE accuracy level is greater than the accuracy

level of the single RFR+TW and RFR+TWA models, however, the result is only theoretical as

it is challenging to develop a perfect model selector (classifier) for this regression task. It is

evident that we can use an existing classification algorithm to do the model selection. Based on

the success of the Random Forest Regression algorithm (on the regression problem), the Random

Forest Classification algorithm was chosen to perform the classification task.

The model selection method performs the following steps to build the appropriate classifica-

tion model:

• the current LOOCV evaluation framework utilizes data from only 4 stations to build the

statistical regression model and the framework applies the model and evaluates the accur-

acy of the model on data of the fifth stations (and repeats this process 4 more times to apply

the model on all the five stations)

• the model selection requires data to train a classification model which data includes the

input data and the concentration level observations and prediction output of the RFR+TW

and RFR+TWA models

• the model combination method first use only 3 stations data to train to RFR+TW and

RFR+TWA models and applies it to the fourth station to generate the required concentra-

tion level predictions for the classification

• then based on the predictions given by the RFR+TW and RFR+TWA models, it assigns the

value of 0 (prediction concentration level by the RFR+TW model is closer to the observed

concentration level than the prediction concentration level by the RFR+TWA model) or

1 (prediction concentration level by the RFR+TWA model is closer to the observed con-

centration level than the prediction concentration level by the RFR+TW model) which

provides the two classes for the classification

• this process is repeated four times to generate data for each station

• the Random Forest Classifier is trained based on the generated data

• RFR+TW and RFR+TWA models are trained using the data of the available 4 stations
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Figure 4.13. Visualization of the achieved accuracy levels (RMSE and classification accuracy) during the stepwise
feature optimization run for the model selection classification

• RFR+TW and RFR+TWA models are applied to the fifth station as well as trained model

selection classifier

• based on the output of the model selection classifier (it is either 0 or 1), the prediction

output of the RFR+TW (if the classification output is 0) or the prediction output of the

RFR+TWA (if the classification output is 1) will be selected for the final concentration

level prediction

• the complete process is repeated 4 more times to cover all 5 stations

4.4.2 Optimization and evaluation of the ensemble method

The introduced approach provides a model selection classifier for the RFR+TW and RFR+TWA

statistical regression models. This approach can be evaluated against the existing single RFR+TW

and RFR+TWA statistical regression models, however, the underlying model selection classific-

ation needs to be first optimised for the given classification problem. A stepwise feature optim-

ization can be executed for this optimization similarly to the previous feature optimization of the

statistical regression approach.

Figure 4.13 shows the result of the stepwise feature optimization method for the classification

method including also the accuracy of the classification of the model selection model. The step-

wise feature optimization method started using all the available input data (the same input data

which was developed for the regression task including all the data sources). Using all the data the

model combination method generated 0.5021 classification accuracy which generated a statistical
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regression model with 13.09 µgm−3 high-level RMSE accuracy. The stepwise feature optimiz-

ation method then executed its iterations to find input feature subset to increase the accuracy

level of the underlying model selection classification (which lead to improvement in the high-

level RMSE regression accuracy). The global optima for the classification method were reached

after 15 iterations which model was producing 0.5448 classification accuracy and 12.64 µgm−3

RMSE high-level accuracy. The best subset of the input features includes the hour, day of week,

month, bank holiday, race day, windspeed, temperature, rain, pressure, lane length, length, leis-

ure area features which indicate that the classification model is using lane length, length, leis-

ure area features (not only the time and weather-related data).

The result indicates that the presented method could provide more accurate hourly NO2

concentration levels than the RFR+TW method utilizing the predictions of the RFR+TW and

RFR+TWA models and selecting the appropriate prediction outputs. The achieved accuracy level

of the combined method is far from the introduced model combination using the perfect classifier,

but this result was expected as the achieved accuracy of the actual model selection classification

is very low. Again, the high-level RMSE error does not provide fine details of the prediction

errors, but the visualizations of the observations and predictions were generated to understand

the introduced error by the new model (including the predictions of the existing RFR+TW and

RFR+TWA methods).

Figure 4.14 shows the visualization of the predictions of the developed model combination

method as well as the predictions of the underlying RFR+TW and RFR+TWA models. The plot

shows the four notable possible cases of the model selection classification outcome:

• the predictions of the RFR+TW model are showing an error episode, but the predictions

of RFR+TWA model are close to the observations and the model selection selects the

RFR+TWA model, therefore the final predictions are close the observations

• the predictions of the RFR+TW model are showing an error episode, but the predictions

of RFR+TWA model are close to the observations and the model selection selects the

RFR+TW model, therefore the final predictions are showing the error episode

• the predictions of the RFR+TWA model are showing an error episode, but the predic-

tions of RFR+TW model are close to the observations and the model selection selects the

RFR+TW model, therefore the final predictions are close the observations

• the predictions of the RFR+TWA model are showing an error episode, but the predic-

tions of RFR+TW model are close to the observations and the model selection selects the

RFR+TWA model, therefore the final predictions are showing the error episode

These examples are indicating that the model selection is capable of exploiting the differ-

ences in the predictions of the RFR+TW and RFR+TWA models and the model selection can
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(a) Fishergate station between 18th February 2013
and 24th February 2013

(b) Fishergate station between 14th October 2013
and 20th October 2013

(c) Fulford station between 11th March 2013 and
17th March 2013

(d) Heworth station between 15th April 2013 and
21st April 2013

Figure 4.14. Visualization of the concentration level observations, predictions and prediction errors by the RFR+TW
and the RFR+TWA and the combined models including the model selection classification prediction output
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select the appropriate (more accurate) model in some circumstances. Understanding these cir-

cumstances is challenging because it requires the detailed analysis of the decision mechanism

of the Random Forest classification method on this specific task (which include the analysis of

hundreds of decision trees generated by the Random Forest classification algorithm). These cir-

cumstances need to be complex otherwise the underlying RFR+TW and RFR+TWA algorithms

would have learned these and utilized the knowledge to generate more accurate predictions. The

model selection, however, is not accurate enough to make the NO2 concentration level pre-

dictions significantly more accurate than the underlying RFR+TW and RFR+TWA models, but

the model selection classification method utilizes other data sources which make the developed

model applicable to generate predictions for the whole urban area.

4.5 Summary
The aim of this chapter is to investigate the sensitivity of the applied input data to the predic-

tion accuracy of the Random Forest Regression method. The analysis of the evaluation of the

application of data from different data sources revealed that the time and weather-related data

sources are crucial for the developed statistical regression approach. This result contributes to

the Environmental Science field as it indicates what are the most important data for the Random

Forest Regression statistical regression method. Moreover, the analysis highlighted that using

the traffic data only introduces prediction error because the traffic data in question is only traffic

volume estimates which do not represent the actual traffic in the observation hour.

The traffic data source has been changed to a different data source (ATC data source) which

data provided actual traffic volume data for the regression model. The evaluation of using this

new data source shows that using this data still increases the prediction error. The detailed ana-

lysis of the hourly NO2 concentration level predictions revealed that the Random Forest Regres-

sion model trained on only time and weather-related data (RFR+TW) and the Random Forest Re-

gression model trained on time, weather and traffic data (RFR+TWA) generates non-overlapping

error episodes.

The existence of the non-overlapping error episodes in the concentration level predictions of

the RFR+TW and RFR+TWA models suggests that selecting the prediction outputs of the two

models at different input circumstances can utilize both models prediction power to further op-

timize the achievable prediction accuracy. A manual, simple rule-based case was investigated

where the RFR+TWA could offer more accurate concentration level prediction compared to the

RFR+TW model. The last section of the chapter describes the development of an automated

model ensembling method which offers further improvement in the prediction accuracy by sys-

tematically selecting outputs of the RFR+TW and the RFR+TWA models.

The developed Random Forest ensemble method could produce more accurate hourly NO2

concentration level predictions than the underlying RFR+TW and RFR+TWA models. This en-

semble algorithm contributes to the Computer Science field as this novel ensemble algorithm can
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be used to any other regression task where it is crucial to improve the overall regression accuracy.

The introduced model ensembling method provides further improvement for the hourlyNO2

concentration level predictions. It requires training two Random Forest Regression models (for

concentration level predictions) and one Random Forest Classification model (for model selec-

tion). Building a Random Forest Regression (and Classification) model, however, is computa-

tionally expensive which raises the question on the scalability of the developed model. On the

current dataset (which captures data of the current modelling area, York), the developed method

is feasible and manages to make predictions within reasonable computational time, however,

the approach on larger, more complex problems can struggle due to its high computation re-

quirement. Also, applying the model to one dataset does not give enough information on the

robustness of the developed approach. The next chapter will, therefore, investigate the scalability

and robustness of the developed method by applying it to a larger, more complex environmental

modelling problem.



CHAPTER 5

Robustness and scalability analysis of the Statistical

Regression approaches

This chapter presents a detailed robustness and scalability analysis of the developed Random

Forest Regression and Random Forest ensemble approaches.

The scalability is defined as the ability to carry out the model training and application on

large environmental problems and the robustness is defined as the ability to produce accurate

predictions in the case of a different modelling scenario. To understand the robustness and the

scalability of the approaches, they will be applied to a large-scale environmental problem which

covers the task of the hourly NO2 concentration level prediction in the London area.

The chapter begins with the analysis of the developed Random Forest Regression and Ran-

dom Forest ensemble methods application to the London dataset. The result of this analysis con-

tributes to the Environmental Science field as the analysis indicates that the statistical regression

approach can be applied to complex and large environmental modelling problems. The second

part of this chapter explores the application of a different Random Forest ensemble method which

algorithm contributes to the Computer Science field as it generates an algorithm which can be

applied to any other regression task to further improve the regression accuracy.

In the first section (Section 5.1), the motivation of this work is explained which introduces

the aim of the scalability and robustness analysis. Section 5.2 describes the large-scale environ-

mental modelling problem including the input data collected for supporting the development of

the statistical regression approach. The robustness and scalability analysis is described in Section

5.3. Based on the experience gathered during the analysis, a novel ensemble method is proposed

in Section 5.4 which provides accurate hourlyNO2 concentration levels for the introduced large-

105
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scale environmental modelling task. Finally, the Section 5.5 finalizes the chapter.

5.1 Motivation
The developed statistical regression approaches (the Randon Forest Regression method and the

Random Forest ensemble method) were developed and evaluated using the York dataset. The

complexity of the regression task given by this dataset is considered as average because

• there is only 7 stations (5 stations with the ATC data) in the modelling area producing 8760

hourly observations per year (approximately 61320 and 43800 data records if there is no

gap in the data) which is easily processable for the existing scikit-learn implementation of

the Random Forest algorithm

• the observation data contains concentration level observations in the same value range at

the different monitoring locations, therefore, the complexity of the underlying environ-

mental modelling problem is simple as the primary source of the pollution is the traffic in

the modelling area (and there is no pollution heavy industry or any other major pollution

source)

The statistical regression approach needs to use historical observations of the NO2 concen-

tration levels and other relevant information of the environment. The sensitivity analysis of the

prediction accuracy to the dataset given to the Random Forest Regression algorithm (presented

in the previous chapter) revealed that the accuracy of the predictions generated by this statistical

regression approach highly depends on the quality of the available data. The algorithm requires

intense computation to generate the underlying decision trees (compared to the standard Linear

Regression statistical regression algorithm), however, the algorithm generated these internal data

structures quickly enough to evaluate the accuracy on a single machine. The general scalability

of the developed approach, however, is not known, therefore, this chapter aims to understand the

feasibility of the application of the Random Forest Regression and the Random Forest ensemble

methods on a large-scale environmental modelling problem. Modelling the NO2 concentration

levels on the urban area gives the most challenging predictions task in this NO2 concentration

level modelling field as the modelling area is complex and multiple independent processes are

affecting the concentration levels (e.g. traffic is a primary source, but the urban geometry alters

the concentration levels because it enables certain processes to release and keep the emitted pol-

lution from the street level). From the environmental science aspect, one of the most analysed

urban area is the London area:

• London has a very complex urban geometry including one of the most polluted street in

the world (Oxford street)

• London has a very congested road network resulting high level of pollution emission by

the vehicles
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Figure 5.1. Geographical map of London with the monitoring station locations (red stars)

• London has large industry resulting in high level of pollution emission

• London has one of the densest pollution monitoring network in the world

These properties of London are suggesting that selecting London for the modelling area is de-

sirable, therefore, the large-scale application of the developed models aims to predict the hourly

NO2 concentration levels for London. The chapter aims

• to develop the Random Forest Regression statistical regression approach for the London

area to investigate the challenges of the development process itself

• to develop the Random Forest ensemble method for the London area to investigate the

accuracy of the ensemble method

• to understand the scalability of the developed methods by investigating the computational

time required to generate and evaluate the methods

• to understand the robustness of the developed methods by comparing the prediction accur-

acy results with accuracy results of the York model applications

5.2 Introduction of the large-scale environmental modelling
problem

The first step of the application and evaluation of the statistical regression model is the data

collection. Similar data was collected for the large-scale model application as in the previous

chapters (Section 3.3) to feed the statistical regression model with historical observation data,
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however, some of the data sources were not available for the London area. This section describes

the collected data explaining the difference between the data collected here and the data collected

for the previous model application. The description of the data transformation is also described

to understand how the collected raw data was prepared to feed it into the statistical regression

algorithm for hourly NO2 concentration level predictions. The data collection method for this

model application follows data sources in the existing studies of the literature [Hochadel et al.

(2006); Stedman et al. (1997); Briggs et al. (1997)]. Figure 5.1 shows the London modelling

area.

Monitoring (observation) data The most important data for the hourly NO2 concentration

level modelling is the hourly NO2 concentration level observation data. In London, the London-

air database contains data about the environment; this database is provided by the Environmental

Research Group of King’s College London. The database contains hourly concentration level

measurements for NO2 and other pollutants (e.g. PM10, PM2.5, etc.) from more than 100

monitoring locations. NO2 concentration level data from 35 roadside stations (only these 35

stations have co-located traffic counter stations) have been acquired which covers the time period

between 1st January 2016 and 31st December 2016. Figure 5.2 shows a boxplot of the obser-

vations produced by each station. These readings are considered to be high pollution levels as

more than half of the stations have greater than 50 µgm−3 median NO2 concentration level ob-

servations. The collected observation data differs from the previously collected data as it has

more stations (5 stations previously) and the observed concentration levels are different as there

are stations with very high observed NO2 concentration levels (compared to the previous data

where the observations of the stations were close to each other).

Land use data Land use data has been collected using the Open Street Map database sim-

ilarly to the previous model application. The available data describes the areas (in polygons

format) usage scenarios (e.g. leisure, green areas, farm, etc.). The following data for each buffer

area (around the monitoring stations) were extracted: “landuse area” and “leisure area” which

are proportional area measurements of the specific subcategory of the polygons to the buffer area

in the database.

Building data Building data has been collected using the Open Street Map database. The

data source for this data is different from the previous model application as the Open Street

Map database contains fine details of the existing buildings in the London area (which details

have more detailed information about the buildings than the previously used Ordnance Survey’s

Mastermap database). The database gives spatial information about buildings within the area

of interest. The raw data has been processed and the number of the buildings and area of the

buildings covered by each buffer area generated the “buildings” and “buildings area” features.

Road data Road data has been collected using the Open Street Map database. This data

source is different from the previous model application however the Open Street Map database

has very precise information about roads in the modelling area. Only static features were ex-
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Figure 5.2. Monitoring data for the London modelling area (top) and the grouping of the monitoring data for the
evaluation framework (bottom) including the station ID followed by the available observations for the station
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tracted from this database such as the road length (which covers the overall length of the roads

within the buffer area) and the road lane length (which is using the lane number for a road as a

multiplier for the given road’s length).

Automated traffic count data Similarly to the previous model evaluation, Automated Traffic

Count (ATC) data was collected from the Transport for London’s Road Space Management

group. This data covers the amount of the traffic around the monitoring stations (only 35 pol-

lution monitoring stations have co-located traffic counter). This data is important as one of the

main source of the NO2 pollutant is the traffic and using this data helps the model to have in-

formation about this pollution source. The collected data captures the same time period as the

monitoring observation data (time period between 1st January 2016 and 31st December 2016).

Meteorological data Meteorological data from the Weather Underground database (https:

//www.wunderground.com/weather/api/) has been acquired by using its API to down-

load data. This database contains observations for cities and includes temperature, relative hu-

midity, wind speed, wind direction, and pressure measurements. The data includes meteorolo-

gical observations at all the stations because the modelling area is covering a larger area than the

previous model application, therefore this data differs from the data previously used as the York

meteorological data had only observations for the city on average. The time interval for this data

matches the concentration level observation data time interval (hourly observations between 1st

January 2016 and 31st December 2016).

Time related data Similar time-related indicators (e.g. hour of the day, day of the week,

bank holiday, etc.) were generated as the previous model application, however, the York specific

indicators (e.g. race day) were excluded as these features are no longer valid for the given mod-

elling area. It is practically hard to find similar features for this modelling area, because the area

itself covers a much bigger area and events (such as football matches or concerts) only covers a

small part of the complete modelling area.

Figure 5.2 shows the hourly NO2 concentration levels at each station including the avail-

able observations per stations. The 35 stations produced 218121 number of observations which

number is a magnitude higher than the 38981 observations in the previous model application.

The collected dataset contains very similar features to the previously used York dataset be-

cause the data collection process was focused to collect similar data. Unfortunately, collecting

a complete London scale hourly road traffic was not possible, but all the other data source were

available (e.g. Open Street Map database) or similar data could be collected (e.g. using the Open

Street Map instead of the Ordnance Survey’s Mastermap for building data). There is also an

important property of the collected data as these data are all publicly available data:

• the Open Street Map database is an open-source database

• the Londonair database is publicly available to everyone

• the Weather Underground database is free until a certain number of daily queries

https://www.wunderground.com/weather/api/
https://www.wunderground.com/weather/api/
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Feature Unit Source Data group

no2 level µgm−3 Londonair -
road length meter Open Street Map R

road lane length meter Open Street Map R
atc traffic count/hour Transport for London A

buildings - Open Street Map B
buildings area area Open Street Map B
landuse area area Open Street Map L
leisure area area Open Street Map L

wind direction degree (angle) Weather Underground W
wind speed m/s Weather Underground W
temperature celsius degree Weather Underground W

rain indicator Weather Underground W
pressure hPa Weather Underground W

hour - Generated T
day of week - Generated T

month - Generated T
bank holiday indicator Generated T

Table 5.1. Summary of the collected data for the large-scale modelling scenario

• Transport for London provides publicly available data for everyone (including the traffic

count data at their ATC sites)

The fact that the datasets are publicly available helps to generate reproducible research ma-

terial as the data is available for everyone and researchers and scientist do not need to wait for

special permissions to get the data. Also, this helps for the model application itself as the cre-

ated data collection and transformation methods can be used to generate data for other modelling

areas easily.

5.3 Evaluation of the developed statistcial regression methods
The data has been collected for the London modelling area which contains data for 35 stations

from various data sources. The data was transformed into the right format (this transformation

is essentially the same as the data transformation used for previous model application and evalu-

ation).

The evaluation of the previous model application was carried out by implementing a leave-

one-out cross-validation (LOOCV) method where data from one station was left out from the

training phase of the statistical regression model and then the generated model was applied to this

station data and the predictions were compared with the observations. The process was repeated

for each station. The main purpose of this method is to determine the possible prediction error in
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the case of applying the model to locations in the urban area unknown to the model and evaluate

the average prediction error of the application of the model to the complete modelling area. The

previous dataset only has 7 (or 5) stations due to the small size of the monitoring station network

(which in fact means a very dense monitoring station network considering the size of the York

area). Applying the LOOCV to the York dataset was an ideal choice as data was created for only

a small number of monitoring stations (e.g. training the statistical regression model using even

smaller number of stations and evaluating the predictions of data on more stations would result

in higher error levels as the statistical regression approach would suffer from not having enough

data).

LOOCV is a choice to evaluate the prediction accuracy of the statistical regression approaches

on the London dataset, however, the dataset enables to create wider evaluation as it is possible to

evaluate the prediction accuracy using data not only from one station but from multiple stations.

It is still possible to follow the idea of the LOOCV evaluation method, however, not with single

station but with a group of stations. The available data from 35 stations can be divided into 5

groups pseudo-randomly in the way that each group contains stations with low, medium and high

hourly NO2 concentration level observations, therefore, each iteration of the LOOCV method is

going to evaluate data from all range of the stations. This helps to understand better the achievable

prediction accuracy of a complete city-scale model application than using the standard LOOCV

where only one station data is used for evaluation.

Figure 5.2 shows the groups of stations with their observed hourlyNO2 concentration levels.

The figure shows that each group has observations from the station having all the range which

will give bias to each validation iteration.

It is now possible to execute similar evaluation runs to the previous model evaluations, but

the LOOCV is going to leave one group data out from training the statistical regression model

and apply the generated model on the data left out from the training and compare the predictions

with the observations. Investigating the result of a LOOCV gives us an understanding of

• the scalability of the statistical regression approach as it is possible to measure the time

required to run each iteration and compare that time with the previous LOOCV execution

time

• the robustness of the statistical regression approach as the validation will provide inform-

ation about the quality (high level and low level) of the predictions generated by the ap-

proaches

To be able to assess the scalability and the robustness of the statistical regression methods,

the Random Forest Regression method needs to be tuned for this new regression task. Using

the result of the previous model application (Section 3.4), the minleaf train induction method

was selected. Then similar hyperparameter search runs were executed on this dataset to properly

tune the hyperparameters of this tree induction algorithm. The search was set to investigate the
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Figure 5.3. Hyperparameter investigation for the Random Forest Regression method using the minleaf tree induction
technique on the London dataset

minleaf parameter between the value of 2 and 200 and the estimators parameter between the

value of 50 and 100. Figure 5.3 shows the high-level RMSE results of this run. The figure shows

similar trends to the hyperparameter searches of the previous model application:

• the result shows that the high-level accuracy is, in fact, sensitive to the applied hyper-

parameter as the high-level RMSE accuracy indicator depends on the given minleaf and

estimators hyperparameters

• the RMSE high-level curve reaches its minima at minleaf=29 which suggest that the gen-

erated trees have more observations in their leaf nodes compared to the previous model

application (where minleaf=2 gave the most accurate regression model) which is in line

with the fact that the model now has more data to extract the necessary knowledge to make

accurate hourly NO2 concentration level predictions

• the result suggests that the Random Forest Regression approach is robust to the large-scale

dataset as the curve reaches its minima and there are no unexpected spikes in the figure

Based on the result of the hyperparameter search, using the minleaf=29 and estimators=64

gives the most accurate model to the large-scale modelling task which model generates predic-

tions with 32.16 µgm−3 RMSE accuracy. The time required to run one LOOCV run takes 121

seconds on average on a computer with Intel Core i7-4770K processor and 32 GB memory hard-

ware configuration. The same LOOCV run for the previous model application (for the York

dataset) took 104 seconds using the same computer. This result indicates that the method, in fact,
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requires more time to generate the underlying decision tree models, however, the large-scale

model application evaluation can be executed within fairly short time using a desktop computer

(therefore it does not require special hardware or a network of computers to carry out the model

application). The main purpose of the scalability study of the statistical regression approach is

to find out the method is feasible to carry out any large-scale environmental modelling task. The

fact that the model application to one of the largest problem in the field takes a couple of minutes

on an average desktop computer makes the model scalable and there is no need for further scalab-

ility investigation as all the regression tasks in the field (the field of hourly NO2 concentration

level modelling in the urban area) has the same (or smaller) problems regression problems.

Similarly to the previous model application and evaluation, tuning the Random Forest Re-

gression approach was executed by feeding all the available data to the algorithm. The results of

the previous chapter indicate that further accuracy improvement can be achieved by not using all

the available features of the input dataset, however, it is not known that this behaviour still holds

in the case of using the large-scale dataset. To understand the accuracy sensitivity of the Random

Forest Regression approach to the applied data, the evaluation framework was executed using the

all the possible subset of the input data by grouping the features by their data source. The evalu-

ation framework was executed the determine the high-level RMSE accuracy for all the possible

combination of the features collected from different data sources, similarly to the previous model

evaluation (Section 4.2). Figure 5.4 shows the result of the high-level RMSE accuracy analysis

of the input data analysis. The result is similar to the previous model evaluation:

• using all the available data gives a model (RFR+ALL) that generates the hourly NO2

concentration level predictions with 38.16 µgm−3 high-level RMSE accuracy

• the most accurate model is the model which using only the time and weather-related data

(RFR+TW) generating a regression model which creates predictions with 31.88 µgm−3

high-level RMSE accuracy

• adding the automated traffic count data to the time and weather-related data and using this

dataset to feed the Random Forest Regression with training data generated a model with

increased error rate (34.73 µgm−3 high-level RMSE accuracy) compared to the previous

(time and weather-related data only) case similarly to model evaluation for the York dataset

Similarly to the previous model evaluation, the relative RMSE high-level accuracy was visu-

alized for using all the data subsets relative to the most accurate case (RFR+TW) (Figure 5.5).

The figure indicates that the result is similar to the previous model application and evaluation as

using the time and weather-related data generates the most accurate model to predict the hourly

NO2 concentration levels for the large-scale modelling task. This result, however, is expected as

the same result for model evaluation of the York dataset as in this case the weather data is differ-

ent at each station as the data source provided different meteorological data for each station.
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Figure 5.4. Accuracy investigation of the different input data subsets using the same labelling as the previous model
evaluation



116 Robustness and scalability Chapter 5

Figure 5.5. Relative RMSE accuracy using datasets compared to RFR method using only the Time and Weather data

Adding the automated traffic count data introduced more error to the predictions as indicated

by the experiment which fact opens the way to the application of the developed Random Forest

ensemble method. The previously developed ensemble method, however, was considering only

individual stations, therefore, a simple modification had to be applied to be able to run on the

large-scale dataset:

• the current LOOCV evaluation framework utilizes data from 4 groups of stations (com-

pared to the previous model application where only data from stations was utilized) to

build the statistical regression model and the framework applies the model and evaluates

the accuracy of the model on data of the fifth group of stations (compared to the previous

model application where only data from the remaining fifth station was used), and repeats

this process 4 more times to apply the model on all the five groups of stations

• the model selection requires data to train a classification model; this data includes the input

data and the concentration level observations and prediction output of the RFR+TW and

RFR+TWA models

• the model combination method use only data from 3 groups of stations to train to RFR+TW

and RFR+TWA models and applies it to data of the fourth group to generate the required

concentration level predictions for the classification

• then based on the predictions given by the RFR+TW and RFR+TWA models, it assigns the

value of 0 (prediction concentration level by the RFR+TW model is closer to the observed
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Figure 5.6. Classification feature optimization steps for the Random Forest ensemble method

concentration level than the prediction concentration level by the RFR+TWA model) or

1 (prediction concentration level by the RFR+TWA model is closer to the observed con-

centration level than the prediction concentration level by the RFR+TW model) which

provides the two classes for the classification

• this process is repeated four times to generate data for each group of stations

• the Random Forest Classifier is trained based on the generated data

• RFR+TW and RFR+TWA models are trained using the data of the available 4 stations

• RFR+TW and RFR+TWA models are applied to the fifth group as well as trained model

selection classifier

• based on the output of the model selection classifier (it is either 0 or 1), the prediction

output of the RFR+TW (if the classification output is 0) or the prediction output of the

RFR+TWA (if the classification output is 1) will be selected for the final concentration

level prediction

• the complete process is repeated 4 more times to cover all 5 possible iterations

The classification method needs to be calibrated for this regression task (similarly to the

previous ensemble method application). Figure 5.6 shows the result of the feature optimization

technique which process helps to calibrate the classification method. The result indicates that

the using the subset of the features to carry out the classification helps, however, the overall
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Figure 5.7. Boxplot of the absolute error for the RFR+ALL, RFR+TW, RFR+TWA and Random Forest ensemble
methods

RMSE high-level error of 31.94 µgm−3 for the Random Forest ensemble method on this dataset

indicates that the ensemble struggles to utilize the RFR+TW and RFR+TWA methods to generate

more accurate predictions than the RFR+TW model itself. There are multiple reasons for this

result:

• traffic is not the only pollution source in the London modelling area, therefore, using the

data gives information about one of the pollution source, but not all of them compared to

the previous York modelling scenario

• the meteorological data in the York dataset contains observations from one single weather

monitoring station and this data has been used at all the different pollution monitoring sta-

tions locations. On the other hand, the meteorological data in the London dataset contains

weather observation data from multiple weather observation stations because the model-

ling area consists of multiple weather observation stations. This implies that the weather-

related input data not necessarily the same at each pollution monitoring station locations

for the same observation time.

To compare the three different approaches (RFR+ALL, RFR+TW, Random Forest ensemble),

Figure 5.7 shows the boxplot of the absolute error of hourly NO2 concentration level predictions

and Figure 5.8 shows the observation-prediction pairs for all three models:

• the Random Forest Regression method using all the available data (RFR+ALL) produced

the most inaccurate model as the model generated predictions with 38.16 µgm−3 RMSE,



Section 5.3 Evaluation of the developed statistcial regression methods 119

(a) Random Forest Regression (b) RFR+TW

(c) RFR+TWA (d) Random Forest ensemble

Figure 5.8. Observation-prediction plots for different methods on the London dataset
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27.16 µgm−3 MAE high-level errors and with 0.43 linear correlation value. This result is

similar to the previous model application.

• the Random Forest Regression method using only the time and weather-related data (RFR+TW)

produced a more accurate regression model as the model generated predictions with 31.88

µgm−3 RMSE, 23.03 µgm−3 MAE high-level errors and with 0.56 linear correlation

value. Figure 5.7 shows smaller absolute prediction errors and Figure 5.8 shows tighter

point cloud for the observation-prediction pairs which results are all in line with results of

the previous model application.

• the Random Forest ensemble method which utilizes the RFR+TW and RFR+TWA models

produced a regression model with 31.94 µgm−3 RSME, 23.12 µgm−3 MAE high-level

accuracy and with 0.56 linear correlation value. The ensemble method struggled to ef-

fectively combine the predictions of the two underlying methods, therefore, the overall

accuracy is lower than the accuracy of previous RFR+TW model. This result is different

from the previous model application as using the Random Forest ensemble method gave

accuracy improvement for the York dataset.

Comparing the high-level RMSE and MAE results to the previous model application suggests

that the models struggle to make accurate predictions as the values of the RMSE and MAE levels

are higher:

• the RFR+ALL models produced predictions with accuracy of 15.06 µgm−3 RMSE and

38.16 µgm−3 RMSE on the York and London dataset, respectively

• the RFR+TW models produced predictions with accuracy of 12.68 µgm−3 RMSE and

31.88 µgm−3 RMSE on the York and London dataset, respectively

• the Random Forest ensemble methods produced predictions with accuracy of 12.64 µgm−3

RMSE and 31.94 µgm−3 RMSE on the York and London dataset, respectively

MAE and RMSE are high-level prediction accuracy evaluation methods producing zero level

for the perfect regression model, however, they both depend on the ranges of the regression target

data. For example, a regression task where the regression target data range is between 0.0 and 1.0

has smaller MAE and RMSE values than a regression task where the target data range is between

0.0 and 100.0, because, the larger range gives more chance for larger individual prediction error.

To understand the difference between the calculated high-level RMSE values for the differ-

ent model applications, the analysis of the differences between the hourly NO2 concentration

levels has to be carried out. The York and the London datasets are describing two very different

regression tasks:
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• York has the traffic as the main pollution source and has 5 (or 7) monitoring stations de-

ployed to capture the NO2 concentration levels which stations observed very similar pro-

cesses affecting the concentration levels

• London has multiple pollution sources and the monitoring station network captures very

different concentration level trends depending on the location of the monitoring station

(e.g. the monitoring station deployed at Oxford street has very high-level of NO2 concen-

tration levels as this street has the worst pollution in the world while a monitoring station in

one of the outer region observed low concentration levels similar to what the York dataset

has)

Both RMSE and MAE measurements are relative to the actual observations, therefore, it is ex-

pected to have higher RMSE and MAE values on a regression task which has higher observation

values simple because a misprediction can cause a higher absolute error on average, considering

the complete regression task. This explains why the model applied to the London dataset pro-

duced higher RMSE and MAE high-level errors in general, however, the observation-prediction

pairs and absolute error plot are required to be investigated and analysed for any outliers and

anomalies in the predictions.

As the London modelling area contains an increased number of stations compared to the

previous model application (35 stations compared to the 5 stations), the observation-prediction

pair plot (Figure 5.8) and the prediction absolute error plot (Figure 5.7) have less meaningful

information because the figures contain too many data points to visualize. These figures give an

overall view of the quality of the predictions, but they do not provide information about anomalies

and outliers in the predictions at the station level. To understand the prediction quality of the

developed models, the visualization of prediction absolute errors were generated at each station:

• the data has been extracted from each iteration of the LOOCV process

• in each iteration, the prediction and observation data were captured and identified to match

them to the corresponding station

Figure 5.9 shows the absolute prediction error at each station by the RFR+TW method. It

indicates that there is no significant anomaly in the prediction data and the models generate pre-

diction sensibly at each station. Investigating the same figures for the RFR+ALL and Random

Forest ensemble method gives the same behaviour. The figure, however, reveals another unex-

pected property of the statistical regression approaches:

• the medians of the absolute errors of the predictions do not straightly follow the medians

of the observations

• the medians of the absolute prediction errors reach the lowest values between the station

57 and station 50
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Figure 5.9. Absolute prediction errors by the RFR+TW model grouped by the stations and ordered by the median of the
concentration level observation of the stations
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• the medians are increasing leaving this middle section of the figure (left to the station 57

and right to the station 50)

• this suggests that the lowest absolute prediction errors are not presented at the station with

the smallest observed hourly NO2 concentration levels, but the stations which are close to

the middle region which stations data are closer to an hypothetical average station data

Figure 5.9 indicates that the absolute prediction errors are smaller at the stations which has

an average hourly NO2 concentration level observations considering all the hourly NO2 con-

centration level observations of all the available stations. This suggests that the Random Forest

methods (RF+ALL, RF+TW, Random Forest ensemble) are generating accurate predictions con-

sidering an average monitoring station (a station which has an average hourlyNO2 concentration

levels) and accuracy of the predictions degrades if the model needs to predict concentration levels

at a place which has lower or higher average NO2 concentration levels. This behaviour is the

consequences of the internal tree induction mechanism of the Random Forest statistical regres-

sion algorithm as the tree induction algorithm is creating the internal tree to minimalize the mean

squared error and the mean squared will be minimum if the model gives very accurate predictions

at the stations where the concentration levels are close to the average.

This finding motivates the investigation of a different kind of ensemble method where mul-

tiple models are trained on different subsets of the available data based on the station’s observa-

tions levels and the right model is selected to generate more accurate hourly NO2 concentration

levels.

5.4 Ensemble model for large-scale environmental modelling
Visualizing the absolute prediction errors at each station revealed that the Random Forest Re-

gression methods produce accurate predictions at stations whose observations are close to the

average and the methods produce uncertain predictions at stations either with low NO2 concen-

tration level profile or high NO2 concentration level profile. To further investigate this property

of the Random Forest Regression algorithm, the following visualization has been generated:

• a Random Forest Regression method trained using only one station’s data (hourly NO2

concentration levels and the time and weather-related part of the available input data), and

the model applied to all the stations individually and evaluated using the RMSE high-level

error metric

• The visualization of this experiment helps to understand the achievable average RMSE

high-level prediction accuracy using models trained on observation data in one range and

applying the generated model to a similar (and different) observation range

Figure 5.10 shows the visualization of the results which shows the following trend:
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Figure 5.10. Error analysis of the Random Forest Regression models generated by using only one single station data and
evaluated on all stations individually where the colour of the line indicates the concentration level profile observed by

the single station (green has low concentration levels while red has high concentration levels)
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• a Random Forest Regression model makes accurate predictions if it is applied to a station

which has a similar NO2 concentration level profile as the station which provided the data

initially for the Random Forest Regression model

• this observation is true for all the spectrum of the stations as using the data of stations with

low concentration levels observations is generating a model which is accurate prediction

concentration levels of station with low concentration levels and the opposite is also true

• this information describes why the Random Forest Regression algorithm using observation

data contains only low concentration levels would make predictions with low accuracy (as

it has the opportunity to learn low concentration levels). The opposite case, however, is

unexpected because using the Random Forest Regression model trained on observation

data which contains high (but not always high as there are low concentration level obser-

vations at these monitoring stations) concentration level observations gives predictions on

low concentration level observations with low accuracy.

This result reveals the nature of the prediction of the Random Forest Regression statistical

regression algorithm as it can only predict events (concentration levels) that the model observed

during the model training phase. This property implies that the input data needs to contain

observation from all range of monitoring stations to give the right data to the Random Forest

Regression algorithm otherwise it will generate predictions with high error levels.

This result also indicates that using two Random Forest Regression models (one trained on

data from stations which observed low concentration levels and the other trained on data from

stations observed high concentration levels) can potentially improve the accuracy of the statistical

regression approach if the model selection can be implemented accurately. The ranges should not

overlap in these models, otherwise, the process would give models where the models are less ob-

servation range specific, therefore they would give predictions similarly to the single model case.

The model selection can be implemented as a binary classification task where the classification

method needs to select the appropriate output of the available two models considering the current

input. This classification can be carried out by using the Random Forest classification algorithm.

Using this algorithm, the ensemble method needs to contain the following steps to be able to train

and evaluate the model:

• the current LOOCV evaluation framework utilizes data from 4 groups of stations to build

the statistical regression model and the framework applies the model and evaluates the

accuracy of the model on data of the fifth group of stations (and repeats this process 4

more times to apply the model on all the five stations)

• the available data of 4 groups of stations used for training the regression model needs to

be split into two parts based on the source stations concentration level profile: one group
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Figure 5.11. Stepwise feature optimization for the large-scale Random Forest ensemble method

contains the data from the lower part (exactly half of the available stations) and the other

group contains the data from the upper part (the other half of the available stations)

• using the current London dataset and the 5-fold LOOCV method gives data of 14 stations

for the lower model and data of 14 stations for the upper model

• the Random Forest Regression methods trained based on the lower and upper datasets

• another dataset is created for the classification which includes the original data from the

available 28 stations (excluding the observation data) and adding one new feature which

describes that the given observation belongs to the lower or to the upper datasets

• a Random Forest classification model trained on this new dataset to be able to decide which

outputs to use for the final output generation

• all three models are applied to data from the fifth groups of stations (and the model selec-

tion is based on the output of the Random Forest classification method)

• the complete process is repeated 4 more times to cover all 5 iterations

This ensemble method contains a Random Forest classification method to automatically

choose from the two outputs of two Random Forest Regression methods (RFR upper, RFR

lower). This classification method, however, needs to be optimized as the overall prediction

accuracy will depend on the classification accuracy of the model selection classification model.

To optimize the classification method, a stepwise feature optimization technique was carried out
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(similar to the previous stepwise feature optimization methods). Figure 5.11 shows the result

of the stepwise feature optimization method for the proposed Random Forest ensemble method.

The optimization follows the same process as the feature optimization of the classification of the

previous Random Forest ensemble method as the high-level RMSE accuracy improves with the

increase of the accuracy of the model selection classification. The feature optimization finds the

global optima after 6 steps which solution includes the following features: building area, nat-

ural area, leisure area, landuse area, lane length, wind speed, wind direction, rain, temperature,

pressure, hour, month, bank holiday. Again, the classification uses not just the weather and time-

related data, but data from all the data sources to make the model selection process more accurate

(therefore to increase the high-level RMSE accuracy of the Random Forest ensemble method)

which indicates that the ensemble model generates prediction with good spatial variance as the

concentration level prediction depends on all the features, not just time and weather-related fea-

tures. The proposed Random Forest ensemble method generated a statistical regression model

generates prediction more accurately than the single RFR+TW model:

• the Random Forest Regression method using only time and weather-related data generated

a model which gives predictions with 31.88 µgm−3 RMSE accuracy

• the Random Forest Regression method using only the data from stations with the low

concentration level profiles generated a model with 32.81 µgm−3 RMSE accuracy

• the Random Forest Regression method using only the data from stations with the high

concentration level profiles generated a model with 32.91 µgm−3 RMSE accuracy

• the feature optimized Random Forest ensemble method (which ensembles the RFR lower

and RFR upper models) generated predictions with 30.09 µgm−3 RMSE accuracy

5.5 Summary
The aim of this chapter is to understand the scalability and the robustness of the developed stat-

istical regression approach for the hourly NO2 concentration level predictions. The large-scale

modelling scenario was introduced in this chapter which task provided the opportunity to invest-

igate the scalability and robustness of the method.

The analysis of the developed Random Forest Regression technique revealed that the statist-

ical regression approach is robust to a large-scale environmental modelling task as it provided

good high-level prediction accuracy levels. The Random Forest Regression method provided

similar behaviour as the previous modelling scenario as it provided the most accurate model

using only the time and weather-related data. The analysis of the developed Random Forest en-

semble method indicated that the ensemble technique does not work on this large-scale modelling

task as it provided predictions with less accuracy.
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(a) RFR+TW
(b) RFR+TW trained on low concentration

observations

(c) RFR+TW trained on high concentration
observations

(d) Random Forest ensemble

Figure 5.12. Observation-prediction plots for different methods on the London dataset
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Further investigation of the developed Random Forest Regression and Random Forest en-

semble methods revealed a new property of the Random Forest Regression algorithm: it provides

accurate hourly NO2 concentration levels for a station which provided observations close to the

average concentration levels considering all the observations by all the stations. This finding

motivated the development of a different ensemble model where the ensemble method combines

different Random Forest Regression models trained on different parts of the available data. The

developed novel ensemble method generates more accurate (by using all the introduced accur-

acy evaluation metrics) hourly NO2 concentration level predictions than the underlying Random

Forest Regression models. Using the developed model helps to understand the pollution bet-

ter in very complex modelling area such as London, because it can produce concentration level

predictions with less error.

As this is the final chapter which provides technical work, the next chapter will summarize

all the contribution of this research and propose possible future work related to the application of

statistical regression methods to hourly NO2 concentration level predictions for the urban area.



CHAPTER 6

Conclusion and future work

To conclude the work in this thesis, the hypothesis is stated as follows:

Through the appropriate ensembling of state of the art statistical regression methods, a

more accurate, robust and scalable high-temporal environmental model can be created

than the current state-of-the-art air pollution dispersion techniques

The work presented in this thesis demonstrated that the prediction error of the current state-

of-the-art air pollution dispersion modelling technique can be reduced by applying statistical

regression ensemble technique for the urban-scale hourly NO2 concentration level predictions.

The developed novel statistical regression model in Chapter 3 generated more accurate predic-

tions than the current state-of-the-art air dispersion model by evaluating all the introduced accur-

acy evaluation metrics. The introduced ensemble method generates even more accurate predic-

tions in Chapter 4 by all the evaluation methods. The developed approach has been applied to

a large-scale regression task in Chapter 5 and the results indicates that it makes good prediction

accuracy on the hourly NO2 concentration level prediction regression task.

6.1 Summary of the contribution
The contributions that have been presented in this thesis is summarised as follows:

Evaluation framework for urban-scale hourly NO2 concentration level predictions

The work presented in Chapter 3 introduced the evaluation framework to measure the prediction

accuracy of the different approaches including one of the current state-of-the-art air pollution

dispersion models and the existing Land Use Regression approaches. The result of this work

130
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indicates that the existing Land Use Regression approaches struggle to make accurate predictions

on the hourly level. This result contributes to the Environmental Science field as it describes the

difficulties of application of the existing models to the high-temporal NO2 concentration level

predictions.

Advanced statistical regression method for the high-temporal environmental modelling
problem

The rest of the work presented in Chapter 3 focused on using advanced statistical regression

algorithms to solve the given regression task more accurately. Using the developed evaluation

framework, the sensitivity analysis of the hyperparameters of the algorithms were investigated

and the most accurate algorithm was selected for this regression problem. Again, this work

contributes to the Environmental Science field as it describes the efficient application of existing

statistical regression algorithms.

Prediction accuracy sensitivity study of the input data for the statistical regression ap-
proach

Chapter 4 described the accuracy sensitivity analysis of the input data for the Random Forest

Regression method. It highlighted that it is necessary to investigate the input data for a given

statistical regression task for the Random Forest Regression method as using the appropriate data

can increase the prediction accuracy of the model. This work contributes to the Environmental

Science field (as it shows that which data is important for a Random Forest Regression based

statistical regression approach) and to the Computer Science field (as it gives a systematic way

of investigating the sensitivity of the Random Forest Regression method to the input data).

Random Forest ensemble technique for more accurate hourlyNO2 concentration level pre-
diction

The second part of Chapter 4 investigated the prediction differences of the Random Forest Re-

gression method trained on different subsets of the available input features. The investigation

revealed the non-overlapping error episodes in the prediction which suggests that the effective

combination of the models can provide accuracy improvement for the overall prediction task. A

novel Random Forest ensemble method was proposed to utilize multiple Random Forest mod-

els and the method was evaluated and compared against the existing Random Forest Regression

method. The development of this novel method contributes to the Computer Science field as the

proposed method is a general regression algorithm which can be applied to any regression task

to improve the overall prediction accuracy.

Scalability and robustness analysis of the developed statistical regression method

The work presented in Chapter 5 covered the scalability and robustness analysis of the developed

Random Forest Regression and Random Forest ensemble methods by evaluating them on a large-

scale environmental modelling scenario. The result of the evaluation suggests that the developed
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methods are scalable and robust to large modelling scenarios despite the high computational

requirement of the developed methods. The evaluation also revealed that the Random Forest

ensemble fails to make more accurate predictions than the Random Forest Regression. These

results contribute to the Environmental Science field as it indicates that the developed statist-

ical regression approaches (including the Random Forest Regression and the Random Forest

ensemble methods) can accurately predict NO2 concentration levels even for large-scale and

complex modelling scenarios without having issues with the high computational requirements of

the underlying regression algorithms.

Random Forest ensemble technique for more accurate large-scale NO2 concentration level
prediction

The second part of Chapter 5 presented a different Random Forest ensemble method to effectively

combine Random Forest Regression models trained on different subsets of the input data parti-

tioned by data of the concentration level profile of the input monitoring stations. This method

provided more accurate hourly NO2 concentration level predictions than the previously evalu-

ated statistical regression methods on the large-scale regression task. The development of this

method contributes to the Computer Science field as it provides another ensemble method which

method can be used to any regression task to further increase the accuracy of the predictions by

utilizing multiple Random Forest models and efficiently combining them.

6.2 Limitations
Despite the contribution listed in the previous section, the work presented in this thesis does have

limitations. The most significant limitations are discussed in this section.

Data requirement of the statistical regression approach

In Chapter 4, the sensitivity of the statistical regression approach to the input data was invest-

igated. The result of the analysis indicates that the weather and time-related data can provide

enough information to the Random Forest Regression method to generate a regression model

which can accurately predict the hourly NO2 concentration levels. However, historical observa-

tion is required for the algorithm to generate the internal regression model and this data needs

to be collected for every model application scenario. On the other hand, air pollution dispersion

methods provide established models which can be applied even on virtual data, therefore, the

air pollution dispersion approach can provide some understanding without having the historical

observations for the given modelling problem (e.g. rough estimates of pollution levels without

actually having any pollution level observations).

Limitation of the underlying statistical regression algorithm

In Chapter 5, the large-scale evaluation of the developed Random Forest Regression method re-

vealed that the underlying Random Forest statistical regression method can generate accurate
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predictions for scenarios that were observed by the model during the training phase of the re-

gression model. This indicates that the model will ever be accurate if the available input training

data for statistical regression method covers all type of scenarios within the modelling area. An

extreme example would be a case where the data points with heavy traffic are excluded from the

input dataset, therefore, the model never observes such cases.

6.3 Future work
The last section of the thesis provides details about the future work related to the developed

statistical regression approaches.

Using future statistical regression algorithms to solve the hourly concentration level predic-
tions more accurately

The work presented in this thesis introduced efficient statistical regression methods for accurate

hourly NO2 concentration levels prediction. The most accurate existing statistical regression

algorithm (the Random Forest Regression algorithm) was selected in Chapter 4 from many ad-

vanced statistical regression algorithms. The set of algorithms was selected based on a literature

survey where studies were solving similar environmental problems with these algorithms. As

the machine learning field is progressing forward, new algorithms will be developed to provide

solution for the regression task, therefore, these algorithms can solve the given regression task

more accurately than the most accurate model, the Random Forest Regression of this thesis (e.g.

since the beginning of the work presented in this thesis, there are new approaches such as the

boosted trees [Chen & Guestrin (2016)] and Gaussian process regression [Gal et al. (2014)]).

Using deep-learning technique to efficiently ensemble models

Chapter 4 and Chapter 5 introduced ensemble methods to further improve the prediction accuracy

by exploiting the predictions of the different Random Forest Regression methods. These differ-

ent Random Forest Regression methods were trained on different subsets of the input data and

then combined using the Random Forest classification algorithm. This model combination flow

suggests that the ensemble can be carried out using recently developed deep-learning techniques

[LeCun et al. (2015); Gal & Ghahramani (2016); Qiu et al. (2014)] where a large number of ma-

chine learning models are connected together to solve the underlying problem more accurately

and efficiently than a single model.

Providing prediction data for exposure studies

The work presented in this thesis provided novel statistical regression approaches for hourly

NO2 concentration level predictions. The accurate high-temporal large-scale predictions can

give a new insight for Environmental Scientists to understand the pollution behaviour in the

urban area by applying the methods to the complete modelling area. There are well-established

methods to understand the health effect of low-temporal pollution [Cyrys et al. (2005); Cesaroni
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et al. (2013)] exposure, however, interpreting the high-temporal pollution levels is challenging

and new methods need to be developed to be able to understand the high-temporal dynamics of

the pollution and the health effect of this high-temporal dynamics.

6.4 Final words
The work presented in this thesis indicates that machine learning algorithms can help to pre-

dict the air pollution concentration levels accurately on the high-temporal resolution by only

providing historical observation data. In the data-driven future, data is likely to be the new gold

standard and methods like the ones presented in this thesis will even further exploit the hidden

knowledge. Using better more and better data will provide practical alternative methods to the

current state-of-the-art techniques.

6.5 Availability of Source Code
The Python source code of generating all the research material including the figures of this thesis

is available under the GNU General Public License version 3 and can be downloaded from ht-

tps://github.com/gabormakrai/landuseregression.
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