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Abstract

SNNs are referred to as the third generation of ANNs. Inspired from biological observa-

tions and recent advances in neuroscience, proposed methods increase the power of SNNs.

Today, the main challenge is to discover efficient plasticity rules for SNNs. Our research

aims are to explore/extend computational models of plasticity. We make various achieve-

ments using ReSuMe, DelReSuMe, and R-STDP based on the fundamental plasticity of STDP.

The information in SNNs is encoded in the patterns of firing activities. For biological plausi-

bility, it is necessary to use multi-spike learning instead of single-spike. Therefore, we focus

on encoding inputs/outputs using multiple spikes. ReSuMe is capable of generating desired

patterns with multiple spikes. The trained neuron in ReSuMe can fire at desired times in

response to spatio-temporal inputs. We propose alternative architecture for ReSuMe dealing

with heterogeneous synapses. It is demonstrated that the proposed topology exactly mimic

the ReSuMe. A novel extension of ReSuMe, called DelReSuMe, has better accuracy using

less iteration by using multi-delay plasticity in addition to weight learning under noiseless

and noisy conditions. The proposed heterogeneous topology is also used for DelReSuMe.

Another plasticity extension based on STDP takes into account reward to modulate synaptic

strength named R-STDP. We use dopamine-inspired STDP in SNNs to demonstrate improve-

ments in mapping spatio-temporal patterns of spike trains with the multi-delay mechanism

versus single connection. From the viewpoint of Machine Learning, Reinforcement Learning

is outlined through a maze task in order to investigate the mechanisms of reward and eligi-

bility trace which are the fundamental in R-STDP. To develop the approach we implement

Temporal-Difference learning and novel knowledge-based RL techniques on the maze task. We

develop rule extractions which are combined with RL and wall follower algorithms. We demon-

strate the improvements on the exploration efficiency of TD learning for maze navigation tasks.
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

This chapter gives a brief overview of the research done in the thesis. Section 1.1 gives a

short recap of the project background and motivation. Section 1.2 presents the research

questions with our goal. Then, in section 1.3, intended contributions are presented. Finally,

the structure of the thesis is outlined in section 1.4.

1.1 Motivation

Artificial Neural Networks (ANNs) have three generations based on their computational

units (Maass, 1996; Gerstner & Kistler, 2002; Bohte et al., 2002b, a). Third generation of

ANNs, based on spiking neurons, are more biologically plausible and more efficient compu-

tationally for various problems (Maass, 1996; Gerstner & Kistler, 2002). Spiking Neural

Networks (SNNs) process the information encoded in the timing between neuron firings.

As biological neurons communicate by receiving and transmitting pulses or “spikes”, then

SNNs also carry information across synapses between other neurons in the network using spikes.

Individual computational neurons in each layer of SNNs can be mathematically modelled in a

number of different ways. The model of Hodgkin-Huxley (HH) describes biological neurons

closely with increased computational expense. However, the Leaky-Integrate-and-Fire (LIF)
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models the spiking dynamics with a reduced computational cost. Although simplified neurons

have different advantages and drawbacks, we use the LIF model.

The complexity and the computational power of artificial SNNs are restricted compared with

the abilities of biological neural systems (Kasinski & Ponulak, 2006). However, developing

efficient learning techniques and recognizing information codes in SNNs are still open prob-

lems from a computational point of view. Various characteristics of SNNs such as learning

algorithms and theoretical models can be considered to understand the ability of SNNs.

Therefore, we focus on various learning mechanisms for SNNs, especially the biologically

plausible plasticity rules. In addition, we consider how can we improve these in a biologically

plausible sense. For this reason, we mainly use multi-spike coding rather than single-spike

coding schemes in Spiking Neural Networks.

One extension of synaptic plasticity rules can be achieved by taking into account reward/pun-

ishment as reinforcements to modulate synaptic strength. As a fundamental plasticity rule,

the mechanism of Spike-timing Dependent Plasticity (STDP) strengthens or weakens synapses

based on the pre- and post-synaptic firing times. Recently, several plasticity experiments,

including STDP, demonstrate that neuromodulators, particularly Dopamine (DA) related to

novelty and reward prediction, have global mechanisms for synaptic modification (Pawlak

& Kerr, 2008; Wickens, 2009). This process is referred to as Reinforcement Learning (RL).

In order to consolidate changes of synaptic strength in response to pre- and post-synaptic

neuronal activity such a signal could be used as a reward (Bailey et al., 2000). In order to

investigate further potential plasticity mechanisms considering with biological plausibility, the

details of Reinforcement Learning from the viewpoint of Machine Learning is outlined.

Dopamine (DA) plays a key role in Reinforcement Learning in the human body (Schultz,

1998, 2007). In the Reinforcement Learning literature, an agent tries to maximize the cu-

mulative reward by taking actions in an environment. Modulation of STDP with Dopamine

can be linked to Reinforcement Learning in Spiking Neural Networks. We introduce an RL

environment through a maze task. To develop the approach, we implement Q-Learning and

novel knowledge based Reinforcement Learning techniques on the maze task. This achievement

helps us during Reward-modulated Spike-timing Dependent Plasticity (R-STDP). Through

R-STDP experiments, our aim is to demonstrate Reinforcement Learning in mapping spatio-
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temporal patterns of spike trains.

Spiking Neural Networks consist of nodes and the connections between them. The class

of nodes includes spiking neurons and objects which enable stimulating or recording from

neurons. Synaptic plasticity is handled by the modifications of synaptic weight in algorithms

such as SpikeProp (Bohte et al., 2002b) and Remote Supervised Method (Ponulak & Kasinski,

2010). Synaptic weights determine the impact of the pre-synaptic signal on the post-synaptic

potential. However, synaptic delays determine how long it takes for the signal to travel from

the pre-synaptic to the post-synaptic neuron. Hence, the dynamics of synaptic delays can

also be taken into account in order to have better performance. For this purpose, we develop

a novel algorithm by extending existing ReSuMe and we call it Delayed Remote Supervised

Method (DelReSuMe). The DelReSuMe rule modifies both synaptic weights and delays to

have faster convergence compared with ReSuMe.

In order to implement Remote Supervised Method, although there are existing SNN simulators,

they do not support ReSuMe because of its heterogeneous dynamics. In this case, researchers

have to implement ReSuMe in a custom environment in order to duplicate ReSuMe based

results, or try to extend the algorithm. At this stage, we propose a novel and alternative

connection structure for ReSuMe compatible with existing SNN simulators. Experimental

evidences on the Brian simulator show that proposed heterosynaptic architecture works exactly

the same as existing ReSuMe with its design benefits.

The management of training and/or testing in a Spiking Neural Network is more complicated

then in a traditional ANN. As the size of network or the duration of simulation grows, the

performance of experiments for training/testing and the management of the implementation

become much more complex in SNN simulations. However, as far as we know, there is no

public tool available for the Brian package or other SNN simulators to ease the organization of

training/testing sessions. Thus, we develop our own framework for the Brian SNN simulation

environment. The framework is tested with four training algorithms that apply weight and/or

delay modification by capturing the detailed firing of individual neurons. One algorithm

modifies weights and delays. The other algorithms apply learning rules to only weights. We

test the framework with the listed algorithms:
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• Spike-timing Dependent Plasticity (STDP) (detailed in section 3.4)

• Remote Supervised Method (ReSuMe) (detailed in section 8.3)

• Delayed Remote Supervised Method (DelReSuMe) (detailed in section 8.9)

• Reward-modulated Spike-timing Dependent Plasticity (R-STDP) (detailed in chapter 9)

In addition to those listed algorithms tested through the framework, using existing SNN

simulators can be set up using this approach.

1.2 Research Questions

Although we start to ask the main research question of “Can we extend plasticity mechanisms

or topologies to incorporate multi-spike coding in Spiking Neural Networks?”, there are a

number of research questions addressed in this thesis. Let us review them:

• (a) : Can we extend the exploration performance of Reinforcement Learning, focusing

on existing Temporal-Difference Learning, for maze tasks?

This is achieved in chapter 4. We introduce various domain-based rules for different

maze solving algorithms in order to reduce the exploration period.

• (b) : Can we develop Remote Supervised Method (ReSuMe) or similar techniques using

multi-spike coding schemes in SNNs through available simulators, specifically Brian,

which does not support heterogeneous synapses? Can we demonstrate the results of the

proposed implementation through different tasks under noiseless and realistically noisy

conditions?

This question is answered through various experiments including mapping tasks and

logical operations in chapter 8 and chapter 9. Furthermore, in order to ease the man-

agement of simulations and the modularity of initialization/training/testing sessions, we

propose a framework for SNNs which is tested and described in appendix C.
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• (c) : Is it be possible to extend the ReSuMe algorithm in order to have more efficient

performance with faster convergence in SNNs? Can we compare the performance of the

ReSuMe and proposed method under noiseless, and realistically noisy conditions?

This question is answered in section 8.9. Slightly better accuracy using many fewer

learning iterations is achieved by using delay plasticities in addition to weight learn-

ing. This novel plasticity is named the Delayed Remote Supervised Method, DelReSuMe.

• (d) : Can we demonstrate the mapping of spatio-temporal patterns with multi-spike

coding using Dopamine modulated Spike-timing Dependent Plasticity in SNNs?

This is achieved in chapter 9. The existing technique of Reward-modulated Spike-timing

Dependent Plasticity is implemented with different parameters for multi-spike coding.

The algorithm is tested using the proposed framework for SNNs.

1.3 Contributions

In this thesis we make the various contributions which are summarized below. More details of

contributions can be found in section 10.1.

• Rule extractions for the maze task. We introduce a set of novel Replacement Rules

for maze environments named as Extended Replacement Rules for LSR and Extended

Replacement Rules for RSL with a remarkable performance compared to Left-Straight-

Right (LSR) rule or Right-Straight-Left (RSL) rule itself, also to previously offered

set of rules from Venkata et al. (2011) (named as Basic Replacement Rules for LSR).

Replacement Rules are also combined with a Reinforcement Learning algorithm and

wall follower algorithms (LSR and RSL rules). We experimentally demonstrate the

improvements on the exploration efficiency of the Reinforcement Learning algorithm

for a maze navigation task via the proposed set of rules. Details can be found in chapter 4.

• Remote Supervised Method (ReSuMe) implementation for multi-spike coding. This is

tested with various benchmarks in the face of noiseless, relatively low noise and relatively
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high noise conditions: mapping experiments and logical operations. Details can be found

in chapter 8.

• Extended version of Remote Supervised Method as Delayed Remote Supervised Method

is proposed adding delay learning into existing weight learning in ReSuMe. The learning

efficiency of the modified algorithm DelReSuMe is compared to ReSuMe on a series of

mapping tasks in the face of noiseless, relatively low noise and relatively high noise

conditions. Faster learning and convergence with slightly better accuracy have been

achieved in section 8.9.

• We introduce an alternative synaptic connection for Remote Supervised Method and

Delayed Remote Supervised Method dealing with learning through heterogeneous

synapses. The novel connection scheme using the proposed bias neuron is introduced

for ReSuMe with its implementation and mathematical/topological descriptions. It is

experimentally demonstrated that the proposed heterosynaptic topology can exactly

mimic the ReSuMe weight change through two synapses from input to actual output

neuron and desired output neuron. Details can be found in chapter 8.

• We combine Spike-timing Dependent Plasticity with the reward modulation as Reward-

modulated Spike-timing Dependent Plasticity for multi-spike coding based on the

multi-delay mechanism. We compare single connection without synaptic delays and with

the multi-delay mechanism in the face of noiseless, relatively low noise and relatively

high noise conditions. We show that the proposed architecture for Reward-modulated

Spike-timing Dependent Plasticity have better convergence speed under noiseless, and

realistically noisy conditions than the single connection without delay structure for the

same mapping tasks. Details can be found in chapter 9.

• We develop a new framework for our SNN simulator in order to ease the management

of initialization/training/testing sessions. It is tested with Brian simulator. The entire

simulation scenarios based on SNNs are implemented using this framework. The docu-

mentation of the framework can be found in appendix C.
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1.4 Structure of the Thesis

The structure of this thesis is organized as follows:

Chapter 2, Biological Neuron, Spiking Neuron Models and Learning, begins with an overview

of the physiology of the neuron and its mathematical model’s which are fundamentals for

the following chapters. It describes details of action potential generation. This is followed

with a review and example implementations of various approaches in order to model the

neuron transfer function such as neuron models of Hodgkin-Huxley, Integrate-and-Fire, Spike

Response Model and Izhikevich model. It also gives an overview of some common simulators,

focusing on the Brian simulator, for Spiking Neural Networks. The chapter is concluded with

the summary and the reasons to choose Brian package for the experiments throughout the

thesis.

Chapter 3, Learning Mechanisms in Spiking Neural Networks, discusses learning mechanisms

for spiking neurons, especially biologically plausible plasticity rules. Learning in neuroscientific

observations is modelled by modifications in the strength of connections between neurons.

The connection between neurons is called a synapse, and the ability of its strength to change

over time is called synaptic plasticity. This chapter defines the biological background of the

synapse, and then reviews experimental protocols that can induce synaptic plasticity.

The goal of solving Reinforcement Learning (RL) tasks is to learn how to perform actions in

order to maximise the reward in the long term. Chapter 4, Reinforcement Learning, examines

the background to RL beginning with formalization as a Markov Decision Process. A system

in RL learns through feedback without explicit teaching. We review some standard RL

algorithms such as Q-Learning on the maze task. We introduce a series of novel Replacement

Rules for the maze task which can be used alone or can be applied in any RL technique on a

maze task in order to shorten the exploration period. Improvements of the proposed rules

through learning more quickly are also demonstrated in practice.

Chapter 5, Extension of Replacement Rules with Reinforcement Learning for Maze Navigation,

demonstrates a set of novel Replacement Rules as Extended Replacement Rules for LSR and

Extended Replacement Rules for RSL in section 5.3 for maze environments. Replacement
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Rules are also combined with a Reinforcement Learning algorithm and wall follower algorithms

(Left-Straight-Right and Right-Straight-Left rules). Experimental results for improvements

on the exploration efficiency of the Reinforcement Learning algorithm are demonstrated for a

maze navigation task via the proposed set of rules.

Chapter 6, Spiking Neural Network: Background. Network topologies, focusing on Spiking

Neural Networks, are summarized. Spike train notation for generation of artificial spike trains

for experiments is described here. Some important concepts related to the simulation of

Spiking Neural Networks, such as spike encoding methods and the measurement of spike train

synchrony, are also discussed here. The proposed encoding mechanism for spatio-temporal

patterns is presented.

Chapter 7, Spiking Neural Network: Implementation, presents the common mechanisms and

techniques during the experiments. The types of neuron models used in proposed SNNs

are summarized considering the scenario of the presence of noise. In addition, the proposed

mechanism of multiple delay connections between input and output neurons is described. The

network architectures of spiking neurons during training and testing are demonstrated. The

adoption of van Rossum Distance (vRD) in order to measure spike-train similarity and a

(mis)classification error metric in order to evaluate task performance of the network are detailed.

Also, the pseudocodes of training and testing mechanisms throughout the experiments are

outlined. Finally, benchmarks used during performed experiments are introduced in section 7.9.

Chapter 8, ReSuMe and DelReSuMe. This chapter focuses on the description of the imple-

mented learning mechanisms for the spiking neural model. It begins with a review of Spike

Propagation (SpikeProp), which is one of the baseline learning algorithms for SNNs. Then,

Remote Supervised Method (ReSuMe) with various improvements to SpikeProp are discussed

for the Leaky-Integrate-and-Fire model. Two benchmarks of mapping and logical operations

are addressed. In the implementation with Brian package, several issues are observed, which

are closely analysed. For that reason, a novel connection scheme is introduced for ReSuMe

with its implementation and its mathematical description. The learning efficiency of the

modified algorithm DelReSuMe is compared to ReSuMe on a series of mapping tasks. We

have also developed a framework for Brian to handle training and testing. Then new proposed

simulation framework is detailed in appendix C. The framework enables us to perform all
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experiments on SNNs in chapters 8 and 9.

Chapter 9, Reward-modulated STDP, presents the implementation of the Reward-modulated

Spike-timing Dependent Plasticity. We apply the plasticity for the mapping of multi-spike

coding with spatio-temporal patterns. The convergence results of learning are presented with

spike distance metrics. The same framework in appendix C for the simulation management is

used during the experiments in this chapter.

The overall achievements of this thesis and their implications are discussed in Chapter 10,

Conclusion - Contributions and Future Research, closing with limitations and future research

directions to extend the proposed ideas.
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Chapter 2

Biological Neuron, Spiking Neuron

Models and Learning
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2.1 Introduction

The human body has trillions of cells. The basic building block of the nervous system is

specialized cells called neurons. Neurons, also known as nerve cells, provide the processing
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that occurs in the central nervous system (CNS). The neurons are able to propagate signals

over large distances through chemical and electrical signals to other neurons as well as receive

information from other connected neurons. This remarkable transmission can be done via

generating and transmitting characteristic electrical pulses called action potentials described

in subsection 2.2.4. Neurons carry messages electrochemically as movements of ions controlled

by chemical processes. The physiology of the neuron including the action potential as a carrier

of information between neurons is discussed in section 2.2.

In the history of neuroscience, the first mathematical model of action potential generation is

proposed by Alan Lloyd Hodgkin and Andrew Fielding Huxley in 1952. This classical work

is named the Hodgkin-Huxley model detailed in subsection 2.5.2. Following a description of

this various modelling approaches for the neuron transfer function are developed including

compartmental approach in subsection 2.5.1, Hodgkin-Huxley model in subsection 2.5.2,

Integrate-and-Fire (IF) neuron model in subsection 2.5.3, Leaky-Integrate-and-Fire (LIF)

model in subsection 2.5.4, Spike Response Model (SRM) in subsection 2.5.5 and Izhikevich

model (IM) in subsection 2.5.6. Furthermore, to simulate SNNs, Brian simulator is compared

existing tools detailed in section 2.7.

2.2 Biological Neuron

In 1891, Waldeyer suggested that neurons are the functional and structural units of the

nervous system, this is known as the “Neuron doctrine” or “Neuron Theory”. This basis about

the neuron is stated as “If ... we accept the existence of nerve networks our interpretation

is somewhat altered, but nevertheless we can retain the nerve-units. Then the boundary

between two nerve-units would always lie in a nerve network ...” (Jacobson, 1993).

Neurons are responsible for communicating and processing all the information in the brain.

That information covers motor information between muscles; sensory information associated

with vision, hearing, touch, taste, smell and balance-movement; cognitive information needed

to reason, think and learn. Since our research is about the plasticity between neurons, it is

important to detail the structure and function of biological neurons.
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2.2.1 Structure of Neuron

Before we go into details on how neural networks function, it is essential to give a brief

overview of the neuron anatomy. Although there are various types of nerve cells, in general

they all share common parts: soma (cell body), axon (a long slender) and dendrites (tree-like

structures).

Figure 2.1: The morphology of three neurons. A) A cortical pyramidal cell. B) A Purkinje
cell of the cerebellum. C) A stellate cell of the cerebral cortex. Some important morphological
specializations of neurons such as dendrites, soma, and axon are illustrated. See text for a
detailed explanation of the figure. Used with permission from Dayan & Abbott (2005).

Figure 2.1 illustrates important morphological specializations of neuron. A neuron has a

cell body called the soma that processes the incoming signals and converts them into output

neural activation signals. The soma has a nucleus which contains the genetic material in the
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form of DNA as in most types of cell. Receiving signals can be either excitatory or inhibitory.

Excitatory signals make the neuron generate a spike and inhibitory ones tend to keep the

neuron from firing. A type of extension of nerve cell called dendrites handles incoming signals

generated by other neurons. Generated action potentials (spikes) are transmitted to other

neurons through an extension of the cell body called the axon which is typically longer than

the dendrites. The axon, also called the nerve fibre, is a special cellular extension that

take electrical signals away from the cell body (Kandel et al., 2000; Dayan & Abbott, 2005;

Trappenberg, 2010).

Synapses are specialized junctions between neurons that allow signal transmission from the

axon terminals of the pre-synaptic neuron to the dendrites of the post-synaptic neuron. This

transmission across the synaptic cleft is handled by diffusion of chemicals called neurotrans-

mitters illustrated in Figure 2.3 (Dayan & Abbott, 2005; Trappenberg, 2010). The structure

of synapse and its role for development, learning, and memory are detailed in chapter 3.

There are many different types of nerve cells in terms of differences in sizes, shapes, or

electrochemical properties. For instance, the soma of a neuron can differ in diameter from 4

to 100 micrometres (Davies, 2002). Based on shape, neurons are classified into three large

groups: unipolar, bipolar, or multipolar according to the number of processes that originate

from the cell body taken from (Kandel et al., 2000).

2.2.2 The Membrane Potential

In all types of cells, nerve cells in particular, there is an electrical potential difference between

the interior and the exterior of the cell. This is called the membrane potential or membrane

voltage of the cell. The membrane potential Vm can be formulated as:

Vm = Vin − Vout (2.1)

where Vin is the inside potential of the cell and Vout is the outside potential of the cell. This

potential across the membrane typically ranges from -40 mV to -80 mV with respect to the

outside of the cell (Kandel et al., 2000).
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Ion concentrations inside the neuron are different from the concentration outside. This

concentration difference generates an electrical potential which is called the reversal potential

(also known as the Nernst potential) for the ion. If both outward and inward rates of ion

movement are the same, the ion flux is in equilibrium. Although ions may move, the net

current is zero. This electrical potential with the zero net ion flows across the membrane is

called the Equilibrium potential (Trappenberg, 2010).

2.2.3 Ion Channels

Ion channels with selective ion pumps have a number of jobs to control movements of ions

between inside and outside the cell. Those jobs include establishing a resting membrane

voltage, shaping action potentials and other electrical signals across the membrane. Primarily

involved ions in those processes of the neuronal membrane are Sodium Na+, Potassium

K+, Calcium Ca2+, and Chloride Cl− (Hille, 2001; Dayan & Abbott, 2005; Trappenberg,

2010). Also, a schematic of the lipid bilayer section that forms the cell membrane and two ion

channels is illustrated in Figure 2.2.

Figure 2.2: A schematic diagram of a section of the lipid bilayer that forms the cell membrane
with two ion channels embedded in it. The membrane is 3 to 4 nm thick and the ion channels
are about 10 nm long. Used with permission from Dayan & Abbott (2005).

From one side of the selectively permeable cell membrane to the other side, there are ion

channels which can open and close in response to signals. Ion channels are selective allowing

one type of ion to pass into the cell from the exterior, but block other types of ion. During

the open times of those ion channels, the flow of ions causes the change in potential across
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the membrane (Koch & Segev, 1999; Hille, 2001; Dayan & Abbott, 2005; Trappenberg, 2010).

This potential change is detailed in the following section.

2.2.4 The Action Potential

A neuron receives signals from interconnected neurons. In response, the neuron can generate

an action potential as output. The action potential occurs during a short period of time (1

ms) in which the electrical membrane potential of a cell rapidly rises and falls as seen in

Figure 2.3. An action potential occurs when a neuron transmits information from the cell

body to the axon terminal. It is also called a “spike” or an “impulse” (Koch & Segev, 1999;

Gerstner & Kistler, 2002; Dayan & Abbott, 2005; Trappenberg, 2010).

Figure 2.3: The action potential and axon-dendrite junction. See text for a detailed explanation
of the figure. Used with permission from Dayan & Abbott (2005).

A single neuron may receive many thousands of input signals throughout its dendrites. The

sum of all these signals (excitatory and inhibitory) determines whether the neuron fires or

not. If the integration of all these potentials crosses a threshold potential, an action potential

is generated (Gerstner & Kistler, 2002; Dayan & Abbott, 2005).

A prototypical form of action potential is shown in Figure 2.4. The mechanism of action

potential has two components. First one, when positively charged sodium Na+ ions flow into

the neuron, the inside gets more positive until about +40 mV from −70 mV with respect

to the surrounding media. The neuron becomes depolarized because of the positiveness of

sodium ions. So depolarization is the rapid rise of the membrane potential as the first part of
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an action potential until it reaches a maximum (Hille, 2001; Gerstner & Kistler, 2002; Dayan

& Abbott, 2005; Trappenberg, 2010).

Figure 2.4: Typical form of an action potential based on Hodgkin-Huxley model. The course
of the action potential is performed by two main currents, these are Sodium and Potassium.
See text for a detailed explanation of the figure. Used with permission from Trappenberg
(2010).

Following change can happen when potassium K+ ions leave the axon which is the falling

phase illustrated in Figure 2.4. Those channels open after a delay from depolarization because

potassium channels move slower so the opening of them is taking longer. At the same

time, sodium channels across the membrane close, allowing the potential to go back toward

repolarization state. So, the sharp decrease of membrane potential from positive values to

negative potentials is called repolarization. Hyperpolarization is the time period when the

membrane potential dips even more negative than resting potential until about −90 mV (Hille,

2001; Dayan & Abbott, 2005)..

2.3 Relation between Artificial and Biological Neurons

An artificial neuron captures the essence of neural computation by simplification and abstrac-

tion analogy to biological systems (Gerstner & Kistler, 2002). The primary goal to model

biological neural systems is to achieve improved results in Machine Learning (ML) tasks. The

main difference of the artificial neuron model with real neurons is to leave out much of the

details of how the biological neurons work using high-level descriptions (Gerstner & Kistler,

2002; Trappenberg, 2010). An Artificial Neural Network (ANN) consists of a set of artificial

neurons with weighted links in order to perform the learning task well.
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The standard abstraction used in Artificial Neural Network in order to represent biological

neural components (Gerstner & Kistler, 2002; Dayan & Abbott, 2005; Trappenberg, 2010) is

summarized as follows:

• Nodes: Processing units or artificial neurons.

• Connections between nodes: Weighted connections, is commonly called weights, in order

to represent the relative strengths of the connections.

• An integration (transfer) function: The most common integration function is performed

via the sum of weighted outputs from all upstream neighbours.

• An activation function: The activation function transforms the integrated incoming

signals into an activation level for the neuron. This activation level is the output of the

node.

The structural and functional mapping between ANNs and the biological neural networks

(Gerstner & Kistler, 2002; Dayan & Abbott, 2005) is as follows:

• Biological neurons → Nodes.

• Synapses → Connections between nodes.

• Total depolarization at the cell membrane is the sum of depolarization as caused by

each synaptic inputs → Integration function.

• The rate of action potential firing in the cell → Activation function.

The basic computational diagram of a common mathematical neuron model is demonstrated

in Figure 2.5. This processing unit has a fixed number of input signals n through its dendrites

from other units; each input has a synaptic weight, wij (w1j , w2j , w3j , ..., wnj in Figure 2.5),

which is modified during training examples in order to better approximate the desired function

response to input data. The artificial unit computes the weighted sum of all inputs x1, x2, ...

xn as netj . Then, to the sum of results through an integration function ϕ is applied in order

to determine the neuron’s output oj . If the final sum is above a threshold θj , the neuron

produces an output along its axon based on its activation function (Rojas, 1996). The output
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Figure 2.5: The artificial neuron model from human neuron, taken from Wikipedia (2016).
See text for a detailed explanation of the figure and the notation used.

from each neuron is propagated to its connected downstream neurons, to serve as input.

The activation function determines the neuron model in ANNs. Although there are various

types of activation functions such as step, ramp, sigmoid and Gaussian functions, processing

units in many of ANNs use sigmoid function as the activation function. The formulation of

neuron output is expressed in Equation 2.2. The axon connects via synapses to dendrites of

following neuron units. This is the basic structure used in an ANN.

oj = ϕ((
n∑
i=1

wijxij) + θj) (2.2)

where oj is the output signal of the jth neuron, xij is the ith incoming signal to neuron j, wij
is the synaptic strength of connection between the input i and neuron j, θj is the threshold

value of jth neuron, ϕ is the activation function. For the mathematical convenience, the

threshold θj is represented with (+) sign in the activation formula. ANNs have continuous

signals compared with the discontinuous nature of spiking in Spiking Neural Networks (SNNs)

detailed in chapter 6. SNNs use rate based coding is detailed later.

2.4 History from Artificial Neural Network to Spiking Neural Network

Animals receive information of recognizing food or danger during interaction with the envi-

ronment. Then they take proper actions after processing incoming signals. Mimicking this
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mechanism of natural neuronal processing from a computing point of view is the paradigm

known as Artificial Neural Networks (ANNs) (Gerstner & Kistler, 2002; Dayan & Abbott,

2005; Trappenberg, 2010).

One of the efficient methods to solve complex problems is to apply the divide-and-conquer

strategy. A complex problem might be broken into simpler sub-problems, in order to be

able to solve it directly. Furthermore, simple components might be assembled to generate a

complex system (Bar-Yam, 1997). Applying networks, and particularly neural networks, is an

important approach in order to deal with either a highly complex task, or where no algorithm

exists to solve the specified task.

The term “Neural Network” is quite broad in terms of various approaches and models. Neural

Network is an information processing paradigm which is different from the usual approach

based on algorithmic computation. Neural Networks use learning techniques that are inspired

by how biological nervous systems such as the brain or hippocampus learn. Then, they are

applied to practical applications such as path navigation or object recognition to evaluate

how good they are (Bohte et al., 2002b).

An Artificial Neural Network is an abstract mathematical paradigm that is inspired by bio-

logical nervous systems such as the brain (Bohte et al., 2002a, b). ANNs are composed of a

large number of interconnected neurons. The neurons inside the ANN can be configured for a

specific task to solve a pre-determined problem. During the learning process, the network can

adjust the dynamics of synaptic connections such as delays or weights similar to biological

systems.

Artificial Neural Networks have three classes based on their computational units (Maass,

1996; Gerstner & Kistler, 2002; Bohte et al., 2002b, a). The first generation of ANNs have

perceptrons or threshold gates as computational units. Those neurons have a binary output

when their total input reaches the threshold. The second generation of ANNs has an activation

function which maps the inputs of a neuron into a continuous output. The sigmoid function

is a commonly chosen activation function. Spiking Neural Networks (SNNs) as the third

generation of Neural Network models inspired by features found in biology are able to encode

and process the information using timing of individual spikes arriving at a neuron (Gerstner
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& Kistler, 2002; Dayan & Abbott, 2005; Trappenberg, 2010). Although the first and second

generation of ANNs can emulate many features of biological Neural Networks as plasticity,

summation and thresholding, they cannot capture all of the biological features.

Individual computational neurons in each layer of SNNs can be mathematically modelled

in a number of different ways. Those neuron models are reviewed in section 2.5 as “Full

compartmental models” in subsection 2.5.1, “Hodgkin-Huxley model” in subsection 2.5.2,

“Integrate-and-Fire model” in subsection 2.5.3, “Leaky-Integrate-and-Fire model” in subsec-

tion 2.5.4, “Spike Response Model” in subsection 2.5.5, “Izhikevich model” in subsection 2.5.6.

Each of these simplified neuron models has different advantages and drawbacks.

Spiking Neural Networks are bio-inspired, adaptive, computationally powerful structures

compared with conventional Artificial Neural Networks (Maass, 1996; Trappenberg, 2010).

SNNs differ from conventional ANNs models as information is transmitted using spikes that

is more biologically plausible than previous generations (Maass, 1996; Gerstner & Kistler,

2002). They process information encoded in the timing between neuron firings. As biological

neurons communicate by receiving and transmitting pulses known as “spikes” to indicate their

short and transient nature, then SNNs also carry information across synapses between other

neurons in the network. It is believed that SNNs have richer dynamics as they can exploit

the temporal domain to transmit data in the form of individual spikes (Gerstner & Kistler,

2002; Dayan & Abbott, 2005; Trappenberg, 2010).

The complexity and the computational power of artificial SNNs are restricted compared with

the abilities of biological neural systems (Kasinski & Ponulak, 2006; Trappenberg, 2010).

However, developing efficient learning techniques and recognizing information codes in SNNs

are still open problems from a computational point of view. Therefore, various characteristics

of SNNs such as plasticity algorithms and theoretical models could be considered to understand

the ability of SNNs.

2.5 Spiking Neuron Models

Although artificial neuron models have made important progress in recent decades, they

are highly abstract and still much simpler than biological neurons. Therefore, a spiking
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neuron model is proposed by Maass (1996). It is a mathematical model to represent firing

characteristics of neuron described in section 2.2. Neurons communicate with each other via

action potentials or spike trains in Spiking Neural Networks similar to biological systems.

Therefore, the following models propose various representations of real neurons through

describing membrane potential and action potential generation in their model. Each neuron

model has different simplifications. Some of them ignore most of the ion-channels; others

simplify the structure of neuron. Details of different neuron models are discussed in this

section. Most of the models are translated into the (Brian) simulator environment to visualize

their behaviours.

2.5.1 Compartmental Models

One standard approach in order to construct a detailed neuron model is to break the neuron

into a finite number of interconnected anatomical compartments. For this purpose, cable

theory is extended for dendrites in 1959 using the Rall model (Rall, 1959). A simplified model

for the compartments of dendrites, a soma, and an axon is illustrated in Figure 2.6.

Figure 2.6: Compartmental model for pyramidal cell: (A) A pyramidal cell with dendrites,
soma, and axon. (B) A simplified discrete compartmental model of the same neuron taken
from Bower & Beeman (2003).

If analytical solutions for the voltage along a passive cable with suitable geometrical and

electrical properties are applied to each compartment, various solutions can be constructed

based on the variations of compartmental features. However it is difficult to find a solution

for the membrane potential analytically (Abbott et al., 1991).
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Figure 2.7: The equivalent circuit for a generic neural compartment. Used with permission
from Bower & Beeman (2003).

Each compartment is modelled with equivalent electrical circuit (Rall, 1959). Figure 2.7

shows a circuit diagram for a generic neural compartment. With the appropriate differential

equations of compartments, the behaviour and the interactions of compartments can be for-

mulated. Although multi-compartmental models incorporate the complexity of real membrane

behaviours, they are not computationally tractable. However, single compartmental models

as class of point-neuron models can describe the neuron’s membrane potential by a single

compartment by ignoring spatial variations. Those models can reproduce accurately the

complex dynamics of real neurons.

In Figure 2.7, Vm is the membrane potential at a point inside the compartment, Cm is the

membrane capacitance, V ′m and V ′′m are membrane potentials of adjacent compartments, R′a
and R′′a are resistances along the dendrite, Rm is the leakage resistance, Em is the equilibrium

potential.

2.5.2 Hodgkin-Huxley Model

Alan Lloyd Hodgkin and Andrew Fielding Huxley, from 1942 to 1952, developed a mathe-

matical model to describe the electrical behaviour of the membrane through action potential

generation in the giant axon of the squid (Hodgkin & Huxley, 1952). This model belongs

to conductance-based compartment models as a type of compartmental models described

in previous section. This model is one of the most common mathematical frameworks that

formulate how action potentials in neurons are generated and transmitted. The Hodgkin-
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Huxley equations are also discussed in more recent studies (Moore & Ramon, 1976; Hille, 2001).

The Hodgkin-Huxley model assumes that the electrical activity of the axon is primarily due

to the movement of Na+ and K+ ions across the membrane. Therefore, the model contains

Na+ channels, K+ channels and leakage channels for other ions. The leakage channels with

relatively low conductance are mainly responsible for the resting membrane potential. The

Na+ and K+ ion channels with their voltage-dependent conductance across the membrane

are responsible for generating the action potential (Moore & Ramon, 1976; Kandel et al.,

2000; Hille, 2001; Dayan & Abbott, 2005; Trappenberg, 2010).

Based on Hodgkin and Huxley’s previous works, they proposed an equivalent electrical circuit

of nerve membrane as illustrated in Figure 2.8 (Hodgkin & Huxley, 1952). The cell membrane

of the neuron acts as a capacitor since it separates intracellular and extracellular ion regions.

Once the potential of the capacitor exceeds the threshold voltage, charge is released. The

period of capacitor discharge time is analogous to the refractory time of the neuron membrane

once it has fired. The Hodgkin-Huxley model assumes that the membrane consists of Na+

channels, K+ channels and a leakage channel for other ions. The embedded protein channels

behave like resistors with a driving force given by the difference between the membrane

potential, V = Vm − Eion and the reversal potential of the channel. Sodium and potassium

ion channels are represented by the conductance RNa and RK , respectively. The conductance

RL represents the leakage channel.

Before demonstrating more recent models of action potential generation, the Hodgkin-Huxley

model is studied to describe the change of electric charge across the neuron. Hodgkin-Huxley

equations can be mathematically summarized by a set of coupled differential equations

(Hodgkin & Huxley, 1952).

The fundamental differential equation relating the change in membrane potential to the

currents flowing across the membrane is derived from the electrical circuit illustrated in

Figure 2.8 (Hodgkin & Huxley, 1952) as:
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Figure 2.8: The proposed equivalent electrical circuit with three channels by Hodgkin-Huxley
to describe nerve excitation taken from Hodgkin & Huxley (1952).

Iext = IC + Iion

= Cm
dVm
dt

+ Iion (2.3)

where IC at time t is the capacitive current flowing through the lipid bilayer, Iext is an

externally applied current, such as might be introduced through an intracellular electrode

with ionic current Iion as

Iion = INa + IK + Ileak (2.4)

where Iion is ionic currents from the flow of Na+ ions INa, K+ ions IK and other unspecified

ions primarily Chloride ions as leak current Ileak as shown in Figure 2.8. Hodgkin and Huxley

point that the ionic movement during action potential could be broken down primarily into

movement of Na and K+ ions (Hodgkin & Huxley, 1952).

Referring to the electric circuit above, the relation between the ionic currents and the

conductance is described by Ohm’s law I = gV according to Hodgkin and Huxley as

Ii = gi(Vm − Ei) (2.5)
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where Ei is the individual equilibrium potential of the i-th ion channel (i = Na+, K+, leak),

Vm is the membrane voltage and gi are the voltage dependent ionic conductance (Hodgkin &

Huxley, 1952).

Hence, the total membrane current is obtained by Kirchhoff’s conservation of current law via

substituting Equation 2.4 and Equation 2.5 as:

Iext = IC + Iion

= IC + INa + IK + Ileak

= Cm
dVm
dt

+ gNa(Vm − ENa) + gK(Vm − EK) + gleak(Vm − Eleak) (2.6)

where parameters are summarized in Table 2.1. gleak is the “leak” conductance, including all

other conductance apart from Na+ and K+. The neuron membrane is able to store electrical

charge and separate potential from the inside and the outside of the cell. Cm is the membrane

capacitance. The total conductance of the membrane, the inverse of membrane resistance gm
(gm = 1/Rm), take into account all parallel conductance.

Parameter Unit Explanation
I [mA/cm2] Total membrane current per unit area
Cm [uF/cm2] Membrane capacitance per unit area
Vm [mV] Membrane potential
ENa [mV] Nernst (reversal) potential for sodium
EK [mV] Nernst (reversal) potential for potassium
Eleak [mV] Nernst (reversal) potential for leakage ions
gNa [S/cm2] Sodium conductance per unit area
gK [S/cm2] Potassium conductance per unit area
gleak [S/cm2] Leakage conductance per unit area

Table 2.1: Parameters for the neuron models and synapses.

Three gate variables describe the conductance of potassium and the sodium channels are used

in Hodgkin-Huxley model (Hodgkin & Huxley, 1952). The conductance of the potassium

(K+) and the sodium (Na+) channels are empirically formulated as a power function of

the probabilities n, m and h. n and m are the probability of activation gates being in the

permissive state. h is the probability of inactivation gate being in the permissive state.

Hodgkin and Huxley find that channel conductance can be expressed by products of gating
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variables and maximum conductance (Hodgkin & Huxley, 1952) as:

gK = gKn
4 (2.7)

gNa = gNam
3h (2.8)

where gK is the maximum potassium conductance, gNa is the maximum sodium conductance,

n,m and h are scalar gating variables ∈ [0, 1]. In the model, m represents activation of gates

and h represents inactivation of gates in sodium channels. The potassium channel has only a

single activation variable n and it is assumed that the probability of a potassium channel is

opened with n4 (Hodgkin & Huxley, 1952).

Summarizing the ionic currents in the Hodgkin-Huxley model (Hodgkin & Huxley, 1952) in

standard notation, we have:

Iext = Cm
dVm
dt

+ gNa(Vm − ENa) + gK(Vm − EK) + gleak(Vm − Eleak)

= Cm
dVm
dt

+ gNam
3h(Vm − ENa) + gKn

4(Vm − EK) + gleak(Vm − Eleak) (2.9)

where parameters are summarized in Table 2.1. All potential and conductance parameters for

Hodgkin-Huxley model are shown in Table 2.2.

i Ei (mV) gi(mS/cm2)
Na 115 120
K -12 36
leak 10 0.3

Table 2.2: The parameters of the Hodgkin-Huxley equations. The membrane capacity is C =
1µF/cm2, (Hodgkin & Huxley, 1952).

The three gating variables m, n, and h evolve according to the following differential equations:

ṁ = αm(u)(1−m)− βm(u)m (2.10)

ṅ = αn(u)(1− n)− βn(u)n (2.11)

ḣ = αh(u)(1− h)− βh(u)h (2.12)

with ṁ = dm/dt, ṅ = dn/dt and ḣ = dh/dt. α and β are opening and closing rates for each

channel. All gating variables based on empirical observations are shown in Table 2.3.
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i αi(u/mV ) βi(u/mV )
m (0.1-0.01u)/[exp(1-0.1u)-1] 0.125exp(-u/80)
n (2.5-0.1u)/[exp(2.5-0.1u)-1] 4exp(-u/18)
h 0.07exp(-u/20) 1/[exp(3-0.1u) + 1]

Table 2.3: Empirical functions of α and β by Hodgkin and Huxley : To represent the data of
the giant axon of the squid, (Hodgkin & Huxley, 1952).

where u(t) is the membrane potential. The values in Table 2.3 are derived by fitting curves to

experimental data the mathematical formulation of the model.

The dynamics of a Hodgkin-Huxley model in response to an applied input current is demon-

strated in Figure 2.6 based on the computational simulation. Used parameters for the

simulation are summarized in Table 2.2 and in Table 2.3.
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Figure 2.9: Simulation of a Hodgkin-Huxley neuron in response to an external input current.
It generates regular spikes. The 200 ms time-course of the membrane potential Vm(t) (top)
during the current trajectory (bottom) switches from 0 nA (less than threshold voltage) at
20 ms to +0.4 nA (exceeding the threshold voltage) at 160 ms. All neuron parameters are
summarized in Table 2.2 and Table 2.3.
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2.5.3 Integrate-and-Fire Model

While the Hodgkin-Huxley model accurately reproduces the shape of action potentials, re-

fractory period, rest response and repetitive firing, the model is computationally complex

and nonlinear. Hence, simplified (lower dimensional and mathematically tractable) neuron

models are proposed with a higher level of abstraction. One of the most widely used models

for analysing the behaviour of nerve cells is the Integrate-and-Fire neuron model which is

developed by Louis Lapicqu in 1907 (Abbott, 1999). The model considers a neuron which

only emits a spike if the total excitation is sufficiently large.

Membrane time constant or membrane decay constant represented by the symbol τm is derived

by the product of the membrane resistance Rm and membrane capacitance Cm. Membrane

time constant τm is the time for the membrane potential to fall from the resting to a fraction

of 1− 1/e, or 63%, of its final value in the charging (Nicholls et al., 1992). It is a measure of

how long it takes the membrane to charge or discharge. It shows the neuron remembrance for

inputs. Larger time constants cause longer memory and shorter time constants forget inputs

quickly. The membrane time constant τm of different real neurons can vary between 10 and

100 ms (Koch et al., 1996).

The neuron membrane acts like a capacitor because the insulator is not perfect, the charge

is slowly leak through the cell membrane and they are therefore leaky (Gerstner et al.,

2014). However, the model of Integrate-and-Fire neuron does not represent this biological

phenomena so the model is commonly named non-leaky. Unlike Leaky-Integrate-and-Fire

(see section 2.5.4), the leakage of the membrane is not represented through the summed

contributions to the membrane voltage decay with membrane time constant τm (Abbott, 1999;

Naud et al., 2008; Gerstner et al., 2014). If this decay over time is neglected, the model

becomes a perfect integrator as in Integrate-and-Fire (Gerstein & Mandelbrot, 1964). However,

if there is a below-threshold incoming signal at some time, the model retains that voltage until

it fires again. This causes no time-dependent memory of previous values of membrane potential.

This Integrate-and-Fire (IF) model is developed in terms of Neural Network dynamics (Hill,

1936; Stein, 1965; Geisler & Goldberg, 1966; Tuckwell, 1988). The state of neuron is expressed

by its membrane potential in the Integrate-and-Fire model. Equivalent circuit diagram of IF

can be seen in Figure 2.10. The circuit consists of a capacitor Cm in parallel with a switch and
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a current I(t) (Gerstner & Kistler, 2002). The switch closes when the threshold is achieved,

then resets after the refractory period.

Figure 2.10: Equivalent circuit diagram for the IF neuron model.

The IF model is described mathematically by:

dVm
dt

= 1
Cm

I(t) (2.13)

when Vm(t) > Vth then Vm(t)→ Vreset (2.14)

where Cm is the total capacitance of the membrane, I(t) is the applied input current to

the membrane. The model considers the neuron membrane as a capacitor Cm. The firing

frequency of the IF model increases linearly with I(t). When the membrane potential Vm
reaches a constant threshold Vth, an output spike occurs and the voltage is reset to Vrest
the resting potential as illustrated in Figure 2.11. Then, the neuron is inactivated for a

period of time corresponding to the refractory period tref . It causes the neuron to enter

a state of hyperpolarisation. Inactivity in the sodium channels and a lag in the closing of

potassium channels are the reasons for refractory time. By including the refractory time tref
in models, the firing frequency of a neuron can be limited by preventing it from firing during

the refractory period. Figure 2.11 has no refractory period in the simulation parameters.

Firing times are defined iteratively as:

tni = [t|Vm(t) ≥ Vth; t ≥ tn−1
i ] (2.15)
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Figure 2.11: Simulation of a single IF neuron by an external input current. The 200 ms
time-course of the membrane potential Vm(t) (top) during the current trajectory (bottom)
switches from 0 mV (less than threshold voltage) at 20 ms to +10 mV (exceeding the threshold
voltage) at 160 ms. It has no refractory period tref = 0. Decay constant is τm = 10ms.
Middle graph shows where spikes are occurred for the membrane potential in the simulation.
All neuron parameters are demonstrated in Table 2.4.

In summary, the non-leaky IF model as a perfect integrator is described by neglecting the

membrane potential decay. However, it is not a particularly realistic way to model neuron

behaviour although it is the simplest spiking neuron model to implement. Therefore, the more

plausible model LIF is discussed in the following section.

2.5.4 Leaky-Integrate-and-Fire Model

In this section, another highly simplified version of the Hodgkin-Huxley model, the Leaky-

Integrate-and-Fire (LIF) neuron model is reviewed. LIF is an improvement to the IF model

and it is more biologically plausible model (Abbott, 1999; Gerstner & Kistler, 2002). In this

model the cell membrane is represented by a simple RC electrical circuit as in Figure 2.12. In a

LIF neuron, the potential decays exponentially which is more biologically plausible compared

with (non-leaky) IF model because synaptic signals decay rapidly in a real neuron. The
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memory problem in the Integrate-and-Fire model is also eliminated by adding a leak current

component (Burkitt, 2006).

Figure 2.12: Equivalent circuit diagram for the LIF neuron model.

Equivalent circuit diagram of LIF can be seen in Figure 2.12. The model of the neuron mem-

brane potential consists of a resistor and capacitor in parallel, representing the conductivity

of the membrane and the leakage capacitance, respectively.

Cm
dVm(t)
dt

= I(t)− Vm(t)− Vrest
Rm

(2.16)

or equivalently by substituting:

dVm(t)
dt

= − 1
τm

(Vm(t)− Vrest) + 1
Cm

I(t) (2.17)

when Vm(t) > Vth then Vm(t)→ Vreset (2.18)

where Rm is the membrane resistance and Cm the membrane capacitance. The model considers

the neuron membrane as a capacitor Cm in parallel with a resistor Rm subject to a synaptic

charging current I(t). The constant current required to reach threshold is Ith = Vth/Rm.

Therefore, the cell fires when I exceeds Ith. Immediately after the membrane voltage reaches

the firing threshold Vth, the neuron generates a spike, then the voltage is reset to the resting

potential Vrest as illustrated in Figure 2.13. The simulation in Figure 2.13 has no refractory
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period tref = 0. The firing frequency can be formulated by Koch & Segev (1999) as:

f(I) =


0, if I ≤ Ith

[tref −RmCmlog(1− Vth
IRm

)]−1, elsif I > Ith

(2.19)

where Rm is the membrane resistance, Cm is the membrane capacitance, Ith is the threshold

current, Vth is the threshold membrane potential and tref is the absolute refractory time.
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Figure 2.13: Simulation of a single LIF neuron by an external input current. The 200ms
time-course of the membrane potential Vm(t) (top) during the current trajectory (bottom)
switches from 0 mV (less than threshold voltage) at 20 ms to +10 mV (exceeding the threshold
voltage) at 160 ms. It has no refractory period tref = 0. Decay constant is τm = 10 ms.
Middle graph shows where spikes are occurred for the membrane potential in the simulation.
All neuron parameters are demonstrated in Table 2.4.

So far an isolated neuron that is stimulated by an external current Iext has been considered.

In a more realistic situation, the input current is generated by pre-synaptic neurons. This

type of Leaky-Integrate-and-Fire model as a part of a larger Spiking Neural Network is used

in our experiments.
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In this framework, the total input current to neuron j is the sum over all current pulses as:

Ij(t) =
∑
i

∑
f

wijκ(t− tfi ) (2.20)

where wij is the synaptic efficacy between neuron i and neuron j. The f th firing time of the

pre-synaptic neuron i is denoted by tfi . The function κ(t) describes the form of post-synaptic

response. κ(t) can be an α function as defined in section A.2, δ function as defined in

section A.1 or other types in order to define various Post-synaptic Potentials (PSPs) which are

the changes in the membrane potential of the post-synaptic terminal of a synapse. κ(t− tfi ) is

a causal filter that only takes into account spikes tfi ≤ t. Each afferent pulse causes a change

in the potential of post-synaptic neuron. The level of the PSP is modulated by the synaptic

efficacy wij . Finally, the total received current into the neuron is a summation over all afferents.

Table 2.4 summarizes the neuron parameters which are used in experiments in following

sections. Here τm = Rm ∗ Cm denotes the decay time constants of membrane integration. We

choose τm = 10 ms by considering Rm = 1 MΩ and Cm = 10 nF as the membrane resistance

and capacitance, respectively. Typical potential values are summarized as Vrest = -60 mV,

Vreset = -65 mV, Vth = -55 mV, the resting potential, the reset potential, and threshold

potential, respectively. There is no refractory time tref = 0 ms. These parameters in Table 2.4

are typical values (Gerstner & Kistler, 2002).

Name Value Unit
Vth -55 mV
Vrest -60 mV
Vreset -65 mV
τm 10 ms
tref 0 ms

Table 2.4: Model parameters for the Leaky-Integrate-and-Fire simulation.

In summary, LIF is a more plausible model than IF as it includes a leak current. It is

proven that it is useful in addressing many of the questions about how neurons and neural

architectures process information. Therefore, LIF is one of the most commonly used spiking

neuron models with its simple architecture for analysing the behaviour of neural systems
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(Burkitt, 2006). The model is also used during our further experiments.

2.5.5 Spike Response Model

The Spike Response Model (SRM) as defined by Kistler et al. (1997) is another approach and

more straightforward to implement compared with the differential equation neuron models.

The SRM is a generalization of the LIF model by defining the membrane potential Vj as an

integral over time t. Although, parameters in the leaky IF model make voltage dependent,

parameters in the SRM depend on the time (t− t̂) since the last output spike (Gerstner &

Kistler, 2002).

Suppose that the last spike time of neuron j is t̂:

t̂ = max{t(f) < t} (2.21)

The evolution of the membrane potential Vj as a function of time t is described (Kistler et al.,

1997) by:

Vj(t) = η(t− t̂) +
∑
i

wij
∑
f

∈ij (t− t̂, s) +
∫ ∞

0
κ(t− t̂, s)Iext(t− s)ds (2.22)

where η is a reset kernel which models the reset after a spike, Iext(t) is external current with

a filter κ(s) which is the response of the membrane potential to an incoming pulse. t(f) are

the times of pulses from pre-synaptic neurons i and wij is the synaptic efficacy between pre-

synaptic neuron i and post-synaptic neuron j. Each pre-synaptic spike evokes a Post-synaptic

Potential (PSP) in post-synaptic neuron j and the trajectory of the PSP is expressed by a

function ∈ij (t) where s = t− t(f).

A threshold condition is taken into account for spike generation:

when Vj(t) > Vth and V̇j(t) > 0 then t̂ = t (2.23)

If, after the summation of the effects of all incoming pulses, the membrane potential Vj
achieves the threshold potential Vth, the post-synaptic neuron fires. In contrast to the LIF

model, the threshold parameter Vth is not fixed but it depends on the time since the last
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generated spike as:

Vth → Vth(t− t̂) (2.24)

The kernels can be expressed as:

η = (Ereset − Erest)e−t/τH(t) (2.25)

κ = 1/Cme−t/τH(t) (2.26)

where H(t) is Heaviside step function described in section A.4 and membrane time constant

τm = Cm/gL. Reset kernel function η determines the form of action potential and the after-

hyperpolarisation potential. If there is not any input (at rest), the membrane potential equals

the resting voltage value, Erest.

A special case of the SRM is simplified SRM0 modelled by neglecting the dependence of κ

and ε. The voltage of a post-synaptic neuron is described as:

Vj(t) = η(t− t̂) +
∑
i

wij
∑
f

∈ij (t− t̂, s) + Vrest (2.27)

To sum up, the SRM is an extension of the LIF model. The SRM implementation of LIF is

used in some of our following experiments in chapter 8 and chapter 9 due to its flexibility in

defining the neuron response and the synaptic response.

2.5.6 Izhikevich model

Although the Hodgkin-Huxley model is still the foundation for most models of biological

neurons today, it is computationally expensive to build and simulate especially in case of large

neural networks. The Izhikevich model (IM) (Izhikevich, 2003) is a good compromise between

biological plausibility and computational efficiency. The dynamics of a single Izhikevich

spiking neuron can be formulated via the following set of ordinary differential equations

Equation 2.28.

v̇(t) = 0.04v2(t) + 5v(t) + 140− u(t) + I(t)

u̇(t) = a(bv(t)− u(t))
(2.28)
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with the after-spike resetting of the form in Equation 2.29. v(t) represents the membrane

voltage of a neuron with v̇(t) = dv(t)/dt as the derivative of function with respect to time.

u(t) represents a recovery variable with u̇(t) = du(t)/dt. The coefficients of 0.04, 5 and 140

have been chosen by Izhikevich (2004) because those constants can be used to simulate around

20 different biologically meaningful spiking behaviours.

if v(t) ≥ 30 mV, then


v(t), v(t)← c

u(t), u(t)← u(t) + d

(2.29)

where v(t) and u(t) are membrane voltage and recovery function respectively. a, b, c and

d are adjustable scaler parameters of the Izhikevich model as explained below (Izhikevich, 2004).
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Figure 2.14: Simulation of a single Izhikevich model neuron by an external input current. It is
generating regular spike as in Izhikevich model (Izhikevich, 2003). The 200 ms time-course of
the membrane potential Vm(t) (top) during the current trajectory (bottom) switches from 0
mV (less than threshold voltage) at 20 ms to +10 mV (exceeding the threshold voltage) at 160
ms. Initial membrane potential is set to Vrest. All neuron parameters are given in Table 2.5.

When the neuron membrane voltage reaches the level of +30 mV or above, the spiking
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a (1/sec) b (1/sec) c (volt) d (volt/sec) Vth (volt)
0.02/ms 0.2/ms -65 mV 8 mV/ms 30 mV

Table 2.5: Model parameters for the Izhikevich model simulation.

condition is occurred, and a spike is emitted illustrated in Figure 2.14. Then the membrane

potential (v) and the recovery variable (u) are reset as in Equation 2.29.

The parameters of the model are:

a → The time scale of the membrane recovery variable u(t). Smaller values correspond to

slower recovery. A typical value for a is 0.02.

b → The sensitivity of the recovery variable u(t) to the sub-threshold fluctuations of the

membrane potential v(t). It determines the resting potential between -70 mV and

-60 mV in the model. Greater values couple v(t) and u(t) more strongly resulting in

possible sub-threshold oscillations and low-threshold spiking dynamics. A typical value

for b is 0.2.

c → The after-spike reset value of the membrane potential v(t) is caused by the fast high-

threshold K+ conductance. A typical value for c is -65 mV.

d → After-spike reset of the recovery variable u(t) is caused by slow high-threshold Na+ and

K+ conductance. A typical value for d is 2.

In summary, the Izhikevich neuron model embeds many observed patterns of neurons in

two dimensional differential equations. Although this reduces the bio-physical accuracy

compared with the Hodgkin-Huxley model, the methodology of Izhikevich gives computational

advantages (Izhikevich, 2007a). The model is implemented to compare the performance of

learning algorithms through other neuron models.

2.5.7 Discussion

Different dynamical models of biological neuron are presented. Example response of each

model to constant current input is illustrated by solving their dynamical equations numerically

using (Brian) SNN simulator (detailed in section 2.7).
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Hodgkin-Huxley equations based on the electrophysiological experiments on the giant axon of

the squid are the core mathematical framework for neural modelling. The model describes

ionic movements involved in generation of action potential. The parameters of the Hodgkin-

Huxley model are biophysically meaningful and measurable. Although Hodgkin-Huxley as a

conductance-based model is able to reproduce many of the phenomena observed in real axons,

it has higher dimensionality. The model is computationally expensive, especially for the large

scale simulations of SNNs (Izhikevich, 2004; Gerstner et al., 2014).

The Integrate-and-Fire neuron derived from the Hodgkin-Huxley model can fire tonic spikes

at fixed frequency, and it is an integrator (Izhikevich, 2004). It cannot have phasic spiking,

bursting of any kind, or having other properties of cortical neurons because it has a single

variable (one-dimensional) in order to control the action potential generation (Izhikevich,

2004; Naud et al., 2008; Gerstner et al., 2014). On the other hand, the LIF model is quite

popular because it is much more computationally tractable.

The LIF neuron as a type of IF neuron has high simplification compared to Hodgkin-Huxley

model. The LIF model is described by a single first-order linear differential equation. In

this model, an action potential is emitted when the value of the membrane potential crosses

a fixed threshold value. It has less biophysical plausibility with decreasing computational

cost compared to Hodgkin-Huxley model (Izhikevich, 2004; Naud et al., 2008; Gerstner et al.,

2014). The LIF is improved model of IF by inserting a leak current which decreases the stored

membrane potential over time. Hence, it is more realistic modelling of biologic neuron, as it

does not hold electrical charge indefinitely.

The Spike Response Model is more intuitive to understand and more straightforward to

implement in SNNs (Paugam & Bohte, 2012). Despite its simplicity, the SRM is more general

than IF neuron models and is often able to compete with the Hodgkin-Huxley model for

simulating complex neuro-computational properties. The Spike Response Model depends on

the time since the last generated spike, whereas the LIF model is voltage dependent (Gerstner

& Kistler, 2002; Gerstner et al., 2014). The dependence of the membrane potential upon

the last spike reduces the responsiveness after the spike, increases the threshold after firing,

and causes hyper-polarization spike after potential (Gerstner & Kistler, 2002). Although

Leaky-Integrate-and-Fire is expressed with differential equations, the membrane potential in
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SRM is described as an integral over previous times.

Izhikevich model (Izhikevich, 2003, 2004, 2007a) is described as a two-dimensional system of

ordinary differential equations with four dimensionless parameters. The model can reproduce

many different spiking and bursting behaviours observed in variety of cortical neurons by

choosing different values of these parameters (Izhikevich, 2004). Although Izhikevich model has

much less computational cost compared to the Hodgkin-Huxley model, it takes into account

all possible information about ionic currents as Hodgkin-Huxley type models (Izhikevich, 2004).

One of the main purposes throughout the thesis is to investigate diverse plasticity paradigms

relied on spike-timing in SNNs. Therefore, instead of the models with a large quantity of

differential equations to mimic entire ion-channels, we use Leaky-Integrate-and-Fire model in

order to reduce the amount of computation is performed. Despite its relative simplicity, the

LIF model can reproduce quantitatively various aspects of neuronal dynamics (Abbott, 1999;

Gerstner & Kistler, 2002; Burkitt, 2006). Also, we use SRM0 the special case of the more

general SRM as an extension of the LIF model (Gerstner & Kistler, 2002) during experiments

because of its straightforward implementation.

Inside the SNNs as a third generation of NNs, those biologically-plausible models of neurons

are used in order to bridge the gap between neuroscience and Machine Learning. General

types of plasticity mechanisms considering with spiking networks are reviewed on the core of

Machine Learning theory in the following section.

2.6 Supervised, Unsupervised, and Reinforcement Learning

Learning procedures are conventionally divided into three main types: supervised learning,

unsupervised learning and Reinforcement Learning (Rojas, 1996; Fellous & Suri, 2003). Those

types are important learning paradigms in the context of Machine Learning.

Supervised learning algorithms generate a classifier or predictor from a set of training exam-

ples by extracting the relationships and dependencies between the input and output features

(Fellous & Suri, 2003; Kasinski & Ponulak, 2006; Ponulak & Kasinski, 2010). Calculated error

measure through the comparison between actual and desired output used as a feedback signal.
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Hence, supervised techniques aim to minimize their error function as in gradient descent search

methods which minimize a mean square error between the desired output and the actual

outputs in SNNs. Analogous to the classical Back Propagation (BP) algorithm in traditional

NNs, SpikeProp algorithm is described in more detail in section 8.2 is one of the first super-

vised learning methods for SNNs (Schrauwen & Campenhout, 2004; Kasinski & Ponulak, 2006).

Unsupervised learning adapts its parameters based on the statistical properties of the input

space despite using the guidance of performance evaluation in supervised learning (Bohte

et al., 2002a; Fellous & Suri, 2003). Hence, it learns a structure in its input without involving

target values. Unsupervised techniques try to discover the hidden patterns or features in the

input data, or extract an optimal representation of the data, or reduce dimensionality of input

data without getting any external teaching or feedback signal.

Unsupervised learning paradigm is particularly suitable for biologically motivated plasticities

that use intuitive primitives like neural competition and cooperation between each other.

Spike-based unsupervised mechanisms in SNNs allow for association/classification between

inputs without class labels using biologically plausible architectures (Bohte et al., 2002a).

For instance, Hebbian plasticity (described in more detail in section 3.3) is considered one

particular class of unsupervised learning methods based on Machine Learning theory (Hertz

et al., 1991; Gerstner et al., 2014). Synaptic efficacy between neurons in Hebbian learning

is determined based on the correlations of pre-synaptic and post-synaptic firing activities

(Hebb, 1949; Sutton & Barto, 1998; Brown & Milner, 2003; Johansen et al., 2014). Also,

the STDP rule (detailed in section 3.4) based on Hebbian plasticity provides a biologically

inspired mechanism in Spiking Neural Networks as an unsupervised learning scheme (Bi &

Poo, 1998; Izhikevich, 2007b).

Reinforcement Learning (RL) performs the learning through maximizing its numerical values

which represent a long-term objective (Kaelbling et al., 1996; Sutton & Barto, 1998; Farries

& Fairhall, 2007). In RL theory, this is generally formalized with optimizing an unknown

reward function (Kaelbling et al., 1996; Sutton & Barto, 1998) detailed in chapter 4. Each

observation about the state of the environment helps to evaluate the goodness of present

situation. Tasks are performed through explorations around the environment without having

examples of correct behaviour. Actions are selected according to observed the resulting reward
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from the previous interaction. RL techniques differ in the details of how the exploration is

performed and how learning performance is calculated (Kaelbling et al., 1996; Sutton & Barto,

1998). In the recent decades, Temporal-Difference (TD) learning becomes one of the most

popular RL algorithms proposed by Sutton & Barto (1998).

Supervised learning algorithms and Reinforcement Learning algorithms are optimization

methods in Machine Learning. Both try to optimize performance estimates or measures of the

Neural Networks. One of main differences from supervised learning is the goal in RL tasks is

to find numerical value set which gives maximum reward unlike to predict the output values

based on a given set of examples in supervised learning. Therefore, the aim is to maximize

the sum of rewards in the long term at a single location instead of minimizing expected future

prediction error over the entire sample space. Another key difference is that RL processes

have no fixed distribution over training set unlike supervised learning tasks because RL agent

is in charge of choosing values of each input through environment interactions.

After the review of plasticity types in the field of Machine Learning, we discuss how proposed

plasticity rules, neuron models, and entire underlying mechanisms for SNNs can be transferred

into available computer simulators. The motivation about the choice of simulator among

other simulators is justified in the following section.

2.7 Simulators

Although simulation of biologically-inspired Spiking Neural Networks is generally a complex

problem, various computer simulators are developed in order to describe and understand

biochemical processes in neurons and different Neural Networks. These simulators provide

various neuron models and biological neuron mechanisms in networks. These models can vary

from very abstract mathematical neuron behaviours to detailed morphology of neurons.

Also, updating the simulation dynamics varies in SNN simulators. There are mainly two

fashions: clock-driven (time-driven) and event-driven. In the clock-driven paradigm, object-

s/parameters are updated at every time point t = 0, dt, 2dt, 3dt, .... This can be potentially

very time consuming for same cases, because all parameters are updated at every time step

along with the simulation time. For instance, updating synapses in contrast to neurons can
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be less efficient strategy in clock-driven approach. However, in event-driven fashion, indicated

objects/parameters are updated only at the times of events. For the synapse example, it is

evaluated only on the arrival of a pre-synaptic spike rather than every time grid.

The models in section 2.5 can be simulated on any supported simulator such as NEURON (see

section B.1), GENESIS (see section B.3), Nengo (see section B.4), Brian or on neuromorphic

hardware (Brette et al., 2007). We present an overview of some of the available simulation

environments for Spiking Neural Networks to implement our further experiments.

2.7.1 Brian

The Brian simulation package [1] is based on the programming language Python which allows

flexible model definition by writing readable textual descriptions based on mathematical

expressions (Goodman & Brette, 2008; Stimberg et al., 2014). The Python code for all

simulations including neurons, synapses and network models based on Brian architecture is

also available on the author’s web page [2].

Brian is a clock-driven simulator. However, some object updates such as differential equations

or synaptic parameters in Brian can be adjusted in an event-driven fashion as well. Although

the default update is clock-driven, this could be changed if it is needed. For instance, the

implementation of Spike-timing Dependent Plasticity (STDP) (see chapter 9) pre-synaptic and

post-synaptic traces are much efficient with event-driven mechanism rather than clock-driven

approach.

Neuron models are defined by differential equations in Brian. Connectivity model between

neurons can be implemented by direct specifying, all-to-all or random connections. Those con-

nections can have various custom parameters such as synaptic weights, delays, and conductance.

We would like to prepare a custom environment based on Brian through the construction of

neuron models and network architectures. This gives us a chance to explore effects of various

parameters through the simulation. Instead of using tool-specific language or GUI-specific

as in NEURON, we would like to use more broad language as in Brian’s text and equation

[1]http://www.briansimulator.org
[2]http://www.ozturkibrahim.com
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based syntax on Python. Due to various scientific libraries in Python language, Brian is an

important option to define new models based on existing models. Therefore, Python can be the

middleware between Brian kernel and the numerical package for initializing and prototyping

of neuron and synapse models according to complicated probability distributions. Brian

simulator has intuitive syntax to start with computational neuroscience through ordinary

mathematical notation of differential equations. It is a cross platform tool unlike the NEST

simulator which is based on Linux. Most simulators have a high-level scripting interface to

low-level neural simulators. However, Brian provides a convenient access to each low-level

element in the architecture. In Brian, it is also straightforward to manipulate the neuron

mechanisms and models in contrast with the NEST.

Brian uses vectorisation to overcome the lower performance of Python. Although it does not

have significant overhead ratio for large networks, it has reasonable overhead ratio for small

networks which are designed during our experiments. Some simulators such as NEURON and

GENESIS are originally designed for detailed neuronal modelling at the ionic channel level.

However, Brian is built specifically to run Spiking Neural Networks and is optimized with

SNNs in mind.

Re-implementing the model in another language such as C++, Java or in an embedded

platform is not a very difficult task like in NEURON and most of above listed simulators.

This reimplementation can be for various reasons such as faster simulations, benchmark

comparisons and so on. C++ implementation is already provided by Brian. For others, the

SWIG [3] wrapper tool can be used to convert it into target language.

In summary, Brian allows to write equations in standard mathematical notation. It is well

documented and it has an active support group. The simulator software is optimized for

Spiking Neural Networks and allows multiple neuron models and plasticity features in the

same simulation. Most objects and parameters are updated in either clock-driven fashion or

event-driven approach. Brian is better suited for simulating a range of single cell models and

customized plasticity rules. Although it provides some predefined neuron models such as Leaky-

Integrate-and-Fire and Hodgkin-Huxley neurons, any custom neuron and plasticity models

can be described straightforwardly. It is flexible and easily extensible. Entire simulations

[3]http://www.swig.org/
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throughout the thesis are implemented in using Python.

2.8 Summary

In this chapter, basic concepts of the neuron electrophysiology are reviewed and mechanisms

underlying the generation of action potentials in neurons based on the Hodgkin-Huxley theory

are described. Then, the relation between biological and artificial neurons is presented with

the structural and functional inspirations by neurobiological findings. A brief history from

a standard Artificial Neural Network (ANN) to biological Spiking Neural Network (SNN) is

provided. Then, three main types of learning procedures as supervised learning, unsupervised

learning and Reinforcement Learning are discussed. Details of descriptive mathematical

analysis of the compartmental approach, Hodgkin-Huxley model, Integrate-and-Fire model,

Leaky-Integrate-and-Fire model, Spike Response Model and Izhikevich model are explained

with illustrative figures. Finally, to simulate Spiking Neural Networks in software, various

modern Spiking Neural Network simulators NEURON, NEST, GENESIS, Nengo and Brian

are presented. The Brian tool based on the Python language is used during experiments

in chapter 8 and chapter 9. The motivation about the choice of Brian tool among listed

simulators is also justified.
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Learning Mechanisms in Spiking Neural

Networks
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3.1 Introduction

Since Spiking Neural Networks (SNNs) are based on spiking neuron models that are so close

to the biological neurons, many of the biological principles can be applied to the networks.

Various learning mechanisms, especially the biologically plausible plasticity rules, for Spiking
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Neural Networks are introduced. This chapter considers how learning mechanisms can be

incorporated into artificial networks of spiking neurons.

Spiking Neural Networks consist of nodes and the connections between them. The class of

nodes includes spiking neurons and objects which enable stimulating or recording of neurons.

A connection carries information from a sending node (pre-synaptic neuron) to a receiving

node (post-synaptic neuron). Typically, a connection includes at least a synaptic weight

and a synaptic delay. The weight determines the impact of the pre-synaptic signal on the

post-synaptic potential. The delay determines how long it takes for the signal to travel from

the pre-synaptic to the post-synaptic neuron.

One underlying mechanism for learning and memory in biological systems is the regulation

of synaptic connection strength, a process referred to as synaptic plasticity. If the synaptic

connection is intended to be plastic (not a fixed weight), the definition of the synapse has

to include the mechanism of weight dynamics. The facilitation or depression of a synapse

between neurons can be handled with weight dynamics in SNNs.

Like traditional Neural Networks, learning in SNNs can be achieved by three strategies:

supervised, unsupervised and reinforcement. Supervised learning and Reinforcement Learning

are the most commonly used learning approaches in SNNs (Maass, 1996; Schultz et al., 1997;

Schultz, 1998; Froemke et al., 2005; Ponulak, 2008; Ponulak & Kasinski, 2010; Gerstner et al.,

2014).

This chapter describes some fundamental synaptic plasticity approaches inspired from biologi-

cal observations that can be designed for SNNs. Those paradigms also inspire the learning

techniques for spiking networks proposed in our experiments. Described techniques such as

Spike-timing Dependent Plasticity and homeostatic plasticity are fundamental parts through-

out further descriptions in chapter 8 and chapter 9.

Firstly, the structure of synapse is detailed in section 3.2 with its brief biological background

and its basic artificial interpretation. Then, Hebbian plasticity determines the facilitation

or depression mechanisms of a synapse, as discussed in section 3.3. As an extension to the

original Hebbian hypothesis, experiments demonstrate that spike timing between pre-synaptic

74



3.2. Synapse 75

firing and post-synaptic firing times plays a fundamental role in plasticity mechanism. This

timing relationship is called Spike-timing Dependent Plasticity (STDP) which reinforces the

synaptic strength (weight) when the spike arrives before the firing of the neuron and decreases

the strength (weight) when the spike arrives after the neuron has fired. STDP is discussed in

section 3.4 with its model details, implementation aspects, and variants.

In order to maintain the stabilization of neuronal functions in the network, homeostatic

plasticity is observed in neocortical circuits (Turrigiano, 2012), where neurons can regulate

their own excitability relative to overall network activity. Synaptic scaling is one of potential

mechanisms as homeostatic plasticity and it is detailed in section 3.5. Also, modulation of

dendritic excitability is a key aspect of synaptic integration (Sjostrom et al., 2008). Hence,

biological background of Dopamine modulated plasticity is described in section 3.6. This can

be used as biological inspiration basis for the following chapter 4. In this chapter, we describe

various plasticities which are basis for the following approaches in section 8.3, section 8.9 and

chapter 9.

3.2 Synapse

In the nervous system, the small gap at the junction between an axon and a neuron is called

a synapse which allows information to flow from one neuron to another. Those gaps of

the neuron axon to next nerve cell are generally chemical contacts rather than electrical

contacts. Those junctions enable neurons to exchange signals by diffusion of neurotransmitters.

According to the type of synapses, electrical potential can be increased for excitatory synapse

or decreased for inhibitory. The physical and chemical characteristics of synapses determine

the strength of the incoming signal. Synapses are believed to be the neurobiological basis of

learning and memory in the mind (Squire & Kandel, 1999).

Neurons interact via synapses which transmit spiking activities from the pre-synaptic neuron

to the post-synaptic one. Synaptic connections are made onto the dendrites and cell bodies

of other neurons. Depending on the site of transfer between neurons, the first or previous

neuron is called the pre-synaptic neuron and the following neuron receiving the information is

called the post-synaptic neuron. Basic schematic structure is shown in Figure 3.2.
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Figure 3.1: Illustration of the main parts of a synapse, taken from Bekolay (2011).
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Figure 3.2: Schematic representation of a synapse from the source (pre-synaptic) neuron i,
ni, to the target (post-synaptic) neuron j, nj . i, j are the pre-synaptic and post-synaptic
neuron index, respectively. There is a single synapse sij with synaptic strength (weight) wij
and axonal delay dij .

3.2.1 Synaptic Transmission

At most synapses, the information is transmitted in the form of small chemical messengers

called neurotransmitters that bind to receptors on other neurons, or cells. Those molecules

are released by a pre-synaptic neuron into the synaptic cleft and cause ion channels in target

neuron to activate, resulting in a change in the post-synaptic potential. The structure of a

synapse is illustrated in Figure 3.1. One of the most common examples of neurotransmitters is

acetylcholine (ACh) which is one of the primary neurotransmitters of the peripheral nervous

system (Nicholls et al., 1992; Kandel et al., 2000).

Excitatory Post-synaptic Potential (EPSP) is a temporary change in the membrane potential

of a neuron. Excitatory synapses increase the electric polarization of the membrane, which

is called Excitatory Post-synaptic Potential. On the other hand, Inhibitory Post-synaptic
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Potential (IPSP) changes the charge negatively across the nerve membrane resulting in a

lowering of the membrane potential to be further from the firing threshold.

3.2.2 Synapse Model

The state of synapses in common synaptic models is represented by a weight variable, w,

which is the amount by which the post-synaptic membrane potential is increased. When the

membrane potential of the pre-synaptic neuron exceeds the threshold, a spike is emitted. This

spike is sent to all post-synaptic neurons forming synapses with it and it causes change in

the input current Ij(t) of post-synaptic neuron for a short period of time depending on the

weight, wij . The input current due to synaptic activation is commonly a weighted sum of

pre-synaptic currents as:

Ij(t) =
Nsynapses∑
i=1

wij(t) · f(t− tfi) (3.1)

where f is synaptic current function which can be modelled as an exponential decay, Dirac

Delta function (see section A.1), or Alpha function (see section A.2), wij is the synaptic

strength illustrated in Figure 3.2. Throughout the experiments for a synaptic current, we

use the Dirac Delta function δ(t) where it is 1 if t = 0, otherwise it is 0. The model can be

visualized in Figure 2.5. Synaptic strengths wij are allowed to contain a mix of both positive

and negative weight values. Synaptic connections with negative weights behave like inhibitory

synapses.

3.2.3 Synaptic Plasticity

One of the most fundamental and fascinating properties of the mammalian brain is its plastic-

ity; the capacity of the neural activity generated by an experience to modify neural circuit

function (Citri & Malenkas, 2008). Synaptic plasticity involves processes on synapses to

transfer the information between neurons or between a neuron and a muscle cell. Synapses are

able to change their strength and activity because of their feature of extreme plasticity which

is widely believed to underlay learning. Based on the amount of released neurotransmitters

across the synapse, the efficacy of synapses can be increased (more sensitive) or decreased

(less sensitive) (Nicholls et al., 1992; Squire & Kandel, 1999; Kandel et al., 2000).

There are a number of different forms of synaptic plasticity which are observed and described
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such as Short-Term Synaptic Plasticity or Long-Term Synaptic Plasticity. Short-Term Synaptic

Plasticity (Zucker & Regehr, 2002) is observed that lasts of the order of milliseconds to several

minutes. This form of plasticity might a play role in short-term adaptations to sensory inputs,

transient changes in behavioural states, and short-lasting forms of memory. On the other

hand, Long-Term Synaptic Plasticity has two types called Long Term Potentiation (LTP) and

Long Term Depression (LTD). Those synaptic mechanisms are the most prominent forms

in the mammalian brain. In our experiments, we use Long-Term Synaptic Plasticity with

LTP/LTD based on Hebbian learning models.

3.3 Hebbian Plasticity

In 1949, a psychologist named Donald O. Hebb proposes a mechanism of synaptic plasticity

that has a fundamental influence on psychology and neuroscience (Hebb, 1949; Brown &

Milner, 2003). The main idea of the theory is that correlated activation in the pre-synaptic

and the post-synaptic neuron causes the strengthening of the synaptic efficacy between those

two neurons. The original definition is stated by Hebb in his book (Hebb, 1949) as:

“Let us assume that the persistence or repetition of a reverberatory activity (or “trace”) tends

to induce lasting cellular changes that add to its stability... When an axon of cell A is near

enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells such that A’s efficiency, as one of

the cells firing B, is increased.” (Hebb, 1949).

From the point of Artificial Neural Networks view, Hebbian plasticity determines how the

synaptic strengths between artificial neurons change. In other words simultaneous neuron

activation of pre-synaptic and post-synaptic cells corresponds to the increase of the weight

between them; on the other hand, separate neuron activation corresponds to the decrease of

the weight between those neurons. This plasticity rule is known as Hebbian plasticity and

the synapses which follow the proposed rule are known as Hebb synapses. Hebbian plasticity

can be classified as an unsupervised method based on Machine Learning theory (Hertz et al.,

1991; Gerstner et al., 2014).

One of basic mathematical descriptions of Hebbian learning with a single pre-synaptic neuron
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nj connected to a single post-synaptic neuron ni as shown in Figure 3.2 is usually formulated as:

∆wij = ηxixj (3.2)

where wij is the synaptic efficacy between neuron nj and neuron ni, ∆wij is the change in

synaptic weight wij , η is the learning rate with small, fixed, and positive value, i indexes a

pre-synaptic neuron ni, j indexes a post-synaptic neuron nj , xi, xj are the activation in the

pre-synaptic neuron ni and post-synaptic neuron nj , respectively.

3.3.1 Long Term Potentiation (LTP)

In 1966, one form of long term synaptic plasticity, called hippocampal LTP, in the mammalian

brain is discovered in the CA1 region of the hippocampus by Terje Lomo (Lomo, 2003).

Figure 3.3 from Citri & Malenkas (2008) summarizes their results. Sample experiments

illustrates NMDAR-dependent (The N-methyl-D-aspartate receptor dependent) LTP and

LTD at hippocampal CA1 synapses. The axons coming from one part of a rat’s hippocampal

formation, the entorhinal cortex, are stimulated many times in rapid succession, which leads

to an increase in activity in another part of the hippocampal formation, the dentate gyrus.

The importance of the phenomenon is that they provide an important key to understanding

some of the cellular and molecular mechanisms by which memories are formed (Martin et al.,

2000; Pastalkova et al., 2006).

The amplitude of the Excitatory Post-synaptic Potential of the population is correlated with

the amount of current which flows into post-synaptic neurons. If EPSP increases, pre-synaptic

spikes have more influence on post-synaptic firings by imparting more current into the post-

synaptic neuron. To sum up, the long-lasting increase in the strength of these synapses can

persist for many days (Bliss & Gardner-Medwin, 1973; Nicoll, 2017). LTP remains to this

day one of the most inspirational models for memory and learning (Nicoll, 2017).

3.3.2 Long Term Depression (LTD)

Long Term Depression (LTD) is an activity-dependent decrease which results in the strength of

synaptic transmission as the reverse of LTP. LTD, is a long lasting depression process, which
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Figure 3.3: Sample experiments illustrating LTP (left) and LTD (right) in the CA1 region of
the hippocampus. (Left) Synaptic strength, defined as the initial slope of the field excitatory
post-synaptic potential (fEPSP; normalized to baseline) is plotted as a function of time. Data
traces are taken at the times indicated by the numbers on the graphs (scale bar: 0.5 mV;
10 ms). (Right) It demonstrates LTD elicited by high-frequency tetanic stimulation (100 Hz
stimulation for 1 s; white arrowhead). Right panel illustrates LTD elicited by low-frequency
stimulation (5 Hz stimulation for 3 min given twice with a 3 min interval; open arrow). Data
traces are taken at the times indicated by the numbers on the graphs (scale bar: 0.5 mV; 10
ms), taken from Citri & Malenkas (2008).

persists over days and months. Because of the correlation of LTD and motor learning, LTD is

considered as a critical cellular mechanism for memory and motor learning (Hirano, 2013).

Motor learning is a set of processes associated with practice or a novel experience leading

to relatively permanent changes in our neuromuscular system functions (Schmidt & Lee, 1999).

The first evidence of LTD is discovered almost a decade after LTP by Lynch et al. (1977).

They find that after a tetanic stimulation induced LTP to individual neurons, other afferents

to the same neuron have weaker EPSPs, i.e. their synaptic strengths are weakened. This type

of LTD does not need pre-synaptic activity to be depressed. Therefore, the process is not

predicted by the classic Hebbian mechanism, and it is defined as anti-Hebbian, the opposite

of Hebbian learning (Massey & Bashir, 2007).

3.4 Spike-timing Dependent Plasticity (STDP)

Spike-timing Dependent Plasticity (STDP) is a further development of Hebbian plasticity

which depends on the relative firing times of the pre-synaptic and post-synaptic neurons

instead of rate-based Hebb mechanisms (Bi & Poo, 1998, 2001; Froemke et al., 2005; Morrison

et al., 2008). STDP learning window or STDP function is a function of the synaptic weights
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which is shaped through the relative timing of pre-synaptic spike arrival to post-synaptic

action potentials. STDP mechanism has mainly three components: pre-synaptic timing,

post-synaptic timing and the efficiency of learning for a time window (Bi & Poo, 1998). The

time difference between post-synaptic tpostj and pre-synaptic firing times tprei is denoted as

∆t = tpostj − tprei . This is the determining factor in how large the synaptic weight needs to be

changed.

Hebbian learning strengthens synaptic weights once pre-synaptic neuron fires before post-

synaptic neuron (see section 3.3). Since STDP is consistent with the postulate of Hebb, it is

also referred to as Hebbian-STDP (Roberts & Bell, 2002; El-Laithy & Bogdan, 2011; Florian,

2007). Tenporal kernels of Hebbian-STDP are shown on the right in Figure 3.4 and Figure 3.5.

Anti-Hebbian learning is the opposite of Hebbian learning (see section 3.3). It strengthens

the synapses if the post-synaptic neuron fires before the pre-synaptic neuron and weakens the

association between neurons once pre-synaptic neuron fires before post-synaptic neuron. On

the other hand, there are two main shapes of the STDP form as symmetric in Figure 3.4 and

asymmetric in Figure 3.5. Tenporal kernels of anti-Hebbian-STDP are shown on the left in

Figure 3.4 and Figure 3.5.

Symmetric Spike-timing Dependent Plasticity (Symmetric-STDP) is only dependent on time

difference between pre-synaptic and post-synaptic firing times (Roberts & Bell, 2002). Hence,

the sign of synaptic changes does not vary with the sign of the relative spike timing illus-

trated in Figure 3.4. On the other hand, Asymmetric Spike-timing Dependent Plasticity

(Asymmetric-STDP) is also dependent on the temporal order of pre- and post- firing times

addition to relative timings with the exact opposite effect of STDP (Roberts & Bell, 2002;

Gerstner & Kistler, 2002). This process weakens distal synapses, and strengthens proximal

synapses. In other words, if pre-synaptic neuron fires before its post-synaptic neuron, those

synaptic weights increase and other synaptic weights decrease if post-synaptic neuron fires

before its pre-synaptic neuron. Asymmetric-STDP includes a decay term which is not part of

the original Hebbian formulation (Roberts & Bell, 2002).

By Spike-timing Dependent Plasticity mechanism, a network can classify data through self-

organisation after training (Roberts & Bell, 2002; Bohte et al., 2002b). In Figure 3.6, the

STDP function illustrates the change of synaptic weight connections as a function of pre-
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Figure 3.4: Symmetric-STDP. The left hand plot shows symmetric anti-Hebbian-STDP
window. The right hand plot shows symmetric Hebbian-STDP window. ∆t is the time
difference between the post-synaptic firing times tpostj and pre-synaptic firing times tprei ,
(∆t = tpostj − tprei ).
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Figure 3.5: Asymmetric-STDP. Regardless of the order of pre- and post-synaptic firing times,
STDP function W (∆t) modify the weights in the same manner for ∆t < 0 and ∆t > 0. The
left hand plot shows asymmetric anti-Hebbian-STDP window. The right hand plot shows
asymmetric Hebbian-STDP window. ∆t is the time difference between the post-synaptic
firing times tpostj and pre-synaptic firing times tprei , (∆t = tpostj − tprei ).

synaptic and post-synaptic spike timings. STDP exhibits the component of LTD and LTP

as it is explained previously. STDP response based on the timing window determines the

synaptic modification.

An example of unsupervised learning in SNNs is proposed by (Masquelier et al., 2008) where

STDP is applied to detect a single input spatio-temporal spike pattern. From simulations, it

is demonstrated that the post-synaptic neuron can learn to respond to the spike pattern with

a precisely timed output spike.

3.4.1 Modeling of STDP

The relative timing between pre-synaptic arrivals and post-synaptic firings determines the

weight change between neurons within a critical timing window. The critical timing window

for potentiation and depression is typically 20-25 ms according to experimental studies (Bi
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& Poo, 1998; Song et al., 2000). Outside this window, potentiation or depression does not

occur. Experimental observations show that, if a post-synaptic firing follows a pre-synaptic

firing activity within the timing window, potentiation takes place (Figure 3.6). Also, if a

pre-synaptic firing follows a post-synaptic firing activity within the timing window, depression

occurs (Figure 3.6). The weight change ∆wij of a synapse from a pre-synaptic neuron j to

post-synaptic neuron i is illustrated in Figure 3.6. The total weight change ∆wij is proposed

by Gerstner et al. (1996) as it is formulated in Equation 3.4.

Figure 3.6: The schematic of STDP window function illustrates the change of synaptic
strengths as the vertical scale (dimensionless) based on temporal relationship between pre- and
post-synaptic spikes (Sjostrom & Gerstner, 2012). Horizontal scale shows the time difference
∆t = tprei − tpostj . Convention about the time difference ∆t in this graph is slightly different
than the one used in the thesis. (Note that the notation of ∆t = tpostj − tprei is used throughout
the thesis). For instance, if there is no time difference (∆t = tprei − tpostj = 0), the current
weight will not be increased or decreased ∆wij = 0. The plotted STDP measured in biological
tissue (rat hippocampal neurons) (Bi & Poo, 1998). This figure includes experimental data
taken from Bi & Poo (1998). Pre-synaptic neuron and post-synaptic neuron are shown with i
and j, respectively.

The pre-synaptic spike arrival times can be described as tfi at synapse i with f as pre-synaptic

firing index, f = 1, 2, 3, ... shows the sequence of pre-synaptic spikes as it illustrated in Fig-
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ure 3.6. Similarly, the post-synaptic firing times can be similarly named as tnj at synapse j with

n as post-synaptic firing index, n = 1, 2, 3, ... represents the firing times of the post-synaptic

neuron. Based on that, synaptic modification as:

∆wij =
N∑
i=1

N∑
n=1

W (tnj − t
f
i ) (3.3)

Any proposed STDP model for weight function in Equation 3.3 describes the amount of

synaptic modification from a pre-synaptic to post-synaptic spikes. As a simple Spike-timing

Dependent Plasticity model, one of the popular choice for weight of the synapse, W (∆t), can

be formulated with following set of equations.

w(t+ 1) = w(t) + ∆w (3.4)

where ∆w is the change in weight with:

∆t = tnj − t
f
i (3.5)

where ∆t is the time difference between the post-synaptic firing times tnj and pre-synaptic

firing times tfi . We refer to the conditions ∆t > 0 as positive and ∆t < 0 as negative spike-pair

timing.

The standard rule for STDP is used which adjusts each connection strength in response to the

time difference between the spikes of pre- and post-synaptic neurons. Integral kernels as τpre
and τpost define the shape of STDP process (Gerstner & Kistler, 2002). The weight update W ,

is also called the STDP modification function, can be modelled in a common form as follows:

W (∆t) =

 +Fpre(w)e−
∆t
τpre , if ∆t ≥ 0,

−Fpost(w)e+ ∆t
τpost , if ∆t < 0.

(3.6)

where ∆t = tnj − t
f
i is the difference between the posts- and pre-synaptic neuron firing times.

Fpre(w) and Fpost(w) describe the dependence of the update on the current weight of the

synapse as detailed in subsection 3.4.2. Typically a positive weight update (W (∆t) > 0) for a

pre- before post-synaptic firing activity (∆t > 0), and a negative weight update (W (∆t) < 0)

for a pre- after post-synaptic spike (∆t < 0) are applied through this learning. τpre and τpost
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pre

post

pre

post

Figure 3.7: Illustration of the implementation of the STDP process over simulation time steps,
dt = 1ms. There is a pre-synaptic neuron ni and post-synaptic neuron nj with a synaptic
weight wij and an axonal delay dij = 0. A) The pre-synaptic firing times as the top row at
tfi , green, and the post-synaptic spike train as the bottom row at tnj , blue. B) LTP in green
and LTD in blue subwindows for excitatory connections can bee seen with apre and apost
based on pre-synaptic and post-synaptic spikes from (A). Apre and Apost in Table 3.1 are
maximum amplitude of apre and apost traces, respectively. The synaptic change ∆W (y-axis)
determines the amount of the weight modifications. C) Shorter time difference ∆t cause
larger weight update ∆w within τpre and τpost which are the decay constants of the learning
window (see Table 3.1). First weight modification is a decrease because of the post-synaptic
spike generation shortly before the pre-synaptic spike. The actual time difference between
pre-post spiking times is ∼ −4ms. Next modification is slight weight decrease because of
longer time difference ∼ −8ms between pre-post spiking times. Increasing weight changes
is induced by the pre-synaptic spike followed by the post-synaptic spike nearly at the end
of the presentation. For instance, the relation of 2nd pre-synaptic spike at ∼ 42ms and 2nd
post-synaptic spike at ∼ 65ms does not cause any increase or decrease in the synaptic weight
because the current time difference between pre- and post-synaptic spikes is out of the time
windows of STDP, τpre and τpost.

> 0 are the decay constants of the STDP learning window for LTP and LTD (Song et al., 2000).

The updating functions Fpre(w) and Fpost(w) > 0 control the amplitude of the learning window

once pre-synaptic and post-synaptic events are happened, respectively. In other words, Fpre(w)

and Fpost(w) determine the scale of contribution to synaptic plasticity: higher values indicate

larger contributions. For the current plasticity modelling, all parameters are summarized in

Table 3.1.

Although, various shapes of STDP windows are proposed in the literature (Song et al., 2000;
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Parameter Type Parameter Names Values
Plasticity amplitudes Apre, Apost 0.005, 0.005

Decay constants τpre, τpost 5ms, 5ms
Weight dependence factor µ 0

Table 3.1: Model parameters used for the computer simulations through STDP.

Senn et al., 2001; Izhikevich et al., 2004; Kistler, 2002), in this work we use one of the

most common learning windows for the STDP process as Asymmetric-STDP illustrated in

Figure 3.7. This figures shows the simulation of post-pre spiking events, and confirms that

the operation of the STDP rule is consistent with the theory presented. The STDP shape in

the figure is obtained by using parameters summarized in Table 3.1. Apre and Apost as a form

of Fpre(w) and Fpost(w) are positive constants. Although it is common that Apre ≤ Apost

for network stability, we set Apre = Apost = 0.005 here because this selection is the basis for

further learning techniques described in section 8.3 and section 8.9. Apre and Apost denote

the maximum change on synaptic efficacies. Decay times τpre and τpost are determined as the

half of the maximum Inter-spike Interval in order to capture entire trace activity. We set τpre
= τpost = 5 ms here summarized in Table 3.1.

3.4.2 Weight Dependence

Experimental evidence for the weight dependence of STDP is already discussed (Bi & Poo,

1998). Although the way to adjust the weight dependence of the synaptic changes differ, a

common form of weight dependence through updating functions of Fpre and Fpost can be

expressed as:
Fpre(wij) = ηS(1− wij)µ

Fpost(wij) = ηSϕw
µ
ij

(3.7)

where ηS is the learning rate for STDP, ϕ > 0 is an asymmetry factor, µ is a non-negative

exponent in order to control the dependence of weight changes on the current value of wij
(Gutig et al., 2003).

The selection of parameters in Equation 3.7 allows various forms of dependency. Firstly,

Additive-STDP (Kempter et al., 1999; Song et al., 2000) is weight independent (∆w/w ≈
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constant). This rule can be driven from Equation 3.7 by choosing µ = 0 as:

Fpre(wij) = ηS = Apre

Fpost(wij) = ηSϕ = Apost

(3.8)

with Apreτpre ≤ Apostτpost. If Apreτpre < Apostτpost, depression overpowers potentiation. How-

ever, in the current experiment we use same values as Apreτpre = Apostτpost shown in Table 3.1

because of further considerations in following learning techniques in chapter 8.

Secondly, Multiplicative-STDP (Gutig et al., 2003) has a linear weight dependence (∆w ∝ w)

for depression and constant potentiation (van Rossum et al., 2000). This rule also can be

driven from Equation 3.7 by choosing µ = 1 as:

Fpre(wij) = η(1− wij)

Fpost(wij) = ηϕwij

(3.9)

There are some forms such as Power-STDP by choosing intermediate values for µ between (0,1)

(Rubin et al., 2001) and Log-STDP proposed by Gilson & Fukai (2011). In our simulations

throughout the project, µ = 0 using an additive form for the STDP weight update. After this

point, STDP refers to Additive-STDP unless otherwise explicitly expressed.

3.4.3 Implementation of STDP

If we rewrite Equation 3.6 based on Additive-STDP (ηS � 1), we get:

W (∆t) =

 +Apree
− ∆t
τpre , if ∆t ≥ 0,

−Aposte
+ ∆t
τpost , if ∆t < 0.

(3.10)

where ϕ = Apost/Apre.

Simulating STDP directly using Equation 3.10 would be inefficient because all pairs of spikes

have to be summed over. This is also physiologically implausible because the neuron can not

remember all its individual firing times. A more plausible and efficient approach is handled
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by defining traces for both pre- and post-synaptic activity.

τpre
d
dtapre = −apre

τpost
d
dtapost = −apost (3.11)

where apre and apost are traces of pre- and post-synaptic activity, respectively. τpre and τpost
are the decay constants of the learning window.

Once a pre-synaptic spike is generated, the pre-synaptic trace is modified also the weight is

modified based on the rule:

apre → apre +Apre

w → w + apost (3.12)

where Apre > 0 is the starting amplitude of decay once a pre-synaptic event happens. Each

pre-synaptic spike arrival leaves a trace apre which is updated by Apre at the moment of spike

arrival and decays exponentially if there is not further pre-synaptic spiking activity. The

synaptic weight is updated by an amount of the post-synaptic trace apost that depends on the

time ∆t = tpostj − tprei .

Once a post-synaptic spike is generated:

apost → apost +Apost

w → w + apre (3.13)

where Apost > 0 is the starting amplitude of decay once a post-synaptic event happens. Each

post-synaptic spike arrival leaves a trace apost which is updated by Apost at the moment of

spike arrival and decays exponentially if there is no further post-synaptic spiking activity.

The synaptic weight is updated by an amount of the pre-synaptic trace apre that depends on

the time ∆t = tpostj − tprei .
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3.4.4 Weight Bounds

For biological reasons, keeping the synaptic weights in a pre-defined range is desirable. This

is expressed as:

wmin < wij < wmax (3.14)

where all synaptic strengths wij have essentially values between a minimum weight wmin or a

maximal weight wmax.

In our experiments, we apply minimum and maximum values for the synaptic weights as:

if wij > wmax, wij → wmax

if wij < wmin, wij → wmin (3.15)

So all weights are clipped to its minimum wmin or maximum wmax values, respectively.

3.5 Homeostatic Plasticity

Hebbian plasticity alone is insufficient to explain activity-dependent development because it

tends to destabilize the activity of neural circuits (Zenke & Gerstner, 2017). In order to main-

tain stable activity in neural circuits, additional compensatory processes are required. In the

literature (Turrigiano, 2008; Watt & Desai, 2010; Turrigiano, 2012; Zenke & Gerstner, 2017),

a diversity of homeostatic plasticity phenomenon observed in neural circuits is considered it

involves to operate this role. Hence, average neuronal activity levels are maintained by a set

of homeostatic plasticity mechanisms that dynamically refine synaptic strengths to promote

stability.

Homeostatic mechanisms stabilize neuronal activity during learning and development (Tur-

rigiano, 2012). The network must maintain its stable functionality in the face of synaptic

strength changes during neuronal development. Homeostatic plasticity mechanisms are typi-

cally interpreted as negative feedback processes, which rely on an error signal to maintain

neuronal activities around functional operating points (Turrigiano, 2012; Zenke & Gerstner,

2017). For instance, this set point is generally defined as the average post-synaptic firing rate

(Turrigiano, 2008; Watt & Desai, 2010; Turrigiano, 2012; Zenke & Gerstner, 2017).
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3.5.1 Synaptic Scaling

Synaptic scaling is proposed as one of potential mechanisms for the stabilization of neuronal

function. Neurons detect changes in their own firing rates and then regulate their own

excitability. This mechanism is synaptic activity-dependent scaling (Turrigiano, 1999) which

allows neurons to regulate their overall firing rate without touching the stability of the trained

weight distribution. So neural activities through a network can perform without either dying

out or increasing uncontrollably. A simplified version of this synaptic scaling (van Rossum

et al., 2000) is applied in our experiments as:

dwij(t)
dt

= βwij(t)[Ndes −Nact] (3.16)

where wij indicates the synaptic weight from pre-synaptic neuron i to post-synaptic neuron

j as shown in Figure 3.2; β is a constant determining the strength of the synaptic scaling

globally. Post-synaptic activity as a measure of post synaptic activity in fixed time window

from the desired neuron and actual neuron are Ndes and Nact, respectively. This mechanism

controls the spiking activity of all neurons by multiplicatively scaling synaptic strengths in

the correct direction to maintain neuronal firing rates.

However, this up or down scaling cause instability in the trained weights because homoeostatic

plasticity is active during our experiments. Therefore, a similar approach using a range of

spike numbers is used as a way to maintain the stability inspired from Turrigiano (2008).

dwij(t)
dt

=

 βwij(t)[Nmax
des −Nact], if Nact > Nmax

des ,

βwij(t)[Nmin
des −Nact], if Nact < Nmin

des ,
(3.17)

where Nmin
des and Nmax

des are minimum and maximum desired post-synaptic spike numbers,

respectively. Instead of keeping the firing rate in a precise rate, the above form keeps the

post-synaptic firing rate inside a range Nmin
des < Nact < Nmax

des by iteratively scaling weights.

If the neural activity is inside the range, the main local plasticity mechanism of STDP is

responsible for the learning. Otherwise, the scaling mechanism adjusts all of a neuron’s

synapses globally up or down to keep the activity in the specified range. This range can be
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determined as:

Nmax
des = bNdes ∗ (1 + p)e

Nmin
des = bNdes ∗ (1− p)e (3.18)

where p is the scaling range factor with 0 ≤ p ≤ 1, bNdes ∗ (1 + p)e is the nearest integer

function which returns the nearest integer to Ndes ∗ (1 + p). This factor p can be chosen as

a reasonable amount such as %20 (p=0.2). However, this set point can be different as well.

Lower values decrease the range width and increase the sensitivity of scaling, and vice versa.

Considering with one of proposed experiments in section 8.3, if the output firing rate rdes =

0.03 Hz, the scaling range rate p = 0.20, the windowing length T = 100 ms, Ndes = rdes ∗ T

= 3 spikes. Nmin
des = 2, Nmax

des = 4.

In the proposed mechanism, other parameters Nmin
des and Nmax

des are calculated based on scal-

ing range factor p. If p is relatively low, the mechanism of synaptic scaling is more active

throughout training runs. On the other hand, if p is relatively high, synaptic scaling is rarely

active. For instance, if p is high as p = 1, Nmax
des = 6 and Nmin

des = 0 in this example. If this is

selected, as long as the number of actual spike output is between 0 and 6, there is no scaling

during learning. The value of scaling range factor p is determined experimentally.

Activity-dependent scaling of synaptic weights preserves stability of the network by preventing

under- and over-activation levels from all synapses throughout training runs. This homeostatic

plasticity is controlled by an error signal that is the difference between the actual spike

numbers and the spike number of the nearest lower or upper bound. It tunes all synaptic

strengths in correct direction if it is necessary.

3.6 Dopamine Modulated Plasticity

Dopamine (DA) and functions of DA are first identified in the central nervous system (CNS)

in the late 1950s (Beninger, 1983). Dopamine is a neuromodulator in the nervous system that

regulates many functions in the CNS. The neurons of DA system are closely associated with

various motor and cognitive functions, particularly Reinforcement Learning (or reward-driven

learning), movement selection, working memory and attention (Fellous & Suri, 2003). Through

the burst stimulation of the DA neurons, the DA concentration at the DA modulated synapses

91



3.6. Dopamine Modulated Plasticity 92

Figure 3.8: Overview of reward structures in the human brain : Dopaminergic neurons are
located in the midbrain structures substantia nigra (SNc) and the ventral tegmental area
(VTA). Their axons project to the striatum (caudate nucleus, putamen and ventral striatum
including nucleus accumbens), the dorsal and ventral prefrontal cortex. Additional brain
structures influenced by reward include the supplementary motor area in the frontal lobe, the
rhinal cortex in the temporal lobe, the pallidum and subthalamic nucleus in the basal ganglia,
and a few others. Figure is taken from Arias-Carrion et al. (2010).

is affected, which adjusts the long-term potentiation or depression of the synapses (Otani et al.,

2003). Although dopaminergic neurons can be localized in the mesencephalon, diencephalon

and the olfactory bulb (Arias-Carrion & Poppel, 2007), nearly all DA cells reside in the ventral

part of the mesencephalon as illustrated in Figure 3.8.

Based on behavioural learning paradigms, animals not only change their behaviour according

to the received rewards like juice or food, but also avoid aversive stimuli like foot shocks.

Although the psychological phenomenology of behavioural learning is well developed (Rescorla

& Wagner, 1972) and many algorithmic approaches to reward learning such as Reinforcement

Learning are available (Sutton & Barto, 1998), the relation of behavioural learning to synaptic

plasticity is not fully understood (Fremaux et al., 2010). On the other hand, DA appears

to be important for learning and memory processes (Schultz, 2007) and it is studied that

the influential interpretation of subcortical Dopamine signals is reward-prediction error like

Temporal-Difference learning (Sutton & Barto, 1998) in Reinforcement Learning (Schultz,
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2007).

3.7 Summary

The mechanisms of synaptic inputs and synaptic transmission have been presented in this chap-

ter. Learning in Spiking Neural Networks is a complex process since the information is encoded

in time domain. Hence, various synaptic plasticities in SNNs have been detailed with their

brief biological backgrounds. We have initially started with Hebbian plasticity, then the struc-

ture of Spike-timing Dependent Plasticity is discussed to capture the essence of unsupervised

learning in the nervous system. Although there are various forms of Spike-timing Dependent

Plasticity, the learning method based on Additive-STDP is implemented to train the network

during experiments. Beyond STDP, homeostatic plasticity as a further process in regulating

synapses has been discussed as well. It has an important role to maintain an optimal level

of firing activity in the nervous system. The ideas are developed in the chapter 8 and chapter 9.

The next chapter outlines Reinforcement Learning from the viewpoint of Machine Learning.

Reinforcement Learning is linked with Dopamine modulation and Spike-timing Dependent

Plasticity in chapter 9.
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Reinforcement Learning

Contents
4.1 Introduction to Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Reinforcement Learning in Spiking Neurons . . . . . . . . . . . . . . 97
4.2 The Agent-Environment Interface . . . . . . . . . . . . . . . . . . . . . . . 98
4.3 The Markov Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.4 An Example Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.6 Value Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7 Bellman Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.8 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.9 Algorithms for Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 109

4.9.1 Temporal-Difference Learning . . . . . . . . . . . . . . . . . . . . . . 110
4.9.2 Eligibility Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.9.3 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.9.4 Replacement Rules for Maze Navigation . . . . . . . . . . . . . . . . 114

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL), a particular branch of Machine Learning, deals with the

problems faced by an agent that learns through trial-and-error interactions with a dynamic

environment (Kaelbling et al., 1996). In other words, without specifying how the task is to be

fulfilled, the agent can be given reward and punishment by Reinforcement Learning techniques.

A number of successful applications based on Reinforcement Learning techniques are applied

in various fields such as an elevator scheduling (Crites & Barto, 1998), channel allocation of
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cell phone network (Singh & Bertsekas, 1997) or individual chemotherapy treatment decisions

(Zhao et al., 2009). Also, the hypothetical maze task running from start to finish is used

in the past as a benchmark application for learning algorithms, particularly Reinforcement

Learning (Kaelbling et al., 1996; Sutton & Barto, 1998; Matignon et al., 2006; Vasilaki et al.,

2009; Venkata et al., 2011; Fremaux et al., 2013; Nowe & Brys, 2016).

RL algorithms are generally divided into two categories: value-function based methods and

policy search methods. Value-function-based methods approximate value function iteratively

by moving through the world (Sutton & Barto, 1998). Whereas, policy search algorithms run

an explicit policy, and perform actions taken from that policy (Sutton et al., 1999). Policy

gradient methods, a subset of policy search methods, update their policy parameters approxi-

mately proportional to the gradient using differentiable parametrized function approximators.

Those methods can select actions without consulting a value function which might still be

used to learn the policy parameter (Sutton & Barto, 1998).

Temporal-Difference (TD) learning is one of the common value-function based methods from

Reinforcement Learning approaches proposed by Sutton & Barto (1998). This algorithm

approximates the expected future cost of a Markov chain problem based on observations. For

a large-scale problem, discount factor is taken into account to help converge solutions (Sutton

& Barto, 1998). The discount factor γ quantifies the present value of future rewards against

to immediate rewards.

Reinforcement Learning problem is faced by an agent that must learn behaviour through

trial-and-error search with an environment. Reinforcement Learning has two fundamental

features: trial-and-error interactions and delayed reward. A detailed specification of any

Reinforcement Learning problem is discussed later as a Markov Decision Process (MDP) in

section 4.5. However, it can be mentioned here that the basic description of the reinforcement

problem is to achieve a goal by actions through the sensation of environmental states (Dayan

& Hinton, 1997; Sutton & Barto, 1998).

In this chapter, the maze task, a standard episodic Reinforcement Learning framework (Sutton

& Barto, 1998), is used as an example to illustrate the concept of RL. which is commonly

used (Kaelbling et al., 1996; Sutton & Barto, 1998; Matignon et al., 2006; Vasilaki et al., 2009;
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Venkata et al., 2011; Fremaux et al., 2013; Nowe & Brys, 2016). Our objective in this chapter

is to provide an overview to Reinforcement Learning at a level combined with Spiking Neural

Networks techniques to offer a more optimal way for trading off between exploration and

exploitation challenges. In this chapter, we introduce the maze task that we try to evaluate

our algorithms on during the rest of the thesis.

Section 4.2 presents an overview of the Agent-Environment Interface for Reinforcement

Learning problems. Following that, Markov Decision Process is discussed to provide the

formal basis underlying Reinforcement Learning methodologies in section 4.3. To illustrate

the theoretical features of Markov processes on a real problem, we introduce a maze task

scenario with Markov chain properties in section 4.4. In section 4.5, Markov Decision Process

Framework is defined for reinforcement problems. Then, the solution of any MDPs for RL is

proposed.

4.1.1 Reinforcement Learning in Spiking Neurons

In the physiological realm, memory is thought to be stored in the synaptic connections

between neurons (Bliss & Collingridge, 1993; Vasilaki et al., 2009). The strength of synapses

can be changed by learning. In the theoretical realm, synaptic weight values are modifiable

parameters in order to perform learning. Policy gradient methods optimize their policy

through neural parameters like synaptic weights using differentiable parametrized function

approximators such as Spiking Neural Networks.

The spiking networks used for biological models are biologically plausible; while non-spiking

networks are not intended to be biologically plausible. Also, spiking networks are able

to encode temporal information in their signals with the help of more plausible plasticity

rules, whereas non-spiking networks encode information with static input (Vasilaki et al., 2009).

Gradient descent methods are also linked to three-factor rules in Spiking Neural Networks

through reward optimization tasks (Vasilaki et al., 2009). Associative (Hebbian) plasticity

(see section 3.3) indicates association between the timing of pre- and post- neurons’ activity

called two-factor (term) learning rule (Bi & Poo, 1998). However, recent studies demonstrate

that the original associative plasticity can be regulated in various ways such as through

neuromodulators (Reynolds et al., 2001; Gu, 2002; Seol et al., 2007; Johansen et al., 2014),
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glial factors (Ben Achour & Pascual, 2010) and GABAergic inputs (Paille et al., 2013). This

is called three-factor (term) learning rule.

A very general form of three-factor learning rules is written (Vasilaki et al., 2009) as:

∆wij = gH(xj , xi) (4.1)

where wij is the synaptic efficacy between pre-synaptic neuron nj and post-synaptic neuron ni
(see Figure 3.2), ∆wij is the change in synaptic weight wij , g is a third factor modulating the

synaptic plasticity, xj , xi are the activation in the pre-synaptic neuron nj and post-synaptic

neuron ni, respectively. H is a generalized Hebbian term (see Equation 3.2), which depends

on the correlation between pre- and post-synaptic activities.

Although Reinforcement Learning provides autonomous learning systems, it has also some

challenges such as the trade-off between exploration (attempting to discover new things you

are not sure about and possibly gathering more information) and exploitation (getting the best

results based on what we currently know), and its scalability to high-dimensional continuous

state-action systems (Sutton & Barto, 1998). Therefore, in new developments, RL researchers

start to combine various algorithms with classical RL approaches in order to deal with more

complex learning system (Dayan & Hinton, 1997; Peters & Schaal, 2008). In this thesis,

we also combine RL approach with Spike-timing Dependent Plasticity (STDP) described in

section 3.4. Hence, this chapter introduces fundamentals of RL for the following algorithms

(see chapter 9) with performed experiments.

4.2 The Agent-Environment Interface

The Reinforcement Learning problem is to achieve a goal step by step by trial-and-error

interactions with agent’s environment. The goal of the agent is to maximize the total reward

it receives over time. In this paradigm, the agent can perceive its state and perform actions.

Based on each action, a numerical reward is given. Therefore, the RL agent can learn from the

consequences of its actions and it can make decisions based on its past experiences. Figure 4.1

shows the agent-environment interaction.
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Figure 4.1: The Reinforcement Learning framework. An agent (the robot with wheels on the
right bottom) interacts with an environment (maze on the left). This interaction provides
feedback about the next state, the validity of a certain action and the reward for a certain
action. The agent selects another action in the next state in order to learn more about the
environment by trial-and-error through maximizing the received reward in the long run.

Figure 4.2: The Reinforcement Learning state transition.

In the Reinforcement Learning problem, after the interaction between the agent and the

environment at each discrete time step: t= 0, 1, 2, 3, ..., the agent receives the environment’s

state information, st ∈ S, where S is the set of possible states. Formally, this environment

for Reinforcement Learning can be described as Markov Decision Process (MDP) which is

explained in later sections. Based on possible states, the agent performs an action, at ∈ A(st),

where A(st) is the set of actions for st. In the next step, as a consequence of its previous

action, the agent receives a numerical reward, rt+1 ∈ R, and it finds a next state which is st+1

as can be seen in Figure 4.2.

Here, we should mention that traditional Reinforcement Learning is also linked to a new

paradigm of simulation-based tree search, Monte Carlo tree search (MCTS) (Coulom, 2006),

because of their search and planning framework (Silver, 2009). Similar to RL, MCTS uses

the gathered information by focusing on improvements of policies. Both techniques of RL

and MCTS optimally need to determine actions and balance the exploration and exploitation

phases. However, RL techniques often guide the selection policy by updating the gained

knowledge through state transitions in Figure 4.2 (Silver, 2009; Vodopivec et al., 2017).

Unlike RL, MCTS techniques usually focus on creating strong selection policy (Coulom, 2006;
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Vodopivec et al., 2017).

4.3 The Markov Property

A Discrete Time Markov Chain (DTMC) is a set of possible environment states that fulfil

the “Markov Property” which means that future states are independent of the past given the

present state (Norris, 1997). The possible states of the chain are s1, s2, s3, s4, ..., st throughout

the state space S. The chain is finite-state if the set S is finite (S = {0, 1, ..., T}).

The present state captures all the relevant information which is included in the value of st as

the state space of the chain. In other words, any information about the process’s behaviour

before time t is irrelevant in terms of the influence on the future of the process. Therefore,

the term is also known as the “memoryless property” of a stochastic process.

Assuming that st is the state of the Markov chain after the tth transition, {st : t ≥ 0} is the

stochastic process (Markov chain). At time epochs t= 0, 1, 2, 3, ... the process changes from

one state i to another state j with the transition probability pi,j :

pi,j = P(st+1 = j|st = i) (4.2)

where pi,j is the entry in the ith row and jth column in a transition matrix that is defined below.

The Markov property asserts that the conditional probability of future states, given the

present states and information about past states, depends only on the present state. Hence,

the Markov property can be formulated as:

P(st+1 = j|st = i, s0 = i0, s1 = i1, ..., st−1 = it−1) = P(st+1 = j|st = i) (4.3)

where ik for all k = 0, 1, 2, ..., t are possible past states of the stochastic process {s0 = i0, s1 =

i1, ..., st−1 = it−1}.

In the DTMC definition formula, pi,j(t) is called the transition probability from state i to

state j on a state space at time t (Norris, 1997). Also, pi,j(a) can be called the probability of
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reaching state j from state i after performing action a. The state transition matrix of the

DTMC, Pi,j , is formed by transition probabilities pi,j from i (all possible states) and j (all

possible successor state) into a matrix (Pi,j = [pi,j ]):

Pi,j =



p0,0 p0,1 p0,2 · · ·

p1,0 p1,1 p1,2 · · ·

p2,0 p2,1 p2,2 · · ·
...

...
... . . .


(4.4)

where ∀i, j ∈ S and Pi,j ≥ 0. The transition matrix of the chain is stochastic. Pi,j is

a square matrix with the size the state space if it is countable. Each row of the transi-

tion matrix Pi,j corresponds to all possible states and sums to 1 as
∑
i∈S pi,j = 1,∀j ∈ S.

It is also possible to represent a Markov chain by a transition graph as illustrated in Figure 4.4.

4.4 An Example Markov Chain

To explain a Markov chain, we introduce here a simple grid world as our environment. The

agent’s potential movements around a maze environment can be modelled as a Markov

chain. The example space is arranged in a four-by-four array of rooms, with doorways

connecting the rooms, as shown in the Figure 4.3. It contains 13 reachable rooms (white

colour) and 3 blocked rooms (black colour) from all 16 rooms. The number of room is denoted

at lower right. This room number is also used to show the agent’s state when it is in that room.

The state of starting point is represented for s0, labelled room 1, which is also labelled with

“S” (room 1) in Figure 4.3. The agent is in the state st after making t moves from starting

state s0 (room 1). The goal state is labelled with “G” (room 16). Although the starting and

target point can be selected randomly, it is determined here as the room at the top-left for

starting state and the bottom-right for target state, respectively.

Transition probabilities through the task can be specified by the transition matrix as described

in Equation 4.4. In this example, making a Discrete Time Markov Chain model means that

we define a 13x13 Markov transition matrix because of the number of reachable rooms.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

: Goal

: Start

: Open Room

: Blocked Room

Figure 4.3: Possible states from a four-by-four maze platform. The space contains 13 reachable
rooms (white colour) from all 16 rooms. The starting room and goal room are shown with “S”
and “G”, respectively. The number of each room is labelled at the bottom-right corner of
each room in order to indicate the state in this place.

The position of our agent at each time step can be represented by st|t=0,1,2,3,.... Here, the

agent as we discussed in section 4.3 does not have any memory of rooms visited previ-

ously. Then, if we rewrite the transition probability in Equation 4.3 by renaming current

state as s and next state as successor state s′, the state transition probability can be defined as:

P [st+1|st] = P [st+1|s1, s2, ..., st]

Pss′ = P [s′|s]
(4.5)

based on the Equation 4.3.

Figure 4.4 shows a Markov chain with the initial transition probabilities and states based

on previous maze environment. In this design, each field represents one state. If a room is

reachable from other rooms, there is a room number within a circle. If there is no path from

other rooms, only the place number in the state transition diagram is shown.

In the proposed model, we enable only horizontal and vertical movements (→, ↓,←→). For
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Figure 4.4: Discrete Time Markov Chain Graphic Model based on given maze in Figure 4.3
assuming that only horizontal and vertical movements are allowed. States are depicted as
nodes, while possible actions are represented by the arrows. After removing unreachable
states, there are 11 possible states with all 16 states (4x4 maze). The state space and state
transition of the task are drawn here. Each number with a circle represents a possible state
and each number without circle show impossible states (unreachable states). There are a
maximum of 4 possible actions in each state: North, South, East and West.

instance, possible actions on some rooms can be listed as:

A(1) =→, ↓

A(2) =←,→, ↓

...

A(14) =←

A(16) = ↑

where in the form of A(r), r is the room number. For instance, at room 1 there are only two

possible actions as the directions of East (→) and South (↓).

The following matrix in Equation 4.6 illustrates the computation of the steady-state distribution

of the maze’s Markov chain. Each accessible room is considered as a separate state Markov

chain with the state space s1, s2, s3, s4, .., s16. Names for columns and rows in the equation

indicate the state number/room number from/to, respectively. Each element inside the matrix
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describes the corresponding transition probability. For instance, if the Markov chain is in

state 1, s1; it switches from the current state to one of the other possible states s2, s5, each

with probability 1/2. If it is in state 2, s2; then it switches to one of s1, s3, s6 with probability

1/3, and so on. Thus, the transition matrix is shown in Equation 4.6. The zeros in the

Equation 4.6 represent that there is not a link between states. For example, state 1 (s1)

cannot go to state 9 (s9).

P =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0

2 1/3 0 1/3 0 1/3 0 0 0 0 0 0 0 0 0 0 0

3 0 1/2 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1/3 0 0 0 0 1/3 0 0 1/3 0 0 0 0 0 0 0

6 0 1/3 0 0 1/3 0 1/3 0 0 0 0 0 0 0 0 0

7 0 0 1/4 0 0 1/4 0 1/4 0 0 1/4 0 0 0 0 0

8 0 0 0 0 0 0 1/2 0 0 0 0 1/2 0 0 0 0

9 0 0 0 0 0 0 0 1/2 0 0 0 0 1/2 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 1/2 0 0 0 0 1/2 0 0 0 0

12 0 0 0 0 0 0 0 1/3 0 0 1/3 0 0 0 0 1/3

13 0 0 0 0 0 0 0 0 1/2 0 0 0 0 1/2 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(4.6)

As a reward after each single trial, it can be given any reward value, although rewards are

typically +1 or +100 (Tesauro, 1995; Sutton & Barto, 1998; Matignon et al., 2006; Nowe &

Brys, 2016). Here our reward is chosen as 100 to demonstrate other state rewards as a percent

of target state reward which is the maximum reward. Two example episodes ending in the

goal state that produces a reward of 100 are given here:

s1 → s2 → s3 → s7 → s8 → s12 → s16

s1 → s5 → s9 → s13 → s14 → s13 → s9 → s5 → s6 → s7 → s11 → s12 → s16

4.5 Markov Decision Process

A Reinforcement Learning task that satisfies the Markov property is called a Markov Decision

Process (MDP). MDPs can be formally described as fully observable environments. The

importance of MDP is almost all RL problems can be modelled as framework of finite Markov

Decision Processs such as achieving the target inside the maze.

Based on the notation of Sutton & Barto (1998), a Markov Decision Process can be defined

by its state and action sets:
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• S is a set of finite states, ∀st ∈ S

• A is a set of finite available actions, ∀at,∀a ∈ A

Based on Equation 4.3, important dynamics of MDP are described in RL context. The

probability of each possible next state, called transition probabilities, is formulated as:

P(s′|s, a) = P r{St+1 = s′|St = s,At = a} (4.7)

where s and a is any state and action, s′ is any possible next state. Similarly, the expected

value of the next reward can be formalized:

R(s, a, s′) = E{Rt+1|St = s,At = a, St+1 = s′} (4.8)

The underlying mathematical model of the RL algorithms is the Markov Decision Process

defined above. As an empirical domain to evaluate proposed algorithms, a maze navigation

problem is commonly used. This is a well-defined and feasible platform for MDPs because

MDP can be applied to the maze task. Therefore, in this project proposed algorithms are

performed on the maze task that is shown in Figure 4.3.

4.6 Value Function

In the previous section, we define the Markov Decision Process in RL context but how should

we solve MDPs or how can we find the optimal solution for them? The use of a reward to

embody the idea of a goal is one of the most intrinsic features of RL (Sutton & Barto, 1998).

The goal for the RL task is to maximize received reward in the long run. However, how this

maximization is formulated? If we define total rewards through time, then maximizing this

sequence of rewards can be the focus aspect for the objective.

Total reward is the sum of previous rewards as:

Rt =
sequence of future rewards after step t︷ ︸︸ ︷
rt+1 + rt+2 + rt+3 + ...+ rT , (4.9)

where Rt is total reward, t is time step and T is a final step if there is a terminal state.

However, if the interaction of agent and environment does not break into sub episodes, the

final time step would be T = ∞. However, in our maze task each learning cycle ends in a
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goal room; so, T is finite.

Also, the discounting concept is important in this approach (Sutton & Barto, 1998). Best

action is chosen in order to maximize the expected discounted return:

Rt = rt+1 + γrt+2 + γ2rt+3 + ...

=
∞∑
i=0

γirt+i+1
(4.10)

where γ is a discount factor in order to determine the present value of future rewards with

0 ≤ γ < 1. rt, rt+1, ... are generated by following policy π starting at state s. Hence, the

discount factor γ quantifies how much importance it is given for future rewards against to

immediate rewards. If the discount factor is closer to zero, the agent tends to consider only

immediate rewards. If the discount factor is closer to one, the agent considers future rewards

with greater weight, willing to delay the reward.

Based on the agent’s strategy, the value of each state is the expected reward starting from

that state using the state-value function, Vπ(s), defined as:

Vπ(s) = Eπ{Rt|st = s}

= Eπ{rt + γrt+1 + γ2rt+2...|st = s}

= Eπ{
∞∑
i=0

γirt+i|st = s}

(4.11)

where π(a|s) is the probability of taking action a in state s under policy π, E{} is the

expectation operator, and Eπ{} is the expectation under policy π. Eπ is subscripted by π to

indicate that they are conditional on policy π being followed.

The action that an agent takes in any given state is called the policy or strategy,πt at step t,

which is solution for the MDP (Sutton & Barto, 1998). In other words, a policy is a mapping

from possible states to action probabilities as πt(s, a), where at = a and st = s.

Based on Markovian Property, the objective is to maximize the expected return, Eπ{Rt}, for

each step t, with an optimal policy on how the agent should achieve the goal. Similarly, the
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value of taking action a in state s under a policy π, the action-value function (Qπ(s)), can be

demonstrated (Sutton & Barto, 1998) by:

Qπ(s) = Eπ{Rt|st = s, at = a}

= Eπ{rt + γrt+1 + γ2rt+2...|st = s, at = a}

= Eπ{
∞∑
i=0

γirt+i|st = s, at = a}

(4.12)

where π(a|s) is the probability of taking action a in state s under policy π, E{} is the

expectation operator, and Eπ{} is the expectation under policy π.

4.7 Bellman Equations

The Bellman equation or dynamic programming equation is proposed by Richard Bellman

for objective functions to minimize the cost or maximize the reward of multi-stage decision

problems (Bellman, 1957; Dreyfus, 2002). In other words, the proposed equations help to

compute the state-value function Vπ for an arbitrary policy π. The Bellman equations express

a relationship between state s and its successor states s’. Therefore, the objective function is

typically keeping the evolution of decisions over time.

Rt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + γ4rt+4...

= rt + γ(rt+1 + γrt+2 + γ2rt+3 + γ3rt+4...)

= rt + γRt+1

(4.13)

where Rt is the accumulated reward at time t, T is the final step and and 0 ≤ γ < 1, is the

discount factor for future rewards.

In Equation 4.13, the reward gained with action a at time step t is rt. The rest of the re-

ward (γrt+1+γ2rt+2+γ3rt+3+γ4rt+4...) or (γRt+1) can be described using the following policy.

Therefore, if we rewrite value function from Equation 4.11, the value of a state is the expected
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return starting from that state; which depends on the agent’s policy, π:

Vπ(s) = Eπ{Rt|st = s}

= Eπ{rt+1 + γV (st+1)|st = s}

=
∑
a

π(s, a)
∑
s′

P ass′ [rass′ + γVπ(s′)]

(4.14)

where E{} is the expectation operator, and Eπ{} is the expectation under policy π, Rt is the

accumulated reward, t is time step, rt+1 current reward at time step t+ 1, γ is the discount

factor for future rewards with 0 ≤ γ < 1, st+1 current state at time step t + 1, P a
ss′

is the

state transition probability from current state s to next Markov state as its successor states

s′ with the performed action a, previously described in Equation 4.5. This function expresses

a recursive relationship between the value of a state and the value of its successor state.

4.8 Optimisation

Up to this point, we have formally introduced the Markov property and Markov Decision

Process. In addition, the solution of MDPs is also formulated with state-value and action-value

functions. However, there is always at least one or more policies that is better than, or equal,

to all the other strategies. This is called optimal policy, π∗. Therefore, this section briefly

describes the value or policy optimisation algorithms.

The efficient method for solving decision problems is the same as determining the optimal

value function for them. Therefore, the computing and learning task is to learn the optimal

policy. A policy π is defined to be better than or equal to a policy π′ if its expected return is

greater than or equal to that of for all states (Sutton & Barto, 1998) :

π ≥ π′ifVπ(s) ≥ Vπ′ (s)∀s ∈ S (4.15)

There is always at least one or more policies that is better than or equal to all the others

which is called optimal policy π∗.

π∗ = argmaxπVπ(s), ∀s ∈ S (4.16)
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Optimal policy is based on optimal state-value function:

Vπ∗(s) = maxπVπ(s), ∀s ∈ S, a ∈ A(s) (4.17)

where Vπ(s) is the state-value function described in Equation 4.11. Similarly, an optimal

action-value function is:

Qπ∗(s, a) = maxπQπ(s, a), (∀s and ∀a) (4.18)

where Qπ(s, a) is the action-state function described in Equation 4.12. Qπ∗(s, a) describes

the expected return for taking action a in state s based on an optimal policy.

4.9 Algorithms for Reinforcement Learning

Policy search is important in RL which focuses on finding efficient parameters for a given

policy parametrization (Deisenroth et al., 2011). Recent studies focus on both model-based

and model-free policy search. Model-based techniques build a model of the current task’s

structure through evaluating candidate actions (Dayan & Abbott, 2005; Rangel et al., 2008).

In contrast, model-free methods such as Temporal-Difference Learning, Q-Learning, described

in subsection 4.9.3, can learn a policy without any initial model (Sutton & Barto, 1998;

Deisenroth et al., 2011). The primary goal of model-free and model based learning is the

improvement of a behavioural policy in order to get a maximum reward. However, the

agent has to learn a model of its environment in the model-free method but the agent in the

model-based method already has a model as a useful entity. Therefore, a model-based agent

can generate virtual experiences and can plan future actions. The drawback of model-based

approaches is that acquiring a model initially increases the complexity of the problem, and

inaccurate models can impair the performance compared with the model-free RL algorithms.

Model-based learning has other challenges such as learning the model, and using it intelligently

to improve the performance. Furthermore, for our maze task, we do not have an initial model

of the environment, and any model of our task is randomly changed for each experiment.

Therefore, a model-free Reinforcement Learning approach is well fitted with our problem.

Hence, the next section focuses on model-free approaches.

109



4.9. Algorithms for Reinforcement Learning 110

4.9.1 Temporal-Difference Learning

One of the most popular ways in order to estimate the future discounted reward of states

is the method of Temporal-Difference (TD) learning in the field of Reinforcement Learning.

Hence, using first explicit presentation in the context of Markov Decision Process by Witten

(1977) TD learning is summarized in this section.

TD methods calculate an estimate of the total reward at each state formulated in the

Equation 4.14. Then, the value of state-action is updated at every step with the way

formalized as:

V (s)← V (s) + α[R(s, a, s′) + γV (s′)− V (s)] (4.19)

where α is the learning rate, γ is the discount factor, a is the action from s current state to

next state a′. This type of Temporal-Difference learning is known as TD(0).

4.9.2 Eligibility Traces

One shortcoming of TD(0) case is that at each time step the features of only the current state

are eligible to be updated. States before the current state are also affected by changes in the

current state’s features. Hence these features can also be updated. This is what happens

with a new variable called activity or eligibility trace summarized by Sutton & Barto (1998);

Wickens (2009). Here, whenever a state is visited, its eligibility becomes high and then

gradually decays until it is visited again.

Eligibility for each state s at time t is computed by:

et(s) =

 γλet−1(s) + 1 if s = st.

γλet−1(s) if s 6= st,
(4.20)

where γ is the discount factor, λ is a decay parameter called trace-decay which defines the

update weight for each past state, λ ∈ [0, 1]. Hence, all traces on each state decay by γλ. The

Temporal-Difference update for all states s is:

V (s)← V (s) + αet(s)[R(s, a, s′) + γV (s′)− V (s)] (4.21)
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This update scheme is known as TD(λ) (Sutton, 1988). For λ = 0, this is equivalent to TD(0)

learning adjusts value estimates only one step ahead as summarized earlier in section 4.9.1.

By substituting λ = 0 in Equation 4.20, eligibility for TD(0) can be formulated:

et(s) =

 1 if s = s0,

0 0 otherwise.
(4.22)

If 0 < λ < 1, the trace decreases in time. For λ = 1, this is equivalent to TD(1) learning.

4.9.3 Q-Learning

As a well-known model-free Reinforcement Learning type, Q-Learning is introduced here to

determine the policy for the maze problems. Q-Learning is a specific TD algorithm in order

to learn the Q-function used to perform an action. At each step, we need to choose an action

to maximize Q(s,a) in Equation 4.23 which tells us how good an action from the current state

to the next state is (s a=⇒ s′).

Q(s, a)← [1− α]Q(s, a) + α[R(s, a, s′) + γmax
a
Q(s′, a)] (4.23)

Following action is selected according to a← argmax
a
Q(s′, a) which is greedy. Other choices

for the action selection are possible, e.g. ε-greedy with decaying ε. Based on the chosen action,

the agent gets an immediate reward and the values of the Q utility function are updated

based on learning rate α, discount factor γ and the action taken a from state s to following

state s′. This procedure is executed recursively until the end of the decision in which the

exploration task is completed as described in Algorithm 1. At the beginning of the procedure,

entire elements of Q table for all actions at each state are reset to 0.

As an example problem, we use the maze scenario in Figure 4.5. Blue rooms indicate

the current positions/states in the maze, as,s′ corresponds to the action from s (current

state) to selected next state, s′. For instance, in Figure 4.5b, from state 1 to state 2 is

executed by the selection of action a1,2 from the two available actions: a1,2 and a1,5. Then,

it is updated as in Figure 4.5c. Blue arrows show the selected actions through the current path.
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Algorithm 1 Pseudocode of Q-Learning Algorithm
1: procedure Q-Learning(s, a, Q)
2: for s← s1, sn do
3: for a← a1, am do
4: Q′(s, a)← 0
5: end for
6: end for
7: Observe the current state, s
8: repeat
9: Select an action, a ∈ {a1, a2, a3, ..., am}

10: Execute the selected action, a through s′ ← γ(S, a)
11: Receive an immediate reward, r, r(s, a)
12: Observe a new state, s′
13: Update the Q table entry as in Equation 4.23
14: Assign the next state to the current state, s← s′

15: until ¬forever
16: end procedure

The actions that lead to the goal have a maximum determined reward for the task. Other

actions not directly connected to the target are labelled non rewarding ones. The updating of

Q function is demonstrated above through an example successful route which arrives at the

goal. The same route can be seen in Figure 5.2a.

• Choose a1,2 from available actions : a1,2, a1,5

Q(s1, a1,2) = r + γ ∗max(Q(s2, a2,1), Q(s2, a2,6), Q(s2, a2,3)) = 0

• Chose a2,3 from available actions : a2,1, a2,6, a2,3

Q(s2, a2,3) = r + γ ∗max(Q(s3, a3,2), Q(s3, a3,7)) = 0

• Choose a3,7 from available actions : a3,2, a3,7

Q(s3, a3,7) = r + γ ∗max(Q(s7, a7,3), Q(s7, a7,6), Q(s7, a7,8), Q(s7, a7,11)) = 0

• Choose a7,11 from available actions : a7,3, a7,6, a7,8, a7,11

Q(s7, a7,11) = r + γ ∗max(Q(s11, a11,7), Q(s11, a11,12)) = 0

• Choose a11,12 from available actions : a11,7, a11,12

Q(s11, a11,12) = r + γ ∗max(Q(s12, a12,8), Q(s12, a12,11), Q(s12, a12,16)) = 0

• Choose a12,16 from available actions : a12,8, a12,11, a12,16

Q(s12, a12,16) = r + γ ∗max(Q(s12, a12,8), Q(s12, a12,11), Q(s12, a12,16)) = 100
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Figure 4.5: Maze task with all possible actions and their action names with an example route
from start to target.

All steps of first episode are shown step by step in Figure 4.5. To give a simple example on

this type of learning, we describe corresponding calculation of Q-table for each action/state

transition above.
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Figure 4.5: Maze task with all possible actions and their action names (continued). Maze task
with all possible actions (red arrows) and their action names. For instance, once the action
a12 is selected at room 1, s1, to perform through a12 and a15, the new state became s2 as in
(b). In the action subscript, first element shows target state and the second is the next state.
Rooms with blue is active state in this time step. The movements of state flows from (a) to
(g). Blue arrows show selected actions.

4.9.4 Replacement Rules for Maze Navigation

A hypothetical maze task running from start to finish is used as a benchmark application.

Maze task is widely used for RL tasks (Kaelbling et al., 1996; Sutton & Barto, 1998; Matignon

et al., 2006; Vasilaki et al., 2009; Venkata et al., 2011; Fremaux et al., 2013; Nowe & Brys,

2016). Hence, we use a maze task in order to investigate fundamentals of RL and reward

mechanisms throughout practical cases. Furthermore, we test the hypothesis that if RL is

combined with another technique, the learning speed up. For this purpose, we develop an

approach to combine Q-Learning and extracted novel rules named Replacement Rules on the

maze task.

Additional knowledge about the task can improve the performance of learning in terms of

finding shortest path on mazes (Venkata et al., 2011). The approach through a short list

of Replacement Rules from Venkata et al. (2011) summarized in Table 4.1 can increase the

learning speed by eliminating some of dead-ends. This approach is extended by adding a

number of novel rules with the proposed algorithmic generation in Figure 5.3 in order to

eliminate entire dead-ends.

The shortest path through the maze environment never includes a dead-end. Therefore, every

dead-end indicates the agent takes a mistaken turn in the maze. In other words, a dead-end
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can be considered as the previous action is not optimal and needs to be modified. In this stage,

Replacement Rules is proposed based on selected wall follower algorithm (see section D.4).

For simplicity, we start with wall follower algorithm as a maze solving algorithm. Wall follower

algorithm (see section D.4), is also known as either the left-hand rule (LSR) or the right-hand

rule (RSL), is very fast and uses no extra memory. From the start of the maze, the agent or

robot always turns to the left (or right) wall side whenever the agent reaches a junction and

navigates throughout the maze until it reaches the destination point. Wall follower algorithm

is proven to be very efficient for maze environments that are wall-linked to the target point

(Mishra & Bande, 2008). However, one of disadvantages of wall follower algorithms is that

they cannot find the shortest path.

In order to achieve the best maze solution, the agent needs to traverse the maze twice in

this algorithm. In the first run as learning phase, it applies directly LSR/RSL Rule (see

subsection D.4.1 and subsection D.4.2). We record only turn directions during the first run.

As soon as first run is completed, the algorithm of Replacement Rules is applied to the stored

directions in order to find optimum path from the start to the goal. Taken the sequence of

turns from the first run phase is simplified using the Replacement Rules as they are explained

in section 5.3. Therefore, all unnecessary turns by finding the U turns made during the

previous period can be avoided and eliminated on the second run via the replacement of the

corrected ones.

Three Replacement Rules for LSR (see subsection D.4.1) are proposed from Venkata et al.

(2011) as in Table 4.1. This approach with the list of rules in Table 4.1 is named Basic

Replacement Rules for LSR (BscRepLSR) for further comparisons.

LUL ⇒ S
LUS ⇒ R
SUL ⇒ R

Table 4.1: Basic Replacement Rules for LSR (BscRepLSR): Replacement Rules from Venkata
et al. (2011).

Each sequence in Table 4.1 has at least one U turn. Anywhere the stored sequence consists

of those sequences, it is replaced with the suggested movement (on the right in Table 4.1).
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For instance, first Replacement Rule is the replacement of the sequence “LUL” with the “S”.

After this replacement, an U turn movement is eliminated from the sequence of movements,

resulting in shortened path.

4.10 Summary

Any problem that can be described as a Markov Decision Process can potentially be solved

through a Reinforcement Learning technique. RL techniques do not require explicit input

or output for training phase. Therefore, RL techniques such as Q-Learning become more

popular and effective for the set of practical problems such as path navigation. Based on two

common RL methods: Knowledge-Based RL and Q-Learning, the details of this algorithm

are illustrated throughout the chapter.

In this chapter, we also introduce the general overview of the three-factor learning rule in

Spiking Neural Networks. The regulated form of original associative plasticity by Dopamine as

the three-factor rule is summarized for the basis of synaptic plasticity and memory formation

in SNNs (see chapter 9). Also eligibility trace, a transient memory of past events, is examined

which is the fundamental component in the proposed spiking learning in chapter 9. Those

concepts in RL are extended for synaptic plasticity in Spiking Neural Networks in chapter 9.

An important goal of this chapter is to describe the computational foundations for dealing

with problems like states and actions in the context of RL mechanism. In addition, this

chapter examines a number of underlying concepts for the following chapters such as Temporal-

Difference mechanism as an attractive formulation of RL. Reward-modulated Spike-timing

Dependent Plasticity in chapter 9 as a biologically plausible learning for a network of spiking

neurons is derived from the continuous Temporal-Difference formulation.

Although the agent starts learning with limited knowledge about the domain during explo-

rations in RL tasks, we try to speed up the learning through more extracted features about

the maze task. The list of extracted rules for the current domain, maze task, is named

Replacement Rules. The methods of Replacement Rules, TD Learning with and without

eligibility trace is illustrated on the maze using wall followers and RL approaches in chapter 5.
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The improvements of Replacement Rules on TD-Learning through maze task are analysed

with the extension of current Replacement Rules.
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Chapter 5

Extension of Replacement Rules with

Reinforcement Learning for Maze

Navigation
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5.1 Introduction

One of the important objectives in autonomous mobile robotics is to find an optimum path

from a predefined start point to given destination. Several solutions for the path planning

problems are proposed based on various assumptions. In particular, to construct a mobile

robot later, we illustrate a simulated path planning algorithm using construction of a map of

an initially unknown environment based on Reinforcement Learning (RL) (Sutton & Barto,
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1998) detailed in chapter 4. The application of the methods described in chapter 4 to a maze

task is considered throughout this chapter.

In RL tasks, the agent starts learning with very limited knowledge about the domain. One

of the approaches of improving the performance of RL is the using of knowledge about the

domain. A knowledge based RL approach is developed to achieve an optimum return path

which allows a goal-oriented mobile robot to adapt to an unknown maze task. Therefore, here

we extract some properties of the domain in order to help to achieve more optimal exploration

periods. The approach in Venkata et al. (2011) summarized in Table 4.1 is extended by adding

a number of new rules as listed in subsection 4.9.4. We name this technique the Replacement

Rule. It is thought that the same rule set can also be applied into Reinforcement Learning

techniques for maze navigation such as Q-Learning. We achieve this combination with better

performance in section 5.4.

Section 5.2 presents an overview of the experimental task. Following that, the dynamic

generation of Replacement Rules is demonstrated algorithmically. Performance improvements

through various maze sizes are demonstrated by the extended list of Replacement Rules in

Figure 5.3. Then, extended list of Replacement Rules is applied into Temporal-Difference

Learning with and without eligibility traces in section 5.4.

5.2 Experimental Setup

To navigate from start to target on a maze is the experimental task detailed in section 5.2.1.

We start with one of wall follower algorithm as the left-hand rule (see section D.4). The

left-hand rule, LSR rule, states Left direction has highest priority compared to Straight and

Right directions while there are options for turns. Likewise, Straight has higher priority than

Right turn.

The performance of three different algorithms as LSR Only, LSR with Venkata et al.’s rules

and LSR with proposed rules are compared throughout four different maze sizes as 5x5, 10x10,

15x15 and 20x20 mazes. The detail of maze generation through experimental task is described

in section 5.2.2.
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5.2.1 Task Description

The task is to navigate from start (S) to goal (G) as fast as possible on gridworld. We

have two similar representations of experimental tasks. The maze task in Figure 5.1a and in

Figure 5.1b consists of 4x4 rooms as an illustration sample. In Figure 5.1a drawn by drawing

tools, black rooms are inaccessible rooms. If all four physical walls/doors for a room exist,

this room is inaccessible. This graph illustrates starting point of the agent by “S” and the

goal room as “G”. Also, the name of each room is denoted with a number at the right-bottom

corner. For the scenarios of theoretical demonstrations, we use this representation throughout

the chapter. On the other hand, for the representation of simulation results, we use the

directly captured representation from the simulation environments as in Figure 5.1b. Here,

rooms are separated by physical walls. The starting position for the agent is situated at the

top-left corner, highlighted with a blue circle. The goal room is situated at the bottom-right,

highlighted with a brown circle.

(a) Drawn graph. (b) Graph from the simulation environment.

Figure 5.1: 4x4 maze platform from drawn (a) and the simulation environment (b). (a) It
is used in order to illustrate algorithm, task details manually using drawing tools. (b) It is
prepared in the simulation environment using Python.

As an example path between start and goal is also demonstrated through the graph repre-

sentation of simulated agent in Figure 5.2a and the captured screen of simulated agent in

Figure 5.2b on the 4x4 maze task.

In the RL context, using the Markov Decision Process in Figure 4.4, it can be seen that there

are 11 possible states. The state space and state transition of 4x4 grid maze environment can

be visualized as in Figure 4.4. Each number with a circle represents a possible state and each
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(a) Drawn graph. (b) Graph from the simulation environment.

Figure 5.2: An example path from starting room to goal through (a) manually drawn and (b)
captured from the simulation environment. The initial or starting state is the top-left corner
and the goal state is the bottom-right corner.

number without circle shows impossible states. An example trial is illustrated in Figure 5.3.
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Figure 5.3: Maze platform with all possible directions and an example of possible initial
possibilities on a specific room. There are a maximum of 4 possible actions in each state:
North, South, East and West.

• Each room is called as a state s. Hence, the set of all possible states S on current task

can be formulated as:

S = {1,2,3,5,6,7,8,9,11,12,13,14,16}; s,s′ ∈ S

• The agent’s movement from one room to another is an action a. There are 4 primitive

actions, for taking steps. The set of all possible actions A can be illustrated as:

A = {←,→, ↑, ↓}; a ∈ A

• if(12 ↓ 16) means that the agent moves from state 12 to 16 by the action of ↓. The

122



5.3. Extension of Replacement Rules 123

following successor state for state 12 is state 16 so the agent gets the maximum reward

for this movement because this movement causes to achieve the goal state 16 from the

closest state 12.

5.2.2 Maze Generation

The purpose of maze generation is to provide a task, which is a challenging maze environment

in our experiments, to test the learning improvements. We generate a maze which includes a

predetermined starting point and a predetermined goal point. Then, the agent finds a route

between two particular nodes using the selected algorithm. On the other hand, if any trace

of the maze environment has a circular chain as it is illustrated in Figure 5.4 or if any cell

in this task has no eligible actions, it means that a deadlock state can occur there because

there is no outgoing transition. Fortunately, we do not focus on deadlock scenarios during our

experiments. Therefore, we do not use any maze tasks with dead ends.

Figure 5.4: An example for deadlock state scenario.

In order to generate a maze task, there are a number of algorithms such as Depth-first search,

Recursive backtracker, Randomized Kruskal’s algorithm (Even, 2011). However, as an initial

implementation, we use here a Recursive algorithm which is illustrated in Figure D.9. Details

of the algorithm are described in section D.3.

5.3 Extension of Replacement Rules

Three Replacement Rules summarized in Table 4.1 from Venkata et al. (2011) is named Basic

Replacement Rules for LSR (BscRepLSR) in section 4.9.4. BscRepLSR works fine in small
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mazes. However, it cannot find the optimum path in bigger mazes. Therefore, we extend the

list of Replacement Rules in order to find the best path even in bigger mazes. In addition

to the extended list of rules, algorithmic approach is proposed in order to get more rules on

different maze environments have different dynamics.

For the notation, initial letters are used as a symbol where L - Left turn, R - Right turn, S -

Straight, U - U turn. At the end of the first run, the algorithm focuses on the U turns and

selecting two more turns which are before and after turns than selected U turn.

Main approach to generate a set of rules is discussed through an example rule. For instance,

one of the Replacement Rules scenario can be the replacement of “LUR” because it has at

least one U turn in the sequence. Anywhere the stored sequence consists of “LUR”, it is

replaced with U turn (U) as demonstrated in Figure 5.5. After this replacement, the algorithm

seeks next U turns in the memorized turn sequence and finally it runs until the path does not

have any U turn.

U

U
L

R

Figure 5.5: Replacement Rule LUR to U. L stands for left turn, U stands for U turn, and R
stands for right turn.

Entire proposed list of novel Replacement Rules is summarized in Table 5.1 for LSR (see

subsection D.4.1) to find the most optimum path. Extended version of BscRepLSR for LSR

is named Extended Replacement Rules for LSR (ExtRepLSR). Initial exploration is executed

by applying LSR rule to catch those rules listed in Table 5.1.

The right-hand rule, RSL rule, is similar to LSR, the only difference lies in the wall being

followed. The RSL rule (see section D.4) states Right direction has highest priority compared

to Straight and Left directions while there are options for turns. Likewise, Straight has higher

priority than Left turn. The same replacement procedure for LSR rule can be executed

through RSL, Right-Straight-Left exploration in order to extend rule list. This new list of
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RUL ⇒ U
LUR ⇒ U*
SUS ⇒ U
RUS ⇒ L
SUR ⇒ L
RUR ⇒ S

Table 5.1: Extended Replacement Rules for LSR (ExtRepLSR): Replacement Rules from
proposed list through LSR.

Replacement Rules is summarized in Table 5.2 for RSL similar to LSR rules. Inspiring from

the BscRepLSR for LSR, this rule for RSL is named Extended Replacement Rules for RSL

(ExtRepRSL). The applied algorithm for initial explorations just helps to have different

variations of movement sequences. Therefore, proposed rules are not dependent the algorithm

is applied during explorations. The combined version of Extended Replacement Rules for

LSR in Table 5.1 and Extended Replacement Rules for RSL in Table 5.2 can be used as an

extracted list for Replacement Rules.

RUR ⇒ S
RUS ⇒ L
SUR ⇒ L
RUS ⇒ U
RUL ⇒ U
SUR ⇒ L
SUS ⇒ U
LUR ⇒ U

Table 5.2: Extended Replacement Rules for RSL (ExtRepRSL): Replacement Rules from
proposed list through RSL.

For instance, as initial joint movements based on LSR rule: [’L’, ’L’, ’U’, ’S’, ’L’, ’U’, ’S’, ’L’,

’S’, ’L’, ’L’, ’L’, ’L’, ’U’, ’L’, ’L’, ’U’, ’S’, ’L’, ’U’, ’S’] as can be seen in Figure 5.6a.

Then, the sequence of replaced movements: [’L’, ’R’, ’R’, ’L’, ’S’, ’L’, ’L’, ’L’, ’S’, ’R’, ’R’] can

be seen in Figure 5.6b.

Another example, Figure 5.7a illustrates the end of the first run and Figure 5.7b demonstrates

the end of the second run. The improvements between the two can be seen clearly. Initial

phase from start to end based on LSR rule states Left direction has highest priority and then
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(a) First Run. (b) Second Run.

Figure 5.6: First and second run screenshots (Experiment 3). Red circles represent more
than one time visited rooms, green circles illustrate only one time visited rooms, blue circle
demonstrates current visited room and finally brown circle shows the target point.

Straight, Right respectively (see subsection D.4.1). At the end of the first run, we replace

movements with dead ends into without dead-end sequences in order to shorten the path

from start to target. This rule can be executed until there are no further dead ends in the

performed sequence.

(a) First Run. (b) Second Run.

Figure 5.7: First and second run screenshots (Experiment 1). Red circles represent more than
one time visited rooms (named revisited rooms), green circles illustrate only one time visited
rooms, blue circle demonstrates current visited room and finally brown circle shows the target
point.

The same scenario happens in another example as can be seen in Figure 5.8a and Figure 5.8a.

Pseudocode of the way how Replacement Rules applied is demonstrated in Algorithm 2.
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Algorithm 2 Pseudocode of Applying Replacement Rules
procedure replacement(self)

replaced← ’ ’
self.temp← self.historyForDirections
i← 1
repeat

if self.historyForDirectionsReplaced[i] is ′U ′ then
if self.temp[i− 1] is ′l′ and self.temp[i+ 1] is ′l′ then

replaced←′ s′
else if self.temp[i− 1] is ′l′ and self.temp[i+ 1] is ′s′ then

replaced←′ r′
else if self.temp[i− 1] is ′s′ and self.temp[i+ 1] is ′l′ then

replaced←′ r′
end if

end if
if replaced isnot ’ ’ then

Pop last three items of self.historyForDirectionsReplaced
Insert replaced direction to current list
i← i

else
i← i+ 1

end if
until ¬Scanned all directions in the array

end procedure

5.3.1 Algorithmic Generation of Replacement Rules

Algorithm 3 generates a list of rules dynamically. The algorithm can be applied real time or

at the end of full path until finding target. Maze positions are identified by (x, y) coordinates.

A y coordinate corresponds to a row index of maze rooms and an x coordinate corresponds to

a column. Also, we assume that left-top corner is with the coordinate of (0,0).

In Algorithm 3, variables of d0, d1, d2 symbolize consecutive three directions from the entire

direction list d at intersection points and dead ends. xb0, x
b
1, x

b
2 and yb0, y

b
1, y

b
2 are x and y

coordinates before the directions d0, d1, d2. xa0, xa1, xa2 and ya0 , ya1 , ya2 are x and y coordinates

after the directions d0, d1, d2. (xbprev0 , ybprev0 ) is the pair of coordinates a movement before the

last directional movement d0 (coordinates just before the coordinate of (xb0, yb0)). Remember

that the coordinate at just before the d0 is (xb0, yb0). (xbprev0 , ybprev0 ) is previous place than

(xb0, yb0). The reason to store those coordinates is to determine actual direction once we shorten

the path (see line 29).
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Algorithm 3 Pseudocode of Algorithmic Generation for Replacement Rules
1: procedure UpdateStoringVariables
2: Store d . All direction information at intersection points and dead ends
3: Store x, y . Coordinate information before and after intersection points and dead ends
4: end procedure
5:
6: procedure GenerateReplacementRule(d, x, y)
7: d0, d1, d2 . Consecutive 3 directions information from d
8: xbprev0 , ybprev0 . Previous coordinates than the coordinate of (xb0, yb0)
9: xb0, x

b
1, x

b
2 . x coordinates before the directions of d0, d1, d2

10: yb0, y
b
1, y

b
2 . y coordinates before the directions of d0, d1, d2

11: xa0, x
a
1, x

a
2 . x coordinates after the directions of d0, d1, d2

12: ya0 , y
a
1 , y

a
2 . y coordinates after the directions of d0, d1, d2

13: if ((d1 ==′ U ′) and (d2! = None)) then
14: if (xb0 == xb1) then . change on y direction
15: if ((yb0 − yb1) == (yb1 − yb2)) then
16: Call the procedure of ExtractTheRule in line 26
17: end if
18: else if (yb0 == yb1) then . change on x direction
19: if ((xb0 − xb1) == (xb1 − xb2)) then
20: Call the procedure of ExtractTheRule in line 26
21: end if
22: end if
23: end if
24: end procedure
25:
26: procedure ExtractTheRule(x, y)
27: . Extract the replacement rule from the route to shortened one
28: (xbprev0 , ybprev0 )→ (xb0, yb0)→ (xa2, ya2) =⇒
29: (xbprev0 , ybprev0 )→ (xb0, yb0)→ (xa2, ya2)
30: end procedure
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(a) First Run. (b) Second Run.

Figure 5.8: First and second run screenshots (Experiment 2). Red circles represent more than
one time visited rooms (named revisited rooms), green circles illustrate only one time visited
rooms, blue circle demonstrates current visited room and finally brown circle shows the target
point.

Generation of Replacement Rules is active if there are at least three consecutive directions

means that none of d0, d1, d2 is empty and the middle direction is U turn at dead end. Re-

member that if there is a more than one option for directions, d is selected/updated.

In line 14 and line 18, we use xb1 = xa1 and yb1 = ya1 , respectively, because of U turns at d1.

ExtractTheRule procedure can shorten and generate all possible listed rules.

5.3.2 Comparison to Older Replacement Rules

Four different maze sizes as 5x5, 10x10, 15x15 and 20x20 mazes are chosen in order to prove

the algorithm efficiencies. There are three algorithms: LSR Only, LSR with Venkata et al.’s

rules from Table 4.1 (BscRepLSR), and LSR with proposed rules from the combination of

Table 5.1 and Table 5.2 (ExtRepLSR). Some of abbreviations used in figures are:

Nu : Number of uniquely visited rooms,

Nt : Number of places visited,

Ne : Number of steps during at least double or more times visited rooms.

Selected four different maze sizes are 5x5 mazes in Figure 5.9, 10x10 mazes in Figure 5.10,

15x15 mazes in Figure 5.11, 20x20 mazes in Figure 5.12. Each figures are averaged of 10

different randomly generated mazes. Error bars with the standard deviation (SD) and height
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 VisitedUniqueCellNum    ReVisitedUniqueCellNum  OnlyOnceVisitedCellNum  ReVisitStepNum          TotalStepNum            ReVisitPercent (%)     
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Figure 5.9: The performance of Replacement Rules through LSR rule exploration by 05x05
mazes. The legend of “Alg0” with green colour is for Basic Replacement Rules for LSR
(BscRepLSR). The legend of “Alg1” with red colour is for Extended Replacement Rules for
LSR (ExtRepLSR). See text for a detailed explanation of the figure and the notation used.
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Figure 5.10: The performance of Replacement Rules through LSR rule exploration by 10x10
mazes. The legend of “Alg0” with green colour is for Basic Replacement Rules for LSR
(BscRepLSR). The legend of “Alg1” with red colour is for Extended Replacement Rules for
LSR (ExtRepLSR). See text for a detailed explanation of the figure and the notation used.

labels on individual bars are also illustrated. Blue bars show the results from LSR algorithm.

It is named “Only LSR” in the figure legend. Green bars show the results after applying

Venkata et al.’s Replacement Rules summarized in Table 4.1 (BscRepLSR). It is named “Alg0”

in the figure legend. Red bars show the results from applying our proposed Replacement

Rules (ExtRepLSR). This is named “Alg1” in the figure legend.
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Figure 5.11: The performance of Replacement Rules through LSR rule exploration by 15x15
mazes. The legend of “Alg0” with green colour is for Basic Replacement Rules for LSR
(BscRepLSR). The legend of “Alg1” with red colour is for Extended Replacement Rules for
LSR (ExtRepLSR). See text for a detailed explanation of the figure and the notation used.
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Figure 5.12: The performance of Replacement Rules through LSR rule exploration by 20x20
mazes. The legend of “Alg0” with green colour is for Basic Replacement Rules for LSR
(BscRepLSR). The legend of “Alg1” with red colour is for Extended Replacement Rules for
LSR (ExtRepLSR). See text for a detailed explanation of the figure and the notation used.

In each figures, six different parameters are demonstrated as :

the number of visited cells uniquely → VisitedUniqueCellNum,

the number of re-visited cells uniquely → ReVisitedUniqueCellNum,

the number of only once visited cells → OnlyOnceVisitedCellNum,

the number of re-visit steps → ReVisitStepNum,

the number of total steps → TotalStepNum,
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the percent of re-visit steps → ReVisitPercent.

The difference between performance improvements can be seen more clearly once the size of

maze increased. For instance, 5x5 mazes in Figure 5.9, BscRepLSR and ExtRepLSR have

the same performance for all parameters. However, once the maze size is increased as in

Figure 5.10, the difference between those two set of rules can be seen better. BscRepLSR

become better than LSR algorithm clearly but it still cannot solve mazes without revisits

unlike ExtRepLSR. The improvements become much more clear in 15x15 mazes in Figure 5.11

and 20x20 mazes in Figure 5.12. Moreover, revisit percent is quite reasonable indicator in

order to show the performance of applied algorithms. Revisit percent in BscRepLSR once the

size of maze increased also increases. However, this is always minimum in ExtRepLSR not

only on small mazes also in bigger mazes.

Table 5.3 is filled based on experiment results in order to demonstrate and justify the

performance of proposed rules. The performance improvement especially by looking bigger

mazes can be analysed by looking into the number of steps during at least double or more

times visited rooms, Ne. It becomes smaller once knowledge based rules are applied; in

addition, it is minimum with our proposed rule list.

Algorithm → LSR LSR with LSR with
Only Venkata et al.’s rules Proposed rules
(LSR) (BscRepLSR) (ExtRepLSR)

Maze Sizes ↓ Nu Nt Ne Nu Nt Ne Nu Nt Ne

05x05 17.7 21.2 3.5 14.2 14.2 0.0 14.2 14.2 0.0
10x10 65.6 85.4 19.8 57.4 69.0 11.6 45.8 45.8 0.0
15x15 142.1 188.4 46.3 125.8 155.8 30.0 95.8 95.8 0.0
20x20 245.2 342.2 97.0 219.0 289.8 70.8 148.2 148.2 0.0

Table 5.3: Efficiency comparison of Replacement Rules through four different groups of maze
sizes.

To sum up, we extend the list of Replacement Rules in order to find the best path even in

bigger mazes. Furthermore, algorithmic approach is proposed in order to get more rules

on different maze environments which have different dynamics. Comparisons through four

different maze sizes show that the performance of learning with the proposed set of rules is

132



5.4. Replacement Rules with Temporal-Difference Learning 133

not decreased once the size of mazes increased unlike Venkata et al.’s Replacement Rules. On

the other hand, extracted properties of the domain can also be used with RL algorithms in

order to help to speed up the exploration phase. Therefore, the same rule set is applied into

the exploration phase of Q-Learning in the following section.

5.4 Replacement Rules with Temporal-Difference Learning

5.4.1 Applying to Temporal-Difference Learning

Here we combine Replacement Rules with the RL technique, Q-Learning, for the maze task.

The agent initially explores the environment by Q-Learning instead of the wall follower

algorithms in section 5.3. Here, Q-Learning is implemented with the greedy policy that next

action is selected according to a← argmax
a
Q(s′, a) described in section 4.9.3. After achieving

the target point, the agent explores the task again until the pre-determined termination

episode. Therefore, this section gives initial indications about performance improvements

before fully combine Replacement Rules with Q-Learning in section 5.4.2.

In Figure 5.13, all Replacement Rules which are extracted from LSR and RSL (ExtRepLSR

and ExtRepRSL) are applied along with Q-Learning. Here, the number of exploration stages

are determined as 5, the agent explores the task using Q-Learning through 5 random walks. In

the final session (5th), Replacement Rules are applied. If we apply the Replacement Rules at

the second stage (similar to ExtRepLSR and ExtRepRSL), we cannot benefit from Q-Learning

updates because in the first run only one neighbouring cell is updated, and the second run only

two neighbouring cells are updated. This issue can be improved by taking into account TD(λ).

This case is also analysed in section 5.4.2; however, here main focus is the improvement affect

of Replacement Rules through Temporal-Difference Learning.

On the other hand, the reason to select 4 is the shortest distance between source and target

rooms has 5 rooms. However, as seen in Figure 5.13c, although it does not branch any dead-

ends, it cannot find the shortest path. This might be related with the number of Q-Learning

sessions executed before Replacement Rules are applied. We expect to achieve the shortest

path, if we apply Replacement Rules after more than 5 episodes. Also, the task in Figure 5.13

cannot be solved with wall follower algorithms, if the target is selected in deadlock areas.

However, this is not the case in Q-Learning explorations.
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(a) At the start of exploration. (b) 5th episode with only Q-Learning.

(c) 5th episode with Q-Learning and Re-
placement Rules

Figure 5.13: Replacement Rules with Q-Learning. Red circles represent more than one time
visited rooms, green circles illustrate only one time visited rooms, blue circle demonstrates
current room and finally brown circle shows the target point (a). (b) This is captured from 5th
episode applied only Q-Learning. (c) This is captured from 5th episode applied Q-Learning
and Replacement Rules. First 4 episodes are performed with Q-Learning and the final episode
is executed with Replacement Rules by tuning the experience taken from first 4 episodes with
Q-Learning.

5.4.2 Comparison of Proposed Algorithms

The TD(0) technique does not take into account past states. The only affected states in TD(0)

are the current state st and the following state st+1. To speed up of the learning convergence,

gained information at t+ 1 can also be extended to past states. This objective is implemented

with a short-term memory mechanism to show the degree to which it has been visited in the
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recent past activities.

The agent starts out knowing nothing; the Q table is initialized to zero. Each episode, is

equivalent to one training session, consists of the agent moving from the starting state to

the target state. Each time the agent arrives at the goal state, the program goes to the

following episode. The actions that lead immediately to the goal have an instant reward of

100. Other actions not directly connected to the target have -1 reward. The parameters used

in Q-learning and Replacement based Q-Learning experiments are the same: γ = 0.9 the

exploitation/exploration rate, α = 0.1 learning rate, λ = 0.9 the discount factor. There is

an additional parameter of eligibility decay τ = 0.7 for the case of eligibility trace. Perfor-

mances are averaged over 10 randomly generated 5x5 maze environments through 100 episodes.
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Figure 5.14: The comparison of revisit rates. The performance of four algorithms described in
the text. See text for a detailed explanation of the figure and the notation used.

Figure 5.14 and Figure 5.15 compare the performance of four different cases in terms of revisit

rates and total discounted rewards, respectively. Greedy original: Q-Learning or in other

words TD(0). Greedy original refers that next action is selected according to the state-action

with the maximum Q-value from available state-action pairs described in section 4.9.3. Greedy

with traces: the the version of greedy original by adding eligibility trace. Greedy original with

replacement: We apply proposed list of Replacement Rules (BscRepLSR and BscRepRSL) into

greedy original. Greedy with traces with replacement: We apply proposed list of Replacement

Rules (BscRepLSR and BscRepRSL) into greedy with traces. All of listed methods are proven

to converge illustrated in Figure 5.14. Although the agent in each algorithm begins with
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Figure 5.15: The comparison of total taken discounted reward. See text for a detailed
explanation of the figure and the notation used.

intense exploration to find a route towards the goal, eligibility traces help to speed learning

compared to non-eligibilities.

Figure 5.15 demonstrates total discounted reward during each episode for each cases. As

expected from Figure 5.14, better convergence cases get better reward collection. Although

the case of greedy with traces with replacement starts from minimum reward total, it becomes

maximum after roughly 15 episodes.

5.5 Summary

In this chapter, the performance of TD learning for the maze task is successfully improved

by producing new set of extraction rules. We introduce a set of novel Replacement Rules

as ExtRepLSR and ExtRepRSL in section 5.3 for maze environments with a remarkable

performance compared to LSR rule or RSL rule itself, also to previously offered set of rules

from Venkata et al. (2011) (BscRepLSR). The set of extracted rules is also applied with

TD(0) and TD(λ) techniques. We demonstrate that Replacement Rules of ExtRepLSR and

ExtRepRSL have important improvements on both techniques as well. Although Replacement

Rules are combined with TD-Learning here, it can also be extendible to any maze solving

algorithm or maze navigation problems in order to enhance the learning speed using proposed

algorithmic generation in section 5.3.1.
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The simulation platform for a maze task is initially developed for wall follower algorithms (LSR

and RSL) and Q-Learning algorithm. Then those algorithms are combined with previously

offered list of rules (Venkata et al., 2011) BscRepLSR and currently proposed Replacement

Rules (ExtRepLSR and ExtRepRSL) to get better learning performance in section 5.3. This

provides a conceptual simulation framework for further path navigation models. Also, we

experimentally investigate the underlying mechanism of eligibility traces and TD learning

used later on.

In the thesis, we aim to apply Reinforcement Learning techniques into Spiking Neural

Networks. Therefore, one of motivation for exploring implementation challenges of RL

components throughout the experiments in this chapter is to prepare for learning algorithms

using RL components in following chapters. The work in this chapter gives an overview and

experimental stage about RL side. For instance, the performance advantage of eligibility

traces is examined by combining basic Temporal-Difference learning with eligibility traces.

Also, the mechanism of discounted reward with different policy types is used here. To sum

up, the conceptual mechanisms of Reinforcement Learning side through experimental tasks in

this chapter will be the basis for further experiments use the modulation of the reward for

synaptic strengths detailed in chapter 9.
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6.1 Introduction

Previous generations of Neural Networks use analogue signals to carry information between

neurons. However, Spiking Neural Networks (SNNs) use spikes similar to biological neurons.

SNNs are often referred to as the third generation of Neural Networks, which have potential
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to handle complex tasks with the accurate modelling of natural computing in the brain (Bohte

et al., 2002b, a). Therefore, SNNs are biologically plausible (Bohte et al., 2002b; Gruning &

Sporea, 2012; Kasabov, 2012) and offer some basis to represent time, frequency, phase and

other features of the information being processed.

After introducing the elements of Neural Networks, this chapter describes common topolo-

gies of Neural Networks in section 6.2. One of the most common network structures is the

feed-forward topology, which is discussed in detail in subsection 6.2.1. Then, the structure

of actor-critic networks is summarized in subsection 6.2.2. Also, more complex structures

than the feed-forward topology, i.e. recurrent networks, are described in subsection 6.2.3. The

details of spike generation is discussed in section 6.3. Initially, we introduce the description and

notation for spike trains in subsection 6.3.1. Then, we introduce Poisson process, especially

Homogeneous Poisson process, in subsection 6.3.3.

One of the fundamental topics of neuroinformatics is to analyse the way neurons encode

information through spike trains. So various information encoding schemes such as rate

coding in subsection 6.4.1, population coding in subsection 6.4.2, and temporal coding in

subsection 6.4.3 are reviewed in section 6.4. We also need to measure the performance of

Spiking Neural Networks through generated spike trains. There are various metrics in order to

measure the (dis)similarity between spike trains such as Victor & Purpura Distance described

in subsection 6.5.1, Coincidence Factor described in subsection 6.5.2, Schreiber Distance

described in subsection 6.5.3 and van Rossum Distance (vRD) described in subsection 6.5.4.

6.2 Spiking Neural Network Topologies

Two or more neurons can be combined in a layer and a particular network can contain one

or more such layers. One of the most commonly used Neural Network structures can be

considered with three layers of neurons as input layer, computational layer and output layer

as illustrated in Figure 6.1. Each layer consists of one or more nodes which represents the

neurons shown in the diagram by the circles. Spiking neurons in a Neural Network can

be structured in various different ways in terms of neuron connectivity. Broadly, there are

two main categories: feed-forward structure where signals flow in single direction only and

recurrent networks where neural signals flow in both directions.
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6.2.1 Feed-forward Architectures

Networks without backward connections are called Feed-forward Networks (FNNs) because

of the clear direction in signal propagation. In this type of Neural Network, the information

flows only forwards from input to output (Kriesel, 2014). There is not any feedback signal

from output to input or hidden layers. From one node to the next, arrows indicate the flow of

information over the network in Figure 6.1 .

More generally, a Feed-forward Network structure consists of one input layer, n hidden com-

putational layers and finally one output layer. A typical example of a Feed-forward Network

mechanism with a single hidden layer is illustrated in Figure 6.1. Neurons in the input layer

collect stimuli from the actual world similar to the sensory neurons in humans which are

responsible for converting external stimuli from the environment into corresponding internal

stimuli. The computational layer is called the hidden layer. Finally, the output layer prepares

the response of the network similar to the motor neurons in humans. The output of the entire

network itself is just the output from the designated output neurons.

Input
Layer

Hidden
Layer Output

Layer

Figure 6.1: Illustration of a typical feed-forward SNN structure. Input layer neurons (three
neurons-red circled) are fully connected to neurons in the hidden layer (six neurons). Hidden
layer (drawn gray) neurons process the receiving neural signals to propagate neurons in the
output layer (two neurons). Each node/neuron is modelled as a spiking neuron in SNNs as
described in section 2.4.

141



6.2. Spiking Neural Network Topologies 142

6.2.2 Actor-Critic Networks

An actor-critic architecture is an instantiation of the Temporal-Difference (TD) learning

algorithm (detailed in section 4.9.1) (Witten, 1977; Sutton & Barto, 1998). It contains two

different units: actor and critic. Current synaptic weights cause actions through the output

neuron similar to the actor unit. The critique is a TD error between the actual and desired

spike patterns. The scalar signal derived from those two signals as the output of the critic

module drives all learning. This parameter determines the reward in order to modulate

synaptic plasticity.

ENVIRONMENT

CRITIC

ACTOR

TD
error

AGENT

s

r

a

Figure 6.2: Illustration of a typical actor-critic architecture. Once an action a is performed
from the selection of actor unit, a new state is entered. The new state information s is
transmitted actor and critic units. Also the reward r associated with the new state is
transmitted to the critic unit. The critic module generates an error signal (TD error) based
on the disparity between new state and expected state. Figure is adapted from Sutton &
Barto (1998). See text for a detailed explanation of the figure and the notation used.

The two main units of this architecture are called actor and critic in Figure 6.2. The actor

selects an action a based on the policy in each state s. As a result of the performed action, a

new state is entered. The environment informs the critic and the actor units about the current

state s. Also, the current reward information r is transmitted to the critic unit associated

with the state. The critic unit calculates an error signal, TD error, based on the evaluation of

the new state’s consequences are better/worse than expected.

Actor-critic networks for hippocampal place cells using population coding (see section 6.4.2

for population coding) are discussed in Senn & Pfister (2014). Similar to the non-spiking
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actor-critic architecture, the form of actor-critic architecture in Spiking Neural Networks is

demonstrated in Figure 7.4 inspired from Potjans et al. (2009); Fremaux et al. (2013). The

details of proposed structure using actor-critic architecture is extended in section 7.5.

6.2.3 Recurrent Networks

Recurrent Neural Networks (RNNs) are more complex structures of NNs compared with

feed-forward topologies. In addition to forward signal propagation to subsequent layers, they

have also recurrent connections which are feedback channels from the following layer(s) to the

previous layer(s) or connections between neurons of the same layer. Various other types of NN

architectures can be reviewed by (Lipton et al., 2015; Mulder et al., 2015; Diehl et al., 2016).

Input
Layer

Hidden
Layer Output

Layer

Figure 6.3: Illustration of a recurrent SNN structure. There is not any restrictions in terms of
flow directions unlike feed-forward mechanisms. For instance, there are 2 recurrent connections
from output layer to hidden layer. There could be more recurrent connections like feeding back
the activity of the hidden-neurons to themselves in order to serve as a memory of previous
spiking activities. Each node/neuron is modelled as a spiking neuron in SNNs as described in
section 2.4. The figure is drawn by the inspiration of Lipton et al. (2015).

6.3 Spike Generation

This section describes spike train notation and generation of artificial spike trains for input

neurons and output neurons. Input spike patterns are applied to input neurons. Output ones

are generated by output neurons in SNN.
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6.3.1 Spike Train

The activity of neuron j, nj , is described by a sequence of discrete events at which the neuron

emits a spike,

tj = {t(f1)
j , t

(f2)
j , t

(f3)
j , ..., t

(fNj)
j } (6.1)

where all t(fn)
j > 0, t(fn)

j < t
(f(n+1))
j , Nj for neuron j is the total number of spikes and tfnj is

the time of the nth spike of neuron j. This representation of a spike sequence is referred to

as a spike train. They are impulses that can be written as a sum of Dirac Delta form (see

section A.1),

Sj(t) =
Nj∑
n=1

δ(t− t(fn)
j ) (6.2)

Based on the independence of spike train generation, the spike train can be described using a

particular kind of random process. This process is often described as a Poisson process to

reproduce the presented experiments (Gerstner et al., 1996; Kempter et al., 1999; Song et al.,

2000; Gutig et al., 2003).

6.3.2 Poisson Processes

Assuming that the timing of successive action potentials depends only on an underlying

continuous driving signal, r(t) as the instantaneous firing rate. Therefore, the generation of

spikes is independent from all the others and this is called the independent spike hypothesis.

The spike train can be described as a particular kind of random process called a Poisson

process with two types: the homogeneous and inhomogeneous Poisson process. We use

homogeneous Poisson processes detailed in 6.3.3.

6.3.3 Homogeneous Poisson Processes

In our experiments, the generation of sets of spike trains for inputs/outputs is controlled by

the distribution of Poisson process. The homogeneous Poisson process, the average neural

firing rate r(spikes/sec) is assumed as a constant, defined as:

r(T ) = r = Nsp/T (6.3)
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where Nsp is the total number of spikes that occur within the full time length of T . Although

r(T ) varies over time in an inhomogeneous Poisson processes, it is not used here. Assuming a

long time interval (0, T ) and picking a sub interval (t1, t2) of length ∆t = t2 − t1, the density

or probability of having k spikes during the time interval ∆t can be derived from the binomial

formula (Dayan & Abbott, 2005) as:

P{N(∆t) = n} = e−r∆t
(r∆t)n

n! (k ≥ 0). (6.4)

where N(∆t) is the number of spikes in a finite time interval of length ∆t, r is the mean firing

rate as the average number of spikes per second in a given spike train. This formula is called

the Poisson probability density function.

6.4 Neural Coding

One of the fundamental questions in neurophysiology is how neurons encode information

between sensory inputs and motor actions through their spike trains. Neural coding is a trans-

formation from physical space to neural space. Although neural information can be encoded in

diverse ways, there are three main encoding schemes in SNNs: rate coding, population coding,

and temporal coding. In rate coding, the number of spikes within an encoding window is

considered regardless of their temporal pattern, while for temporal coding the precise timings

of spikes are considered to describe a stimulus (Panzeri et al., 2010). In population coding, the

information is encoded in the activity of neuron populations. From a biological perspective,

precise spike timing of individual spikes is common for neuronal information processing (Bohte,

2004; Thorpe et al., 2001).

In our discussion of neural coding, s refers to sensory stimuli and r refers to neural activity.

The mapping of sensory information into spike trains is a stochastic transformation from s to

r. This is the job of the brain. This section briefly reviews each of the aforementioned coding

schemes.

6.4.1 Rate Coding

Rate-based coding models use either counts of the total number of spikes as neuronal firing

rate or measures of the Inter-spike Interval (ISI). The idea is established in experiments

145



6.4. Neural Coding 146

performed by Adrian (1926) where the firing rate of neurons in the muscle depends on the

applied force. This mechanism is improved by further physiological observations that neurons

tend to fire more for stronger stimuli (Gawne et al., 1996). It does not need precise timing of

each spike to convey information. Rate encoding is also called frequency encoding and can

been used to interpret the outputs of Spiking Neural Networks.

Assume that the firing rate of a neuron r represents a stimulus value s:

r = f(s) (6.5)

where r and s are constant over a short time ∆. The function f is known as the tuning curve

with some common forms of Gaussian, Cosine, Wrapped Gaussian and circular Gaussian.

The number of spikes N produced within the time interval ∆ is around r∆ according to the

Poisson distribution described in section 6.3.

6.4.2 Population Coding

In population coding, information is conveyed by the distributed and coordinated activity of

different pools of neurons treated as populations. So the information accuracy is determined

not only by the individual firing activities, but also by the correlations between neurons

(Pouget et al., 2000; Trappenberg, 2010).

Neural responses are denoted as a vector r which describes the numbers of spikes of the

different neurons. Encoding of the task as a relationship between the stimulus and the response

of neuron populations is expressed by the conditional probability distribution:

p(r|s) = p(rs1, rs2, rs3, ...|s) (6.6)

where s is a certain stimulus and rs1, rs2, rs3, ... stand for the stimulus-specific response in the

population (Trappenberg, 2010). Therefore, the statistical dependency between population

activities and neurons’ stimuli is related with statistical parameter estimation which is in the

field of information theory.
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6.4.3 Temporal Coding

Experimental studies show that neural systems use the precise time of individual spiking

activities, and not just their firing rates, to encode information. Evidence for the importance

of the first spike timing is observed in the human visual system (Thorpe et al., 1996). As an

idealization of temporal coding, the timing of the first spike after the reference signal contains

the entire information about the incoming signal in this scheme named time-to-first-spike

coding. Temporal coding models use the timing of the individual spikes to convey information.

Additionally, recent studies demonstrate that the temporal coding paradigm offers significant

computational benefits compared with the rate coding (Kempter et al., 1999).

Spatio-temporal spike sequences as a form of temporal encoding are localized in space and

in time (see Figure 6.4). The spatial characteristics of the input stimuli would depend on

the organization and order of input neurons. Temporal properties are conveyed through the

group of spike times for each individual input neuron.

 Temporal 
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Figure 6.4: A typical spatiotemporal spike pattern. A group of neurons transfers the encoded
information. Each neuron’s spike train in time (vertical lines) represents the temporal
dimension of information. All spike trains from the neuron group (horizontal) represent spatial
dimension.

According to the number of spikes, temporal coding schemes can be divided into two forms:

single-spike and multi-spike learning (spike sequence learning). Spike coding which takes

into account only a single-spike can be classified under single-spike schemes such as time-to-

first-spike coding (Thorpe, 1990). This coding scheme assumes the major portion of neural
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information in biology is carried with the first spikes; therefore, neurons perform with only

one spike per neuron in this scheme. This reduction technique considering the time to the first

spike ignores the spatial extent of the neurons. However, the encoding scheme with multiple

spikes take into account all precise spike timings (Legenstein et al., 2005; Pfister et al., 2006;

Ponulak, 2008; Ponulak & Kasinski, 2010).

A range of spike codings for learning systems using SNNs are important, not just time-to-

first-spike, so the ability to learn multiple spike sequences is relevant for a range of real-world

applications described in Esser et al. (2013) using an advanced SNN neuromorphic platform of

IBM TrueNorth. Despite the capability of single-spike coding compared to rate coding, it limits

the diversity and capacity of the transmitted information through SNNs. However, multi-

spike coding can carry more variation of information. Hence, it can significantly extend the

richness of the information representation in SNNs (Ponulak & Kasinski, 2010). Furthermore,

multi-spike coding is more biologically realistic compared to single-spike coding (Xu et al.,

2013). However, the difficulty of learning in multi-spike coding is increased computationally

compared to single-spike coding due to the interference of the local learning processes (Ponulak

& Kasinski, 2010).

6.4.4 Summary

This section outlines different neuronal coding schemes used to represent sensory information.

Although there is growing evidence that the brain uses all these encoding types or the combi-

nation of them, precise timing of spikes allows neurons to carry more information than random

spike timings with the paradigm of rate-coding schemes. Therefore, temporal synchrony

might play an important role in neural computation especially with the importance of fast

information processing. For the optimal efficiency of information computation, temporal

synchrony paradigm is used throughout chapter 8 and chapter 9 using a simple Poisson process

for generating input and output spike patterns.

In order to transform information from the actual world into spike trains during our simulations,

the temporal synchrony paradigm is implemented using a simple Poisson process for generating

input and output spike patterns. Because of previously mentioned reasons as biological

plausibility, the diversity and capacity of information transmission, we focus on encoding
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inputs and outputs using multi-spike coding rather than single-spike coding through our

experiments. In the following section, we describe different metrics for spike train differences.

6.5 Measures of Spike Train Difference and Spike Train Synchrony

Measuring the level of synchrony between two or more spike trains are important for many

tasks in order to measure the deviation between actual and desired outputs during learning, or

to measure the performance of the proposed method. Let S1 and S2 be two spike trains, each

of them consists of a sequence of spike times using Equation 6.1 and Equation 6.2 as follows:

S1(t) =
∑N1
n=1 δ(t− t

(fn)
1 )

S2(t) =
∑N2
n=1 δ(t− t

(fn)
2 )

(6.7)

where t(fn)
1 and t(fn)

2 denote the time of the nth spike in the spike train of indicated neuron 1

and 2, respectively. N1 and N2 are he total number of spikes in S1 and S2, respectively.

There is no unique way to measure the dissimilarity between S1 and S2. Therefore, several

different approaches for the performance statistics are considered below.

6.5.1 Victor & Purpura Distance (VP)

The Victor & Purpura Distance metric DV P introduced in (Victor & Purpura, 1996, 1997)

defines the dissimilarity between two spike trains as the minimum cost of transforming one

spike train into the other. The transformation combines three operations: a) spike insertion,

b) spike deletion, and c) spike shifting in time. The cost of both deleting and inserting a spike

is fixed to 1, whereas the cost of shifting a spike in time qδt is proportional to the distance

moved δt where δt =
∣∣t1 − t2∣∣, t1 and t2 are time in actual spike train S1 and reference spike

train S2, respectively. The cost of the distance is determined by the parameter q, the cost

per distance of moving a spike. For instance, if q increases, the metric becomes increasingly

sensitive to spike time. Also the distance between two spike trains with N1 and N2 spikes is

no greater than N1 +N2.

If and only if the spike trains S1 and S2 are identical, the distance metric DV P = 0.
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The distance calculation can be done as:

Gi,j =


cinj, if j = 0

cini, if i = 0

min{Gi−1,j−1 + q |t2i − S1j | , Gi−1,j + cin, Gi,j−1 + cin} if i > 0 and j > 0

(6.8)

where cin is the spike insertion/removal cost, Gi,j is the distance between the truncated spike

trains formed by the first i spikes of S1 and the first j spikes of S2. Three possibilities inside

the case of i > 0 and j > 0 corresponding to (a), (b) and (c) described above. GN1,N2 yields

DV P (S1, S2)q as the minimum cost of a transformation from S1 to S2.

6.5.2 Coincidence Factor (CF)

The Coincidence Factor (CF) as described by Kistler et al. (1997) between two spike trains

determines the rate of similarity/dissimilarity between spike trains. The bound limits of this

correlation measure are [-1, 1] where 1 is exactly the same, 0 is not correlated, and -1 is

perfectly anti-correlated. The Coincidence Factor Γ is formulated as:

Γ = Ncoinc − E (Ncoinc)
1
2 (Ndes +Nact)− E (Ncoinc)

(6.9)

where Ndes are the number of spikes in the desired train as a reference, Nact is the number of

spikes in the actual output as a comparing train, Ncoinc is the number of coincident spikes

within a time window ∆, E (Ncoinc) = 2rout∆Nref is the expected number of coincident spikes

generated by a homogeneous Poisson process with its rate rout.

6.5.3 Schreiber Distance (ScD)

This correlation-based measure is first proposed by Haas & White (2002), and detailed by

Schreiber et al. (2003). The two point processes S1 and S2 are convolved with a kernel

filter, resulting in time series S′1(t) and S′2(t). Then the pairwise correlation between them is

formulated:

SS =
∫
t S
′
1(t)S′2(t)dt√∫

t S
′2
1 (t)

√∫
t S
′2
2 (t)

(6.10)

The kernel filter can be an exponential or Gaussian kernel with the fixed width τS which

defines the time scale of interaction between the two spike trains. If spike trains are identical,

SS = 1.
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6.5.4 van Rossum Distance (vRD)

One of the important metrics in order to compute dissimilarity between spike trains is the

van Rossum Distance (vRD) method which is a dimensionless distance (van Rossum, 2001).

It takes into account additional and missing spikes. The distance measure maps the two spike

trains as an actual spike train with Sa and a desired spike train Sd onto a profile Sa, Sd → R(t)

with 0 ≤ R(t) ≤ 1. The overall spike distance value can be calculated by integration as

DR =
∫
R(t)dt.

In this spike distance, the discrete spike trains Sa and Sd (see Equation 6.2) are transformed

into a continuous function:

f(t) = e−t/τRH(t) (6.11)

where τR is the time decay constant and f(t) is the convolution of each spike ti with an

exponential kernel with the Heaviside step function as H(t) (described in section A.4) using a

discrete convolution as:

(f ∗ S)(t) =
∑

s:0≤t−s<TR
f(s)S(t− s), 0 < t < TR (6.12)

where TR is the duration of spike trains. Then the van Rossum Distance DR between Sa and

Sd can be calculated as:

DR(Sa, Sd) =
∑

0≤t<TR

(
(f ∗ Sa)(t)− (f ∗ Sd)(t)

)2
(6.13)

where τR is the time decay constant and DR is the overall value of van Rossum Distance

between two spike trains of Sa and Sd.

6.5.5 Discussion

It is not a straightforward task to compare spike trains, particularly for stochastic spike trains

where there is variability. Relying on counting the spike number within a spike train is the

most basic approach to calculate the similarity or dissimilarity of spike trains. However, the

temporal structure of spike trains is ignored here such as the Coincidence Factor described

in subsection 6.5.2. Schreiber Distance as a correlation-based measure described in subsec-

tion 6.5.3 uses Gaussian filter. In Victor & Purpura Distance, described in subsection 6.5.1,
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unlike van Rossum Distance, it is difficult to determine which spike is missed or extra activity

if the number of spikes in the desired and actual spike trains is unequal (van Rossum, 2001).

Moreover, in Schreiber Distance and Victor & Purpura Distance, required computation time

grows more than linearly with the number of spikes. However, this is not the case in van

Rossum Distance described in subsection 6.5.4 (Rusu & Florian, 2014). Therefore, van Rossum

Distance is used throughout the experiments it takes into account the temporal encoding and

computational efficiency.

6.6 Summary

This chapter describes common topologies of Neural Networks in Spiking Neural Networks:

the Feed-forward Network topology, actor-critic structure, and Recurrent Neural Network.

Then, we describe artificial spike generation based on Poisson process with the spike notation

used throughout the thesis. Also, we discuss the encoding mechanisms: rate coding, tem-

poral coding and population coding. Finally, in order to measure difference between spike

trains, spike distance metrics are discussed: Victor & Purpura Distance, Coincidence Factor,

Schreiber Distance, and van Rossum Distance.

In our further experiments, actor-critic architecture is used as it is detailed in section 7.5.

Furthermore, the advantages of temporal over rate-based schemes are discussed in section 6.4.4.

Therefore, we use spatio-temporal encoding mechanism for our experiments detailed in

section 7.6. Temporal code schemes use multiple input and output spikes for all tasks in order

to realise the maximum potential of proposed learning mechanisms. From distance metrics

discussed in section 6.5, we use Coincidence Factor and especially van Rossum Distance

through the following chapters.
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7.1 Introduction

This chapter describes the common mechanisms and techniques during experiment setups

used in chapter 8 and chapter 9. The types of neuron models used in proposed SNNs under

the noiseless conditions are summarized in section 7.2. In addition to training under noiseless

conditions, the scenario in which noise is present is also considered in the experiments detailed

in section 7.3. Then the mechanism of multiple delay connections between input and output

neurons is described in section 7.4. Followingly, the network architectures of spiking neurons

for obtaining spatio-temporal experiments during training and testing are illustrated in general.

In section 7.6, the implementation of the spike-generator-based Poisson process described

earlier in section 6.3.2 and section 6.3 is explained. Also, temporal encoding mechanism as a

neural coding is detailed here. Then, the adoption of van Rossum Distance (vRD) in order to

measure spike-train similarity and a (mis)classification error metric in order to evaluate task

performance of the network are detailed in section 7.7. Also, the pseudocodes of training and

testing mechanisms throughout the experiments in chapter 8 and chapter 9 are described in

section 7.8. Finally, benchmarks used during experiments are introduced in section 7.9.

7.2 Neuron Models

Although there are several kinds of spiking neuron models such as Leaky-Integrate-and-Fire,

Hodgkin-Huxley model, Spike Response Model, and Izhikevich model described in section 2.5,

the Leaky-Integrate-and-Fire model is used for the sake of simplicity. We use two sets of

parameters for the LIF neurons.

The first set of LIF neuron parameters summarized in Table 2.4 are used here. These types

of neurons are used for active readout nodes responsible for the learning of network. This

learning neuron is driven by synaptic currents generated by its synaptic afferents. Similar to

the summation of all incoming currents described in Equation 2.20, the membrane voltage Vj
is a weighted sum of Post-synaptic Potentials (PSPs) of all incoming spikes as:
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∆Vj(t) =
∑
i

K∑
k

∑
f

wij,kκ(t− tfi − dij,k) + Vrest (7.1)

where ∆Vj is the total additional affect from all afferent neurons to the LIF neuron j (see

subsection 2.5.4), wkij is the synaptic efficacy (weight) of terminal k between neuron i, ni, and

neuron j, nj . The f th firing time of the ith afferent neuron is denoted by tfi . dij,k is the delay

associated with synaptic terminal k between ni and nj . The function κ(t) describes the form

of post-synaptic response with κ(t) = 0 for t < 0. For κ(t), we use the Dirac Delta function

δ described in section A.1 in order to define PSPs. Vrest is the rest potential of the neuron.

Each afferent spike causes a change in the Post-synaptic Potential. The amplitude of the PSP

is modulated by the synaptic efficacy wij . At each time step along with the simulation time,

these PSP values are added to form a membrane potential at the output neuron. Once this

sum exceeds a predefined threshold potential Vth, the output neuron emits a spike.

In addition, another parameter set of LIF neurons transfers the input from pre-synaptic to

post-synaptic spikes. They are named dummy LIF neurons. Whenever those neurons have

any incoming spikes, they directly emit output spikes without integration. This is achieved by

increasing Vm by Vth − Vreset when a spike is received.

In the following experiments, the output layer of proposed networks has at least one active

readout neuron which actively learns the desired spike pattern. On the other hand, dummy

LIF neurons are used in the input layer. There is also a passive readout neuron which mimics

the desired output spike train without any learning. If there is any different setup, it is

described in the overall setup of the network.

7.3 Noise

Dealing with noise in the applications of Spiking Neural Networks is an important challenge

(Destexhe et al., 2003). The reliability of the neural responses can be significantly impacted

in the face of noise interference. However, experimental observations show that the effects

of noise can be handled to produce accurate and reliable activities in the central nervous

system (Shmiel et al., 2005; Tiesinga et al., 2008). Therefore, in addition to the training under
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the noiseless conditions, the scenario in which noise is present is also investigated in order

to verify the reliability and the robustness of the plasticity mechanisms throughout further

experiments in chapter 8 and chapter 9.

Adding diffusive current noise into the deterministic LIF neuron in Equation 2.17, the mem-

brane potential of a LIF neuron with external noise current evolves according to the following

equation:

Inoisy(t) = Idet(t)− µ+ σξ(t) (7.2)

where ξ(t) is the Gaussian white noise process with mean µ and strength 2σ. Idet(t) is the

current supplied by the synapses from the deterministic model in Equation 2.17, Inoisy(t) is

the noise injected version. This process with constant input µ is also known as the Ornstein-

Uhlenbeck process (Risken, 1989).
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Figure 7.1: The characteristics of the low noise and how it affects neuronal activity: For σ =
1.0, the standard deviation of the membrane potential across 1000 time steps is 0.604 mV. In
the top graph, the fluctuations of the membrane potential under the presence of relatively low
noise is measured during 100 ms, with the time resolution dt = 0.1 ms. In the bottom graph,
the histogram of the measured membrane potentials across 1000 time steps is illustrated.
Neuron dynamics are summarized in Table 2.4.

The noise is included as additive term in synaptic input current. Two different levels of the

standard deviation (SD) of Inoisy are used as relatively high and low noise through experiments

in chapter 8 and chapter 9. The mean value of noisy current Inoisy described in Equation 7.2
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Figure 7.2: The characteristics of the high noise and how it affects neuronal activity: For
σ = 5.0, the standard deviation of the membrane potential across 1000 time steps is 2.408
mV. In the top graph, the fluctuations of the membrane potential under the presence of
relatively high noise is measured during 100 ms, with the time resolution dt = 0.1 ms. In the
bottom graph, the histogram of the measured membrane potentials across 1000 time steps is
illustrated. Neuron dynamics are summarized in Table 2.4.

is assumed zero as µ = 0. In the case of σ = 1.0 and σ = 5.0 are assumed as relatively low

noise with SD = 0.604 mV and relatively high noise with SD = 2.408 mV for the performance

comparisons of plasticity under different noise levels, respectively. The characteristics of the

low and high noise and how they affects neuronal activity are shown in Figure 7.1 and in

Figure 7.2, respectively. The values of the membrane decay time constant, resistance and

capacitance are τm = 10 ms, Rm = 1 MΩ and Cm = 10 nF, respectively detailed in Table 2.4

and subsection 2.5.4. Selected noise levels are quite realistic according to in-vivo recordings

(Destexhe et al., 2003).

To sum up, in order to inject noise to the deterministic LIF model, Ornstein-Uhlenbeck process

is used based on Equation 7.2 throughout further experiments. The Ornstein-Uhlenbeck

process that is often used to model a LIF neuron with a stochastic current. The noise is

included as additive term in synaptic input current during further experiments. Two different

noise levels are considered to compare performance of plasticities.

157



7.4. Delay Mechanisms 158

7.4 Delay Mechanisms

In a biological system, a post-synaptic neuron is affected from a pre-synaptic element of the

synapse by the incorporation of different synaptic delays in addition to different synaptic

weights (Natschlager & Ruf, 1998; Bohte et al., 2002a; Booij & Nguyen, 2005). The presence

of synaptic delays reflects the time take for the Post-synaptic Potential to propagate from the

dendrites to the soma, the release of neurotransmitters and the molecules of neurotransmit-

ters to diffuse across the synaptic clefts (Sabatini & Regehr, 1999). This delay depends on

the length of axon and dendrites and the conduction velocity of the action potential. The

conduction delays in the axons can dominate the overall delay in some cases in neural circuit

(Natschlager & Ruf, 1998; Sabatini & Regehr, 1999; Bohte et al., 2002a; Booij & Nguyen, 2005).

A synaptic connection in a Spiking Neural Network can have a single delay or multiples

between the arrival of an input spike and the other end of the synaptic terminal (Natschlager

& Ruf, 1998; Sabatini & Regehr, 1999; Bohte et al., 2002a; Booij & Nguyen, 2005). Also,

each axonal propagation between the pre-synaptic neurons and post-synaptic neurons can

be constant or plastic (Natschlager & Ruf, 1998; Bohte et al., 2002a) inspired by biological

synapses. Those structures for synaptic delays are considered in the proposed architecture for

Spiking Neural Networks.

For the multi-synaptic structure in the proposed topology, each individual connection from a

pre-synaptic neuron i to a post-synaptic neuron j has a fixed number of K synaptic terminals,

Nsub = K with K > 1, where each terminal serves as a sub-connection that is associated with

a delay dij,k inspired from Bohte et al. (2002a). For the single-synaptic structure, there is

only a single synaptic connection with K = 1.

In the proposed network architectures, dij,k with k ∈ [1,K] indicates the sub-terminal where

i is the pre-synaptic neuron index, and k is the sub-terminal index as illustrated in Figure 7.3.

The number of synapses to a learning neuron is equal to the number of input layer neurons

Nin = M times the number of synaptic terminals Nsub = K through selected connection

topologies.

For the plastic delays in the proposed architecture, the synaptic travelling time between two

158



7.4. Delay Mechanisms 159

i,j,2

d i,j,1

d

i,j,K

d

i,j,
Kd

i,j,
K-
1

d

neuron i=1

neuron i=N

neuron j

Figure 7.3: Proposed delay mechanism. K is the total number of sub-connections between
each input (blue filled circles) and output neuron (pink filled circle), N is the total number of
input layer neurons. i:index for input neurons with 1 ≤ i ≤ N , j:index for output neuron,
k:index for sub-connection with 1 ≤ k ≤ K. Delays with non-negative values are dij,k ∈ R+.

neurons with the specified synapse is defined by:

∆tij = t− tfi − dij,k (7.3)

where t is the current time, tfi is the firing time of pre-synaptic neuron i, and dij,k is the

delay value of synaptic terminal k. Each synaptic terminal k has a delay dij,k. The plas-

ticity mechanism of the axonal propagation delay is extended in section 8.9 using Equation 7.3.

Synaptic connections and delays are considered in three different ways throughout further

experiments: First structure as multiple synaptic connections with constant axonal propaga-

tion speed is referred to as multi-constant-delay. The architecture of multi-constant-delay has

predetermined constant delay values (dij,K with K > 1). Another used structure as multiple

synaptic connections with plastic axonal propagations is referred to multi-plastic-delay. The

multi-plastic-delay has varied values of delays during learning (dij,K with K > 1). Final used

mechanism as a single synaptic connection without axonal delay is referred to single-connection.

The single-connection has no delay (dij,K = 0 ms with K = 1).

The single-connection is used to compare the performance of plasticity mechanism in chapter 9

with the multi-constant-delay. On the other hand, the mechanism of the multi-constant-delay
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is compared with the multi-plastic-delay architecture in section 8.7 and section 8.10.

7.5 Network Architectures

In this section, we describe the architecture of spiking neurons for obtaining spatio-temporal

experiments. A fully connected two layered feed-forward Spiking Neural Network architecture

without hidden layer is used in experiments. The network structure is inspired by the actor-

critic architecture detailed in section 6.2.2 illustrated in Figure 7.6. All input neurons are

connected to the learning neuron in the output layer. Bias neuron detailed in section 7.5.3 is

only connected to the desired neuron in the output layer in order to generate desired spiking

activities Sd(t).

Table 7.1 gives the common structural parameters for the experiments in section 8.7 and

section 8.10. The proposed structure for the SNN contains Nin = M = 10 neurons in the

input layer (see Table 7.1). Each neuron in the input layer is fed with a different spike train

pattern, Sin1 (t), Sin2 (t), ..., SinM (t), driven by external Poisson spike trains which are outlined

in section 7.6. In the output layer, there are two neurons, Nout = 2, one is generating the

actual output patterns Souta (t). The other neuron produces desired spiking activities Soutd (t).

Parameter Type Parameter Names Values
The number of input layer neurons Nin = M 20

The number of synaptic terminals (sub-connections) Nsub = K 10
The number of output layer neurons Nout = O 2

Table 7.1: Parameters of the network architecture for mapping and logical operation bench-
marks.

7.5.1 Training

For training structures, we use two different structures illustrated in Figure 7.5 used in

Remote Supervised Method and Delayed Remote Supervised Method; and Figure 7.6 used in

Reward-modulated Spike-timing Dependent Plasticity.
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Figure 7.4: Illustration of an actor-critic network architecture. In this architecture, the synaptic
strengths w are adapted with the effects of the pre-synaptic activity, the post-synaptic activity,
and the reward signal r received in response to the action.

In Figure 7.5, all input neurons are connected to all output neurons according to a many-

to-many projection layout. However, in Figure 7.6, all input neurons are connected to only

learning output neuron. In both figures, the output neuron designated as desired output Sd(t)

is not responsible for active learning. It just mimics the bias neuron’s behaviour. However,

the actual neuron Sa(t) is responsible for active learning in the SNN. The bias neuron is only

connected to the desired output neuron to generate Sd(t) according to a one-to-one connection

scheme.

161



7.5. Network Architectures 162

5S ( )t
in

4S ( )t
in

3S ( )t
in

2S ( )t
in

1S ( )t
in

1S ( )t
out

w*

dS ( )t
out

aS ( )t
out

w
as
td
p

w,

wstdpw,

M-1
S ( )t

in

M
S ( )t

in

Figure 7.5: Proposed network architecture for ReSuMe training of Spiking Neural Network. All
afferent neurons in input layer (grey circles) and bias neuron (blue circle) are dummy neurons.
Active output LIF neuron (green shell circle), which generates actual output Sa(t), is connected
to all input neurons (grey circles) with weights (ŵ) equipped with anti-Hebbian-STDP (green
lines). All afferent neurons are also connected to desired output neuron (red shell circle) with
Hebbian-STDP dynamics (red lines). Bias neuron (red circle) is connected to passive LIF
comparator neuron with fixed weight (w∗) in order to generate desired spike train Sd(t). The
role of bias neuron is detailed in section 7.5.3. See text for a detailed explanation of the figure
and the notation used.

7.5.2 Testing

Testing the structure is illustrated in Figure 7.7, the overall structure from training does not

changed apart from the bias connection and the connections between input layers to desired

output. During testing, there is no any active learning; any part related with learning is

removed from the network architecture. Desired neuron is kept only to monitor the perfor-

mance of the network during testing cycles. It is not involved in any kind of weight/delay

modifications or updates.

7.5.3 Bias Neuron

The mechanism of bias neuron is introduced for different network topologies in Figure 7.5,

Figure 7.6, Figure 7.7, Figure 8.2, and Figure 8.3. The bias neuron is only connected to the
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Figure 7.6: The network architecture during training for Reinforcement Learning in Spiking
Neural Network. All afferent neurons in input layer and bias neuron (blue circle) are dummy
neurons. Active output LIF neuron (red shell circle), which generates actual output Sa(t),
is connected to all input neurons (grey circles) with weights ŵ equipped with STDP. Bias
neuron (blue circle) is connected to passive LIF comparator neuron with fixed weight (w∗) in
order to generate desired spike train Sd(t). The role of bias neuron is detailed in section 7.5.3.
See text for a detailed explanation of the figure and notation used.

desired neuron with fixed weight in the output layer of the network in order to generate desired

spiking activities Sd(t) illustrated in above listed figures. This mechanism is introduced as a

solution for two issues: Firstly, it helps to introduce a new topology detailed in section 8.4 in

order to handle the heterosynaptic plasticity mechanism for Remote Supervised Method and

Delayed Remote Supervised Method. Bias neuron is a part of the proposed network topology

in section 8.4 which is the alternative interpretation of synaptic remote supervision.

Another issue is to avoid the shifted version of desired patterns in the output layer. If we

remove the synaptic connection between the bias input neuron and the desired output neuron

by replacing it with a direct connection from bias input to output neuron, the desired output

spiking activities are not generated precisely by the network during training cycles. In the

direct connection scenario (without the bias neuron), the simulation delay once the actual

output neuron receives incoming spikes is less than the simulation delay once the desired
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Figure 7.7: The network architecture during testing for all proposed learning techniques in
Spiking Neural Network. All afferent neurons in input layer (grey circles) and bias neuron
(blue circle) are dummy neurons. The role of bias neuron is detailed in section 7.5.3. Learning
output LIF neuron (green shell circle), which generates actual output Sa(t), is connected to
all input neurons (grey circles) with trained weights ˆwTRN loaded from training cycles. Bias
neuron (blue circle) is connected to passive LIF neuron with fixed weight (w∗) in order to
measure the performance of each learning cycle. See text for a detailed explanation of the
figure and the notation used.

output neuron receives incoming spikes from the bias neuron. This delay difference causes a

shifting of desired activities at the output with the direct connection. Therefore, there is a

fixed synaptic connection between the bias input and the desired output neurons.

7.6 Neural Coding

7.6.1 Spike Generation

In order to design a spike generator to provide inputs for computer simulations, the Inter-spike

Interval (ISI) from a Poisson process are generated. The term of Inter-spike Interval refers to

the time interval between two successive spikes within a spike train. For instance, the average

time interval between two spikes is 100 ms as ISI for a neuron firing at 10 spikes/sec. The

program through each time step of size dt (typically set to 1 ms) generates a random number
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xrand chosen uniformly in the range between 0 and 1.

rδ(t) =

 > xrand, spike is fired,

≤ xrand, it is not fired.
(7.4)

The Poisson model ignores the existence of a refractory period of neuron dynamics. However,

it is not a problem during our experiments because of min-ISI considerations. After adding

min-ISI, although it is not strictly Poisson any more, min-ISI mimics the refractory period in

terms of biological plausibility. Spike trains generated using this mechanism feed our input

neurons through our experiments in chapter 8 and chapter 9. The following section describes

how those generated sets represent external information.

7.6.2 Encoding

We use spatio-temporal encoding for our experiments in chapter 8 and in chapter 9. The

details of the used encoding mechanism is introduced here. Pattern selection (or stimulus)

determines the number of blocks for the network. The total of N different blocks to the input

can represent a maximum number of 2N classes of patterns. For example, assume that we

would like to implement a binary logical operation task which has 2 inputs with single digit

each. Two features are sufficient for a group of patterns containing 4 classes “00”, “01”, “10”,

“11”. The spatio-temporal mapping block acts as a converter function which translates the

input features (binary strings in this case) into spike timings within the encoding window.

In the example, the stimulus with binary values (“0” or “1”) are converted into a set of

temporal patterns of discrete spikes. The encoding time window is determined as hundreds of

milliseconds to be consistent with biological observations (Joris et al., 2004; DiCarlo et al.,

2012; Salvioni et al., 2013). As a result, each input variable is represented by a group of

neurons through the input layer.

The encoding part aims to generate corresponding spiking patterns that represent the input

selections. Each input representation (can be single pattern as in mapping experiments or can

be logical values true or false as in logic operation experiments) is converted into corresponding

spatio-temporal patterns in order to feed the input layer of the SNN. We use the homogeneous

Poisson spike generator discussed previously in section 6.3. Encoding generates a set of
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specific activity patterns that represent attributes of external stimuli. A temporal coding

scheme which uses the timing of the individual spikes to carry the information is detailed in

subsection 6.4.3. Spatio-temporal encoding which is a type of temporal encoding is used here

(see subsection 6.4.3).

The number of input patterns per experiment is one for the mapping benchmarks (detailed

in section 7.9), the same as the number of output patterns. Therefore, the spatio-temporal

mapping unit generates a single group of spike trains for the input layer. This pattern is

an Nin-dimensional spike train and each spike train in the pattern refers to firing activities

in the input layer. Each element of the pattern is connected to only one encoding neuron.

Similarly, the number of input patterns per experiment is two for the two-bit logical operation

benchmarks with a single output pattern.

Through ReSuMe experiments in section 8.3, DelReSuMe experiments in section 8.9 and

R-STDP experiments in section 9.5, a spike train Sin(t) for input neurons consists of a

homogeneous Poisson spike train with constant spike probability rin = 0.4 Hz for mapping

and rin = 0.8 Hz for logical operations with the minimum Inter-Spike Interval ISI = 10 ms

(see Table 7.2). In this manner, each input neuron emits multiple spikes with firing rate rin.

Sin(t) is partitioned into M subgroups of equal length, to give spike trains Sin1 (t), Sin2 (t), ...,

SinM (t) . M indicates the number of neurons in the input layer (see Figure 7.5). The duration

of each spike train is Tp = 100 ms (see Table 7.2). Each extracted spike train Sin1 (t), Sin2 (t),

..., SinM (t) from Sin(t) feeds each neuron in the input layer over each episode.

Parameter Type Parameter Names Values(Mapping) Values(LogicalOp)
Input Firing Rate rin 0.40 Hz 0.80 Hz
Output Firing Rate rout 0.03 Hz 0.03 Hz
Spike Train Length Tp 100 ms 100 ms

Minimum Inter-Spike Interval ISI 10 ms 10 ms

Table 7.2: Encoding parameters for mapping and logical operation benchmarks based on
ReSuMe, DelReSuMe and R-STDP.

For the output neuron, a spike train Soutd (t) consists of a homogeneous Poisson spike train

with constant spike probability rout = 0.03 Hz and minimum Inter-Spike Interval ISI = 10

ms (see Table 7.2). In this manner, each output neuron emits multiple spikes with firing rate
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rout. The extraction applied to the input layer does not need to be applied to Soutd (t) because

the network contains a single training output neuron as its readout. The only restriction for

the output spike extraction is no spiking activity in the first 2 ∗ τm = 20 ms of the period,

Tp = 100 ms. Generated output spike activities are assigned into one of two binary classes as

either 0 or 1 in each time bin.

Figure 7.8: Prepared spike trains for the output.

In Figure 7.8 and the Figure 7.9, we can see a schematic of input and output spike trains,

respectively. Every vertical line represents a spike train before separation. A spike train for

a single presentation has a time duration of Tp = 100ms. Hence, during the experiments

of logical operations, we generate 10 trains for input and each with a total duration of

Tp ∗NP = 100ms ∗ 10 = 1000ms.

Similar to encoding mechanism under ReSuMe and DelReSuMe experiments, spatio-temporal

encoding as a type of temporal encoding scheme which uses the timing of the individual spikes

to carry the information is used for R-STDP experiments in chapter 9 as well.

Selected Poisson spike probability for both inputs and outputs allows neurons to fire multiple

times within the encoding window (see Figure 7.8 and Figure 7.9). This is a more realistic

approach in terms of biologically plausibility. In other words, information transmitted from

pre-synaptic neurons to post-synaptic neurons is encoded in the form of a spike train instead

of a single-spike as described in section 6.4.
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Figure 7.9: Prepared spike trains for the input. y-axis shows the spike train index. From 1 to
10 indexes with red lines belong to bank P1. From 10 to 20 indexes with green lines belong to
bank P2. The total spike train time is divided into the duration of Tp to feed each neuron in
the input layer during each presentation time Tpe.

7.7 Error Analysis

7.7.1 Measures of Spike Train Difference

The decay constant τR parametrizes the metric and should be selected in order to be sensitive

to temporal difference between spikes. Otherwise it is sensitive to any rate relationship of

spike trains. Taking into account the ISI of input and desired output trains, we use τR = 10

ms, in Table 8.1.

In order to remove the dependence of the van Rossum Distance on the number of desired

spikes, we use a normalized version of the measure DR which is calculated as:

Dnorm
R = DR/D

d
R (7.5)

where normalized vRD, current vRD and vRD of desired spike train, are respectively, Dnorm
R ,

DR and Dd
R. The measure is illustrated in Figure 7.10.
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Figure 7.10: Illustration of van Rossum Distance measure. A) Two example spike trains
illustrated. In the top graph, the first spike train (shown as green coloured with the spike train
index j) is desired spike activity and the following train (shown as blue coloured with spike
train index i) is the actual spikes over a period. B) Definition of the van Rossum Distance:
Above two spike trains (actual train flipped) are convolved with Heaviside function with time
constant τc. C) The van Rossum Distance is measured by the squared difference of the two
convolved spike trains. The spike train distance is determined by the area under the curve
through integration.

7.7.2 Network Classification

The details of measuring of spike train differences are detailed in section 6.5. van Rossum

Distance (vRD) described in subsection 6.5.4 is one of those metrics. In addition to the vRE

based on vRD, we also define a (mis)classification error for logical operation task detailed in

section 7.9. It is reasonable to assume that the current network output has errors both in

False-Positives (FPs) and False-Negatives (FNs) scenarios by assuming there are two valid

(binary) outputs. A False-Positive indicates a training error that a network output is TRUE (1)

and the desired response to the same input pattern is FALSE (0). Similarly, a False-Negative
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is also a training error that a network output is FALSE (0) and the desired response to the

same input pattern is TRUE (1).

Differentiating the error made by the network between False-Positives and False-Negatives is

not necessary for our experiments. Therefore, we define a straightforward (mis)classification

rate as Logic Classification Error (LCE) which counts the number of false outputs by combin-

ing False-Positive and False-Negative errors.

We describe the desired output as Sd and anti-desired output as S′d. S
′
d is the inverse of the

desired output in terms of the logic equivalent. If the spike distance between actual and

desired trains, DR(Sa, Sd), is more than the distance between actual and anti-desired trains,

DR(Sa, Sd′ ), the network output (actual) is labelled Q′ which is a misclassification. However,

if the spike distance between actual and anti-desired trains, DR(Sa, Sd′ ), is more than the

distance between actual and desired trains, DR(Sa, Sd), the network output (actual) is labelled

as the same as Q which is a correct classification. This explanation is summarized as:

LCEP =

 if DR(Sa, Sd) >= DR(Sa, Sd′ ) Sa ⇒ Q → Correct Classification,

otherwise Sa ⇒ Q
′ → Incorrect Classification.

(7.6)

where LCEP is the Logic Classification Error through a presentation P . For an example

presentation, if inputs are (P1, P2) = (1, 0), the outputs are (Q, Q′) = (0, 1) for the operation

of AND. Details of all possible scenarios for all operations can be seen in section A.5. The

full formula with the designed testing loop can be seen in Equation A.7.

During each testing epoch, an epoch based LCEE with the percentage error is calculated as:

LCEE = Number of misclassification
NTST
P NEXP

Sp

∗ 100% (7.7)

where NTST
P is the number of presentations in a single testing epoch. NTST

P corresponds

to the total number of classifications during an epoch. NEXP
Sp is the number of spike sets

performed during each experiment. Therefore, LCE is measured as a percentage of the total

error count without separating False-Positives and False-Negatives.

170



7.8. Training and Testing Mechanisms 171

To sum up, we use two types of error metrics in order to validate the results, vRE and LCE.

Although vRE has more details about error trajectories, proposed error measure, LCE, gives

another aspect about the network performance.

7.8 Training and Testing Mechanisms

To simulate Spiking Neural Networks in software, the Brian package (Goodman & Brette,

2008) based on Python language has been used. The Python code for all simulations including

neurons, synapses and network models based on Brian architecture is available on the author’s

web page [1].

Each experiment has at least two network structures for separate phases of training and

testing described in subsection C.6.1. Training and testing phases also have slightly different

flows throughout their iterative processes.

7.8.1 Training Mechanism

Neurons and synapses are monitored during simulation. The spiking activity of each neuron is

recorded throughout the simulation (using monitor objects in Brian). Because of modularity,

different neuron models can easily be selected in the proposed framework.

In order to simulate experiments and analyse results, we use the same framework Appendix C.

The pseudo-code of training procedure is illustrated in Algorithm 5. Because of memory usage,

we record values onto disk at the end of each presentation run (see section C.2). Recorded

parameters during this experiment can be listed as output firing times, current reward value

and error.

During the training process, we feed the inputs with randomly generated spike patterns based

on the specified parameters (see section C.10). Then, the resulting spikes are propagated

through the network at each presentation. Adjustable parameters (such as weights and/or

delays) associated with the input patterns are updated with each presentation. The details of

the training procedure in the proposed framework is outlined in subsection C.6.1.
[1]http://www.ozturkibrahim.com
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The pseudo-code of the training procedure is illustrated in Algorithm 4. Once a network has

been constructed at the beginning of the training process, the initial weights/delays (described

later) are chosen from initialization sets based on the initialization type. The network is then

stimulated for a specific time period, Tpe at each presentation. The network processes the

input spike patterns based on the distribution of input types (described in section C.9) using

the weights and/or delays and synaptic functions. Spiking activities from all neurons in the

network can be monitored and recorded if it is desired.

Algorithm 4 Pseudocode of Typical Training Process for ReSuMe/DelReSuMe
1: procedure Training(LearningAlg, Op, NE , NP , SpSetId, InitId)
2: Create the feed-forward SNN based on structural parameters (neurons, synapses, layers,

initializations, connections, monitors).
3: Load Spike set based on selected SpSetId.
4: Load Initialization set based on selected InitId.
5: Assign all initial values such as weights and delays based on selected methods.
6: for Epoch← 0, NE do
7: Generate inputs based on the distribution of input types.
8: Prepare corresponding outputs based on the selected task.
9: for Presentation← 0, NP do

10: Choose corresponding spike patterns for input and outputs from loaded spike
set for the current presentation.

11: Apply spike patterns for the input and output.
12: Run the network for the time Tpe.
13: Use learning algorithm (LearningAlg) to calculate next value of adjustable

parameter.
14: Update adjustable parameters such as the weights as w ← w + ∆ w.
15: Update adjustable parameters such as the delays as s ← s + ∆ s.
16: Store recorded parameters (weight, reward, firing activities) onto disk.
17: Set presentation ← presentation + 1.
18: end for
19: Apply weight scaling if it is active based on the scaling type.
20: Reset the state of all neurons and traces.
21: Set epoch ← epoch + 1.
22: end for
23: end procedure

Synaptic weights/delays are continually refined during training using the difference between

the actual outputs and the desired outputs. At the end of each epoch, we reset the state of

all neurons and traces (such as pre- and post-synaptic traces, eligibility traces) to prepare

them for the following epoch. The stop criterion adopted in this algorithm is the maximum

epoch number of training NTRN
E .
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The reward is calculated based on the timing difference between action potentials of the

actual neuron and desired neuron. The error measure is calculated in the critic unit. The

reward signal is delayed by Tpe then presented at the end of each trial. The generated reward

modulates the synaptic weights based on Spike-timing Dependent Plasticity rule. All synaptic

strengths are updated based on the performed action with the modulation of the reward factor

at the end of each current learning cycle as described in Equation 9.7.

Algorithm 5 Pseudocode of Training Process during Reward-modulated Spike-timing
Dependent Plasticity

1: procedure Training(LearningAlg, Op, NE , NP , SpSetId, InitId)
2: Create the feed-forward SNN based on structural parameters (neurons, synapses, layers,

initializations, connections, monitors).
3: Load Spike set based on selected SpSetId.
4: Load Initialization set based on selected InitId.
5: Assign all initial values such as weights, delays, rewards based on selected methods.
6: for Epoch← 0, NE do
7: Generate inputs based on the distribution of input types.
8: Prepare corresponding outputs based on the selected task.
9: for Presentation← 0, NP do

10: Choose corresponding spike patterns for input and outputs from loaded spike
set for the current presentation.

11: Apply spike patterns for the input and output.
12: Run the network with the duration Tpe.
13: Use learning algorithm (LearningAlg) to calculate next value of adjustable

parameter.
14: Update adjustable parameters such as the weights as w ← w + ∆ w.
15: Store recorded parameters (weight, reward, firing activities) onto disk.
16: Set presentation ← presentation + 1
17: end for
18: Apply weight scaling if it is active based on the scaling type.
19: Reset the state of all neurons and traces.
20: Set epoch ← epoch + 1.
21: end for
22: end procedure

7.8.2 Testing Mechanism

At the end of the training simulations, we analyse results by reading from the stored training

file. During testing for all types of experiments in chapter 8 and in chapter 9, the followed

procedure is described in Algorithm 6.
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Algorithm 6 Pseudocode of Typical Testing Process for ReSuMe/DelReSuMe
1: procedure Testing(TrainingSessId)
2: Reload parameters as LearningAlg, Op, NE based on TrainingSessId.
3: Create the feed-forward SNN based on given parameters and the current training

session.
4: Reload all trained values with trajectories to test each training step (such as weights

and/or delays).
5: Generate all possible testing inputs and corresponding outputs (number of possible

testing pairs = NP ).
6: Reload the spiking set (used in the dependent training session).
7: for Epoch← 0, NE do
8: Apply suitable values from training trajectories (such as weights and/or delays)

based on the epoch number.
9: for Presentation← 0, NP do

10: Choose input values (such as pairs of (0,0), (0,1), (1,0), (1,1)).
11: Choose corresponding spike patterns for the current inputs.
12: Apply spike patterns for input.
13: Run the network with the duration Tpe.
14: Record firing activities of output neurons.
15: Set presentation ← presentation + 1.
16: end for
17: Reset the state of all neurons.
18: Set epoch ← epoch + 1.
19: end for
20: end procedure

At the beginning of the testing cycles, all trained parameters are reloaded from the dependent

training session. The performance of each recorded training step is measured with all possi-

ble input combinations. There are no adjustments related to any configurable parameters

(weights/delays). At the end of each testing epoch, the states of all neurons are reset. The

stop criterion adopted in this algorithm is the maximum epoch number of testing NTST
E , this

is the same as the dependent training epoch number NTRN
E (see Table C.2). The pseudocode

of testing procedure is shown in Algorithm 6. Details of the testing procedure in the proposed

framework is outlined in subsection C.6.1.

7.9 Benchmark Descriptions

7.9.1 Mapping

The first benchmark implementation is to map the timings of input spike patterns into

the target output patterns precisely. This experiment gives initial indications about the
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performance of the proposed method. The main learning phenomena relied on here is the

framework of ReSuMe described in section 8.3.

1P Q}
P1,NP1

S ( )t
in

P1,1S ( )t
in

 Network
Operation Q,1S ( )t

out

Figure 7.11: Block diagram of mapping benchmarks with spike trains. Input spike trains are
SinP1,1(t), SinP1,2(t), ..., SinP1,NP1

(t) with single output spike train SoutQ,1(t). P1 and Q are the
label for input and output, respectively.

Figure 7.11 illustrates the block diagram of the benchmark. There is a single input bank

named P1. A spatio-temporally encoded spike pattern is applied to the input bank (P1). The

spiking network is trained to produce a desired spike train which corresponds to the input

pattern at the output (Q).

7.9.2 Logical Operations

Figure 7.12 demonstrates the block diagram of the logical operations benchmark. There are

two input banks named P1 and P2 in the input layer. A spatio-temporally encoded spike

pattern is applied to each bank for a logical value FALSE (0) or TRUE (1). The spiking

network is trained to perform a logical operation and produces a spike train which corresponds

to each proper logical value at the output named Q.

This benchmark can be executed in order to validate the network’s performance in the case

of multiple input-output patterns. We test some of the learning algorithms with a number

of logical operations P1, AND, OR, XOR. The truth tables of operations can be seen in

section A.5.

7.10 Summary

Common concepts throughout performed simulations in chapter 8 and chapter 9 are introduced

in this chapter. Firstly, types of used neuron models considering noise are introduced. Used
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Figure 7.12: Block diagram of logical operation benchmarks with spike trains. Input spike
trains are SinP1,1(t), SinP1,2(t), ..., SinP1,NP1

(t) for input bank P1 and SinP2,1(t), SinP2,2(t), ...,
SinP2,NP2

(t) for input bank P2 with single output spike train SoutQ,1(t). P1, P2 and Q are the
name of banks for first input, second input and output, respectively. Bank refers to each
subsection in the layer. For instance, here input layer has two banks P1 and P2, corresponding
to 2-bits.

synaptic delay mechanism is also detailed. In this mechanism, multiple synapses transmitting

multiple spikes from a pre-synaptic neuron to a post-synaptic neuron. Then, the details of

network architecture for training and testing cases are described. The details of proposed

encoding mechanism of spatio-temporal patterns is summarized with Poisson spike generator.

Then, error metrics are detailed in order to evaluate spike-train (dis)similarity and the perfor-

mance of the network. Also, the pseudocodes of training and testing mechanisms are described.

Finally, used benchmarks during experiments in chapter 8 and chapter 9 are briefly introduced.
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ReSuMe and DelReSuMe
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8.1 Introduction

One important topic in Spiking Neural Networks (SNNs) is supervised learning based on

temporal coding, since spiking neurons have a structure more like real neurons (Maass, 1996).

However, the exact mechanisms of supervised learning in biological systems remains unclear

(Thorpe & Gautrais, 1998; Ponulak & Kasinski, 2010). Today one of the main challenges is
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to discover efficient learning rules without losing the biological realism of actual spiking neurons.

In neurons, the firing time of input and output spikes encodes the input and output informa-

tion (Gerstner & Kistler, 2002). According to the number of spikes per presentation during

learning, supervised learning based on temporal coding schemes can be divided into two forms:

single-spike and multi-spike learning (Booij & Nguyen, 2005; Schrauwen & Campenhout, 2004;

Gruning & Sporea, 2012; Sporea & Gruning, 2013). In single-spike learning, neurons are

allowed to fire only once at the desired firing time; this restriction makes it suitable only for

time-to-first-spike coding described in section 6.4. However, in multi-spike learning there is no

restriction on spiking activities. There is much research based on single-spike learning (Bohte

et al., 2002b; Schrauwen & Campenhout, 2004; Booij & Nguyen, 2005; Kasinski & Ponulak,

2006; Ponulak & Kasinski, 2010). Although spiking neurons have greater representational

capacity than Multi-Layer Perceptrons (MLPs) (Maass, 1996), single-spike learning is not con-

sistent biologically, and it restricts the ability of SNNs to express information. For biological

plausibility, it is necessary to use multi-spike learning instead of single-spike coding (Booij &

Nguyen, 2005; Kasinski & Ponulak, 2006; Ponulak & Kasinski, 2010). Also, increasingly large

networks must be used in order to handle big problems with single-spike codings. Therefore,

we focus on multi-spike coding throughout the thesis.

Richer dynamics of SNNs encourage development of new learning rules inspired from biological

mechanisms. A Back Propagation like algorithm named SpikeProp is the first general Machine

Learning rule which applied the principle of Back Propagation to SNNs (Bohte et al., 2002b).

Instead of adjusting the average firing rate of neurons in Back Propagation, SpikeProp adjusts

the precise spike time of each neuron, which is restricted to single-spike encoding. In order to

present further algorithms for SNNs, it is important to understand the derivation of SpikeProp

from Back Propagation, so the mathematics of SpikeProp is reproduced in section 8.2.

The Remote Supervised Method (ReSuMe) learning rule described by Ponulak & Kasinski

(2010) is a supervised learning method in which the trained neuron can fire at desired times

in response to spatio-temporal input patterns inputs. Unlike SpikeProp, ReSuMe is capable

of generating a desired spike train with multiple spikes. The main contributions in this

chapter are a architecture concept for existing heterosynapticities such as ReSuMe and a novel

extension of ReSuMe with better performance. Through the proposed ReSuMe architecture
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described in section 8.3, the problem of getting multiple spikes into and out of the Spiking

Neural Network is solved, and the task of mapping is fulfilled. Through mapping experiments

in ReSuMe, the SNN learns the desired firing times of the output neurons by adapting the

synaptic weights. Then, more challenging experiments with logical operations are carried out

with ReSuMe. We test the proposed network structure and learning with logical tasks such

as TRUE, P1, AND, OR and XOR.

A novel learning rule, Delayed Remote Supervised Method (DelReSuMe), is introduced, that

extends ReSuMe from only weight tuning into both weight and delay learning as described in

section 8.9. This hypothesis is tested with mapping benchmarks in section 8.9 which examines

their results. The mapping benchmark, previously introduced in subsection 7.9.1, is to map

the timings of input spike patterns into the target output patterns precisely. Through these

tests, learning the desired firing times of the output neurons has faster convergence than

ReSuMe because synaptic delays are also plastic in addition to the plasticity of weights.

This chapter presents the mathematical models with following experimental results for ReSuMe

in section 8.3 and DelReSuMe in section 8.9 after introducing SpikeProp in section 8.2,

which is one of the first supervised learning techniques for SNNs. We also propose an

alternative topology for ReSuMe and DelReSuMe in section 8.4 with experimental evidences

which can mimic exactly the same behaviour of ReSuMe. In section 8.5, we summarize

the selected parameters of error metrics in order to validate the results of the learning

procedures on the basis of previously introduced metrics in section 7.7. In section 8.6, we

summarize common details for both benchmarks: mapping experiments in section 8.7 and

logical operation experiments in section 8.8. In order to validate robustness of the network,

we also execute the mapping benchmarks under low noise and high noise conditions: for

ReSuMe in subsection 8.7.1 and in subsection 8.7.2, for DelReSuMe in subsection 8.10.1 and

in subsection 8.10.2, respectively. Also, ReSuMe tasks are performed for logical operation

benchmark introduced in subsection 8.8.1.

8.2 SpikeProp

One of the first supervised learning techniques for SNNs is SpikeProp, analogous to the classi-

cal Back Propagations (BPs) in traditional Neural Networks (Bohte et al., 2002b). SpikeProp
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is a gradient-descent learning algorithm similar to Back Propagation for rate coding. The

euclidean distance between target and actual spiking activity determines the synaptic weights

to minimize the error. However, applications of SpikeProp are mainly based on the timing of

a single output spike (Booij & Nguyen, 2005; Schrauwen & Campenhout, 2004). Although

Booij & Nguyen (2005) claims that it can be applicable for multiple spikes, there is limited

evidence. Also, Gruning & Sporea (2012); Sporea & Gruning (2013) explain that SpikeProp

fails during their preliminary experiments for multiple output spikes.

The proposed network topology for SpikeProp is a fully connected Feed-forward Network

of spiking neurons that use exact spike time temporal coding (Bohte et al., 2002b). Each

connection between neurons has multiple synaptic terminals with fixed multiple delays. Only

the synaptic weights can be adjusted during training. The neuron activity is characterized by

the Spike Response Models (SRMs) discussed in subsection 2.5.5. The neuron model in the

SpikeProp assumes that each neuron can only fire once during a given period.

The goal of the algorithm is to learn the desired spiking times, denoted tdj , at the output

neurons j ∈ J . The algorithm performs in much the same way as Back Propagation works.

The results of a learning mechanism are applied into network layers labelled with I (input), H

(hidden) and J (output). The error function is chosen as the mean square error defined by:

E = 1
2
∑
j∈J

(taj − tdj )2 (8.1)

where taj and tdj are actual and target output spike timings of post-synaptic neuron j, re-

spectively. Learning is the process of modifying the synaptic weights according to the time

difference between pre-synaptic firing times and the post-synaptic firing times. In each learning

step, all weights are gradually adjusted in the direction minimizing E according to the gradient

descent method as:

∆wij,k = −η ∂E

∂wij,k
(8.2)

where η is the learning rate, η > 0 and wij,k is the weight of sub-connection k from neuron i

to neuron j. As tj is a function of xj , which depends on the weights wij,k, the gradient term

in Equation 8.2 is expanded using the chain rule to:

∂E

∂wij,k
= ∂E

∂taj
(taj )

∂taj
∂xj(t)

(taj )
∂xj(t)
∂wij,k

(taj ) (8.3)
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where taj is the actual spiking time of the post-synaptic neuron j. SpikeProp starts with the

neurons at the output layer of the network. Then it looks back at the neurons that connect

to it from the input layer.

In the learning paradigm, the set of temporal input data is memorized into the weights.

However, one of the main drawbacks of SpikeProp is that it is only capable of learning the

first spike per input neuron, so subsequent activities are ignored. It cannot learn to reproduce

a spike train with multiple spikes. Also, the SpikeProp algorithm is designed for training the

weights only. To address these weaknesses, we have made improvements with ReSuMe in

section 8.3 and then proposed a novel technique in section 8.9 with further improvements.

8.3 Remote Supervised Method

The Remote Supervised Method (ReSuMe) learning rule described by Ponulak & Kasinski

(2010) is a supervised learning method in which the trained neuron can fire at desired times

in response to spatio-temporal input patterns inputs. Unlike SpikeProp, ReSuMe is capa-

ble of generating a desired spike train with multiple spikes. The ReSuMe is derived from

the Widrow-Hoff (WH) rule (Widrow, 1990) and is based on the interaction of two Spike-

timing Dependent Plasticity learning windows. Here, we demonstrate the mathematics of the

ReSuMe, using an alternative mathematical notation to have consistency throughout the thesis.

Applying the Hebbian Asymmetric-STDP process (see section 3.4) in Equation 3.6 into the

difference of firing times between input spike i and the desired output spike j, ∆t = tdj − ti,

synaptic weights of those synapses can be modified according to:

∆wdij(ti, tdj ) = a+


+Apree

−
td
j
−ti

τpre , if tdj − ti ≥ 0,

−Aposte
+
td
j
−ti

τpost , if tdj − ti < 0.
(8.4)

where tdj and ti are the desired and pre-synaptic firing times, respectively. The constant

parameter a ≥ 0 is non-Hebbian factor which defines the amplitude of the noncorrelation

contribution to the total weight update. The non-Hebbian factor helps to set the instanta-

neous firing rate of the post-synaptic neuron without taking into account a precise timing of

the particular spikes (Ponulak, 2008). Apre and Apost are the maximum change for weight
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potentiation and depression, respectively. τpre and τpost are the width of learning windows

for potentiation and depression, respectively. The shape of the learning window Ae−
∆t
τ is

exponential here because of better performance of convergence but it does not have to be

exponential (Ponulak, 2008).

The anti-Hebbian Asymmetric-STDP process (see section 3.4) which weakens distal synapses,

and strengthens proximal synapses is discussed in section 3.4. This opposition is han-

dled by reversing the sign of amplitudes for LTP and LTD. Applying the anti-Hebbian

Asymmetric-STDP process in Equation 3.6 into the difference of firing times between input

spike i and the actual output spike j, ∆t = taj − ti, synaptic weights of those synapses can be

updated according to:

∆waij(ti, taj ) = −a+


−Apree

−
ta
j
−ti

τpre , if taj − ti ≥ 0,

+Aposte
+
ta
j
−ti

τpost , if taj − ti < 0.
(8.5)

where taj and ti are actual and pre-synaptic firing times, respectively.

If actual and desired spiking times are the same, the Hebbian rule and anti-Hebbian rule for

Asymmetric-STDP processes are balanced by ∆waij(ti, taj ) = −∆wdij(ti, tdj ). As a result, there

are no weight changes because of those spikes.

According to ReSuMe, the total change of synaptic weight ∆wij is modified by combining the

Hebbian term in Equation 8.4 and anti-Hebbian based Asymmetric-STDP term in Equation 8.5

with contributions from input-output spike pairs according to the following equation:

∆wij =
∑
ti∈Si

( ∑
td∈Sdj

∆wdij(ti, tdj ) +
∑
ta∈Saj

∆waij(ti, taj )
)

(8.6)

For our experiments, amplitudes of synaptic efficacies Apre, Apost ≥ 0 are set as Apre =

Apost = 0.005 summarized in Table 8.1. Decay time constants τpre, τpost ≥ 0 and they are

set as τpre = τpost = 5ms here. Also, non-Hebbian factor is set to 0 because we already use

activity-dependent synaptic scaling (see subsection 3.5.1) in order to get desired activation

level at the post-synaptic neuron, a = 0.
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Parameter Type Parameter Names Values
Plasticity amplitudes Apre, Apost 0.005, 0.005

Decay constants τpre, τpost 5ms, 5ms
non-Hebbian Factor a 0

Table 8.1: Model parameters used for ReSuMe used in Figure 8.1.
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Figure 8.1: Illustration of concepts underlying the ReSuMe learning from Ponulak (2008).
A) The row of i at the bottom of (A) illustrates pre-synaptic ni neuron’s activity coloured
magenta. The row of ja and jd represent the actual (coloured green) and desired (coloured
blue) activity in ReSuMe learning, respectively. B) LTP (in green subwindow) and LTD
(in blue subwindow) for excitatory connections can bee seen with aapre and aapost based on
pre-synaptic and actual output spikes from (A). Apre and Apost in Table 8.4 are maximum
amplitude of aapre and aapost traces, respectively. C) LTP (in blue subwindow) and LTD (in
magenta subwindow) for excitatory connections can bee seen with adpre and adpost based on
pre-synaptic and desired spikes from (A). Apre and Apost in Table 8.4 are maximum amplitude
of adpre and adpost traces, respectively. D) Changes of the synaptic efficacy wij are triggered by
the teacher (desired) or post-synaptic (actual) activity at times 25 ms and 72 ms, respectively.
The level of change is determined by the learning windows in (B) and (C).

Figure 8.1 demonstrates the ReSuMe learning mechanism based on the described parameters

in Table 8.1. The combined synaptic efficacy depends both on the correlation between the

pre-synaptic and actual post-synaptic firing activities and on the correlation between the

pre-synaptic and desired firing activities.

Regulation of synaptic weights and neuronal activity can only be adjusted based on pre-synaptic
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stimulation (Lynch et al., 1977). Heterosynaptic plasticity is observed in the hippocampus

as a result of modulatory inter-neurons (Lynch et al., 1977). Changes in synaptic strengths

during plasticity can be accompanied by changes at nearby synapses through heterosynaptic

modulation. Therefore, the amount of depression and potentiation in these mechanisms

is balanced by a local mechanism of both normalization of synaptic weights and synaptic

competition (Chistiakova et al., 2015). Various forms of heterosynaptic plasticity are observed

in a variety of brain regions and organisms during associative learning, the development of

neural circuits, and homoeostaticity (Bailey et al., 2000). However, they can be categorized

in two forms: non-associative or associative. The non-associative form is only heterosynaptic,

whereas associative, activity-dependent heterosynaptic modulation combines homosynaptic

and heterosynaptic plasticity (Bailey et al., 2000). The associative heterosynaptic concept

as a biologically plausible phenomenon is used through experiments in this chapter and it is

described in the following section.

8.4 Architecture for Proposed Topology

Existing simulators, especially the one we develop using Brian (see subsection 2.7.1), do not

support remote supervision for synapse models. Therefore, we present a structure that handles

the ReSuMe paradigm. In this experiment, a new fully connected two layered feed-forward

spiking neural network architecture without a hidden layer is proposed. The network structure

is inspired by the actor-critic architecture (Potjans et al., 2009) illustrated in Figure 7.5 and

Figure 7.7.

Although the ReSuMe mechanism is inspired from heterosynaptic plasticity, we propose a new

concept of remote supervision. Therefore, ReSuMe requires synaptic information between

neurons i and k in order to adjust synaptic weight between neurons i and j illustrated

in Figure 8.2a. However, many implementation environments, including that used in our

experiments (see section 2.7) do not allow this. Hence, we express this plasticity in the

concept of heterosynaptic plasticity without introducing remote supervision. The mechanism

in Figure 8.2b is presented using a minimalist network scenario demonstrated in Figure 8.3.

It is a more plausible way biologically because of the mechanism of heterosynaptic plasticity

rather than remote supervision.
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(a) Current topology for ReSuMe.
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(b) Proposed topology for ReSuMe.

Figure 8.2: The comparison for pre-post neuron connections for the current and proposed
structure. (a) The structure of neuron connection for ReSuMe learning with the heterosynaptic
connection. This is adapted from Ponulak & Kasinski (2010). Desired neuron, input neuron
and output neuron are shown ndk, nini and noutj , respectively. The weight between input and
output is wij which is affected from desired neuron activities as well.
(b) The heterosynaptic connection for the ReSuMe in (a) is modified here. The weight between
input neuron nini and actual output neuron na_out

j is wia. The weight between input neuron
nini and desired output neuron nd_out

j is wid. The total ReSuMe weight between input neuron
nini and output neuron is wij . wij is summed net weight change through nini and noutj as in
(b), summarized in Equation 8.8. This summation illustrated with dashed arrow is applied at
the end of each simulation period/presentation. Bias neuron nbiasi detailed in section 7.5.3
is connected to the desired output neuron nd_out

j with fixed weight wbd in order to generate
desired spiking activities at nd_out

j .
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Anti-Hebbian Spike-timing Dependent Plasticity (anti-Hebbian-STDP) process between in-

put neurons and the actual output neuron can modify synaptic connections. However,

Hebbian-STDP (Hebbian Spike-timing Dependent Plasticity) process between input and de-

sired output neuron cannot modify the actual synaptic dynamics drawn as dashed lines in

Figure 8.2. Initially, all synaptic weights, except the fixed connection from the bias synapse (see

section 7.5.3), are set sufficiently small between winitmin and winitmax (see Table 8.4). Inputs do not

cause any spikes in the early stages of training. Once weights are increased during later stages

of training, extra spikes are generated inside the desired spike patterns which is not acceptable.

In order to solve this problem, the dynamics of connections are reconfigured. Generated spikes

at the desired output should only be caused from the bias input not from input neurons. For

that reason, once training is performed, weight updates for those Hebbian-STDP synapses are

not applied unlike anti-Hebbian-STDP synapses. All STDP synapses into the desired output

neuron have minimal weight values the same as their initial strengths. Hebbian-STDP updates

are only used to find the difference between anti-Hebbian-STDP in ReSuMe technique. If we

do not restrict Hebbian-STDP synapses with this limitation, they will generate extra spikes

in the desired output, misguiding the training sessions especially near to the end of training.

Figure 8.2 demonstrates how proposed topology in Figure 8.3 mimics ReSuMe weight change

through two synapses from input to actual output neuron and desired output neuron. The

aim in the proposed structure is to divide wij (the weight between input neuron (nini ) and

output neuron) into two different synapses as wia (the weight between input neuron nini and

actual output neuron na_out
j ) and wid (the weight between input neuron nini and desired

output neuron nd_out
j ).

Minimalist network scenario for the proposed topology is displayed in Figure 8.3. In the

simplest scenario, there are 4 neurons. Three of them nini , na_out
j and nd_out

j , are fundamental

ones in order to demonstrate the concept properly. Bias neuron nbiasi allows network to

generate the desired output with the correct timing (see also section 7.5.3). Considering that

simulations are flowing from input layer to output layer (left to right), if the desired spike train

Sd is connected directly nd_out
j rather than connecting to nbiasi , the desired spike pattern is

always trained a simulation time step, tdt, earlier which is not adequate. The weight between

nbiasi and nd_out
j is wbd which is fixed and maximum weighted value (see Table 3.1) in order

186



8.4. Architecture for Proposed Topology 187

i
n

in

j
n

a_out

iaw

j
n

d_out

i
n

bias

dS ( )t

dS ( )t
out

aS ( )t
out

1S ( )t
in

idw

bdw

Figure 8.3: Minimalist network scenario for the proposed topology is displayed here. See the
text for detailed description.

to transfer entire pre-synaptic activity Sd to the desired output activity Soutd . The weight

between input neuron (nini ) and actual output neuron (na_out
j ) is wia. The weight between

input neuron (nini ) and desired output neuron (nd_out
j ) is wid. The total ReSuMe weight

between input neuron (nini ) and output neuron is wij . Spike patterns for input, desired output

and actual output are shown with Sin1 , Soutd and Souta , respectively. Sd prepared externally

and Soutd generated from nd_out
j are the same patterns with Sd in terms of spiking activities.

In Figure 8.4, the weight between input neuron (nini ) and actual output neuron (na_out
j ), the

weight between input neuron (nini ) and desired output neuron (nd_out
j ), the total ReSuMe

weight between input neuron (nini ) and output neuron (same as wij in Figure 8.2) are wia,

wid and wij , respectively.

In Figure 8.4, aapre and aapost are traces for anti-Hebbian learning; adpre and adpost are traces for

hebbian learning. aapre and adpre follow spiking activity from the input neuron with opposite

sides. aapost and adpost follow actual and desired neuron spiking activities respectively.

In Figure 8.4a, all weights wia, wid and wij are the same at the beginning of each simulation

period (see Equation 8.7).

wid = wia = wij → w0
ij (8.7)

where w0
ij is the ReSuMe synaptic weight at the beginning of each learning cycle.
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(a) Simulation scenario with single spike in desired pattern.

(b) Simulation scenario with two spikes in desired pattern.

Figure 8.4: Simulation scenario with different number of spikes in desired pattern.

In Figure 8.4a, the first weight change happens between input and desired output neuron

(around 52. ms) wid in the proposed simulation scenario. wid follows the total ReSuMe weight

wij (coloured orange line) because there are no weight change in wia so far. The next weight

change is again because of input-desired output pairs (around 63. ms). wid still follows wij
exactly until the change on wia around 72 ms. At this point, ∆wia is modified because of

input-actual output spiking activity. At the end of each presentation, the main weight update

rule is applied as summarized in Equation 8.8. Weight update procedures per presentation

with three different actual neuron activities are illustrated in Figure 8.4a, Figure 8.4a, and

Figure 8.4c.
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(c) Simulation scenario with three spikes in desired pattern.

Figure 8.4: Simulation scenario with different number of spikes in desired pattern (continued)
for the minimalist connection shown in Figure 8.2. A) Three spiking activities as input spike
pattern (row i as Sin1 ), actual output spiking activity (row ja as Souta ) and desired spike
pattern (row jd as Soutd ) are displayed. Each of them is coloured differently. Also activity
times during other patterns are also plotted on all patterns with vertical dashed lines. B) aapre
and aapost are traces for anti-hebbian learning between input and actual output neuron. C)
adpre and adpost are traces for hebbian learning between input and desired output neuron. D)
The weight between input neuron (nini ) and actual output neuron (na_out

j ) is wia coloured
with green line. The weight between input neuron (nini ) and desired output neuron (nd_out

j )
is wid coloured with magenta line. The total ReSuMe weight between input neuron (nini ) and
output neuron is wij in the text and in Figure 8.2) coloured with orange line.

wij ← w0
ij + ∆wij

wij ← w0
ij + ∆wid + ∆wia

(8.8)

where ∆wij is splitted into ∆wid and ∆wia.

8.5 Error Analysis

In order to validate the results we use the van Rossum Distance (vRD), described in 6.5.4

as DR, in order to measure the distance between separate spike trains. The distance metric

is not involved in learning; however, it reflects the dissimilarity between actual and desired

spike trains during testing.
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The distance error is named the van Rossum Error (vRE) throughout the thesis. We use

averaged vRE because error-epoch trajectories are plotted averaging vRE through a number

of experiments.

Parameter Type Parameter Names Values
vRD Decay τR 10 ms
vRD Period TR 120 ms

Table 8.2: Model parameters used for error analysis.

We set the decay constant τR as a free parameter to τR = 10 ms (see Table 8.2). The period

of metric TR in Equation 6.13 is the same as the period of a single run for an extended

presentation time TR = Tpe = 120 ms.

8.6 ReSuMe Overall Setup Experiments

Network architecture used in ReSuMe tasks is demonstrated in section 7.5. The types of

neuron models used in proposed SNNs under the noiseless conditions are summarized in

section 7.2. In addition, the training and testing stages of performed experiments are already

described in subsection 7.8.1 and subsection 7.8.2, respectively. The delay mechanism from

section 7.4 is used here. The number of synaptic connections is Nsub = K = 10 (see Table 7.1)

with non-programmable delays between 1− 10ms, dij,k = k (ms). However, the bias input

neuron ni=0 has a single connection without a delay, dij,k=0 = 0 ms.

Parameter Type Parameter Names Values
Presentation Time Tpe 120 ms

Run Time Resolution dt 0.1 ms
Presentation Number NP 10

Epoch Number NE 1000

Table 8.3: Length parameters used for the computer simulations.

Each presentation runs for the simulated Tp = 100 ms duration of the input spike trains

also with two times the maximal synaptic delay 2 ∗ τm = 20 ms added as Tpe = 120 ms (see

Table 8.3). Because of the discrete nature of spikes, the simulation of network dynamics is
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performed on a time step of dt = 0.1 ms. We denote the number of epochs as NE . Each

epoch consists of presentations, the number of presentations during each epoch is denoted

by NP in Table 8.3. Total simulation time per session for each spike set can be calculated

using Equation C.2. For instance, it is calculated as 20 mins with the parameters described in

Table 8.3.

Parameter Type Parameter Names Values
Plasticity amplitudes Apre, Apost 0.005, 0.005

Decay constants τpre, τpost 5ms, 5ms
non-Hebbian Factor a 0

Weight Limits [wTRNmin , wTRNmax ] [-3, +3]
Initial Weight Limits [winitmin, w

init
max] [-0.02, 0.08]

Excitatory/Inhibitory Rate [rinitexc , r
init
inh ] (0.2, 0.8)

Table 8.4: Model parameters used for the computer simulations through ReSuMe.

In order to avoid either silencing or extreme network activity by frequent firings of neurons,

all synaptic weights are bounded with a lower boundary wTRNmin and an upper boundary

wTRNmax . Because we use Additive-STDP updates instead of Multiplicative-STDP updates (see

section 3.4.2 for details), current weight values are clipped to keep them in these predefined

boundaries.

8.7 Experiments: Mapping for Remote Supervised Method

Table 7.1 gives the structural parameters for the experiment in section 7.5. The proposed

structure for the SNN contains Nin = M = 20 neurons in the input layer (see Table 7.1).

In the output layer, there are two neurons, Nout = 2, the one generates the actual output

patterns Souta (t). The other neuron produces desired spiking activities Soutd (t).

8.7.1 Results of Noiseless Simulations

An example of desired output signal Soutd (t) and the convergence of the actual output Souta (t)

over noiseless ReSuMe training cycles are depicted in Figure 8.5. The desired patterns have

3 spikes. On the early runs, there are less spiking activities in the actual output compared
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to desired spiking activities because synaptic weights are initialized as sufficiently small at

the beginning. Once the training continues, the generated spikes become closer to desired

activity. After less than 90-100 learning cycles, most networks in various experiments illus-

trated in Figure 8.5 (see also subsection D.1.1 for other runs) produce the 3 desired spikes

precisely. With this configuration, it can be clearly seen that the network reliably learn the

target/desired pattern within 80 epochs, as shown in Figure 8.5. Zoomed version of the

experiment can be seen in Figure 8.5. Further experimental results are also illustrated in

Appendix D, respectively. Furthermore, the stability preservation of the network by keep-

ing frequencies of neuronal activity within a certain range can be seen over the entire simulation.

Figure 8.6 demonstrates the evolution of synaptic weights for the noiseless ReSuMe mapping

experiments in Figure 8.5. There are two experiments with different spike sets, each spike

set in an experiment contains 5 spatio-temporal pattern sets. Other weight trajectories are

not shown here because they have quite similar behaviours to the demonstrated ones. Upper

two figures in Figure 8.6 are from one experiment and lower two figures are from another

experiment. As it is detailed in section 8.9, each input-output connection pair has 10 synaptic

terminals with fixed delays. Hence, left figures show one pair’s weight trajectories of those

input-output pairs. Right figures illustrate entire sub-terminals (20x10=200 here). It is clearly

seen that weight trajectories do not achieve the minimum/maximum weight boundaries as in

STDP. Because here Hebbian-STDP and anti-Hebbian-STDP balance each other once desired

pattern is exactly the same as the actual spike generation. Hence, weights can stabilize in

the intermediate values unlike single Hebbian-STDP or anti-Hebbian-STDP whose synaptic

weights converge to maximum/minimum boundaries. Although the network generates desired

output before 80 epochs, weights are completely stabilized later around 800 epochs seen in

Figure 8.6.

Histogram of weights through noiseless conditions, prepared from the lower experiment in

Figure 8.6, are illustrated in Figure 8.7. Four different characteristic time points throughout

learning cycles are selected in order to show the evolution of synaptic weights. w0 for 1st

presentation is the case of initial weights illustrated in Figure 8.7a. w199 for 200th presentation

is the case of after limited amount of learning epochs illustrated in Figure 8.7b. w599 for 600th

presentation is the case of after more amount of learning epochs illustrated in Figure 8.7c.

w1999 for 2000th presentation is the case of almost fully stabilized weights (end of simulation
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Figure 8.5: Reconstruction of the transformation from input patterns to output spike timings
(noiseless condition). Trial number (y-axis) indicates the number of epoch NE which consists
of presentations NP summarized in Table 9.1. The current network is trained to map a
spatio-temporally encoded input spike trains into another spatio-temporally encoded output
pattern. tactout with blue colour converges to tdesout with green colour. Upper figure is from
one experiment and below figure is from another experiment. More results can be seen in
subsection D.1.1.

or close to end of simulation) illustrated in Figure 8.7d. While the learning is performed, the

distribution covers the full range of available weights seen through selected time points: 1st,

200th, 600th and 2000th presentations. It is also clear that the range and distribution of the

weights from 600th to 2000th presentation do not change significantly; because the stabilization

of the learning is already achieved until the presentation of 600th (see also Figure 8.5 and

Figure 8.6). The unimodal steady-state distribution of synaptic weights is produced.
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Figure 8.6: Evolution of synaptic weights for the mapping experiments (noiseless condition).
In each plot individual weights are represented in a randomly selected colour. (Left) These
show only neuron 0 to output neuron with 10 sub-connections during a whole training (2000
presentations). (Right) These demonstrate entire synaptic weight modifications during a
whole training (2000 presentations). Upper two figures are from one experiment and lower
two figures are from another experiment.
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Figure 8.7: Histogram of weights is prepared from the lower experiment in Figure 8.6 (noiseless
condition). Four different characteristic time points are shown in the figure with legend texts:
w0 for 1st presentation in (a), w199 for 200th presentation in (b), w599 for 600th presentation
in (c), w1999 for 2000th presentation in (d).

In Figure 8.8, experiments are executed during 1000 epochs. There is no change or update

after roughly 180 epochs even if the simulation is continued. This case is valid for all following

experiments. There are 5 experiments working in parallel and independent. Each network
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Figure 8.8: Averaged-vRE for mapping experiments. Epochs (x-axis) indicates the number of
epoch NE which consists of presentations NP summarized in Table 9.1. See text for a detailed
explanation of the figure.

in each experiment has different random weight initializations. In addition, spike sets for

each experiment are also different and randomly selected from previously generated Poisson

processes described in section 7.6. The figure demonstrates that averaged-vRE through 5

experiments starts with its maximum value as 20. Once training is performed, the error is

converging to a minimum. As it is seen that it does not become zero although it converges.

The reason is not entirely clear, but it might be related with the one of spike sets. One of

the trajectories in Figure 8.5 has a spike at 20ms and is struggling to converge. It is possible

that the network cannot increase the weights in 20ms. The silent period at desired output

patterns can be slightly increased to cope with this issue.

In the following section, the simulations are also shown under noise to demonstrate any detri-

mental effect that the plasticity may have. This helps to verify the reliability and robustness

of the plasticity mechanism as well.

8.7.2 Results of Noisy Simulations

In the previous experiment, we assume deterministic model of neurons with noise-free learning

conditions. Under these assumptions the trained neuron can reliably generate target spike

pattern whenever the corresponding inputs are presented. On the other hand, the reliability of

the neural responses can be significantly impacted in the face of noise interference. Therefore,
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the proposed architecture with the ReSuMe is investigated in the stochastic, noisy network in

order to reliably generate target sequences of spikes. The details of the inserted noise and

how they affect neuronal activity are detailed in section 7.3. The characteristics of low noise

and high noise are depicted in Figure 7.1 and in Figure 7.2, respectively.

The precision and reliability of the target activity are tested in the presence of background

noise during training sessions. The noise detailed in section 7.3 is simulated by a Gaussian

white noise current injected to the neuron. The noise is included as additive term in synaptic

input current. Two different noise levels are used as relatively high and low noise described in

section 7.3.
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Figure 8.9: Reconstruction of the transformation from input patterns to output spike timings
(low noise). Trial number (y-axis) indicates the number of epoch NE which consists of
presentations NP summarized in Table 9.1. The current network is trained to map spatio-
temporally encoded input spike trains into another spatio-temporally encoded output pattern.
tactout with blue colour converges to tdesout with green colour. Upper figure is from one experiment
and below figure is from another experiment. More results can be seen in subsection D.1.1.

For the low noise, the actual and desired spiking activities through learning are illustrated in

Figure 8.9. The evolution of synaptic weights is depicted in Figure 8.10. Also the histogram

of weights through four different learning times is demonstrated in Figure 8.11.

For the high noise, the actual and desired spiking activities through learning is illustrated in

Figure 8.12. The evolution of synaptic weights is depicted in Figure 8.13. Also the histogram

of weights through four different learning times is demonstrated in Figure 8.14.
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Figure 8.10: Evolution of synaptic weights for the mapping experiments (low noise). In
each plot individual weights are represented in a randomly selected colour. (Left) These
show only neuron 0 to output neuron with 10 sub-connections during a whole training (4000
presentations). (Right) These demonstrate entire synaptic weight modifications during a
whole training (4000 presentations). Upper two figures are from one experiment and lower
two figures are from another experiment.
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Figure 8.11: Histogram of weights through noisy conditions (low noise) (prepared from the
lower experiment in Figure 8.6.) taken from four different characteristic time points shown
with figure legend text : w0 for 1st presentation in (a), w199 for 200th presentation in (b), w599
for 600th presentation in (c), w1999 for 2000th presentation in (d).

Inserting noise into the experiments cause shifting of actual spiking times (compared to desired

spiking times) especially for the relatively high noise experiments. Although ReSuMe is robust

to relatively low noise, it generates extra actual spike compared to desired activity in the

further learning points. Also the precision of actual spiking activities gets worse while noise

level is increased illustrated in Figure 8.9 and Figure 8.12. Also the speed of convergence

for the learning gets worse once the level of noise is increased. For instance, three desired

spikes are mimicked about 50th epoch with noiseless conditions, about 70th epoch with low
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Figure 8.12: Reconstruction of the transformation from input patterns to output spike timings
(high noise). Trial number (y-axis) indicates the number of epoch NE which consists of
presentations NP summarized in Table 9.1. The current network is trained to map spatio-
temporally encoded input spike trains into another spatio-temporally encoded output pattern.
tactout with blue colour converges to tdesout with green colour. Upper figure is from one experiment
and below figure is from another experiment. More results can be seen in subsection D.1.1.
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Figure 8.13: Evolution of synaptic weights for the mapping experiments (high noise). In
each plot individual weights are represented in a randomly selected colour. (Left) These
show only neuron 0 to output neuron with 10 sub-connections during a whole training (4000
presentations). (Right) These demonstrate entire synaptic weight modifications during a
whole training (4000 presentations). Upper two figures are from one experiment and lower
two figures are from another experiment.

noise conditions, about 140th epoch with high noise conditions. The shape of synaptic weight

distribution is the unimodal similar to noiseless conditions.

8.7.3 Discussion of Mapping

Each experiment is initialized with randomly generated weights. However, the performance

of the algorithm is not affected from the initial conditions unlike SpikeProp. Therefore, we

do not need to deal with optimizing the initial weights and the architecture of SNNs for this

purpose.
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Figure 8.14: Histogram of weights through noisy conditions (high noise) (prepared from the
lower experiment in Figure 8.13.) taken from four different characteristic time points shown
with figure legend text : w0 for 1st presentation in (a), w199 for 200th presentation in (b), w599
for 600th presentation in (c), w1999 for 2000th presentation in (d).

The task has been tested at least with 5 different spike sets for inputs and output. We have

shown that input spike patterns can be successfully mapped into desired spike pattern at the

output in less than 180 epochs. Entire network including all synaptic weights is stabilized

around 500 epochs.

In the next section, the same infrastructure of ReSuMe is tested for more complex tasks than

the mapping experiment.

8.8 Experiments: Logical Operations for Remote Supervised Method

In addition to single input-output pattern mapping in earlier sections, ReSuMe tasks are also

performed for the logical operation benchmark introduced in subsection 8.8.1. Those tests

are evidence for the proposed topology (introduced in section 8.4) which works in the case

of multiple input-output patterns as well. Also, this benchmark can be the basis for future

experiments in order to extend single input-output pattern mapping into multiple input-output

patterns. Therefore, we test the infrastructure with a number of logical operations described

in subsection 7.9.2.
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8.8.1 Results of Noiseless Simulations

Averaged vRE trajectories during training can be seen in Figure 8.15 for operation TRUE, in

Figure 8.16 for operation P1, in Figure 8.17 for operation AND, in Figure 8.18 for operation

OR, and in Figure 8.19 for operation XOR. Each of those error trajectories starts from more

than 20 and they converge to less than 3 except XOR task in Figure 8.19. Those graphs

illustrate that each of tasks are learnt from the network except XOR.

0 200 400 600 800 1000

Epochs
0

5

10

15

20

E
rr

o
r

Averaged vRE

Figure 8.15: Averaged-vRE for operation TRUE.
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Figure 8.16: Averaged-vRE for operation P1.

The LCE trajectories of the SNN through different logical operations can be seen in Figure 8.20

for operation TRUE, in Figure 8.21 for operation P1, in Figure 8.22 for operation AND,
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Figure 8.17: Averaged-vRE for operation AND.
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Figure 8.18: Averaged-vRE for operation OR.

in Figure 8.22 for operation OR, and in Figure 8.24 for operation XOR. Each error graph

starts from roughly 50% which is random whether the output is TRUE or FALSE. Once the

training is performed, Logic Classification Error approaches the minimum value through all

logical tasks except XOR. Error graphs (LCE) do not look perfectly smooth. The resolution

of error in graphs can be seen as 5% because each experiment is done using 5 spike sets.

Also each training result is tested with all four possibilities (2-bit all possibilities for input:

0-0,0-1,1-0,1-1). Hence, during each epoch there are 20 (4x5) samples to part of LCEP . This

corresponds to the 5% resolution as percent. If the number of spike sets per experiment is

increased, smoother graphs can be achieved.
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Figure 8.19: Averaged-vRE for operation XOR.
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Figure 8.20: Logic Classification Error (LCE) for operation TRUE.

8.8.2 Discussion

As the mapping benchmark, each experiment has been initialized with randomly generated

weights. Averaged performances of the algorithm through at least 5 different spike sets for

inputs and output have been illustrated. We have shown that all logical operations except XOR

can successfully be learned by the network. All networks are stabilized in less than 1000 epochs.

However, the 2-layer proposed network fails to learn XOR. In order to solve the XOR problem

(truth table demonstrated in section A.5), we may need to introduce a new layer into our

SNNs. This layer, called the “hidden layer”, allows the network to create and maintain
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Figure 8.21: Logic Classification Error (LCE) for operation P1.
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Figure 8.22: Logic Classification Error (LCE) for operation AND.

internal representations of the input. However, we have not tested this approach yet and it is

appointed as a future work.

All ReSuMe results for both benchmarks are summarized in Table 8.5. In the next section,

we extend the ReSuMe learning in order to have faster convergence.
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Figure 8.23: Logic Classification Error (LCE) for operation OR.
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Figure 8.24: Logic Classification Error (LCE) for operation XOR.
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Operation Error Type Epoch 400-499 Epoch 900-999
Mapping vRE 0.5898561230 0.589856123412

LCE 0.0000000000% 0.000000000000%
TRUE vRE 3.6184665780 1.536079477980

LCE 0.0505050505% 0.000000000000%
P1 vRE 3.6017840401 0.757597537969

LCE 0.0000000000% 0.000000000000%
AND vRE 7.6031646698 3.228147492520

LCE 2.7777777778% 0.050505050500%
OR vRE 6.8060406054 3.229104176230

LCE 0.9090909091% 2.272727272730%
XOR vRE 15.6070357980 15.459427742100

LCE 46.8181818180% 47.070707070700%

Table 8.5: Summary of all operations through ReSuMe.
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8.9 Delayed Remote Supervised Method

Delay adoption in addition to adapting synaptic weights in Spiking Neural Networks is

considered in several researches (Natschlager & Ruf, 1998; Eurich et al., 2000; Adibi et al.,

2005; Kerr et al., 2013). There are two methods to model computational delay: delay shift

and delay selection (Eurich et al., 2000). In the delay shift approach, synaptic connection is

considered as a single-connection with a single plastic delay (Eurich et al., 2000). In the delay

selection approach, each pre-synaptic neuron is connected to the post-synaptic neuron with

multi-plastic-delay (Natschlager & Ruf, 1998).

We propose an extended version of Remote Supervised Method, named Delayed Remote

Supervised Method (DelReSuMe) using the delay selection approach. The proposed method

modifies both synaptic weights and delays. Although the topology of ReSuMe in section 8.3

has fixed multi-delay mechanism, DelReSuMe architecture has plastic multi-delay architecture

detailed in section 7.4. Except the plastic delays, the structure of the network is the same as

for the ReSuMe experiments in section 7.5. The weight adjustment procedure of DelReSuMe is

also the same as ReSuMe combining Hebbian-STDP in Equation 8.4 and anti-Hebbian-STDP

in Equation 8.5.

By adding delay plasticity here, our motivation is to achieve faster convergence compared

with ReSuMe. For this purpose, we add another exponential trace mechanism for each synap-

tic delay in addition to the weight traces in ReSuMe, and we name the trace as c(t) over time t:

c(t) =

 Ae−
∆t
τc for ∆t ≥ 0,

0 for ∆t < 0.
(8.9)

where t is the current time, and ti is firing time of pre-synaptic neuron i illustrated in

Figure 8.25 with ∆t = t− ti. τc is the decay constant of c(t) and A is the initial amplitude of

the trace.

We extend the Equation 8.9 for the synapses which have their internal delays and reshape it
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 i t j
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Figure 8.25: An exponential trace for synapse k with its internal delay in DelReSuMe. t is
the current time, and ti is the firing time of pre-synaptic neuron i, τc is the decay constant of
c(t) and A is the amplitude of trace. In this figure the trace c(t) is evaluated at time t = tj .
∆t = t− ti with t = tj .

by the activation time during only pre-synaptic firing times. It is formulated as:

c(t) =

 Ae−
t−ti−dij,k

τc for t(fn)
i < t < t

(fn+1)
i ,

0 otherwise.
(8.10)

where t is the current time, and ti is the firing time of pre-synaptic neuron i illustrated in

Figure 8.26. t(fn)
i , t

(fn+1)
i are pre-synaptic firing times. τc is the decay constant of synaptic

delay trace c(t). A is the initial amplitude increase. dij,k is the delay from kth synaptic

terminal between pre-synaptic neuron i and post-synaptic neuron j.

Suppose that t = taj or t = tdj which are the times of actual post-synaptic spikes or desired

post-synaptic spikes, respectively. Using the delay trace c(t), we can determine the adjust-

ment to the delay between the active neurons. Using the inverse of Equation 8.9 to solve for ∆t:

ci(t) = Ae−
∆t
τc

ln(ci(t)) = lnA+ lne−
∆t
τc

ln ci(t)A = −∆t
τc

∆t = −τcln ci(t)A

(8.11)

where ∆t = t− ti = tj − tfi,k. ∆t is the time difference between current time t (active only post

synaptic firing times tj) and pre-synaptic spike time ti (for kth synaptic terminal, we use tfi,k).

207



8.9. Delayed Remote Supervised Method 208

{
τc

A

t j

c( )

{t i

t i

i,j,Kd

Figure 8.26: An exponential trace for each synaptic delay in DelReSuMe. t is the current
time, and ti is the firing time of pre-synaptic neuron i, τc is the decay constant of c(t) and A
is the amplitude of trace. dij,k is the delay from kth synaptic terminal between pre-synaptic
neuron i and post-synaptic neuron j. Once t = tj , the DelReSuMe is active. tj can be either
actual post-synaptic firing time or desired post-synaptic firing time. ∆t = t− ti with t = tj .

Then if we apply it to synapses with its own delay ∆dij,k = t− tfi,k − dij,k, we get:

∆dij,k = t− tfi,k − dij,k = −τcln ci(t)A
(8.12)

where tfi,k is f th firing time through synapse k from pre-synaptic neuron i.

The delay of synaptic terminal k is updated with:

∆dij,k(t) =


+sgn(wijk)∆dij,k, t = tdj ,

−sgn(wijk)∆dij,k, t = taj ,

0, otherwise.

(8.13)

where sgn is the signum function defined in A.5. tdj , taj are desired and actual firing times of
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post-synaptic neuron j, respectively. ∆dij,k(t) is the delay change for the kth synaptic terminal

between pre-synaptic neuron i and post-synaptic neuron j. wijk is the synaptic weight for

the kth synaptic terminal between pre-synaptic neuron i and post-synaptic neuron j at the

time t. The motivation of including the signum function is to differentiate excitatory and

inhibitory synapses. The effect is to shift synaptic delays in opposite directions for excitatory

synapses, and the same direction for inhibitory synapses. Excitatory and inhibitory synapses

have positive and negative weights, respectively.

The idea of integrating plastic synaptic delay into ReSuMe to improve the performance of

learning is also considered in Taherkhani et al. (2015). However, there are several differences

compared with our method. Firstly, a single-connection architecture using the delay shift

approach rather than multi-plastic-delay is considered in their work. Our structure can be

classified under the delay selection approach rather than the delay shift approach. On the

other hand, the way to apply delay plasticity in the proposed learning rule is also dependent on

the type of synapses whether they are inhibitory or excitatory in our method. This is handled

with sgn function instead of separating two update rules for inhibitory and excitatory synapses.

In addition, the presence of noise is not considered in Taherkhani et al. (2015). However,

we consider two different noise levels: relatively low and relatively high noise described in

section 7.3.

8.10 Experiments: Mapping for Delayed Remote Supervised Method

The parameters and network details including neuron models, neuron numbers, encoding

mechanism, initialization methods except delay mechanism are the same as ReSuMe mapping

experiment described in section 8.3 and section 8.7. Therefore, only delay mechanism is

detailed here.

The value of minimum and maximum delays are not changed from ReSuMe experiments.

However, synapses do not have fixed delays here unlike ReSuMe. All delays in DelReSuMe

are initialized between of dmin and dmax same as ReSuMe. Furthermore, each synaptic delay

is restricted to adjust only once in a single training in order to avoid instability of the network

using Equation 8.13. Also, only a single synaptic delay can be adjusted per learning cycle.
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The one that is eligible to adjust has nearest spiking activity before current update time.

Synaptic weights are also continuously modified during entire training. The modification of

synaptic delays once a training can also be interpreted as a proper initialization of synaptic

delays for the task.

8.10.1 Results of Noiseless Simulations

An example desired output signal Soutd (t) and the convergence of the actual output Souta (t)

over noiseless DelReSuMe training cycles are depicted in Figure 8.27. The desired patterns

have 3 spikes the same as ReSuMe tasks in subsection 8.7.1. After less than 20 learning cycles

the 3 desired spikes are produced precisely through exactly the same task with ReSuMe. The

comparison can be seen more clearly in the zoomed version in Figure 8.28.
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Figure 8.27: Reconstruction of the transformation from input patterns to output spike timings
(noiseless condition). The current network is trained to map a spatio-temporally encoded
input spike trains into another spatio-temporally encoded output pattern. tactout with blue
colour converges to tdesout with green colour.

Figure 8.29 demonstrates the evolution of synaptic weights for the noiseless DelReSuMe

mapping experiments in Figure 8.27. Left figure shows single pair’s weight trajectories of

inputs-output. Right figure illustrates entire sub-terminals similar to subsection 8.7.1. Similar

to ReSuMe experiments, it is clearly seen that weight trajectories do not achieve the mini-

mum/maximum weight boundaries as in STDP. Once trained synaptic weights are stabilized

in the intermediate values, the range of them during DelReSuMe is narrower than ReSuMe

illustrated in Figure 8.6. In other words, DelReSuMe learning has smaller weight changes
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Figure 8.28: Reconstruction of the transformation from input patterns to output spike timings
(noiseless condition). Zoomed version of Figure 8.5 and Figure 8.27. The current network is
trained to map a spatio-temporally encoded input spike trains into another spatio-temporally
encoded output pattern. tactout with blue colour converges to tdesout with green colour.

than ReSuMe learning. Although the network generates desired output before 30 epochs,

weights completely stabilize later around 200 epochs seen in Figure 8.29.

Histogram of weights through noiseless conditions, prepared from the bottom experiment in

Figure 8.29, is illustrated in Figure 8.30. Similar to subsection 8.7.1, four different character-

istic time points throughout learning are selected in order to show the evolution of synaptic

weights. The timing of those points are the same as ReSuMe in order to illustrate comparisons

clearly. w0 for 1st presentation is the case of initial weights illustrated in Figure 8.30a. w199

for 200th presentation is the case of after limited amount of learning epochs in ReSuMe.

For DelReSuMe illustrated in Figure 8.30b, it is almost the point that synaptic weights are
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fully stabilized. w599 for 600th presentation and w1999 for 2000th presentation are the cases

after more learning epochs in ReSuMe. For DelReSuMe in Figure 8.30c and in Figure 8.30d,

there are almost no weight changes compared to 200th presentation which has already stabi-

lized synaptic weights. The unimodal steady-state distribution of synaptic weights is produced.
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Figure 8.29: Evolution of synaptic weights for the mapping experiments (noiseless condition).
In each plot individual weights are represented in a randomly selected colour. (Left) These
show only neuron 0 to output neuron with 10 sub-connections during a whole training (2000
presentations). (Right) These demonstrate entire synaptic weight modifications during a
whole training (2000 presentations).
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Figure 8.30: Histogram of weights is prepared from the experiment in Figure 8.29 (noiseless
condition). Four different characteristic time points are shown in the figure with legend texts:
w0 for 1st presentation in (a), w199 for 200th presentation in (b), w599 for 600th presentation
in (c), w1999 for 2000th presentation in (d).

While the learning is performed in DelReSuMe, the distribution covers the full range of

available weights seen through selected time points similar to the ReSuMe experiments in

subsection 8.7.1. It is also clear that the shape of weight distributions including their ranges

almost do not change between 200th and 2000th presentation; because the stabilization of the
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learning is already achieved by this presentation (see also Figure 8.27 and Figure 8.29).

Figure 8.31: The comparison of Remote Supervised Method and Delayed Remote Supervised
Method through mapping tasks. X-axis (Epochs) indicates the number of epoch NE which
consists of presentations NP summarized in Table 9.1. See text for a detailed explanation of
the figure.

Figure 8.32: Zoomed version of the comparison of Remote Supervised Method and Delayed
Remote Supervised Method through mapping tasks. X-axis (Epochs) indicates the number of
epoch NE which consists of presentations NP summarized in Table 9.1. See text for a detailed
explanation of the figure.

The performance of DelReSuMe is compared with ReSuMe with the spatio-temporal mapping

benchmark which is detailed in section 7.9. As seen in Figure 8.31, DelReSuMe has faster

convergence than ReSuMe. In less than 40 epochs DelReSuMe can learn to map input-output

patterns by adjusting synaptic weights and delays at the same time. However, ReSuMe learns
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8.10. Experiments: Mapping for Delayed Remote Supervised Method 214

the same task in around 180 epochs in subsection 8.7.1. Furthermore, some patterns which

have early spiking activities cannot be learnt by ReSuMe. This effect can be seen in Figure 8.8.

However, those tasks are learnt by DelReSuMe precisely. The zoomed version of the same

figure focusing on early training cycles is illustrated in Figure 8.32.

In the following section, the simulations are also shown under noise to demonstrate any detri-

mental effect that the plasticity may have. This helps to verify the reliability and robustness

of the plasticity mechanism compared to ReSuMe.

8.10.2 Results of Noisy Simulations

Similar to the ReSuMe experiments in section 8.7.2, we start with the deterministic model of

neurons in noise-free learning conditions through experiments in previous section. In addition,

the reliability of the network is also investigated in the face of noise interference during

training sessions. Same noise levels in section 8.7.2 as relatively low noise and relatively high

noise are considered. The details of the inserted noise and how they affect neuronal activity

are detailed in section 7.3. The characteristics of low noise and high noise are depicted in

Figure 7.1 and in Figure 7.2, respectively. For the low noise, the actual and desired spiking

activities through learning are illustrated in Figure 8.33. The evolution of synaptic weights is

depicted in Figure 8.34. Also the histogram of weights through four different learning times is

demonstrated in Figure 8.35.

For the high noise, the actual and desired spiking activities through learning are illustrated in

Figure 8.36. The evolution of synaptic weights is depicted in Figure 8.37. Also the histogram

of weights through four different learning times is demonstrated in Figure 8.38.

Inserting noise into the experiments causes slight shifting of actual spiking times (compared

to desired spiking times) especially for the relatively high noise experiments. DelReSuMe has

faster convergence compared to ReSuMe under the low noise without any spike shifting and

undesired activity. Although ReSuMe and DelReSuMe have similar undesired spike shifting in

the face of high noise, DelReSuMe does not generate extra actual spikes compared to desired

activity in the further learning points unlike ReSuMe. Although the precision of actual spiking

activities gets worse while noise level is increased illustrated in Figure 8.36, the speed of
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Figure 8.33: Reconstruction of the transformation from input patterns to output spike timings
(low noise). Trial number (y-axis) indicates the number of epoch NE which consists of
presentations NP summarized in Table 9.1. The current network is trained to map a spatio-
temporally encoded input spike trains into another spatio-temporally encoded output pattern.
tactout with blue colour converges to tdesout with green colour.

0 500 1000 1500 2000 2500 3000 3500 4000

Presentation Index
0.505
0.408
0.312
0.216
0.120
0.023
0.073
0.169
0.265
0.362
0.458
0.554
0.650
0.747

W
e
ig

h
ts

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

0 500 1000 1500 2000 2500 3000 3500 4000

Presentation Index
0.505
0.408
0.312
0.216
0.120
0.023
0.073
0.169
0.265
0.362
0.458
0.554
0.650
0.747

W
e
ig

h
ts

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S1

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S3

S4

S4

S4

S4

S4

S4

S4

S4

S4

S4

S4

S4

S4

S4

S4

S4

S4

S4

S4

S4

S5

S5

S5

S5

S5

S5

S5

S5

S5

S5

S5

S5

S5

S5

S5

S5

S5

S5

S5

S5

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S6

S7

S7

S7

S7

S7

S7

S7

S7

S7

S7

S7

S7

S7

S7

S7

S7

S7

S7

S7

S7

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

S8

S9

S9

S9

S9

S9

S9

S9

S9

S9

S9

S9

S9

S9

S9

S9

S9

S9

S9

S9

S9

Figure 8.34: Evolution of synaptic weights for mapping experiment (low noise). In each plot
individual weights are represented in a randomly selected colour. (Left) It shows only neuron
0 to output neuron with 10 sub-connections during a whole training (4000 presentations).
(Right) It demonstrates entire synaptic weight modifications during a whole training (4000
presentations).

learning convergence in DelReSuMe gets worse. However, DelReSuMe is affected less from

the noise in terms of the convergence speed. To sum up, DelReSuMe has faster convergence,

also DelReSuMe is more robust to the same noise level compared to ReSuMe. The shape of

synaptic weight distribution is the unimodal similar to noiseless conditions.

8.10.3 Discussion of Mapping

Although ReSuMe generates extra actual spikes compared to desired activity in the further

learning cycles under the high noise, DelReSuMe does not generate extra spikes under the same

noise level. Therefore, DelReSuMe is more robust to the limited level of high noise compared
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Figure 8.35: Histogram of weights is prepared from the experiment in Figure 8.34 (low noise).
Four different characteristic time points are shown in the figure with legend texts: w0 for
1st presentation in (a), w199 for 200th presentation in (b), w599 for 600th presentation in (c),
w1999 for 2000th presentation in (d).
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Figure 8.36: Reconstruction of the transformation from input patterns to output spike timings
(high noise). Trial number (y-axis) indicates the number of epoch NE which consists of
presentations NP summarized in Table 9.1. The current network is trained to map a spatio-
temporally encoded input spike trains into another spatio-temporally encoded output pattern.
tactout with blue colour converges to tdesout with green colour. Upper figure is from one experiment
and below figure is from another experiment.

with ReSuMe. Also DelReSuMe has faster learning speed during not only noiseless but also

noisy conditions: low noise and high noise. Another observation is the stabilization level for

the synaptic weight values is relatively around smaller values for DelReSuMe compared to
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Figure 8.37: Evolution of synaptic weights for the mapping experiment (high noise). In
each plot individual weights are represented in a randomly selected colour. (Left) It shows
only neuron 0 to output neuron with 10 sub-connections during a whole training (4000
presentations). (Right) It demonstrates entire synaptic weight modifications during a whole
training (4000 presentations).
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Figure 8.38: Histogram of weights is prepared from the experiment in Figure 8.37 (high noise).
Four different characteristic time points are shown in the figure with legend texts: w0 for
1st presentation in (a), w199 for 200th presentation in (b), w599 for 600th presentation in (c),
w1999 for 2000th presentation in (d).

ReSuMe. This is caused from plasticity of synaptic delays in addition to the plasticity of

synaptic weights in DelReSuMe.

8.11 Summary

A new model for existing remote supervision used in ReSuMe is introduced with experimental

evidence. The proposed heterosynaptic architecture is an alternative interpretation of the

remote supervision. Although the mechanism of remote supervision cannot be modelled on
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existing SNN simulators (as in Brian simulator), the proposed alternative topology is currently

modelled in Brian. It can also be modelled on other existing SNN simulators.

A computational model using temporal encoding and readout is presented to demonstrate

the characteristics of ReSuMe learning. The scheme in the model is biologically plausible.

The model is able to associate a spatio-temporal spike pattern with a target spike train.

This is initially demonstrated with the mapping benchmark in noiseless and noisy conditions

(relatively low and high noise). In addition to single input-output pattern mapping carried

out with ReSuMe, more challenging tasks have been investigated under noiseless conditions:

the logical operations TRUE, P1, AND, and XOR. Those tests are evidence for the proposed

topology introduced in section 8.4 which works in the case of multiple input-output patterns as

well. Also, this benchmark can be basis for future work in order to extend single input-output

pattern mapping into multiple inputs-output patterns.

Furthermore, an extended version of the existing Remote Supervised Method has been de-

veloped, named Delayed Remote Supervised Method (DelReSuMe). The proposed method

adjusts synaptic delays as well as synaptic weights. The practical application of the proposed

algorithm is demonstrated through mapping experiments in noiseless and noisy conditions

(low and high noise).

In order to compare Remote Supervised Method and Delayed Remote Supervised Method un-

der noiseless and noisy conditions, same mapping benchmarks are executed. It is demonstrated

that DelReSuMe has faster learning than ReSuMe for the mapping tasks in both noiseless

and noisy conditions: low noise and high noise. In addition, DelReSuMe is more robust to the

relatively high noise compared to ReSuMe. Although ReSuMe generates extra actual spikes

compared to desired activity in the further learning cycles under the high noise, DelReSuMe

does not generate extra spikes under the same noise level. Also the stabilization level for

the synaptic weights is relatively smaller values for DelReSuMe compared to ReSuMe. This

is caused from plasticity of synaptic delays in addition to the plasticity of synaptic weights

in DelReSuMe. The shape of synaptic weight distribution is the unimodal for noiseless and

noisy conditions for both ReSuMe and DelReSuMe unlike the U-shaped bimodal distribution

in the Additive-STDP.
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Chapter 9

Reward-modulated STDP
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9.1 Introduction

In behavioural learning paradigms, strength of behaviour is modified by receiving reward or

punishment as reinforcements. Reinforcement Learning (detailed in chapter 4) inspired by

behaviorist psychology is an algorithmic approach to reward learning in the Machine Learning

discipline (Sutton & Barto, 1998). Recently, several plasticity experiments, including Spike-

timing Dependent Plasticity, demonstrate that neuromodulators, particularly Dopamine (DA)

related to novelty and reward prediction, have global mechanisms for synaptic modification

(Pawlak & Kerr, 2008; Wickens, 2009; Vasilaki et al., 2009). In order to consolidate the

changes of synaptic strength in response to pre- and post-synaptic neuronal activities, an

additional reward signal can be used to control learning (Bailey et al., 2000; Vasilaki et al.,
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2009).

Spike-timing Dependent Plasticity (STDP) described in section 3.4 is a spike pairing protocol

where weight changes are determined according to pre-synaptic and post-synaptic firing times

(Bi & Poo, 1998; Sjostrom et al., 2001; Froemke et al., 2005). STDP and Hebbian mechanisms

are types of unsupervised plasticity that result as a function of the neuron’s own dynamics

(Gerstner et al., 2014). On the other hand, according to experimental studies neuromodulators

such as acetylcholine, noradrenaline, dopamine can also influence synaptic plasticity and

memory formation (Rasmusson, 2000; Gu, 2002). The Reinforcement Learning discussed in

chapter 4 shows that the neurotransmitter dopamine (DA) is linked to reward mechanisms

(Schultz et al., 1997; Schultz, 1998). Also, the interaction of DA signals with STDP mechanism

is studied in several regions of the brain as in the amygdala (Bissiere et al., 2003), in rat

visual cortex layer (Seol et al., 2007), in corticostriatal synapses (Pawlak & Kerr, 2008), and

in prefrontal cortex layer (Xu & Yao, 2010).

Updating synaptic strengths through global neuromodulators (Seol et al., 2007) can be viewed

as a teacher signal, and called semi-supervised learning. This mechanism which is based

on Dopamine neuromodulation and its biological justification is discussed in section 3.6.

Temporal-Difference (TD) learning (see Figure 9.1) as a type of Reinforcement Learning

technique is linked to biological considerations by using eligibility traces which track the

synaptic firing times from recent spikes (Farries & Fairhall, 2007; Florian, 2007; Izhikevich,

2007b). Inspired by these observations, two levels of plasticities using STDP and reward are

hypothesised as Reward-modulated Spike-timing Dependent Plasticity (R-STDP) in several

theoretical and practical studies (Farries & Fairhall, 2007; Florian, 2007; Izhikevich, 2007b;

Legenstein et al., 2008; Fremaux et al., 2010, 2013; Fremaux & Gerstner, 2015). Similar to

them, experiments in this paper are implemented using R-STDP mechanism.

Our motivation here is that the precise times of individual spikes might be fundamental for

efficient computation in capturing certain temporal dynamics. This paradigm is demonstrated

in neurobiological research (Bi & Poo, 1998). The STDP process performs a small weight

change for a longer time difference and a larger change for a shorter time difference between

pairs of spikes. Here, instead of applying those changes directly, they are modulated using

the reward signal similar to a supervisory signal, motivated by sensory feedback in the brain
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(Carey et al., 2005).

During experiments, the reward is provided by criticizing the actual and desired output neuron

activities at the end of each learning cycle. Then, the modulated weights are applied to synap-

tic connections. The goal of the Spiking Neural Network is to modify the vector of synaptic

weights w to achieve desired spike patterns at the training neuron’s output Soutd (t) in response

to the given M input sequences Sin1 (t), Sin2 (t), ..., SinM (t). Although, here input and output

spike sequences use Poisson spike timings as random processes (detailed in subsection 6.3.2),

the proposed plasticity mechanism is not dependent on this interpretation. Therefore, other

spike-generation processes should work as well.

In this chapter, the R-STDP rule of maximizing the reward is implemented (Fremaux et al.,

2010). Hebbian plasticity is modulated by the reward signal analogous to Dopamine modula-

tion. A transient memory of synaptic events is stored at each synapse as synaptic eligibility

traces. The reward is calculated at the end of each training cycle. Once the reward occurs,

synaptic weights are updated.

Temporal sequence schemes can contain a single spike or multiple spikes in the simulation

time window as described in section 6.4. The novel aspect of this study addresses multi-spike

timings rather than a single-spike coding scheme to achieve a biologically more realistic scheme.

A dopaminergic-inspired learning rule combined with STDP using multi-synaptic connections

rather than a single connection from each input and output neurons is shown both analytically

and through computer experiments to have rapid convergence under noiseless, low noise

and high noise conditions. The development of R-STDP with increased learning speed helps

generic learning tasks where a neuron is supposed to respond to input spike patterns with

specific output spikes. Through the proposed architecture, the problem of getting multiple

spikes into and out of the Spiking Neural Network is solved, and the task of mapping is fulfilled.

This chapter demonstrates that Spiking Neural Networks encoding information in the timing

of multiple spikes are capable of learning to map spike patterns with multiple spikes. Firstly,

the reward mechanism is introduced in section 9.2. Then, the details of eligibility trace is

presented in section 9.3. In section 9.4, empirical Dopamine R-STDP is briefly compared

with the theoretically derived R-max rule. In the following sections two benchmarks are
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Figure 9.1: Schematic of Reward-modulated Spike-timing Dependent Plasticity learning rule.
In STDP detailed in section 3.4, a coincidence window W consists of both post-before-pre and
pre-before-post components. Spiking activities are counted if the post-synaptic firing time
occurs within a few ms of a pre-synaptic spike based on decay time constants as τpre and τpost.
The result of the coincidence measure is filtered through a τe kernel, and then multiplied by
the TD error δR in order to control synaptic weight wij .

demonstrated aiming to assess the computational performance of the proposed method as

a biologically plausible implementation of Reinforcement Learning. Finally, the mapping

benchmark in section 9.6 is investigated under noiseless, low noise and high noise conditions

in order to compare robustness and performance of the proposed topology. The details of

the inserted noise and how they affect neuronal activity are detailed in section 7.3. The

characteristics of low noise and high noise are depicted in Figure 7.1 and in Figure 7.2,

respectively.

9.2 Reward Mechanism

A reward (punishment) is generated as a global neuromodulatory signal based on how close

the actual activity to the target spiking activity. The reward signal employs the synaptic

weights regulated by STDP detailed in section 3.4. Hence, locally calculated and stored

changes are applied according to the level of a global neuromodulator (Vasilaki et al., 2009).

This broadcast of the global reward signal to all synapses leads to Reinforcement Learning.

Neuromodulators such as Dopamine is linked to a reward signal in the nervous system (Schultz

et al., 1997; Schultz, 1998; Vasilaki et al., 2009) (see section 3.6).

The normalized measure Dnorm
R described in Equation 6.13 (detailed in subsection 6.5.4)

between the actual and desired spike trains for the output neuron as a function of time t in

the current presentation is mapped into a reward signal r (Farries & Fairhall, 2007) as:

r = exp(−αDnorm
R ) (9.1)
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where Dnorm
R ∈ [0,∞] and r ∈ (0, 1]. The reward mapping factor α is set as 3 in order to

ignore distances Dnorm
R > 1 as in Table 9.2. The restrictions can be summarized as:

r =


0, if no output spike,

1, if Dnorm
R = 0,

exp(−αDnorm
R ), otherwise .

(9.2)

r = 1 indicates a perfect match between actual and desired spike trains. In order to avoid

network stagnation, we explicitly set r = 0, if there is not any output spikes generated.

A Temporal-Difference (TD) technique tracks discounted reward as it is defined in Reinforcement

Learning (Sutton & Barto, 1998) and discussed in chapter 4. An adapted version of the TD

rule is applied in order to track average reward as proposed by Farries & Fairhall (2007).

δnR = rncurr − rnavg (9.3)

where n is the trial number, δnR is the Temporal-Difference error between the current reward

received rncurr and the expected reward rnavg smoothed exponentially over previous trials as

defined in Equation 9.4, and is used to improve the current policy on synaptic strengths.

Maximizing the average reward per presentation maximizes the total future reward in order

to achieve an optimal policy (Sutton & Barto, 1998; Farries & Fairhall, 2007). In this model,

the environmental state in RL concept is the spike trains provided by the input layer and the

chosen action in RL is the spike trains generated by the output neuron.

The running average of reward as a function of time t through learning cycles is calculated as:

rnavg = γrn−1
avg (t) + (1− γ)rncurr (9.4)

where n indicates the presentation number (learning cycle). Here, all future rewards are

discounted by discount factor, γ where 0 < γ < 1. It is selected near to the maximum value

so recent rewards have higher utility than older rewards as γ = 9
10 and (1 − γ) = 1

10 as in

Farries & Fairhall (2007); Sutton & Barto (1998). Hence, it provides exponential smoothing.
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9.3 Eligibility Traces

The eligibility trace is the basic building block of Reinforcement Learning. Synaptic eligibility

traces based on theoretical considerations store a temporary memory of the past Hebbian

coincidence events at the site of the synapses (local memory) until a reward signal is received.

The eligible time of the synapse for reinforcement by a reward signal r(t) is determined by

the term of the eligibility trace eij(t) between neuron i and j. It is a decaying memory

over time between pre-synaptic and post-synaptic spiking activities. Multiple spike pairs are

accommodated by assuming linear contributions.

Inspired from the essence of Dopamine modulation of STDP in Izhikevich (2007b), STDP-

dependent eligibility trace model can be expressed as:

deij(t)
dt

= −eij
τe
STDP (∆t) (9.5)

where STDP (∆t) is traditional Hebbian-STDP (see section 3.4), τe is a decay time constant

of the eligibility trace eij . The candidate changes in synaptic weights eij are known as the

eligibility trace in Reinforcement Learning (Sutton & Barto, 1998; Fremaux et al., 2010).

Eligibility is generated by filtering with an exponential function the synaptic eligibility trace

eij(t) of the synapse from pre-synaptic neuron i to post-synaptic neuron j. Firing times of

pre- and post-synaptic neurons, occurring at times tprei and tpostj respectively, change eij(t) by

the amount of STDP (∆t) with ∆t = tpostj − tprei . The eligibility trace captures an unsuper-

vised Hebbian learning mechanism through correlations between pre- and post-synaptic firing

activities. The process is illustrated for both positive and negative spike timings in Figure 9.2.

The time constant of the eligibility trace τe regulates the rate of decay. It determines the

maximal interval between the pre-post coincidences and the reward signal. Decay constant

τe is typically chosen around one second (Florian, 2007; Fremaux et al., 2010); however, it

is manipulated in our experiments in order to capture all pre-post coincidences within a

single trial. It is the same as the duration of the input pattern in our simulations (see Table 9.2).

The actual synaptic modification also requires the presence of a neuromodulatory signal which

is derived previously as δR in Equation 9.3. δR is general symbol of TD error, δnR is the TD

error at learning cycle n. Therefore, the product of eligibility trace and the reward signal drive
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the synaptic plasticity. Under constant reward (Dopamine), the overall change in synaptic

strength based on the modulated plasticity rule is the same as “standard” STDP detailed in

section 3.4. The reward signal is the same for all synapses at the end of each learning cycles

throughout the network; therefore, it can be considered as a global factor transmitted by a

neuromodulator. The synaptic modification formula of R-STDP weights can be defined as:

∆wnij = η δnR eij(Tpe) (9.6)

where ∆wnij is the weight change, η is the learning rate, δnR shows the presence of a neuro-

modulatory success signal (not to be confused with the Dirac Delta function δ), Tpe is the

period of a single learning cycle presentation time, eij(Tpe) is the value of the eligibility trace

over the nth presentation with time t = Tpe (see Table 9.1). This learning paradigm is applied

into all synapses between input neurons and the actual output neuron at the end of each

presentation. The modification ∆wij is applied to a weight wij according to an additive

update rule (Morrison et al., 2008) detailed in subsection 3.4.2 as:

wn+1
ij ← wnij + ∆wnij (9.7)

Instead of delivering the reward to the network at every time moment, we apply it only at

the end of each learning cycle t = tr = Tpe as depicted in Figure 9.2. Each pre-synaptic

and post-synaptic spike pairs create a step change contribution to the eligibility trace eij .

Overall plastic change at a single synapse is then the sum of contributions from both positive

and negative spike timings. The eligibility decays exponentially with time constant τe. The

magnitude of the reward signal (reinforcement signal) across trials is changed according to the

eligibility trace as shown in Figure 9.2. The parameter of learning rate η controls the speed of

learning and it is positive-valued (see Table 9.2).

In Reward-modulated Spike-timing Dependent Plasticity, the synaptic weight changes from

STDP are not immediately applied. The relationship of pre- and post-synaptic spikes is

stored in each synaptic eligibility trace locally for further weight changes. The product of

this synaptic trace with a reward signal is integrated through weight changes illustrated in

Figure 9.1. The eligibility trace in the form of R-STDP permits learning with delayed reward

as well.
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Figure 9.2: An example of eligibility trace and weight update during a single learning cycle.
X-axis shows total simulation time steps during the period of single learning cycle Tpe as
Tpe ∗ dt = 120 ms / 0.1 ms = 1200 time steps. A) The pre-synaptic firing times are shown
in the top row with tnj coloured green and the post-synaptic spike train in the bottom row
with tfi coloured blue. B) The eligibility trace eij coloured green keeps past Hebbian events
from pre-synaptic and post-synaptic spikes in (A). At the end of the learning cycle Tpe =
120 ms, the current reward receives which is drawn in yellow. Weight change is determined
using the value of eligibility trace at Tpe = 120 ms and the reward in Equation 9.6. C) Weight
change is applied once the reward is received at the end of the presentation at time t = tR
corresponding to the time of reward delivery, t = tR = Tpe.

9.4 Comparison between R-STDP and R-max

Although Hebbian learning depends on two factors as pre- and post-synaptic firing activities,

R-STDP depends on three factors (see section 4.1.1 for three-factor learning), two Hebbian

factors and the neuromodulator, (Fremaux & Gerstner, 2015). R-STDP is based on the ex-

perimental evidence that neuromodulators regulates the synaptic modifications due to STDP

(Florian, 2007; Farries & Fairhall, 2007; Legenstein et al., 2008). The effect of Dopamine in

the brain is strongly related to the Reinforcement Learning according to various experiments

(Schultz et al., 1997; Reynolds et al., 2001; Pawlak & Kerr, 2008).

Reward-maximisation (R-max) rule is derived theoretically in order to maximize the received

reward from the application of policy gradient methods for a stochastically spiking neuron

model (Xie & Seung, 2004; Pfister et al., 2006; Florian, 2007; Fremaux & Gerstner, 2015).

R-STDP is quite sensitive to changes in the mean reward value. The average synaptic weight
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change is split into the unsupervised and reward learning parts because of RL rules (Farries

& Fairhall, 2007; Florian, 2007; Fremaux et al., 2010). The reward learning element depends

on the covariance between pre-synaptic/post-synaptic activity and the reward, while the

unsupervised learning element depends on only the mean reward level. The main difference

between R-STDP and R-max is the unsupervised part: in R-max rule it is always zero in

contrast to R-STDP. Therefore, R-max rule is not influenced by the mean reward level unlike

R-STDP (Farries & Fairhall, 2007; Legenstein et al., 2008; Fremaux et al., 2010).

Both rules then have very similar requirements for LTP except the shape of coincidence kernels

(Fremaux et al., 2010). However, the LTD requirements are quite different. In R-STDP, LTD

depends on post-synaptic spikes, whereas only the instantaneous firing rate, which is equal

to the density of spikes at time t (Gerstner et al., 2014), counts for R-max rule (Fremaux

et al., 2010; Fremaux & Gerstner, 2015). Both plasticity mechanisms rely on three-term

rule (detailed in section 4.1.1) with a structure of a Hebbian plasticity that is modulated

by the global reward. Although derived R-max rule has performance advantages as faster

learning because of the insensitivity to mean success signal, there is a lack of experimental

evidence for the biological underpinnings about R-max rule (Florian, 2007; Fremaux et al.,

2010). The success signal in our notation is interpreted as a Temporal-Difference error δnR
which calculates the difference between an internal estimate of the expected reward and the

current reward. In addition, R-STDP without LTD performs better than balanced R-STDP

for single-connection, its performance quite similar to R-max (Fremaux et al., 2010).

To sum up, there are two main forms of learning mechanisms for reward modulation based

on Equation 9.5 and Equation 9.6 as an empirically formulated R-STDP mechanism, and a

theoretically derived Reward-maximisation (R-max) rule. We choose to focus on R-STDP

because of its biological basis/biological realism on spike timing. In addition, the proposed

network architecture with multi-synaptic connection is not dependent only the learning rule

of Reward-modulated Spike-timing Dependent Plasticity. Hence, R-max rule could also be

mapped to the proposed architecture.
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9.5 Overall Setup

The form of single connection without synaptic delays is compared with multiple constant

delay mechanism detailed in section 7.4 under the learning mechanism of R-STDP. In the case

of multi-constant-delay, the number of synaptic connections is Nsub = K = 10 (see Table 9.4)

with non-programmable delays between 1− 10 ms, dij,k = k(ms). However, the bias input

neuron ni=0 (see subsection 7.5.3) has a single connection without a delay, dij,k=0 = 0 ms.

Network architecture used in R-STDP tasks is already introduced in section 7.5. The types

of neuron models used in proposed SNNs under the noiseless conditions are summarized in

section 7.2. In addition, the training and testing stages of performed experiments are also

described in subsection 7.8.1 and subsection 7.8.2, respectively.

Each presentation runs for the simulated Tp = 100 ms duration of the input spike trains

also with two times the maximal synaptic delay 2 ∗ τm = 20 ms added as Tpe = 120 ms

(see Table 7.1). Similar to the experiments in section 8.7 and section 8.10, the simulation of

network dynamics is performed on a time step of dt = 0.1 ms. The number of epochs NE

and the number of presentations NP are shown in Table 9.1. Total simulation time can be

calculated by Tpe∗NP ∗NE with the parameters in Table 7.1 (see subsection C.9.10 for details).

Parameter Type Parameter Names Values
Presentation Time Tpe 120 ms

Run Time Resolution dt 0.1 ms
Presentation Number NP 1

Epoch Number NE 3000

Table 9.1: Length parameters used for the computer simulations through R-STDP.

In order to avoid either silencing or extreme network activity by frequent firings of neurons,

all synaptic weights are bounded with a lower boundary wTRNmin and an upper boundary wTRNmax

similar to previous experiments in section 8.7 and section 8.10 .

In this model, the actual output neuron is trained to respond with spatio-temporally encoded

input spike patterns by tuning synaptic weights. The strength of synaptic connection w∗

between input layer and desired output neuron is fixed and set to maximum weight value as

w∗ = wTRNmax in order to force desired neuron to generate spikes at each target times. Other
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Parameter Type Parameter Names Values
Plasticity Amplitudes Apre, Apost 0.010, 0.005

Decay constants τpre, τpost 10 ms, 20 ms
Weight Limits [wTRNmin , wTRNmax ] [-1, +1]

Initial Weight Limits [winitmin, w
init
max] [-0.02, 0.08]

Excitatory/Inhibitory Rate [rinitexc , r
init
inh ] (0.2, 0.8)

Eligibility Decay τe 100 ms
vRD Decay τR 10 ms
vRD Period TR 120 ms

Learning Rate η 200.0
Reward Mapping Factor α 3.0

Table 9.2: Model parameters used for the computer simulations during R-STDP.

weights are initialised uniformly with the range [winitmin, w
init
max] as in Table 9.2. They are chosen

quite small so there is no spike generation until the learning performs adjustment of firing rate.

Synaptic connections are allowed to contain a mix of both positive and negative weight values.

Synaptic connections with negative weights behave like inhibitory synapses. Therefore, the

initial weight range is set as 20% (inhibitory) and 80% (excitatory) analogous to observations

in mammalian neocortex (DeFelipe & Farinas, 1992) as described in Table 9.2 with rinitexc , rinitinh ,

respectively.

Activity-dependent homeostatic weight renormalization is performed in order to stabilize

neuronal firing rates. Synaptic scaling described in subsection 3.5.1 is implemented in the

proposed plasticity scheme with the parameters of scaling factor β, scaling range rate p

in Table 9.3. The desired spike number from the output neuron Ndes is Ndes = 3 because

rout = 0.03 Hz in the window Tp = 100 ms as Ndes = rout ∗ Tp.

Parameter Type Parameter Names Values
Desired Spike Number Ndes 3
Scaling Range Rate p 0.02

Scaling Factor β 0.001

Table 9.3: Scaling parameters for R-STDP.
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9.6 Experiments: Mapping

Same mapping benchmark used in previous experiments in section 8.7 and section 8.10 is also

implemented throughout this chapter. The mapping benchmark detailed in section 7.9.1 is

to map the timings of input spike patterns into the target output patterns precisely. The

main learning phenomena relied on here is the framework of Reward-modulated Spike-timing

Dependent Plasticity, which modulates the outcome of Spike-timing Dependent Plasticity by

a neuromodulator signal. One of the fundamental aims through experiments in this chapter is

to compare the learning performance and the reliability of single-connection without delay

versus the proposed multi-constant-delay connection under noiseless, low noise and also high

noise conditions detailed in section 7.3.

The block diagram of mapping benchmark (see section 7.9.1) is demonstrated in Figure 7.11.

There is a single input bank named P1. A spatiotemporally encoded spike pattern is applied

to the input bank (P1). The spiking network is trained to produce a desired spike train which

corresponds to the input pattern at the output (Q).

To have a fair comparison between without delay and with multi-constant-delay structures, we

use the same number of synapses in both cases: a single connection without delay and multi-

synaptic connections with delays from each input neuron to output neuron summarized in

Table 9.4. The network form with single synaptic connection between each input-output neuron

has 200 neurons in the input layer. The form of multiple synapses with multi-constant-delay

architecture has only 20 input neurons with 10 synaptic connections each with varied delays

from each input neuron to output neuron. In both cases, the total number of plastic synapses

is the same, 200x1=200 total synaptic connections in the mechanism of single-connection and

20x10=200 total synaptic connections in the mechanism of multi-constant-delay.

Parameter Type Values for single-connection Values for multi-connection
Nin = M 200 20
Nsub = K 1 10
Nout = O 2 2
Nsyn = S 200 200

Table 9.4: Parameters of the network architecture for mapping benchmark with a single-
connection and multi-constant-delay mechanism.
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Each neuron in the input layer is fed with a different spike train pattern, Sin1 (t), Sin2 (t), ...,

SinM (t), driven by external Poisson spike trains which are outlined in the section 7.6. There is

also a bias input neuron layer with a single neuron (see subsection 7.5.3) as a reference in

order to force the comparator neuron’s desired spike pattern generation. In the output layer,

there are two neurons, Nout = 2, one is generating the actual output patterns Souta (t). The

other neuron produces desired spiking activities Soutd (t). Furthermore, a critic unit is included

which uses actual cell activity and desired target cell output in order to generate appropriate

reward modulation of synaptic weights between input neurons and the output neuron. To

sum up, all mapping experiments are carried out using a two-layer network with two types of

input neuron numbers with single or multiple synapses to output layer, 1 bias input neuron, 1

desired output neuron and 1 training output neuron summarized in Table 9.4.

During entire simulations, we use the same learning rate η as in Table 9.2. Same initialization

method is used for all simulations. All desired output patterns have exactly the same number

of spikes to have fair comparison. It is 3 spikes based on the selected firing rate (see Table 7.2).

Experiments are executed 10 times with randomly selected configurations, and averaged

results are demonstrated.

Similar to previous experiments in section 8.7 and section 8.10, we execute the mapping

benchmarks under noiseless, low noise and high noise conditions (see section 7.3) in order to

compare robustness and performance of the network in the following sections.

9.6.1 Results of Noiseless Simulations (Single-Connection)

Under the noiseless conditions, a desired output signal Soutd (t) and the convergence of the

actual output Souta (t) over training cycles are depicted in Figure 9.3 for single-connection

without delay. On the early runs, there are less spiking activities compared to desired spiking

activities because synaptic weights are initialized with small values at the beginning. Once

the training continues, the number of generated spikes at the output of network becomes

closer to desired activity. After less than 600 episodes the network produces 3 desired spikes

within 3 ms of target. With this configuration, it can be clearly seen that the network reliably

learned the given pattern within 1500-2500 cycles. Furthermore, the stability preservation of

the network by keeping frequencies of neuronal activity in a range can be seen over the entire

simulation.
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Figure 9.3: Reconstruction of the transformation from input patterns to output spike timings
(noiseless, without delay). The current network is trained to map a spatio temporally encoded
input spike trains into another spatio temporally encoded output pattern. tactout with blue
colour converges to tdesout with green colour.
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Figure 9.4: Evolution of synaptic weights for the mapping experiment (noiseless, without
delay). The figure demonstrates entire synaptic weight modifications during a whole training..

Figure 9.4 demonstrates the weight trajectories during an example training session. It is clear

that all synaptic strengths get closer a stable value after 1200-1300 learning cycles. Also, the

values of synaptic weights at the end of the successful training can be intermediate values

between weight boundaries wmin, wmax rather than all converging to wmin and wmax (see

subsection 3.4.2).
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Figure 9.5: Histogram of weights is prepared from the experiment in Figure 9.4 (noiseless,
without delay). Four different characteristic time points are shown in the figure with legend
texts: w0 for 1st presentation in (a), w199 for 200th presentation in (b), w599 for 600th
presentation in (c), w2999 for 3000th presentation in (d).
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Figure 9.6: The trajectory of current and averaged reward versus van Rossum Distance (vRD)
during randomly selected simulations (noiseless, without delay). A) A snapshot of averaged
rewards (coloured red) with running average of current rewards (coloured blue). The red line
shows the average reward time course ravg(t) over trial numbers 1 to 3000. The blue line shows
the current reward time course rcurr(t) over epochs. B) The evolution of mismatch between
the desired and the actual output signal, DR(Sa, Sd) based on the van Rossum Distance.

Histogram of weights through noiseless conditions, prepared from the experiment in Figure 9.4,

is illustrated in Figure 9.5. Four different characteristic time points throughout learning cycles
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are selected in order to show the evolution of synaptic weights. w0 for 1st presentation is the

case of initial weights illustrated in Figure 9.5a. w199 for 200th presentation is the case of

after limited amount of learning epochs illustrated in Figure 9.5b. w599 for 600th presentation

is the case of after more amount of learning epochs illustrated in Figure 9.5c. w1999 for 3000th

presentation is the case of end of simulation illustrated in Figure 9.5d. Those four time points

are selected similar to the experiments in section 8.7 and section 8.10. While the learning is

performed, the distribution covers the full range of available weights seen through selected

time points: 1st, 200th, 600th and 3000th presentations. The unimodal steady-state distri-

bution of synaptic weights is produced similar to the experiments in section 8.7 and section 8.10.

Convergence and error trajectory through the learning for single-connection without delay can

be seen in Figure 9.6. The figure is clipped after 3000 learning cycles because the convergence

behaviour and error measure do not change after that. The depicted number of trials as

3000 is sufficient to learn the input spike patterns in a stable manner. The trend of averaged

reward, applied during the learning, has smoother convergence compared to current reward

which is not directly applied. The level of reward signal converges to its maximum value of

0.91 during learning cycles. The distance between desired and actual activity move closer to

lower values. Reward has inverse relation with van Rossum Distance as depicted in Figure 9.6.

9.6.2 Results of Noiseless Simulations (Multi-Constant-Delay)

Under the noiseless conditions, a desired output signal Soutd (t) and the convergence of the

actual output Souta (t) over training cycles are depicted in Figure 9.7 for multi-constant-delay

connections. Figure 9.8 demonstrates the weight trajectories during an example training

session. In addition, histogram of weights through noiseless conditions, prepared from the

experiment in Figure 9.8, is illustrated in Figure 9.9. Finally, convergence and error trajectory

through the learning for multi-constant-delay architecture (with multiple synapses) can be

seen in Figure 9.10.

9.6.3 Results of Noisy Simulations (Single-Connection)

Similar to the experiments in section 8.7 and section 8.10, we start with the deterministic

model of neurons in noise-free learning conditions through experiments in previous section. In

addition, the reliability of the network is also investigated in the face of noise interference
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Figure 9.7: Reconstruction of the transformation from input patterns to output spike timings
(noiseless, multi-delay). The current network is trained to map a spatio temporally encoded
input spike trains into another spatio temporally encoded output pattern. tactout with blue
colour converges to tdesout with green colour.

0 500 1000 1500 2000

Presentation Index
1.243
1.039
0.836
0.632
0.428
0.225
0.021
0.183
0.386
0.590
0.794
0.997
1.201
1.405

W
e
ig

h
ts

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

S0

Figure 9.8: Evolution of synaptic weights for the mapping experiment (noiseless, multi-delay).
The figure demonstrates entire synaptic weight modifications during a whole training.

during training sessions. Same noise levels in section 8.7 and section 8.10 as low noise and

high noise are considered. The details of the inserted noise and how they affect neuronal

activity are detailed in section 7.3. The characteristics of low noise and high noise are depicted

in Figure 7.1 and in Figure 7.2, respectively.

For the low noise, the desired output signal Soutd (t) and the convergence of the actual output

Souta (t) over training cycles are depicted in Figure 9.11 for single-connection without delays.
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Figure 9.9: Histogram of weights is prepared from the experiment in Figure 9.8 (noiseless,
multi-delay). Four different characteristic time points are shown in the figure with legend texts:
w0 for 1st presentation in (a), w199 for 200th presentation in (b), w599 for 600th presentation
in (c), w1999 for 2000th presentation in (d).
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Figure 9.10: The trajectory of current and averaged reward versus van Rossum Distance (vRD)
during randomly selected simulations (noiseless, multi-delay). A) A snapshot of averaged
rewards (coloured red) with running average of current rewards (coloured blue). The red line
shows the average reward time course ravg(t) trial numbers 1 to 3000. The blue line shows
the current reward time course rcurr(t) over epochs. B) The evolution of mismatch between
the desired and the actual output signal, DR(Sa, Sd) based on the van Rossum Distance.

Figure 9.12 demonstrates the weight trajectories during an example training session. In

addition, histogram of weights through low noise conditions, prepared from the experiment in

236



9.6. Experiments: Mapping 237

Figure 9.12, is illustrated in Figure 9.13. Finally, convergence and error trajectory through

the learning for single-connection (without delays) can be seen in Figure 9.14.
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Figure 9.11: Reconstruction of the transformation from input patterns to output spike timings
(low noise, without delay). The current network is trained to map a spatio temporally encoded
input spike trains into another spatio temporally encoded output pattern. tactout with blue
colour converges to tdesout with green colour.
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Figure 9.12: Evolution of synaptic weights for the mapping experiment (low noise, without
delay). The figure demonstrates entire synaptic weight modifications during a whole training.

For the high noise, the desired output signal Soutd (t) and the convergence of the actual output

Souta (t) over training cycles are depicted in Figure 9.15 for single-connection without delays.

Figure 9.16 demonstrates the weight trajectories during an example training session. In

addition, histogram of weights through high noise conditions, prepared from the experiment

in Figure 9.16, is illustrated in Figure 9.17. Finally, convergence and error trajectory through
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Figure 9.13: Histogram of weights is prepared from the experiment in Figure 9.12 (low
noise, without delay). Four different characteristic time points are shown in the figure with
legend texts: w0 for 1st presentation in (a), w199 for 200th presentation in (b), w599 for 600th
presentation in (c), w2999 for 3000th presentation in (d).
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Figure 9.14: The trajectory of current and averaged reward versus van Rossum Distance (vRD
during randomly selected simulations) (low noise, without delay). A) A snapshot of averaged
rewards (coloured red) with running average of current rewards (coloured blue). The red line
shows the average reward time course ravg(t) trial numbers 1 to 3000. The blue line shows
the current reward time course rcurr(t) over epochs. B) The evolution of mismatch between
the desired and the actual output signal, DR(Sa, Sd) based on the van Rossum Distance.

the learning for single-connection (without delays) can be seen in Figure 9.18.
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Figure 9.15: Reconstruction of the transformation from input patterns to output spike timings
(high noise, without delay). The current network is trained to map a spatio temporally
encoded input spike trains into another spatio temporally encoded output pattern. tactout with
blue colour converges to tdesout with green colour.
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Figure 9.16: Evolution of synaptic weights for the mapping experiment (high noise, without
delay). The figure demonstrates entire synaptic weight modifications during a whole training.

In the following sections, the simulations are also shown under noise to demonstrate any

detrimental effect that multi-constant-delay architecture may have. This helps to verify

the reliability and robustness of the proposed architecture compared to the architecture of

single-connection without delay through R-STDP.
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Figure 9.17: Histogram of weights is prepared from the experiment in Figure 9.16 (high
noise, without delay). Four different characteristic time points are shown in the figure with
legend texts: w0 for 1st presentation in (a), w199 for 200th presentation in (b), w599 for 600th
presentation in (c), w2999 for 3000th presentation in (d).
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Figure 9.18: The trajectory of current and averaged reward versus van Rossum Distance
(vRD (high noise, without delay). A) A snapshot of averaged rewards (coloured red) with
running average of current rewards (coloured blue). The red line shows the average reward
time course ravg(t) trial numbers 1to 3000. The blue line shows the current reward time
course rcurr(t) over epochs. B) The evolution of mismatch between the desired and the actual
output signal, DR(Sa, Sd) based on the van Rossum Distance.
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9.6.4 Results of Noisy Simulations (Multi-Constant-Delay)

The same cases are also executed for multiple synapses with multiple delays under the low noise

and high noise. For the low noise, the desired output signal Soutd (t) and the convergence of the

actual output Souta (t) over training cycles are depicted in Figure 9.19 for multi-constant-delay.

Figure 9.20 demonstrates the weight trajectories during an example training session. In

addition, histogram of weights through low noise conditions, prepared from the experiment in

Figure 9.20, is illustrated in Figure 9.21. Finally, convergence and error trajectory through

the learning for multi-constant-delay (with multiple synapses) can be seen in Figure 9.22.
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Figure 9.19: Reconstruction of the transformation from input patterns to output spike timings
(low noise, multi-delay). The current network is trained to map a spatio temporally encoded
input spike trains into another spatio temporally encoded output pattern. tactout with blue
colour converges to tdesout with green colour.

For the high noise, the desired output signal Soutd (t) and the convergence of the actual output

Souta (t) over training cycles are depicted in Figure 9.23 for multi-constant-delay. Figure 9.24

demonstrates the weight trajectories during an example training session. In addition, his-

togram of weights through high noise conditions, prepared from the experiment in Figure 9.24,

is illustrated in Figure 9.25. Finally, convergence and error trajectory through the learning

for multi-constant-delay (with multiple synapses) can be seen in Figure 9.26.
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Figure 9.20: Evolution of synaptic weights for the mapping experiment (low noise, multi-delay).
In each plot individual weights are represented in a randomly selected colour. The figure
demonstrates entire synaptic weight modifications during a whole training.
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Figure 9.21: Histogram of weights is prepared from the experiment in Figure 9.20 (low noise,
multi-delay). Four different characteristic time points are shown in the figure with legend texts:
w0 for 1st presentation in (a), w199 for 200th presentation in (b), w599 for 600th presentation
in (c), w2999 for 3000th presentation in (d).

9.6.5 Discussion

The magnitude and direction of synaptic update is determined by the relative timing of

pre- and post-synaptic firings using Reward-modulated Spike-timing Dependent Plasticity.

However, one of the common problems for Supervised Hebbian paradigms: Synaptic weights

continue to adjust their parameters although the desired spike timings are achieved by applying
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Figure 9.22: The trajectory of current and averaged reward versus van Rossum Distance (vRD
during randomly selected simulations) (low noise, multi-delay). A) A snapshot of averaged
rewards (coloured red) with running average of current rewards (coloured blue). The red line
shows the average reward time course ravg(t) trial numbers 1 to 3000. The blue line shows
the current reward time course rcurr(t) over epochs. B) The evolution of mismatch between
the desired and the actual output signal, DR(Sa, Sd) based on the van Rossum Distance.
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Figure 9.23: Reconstruction of the transformation from input patterns to output spike timings
(high noise, multi-delay). The current network is trained to map a spatio temporally encoded
input spike trains into another spatio temporally encoded output pattern. tactout with blue
colour converges to tdesout with green colour.

a global modulator reward signal. This issue has been eliminated through modulator δR.

Once actual and desired spike timings are quite close or the same, the reward is maximized

and the error is minimized seen in Figure 9.27, Figure 9.28. Hence, current weights are no

longer be modified because of the minimized or zero factor of error. This factor stabilizes the
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Figure 9.24: Evolution of synaptic weights for the mapping experiment (high noise, multi-
delay). In each plot individual weights are represented in a randomly selected colour. The
figure demonstrates entire synaptic weight modifications during a whole training.
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Figure 9.25: Histogram of weights is prepared from the experiment in Figure 9.24 (high
noise, multi-delay). Four different characteristic time points are shown in the figure with
legend texts: w0 for 1st presentation in (a), w199 for 200th presentation in (b), w599 for 600th
presentation in (c), w2999 for 3000th presentation in (d).

network activity as demonstrated experimentally.

In this experiment, we have explored the approach of Spiking Neural Networks to perform a

spatio-temporal mapping task. In the learning for spiking neurons, the reward mechanism has

been used as a modulator signal through a STDP window relevant to biological observations.
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Figure 9.26: The trajectory of current and averaged reward versus van Rossum Distance (vRD
during randomly selected simulations) (high noise, multi-delay). A) A snapshot of averaged
rewards (coloured red) with running average of current rewards (coloured blue). The red line
shows the average reward time course ravg(t) trial numbers 1 to 3000. The blue line shows
the current reward time course rcurr(t) over epochs. B) The evolution of mismatch between
the desired and the actual output signal, DR(Sa, Sd) based on the van Rossum Distance.

The learning neuron can reach a high accuracy within 1200-1500 training iterations. The

learning neuron responded to the given stimulus by generating an output spike train instead of

the timing of single firing. Multi-spike timings also increase the number of possible maximum

output patterns. Furthermore, each neuron receives partial information through external

selection in the encoding scheme. The encoding period of the spike trains is chosen to be on a

scale of hundreds of milliseconds which matches the biological observations (Panzeri et al.,

2010; Butts et al., 2007).

In R-STDP experiments, we start with the choice of balanced windows between the pre-before-

post and post-before-pre sides similar to chapter 8. The balance detailed in subsection 3.4.2 is

handled by setting the LTD/LTP ratio to 1.0 with the choice of parameters: Apre, τpre, Apost,

and τpost (see Table 9.2). However, we have observed that ignoring LTD side rather than a

balanced windows with LTD and LTP performs better for multi-constant-delay architecture

as well similar to the observations for single-connection architecture (Fremaux et al., 2010).

This also strengthens the link between our R-STDP implementation and R-max rule. Hence,

entire simulations in this chapter use only LTP part in STDP windows.
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Two delay mechanisms are compared in the learning framework for feed-forward Spiking

Neural Network by Reward-modulated Spike-timing Dependent Plasticity. Reward-modulated

Spike-timing Dependent Plasticity is used which relies on both Hebbian plasticity modulated

by reward and synaptic eligibility traces as transient memory of past Hebbian events in each

individual synapses. The reward signal for each episode is derived from comparison of the

outputs of the actual neuron and desired spiking times. Thus, R-STDP synapses can drive

the required activity changes despite delayed reinforcement signal. Only delayed rewards are

taken into account because of biological plausibility (Schultz, 1998; Pawlak & Kerr, 2008).

There are two separate setups in order to compare single-connection without the delay mecha-

nism and with the delay mechanism through R-STDP. In both cases, the total number of

synapses Nsyn for the network is the same. We have also compared robustness and perfor-

mance of the network based on mapping benchmarks under noiseless, low noise and high noise

conditions.
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Figure 9.27: The trajectory of current and averaged reward versus van Rossum Distance (low
noise, single connection and the multi-delay comparison). Red lines with the legend of mD and
blue lines with the legend of xD indicate multi delays and single connection without delays,
respectively. A) A snapshot of averaged rewards of current rewards for multi delays (mD)
and for single connection without delays over epochs. B) The evolution of mismatch between
the desired and the actual output signal, DR(Sa, Sd) based on the van Rossum Distance for
the multi-delay and single connection without delays.

While the learning is performed in R-STDP, the distribution covers the full range of avail-
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Figure 9.28: The trajectory of current and averaged reward versus van Rossum Distance (high
noise, single connection and the multi-delay comparison). Red lines with the legend of mD and
blue lines with the legend of xD indicate multi delays and single connection without delays,
respectively. A) A snapshot of averaged rewards of current rewards for multi delays (mD)
and for single connection without delays over epochs. B) The evolution of mismatch between
the desired and the actual output signal, DR(Sa, Sd) based on the van Rossum Distance for
the multi-delay and single connection without delays.

able weights seen through selected four time points similar to the ReSuMe and DelReSuMe

experiments. It is clear that all synaptic strengths get closer to stable values during R-STDP

simulations in the both structures. The values of synaptic weights at the end of the suc-

cessful trainings can be intermediate values between weight boundaries wmin, wmax rather

than all converging to wmin and wmax (see subsection 3.4.2). The shapes of synaptic weight

distributions in noiseless and low noise cases are the unimodal similar to the ReSuMe and

DelReSuMe experiments. However, once the level of noise is increased for R-STDP, synaptic

weights are more likely to achieve its weight boundaries in both mechanisms. This can be

seen clearly in Figure 9.17 and Figure 9.25. This is not the case for the ReSuMe and the

DelReSuMe; because the shape of weight distributions is still unimodal under the high noise

through the ReSuMe and the DelReSuMe.

Faster convergence and better learning in multi-constant-delay structure compared to single-

connection can be seen under the low noise and high noise in Figure 9.27 and Figure 9.28,

respectively. The comparison of noiseless conditions is quite similar to the low noise per-

formance; hence, it is not drawn repeatedly. Inserting noise into the experiments causes
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shifting of actual spiking times compared to desired spiking times similar to the experiments

in section 8.7.2 and section 8.10.2. However, multi-constant-delay structure fluctuates more

for the averaged reward and van Rossum Distance especially on the impact of high noise.

This reflects more reduced reliability caused by high noise for multi-constant-delay structure

compared to single-connection without delay.

9.7 Summary

This chapter presents an architecture of spiking neurons with multi-constant-delay mechanism

through Reward-modulated Spike-timing Dependent Plasticity with several experimental

results based on spatio-temporal mappings. In R-STDP, synaptic modifications only occur if

there is a release of reward within a determined time window. The trained memory is formed

through synaptic weight modification during learning cycles to respond in a temporally precise

manner.

Throughout the chapter, we propose a two-layer SNN with multiple delays between the

input-output neuron pairs. The simple Leaky-Integrate-and-Fire spiking neuron model with

two different modelling parameters is used in this chapter. At the level of Neural Networks,

actor-critic topology is proposed, including a bias layer.

We test the proposed architecture using the learning rule of R-STDP on a set of mapping

tasks. The proposed network architecture with multi-synaptic connection is not dependent

only the learning rule of Reward-modulated Spike-timing Dependent Plasticity, it can be

also transferred to the other reward modulated rules such as Reward-maximisation rule. The

proposed mechanism of delays helps to perform the task well with less spiking input neurons

and fewer input patterns than direct connections without delays in R-STDP. Experimental

results show the learning capability and performance of the proposed mechanism. It has higher

accuracy for temporal sequences of three spikes in 100 ms. Also, the introduced learning

mechanism is able to learn to map input patterns into output pattern with multiple timings

around 1200-1500 learning cycles (presentations) under noiseless conditions. For the similar

tasks, ReSuMe requires around 1400-1500 training steps (presentations) in subsection 8.7.1,

DelReSuMe requires around 300-350 training steps (presentations) in subsection 8.10.1.
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There are two separate setups in order to compare single-connection without any synaptic delay

and with multi-constant-delay mechanism. In both cases, the total number of synapses Nsyn

for the network is equal. Also we demonstrate that the form of multi-constant-delay structure

has better convergence speed under noiseless and realistically noisy conditions. However, its

robustness to the effect of relatively high noise is less compared to single-connection structure.

The model developed in this chapter primarily focuses on the multiple firing times during the

encoding time frame both in the input layer and the output layer. Biological plausibility of

the proposed approach is one of the primary aspects in our study using temporal encoding,

plasticity mechanisms and multi-spike coding in input-output layers.
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Conclusion - Contributions and Future

Research
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The final chapter of this thesis describes the original contributions including theoretical and

practical issues in section 10.1 and future works in section 10.2 are specified.

10.1 Conclusion and Contributions

Various achievements have been made during the course of this research. Let us begin with an

overview of the physiology of the neuron and its mathematical model in chapter 2. Then, the

relation between biological and artificial neurons is presented with the structural and func-

tional inspirations by neurbiological findings. A brief history from a standard Artificial Neural

Network (ANN) to biological Spiking Neural Network (SNN) is provided. Then, three main

types of learning procedures as supervised learning, unsupervised learning and Reinforcement

Learning are discussed. Example implementations of various approaches are reviewed in

order to model the neuron transfer function such as Hodgkin-Huxley (HH) model, Integrate-

and-Fire (IF) neuron model, Leaky-Integrate-and-Fire (LIF) neuron model, Spike Response

Model (SRM) and Izhikevich model (IM). An overview of some common simulators are also

given, focusing on the Brian simulator used throughout the thesis, for Spiking Neural Networks.
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In spike train based plasticity rules in chapter 3, the temporal order of pre-synaptic and

post-synaptic firing times can determine synaptic potentiation (Long Term Potentiation -

LTP) vs. depression (Long Term Depression - LTD). A pre-synaptic spike arriving before

a post-synaptic spike leads to synaptic potentiation, arrival after the post-synaptic spike

activity causes depression of the synaptic connection (Bohte, 2004). This temporal rela-

tionship between pre- and post-synaptic activity is a paradigm derived from neurobiological

experiments and it is known as Spike-timing Dependent Plasticity (STDP) which is experi-

mentally observed in hippocampal neurons (Bi & Poo, 1998) discussed in chapter 3. In the

thesis, several forms of STDP with time-dependent weight changes are used as a biologi-

cally plausible mechanism in order to map input spike patterns onto output spike patterns

through three algorithms: Remote Supervised Method (ReSuMe) in section 8.3, Delayed

Remote Supervised Method (DelReSuMe) in section 8.9, and Reward-modulated Spike-timing

Dependent Plasticity (R-STDP) in chapter 9. Beyond Spike-timing Dependent Plasticity,

homeostatic plasticity with the mechanism of synaptic scaling as a further process in regulating

neuronal functions in the network is discussed. Also, Dopamine-modulated plasticity as an

important modulations of synaptic plasticity is described with its biological background.

An important goal of chapter 4 is to describe the computational foundations for dealing

with problems like states and actions in the context of Reinforcement Learning mechanism

which is a particular branch of Machine Learning. Furthermore, a number of underlying

concepts for the following chapters such as Temporal-Difference mechanism as an attractive

formulation of RL is examined in this chapter. For instance, Reward-modulated Spike-timing

Dependent Plasticity in chapter 9 as a biologically plausible learning for a network of spiking

neurons is derived from the continuous Temporal-Difference formulation detailed in this

chapter. We have also introduced the general overview of the three-factor learning rule in

Spiking Neural Networks. The regulated form of original associative plasticity by Dopamine

as the three-factor rule is summarized for the basis of synaptic plasticity and memory for-

mation in chapter 9. In addition, the mechanism of eligibility trace, a transient memory

of past events, through Temporal-Difference is examined in the context of RL. The block

of eligibility trace, is the fundamental component in the proposed spiking learning in chapter 9.

In the beginning of chapter 5, Temporal-Difference learning is implemented on a maze task.

Then, a set of novel rules in order to improve exploration in Reinforcement Learning, fo-
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cusing on Temporal-Difference learning, are proposed using knowledge-based approaches.

Experiments described in this chapter demonstrate the improvements on the exploration

efficiency of the Reinforcement Learning algorithm for a maze navigation task. Although it is

tested with one important RL algorithm, Temporal-Difference learning, it can be applied to

any exploration algorithm for faster learning. We have also prepared a simulation platform

which enables us to test various algorithms on the maze environment in chapter 4. Selectable

techniques from a Graphical User Interface developed are two wall follower algorithms: LSR

rule and RSL rule, Temporal-Difference learning algorithm, and knowledge-based learning

(Replacement Rules) with the combination of LSR or RSL or Temporal-Difference learning.

This provides a conceptual simulation framework for further path navigation models as well.

All investigations for the maze task are prepared through this framework. In this chapter, the

performance of TD learning for the maze task is successfully improved by producing new set

of extraction rules. We introduce a set of novel Replacement Rules as Extended Replacement

Rules for LSR (ExtRepLSR) and Extended Replacement Rules for RSL (ExtRepRSL) in

section 5.3 for maze environments with a remarkable performance compared to LSR rule or

RSL rule itself, also to previously offered set of rules from Venkata et al. (2011) (BscRepLSR).

In order to give overview about designing SNN experiments for further part of the thesis,

network topologies, focusing on SNNs, are summarized in chapter 6. Spike train notation

for generation of artificial spike trains throughout the performed experiments is described

here. The encoding mechanisms for Spiking Neural Networks as rate coding, temporal coding

and population coding are discussed here. Furthermore, several spike distance metrics in

order to measure difference between spike trains are presented: Victor & Purpura Distance,

Coincidence Factor, Schreiber Distance, and van Rossum Distance.

The common mechanisms and techniques during experiment setups used in chapter 8 and

chapter 9 are described in chapter 7. The types of neuron models used in proposed SNNs

are summarized considering the scenario of the presence of noise. Two different noise levels

with the standard deviation of the membrane potential are considered as relatively high and

low noise which are included as additive term in synaptic input current. In addition, three

different delay mechanisms between each pre- and post-synaptic neuron pairs throughout

experiments are introduced. They are multiple synaptic connections with constant axonal

propagation speed, multiple synaptic connections with plastic axonal propagations, and a
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single synaptic connection without axonal delay. The network architectures of spiking neurons

for obtaining spatio-temporal experiments during training and testing are demonstrated with

the details of bias neuron. The proposed encoding mechanism for spatio-temporal patterns

during experiments is presented as well. The adoption of van Rossum Distance (vRD) in order

to measure spike-train similarity and a (mis)classification error metric in order to evaluate

task performance of the network are detailed. Also, the pseudocodes of training and testing

mechanisms throughout the experiments in chapter 8 and chapter 9 are described in section 7.8.

Finally, benchmarks used during experiments are introduced in section 7.9.

It is clear that multi-spike timings are more biologically realistic and they are amenable

to empirical studies. For biological plausibility, we focus on plasticity rules which handle

multi-spike coding. However, only a few learning rules to teach a SNN are proposed which

can tackle precise input-output mappings of spike patterns with multiple pulses on each train

instead of single spikes in spatio-temporal patterns. Remote Supervised Method (Kasinski

& Ponulak, 2006), is the supervised learning of desired spike trains in response to input patterns.

In chapter 8, we start with a review of SpikeProp which is one of the baseline learning

algorithms for SNNs. Then Remote Supervised Method (ReSuMe) (Kasinski & Ponulak,

2006), uses a combination of Hebbian-STDP and anti-Hebbian-STDP in a single synapse, is

detailed with experimental work. Two benchmarks of mapping and logical operations detailed

in section 7.9 are addressed. Mapping tasks use a designed architecture trained to respond

to spatio-temporal patterns of input spikes from multiple neurons with a pattern of output

spikes in the face of noiseless, relatively low noise and relatively high noise. Logical operation

tasks consist of a range of operations: TRUE, AND, OR, and XOR detailed in section 8.8. In

addition, a novel connection scheme using the proposed bias neuron is introduced for ReSuMe

with its implementation and its mathematical/topological descriptions. It is experimentally

proved that the proposed heterosynaptic topology can exactly mimic the ReSuMe weight

change through two synapses from input to actual output neuron and desired output neuron.

Although, Remote Supervised Method can be used for classifying input patterns by spatio

temporally encoded patterns, it is not reliable and stable enough for information processing

in the nervous system (Gruning & Sporea, 2012). For this purpose, we have investigated how

to find a better technique for multi-spike coding. Therefore, a novel plasticity mechanism as
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an extended version of ReSuMe, named DelReSuMe, is proposed by adding delay learning

into weight learning. A novel framework for ReSuMe and DelReSuMe is developed with

heterogeneous synapses in chapter 8. The same topology as an alternative interpretation of

the remote supervision developed for ReSuMe is also used in DelReSuMe experiments. The

learning efficiency of the modified algorithm DelReSuMe is compared to ReSuMe on a series of

mapping tasks in the face of noiseless, relatively low noise and relatively high noise. Although

ReSuMe generates extra actual spikes compared to desired activity in the further learning

cycles under the high noise, DelReSuMe does not generate extra spikes under the same noise

level. Therefore, DelReSuMe is more robust to the limited level of high noise compared

with ReSuMe. Also DelReSuMe has faster learning speed during not only noiseless but also

noisy conditions: low noise and high noise. Another observation is the stabilization level for

the synaptic weight values is relatively around smaller values for DelReSuMe compared to

ReSuMe. This is caused from plasticity of synaptic delays in addition to the plasticity of

synaptic weights in DelReSuMe. Briefly, faster learning and convergence with slightly better

accuracy through mapping benchmarks has been achieved with DelReSuMe in section 8.9

compared to ReSuMe in section 8.9.

Various learning types are proposed to comprehend how animals/humans adjust their be-

haviour, how they perform iterative optimization of skills like riding a bike or playing video

games. However, it is widely believed to rely on synaptic plasticity of the brain through the

paradigm of “practice makes perfect” (Seung, 2003). Different forms of synaptic plasticity

rules might help to optimize the neural structure, if biological plausibility is taken into account.

Therefore, in chapter 9, we have proposed a framework of Reward-modulated Spike-timing

Dependent Plasticity (R-STDP) for multi-spike-coding in chapter 9. In addition, empirical

Dopamine R-STDP is briefly compared with the theoretically derived R-max rule. Through

implemented experiments using R-STDP, we have explored the approach of Spiking Neural

Networks to perform a spatio-temporal mapping task in the face of noiseless, relatively low

noise and relatively high noise conditions. For spiking neurons, the reward mechanism is used

as a modulator signal through the STDP window. There are two separate setups in order

to compare single connection without synaptic delay and with the multi-delay mechanism.

In both cases, the total number of synapses for the network is the same. While the learning

is performed in R-STDP, the distribution covers the full range of available weights similar

to the ReSuMe and DelReSuMe. All synaptic strengths get closer stable values at mostly

intermediate values between weight boundaries in the both structures. The shapes of synaptic
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weight distributions in noiseless and low noise cases are the unimodal similar to the ReSuMe

and DelReSuMe experiments. However, once the level of noise is increased for R-STDP,

synaptic weights are more likely to achieve its weight boundaries in both mechanisms. This

is not the case for the ReSuMe and DelReSuMe; because the shapes of weight distributions

are still unimodal under the high noise through the ReSuMe and DelReSuMe. Inserting

noise into the experiments causes shifting of actual spiking times compared to desired spiking

times similar to the ReSuMe and DelReSuMe. Multi-constant-delay structure compared to a

single-connection fluctuates more for the averaged reward and the spike distance especially

on the impact of high noise. This reflects more reduced reliability caused by high noise for

multi-constant-delay structure compared to single-connection without delay. As a future work,

the performance of R-STDP can be investigated on other tasks such as logical operations as

XOR task and maze task.

We have also developed a framework for the Brian simulator to handle training and testing

mechanisms. The proposed simulation framework is detailed in Appendix C. The framework

enables us to perform all experiments on SNNs in chapters 8 and 9. It can be reused and

extended for future research of various plasticity based on Feed-forward Networks. Most

of the parts of our implementation are not dependent on Brian package such as spike gen-

eration, data storage, data reading, file/folder organization, results analysis. Although the

framework is tested with the previously mentioned algorithm as Spike-timing Dependent

Plasticity (STDP) (detailed in section 3.4), Remote Supervised Method (ReSuMe) (detailed

in section 8.3), Delayed Remote Supervised Method (DelReSuMe) (detailed in section 8.9),

and Reward-modulated Spike-timing Dependent Plasticity (R-STDP) (detailed in chapter 9),

other methods/experiments with the help of existing SNN simulators can be set up as well.

One of the novel aspects of this study is the usage of multi-spike timings not only in each

input pair, but also in the output spike train to achieve a more biologically realistic scheme. A

dopaminergic inspired learning rule combined with STDP using multi-constant-delay mecha-

nism is shown both analytically and through computer experiments to have faster convergence

under noiseless and realistically noisy conditions. The development of Reward-modulated

Spike-timing Dependent Plasticity with the delay mechanism in chapter 9 with its increased

learning speed helps generic learning tasks where a neuron is supposed to respond to input

spike patterns with specific output spikes.

256



10.2. Future Research 257

To sum up, we propose a set of novel rules for the maze task in order to shorten explo-

ration period. Also, we develop ReSuMe and a novel extension of ReSuMe, DelReSuMe

with proposed simulation framework. We compare ReSuMe and DelReSuMe under noiseless

and noisy conditions using same mapping benchmarks. It is demonstrated that DelReSuMe

has faster learning than ReSuMe for the mapping tasks in both noiseless and noisy condi-

tions. An alternative connection scheme using the proposed bias neuron is introduced for

ReSuMe and DelReSuMe with its experimental evidences. In addition, we develop R-STDP

for mapping task by combining reward and SNN through actor-critic topology using the

multi-delay architecture rather than a single connection without delays. We demonstrate

that the proposed multi-delay topology has faster convergence and better learning speed

compared to single connection without delay under noiseless, relatively low noise and relatively

high noise conditions. All of plasticity/experiments on SNNs are performed considering with

multi-spike coding because of their potential and biological plausibility.

10.2 Future Research

The brain is still a great mystery. Lots of questions related with brain function still remain

unanswered. However, we hope that this research, which focussed on various biologically

plausible plasticity, helps unravel further questions about the learning in the central nervous

system. Here, we now detail how our researches that can be extended with further considera-

tions and experiments.

The simulation framework can be further developed to combine not only the Reinforcement

Learning technique but also further approaches such as Temporal-Difference learning with

Spiking Neural Networks for path navigation tasks. We have only used a reward mechanism

rather than a combination of reward and punishment. This can give a better understanding

about the domain during exploration. For instance, each detected U-turn point can be labelled

as a punishment area by giving maximum negative value as -100 to this point. We have a

single target in a single exploration period. This can be increased and the performance of

multiple targets can be interesting to analyse. The proposed techniques can be tested on real

time robotic path navigation problems.
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Various experimental approaches demonstrate that the computational power in SNNs is

inherited from biology. Further improvements on those approaches can be explored to per-

form better than conventional ANNs and Machine Learning techniques considering increased

biologically plausible methods. Using the SNN architecture, more complex real-world tasks

can be investigated. Therefore, proposed networks and plasticity mechanisms can be tested

with real-world tasks such as the computational problem of Simultaneous Localization and

Mapping (SLAM) (Thrun, 2002).

Existing Reinforcement Learning algorithms for Spiking Neural Networks have a number of

advantages and disadvantages. For instance, the proposed model in Xie & Seung (2004) is

restricted by the assumed Poisson firing characteristics of the neurons and the assumption

of an instantaneous response of neurons without considering the temporal characteristics

of the membrane potential. Another neuron implementation concept for SNN introduces

synapses that are “hedonistic” (Seung, 2003). Hedonistic can be described here as “reward

seeking” through responding to global reward signal by increasing probabilities of release and

failure. If each synapse is hedonistic, the whole network also can be described as a hedonistic

network. Seung (2003) demonstrates how those synapses serve the function of optimization

using the statement of hedonism. The Replacement Rules combined with RL algorithm is

applied into the maze task without SNNs in chapter 4. This combined algorithm can also

be applied the task with RL and SNNs in order to increase the hedonistic performance of SNNs.

Reinforcement Learning techniques for Spiking Neural Networks are important and are studied

on different tasks (Yamauchi & Beer, 1994; Blynel & Floreano, 2002; Florian, 2003; Seung,

2003; Xie & Seung, 2004; Vasilaki et al., 2009). In those spiking networks, the agent constructs

its own internal representation of the environment through learning trials. Each of these

studies derives a learning rule for the networks of neurons firing different patterns of spike

trains. In this thesis, we also aim to apply Reinforcement Learning techniques into SNNs.

We use different approaches such as R-STDP for multi-spike coding, ReSuMe learning and,

DelReSuMe. Therefore, further work can consider application of RL and Spiking Neural

Networks for maze navigation.

Further tests can be performed with some known benchmarks such as the Iris dataset (Fisher,
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1936) against several existing methods. Especially the one newly proposed, DelReSuMe, can

be compared with other existing plasticity rules on SNNs.

During the artificial spike generation mechanism, we have only used Poisson distribution with

dead time as spike generators. Although we believe that there is no reasons the approach

does not work with other spike train distributions, this can be proven with practical work.

The underlying plasticity for ReSuMe and DelReSuMe is Spike-timing Dependent Plasticity.

We have used a set of reasonable parameters for STDP. However, various sets of parameters

can be compared using network performance metrics. For instance, the effect of the Apre/Apost
ratio can be analysed for ReSuMe and DelReSuMe. There are already available works for

R-STDP for this comparison (Legenstein et al., 2008). Also, other parameters such as τm, τe,

reward mapping factor, discount factor for the averaged reward, the effect of initialization

range, learning rate can be analysed further in order to compare performance and maximize the

performance. The number of neurons in the input layer can affect the learning performance of

the network. This can be investigated in future work. In addition, proposed DelReSuMe with

multi-plastic-delay using the delay selection approach can be compared with the performance

of the method in Taherkhani et al. (2015) uses a single-connection architecture using the delay

shift approach.

ReSuMe, DelReSuMe and R-STDP can be tested with different neuron models, different

neuron parameters, different synapse parameters, and different neuron numbers in input

and output layers. We have not used hidden layers in our network topologies. This can be

interesting to test and compare. Especially, the XOR task which cannot be handled by the

current ReSuMe and DelReSuMe with two layers, it may be worthwhile to try XOR with

a hidden layer topology. The effect of introducing hidden layers into operations performed

successfully with two layers can be analysed to investigate whether the performance can further

improve. The proposed framework is flexible to handle those tests. In addition, more practical

tasks such as controlling a robot or path planning in a maze task can also be considered.

We have proposed an extended version of ReSuMe, DelReSuMe, which modifies both synaptic

weights and delays, there are various potential works to do. As it is mentioned in section 8.9,

we modify each synaptic delay once during a training epoch in order to avoid instability
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of the network. Synaptic weights are continuously modified during entire training. How-

ever, synaptic delays can be continuously modified parallel to synaptic weights for faster

convergence compared with DelReSuMe. The instability of the network in the continuous

update can also be resolved by adding another term here, such as the reward factor in chapter 9.

The framework has been tested with the fixed network topology as Feed-forward Network.

Although the mechanism is not dependent on the topology, it is worthwhile to test the

structure with alternative topologies. The framework is tested with Brian simulator locally.

However, an extended package for Brian simulator is prepared for public release. On the other

hand, the details of future work about the proposed software tool and implementation side is

described in appendix C.14.

To sum up, we have considered a number of options for future work combining Reinforcement

Learning, Spike-timing Dependent Plasticity and Spiking Neural Networks. There are many

important ways this work can be extended in the future.
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A.1 Dirac Delta Function

δ(t) =

 ∞, if t = 0,

0, otherwise.
(A.1)

the integral of the impulse function δ(t) is one:

∫ +∞

−∞
δ(t) = 1 (A.2)

A.2 Alpha Function

Effective potential after a single pre-synaptic spike with α function can be described as:

α(t) =


0 for t ≤ tf

1
τs
e
−(t−tf )

τs for t > tf
(A.3)
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where tf is the firing time of the pre-synaptic neuron, τm is the time constant of membrane

and τs is the synaptic time constant.

Spike response function can be described as:

ε(t) =


0 for t ≤ tf

1
1−(τs/τm)(e

−(t−tf )
τs − e

−(t−tf )
τm ) for t > tf

(A.4)

A.3 Signum Function

The signum or sign function of a real number x is defined as follows:

sgn(x) :=


−1, if x < 0,

0, if x = 0,

+1, if x > 0,

(A.5)

A.4 Heaviside Step Function

The Heaviside step function, or the unit step function, denoted by H(t) can be described as:

H(t) =

 1, if t ≥ 0,

0, otherwise.
(A.6)

A.5 Truth Tables for Used Operations

This section covers truth tables of used logical operations in order to demonstrate the output

for all possible input conditions. Truth tables have two inputs (P1 and P2) with 1-bit input.

All combinations of the inputs for each operation are shown using logic 1 for TRUE and logic

0 for FALSE. Desired and the inverse of the desired output are denoted Q, Q′ , respectively.

P1 P2 Q Q
′

0 0 0 1
0 1 0 1
1 0 1 0
1 1 1 0

Table A.1: Operation P1.
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P1 P2 Q Q
′

0 0 1 0
0 1 1 0
1 0 1 0
1 1 1 0

Table A.2: Operation TRUE.

P1 P2 Q Q
′

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Table A.3: Operation AND.

s

P1 P2 Q Q
′

0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

Table A.4: Operation OR.

P1 P2 Q Q
′

0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

Table A.5: Operation Exclusive Or (XOR).

A.6 LCE Calculation Formula

ˆLCEE =
∑
NE

( 1
NTST
Sp

∑
NEXP

( 1
NTST
P

∑
NP

(NP
miss))) (A.7)

where NP
miss is the number of misclassification per presentation P , NTST

P is the number of

presentations in a single testing epoch. NTST
P corresponds to total number of classification

during an epoch. NEXP
Sp is the number of spike sets performed during each experiment.
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B.1 NEURON

The NEURON simulator [1] is developed by John W. Moore, Michael Hines, and Ted Carnevale

at Yale and Duke University (Hines & Carnevale, 1997, 2001). It can support creation and

evaluation of various morphologically correct neurons and biological mechanisms. Both clock-

driven and event-driven mechanisms are implementable in NEURON. Support is handled

through the website and a mailing list [2]. The simulator runs under Unix, Linux and MS

Windows platforms.

The construction of neuron and network models can be handled by a Graphical User Interface

(GUI), or by using its interpreter language called hoc. Customized processes such as specifying

ion-channels can be implemented with a special language called NMODL. It is originally

designed for detailed neuronal modelling at the ionic channel level although it is capable of

running network models. However, the computation cost for solving all the equations and

propagation of signals makes the simulator not optimized for SNNs.

[1]http://neuron.yale.edu/neuron/
[2]https://www.neuron.yale.edu/phpBB2/
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B.2 NEST

The NEST simulator (Gewaltig & Diesmann, 2007), which stands for Neuron Simulation Tool,

is designed to simulate large Neural Networks with biologically accurate connectivity in the

context of their anatomical, morphological and electrophysiological properties. It is designed

for heterogeneous networks of primarily point neurons or neurons with a small number of

compartments.

Primary goal of the simulator is its scalability and parallelism. It is written in C++ and

optimized for large spiking networks of neurons so it is an important option for distributed

computations. The software is provided to researchers under an open source license through

the NEST website [3]. Support is handled through the website and a mailing list. Unlike the

NEURON, NEST is built specifically to run Spiking Neural Networks and is optimized with

SNNs.

B.3 GENESIS

GENESIS (General Neural Simulation System) [4] is designed to be an extensible simulation

system for the plausible modelling of neural and biological systems (Bower & Beeman, 1998).

It is well-documented for users in order to extend its capabilities and flexibilities by adding new

user-defined GENESIS classes. Although it suits for realistic models of neurons and biological

systems based on known anatomy, it does not support simplified models like Izhikevich model

and other Integrate-and-Fire neurons.

GENESIS is primarily designed for multi-compartmental neurons and networks of these

neurons. It has a Graphical User Interface which provides object types and script-level

commands. The simulator is similar to NEURON and is originally designed for detailed

neuronal modelling at the ionic channel level although it is capable to run network models.

However, the computation cost for solving all the equations and propagation of signals make

these models difficult to use in large network applications.

[3]http://www.nest-initiative.org/
[4]http://www.genesis-sim.org/GENESIS/
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B.4 Nengo

Nengo [5] is an open-source software which offers a general method for implementing and

simulating high-level cognitive theories using biologically plausible spiking neurons. It also

provides a Graphical User Interface to construct networks. The simulator has a discrete

clock-based time paradigm with multiple neuron models. It is designed for the large-scale

networks of simple neural models (such as Leaky-Integrate-and-Fire) based on control theory

oriented approach called the Neural Engineering Framework (NEF).

[5]http://nengo.ca
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C.1 Introduction

The management of training and/or testing in the Spiking Neural Network is slightly more

complicated in a traditional ANN. As the size of network or the duration of simulation

grows, the performance of experiments for training/testing and the management of the im-

plementation become much more complex in SNN simulations. However, as far as we know,

there is no public tool available for the Brian package or other SNN simulators to ease this

issue. Thus, we have produced our own additional development for the SNN simulation en-

vironment. This appendix describes the structure and operation of the simulation environment.

This tool is an additional package for SNN simulation tools. The purpose of the design is to

ease the management of simulation load/reload mechanisms, store/restore training trajectories

or results, separation of training and testing phases and further analysis mode with additional

flexibilities. After each training procedure for the network, the structures save themselves to

permanent store in a computer independent format to re-activate for further learning cycles,

to test performance with various testing scenarios or analyse the trajectories and results

during training and testing throughout further simulations.

In this part, a lot of implementation details related with SNN simulation are not mentioned

such as synaptic connection managements, event managements in the network, the types of

synapses, building the spiking network, etc. All of those details are implemented based on

Brian documentation [1]. Also, Brian syntax is quite similar to other simulators (Goodman &

Brette, 2008; Stimberg et al., 2014). However, in this section we detail the organization of

various simulations, experiments, sessions, epochs and presentations.

C.2 Motivation : The Memory Problem

In order to monitor the behaviour of the network during the training, learned objects such as

synaptic strengths and/or synaptic delays need to be accessed not only during the simulation

and after the simulation. However, once the number of epochs and presentations are increased,

the performance of simulation is affected severely because of the lack of sufficient program

memory (temporary) in the machine. This is also problematic in order to monitor trajectories

from larger simulations. In order to handle this issue, connected layers of nodes and all
[1]http://www.briansimulator.org
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relevant parameters including the connection weights and/or delays matrices are dumped into

a file between epochs, experiments and simulations. So, by this structure, the knowledge from

each training steps are preserved in the permanent memory (disk) rather than the temporary

memory.

C.3 Software Specification

The software is implemented in Python 2.7 as the main programming language thus making it

flexible to use. It is integrated to Brian2 simulation package as an SNN package. However, it

can be used with other SNN or NN simulators based on Python. This software has been tested

on Windows 7. However, it can run on other operating systems such as Linux smoothly because

we do not use any platform-specific system libraries or packages during our implementation.

Eventually, it will be available for public use.

C.4 Description of Simulation Sections

Overall structure is demonstrated in Equation C.1. Experiments consist of sessions, and

sessions consist of epochs, and epochs consist of presentation periods as shown.

• Presentation : This is the single simulation phase of a single stimulus (p1). The duration

of each presentation is fixed represented as Tpe. The number of presentation in an epoch

is NP .

• Epoch : An epoch e1 is the group of presentation cycles. The number of epoch in a

session is NE .

• Session : A session s1 is the group of epoch periods. The number of session in an

experiment is NS .

• Experiment : An experiment exp1 is the group of sessions for specified aims. For

instance, the aim for the experiment can be executing training and testing parts

throughout all ranges in the determined spike train set. Users can execute as many

experiments as needed.
e1︷ ︸︸ ︷

p1, p2, ..., pNP ,

e2︷ ︸︸ ︷
p1, p2, ..., pNP ,

eNE︷ ︸︸ ︷
p1, p2, ..., pNP ,︸ ︷︷ ︸

s1

, ...,

e1︷ ︸︸ ︷
p1, p2, ..., pP ,

e2︷ ︸︸ ︷
p1, p2, ..., pP ,

eNE︷ ︸︸ ︷
p1, p2, ..., pNP ,︸ ︷︷ ︸

sNS

,

︸ ︷︷ ︸
exp1

(C.1)
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C.5 Simulation Folder Mechanism

As mentioned, all parameters, trajectories and values are stored in files to use them fur-

ther during testing or analysing the results. In order to handle all of our issues during

our experiments, we have decided to create three main directories: the folder of sessions

(FolderSess), initializations (FolderInit) and spike sets (FolderSets). The details of those

folders/structures are described below. However, another folder mechanism can be added or

any folder or part of the current structure can be removed or edited without knowing the

details of implementation.

C.5.1 Session Mechanism

Example screenshot of folder structure for sessions can be seen on the

right. Folder name of sessions is constructed from the prefix “SessID_”

and its unique session id. All of details, settings and parameters for the

indicated session are stored in “SessConfig.pk” file. Whenever a new

session is created or any existed session folder is removed, the

configuration file is updated. All files and trajectories generated during the

session are stored under the indicated session directory.

C.5.2 Initialization Mechanism

Example screenshot of folder structure for initializations can be seen on

the right. Folder name of initializations is constructed from the prefix

“InitID_” and its unique initialization id. All of details, settings and

parameters for the indicated initialization are stored in “InitsConfig.pk”

file. Whenever a new initialization is created or any existed initialization

folder is removed, the configuration file is updated. The content of file for

weights and delays can be seen in Table C.1. All initialization sets

generated before experiments are stored under the indicated initialization

directory.
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RangeInd DataWeights
RangeInd DataDelays

Table C.1: Format for initializations : Weights (in the top row) and delays (in the bottom
row).

C.5.3 Spike Set Mechanism

Example screenshot of folder structure for spike sets can be seen on the

right. Folder name of spike sets is constructed from the prefix “SpSetID_”

and its unique spike set id. All of details, settings and parameters for the

indicated spike sets are stored in “SetsConfig.pk” file. Whenever a new

spike set is created or any existed spike set folder is removed, the

configuration file is updated. All spike sets generated before experiments

are stored under the indicated spike set directory.

C.6 Modes

The proposed structure has two modes: Run Mode in order to execute different training and

testing sessions, and Analyse Mode in order to analyse and display learning trajectories/results

from the run mode. The pseudo-codes of training and testing procedures are described in

Algorithm 4 and in Algorithm 6, respectively. This separation gives opportunity for design

modularity. During run mode, only selected parameters/trajectories are stored onto the disk.

Once all needed sessions are executed, related graphs/figures can be drawn in the analyse

mode. Analyse mode functions can only read previously stored files and parameters; however,

none of them cannot be modified during analysis unlike run mode.

C.6.1 Run Mode

Simulating the network to obtain the results in Run Mode has two phases: training and

testing. For each group of spike patterns, trainings and testings are performed separately.

• Training Phase: This procedure is designed to perform the iterative learning process

based on the selected learning strategy. This learning process adjusts the synaptic values

(weights and/or delays) of the spiking model in such way that the output generates a

different spike pattern for each input pattern.
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• Testing Phase: This procedure is to test the performance of each recorded training steps

with all possible input combinations. For instance, during the experiment of AND logical

operations with two bits (input), corresponding spike patterns for all 4 possibilities in

the format of {(Input1, Input2) → Output} are {{(0,0) → 0}, {(0,1) → 0}, {(1,0) → 0},

{(1,1)→ 1}} are processed and recorded for the single testing epoch result by comparing

the resulting outputs against the desired outputs. There are no adjustments related

with any configurable parameters (weights/delays). At the end of each testing epoch,

the state of all neurons are reset. The stop criterion adopted in this algorithm is the

maximum epoch number of testing ETST same as the dependent training epoch number

ETRN (see Table C.2).

C.6.2 Analyse Mode

Although the main purpose in this mode is to analyse the results of testing sessions, files of

training sessions also can be analysed under this mode. Results, training trajectories, testing

results can be visualized using various types of figures. In this thesis, all demonstrated results

are prepared with the help of this mode.

• Training: The generated trajectories during training sessions can be analysed in this

mode.

• Testing: Primary aim is to use this mode with testing sessions in order to demonstrate

overall performance of the learning. Not only training details also entire testing results

are already stored under the files of testing sessions.

C.7 Stored Dynamics

The following parameters/trajectories during training and/or testing can be stored/restored

during the simulation by the proposed mechanism.

• Firing times: All firing activities of all neurons can be recorded during the training and

testing sessions. However, if it is not necessary to monitor them, recording and storing

can be turned off over the configuration file as well. For instance, in order to increase the

speed of simulation, we disable the monitoring of spiking times during training; however,
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enable it during testing because we need them in order to calculate error/performance

from testing outputs.

• Weights: In addition to initial weights, all synaptic weights are stored during every

steps of training sessions. Testing does not store them because they are already reloaded

from training based on the session id.

• Delays: If the learning algorithm adjusts synaptic delays, they are also stored during

every steps of training sessions. Testing does not store them, similar to weights.

• Network parameters: Number of neurons for all layers, number of synaptic connections,

the types of synaptic connections are also stored.

• Simulation parameters: Some other stored parameters can be listed as simulation clock

resolution, type of learning algorithm, parameters for learning algorithms, weight scaling

status, weight scaling parameters.

C.8 Learning Algorithms

The package now has four training algorithms that apply weight and/or delays by capturing

the detailed firing effects of individual neurons. One algorithm modifies weights and delays.

The other algorithms apply learning rules in only weights. We tested the framework with:

Spike-timing Dependent Plasticity (STDP) (detailed in section 3.4), Remote Supervised

Method (ReSuMe) (detailed in section 8.3), Delayed Remote Supervised Method (DelReSuMe)

(detailed in section 8.3), and Reward-modulated Spike-timing Dependent Plasticity (R-STDP)

(detailed in chapter 9).

C.9 Parameter Settings

Each parameter in the simulation is adjustable. Those parameters can be listed as neuron types

and dynamics, number of neurons, the distribution of input types, learning rate, min/max

learning weights, min/max initial weights, scaling status, scaling factor, initialization methods,

and timings.

275



C.9. Parameter Settings 276

C.9.1 Neuron Types and Dynamics

Neuron types for input and outputs can be selectable through implemented models as dummy

Leaky-Integrate-and-Fire, Leaky-Integrate-and-Fire, Integrate-and-Fire, Izhikevich model and

Spike Response Model. Details of those neurons can be found in Chapter 1. For each neuron

or for each group of neurons, all neuron dynamics such as threshold voltage, resting potential,

reset voltage, decaying time and refractory period can be adjustable from the configuration

file. Also, a new type of neuron model can be inserted using Brian syntax.

C.9.2 Number of Neurons

The number of processing nodes per layer are important decisions. Although there are some

general rules, there is not a single best answer to the layout of network for any particular

problem. The number of neurons is generally chosen empirically to achieve a balance between

accurate results and rapid learning. For that reason, the following parameters are established

in an easily configurable way to be able to choose different number of spiking neurons.

• Number of banks in input layer

• Number of neurons in each bank

• Number of output neurons

Input layer consists of various banks. Each bank is the group of neurons in order to represent

different inputs. The number of neurons in the input layer is the summation of numbers of

all bank neurons. Although majority of our experiments are based on single bank (P1) or

two banks (P1 and P2), this number can be modified. Single bank is used for the mapping

experiments. Two banks are used for logical operations with 2 logic inputs.

C.9.3 The Distribution of Input Types

This parameter determines how the input logic set is prepared. There are 4 different types

defined below. Always Logic 0 and 1 cases are useful to test the learning algorithm for single

input-output pattern mappings, especially for the initial benchmarks. Sequential scenarios

are used during testing in order to cover entire input possibilities.

• Always Logic 0: Input 1 and Input 2 are always Logic 0
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• Always Logic 1: Input 1 and Input 2 are always Logic 1

• Sequential: All combination of inputs have equal probabilities. For two inputs, possible

input preparation with 4 presentations (typical testing) can be shown as {(0,0), (0,1),

(1,0), (1,1)}.

• Random-Independent : The distribution of both logic values for each input can be

adjusted with the logic separation parameter during each epoch. In the random case,

this parameters is setted into 0.5. For the case of 10 presentations with the 0.5 of

separation value, [0 0 1 1 1 0 0 1 0 1] and [1 1 0 0 0 1 1 0 1 0] can be example input

logic streams for Input 1 and for Input 2, respectively.

• Random-Dependent: The distribution of input pairs are controlled here rather than

controlling logic values inside each input. For 2 inputs, there are already 4 possible

pairs. Those 4 possibilities are extended based on the given presentation number. For

the case of 10 presentations (typical training), [0 0 1 0 1 1 1 1 1 0] and [0 1 0 0 0 1 0 1 1

1] can be example input logic streams for Input 1 and for Input 2, respectively.

If we compare Random-Independent and Random-Dependent through given examples, the

difference can be easily seen. In the Random-Independent case, although each input pattern

has equal True-False distributions, once they have been combined some of pairs have much

more ((0,1) and (1,0)) than others ((0,0) and (1,1)) in the example scenario. However, in the

Random-Dependent all scenarios are chosen to equal distributions as in the above example.

Random-Dependent case is ideal for training. Although this type has random distribution

of input possibilities, the strength of each input pairs is similar inside each epoch unlike the

Random-Independent.

C.9.4 Learning Rate

Some learning algorithms can be heavily dependent on the learning factor η. It is chosen

empirically to ensure convergence to optimum learning. Hence, the learning factor of each

experiment can be adjustable through the configuration file. Moreover, adaptive learning

rates are tested like higher learning rate for early epochs, smaller rates for later.
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C.9.5 Min/Max Learning Weights

Synaptic weights are restricted between wmin and wmax during training. These parameters

can be adjusted before the simulation. If any real-valued synaptic weight is out of the given

boundaries during the weight update, they will be limited by the lower and upper bounds by

clipping. Otherwise, some synaptic weights would increase or decrease excessively without

any impact on the learning.

C.9.6 Min/Max Initial Weights

Those parameters (winitmin, w
init
max) are used once weights in a new initialization set generated.

The selected range for the initial weights can be adjustable through those two parameters.

However, the initialization weight range must be in the range of learning weight ranges with

wmin <= winitmin <= winitmax <= wmax. Also, inhibitory connections can be arranged by assigning

negative values to weights.

C.9.7 Scaling Status

Whether neglecting the scaling effect for synaptic weights is applied at the end of the epoch

or not can be adjustable with this parameter.

C.9.8 Scaling Factor

Weight scaling factor of each experiment can be adjustable through configuration file. Based

on the scaling type, weights are readjusted inside the range (wmin, wmax).

C.9.9 Initialization Methods

• The type of weight initialization: This parameter defines how the weights for synaptic

connections to output neurons from input neurons should be initialized based on the

constrained range (winitmin, w
init
max). This procedure is separated from training/testing

sessions. By this separation, the effect of the initialization set can be investigated

under different circumstances (such as different learning algorithms, different network

parameters). At the beginning of each training experiment, the selected set is reloaded

into the network. For this purpose, we prepare various sets for each of following

techniques:

278



C.9. Parameter Settings 279

- Specific initialization: Initialize all weights into any given value from the interval (winitmin,

winitmax).

- Uniform Initialization: The element of training synapses are assigned values from

uniform random distribution subject to bounds of winitmin and winitmax.

• Delays:

- Specific initialization: Initialize all delays into pre-specified values.

- Sequential initialization: Based on the synapse number between the same input and

output neuron, each synapse gets a different sequential delay like [1ms, 2ms, ....].

• Spike Generation:

- Poisson (see subsection 6.3.2)

- Uniform

C.9.10 Timings

The following durations and timings are adjustable:

• Duration of single presentation (Tp and Tpe)

• Duration of silent period after each presentation (Te)

• Number of presentations for training (NTRN
P ) and testing (NTST

P )

• Number of epochs for training (NTRN
E ) and testing (NTST

E )

Although number of presentations and epoch both for training and testing can be adjustable

separately, epoch number for both cases should be the same like NTRN
E = NTST

E because of

the dependency of testing to training, or at least NTRN
E ≥ NTST

E . Based on above parameters,

the total training or testing time in a session can be calculated as in Equation C.2.

Tsess =
Tpe︷ ︸︸ ︷

(Tp + Tsilent) ∗NP ∗NE ∗NS (C.2)

where NP is the number of presentation in an epoch, NE is the number of epoch in a session,

S is the number of session in an experiment. Time for session, presentation, and extended

presentation are Tsess, Tp, and Tpe,respectively. Although typical timings for training and

testing are summarized in Table C.2, each of those durations as above can be adjusted in the
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Name Value (Training) Value (Testing) Unit
Tp 100 100 ms

Tsilent 20 20 ms
Tpe 120 120 ms
NP 10 4 -
NE 1000 1000 -
NS 5 5 -
Ttotal 100 40 min

Table C.2: Typical durations of simulation parameters for training and testing.

configuration file. Based on chosen parameters, the total duration of an experiment can be

calculated with:

Texp = Tpe ∗ (NTRN
P +NTST

P ) ∗ (NTRN
E +NTST

E ) ∗NSp

= Tpe ∗ (NTRN
P +NTST

P ) ∗ 2 ∗NTRN
E ∗NSp

(C.3)

where NTRN
P , NTST

P , and NSp are number of training, testing and spike patterns, respectively.

Because of NTRN
P = NTST

P , it is reformulated in the next line. A typical experiment including

training and its dependent testing phase is 140 minutes ≈ 2.3 hours as summarized in

Table C.2.

C.10 Generation of Spike Sets

The training of SNNs is done using spike sets stored in the folder with the indicated spike

set id. Therefore, before the training procedure, spike set generation is already completed.

During the simulation, spike sets can be chosen from previously generated sets.

The mechanism of spike set generation is separated from the main loop of the simulation

procedure. However, based on the desired parameters in the simulation, a suitable spike set

can be loaded into the current simulation in order to feed the network. Although various

types of spike sets are provided with the framework, new sets with desired parameters can also

be generated. Following parameters for spike generation should be adjusted before preparing

a new set in the file:

280



C.10. Generation of Spike Sets 281

• Firing rates for input patterns (rin): The average number of spikes during a presentation

time (Tp) is divided by the duration of the presentation (Tp) to get the firing rate. If we

assume that rin = 0.1sp/ms, it means each input presentation pattern roughly have 10

spikes as:

N sp
in = rin ∗ Tp = 0.1sp/ms ∗ 100ms = 10sp (C.4)

• Firing rates for output patterns (rout): Chosen firing rates for outputs should be enough

to discriminate among the input firing rates. If we assume that rout = 0.06spike/ms, it

means each input presentation pattern has roughly 6 spikes as:

N sp
out = rout ∗ Tp = 0.06sp/ms ∗ 100ms = 6sp (C.5)

• Spike Set Range: This determines the number of time series set that are generated in

total for each neuron in the network. For instance if this is 3, it generates 3 different

pattern classes belong to the same spike set. For the experiment to test the same

algorithm with various spike sets, this feature helps to organize sets in this manner.

• Minimum Inter-spike Interval (ISI) type: This parameter guarantees that the shortest

time distance between two spikes cannot be less than min-ISI (similar to the absolute

refractory period of a neuron). During, the poisson spike generation, if any two sequential

spikes have time difference less than the min-ISI, it is shifted based on selected types :

- Fixed Offset

- Gaussian Offset
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C.10.1 File System of Spike Sets

The folder system for the Spike Sets can be found in subsection C.5.3.

Here we focus on the files and the structure of their contents. An example

screenshot of file structure for a spike set can be seen on the right. Firing

times for input neurons and output neurons are stored in separate files.

Each spike set has at least two files as “SpTimesIn.pk” for input neurons

and “SpTimesOut.pk” for output neurons.

A single-spike set contains a group of spike patterns and each of them

represented with spike range index (RangeInd). The content of each file is

illustrated in Table C.3. The first format with {(RangeInd, NeuInd,

LogicInd) : [tf1, tf1, ..., tfN ] } is used inside the file system. Based on the

spike range index, suitable spike patterns can be parsed and loaded into

program memory for each experiment simulation.

The other three formats are used in program memory when needed. For

instance the second format {(NeuInd, LogicInd, PresentationInd) :

[tf1, tf1, ..., tfN ] } is used during each experiment because spike set cannot

be changed during an experiment so spike range ind (RangeInd) is already

fixed. However, in each presentation although the spike pattern is not

changed, they need shifted and adjusted based on the simulation time and

silent period between presentations.

RangeInd NeuInd LogicInd DataSpikeTimes
NeuInd LogicInd PresentationInd DataSpikeTimes

NeuInd LogicInd DataSpikeTimes
NeuInd PresentationInd DataSpikeTimes

Table C.3: Format for firing times to write into file and program memory.

282



C.11. File Content of Session for Training and Testing 283

C.11 File Content of Session for Training and Testing

An example screenshot of file structure for each session mode can be found

on the right. Based on the running mode (training or testing), suitable

files are prepared during the simulation. Training files (above) are

generated with the prefix “TRN_” and testing files (below) are generated

with the prefix “TST_”. Firing times of all neurons in each bank in input

(Bank names : J0, J1) and in the output are recorded into the indicated

files. Also, the trajectories of all types of weights are recorded in suitable

files. Synaptic delay updates are also recorded if the selected learning

mechanism is configuring those delays. Rewards are also stored for the

reward based learnings. Although those trajectories are recorded (weights,

delays and rewards), new mechanisms can easily be integrated into the

system in order to store/restore it.

In the testing mechanism, only firing activities of every neuron are

recorded. Weights, delays or other learning parameters are not stored

because those parameters are already restored from dependent training

mechanism. Therefore, if any of those trajectories or values are needed,

they can be access with the dependent training session id. The content of

session configuration file can be seen in Table C.4.

SessIdMain SessIDFrom ExpInd InitId
SpSetId InitRangeIndAct SpSetRangeIndAct SessTypeInd
OpInd PrNum EpNum CstName

Table C.4: The contents of session configuration file.

C.12 The Generations of Dynamic Initializations (File System)

Folder system for the Inits can be found above. Here we focus on the files

and the structure of their contents. Example screenshot of file structure

for an initialization can be seen on the right. Initial weights and delays are

stored in separate files. Each initialization has at least two files

“Delays_Init.pk” for delays and “Weights_Init.pk” for weights.
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C.13 Used File Formats

In order to serialize all prepared data for the simulation and generated data during the

simulation to the disk, we use two file formats: Comma Separated Values (CSV) and the

optimized version of Python’s standard serialization tool (cPickle). The reason to choose

pickle format, it is quite straightforward to store/restore objects, classes, data if you are not

parsing or modifying it during the store/restore. However, the content of pickle files is not

human readable like CSV file. Therefore, during the simulation if we need to see the data,

it is preferred to use CSV format for this particular data (for instance firing activities of

neurons). If they are only needed once for the simulation such as initialization files, restoring

parameters, they are stored in the pickle format. However, all of format preferences easily

changeable to other format, or entirely new format such as Binary Structured Object Notation

(BSON), JavaScript Object Notation (JSON) can be used in the proposed tool.

C.14 Further Work

We have not prepared any software comparison tests because all of our implementation is in the

Python language; and not tested in any other language. However, entire simulation including

neural models can be converted into C++ language. This conversion may help to increase

considerably the speed of long experiments. On the other hand, it can be reimplemented in

a different language such as MATLAB, Java or in an embedded platform. This means that

experiments do not has to be simulated in Brian simulator. Although this gives a chance

for performance comparison, reimplementing the models and scenarios in other languages

can be a time consuming task. Here, the SWIG [2] wrapper tool can be an important option

to convert it into a target language, and then making comparisons. The benefit of SWIG is

the auto-conversion to target language instead of typing entire details in the target language.

This quick conversion can give a rough idea about the performance.

Furthermore, the organization of simulation is handled throughout the configuration file. This

mechanism can be transferred into user-friendly visualization by Graphical User Interface.

This feature can also support interactive engagements with experiments/results. In addition,

this can be a dedicated Brian extension as a package of Python.

[2]http://www.swig.org/
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C.15 Discussions

One of main advantage of this framework is modularity of prepared parts for the network

and results generated from the network. Needed parts for the network before the simulation

entire initialization sets (weights, delays) and spike pattern sets can be prepared externally

(outside the main simulation of training and testing). Also, generated results such as the

training trajectories of weights and delays are stored with their simulation parameters. This

structure helps to compare different scenarios by selecting all/some of sets/specific sets during

an experiment. Also, it prepares a structure for the analysis to access results/trajectories

generated during the main training/testing loop.

The framework also separates training and testing inside the run mode and the analyse mode.

This can enable more flexible testing and trainings scenarios. Various options can be bridged

by playing with parameters in this modular design.

Another advantage of the framework is to ease the memory problem for larger simulations.

Between sessions and experiments all parameters/trajectories are already saved in the disk.

This allows to increase the performance of program memory.
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D.1 Further Results for Mapping Experiments

D.1.1 ReSuMe Experiments

D.1.2 DelReSuMe Experiments

D.2 Maze Platform on Python

Python is a well known dynamic object-oriented scripting language. Reinforcement Learning is

applied to find the shortest path using Python. The goal is to create a flexible Reinforcement

Learning platform for further algorithm development and research based on Python which is

free, open source, and highly portable.
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Figure D.1: Reconstruction of the transformation from input patterns to output spike timings
through randomly selected experiment (Experiment 1 - noiseless).
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Figure D.2: Reconstruction of the transformation from input patterns to output spike timings
through randomly selected experiment (Experiment 2 - noiseless).

A simple menu interface is created to add user-friendly features to the simulation. Figure D.8

shows how the menu options can be selected using keyboard control feature. Based on

chosen user option from menu screen, the suitable method is called over maze environment as

illustrated in Figure D.9.

Although the size of the maze environment can be adjusted from the code, a 10x10 maze

environment is demonstrated. It is tested using random maze generation.
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Figure D.3: Reconstruction of the transformation from input patterns to output spike timings
through randomly selected experiment (Experiment 3 - noiseless).
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Figure D.4: Reconstruction of the transformation from input patterns to output spike timings
through randomly selected experiment (Experiment 4 - noiseless).

In the simulation, the circle (agent) have three different colours which mean:

• Red Circle: More than one times visited rooms

• Green Circle: Only one time visited rooms

• Blue Circle: Current visited room

At each time step, an agent can move North, South, East, or West (not diagonally) into an

adjacent square location. Squares may be blocked by walls as denoted by the black lines on

D.9. The maze is unknown at the beginning.
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Figure D.5: Reconstruction of the transformation from input patterns to output spike timings
through randomly selected experiment (Experiment 5 - noiseless).
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Figure D.6: Reconstruction of the transformation from input patterns to output spike timings
through randomly selected experiment 1.

D.3 Maze Generation

Here, we describe details of recursive backtracker with an example demonstration. It is fast

and straightforward to implement. As a starting point, it is selected the left-up corner of the

graph also as a ending point, the right-down corner of the graph is selected. The width and

height of the grid can be adjustable over the program. It can be generated as a larger maze

environment as we want in this implementation. For instance, Figure D.10 demonstrates a 40

x 40 maze environment.
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Figure D.7: Reconstruction of the transformation from input patterns to output spike timings
(low noise). Zoomed version of Figure 8.9. The current network is trained to map a spatio-
temporally encoded input spike trains into another spatio-temporally encoded output pattern.
tactout with blue colour converges to tdesout with green colour.

The Backtrack Recursion algorithm is implemented using the steps:

• Initialize all cells as not visited

Initialize a grid environment full of walls

Initialize specified starting point as left-up corner in the field

• Randomly choose a wall at current cell and remove this wall but only if the adjacent

cell is not visited before. The adjacent cell becomes a new current cell.

• If it reaches a dead end, backtrack until get next to an unvisited cell and carrying on

that direction.

• The algorithm ends when there is not any cell which hasn’t been visited yet.

D.4 Maze Solving Algorithms

There are a number of maze solving algorithms available to be implemented which are auto-

mated methods with different characteristics such as Dead Reckoning, Dead End Learning,

Tremaux’s method, Flood Fill algorithm and Wall follower algorithms (Dudeney, 1970; Bell-

man, 1958; Law, 2013; Mishra & Bande, 2008). Dead Reckoning algorithm is simply that the

agent goes straight until there is a fork or dead end. If there is a fork, the agent select one

the available directions randomly. On the other hand, it turns around if there is a dead end.
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Figure D.8: Python maze simulation menu

Dead End Learning algorithm is similar to Dead Reckoning method but the agent inserts a

virtual wall at the opening if it encounters any dead end.

Tremaux’s algorithm is invented by Charles Pierre Tremaux and it is based on marking the

entrances and exits where the galleries fork. A “new” path or node is one that is not entered

before on the route; an “old” path or node is one that is already entered (Dudeney, 1970).

The Flood Fill algorithm is derived from the “Bellman Ford Algorithm” (Bellman, 1958). The

algorithm works by assigning value for all cells in the maze, where these values indicate the

steps from any cell to the destination cell. Implementing this algorithm requires to have two

arrays to hold the walls map values and to store the distance values (Law, 2013). However,

one of the simplest maze solving algorithm, “wall follower”, is used and presented here.

Two types of wall follower algorithm as left-hand rule and right-hand rule work the same way

except the turning priority which can be either to the left or to the right. Although those are

quite similar, we investigate both of them and we demonstrate Replacement Rule for both.

D.4.1 Left Wall Follower (LSR Rule)

The left-hand rule, LSR rule, states Left direction has highest priority compared to Straight

and Right directions while there are options for turns. Likewise, Straight has higher priority

than Right turn. The order of precedence can be summarized as:

Left ⇒ Straight ⇒ Right
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Figure D.9: Python maze simulation environment

If the maze has no loops, the LSR rule always gets you to the end of the maze. Pseudocode

of LSR is illustrated in Algorithm 7.

Algorithm 7 Pseudocode of Wall Follower based on LSR Rule
repeat

if Left is open then
Turn Left

else if Straight is open then
Go Straight

else if Right is open then
Turn Right

else
Turn Back

end if
until ¬not target point

D.4.2 Right Wall Follower (RSL Rule)

The right-hand rule, RSL rule, is similar to LSR, the only difference lies in the wall being

followed. The RSL rule states Right direction has highest priority compared to Straight and

Left directions while there are options for turns. Likewise, Straight has higher priority than

Left turn. The order of precedence can be summarized as:
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Figure D.10: Maze simulation environment with the size of 40 by 40 on Python

Right ⇒ Straight ⇒ Left

If the maze has no loops, the RSL rule always gets you to the end of the maze. Pseudocode

of RSL is similar to Algorithm 7 except checking the order of possible turns.

D.5 Example Screenshot from Workspace

D.6 Prerequisites

Scripts during all experiment executions are performed under the Python programming lan-

guage which is also used for data analysis, file organizations of saved sessions and evaluation

of the results.

The following Python-based software packages are used:

• Python installation: Python 2.7.

• SNN simulator: BRIAN2
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Figure D.11: Maze generation steps based on Backtrack Recursion algorithm.

• Numerical computations: numpy as a part of the SciPy package, it is an efficient

array/matrix representation, linear algebra functions (including matrix operations), etc.

• Visualization: matplotlib, pylab, brian2tools, spikeplot to visualize the results of analysis

and simulations.

D.7 Software Contributions

Brian2 is Python based simulator for Spiking Neural Networks (SNNs):

https://brian2.readthedocs.io/en/stable/introduction/release_notes.html

Brian2tools is Python based visualization tool for Brian2:

https://brian2tools.readthedocs.io/en/stable/release_notes.html
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Figure D.12: Example screenshot from workspace
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Appendix E

Credits

TexStudio 2.11.0 editor of LATEXis used to edit and typeset this dissertation. The majority

of diagrams used here created with Corel DRAW X8 and Corel PHOTO-PAINT X8. Also,

Araxis Merge has been used to control files/folders/code through versions.

Main programming language used in the thesis is Python 2.7. Anaconda 64-bit distribution of

Python 2.7 has been used. As a Spiking Neural Network simulator in the Python programming

language, the latest stable version of Brian2 (2.0rc3) has been used. Furthermore, there

are many additional used Python modules: NumPy, SciPy, Matplotlib, Pylab, Brian2tools,

Spikeplot, PyGame, Tkinter and WxPython.

One of the popular IDE for developing software, Eclipse KEPLER is used with Python plug-in

PyDev for Eclipse. Eclipse is an open-source platform that provides convenient code editing

and debugging tools. PyDev is a Python IDE that runs on top of Eclipse.
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Glossary

Abbreviations

STDP Spike-timing Dependent Plasticity

Hebbian-STDP Hebbian Spike-timing Dependent Plasticity

anti-Hebbian-STDP anti-Hebbian Spike-timing Dependent Plasticity

Symmetric-STDP Symmetric Spike-timing Dependent Plasticity

Asymmetric-STDP Asymmetric Spike-timing Dependent Plasticity

BP Back Propagation

SpikeProp Spike Propagation

ReSuMe Remote Supervised Method

DelReSuMe Delayed Remote Supervised Method

R-STDP Reward-modulated Spike-timing Dependent Plasticity

R-max Reward-maximisation

VP Victor & Purpura Distance

CF Coincidence Factor

ScD Schreiber Distance

vRD van Rossum Distance

vRE van Rossum Error

LCE Logic Classification Error
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WH Widrow-Hoff

ML Machine Learning

RL Reinforcement Learning

MDP Markov Decision Process

DTMC Discrete Time Markov Chain

TD Temporal-Difference

MCTS Monte Carlo tree search

PSP Post-synaptic Potential

EPSP Excitatory Post-synaptic Potential

IPSP Inhibitory Post-synaptic Potential

LTP Long Term Potentiation

LTD Long Term Depression

NMDAR-dependent N-methyl-D-aspartate receptor dependent

DA Dopamine

CNS central nervous system

SD standard deviation

MLP Multi-Layer Perceptron

NN Neural Network

ANN Artificial Neural Network

SNN Spiking Neural Network

FNN Feed-forward Network

RNN Recurrent Neural Network

HH Hodgkin-Huxley

IF Integrate-and-Fire

300



301

LIF Leaky-Integrate-and-Fire

SRM Spike Response Model

IM Izhikevich model

NEF Neural Engineering Framework

NEST Neuron Simulation Tool

GENESIS General Neural Simulation System

ISI Inter-spike Interval

GUI Graphical User Interface

SWIG The Simplified Wrapper and Interface Generator

TRN Training

TST Testing

E Epoch

P Presentation

EXP Experiment

Norm Normalized

L Left turn

R Right turn

S Straight (No turn)

U U turn

LSR Left-Straight-Right

RSL Right-Straight-Left

RepRule Replacement Rule

BscRepLSR Basic Replacement Rules for LSR

ExtRepLSR Extended Replacement Rules for LSR
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BscRepRSL Basic Replacement Rules for RSL

ExtRepRSL Extended Replacement Rules for RSL

FP False-Positive

FN False-Negative

TP True-Positive

TN True-Pegative

SLAM Simultaneous Localization and Mapping

sp spike

ms milisecond(s)

sec second(s)

min minute(s)
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