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Abstract 

Bacteria can be found as surface adhered, structured colonies that generate an extracellular 

matrix, known as a biofilm. Biofilms are recalcitrant to antibiotics. Therefore, treatments of 

biofilm infections are limited, especially in terms of indwelling medical devices. The major 

causes of biofilm-associated infections on medical implants are S aureus and 

S. epidermidis. This work sought to identify and characterise compounds with 

antistaphylococcal antibiofilm activity.  

Initial studies were performed as a part of the COATIM consortium. The antibacterial and 

antibiofilm activity of 56 compounds provided by members of the consortium were assessed 

against bacterial and fungal organisms. The top five (4-45, CIM008405, P1a-PEP1, P2-5  Tocris 

2611) compounds were selected for further characterisation based on their  antibiofilm activity 

and toxicity. The MOA of the five compounds were characterised in S. aureus. All five 

compounds caused membrane perturbation, but Tocris 2611 was the only one to exhibit some 

prokaryote selectivity. In addition, Tocris 2611 eradicated preformed staphylococcal biofilms 

by  sterilising the biofilm cells and had low resistance potential. The five compounds were then 

coated on titanium substrates (representing dental/orthopaedic implants) and tested for their 

ability to prevent biofilm formation in vitro and in vivo against biofilm colonisation in vivo and 

in vitro. No useful antibiofilm activity was observed. 

Finally, three chemical libraries of biologically active small molecules were screened for 

adjuvants of antibiotics ciprofloxacin and rifamipcin against S. aureus biofilms, and rifampicin, 

fusidic acid or linezolid against planktonic E. coli.  No potentiators were determined against S. 

aureus biofilms at the tested concentrations. However, several synergistic interactions were 

initially identified against E. coli, but had limited antibacterial activity against multi-drug 

resistant (MDR) pathogens.  

Due to the limitations of current antibiofilm strategies and the ability of bacteria to adapt 

continuously, it is important to consider combining multiple approaches to target biofilms 

successfully. 
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Chapter 1 

Introduction 

1.1 Introduction to bacterial biofilms 

The evolution of antimicrobial resistance is a natural phenomenon that is exacerbated by the 

exposure of bacteria to antimicrobial drugs. Due to the natural phenomenon of antimicrobial 

resistance and the misuse of available antimicrobial treatments, antibiotic resistance is now a 

worldwide problem. An estimated 50% of all prescribed antibiotics are not needed or fully 

effective as prescribed and unless action is taken to improve infection prevention and antibiotic 

use, the world is set to enter a post-antibiotic era (CDC, 2013). Presently, a serious threat to 

human welfare is multi-drug resistant (MDR) bacteria, such as Gram-positive organism 

meticillin-resistant Staphylococcus aureus. Individuals infected with MRSA are estimated to be 

64% more likely to die from infection than those with a non-resistant strain (WHO, 2014). An 

additional problem in treating antibacterial infections and MDR bacteria is the formation of 

bacterial biofilms. 

Biofilms are bacteria within multicellular, structured communities adhered to an inert or 

biological surface and encased in a self-produced extracellular matrix (Lopez et al, 2010). It is 

the most common form of bacterial culture found in the natural environment, with an estimated 

99% of microorganisms living in these communities (Carvalho et al, 2007). Biofilms can 

develop in a range of different environmental conditions, including water supply systems, 

hydrothermal vents and living tissue (Carvalho et al, 2007). 

Bacteria within the biofilm are phenotypically distinct from those in the planktonic state (Lopez, 

2010).  Notably, biofilm-associated bacteria exhibit reduced susceptibility to antibacterial 

treatment (particularly due to the presence of slow-or non-growing (SONG) bacteria, including 

persister cells) (O’Neill, 2011). Biofilms high recalcitrance to antibiotic treatment is especially 

problematic in the clinical environment, where biofilm formation is estimated to be involved in 
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80% of all bacterial infections in humans, such as osteomyelitis, endocarditis and infections of 

implanted medical devices (Römling and Balsalobre, 2012).  

Numerous bacterial species form biofilms, but some of the most frequent causes of biofilm-

associated infections include Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus 

epidermidis, Klebsiella pneumoniae and Enterococcus faecilis. The most significant of these in 

terms of biofilm-associated infections and healthcare costs are S. aureus and S. epidermidis 

(Costerton et al., 1999). Indeed, they are considered to be the cause of up to 70% of biofilm 

infections on catheters (Treter and Macedo, 2011), and up to 50% of biofilm infections on 

prosthetic heart valves (Nagpal et al, 2012). Since these types of infection can be untreatable, 

they are especially problematic in the clinical setting, often resulting in the failure and 

subsequent surgical removal of the implanted medical device (Johnjulio et al, 2012 and 

Carvalho et al, 2007). This type of revision surgery is stressful for patients, increases the 

duration of hospital stays and adds to hospitalization costs (Carvalho et al, 2012). Biofilm-

related corrective surgery costs in Europe are estimated at €800 million per year, and the 

reduced susceptibility of biofilms to antibacterial killing is driving and directing research into 

the development of new antibacterial agents, in order to tackle this growing problem (O’Neill, 

2011). 

However, it is also important to acknowledge that not all biofilms are detrimental to health and 

that some biofilms are beneficial and necessary for our survival. For example, biofilms formed 

by the host microbiota can act as a defence mechanism by protecting against foreign pathogens 

(Belkaid et al, 2014). An example of this is the gut microflora which protects against food borne 

pathogens which could potentially colonise the gut and cause infection (Lee et al., 2000).  

1.1.1 Biofilm formation 

Although biofilm formation has been found to differ between bacterial species, and is impacted 

by both genetic and environmental factors, there are two steps that are considered to be 

universal in all biofilm-forming bacteria; attachment, followed by maturation. However, these 
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can be further broken down into five general stages of development; reversible attachment, 

irreversible attachment, growth, maturation and finally dispersal (Figure 1.1). 

 

Figure 1.1 Five steps of biofilm formation, from planktonic culture to structured biofilm 

community. Reversible attachment (1): planktonic bacteria adhere to an inert or living surface; 

Irreversible attachment (2): affixed bacteria begin to form a biofilm, resulting in irreversible 

attachment; Growth (3): the biofilm structure begins to grow and mature. Bacteria will now be 

protected from environmental stresses by the extracellular matrix; Maturation (4): continued 

development and further maturation of the biofilm; Dispersal (5): planktonic bacteria are 

dispersed from the biofilm, which can result in the spread of the infection.  Image adapted from 

Monroe (2007). 

1.2 1 

For a biofilm to form, planktonic bacterial cells must first attach to a biological or inert surface 

(Figure 1.1). Often for attachment to occur, trace organic or inorganic molecules (bridging 

molecules) must be absorbed onto the surface (Lindsay et al, 2006). This is known as surface 

conditioning, and is thought to neutralize any charge or free energy that may have inhibitory 

effects. Surface coated bridging molecules, together with forces such as Van de Waals, electro 

static and hydrophobic, have been suggested to cause an initial attraction between the bacterial 

cells and the surface (Lindsay et al, 2006). Attachment also requires bacteria to be within close 

range of the surface. Existing structural features of the bacterial cells, such as flagella, can be 

used to reach the surface (Carvalho et al, 2007). Otherwise bacteria can rely on mechanical 

processes like shear force. Primary attachment is weak, and as a consequence reversible (Garrett 
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et al, 2008). Bacteria can therefore dissociate from the surface and revert to non-adhered, 

planktonic cells.  

Bacterial cells become irreversibly bound to the surface by either of two pathways; production 

of EPS or surface receptor protein (Monds et al, 2009). Subsequently, attached bacteria begin to 

divide, and accumulate with one another, sometimes travelling across the surface to join 

existing accumulations of cells (Aparna et al, 2008 and Monds et al, 2009). As biofilms enter 

the growth phase, newly formed colonies of bacteria continue to divide, and there is a release of 

signalling molecules, a process known as quorum sensing (del Pozo et al, 2007).  Quorum 

sensing is a population density dependent programming system used by bacteria to coordinate 

activity and gene expression amongst the community (Miller et al, 2001). The levels of these 

signalling molecules increase in a cell density dependent manner until a threshold is passed, and 

are detected by receptors on the bacterial surface (Albuquerque et al, 2014). When the chemical 

molecules bind to the specific receptors it causes the transcription of particular genes in the 

majority of the cells at roughly the same time (Ng et al, 2015). Bacteria are therefore releasing, 

detecting and reacting to the chemical signals in response to the dynamic environment and thus 

regulating specific genes which control important biological functions (Miller et al, 2001). 

Quorum sensing therefore allows bacteria to assess their surrounding conditions and adjust gene 

expression accordingly to increase bacterial survival (Withers et al., 2001 and Ng et al, 2015). 

As the biofilm matures, a multicellular structure is formed, including further assembly of the 

exopolysaccharide matrix. At this stage, other species of bacteria or fungi can also become 

associated with the surface, forming a polymicrobial biofilm. For example, in clinical settings, 

S. aureus is thought to be the third most prevalent bacterium found in polymicrobial biofilms 

with Candida albicans (Peters et al., 2012). 

The final stage of formation is dispersal (Kaplan et al, 2010). This is where the mature biofilm 

can release bacterial cells, which return to the surrounding planktonic community. Dispersal 

contributes to the spread of infections and colonization of new surfaces (Kaplan et al, 2010).  
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1.1.2 Biofilm composition/structure 

As with biofilm formation, biofilm structure varies between different bacterial species and is 

affected by environmental factors, such as the source of nutrients (Hall-Stoodley et al, 2004). It 

is currently accepted that there is a general stratified structure consisting of three defined 

sections common to all biofilms (Donlan, 2002). The bottom layer of the structure attaches the 

biofilm to the surface. The next ‘layer’ is composed of colonies of either multiple or single 

species of bacteria, and finally a surface film (or extracellular matrix) encompasses and embeds 

the bacteria (Aparna et al, 2008). The extracellular matrix is a hydrated polyanionic complex, 

which encompasses and contains DNA, proteins and extracellular polymeric substance (EPS) or 

exopolysaccharides, which are secreted by the bacteria. This EPS component can comprise 

between 50% and 90 % of the biofilm’s organic carbon (del Pozo et al, 2012). Each component 

of the EPS plays an important role in the biofilm. For example, the extracellular DNA (eDNA) 

functions as an intercellular connector, whilst enzymes break down EPS biopolymers to 

molecules, such as carbon, which can be used as an energy source for the bacteria within the 

biofilm. Another common structural feature found within biofilms are mushroom shaped 

microcolonies (Aparna et al, 2008). However, this is not the only type of architecture the 

biofilm can assume, as the biofilm structure can also be flat, depending on the nutrient source of 

the bacteria (Hall-Stoodley et al, 2004). Additionally, to ensure that there is not an accumulation 

of waste material, which could potentially be toxic to the bacterial cells, there are also water 

channels which occur between the microcolonies in the biofilm which, it has been suggested, 

allow the community to clear any toxic metabolites and also provide a route for mineral and 

nutrient uptake (Aparna et al, 2008). 

 

1.2 Staphylococcal biofilms  

One of the primary bacterial genera of interest with regards to biofilm infections are the Gram-

positive staphylococci (Darouiche et al, 2004 and Zimmerli et al., 2004). There are at least 40 

species of staphylococci, most of which are ordinarily harmless, inhabiting mammalian mucous 
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membranes and the skin (Kiedrowski et al, 2011). S. aureus is estimated to be in the anterior 

nares of 20% of the population (Rongpharpi et al, 2013), whilst S. epidermidis, which is 

coagulase negative, is present on most of the population (Becker et al, 2014). Furthermore, S. 

aureus and S. epidermidis are the most common cause of hospital-acquired infections, in 

addition to being the leading cause of biofilm-associated infections, particularly on indwelling 

medical devices (Kiedrowski et al, 2011).  

The ability of staphylococci to form a biofilm provides a survival advantage in the ordinarily 

adverse environments of the human host, in addition to the production of virulence factors, such 

as toxins, catalase and coagulase (Tenover et al, 2000). Indeed, most staphylococci infections 

are biofilm-associated (Otto et al, 2008).  

1.2.1 Biofilm formation in staphylococci 

Staphylococci bind to surfaces using microbial surface components recognizing adhesive matrix 

molecules (MSCRAMMs) (Patti et al, 1994). There are approximately 20 different MSCRAMM 

proteins (Walsh et al, 2008). These surface proteins associate with serum proteins and host 

extracellular matrix molecules mediating attachment, such as fibronectin binding protein A and 

B (FnBPA and FnBPB) which chiefly bind to the large glycoprotein fibronectin (Sepziale et al, 

2014). These adhesins are attached to the staphylococcal cell wall, and are able to bind host 

proteins, including fibronectin, collagen and elastin (Speziale et al, 2014). The general overall 

structure of MSCRAMMs can be broken into three domains (Foster et al, 2014). Firstly, the 

domain is either covalently or non-covalently bound to the surface of the bacteria, followed by 

the cell-wall spanning domain and the final domain that is exposed for binding (Foster et al, 

2014).  In addition to the role of MSCRAMMs in staphylococcal surface adhesion, the type of 

surface can also influence the attachment process (Otto et al, 2010). It has been reported that 

staphylococci show preferential attachment to plastic surfaces, which may be a factor in the 

significance of staphylococcal biofilm infection on implanted medical devices (Sousa et al, 

2008).  
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Following attachment, staphylococci begin to produce substances such as extracellular DNA, 

proteins, teichoic acid and polysaccharide intercellular adhesin (PIA) that form the extracellular 

matrix (Garrett et al, 2008). Furthermore, PIA, which consists chiefly of poly-N-

acetylglucosamine (PNAG), is the primary compound that causes intercellular adhesion, a major 

part of staphylococcal biofilm maturation (Rohde et al., 2010). PIA is a partially de-acetylated β 

1-6-linked N-acetyleglucoasmine homopolymer, which is generated through the intercellular 

adhesion (ica) operon (consisting of biosynthetic gene icaADBC, aswell as transcriptional 

repressor IcaR) and accessory membrane proteins (Arciola et al 2015). However, the generation 

of PIA is not a requisite for biofilm development in staphylococci, as PIA-independent biofilm 

formation can also occur (Valle et al, 2003). It has been suggested that adhesive proteins will 

replace PIA during PIA-independent biofilm formation (Otto et al, 2015). 

The major transcriptional regulators of genes involved in biofilm formation apart from IcaR 

include alternative sigma factor (SigB), which functions to increase the generation of proteins at 

the cell surface which promotes the formation of the biofilm, the accessory gene regulator (agr), 

which functions in the dispersal of the biofilm, staphylococcal regulator (sarA), which like SigB 

is involved in biofilm formation, ArlR-ArlA two component system (TCS), which again is 

involved in biofilm formation, and finally the teicoplanin-associated locus regulator (TcaR) 

which is involved in the regulating the expression of the ica operon (Cerca et al, 2008). 

After surface attachment, and intercellular aggregation, the maturation phase of staphylococcal 

biofilm development includes the 3-dimensional structuring of the biofilm. As mentioned 

previously (section 1.1.2), this includes mushroom-shaped towers and water channels, providing 

oxygenation removal of waste (Tilahun et al, 2016). Finally, bacterial cells may be released 

from the mature biofilm, known as dispersal. These dispersed cells may travel to and attach to 

new surfaces, resulting in biofilm formation of that surface (Kaplan et al, 2010).  

1.3 Biofilm recalcitrance to antimicrobials 

Biofilm infections are rarely able to be resolved by the host immune system, or with antibiotics. 

Biofilm formation is therefore central to the pathogenesis of many bacteria and resistance can be 
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through more than one mechanism (del Pozo and Patel, 2007). The reasons that biofilms display 

such a high level of recalcitrance to antimicrobials are thought to be through inherent 

mechanisms of resistance or the transfer of genetic material (Norrby, 1991, O'Neill, 2011).  

 

1.3.1 Inherent mechanisms of antibiotic resistance in biofilms  

1.3.1.1 Stress Response/restricted penetration 

It has been suggested that, as the bacteria within biofilms are enclosed in an exopolysaccharide 

matrix, the diffusion and penetration of antimicrobial drugs could be restricted. For example, 

the positively-charged aminoglycosides are prevented from penetrating the negatively charged 

extracellular matrix, due to binding to the negatively charged matrix polymers (Aparna and 

Yadav, 2008, del Pozo and Patel, 2007, Lewis, 2001, Shigeta et al., 1997). Mature biofilms are 

also thought to contain altered micro-environments, for example due to the build-up of waste 

products, low oxygen concentrations, and pH, which may further inhibit the activity of the 

antimicrobial agent (del Pozo and Patel, 2007). However, restricted penetration has been shown 

not to apply for most classes of antibiotics. For example, fluoroquinolones easily travel across 

the extracellular matrix of the biofilm (del Pozo and Patel, 2007, Lewis, 2001). Alternatively the 

antimicrobial agent may penetrate the biofilm, but quickly become bound and inactivated by 

enzymes produced by the bacteria against the active drug (del Pozo and Patel, 2007).  Also, 

when bacteria are exposed to conditions which do not favour growth they are able to up-regulate 

genes, known as stress-response genes, resulting in rapid adaptation (del Pozo and Patel, 2007). 

These genes cause a change in the bacterial phenotype which is more resistant to the 

surrounding environmental stress (Waters and Storz, 2009). For example, the ndvB gene in 

Pseudomonas aeruginosa, has been found to be required for the production of periplasmic 

glucans. which prevent tobramycin from reaching its target through direct interaction (del Pozo 

and Patel, 2007). 
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1.3.1.2 Evasion of host immune defence 

Not only can biofilms display decreased susceptibility to antimicrobial killing, they can also 

display a decreased susceptibility to the host immune system. This can be through decreased 

expression of significant antigens, increased resistance to phagocytosis or resistance to killing 

by polymorphonuclear leukocytes (Bradley et al., 2003). This resistance is thought to be 

conferred by the EPS, which forms a physical barrier against the attacking components of the 

host immune system, decreasing the efficiency of host immune killing compared to killing of 

single bacterial cells and secreting molecules which chemically inactivate attacking immune 

cells (Foster, 2005). For example, polysaccharide intercellular adhesins (PIA) found in S. 

epidermidis, are charged homopolymers which hold cells together in the biofilm but also 

contribute to evading the host immune defence by promoting resistance to antimicrobial 

defensin peptides (Foster, 2005). S. epidermidis mutants lacking PIA have been shown to be 

increasingly predisposed to killing by neutrophils and host peptides such as LL-27, β-defensin 3 

and dermicidin (Foster, 2005). 

 

1.3.1.3 Antibiotic survival in biofilms 

Antibiotic survival can be defined as tolerance to killing by bactericidal antibiotics, whilst still 

being sensitive to an antibiotics inhibitory mechanism, i.e. the bacteria can survive in the 

presence of antibiotics, but not grow (O'Neill, 2011). By contrast ‘resistance’ is described by the 

World Health Organisation as “...recalcitrance of a microorganism to an antimicrobial 

medicine to which it was previously sensitive.” (WHO, 2012), which is caused by heritable 

genetic mutations. Antibiotic survival in biofilms is generally through two main mechanisms; 

drug indifference and persistence (Figure 4) (Hall-Stoodley et al., 2004). Drug indifference is 

considered to be a phenotypic state of quiescent (non-dividing) bacteria, which the majority of 

antibacterial agents are unable to kill (Levin and Rozen, 2006, McDermott, 1958, O'Neill, 

2011). The more established an infection is, the more non-growing, stationary phase cells are 
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present and the less effective the antibiotic agent will be (Levin and Rozen, 2006). Therefore, if 

cells are not undergoing active metabolism, the non-growing cells become ‘indifferent’ to the 

antibacterial agents because of a lack of ‘target corruption’. Target corruption is where the 

antibiotic kills the cell, not by directly inhibiting the target to which it binds, but through 

altering its function resulting in the production of toxic derivatives. It is these downstream by-

products which lead to cell death (Lewis, 2007). For example, aminoglycosides cause cell death 

by causing the cell to make misfolded toxic proteins, via disruption of translation (Lewis, 2007). 

Persistence (adaptive resistance, phenotypic tolerance) is described as a subpopulation of a 

multiplying bacterial population which bactericidal antibiotics are unable to eliminate 

(Kiedrowski and Horswill, 2011, Gotz, 2002). Ineffective elimination is due to the persistent 

cells undergoing a much slower growth rate compared to the remainder of the population 

(Lewis, 2007). The reduced growth rate is suggested to be through numerous metabolic genes 

being down-regulated. This allows these quiescent cells to endure high levels of antibiotics, 

without displaying classic resistance mechanisms. Persistent cells also have the ability to reform 

biofilms following antibiotic cessation (Miller and Bassler, 2001). Persisters are therefore 

another important factor to consider in biofilm resistance (Figure 1.2). 

However, it is still uncertain whether persister cells are undergoing a completely separate state 

to those undergoing drug indifference, or if they are just a subpopulation of more antibiotic 

tolerant cells.  
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Figure 1.2 Model of antibiotic survival due to drug indifference/persistence. Panel (a): Biofilm 

with no challenge from antibiotic agent, and unsuccessful immune attack; Panel (b): Antibiotic 

chemotherapy kills the non-tolerant (grey) bacterial cells within the biofilm, whilst the host 

immune system targets and kills both the tolerant (red) and non-tolerant (grey) planktonic cells; 

Panel (c): Following antibiotic cessation remaining bacterial cells due to drug 

indifference/persistence repopulate the biofilm, causing the infection to recur. Adapted from 

Lowy (1998) 

(Lowy, 1998) 1.2 2 

1.3.2  Gene transfer  

Pathogenic bacteria have developed numerous strategies to resist the action of antibiotics, 

including modification and inactivation of the drug, exclusion of the antibiotic and alteration of 

the target (Kumar et al., 2012). The origin of antibiotic resistance genes in pathogenic bacteria is 

unclear, but it is thought that horizontal gene transfer (HGT) of this genetic material is largely 
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responsible for the increasing incidence of antibiotic resistant infection worldwide (Davies J., 

2010). HGT, which includes transduction, transformation and conjugation (Rees et al., 2009), 

has been found to occur at a higher frequency in biofilms than bacteria in the planktonic state 

(Madsen et al, 2012). Thus, plasmids that code for antimicrobial resistance (or virulence factors) 

can be transferred between cells, enabling previously non-resistant bacteria cells to start 

exhibiting resistance or increased virulence (Schroeder et al., 2017).  For example, in biofilms 

formed by Klebsiella pnemoniae, genes encoding β-lactamase can be transferred between cells, 

which allow them to quickly inactivate β-lactams, such as ampicillin (del Pozo and Patel, 2007). 

Resistance has a clinical impact on patients, leading to more treatment failures, higher mortality, 

prolonged length of hospital stays and higher costs (Warnes SL., 2012). Emphasizing the 

importance of efforts to limit their emergence and spread. 

 

1.4 Antibiofilm surfaces  

Biofilms can form on indwelling medical devices (e.g. cardiac pacemakers, joint prosthesis) due 

to the surfaces of these necessary implants providing an ideal scaffold for bacterial attachment 

and biofilm formation. The consequent highly resistant infection ultimately results in the 

requirement for surgical removal of the implanted device. However, this is costly, stressful for 

the patient and not always immediately possible, such as in the case of joint prosthesis or in 

critically unstable patients for whom surgery may put their lives at risk (Kiedrowski and 

Horswill, 2011).  Thus, the need for alternative treatments is crucial. One such alternative is the 

development of anti-biofilm coatings to cover indwelling medical devices. Currently, medical 

implants which have been developed have a porous surface, enabling rapid osseointegration. 

However, it has recently been discovered that such surfaces pose an enhanced risk of infection 

from biofilms (Darouiche, 2004).  

All current antibiofilm coatings function by impeding bacterial attachment and consequent 

biofilm maturation, through the incorporation of conventional antibiotics, or through the 

delivery of silver (or occasionally zinc) ions.  Although these methods display some positive 
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results, such as reduced biofilm formation, they also result in side effects that include toxicity, 

hypersensitivity and the development of bacterial resistance to antibiotics (Dror et al., 2009). 

When evaluating antibiofilm coatings for medical implants, it is important to consider that even 

with the same type of antibiofilm surface, different types of implants may display different level 

of effectiveness in the disruption/prevention of biofilm formation (Dror et al., 2009). For 

example, urinary catheters impregnated with silver were found to increase the numbers of 

staphylococcal bacteriuria infections, whilst endotracheal tubes impregnated with silver reduced 

the incidence of ventilator associated pneumonia (VAP). There is therefore a need for the 

development, improvement and standardisation of antibiofilm coatings, focusing on either 

complete eradication of the biofilm, or prevention of biofilm formation (Dror et al., 2009). One 

novel approach to biofilm eradication is to disrupt the biofilm maturation process through 

interference with autoinducer signalling pathways (Brözel et al., 1995, Davies et al., 1993, 

Sauer and Camper, 2001). For example, the organic chemical compounds furocoumarins are 

able to inhibit cellular autoinducer signalling, which results in the inhibition of biofilm 

formation, in organisms such as E. coli O157:H7, Salmonella typhimurium and Pseudomonas 

aeruginosa (Brözel et al., 1995).  

Although the development of antibiofilm surfaces is an exciting approach to biofilm treatment it 

is also important to consider alternatives for those infections which are unable to be treated in 

this way. For example, the use of bacteriophages. Bacteriophages were originally discovered by 

Ernest Hanbury Hankin in the late 1800s (Abedon et al., 2011), and the potential of these 

bacterial antagonists in treating human disease was almost immediately recognized and have 

been used to treat a range of bacterial diseases (Davies et al., 2010). Bacteriophages have been 

found to generate polysaccharide lyases capable of depolymerising the biofilm 

exopolysaccharide matrix (Maszewska, A, 2015). Following degradation of the matrix, the 

destruction of the bacteria within is the same process seen in planktonic cells. i.e. the phage 

infects the host bacterium, the nucleic acid is delivered into the cell and the phage DNA or RNA 

is then transcribed within the host cell by hijacking the host machinery, and the phage is 
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reproduced quickly and in high numbers (Kawa et al., 2012). The new phages then lyse the cell 

and are released, resulting in host cell death and further infection of host cells (Azeredo and 

Sutherland, 2008, Beckmann et al., 2005). This method of bacteriophage infection has only so 

far been used in cystic fibrosis patients against Pseudomonas aeruginosa biofilms, but could 

potentially be adapted to tackle infection with medical devices, and also be modified genetically 

to target a wider range of bacterial species (Beckmann et al., 2005, Hughes et al., 1998).  

However, bacteria have evolved a diverse repertoire of phage defence mechanisms, including 

both innate defence systems and, the more recently discovered, CRISPR RNA-guided adaptive 

immune systems (Sorek R., 2013). Despite this, the development of CRISPR-mediated immune 

systems has not eradicated phages, suggesting that viruses have evolved mechanisms to subvert 

CRISPR-mediated protection (Wiedenheft B., 2013). Recently, Bondy-Denomy and colleagues 

(2013) discovered several phage-encoded anti-CRISPR proteins that may prove valuable in 

augmenting phage therapy by enabling targeted suppression bacterial immune systems. 

Whilst the use of naturally-occurring phages to treat bacterial infection has been controversial, 

phage-based antimicrobials has advanced well beyond traditional methods (Lin et al., 2017). 

Novel technologies such as bioengineered chimeras of phage-derived lytic proteins show 

potential as a new class of antibacterial pharmaceuticals (Lin et al., 2017), specifically against 

multidrug-resistant bacterial infections. Suggesting phage therapy has the potential to be used as 

either an alternative or a supplement to antibiotic treatments. 

 

1.5 Research objectives 

Despite obvious advances in the area of biofilm prevention and eradication, the current 

strategies are not entirely effective (del Pozo and Patel, 2007). This leaves a significant amount 

of development needed in the area of antibiofilm coatings and antibiofilm strategies in general, 

specifically for medical implants. This work aims to tackle the increasing problem of biofilm 

infections on medical devices in collaboration with nine other research institutes, SMEs and 
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companies. Using a combinatorial approach the consortium aims to develop a new generation of 

medical implant surfaces/coatings, containing novel antibiofilm molecules (ABMs), such as 

peptides (COATIM, 2012). Studies that were carried out as a member of this partnership 

screened a number of antibiofilm molecules (provided by partners of the consortium) for 

activity against staphylococci and established their mode of action in S. aureus. The top five 

ABMs were then attached onto a porous titanium layer, which would ultimately be used coat 

dental and orthopaedic implants. Next the ABM coated implants were evaluated for in vitro 

activity against resisting microbial biofilm infections, without effecting osseointegration. 

Separately, the ABMs were screened by other members of the consortium for activity against 

different species of bacteria and fungi, in vivo activity of the ABM coated titanium surface, 

ABM toxicity, and for the feasibility of upscaling the production of the ABM coated implants.  

In addition, this study aimed to identify antibiotic adjuvants for currently available antibiotics 

ciprofloxacin and rifampicin against S. aureus biofilms, and rifampicin, fusidic acid or linezolid 

against planktonic E. coli. Screening will use collections of compounds that have either been 

previously FDA-approved for a different indication or have had some existing pre-clinical 

analysis. Any potential combinations were then analysed for their spectrum of antibacterial 

activity the ESKAPE pathogens. 
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Chapter 2  

Materials and Methods 

2.1 Bacterial strains, growth media and growth conditions 

Bacterial and fungal strains used in this study are described in Table 2.1. Staphylococci were 

routinely grown in Mueller-Hinton broth (MHB) or Mueller-Hinton agar (MHA) (Oxoid), with 

the exception of biofilms grown in NuncTM MicrowellTM 96-well microplates, which were 

grown in Tryptic Soy Broth (TSB), and for the evaluation of surface-immobilised antibiofilm 

compounds, cultures were grown in Luria-Bertani broth (LBB) (Oxoid). For studies with 

daptomycin, 183.42 µg/mL CaCl2 was added to culture media. LBB or Luria-Bertani agar 

(LBA) (Oxoid) was used for culturing Escherichia coli (E. coli) and Pseudomonas aeruginosa 

(P. aeruginosa). Candida albicans (C. albicans) were cultured in Yeast Extract-Peptone-

Dextrose (YPD) medium or Roswell Park Memorial Institute (RPMI) medium. All organisms 

were grown at 37 °C with aeration, with the exception of C. albicans which was grown at 30 °C. 

Table 2.1 Bacterial and fungal strains used in this study.0-1 Bacterial and fungal strains used in  

Strain Comments Reference/Source 

Acinetobacter baumanni   

Cubist 581217 NDM-1 Gift from Cubist 

Candida albicans   

ATCC MYA-2876 Human clinical isolate (Fonzi and Irwin, 
1993) 

Enterobacter cloacae   

Cubist 583750 CTX-M-15, ACT/MIR, NDM-1, OXA-48 Gift from Cubist 

   

Escherichia coli   

1411 K-12 strain (O'Neill et al., 
2002) 

MG1655 K-12 strain (Xiao et al., 1991) 
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Table 2.1 (continued) Bacterial and fungal strains used in this study. 

 

Strain Comments Reference/Source 

Escherichia coli   

TG1 K-12 strain (Biriukova et al., 
2010) 

Cubist 449334 CTX-M-15, IMP-1 Gift from Cubist 

Cubist 449742 CTX-M-15, TEM-52 Gift from Cubist 

Cubist 586030 CTX-M-15, CMY-2, NDM-4 Gift from Cubist 

Cubist 605879 CTX-M-15, NDM-6 Gift from Cubist 

Cubist 657524 CTX-M-32 Gift from Cubist 

Cubist IHMA 659048 KPC-2, CTX-M-15, AmpC, CMY+ Gift from Cubist 

Cubist IHMA 684850 KPC-2, SHV-12 Gift from Cubist 

Cubist 702452 CTX-M-97 Gift from Cubist 

Klebsiella oxytoca   

Cubist 683079 CTX-M-14b Gift from Cubist 

Klebsiella pneumoniae   

Cubist 581436 CTX-M-15, CMY-2, DHA, NDM-1 Gift from Cubist 

Pseudomonas aeruginosa   

PA01 Clinical isolate (Stover et al., 2000) 

PA14 Clinical isolate (Rahme et al., 1995) 

Staphylococcus aureus   

SH1000  Derivative of strain 8325-4, with repaired 
defect in rsbU 

(Horsburgh et al., 
2002) 

UAMS-1 Methicillin-sensitive clinical strain. 
Proficient biofilm former 

(Gillaspy et al., 
1995) 

USA3000 Community acquired MRSA  (Tenover and 
Goering, 2009) 

Cubist ACC A790662 Human clinical isolate Gift from Cubist 

ATCC6538 Human clinical isolate (Connolly et al., 
1994) 

Staphylococcus 
epidermidis 

  

ATCC 35984 Proficient biofilm former  (Ryder et al., 2012) 
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2.2 Antimicrobial compounds, reagents and chemicals 

All antibiotics and chemicals used in this study were from Sigma-Aldrich (Poole, UK), with the 

exception of P1a-PEP1, P2-5, CIM008405 and 4-45 (COATIM), Tocris 2611 and Tocriscreen 

Total (Tocris Biosciences, Bristol, UK), vancomycin (Dchefa Biochemie, Haarlem, The 

Netherlands), nisin (NBS biologicals, Cambridgeshire, UK), XF-73 (Destiny Pharma, Brighton, 

UK), National Institute of Health (NIH) clinical collection (NIH, Maryland, USA), Spectrum 

Collection (Microsource Discovery System Inc, Gaylordsville, USA), Live/Dead BacLightTM kit 

and Disc3(5) (Invitrogen, Paisley, UK), the radiolabelled chemicals [methyl-3H]thymidine (70–

95 Ci/mmol), [5,6-3H]uridine (31–56 Ci/mmol) and L-[G-3H]glutamine (20 –50 Ci/mmol) 

(Perkin Elmer, Cambridge, UK), defibrinated equine blood (Oxoid Ltd, Cambridge, UK), 

human plasma and foetal bovine serum (Sera laboratories International, West Sussex, UK). 

Daptomycin was a gift from Cubist Pharmaceuticals (Lexington, MA, USA). Phospholipids 

were purchased from Avanti Polar Lipids. Table 2.2 shows all antimicrobial agents used in this 

study, along with their solvents. 

 Table 2.2 Antimicrobial agents and their solvents used in this study. SDS: sodium dodecyl 

sulphate. dH20: deionised water. 

-2 Antimicrobial agents and their solvents used in this study 

Antimicrobial compound Solvent 

Ampicillin dH20 

Ciprofloxacin 20 mM HCl 

CIM008405 DMSO 

Daptomycin dH20 (+ 183.42 µg/mL CaCl2) 

Fusidic Acid 50% ethanol 

Gentamicin dH2O 

Linezolid DMSO 

Nisin 20 mM HCl 

P1a-PEP1 dH20 

P2-5 dH20 
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Table 2.2 (continued) Antimicrobial agents and their solvents used in this study. SDS: sodium 

dodecyl sulphate. dH20: deionised water. 

 

Antimicrobial compound Solvent 

Rifampicin DMSO 

SDS dH20 

Tetracycline dH20 

Tocris 2611 DMSO 

Vancomycin dH20 

XF-73 dH20 

4-45 DMSO 

 

2.3 Antimicrobial susceptibility determinations 

Antibiotic minimum inhibitory concentrations (MICs) were determined using 2-fold serial 

dilutions of antibiotic in MHB according to the Clinical Laboratory Standards Institute (CLSI) 

guidelines (Cockerill et al., 2012). Overnight cultures were added to the antibacterial agent at an 

inoculum of 5 x 105 CFU/mL, and incubated for 18-24 hours at 37 °C. The MIC was identified 

as the lowest concentration of drug which inhibited visible bacterial growth. 

Biofilm MICs (bMICs) and minimum biofilm eradication concentrations (MBECs) were 

determined using the Calgary Biofilm Device (CBD) (Nunc) as described previously (Ceri et 

al., 1999). Overnight cultures were diluted 1/100 in fresh MHB, and incubated with pins of the 

CBD for 24 hours at 37 °C. CBD grown biofilms can reach an innoculum of ~107 CFU/peg. The 

bMIC was identified as the lowest concentration of drug at which no bacterial growth was 

observed. For MBEC determination, the pegs from the bMIC were washed twice in saline 

solution and immersed in wells containing drug free MHB and incubated for 24 hours at 37 °C. 

The MBEC was identified at the concentration of antibacterial agent that resulted in complete 

eradication of the biofilm. As biofilms grown on the CBD are limited for more in depth studies, 

a second biofilm model was used in which biofilms were grown in the wells of 96-well plates. 

To aid biofilm growth, 20 % human plasma in 0.05 M carbonate buffer was added to the wells 
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and incubated at 4 °C overnight. Human plasma was then removed prior to addition of S. aureus 

(1/100 in TSB) before further incubation for 24 hours at 37 °C. Biofilms were washed once in 

saline solution and exposed to antibacterial agent in fresh MHB. Cultures were maintained at 37 

°C for 24 hours. Biofilms were washed once in saline solution and incubated with proteinase K 

(100 µg/mL in 20 mM tris and 100 mM NaCl, pH 7.5) for 1 hour. Dispersed biofilm cells were 

collected, washed and resuspended in PBS then cultured on MHA and incubated at 37 °C 

overnight for viable counting. The MBEC was determined as the lowest concentration of 

antimicrobial drug that prevented the recovery of viable cells.  

 

2.4 Time-dependent killing studies 

Standard time-kill methodology was used to study the killing kinetics of Tocris 2611 and 

comparator agents against early exponential-phase cultures of SH1000 as previously described 

(Ooi et al., 2009, Randall et al., 2013b). Briefly, bacteria were incubated at  37 °C to optical 

density (OD)600 of 0.2, exposed to either 4 x MIC of comparator agent or 0.5, 8 and 64 µg/mL 

of Tocris 2611 (4 xMIC, CBD MBEC and 96-well plate MBEC, respectively). Aliquots of 

culture were taken regularly over 24 hours for determination of viable counts. 

Viable counts were determined over the course of 24 hours by diluting in PBS as necessary, 

culturing onto MHA, and incubating for 18-24 hours at 37 °C.  

Time-kills against stationary phase SH1000, were performed as described, except overnight 

cultures were centrifuged at 5500 rpm for 10 minutes at 37 °C and resuspended in supernatant 

to OD600 of 0.2 before being exposed to antibacterial agents. Persister time-kills were performed 

according to previously described methodology (Keren et al., 2004, Wiuff et al., 2005). Briefly, 

bacterial cultures were incubated to early exponential phase (OD600 of 0.2). To half of the 

culture 10 x MIC ciprofloxacin was added, and to the other, 10 x MIC ampicillin was added and 

cultures were incubated at 37 °C for 24 hours. After 24 hours, remaining viable cells were 

collected by centrifugation, washed, and resuspended to the same volume in MHB and exposed 
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to antibacterial agents at 37 °C. Aliquots of culture were taken regularly over 24 hours for 

determination of viable counts. 

 

2.5 Identification of antibiotic adjuvants from chemical libraries 

Three compound libraries of biologically active small molecules were evaluated for antibiotic 

adjuvants; the NIH Clinical Collection (727 compounds), Tocriscreen Total collection (1120 

compounds), and the Spectrum Collection (2320 compounds). All library compounds were 

supplied pre-dissolved in DMSO at a concentration of 10 mM. Duplicates of each library were 

made at 1 mM and individually screened in combination with clinically available antibiotics 

ciprofloxacin or rifampicin against S. aureus SH1000 biofilms, or rifampicin, linezolid or 

fusidic acid against planktonic cultures of E. coli 1411. All screens were performed in 96-well 

plates and library compounds were tested at 10 µM. 

S. aureus biofilms were grown in 96-well plates as described in section 2.3. After 24 hours 

growth, biofilms were washed once in saline solution and exposed to 198 µL of MHB 

containing either 50 µg/mL ciprofloxacin or rifampicin, before 2 µL aliquots of library 

compounds were added to a final concentration of 10 µM and incubated for 24 hours at 37 °C. 

Biofilms were washed once in saline solution and stained with 200 µL 10 % crystal violet 

solution for 30 minutes. Biofilms were washed twice more in deionised water and antibiofilm 

activity was determined as loss or eradication of the biofilm visualised by crystal violet staining. 

Planktonic cultures of E. coli were tested according to CLSI guidelines for broth MICs (section 

2.3) with the exception that antibacterial agent rifampicin was tested at fixed concentration 0.5 

µg/mL, whilst linezolid and fusidic acid were tested at 50 µg/mL. As before, library compounds 

were tested at a final concentration of 10 µM. Activity was identified in the same way as broth 

MIC’s; inhibition of bacterial growth. 
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2.6 Identification of synergistic interactions 

Combinations of antibacterial agents were assessed for synergistic interactions against 

planktonic cultures of E. coli, following the checkerboard methodology (Pillai et al., 2005). The 

following equation was used to calculate the fractional inhibitory concentration (FIC) index:  

                  ⎟
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⎛
+⎟⎟
⎠

⎞
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⎝

⎛
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A FIC index of <0.5 is considered a synergistic interaction, an index of 1 is taken to indicate an 

additive interaction, whilst >2 is an antagonistic interaction. 

 

2.7 Antibacterial mode of action studies 

2.7.1 Macromolecular synthesis assay 

Alterations in macromolecular synthesis as a consequence of exposure to Tocris 2611 and 

comparator agents was investigated by quantifying incorporation of radiolabelled precursors 

into DNA ([methyl-3H]thymidine), RNA ([5,6-3H]uridine) and protein (L-[G-3H]glutamine), in 

early exponential-phase cultures of S. aureus SH1000 in MHB (culture absorbance 0.2 units at 

600 nm; ∼108 cfu/mL) (Cherrington et al., 1990). At culture OD, precursors were added to 

1µCi/ml and incubated at 37 °C. After incubation for 10 minutes, 100 µL of each radiolabeled 

culture was mixed with 100 µL of ice-cold 10 % trichloroacetic acid (TCA) and stored on ice. 

Remaining cultures were treated with 4 x MIC antibacterial agents. After 10 minutes incubation, 

100 µL of the cultures were mixed with an equal amount of 10 % TCA and kept on ice for 30 

minutes. TCA precipitates were collected under vacuum using UniFilter GF/B plates (Perkin-

Elmer), and filters onto which [5,6-3H]uridine-labelled samples had been deposited were 

washed twice with 100 µL unlabeled uridine. Individual filters were then washed twice with 200 

µL of 10 % TCA, and twice with 200 µL of acetic acid (Hilliard et al., 1999). Filter plates were 

dried, and 25 µL scintillant (Microscint 20, Perking-Elmer) was added to each well, and 

radioactivity was measured using a Chameleon multilabel plate scintillation counter (Hidex).  
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2.7.2 BacLightTM assay 

The BacLightTM assay was used to measure staphylococcal membrane integrity following 

exposure to antimicrobial agents at 4 x MIC. S. aureus SH1000 was grown to OD600 0.5-0.6 

(Hilliard et al., 1999, Ooi et al., 2013). Cells were harvested, washed in sterile deionised water 

and resuspended to double the original volume. Compounds were added at 4 x MIC, with the 

exception of SDS which was used as a 5 % (w/v) solution, and incubated at 37 °C for 10 

minutes. Cells were washed twice in sterile deionised water and resuspended to equal volumes. 

50 µL of suspensions were dispensed to individual wells of a black 96-well plate (Greiner Bio-

One). In the dark, 150 µL of BacLightTM reagent was added to the wells and incubated for 15 

minutes at room temperature. Red (emission 620-650 nm) and green (emission 510-540 nm) 

fluorescence were measured using a FLUOstar Omega (BMG Labtech) plate reader (excitation 

wavelength of 470nm). The red : green fluorescence ratio was calculated and percentage 

membrane integrity relative to cells treated with 5% (w/v) SDS was calculated. If membrane 

integrity was <70%, compounds were considered membrane damaging. 

2.7.3 DiSC3(5) assay 

The membrane potential of staphylococci exposed to antimicrobial agents was determined using 

the fluorescent dye DiSC3(5) as previously described (Hobbs et al., 2008). Cultures of SH1000 

cells were grown to OD600 0.2, washed twice, and resuspended in 5 mM HEPES and 5 mM 

glucose buffer (pH 7.2). In the absence of light, 100 mM KCl and 2 µM DiSC3(5) were 

incubated with cells at 37 °C for 30 minutes to allow the dye to be taken up. Cultures were then 

exposed to antibacterial agents at 4x MIC. At necessary time points, samples were taken and 

processed as follows; centrifugation to collect cells, followed by 1 mL of supernatant added to 1 

mL DMSO. A further 1 mL DMSO was added to the remaining pellet to lyse the cells. After 10 

minutes incubation, 1 mL of lysed sample was mixed with 1 mL of HEPES/glucose buffer (pH 

7.2). Extracellular and intracellular fluorescence were read on the LS 45 luminescence 

spectrometer (Perkin-Elmer) at an excitation of 622 nm and an emission of 670 nm. The Nernst 

equation (Silverman et al., 2001) was used to calculate membrane potential;  
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Δ� is the membrane potential, R is the universal gas constant (8.3144598 J mol−1 K−1), T is the 

absolute temperature and F is the Faraday constant (96485.33289 Coulomb mol−1).  

2.7.4 Liposome integrity 

Carboxyfluorescein (CF) loaded liposomes matching the lipid composition of staphylococcal 

(60% [wt/wt] phosphatidylglycerol, 40% cardiolipin) or mammalian (50% phosphatic acid 

[wt/wt], 50% phosphatidylcholine) cytoplasmic membranes were prepared and tested as 

previously described (Randall et al., 2013a, StGelais et al., 2007). Briefly, lipid mix was pre-

dried using non-oxygen gas Argon, and further dried for two hours under vacuum. The dried 

lipid mix was resuspended at room temperature and vortexed thoroughly. Homogenised lipids 

were then extruded at 37°C and ultracentrifuged at 100000g for 15min (three times). The 

following equation was used to determine liposomes were intact and measure liposome 

concentration (mM) at OD570; 

 

2.75mM (average lipid molarity)
OD!"# pre extrution sample ∗ dilution (1: 10) 

∗ OD!"# liposomes 

 

For the assay itself, 50 µM of liposomes were treated with compounds at 4 x MIC and leakage 

of carboxyfluorescein was monitored over 3 hours by measuring flourescence.  Percent 

liposome integrity was calculated relative to the positive control, 0.5% Triton X-100. 

Fluorescence was measured at excitation 485 nm and emission 520 m, in fluorescence 

microtitre plates (Greiner Bio-One) using the FLUOstar Omega (BMG Labtech). 
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2.7.5 Haemolysis assay 

Haemolysis of equine erythrocytes was measured to evaluate the ability of compounds to 

damage mammalian membranes (Ooi et al., 2013, Oliva et al., 2003). Compounds were tested at 

4 x MIC. Whole blood containing lithium heparin was centrifuged at 1000 x g for 10 minutes, at 

4 °C. The supernatant was removed from the buffy coat and erythrocytes were washed three 

times in 1/20 10 mM Tris-HCl, 0.9% NaCl, pH 7.4 (kept at 4 °C). Erythrocytes were diluted 

1/25 in buffer and before use were incubated at 37 °C for 15 minutes. Compounds and 

erythrocytes were incubated for 1 hour at 37 °C before being centrifuged at 3000 x g for 5 

minutes. Haemolysis was measured at OD540 and expressed as a percentage relative to the 

positive control (5 % SDS). 

2.7.6 Selection of Tocris 2611 resistant mutants 

Mutational resistance of S. aureus to Tocris 2611 and control agent rifampicin was initially 

determined by assessing spontaneous mutation frequencies (Ryder et al., 2012, O'Neill et al., 

2001).  Overnight cultures of S. aureus SH1000 were plated onto MHA containing 4 x MIC of 

antibacterial agent and incubated for 48 hours at 37 °C. Mutation frequencies were determined 

as the number of drug resistant colonies as a percentage of the total population determined on 

drug-free MHA. 

Exposure to Tocris 2611 did not cause resistance from spontaneous mutation. Therefore, an 

alternative protocol for resistance selection was used; the extended gradient MIC (Randall et al., 

2013b, Friedman et al., 2006). Cultures of SH1000 were continuously exposed to an extended 

concentration range of Tocris 2611 and control agent daptomycin over 25 passages. 

Methodology was carried out in accordance with the methodology for broth MICs (Section 2.3), 

with the exception that cultures were exposed to a wider range of concentrations within the 

dilution series. Each new passage was inoculated by the cells which grew at the highest 

concentration of antibacterial agent in the preceding passage.  
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2.8 Quantification of biofilm material  

To determine the effect of Tocris 2611 on biofilm structure, the proportion of matrix and cells 

present after 6 or 24 hours exposure to Tocris 2611 was quantified. Biofilms were grown and 

exposed to antibacterial agents using the 96-well plate format (Section 2.3). Proteinase K was 

added at 100 µg/mL in 20 mM tris and 100 mM NaCl, pH 7.5. Tocris 2611 was tested at 0.5, 8 

and 64 µg/mL (4 x MIC, CBD MBEC, and well MBEC, respectively). After 6 or 24 hours 

biofilms were washed in deionised water and stained in the dark for 30 minutes with SYPRO® 

Ruby containing 0.167 µM SYTO® 9. Biofilms were washed again in deionised water and 

fluoresence was read using the FLUOstar Omega (BMG Labtech) at an excitation of 480 nm 

and emission of 620 nm (matrix) and 520 nm (cells). Red : green fluorescence ratios were 

calculated to determine matrix : cell ratio.  

 

2.9 Analysis of surface immobilised antibiofilm molecules 

2.9.1 In vitro activity analysis of antibiofilm compounds immobilised on smooth titanium 

surfaces 

P. aeruginosa PA14, E. coli TG1 and S. aureus (ATCC6538 or SH1000) were cultured 

overnight in LBB at 37 °C. Simultaneously, smooth titanium disks were incubated overnight in 

foetal bovine serum at 37 °C. Disks were washed once in PBS and transferred to wells of a 96-

well plate. 200 µL of overnight culture of P. aeruginosa or E. coli diluted 1/100 in 1/20 TSB, or 

S. aureus diluted 1/100 in LBB were added to disks and incubated for 24 hours at 37 °C. Disks 

were individually washed once in PBS and transferred to a fresh 1 mL PBS, before being 

vigorously vortexed for 1 minute, sonicated for 10 minutes and vortexed again for 1 minute to 

remove adherent biofilms. Serial dilutions in PBS were then made to quantify biofilm formation 

on the disks, before plating onto MHA and incubating for 18-24 hours at 37 °C. Biofilm 

inhibition was calculated by enumerating colonies and expressing as a percentage of the 

negative control (compound free disks).  
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2.9.2 In vitro activity analysis of antibiofilm compounds immobilised on open porous 

titanium surfaces 

Antibiofilm activity of antibacterial compounds immobilised to open porous titanium disks were 

analysed using the same methodology described in section 2.9.2 with the following exceptions; 

instead of using a 96-well plate, disks were wrapped in parafilm and silicone tubing (VWR 

International) leaving only the drug coated side of the disk exposed. Parafilm and silicone 

tubing were previously sterilized using 70 % ethanol.  Overnight bacterial cultures were diluted 

1/10000 in 1/20 TSB and 200 µL was added to the surface of the disk, before being incubated 

for 24 hours at 37 °C. In sterile conditions, disks were removed from the parafilm and silicone 

tubing before being washed, vortexed and enumerated as before (Section 2.9.2). 

 

2.10 DNA manipulation 

2.10.1 Genomic DNA extraction 

Preparation of high-purity genomic DNA from S. aureus was carried out using the PurElute™ 

bacterial genomic kit (EdgeBio, Maryland, USA) following manufacturer’s instructions, with 

the following additions; spheroplast buffer was supplemented with 100 µg/ml lysostaphin and 

cells incubated for 60 minutes at 37 °C, and a 15 minute incubation with 100 µg/ml of 

proteinase K at 37 °C was included before the addition of Advamax 2 beads. Whole genome 

sequencing and bioinformatic analysis was carried out by the Leeds Institute of Molecular 

Medicine, University of Leeds. 

2.10.2 Polymerase chain reaction (PCR) 

Phusion® High-Fidelity DNA Polymerase (New England Biolabs, Massachusetts, USA) was 

used to amplify genomic DNA according to manufacturer’s instructions. All primers were 

synthesised by Eurofins MWG Operon and reaction conditions followed those suggested by the 

manufacturer. PCR products were purified using QIAquick PCR Purification Kit (QIAGEN, 
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Manchester, UK) according to manufacturer’s instructions and sequenced by Beckman Coulter 

Genomics (Essex, UK). Oligonucleotide primers are listed in Appendix A. 

2.10.3 Agarose gel electrophoresis 

Amplified PCR products were visualised by agarose gel electrophoresis (Sambrook and Russell, 

2001). Gels were 0.8% (w/v) agarose dissolved in Tris-acetate-EDTA (TAE) buffer containing 

1:10000 SYBR® safe gel stain (Invitrogen, ThermoFisher Scientific, Massachusetts, USA). To 

determine the molecular weight of the analysed PCR product, either DNA Hyperladder I or II 

(Bioline Reagents) were run alongside the sample. A potential difference of 90 V was applied 

across the gel for 30 minutes. DNA was visualised using a Syngene, Genegenius Bioimaging 

gel documentation system. 

2.10.4 DNA quantification 

To determine DNA concentration, the absorbance of samples was read using Nanophotometer® 

(Geneflow, Lichfield, UK), at 260 nm. The ratio of absorbance values at 260 nm : 230 nm and 

260 nm : 280 nm reported on sample purity. A 1.8 ratio reflected a pure sample (Desjardins and 

Conklin, 2010) .  
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Chapter 3 

Development of antibiofilm compounds for medical 

implants 

3.1 Abstract 

Biofilm associated infections are responsible for ~25% of medical device implant (MDI) 

failures. The most recent generation of MDIs with open porosity facilitate osseointegration, but 

also present increased risk of biofilm formation as bacteria preferentially adhere to surfaces 

such as these. This work therefore aimed to identify and characterise five novel ABMs, for 

development as dental and orthopaedic implants coatings. The activity and potential toxicity of 

56 novel ABMs was assessed and the best five were identified: 4-45, CIM008405, P1a-PEP1, 

P2-5 and Tocris 2611. P1a-PEP1 and P2-5 were most effective against fungal pathogens, whilst 

4-45, CIM008405 and Tocris 2611 exhibited more potent activity against bacterial pathogens. 

Tocris 2611 was the only ABM to possess the ability to eradicate preformed staphylococcal 

biofilms and its MOA is consequently discussed in Chapter 4 instead. Since the preclinical 

evaluation of new drugs includes MOA studies, initial experiments investigated whether the 

antibacterial activity of the ABMs was through inhitition of one of the major macromolecular 

synthesis pathways (DNA, RNA or protein). None of the four ABMs (4-45, CIM008405, P1a-

PEP1, P2-5) caused preferential inhibition any of the specific pathways tested, instead targeting 

the bacterial membrane, resulting in damage and loss of potential. All four ABMs caused 

destruction of staphylococcal and mammalian liposomes, aswell as complete or near complete 

lysis of equine erythrocytes, indicating a direct interaction with the phospholipid bilayer, and a 

lack of prokaryotic specificity. In vitro testing of the five ABMs attached to smooth and open 

porous surfaces impacted biofilm formation, but had no effect on biofilm formation in vivo. 

Despite this, work presented here successfully developed a useful approach to implant coatings. 
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3.2 Introduction 

Biofilm formation is estimated to be involved in 80% of all bacterial infections in humans and 

biofilm-related corrective surgery costs in Europe are estimated at €15,000 per patient and €800 

million per year (Davies, 2003, Fux et al., 2005). Medical implants that require rapid 

osseointegration, such as joint prostheses, have been developed to include porous surfaces, 

which further increases the risk of biofilm related infections due to enhanced bacterial 

attachment. Alternative treatment approaches to prevention are therefore crucial. One such 

alternative approach is the development of antibiofilm surfaces to cover indwelling medical 

devices. To reduce biofilm-associated infections on implants, biocidal coatings can be applied 

based on the use of metal ions like silver, which is toxic when accumulated, or the release of 

conventional antibiotics to prevent infection at the site of the implant. A serious concern 

regarding such continuous antibiotic pressure however is an increased incidence of clinical drug 

resistance, such as observed for the methicillin-resistant Staphylococcus aureus (MRSA). In this 

respect, the development of antibiotic resistant infections can lead to devastating effects in the 

absence of any valid medical treatment to control the infection, and has become a serious public 

health problem. Another important challenge of biocidal implant coatings is to achieve 

antimicrobial activity without impairing osseointegration caused by general cytotoxicity. 

It is therefore important to elucidate the mechanism of action of compounds for clinical 

applications such as these. To determine a compound’s MOA there are a wide variety of 

experiments that can be performed.  For the work described in this chapter, studies to identify 

an agents cellular target were initially performed, by measuring alterations in macromolecular 

synthesis (MMS) pathways (DNA, RNA and protein) as a consequence of exposure to the 

compound. Although not performed in the following sections, initial MOA studies could also 

include, but are not limited to, bacterial cytological profiling and the use of whole-cell B. 

subtilis biosensors. 

This work therefore aims to develop antibiofilm coatings on porous titanium layers coated 

implant material using novel small molecules and peptides with inhibitory activity against 
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microbial biofilms, which are associated with partners of this project (COATIM). Research 

focuses on implant coatings that do not release the antibiofilm compounds, representing longer-

lasting antibiofilm and topical activity. In addition, studies will assess the effects of the ABMs 

on osseointegration, aswell as characterise the MOA of the top five ABMs. 

 

3.3 Aims and objectives 

Work described in this chapter was intended to identify five novel antibiofilm molecules 

(ABMs), elucidate their mode of action (MOA) against S. aureus and assess their ability to 

prevent biofilm formation when immobilised to a titanium surface. This work was performed as 

part of an EU consortium, collectively known as COATIM. COATIM involves the 

collaboration of four SME’s, one company, and three universities aiming to develop the next 

generation of antibiofilm coatings for medical implants. 

 

3.3 Results and Discussion 

3.3.1 Identification of the five top novel antibiofilm molecules 

 

In COATIM, 56 ABMs (identified in previous drug screening programs conducted by the 

partners) were assessed in order to determine the best five. These molecules were selected for 

inhibitory activity against bacterial and/or fungal biofilms (either inhibiting their formation or 

eradicating biofilms including persisters). The five ABMs were selected based on their ability to 

inhibit biofilm formation of different bacterial and fungal species, toxicity against nematodes, 

and toxicity profiles for different human primary cell types, which are relevant for implant 

fixation. In parallel, a biofilm mouse colonization model was developed and the mode of action 

of these ABMs was unraveled. Finally, the ABM-coated implants were evaluated for in vitro 

and in vivo activity in resisting microbial infection without compromising osseointegration. The 

work presented here, performed as a member of the COATIM consortium, focuses on 
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characterization of the five best ABMs, in the Gram-positive organism Staphylococcus aureus; 

the leading cause of post-operative infections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

56 ABMs screened for activity against biofilms of S. 
epidermidis, S. aureus, S. mutans, P. aeruginosa, C. 
albicans, E. coli and S. typhimurium.  

 

56 ABMs tested for non-toxicity of the multicellular 
nematode worm C. elegans 

 

Based on these data, the following 25 ABMs were selected for further testing: 
 
Antifungal agents  Antibacterial agents 

- 8339         -    202611 
- 27458         -    4-49 
- 42170         -    4-32 
- P2-1         -    4-122 
- P2-5         -    5-21 
- P2-8         -    5-59 
- P2-14         -    5-102 
- P1a-PEP1        -    P1a-CIM02 
- OSIP10         -    P1a-PEP7 

                  -    CIM006387 
           -   CIM006387 

        -    CIM007844 
        -    CIM008405 
        -    CIM003592 
        -    BCF-AA022 
        -    BCF-AA045 

The ability of the 25 ABMs to 
prevent biofilm formation of P. 
gingivalis and polymicrobial biofilms 
was determined.  

The effects of the ABMs on cell 
viability, and functional behaviour 
(differentiation potential) were tested, to 
determine that they are not cytotoxic for 
bone tissue and do not negatively effect 
osseointegrative potential of the implant. 

 

The 25 ABMs were tested for their 
remaining activity upon gamma-
irradiation (the technique which will be 
used to sterilize the implants). 

Based on these results, the following 5 ABMs were selected: 
 
Antifungal agents                  Antibacterial agents 
 

- P2-5           -   202611 
- P1a-PEP1          -    4-45 

                          -  CIM008405 

Mode of action studies of the top 5 ABMs 
(including propensity of microbials to 
develop resistance to the agents). 

In vitro activity of ABM-coated 
smooth and open porous disks.  

In vivo activity of ABM-coated 
smooth and open porous disks.  

All 5 ABMs are found to be 
membrane damaging agents. 

ABMs coated on smooth disks 
exhibited stronger antimicrobial 
activity than on open pourous 
disks. 

None of the ABMs exhibited in 
vivo antibiofilm activity. 
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Figure 3.1 A selection of 56 antibiofilm molecules (ABMs) were screened for antibacterial and 

antifingal activity, aswell as cytotoxicity. Based on these results, the top five ABMS were 

grafted on small titanium implant substrates, as a model for dental and orthopaedic implants. 

Next, the ABM-coated implants were evaluated for in vitro and in vivo activity in resisting 

microbial infection without compromising osseointegration. In parallel, the antibiofilm mode of 

action of the ABMs was unraveled. This work aimed to develop the next generation of implant 

coatings containing novel potent proprietary antibiofilm molecules (ABMs) with inhibitory 

activity against microbial biofilms. 

 

3.3.1.2 Susceptibility of monospecies staphylococcal strains to novel antibiofiolm molecules 

The susceptibility of three different S. aureus strains were used: SH1000, UAMS-1 and 

USA300, and one strain of S. epidermidis: RP62A, was determined against the 56 novel 

antimicrobial agents (Appendix B).  SH1000 is a strain extensively studied because it forms 

robust biofilms in vitro (Geoghegan et al., 2010). It has a repaired defect in rsbU, which 

encodes a positive regulator of the alternative sigma factor Sigma(B), which positively increases 

biofilm formation (Jonsson et al., 2004). UAMS-1 is a widely used MSSA strain that was 

isolated from an osteomyelitic patient, and is a prolific biofilm former (Gillaspy et al., 1995). 

USA300, which is the most prevalent community acquired MRSA strain. RP62A, a commonly 

used reference strain, is also biofilm producing and was isolated during the 1979 to 1980 

Memphis, Tennessee, outbreak of catheter-associated sepsis (Christensen et al., 1987). In terms 

of in vitro biofilm composition, SH1000 and UAMS-1 biofilms are polysaccharide dominant 

(Beenken et al., 2004), and USA300 is a protein adhesion type (Pozzi., 2012). Whilst biofilm 

formation in RP62A is PIA-dependent (Izano et al, 2005). All compounds were tested in µM 

(up to 100 µM) to account for the differences in molecular weight. 

Approximately half of compounds tested against planktonic cultures of SH1000, USA300, 

UAMS-1 or RP62A (22 of 56), exhibited no activity (MICs greater than 100 µM) (Appendix B). 
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Most compounds (34 of 56) were unable to inhibit the shedding of cells from the biofilm in all 

four staphylococcal strains, with bMICs greater than 100 µM (Appendix B). Of the remaining 

compounds tested, MICs and bMICs ranged from 6.25-100 µM, with the exception of Tocris 

2611, which exhibited an MIC and bMIC of less than 0.4 µM (Appendix B). By comparison, 

established antibiotics ciprofloxacin and gentamicin exhibited MICs and bMICs ranging from 

6.25-100 µM. With the exception of Tocris 2611, which had MBECs ranging from 6.25 µM to 

12.5 µM, none of the compounds (including control agents ciprofloxacin and gentamicin) were 

able to eradicate pre-formed staphylococcal biofilms (Appendix B).  

Although staphylococci are one of the most common causes of biofilm-related infections, it is 

also important to consider other pathogens frequently associated with these types of infection, 

such Pseudomonas aeruginosa (P. aeruginosa) and Candida albicans (C. albicans). 

Furthermore, agents developed as clinical treatments must exhibit selective toxicity against 

microbial cells. Consequently, all 56 novel ABMs were screened by other members of the 

COATIM consortium, against Streptococcus mutans (S. mutans), Escherichia coli (E. coli), 

Salmonella Typhimurium (S. Typhimurium) P. aeruginosa, Porphyromoas gingivalis (P. 

gingivalis) and C. albicans, and their toxicity was assessed against Caenorhabditis elegans (C. 

elegans). C. elegans is regularly used as toxicity model, since many of the basic physiological 

processes and stress responses that are observed in higher organisms, such as humans, are 

conserved in C. elegans. Accordingly, 14 of 56 compounds were selected for further testing 

based on the potency of their antimicrobial activity and non-toxicity for C. elegans. These were 

4-29, 4-45, 4-122, 5-21, 5-59, 5-102, BS-342, CIM003592, CIM006387, CIM007844, 

CIM008405, P1a-CIM02, P1a-PEP1 and Tocris 2611.  

 

3.3.1.2. Susceptibility of multispecies staphylococcal biofilms to antibiofilm compounds 

In vitro biofilm research is performed predominantly using single species of microorganims, 

despite the fact that the majority of biofilm infections involve polymicrobial communities.   
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Subsequently, pre-formed polymicrobial staphylococcal biofilms of S. aureus USA300 and S. 

epidermidis RP62A were exposed to the 14 ABMs that were selected for further testing (Table 

3.1). Five of the 14 compounds exhibited no inhibition of biofilm shedding, with bMICs greater 

than 100 µM. With the exception of Tocris 2611, bMICs for the remaining 9 compounds ranged 

from 25-100 µM. Tocris 2611 exhibited comparable activity against polymicrobial and 

monospecies biofilms, with a bMIC of < 0.4 µM, and an MBEC of 6.25 µM (Table 3.1). None 

of the other 14 compounds were able to eradicate pre-formed polymicrobial S. aureus and S. 

epidermidis biofilms, with MBECs > 100 µM (Table 3.1). In addition, control agents 

ciprofloxacin and gentamicin were also unable to eradicate an established S. aureus/S. 

epidermidis biofilm, with MBECs greater than 100 µM (Table 3.1).  

The ability of the 14 novel antibiofilm molecules to prevent formation of other multi-species 

biofilms was determined by other COATIM partners. Polymicrobial biofilms tested were C. 

albicans and S. epidermidis, C. albicans and S. aureus, C. albicans and E. coli, and E. coli and 

P. aeruginosa. Furthermore, the effect of the 14 antibiofilm compounds on the three most 

relevant cell types represented in bone tissue (osteoblasts, bone marrow derived stem cells and 

endothelial cells) was also assessed by the COATIM consortium, to determine if the ABMs 

negatively affect the osseointegrative potential of the implant. Cytotoxicity tests were 

determined in these cell types since it is important the antibiofilm molecules to not negatively 

impact the osseointegrative potential of the coated implant, or the surrounding bone tissue. 
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Table 3.1 Antibiofilm activity of novel antibacterials agents and control agents (ciprofloxacin 

and gentamicin) against S. aureus USA300 and S. epidermidis RP62A polymicrobial biofilms. 

ntibiofilm activity of novel antibacterial agents 

 Biofilm minimum inhibitory 

concentration (bMIC) (µM) 

Minimum biofilm eradication 

concentration (MBEC) (µM) 

Antibacterial agent 
S. aureus USA300 and S. 

epidermidis RP62A 

S. aureus USA300 and S. 

epidermidis RP62A 

Ciprofloxacin 100 >100 

Gentamicin 100 >100 

4-29 >100 >100 

4-45 25 >100 

4-122 50 >100 

5-21 25 >100 

5-59 >100 >100 

5-102 >100 >100 

BS-342 >100 >100 

CIM003592 100 >100 

CIM006387 100 >100 

CIM007844 100 >100 

CIM008405 25 >100 

P1a-CIM02 >100 >100 

P1a-PEP7 50 >100 

Tocris 2611 < 0.4 6.25 

 

Based on these parameters, the five best ABMs were selected from the 14 that underwent 

further investigation. These were 4-45, CIM008405, P1a-PEP1, P2-5 and Tocris 2611. 

However, as Tocris 2611 exhibited eradication activity of preformed staphylococcal biofilms, 

its MOA will no longer be presented in this chapter, instead it is presented in Chapter 4.  
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3.3.2 Elucidation of the mode of action of the four antibiofilm molecules 

3.3.2.1 Effects of the four antibiofilm molecules on major macromolecular synthesis 

pathways 

Initial investigations to establish the MOA of the four ABMs (4-45, CIM008405, P1a-PEP1 and 

P2-5) monitored alterations in macromolecular synthesis following exposure to 4 x MIC of 

compound. This was done by quantifying incorporation of radiolabeled precursors into the 

macromolecules DNA, RNA and protein (Hobbs et al., 2008, Ooi et al., 2009, Randall et al., 

2013b). This method is commonly used as it can provide insights into the MOA, especially 

since some antibiotics often exhibit activity which is specific to one macromolecular pathway, 

with little or no effect on other macromolecular biosynthesis pathways (O'Neill and Chopra, 

2004, Ooi et al., 2013, Randall et al., 2013b). 

Against S. aureus, at 4 x MIC, none of the four ABMs caused preferential inhibition of DNA, 

RNA or protein synthesis within 10 minutes (Figure 3.1).  In comparison, control agents 

ciprofloxacin, rifampicin and tetracycline specifically inhibit the synthesis of DNA, RNA, and 

protein, respectively (Figure 3.1). This type of non-specific response is indicative of compounds 

that have antimicrobial activity against S. aureus by disrupting the cytoplasmic membrane 

(O'Neill and Chopra, 2004, Ooi et al., 2009, Randall et al., 2013b). 
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Figure 3.1 Effects of control agents and four ABMs on major macromolecular biosynthesis 

pathways in S. aureus SH1000. Percentage incorporation of H3 thymidine, uridine and 

glutamine into SH1000 DNA, RNA and protein synthesis. Means of at least three independent 

replicates; error bars show standard error. 
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3.3.2.2 Effects of the four antibiofilm molecules determined in membrane damaging assays 

To further assess whether the MOA of the four ABMs is through disruption of the cytoplasmic 

membrane, the BacLightTM assay was used to measure integrity of the S. aureus membrane. 

This method measures membrane integrity using two dyes (SYTO® 9 and propidium iodide). 

Both dyes stain nucleic acid, but propidium iodide can only enter cells which have undergone 

damage to the membrane, whilst SYTO® 9 is able to enter both damaged and undamaged cells. 

The ratio of the dyes is therefore directly proportional to the amount of membrane damage as a 

consequence of exposure to the drug. 

S. aureus cultures were exposed to 4 x MIC of the antibiofilm molecules and control agents 

(tetracycline and nisin) for 10 minutes. Tetracycline is known to inhibit protein synthesis, and to 

have no effect on the bacterial membrane. Nisin is a known membrane damaging compound 

which forms pores in the membrane (McAuliffe et al., 2001). The four antibiofilm molecules 

caused a loss in membrane integrity (Table 3.2); compounds 4-45, CIM008405 and P2-5 

resulted in complete loss of membrane integrity after 10 minutes, comparable to that observed 

for membrane damaging compound nisin (Table 3.2). Whilst S. aureus cells exposed to P1a-

PEP1 and tetracycline, retained 71% and 98 % membrane integrity, respectively (Table 3.2). 

However, compounds that reduce the membrane integrity by > 25% in this assay, are still 

considered to exert their antibacterial effects through membrane disruption. 

The four antibiofilm molecules were then assessed in a second membrane damaging assay, that 

utilize the membrane potential-sensitive fluorescent dye DiSC3(5), and offers a more sensitive 

measure of membrane perturbation. S. aureus cells are hyperpolarised and incubated with 

DiSC3(5), causing the dye to concentrate in the membrane and become self-quenching. 

Subsequent membrane damage causes a loss of membrane potential and release of DiSC3(5), 

which is then measured by fluorescence. All compounds were tested at 4 x MIC and nisin and 

tetracycline were again used as comparator agents.  

All four ABMs caused a rapid loss in membrane potential (Table 3.2). Within 1 hour, there was 

a 100 % reduction in membrane potential of cells exposed to 4-45, CIM008405 and P2-5, a 
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result comparable to that observed for the known membrane damaging agent, nisin (Table 3.2). 

The loss of membrane potential caused by P1a-PEP1 was 57 % after one hour, a less 

pronounced effect than that caused by four other ABMs (Table 3.2). Similarly, a less significant 

effect was observed for P1a-PEP1 in the BacLightTM assay and quantification of 

macromolecular synthesis pathways, which may indicate that the antimicrobial activity of this 

compound is time or concentration dependent. 

 

Table 3.2 Effects of the four antibiofilm molecules and comparator agents at 4 x MIC on S. 

aureus SH1000 cellular membranes. Values are the means of at least three (Randall et al., 

2013a)biological replicates (+ SD). S. aureus SH1000 cells were treated with antibacterial 

agents for 10 minutes to determine membrane integrity, and 60 minutes to determine membrane 

potential. 

 3-0-1 Effects of ABMs on S. aureus cellular membranes 

Antibacterial agent 
% S. aureus membrane 

integrity (10 min) 

% S. aureus membrane 

potential (60 min) 

None 100 + 0 100 + 5 

4-45 2 + 1 0 + 4 

CIM008405 4 + 3 0 + 4 

Nisin 5 + 1 0 + 3 

P1a-PEP1 71 + 4 43 + 4 

P2-5 0 + 5 0 + 7 

Tetracycline 98 + 6 97 + 6 

 

Taken together, the MMS, BacLightTM and DiSC3(5) data suggest that all four ABMs exert their 

antimicrobial activity against S. aureus by disrupting the cell membrane. To further resolve the 
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MOA, the ability of the four ABMs to compromise the integrity carboxyfluorescein-filled 

staphylococcal liposomes was assessed. This assay was used to determine if membrane damage 

was a consequence of direct disruption of the phospholipid bilayer. Staphylococcal liposomes 

had a composition analogous to the phospholipid bilayer of the S. aureus cytoplasmic 

membrane (approximately 60% [wt/wt] phosphatidylglycerol, 40% cardiolipin) (Randall et al., 

2013a). S. aureus liposomes (50 µM) were challenged for 10, 60 and 180 min with 4 x MIC 

ABMs (Table 3.3). The leakage of carboxyfluorescein from the liposomes was monitored and 

percent liposome integrity was calculated relative to liposomes challenged with 0.5% Triton X-

100 (corresponding to 100% liposome damage [0% liposome integrity]). As carboxyflourescien 

leaks out of the liposomes, it goes from a quenched to non-quenched state, and is therefore 

directly proportional to fluorescence. All four ABMs and the known membrane disruptor, SDS, 

caused damage by targeting the phospholipid component of the membrane. After 10 minutes, a 

greater than 50 % loss of staphylococcal liposome integrity was observed, and ~ 90 % or greater 

after an hour (Table 3.3). Results may therefore indicate that the membrane interaction of 4-45, 

CIM008405, P2-5 and P1a-PEP1 is surfactant-like, directly disrupting the staphylococcal lipid 

bilayer. 

Antibacterial agents that exert their antibacterial effects through membrane perturbation have 

often been shown to lack prokaryotic specificity . Subsequently, the ability of the four ABMs to 

compromise the integrity of carboxyfluorescien-filled liposomes made of a phospholipid 

content matching that of mammalian cell membranes was assessed, to determine if their effect 

was specific to prokaryotic phospholipids. Mammalian liposomes were composed of 

approximately 50 % [wt/wt] phosphatidylcholine, 50% phosphatic acid, following the same 

procedure employed for staphylococcal liposomes. The four ABMs, which caused 

carboxyfluorescein leakage from staphylococcal liposomes exhibited comparable effects on 

mammalian liposomes. After 10 minutes a loss of greater than 40 % integrity was observed, and 

100 % integrity was lost after an hour (Table 3.3). Since the ABMs exhibited equivalent damage 
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to both mammalian and staphylococcal liposomes, it would suggest that these agents have a 

non-specific interaction with the membrane, targeting both prokaryotic and eukaryotic cells.  

 

Table 3.3 Effect of the four ABMs (4-45, CIM008405, P1a-PEP1, P2-5) and comparator agents 

on % S. aureus liposomeliposome and % mammalian liposome integrity after 10 minutes, 60 

minutes and 180 minutes challenge at 4 x MIC (+ SD). Values are the means of at least three 

biological replicates.  ABMs on S. aureus and mammalian liposome integrity 

 % Staphylococcal liposome 
integrity  
(+ SD) 

 % Mammalian liposome integrity  
(+ SD) 

Antibacterial 
agent 

10 
minutes 

60 
minutes 

180 
minutes 

10 
minutes 

60 
minutes 

180 
minutes 

4-45 47 + 9 0 + 9 0 + 10  31 + 10 0 + 10 0 + 6 

CIM008405 32 + 9 12 + 8 0 + 10 1 + 10 0 + 10 0 + 7 

P1a-PEP1 12 + 9 7 + 10 5 + 10 37 + 8 0 + 9 0 + 10 

P2-5 0 + 10 0 + 9 0 + 10 0 + 5 0 + 10 0 + 7 

SDS 41 + 10 0 + 10 0 + 9 0 + 8 0 + 8 0 + 7 

Tetracycline 100 + 4 100 + 5 99 + 9 100 + 3 100 + 6 100 + 9 

Vancomycin 98 + 7 98 + 10 97 + 9 99 + 5 99 + 7 99 + 5 

 

Since mammalian liposomes represent only the phospholipid component of the membrane, the 

four ABMs were also tested for their ability to cause haemolysis of mammalian erythrocytes 

(Table 3.4). Prokaryotic specific agents tetracycline and vancomycin caused <3% loss in 

erythrocyte integrity in one hour (Table 3.4). In comparison, agents that are known not to be 

prokaryotic specific, such as SDS, induced complete haemolysis of erythrocytes (Table 3.4). 

The four ABMs (4-45, CIM008405, P1a-PEP1, P2-5) that damaged both staphylococcal and 
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mammalian liposomes caused complete or near complete lysis of erythrocytes, further 

suggesting a lack of prokaryotic specificity (Table 3.4).  

 

Table 3.4 Effect of the four ABMs (4-45, CIM008405, P1a-PEP1, P2-5) and comparator agents 

on erythrocytes at 4 x MIC (+ SD). Values are the means of at least three biological replicates. 

Table 3-0-2 Effet of ABMs on erythrocytes 

Antibacterial agent 
% Erythrocyte integrity 

(+ SE) 

None 100 + 0 

4-45 0 + 3 

CIM008405 0 + 8 

Nisin 55 + 9 

P1a-PEP1 14 + 10 

P2-5 0 + 10 

SDS 0 + 1 

Tetracycline 99 + 1 

Vancomycin 97 + 8 

Results therefore indicate that the antibacterial target of the four ABMs (4-45, CIM008405, 

P1a-PEP1 and P2-5) is the staphylococcal membrane, specifically the phospholipid bilayer. 

However, this effect is not specific, causing comparable damage to eukaryotic cells.  

3.3.3 Analysis of surface immobilized antibiofilm molecules 

To determine if the five ABMs were still active upon covalent binding to smooth and open 

porous titanium disks, their in vitro activity profile was determined. Originally compound 4-45 

was selected as one of the five best ABMs. However, the toxicity profile of this compound was 



44 
 

 
 

less favorable, and was therefore replaced by the structural analogue LC0024, which exhibited 

similar antibiofilm activity as compared to 4-45, but reduced toxicity against OB, MSC and EC 

cells.  Therefore, this compound was used as a replacement of the originally selected 4-45 for in 

vitro and in vivo activity tests described below. Since each compound exhibited species-specific 

activity, compound-disk substrates were tested against the bacterial or fungal organism against 

which they were most active. Titanium disks were 0.5-1 cm wide, and were coated in either 

smooth or open porous surfaces. Open porous surfaces promote osseointegration on dental and 

orthopaedic implants, but are also at a higher risk of biofilm associated infections, as a 

consqeunce of increased bacterial attachment. Smooth surfaces were therefore also assessed.  

The five ABMs (CIM008405, LC0024, P1a-PEP1, P2-5, Tocris 2611) were immobilised onto 

either smooth or open porous titanium disks. Briefly, titanium surfaces were functionalized with 

an amino-group by treatment with Fmoc-protected 3-aminopropyl-triethoxy silane, followed by 

deprotection (Carpino, 1987). Functionalized disks were then placed in a hydrolysis vessel 

containing a solution (1 mL/disc) of n-heptane/hexamethylene diisocyanate (85:15) for 3 hours 

at room temperature. Samples were rinsed with n-heptane and placed in a vessel containing 

compounds dissolved in 100 mL dimethyl sulfoxide. After 16 hours, the disks were rinsed with 

demineralized, pyrogen-free water and subsequently with acetone, after which disks were 

allowed to dry (Figure 3.3b). This work was performed by the COATIM partner, Hemoteq 

(Aachen, Germany). 

 

3.3.3.1 In vitro activity of ABM-coated smooth disks 

With the exception of Tocris 2611, all other work described in this section was performed by 

other COATIM members.  

To promote biofilm formation, the ABM-coated smooth titanium disks were treated with foetal 

bovine serum overnight, before being exposed to inoculated media for 24 hours. Biofilm 

inhibition was calculated as a percentage of the negative control (disks containing no ABM 
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coating). Compounds P1a-PEP1 and P2-5 were found to be most active against fungal 

organisms, and therefore disks coated with these ABMs were tested against C. albicans. P1a-

PEP1 and P2-5 caused a reduction in C. albicans biofilm growth relative to the uncoated control 

of approximately 70 and 85 % respectively (Table 3.5). Compared to control antifungal agent 

(caspofungin) which reduced biofilm growth by greater than 99 % (Table 3.5). However, no 

P1a-PEP1 could be detected upon HMDI coating. As such, it is unclear if the observed 

antibiofilm activity is due to P1a-pep1 concentrations below the minimal detection limit or due 

to the coating procedure. No further studies were therefore performed with P1a-PEP1. ABMs 

LC0024 and Tocris 2611 reduced biofilm growth by approximately 25-35 % in S. aureus 

ATCC6538 and S. aureus SH1000 respectively. Antibacterial ABM CIM008405 (KU Leuven) 

exhibited no prevention in P. aeruginosa PA14 biofilm formation relative to the uncoated 

control (Table 3.5), whilst control antibacterial agent vancomycin reduced the formation of S. 

aureus ATCC6538 biofilms by 87 % (Table 3.5). 
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Table 3.5 Effects of smooth titanium surface immobolised ABMs (CIM008405, LC0024, P1a-

PEP1, P2-5, Tocris 2611) and comparator agents on biofilm formation. ND – not determined. 

Compound on smooth 

titanium disk 
Test strain 

Concentration 

(pmol/cm2) 

% Inhibition of 

biofilm growth after 

24 hours 

Caspofungin C. albicans SC5314 2191.4 > 99.5 

CIM008405 P. aeruginosa PA14 54.8 0 

LC0024 S. aureus ATCC6538 ND 25 

P1a-PEP1 C. albicans SC5314 0 69 

P2-5 C. albicans SC5314 315.2 > 85 

Tocris 2611 S. aureus SH1000 104.3 34 

Vancomycin S. aureus ATCC6538 0/35.2 87 

Table 3-0-3 Effects of smooth titanium surface-immobilised ABMs on biofilm form 

3.3.3.2 In vitro activity profile of ABM coated open porous disks 

With the exception of Tocris 2611, all other work described in this section was performed by 

other COATIM members.  

Experiments to determine the in vitro activity of the ABM coated open porous disks were 

equivalent to those used for the smooth disks, with the exception that inhibition of biofilm 

growth was determined for the ABM coated side of the disks only (as opposed to the whole 

disk, including both ABM coated and uncoated surfaces) and a lower inoculum was used for 

bacterial cultures. These changes were implemented due to the inoculum used for tests 

involving smooth titanium disks being significantly higher than that exhibited in vivo, and the 
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consideration that there might be an increase in activity observed if the non ABM-coated 

surfaces of disks are excluded. 

Immobilised onto an open porous titanium surface, antifungal ABM P2-5 (KU Leuven) was 

unable to prevent the formation of C. albicans SC5314 biofilms relative to the uncoated control 

(Table 3.6). Antifungal control agent caspofungin also exhibited poor biofilm prevention 

activity against C. albicans SC5314 biofilms, with only 6 % inhibition of biofilm growth 

relative to the uncoated control (Table 3.6). Similarly, ABM CIM008405 (KU Leuven) also 

displayed poor biofilm prevention activity, preventing the formation of P. aeruginosa PA14 

biofilms by 13 % (Table 3.6). Antibacterial ABM LC0024 and control agent vancomycin had 

comparable activity, preventing S. aureus ATCC6538 biofilm formation by 29 % (Table 3.6)  

(KU Leuven). The reduction in antibiofilm activity observed on open porous surfaces may be 

due to their being favourable for biofilm formation as a consequence of increased bacterial 

adherence to the irregularity of the surface. 

On open porous surfaces, ABM Tocris 2611 exhibited the most potent antibiofilm activity, 

preventing the formation of S. aureus SH1000 biofilms by 53 % relative to the uncoated control.  

Although Tocris 2611 exhibited improved biofilm prevention activity on the open porous 

surface, this could be due to the increased concentration of surface bound Tocris 2611 achieved, 

compared with that on the smooth titanium disks (approximately 10 x as much). 
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Table 3.6 Effects of five ABMs (CIM008405, LC0024, P1a-PEP1, P2-5, tocris 2611) and 

comparator agents on biofilm formation when immobolised to an open porous titanium surface. 

Table 3-0-4 Effects of porous titanium surface-immobilised ABMs on biofilm formation 

Compound on open 

porous  titanium disk 
Test strain 

Concentration 

(pmol/cm2) 

% Inhibition of 

biofilm growth after 

24 hours 

Caspofungin C. albicans SC5314 5468.26 6 

CIM008405 P. aeruginosa PA14 390.05 13 

LC0024 S. aureus ATCC6538 ND 29 

P2-5 C. albicans SC5314 2126.11 1 

Tocris 2611 S. aureus SH1000 1011.38 53 

Vancomycin S. aureus ATCC6538 169.87 29 

 

 

3.3.4 In vivo activity profile of ABM coated smooth and open porous disks 

All work described in this section was carried out by other COATIM members. 

As part of the development of the ABM coated surfaces for medical implants, the titanium 

substrates were tested using a subcutaneous in vivo biofilm model system in mice. Experiments 

were performed using smooth titanium disks only, due to several problems with the open porous 

surfaces, such as the animals exhibiting clear signs of pain and difficulties in removing the 

disks. The antibiofilm activity of the antibacterial ABMs (CIM008405, LC0024, Tocris 2611, 

vancomycin) was assessed against S. aureus SH1000, whilst C. albicans SC5314 was used to 

test antifungal ABM, caspofungin. P2-5 did not undergo in vivo assessment, due to poor in vitro 

activity. 24 hours after implantation of the ABM-coated disks, S. aureus or C. albicans were 
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injected subcutaneously at 1 x 107 and 1 x 108 cells respectively. Mice infected with S. aureus 

were then sacrificed 48 hours post injection, whilst mice infected with C. albicans were 

sacrificed 96 hours after infection. Following animal sacrifice, disks were removed and 

percentage biofilm inhibition relative to the uncoated control was determined.  

Against S. aureus SH1000 biofilms CIM008405, LC0024 and Tocris 2611 did not influence in 

vivo biofilm development. However, in comparison to the control (non-coated) disk, 

vancomycin-coated disks resulted in a statistically significant (p<0.05) reduction in biofilm 

formation. Titanium disks coated in antifungal control agent, caspofungin, also significantly 

prevented (p<0.05) in vivo biofilm development, of C. albicans, compared to the uncoated 

control.  

3.4 Conclusions 

The five best ABMs (4-45, CIM0008405, P1a-PEP1, P2-5 and Tocris 2611) were identified 

from a panel of 56, based on their spectrum of activity and toxicity profiles against C. elegans 

and the three most relevant bone tissue cell types; osteoblasts, bone marrow derived stem cells 

and endothelial cells. P1a-PEP1 and P2-5 were most active against fungal pathogens such as C. 

albicans, whilst 4-45, CIM008405 and Tocris 2611 target bacterial pathogens such as S. aureus 

and P. aeruginosa. The MOA of 4-45, CIM008405, P1a-PEP1 and P2-5 was determined in S. 

aureus SH1000 cultures. None of the four ABMs caused preferential inhibition of DNA, RNA 

or protein synthesis, but all caused loss of membrane integrity and membrane potential. These 

findings clearly indicate that all of the compounds exert their antibacterial effects through 

membrane perturbation. The ABMs also caused destruction of both staphylococcal and 

mammalian liposomes and complete or near complete lysis of equine erythrocytes, indicating a 

direct effect of these compounds on the phospholipid bilayer, and a lack of prokaryotic 

specificity. It can therefore be considered that the phospholipid bilayer of the cytoplasmic 

membrane in S. aureus is the cellular target. All agents tested exhibited more promising biofilm 

prevention activity when immobolised to smooth titanium surface, then when immobolised to 



50 
 

 
 

an open porous titanium surface. However, smooth and open porous disks were assessed 

following alternate methodology. With exception of control compounds vancomycin and 

caspofungin, none of the ABMs exhibited any effect on biofilm formation in vivo. However, 

this work provides a novel approach for the coating medical implants, to which other, more 

successful antibiofilm compounds could be applied.  
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Chapter 4 

Anti-staphylococcal activity and mechanism of action 

of Tocris 2611 

4.1 Abstract 

In search of novel antibiofilm molecules, research performed by the COATIM project identified 

compound Tocris 2611, which exhibited potent antibacterial activity against staphylococci, 

including staphylococcal biofilms. Consequently, Tocris 2611 may have potential for use in the 

healthcare setting as an anti-staphylococcal agent. As part of the development of novel 

antibacterial agents, pre-clinical assessment must involve elucidation of the mechanism of 

action. Investigations therefore attempted to identify the antibacterial target of Tocris 2611 

against the Gram-positive pathogen Staphylococcus aureus. Initial studies revealed that Tocris 

2611 causes simultaneous and non-preferential inhibition of DNA, RNA and protein 

biosynthesis, a signature often seen for compounds that damage the bacterial membrane. Further 

investigations demonstrated that Tocris 2611 caused a substantial loss of membrane integrity 

and complete loss of membrane potential, but not as a consequence of direct interaction with the 

phospholipid component of the cell membrane. Subsequently, Tocris 2611 was shown to exhibit 

potent bactericidal activity against staphylococci independent of their growth state, including 

cell types ordinarily present in biofilms. These results imply that Tocris 2611 exerts its 

antibacterial effects through perturbation of the bacterial membrane, enabling eradication of 

biofilms as a consequence of bacterial killing regardless of growth state. Additionally, low level 

resistance potential was observed for Tocris 2611, generated only by continuous selection. 

Results indicate that Tocris 2611 warrants further investigation as a candidate for the treatment 

of staphylococcal, biofilm-associated infections. 
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4.2 Introduction 

Biofilms provide protection for bacteria from the host immune system and are recalcitrant to 

antibiotics (particularly due to slow-or non-growing (SONG) bacteria, including persister cells 

present in biofilms) (Lebeaux et al., 2014, Lewis, 2001). Consequently, currently available 

antibiofilm therapies are largely ineffective, often making these types of infections untreatable. 

This is especially problematic in the clinical environment, particularly when associated with 

indwelling medical devices. Indeed, it is estimated that 15-25% of implant failures are due to 

infections involving a biofilm component.  

Therefore, as discussed in Chapter 3, the COATIM project assessed a number of novel 

antibiofilm molecules (ABMs) for their ability to prevent biofilm formation when adhered to a 

titanium surface. Surfaces were representative of those used for implanted medical devices, with 

the aim of addressing the current issues of implant failure due to infection attributed to biofilm 

formation. Based on their spectrum of activity and relative toxicity against eukaryotic cells, five 

ABMs (4-45, CIM008405, P1a-PEP1, P2-5, Tocris 2611) were selected for further evaluation. 

The phospholipid bilayer of the cytoplasmic membrane was identified as the cellular target for 

four (4-45, CIM008405, P1a-PEP1, P2-5) ABMs, resulting in membrane perturbation. With the 

exception of Tocris 2611, none of the ABMs were able to eradicate pre-formed biofilms in 

vitro. Furthermore, Tocris 2611 was the only ABM to exhibit potent anti-staphylococcal 

activity, which is a vital characteristic given that staphylococci are the primary cause of 

hospital-acquired and indwelling medical device infections, frequently involving biofilm 

formation (Otto, 2008, Weinstein, 2001).  

Tocris 2611 was originally identified due to its biological activity against HMC-1 and breast 

cancer cells, leading to cycle arrest and apoptosis, in addition to its effects on cardiomyocytes, 

reducing damage caused by myocardial ischemia/reperfusion (Onai et al., 2004, Tanaka et al., 

2005, Tanaka et al., 2006). Subsequently, the O’Neill laboratory in collaboration with the 

Collins group, identified Tocris 2611 as a potential inhibitor of bacterial RNA polymerase 

(RNAP), using in  silico docking  (Mariner, 2011). However, further experimentation revealed 
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that Tocris 2611 was not active against RNAP in vitro (Mariner, 2011), but nevertheless 

possessed potent anti-staphylococcal activity, and the rarely seen ability to eradicate pre-formed 

staphylococcal biofilms. A more extensive analysis was therefore required to elucidate the 

MOA of Tocris 2611 against both planktonic and biofilm communities of S. aureus SH1000. 

 

4.3 Aims and objectives 

Work described in this chapter aimed to characterise the mechanism of antibacterial activity of 

Tocris 2611 against planktonic and biofilm populations of S. aureus. Studies also intended to 

identify the potential for bacterial resistance to emerge against this novel compound. 

 

4.4 Results and Discussion 

4.4.1 Anti-staphylococcal activity of Tocris 2611 

The activity of Tocris 2611 was determined against four staphylococcal strains; S. aureus 

SH1000, USA300, UAMS-1 and S. epidermidis RP62A. Testing different strains of 

staphylococci is important as they have distinct properties, such as differences in the 

composition of the biofilm matrix (Jorgensen and Ferraro, 2009, Olson et al., 2002).  

Tocris 2611 exhibited activity against the four individual staphylococcal strains comparable to 

established antimicrobial agents, with an MIC of 0.125 µg/mL. Whilst, in contrast to the 

majority of current antimicrobial agents, Tocris 2611 also exhibited antibiofilm activity, which 

was assessed in two separate biofilm models; the Calgary Biofilm Device (CBD) and 96-well 

microtitre plate. The CBD enables high-throughput screening for preliminary evaluation of 

compounds, but supports the growth of only low cell density biofilms, which are likely 

immature. An alternative biofilm model was therefore used to assess the effects of Tocris 2611, 

where biofilms were grown in the wells of a 96-well plate, achieving a higher cell density. 

Tocris 2611 eradicated staphylococcal biofilms at 8 µg/mL and 64 µg/mL in the CBD and 96-
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well microtitre plate, respectively. Although a reduction in activity was observed against mature 

biofilms, Tocris 2611 still retained eradication properties. This effect was not seen for any other 

antimicrobials tested, which were unable to eradicate biofilms on either device at concentrations 

<256 µg/mL. Furthermore, compounds which exhibit activity against established biofilms are 

predominantly bactericidal, which may indicate that Tocris 2611 possesses bactericidal activity 

(Otto, 2014). 

 

4.4.2 Elucidation of the mode of action of Tocris 2611 against planktonic S. aureus 

4.4.2.1 Effects of Tocris 2611 on the major macromolecular synthesis pathways 

As discussed in Chapter 3, the antibacterial  effect  of a compound is often due to specific 

inhibition of one of the major biosynthetic pathways (e.g. DNA, RNA or protein) (O'Neill and 

Chopra, 2004). To establish whether Tocris 2611 inhibits one or more of these pathways, 

macromolecular synthesis was monitored by measuring incorporation of radiolabeled precursors 

into DNA, RNA, and protein. At 4 x MIC Tocris 2611 caused non-preferential inhibition of 

DNA, RNA, or protein synthesis within 10 minutes, a signature often seen for compounds that 

exert their antibacterial effect through perturbation of the bacterial membrane (Figure 4.1) 

(O'Neill and Chopra, 2004, Ooi et al., 2009). In comparison, ciprofloxacin, rifampicin and 

tetracycline, which are known to inhibit only DNA, RNA and protein synthesis, respectively, 

resulted in a specific response (Figure 4.1). 
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Figure 4.1 Effects of Tocris 2611 and control agents on the relative incorporation of 

radiolabelled (3H) thymidine, uridine and glutamine into DNA, RNA and protein, respectively. 

Error bars show standard deviation from the means of at least three independent experiments. 

Figure 4. 1 
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4.4.2.2 Assays to determine if Tocris 2611 targets the staphylococcal membrane 

To explore further whether the MOA of Tocris 2611 is through disruption of the cytoplasmic 

membrane, the BacLightTM and DiSC3(5)  assays were used to measure membrane integrity and 

measure membrane potential, respectively. In a 10 minute BacLightTM assay, S. aureus cells 

exposed to nisin (a known membrane damaging compound which forms pores in the membrane 

(Ruhr and Sahl, 1985)) and Tocris 2611, resulted in a membrane integrity of 5% and 45%, 

respectively (Table 4.1). Tocris 2611 also caused a 100% decrease in membrane potential in 1 

hour (Table 4.1). This result is comparable to the surfactant sodium dodecyl sulfate (SDS) 

which caused 100% loss of membrane potential (Table 4.1). SDS causes membrane perturbation 

and depolarisation by forming micelles that target the membrane lipids. Results may therefore 

suggest that the antibacterial MOA of Tocris 2611 is through disruption of the bacterial 

membrane and subsequent leakage of intracellular components. 

Compounds that target the bacterial membrane frequently demonstrate the same effect against 

mammalian cells, which is an undesirable characteristic for an antimicrobial drug candidate.  

Tocris 2611 was therefore tested for its ability to cause haemolysis of mammalian erythrocytes 

at 4 x MIC (Table 4.2). As expected, the prokaryote specific agents tetracycline and 

vancomycin caused <3% loss in erythrocyte integrity in 1 hour. In comparison, agents which are 

known to not be prokaryote specific and also cause membrane damage, such as SDS, induced 

complete haemolysis of erythrocytes. Tocris 2611 resulted in a decrease in erythrocyte integrity 

of approximately 40%, an effect also demonstrated by the membrane damaging compound nisin 

(Table 4.2). 
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Table 4.1 Effect of Tocris 2611 and comparator agents at 4 x MIC on S. aureus SH1000 

cellular membranes, and erythrocyte integrity.  Values are the means of at least three biological 

replicates (+ SD). ND indicated not determined. NDC indicated no drug control. 

Antibacterial agent 

% S. aureus 

membrane intregity 

(+ SD) (10 min) 

% S. aureus 

membrane potential 

(+ SD) (60 min) 

% Erythrocyte 

integrity (+ SD) 

(60 min) 

NDC 100 + 0 100 + 5 100 + 0 

Nisin 5 + 1 0 + 3 55 + 9 

SDS 0 + 0 0 + 2 0 + 1 

Tetracycline 98 + 6 97 + 6 99 + 1 

Tocris 2611 45 + 2 0 + 7 62 + 7 

Vancomycin 100 + 4 ND 97 + 8 

 

 

As demonstrated in Chapter 3, the antibacterial effects of membrane damaging compounds can 

be a consequence of direct interaction with the phospholipid bi-layer; therefore the ability of 

Tocris 2611 to compromise the integrity the phospholipid bi-layer was assessed. 

Carboxyfluorescein-filled liposomes with a composition analogous to the phospholipid bi-layer 

of the S. aureus CM (approximately 60% [wt/wt] phosphatidylglycerol, 40% cardiolipin) were 

challenged with 4 x MIC Tocris 2611. Damage was measured at 10, 60 and 180 minutes (Table 

4.2). After 180 minutes S. aureus liposomes only exhibited a loss of 9% integrity. In contrast, 

SDS caused a substantial (59%) loss in integrity after only 10 minutes, and completely degraded 

liposomes (100% loss in integrity) after 60 minutes (Table 4.2). These results strongly suggest 

that the MOA of Tocris 2611 does not involve targeting the phospholipid component of the cell 

membrane. In order to investigate whether the previously observed haemolytic effect of Tocris 

2611 results from direct interaction of the drug with the mammalian phospholipid bilayer, 

mammalian liposomes were synthesised and challenged with the Tocris 2611.Mammalian 
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liposomes (50 % [wt/wt] phosphatidylcholine, 50% phosphatidic acid) were therefore 

challenged with 4 x MIC Tocris 2611. No appreciable activity was observed, with a loss of 

integrity of 3 % after 180 minutes (Table 4.2). 

Failure to observe activity against staphylococcal liposomes implies that Tocris 2611 likely 

exerts its antibacterial effect through interaction with one or more membrane proteins. 

Therefore, to provide further insight into the membrane component targeted by Tocris 2611, 

attempts were made to generate staphylococcal proteoliposomes. However, despite some 

experimental progress, studies could not be included in this work due to time constraints.  



59 
 

 
 

Table 4.2 Effect of Tocris 2611 and comparator agents on % S. aureus liposome integrity after 10 minutes, 60 minutes, 180 minutes challenge at 4 x MIC 

(+SD). Values are means of at least three biological replicates. NDC indicates no drug control. 

 

Table 4-0-1 Effect of Tocris2611 and comparator agents on S. aureus liposome integrity

 % Staphylococcal integrity (+SD) % Mammalian liposome integrity (+SD) 

Antibacterial 

Agent 
10 minutes 60 minutes 180 minutes 10 minutes 60 minutes 180 minutes 

NDC 100 + 0 100 + 0 100 + 0 100 + 0 100 + 0 100 + 0 

SDS 41 + 10 0 + 10 0 + 9 0 + 8 0 + 8 0 + 7 

Tetracycline 100 + 4 100 + 5 99 + 9 100 + 3 100 + 6 100 + 9 

Tocris 2611 97 + 6 92 + 7 91 + 9 99 + 5 99 + 6 97 + 6 

Vancomycin 98 + 7 98 + 10 97 + 9 99 + 5 99 + 7 99 + 5 
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4.4.3 Antibiofilm activity of Tocris 2611 

Tocris 2611 demonstrated potent anti-staphylococcal activity against both planktonic and 

biofilm cultures, and the MOA against planktonic cultures was determined to be through 

membrane perturbation. Investigations therefore sought to evaluate the mechanism by which 

Tocris 2611 eradicates biofilms. 

4.4.3.1 Activity of Tocris 2611 against slow or non-growing staphylococcal cells 

Compound-mediated eradication of biofilms may occur through two possible mechanisms; 

disruption of the biofilm matrix or comprehensive killing (sterilisation) of bacteria within the 

biofilm. Since biofilm communities are highly recalcitrant to antimicrobial therapy due to slow 

or non-growing (SONG) cells, the ability of Tocris 2611 to kill both these cell types was 

assessed. Initially, the effect of Tocris 2611 and comparator agents on the viability of 

exponential and stationary phase cells was determined over a period of 24 hours (Figure 4.2).  
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Figure 4.2 Killing kinetics of Tocris 2611 at 4 x MIC (0.5 µg/mL), 8 µg/mL (Calgary MBEC) 

and 64 µg/mL (well MBEC) and comparator agents (daptomycin, tetracycline and XF-73) at 4 x 

MIC, against exponential phase and early stationary phase cultures of S. aureus SH1000 over 24 

hours. Panel (a): exponential phase cultures; Panel (b) stationary phase cultures. Values are the 

means of at least three biological replicates; error bars show standard deviations. 

 

Figure 4. 2 
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At 4 x MIC, Tocris 2611 was bacteriostatic against exponentially growing cells, demonstrating 

a <1 log drop in cell viability over 24 hours, a result comparable to tetracycline (Figure 4.2a). 

At 8 µg/ml (CBD MBEC), Tocris 2611 became bactericidal against exponentially growing 

cells, with a log drop in cell viability of >3 over 24 hours, which is comparable to daptomycin 

(Figure 4.2a).  No significant bactericidal activity was observed against stationary phase cells at 

these concentrations (Figure 4.2b). In contrast, Tocris 2611 at 64 µg/mL (well MBEC) was 

highly effective at killing both stationary phase and exponentially growing cells, achieving 

sterilisation after 6 hours (limit of detection 10 cfu/mL), and 3 hours respectively (Figure 4.2a 

and Figure 4.2b). Whereas, daptomycin was essentially inactive against stationary phase 

cultures (Figure 4.2b). 

Subsequent investigations assessed the activity of Tocris 2611 against populations of persister 

cells. At 64 µg/mL (well MBEC), exposure to Tocris 2611 resulted in a complete loss of cell 

viability after 24 hours, an effect not seen by any of the other agents tested, with the exception 

of XF-73, a potent anti-staphylococcal agent which exerts its antibacterial effect through 

membrane disruption, and possesses bactericidal activity (Figure 4.3).  
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Figure 4.3 Effect of Tocris 2611 and comparator agents on the survival S. aureus SH1000 

persister cell cultures isolated by selection with exposure to 10 x MIC ciprofloxacin or 10 x 

MIC ampicillin. Tocris 2611 was added at 4 x MIC (0.5 µg/mL), 8 µg/mL (Calgary MBEC) and 

64 µg/mL (well MBEC), whilst comparator agents were added at 4 x MIC. Values are the 

means of at least three biological replicates. 

Figure 4. 3 

4.4.3.2 Effect of Tocris 2611 on biofilm structure 

Since it has been demonstrated that Tocris 2611 retains antibacterial activity against SONG 

cells found in biofilm communities, the antibiofilm activity of Tocris 2611 is most likely 

through the sterilisation of viable cells within the biofilm. Furthermore, visual assessment of the 
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biofilm after treatment with biofilm eradicating concentrations of Tocris 2611, followed by 

staining with 5% crystal violet, suggested that the matrix/superstructure of the biofilm was 

largely unaffected. This finding was corroborated by quantifying the proportion of matrix and 

cells after 24 hours exposure to Tocris 2611 and comparator agents (Figure 4.4). Quantitative 

analysis used the matrix-specific stain SYPRO Ruby, and bacterial cell stain SYTO 9. After 24 

hours exposure to biofilm eradicating concentrations of Tocris 2611, the reduction in cell 

viability was far greater than the effects observed on the matrix, with a log drop in cell viability 

of twice as much as that in matrix (Figure 4.4). However, there was still a notable loss of matrix 

material in comparison to untreated biofilms.  To determine whether dispersion of the biofilm, 

resulting in a reduction of matrix material, is an indirect effect of bacterial killing by Tocris 

2611, quantification of matrix and cells was repeated following six hours exposure to Tocris 

2611 (Figure 4.4). Tocris 2611 achieves sterilisation of stationary phase cultures within six 

hours, therefore providing a more representative effect on the biofilm structure. After six hours, 

Tocris 2611 caused essentially no loss of adherent material, whilst leading to a substantial loss 

of bacterial viability, comparable to that observed after 24 hours (Figure 4.4). This suggests that 

destructuring of the biofilm is a consequence of cell death, and the antibiofilm activity of Tocris 

2611 does not involve biofilm disruption (Figure 4.4). 
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Figure 4.4 Effects of Tocris 2611 and comparator agents on the proportion of matrix and cells 

of S. aureus SH1000 biofilms. Panel (a): after 24 hours exposure to proteinase K (100 µg/ml.) 

and Tocris 2611 64 µg/ml (96-well MBEC); Panel (b) after 24 hours exposure to proteinase K 

(100 µg/ml), Tocris 2611 4 x MIC, 8 µg/ml and 64 µg/ml (Calgary Biofilm Device and 96-well 

MBEC respectively); Panel (c) after 6 hours exposure to proteinase K (100 µg/ml.) and Tocris 
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2611 64 µg/ml (96-well MBEC). Values are the means of at least three biological replicates; 

error bars show standard deviations. 

 

Taken together, results suggest that Tocris 2611 eradicates both planktonic and biofilm cultures 

of S. aureus by killing viable cells (including SONGs) through perturbation of the bacterial 

membrane. Indeed, there is a growing recognition of membrane damaging agents due their 

frequently seen ability to eradicate biofilms. The bacterial membrane is a fundamental requisite 

of both growing and SONG cells, and therefore serves as an ideal antibacterial target (assuming 

specificity for the bacterial membrane can be achieved). Since disruption of the membrane is 

not dependent on active biosynthetic pathways, membrane damaging agents are therefore often 

more effective than non-membrane damagers in the treatment of biofilm associated infections. 

However, not all agents known to target the bacterial membrane are able to eradicate biofilms, 

for example daptomycin has only limited antibiofilm activity against some types staphylococcal 

biofilm infections. Loss of effective antibiofilm activity may be attributed to the existence of 

different subpopulations within the biofilm, and varying compositions of the membrane 

between subpopulation, interfering with the interaction between the compound and the 

membrane. Therefore, although membrane damaging agents may provide a more effective 

alternative in the treatment of biofilm infections, targeting the bacterial membrane does not 

necessarily indicate that a compounds will possess antibiofilm activity.  

 

4.4.4 Investigating the propensity of S. aureus to develop resistance to Tocris 2611  

For clinical use an advantageous property for antimicrobials is a low potential for bacteria to 

develop resistance to the agent of interest. To determine if resistance readily develops as a 

consequence of exposure to Tocris 2611, both spontaneous resistance and resistance as 

consequence of prolonged exposure was assessed.  
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4.4.4.1 Selection of bacterial Tocris 2611 resistance 

Spontaneous resistance to Tocris 2611 of S. aureus SH1000 was evaluated by plating saturated 

cultures onto MHA containing 4 x MIC Tocris 2611.  No resistant mutants were isolated (limit 

of detection <5.0 X 10-9), indicating that bacterial resistance to Tocris 2611 requires multiple 

mutational steps. As such Tocris 2611 may be considered to exhibit a low resistance potential.  

Instead, resistance following prolonged selection with Tocris 2611 was investigated to 

determine whether a reduction in susceptibility would arise under continuous exposure to Tocris 

2611. This was done by continuously exposing five individual lineages of SH1000 to an 

extended concentration range of Tocris 2611 over 25 days (extended gradient MIC method, 

section 2.6.7). Resistance to Tocris 2611 arose in all five lineages, and mutants were 14 x less 

susceptible after 25 days (Figure 4.4). In contrast, three days of selection was sufficient to select 

clinically relevant levels of daptomycin resistance (≥2 µg/mL) (Figure 4.4). Although S. aureus 

mutants resistant to Tocris 2611 were selected over 25 days of continuous exposure, the level of 

resistance that was generated was still less than 1 µg/mL. Compared with daptomycin, the 

control antibiotic used in this study, for which up to 36 µg/mL resistance was selected in S. 

aureus. Daptomycin is currently used clinically to treat many multi-drug resistant strains of S. 

aureus, particularly for complicated skin and soft tissue infections. Furthermore, the MIC of 1 

µg/mL exhibited by the Tocris 2611 resistant strains is 8 and 64-fold lower than the biofilm 

eradicating concentrations of Tocris 2611 against biofilms grown the Calgary Biofilm Device, 

and 96-well plate respectively. Taken together, results may indicate that although bacterial 

resistance can emerge for Tocris 2611, it is low level and requires prolonged selective pressure. 

Therefore, it is reasonable to suggest that Tocris 2611 resistance would be unlikely to effect the 

development of this compound for use as an antibiofilm treatment.  
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Figure 4. 5 Resistance selection of S. aureus SH1000 to Tocris 2611 and control agent 

daptomycin. Panel (a): daptomycin; Panel (b); Tocris 2611. 

 

4.4.4.2 Characterisation of Tocris 2611 resistant strains 

To establish which genes impact the susceptibility of S. aureus to Tocris 2611, the most 

resistant strain (T2), generated by prolonged exposure to Tocris 2611, was analysed using 

whole-genome sequencing (WGS). WGS enables the identification of the genetic changes 

responsible for resistance. Seven mutations were confirmed, which are potentially involved in 

Tocris 2611 resistance (Table 4.5). Tocris resistant strain T2 exhibited an MIC of 1 µg/mL. 
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Table 4.3 Mutations in the DNA sequence of Tocris 2611 resistant strain T2 compared with 

wild-type S. aureus SH1000. Whole genome sequencing was used to identify genomic changes.  

Locus Function 
Nucleotide 

change 

Amino acid 

change 

Intergenic region upstream 

of SAOUHSC_00198 

Putative long-chain acyl-

CoA synthetase 
G39A - 

SAOUHSC_00467 pur operon repressor G88T V30L 

SAOUHSC_01070 Regulatory protein YlbF T78A Y26X 

SAOUHSC_01359 
Membrane modifying 

protein MprF 
C1711T L571F 

SAOUHSC_01621 

Transcription 

antitermination protein 

NusB 

C365T G122D 

SAOUHSC_02485 
DNA-directed RNA 

polymerase, alpha subunit 
G19T P7T 

Intergenic region upstream 

of SAOUHSC_02659 

Putative transcriptional 

regulator AcrR 

G43C - 

Deleted T46 - 

G47C - 

G50A - 

T51C - 

C52A - 

 

To determine if these mutations were universal for causing Tocris 2611 resistance, the genes 

and intergenic regions containing the mutations outlined in Table 4.5 were sequenced in the four 

other resistant strains generated. The same regions were also sequenced in the resistant strain 

T2, but at the five and ten day stage of Tocris 2611 exposure, to determine if an increase in the 

level of resistance observed could be attributed to a particular mutation. In addition to resistant 

strain T2, the alteration in DNA sequence of SAOUHSC_00467 (pur operon repressor) was 

identified in the 10 day T2 strain, and resistant strain T5. The mutation identified in membrane 
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modifying protein MprF (SAOUHSC_01359) was also identified in ten day T2, and the point 

mutation at 219191 was identified in both the five and ten day T2. Since reduced susceptibility 

to Tocris 2611 cannot be directly attributed to a specific mutation, it would suggest that the 

MOA of Tocris 2611 involves disruption of multiple targets, an effect which has been 

previously reported for membrane-active compounds. 

Mutations in mprF have also been identified in daptomycin, nisin and vancomycin resistant 

strains of S. aureus. Multiple peptide resistance factor (MprF) is a membrane protein, which 

adds L-lysine to phosphatidylglycerol (a phosphatidylglycerol lysyltransferase). The addition of 

L-lysine increases net positive charge of the bacterial cell surface, which is known to decrease 

the binding of daptomycin, and may have a similar effect on Tocris 2611. Mutations in DNA-

directed RNA polymerase have also been identified in daptomycin and vancomycin resistant 

strains of S. aureus. However DNA-directed RNA polymerase mutations in response to 

daptomycin and vancomycin exposure occur in the β-subunit or C-subunit, whereas mutation in 

the Tocris 2611 resistant strain was present in the α-subunit. It has been suggested that these 

mutations result in altered fluidity, surface charge and permeability of the cell membrane, and 

may therefore indicate that similar membrane alterations are involved in conferring reduced 

susceptibility to Tocris 2611. Furthermore, a mutation in long chain acyl-CoA synthestase, 

which is required for fatty acid biosynthesis, may also affect the membrane structure, causing 

reduced susceptibility to Tocris 2611. Three of the mutations (nusB, ylbF, and the region 

upstream of acrR) can be grouped into those that may impact the regulatory processes within 

the cell. Finally, mutations in the pur operon repressor are a frequently encountered artefact of 

selecting resistance in S. aureus. It has been suggested that the mutation allows for better 

growth in culture media.  

Results indicate that reduced susceptibility to Tocris 2611 occurs as consequence of the 

acquisition of multiple mutations, as opposed to one single point mutation. However, further 

work would be required to determine the cause of the reduced susceptibility of S. aureus to 

Tocris 2611(see Chapter 6).  
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4.5 Conclusions 

Tocris 2611 is a potent anti-staphylococcal agent which is able to eradicate S. aureus planktonic 

cells and biofilms (including community acquired MRSA USA300, and prolific biofilm former 

UAMS-1 and indeed S. epidermidis RP62A). In SH1000, it has been elucidated that its 

mechanism of action is through disrupting the cytoplasmic membrane. Although Tocris 2611 

also has some effect on eukaryotic cells, it only resulted in modest lysis of erythrocytes, 

demonstrating a degree of selective toxicity. Tocris 2611 also demonstrated a low resistance 

potential. Therefore, Tocris 2611 makes an interesting candidate as an anti-staphylococcal, 

antibiofilm agent.  
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Chapter 5 

Screening chemical libraries for potentiators of 

established antimicrobial agents 

5.1 Abstract 

Due to antibiotic resistance seen in both biofilm and non-biofilm bacterial infections, there is a 

pressing need for new antibacterial agents. However, it could take over 10 to 20 years before 

new antibiotics are accessible. One potential strategy to address this problem is repurposing 

existing drugs as antibiotic adjuvants, potentiating the activity of available antibiotics against 

resistant bacteria. Work described in this chapter screened 3 chemical libraries to identify 

adjuvants of the antibiotics ciprofloxacin and rifampicin against S. aureus SH1000 biofilms and 

rifampicin, fusidic acid or linezolid against planktonic E. coli 1411. No compounds were found 

to enhance the efficacy of ciprofloxacin or rifampicin against SH1000 biofilms, but many were 

shown to have a synergistic interaction with rifampicin and/or linezolid against E. coli 1411. A 

number of compounds also exhibited antibacterial activity alone. Further evaluation showed that 

the compounds and compound-antibiotic combinations, identified from this screen, had limited 

antibacterial activity against the clinically relevant ESKAPE pathogens. Although no antibiotic 

adjuvants were determined that could be considered for clinical use, drug repurposing and 

adjuvant therapy remain important approaches to antimicrobial drug discovery and 

development. In addition, these strategies may provide a temporary solution to the antibiotic 

resistance crisis, whilst adequate numbers of new antibiotics are made available.   

 

5.2 Introduction 

Bacterial resistance to available antibiotics is rapidly increasing, and poses a serious threat to 

human health. With the exception of the recently described Gram-positive antibacterial 
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teixobactin, that is considered to belong to a new class of antibiotic, no new classes have been 

discovered since 1987, and none have been introduced against Gram-negative bacteria for more 

than 40 years. Furthermore, the available treatments for biofilm-associated infections are limited 

and largely ineffective.  As a consequence, the need for novel antibiotics and alternative 

therapeutic options for both biofilm and non-biofilm infections has now become critical.  

However, the discovery, and subsequent development required for new compounds to reach 

FDA-approval can take up to, or even more than, 20 years.  

One alternative approach to this antibiotic pipeline is to repurpose existing drugs as antibiotic 

adjuvants, thereby enhancing the antibacterial activity of clinically available antibiotics. 

Adjuvants such as these are preferably non-antibiotic compounds (have no reported antibacterial 

activity), which are either FDA-approved for an alternative indication, or have under gone some 

pre-clinical evaluation. Two antibiotics can also be adjuvants if they interact synergistically.  

There are several properties that potential antibiotic adjuvants could possess. First, adjuvants 

could have direct antibacterial activity, which may or may not be used clinically. Second, 

adjuvants could overcome antibiotic resistance mechanisms. Adjuvants that are used to suppress 

bacterial resistance include, but are not limited to, efflux pump inhibitors, outer membrane 

permeabilisers and enzyme inhibitors, such as inhibitors against β-lactamase. In clinical use, 

agents such as flavones have been used successfully in combination with fluoroquinolone 

ciprofloxacin, by preventing efflux by NorA. Outer membrane permeabilisers have also been 

previously researched for use as antibiotic adjuvants, although none have been introduced into 

the clinic. Problems such as a lack of prokaryotic specificity render these compounds unsuitable 

for use in humans. Agents such as clavulanic acid, sulbactam and tazobactam, which are β-

lactamase inhibitors, have been co-administered with the penicillins for three decades. However, 

these examples are directed at non-biofilm infections, whilst approximately 80% of infections 

grow as a biofilm. It has recently been demonstrated that peptide 1018, a new class of adjuvant, 

synergizes with antibiotics ceftazidime, tobramycin, imipenem and ciprofloxacin, aswell as 

exhibiting broad-sprectum antibiofilm activity.  
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Finally, adjuvants could help clear infections by activating the host immune/defence 

mechanisms, such as promoting autophagy. Although any one of these properties would make a 

compound potentially useful as an antibiotic adjuvant, those that possessed more than one may 

be of greater value. Furthermore, the ability to achieve plasma concentrations that are 

comparable to the minimum inhibitory concentration required for antibacterial activity is also 

important. In addition, antibiotic/adjuvant combinations that have different molecular targets are 

often found to be more effective.  

Employing antibiotic adjuvants may therefore enable the use of antibiotics against bacteria 

which had either developed resistance, or to which were previously insensitive. Furthermore, 

they may decrease the rate of resistance developing. In addition, using repurposed drugs can 

reduce the cost of bringing a drug to market by up to 40 %, as well as the time spent in drug 

development being significantly reduced. Finally, chemicals libraries provide an ideal platform 

form for drug discovery, providing an extensive and diverse number of biologically relevant 

compounds. 

In view of this, three compound libraries of biologically active small molecules were evaluated 

for antibiotic adjuvants; the NIH Clinical Collection, Tocriscreen Total collection and the 

Spectrum Collection.  

The NIH clinical collection (727 compounds) consists almost entirely of drugs that have been 

used in phase I-III clinical trials and have not been represented in other arrayed collections. 

These compounds also have favourable attributes for inclusion in a screening collection, such as 

purity, solubility and commercial availability for re-supply (Cao et al., 2015). The collection 

was assembled by the NIH through the Molecular Libraries Roadmap Initiative as part of its 

mission to enable the use of compound screens in biomedical research (Austin et al., 2004). The 

clinically tested compounds in the NCC are highly drug-like with known safety profiles (Cao et 

al., 2015). This collection provides an excellent source of compounds which may be appropriate 

for direct human use in new disease areas.  
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Tocriscreen Total is a library of 1120 biologically active, well-characterised small molecule 

inhibiters (Dittmar et al., 2015). The collection covers a wide range of pharmacological targets 

(>300) and research areas, such as cancer and immunology and including a range of therapeutic 

classes, such as cardiovascular and nervous systems (Dittmar et al., 2015).  

The Spectrum Collection presents 2320 compounds of bioactive compounds and natural 

products, and includes all of the compounds in the US and International Drug Collections, 

together with our Natural Product and Discover libraries (Rochester et al, 2017). Compounds 

were selected by medicinal chemists and biologists to provide a wide range of biological 

activities and structural diversity for screening programs (Rochester et al, 2017). Sixty per cent 

of the library is made up of drugs that have been introduced in the US (~1280) and ~320 that are 

limited to use in Europe. A further 25% of the collection consists of natural products (~640) 

with unknown biological properties, derived from sources worldwide. (Rochester et al., 2017) 

These compounds were selected on the basis of chemical class and structural diversity. The final 

15% of the collection are non-drug enzyme inhibitors, receptor blockers, membrane active 

compounds and cellular toxins (Rochester et al., 2017). Many of these 420 compounds have 

either not reached development, or were dropped for toxicological or other reasons. Also 

included are representatives of marketed pesticides and herbicides for comparative purposes 

(Rochester et al., 2017).  

 Each library was individually screened in combination with clinically available antibiotics 

ciprofloxacin or rifampicin against S. aureus SH1000 biofilms, or rifampicin, linezolid or 

fusidic acid against planktonic cultures of E. coli 1411. Both ciprofloxacin and rifampicin were 

selected since they possess bactericidal activity, a property that is necessary for the successful 

eradication of biofilms (Wu et al., 2015). Indeed, previous reports suggest rifampicin does 

exhibit some activity against staphylococcal biofilms, although this is limited (Sanchez et al., 

2015). Furthermore, both compounds have alternate mechanisms of action, enabling a wider 

range of interactions to be assessed during screening. Rifampicin was also screened for 

potentiators against planktonic E. coli since this compound possesses potent broad-spectrum 
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antibacterial activity. However, due to a high resistance potential, rifampicin is only used in 

combination therapy, customarily for the treatment of tuberculosis (Campbell et al., 2001). 

Rifampicin resistance is most frequently due to a mutation in the β subunit of the RNA 

polymerase, which changes the structure (Campbell et al., 2001, Wehrli, 1983). Finally, fusidic 

acid and linezolid were screened potentiators against planktonic E. coli. Both fusidic acid and 

linezolid are narrow-spectrum antibiotics, possessing activity against Gram-positive organisms 

only (Dobie and Gray, 2003, Sztanke et al., 2004). They are also bacteriostatic, and kill bacteria 

through the inhibition of protein synthesis (Cundliffe, 1972, Sztanke et al., 2004). However, 

they interfere with bacterial protein synthesis in alternate mechanisms. Fusidic acid binds to 

bacterial protein elongation factor G (EF-G), trapping it to ribosome and preventing further 

elongation of the peptide (Dobie and Gray, 2003, McLaws et al., 2011). Linezolid inhibits 

protein synthesis by binding to the 50S subunit of the ribosome, preventing it from complexing 

with the 30S subunit, and other factors necessary to form the initiation complex (Livermore, 

2003, Sztanke et al., 2004). Following the initial screen with the NIH clinical collection, fusidic 

acid was substituted with linezolid, as it cannot be assumed that efflux is always the principal 

mechanism leading to the lack of Gram-negative activity. Whereas efflux is considered the 

primary cause of Gram-negatives reduced susceptibility to linezolid.  

 

5.3 Aims and Objectives 

Work described in this chapter aims to screen three chemical compound libraries (NIH Clinical 

Collection, Tocriscreen Total and Spectrum Collection) for antibiotic adjuvants, which 

potentiate the activity of ciprofloxacin or rifampicin against S. aureus SH1000 biofilms and 

rifampicin, linezolid or fusidic acid against planktonic E. coli 1411.  
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5.4 Results and Discussion 

5.4.1 Antibacterial properties of antibiotics screened in combination with chemical 

libraries 

To determine the appropriate concentrations at which the four antibiotics (ciprofloxacin, 

rifampicin, linezolid and fusidic acid) should be screened at, MICs and/or 96-well plate MBECs 

against standard laboratory strains S. aureus SH1000 or E. coli 1411 were determined. The four 

antibiotics (ciprofloxacin, fusidic acid, linezolid and rifampicin) exhibited MICs ranging from 

0.008-2 µg/mL against planktonic cultures of S. aureus, and 4 - >256 µg/mL against planktonic 

cultures of E. coli. None of the compounds were able to eradicate S. aureus biofilms grown in 

96-well plates (Table 5.1). Consequently, as no activity against staphylococcal biofilms was 

observed with ciprofloxacin and rifampicin, they were screened against SH1000 well grown 

biofilms at 50 µg/mL in combination with the three compound libraries. Similarly, fusidic acid 

and linezolid displayed no activity against planktonic E. coli 1411, and were therefore also 

screened at 50 µg/mL. Rifampicin exhibited an MIC of 4 µg/mL against planktonic E. coli 1411 

and was subsequently screened in combination with the three libraries at the sub-MIC 

concentration of 0.5 µg/mL. The three compound libraries were tested at 10 µM.  
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Table 5.1 Minimum inhibitory concentrations (MICs) and 96-well plate minimum biofilm 

eradication concentrations (well MBEC) of antibacterial agents ciprofloxacin, fusidic acid, 

linezolid and rifampicin, against planktonic and biofilm S. aureus SH1000 and planktonic E. 

coli 1411. ND indicates not determined.Table 5-0-1 MICs an against S. aureus and E. coli 

                                             Antibacterial Activity (µg/mL) 

Antibacterial 
Agent 

S. aureus SH1000  
planktonic MIC 

S. aureus SH1000 
well MBEC 

E. coli 1411  
planktonic MIC 

Ciprofloxacin 2 >256 ND 

Fusidic Acid 0.25 >256 >256 

Linezolid 2 >256 >256 

Rifampicin 0.008 >256 4 

 

5.4.2 Screen for S. aureus biofilm eradication 

The three compound libraries were screened in combination with ciprofloxacin and rifampicin 

against S. aureus SH1000 biofilms, to identify compounds that potentiated their activity against 

staphylococcal biofilms. S. aureus SH1000 has been used extensively in previous studies and 

forms a biofilm (Ooi et al., 2009, Ooi et al., 2010, Randall et al., 2013b).  

This screen identified no potentiators of ciprofloxacin or rifampicin which resulted in S. aureus 

biofilm eradication. The absence of any anti-staphylococcal antibiofilm activity observed could, 

in part, be attributed to the highly refractory nature of biofilms to most antimicrobials. 

Conceivably, higher concentrations of agents might have yielded more positive results.   

 

5.4.3 Screen for antibiotic adjuvants against E. coli  

The compound libraries in were screened for agents able to potentiate the activity of rifampicin, 

fusidic acid or linezolid against E. coli 1411 grown in planktonic culture.  

5.4.3.1 NIH clinical collection in combination with rifampicin or fusidic acid 
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No potentiators of rifampicin or fusidic acid activity against E. coli 1411 were discovered from 

the screen of the NIH clinical collection. However, the screen did identify 26 compounds which 

were active against planktonic E. coli 1411 at 10 µM. 25 of these were found to be pre-existing 

antibacterials and therefore underwent no further analysis. These were azithromycin, cefaclor, 

cefinir, cefixime trihydrate, cefotaxime sodium salt, cefuroxime, demeclocycline, enrofloxacin, 

floxuridine, gatofloxacin, levofloxacin, micocycline hydrochloride, moxifloxacin hydrochloride, 

norfloxacin, ofloxacin, ormetoprim, oxytetracycline hydrochloride, pazufloxacin, pefloxacin, 

pefloxacin mesylate, piperacillin sodium salt, rifabutin, rifampicin, terazosin, tosofloxacin 

tosylate,  and triclosan.  

Flecainide acetate was the sole compound discovered that exhibited unanticipated antibacterial 

activity. This drug is a class 1c antiarrhythmic agent used in the prevention and treatment of 

tachyarrhythmias, and works by blocking the Nav1.5 sodium channel in the heart, slowing the 

upstroke of the cardiac action potential and conduction of the electrical impulse within the heart. 

It has also been shown to inhibit ryanodine receptor 1 (RyR2), a major regulator of 

sarcoplasmic release of stored calcium ions. It can reduce calcium sparks and thus 

arrhythmogenic calcium waves in the heart.  

Following the initial demonstration that flecainide acetate possessed antibacterial activity 

against planktonic E. coli at 10 µM, it was further evaluated using standard procedures. Against 

planktonic cultures of S. aureus SH1000 and E. coli 1411 flecainide acetate exhibited MICs of 

0.5 µg/mL and 1 µg/mL respectively. When used for its clinically approved indication as an oral 

antiarrhythmic agent, flecainide acetate achieves a maximum serum concentration (Cmax) of 0.2-

1 µg/mL.  The MIC values determined against S. aureus SH100 and E. coli 1411 are therefore 

within this therapeutic index.  

Newly discovered antimicrobial agents that exhibit potent, broad-spectrum activity are 

frequently membrane damaging. To determine if this was a property of flecainide acetate, the 

integrity of the S. aureus SH1000 membrane was assessed using the BacLightTM assay. At 4 x 

MIC, flecainide acetate caused a loss of 25% to SH1000 membrane integrity within 10 minutes 
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(Table 5.3). In the BacLightTM assay, a compound is considered to be membrane damaging 

when a >30 % loss of membrane integrity is observed, only 5% greater than that seen for 

flecainide acetate. Since this assay does not reliably detect subtle membrane disruption, or 

perturbation occurring over longer than a 10 minute window, additional assays would need to be 

performed to elucidate the mechanism of action.  

When resupplied with flecainide acetate from the NIH, none of the results outlined in above 

could be reproduced. To determine the active component from the original stock of flecainide 

acetate, a sample was sent for analysis by mass-spectrometry (MS) and high-performance liquid 

chromatography (HPLC) (performed by Dr Martin McPhillie). Results suggested the presence 

of a compound that would have existed as an intermediate in the synthesis of flecainide acetate. 

To determine the specific structure of the unknown intermediate, nuclear magnetic resonance 

(NMR) would need to be performed. However, due to insufficient quantities, NMR could not be 

performed, and further investigations could not be continued.  

 

5.3.2.1 Tocriscreen Total in combination with rifampicin or linezolid 

Tocriscreen Total chemical library was screened in combination with rifampicin and linezolid 

against planktonic E. coli 1411. No potentiators of rifampicin were determined. One compound 

was identified which potentiated the activity of linezolid; the protein kinase A inhibitor, H89 

dihydrochlroide (H 89). In prokaryotic physiology, protein kinases fulfil purposes similar to 

those in eukaryotes, transducing signals to the bacterial chromosome, although they are far less 

complex. The inhibitory action of H89 dihydrochloride is non-specific, and inhibits several 

other kinases, including but not limited to, ribosomal protein S6 kinase beta-1 and 

mitogen/stress activated protein kinase. Subsequently, the ability of H 89 dihydrochloride to 

potentiate the activity of linezolid against planktonic E. coli 1411 could possibly be a result of 

the inhibitory activity of H 89, acting on the efflux pumps, directly compromising their 

function, or indirectly preventing their up-regulation. 
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In addition, this screen identified to two compounds which exhibited antibacterial activity alone 

at the tested concentration of 10 µM; the potent multi-enzyme inhibitor, diphenyleneiodonium 

chloride, and the competitive bradykinin B2 receptor antagonist, WIN 64338 hydrochloride. 

Diphenyleneiodium chloride is a eukaryotic agonist of G-protein coupled receptor 3, a member 

of the G-protein coupled receptor family (Ye et al., 2014). It also binds strongly to 

flavoproteins, inhibiting a number of enzymes, including NO synthase, NADPH oxidases and 

NADPH cytochrome P450 oxidoreductase (Stuehr et al., 1991, Tew, 1993, Yea et al., 1990, 

Wang et al., 1993). Diphenyleneidonium chloride also induces Ca2+ mobilization and β-arrestin 

receptor internalization, and inhibits platelet aggregation. Due to the activity of this compound 

affecting multiple enzymes, it is likely that the antibacterial effect observed against planktonic 

E. coli 1411 is due to non-specific effects. As a consequence, potential antibacterial properties 

of diphenyleneiodonium chloride were not investigated further in this study.  

As mentioned above, WIN 64338 hydrochloride is identified as a mammalian, non-peptide, 

competitive bradykinin B2 receptor antagonist (Hu et al., 2004, Scherrer et al., 1995, Marceau et 

al., 1994). In mammals, the bradykinin receptor family is a G-protein coupled receptor that 

stimulates phospholipase C, increasing intracellular calcium and inhibiting adenylate cyclase.  It 

is involved in many pathways, such as inflammation, vasodilation and smooth muscle 

relaxation. Furthermore, as WIN 64338 hydrochloride is not a peptide, it is not subject to poor 

bioavailability and metabolism that would limit other peptide molecules (Sawutz et al., 1994).  

To investigate the properties of H 89 dihydrochloride and WIN 64338 hydrochloride further, 

MICs were determined against S. aureus SH1000, E. coli 1411 and P. aeruginosa PA01 (Table 

5.2). Screening found that H 89 dihydrochloride was able to potentiate the activity of linezolid 

against planktonic E. coli 1411, but here has also been shown to have antibacterial activity 

alone, exhibiting MICs of 64 µg/mL, 16 µg/mL and >256 µg/mL, against SH1000, 1411 and 

PAO1 respectively (Table 5.2). WIN 64338 dihydrochloride had stronger activity, exhibiting 

MICs of 1 µg/mL, 4 µg/mL and 128 µg/mL against SH1000, 1411 and PAO1 respectively 

(Table 5.2). 
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Table 5.2 Minimum inhibitory concentrations (MICs) of H 89 dihydrochloride and WIN 64338 

hydrochloride from the Tocriscreen Total collection, against S. aureus SH1000, E. coli 1411 

and P. aeruginosa PAO1. -0-2 MICs of H89 and WIN 64338 against S. aureus and E. coli 

  Antibacterial Activity (µg/mL) 

Compound 
10µM in 
µg/mL 

S. aureus 
SH1000 

planktonic MIC 

E. coli 1411 
planktonic MIC 

P. aeruginosa 
PAO1 

planktonic MIC 

H 89 
dihydrochloride 

5.19 64 16 >256 

WIN 64338 
hydrochloride 

7.83 1 4 128 

 

Although reasonable activity against S. aureus SH1000 and E. coli 1411 was observed for WIN 

64338 hydrochloride, and a possible synergistic interaction between H 89 dihydrochloride and 

linezolid against E. coli 1411, no pre-clinical whole animal studies on these compounds have 

been performed. Consequently, neither H 89 dihydrochloride nor WIN 64338 was investigated 

further in this study.  

 

5.3.2.2 Spectrum collection in combination with rifampicin and linezolid  

The systematic screening of the Spectrum Collection in combination with rifampicin or 

linezolid against planktonic E. coli 1411 identified 38 compounds that exhibited antibacterial 

activity alone. There were alexidine hydrochloride, azithromycin, aztreonam, bekanamycin 

sulphate, belomycin, ceftinir, ceftibuten, chloramphenicol, ciprofloxacin, doxyclycline 

hydrochloride, enrofloxacin, furazolidone, gatifloxacin, gemifloxacin mesylate, levofloxacin, 

lemofloxacin hydrochloride, meclocycline sulfosalicylate, micocycline hydrochloride, 

mitomycin C, moxifloxacin hydrochloride, nifuroxazide, norfloxacin, ofloxacin, 

oxytetracycline, pefloxacine mesylate, phenylmercuric acetate, polymixin B sulphate, 

pyrithioone zinc, sarafloxacin hydrochloride, sucralose, telithomycin, tetracycline 

hydrochloride, thimersosal, thiogunanine, thiogunanosine, triclosan and zidovudine.  . However 

of the 38 compounds, only 6 were not previously described antimicrobials. Included in those 6 



83 
 

 
 

were 4 antineoplastic agents; bleomycin, mitomycin C, thioguanine and thioguanosine. 

Antineoplastics are used to inhibit tumours from growing and spreading. The remaining 2 

compounds were sucralose, used to sweeten consumables, and the antiretroviral zidovudine, that 

inhibits viral reverse-transcriptase.  

The screen also identified 11 compounds that potentiated the activity of rifampicin. These were 

cefditorin pivoxil, colistemethate hydrochloride, dirithromycin, doxifluridine, florfenicol, 

floxuridine, fluorouracil, metaraminol bitartrate, methacycline hydrochloride, spectinomycin 

hydrochloride and sulfonomethoxine. In addition, 7 compound were identified that potentiated 

the activity of linezolid against planktonic E. coli 1411. These were colistimethate sodium, 

dirithromycin, doxifluridine, floxuruidine, fluorouracil, methacycline hydrochloride and 

spectinomycin hydrochloride. Only 4 of the 11 rifampicin potentiators were not existing 

antimicrobials. These included the 3 antineoplastic agents doxifluridine, floxuridine and 

fluorouracil, and one antihypotensive known as metaraminol bitartrate, used to raise reduced 

blood pressure. All 7 of the compounds found to potentiate the activity of linezolid were also 

found amongst the 11 compounds that potentiated the activity of rifampicin. Of these, 3 were 

the antineoplastic agents doxifluridine, floxuridine and fluoruracil, and the remaining 4 were 

established antimicrobial agents. 

Since the majority of compounds identified in the Spectrum Collection screen were found to be 

existing antimicrobials, only 10 were investigated further. From the 38 compounds that 

exhibited antibacterial activity alone sucralose, thioguanine and zidovudine were chosen for 

additional analysis, and the remaining 7 compounds were selected from those originally 

determined as being potentiators of rifampicin alone, or both rifampicin and linezolid against E. 

coli 1411. These were dirithromycin, florfenicol, fluorouracil, metaraminol bitartrate, 

methacycline hydrochloride, spectinomycin hydrochloride and sulfamonomethoxine.  

To investigate further the antibacterial activity of these 10 compounds, MICs against S. aureus 

SH1000 and E. coli 1411 were determined. Against SH1000, MICs ranged from 0.5 - >256 

µg/mL, and against 1411, MICs ranged from 0.03125 - >256 µg/mL (Table 5.3). Two of the 
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three nucleoside analogue inhibitors, thioguanine and zidovudine, were found to have no 

activity against S. aureus SH1000, but displayed potent activity against E. coli 1411, exhibiting 

MICs of 0.5 and 0.03 µg/mL, respectively. The third nucleoside analogue , fluorouracil, 

exhibited comparable 1411 activity with an MIC of 1 µg/mL, but was also active against 

SH1000, with an MIC of 8 µg/mL (Table 5.3). Sucralose was one of the compounds that 

exhibited activity alone against planktonic E. coli 1411, however, upon Spectrum resupplying 

this compound, no antibacterial activity was observed (Table 5.3). Of the remaining 6 

compounds, 5 are approved antibacterials; dirithromycin, florfenicol, methacycline 

hydrochloride, spectinomycin hydrochloride and sulfamonomethoxine. Dirithromycin, 

methacycline hydrochloride and spectinomycin hydrochloride were all found to potentiate both 

rifampicin and linezolid activity against planktonic E. coli 1411. All three compounds also 

exhibited antibacterial activity alone. Against SH1000, MICs were 0.5, 1 and 32 µg/mL, for 

dirithromycin, methacycline hydrochloride and spectinomycin hydrochloride respectively. 

Against 1411, dirithcomycin and methacycline hydrochloride exhibited MICs of 4 and 1 µg/mL 

respectively, whilst spectinomycin hydrochloride displayed more potent activity against 1411 

than SH1000, with an MIC of 4 µg/mL (Table 5.3).  

 

The remaining antibacterial, sulfamethoxine, only potentiated the activity of rifampicin, and 

exhibited no antibacterial activity against 1411 or SH1000, when resupplied from Spectrum, 

displaying MICs >256 µg/mL. Finally, metartraminol bitartrate, which was originally identified 

as a potentiator of rifampicin against planktonic E. coli 1411, displayed an MIC against SH1000 

of 32 µg/mL, but lacked activity against 1411, exhibiting an MIC of >256 µg/mL (Table 5.3). 

Metaraminol bitartrate is a eukaryotic α1-adrenergic receptor agonist, used as an 

antihypotensive. 
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Table 5.3 Minimum inhibitory concentrations (MICs) of the 10 compounds identified from the 

Spectrum Collection for preliminary susceptibility studies. MICs were determined against S. 

aureus SH1000 and E. coli 1411. 

   Antibacterial Activity (µg/mL) 

(spectrum follow up) 
Compound 

Function 
 

10µM in 
µg/mL 

S. aureus 
SH1000 

planktonic 
MIC 

E. coli 1411 
planktonic 

MIC 

Dirithromycin Antibacterial 8.35 0.5 4 

Florfenicol Antibacterial 3.58 4 4 

Fluorouracil 
Antineoplastic and 

pyrimidine 
antimetabolite 

1.3 8 1 

Metaraminol bitartrate Antihypotensive 1.67 32 >256 

Methacycline 
hydrochloride 

Antibacterial 4.79 1 1 

Spectinomycin 
hydrochloride 

Antibacterial 4.95 32 4 

Sucralose Sweetener 3.98 >256 >256 

Sulfamonomethoxine Antibacterial 2.80 >256 >256 

Thioguanine 
Antineoplastic and 

purine 
antimetabolite 

1.67 >256 0.5 

Zidovudine 
RT transferase 
inhibitor and 

antiviral 
2.67 >256 0.03125 

 

Following initial susceptibility determinations it was decided to focus the subsequent 

investigations on the 3 three nucleoside analogues fluoruracil, thiogunanine and zidovudine .To 

determine the range of activity of each, susceptibility testing was performed against the so-

called ESKAPE pathogens, which represent the bacteria that are recognised to be the major 

cause of hospital infections in the USA. These are Enterococcus faecium, Staphylococcus 

aureus, Klebsiella pnomoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and 

Enterbacter species. Fluorouracil exhibited MICs ranging from 4 – 64 µg/mL, thioguanine was 
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inactive against all strains tested, with MICs greater than 256 µg/mL, and zidovudine exhibited 

MICs ranging from 4->256 µg/mL (Table 5.4). 

 

Table 5.4 Minimum inhibitory concentrations (MICs) of fluorouracil, thioguanine and 

zidovudine against ESKAPE pathogens. 

 Antibacterial Activity (µg/mL) 

Strain Fluorouracil Thioguanine Zidovudine 

Acinetobacter 
baumanni Cubist 

581217 
8 >256 >256 

Enterobacter cloacae 
Cubist 583750 

4 >256 4 

Escherichia coli 
Cubist IHMA 659048 

8 >256 64 

Klebsiella oxytoca 
Cubist 683079 

16 >256 >256 

Klebsiella 
pneumoniae Cubist 

581436 
64 >256 256 

Pseudomonas 
aeruginosa PA01  

32 >256 >128 

Staphylococcus 
aureus Cubist ACC 

A790662 
32 >256 >256 

 

Table 5-0-MICs of fluorouracil, thioguanidine and zidovudine against the ESKAPE 
pathogens 

Due to the limited activity exhibited by fluorouracil, thioguanine and zidovudine against the 

ESKAPE organisms, compared to that observed in the preliminary determinations’ against E. 

coli, the susceptibility of 8 further E. coli strains was investigated. These included 7 strains that 

were multi-drug resistant, and the wildtype E. coli strain MG1655 (ATCC 700926) (Table 5.5). 

Fluorouracil exhibited a lower MIC against MG1655, than the multi-drug resistant stains, with 

MICs of 2 µg/mL and 16-64 µg/mL respectively (Table 5.5). Thioguanine exhibited no activity 

against any of the 8 E. coli strains tested, with MICs >128 µg/mL and >256 µg/mL, which is 
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comparable the poor activity observed against the ESKAPE pathogens (Table 5.4 and 5.5). Like 

fluorouracil, zidovudine displayed the lowest MIC against MG1655, at 4 µg/mL. This was also 

observed against E. coli Cubist 657524, an E. coli strain possessing enzyme CTX-M-32, which 

is an extended spectrum β-lactamase. Against the remaining E. coli strains, zidovudine MICs 

ranged from 64->256 µg/mL, which is also comparable to the range of activity against the 

ESKAPE pathogens (Table 5.4 and 5.5).  

 

Table 5.5 Minimum inhibitory concentrations (MICs) of fluorouracil, thioguanine and 

zidovudine against 8 strains of E. coli. E. coli strains 

 Antibacterial Activity (µg/mL) 

Strain Fluorouracil Thioguanine Zidovudine 

Escherichia coli 
MG1655 

2 >256 4 

Escherichia coli 
Cubist IHMA 684850 

64 >128 128 

Escherichia coli 
Cubist 449334 

128 >128 >256 

Escherichia coli 
Cubist 586030 

16 >128 128 

Escherichia coli 
Cubist 605879 

32 >128 256 

Escherichia coli 
Cubist 702452 

32 >128 64 

Escherichia coli 
Cubist 657524 

32 >128 4 

Escherichia coli 
Cubist 449742 

16 >128 >256 

 

 

The poor activity of fluorouracil, thioguanine and zidovudine against the 8 E. coli strains was 

therefore comparable to that observed against the ESKAPE pathogens. However, when treating 

infections, it has been frequently suggested that compounds can be used more successfully in 

combination due to a synergistic interaction. This is referred to as synergy. Subsequently, 
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attempts were made to determine if combinations of fluorouracil, thioguanine and zidovudine 

were synergistic, against planktonic cultures of E. coli 1411, MG1655 and Cubist 449472 

(Table 5.6). E. coli strain Cubist 449472 contains β-lactamase enzymes CTX-M-15 and TEM-

15. Synergism of fluorouracil with thioguanine was not observed. Indeed, the combination 

exhibited an antagonistic interaction against MG1655, with an FIC equal to 2, and an additive 

effect against 1411 and Cubist 449472, both with an FIC of 1.031 (Table 5.6).  Similarly, 

zidovudine with thioguanine displayed antagonistic activity against MG1655, with an FIC of 2, 

and an additive interaction against 1411 and Cubist 449472, with FICs of 0.56 and 0.625 

respectively (Table 5.6). Fluorouracil with zidovudine acted synergistically against all 3 E. coli 

strains, exhibiting an FIC of 0.265 against 1411 and Cubist 449472 and 0.281 against MG1655 

(Table 5.6). 

Table 5.6 Synergism of fluorouracil with thioguanine, fluorouracil with zidovudine and 

zidovudine with thioguanine against planktonic cultures of E. coli 1411, MG1655 and Cubist 

449472. FIC index < 0.5 is synergistic, equal to 1 is additive and > 2 antagonistic.d zidovudine  

  FIC index  

Compound 
combinations 

E. coli 1411 E. coli MG1655 
E. coli Cubist 

449472 

Fluorouracil and 
thioguanine 

1.031 2 1.031 

Flurouracil and 
Zidovudine 

0.265 0.281 0.265 

Thioguanine and 
Zidovudine 

0.56 2 0.625 

 

 

Fluorouracil and zidovudine were therefore the only combination to exhibit a synergistic 

interaction, and have the potential to be investigated further as novel antibacterial treatment for 

E. coli.  
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5.4 Conclusions 

Since it takes an average of 10-15 years for a drug to go from discovery to clinical use, drug 

repurposing is an attractive approach in the search for novel antimicrobial agents, due to a 

significantly reduced development phase. It is therefore of some significance that this work has 

identified a number of compounds, either as antibacterial agents alone, or as adjuvants for 

existing antibiotics, following this method. Based on preliminary assessment, the unidentified 

flecainide acetate intermediary was the most promising candidate as a broad spectrum 

antibacterial agent, with MICs against S. aureus SH1000 and E. coli 1411 of 1 µg/mL or less, 

activity that is comparable to clinically available antibiotics. .H 89 dihydrochloride 

demonstrated the most potential for repurposing as an antibiotic adjuvant of linezolid against the 

Gram-negative organism E. coli, against which no previous activity has been reported. In 

addition, fluorouracil in combination with zidovudine also exhibited potential as a novel 

treatment of E. coli. Although no anti-staphylococcal, antibiofilm agents were determined, this 

could be attributed to biofilm communities being highly recalcitrant to antimicrobial therapy. 

Ultimately, this work demonstrates that the application of drug repurposing to the search for 

novel antimicrobial agents discovery is a feasible approach, and the publication of screening 

data also holds value in the prevention of repeat investigations.  
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Chapter 6  

General conclusions and future studies 

 

The ability of bacteria to grow in the form of a biofilm provides protection from multiple 

antimicrobial agents and the host immune system (Donlan and Costerton, 2002). Multiple 

mechanisms have been demonstrated to contribute to the recalcitrance of biofilms, such as 

restricted antibiotic penetration and high levels of slow or non-growing (SONG) cells (Lebeaux 

et al., 2014). This type of infection has been shown to be particularly problematic when 

associated with indwelling medical devices (Donlan, 2001). Consequently, there is a pressing 

need for novel antibiofilm treatments. This work therefore focused on strategies in the 

prevention and eradication of biofilms, primarily on implanted medical devices and the 

discovery of new antibiofilm molecules. 

During the initial stages of this study screening of 56 novel antibiofilm molecules (ABMs) was 

performed to determine antimicrobial activity and potential toxicity. Based on these parameters, 

the five most promising ABMs were selected; 4-45, CIM008405, P1a-PEP1, P2-5, Tocris 2611. 

These five compounds exhibited varying spectrums of antimicrobial activity; 4-45 and Tocris 

2611 were predominantly active against Gram-positive species, namely staphylococci. Whilst 

CIM008405 exhibited preferential activity against Gram-negative organisms, notably P. 

aeruginosa. Finally, P1a-PEP1 and P2-5 had potent anti-fungal activity. As all five ABMs 

demonstrated antimicrobial activity against S. aureus, this organism was used as a model to 

investigate the MOA of each compound. Initially, radiolabeled precursors were used to assess 

the effects of the compounds on DNA, RNA and protein biosynthesis. None of the five ABMs 

caused preferential inhibition of any of the macromolecular synthesis pathways. This type of 

non-specific response indicative of compounds which have antimicrobial activity against 

Staphylococcus aureus by disrupting the cytoplasmic membrane, a profile consistent with 
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macromolecular synthesis inhibition described previously (O'Neill and Chopra, 2004, Ooi et al., 

2009, Randall et al., 2013b). Indeed, subsequent experimentation revealed all five ABMs 

significantly compromised the integrity of the membrane and caused rapid membrane 

depolarisation. The membrane was therefore considered to be the antibacterial target. 

Assessment of staphylococcal liposomes demonstrated that four (4-45, CIM008405, P1a-PEP1, 

P2-5) of the five ABMs caused damage as a consequence of direct interaction with the 

phospholipid component of the membrane. An effect that was comparable in mammalian 

liposomes. Furthermore, the four ABMs (4-45, CIM008405, P1a-PEP1, P2-5) induced complete 

or near complete haemolysis of erythrocytes, indicating that these compounds are not 

prokaryote specific. Tocris 2611 only resulted in partial haemolysis of erythrocytes, which 

suggests some bacteria-specific activity. Indeed, after 48 hours exposure to > 30 x MIC Tocris 

2611, human osteoblasts (OB) and bone marrow derived stem cells (MSC) retained 95% 

viability, an effect comparable to the solvent control.  

Although it was demonstrated that Tocris 2611 disrupts the bacterial membrane, the specific 

target of this compound has not been established. The successful generation of staphylococcal 

cell ghosts could enable further elucidation of the MOA of Tocris 2611. Cell ghosts would 

comprise an intact staphylococcal cell envelope, filled with carboxyfluorescein. Comparable to 

the assessment of carboxyfluorescein filled liposomes, leakage of the dye from cell ghosts could 

be monitored upon exposure to Tocris 2611. Since Tocris 2611 did not cause damage to 

carboxyfluorescein liposomes (comprised of just phospholipid), release of the dye from cell 

ghosts would indicate direct membrane perturbation, most likely as a consequence of interaction 

with the protein component. If cell ghosts remained intact, and no dye was released, it may 

suggest that the compounds interaction with the membrane is dependent on the membrane being 

energised. As discussed in Chapter 4, the generation of staphylococcal cell ghosts has not been 

previously reported, however the successful production of E. coli cells ghost has been 

demonstrated through the controlled expression of phage lysis gene E (Langemann et al., 2010).  

The phage lysis gene E allows the intracellular contents to leave the cell through a 
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transmembrane tunnel structure, formed in the cell envelope by phage lysis gene E(Langemann 

et al., 2010). This is now being adapted for staphylococci. To confer staphylococcal activity a 

chimeric E-L lysis gene is being generated. However, when being used in staphylococci, 

membrane vesicles are required to reseal the transmembrane pores (Lubitz, 2010) . In addition, 

as indicated in Chapter 4, attempts were made to generate carboxyfluorescein filled 

staphylococcal cell ghosts in a similar manner to the liposome assay described in this chapter. 

Briefly, staphylococcal liposomes (generated as outlined in the liposome assay described in this 

thesis), were mixed in a ratio of 4:1 with staphylococcal membrane extracts, and subjected to 

freeze thawing, before being purified by column chromatography. However, this method 

requires further experimentation. 

Additional insight into the antimicrobial MOA of Tocris 2611 could be provided by further 

resolution of resistant mutants. The activity of Tocris 2611 could be investigated against strains 

in which individual mutations have been introduced, to confirm which alterations in the DNA 

sequence confer a reduced Tocris 2611 susceptibility. Alternatively, techniques such as 

markerless gene deletion in S. aureus could be used to investigate which genes specifically 

resulted in reduced susceptibility to Tocris 2611 (Kato and Sugai, 2011). This could 

subsequently provide information as to the intracellular bacterial target of Tocris 2611. It was 

suggested in section 4.4.4.2 that Tocris resistant strain (T2) had phenotypical alterations to the 

membrane mutations in membrane modifying protein MprF (SAOUHSC_01359), putative long-

chain acyl-CoA synthetase (SAOUHSC_00198) and DNA-directed RNA polymerase 

(SAOUHSCE_02485) as a result of Tocris 2611 exposure. To investigate this further the 

membrane fluidity, surface charge and fatty acid content could be measured in the wildtype 

strain S. aureus SH1000, the resistant strain T2, and a strain in which the mutations had been 

deleted, and then compared to determine that alterations which were specifically responsible for 

resistance to Tocris 2611. 

The method differential radial capillary action of ligand assay (DRaCALA) could also be used 

to evaluate further the cellular target of Tocris 2611 (Roelofs et al., 2011). However, this 
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method would require a radio/fluorescent label on the drug. Furthermore, cross-

resistance/susceptibility of the Tocris 2611 resistant strain against a range of compounds, 

including membrane-damaging agents and approved antimicrobials, could be assessed. A 

change in susceptibility to alternative compounds could indicate mutations associated with 

common mechanisms of resistance, such as the production of antibacterial degrading enzymes 

and changes in the permeability of the bacterial membrane.  

Tocris 2611 also exhibited the ability to eradicate pre-formed staphylococcal biofilms, as well 

as prevent their formation. This unusual property was a consequence of the potent bactericidal 

activity of Tocris 2611 against SONG cells, resulting in their sterilisation. SONG cells are an 

important component of biofilms, forming sub-populations against which the majority of 

antimicrobials are ineffective, and are capable of repopulating the biofilm when antibiotic 

treatment is discontinued. Up to 80% of bacterial infections are believed to include a biofilm 

component, which contributes to recurrent infections and treatment failure. Therefore, agents 

with antibiofilm activity are highly sought after.  

To determine the efficacy of ABM coated implant surfaces, compounds were covalently bound 

to titanium surfaces and assessed for their ability to retain biofilm prevention activity in vivo 

and in vitro. ABM 4-45 was replaced with derivative LC0024 due reduced toxicity to eukaryotic 

cells, whilst maintaining comparable levels of bacterial killing. Two surface types were 

generated; smooth and open porous. Open porosity is favourable due to the promotion of 

osseointegration. These surfaces do however exhibit an increased risk of biofilm-associated 

infection in patients as a consequence of enhanced bacterial adherence. The ABM-coated 

titanium substrates (smooth and open porous) displayed varying levels of biofilm inhibition in 

vitro, but were unable to prevent biofilm formation in vivo. In contrast, control agents 

vancomycin and caspofungin retained activity both in vitro and in vivo, preventing the 

formation of S. aureus and C. albicans biofilms, respectively. Despite this, these drugs are 

amongst the remaining ‘last resort’ antimicrobials. Therefore the use of these agents in implant 

surfaces would be inadvisable due to the promotion of bacterial resistance, and the subsequent 
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loss of any valid treatment to control the infection. Since four (4-45, CIM008405, P1a-PEP1, 

P2-5) of the five ABMs were found to lack prokaryote specificity, and failed to significantly 

reduce biofilm formation when bound to a surface, these compounds would be unsuitable for 

use as antimicrobial therapies. The exact cause of the ABMs loss of activity upon surface 

conjugation it is not yet known, however it could be due to achieving insufficient concentrations 

of the compound on the surface, rapid accumulation of serum proteins, forming a protective 

layer between the active compound and the surrounding environment, or a direct consequence 

of covalent binding of the compound to the surface. To progress these antibiofilm coatings, 

future experimentation could include the use of alternative linker molecules or surface 

conjugation via a different site on the compound. Furthermore, surfaces could be engineered to 

incorporate molecules that prevent the adhesion of serum proteins in order to optimise the 

antibiofilm effect of the adhered ABM.  

Although surface bound Tocris 2611 also lacked antibiofilm activity in vivo, it was 

demonstrated to have potent anti-staphylococcal, antibiofilm activity, and exhibited partial 

prokaryote specificity. In addition, S. aureus developed only low-level resistance as a 

consequence of prolonged exposure to Tocris 2611. This compound would therefore most likely 

be unsuitable as for use as a systemic antibiotic due to potential toxicity, but may have potential 

as a topical treatment for biofilm associated staphylococcal infections. However, development 

of Tocris 2611 for clinical use would require additional in vivo investigations. Preferably, 

animal models would be used that were representative of both infections caused from surgical 

entry and those present in chronic wounds.  

Whilst the ABM-coated implants, generated as part of the COATIM project, failed to inhibit 

microbial biofilm formation, no negative effects on osseointegration were observed. 

Furthermore, a significant reduction in biofilm growth was demonstrated for coatings 

incorporating vancomycin and caspofungin. Although agents such as vancomycin and 

caspofungin would be unsuitable for this purpose, this work has established a viable method for 

the surface immobilisation of molecules through covalent binding with a novel linker. 
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Therefore, results present a proof of concept approach, contributing to the development of next 

generation antibiofilm coatings, in addition to providing potential for exploitation by industry. 

Future work could therefore include the application of alternative antimicrobial compounds to 

implant surfaces using the methodology developed here. 

 

Finally, in attempt to identify additional antibiofilm treatments for staphylococcal infections, 

three small compound chemical libraries were screened for potentiators of known antibiotics 

ciprofloxacin and rifampicin. Libraries were also screened for potentiators of rifampicin, 

linezolid and fusidic acid against E. coli, another well-known human pathogen. At the 

concentrations tested, screening did not reveal any combinations that lead to the eradication of 

pre-formed S. aureus biofilms. Subsequent screening, against planktonic E. coli, detected a 

number of compounds with antibacterial activity, or potentiating effects of rifampicin and 

linezolid. However, further evaluation determined that these agents did not possess useful 

antibacterial activity. Drug repurposing and the use of antibiotic adjuvants has previously been 

regarded as an attractive approach to antibiotic drug discovery, due to a decreased risk of 

resistance, and reduced costs and time associated with development. Although these strategies 

clearly provide some advantages, results presented here suggest these methods are inefficient, 

requiring vast numbers of compounds to be screened for limited output. Furthermore, 

compounds that have undergone a degree of pre-clinical assessment frequently encounter issues 

regarding intellectual property, inhibiting their use (at least while the patent exists) in alternative 

therapies. Therefore, strategies such as these cannot be used as the only approach to the 

discovery and development of novel antibacterial therapeutics, but instead be used alongside 

other approaches such as natural product discovery. 

Since library screening identified no compound or compound/antibiotic combinations that led to 

the eradication of pre-formed staphylococcal biofilms, it may be beneficial to increase the tested 

concentration in subsequent experiments. If agents were identified that exhibited unexpected 

antibacterial activity, further in vitro investigation could be performed to determine their 
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potential for repurposing as novel treatments of bacterial infections. Experimentation could 

include, but would not be limited too, extensive susceptibility testing, including antibiofilm 

activity (both prevention and eradication), evaluation of toxicity (i.e. selective or non-selective 

towards bacteria) and MOA characterisation, using approaches such as those outlined in 

Chapters 3 and 4.  

In summary, the work described in this thesis has provided several insights that may be of 

benefit in the development of novel approaches in the treatment and prevention of biofilm 

associated infections. For example, it is apparent that compounds with membrane damaging 

effects may be a useful source of antibiofilm agents. Indeed, membrane damager Tocris 2611 

makes an interesting candidate as an anti-staphylococcal, antibiofilm agent, and could 

potentially be utilised in topical creams. However, future studies would need to be performed to 

elucidate the exact antibacterial target within the cytoplasmic membrane. Despite advances in 

the development of antibiofilm coatings, no compounds were identified that retained antibiofilm 

activity when immobilised to a surface. Leaving a significant amount of development needed in 

the area of antibiofilm coatings and strategies in the healthcare setting. Finally, studies 

investigating the repurposing potential of agents highlighted that this approach cannot be 

reliably used as the sole method for the discovery of new antimicrobial drugs. However, 

collectively this research could facilitate the development of novel approaches in the treatment 

and prevention of biofilm associated infections. 
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Appendices 

Appendix A – Primers used in this study 

 

Oligonucleotide 
primer 

Sequence (5’-3’) 

SAOUHSC_00467 F TTATGAGGCCTTAGAAAATCGAGA 

SAOUHSC_00467 R CAACCGCATTTGCCAATGAAA 

SAOUHSC_01070 F TGTTGGTTATGCGTTTAATGATGT 

SAOUHSC_01070 R CGAGTCAGATGCTAGTTAGTGGT 

SAOUHSC_01359 F TAACTTAACGATTGTTTACGATGCT 

SAOUHSC_01359 R GGCATTTTCATCACCTAACGGA 

SAOUHSC_01621 F AAATGACCACTTGAATGCTTTTTG 

SAOUHSC_01621 R ACGTTTGAAGGAGTTAAAAATGAGT 

SAOUHSC_02485 F TGTTGCAATTTTAAGCTCTGGG 

SAOUHSC_02485 R AAATGGTGTAGCACACATCCG 

SAOUHSC_02659 F TACACAATGTTCATCAATACGTTCA 

SAOUHSC_02659 R TTGCTCCGGAAACGTAACTG 

219191 F CACCGAGTAGGGTAGCTAAGG 

219191 R TGGCGATATATTTATTATTGACCGC 

244311-120 F TCAAGGTCTTTTTCACTATCAACC 

244311-120 R CTCATCTTCCATATCTGCGAGT 
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Appendix B – Activity of novel antimicrobial agents and control agents (ciprofloxacin and gentamicin) against S. aureus SH1000, USA300 
and UAMS-1 and S. epidermidis RP62A.   
Biofilm minimum inhibitory concentrations (bMICs) and minimum biofilm eradication concentration (MBEC) determined in the Calgary Biofilm Device. ND 
indicates not determined. 

 

Antibacterial 

Agent 

Minimum inhibitory concentration (MIC) 

(µM) 

Biofilm minimum inhibitory concentration 

(bMIC) (µM) 

Minimum biofilm eradication 

concentration (MBEC) (µM) 

SH1000 USA300 UAMS-1 RP62A SH1000 USA300 UAMS-1 RP62A SH1000 USA300 UAMS-1 RP62A 

Cirprofloxacin 6.25 100 25 25 12.5 100 25 25 > 100 > 100 > 100 > 100 

Gentamicin 6.25 6.25 100 3.125 6.25 12.5 100 6.25 > 100 > 100 > 100 > 100 

25458 25 25 25 25 50 50 25 50 >100 >100 >100 >100 

42170 25 25 25 25 50 25 25 50 >100 100 >100 >100 

4-1 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

4-3 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

4-4 > 100 > 100 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

4-5 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

4-29 100 100 100 100 > 100 100 > 100 100 > 100 > 100 > 100 > 100 

4-32 50 25 25 50 50 50 50 50 > 100 > 100 > 100 > 100 

4-45 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 > 100 > 100 > 100 > 100 

4-108 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

4-118 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

4-122 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 
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Antibacterial 

Agent 

Minimum inhibitory concentration (MIC) 

(µM) 

Biofilm minimum inhibitory concentration 

(bMIC) (µM) 

Minimum biofilm eradication 

concentration (MBEC) (µM) 

SH1000 USA300 UAMS-1 RP62A SH1000 USA300 UAMS-1 RP62A SH1000 USA300 UAMS-1 RP62A 

5-16 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

5-21 6.25 12.5 6.25 12.5 12.5 12.5 12.5 12.5 > 100 > 100 > 100 > 100 

5-59 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

5-79 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 

5-86 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

5-102 > 100 100 100 50 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

5-118 100 100 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

5-119 100 100 100 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

5-130 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

8339 > 100 > 100 100 >100 >100 >100 >100 >100 >100 >100 >100 >100 

BCF-AA022 ND ND ND ND 50 50 50 50 > 100 > 100 > 100 > 100 

BCF-AA045 ND ND ND ND 12.5 6.25 12.5 6.25 100 > 100 > 100 > 100 

BS-285 > 100 100 > 100 100 > 100 100 > 100 > 100 > 100 > 100 > 100 > 100 

BS-342 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

CIM003592 ND ND ND ND 50 50 50 50 > 100 > 100 > 100 > 100 

CIM006387 > 100 100 100 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

CIM007844 100 100 100 100 > 100 100 100 100 > 100 > 100 > 100 > 100 

CIM008405 25 25 25 25 25 25 25 25 > 100 > 100 > 100 > 100 
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Antibacterial 

Agent 

Minimum inhibitory concentration (MIC) 

(µM) 

Biofilm minimum inhibitory concentration 

(bMIC) (µM) 

Minimum biofilm eradication 

concentration (MBEC) (µM) 

SH1000 USA300 UAMS-1 RP62A SH1000 USA300 UAMS-1 RP62A SH1000 USA300 UAMS-1 RP62A 

DEB-20 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

DEB-24 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

DEB-28 50 50 50 50 > 100 50 > 100 100 > 100 > 100 > 100 > 100 

P1a-CIM01 100 100 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

P1a-CIM02 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

P1a-CIM03 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

P1a-P1 ND ND ND ND > 100 100 100 > 100 > 100 > 100 > 100 > 100 

P1a-PEP1 ND ND ND ND > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

P1a-PEP2 ND ND ND ND > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

P1a-PEP3 ND ND ND ND 100 100 100 100 > 100 > 100 > 100 > 100 

P1a-PEP4 ND ND ND ND > 100 > 100 100 > 100 > 100 > 100 > 100 > 100 

P1a-PEP5 ND ND ND ND 100 50 25 50 > 100 > 100 > 100 > 100 

P1a-PEP6 ND ND ND ND > 100 100 50 100 > 100 > 100 > 100 > 100 

P1a-PEP7 ND ND ND ND 25 25 25 25 > 100 > 100 > 100 > 100 

P1a-PEP8 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

P1a-PEP9 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

P1a-PEP10 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

P1a-PEP11 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 
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Antibacterial 

Agent 

Minimum inhibitory concentration (MIC) 

(µM) 

Biofilm minimum inhibitory concentration 

(bMIC) (µM) 

Minimum biofilm eradication 

concentration (MBEC) (µM) 

SH1000 USA300 UAMS-1 RP62A SH1000 USA300 UAMS-1 RP62A SH1000 USA300 UAMS-1 RP62A 

P2-1 > 100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 

P2-5 50 50 25 50 50 50 50 50 >100 >100 >100 >100 

P2-8 25 12.5 25 25 50 12.5 50 12.5 50 25 100 25 

P2-14 50 50 50 50 50 50 50 50 >100 >100 >100 >100 

OSIP108 > 100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 

Specs > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

Tocris 2217 50 50 25 50 > 100 100 > 100 100 > 100 > 100 > 100 100 

Tocris 2611 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 12.5 6.25 12.5 12.5 
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