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Abstract 

Thermochemical diffusion treatments (such as nitriding and carburising) are widely applied 

to metallic components to improve material surface hardness and wear/tribological 

performance. AISI 304 (Fe-18Cr-8Ni, in wt.%) and AISI 316 (Fe-18Cr-11Ni-3Mo, in wt.%) 

type ASS, as two of the most commonly used ASS, have been investigated extensively under 

low-temperature thermochemical diffusion treatments (e.g. < ~450°C for nitriding and < 

~550°C for carburising). The unusual crystallographic structures – i.e. anisotropically-

expanded austenite (or so-called S phase) − observed on ASS (or other alloys) under low-

temperature thermochemical diffusion treatments and the remarkable enhancement of surface 

mechanical/tribological properties that these structures provided (without loss of corrosion 

resistance) led to a drive to try to understand their origin.  

 

The principal aim of this study was to contribute to a roadmap for design of ‘nitridable’ 

austenitic alloys (capable of being nitrogen interstitially-supersaturated under low-

temperature nitriding). The objectives were i) to study the nitrogen-expanded structure and 

decomposition of ASS with either high-Ni or high-Mn content (other than AISI 304 or 316 

type ASS) after nitriding, ii) to access the performance of the nitrided ASS, and iii) to explore 

the possibility of nitrogen-supersaturation on Cr-free high-Ni or high-Mn austenitic steels 

under low-temperature nitriding. AISI 304 and four other selected steels (with different 

Ni/Mn level and with/without Cr) were triode-plasma nitrided under low (and close to 

monoenergetic) ion energy of ~200 eV at different temperatures for 4-20hrs. Auxiliary 

radiant heating was used to facilitate different treatment temperatures under a deliberately 

controlled substrate current density (e.g. at ~0.13 A/cm2), in which case material surface 

crystallographic structure obtained under nitriding was mainly influenced by the different 

treatment temperatures and times applied.  
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Firstly, the role of SFE on the crystallographic structure and stability of γN has been revealed 

and discussed with the vastly available literature. At low treatment temperature (400°C), low 

SFE ASS (with high-Mn content) tended to exhibit superior nitrogen absorption and relative 

high lattice expansion, while high SFE ASS (with high-Ni content) tended to absorb less 

nitrogen – reaching a saturated lattice expansion quite quickly during treatment. Dislocation 

dissociation and dislocation glide were proposed and discussed for the different plastic 

deformation structures observed. Nevertheless, at elevated treatment temperatures (425 and 

450°C), lattice instabilities (SFs and SF-associated local lattice distortions) developed on the 

low SFE alloy under nitrogen ‘over-supersaturation’, tending to accelerate the decomposition 

of γN, while low SF density (or SF-free) γN developed on high SFE ASS, tending to exhibit 

relatively sluggish decomposition. Secondly, the wear and corrosion performance of the 

nitrided high-Mn/Ni ASS were investigated. The surface hardened ASS after low-

temperature TPN exhibited superior wear performance under dry sliding condition owing to 

enhanced load-bearing capacity and reduced adhesive wear, but not under selected wet SiC 

slurry abrasive wear conditions potentially owing to layer brittleness and insufficient layer 

thickness under the selected nitriding parameters. Improved corrosion performance was 

observed for ASS under nitrogen-supersaturation and loss of corrosion resistance was evident 

after CrN formation in γN. Last but not the lease, the necessity of Cr in substrate alloy on the 

formation of γN after nitriding has been demonstrated. Formation of iron nitrides (rather than 

γN) was evident on both of the Cr-free austenitic steels (Invar and Hadfield steel) under TPN 

at selected low treatment temperatures, which indicates that nitride-forming elements (such 

as Cr) played an important role in the formation of expanded austenite.  

  



 iii 

Table of Contents 

Abstract	...............................................................................................................................................	i	

Table	of	Contents	..........................................................................................................................	iii	

List	of	acronyms	and	abbreviations	.....................................................................................	viii	

List	of	Figures	.................................................................................................................................	ix	

List	of	Tables	.................................................................................................................................	xvi	

1	 Introduction	..............................................................................................................................	1	

1.1	 Research	objectives	strategy	.....................................................................................................	2	

1.2	 Thesis	structure	.............................................................................................................................	5	

2	 Background	...............................................................................................................................	7	

2.1	 Nitriding	techniques	.....................................................................................................................	7	

2.1.1	 Three	main	nitriding	techniques	.......................................................................................................	7	

2.1.1.1	 Gaseous	nitriding	..............................................................................................................................................	7	

2.1.1.2	 Liquid	nitriding/nitrocarburising	..............................................................................................................	8	

2.1.1.3	 Plasma	nitriding	.................................................................................................................................................	9	

2.1.2	 Vacuum	and	glow-discharge	plasma	............................................................................................	10	

2.1.2.1	 Vacuum	and	kinetic	theories	of	gas	........................................................................................................	11	

2.1.2.2	 DC	glow	discharge	plasma	..........................................................................................................................	15	

2.1.3	 Triode	plasma	fundamentals	and	configurations	...................................................................	17	

2.1.3.1	 Cathode	sheath	................................................................................................................................................	18	

2.1.3.2	 Energy	distribution	of	ions	........................................................................................................................	19	

2.1.3.3	 Triode	plasma	configurations	and	plasma	enhancement	.............................................................	20	

2.2	 Incorporation	of	nitrogen	in	iron	.........................................................................................	22	

2.2.1	 Interstitial	diffusion	.............................................................................................................................	22	

2.2.2	 Nitrogen	in	iron	.....................................................................................................................................	25	



 iv 

2.2.2.1	 Nitrogen	in	solid	solution	–	α(N),	γ(N)	and	α’(N)	............................................................................	26	

2.2.2.2	 Iron	nitrides	......................................................................................................................................................	27	

2.3	 Austenitic	stainless	steels	after	low	temperature	nitriding	........................................	29	

2.3.1	 Expanded	austenite	..............................................................................................................................	30	

2.3.1.1	 Origin	and	early	studies	of	expanded	austenite	(~1960s-1990s)	............................................	30	

2.3.1.2	 Crystallographic	structure	of	nitrogen-expanded	austenite	.......................................................	36	

2.3.2	 Role	of	substrate	elements	................................................................................................................	43	

2.3.2.1	 Role	of	substitutional	elements	of	Cr,	Mn,	Ni	and	Mo	in	ASS	......................................................	43	

2.3.2.2	 Ni-Cr	and	Co-Cr	alloys	after	low	temperature	diffusion	treatments	.......................................	46	

2.3.3	 Commercial	low-temperature	diffusion	treatment	processes	and	applications	.......	49	

2.3.3.1	 Carburising	−	Kolsterising	(Bodycote	Plc.)	and	SAT12	(Swagelok	Co.)	.................................	49	

2.3.3.2	 Nitriding	–	Nivox	2	(Bodycote	Plc.)	........................................................................................................	51	

3	 Experimental	Procedure	....................................................................................................	52	

3.1	 Materials	Investigated	..............................................................................................................	52	

3.2	 The	Triode	Plasma	Nitriding	Process	..................................................................................	53	

3.2.1	 Treatment	strategy	and	sample	designations	..........................................................................	53	

3.2.2	 Triode	plasma	nitriding	–	equipment	and	chamber	configurations	...............................	53	

3.2.3	 Triode	plasma	nitriding	−	process	procedure	..........................................................................	55	

3.2.4	 L/λ	value	for	this	study	......................................................................................................................	57	

3.3	 Statistical	Considerations	........................................................................................................	58	

3.4	 Energy	Dispersive	X-ray	Spectroscopy	...............................................................................	58	

3.5	 Optical	Microscopy	.....................................................................................................................	59	

3.6	 Back-scattered	Electron	Microscopy	...................................................................................	59	

3.7	 Hardness	Indentation	Measurements	.................................................................................	60	

3.7.1	 Vickers	Indentation	..............................................................................................................................	60	

3.7.2	 Nanoindentation	depth-profiles	.....................................................................................................	60	

3.8	 Phase	Characterisations	...........................................................................................................	60	



 v 

3.8.1	 X-ray	Diffraction	analysis	..................................................................................................................	60	

3.8.2	 Transmission	Electron	Microscopy	...............................................................................................	61	

3.8.3	 Focused	Ion	Beam	Method	................................................................................................................	62	

3.9	 Material	Wear	and	Corrosion	Performance	......................................................................	64	

3.9.1	 Wear	testing	............................................................................................................................................	64	

3.9.1.1	 Reciprocating-sliding	wear	testing	.........................................................................................................	64	

3.9.1.2	 Micro-abrasion	wear	testing	.....................................................................................................................	65	

3.9.1.3	 Surface	profilometry	and	evaluations	of	wear	..................................................................................	66	

3.9.2	 Corrosion	Testing	..................................................................................................................................	68	

3.9.2.1	 Open	circuit	potential	...................................................................................................................................	68	

3.9.2.2	 Potentiodynamic	polarisation	..................................................................................................................	69	

4	 Characterisation	of	two	proprietary	austenitic	stainless	steels	after	triode	

plasma	nitriding	...........................................................................................................................	70	

4.1	 Surface	composition	and	morphology	................................................................................	72	

4.1.1	 Surface	nitrogen	content	...................................................................................................................	72	

4.1.2	 Surface	morphology	under	OM	.......................................................................................................	74	

4.1.3	 Transverse	BSE	imaging	....................................................................................................................	78	

4.2	 XRD	analysis	.................................................................................................................................	81	

4.2.1	 Phase	identifications	............................................................................................................................	81	

4.2.2	 XRD	Lattice	parameters	of	γN	...........................................................................................................	86	

4.3	 TEM	diffraction	features	of	γN	...............................................................................................	88	

4.4	 The	potential	influences	of	material	SFE	............................................................................	90	

4.5	 TEM	analysis	................................................................................................................................	93	

4.5.1	 TEM	Lattice	parameters	of	γN	..........................................................................................................	93	

4.5.2	 TEM	observations	and	discussions	on	lattice	expansion	....................................................	94	

4.5.2.1	 TEM	observations	..........................................................................................................................................	94	

4.5.2.2	 Influence	of	SFE	on	lattice	expansion	.................................................................................................	101	



 vi 

4.5.3	 TEM	observation	and	discussions	on	lattice	decompositions	.........................................	103	

4.5.3.1	 TEM	observations	.......................................................................................................................................	103	

4.5.3.2	 Influence	of	SFE	on	lattice	decomposition	.......................................................................................	108	

4.6	 Summary	.....................................................................................................................................	110	

5	 Mechanical	and	tribological	evaluation	of	three	austenitic	stainless	steels	after	

triode	plasma	nitriding	...........................................................................................................	112	

5.1	 Vickers	Surface	Hardness	......................................................................................................	113	

5.2	 Wear	Performance	...................................................................................................................	116	

5.2.1	 Dry	sliding	wear	against	WC-Co	ball	..........................................................................................	116	

5.2.2	 Wet	slurry	microabrasion	wear	against	bearing	steel	ball	...............................................	122	

5.3	 Corrosion	Performance	..........................................................................................................	131	

5.3.1	 Open	circuit	potential	........................................................................................................................	131	

5.3.2	 Potentiodyanamic	polarisation	.....................................................................................................	132	

5.3.1	 Corrosion	passivity	and	features	on	corrosion	sites	...........................................................	134	

5.4	 Summary	.....................................................................................................................................	138	

6	 Characterisation	of	two	Cr-free	austenitic	steels	after	triode	plasma	nitriding

	 141	

6.1	 Characterisation	of	Invar,	as	compared	to	330,	after	TPN	treatment	....................	142	

6.1.1	 General	characterisation	..................................................................................................................	142	

6.1.1.1	 Surface	nitrogen	content	and	Vickers	hardness	............................................................................	142	

6.1.1.2	 Surface	morphology	–	OM	on	top	of	material	surfaces	...............................................................	144	

6.1.1.3	 BSE	imaging	of	sample	cross-sections	...............................................................................................	145	

6.1.2	 Phase	identifications	..........................................................................................................................	148	

6.1.2.1	 GAXRD	..............................................................................................................................................................	148	

6.1.2.2	 Cross-sectional	TEM	analysis	.................................................................................................................	151	

6.1.3	 On	the	role	of	Cr	in	nitrogen	supersaturation	of	Fe-based	FCC	lattices	......................	155	

6.1.3.1	 On	lattice	expansion	−	XRD	profiles	and	lattice	parameters	....................................................	155	



 vii 

6.1.3.2	 On	nitrogen	diffusion	mechanisms	−	cross-sectional	hardness-depth	profiles	...............	161	

6.2	 Characterisation	of	Hadfield	steel	after	TPN	..................................................................	165	

6.2.1	 General	characterisation	..................................................................................................................	165	

6.2.1.1	 Surface	nitrogen	content	and	Vickers	hardness	............................................................................	165	

6.2.1.2	 OM	on	top	of	material	surfaces	.............................................................................................................	166	

6.2.1.3	 BSE	imaging	of	treatment	cross-sections	.........................................................................................	167	

6.2.2	 Phase	identification	............................................................................................................................	168	

6.2.2.1	 XRD	analysis	of	the	treated	surfaces	...................................................................................................	168	

6.2.2.2	 XRD	analysis	of	core	microstructure	..................................................................................................	171	

6.2.3	 Transverse	nanoindentation	hardness-depth	profiles	.......................................................	173	

6.3	 Summary	.....................................................................................................................................	175	

Conclusions	.................................................................................................................................	177	

Further	Work	.............................................................................................................................	181	

Reference	.....................................................................................................................................	183	

 

  



 viii 

List of acronyms and abbreviations  

ASS(s):	austenitic	stainless	steel(s)		

AG17:	Staballoy	AG17	®	

BCC:	body-centred	cubic	

BCT:	body-centred	tetragonal	

BF-TEM:	bright-field	transmission	electron	microscopy	

BSE:	back-scattered	electron	microscopy	

DC:	direct	current	

DF-TEM:	dark-field	transmission	electron	microscopy	

EDP:	electron	diffraction	pattern	

EDX:	energy	dispersive	x-ray	spectroscopy		

FCC:	face-centred	cubic		

HAD:	Hadfield	steel	

HCP:	hexagonal-closed	packed		

HR-TEM:	high-resolution	transmission	electron	microscopy	

Invar:	Invar	36®	

GAXRD:	grazing	angle	x-ray	diffraction		

OCP:	open	circuit	potential	

OM:	optical	microscopy		

PVD:	physical	vapour	deposition	

SEM:	scanning	electron	microscopy		

SF:	stacking	fault		

TEM:	transition	electron	microscopy	

TPN:	triode-plasma	nitriding		

XRD:	X-ray	diffraction		

γ(N)/γ(C):	nitrogen/carbon	solid	solution	in	austenite	

γN/γc:	nitrogen/carbon	stabilised	expanded	austenite		

Icorr:	Tafel	current	density	

Ecorr:	Tafel	potential	

Epit:	critical	pitting	potential		

304:	AISI	304		

  



 ix 

List of Figures 

Fig.	1.1	Illustration	of	material	selection	criteria	based	on	Cr,	Ni	and	Mn	content	..................................	4	

Fig.		2.1	State	of	matter	as	a	function	of	temperature	(reproduced	from	Ref.	[34])	.............................	11	

Fig.		2.2	Inter-electrode	current	verses	inter-electrode	potential	for	DC	discharge	(reproduced	

from	Ref.	[34])	....................................................................................................................................................	16	

Fig.		2.3	Ion	energy	distribution	at	various	L/λ	values	from	Eq.	2.10	(reproduced	from	Ref.	[48])	20	

Fig.		2.4	Schematic	illustration	of	the	triode	plasma	PVD	unit	used	in	this	study	for	triode	plasma	

nitriding	(reproduced	from	Ref.	[21]),	the	evaporation	system	(for	PVD	coating,	involving	

element	5	and	10	in	the	above	figure)	was	not	used	in	this	study	...................................................	21	

Fig.		2.5	Diffusion	coefficient	of	carbon	in	FCC-Fe	at	1400	K	(reproduced	from	Ref.	[54])	.................	25	

Fig.		2.6	Fe-N	binary	phase	diagrams	(reproduced	from	Ref.	[56])	............................................................	25	

Fig.		2.7	Illustration	of	octahedral	sites	in	BCC,	FCC	and	HCP	unit	cells	(×-octahedral	centres)	

(reproduced	from	Ref.	[63,	64])	...................................................................................................................	27	

Fig.		2.8	The	crystal	structure	of	α’’-Fe16N2	(reproduced	from	Ref.	[57])	and	ZnS	(reproduced	from	

Ref.	[51])	...............................................................................................................................................................	29	

Fig.		2.9	a)	Transverse	OM	of	AISI	316	surface	carburised	at	550°C	for	24hrs	in	carbon-containing	

liquid	sodium	(reproduced	from	Ref.	[75]),	b)	Transverse	OM	of	AISI	316	surface	after	

plasma	nitriding	at	400°C	for	60hrs	(reproduced	from	Ref.	[5]),	c)	XRD	patterns	of	18-8	ASS	

surface	after	plasma	nitriding	at	400°C	for	4hrs	at	three	N2:H2	gas	ratios	(from	top	to	bottom,	

ratios	are	1:1000,	1:9,	4:1,	reproduced	from	Ref.	[8])	..........................................................................	32	

Fig.		2.10	a)	Left:	Ratio	of	d200/d111	(as	determined	from	respective	X-ray	diffraction	peak	positions)	

for	AISI	316,	304	and	321	austenitic	stainless	steels	after	plasma	nitriding	for	4hrs	at	various	

temperatures	(reproduced	from	Ref.	[80]);	b)	Right:	Plot	of	lattice	parameters	of	

homogenous	nitrogen	and	carbon	expanded	austenites	(as	determined	from	γN(220)	and	

γC(220)	X-ray	diffraction	peak	positions)	against	interstitial	N	or	C	per	metal	atom	

(reproduced	from	Ref.	[12])	..........................................................................................................................	37	

Fig.		2.11	DF-TEM	image	and	its	EDP	showing	twinning	lamellae	in	AISI	316	ASS	after	low	

temperature	plasma	nitriding	(reproduced	from	Ref.	[112])	...........................................................	40	



 x 

Fig.		2.12	a)	EDP	of	high	stacking	fault	region	in	expanded	austenite,	b)	HRTEM	image	of	region	

with	stacking	faults	indicated	with	arrows,	c)	Fourier	filtered	image	of	image	b	(after	

omission	of	noncrystallographic	information)	showing	antiphase	domains	(D1	and	D2)	and	

antiphase	boundary	(APB),	d)	EDP	of	region	in	expanded	austenite	containing	forbidden	FCC	

reflections,	e)	DF-TEM	image	using	one	of	the	(010)	reflection	in	image	d	showing	domain	

structure	rather	than	precipitate	structure	(reproduced	from	Ref.	[15])	.....................................	41	

Fig.		2.13	a)	EDP	of	expanded	austenite	generated	on	AISI	304L	at	<110>γN	zone	axis,	b)	

illustration	of	stacking	fault	clusters	equivalent	to	a	HCP	structure,	and	c)	HR-TEM	image	of	

HCP	structure	(reproduced	from	Ref.	[114])	...........................................................................................	42	

Fig.		2.14	Schematic	illustration	of	Ni-binary	alloys	and	TEM	images	(and	EDPs)	of	Ni-30Cr	alloy	

after	plasma	nitriding	at	low	temperature	(a,	b,	respectively),	and	at	high	temperature	(c,	d,	

respectively);	and	e)	XRD	of	Ni-30Cr	after	plasma	nitriding	at	450°C	(reproduced	from	Ref.	

[123])	.....................................................................................................................................................................	48	

Fig.	2.15	Illustrations	of	two	typical	applications	of	low-temperature	thermochemical	treatments,	

a)	SAT12	for	Swagelok	tube	fitting	(AISI	304	or	316),	and	b)	Nivox	2	for	rod	clusters	control	

assembly	(AISI	316L)	used	in	pressurised	water	nuclear	reactors	(reproduced	from	[132])	50	

Fig.		2.1	a)	Illustration	of	vacuum	system,	b)	a	photo	through	observation	window	during	a	TPN	

process,	c)	chamber	configuration	A,	d)	chamber	configuration	B	..................................................	54	

Fig.	2.2	FIB	prepared	TEM	thin	foil	of	untreated	RA330	(U-330)	under	Philips	EM420,	a)	BF-TEM	

image,	b)	EDP	of	the	entire	foil	using	the	largest	diffraction	aperture	(~5800	nm	diameter),	

and	c)	EDP	of	an	austenitic	grain	using	(~1400	nm	diameter)	diffraction	aperture	at	its	<111>	

zone	axis	...............................................................................................................................................................	62	

Fig.	2.3	Ion	beam	images	during	FIB	process	(chronological	order	from	a	to	f)	....................................	63	

Fig.		2.4	a)	Schematic	illustration	of	abrasion	tester	(reproduced	from	Ref.	[145])	and	b)	scanning	

electron	micrograph	of	SiC	powder	............................................................................................................	66	

Fig.		3.5	Illustration	of	surface	profiles	obtained	from	an	3-body	abrasion	crater	at	scan	direction	a)	

parallel	and	b)	perpendicular	to	abrading	direction;	Light	optical	images	of	an	3-body	

abrasion	crater	under	c)	bright	field	illumination,	and	d)	dark	field	illumination	....................	67	

Fig.		4.1	Surface	nitrogen	content	(in	at.%)	of	three	ASS	after	TPN	at	different	treatment	

temperatures	for	a)	4	hours	and	b)	20	hours	..........................................................................................	73	



 xi 

	Fig.		4.2	Optical	micrographs	of	AISI	304	after	triode-plasma	nitriding	at	a)	400°C	20hrs,	b)	425°C	

20hrs,	c)	and	450°C	20hrs	..............................................................................................................................	74	

	Fig.		4.3	Optical	micrographs	of	AG17	after	triode-plasma	nitriding	at	a)	400°C	4hrs,	b)	400°C	

20hrs,	c)	425°C	4hrs,	d)	425°C	20hrs,	e)	450°C	4hrs,	f)	and	450°C	20hrs	......................................	76	

	Fig.		4.4	Optical	micrographs	of	330	after	triode-plasma	nitriding	at	a)	400°C	4hrs,	b)	400°C	20hrs,	

c)	425°C	4hrs,	d)	425°C	20hrs,	e)	450°C	4hrs,	f)	and	450°C	20hrs	....................................................	77	

	Fig.		4.5	Layer	depths	of	two	proprietary	ASS	after	TPN	for	a)	4hrs	and	b)	20hrs	...............................	78	

Fig.		4.6	Back-scattered	electron	images	of	AG17	after	triode-plasma	nitriding	at	a)	400°C	for	4hrs,	

b)	425°C	for	4hrs,	c)	425°C	for	4hrs,	d)	400°C	for	20hrs,	e)	425°C	for	20hrs,	f)	and	450°C	for	

20hrs	......................................................................................................................................................................	79	

Fig.		4.7	Back-scattered	electron	images	of	330	after	triode-plasma	nitriding	at	a)	400°C	for	4hrs,	b)	

425°C	for	4hrs,	c)	450°C	for	4hrs,	d)	400°C	for	20hrs,	e)	425°C	for	20hrs,	f)	and	450°C	for	

20hrs	......................................................................................................................................................................	80	

Fig.		4.8	X-Ray	diffraction	patterns	of	AISI	304	before	and	after	TPN	for	20hrs	....................................	81	

Fig.		4.9	X-Ray	diffraction	patterns	of	AG17	before	and	after	TPN	for	a)	4hrs	and	b)	20hrs	..............	82	

Fig.		4.10	X-Ray	diffraction	patterns	of	330	before	and	after	TPN	for	a)	4hrs	and	b)	20hrs	..............	83	

Fig.		4.11	Lattice	parameters	of	nitrogen-expanded	austenite	(i.e.	a111	and	a200	as	determined	by	

d111	and	d200,	respectively)	from	experimental	XRD	peak	positions	...............................................	86	

Fig.		4.12	Illustration	of	electron	diffraction	features	observable	for	high	SF	density	regions	in	γN.	

Apart	from	the	forbidden	reflections	of	FCC	planes,	the	other	features	(i.e.	<111>	SFs,	

twinning	and	local	HCP	arrangement	in	γN)	are	consistent	with	those	of	mechanically	

deformed	ASS	[146]	..........................................................................................................................................	89	

Fig.		4.13	DF-TEM	images	and	selected	area	EDPs	of	AISI	304	after	plasma	nitriding	for	20hrs	at	

400°C	(a,	b,	respectively)	and	at	425°C	(c,	d,	e,	respectively)	(DF-TEM	images	were	

constructed	from	diffraction	electrons	as	indicated	in	EDPs	of	image	b,	d;	diffraction	

aperture	were	located	as	indicated	in	DF-TEM	images	of	image	a,	c)	.............................................	95	

Fig.		4.14	EDP	of	region	at	the	surface	of	AG17	after	plasma	nitriding	a)	at	400°C	for	4hrs,	b)	at	

400°C	for	20hrs,	and	c-f)	corresponding	DF-TEM	images	of	the	400°C	20hrs	nitrided	AG17	

surface	(DF-TEM	images	were	constructed	from	different	diffraction	electrons	as	indicated	in	

the	figure)	............................................................................................................................................................	96	



 xii 

Fig.		4.15	TEM	images,	EDPs	of	AG17	after	plasma	nitriding	at	425°C	for	4hrs	and	20hrs.	a-c)	BF-

TEM	image	of	425°C	4hrs	nitrided	AG17	and	corresponding	selected	area	EDPs,	d)	BF-TEM	

image	of	the	γN-AG17	in	image	a	showing	extensive	SFs,	e)	DF-TEM	image	of	425°C	20hrs	

nitrided	AG17,	f)	EDP	covering	entire	region	shown	in	image	d,	g)	Selected	area	EDP	of	the	

untransformed	γN	in	image	d	(DF-TEM	was	constructed	from	diffraction	electrons	as	

indicated	in	the	figure)	....................................................................................................................................	98	

Fig.		4.16	a)	EDP	of	expanded	austenite	generated	on	330	after	nitriding	at	400°C	20hrs,	b)	

selective	area	EDP	of	localized	lattice	distortion	from	region	shown	in	image	c,	c)	DF-TEM	

image	showing	a	shear	band,	DF-TEM	image	was	constructed	from	diffraction	electrons	as	

indicated	in	the	figure	......................................................................................................................................	99	

Fig.		4.17	BF-TEM	images,	EDPs,	and	DF-TEM	images	of	450°C	20hrs	plasma	nitrided	304	(a,	b,	c,	

respectively)	and	AG17	(d,	e,	f,	respectively).	DF-TEM	images	were	constructed	from	CrN(111)	

diffraction	electrons	.......................................................................................................................................	105	

Fig.	4.18	a)	low	magnification	BF-TEM	image	of	the	450°C	20hrs	plasma	nitrided	330,	b-c)	

corresponding	selected	area	EDPs,	d)	DF-TEM	image	of	the	grain	boundary	region,	DF-TEM	

image	was	constructed	from	CrN(111)	diffraction	electrons	as	indicated	in	figure	c	.............	106	

Fig.	4.19	BF-TEM	images	and	EDPs	of	the	450°C	20hrs	plasma	nitrided	330	extracted	via	Philips	

EM420	(a,	b,	respectively)	and	FEI	Tecnai	T20	(c,	d,	respectively)	................................................	107	

	Fig.		5.1	Vickers	surface	hardness,	HV0.025,	of	ASS	before	and	after	TPN	a)	for	4hrs	and	b)	for	20hrs

	...............................................................................................................................................................................	114	

Fig.		5.2	Transverse	BSE	images	of	a)	400C20h-304,	b)	400C20h-AG17,	and	c)	400C20h-330	.......	116	

Fig.		5.3	Light	optical	images	of	sliding	wear	tracks	on	a)	U-304,	b)	400C20h-304,	c)	U-330,	d)	

400C20h-330,	e)	U-AG17,	f)	400C20h-AG17	(a	local	region	of	image	d	is	highlighted	as	

indicated	in	figure);	Light	optical	images	of	WC-Co	ball	after	sliding	g)	against	U-304	and	h)	

400C20h-304	....................................................................................................................................................	118	

Fig.		5.4	SEM	images	of	sliding	wear	tracks	on	a1)	U-330,	b1)	400C20h-330,	c1)	U-AG17	and	d1)	

400C20h-AG17;	EDX	profiles	of	local	regions	on	wear	tracks	(covering	an	area	of	~65	μm	×	

45	μm	for	each	profile)	of	a2)	U-330,	b2)	400C20h-330,	c2)	U-AG17	and	d2)	400C20h-AG17;	

SEM	images	for	the	local	regions	and	corresponding	element	map	of	oxygen	for	U-330	(a3	

and	a4,	respectively)	and	U-AG17	(c3	and	c4,	respectively).	...........................................................	119	



 xiii 

Fig.		5.5	Friction	coefficient	curves	of	a)	U-304,	b)	400C20h-304,	c)	U-AG17,	d)	400C20h-AG17,	e)	

U-330	and	f)	400C20h-330	sliding	against	WC-Co	ball	for	500	m	...................................................	121	

	Fig.		5.6	SEM	images,	local	SEM	images	and	EDX	profiles	(corresponding	to	areas	shown	in	local	

SEM	images)	for	U-330	(a1-3,	respectively),	400C20h-330	(b1-3,	respectively),	U-AG17	(c1-3,	

respectively)	and	400C20h-AG17	(d1-3,	respectively).	For	consistency,	regions	of	interests	

were	taken	on	the	craters	generated	at	normal	load	of	0.2N	for	abrasion	distance	of	2.39m	

and	approximately	halfway	between	the	centres	and	the	edges	of	the	‘circular’	craters	

observed	under	SEM.	......................................................................................................................................	126	

Fig.		5.7	Optical	images	of	Vickers	hardness	indents	(at	0.3	kgf)	on	a)	U-304,	b)	400C20h-304,	c)	

400C20h-AG17,	and	d)	400C20h-330	.......................................................................................................	130	

Fig.		5.8	OCP	curves	of	samples	in	3.5	wt.%	NaCl	............................................................................................	131	

Fig.	5.9	Potentiodynamic	polarisation	curves	of	a)	AISI	304,	b)	Staballoy	AG17®,	and	c)	RA330®	

before	and	after	TPN	at	400°C	and	450°C	for	20hrs	............................................................................	133	

Fig.		5.10	OM	showing	features	in	the	corrosion	sites	on	untreated	and	400°C	treated	surfaces	for	a,	

b)	AISI	304;	c,	d)	Staballoy	AG17®;	and	e,	f)	RA330®	(the	local	features	are	also	highlighted	

under	dark-field	optical	illumination	at	the	left	corner	of	image	b,	d,	f)	.....................................	136	

Fig.		6.1	Optical	micrographs	of	Invar	36®	after	TPN	at	a)	400°C	4hrs,	b)	400°C	20hrs,	c)	425°C	

4hrs,	d)	425°C	20hrs,	e)	450°C	4hrs,	and	f)	450°C	20hrs	...................................................................	144	

Fig.		6.2	Cross-sectional	BSE	images	of	Invar	36®	after	plasma	nitriding	at	a)	400°C	4hrs,	b)	425°C	

4hrs,	c)	450°C	4hrs,	d)	400°C	20hrs,	e)	425°C	20hrs,	f-g)	450°C	20hrs.	Image	a-f	were	taken	at	

same	magnification	(with	scale	bar	shown	in	image	d)	for	comparison	reason,	and	image	g	

was	taken	at	a	much	lower	magnification	to	show	a	larger	cross-sectional	surface	area	of	this	

sample	.................................................................................................................................................................	147	

Fig.		6.3	GAXRD	profiles	of	Invar	36®	a)	after	nitriding	at	all	treatment	conditions,	and	b)	

400C20h-Invar	and	450C20h-Invar	after	successive	layer	removal	(for	~3/5/10/20/30	μm,	

measured	using	a	micrometer)	by	grinding	the	treated	surfaces	using	P1200	SiC	paper;	γ’	–	

iron	nickel	nitride,	γ(N)	–	isotropically	expanded	nitrogen	solid	solution,	γ	–	substrate	or	

unexpanded	austenite	...................................................................................................................................	149	

Fig.		6.4	TEM	images	of	400C20h-Invar.	a)	Low	magnification	BF-TEM	image;	b-c)	selective	area	

EDPs	from	regions	as	indicated	in	figure	a;	d)	DF-TEM	image	constructed	with	electrons	



 xiv 

indicated	in	figure	b;	e-f)	EDPs	of	the	surface	γ’-containing	region	and	the	underlying	core,	

respectively,	at	another	zone	axis	.............................................................................................................	152	

Fig.		6.5	TEM	images	of	450C20h-Invar.	a)	Low	magnification	BF-TEM	image;	b-d)	selective	area	

EDPs	from	regions	as	indicated	in	figure	a	.............................................................................................	153	

Fig.		6.6	TEM	images	of	450C20h-Invar.	a)	Low	magnification	BF-TEM	image;	b-d)	selective	area	

EDPs	from	regions	as	indicated	in	figure	a	.............................................................................................	154	

Fig.		6.7	Theta-2theta	XRD	profiles	of	a)	Invar	36®	and	b)	RA	330®	before	and	after	TPN,	both	

Invar	and	RA	330®	are	nitrided	at	equivalent	conditions	at	400°C	20hrs	and	450°C	20hrs;	γN	

–	anisotropic	nitrogen-expanded	austenite,	γ’	–	iron	nickel	nitride,	γ(N)	–	isotropically	

expanded	nitrogen	solid	solution,	γ	–	substrate	or	unexpanded	austenite	................................	156	

Fig.		6.8	Lattice	parameters	as	determined	from	the	FCC(111)	and	FCC(200)	XRD	peak	positions	of	

untreated	and	nitrided	Invar,	as	compared	to	those	of	γN-330	on	400C20h-330	(as	

highlighted	in	orange	dashed	box)	and	γ’	from	PDF	card	00-060-0479	(as	shown	in	green	

dashed	line)	.......................................................................................................................................................	157	

Fig.		6.9	Cross-sectional	nanoindentation	profiles	of	a)	Invar	36®	and	b)	RA	330®	after	plasma	

nitriding	at	400°C	and	450°C	for	20hrs	(error	bars	−	±	95%	confidence	interval	at	each	depth	

level)	....................................................................................................................................................................	162	

Fig.		6.10	Optical	micrographs	of	a)	300C4h-Had,	b)	300C8h-Had,	c)	300C12h-Had	and	d)	300C20h-

Had	.......................................................................................................................................................................	166	

Fig.		6.11	Transverse	BSE	images	of	a)	300C4h-Had,	b)	300C8h-Had,	c)	300C12h-Had	and	d)	

300C20h-Had	....................................................................................................................................................	167	

	Fig.		6.12	Transverse	BSE	micrographs	of	300C20h-Had	in	detail	...........................................................	168	

Fig.	6.13	X-ray	diffractograms	of	Hadfield	steel	before	and	after	TPN	a)	under	Bragg-Brentano	θ-

2θ	geometry,	and	b)	Seeman-Bohlin	geometry	(at	2°	glancing	angle)	..........................................	169	

Fig.		6.14	GAXRD	of	300C4h-Had	and	300C20h-Had	as	nitrided,	after	polishing	and	after	grinding	

(~10	μm	surface	layer	removal)	.................................................................................................................	170	

Fig.		6.15	OM	images	showing	core	microstructures	of	a)	U-Had	and	b)	300C20h-Had	(etched	with	

2%	Nital);	c)	θ-2θ	XRD	profiles	of	core	of	Hadfield	steels	(at	depths	of	~200	μm	after	grinding)

	...............................................................................................................................................................................	172	



 xv 

Fig.		6.16	Cross-sectional	nanoindentation	hardness	profiles	(at	5000	μN)	of	untreated	and	

nitrided	Hadfield	steels	.................................................................................................................................	173	

 

  



 xvi 

List of Tables  

Table	2.1	Pressure	units	at	atmospheric	pressure	..........................................................................................	13	

Table	2.2	Equilibrium	gaseous	state	of	nitrogen	in	a	1	m3	chamber	.........................................................	14	

Table	2.1	Nominal	material	compositions,	in	wt.%	.........................................................................................	52	

Table	2.2	Sample	designation	system	...................................................................................................................	53	

Table	2.3	Material	compositions,	compositions	were	normalised	in	wt.%	.............................................	59	

Table	2.4	X-Ray	attenuation	depths	in	materials	(95%	of	X-ray	signal)	..................................................	61	

Table	4.1	Surface	nitrogen	content	(at.%)	of	304,	AG17	and	330	after	TPN	...........................................	72	

Table	4.2	Lattice	constants	of	nitrogen-expanded	austenite,	measured	from	i)	experimental	X-ray	

peak	positions	of	γN(111)	and	γN(200),	and	ii)	from	experimental	diffraction	spacings	of	

γN(111)	and	γN(200)	diffraction	spots	in	EDPs	(at	<110>γN	zone	axis)	extracted	under	TEM,	

using	U-330	TEM	sample	for	calibration	...................................................................................................	87	

Table	5.1	Surface	hardness,	HV0.025	.................................................................................................................	113	

Table	5.2	Wear	rates	and	depths	of	the	untreated	and	the	400°C	and	20hrs	nitrided	ASS	after	(dry)	

sliding	against	WC-Co	ball	at	9.8	N	for	500	m	........................................................................................	117	

Table	5.3	Abrasion	wear	rates	and	crater	depths	at	selected	abrasion	parameters	for	the	

untreated	and	the	400°C	20hrs	nitrided	samples	................................................................................	123	

Table	5.4	OCP,	Tafel	potential	and	current	of	tested	samples	....................................................................	132	

Table	6.1	Surface	nitrogen	content	(at.%)	of	Invar	and	330	after	TPN	...................................................	142	

Table	6.2	Surface	Vikers	hardness,	HV0.025	.......................................................................................................	143	

Table	6.3	Surface	nitrogen	content	(at.%)	and	Vickers	hardness	(HV0.025)	for	Hadfield	steel	after	

TPN	.......................................................................................................................................................................	165	

 

 



 1 

1 Introduction 

After the pioneering work by Adolph Machlet and Dr. Adolf Fry in the early 20th century [1, 

2], nitriding techniques have been developed for various metallic materials, providing 

beneficial enhancements in material mechanical/tribological performance after treatment. The 

interaction of nitrogen with different alloy compositions after nitriding has been investigated 

as early as in 1921, when Fry [2] indicated a “special increase of hardness” of alloyed steels 

(i.e. with additions of Al, Cr, Mn and Si to a few weight percent) after gaseous nitriding − 

and led to the development of a specific group of low alloy nitriding steels (i.e. ‘Nitralloy’) 

for Krupp Steel [3]. The presence of nitride-forming elements such as Cr, Ti, V, Al and Zr in 

steel accelerates the interstitial diffusion of N and leads to formation of hard nitrides.  

 

Austenitic stainless steel (ASS), as the most commonly used group of stainless steels 

nowadays, is undoubtedly an important material class.  However, the low hardness and poor 

wear performance of ASS [4] limits their tribological applications. Nitriding of ASS has been 

investigated as a potential solution to improve material surface hardness and wear 

performance. However, nitriding processes that were carried out at conventional treatment 

temperatures (e.g. plasma nitriding at ~570°C [5], above ~500°C [6] and gaseous nitriding at 

~585°C [7]) resulted in formation of chromium nitride precipitates on the ASS surfaces being 

treated, which degraded material corrosion performance and limited the application of this 

technique on stainless steels. Nevertheless, from the mid-1980s, an intriguing ‘new’ surface 

structure was identified at the surface of ASS after plasma nitriding at ~400°C, providing 

good surface wear performance without the loss of corrosion resistance [5, 8]. At low 

treatment temperatures, the parent austenitic lattice is able to accommodate enormous 

amounts of interstitial nitrogen without the formation of chromium nitrides (and therefore no 

localised Cr depletion that could damage the corrosion resistance).  
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This interstitially supersaturated structure is now commonly referred to as ‘expanded 

austenite’ [9], which describes a metastable, anisotropically expanded FCC austenite − 

generated under ‘paraequilibrium’ conditions − at low temperatures and (typically) over long 

timescales far from thermodynamic equilibrium. This surface structure was also evident on 

ASS after carburising, nitrocarburising and carbonitriding at low treatment temperatures [10]. 

Fundamentally, the FCC lattice expands in accordance with extreme supersaturation of 

interstitial elements, where their reported ‘paraequilibium’ solubility after thermochemical 

treatments was extremely high (i.e. colossal amount) as compared to their equilibrium 

solubility in ASS (e.g. up to ~19 at.% C [11] or ~38 at.% N [12] at paraequilibrium after 

carburising or nitriding, respectively, compared to < 0.015 at.% C [13] and <0.65 at.% N [10] 

at thermodynamic equilibrium in AISI 316 type ASS). Under paraequilibium conditions, 

there is no phase transformation of the modified (anisotropically expanded) austenitic lattice 

[10, 14, 15]; nevertheless, phase decomposition occurs eventually with chromium 

nitride/carbide formation, either after prolonged treatment or at elevated temperature, which 

leads to Cr-depletion adjacent to the grain boundaries − and thereby deteriorates alloy 

corrosion resistance [16-19].   

 

1.1 Research objectives strategy 

As will be described later in a literature review of expanded austenite (Section 2.3, Chapter 

3), AISI 304 (i.e. Fe-18Cr-8Ni, in wt.%) and AISI 316 (i.e. Fe-18Cr-11Ni-3Mo, in wt.%) 

ASS were investigated extensively after low-temperature thermochemical diffusion treatment 

such as nitriding. Given the colossal interstitial content in expanded austenite and the low 

equilibrium solubility of interstitial elements (e.g. C and N) in commercial ASS, the pre-

existing interstitial content in the unmodified stainless steel substrates should have limited 

influences on determining the interstitial-introduced lattice expansion and decomposition 
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during low-temperature thermochemical diffusion treatments. However, considering the large 

atomic percentage of substitutional elements in the FCC lattice, substitutional alloying 

elements (such as Cr, Mn and Ni) in ASS should be able to influence the formation, structure 

and decomposition of expanded austenite synthesised after low temperature thermochemical 

diffusion treatments.  

 

Whereas (historically) significant effort has been expended in designing “nitridable” ferritic 

alloys for commercial applications, little or no effort has been made to develop analogous 

austenitic grades amendable to low-temperature plasma diffusion treatment − due in no small 

part to the sheer complexity of the chemical composition-dependent issues which the 

metallurgical behaviour of an elastically anisotropic parent lattice (with strong composition-

dependent strain behaviour and lattice instability) introduces. This study takes several 

tentative steps towards improved material selection criteria − and a basic design methodology 

− for developing improved ‘nitridable’ austenitic engineering alloys for specific applications, 

as follows:  

 

i) The role of substitutional Ni or Mn on lattice expansion and decomposition of ASS 

upon nitrogen diffusion treatments 

ii) The material performance of ASS after nitriding treatments 

iii) The role of Cr on the formation of expanded austenite and structure-property 

evolution of austenitic steels after low temperature nitriding  

 

Five commercial austenitic steels were selected with respect to their Cr, Mn and Ni content as 

shown in Fig. 1.1. To elucidate the role of Cr and Mn/Ni on the formation of expanded 

austenite, alloy compositions could be divided into two groups for comparison, as highlighted 
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in Fig. 1.1, i.e. i) ASS having similar level of Cr (17-19 wt.%) but different Ni/Mn content, 

and ii) austenitic steels having similar content of Ni (~35-36 wt.%) with/without Cr. 

Additionally, an austenitic manganese steel (Hadfield steel) was also selected to explore the 

possibility of γN formation in high-Mn steel after low temperature nitriding. 

 

Fig. 1.1 Illustration of material selection criteria based on Cr, Ni and Mn content 

 

The selected steels were all plasma nitrided at low ion energy (and near mono-energetic at 

~200 eV) under a low-pressure triode-plasma configuration [20-23]. Enabled with an 

additional electron emitter, cathode current density was deliberately controlled and kept 

nearly constant at a rather low value for the nitriding processes at temperatures from 400 to 

450°C. Under the deliberately controlled low cathode current density, plasma heating alone 

was insufficient to achieve and maintain the selected treatment temperatures (at 400-450°C), 

in which case auxiliary radiant heating was used together with plasma heating. Noticeably, 

the nitriding unit used was fully capably to achieve treatment temperatures above 450°C 
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using plasma heating alone, the auxiliary radiant heating used was for comparison reasons 

(rather than achieving the best process efficiency), in which case the material surface 

nitrogen absorption and crystal structure evolution under TPN was mainly as a result of the 

different treatment temperatures and times employed, rather than a result from different 

plasma current densities. Differently, during nitriding processes at a rather low treatment 

temperature of 300°C (for Hadfield steel), plasma heating was used (without radiant heating) 

to achieve maximum ion bombardment under the selected low treatment temperature. After 

the inward diffusion of nitrogen at these selected treatment temperatures for 4-20hrs, the 

surface crystallographic structure, hardness and the performances were investigated.  

 

1.2 Thesis structure  

After this introduction, Chapter 2 provides background information of this study, covering 

nitriding techniques, Fe-N phase diagram and a literature review of expanded austenite. 

Experimental procedures are given in Chapter 3. Experimental results are presented and 

discussed in Chapter 4-6. Conclusions and recommendations for studies in the future are 

drawn at the end of this thesis.  

 

Chapter 4 presents a study mainly on the crystal structure of a high-Mn and a high-Ni ASS 

(i.e. Fe-17Cr-20Mn-0.5N and Fe-19Cr-35Ni, respectively, in wt.%) after TPN at 400-450°C 

for 4hrs and 20hrs. For comparison, AISI 304 ASS was also investigated after TPN at 

selected equivalent conditions. Both lattice supersaturation and decomposition are achieved 

and investigated. The crystallographic structure of the surface layers generated within the 

selected temperature/time envelope is discussed mainly with XRD and TEM observations.  
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After the investigations on the crystallographic structure of three ASS under TPN in Chapter 

4, Chapter 5 discusses material performance before and after treatment. The wear 

performance of untreated and 400°C 20hrs nitrided ASS (i.e. without nitride formation) are 

investigated under sliding/abrasion wear conditions. The corrosion performance of ASS is 

investigated before TPN, after TPN at 400°C for 20hrs and after TPN at 450°C for 20hrs (i.e. 

polished untreated samples, CrN-free nitrided samples and CrN-containing nitrided samples, 

respectively).  

 

Chapter 6 includes studies on two Cr-free austenitic steels after TPN, attempting to explore 

the possibility of nitrogen-supersaturation in high-Ni and high-Mn steels. This chapter 

focuses on the structure of the treated surface, where no evidence in the formation of γN was 

observed. The wear and corrosion performance of treated surfaces were not investigated, 

since the scope of this study was typically on nitrogen-expanded austenite. In the first part of 

this chapter, high-Ni Invar alloy (i.e. Fe-35Ni, in wt.%) is compared to high-Ni alloy 330 

ASS (i.e. Fe-19Cr-35Ni, in wt.%) after TPN at 400-450°C. The role of Cr in the surface 

structures formed after nitriding is discussed with the XRD and TEM analysis and material 

hardness-depth profiles. In the second part of this chapter, plasma nitrided Hadfield steel (Fe-

13Mn-1.2C, in wt.%) samples are investigated via XRD and indentation hardness 

measurements.  
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2 Background 

Nitriding, as a thermochemical diffusion treatment developed initially for alloy steels, 

involves i) heat-treating of materials in nitrogen-bearing media (Section 2.1) and ii) diffusion 

and absorption of nitrogen at the material surface that leads to metallurgical phase 

transformations (Section 2.2). Nitrogen-expanded austenite, as an ‘unusual’ crystallographic 

structure obtained under nitrogen-supersaturation at low treatment temperatures, was first 

identified on ASS after low-temperature plasma nitriding from the 1980s [5, 8] and has been 

the subject of extensive research interest since then. A literature review on expanded 

austenite is given in Section 2.3.  

 

2.1 Nitriding techniques 

This section covers nitriding techniques, including brief introductions on nitriding techniques 

with respect to different nitrogen-bearing media (Section 2.1.1), some physics background 

for vacuum direct current (DC) glow discharge plasma (Section 2.2.2), and discussions of the 

triode-plasma nitriding (hot-filament electron-emission intensified plasma) technique adopted 

in this study (Section 2.1.3).  

 

2.1.1 Three main nitriding techniques 

2.1.1.1 Gaseous nitriding 

The development of the nitriding process can be traced back to the early 1900s, when Adolph 

Machlet (U.S) in 1907 firstly developed and patented a gaseous nitriding process (using 

ammonia and hydrogen) on red-hot plain iron and low carbon steel, which generated a hard 

rust-preventing “silvery casing” [1]. In 1921, Dr. Adolf Fry (Germany) patented a surface 

hardening technique applied at approximately 580°C using a flow of ammonia for steel alloys 

[2]. During gaseous nitriding, materials are heated in a retort under a flow of nitrogen-bearing 
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gas (usually a gas mixture of ammonia and hydrogen). At elevated temperature, thermally 

catalytic dissociation of ammonia occurs as follows [3, 24, 25]: 

2𝑁𝐻!  ↔  𝑁! + 3𝐻! 

Nascent nitrogen is released through a gas-solid reaction at the metallic workpiece surface 

[25]: 

1
2𝑁!  ⇆  𝑁 

A key gaseous nitriding process parameter – the so-called nitriding potential, 𝑟N (bar-1/2) − 

describes the ‘nitridability’ of the gaseous atmosphere, as determined by following equation 

[3, 24, 25]:  

𝑟! =
𝑝𝑁𝐻!
𝑝! !𝐻!

 

where 𝑝𝑁𝐻! is the partial pressure of ammonia (bar) and 𝑝! !𝐻! is the partial pressure of 

hydrogen (bar3/2). Via altering gas compositions and total pressure at constant treatment 

temperature, different nitrogen supply rates (to workpiece surfaces) could be achieved (see 

Ref. [25] for details of the gaseous process). It was therefore argued that, unlike liquid and 

ion nitriding, gaseous nitriding offers good control of layer composition and microstructure 

[25].  

 

2.1.1.2 Liquid nitriding/nitrocarburising 

Compared to gas-solid reactions, the liquid-solid reaction was thought to offer more uniform 

chemical exchange at the workpiece surface and led to research on liquid nitriding shortly 

after the invention of gaseous nitriding [3]. A process named Tufftride was introduced and 

gained popularity from the 1950s [3]. Workpieces are usually immersed in a hot bath of 

molten salts. Compared to gaseous or ion nitriding, liquid nitriding has several advantages, i). 

low cost in operation and maintenance, ii). easiness of operation, and iii). less spacious 
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equipment [3]. Nevertheless, the cyanides used during the process impose operational and 

disposal hazards [3, 26, 27]. Wastewater (i.e. predominantly iron cyanide complexes) from 

liquid nitriding processes needed to be neutralised to reduce pollution and meet 

environmental regulations, which increased the total cost and limited the application of liquid 

nitriding techniques.  

 

Nevertheless, cyanide-free liquid nitriding was developed and widely used in industries [27], 

such as the Melonite® process. This process, which was first patented in 1977, enabled liquid 

nitriding using salt compositions of cyanates and carbonates [28]. Both Tufftride® and 

Melonite® are currently registered trademarks of Durferrit GmbH and widely used in heat 

treatment and surface engineering industries. Noticeably, both Tufftride® and Melonite® 

process are nitrocarburising treatments, where both nitrogen and carbon are released in the 

liquid salt bath medium and diffuse into the immersed workpiece. In a modern system (e.g. 

Melonite® Process), the molten salt can be aerated and a catalytic reaction occurs to release 

nascent nitrogen and carbon monoxide, as shown in following reactions [24]:   

2𝑁𝐶𝑂! +  𝑂! → 𝐶𝑂!!! + 𝐶𝑂 + 2𝑁 

3𝑁𝐶𝑂! → 𝐶𝑂!!! + 𝐶𝑁! + 2𝑁 + 𝐶 

4𝑁𝐶𝑂! → 𝐶𝑂!!! + 𝐶𝑂 + 2𝐶𝑁! + 2𝑁 

 

2.1.1.3 Plasma nitriding 

Plasma nitriding was first investigated by Wehnheldt [29], but the first plasma nitriding 

process was developed and patented by Dr. Bernhard Berghaus in the 1930s as an alternative 

to gaseous nitriding [30, 31]. The workpiece is usually biased negatively in a gas mixture of 

nitrogen (or ammonia) and argon (or hydrogen). The working chamber is normally evacuated 

to low pressure (e.g. ~500 Pa) and gaseous molecules are ionised [3]. Ions are driven towards 
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workpiece surface under an applied electrical potential. Further discussions will be given in 

Section 2.1.2 and Section 2.1.3. Plasma-based techniques enable nitriding using inert 

nitrogen-bearing media (such as nitrogen, argon or hydrogen) rather than the more 

chemically reactive ones (such as ammonia and cyanide), which dramatically reduces process 

hazards [3, 29]. Most of the current plasma nitriding equipment offers computer 

monitoring/control, which leads to good treatment quality and reproducibility. The operation 

cost is much lower due to small gas and energy consumption [3, 29]. However, plasma 

nitriding techniques require large initial capital for equipment in association with vacuum 

system and plasma generation, monitoring and control [24].  

 

2.1.2 Vacuum and glow-discharge plasma 

Plasma, as the fourth state of matter (after solid, liquid and gas) was firstly identified as 

‘radiant matter’ by William Crookes in 1879 and named as ‘plasma’ by Irvine Langmuir in 

1923 [32]. Essentially, plasma is (partially) ionised gas − a mixture of randomly moving 

electrons, ions and neutrals (and photons, X-ray…) − which is electrically neutral as a whole 

but highly conductive [33-35]. A plasma state requires charge separation, which could be 

achieved simply by thermally heating substances to several thousands of Kelvin (e.g. ~4000 

K for cesium) as shown in Fig. 2.1, but it is impractical to generate plasma simply by heating 

since not many solid materials could withstand such high temperatures [34, 35]. One simple 

way of generating plasma is via application of DC potential between two metallic plates in 

vacuum (i.e. a low pressure gas), which could be referred to as cold plasma [32-36]. In 

Section 2.1.2.1, several concepts and terms in kinetic theory of gas are introduced to depict 

the equilibrium gaseous condition. Then, in Section 2.1.2.2, the physics for plasma 

generation is introduced.  
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Fig.  2.1 State of matter as a function of temperature (reproduced from Ref. [34]) 

 

2.1.2.1 Vacuum and kinetic theories of gas 

Several gaseous terms will be introduced, including the number of molecules (N), kinetic 

energy of each molecule (KE), molecular speeds (µ and µRMS), thermal impingement rate of 

molecules onto heterogeneous surfaces (Φ), mean free path (λ) and collision frequency (υ). 

These terms are commented on and calculated with respect to variations in pressure and/or 

temperature, as tabulated in Table 2.2. 
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Consider an isolated chamber of volume, V (m3), filled with gas at a temperature, T (K), the 

gas inside could be observed as a group of randomly moving molecules, which exert a net 

pressure, P (Pa), on the interior walls of chamber. Assuming the internal energy of a gas is 

composed of kinetic energy, the ideal gas law applies as follows:   

𝑷𝑽 = 𝑵𝒌𝑩𝑻       Equation 2.1 

where kB is Boltzmann constant (i.e. ~1.38×10-23 kg m2/s2 K), T is temperature (K), and N is 

number of molecules. The speed of molecules in gas could be described by the Maxwell-

Boltzmann distribution [37-39]. The mean kinetic energy per molecules, KE (J), is a function 

of temperature:   

𝑲𝑬 = 𝟑
𝟐
𝒌𝑩𝑻     Equation 2.2 

Assuming a particle of mass, m (kg), its average speed, µ (m/s), and root mean square speed, 

µRMS (m/s), could be derived as a function of temperature and mass as follows:  

𝝁 = 𝟖𝒌𝑩𝑻
𝒎𝝅

      and    𝝁𝑹𝑴𝑺 =
𝟑𝒌𝑩𝑻
𝒎

   Equation 2.3 

Using the average speed of µ, the impingement rate of gaseous molecules onto a solid surface, 

Φ (molecules/m2 s), could be derived [40]: 

𝚽 = 𝑷
𝟐𝝅𝒎𝒌𝑩𝑻

      Equation 2.4 

The above equations facilitate numerical descriptions of the equilibrium gaseous state in a 

vacuum chamber before/during TPN. If this chamber is 1 m3 and is filled with gaseous 

nitrogen at 101 kPa (atmospheric pressure) and 300 K (room temperature), there are 2.4×1025 

nitrogen molecules in the chamber and each molecule has a kinetic energy of 6.2×10-21 J (i.e. 

~0.04 eV). Taking the atomic mass of N as 14 g/mol (so m = 4.65×10-26 kg for N2), the mean 

and root mean square speed of N2 molecule are ~416 m/s and ~517 m/s, respectively. Every 
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second inside this chamber, each face of the interior wall (in a cubic chamber of 1 m3) is 

bombarded with ~2.9×1027 nitrogen molecules. 

 

If this isolated chamber is now connected to a working vacuum pump, practically it would 

reach a pressure lower than atmospheric pressure of 101 kPa. This state is referred to as 

vacuum. Other non-SI units might be used, as shown at atmospheric pressure in Table 2.1. If 

pressure drops to 0.4 Pa at room temperature, the number of N2 molecules reduces to 

~9.7×1019, whilst the energy and speeds of the molecules remain unchanged.  

 

Table 2.1 Pressure units at atmospheric pressure 

Atmospheres Pascal Torr Bar Pound/square inch 

1 atm 101325 Pa 760 Torr (mmHg) 1.01325 bar 14.6959 psi 

 

Since the total number of molecules decreases, each molecule in chamber has more space to 

move around. The molecular interactions need more comments here. Gaseous molecules 

collide elastically with each other that direction of motion changes randomly with a ‘zigzag’ 

shape [34, 35]. The probability of a collision is referred to as the collision cross-section, σ (m-

2). Collision mean free path, λ (m), could be defined as the average distance that a molecule is 

able to travel without collision [41]. The mean free path of monomolecular N2 in the vacuum 

chamber could be describe using the following equation [34]:  

𝝀 = 𝟏
𝒏𝝈
= 𝒌𝑩𝑻

𝟐𝝅𝑷𝒅𝟐
    Equation 2.5 

where n is the number density of particles (m-3), 𝜎 is the collision cross-section (m2), and d is 

the diameter of molecule (m). The collision frequency of molecules, υ (s-1), could be obtained 

from average speed and mean free path [34]:  



 14 

𝝊 = 𝝁
𝝀
          Equation 2.6 

Therefore, when pressure decreases from 101325 Pa to 0.4 Pa, taking 375 pm as diameter of 

N2 molecule [42], mean free path increases dramatically from ~65.4 nm to ~16.6 mm and 

collision frequency reduces from ~7.3×109 s-1 to ~2.5×104 s-1.  

 

Furthermore, if the temperature rises to 700 K (and assuming that the chamber pressure 

remains at 0.4 Pa), the gaseous condition could be predicted similarly with above equations, 

with calculated values tabulated in Table 2.2.  

 

Table 2.2 Equilibrium gaseous state of nitrogen in a 1 m3 chamber  

Temperature 

and pressure 
N KE, eV µ, m/s µRMS, m/s Φ, m-2s-1 λ, mm υ, s-1 

101 kPa, 300 K 2.4×1025 0.04 476 517 2.9×1027 0.065 7.3×109 

0.4 Pa, 300 K 9.7×1019 0.04 476 517 1.1×1022 16.6 2.9×104 

0.4 Pa, 700 K 4.1×1019 0.09 727 789 7.5×1021 38.7 1.9×104 

 

In case of gas mixture (e.g. N2:Ar ratio at 7:3) used, owing to Penning effect (viz. increase in 

effective ionisation rate or decrease in breakdown voltage of gas due to presence of a small 

number of foreign atoms), during plasma nitriding, Dalton’s Law applies: 

𝑃 = 𝑃! + 𝑃! = 𝑁!𝑘!𝑇 + 𝑁!𝑘!𝑇 

where N1, N2 are the numbers of each molecule and P1, P2 are the partial pressures for each 

type of molecule. Thus, there were ~2.9×1019 N2 molecules and ~1.2×1019 Ar molecules at 

0.4 Pa 700 K. For such binary gas mixture, the following equation could be used to determine 

mean free path [43]: 
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𝝀𝟏 =
𝟏

𝝅(𝒅𝟏/𝟐!𝒅𝟐/𝟐)𝟐𝑵𝟐

𝑴𝟐
𝑴𝟏!𝑴𝟐

    and   𝝀𝟐 =
𝟏

𝝅(𝒅𝟏/𝟐!𝒅𝟐/𝟐)𝟐𝑵𝟏

𝑴𝟏
𝑴𝟏!𝑴𝟐

       Equation 2.7 

where 𝜆! (m) and 𝜆! (m) are mean free path for each molecules; 𝑑! (m) and 𝑑! (m) are 

diameter of each molecules; 𝑀! (kg) and 𝑀! (kg) are molar weight of each molecules; 𝑁! and 

𝑁! are the number of each molecules. Taking ~342 pm and  ~375 pm as the molecular 

diameter of Ar and N2 [42], Mean free path of Ar and N2 in a 7:3 volumetric ratio at 0.4 Pa, 

700 K could be estimated as ~38.2 mm and ~13.7 mm, respectively.  

 

2.1.2.2 DC glow discharge plasma 

As elucidated in the section above, the impingement rate of neutral (onto workpiece surface) 

is enormous even in vacuum (e.g. ~7.5×1021 m-2s-1 for pure nitrogen gas at 0.4 Pa, 700 K). 

However, the thermal energies carried by neutrals (e.g. ~0.09 eV at 700 K), which are 

negligible compared to ion energy during plasma nitriding (e.g. ~200 eV during TPN), are 

insufficient for nitriding process. In a typical ‘diode’ DC plasma configuration, workpiece is 

biased negatively at (normally) >1 kV. This applied potential in conventional DC plasma is 

essential for plasma generation.  

 

Consider two parallel metallic plates (with flat face facing each other) inside the 

abovementioned vacuum chamber, plasma could be generated via applying direct current 

potentials between two plates (electrodes), which is normally referred to as DC plasma and 

exhibit characteristics as shown in Fig. 2.2. Positively charged nitrogenous ions are driven to 

cathode and electrons to anode. With respect to current densities and potentials between two 

electrodes, Fig. 2.2 could be divided into dark current region (i.e. before D), glow discharge 

region (i.e. D to G) and arc discharge (i.e. after G).  
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Fig.  2.2 Inter-electrode current verses inter-electrode potential for DC discharge 

(reproduced from Ref. [34]) 

 

If the potential between plates (i.e. inter-electrode potential) is increased slowly from zero, 

there will initially be a very small inter-electrode current, which will soon reach saturation at 

isat. In this stage, the small current corresponds to the migration of the small number of charge 

carriers, which are generated under background radiation (e.g. cosmic radiation, natural 

radioactivity and ultraviolet radiation) [34]. The applied potential is insufficient for ionisation. 

If potential is further increased (beyond point B, Fig. 2.2), electrons start to gain energy to 

interact with neutrals through inelastic collision. Neutrals are ionised liberating extra 

electrons, which in turn ionise neutrals under the applied electric field, releasing more 

electrons (i.e. multiplication of electrons) that leads to exponential increase of current.  
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Under excitation collision beyond breakdown voltage (at point D in Fig. 2.2), plasma 

becomes luminous. Ions start to strike rapidly (and glow) at small regions of cathode surface 

[34]. The conductivity of gas between two electrodes increases rapidly so that the inter-

electrode voltage drops with the increase of current. The ionised gas becomes “negatively 

resistant”, as compared to the external circuit of power supply. The strikes of energetic ions 

onto cathode (e.g. workpiece) lead to emission of secondary electrons from cathode surface 

[34], which are repelled from cathode to plasma – contributing to further ionisation in plasma 

and secondary electron emission at cathode surface. Eventually, plasma becomes self-

sustaining at a voltage of Vg (point E, Fig. 2.2), which is lower than the breakdown voltage. 

The glow area at cathode surface enlarges with the increase of total applied electrical power 

until it covers entire cathode (at point F, Fig. 2.2). In the abnormal glow region beyond point 

F, ionic bombardment occurs over the entire cathode surface, where inter-electrode current 

increases with inter-electrode voltage. Glow-discharge plasma nitriding is carried out in this 

region. Additionally, glow discharge transits to arc discharge at the upper end of abnormal 

glow region, where the cathode carries very high current densities and is heated up 

consequently to temperatures sufficiently high for thermionic electron emission [34]. Inter-

electrode voltage decreases further with increase of current in this region. 

 

2.1.3 Triode plasma fundamentals and configurations  

In a conventional DC plasma, the workpiece is usually biased negatively at ≥1 kV in a 0.1-1 

kPa chamber (cathode), where the chamber wall is coupled to earth (anode). Different to 

conventional diode DC plasma, triode plasma involves an extra independent (thermionic) 

electron emission system, which is a self-circuited and biased (hot) tungsten filament. As will 

be shown in the following discussions, the ionic bombardment becomes more “efficient” in 

triode plasma, as compared to the conventional DC plasma.  
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2.1.3.1 Cathode sheath  

Due to the difference in mass and size between electrons and ions (i.e. me << mion, m denotes 

mass; and de << dion, d denotes size), electrons travel faster than ions in plasma. Plasma itself 

is electrically neutral (i.e. Ne = Nion, N denotes number of species) that there are equal 

number of electrons and ions in plasma. Consider a metallic solid surface exposed to plasma; 

the solid surface receive more electrons than ions in a unit time, which consequently possess 

a floating potential of 𝑉! (V) that is relatively negative to the plasma potential of 𝑉! (V). 

There naturally forms a sheath, across which cations are accelerated (and electrons flux is 

reduced), above the solid surface in plasma. The sheath potential is given by [34]: 

𝑽𝒑 − 𝑽𝒇 =
𝒌𝑩𝑻
𝟐𝒆
𝐥𝐧 𝒎𝒊𝑻𝒆

𝒎𝒆𝑻𝒊
    Equation 2.8 

where Te (K) and Ti  (K) are temperature of electron and ion, respectively; me (kg) and mi (kg) 

are mass of electron and ion, respectively; e is electronic charge (i.e. 1.6 × 10-19 C). Such 

sheath still exists on top of cathode and anode during nitriding process. If anode (e.g. 

chamber wall) is grounded (i.e. Vanode = 𝑉! = 0 V), 𝑉! can be estimated using Eq. 2.8 (e.g. 0-

10V for DC argon discharge [44]). Considering the several hundreds of Volts applied on the 

cathode during nitriding, 𝑉!  appears negligible and the cathode potential, 𝑉!  (V), can be 

considered equivalent to the applied bias potential.  

 

If one assumes an ion being accelerated with zero initial energy from the plasma side of the 

cathode sheath towards the cathode, the cathode sheath thickness, 𝐿 (m), could be evaluated 

from the Child-Langmuir equation of cathode free-fall [20, 45, 46]: 

𝑳 = 𝟒𝜺𝟎
𝟗𝑱

𝟏/𝟐 𝟐𝒒
𝒎𝒊𝒐𝒏

𝟏/𝟒
𝑽𝒄𝟑/𝟒      Equation 2.9 

where ε0 is permittivity of free space (i.e. ~8.85×10-12 s4 A2/m3 kg); J is current density 

(A/m2); q (A/s) is the ionic charge; mion (kg) is the ion mass. This equation also assumes, i) 
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one flat cathode surface with an infinite exposure area in plasma, and ii) one type of cation in 

plasma [44].  

 

2.1.3.2 Energy distribution of ions  

In the cathode sheath, ions inevitably collide with neutrals, for example, through symmetrical 

charge exchange collision [47], 𝑀!
!"#$ +  𝑀!"#$ → 𝑀!"#$ +𝑀!

!"#$. The kinetic energy of 

ions (given under the applied potential) is consumed via collision with neutrals on their path 

towards the cathode. The energy distribution of incident ions is associated with such 

collisions between ions and neutrals in cathode sheath. The relative energy distribution of 

incident ions could be estimated by Rickard’s modification of the Davis and Vanderslice 

equation [47, 48]:  

𝒅𝑵
𝒅𝑬
= 𝑵𝟎

𝒎𝒇
 𝑳
𝝀𝒄
(𝟏− 𝑬) 𝟏/𝒎𝒇!𝟏  𝒆𝒙𝒑 − 𝑳

𝝀𝒄
+ 𝑳

𝝀𝒄
(𝟏− 𝑬)𝟏/𝒎𝒇      Equation 2.10 

where !"
!"

 denotes the number of ions per energy interval; E is the ratio of the ion energy 

arriving at the cathode normalised to Vc (i.e. ranging from 0 to 1); N0 is the number of ions 

entering the cathode sheath; mf is the field distribution parameter (mf = 4/3 if this electric 

field is considered space charge limited) [46]. Noticeably, this modification is based on 

assumptions that i) the incident ions all originate from plasma outside the cathode sheath, ii) 

ions are accelerated across the cathode sheath from zero initial energy to a theoretical 

maximum of 𝑞𝑉!, and iii) charge exchange collision is the only (or, at least, the predominant) 

mechanism in the cathode sheath [44, 47, 48]. 

 

𝐿/𝜆! could be used as a key factor to describe the energy distribution of ions arriving at 

cathode. As shown in Fig. 2.3, low 𝐿/𝜆!  values (e.g. < 0.1) lead to preferred “efficient” ionic 

bombardment. The 𝐿/𝜆! value of DC plasma is, for example, ~10-15 for Ar discharge [46], 
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which is relatively high. One could either reduce bias potential (to reduce cathode sheath 

thickness, Eq. 2.9) or pressure (to increase collision mean free path, Eq. 2.6) to achieve low 

𝐿/𝜆!  values. Nevertheless, plasma generation in conventional DC configuration depends on 

the secondary electron emission from cathode surface, whereby changes in both pressure and 

bias potential will influence the plasma generation itself.  

 

 

Fig.  2.3 Ion energy distribution at various L/λ values from Eq. 2.10 (reproduced from 

Ref. [48]) 

 

2.1.3.3 Triode plasma configurations and plasma enhancement  

Thermionically enhanced DC plasma nitriding was studied from the late 1980s with several 

traceable publications and patents from the early 1990s [20-23]. Essentially, a DC plasma 

configuration was modified with an additional electron-emitting unit, which is a self-circuited 

and biased hot tungsten filament. Both workpiece and filament are negatively biased (i.e. 
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cathode) during process, while chamber wall is grounded (i.e. anode). There are three 

electrodes, so it is also referred to as triode configuration. This configuration is also adaptable 

for physical vapor deposition (PVD), as shown in Fig. 2.4, so that nitriding could be 

performed in-situ prior to PVD processes.   

 

 

Fig.  2.4 Schematic illustration of the triode plasma PVD unit used in this study for 

triode plasma nitriding (reproduced from Ref. [21]), the evaporation system (for PVD 

coating, involving element 5 and 10 in the above figure) was not used in this study  

 

During treatment, the tungsten filament is resistively heated and emits thermionic electrons 

into a low-pressure environment. In addition to the secondary electron emitted from 

workpiece upon ionic bombardment, the thermionic electrons from hot filament enhance the 
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degree of ionisation in plasma. Triode-plasma configuration dramatically lowered the 

workpiece potentials and chamber pressures required for plasma treatments, providing 

sufficient cathodic current density for nitriding (or coating) processes with dramatically 

reduced 𝐿/𝜆! values (e.g. ~0.01 for Ar discharge [20]). Compared to diode-plasma nitriding, 

ions are accelerated over a relatively short distance and experience less collision under triode-

plasma in cathode sheath before bombarding the cathode surface (i.e. low 𝐿 and high 𝜆!). 

 

2.2 Incorporation of nitrogen in iron 

Owing to the continuous plasma-solid interaction and adsorption of nitrogenous 

atoms/ions/molecules at material surface, a chemical potential gradient is developed at 

workpiece surface during nitriding. Given sufficient time and temperature, nitrogen atoms 

diffuse interstitially into bulk material from high chemical potential to low. In Section 2.2.1, 

interstitial diffusion is discussed. Crystallographically, the accommodation of N in substrate 

could lead to lattice distortion, rearrangement and/or formation of nitrides. The diffused 

nitrogen may i) dissolve in solid solution in the parent lattice, and/or ii) trigger metallurgical 

phase transformations. In Section 2.2.2, the crystallographic structure of iron after N 

absorption is discussed using Fe-N binary phase diagram as a guide.  

 

2.2.1 Interstitial diffusion 

Chemical potential gradient is the driving force for nitrogen migration in bulk material [49]. 

Although interstitial diffusion could occur “uphill” from low concentration to high in some 

special cases [50], the chemical concentration gradient is generally considered equivalent to 

the chemical potential gradient in this section. The following discussion is based on one-

dimensional mass migration from high N concentration to low.  
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Steady state diffusion (i.e. constant concentration gradient) could be described as a mass-flux, 

depicted via Fick’s first law:   

𝑱𝑵 = 𝑫𝑵
𝝏𝑪𝑵
𝝏𝒙

               Equation 2.11 

where JN denotes atomic diffusion flux density of diffusion species (atoms/m2s), DN the 

diffusivity (m2/s), CN the concentration (atoms/m3), and x the diffusion depth (m). However, 

concentration gradient changes with respect of time. Fick’s second law can be applied to 

predict concentration-limited diffusion: 

𝝏𝑪𝑵
𝝏𝒕
= 𝑫𝑵

𝝏𝟐𝑪𝑵
𝝏𝒙𝟐

              Equation 2.12 

where CN denotes the time and depth dependent concentration (atoms/m3), and t the time (s). 

Diffusivity, DN, could be expressed in simplified form of Arrhenius equation [49, 51]: 

𝑫𝑵 = 𝑫𝟎𝒆!𝚫𝑯𝒎/𝑹𝑻                Equation 2.13 

where D0 is a pre-exponential factor (m2/s), Δ𝐻! is the activation energy per mole (J) for 

nitrogen to jump between each interstitial sites, R the universal gas constant (i.e. ~8.31 

J/Kmol), and T the temperature (K). Consider that interstitial elements are free to migrate to 

the neighboring interstitial sites, D0 could be described as [51]: 

𝑫𝟎 = 𝜶 𝒂𝟐𝒑𝒗𝒆𝚫𝑺𝒎/𝑹                Equation 2.14 

where 𝛼 is a geometrical factor (e.g. 1/12 for face-centred cubic lattice), 𝑎 is the lattice 

parameter (m), p is the number of nearest interstitial sites, v is the vibration frequency of 

nitrogen in the interstitial site and Δ𝑆! is the change in lattice entropy per mole of nitrogen 

atoms accommodated. The distribution of nitrogen could be described using complementary 

error functions: 

erf 𝑧 =  !
!

𝑒!!!𝑑𝑦!
!     and    erfc x = 1− erf (x) 



 24 

Assuming a constant surface nitrogen concentration (i.e. Cs), the concentration of nitrogen at 

a displacement (or depth) x below surface could be described as [52]:  

𝑪𝒙 = 𝑪𝒔 𝐞𝐫𝐟𝐜
𝒙

𝟐 𝑫𝒕
            Equation 2.15 

There appears only one variable, 𝐷𝑡, in Eq. 2.15, that the following empirically relationship 

is derived for nitriding [26, 49, 52, 53]: 

𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒐𝒏 𝒅𝒆𝒑𝒕𝒉 ∝  𝑫𝒕           Equation 2.16 

The abovementioned equations contain fundamental aspects of diffusion and present a 

convenient way of estimating case depth for diffusion treatments [53]. However, they are 

based on theoretical assumptions (e.g. constant diffusion diffusivity and perfect lattice). The 

diffusion mechanisms in real applications are complex. The interstitial diffusivity in 

austenitic iron was reported as increasing with carbon content during carbon diffusion, as 

shown in Fig. 2.5 [54]. Furthermore, phase transformations (especially for those occurring 

during nitrogen absorption) and lattice imperfections (e.g. dislocations, grain boundaries and 

stacking faults) also have profound influences on interstitial diffusion. For example, 

enhanced nitrogen diffusivity in α-Fe was reported at low temperature after the grain size was 

mechanically reduced (from ~100 µm to ~13 nm), where diffusion occurred predominantly 

along grain boundaries rather than within the grains [55]. 
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Fig.  2.5 Diffusion coefficient of carbon in FCC-Fe at 1400 K (reproduced from Ref. [54])  

 

2.2.2 Nitrogen in iron 

 

Fig.  2.6 Fe-N binary phase diagrams (reproduced from Ref. [56]) 
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The Fe-N binary system has been investigated extensively since 1920s, but the first binary 

phase diagram was published by Jack [57] in 1951, which was based on X-ray diffraction 

results of gaseous nitrided iron powders. An extended version of the Fe-N binary phase 

diagram was published with more details in 1987 [58], which can be found in widely-

available ASM International publications from the 1990s [59, 60]. The latest Fe-N phase 

diagram was extended to lower temperatures [56], as shown in Fig. 2.6. From low nitrogen 

concentration to high, there are ferrite α(N), martensite α’(N), austenite γ(N), α’’-Fe16N2, γ’-

Fe4N, ε-Fe3N1+x, ζ-Fe2N and γ’’-FeN in the Fe-N binary phase diagram. Apart from γ’’-FeN, 

all iron nitrides are ferromagnetic [61]. After commercial nitrogen surface modification 

processes, the enhancement of material properties occurs mainly due to i) solid solution 

strengthening by interstitially-located N, and ii) formation of iron nitrides (mainly γ’-Fe4N 

and ε-Fe3N1+x) [62].  

 

2.2.2.1 Nitrogen in solid solution – α(N), γ(N) and α’(N) 

As depicted in Fig. 2.6, α-Fe dissolves up to 0.42 at.% N at 592°C and γ-Fe dissolves up to 

10.3 at.% N at 650°C; i.e. it becomes clear that solid solubility of N in iron depends strongly 

on the matrix structure. Interstitial elements preferably occupy the octahedral sites in the 

crystal lattice of iron [63]. If N occupies an octahedral site in the body-centred cubic (BCC) 

unit cell (Fig. 2.7), a large anisotropic (i.e. tetragonal) strain is generated. In this case, BCC-

α(N) could only accommodate a small amount of interstitial nitrogen before phase 

transformation occurs. If N occupies an octahedral site of the face-centred cubic (FCC) unit 

cell (Fig. 2.7), an isotropic strain is generated, such that austenite is capable of 

accommodating interstitial nitrogen to a much higher amount. 
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Fig.  2.7 Illustration of octahedral sites in BCC, FCC and HCP unit cells (×-octahedral 

centres) (reproduced from Ref. [63, 64]) 

 

If γ(N) is cooled rapidly, martensitic shear transformation can occur, where interstitial N has 

no time to escape the octahedral site of the original FCC structure. This could results in 

diffusionless shear of γ(N) to body-centred tetragonal (BCT) martensite α’(N), which could 

be considered as a highly-distorted N-supersaturated ferrite [63]. Before reaching N-

solubility in FCC-γ(N), N addition can suppress the Ms temperature (i.e. the temperature 

below which martensite starts to form) to below room temperature, in which case martensitic 

transformation does not occur after quenching [65]. In that case, α’(N) is capable of 

accommodating N amount higher than α(N) but lower than γ(N).  

 

2.2.2.2 Iron nitrides  

α’’-Fe16N2 

In α’’-Fe16N2, N resides at the octahedral centre of a distorted BCC lattice of Fe [63]. Jack [57] 

described α’’-Fe16N2 by space group I4/mmm (139) as 2×2×2 distorted BCC cells, as shown 

in Fig. 2.8, which can be considered as an intermediate structure between α’	and γ’- Fe4N.	
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Nitrogen atoms reside at the centres of every other corner-sharing octahedron. Lattice 

parameters were defined later as: a = 0.5710 nm and c = 0.6283 nm.  

 

γ’-Fe4N 

In γ’-Fe4N, N atoms occupy the centres of corner-sharing octahedra in the FCC lattice of Fe 

[63]. Single crystal γ’-Fe4N has the space group Fm3m and a lattice parameter of 0.379 nm 

[66].	This phase has a narrow regime of homogeneity from ~19-20 at.% N at temperatures 

from 214°C to 680°C, while it coexists with ε-Fe3N1+x nitride from ~20-27 at.%N (Fig. 2.6).  

 

 

ε-Fe3N1+x 

The crystal arrangement of ε-Fe3N1+x could be described by the space group of P312 or P6322, 

with its lattice parameter influenced by N content and degree of ordering [67]. Typical lattice 

parameters are i) a = 0. 46919 nm; c = 0.43670 nm for Fe3N [66] and ii) a = 0.48016 nm; c = 

0.44269 nm for Fe3N1.47 [68]. The wide range of homogeneity for ε-Fe3N1+x (as shown in the 

Fe-N phase diagram, Fig. 2.6) extends from ~25 at.%N to (theoretically) ~33.3 at.%N; ε-

Fe3N1+x could also be formulated as ε-Fe2N1-z or ε-Fe2-3N.  
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Fig.  2.8 The crystal structure of α’’-Fe16N2 (reproduced from Ref. [57]) and ZnS 

(reproduced from Ref. [51])  

 

ζ-Fe2N 

ζ-Fe2N (i.e. 33.3 at.% N) has a orthorhombic lattice, where N occupies half of the octahedral 

interstices in each layer, leaving unoccupied sites above and below them [63, 64]. Typical 

lattice parameters are a = 0.4426 nm, b = 0.5529 nm and c = 0.4831 nm [69].   

 

γ’’-FeN 

In γ’’-FeN, N resides at corner-sharing tetrahedral centres of the FCC sublattice of Fe (i.e. 

ZnS type structure, Fig. 2.8) [69, 70], under a space group of F43m where a = ~0.433 nm 

[69]. In Ref. [70], γ’’-FeN thin film was synthesised experimentally on top of a Cu(001) film 

via deposition of Fe in a nitrogenous atmosphere, which is less likely to be synthesised via 

nitriding of steels.  

 

2.3 Austenitic stainless steels after low temperature nitriding  
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The ‘new’ surface phase, which is known as ‘expanded austenite’ (γN or γC for nitrogen-

expanded or carbon-expanded austenite, respectively) or ‘S-phase’ (SN or SC, for nitrogen-

rich or carbon-rich, respectively), is introduced in Section 2.3.1. The origin of expanded 

austenite is discussed in Section 2.3.1.1. The crystal structure of nitrogen-expanded austenite 

is discussed in Section 2.3.1.2, which focuses on intensive XRD and TEM studies of low 

temperature nitrided AISI 316 (and/or AISI 304) from literature. The role of substrate 

composition on the formation of expanded austenite is also discussed in Section 2.3.2. The 

commercial processes and applications of expanded austenite after low-temperature 

thermochemical diffusion treatments are reviewed in Section 2.3.3.  

 

2.3.1 Expanded austenite  

2.3.1.1 Origin and early studies of expanded austenite (~1960s-1990s) 

Unanticipated corrosion-introduced carbon transportation in nuclear reactors 

In 1958, low temperature carburising of austenitic stainless steels was first investigated 

‘accidentally’ by Shepard [71] (in a technical report) for AISI 304 applied in a “carbon-

contaminated” liquid sodium nuclear reactor cooling system (at ~454-650°C), in which the 

unanticipated corrosion-induced carbon transportation was initially a concern for the surface 

embrittlement (and cracking) after carbide formation. This subject was studied systematically 

by the nuclear power generation industry from the early 1960s onwards [72-75]. Despite the 

main focus being on carbon transportation from liquid sodium at service temperatures, 

Anderson and Sneesby [73] in 1960 indicated a possible “metastable super-saturation of 

austenite with respect to precipitation of carbide” for the carburised surface of AISI 304; 

however, no clear metallurgical evidence was provided. Later in 1970, Litton and Morris [75] 

clearly presented a surface layer described as a “solid solution of carbon in austenite” on 

AISI 316 carburised in liquid sodium at 550°C for 24hrs, as shown in Fig. 2.9a. Compared to 
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the unmodified ASS core, the carbon-rich surface layer showed unambiguously different 

(slightly better) corrosion resistance to the etchant used. Nevertheless, no crystallographic 

information was provided in these early studies (before 1980s). 

 

A potential solution for the poor wear performance of stainless steels  

In the open literature of surface engineering, nitrogen-expanded austenite was investigated 

from the 1980s, with its unusual crystallographic structure (XRD pattern) firstly revealed by 

Ichii et al. [8] and the enhanced surface hardness (without loss of corrosion resistance) 

demonstrated by Zhang and Bell [5]. In the mid-1980s, Zhang and Bell [5] reported a CrN-

free surface layer on AISI 316 after plasma nitriding at 400°C (Fig. 2.9b) with no significant 

decrease of material pitting potential after treatment, which was presumed to be a mixture of 

FCC γ’-(Fe, Cr, Ni)4N and matrix austenite. Similarly, Ichii et al. [8] claimed a “white layer” 

at the surface of 18-8 ASS (AISI 304) after plasma nitriding at 400°C − with five new broad 

XRD peaks that were not listed in the ASTM standard (peaks of S1-S5 in Fig. 2.9c) − which 

were again believed to be an M4N (i.e. M-metallic elements, such as Fe, Cr, Ni…) phase, 

owing to the ~5.9 wt.% N (~ 20 at.% N) detected under EPMA (electron probe micro 

analysis) and the ferromagnetism of this surface layer. This apparently mono-phased (but 

clearly crystallographically ‘different’) surface region generated after low temperature 

plasma nitriding of ASS was initially denoted as ‘S-phase’ by Ichii et al. [8].  
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Fig.  2.9 a) Transverse OM of AISI 316 surface carburised at 550°C for 24hrs in 

carbon-containing liquid sodium (reproduced from Ref. [75]), b) Transverse OM of 

AISI 316 surface after plasma nitriding at 400°C for 60hrs (reproduced from Ref. [5]), c) 

XRD patterns of 18-8 ASS surface after plasma nitriding at 400°C for 4hrs at three 

N2:H2 gas ratios (from top to bottom, ratios are 1:1000, 1:9, 4:1, reproduced from Ref. 

[8]) 

 

The terminology of ‘expanded austenite’ was used in 1989 by Hannula et al. [76] to describe 

the low-nitrogen surface phase (with lattice parameters of ~0.371-0.374 nm in-between γ’-

nitride and nitrogen solid solution) generated after treatment on AISI 304 and AISI 316 after 

plasma nitriding at 350°C for 15mins. However, in the 1989 study by Hannula et al. [76], the 

high-nitrogen surface phase (with lattice parameters larger than stoichiometric γ’-nitride) 

generated after nitriding at 350°C for 6hrs and 24hrs were (mis-)claimed as ε’ (as first 

claimed by Angelini et al. [77] in 1988) and/or FCC nitride phase of MN1-x.  
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The ‘expanded austenite’ terminology was re-defined by Leyland et al. [22] in 1993 as a 

“heavily strained austenitic structure” to describe the precipitation-free nitrogen (and/or 

carbon) induced austenitic (anisotropic) lattice expansion generated after low temperature 

plasma nitriding (or carburising) regardless of N (and/or carbon) content – although, as will 

be shown later, the anisotropic expansion effect tends to occur at very high levels of 

interstitial supersaturation by N and/or C. Based on terminology of ‘expanded austenite’, the 

surface XRD peaks (at lower 2θ angles) observed after treatment can be regarded as being 

shifted from the substrate austenite XRD peaks. The larger peak shift of (200)γ after nitriding 

could be attributed to the elastic anisotropy of the FCC structure that, under elastic strain, the 

γ(200) peak will in any case shift more than γ(111), since the {200}γ planes are more 

compliant than {111}γ. The systematic study of elastic anisotropy in cubic crystals can be 

dated back to the early research works in the 1950s such as Zener [78].  

 

The anisotropic elastic strain of expanded austenite was further discussed in 2000 by Mandl 

and Rauschenbach [79], who pointed to plastic accommodation of the N-interstitial induced 

strain in expanded austenite owing to the extremely large lattice expansion (~10%) observed. 

Additionally, Sun et al. in 1999 [80] proposed a “disordered” and “distorted” FCC structure, 

which involved consideration of stacking faults in the N-rich surface layer. In Sun’s paper 

[80], the anomalous XRD peak positions (Fig. 2.10a) after plasma nitriding was attributed to 

the combined effect of the hkl-dependent elastic lattice constants (and residual stress in the 

surface layer) according to the argument of Wagner et al. [81] and the hkl-dependent stacking 

fault parameters (and stacking fault generation in the surface layer) according to Paterson [82] 

and Warren [83]; in either case (200)γ planes would be expected to shift more than (111)γ 

planes.  
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Similar to ‘expanded austenite’, this surface phase was also referred to as metastable FCC ‘γN’ 

by Williamson et al. from 1990 [84-87]. The phase metastability was illustrated in 1994 [85], 

where the diffusivities of small interstitial elements (i.e. C and N) were calculated to be 

several orders of magnitude higher than those of the relatively ‘immobile’ substitutional 

elements (e.g. Fe, Cr, Ni and Mn) at low treatment temperatures [85]. Thus, interstitial 

nitrogen (or carbon) is able to diffuse inward from the substrate surface (following a 

chemical potential gradient) during typical low treatment temperatures of nitriding (or 

carburising), while the formation of thermodynamically-favorable nitrides (or carbides) is 

suppressed, owing to the low substitutional diffusivity of nitride-/carbide-forming 

substitutional elements, such as Cr.  

 

Nevertheless, it is worth mentioning that the precise nature of the crystallographic structure 

(reflected in the various names allocated) of the surface phase synthesised on ASS after low-

temperature nitriding has been a controversial point of discussion, owing to the anomalous 

XRD peaks observed. In 1988, Angelini et al. [77] assigned plasma nitrided (at 500°C and 

600°C) surfaces of AISI 316 with a structure of ε’-(Fe, Cr, Ni, Mo)2N1-x, since the surface 

phase was able to have a wide range of N content similar to that of ε-Fe2N1-x. However, as 

indicated by Marchev et al. [88] in 1998, one of a weak peak at ~81.2° cannot be 

satisfactorily indexed to confirm unequivocally an ε’ structure. Based on the XRD profiles 

observed by Marchev et al. [88-90], a body-centred or face-centred tetragonal martensitic 

structure was proposed for such surface layers (generated on ASS after low-temperature 

plasma nitriding), which was denoted by these authors as ‘m-phase’. After years of 

intellectual effort (as will be discussed in Section 2.3.1.2), both of these denotations (ε’ and 

m-phase) misconstrue the crystal structure of this metastable interstitially supersaturated 

surface phase. Noticeably, both S phase and expanded austenite suggests an FCC structure of 
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this phase; however, compared to S phase (which could be misinterpreted to a compound 

ceramic phase), expanded austenite appears to be a more suitable denotation.  

 

‘Nitrogen-doped’ PVD coatings 

Over a parallel time frame, similarly structured ferrous materials have also been synthesised 

and investigated as thin coatings using various sputtering (and other) physical vapour 

deposition techniques [91-97]. Most of the coating deposition studies were carried out at low 

temperatures (~300°C). As early as 1978, Hirohata et al. [91] reported unknown XRD peaks 

for the unusual “Fe-Nx type” phase layers generated in an Fe-N2 reactively deposited coating 

system on glass substrates. Similar unexpected phases were identified by Frantz et al. [92] in 

1985 – believed to be iron nitrides − in the nitrogen-containing stainless steel coating 

produced. In subsequent studies of chemistry (using EPMA), structure (using XRD and TEM) 

and properties (e.g. adhesion, internal stress and hardness) of N-containing AISI 310 coatings, 

Frantz [93, 94] claimed i) a structure of “metastable supersaturated disordered” FCC solid 

solution for the nitrogen-doped (~2-40 at.% N measured via EMPA) ASS films generated, 

and ii) “some structural analogies” to diffusion layers that were generated on ASS after low-

temperature plasma nitriding. Noticeably, the anomalous (200)γN lattice parameter of 

expanded austenite coating was correlated to the anisotropic internal stress, which was more 

intense on (200)γN planes than others [93]. Several investigations on metastable N-doped 

ferrous coatings could be found from the early-1990s, e.g. nitrogen-doped AISI 316 coatings 

by Stebut et al. [95, 96], ‘expanded austenite’ coatings by Matthews et al. [97] and ‘S-phase’ 

coatings by Dearnley et al. [98].  
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2.3.1.2 Crystallographic structure of nitrogen-expanded austenite  

Crystallography − XRD 

The crystallographic structure of expanded austenite, as determined from the hkl-dependent 

peak shifts and broadening in X-ray diffractograms, deviates from the ideal FCC structure, as 

shown via d111/d200 ratios in Fig. 2.10a. That is, expansion of the FCC lattice under extreme 

interstitial supersaturation differs from the uniform, isotropic lattice expansion at nitrogen 

content below equilibrium solubility. Attempts were made by Sun et al. [80] in 1999 to 

describe the anomalous XRD profile of γN layers with hkl-dependent elastic constant and/or 

stacking fault generation, which led to a conclusion that the lattice structure of γN originates 

from a combined effects of high residual stress and stacking fault generation. After a high-

order diffractometry study of expanded austenite layers (on low-temperature plasma nitrided 

AISI 316) in 2008, Fewell and Priest [99] tried to match the structures observed to several 

existing candidate structures, from which it was concluded that “distortion and faulting” were 

the main contributory factors. Residual stress analysis of expanded austenite layer (on 430°C 

20hrs nitrided AISI 316) was carried out via successive layer removal and glancing angle 

XRD techniques by Fernandes et al. [100] in 2015, which suggested non-linear nitrogen 

dependency of elastic constants (i.e. E111 and E200 in his study).  

 

After decades of intellectual effort [80, 99-102], the anomalous anisotropic lattice expansion 

for expanded austenite could be attributed to the combined effects of two aspects: i) lattice 

stress associated with the hkl-dependent planar elastic constants, and ii) stacking fault (SF) 

generation associated with the hkl-dependent stacking fault parameters. Nevertheless, 

together with the concentration gradient of the interstitial species from surface to core for the 

expanded austenite formed on bulk materials (i.e. heterogeneous expanded austenite), the 

abovementioned interrelated two aspects complicate the scientific interpretation of 
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observable XRD peak shifts to lower angles. No consistent structural model is currently 

available to comprehensively depict the anomalous XRD peak shift and broadening of 

expanded austenite [102]. 

 

Fig.  2.10 a) Left: Ratio of d200/d111 (as determined from respective X-ray diffraction 

peak positions) for AISI 316, 304 and 321 austenitic stainless steels after plasma 

nitriding for 4hrs at various temperatures (reproduced from Ref. [80]); b) Right: Plot of 

lattice parameters of homogenous nitrogen and carbon expanded austenites (as 

determined from γN(220) and γC(220) X-ray diffraction peak positions) against 

interstitial N or C per metal atom (reproduced from Ref. [12]) 

 

Since 2004, Somers et al. [101-105] synthesised and investigated “homogenous” (stress-free) 

expanded austenites. Rather than thick (~several mm) stainless steel substrates, thin (~7.5 or 

~ 50 µm) AISI 316 foils were nitrided or carburised at low temperatures, which powdered 

naturally during treatment or during ultrasonic bath after treatment. Having a nitrogen content 

of 25-30 at.%, the N-rich AISI 316 powders clearly exhibited an expanded FCC structure 

with a slight systematic deviation from ideal (fault-free) FCC line profiles [101]; the 



 38 

deviations could be accurately described by stacking faults (taking a stacking fault 

probability of ~ 0.03) using following equation from Warren [106]:  

𝚫 𝟐𝛉𝒉𝒌𝒍 =  𝟎.𝟐𝟕𝟓𝟔 ∙ 𝜶 ∙ 𝑮𝒉𝒌𝒍 ∙ 𝐭𝐚𝐧𝜽    Equation 2.17 

where 2θ!!" is the Bragg angle (in degrees), 𝛼 is the stacking fault probability and 𝐺!!" is the 

stacking fault parameter. The synthesis technique for homogenous expanded austenite 

powders was then further improved with, for example, high temperature (~1080°C) 

austenitising before treatment and low temperature (≤ 500°C) homogenisation after treatment 

(see Ref. [12] for detail procedure). Using these techniques, Christiansen et al. [103] later 

revealed a linear relationship between lattice parameters (determined from XRD peak 

positions) and interstitial content (determined via thermogravimeteric analysis) of 

homogenous expanded austenites, as shown in Fig. 2.10b, where expanded austenite 

evidently retains an FCC structure [101, 103].  

 

Nevertheless, Velterop et al. [107] argued that Warren’s approach is based on unrealistic 

assumptions, such as i) small and hkl-independent stacking fault probabilities, and ii) 

randomly-orientated crystallites. Compared to homogenous powders, the XRD anomaly of 

expanded austenite is more pronounced on expanded austenite layers (on top of thick 

substrates) − owing to high residual stress developed in material that cannot be relaxed via 

breaking into powders − where stacking fault probabilities of expanded austenite layers must 

be remarkably greater than homogenous powders. Additionally, EBSD studies by Templier et 

al. [108-110] demonstrated nitrogen concentration-dependent lattice rotation (and texture 

development) of polycrystalline AISI 316L after low-temperature nitriding. Therefore, 

Warren’s equation appeared unreliable on predicting the lattice parameter of expanded 

austenite. 
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In this case, homogenous expanded austenites were later studied via Derby simulation 

(instead of Warren’s method) in 2017 by Brink et al. [102], who revealed that stacking faults 

alone cannot explain the anomalous XRD peak shifts of the ‘homogenous’ γN powders. Thus, 

it was argued that the interstitially-supersaturated powders – which are chemically 

homogenous − could still contain “micro-stress” [102]. Together with the previous elastic 

constant studies by Fernades et al. [100] and a self-consistent plasticity model by Clausen et 

al. [111], Brink et al. [102] argued that the anomalous lattice expansion could originate from 

the “elastic anisotropy of plastically deformed (expanded) austenite”.  

 

Crystallography − TEM 

In contrast to the structures reported from XRD studies, expanded austenite was consistently 

reported as being mono-phased, precipitation-free and FCC structured under TEM [14, 15, 

112-114], where the absence of diffraction anomalies is believed to be due to stress relaxation 

after sample preparation from bulk materials to TEM thin foils. The TEM signatures of 

nitrogen-expanded austenite associated with lattice defects, including stacking faults [14, 15], 

twinning [112, 113] and HCP lamellae [114]. Additionally, forbidden FCC reflections were 

reported in nitrogen-expanded austenite [14, 15, 112-114], which were attributed to ordered 

occupation of N in octahedral interstices.  

 

A series of TEM investigations on plasma nitrided AISI 316 (at 420-460°C) by Li and Sun 

[112] showed micro-twins (Fig. 2.11) and forbidden FCC reflections in an “expanded and 

distorted austenite”. Lattice expansion decreased from surface to core. Phase decomposition 

of γN thin foils was studied further by in-situ heating in a TEM chamber, where fine coherent 

lamellae of CrN and Cr-depleted austenite were observed, revealing a “cellular precipitation 
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mechanism” for phase decomposition [112]. Incubation time for phase decomposition 

decreased with increasing heating temperature.  

 

Fig.  2.11 DF-TEM image and its EDP showing twinning lamellae in AISI 316 ASS after 

low temperature plasma nitriding (reproduced from Ref. [112]) 

 

Low-temperature (i.e. 400°C) plasma nitrided AISI 316 was investigated by Meletis et al. [14, 

15], for the first time, under HR-TEM as shown in Fig. 2.12. The <111> streaking observed 

in EDPs (Fig. 2.12a) was attributed to stacking faults (Fig. 2.12b). Forbidden FCC 

reflections (Fig. 2.12d) were correlated to the domain structure observed (Fig. 2.12c, e), 

which was believed to be due to different local ordering of nitrogen occupancy. After these 

observations, it was argued that expanded austenite formed simply by introducing one 

nitrogen atom into one octahedral centre of the FCC Bravais unit cell [15] − giving a 

theoretical upper nitrogen saturation point of 20 at.% − which is apparently not true; for 

example, ~38 at.% N in nitrided AISI 316 measured by Christiansen et al. [12].  
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Fig.  2.12 a) EDP of high stacking fault region in expanded austenite, b) HRTEM image 

of region with stacking faults indicated with arrows, c) Fourier filtered image of image 

b (after omission of noncrystallographic information) showing antiphase domains (D1 

and D2) and antiphase boundary (APB), d) EDP of region in expanded austenite 

containing forbidden FCC reflections, e) DF-TEM image using one of the (010) 

reflection in image d showing domain structure rather than precipitate structure 

(reproduced from Ref. [15])  

 

Furthermore, twinning was observed by Li and Sun [112] in low-temperature nitrided AISI 

316 surfaces, but not by Meletis et al. [14, 15]. In a later study by Stronz and Psoda [113], 

nano-twinning was evident in low-temperature nitrided AISI 316L under HR-TEM. 

Determined from the γN(111) XRD peak positions, lattice parameters of expanded austenite 

can be determined as ~0.381 nm on AISI 316 by Meletis et al. [14] and ~0.391 nm on AISI 

316L by Stroz and Psoda [113]. Therefore, it appeared that nano-twinning in nitrogen-

expanded austenite depends on the extent of lattice expansion. That is, the absence of 
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twinning in expanded austenite reported by Meletis et al. [14, 15] was attributable to the 

relatively small lattice expansion of AISI 316 achieved in their studies – owing to the 

selected treatment conditions (e.g. short treatment time or low treatment temperature). In both 

TEM studies by Meletis et al. [14, 15], AISI 316 samples were nitrided for relatively short 

time (i.e. 1hr and 4hrs), whereby their argument (based on ~6% lattice expansion) was clearly 

not representative of nitrogen-expanded austenite, especially for those with lattice expansions 

larger than ~6%. 

 

 

Fig.  2.13 a) EDP of expanded austenite generated on AISI 304L at <110>γN zone axis, b) 

illustration of stacking fault clusters equivalent to a HCP structure, and c) HR-TEM 

image of HCP structure (reproduced from Ref. [114]) 
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In 2016, Tong et al. [114] investigated nitrogen-expanded austenites (generated on AISI 

304L after plasma nitriding at 400°C) under TEM and HR-TEM. Similar to those observed in 

plasma nitrided AISI 316 and AISI 316L, <111> streaking, forbidden FCC reflections and 

twinning were evident in EDPs of plasma nitrided AISI 304L (Fig. 2.13a), suggesting 

stacking faults, ordered nitrogen occupancy and nano-twins (or ordered twin lamellae), 

respectively. More importantly, in addition to the abovementioned TEM features, HCP 

lamellae were observed by Tong et al. [114] in nitrogen-supersaturated AISI 304L (see EDP 

in Fig. 2.13a and HR-TEM images in Fig. 2.13b), which were attributable to local 

accumulation of SFs (see SF cluster in Fig. 2.13b). Noticeably, these HCP lamellae were 

crystallographically equivalent to ε-martensite, but were still considered as “SF clusters” in 

Tong’s study. 

 

2.3.2 Role of substrate elements 

2.3.2.1 Role of substitutional elements of Cr, Mn, Ni and Mo in ASS  

Several early studies on this topic can be found from the 1990s, when Menthane et al. [115] 

in 1995 reported that γN (which was referred to as S-phase) formed on austenitic AISI 304L 

and duplex 1.4460 (equivalent to AISI 329, Fe-27Cr-5Ni-1.5Mo, in wt.%), but did not form 

on binary steels of Fe-13Cr (in wt.%) and Fe-42Ni (in wt.%) after plasma nitriding for 5hrs 

over a temperature range of 400-600°C. In 1998, Yasumaru [116] also indicated that, γN 

(which was referred to as YN) formed on ternary Fe-Cr-Ni alloys (i.e. Fe-18Cr-8Ni, Fe-18Cr-

20Ni and Fe-18Cr-48Ni, in wt.%) after plasma nitriding at 350°C, while γ’-Fe4N type nitride 

− instead of γN − formed on Fe-Ni binary alloys (i.e. Fe-30Ni and Fe-36Ni, in wt.%), Fe-Mn-

C alloy (i.e. Fe-26Mn-0.2C, in wt.%) and Fe-Cr binary alloy (i.e. Fe-17Cr, in wt.%). It was 

thus thought that both Cr and Ni are required for the formation of expanded austenite. 
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ASS are based fundamentally on a ternary system of Iron-Chromium-Nickel (Fe-Cr-Ni), 

where Ni can be replaced with Mn (wholly, or in part) for economic or other (e.g. 

biocompatibility) reasons. Cr has been widely referred to as being an ‘essential’ element in 

the formation of γN, believed to assist in ‘trapping’ the inwardly-diffusing interstitial species 

and (in the case of nitrogen) forming short-range ordered Cr-N clusters [10, 17, 87, 104, 117].  

 

Ni addition is thought to lower the equilibrium N solubility in austenite − and hence reduce N 

uptake during nitriding, whereas Mn addition is thought to increase it. For example, 

Williamson et al. [87] illustrated that austenitic Ni-based alloys possess lower surface N-

absorption compared to austenitic Fe-based alloys. However, the austenitic Fe-based alloys in 

their study contained varying concentrations of either Cr or other strong nitride forming 

elements (e.g. Al and Ti), such that the effect of Ni content was not clearly demonstrated in 

Fe-based alloy.  

 

In 2009, Buhagiar [118] investigated Fe-17Cr-14Ni-3Mo (AISI 316 type) and a Ni-free Fe-

17Cr-11Mn-3Mo-0.5N alloy after plasma nitriding at 430°C, carburising and nitrocarburising. 

The formation of γN on Ni-free Fe-Cr-Mn ASS was evident. Replacement of Ni with 

approximately the same mass content of Mn enhanced nitrogen uptake in expanded austenite 

during plasma nitriding [118]. Clearly, Ni is not crucial for the formation of γN. However, the 

synergistic effects of Ni and Mn on the structural response (i.e. lattice expansion and/or phase 

decomposition) during thermochemical treatment with nitrogen (and/or carbon) are still 

unclear.  
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Decomposition of γN (via long-range ordering of chromium nitrides) is principally influenced 

by substitutional diffusion (i.e. migration of substitutional elements towards or away from 

nitride embryos), the potency of which varies with alloy compositional factors (such as 

Ni/Mn content). Due to its low substitutional diffusivity in the Fe-Cr-Ni-Mo system (i.e. AISI 

316), Ni was reported as retarding the formation of carbides in AISI 316 during low 

temperature carburising [17]. In contrast, Mn possesses a higher solid solution diffusivity 

than both Fe and Cr in the Fe-Cr-Mn system [119], in which case Mn3N2 precipitation was 

reported in γN for a Ni-free Mn-stabilised ASS after low temperature nitriding [118].  

 

Last but not least, the different substitutional contents of Mn/Ni (as major substitutional 

austenite-stabilising elements in ASS) will influence the decomposition mechanisms in a 

nitrogen-supersaturated FCC lattice, by varying the ferrite-austenite transformation 

temperature. The decomposition mechanism of γN is known for AISI 304L to be γN → α-

ferrite + CrN, whereas for AISI 316L, having higher Ni content (an Mo content), γN → γ-

austenite + CrN is commonly reported [112, 120, 121].  

 

As one of the main compositional differences between AISI 304 and AISI 316 type ASS, the 

influence of Mo content could also be found from the early studies on these two types of ASS 

after low temperature nitriding. The presence of Mo does not seem to influence the 

paraequilibrium solubility of N in expanded austenite, since the homogenous nitrogen-

expanded austenite powders of both alloys showed similar saturated nitrogen occupancy after 

nitriding [12]. However, Mo content tends to enhance the thermal stability of nitrogen-

expanded austenite. Bell and Sun [122] investigated Fe-19Cr-11Ni-3Mo (AISI 316) and Fe-

18Cr-11Ni (AISI 304) after plasma nitriding, where the presence of ~3 wt.% Mo in AISI 316 
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retarded the formation of nitrides to higher treatment temperatures and to longer treatment 

times. A similar effect was also reported by Christiansen et al. [120], who reported a 

decomposition  activation energy of ~187 kJ/mol for AISI 316L and of ~128 kJ/mol for AISI 

304L. Noticeably, there is also a significant difference in Ni content between the AISI 316 

and AISI 304 type ASS. 

 

2.3.2.2 Ni-Cr and Co-Cr alloys after low temperature diffusion treatments 

Apart from Fe-Cr alloys (such as ASS), similar N-rich metastable layers were reported in Ni-

Cr and Co-Cr alloys after plasma nitriding. As early as 1998, Williamson [87] investigated a 

wide range of Fe-based and Ni-based alloys after nitrogen ion implantation at 400°C. 

Following an order from Fe-rich to Ni-rich alloys, 16 FCC alloys exhibited a decreasing trend 

in layer depth and surface nitrogen content after nitrogen implantation [87]. Taking the 

abnormal XRD peak shift as an indicator of γN formation, γN only formed on Fe-Cr alloys 

and Ni-Cr alloys, but did not form on pure Ni and Ni-20Fe after treatment, which suggested 

the necessity of Cr for the formation of expanded austenite. Nevertheless, similar to the γN 

formed on the Cr-containing FCC alloys in his study, conspicuous highly-expanded and less-

expanded expanded FCC structures (γN1 and γN2 in his paper, respectively) were observed on 

Fe-35Ni binary steel (Invar) after low energy N-implantation [87]. However, the relative 

XRD peak shifts of γ(111) and γ(200) of Invar after implantation are not significantly 

different (i.e. no strong expansion anisotropy), suggesting nitrogen-expanded austenite might 

not be formed.  

 

In 2004, Makishi and Nakata [123] systematically investigated Ni-based metallic systems 

after plasma nitriding at 400-800°C, which involved i) 31 types of Ni binary alloys 

containing nitride-forming elements (such as Ti, V, Nb, Ta, Cr, Mo, Mn, Fe, Al and Si) up to 
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their solid solubility limit in Ni, and ii) 8 commercial Ni alloys. Apart from the 8 commercial 

Ni-Cr alloys, surface diffusion layers were also observed on Ni-Ti, Ni-V, Ni-Nb and Ni-Cr 

binaries after treatments. The low-temperature nitrided layers on Ni-Ti, Ni-V, Ni-Nb and Ni-

Cr alloys exhibited XRD peaks “not detected in the ASTM Powder Diffraction File”, which 

appear analogous to the XRD peak shift and broadening of expanded austenite. These low-

temperature nitrided layers on Ni-alloys also presented other features, such as homogenous 

distribution of substitutional elements and metastability − similar to the metastable nitrogen-

expanded austenite formed on ASS. This leads to a strong suggestion that strong nitride-

forming elements other than Cr could also facilitate the formation of metastable N-rich 

expanded-FCC layers after low temperature nitrogen insertion. Nevertheless, different to the 

TEM diffraction features of nitrogen-expanded austenite layers (as shown in Fig. 2.11-2.13), 

large diffused diffraction spots were observed in the N-rich layers on Ni binaries in the study 

by Makishi and Nakata [123], which were attributed to fine nitride particles and large 

microstrain in the diffusion layer. Fine (~6 nm) disk-like particles were reported at low 

temperature (e.g. in Ni-7Ti and Ni-30Cr) coherent to the FCC matrix (Fig. 2.14a,b), which 

transformed to ~10-15 nm incoherent spheroid precipitates at high treatment temperature (Fig. 

2.14c,d) [123]. Strictly speaking, it is still a question whether these metastable N-rich layers 

(produced on Ni binaries) could be denoted as expanded austenite or not, since no such 

metastable zones or particles could be seen in the γN synthesised on ASS after low-

temperature nitriding. 

 

Li et al. [124] (probably firstly) investigated Co-Cr alloys after low temperature carburising, 

where precipitation-free carbon-expanded austenite was generated at low treatment 

temperatures – with clear enhancement of material surface hardness and corrosion resistance. 

In 2008, Lutz et al. [125] reported formation of metastable γN on three Co-Cr alloys (i.e. Co-
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28Cr-5Mo, Co-20Cr-10Ni-15W-3Fe and Co-22Cr-22Ni-14W-3Fe, in wt.%) after plasma 

immersion ion implantation (PIII) at ~230-580°C for 2hrs. Characteristic XRD peak shifts of 

γN were observed on both AISI 304 and Co-22Cr-22Ni-14W-3Fe at temperatures less than 

400°C, whist CrN formation was observed for both alloys at higher temperatures. Compared 

to those formed on ASS, γN layers were thinner on Co-Cr alloys.  

 

 

Fig.  2.14 Schematic illustration of Ni-binary alloys and TEM images (and EDPs) of Ni-

30Cr alloy after plasma nitriding at low temperature (a, b, respectively), and at high 

temperature (c, d, respectively); and e) XRD of Ni-30Cr after plasma nitriding at 450°C 

(reproduced from Ref. [123]) 

 



 49 

Intriguingly, Dong [10] pointed out in his review paper that the matrix elements of Fe, Co 

and Ni are all 3d transitional metals, having outer electron structure of 3d64s2, 3d74s2 and 

3d84s2, respectively. The metallic elements associated with the formation of metastable 

expanded austenite − which were reported in the open literature as discussed above in this 

section − are Ti, V, Cr, Mn, Fe, Co, Ni and Nb. Apart from Nb (in the case of metastable N-

rich layers formed on Ni-Nb binaries [123]), these elements are all 3d transition metals 

having outer electron shell form 3d24s2 (for Ti) to 3d84s2 (for Ni), whilst the outer electron 

shell is 2s22p2 for carbon and 2s22p3 for nitrogen. The formation of metastable expanded 

austenite, with respect to electron theories of alloys, could also be investigated on the 

electronic structure, chemical bonding and magnetism (not in the scope of this study). For 

example, Fewell [126] reported in 2000 that the γN layer (produced on AISI 316) changed 

from ferromagnetic to paramagnetic as the nitrogen content decreased from surface to 

unmodified core, whereas a later (in 2016) study by Brink et al. [126, 127] clearly 

demonstrated the composition-dependent magnetic properties for the γN layer produced (on 

AISI 316). 

 

2.3.3 Commercial low-temperature diffusion treatment processes and applications  

2.3.3.1 Carburising − Kolsterising (Bodycote Plc.) and SAT12 (Swagelok Co.) 

Commercial exploitation of low-temperature thermochemical diffusion treatment of stainless 

steels can be traced back to as early as 1983, when Kolster [128-130] first claimed a surface 

treatment for stainless steel, capable of enhancing material wear performance without loss of 

corrosion performance. The development of this successful proprietary gaseous carburising 

treatment (the so-called ‘Hardcor’ process of Hardcor B.V. − later renamed as ‘Kolsterising®’ 

by Bodycote Plc. in honour of the ground-breaking work by Kolster) could be traced back to 

investigations at the Netherlands Organisation for Applied Scientific Research (TNO) during 
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the 1970s, when Kolster investigated the transport of alloying elements of steels in liquid 

sodium cooling systems for nuclear power industry applications [131]. No process details 

were ever openly published; however, from the early 1990s, Kolsterising® (or Hardcor) has 

been routinely applied on ASS − where both wear and corrosion resistance are required − 

such as in the food processing, automotive, offshore and medical industry sectors [129].     

 

 

Fig. 2.15 Illustrations of two typical applications of low-temperature thermochemical 

treatments, a) SAT12 for Swagelok tube fitting (AISI 304 or 316), and b) Nivox 2 for rod 

clusters control assembly (AISI 316L) used in pressurised water nuclear reactors 

(reproduced from [132]) 

 

After a research project (involving Swagelok, Case Western Reserve University, and Oak 

Ridge National Lab) from 2004, Collins and Williams [133] published a low temperature 

colossal supersaturation process (LTCSS or SAT12), for which general process details can be 

found in patents of Swagelok Co. from 2000 [134-137]. Gaseous HCl was used during an 

activation processes to remove the surface chrome-oxide film from the stainless steel before 

gaseous carburising at ~470°C. This process was developed specifically for new types of tube 
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fitting ferrules of Swagelok Co, which enabled strong and vibration-resistant grip between 

fitting component and ferrules, as shown in Fig. 2.15a.  

 

2.3.3.2 Nitriding – Nivox 2 (Bodycote Plc.) 

As recently reviewed by Somers and Christiansen [9], Lebrun et al. [138] reported in 1972 a 

zone of supersaturated austenite (with a lattice parameter of ~0.368 nm) in-between the 

topmost compound nitride layer and the unmodified core on 18-8 ASS (i.e. AISI 304) after 

plasma nitriding at 550°C. This early study on plasma nitriding of ASS led to the 

establishment of Nitruvid S.A in 1985. Nitruvid S.A was specialised in low temperature 

(pulsed DC) plasma nitriding of ASS [139] (see Ref. [140] for process details) before the 

acquisition by Bodycote Plc. in 2010. “Nivox 2”, as a low-temperature plasma nitriding 

process developed by Nitruvid S.A, has been applied on control rods (AISI 316L type ASS) 

in nuclear reactors as shown in Fig. 2.15b. Owing to the metastability of N-expanded 

austenite, a service life of no more than 5000hrs was recommended for a service temperature 

of 350°C [139]. Noticeably, “Nivox 2”, which was known as a competitive commercial low-

temperature plasma nitriding process in the market from 2002 [139], had first been published 

in ~1994 [141]. The establishment of the low-temperature diffusion treatment (i.e. plasma 

nitriding) by Nitruvid was clearly somewhat later than Kolster’s Hardcor process in 1983 

[128].  
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3 Experimental Procedure  

3.1 Materials Investigated 

The nominal substrate compositions are shown, according to ASTM standards, in Table 3.1. 

The composition of proprietary Staballoy AG17® (ATI Allvac Ltd.), since not listed in the 

ASTM system, is shown according to the company datasheet [142]. Some minor elements 

(such as P, S and B that these alloys might also contain) are not listed in this table, since their 

contents are negligible in these commercial alloys. RA 330® (NeoNickel Ltd.) and Invar® 

36 (City Special Metals Ltd.) were obtained in solution-annealed condition. Invar 36 was 

sliced as ~4 mm thick 20 mm diameter disks. AISI 304, Staballoy AG17, RA330, and 

Hadfield steel were prepared as ~50×25×4 mm rectangular coupons.  

 

Table 3.1 Nominal material compositions, in wt.% 

Material ASTM Fe Cr Ni Mn N C Others 

AISI 304 ASTM A240, 
UNS S30400 Bal. 17.5-19.5 8-10.5 2 0.1 0.07 0.75 Si 

Staballoy 
AG17 / Bal. 17 0.8 20 0.5 0.03 0.3 Si, 0.05 Mo 

RA 330 ASTM B536-07, 
UNS N08330 Bal. 17-20 34-37 2 max / 0.08 

max 0.75-1.5 Si, 1 max Cu 

Invar 36A ASTM F1686-06, 
UNS K93603 Bal. 0.25 36 0.6 / 0.05 0.4 Si, 0.5 Co, 0.1 Al, 

0.1 Mg, 0.1 Zr, 0.1 Ta 

Hadfield 
steel  

ASTM A128 
Grade B2 Bal. / 0.2 11.5-

14 / 1.05-
1.2 1 max Si 

A The total amount of Al, Mg, Ti and Zr is below 0.2 wt.% 
 

One flat surface of the substrate coupons/disks was ground using silicon carbide paper with 

grit sizes from P400 to P1200 and then polished to mirror finish using Buehler MetaDiTM 

monocrystalline diamond suspensions (6 µm to 1 µm, successively). The measured mean 

surface roughness, Ra, was ~0.02 ±0.01 µm after polishing.  
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3.2 The Triode Plasma Nitriding Process 

3.2.1 Treatment strategy and sample designations  

A designation system (as presented in Table 3.2) was derived, based on the treatment history 

and substrate composition of each sample. Apart from treatment temperature and time, other 

treatment conditions were kept constant for each chamber configuration. Detailed procedure 

is shown in Sections 3.2.2 and 3.2.3. The untreated samples, which are denoted with ‘U’, are 

all characterised and evaluated after polishing. Treated samples were denoted 

correspondingly with the treatment temperature and time as shown in Table 3.2. For example, 

untreated Hadfield steel is designated as U-Had; 400°C and 20hrs treated RA 330 is 

designated as 400C20h-330.  

 

Table 3.2 Sample designation system 

Chamber 
configuration Temperature Time Substrate materials 

A 
400°C − 400C 
425°C − 425C 
450°C − 450C 

4 hours – 4h 
20 hours – 20h 

AISI 304 − 304 
Staballoy AG17 − AG17 

RA 330 − 330 
Invar 36 − Invar 

B 300°C − 300C 

4 hours – 4h 
8 hours – 8h 

12 hours −12h 
20 hours – 20h 

Hadfield steel − Had 

 

3.2.2 Triode plasma nitriding – equipment and chamber configurations 

Nitriding was performed in a low-pressure triode-plasma configuration using a modified 

Tecvac IP70L commercial PVD coating unit, where an additional tungsten filament was used 

as a thermionic electron emitter to enhance ionisation during processing [20-23]. The vacuum 

process chamber (~70×70×70 cm) was at earth potential during the entire process. As shown 

in Fig. 3.1a, the vacuum chamber is connected with two diffusion pumps during processing. 

Evacuation directions are indicated with white arrows. Inside the chamber, the substrate 
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holder is surrounded by four auxiliary radiant heating units (two at the back and one at each 

side). A tungsten filament (~900 mm long and 0.75 mm diameter) at the bottom of chamber 

provides independent control of electron emission impact ionisation during the triode process. 

 

Fig.  3.1 a) Illustration of vacuum system, b) a photo through observation window 

during a TPN process, c) chamber configuration A, d) chamber configuration B 

 

Two chamber configurations were used in this work (Fig. 3.1c,d) for the substrates and 

treatment conditions shown in Table 3.2. Configuration A was adopted for the majority of 

the treatments in this study, for comparison purposes at temperature regime of 400-450°C. As 

shown in Fig. 3.1c, samples were mounted on top of a 5 mm thick 500 mm diameter stainless 

steel load stage, which is located in the middle of chamber. Two additional dummy stainless 

steel samples of size ~50×25×4 mm were also mounted on the load stage. A type-K 
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thermocouple was inserted into each dummy sample for temperature monitoring and control. 

The measured temperature variation across the load stage (i.e. from center to edge) was ~1-

2°C during TPN processing at 400-450°C.  

 

Hadfield steel is susceptible to carbide precipitation after prolonged treatments at 

temperatures above ~300°C. Configuration B provided relatively better surface exposure to 

plasma, which enabled sufficient ion bombardment of the sample at low treatment temperature 

such as 300°C. As shown in Fig. 3.1d, samples were hung on stainless steel wires in the 

middle of the chamber. An additional dummy stainless steel sample, inserted with a type-K 

thermocouple, was also hung at the same chamber height for temperature monitoring and 

control. The measured temperature variation across the steel wire (i.e. from middle to both 

sides) was ~1-3°C during a typical 300°C TPN process.  

 

3.2.3 Triode plasma nitriding − process procedure  

Before TPN treatment, the polished samples were cleaned ultrasonically in acetone for 

15mins, in isopropanol for 10mins, and then dried using dry compressed air. Process 

parameters were observed, adjusted and logged during TPN. Operator visually checked the 

chamber periodically through a glass window to ensure plasma generation and free of arcing 

(Fig. 3.1b). For different research purposes, the treatment procedure varies; nevertheless, 

following a chronologic order, a typical triode-plasma nitriding process could involve the 

following steps: 

 

1. Evacuation and pre-heating: The chamber was evacuated to a base pressure of 2×10-3 Pa. 

Samples were then pre-heated to (and held at) ~300°C using radiant heating to aid evacuation 

for process cleanliness, until reaching the base-pressure. This temperature is insufficient to 
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cause any significant metallurgical transformation in the substrates investigated. Additionally, 

in vacuum, the oxidation of steel surfaces is minimal and (if already present) surface oxides 

will be removed by the plasma sputter cleaning in step 2.  

 

2. Plasma sputter cleaning and triode plasma heating: After pressure stabilised < 2×10-3 Pa at 

300°C, gaseous Ar was introduced into chamber and samples was negatively biased at 800V. 

Plasma sputtering was performed at 2 ±0.2 Pa Ar atmosphere for ~10-15 mins. Substrate bias 

was then reduced to -200V for plasma heating. Filament power was switched on and biased 

at -200V. Ar flow rate was reduced to maintain a chamber pressure of 0.3-0.5 Pa. Typical 

heating rates were ~7-10°C/min for plasma heating. This step helped to remove surface 

oxides and/or contamination from sample surfaces (especially to remove protective 

chromium oxides from stainless steels) so that material surfaces were ready for the 

subsequent nitrogen diffusion process.  

 

3. Triode plasma nitriding: Once the target temperature was reached, argon flow rate was 

reduced and gaseous N2 was introduced into chamber. All triode-plasma nitriding treatments 

were performed at a chamber pressure of 0.4 ±0.04 Pa in a N2:Ar atmosphere (7:3 volumetric 

ratio). Both substrates (i.e. cathode) and filament unit (i.e. another cathode) were negatively 

biased at 200V.  

 

4. Cooling and venting: When the target treatment time was reached, both radiant heater and 

plasma units were turned off. Samples were cooled under vacuum (i.e. < 1×10-3 Pa) until 

180°C. Typical cooling rates were ~2-3°C/min. The chamber was then vented to atmosphere 

and samples were extracted. 
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Apart from the different treatment temperatures and times, TPN was performed at a constant 

chamber pressure of 0.4 Pa, a 7:3 N2:Ar gas volumetric ratio, substrate and filament bias at -

200V. Nevertheless, for chamber configuration A, auxiliary radiant heating was used 

(together with plasma heating) to support different treatment temperatures, whilst substrate 

current density was deliberately kept constant at ~0.13 mA/cm2 (i.e. almost constant plasma 

heating at different treatment temperatures achieved) via altering the filament electron 

emission current. In this case, nitrogen diffusion and crystallographic structure at the treated 

surfaces would be mainly influenced by the different treatment temperatures and times 

applied during nitriding rather than different ion bombardment energy/intensity. For chamber 

configuration B, plasma heating was used (without radiant heating) to achieve an ultra-low 

nitriding temperature and to provide as much ion bombardment as possible under the selected 

treatment condition for Hadfield steel.  

 

3.2.4 L/λ value for this study  

For chamber configuration A, treatment parameters were V ≈ 0.3 m3, P = 0.4 Pa, T = 673-723 

K, Vc = 200 V and J ≈ 0.13 mA/cm2. The predominant ions are N+, N2
+ and Ar+.  An optical 

emission spectroscopy study showed that N2
+ is the major nitrogenous species (i.e. over 80%) 

in the cathode sheath when using gas mixtures of argon and nitrogen under a triode plasma 

configuration [23]. The charge exchange collision cross-section, σC, for N2
+ could be taken as 

~3×10-19 m2 for the low ion energy of 200 eV [143]. In this case, the cathode free-fall model, 

as mentioned in Section 2.1.3, could be used to estimate the L/λc value. Recall Eq. 2.6 and 

Eq. 2.9 in Chapter 2, the L/λc value could be estimated as being as low as 0.01. In other 

words, ions were nearly collisionless when travelling through cathode sheath, that the 

incident ions were almost mono-energetic at ~200 eV. Nevertheless, the above calculation 
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does not take account of other potential species, such as Ar2+, N+ and/or the sputtered species 

from substrate surfaces.  

 

3.3 Statistical Considerations  

Data in this study is presented as mean ± error. The mean value (i.e. sample mean, x) was 

calculated from a number of measurements. The sampling size, nm, is given in the following 

sections with testing procedures. Sampling distribution is assumed to be normally distributed. 

Error is based on 95% confidence interval and is calculated from the standard error of the 

sample mean, SE(x), as follows:  

𝑬𝒓𝒓𝒐𝒓 = 𝟏.𝟗𝟔 × 𝑺𝑬 𝒙 =  𝟏.𝟗𝟔 × 𝒔
𝒏𝒎

        Equation 3.1 

where s is the sample standard deviation. That is, there is 95% confidence that the population 

mean is located in the interval of ±error around the sample mean.  

 

3.4 Energy Dispersive X-ray Spectroscopy  

Compositions of untreated and nitrided surfaces were examined quantitatively with Energy 

Dispersive X-ray (EDX) spectra using Oxford Instruments INCA EDX system via a XL30S 

FEG electron microscope. The beam acceleration voltage, spot size and working distance 

were 15 kV, 5 and 5 mm, respectively. Beam intensity was calibrated with a cobalt standard. 

The untreated (substrate) compositions were evaluate and shown in Table 4.2. After nitriding, 

material surface nitrogen content was averaged from 10 X-ray spectra, which were taken at 

random sites (with an area of 65×45 µm for each site) across the treated surface.  
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Table 3.3 Material compositions, compositions were normalised in wt.%  

Material Fe Cr Ni Mn N C Others 
AISI 304 70.6 19.2 8.1 1.7 / / 0.4 Si 

Staballoy AG17 61.7 17.4 0.8 18.6 0.5* / 0.3 Si, 0.7 Co 
RA 330 41.3 19.4 34.1 1.6 / / 1.5 Si, 0.1 Cu, 0.2 Al 
Invar 36 61.4 0.1 35.1 0.5 / / 0.2 Si 

Hadfield steel 85.2 0.2 0.2 12.7 / 1.2* 0.5 Si 
*Nitrogen content of Staballoy AG17 and carbon content of Hadfield steel were determined in 
Sheffield Assay Office, via in-house method (thermoconductivity and IR absorption, ATM 149) and 
combustion/Infra-red analysis (ATM 82), respectively 

 

3.5 Optical Microscopy  

The optical images in this work were extracted from a Nikon Eclipse LV150 Optical 

Microscope (OM) equipped with Buehler Omni Met software. For each triode-plasma 

nitriding treatment set, material surfaces were firstly examined under OM. After wear and 

corrosion testing, the worn or corroded surfaces were also examined.   

 

3.6 Back-scattered Electron Microscopy  

Flat sample coupons or disks were cut transversely using an abrasive cutting wheel (i.e. Struers 

Secotom-50) and mounted with conductive Bakelite resin. The mounted sample cross-

sections were polished. Diffusion-introduced chemical composition-depth profiles were revealed 

transversely under back-scattered electron (BSE) imaging using a FEI Nova NanoSEM 450 

instrument. The acceleration voltage and spot size were 20kV and 5.5, respectively.  

 

Diffusion layer depths of the ASS after nitriding were determined based on BSE imaging, 

since nitrogen-rich diffusion layers (having relatively lower mean atomic weight) and unmodified 

core materials (having relatively high mean atomic weight) present sharp contrast/brightness at 

the layer/core boundary. The mean layer depth was measured and averaged from a total number 

of 50 measurements (10 measurements per electron micrograph, 5 micrographs in total). 
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3.7 Hardness Indentation Measurements 

3.7.1 Vickers Indentation 

Vickers hardness was evaluated on top of the untreated and treated material surfaces via a 

Struers Durascan 70 instrument. Indentation load and dwell time were 0.025 kg and 15 s, 

respectively. The mean surface hardness of material (before and after TPN) was calculated 

from 12 random indents.  

 

3.7.2 Nanoindentation depth-profiles 

The treated layer hardness-depth profiles were evaluated in polished cross-section with 

nanoindentation via a Hysitron Triboscope® Nanoindentor equipped with a Berkovich diamond 

indenter. Indentation load was 5 mN. The displacements of nanoindents to sample surface 

were measured using the instrumented atomic force microscope (AFM) after indentation. 

Nanoindents were placed from near surface (at depths of ~2-4 µm) to core at a ~4 µm separation. 

The mean hardness value at each depth level was calculated from at least 5 nanoindentations.  

 

3.8 Phase Characterisations  

3.8.1 X-ray Diffraction analysis   

X-ray diffraction (XRD) analysis was carried out on top of sample surfaces before and after 

TPN under Bragg-Brentano θ-2θ geometry via a Bruker D2 PHASER (Cu-Kαaverage, 0.15418 

nm). Tube voltage and current were 30 kV and 10 mA, respectively. Invar and Hadfield steel 

samples were also characterised under Seeman-Bohlin geometry (at 2° glancing angle) via a 

monochromated PANalytical Xpert3 diffractometer (CuKα1, 0.15406 nm). Tube voltage and 

current were 45 kV and 40 mA, respectively. Peak intensity of samples could vary 

significantly (e.g. after nitrogen-supersaturation or phase decomposition); for clarity, X-ray 
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intensity at each 2θ angle was divided by the maximum intensity of the X-ray profile for each 

sample (i.e. normalised profiles).  

 

X-ray attenuation depths, as shown in Table 3.4 with respect to sample compositions (using 

AbsorbDX software), are shallower under glancing-angle XRD (GAXRD) compared to those 

under θ-2θ XRD. To identify depth-related material phase composition changes, Invar and 

Had at selected treatment conditions were successively ground using P1200 grit paper and 

characterised under GAXRD.  

Table 3.4 X-Ray attenuation depths in materials (95% of X-ray signal)  

Material, atomic% Bragg-Brentano θ-
2θ geometry 

Seeman-Bohlin geometry 
(2° glancing angle) 

304 – Fe-19Cr-8Ni ~1.8-3.5 µm / 
AG17 – Fe-18Cr-20Mn-2N ~1.7-3.3 µm / 

330 – Fe-19Cr-35Ni ~2.4-4.7 µm / 
Invar – Fe-35Ni ~2.3-4.4 µm ~0.6 µm 

Had – Fe-13Mn-5C ~1.7-3.3 µm ~ 0.4 µm 
 

3.8.2 Transmission Electron Microscopy   

Transmission electron microscopy (TEM) analysis was carried out via a Philips EM420 

instrument at beam acceleration voltage of 120 kV and a FEI Tecnai T20 instrument at beam 

acceleration voltage of 200 kV. The low-magnification images and electron diffraction 

patterns (EDPs) were extracted from Philips EM420, while high-resolution images were 

extracted from FEI Tecnai T20. The diameters of three diffraction apertures for Philips 

EM420 were ~540 nm, ~1400 nm and ~5800 nm. A cross-sectional TEM foil was prepared 

from U-330 and examined under EM 420, as shown in Fig. 3.2. The diffraction camera 

length of the Philips EM420 could be calibrated using EDPs extracted from the U-330 steel 

sample (as shown in Fig. 3.2b,c), taking lattice constant of U-330 sample as ~0.358 nm 

(determined from the XRD peak positions of U-330).  
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Fig. 3.2 FIB prepared TEM thin foil of untreated RA330 (U-330) under Philips EM420, 

a) BF-TEM image, b) EDP of the entire foil using the largest diffraction aperture 

(~5800 nm diameter), and c) EDP of an austenitic grain using (~1400 nm diameter) 

diffraction aperture at its <111> zone axis   

 

3.8.3 Focused Ion Beam Method 

Thin cross-sectional TEM foils were prepared from sample surfaces using the focused ion 

beam (FIB) milling method via a FEI Quanta 200 3D electron microscope as shown in Fig. 

3.3. A gallium ion beam was used at beam acceleration voltage of 30 kV for milling, cutting 

and thinning.  

 



 63 

Fig. 3.3 Ion beam images during FIB process (chronological order from a to f) 
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A carbon layer (~2-3µm thick) was firstly deposited on top of sample surface to protect 

material from ion beam damage in the following process steps (Fig. 3.2a). Two trenches were 

milled, using a high ion beam current of 5 nA, above and below the carbon deposition (Fig. 

3.2b). Material under the carbon deposition (i.e. from material surface to ~4-8 µm deep) was 

attached to an omniprobe and cut out using a lower ion beam current of 0.5 nA (Fig. 3.2c), 

and was then extracted from the material surface. The extracted material was attached to a 

copper grid (Fig. 3.2d) for further thinning. The sample was finally thinned to <100 nm 

thickness (Fig. 3.2e to Fig. 3.2f) for TEM examination. In order to reduce ion beam damage 

during thinning, beam current was gradually reduced to i) 0.5 nA for sample thickness from 

~2-3 µm to ~500 nm, ii) 300 pA for sample thickness from ~500 nm to ~150 nm, and iii) 10-

30 pA to thickness <100 nm. 

 

3.9 Material Wear and Corrosion Performance 

3.9.1 Wear testing  

3.9.1.1 Reciprocating-sliding wear testing 

Sliding wear (dry) performance was evaluated using a (homemade) reciprocating-sliding 

tribometer. The sample was mounted on a flat stage with surface of interest facing upward. A 

10 mm diameter WC-6 wt.% Co ball (Spheric-Trafalgar Ltd.) was loaded at ~9.8 N on top of 

sample surface. Before each test, sample coupon and ball were ultrasonically cleaned and 

rinsed with isopropanol for 10 mins, and dried using dry compressive air.  

 

During sliding, the sample stage was set to move horizontally at 8 Hz with a reciprocation 

amplitude of 10 mm. Relative humidity, temperature and friction coefficient were recorded 

during each sliding test. All sliding tests were performed under room conditions at temperatures 

between 20 and 25°C and at relative humidities between 15 and 25%. A total sliding distance 
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of 500 m was used, for which the measured wear depths were all shallower than the diffusion 

layer thicknesses of nitrided samples tested. Two repetitions of sliding test were performed. 

 

3.9.1.2 Micro-abrasion wear testing 

Abrasion wear performance was evaluated using a Plint TE-66 abrasion tester, as shown in 

Fig. 3.4a. Sample coupon was mounted at abrasion tester with surface of interest facing 

sideway. A preconditioned 25.4 mm diameter steel ball (SAE52100) was loaded at 0.1 N or 

0.2 N against the sample surface. The preconditioning process, which roughened the ball 

surface to assist entrapment of abrasives, involved five micro-abrasion runs (i.e. 300 ball 

rotation revolutions) against a U-304 stainless steel coupon. Ball rotation speed was set at 

~0.1 m/s. Slurry concentration was 0.8 g/ml or 0.24 volume fraction (i.e. SiC powder in 

distilled water). The abrasive silicon carbide powder (Grade P1200 SiC, Logitech Ltd.) had a 

mean powder size of ~3.1 µm [144], as shown in Fig. 3.4b. The abovementioned parameters 

were also selected to achieve 3-body abrasion mode (i.e. spherical crater without abrasion 

grooving inside) as shown in Fig. 3.5c,d. 

 

Before each test, both sample and ball were cleaned with isopropanol in an ultrasonic bath for 

10mins and dried using dry compressed air. During abrasion, the ball was rotated against the 

sample surface and silicon carbide slurry was added via a syringe. Abrasion distances of 

~2.39 m (i.e. 30 ball rotation revolutions) and ~3.99 m (i.e. 50 ball rotation revolutions) were 

used under normal loads of 0.2 N and 0.1 N, respectively, to obtain ‘non-perforating’ 

abrasion craters − with measured depths less than the diffusion layer thickness. A minimum 

of two repetitions were performed for each abrasion distance.  
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Fig.  3.4 a) Schematic illustration of abrasion tester (reproduced from Ref. [145]) and b) 

scanning electron micrograph of SiC powder 

 

3.9.1.3 Surface profilometry and evaluations of wear  

Worn surfaces were evaluated with a two-dimensional mechanical profilometer (Veeco 

Dektak 150), equipped with a 12.5 µm radius diamond tip, which was loaded at 3 mg onto 

the sample surface during each scan. Different scan lengths and durations were used for the 

different features, but were adjusted for resolutions better than 0.01 µm. Untreated sample 

surfaces were also examined (after polishing) before TPN, showing mean surface roughness, 

Ra, of ~0.02 µm for all polished surfaces. Mean surface roughness was measured and 

averaged from five random (randomly oriented and randomly located) scans on top of 

material surfaces at a scan length of 800 µm. 

 

Parallel scans were performed perpendicular to the sliding direction at five locations along 

each sliding track. The cross-sectional area of each sliding scar was extracted from the 
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surface profile and then multiplied by the length of scar (i.e. 10 mm). The product of them 

was taken as the sliding wear volume.  

 

Fig.  3.5 Illustration of surface profiles obtained from an 3-body abrasion crater at scan 

direction a) parallel and b) perpendicular to abrading direction; Light optical images of 

an 3-body abrasion crater under c) bright field illumination, and d) dark field 

illumination 

Each abrasion crater was scanned across the crater diameter, both parallel and perpendicular 

to the abrading direction (Fig. 3.5a,b). Crater diameter was evaluated from the profiles 

obtained. 3-body abrasion was achieved (without 2-body grooving) and craters show a 

spherical cap shape (Fig. 3.5). Abrasion wear volume, V, was calculated by:  

𝑽 =  𝝅𝒃
𝟒

𝟔𝟒𝑹
                Equation 3.2 
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where b is the mean crater diameter and R is the ball radius (b<<R). Sliding/abrasion wear 

rates, 𝜅, can be determined by:  

𝜿 =  𝑽
𝑺𝑵

          Equation 3.3 

where S is the abrasion/sliding distance and N is the load. 

 

3.9.2 Corrosion Testing 

Material corrosion performance was evaluated using proprietary Scribner/Solartron CorrWare® 

software in an electrochemical cell equipped with a saturated calomel reference electrode (i.e. 

SCE, Hg/Hg2Cl2 in saturated KCl solution, ESCE = 0.241 V) and a platinum counter electrode. 

After ultrasonic cleaning in acetone for 10mins and isopropanol for 10mins, the sample was 

located at the bottom of the cell. Then, 3.5wt.% sodium chloride solution (i.e. NaCl in 

distilled water) was added, with a sample surface area of ~0.785 cm2 exposed to the chemical 

solution. Counter electrode and reference electrode were also immersed in 3.5wt.% sodium 

chloride solution, with the untreated/treated samples acting as the working electrode during 

corrosion testing. 

 

3.9.2.1 Open circuit potential  

After setting up the electrochemical cell, the exposed material surface was immersed in 

solution for 3600 s for open circuit potential (OCP) measurement. Potential (V) was recorded, 

with respect to reference electrode, and was plotted as a function of time. During OCP, 

corrosion reactions could be considered to be in equilibrium, where the oxidation current, Ia, 

for anodic reactions equaled the reduction current, Ic, for cathodic reactions. Nevertheless, 

corrosion reactions changed the exposed metallic surface and the chemical solution at OCP, 

during which it took time to reach a stabilised corrosion potential measurement.  
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3.9.2.2 Potentiodynamic polarisation 

Immediately after stable open circuit potential measurement, potentiodynamic polarisation 

was carried out. An external potential was applied from -1 V to +2 V, with respect to the 

reference electrode, at a scan rate of ~1.667 mV/s. The working electrode current density 

(A/m2) was recorded and plotted (in log scale) as a function of potential. During 

potentiodynamic polarisation, corrosion reactions in the electrochemical cell were forced 

from cathodic to anodic reactions, from which the corrosion equilibrium could be found at 

the lowest corrosion current between cathodic region and anodic region. The Tafel potential 

and current of each sample could be determined by extrapolation of the linear cathodic and 

anodic regions in the polarisation curve.  
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4 Characterisation of two proprietary austenitic stainless 

steels after triode plasma nitriding 

AISI type 304 (i.e. Fe-18Cr-8Ni, in wt.%) and 316 (i.e. Fe-18Cr-11Ni-3Mo, in wt.%) 

austenitic stainless steels (ASS) have both been studied extensively after low-temperature 

nitriding. ASS are based fundamentally on a ternary system of Iron-Chromium-Nickel (Fe-

Cr-Ni), where Ni can be replaced with Mn (wholly, or in part) for economic or other (e.g. 

biocompatibility) reasons. Cr has been widely referred to as an ‘essential’ element in the 

formation of γN, believed to assist in ‘trapping’ the inwardly-diffusing species and (in the 

case of nitrogen) forming short-range ordering of Cr-N pairs [10, 17, 87, 104, 117]. However, 

the synergistic effects of Ni and Mn on the structural response (i.e. lattice expansion and/or 

phase decomposition) during thermochemical diffusion treatment with nitrogen (and/or 

carbon) are still unclear.  

 

In this chapter, two proprietary commercial alloys, ATI Staballoy AG17® (i.e. Fe-17Cr-

20Mn-0.5N, in wt.%) and RA 330® (i.e. Fe-18Cr-35Ni, in wt.%), were selected for reasons 

of i) an equivalent Cr content (i.e. ~17-18 wt.%) without other strong nitride forming 

elements present and, ii) a high content of the austenite-stabilising element (i.e. 20 wt.% Mn 

and 35 wt.% Ni, respectively). A range of experimental treatment parameters were chosen, 

such that both lattice expansion and phase decomposition could be achieved in AG17 and 

330 via the low-temperature triode-plasma nitriding (TPN) technique [20, 22]. A 

conventional AISI 304 ASS was also triode plasma nitrided at 400°C, 425°C and 450°C for 

20hrs under equivalent conditions.  
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In Section 4.1, some general information about the treated surfaces − including surface 

nitrogen content, surface morphology and treatment layer depth − are presented and 

discussed. In Section 4.2, the crystallographic structure of surface diffusion layers is 

discussed with their X-ray diffractograms. Then, in Section 4.3, TEM diffraction features are 

discussed (and compared with previous literature work), to explore the analogy between 

nitrogen-interstitial introduced strain and mechanical strain, which leads to a discussion in 

Section 4.4 of the potential influence from SFE on material crystallographic structure during 

low-temperature nitriding (and the SFEs of the two ASSs investigated). 

 

In Section 4.5, the crystallographic structures of the surface layers synthesised are discussed 

(with TEM observations) – and are compared to the scientific literature. Notwithstanding the 

plasticity phenomena observed in heavily-expanded γN, in this study ‘phase decomposition’ is 

defined with respect to the formation of chromium nitrides – which requires segregation and 

redistribution of substitutional elements to nucleate and grow new precipitates (of a 

fundamentally different chemical composition and crystallographic structure) – in particular 

because of its significance to material corrosion properties in practical applications (see 

Chapter 5 for material corrosion performances). 

 

After a discussion on the lattice parameters extracted from TEM in Section 4.5.1, detailed 

TEM observations for the expanded and/or decomposed lattices are shown in Section 4.5.2 

and Section 4.5.3, respectively. Two possible ‘diffusionless’ plasticity mechanisms and two 

possible phase decomposition (and segregation) mechanisms are proposed for ASS after 

nitriding at low and elevated treatment temperatures, respectively. The evolutions of lattice 

defects generated in AG17 and 330 (and also in 304) after TPN are shown and discussed in 

Section 4.5.2.1. Evidence of lattice decomposition is given in Section 4.5.3.1. The influence 
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of material SFE (altered mainly by Mn/Ni content) on the lattice expansion and 

decomposition is discussed in Section 4.5.2.2 and Section 4.5.3.2, respectively.  

 

4.1 Surface composition and morphology  

4.1.1 Surface nitrogen content 

Surface nitrogen atomic percentages (at.% N) are presented in Table 4.1. The measured 

surface nitrogen contents all exceeded the equilibrium N solubility (c.f. ~10.3 at.% in 

austenitic iron [58] and < 0.65 at.% for AISI 316 ASS [10]). Under a given treatment 

temperature, surface N content shows an expected increasing trend with treatment time 

(Table 4.1). This increasing trend is significant on AG17 but very limited on 330. 

 

Table 4.1 Surface nitrogen content (at.%) of 304, AG17 and 330 after TPN 

Treatment AISI 304 Staballoy AG17 RA 330 
400°C 4hrs  27.8 ± 0.2 23.1 ± 0.6 
400°C 20hrs 26.9 ± 0.5 34.4 ± 0.6 24.0 ± 0.8 
425°C 4hrs  29.6 ± 0.4 24.1 ± 0.5 
425°C 20hrs 29.3 ± 0.7 34.3 ± 0.7 25.7 ± 0.9 
450°C 4hrs  26.5 ± 0.5 22.6 ± 0.8 
450°C 20hrs 19.2 ± 0.3 29.2 ± 0.3 25.1 ± 0.5 

 

The surface nitrogen contents of samples after 4hrs and 20hrs of TPN are plotted separately 

in two bar charts, as shown in Fig. 4.1. Under a given treatment time (Fig. 4.1), surface N 

content increases slightly from 400°C to 425°C of all three ASS after TPN. However, a clear 

drop in surface N content is observed from 425°C to 450°C for both 304 and AG17, but not 

for 330. These drops of material surface N content with treatment temperature could be attributed 

to the lattice decomposition on ASS at this upper treatment temperature (see Section 4.2). 
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Fig.  4.1 Surface nitrogen content (in at.%) of three ASS after TPN at different 

treatment temperatures for a) 4 hours and b) 20 hours  

 

As clearly shown in Fig. 4.1, surface N contents of the nitrided 330 (which range narrowly 

from ~23 to 26 at.% N) are much lower than those of the nitrided AG17 (i.e. ~26 to 35 at.% N). 

For prolonged treatments at low temperatures (400°C and 425°C in Fig. 4.1b), the surface 
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nitrogen contents of the nitrided 304 stay between those of the nitrided AG17 and 330 alloys, 

under equivalent conditions. The nitrogen contents of the low-temperature nitrided surfaces 

diminish – following an order from Mn-stabilised (or low Ni) ASS to high-Ni ASS, in the 

sequence: AG17 → 304 → 330.  

 

4.1.2 Surface morphology under OM 

 

Fig.  4.2 Optical micrographs of AISI 304 after triode-plasma nitriding at a) 400°C 20hrs, b) 425°C 

20hrs, c) and 450°C 20hrs 

 

Optical micrographs of the TPN-treated surfaces are shown in Figs. 4.2-4.4. Individual grains 

are clearly observed, due to different plasma etching effects on grains of varying 

crystallographic orientation − showing an equiaxed polycrystalline microstructure (without 

‘macrozone’-like directionality) for the three ASS. The treatment temperatures are insufficient 

to cause grain growth for the three ASS, such that their grain sizes observed after TPN are 

representative of the original grain size. The 330 prior grain size is clearly larger than that of 

304 and AG17, but all ASSs have a grain size range within 30-100 µm. 

 

Groups of parallel traces are observed within grains at the surface of 400C20h-304 and 

425C20h-304 (with their directions indicated by white arrows, as shown in Fig. 4.2), which 
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could be due to the nitrogen-interstitial introduced strain. Rather than parallel traces, a 

‘dimpled’ surface is observed on 450C20h-304, hinting to an absence of γN (ie. low or no 

lattice strain), which could be due to phase decomposition expected at elevated temperature.  

 

For AG17, parallel traces are also observed (but much lighter as compared to 304) at low 

treatment temperatures (with their directions indicated by white arrows in Fig. 4.3a-c). The 

surface of 425C20h-AG17 also shows an anomalous morphology with small ‘hills’ (Fig. 

4.3d), which could correspond to ‘incomplete phase decomposition’ (with phase morphology 

discussed later with BSE images). Similar to 450C20h-304, 450C20h-AG17 (Fig. 4.3f) 

presents ‘dimpled’ surface morphology, which also hints at phase decomposition. For alloy 

330 shown in Fig. 4.4, parallel traces are also observed, but surface ‘dimpling’ was not seen, 

suggesting no phase decomposition. However, several sharp surface traces appear 

conspicuous on the 450C20h-330 sample (as indicated with red arrows in Fig. 4.4f), which 

could be due to grain boundary cracks (as shown later by BSE imaging).   

 

Optical microscopy, as a widely accessible characterisation technique, is able to reveal 

distinguishable surface morphologies for low-temperature nitrided surfaces. The parallel 

traces and ‘dimples’ at the treated surface could be useful to generally identify nitrogen-

supersaturation and decomposition of the ASS surfaces after nitriding. As will be seen in the 

following part of Chapter 4 (especially in Section 4.2), the crystallographic structures of 

treated surfaces (determined from XRD and TEM analyses) match with the phase 

compositions hinted at by simple OM. 
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Fig.  4.3 Optical micrographs of AG17 after triode-plasma nitriding at a) 400°C 4hrs, b) 

400°C 20hrs, c) 425°C 4hrs, d) 425°C 20hrs, e) 450°C 4hrs, f) and 450°C 20hrs  
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Fig.  4.4 Optical micrographs of 330 after triode-plasma nitriding at a) 400°C 4hrs, b) 

400°C 20hrs, c) 425°C 4hrs, d) 425°C 20hrs, e) 450°C 4hrs, f) and 450°C 20hrs 
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4.1.3 Transverse BSE imaging 

 

Fig.  4.5 Layer depths of two proprietary ASS after TPN for a) 4hrs and b) 20hrs 
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Layer depths determined from BSE images are plotted in Fig. 4.5. Treatment depths 

(especially for the prolonged treatments) are slightly higher in the high Mn(-N) AG17 alloy 

compared to the high-Ni alloy 330. The significantly thicker surface layer on 450C20h-AG17, 

as compared to 450C20h-330, could be attributed to an accelerated nitrogen diffusion rate – 

with associated austenite lattice decomposition.  

Fig.  4.6 Back-scattered electron images of AG17 after triode-plasma nitriding at a) 

400°C for 4hrs, b) 425°C for 4hrs, c) 425°C for 4hrs, d) 400°C for 20hrs, e) 425°C for 

20hrs, f) and 450°C for 20hrs 

 

Transverse BSE images of the modified surfaces of alloys AG17 and 330 are shown in Figs. 

4.6 and 4.7. Imaging contrast originates mainly from differences in local atomic mass. The 

uptake of light elements (in this case N) in a matrix of heavy elements (i.e. Fe, Cr, Ni and Mn) 

reduces the average atomic mass; hence the backscattered electron signal is weakened and N-

enriched diffusion zones appear darker than the core material in BSE imaging. For both AG17 
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and 330, dark surface diffusion layers are observed, with a clear boundary at the unmodified 

core interface, presumably owing to the abrupt drop in N concentration.  

 

Fig.  4.7 Back-scattered electron images of 330 after triode-plasma nitriding at a) 400°C 

for 4hrs, b) 425°C for 4hrs, c) 450°C for 4hrs, d) 400°C for 20hrs, e) 425°C for 20hrs, f) 

and 450°C for 20hrs 

 

Diffusion layers appear featureless on nitrided AG17 until treatment at 425°C for 20hrs, when 

relatively bright (low N content) “grains” are revealed in the dark (high N content) matrix in 

the top region of the treated layer (Fig. 4.6e). This special transverse (phase) morphology of 

425C20h-AG17 leads to the small ‘hills’ observed under OM (Fig. 4.3d). The diffusion 

zones of 450C4h-AG17 and 450C20h-AG17 show a similar double-layered structure (Fig. 

4.6c and Fig. 4f), with a sharp elemental distribution interface (EDI) between the two layers. 

On the other hand, surface layers appear homogeneous in cross-section for all nitrided 330 
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samples under BSE; however, micro-cracks could initiate on 425C20h-330 along grain 

boundaries and are obvious on 450C20h-330 (Fig. 4.7). In that case, the dark surface traces 

of 450C20h-330 under top-viewing (see OM, Fig. 4.4f) are most likely grain boundary cracks.  

 

4.2 XRD analysis  

4.2.1 Phase identifications 

Fig.  4.8 X-Ray diffraction patterns of AISI 304 before and after TPN for 20hrs 
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Fig.  4.9 X-Ray diffraction patterns of AG17 before and after TPN for a) 4hrs and b) 

20hrs 
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Fig.  4.10 X-Ray diffraction patterns of 330 before and after TPN for a) 4hrs and b) 

20hrs 
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XRD patterns, as shown in Figs. 4.8-4.10, suggest the formation of γN on all three ASSs after 

TPN treatment, according to the characteristic peak shifts to lower angles. The observable 

CrN(111) and α-Fe(110) peaks on both 304 and AG17 at 450°C 20hrs imply that the same 

phase decomposition mechanism is shared between these two alloys. Compared to 425C20h-

304, which showed no CrN and ferrite decomposition peaks, γN-AG17 decomposed after only 

4hrs at 450°C − with a clear α(110) and a weak CrN(111) reflection seen. The γN peak 

intensities are still strong at 4hrs but (with increasing phase decomposition) disappear after 

20hrs at 450°C. Moreover, two γN XRD peaks are observed on 425C20h-AG17; nevertheless, 

a weak peak (as indicated in Fig. 4.9b) between 43.6° and 44.6° is also seen on this sample, 

which corresponds to ferrite (as discussed further in Section 4.5.3).  

 

With XRD analysis, the BSE features of nitrided AG17 (see images in Fig. 4.6) can be 

discussed further. At 425°C 20hrs (Fig. 4.6d), the dominant dark matrix phase corresponds to 

untransformed γN-AG17 and the relatively bright spherical “grains” correspond to 

decomposed regions. The bottom layer is also untransformed γN-AG17 due to its insufficient 

N concentration for nitride precipitation. The γN phase appears much darker (i.e. higher N 

content) in the top region compared to the bottom region, possibly due to the formation also 

of body-centred cubic (BCC) α-ferrite in the top region, which can accommodate only 

negligible amounts of interstitial N [63] − and consequent rejection of excess N to the 

adjacent γN matrix during the later stages of treatment. At the higher temperature of 450°C, 

the surface diffusion zone is composed of a topmost layer of decomposition products and an 

underlying layer of γN-AG17 (Fig. 4.6c,f). The sharp EDI between the two layers therefore 

corresponds in this case to a phase boundary. The XRD signals of the underlying γN-AG17 

layer are still observable at 450°C 4hrs, owing to a thin topmost layer; however, as the 

topmost layer (decomposed region) grew sufficiently thick to exceed the X-ray attenuation 
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depth, only CrN and ferrite are detected after 20hrs of treatment. Under BSE imaging (Fig. 

4.6f), there is a ~2µm thick underlying layer, which appears just slightly darker than the 

unmodified core. Due to this slight contrast difference, it is determined to be a layer of γN-

AG17. Moreover, the different transverse morphologies at 425°C and 450°C could be 

attributed to the slightly different treatment temperatures, resulting in a topmost ‘incomplete’ 

decomposed region at lower temperature and a completely decomposed top layer at higher 

temperature.  

 

From BSE imaging and XRD analysis of alloy 330 (Fig. 4.7 and Fig. 4.10), there is no direct 

evidence of CrN formation in γN-330 under the selected nitriding conditions of this study. 

However, a broad XRD ‘hump’ (as indicated in Fig. 4.10b) is observed near the substrate 

γ(111) peak position (i.e. ~43.8°), adjoined to the γN(111) and γN(200) peaks at 450°C 20hrs 

− hinting at crystallographic arrangements other than γN. The transverse BSE of 330 after 

TPN (Fig. 4.7) always appear homogenous even at 450°C 20hrs, but there could be some 

lattice decomposition that is not detected under BSE (see TEM observations in Section 4.5.3). 
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4.2.2 XRD Lattice parameters of γN 

Fig.  4.11 Lattice parameters of nitrogen-expanded austenite (i.e. a111 and a200 as 

determined by d111 and d200, respectively) from experimental XRD peak positions  

 

The effective interplanar spacing (𝑑!!") of untreated and expanded austenite are calculated 

from XRD peak positions (2𝜃!!" angles) measured at full width at half maximum (FWHM) 

taking Cu K-α radiation (λ = 0.15418 nm) under Bragg’s law, i.e. 2𝑑!!" sin
!!!!"
!

= 𝜆. Lattice 

constants (a111 and a200) are calculated via 𝑎!!" = 𝑑!!"× ℎ! + 𝑘! + 𝑙! and are plotted in Fig. 

4.11. Detailed lattice parameters are shown in Table 4.2. Only a111 is plotted for the 450°C 

20hrs nitrided 330 alloy, because the γN(200) peak position of this sample cannot be correctly 

determined at FWHM from XRD. However, the γN(200) maximum peak intensity of this 

sample is located at ~45.3°, which gives a lattice parameter of ~0.401 nm − similar to the a200 

of the other 20hrs nitrided 330 samples (Table 4.2).  
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Table 4.2 Lattice constants of nitrogen-expanded austenite, measured from i) 

experimental X-ray peak positions of γN(111) and γN(200), and ii) from experimental 

diffraction spacings of γN(111) and γN(200) diffraction spots in EDPs (at <110>γN zone 

axis) extracted under TEM, using U-330 TEM sample for calibration 

 XRD lattice parameters, nm TEM lattice parameters, nm 

 a111 a200 a111 a200 
U-304 0.359 0.360 0.366 0.367 

400C20h-304 0.390 0.392 0.383 0.380 
425C20h-304 0.389 0.392 0.380 0.381 

U-AG17 0.360 0.360 0.368 0.369 
400C4h-AG17 0.377 0.379 0.376 0.378 
400C20h-AG17 0.390 0.394 0.393 0.392 
425C4h-AG17 0.382 0.385 0.374 0.375 
425C20h-AG17 0.391 0.399 0.386 0.390 
450C4h-AG17 0.371 0.373 0.367 0.368 

U-330 0.358 0.359 0.358 0.359 
400C4h-330 0.379 0.393 0.374 0.379 
400C20h-330 0.381 0.395 0.382 0.387 
425C4h-330 0.379 0.395 / / 
425C20h-330 0.381 0.397 / / 
450C4h-330 0.378 0.393 / / 
450C20h-330 0.380 0.401 0.369 0.370 

 

Evidently, XRD peak shift of 200 planes is always higher than that of 111 planes for both 

ASS substrates after TPN treatment, in accordance with the first clearly documented XRD 

patterns published by Ichii et al. in 1986 [8]. This is due to the fundamental elastic anisotropy 

of FCC structures (i.e. hkl-dependent lattice elastic constants) such that, under a specific 

elastic strain, the γ(200) peak will in any case shift to lower 2θ angles than does γ(111), since 

the non-close packed {200}γ planes are more compliant than are the close packed planes of 

{111}γ. An anisotropically-expanded “heavily strained austenitic structure” was the basis of 

the (now widely-accepted) ‘expanded austenite’ terminology introduced by Leyland et al. in 

1993 [22].  
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As elucidated in more detail by Sun et al. in 1999 [80], such anomalous expansion could also 

originate from the hkl-dependent SF parameters (based on Warren’s theoretical study [83]), 

in addition to the hkl-dependent lattice constants in the surface layer (or to a combination of 

both factors). In the study by Sun et al. [80], a111 ranged from ~0.374 nm to ~0.386 nm and 

a200 ranged from ~0.374 nm to ~0.398 nm for AISI 304 and AISI 316 after plasma nitriding at 

temperatures between 400°C and 500°C. The lattice parameters of γN-AG17, γN-304 and γN-330 

synthesised in this study all fall with within this range. Comparisons between the lattice 

parameters (a111 and a200) of AG17 and 330 indicate that γN-AG17 changes its lattice 

parameters with both treatment time and temperature, while γN-330 exhibits rather invariant 

lattice parameters over the selected time/temperature range. Together with the narrow range of 

surface nitrogen content for 330 after TPN (Fig. 4.1), one could argue that nitrogen-

interstitial introduced lattice expansion is rapidly saturated in the (high-Ni) 330 alloy within a 

relatively short treatment time during TPN (i.e. ≤ 4hrs) at the selected treatment temperatures. 

 

4.3 TEM diffraction features of γN 

Apart from the characteristic XRD peak shifts and broadening, various TEM signatures were 

reported previously for nitrogen-expanded austenite. Under TEM, local lattice distortion of γN 

bears close analogy to the deformation structure of plastically deformed Mn/N-stabilised ASS 

reported by Lee et al. [146]. Further to a TEM study by Tong et al. [114], electron diffraction 

patterns of the high SF density regions in γN [14, 15, 112-114] appear strikingly similar to 

SFs, deformation twinning and/or stress- induced hexagonal closed packed (HCP) ε-

martensite of (plastically) mechanically-deformed ASS [146] as illustrated (at the [110]matrix 

zone axis) in Fig. 4.12. That is, the FCC lattice undergoes plasticity mechanisms, such as 

generation of SFs [14, 15], twinning [112, 113] and/or martensitic shear transformation [114], 

with {111}γ habit planes similar to those obtained under mechanical deformation.  
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Fig.  4.12 Illustration of electron diffraction features observable for high SF density 

regions in γN. Apart from the forbidden reflections of FCC planes, the other features (i.e. 

<111> SFs, twinning and local HCP arrangement in γN) are consistent with those of 

mechanically deformed ASS [146] 

 

Various local features of lattice distortion, including SFs on {111}γN planes, twinning and/or 

local ‘martensitic’ SF clusters, have been reported and studied in expanded austenite layers 

synthesised on AISI 304L [114], AISI 316 [14, 15, 112] or AISI 316L [113] after plasma 

nitriding. Noticeably, local HCP structure has been reported in γN-304L [114], but not in γN-

316 [112] and γN-316L [113]. Even though the HCP structures in γN-304L showed the same 

crystallographic structure to ε-martensite in the paper by Tong et al. [114], the HCP-

structured ‘bright strips’ were still considered by these authors as clustered (i.e. locally 

ordered) SFs − which was attributed to the small widths of the HCP features observed (no 

more than about ten nanometers wide). However, the ‘primary ε bands’ identified in the study 

by Lee et al. [146] are clearly also less than ten nanometers wide. The HCP strips observed in 
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γN could actually be considered as ε-martensite, equivalent to regions (in bands or strips) with 

high SF densities on {111}γN planes having ABABAB arrangement (ε-martensite) rather 

than ABCABC arrangement (γ-austenite).  

 

4.4 The potential influences of material SFE 

Lee et al. [146] experimentally identified and discussed three SFE regions for mechanically-

strained high interstitial ASS, which were i) SFE < 15 mJ/m2 for only strain-induced martensitic 

transformations; ii) 15 mJ/m2 < SFE < 20 mJ/m2 for the co-existence of deformation twins 

and martensite; iii) SFE > 20 mJ/m2 for the occurrence of deformation twins only. Additionally, 

modeling of SFE using the Gibbs free energy of the austenite to martensite transformation, 

Δ𝐺!→!, suggests a threshold SFE at ~18 mJ/m2 [147, 148]. In other words, the strain-induced 

HCP ε-martensite transformation is energetically favourable for materials with SFE below 

~18-20 mJ/m2. Similar to the effects of mechanical strain, one could postulate local displacive 

transformations of N-strained FCC lattices (i.e. γN) to i) ε-martensite with SFE < 15 mJ/m2; 

ii) a mixture of martensite and twins with SFE from 15 to ~18-20 mJ/m2; iii) twins only 

with SFE > 20 mJ/m2. In this case, the coexistence of ε-martensite and twins in γN-304L [114] 

correlates well to its low substrate SFE (below 18 mJ/m2), while the twinned-only γN-316 

[112] (or γN-316L [113]) correlates to a slightly higher substrate SFE (certainly exceeding 18 

– and possibly above 20 − mJ/m2), implying a likely correlation between substrate SFE and 

specific, localised lattice distortion under nitrogen-interstitial induced strain.  

 

The stacking fault energy (SFE) of a material which is, for example, ~18 mJ/m2 for AISI 304 

[149, 150] − where both deformation twinning and/or martensitic transformation may occur 

under mechanical deformation − will directly influence the propensity of the strained lattice 

to undergo twinning, martensitic shear or conventional dislocation-mediated slip transformations 
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(or combinations thereof). In this case, the SFE of the particular ASS substrate material being 

treated must contribute significantly to the structure and phase stability of expanded austenite 

structures formed upon supersaturation of interstitial element(s).  

 

A high density of lattice defects might aid the accommodation of extra nitrogen, increasing 

the paraequilibrium solubility and the resulting lattice expansion. Ernst et al. [17] also 

indicated that decomposition of expanded austenite (γC in their study) requires i) substantial 

lattice expansion to reduce the volume-misfit stress for precipitation, and ii) a high density of 

lattice defects (e.g. SFs) to locally enhance substitutional segregation. Taking the available 

SFE data of the substrate compositions at room temperature as reference points, (the 

relatively low SFE) AG17 alloy should be able to accommodate more interstitial N than (the 

high SFE) alloy 330 during nitriding (via the generation of SFs during treatment), leading to 

higher lattice expansion; however, the expected higher SF density and lattice expansion of 

AG17 will also result in a lower thermodynamic stability of γN-AG17, as compared to γN-330. 

 

Both substitutional (Ni, Mn) and interstitial (N, C) species will influence the SFE of ASS; 

however, there is a lack of SFE data for the precise compositions of the AG17 and 330 

proprietary alloys. From the literature, a higher Ni content clearly increases SFE (from ~17 

mJ/m2 at 8 at.% Ni to ~31 mJ/m2 at 30 at.% Ni) in an Fe-Cr-Ni ternary system containing 

~18-20 at.% Cr [151, 152]. Alloy 330 is thus likely to possess a much higher SFE than 304 

(probably in excess of 30 mJ/m2) for this positive effect of Ni on SFE; in which case, 

planar dislocation glide tends to be promoted under strain. Secondly, Gavriljuk et al. [153] 

measured experimentally a SFE of ~21 mJ/m2 for an alloy composition quite similar to AG17 

(Fe-15Cr-17Mn-0.5N) – i.e. slightly higher than (but approximately equivalent to) AISI 304 

(at ~18 mJ/m2). Based on a thermodynamic model for the Fe-Cr-Mn-N system developed by 
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Mosecker et al. [147], the SFE of AG17 should in principle lie between ~10 to 18 mJ/m2 for 

the occurrence of martensitic transformation and twinning (or martensitic transformation only); 

i.e. values similar to (or slightly lower than) those reported for AISI 304 [149, 150].  

 

The effect of nitrogen on SFE will strongly depend on the host composition. The interactions 

between nitrogen and the ternary metal alloy systems of interest (i.e. Fe-Cr-Ni and Fe-Cr-Mn) 

will result in incomparable N-dependence of SFE between these two systems. Experimentally, 

SFE was reported as decreasing with increasing N content in the Fe-Cr-Ni-N system [149], 

while the effect of N on SFE appeared non-monotonic in the Fe-Cr-Mn-N system [146, 147, 

153]. Increasing N content in the Fe-Cr-Mn solid solution initially decreases SFE, due to 

Suzuki segregation of N into SFs at low N concentration and then increases SFE at higher N 

contents, due to a less effective interstitial segregation [147]. However, available literature 

(e.g. [146, 147, 149, 153]) was based on measurements/models for N contents in the low 

concentration regime − i.e. below 0.8 wt.% (~3 at.%) − at room temperature. SFE increases 

with temperature for FCC ASS, but the N-dependence of SFE is still unclear for the 

metastable γN formed in Fe-Cr-Ni-N and Fe-Cr-Mn-N systems. The ‘locking’ effect of 

interstitial N on SFs is likely to be reduced by the thermally-enhanced mobility of interstitial 

N at typical thermochemical diffusion treatment temperatures (increasing SFE), but the much 

higher local N content (and short range ordering) of Cr-N could contribute to SFE in an 

opposite way, creating energy barriers for dislocation glide (reducing SFE). Additionally, the 

extremely high atomic fraction of N, in itself, introduces strain to the metastable lattice; the 

real effect of N in the “colossal supersaturation” [13, 133] concentration region is complex – 

and requires further systematic investigation (beyond the scope of this study). 
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4.5 TEM analysis  

4.5.1 TEM Lattice parameters of γN 

Assuming the same camera constant (i.e. λ × L) for all EDPs – and using a FIB-prepared 

TEM sample of U-330 for calibration (taking a111 ≈ a200 ≈ ~0.358 nm) – TEM lattice 

parameters (a111 and a200) of γN can be calculated from the distances of the respective 

diffraction spots to the centre spot using EDPs generated at the <110>γN zone axis, which are 

shown in Table 4.2. The measured lattice constants (near the surface of the cross-sectional 

samples) for 400C20h-304, 400C20h-AG17, and 400C20h-330 are ~0.390, ~0.390 and 

~0.382 nm, respectively, which clearly indicates lattice expansion under stress-free (or 

‘micro-stress’) conditions, as compared to the lattice constants of untreated samples. 

However, as the high compressive stress of γN diminished (i.e. stress relaxation when the 

anisotropically strained γN is no longer constrained by material volumes in bulk form) during 

preparation of thin TEM foils, TEM lattice parameters appear hkl-independent, revealing 

isotropically expanded austenite (a111 ≈ a200) − as observed also in TEM studies of γN-316 [14]. 

The measured TEM lattice constants of γN decrease from surface to core.  

 

Generally, lattice parameters are higher in (high-Mn) alloy AG17 and lower in (high-Ni) 

alloy 330. Nevertheless, the abovementioned ‘quantitative’ TEM analysis for γN is, strictly 

speaking, non-representative (and probably inaccurate), owing to the small sampling areas, 

the small error in the camera length (despite placing the sample at eucentric height), 

influences from the FIB preparation process (using a high voltage gallium beam), etc. The 

lattice constants extracted from TEM are not discussed further therefore, with the following 

section focused on more reliable/convincing evidence observed in the selected treatment 

temperature/time envelope.  
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4.5.2 TEM observations and discussions on lattice expansion  

4.5.2.1 TEM observations  

As discussed in Section 4.3, the HCP ‘strips’ reported in γN-304L by Tong et al. [114] were 

not observed in either γN-316L [113] or γN-316 [14, 112]. The TEM observations on γN-304L 

by Tong et al. [114] are however reproducible under the selected TPN conditions in this 

study. The HCP structured lamellae (or ε-martensite) are obtained in the γN-304 synthesised 

in this study, as shown in Fig. 4.13. Streaking is observable in the γN-304 as shown in EDPs, 

indicating generation of SFs. The ‘forbidden’ FCC reflections are also evident, indicating 

ordered nitrogen occupation in austenite lattice octahedra [15]. Under TEM, no evidence of 

CrN formation can be found in the foils prepared from 400C20h-304 and 425C20h-304, 

which agrees with XRD profiles. Although the γN-304 in this study has XRD lattice 

parameters almost identical to those of γN-304L in Tong’s study [114] (i.e. a111 ≈ 0.389 nm, 

a200 ≈ 0.392 nm for γN-304L), the twinning reported for γN-304L is not seen in γN-304, as 

shown by the EDPs in Fig. 4.13. This could be attributed to substrate compositional 

differences with respect to the relatively wide composition window for AISI 304, where 

variations in Cr and Ni (or N, C, Si and Mn) within the composition window will result in 

slight change in SFE that is, however, sufficient to alter the ‘deformation’ mode. More 

importantly, AG17 and 330, having significantly different compositions and SFEs, show very 

different lattice-expansion behaviour with treatment time/temperature, as already shown with 

XRD profiles (Figs. 4.8-4.10). Lattice defects created after TPN at low temperature are 

observable under TEM, as shown in Figs. 4.14-4.15.  
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Fig.  4.13 DF-TEM images and selected area EDPs of AISI 304 after plasma nitriding 

for 20hrs at 400°C (a, b, respectively) and at 425°C (c, d, e, respectively) (DF-TEM 

images were constructed from diffraction electrons as indicated in EDPs of image b, d; 

diffraction aperture were located as indicated in DF-TEM images of image a, c) 
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Fig.  4.14 EDP of region at the surface of AG17 after plasma nitriding a) at 400°C for 

4hrs, b) at 400°C for 20hrs, and c-f) corresponding DF-TEM images of the 400°C 20hrs 

nitrided AG17 surface (DF-TEM images were constructed from different diffraction 

electrons as indicated in the figure) 

 

More importantly, AG17 and 330, having significantly different compositions and SFEs, 

show very different lattice-expansion behaviour with treatment time/temperature, as already 

shown with XRD profiles (Figs. 4.8-4.10). Lattice defects created in AG17 surface after TPN 

at low temperature are observable under TEM, as shown in Figs. 4.14-4.15.  

 

The increasing XRD peak shift of γN-AG17 (to lower 2θ angles) with temperature/time 

correlates well to the evolution of lattice distortion observed under TEM. After 4hrs of 
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nitriding at 400°C, γN-AG17 shows only austenitic diffraction intensity maxima under TEM 

(Fig. 4.14a), whilst a high SF density is obtained in γN-AG17 after 20hrs of treatment at the 

same temperature (Fig. 4.14b). The <111>γN ‘streaking’ (Fig. 4.14b) corresponds to a high 

SF density located preferentially on {111}γN planes, which correlates to further composition-

induced lattice expansion with increasing treatment time. Although it was not unambiguously 

observed or reported in the open literature of expanded austenite, this <111>γN streaking 

(under N-induced strain) could occur as a result of dissociation of ‘perfect’ dislocations into 

Shockley partials on the {111}γN slip planes (e.g. !
!
110 →  !

!
211 +  !

!
121 , where 𝑎 

denotes lattice parameter), which is normally considered responsible for the <111>γ streaking 

observed in mechanically deformed austenite. Through dislocation dissociation, lattice strain 

is accommodated by the generation of SFs on {111}γN planes. A secondary set of intensity 

maxima are observed on the <111>γN streaks, corresponding to the same bright strip-shaped 

regions at the nitrided surface, revealed by DF-TEM imaging of the intensity maxima (Fig. 

4.14c-e). These maxima are indexed as HCP ε-martensite. After 20hrs of nitriding at 400°C, 

the parallel bright strips are ~10-40 nm wide and occupy a significant volume fraction of 

approximately ~24% at the material surface. Similar to the ‘clustered SFs’ reported by Tong 

et al. [114] in γN-304L or ‘primary ε bands’  by Lee et al. [146] in plastically deformed low 

SFE ASS, the ε-martensite and parent γN-AG17 follow the Shoji-Nishiyama (S-N) 

structure-orientation relationship, i.e. <110>γN//<2110>ε and {111}γN//{0001}ε. These 

strips can thus be considered as local distortion of the FCC austenitic structure (with a high 

SF probability of ~0.5), in which case SFs are present on every second {111}γN plane. 

Noticeably, no evidence of twinning was observed in EDPs under TEM. A third set of weak 

intensity maxima is observed − and was examined more closely under DF-TEM (Fig. 4.14f). 

No clearly distinguished responsible features could be found, indicating that these weak 

diffraction reflections are unlikely to originate from the ε-martensite strips. Such weak 
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reflections are however evident in γN-AG17, γN-304 [114], γN-316 [14, 15, 112] and γN-316L 

[113]. In the model of Jiang et al. [15], these weak diffraction patterns are claimed to 

correspond to ‘forbidden’ reflections of γN − and are attributed to ordered occupation by N at 

the centre of corner-sharing octahedra in the FCC lattice.  

 

Fig.  4.15 TEM images, EDPs of AG17 after plasma nitriding at 425°C for 4hrs and 20hrs. a-c) BF-

TEM image of 425°C 4hrs nitrided AG17 and corresponding selected area EDPs, d) BF-TEM image of 

the γN-AG17 in image a showing extensive SFs, e) DF-TEM image of 425°C 20hrs nitrided AG17, f) 

EDP covering entire region shown in image d, g) Selected area EDP of the untransformed γN in image d 

(DF-TEM was constructed from diffraction electrons as indicated in the figure) 

 

At a treatment temperature of 425°C, similar structural evolution is revealed in γN-AG17 as 

compared to that generated at 400°C for the same alloy. The EDP of γN-AG17 treated at 

425°C for 4hrs (Fig. 4.15b) presents γN spots and <111>γN streaking, where extensive SFs 

were revealed in γN-AG17 at this treatment condition in BF-TEM image (Fig. 4.15d). The 

EDP of γN-AG17 treated at 425°C for 20hrs (Fig. 4.15g) presents γN spots, <111>γN 
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streaking – and also HCP spots and ‘forbidden’ γN spots. In the DF-TEM image of the 425°C 

20hrs nitrided AG17 surface, using a single HCP spot (Fig. 4.15e), parallel strips are revealed 

inside an untransformed volume of γN-AG17 that has not decomposed to CrN + α. 

Comparisons between the 400°C treated γN-AG17 sample and the 425°C one reveal also a 

structural evolution with treatment temperature. The extra <111>γN streaking in the EDP of 

γN-AG17 at 425°C 4hrs, as compared to γN-AG17 at 400°C 4hrs, corresponds to a slightly 

larger lattice expansion. The EDP features of the γN-AG17 at 425°C 20hrs (Fig. 4.15e) are 

the same as its counterpart at 400°C 20hrs (Fig. 4.14b); however, comparing the DF-TEM 

images of γN-AG17 at 400°C 20hrs (Fig. 4.14d) and at 425°C 20hrs (Fig. 4.15e), the HCP 

lamellae evidently grow in width (from ≤ 30 nm to ≤ 50 nm) and in volume fraction (from 

~24 vol% to ~37 vol%) with the increase in treatment temperature.  

 

Fig.  4.16 a) EDP of expanded austenite generated on 330 after nitriding at 400°C 20hrs, 

b) selective area EDP of localized lattice distortion from region shown in image c, c) DF-

TEM image showing a shear band, DF-TEM image was constructed from diffraction 

electrons as indicated in the figure 
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In contrast, mainly γN diffraction spots are observed in EDPs of γN-330 synthesised at 400°C 

20hrs (Fig. 4.16a). Different to the SFs observed in γN-316 [14], no evidence of SFs, twins or 

HCP martensite is observed in the γN-330 produced in this study. The nearly ‘perfect’ FCC 

lattice (with low SF density) of alloy 330 was retained, however, after nitrogen-interstitial 

introduced lattice expansion. In this case, the rapid saturation of the lattice expansion observed 

for γN-330 could be correlated primarily to dislocation-mediated slip (e.g. {111}γN<110>γN 

as active primary slip systems for the FCC lattice) under the thermochemically-induced 

lattice strain. Intriguingly, the forbidden γN reflections are absent in γN-330, despite the 

interstitial nitrogen content apparently exceeding the level required to saturate the FCC lattice 

octahedral interstices. In contrast to the ordered occupation suggested by Jiang et al. [15], the 

occupation of interstitial sites by nitrogen might therefore be random in γN-330, i.e. not 

always in the corner-sharing octahedra of the FCC lattice.  

 

However, microscopic shear bands (i.e. localised accumulation and interaction of shear 

planes) can be observed inside individual austenite grains (Fig. 4.16b, c). Similar shear bands, 

which initiate through structural instability (and contain layered dislocation walls), have been 

reported on plastically deformed (i.e. cold-rolled) high or medium SFE materials [154, 155]. 

If the precursory obstacles for forming the shear bands are walls of dislocations (rather than 

fine twin lamellae), the shear band is of copper-type (rather than brass-type). The shear band 

investigated here can be classified as a ‘copper-type’ shear band (rather than ‘brass-type’) − 

according to the terminology introduced by Wagner et al. [156] − since there is no evidence 

of twin lamellae. In the EDP of Fig. 4.16b, apart from γN diffraction spots (arising from an 

adjacent γN-330 grain), the obvious ‘spot-and-stripe’ intensity pairs and weak ‘amorphous’ 

diffraction rings suggest lattice mis-orientation and distortion within shear band under highly-

localised strain.  
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Under DF-TEM imaging, using one of the intensity maxima (Fig. 4.16c), the shear band 

discussed above appears to be ~120 nm wide. Extensive dislocation interactions within this 

shear band have caused the volume to the left of the shear band (Fig. 4.16c) to be displaced 

out from the material surface − presumably under compression parallel to the material surface. 

This observation of high-level plasticity confirmed the surface patterns observed from top 

viewing under OM (Fig. 4.4). Unlike the large volume fraction of HCP lamellae observed at 

the surface of γN-AG17 (where such volume displacements were small and gradual), the 

shear bands in γN-330 are ‘macroscopically’ located several microns from each other in the 

austenite grains (based on OM observations of Fig. 4.4). Given such localised dislocation-

mediated microstructural evolution inside grains, one could assume dislocation accumulation 

and interactions at grain boundaries. In addition to the expansion/strains developed between 

adjoining γN-330 grains, without the generation of SFs inside γN-330 grains to relax the high 

compressive stress, such dislocation accumulations could initiate voids and eventually micro-

cracking along grain boundaries, as observed in the 330 samples treated at 425°C for 20hrs 

(see BSE image in Fig. 4.7e).  

 

4.5.2.2 Influence of SFE on lattice expansion 

In plastic accommodation of composition-induced strain, extremely high densities of SFs 

(forming HCP lamellae) are believed to be generated via dislocation dissociation in the FCC 

lattice of low-SFE AG17 alloy, whilst the (presumed) dislocation-mediated slip in the FCC 

lattice of high-SFE alloy 330 led to a relatively ‘perfect’ FCC lattice structure, but also 

generated a small volume fraction of shear bands. The generation of SFs (and the potential 

lattice twinning or local martensitic transformation) in γN-AG17 during treatment, owing to 

lattice strain induced by N-absorption, in turn assists further N-uptake and lattice expansion. 

Due to the retention of a ‘perfect’ austenitic lattice with little or no SFs, nitrogen saturation of 
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γN-330 (and an associated limit of lattice expansion) is rapidly reached during the early stage 

of diffusion treatment. The shear bands formed inside a γN-330 grain lead to significant 

displacement of large lattice volumes out from the material surface. In this regard, a low 

substrate SFE appears to be beneficial for low-temperature nitriding, which could be argued 

owing to a (hypothesised) SF-enhanced N-absorption and lattice expansion. However, this 

hypothesis still needs to be confirmed with more direct evidence in future experimentations. 

In conjunction with solid solution strengthening, the work hardening via local martensitic 

shear transformation and dislocation slip in γN-AG17 contributes to a hardening mechanism, 

which should be different to the hardening mechanism in γN-330 (via dislocation slip).  

 

The deformation modes discussed so far have been correlated to the SFEs of unmodified 

substrates, which are hinted at by the literature and – as confirmed in this study for γN-AG17 

and γN-330 – present distinguishably different ‘deformation structures’. However, the distortion 

mechanisms are in practice determined by the ‘dynamic’ (nitrogen-concentration mediated) 

SFEs of the near-surface FCC lattices generated during treatment − rather than the ‘textbook’ 

room-temperature (unmodified) substrate SFE values – with consideration of effects of 

treatment temperature and inhomogeneous near-surface chemical composition on ‘local’ SFE 

values across the treated layer. Interstitial nitrogen, which induces a composition-dependent 

lattice strain similar to that of mechanical strain, will also simultaneously influence material 

behaviour. SFE increases with temperature for FCC material, with a commensurate rise in the 

energy required to generate stacking faults. In this case, the ‘distorted’ structures in low SFE 

γN-AG17 (i.e. only ε-martensite lamellae for SFE < 15 mJ/m2) must be attributable to the 

extensive short-range-ordered Cr-N clusters, which create energy barriers within the primary 

slip systems (reducing SFE), offsetting the influence of elevated temperature. The SF-free or 

low SF density features of γN-330 (with high Ni content) could certainly be attributed to its 
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high SFE – and to the increase in SFE with temperature. However, the high N content could 

also offset the influence of raised temperature in γN-330. The initiation of strain localisation 

(i.e. shear banding) in γN-330 might have something to do with the effect on dislocation glide 

of local interaction of Cr-N clusters. 

 

Obviously, the N-dependence of SFE varies also between Fe-Cr-Ni(-N) and Fe-Cr-Mn(-N) 

systems – another consideration requiring further systematic study beyond the immediate 

scope of the work presented in this thesis. However, from our studies (and the available 

literature), one could tentatively rank the SFE of γN (at considerably saturated N absorption 

under a typical nitriding temperature of ~400°C) qualitatively from low to high as: γN-AG17 

→ γN-304(L) → γN-316(L) → γN-330 − which follows the SFE trend of substrate 

compositions from Mn-stabilised ASS to Ni-stabilised ASS. It is also worth reiterating at this 

point that, despite being a potent austenite stabiliser, the bulk N content of unmodified AG17 

alloy probably has a negligible effect on the lattice SFE of γN during thermochemical 

treatment − since the N content in the resulting γN is, by comparison, extremely high. The 

SFE of γN during nitriding should mainly be influenced by the various substitutional alloying 

elements (or, to a lesser extent, by interstitial elements other than N) already present in the 

substrate.  

 

4.5.3 TEM observation and discussions on lattice decompositions 

4.5.3.1 TEM observations  

The strong chemical affinity of Cr for N eventually leads to CrN precipitation in all three 

ASS compositions after TPN. In comparison with XRD and SEM–BSE data, TEM analysis 

indicates slightly different (and arguably more precise) results. The threshold decomposition 

condition for γN-AG17 is determined, almost exactly, as 4hrs at a treatment temperature of 
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425°C (Fig. 4.15). The selected area EDP of Fig. 4.15c reveals CrN and α-ferrite diffraction 

rings (identified by PDF cards 01-076-2494 and 00-006-0696, respectively) in the topmost 

region of the diffusion layer only, which presumably has the highest nitrogen content and 

associated lattice distortion. The precipitation morphology of CrN in plasma nitrided AG17 is 

compared to that of 304 at the upper treatment temperature/time condition of 450°C 20hrs, 

which is shown in Fig. 4.17. Fine lamellar CrN precipitates (with an inter-lamellar spacing of 

only 1-3 nm) were observed for both 304 and AG17 (Fig. 4.17c,f). Similar thin, lamellar CrN 

precipitation (with inter-lamellar spacing of 3-5 nm) has also been reported by Li et al. [112] 

in decomposed γN-316 − which was attributed to a cellular precipitation mechanism under 

low substitutional diffusivity of Cr. Noticeably, γ(111) halos are observed in between the 

CrN(111) ring and the α-Fe(110) ring in the EDPs of Fig. 4.17b and Fig. 4.17e, suggesting 

residual austenitic structure in the decomposed lattice for both AG17 and 304. Therefore, γN-

AG17 experienced a eutectoid phase transformation similar to that of γN-304, which is: γN → 

CrN + α (+ γ). However, considering the phase decomposition mechanism of γN-304L to CrN 

+ α-ferrite [120], the observed residual γ(111) halos are most likely due to incomplete phase 

transformation caused by sluggish substitutional-element diffusion kinetics at the treatment 

temperature. It is also worth mentioning that Mn3N2 precipitation, which was reported for the 

high-Mn alloy Fe-18Cr-11Mn-3Mo [118] after plasma nitriding, is not observed in γN-AG17. 
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Fig.  4.17 BF-TEM images, EDPs, and DF-TEM images of 450°C 20hrs plasma nitrided 

304 (a, b, c, respectively) and AG17 (d, e, f, respectively). DF-TEM images were 

constructed from CrN(111) diffraction electrons 

 

For alloy 330, phase decomposition is clearly revealed at grain boundaries after 450°C 20hrs 

treatment (Fig. 4.18c, d). In the EDP of Fig. 4.18c, the large diffraction spots originate from 

two adjacent grains of γN-330 within the diffraction aperture, whilst the polycrystalline diffraction 

rings correspond to CrN and γ-Fe co-located at (or near) the grain boundary (identified by 

PDF cards 01-076-2494 and 00-052-0513, respectively). The DF-TEM image of Fig. 4.18d 

reveals nanometric clusters of spheroidal CrN precipitates located at the grain boundary; the 

precipitation zone being ~150nm wide. The high Ni content in alloy 330 stabilises the Cr-

depleted austenite volume as polycrystalline γ-(Fe, Ni), which is co-precipitated with CrN. Thus, 

the decomposition mechanism can be determined for γN-330 as being: γN → CrN + γ-(Fe, Ni).  
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Fig. 4.18 a) low magnification BF-TEM image of the 450°C 20hrs plasma nitrided 330, 

b-c) corresponding selected area EDPs, d) DF-TEM image of the grain boundary region, 

DF-TEM image was constructed from CrN(111) diffraction electrons as indicated in 

figure c 

 

More importantly, further to the broad XRD ‘hump’ (Fig. 4.10) and ‘stretched’ diffraction 

spots observed (Fig. 18b) on alloy 330 after plasma nitriding at 450°C for 20hrs, partial 

phase decomposition occurs inside the γN-330 grains under this treatment condition. Fine 

spheroidal nano-particles are observed in BF-TEM imaging (Fig. 4.19a, c) and double 

diffraction is evident in EDPs (Fig. 4.19b, d). Different to the sharp diffraction 

polycrystalline spots observed at grain boundaries, double diffraction spots for the γN-330 

grains (Fig. 4.19b, d) suggest lattice coherency between secondary phase(s) and the matrix. It 

is difficult to generate a DF-TEM image for the secondary phase(s), because the adjacent 

diffraction spots are very close together. However, taking the lattice parameters of CrN, γ-Fe 
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and γN-330 as respectively ~0.414 nm (PDF card 01-076-2494), ~0.366 nm (PDF card 00-

052-0513) and ~0.380 nm (the latter being determined from the peak position of close-

packed plane from the X-ray diffractogram of alloy 330 at this treatment condition), lattice 

parameter ratios can be calculated as i) ~1.09 between CrN and γN-330, and ii) ~1.13 between 

CrN and γ-Fe. The ratio of diffraction spot distances of the adjacent FCC spots (in Fig. 4.19b, 

d) is ~1.10, which is very close to ~1.09 that is expected between CrN and γN-330, 

suggesting CrN nano-precipitates inside γN-330 grains.  

Fig. 4.19 BF-TEM images and EDPs of the 450°C 20hrs plasma nitrided 330 extracted 

via Philips EM420 (a, b, respectively) and FEI Tecnai T20 (c, d, respectively)  
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The abovementioned morphology and diffraction features are observed in the γN-330 grains 

of the TEM foil shown in Fig. 4.18a, which covers material to a sub-surface depth of ~5.5 

µm, that is sufficiently deep with respect to the X-ray attenuation depth. In this case, γ-Fe 

could form inside γN-330 grains to give rise to the broad XRD ‘hump’ near the γ(111) 

position, in which the γ-Fe reflections might overlap with γN-330 reflections in EDPs 

(Fig.4.19b, d) owing to their relatively close lattice parameters and the lattice coherency. 

Owing to the potential coherency-microstrain (between precipitates and matrix) and the 

nitrogen-concentration or microstrain gradient (from surface to core) in the γN-330 layer, a 

broad ‘hump’ is eventually observed in the X-ray diffractogram of the 450°C 20hrs nitrided 

alloy 330 (Fig. 4.10). Such decomposed structure inside γN-330 grains should be metastable, 

where the precipitate coherency must reduce with increasing treatment temperature (or 

prolonged treatment time). 

 

4.5.3.2 Influence of SFE on lattice decomposition  

The formation of nitrides in γN is limited − and is controlled mainly by the diffusivity of 

substitutional elements, which clearly varies with material composition (i.e. primarily the 

Mn/Ni content, in commercial alloys) at a specific TPN treatment temperature. Moreover, 

given the limited substitutional diffusivity at the low treatment temperatures involved, lattice 

defects (e.g. SFs) plays a vital role in promoting the formation of distinct nitride 

crystallographic phases during treatment, through i) further increased N-uptake (and consequent 

lattice strain under supersaturation) and ii) locally enhanced substitutional diffusivity [17]. 

Phase decomposition of γN-AG17 at 425°C initiates from the topmost region of the nitrided 

surface, where lattice expansion and SF density is highest. The precipitation of CrN in γN-AG17 

is facilitated by substantial lattice strain and high SF density. Phase decomposition of γN-AG17 

occurred allotropically to α-Fe + CrN in a similar way to that commonly reported for γN-304, 
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but lattice decomposition is more thermodynamically favourable in AG17 than 304 after TPN, 

which can be correlated to the lower SFE expected in AG17 during nitriding (10 ≤ 18 mJ/m2 

for unmodified AG17, compared to ≥18 mJ/m2 for unmodified 304).  

 

On the other hand, compared to the relatively ‘complete’ phase decomposition in γN-AG17 

and γN-304 at the upper treatment condition of 450°C and 20hrs, the γN-330 grains were still 

at an early stage of decomposition under this treatment condition, whereby fine (metastable) 

nano-particles were observed in the expanded austenite matrix. Owing to the free surface (i.e. 

high interfacial energy planar defects) provided and the relatively high substitutional 

diffusivity at grain boundaries, phase decomposition of γN-330 occurred more readily at grain 

boundaries, where polycrystalline CrN and γ-Fe precipitates were clearly observed. Such 

sluggish decomposition of γN-330 could be attributed to the minor lattice defects in γN-330 

grains, which correlates well to the significantly higher SFE of unmodified alloy 330 at room 

temperature (or of N-supersaturated lattice for this alloy during treatment). High SFE 

materials appear thermodynamically more stable, compared to low SFE ones (e.g. 304 and 

AG17) after TPN.  
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4.6 Summary 

In this chapter, the crystal structures of the expanded and/or decomposed FCC lattice − as 

synthesised on two proprietary ASS after TPN at 400°C, 425°C and 450°C for 4hrs and 20hrs, 

respectively − were investigated systematically under EDX, XRD, BSE and on (FIB-prepared) 

TEM thin foils. Several findings on the paraequilibium structures of ASS after TPN could be 

summarised as follows: 

 

• Lattice distortion in γN under nitrogen-supersaturation bears strong analogy with that of 

austenitic materials subjected to mechanical deformation (Fig. 4.12). Plasticity mechanisms 

of dislocation glide and/or dissociation in the nitrogen composition-strained FCC lattice 

are proposed with respect to material SFE under extremely high nitrogen absorption after 

low-temperature TPN, after the TEM observation of i) HCP lamellae (or ε-martensite) in 

a high SF density expanded austenitic lattice (i.e. low SFE γN-AG17) (Figs. 4.13-4.15) 

and ii) shear banding in a relatively low SF density expanded austenitic lattice (i.e. high 

SFE γN-330) (Fig. 4.16).  

 

• Other than providing the basic (meta)stable room-temperature austenitic phase composition 

of the parent alloy, neither Mn nor Ni is essential for the formation of γN, but each 

element has a pronounced effect on the expanded lattice structure and stability under 

conditions of low-temperature thermochemical treatment, via their influence on SFE – 

and particularly with regard to the onset of crystallographic phase instability at the point 

of alloy ‘over-supersaturation’ with nitrogen (in Fe-Cr-Ni/Mn-N systems) for specific, 

alloy composition-dependent, critical temperature/time envelopes.  

 



 111 

• At elevated treatment temperature, two possible ‘diffusional’ phase transformation 

mechanisms were identified in association with CrN formation, which were: i) a uniformly-

distributed eutectoid decomposition mechanism to CrN + α-Fe in alloy AG17 (similar to that 

seen in AISI 304) (Fig. 4.17), and ii) sluggish precipitation inside grains but complete de-

composition to CrN + (Ni-stabilised) γ-Fe at grain boundaries in alloy 330 (Figs. 4.18-4.19).  

 

• The symbiotic relationship between SF number density and nitrogen uptake in a low SFE 

alloy such as γN-AG17 during thermochemical treatment appears beneficial in achieving 

high nitrogen absorption and lattice expansion at a relative low treatment temperature, but 

tends also to result in accelerated phase decomposition at higher treatment temperatures. 

Given the potential for dislocation glide under lattice strain, high SFE alloys such as 330 

tend to accommodate less interstitial nitrogen overall (with rapid saturation – and relatively 

low anisotropic expansion − occurring under thermochemical treatment), but exhibit better 

structural integrity and thermodynamic stability.  

 

• Under low-temperature nitrogen-supersaturation, the anomalous lattice expansion of ASS 

– and resulting material surface property or mechanical/tribological performance (as will 

be discussed in Chapter 5) – is influenced by both the residual stress development and 

SF generation, and could eventually be attributed to the elastic/plastic response of the 

substrate alloy (varying with ASS substrate compositional factors) to the nitrogen 

composition-induced stress/strain.  
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5 Mechanical and tribological evaluation of three 

austenitic stainless steels after triode plasma nitriding 

As discussed in Chapter 4, colossally N-supersaturated surface layers were synthesised on 

three ASSs after low-temperature TPN treatment, by which different extents of phase 

decomposition were revealed on different ASS substrates after TPN with increasing treatment 

temperature or extended treatment time. Enhanced wear resistance was reported for AISI 316 

after low-temperature nitriding [157]; however, the formation of CrN at the substrate surface 

is known to degrade material corrosion performance [5]. Previous investigations were mainly 

based on results from AISI 304 or 316 type ASS after low-temperature nitriding. 

Additionally, enhancements in wear performance after thermochemical diffusion treatment 

were mainly investigated under conditions of sliding wear. Details of the abrasion resistance 

of γN can hardly be found in the open literature.  

 

In this chapter, the mechanical property (i.e. hardness) and tribological/electrochemical 

behaviour (i.e. sliding/abrasion wear resistance and corrosion resistance) of three ASSs after 

TPN treatment are evaluated. Vickers hardness values measured on the treated surfaces are 

presented in Section 5.1. In Section 5.2, the wear performance of the untreated and the 

400°C 20hrs nitrided ASS is evaluated under dry sliding wear against a WC-Co ball (at 9.8 N 

for 500 m) and under wet slurry 3-body abrasion wear against a SAE 52100 steel ball (at 0.1 

N for 3.99 m and at 0.2 N for 2.39 m). In Section 5.3, the corrosion performance of ASS 

before and after TPN (typically at 400°C 20hrs and at 450°C for 20hrs) is evaluated in 3.5 wt.% 

NaCl solution.   
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5.1 Vickers Surface Hardness 

Vickers surface hardness values for untreated and TPN-treated alloys are shown in Table 5.1 

and plotted in Fig. 5.1. Hardness enhancement is evident for all three ASS after TPN, which 

could be attributed to i) the colossal amount of interstitial nitrogen absorbed, ii) defects (such 

as SFs) generated, iii) compressive residual stress developed at material surface (in case of 

nitrogen-supersaturation) and/or iv) the formation of hard CrN (in the case of phase 

decomposition). Nevertheless, indentation hardness also depends on layer depth at the treated 

surfaces. Generally, surface hardness increases with treatment time or treatment temperature. 

 

Table 5.1 Surface hardness, HV0.025  

Treatment AISI 304 Staballoy AG17® RA 330® 
Untreated 235 ± 6 419 ± 6 210 ± 4 

400°C 4hrs / 692 ± 6 515 ± 10 
400°C 20hrs 1325 ± 36 1808 ± 37 1048 ± 62 
425°C 4hrs / 892 ± 13 520 ± 17 
425°C 20hrs 1518 ± 25 1890 ± 48 1494 ± 21 
450°C 4hrs / 1776 ± 55 786 ± 26 
450°C 20hrs 1656 ± 38 2053 ± 58 1573 ± 18 

 

Despite the (early stage of) lattice decomposition observed at the surface of 450C20h-330, 

TPN-treated alloy 330 surfaces present similar surface nitrogen contents and lattice 

expansion across the selected range of treatment conditions (as shown in Chapter 4). One 

could argue that the increase in surface hardness for alloy 330 is mainly due to the growth in 

diffusion layer depth. As shown in Fig. 5.1, the hardness values of the treated 330 samples 

generally correlate well to layer thickness (Fig. 4.5, Chapter 4). Nevertheless, the 

presumably high residual stress of γN-330 – partially released to different extents after 

volume displacements and/or cracking (already shown in Chapter 4) – must also contribute 

to the variation of surface hardness under different treatment conditions.   
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Fig.  5.1 Vickers surface hardness, HV0.025, of ASS before and after TPN a) for 4hrs and 

b) for 20hrs 

 

Compared to alloy 330, TPN-treated AG17 surfaces present significantly different surface 

nitrogen content and crystal structure after different treatment temperatures/times (Chapter 4). 
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At 400°C, the significant increase in hardness of AG17 with treatment time originates from i) 

the increasing accommodation of nitrogen in γN-AG17 (and the resulting lattice expansion, 

SF density and residual stress) and ii) the inward growth of the γN-AG17 layer.  

 

At elevated treatment temperature, the formation of CrN could also lead to an increase in 

surface hardness. As already shown in Fig. 4.6 (Chapter 4), layer depths of 425C4h-AG17 

and 450C4h-AG17 are similar (~2.7 µm and ~3.3 µm, respectively), but 450C4h-AG17 

contains a ~1.5 µm thick topmost CrN-containing decomposed layer. Noticeably, 425C4h-

AG17 also presents a CrN-containing decomposed layer at the surface, as shown under TEM, 

Fig. 4.15, Chapter 4), but the decomposed layer is discontinuous and much thinner (i.e. 

~0.2-0.5 µm). Admittedly, the slightly higher layer thickness of 450C4h-AG17 (as compared 

to 425C4h-AG17, Chapter 4) should provide a higher measured surface hardness for this 

sample, but the remarkably higher hardness of 450C4h-AG17 compared to 425C4h-AG17 

(Fig. 5.1a) should be mainly due to the thick decomposed layer. Nevertheless, comparing the 

surface hardness between 400C20h-AG17 and 450C20h-AG17 (Fig. 5.1b) there is a clear 

indication that a thin γN-AG17 layer of ~5.2 µm (with surface nitrogen content reaching, or at 

least not far below, the paraequilibrium nitrogen solubility at the selected treatment 

temperature) is able to provide a hardness level (at ~1800HV0.025 under microindentation 

testings) similar to that of a ~14.7 µm thick CrN-containing surface layer after phase 

decomposition (at ~2000HV0.025).  

 

More importantly, as shown in Fig. 5.1, the high-Mn AG17 and the high-Ni 330 tend to have 

the highest and lowest surface hardness, respectively, after nitriding at equivalent conditions. 

Looking at three 400°C and 20hrs TPN-treated ASS samples – where γN layers were 

synthesised on all three ASS substrates at (presumably) saturated nitrogen absorption and 
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lattice expansion − the layer thicknesses of 400C20h-304, 400C20h-AG17 and 400C20h-330 

are not significantly different (i.e. ~5.4 µm,  ~5.3 µm, and ~4.3 µm, respectively, as shown in 

Fig. 5.2); however, 400C20h-AG17 (~1808 HV0.025) exhibits an exceptionally higher surface 

hardness than 400C20h-304 (~1325 HV0.025) and 400C20h-330 (~1048 HV0.025), as shown 

in Fig. 5.1b. In this case, the ability of AG17 to generate SFs in plastic accommodation of 

nitrogen under nitrogen-supersaturation appears beneficial for material surface hardness 

enhancement, whereby low SFE ASS tends to have higher surface hardness after prolonged 

low-temperature treatment.  

Fig.  5.2 Transverse BSE images of a) 400C20h-304, b) 400C20h-AG17, and c) 400C20h-

330 

 

5.2 Wear Performance 

5.2.1 Dry sliding wear against WC-Co ball 

The calculated sliding wear rates and measured wear track depths are tabulated in Table 5.2. 

The maximum Hertzian contact stress for 10 mm WC-Co ball pressing on untreated ASS 

substrate (taking an elastic modulus at 200 GPa and Poisson ratio at 0.3 for three ASS) was 

~1.27 GPa. After low-temperature TPN, both the sliding wear rates and depths indicate 

remarkable enhancement in material sliding wear resistance. Wear rates were reduced by 

more than two orders of magnitude after introducing a nitrogen-supersaturated layer on top of 

ASS. The mean wear depths on the 400°C 20hrs nitrided ASS suggest that wear did not 

penetrate to the unmodified core on these samples under the selected sliding condition.  
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Table 5.2 Wear rates and depths of the untreated and the 400°C and 20hrs nitrided ASS 

after (dry) sliding against WC-Co ball at 9.8 N for 500 m 

 Sliding wear rate, mm3/Nm Sliding wear depth, µm 
U-304 

400C20h-304 
1.2 (± 0.1) × 10-4 
4.8 (± 0.9) × 10-7 

51.6 ± 2.9 
1.1 ± 0.2 

U-AG17 
400C20h-AG17 

1.4 (± 0.1) × 10-4 
1.3 (± 0.3) × 10-7 

62.5 ± 4.1 
0.7 ± 0.1 

U-330 
400C20h-330 

2.7 (± 0.2) × 10-4 
12.5 (±0.6) × 10-7  

91.1 ± 4.7 
3.0 ± 0.4 

 

As indicated by Sun and Bell [157], the hard surface layer synthesised after nitriding reduces 

plastic deformation and adhesive wear during sliding. In this study, large amount of wear 

products were observed in the wear tracks on untreated ASS after sliding (Fig. 5.3a, c, e). 

The wear tracks on the low-temperature nitrided ASS, however, were revealed without such 

massive amount of wear products, which could be attributed to less adhesive wear after TPN 

(Fig. 5.3b, d, f). The severe adhesive wear on untreated ASS under sliding [4] was 

dramatically reduced after introducing a hard nitrogen-supersaturated surface layer. 

Consistent with surface hardness, 400C20h-AG17 showed the lowest wear rate and 

400C20h-330 showed the highest wear rate amongst the nitrided samples. One could argue 

that 400C20h-AG17, which has the highest hardness as compared to 400C20h-304 and 

400C20h-330, is more resistant to plastic deformation and provides better load-bearing 

capacity during sliding wear against a WC-Co ball counterface. Additionally, in all of the 

sliding wear tracks, wear grooves were seen parallel to the sliding direction. Intriguingly, 

extensive cracks were observed perpendicular to the sliding direction in the sliding wear track 

on 400C20h-330 (as highlighted next to Fig. 5.3d), which were not seen in the wear tracks on 

other two nitrided ASSs. These cracks might be associated with the high residual 

compressive stress state in γN-330. 
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Fig.  5.3 Light optical images of sliding wear tracks on a) U-304, b) 400C20h-304, c) U-330, d) 

400C20h-330, e) U-AG17, f) 400C20h-AG17 (a local region of image d is highlighted as indicated in 

figure); Light optical images of WC-Co ball after sliding g) against U-304 and h) 400C20h-304 
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Fig.  5.4 SEM images of sliding wear tracks on a1) U-330, b1) 400C20h-330, c1) U-AG17 

and d1) 400C20h-AG17; EDX profiles of local regions on wear tracks (covering an area 

of ~65 µm × 45 µm for each profile) of a2) U-330, b2) 400C20h-330, c2) U-AG17 and d2) 

400C20h-AG17; SEM images for the local regions and corresponding element map of 

oxygen for U-330 (a3 and a4, respectively) and U-AG17 (c3 and c4, respectively). 
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After sliding tests, the WC-Co balls used were ultrasonically cleaned with isopropanol for 10 

mins (to expose the wear scar on ball) and then also inspected under OM. Owing to the 

superior hardness and wear resistance of WC-Co (as compared to the low hardness and the 

known poor wear resistance of ASS), no significant wear can be seen on the ball after sliding 

against untreated ASS. As shown in Fig. 5.3g, the natural curvature of ball is retained in the 

contact region after sliding against U-304, but a significant amount of firmly attached wear 

product can be seen on top of WC-Co ball. The ‘oval-shaped’ attachment of wear products on 

WC-Co ball could be due to the adhesive junctions between ball and wear track during 

sliding. After sliding against TPN-treated samples, however, the contact region on the ball is 

flattened, without any signs of adhesive wear product attached. The diameter of the rounded 

wear scar on the WC-Co ball is consistent with the width of the sliding track on the nitrided 

sample surface (e.g. ~580 µm for 400C20h-304 sliding against WC-Co ball, Fig. 5.3b and 

Fig. 5.3h). Therefore, despite of the fact that low-temperature nitriding is capable of reducing 

sliding wear on ASS components, the hardened surfaces could introduce severe wear on the 

counterface material (even on hard and wear resistant materials such as WC-Co).  

 

The SEM-EDX analyses of these sliding wear tracks on untreated ASSs indicate the presence 

of O (without significant W or Co from counterface material) in the attached wear products 

(Fig. 5.4a1-4 and Fig. 5.4c1-4), suggesting oxidation of untreated ASSs (probably in form of 

wear debris) under the heat generated during sliding. In contrast, the SEM-EDX profiles of 

the low-temperature nitrided surfaces under sliding show strong N Kα peak (as indicated in 

Fig. 5.4b2, d2) without any sign of O. Noticeably, the O Kα peak (at 0.525 keV) is very close 

to and overlaps with low energy peaks of Cr (at 0.5, 0.572 and 0.582 keV). The sliding wear 

track of nitrided ASSs might still have oxides, but oxygen should be in much smaller amount 

that was insufficient to be detected. It could be argued that the oxidation reaction of the TPN-
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treated ASSs was reduced, as compared to untreated ASSs. The reduced oxidation might 

associate with (chemically) the high N content of γN. Additionally, small W peaks are seen in 

Fig. 5.4d2. W could be transferred from the conterface ball during sliding, since severe wear 

was observed on the WC-Co ball after sliding against the surface hardened ASSs (Fig. 5.3h).   

 

Fig.  5.5 Friction coefficient curves of a) U-304, b) 400C20h-304, c) U-AG17, d) 

400C20h-AG17, e) U-330 and f) 400C20h-330 sliding against WC-Co ball for 500 m 

 

Friction coefficient curves (of two repetitions for each sample) are shown in Fig. 5.5. After 

the first ~100 m, the friction coefficient stabilised at approximately 0.7-0.8 for almost all 
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tested samples. No significant change in steady state friction coefficient can be seen for ASSs 

before and after TPN.  

 

5.2.2 Wet slurry microabrasion wear against bearing steel ball 

Abrasion wear rates and crater depths of the 400°C 20hrs treated ASS are tabulated in Table 

5.3. The maximum Hertzian contact stress for the 25.4 mm ball pressing on untreated ASS 

substrates (taking an elastic modulus at 200 GPa and Poisson ratio at 0.3 for three ASS) were 

~0.11 GPa and ~0.14 GPa at normal load of 0.1N and 0.2N, respectively. OM inspection 

indicates 3-body abrasion mode (or rolling-abrasion [158]) for all craters, as expected for the 

low load and high slurry concentration employed. Due to the conformal spherical contact 

between craters and test balls (typically in 3-body abrasion mode), wear rates could be 

calculated from the measured crater widths [159]. Crater width typically ranged from ~500 to 

~700 µm in this study, in which case craters were sufficiently large for the polycrystalline 

samples tested. The measured crater depths on the nitrided samples were all smaller than the 

diffusion layer depth; such tests can generally be regarded as ‘non-perforation’ tests 

(according to standard BS ISO 26424:2008). 

 

Despite the remarkable enhancement in material sliding resistance after surface hardening 

(Table 5.2), there was no evidence of enhancement in wear performance under the selected 

abrasion conditions (Table 5.3). On the contrary, a degradation in abrasive wear performance 

was seen for both 304 and AG17 after introducing nitrogen-supersaturated surface layers at 

material surface via prolonged low-temperature TPN, whilst the abrasion wear rate of alloy 

330 was almost unchanged. The decrease in abrasion wear resistance was the largest on 

AG17 after TPN, where the abrasion wear rate was doubled (Table 5.3).  
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Table 5.3 Abrasion wear rates and crater depths at selected abrasion parameters for the 

untreated and the 400°C 20hrs nitrided samples  

 
At 0.2 N for 2.39 m At 0.1 N for 3.99 m 

Abrasion wear 
rate, 10-4 mm3/Nm Depth, µm Abrasion wear rate, 

10-4 mm3/Nm Depth, µm 

U-304 
400C20h-304 

11.7 ± 1.2 
16.2 ± 0.7 

2.5 ± 0.1 
2.8 ± 0.1 

8.8 ± 0.6 
14.8 ± 2.7 

2.2 ± 0.1 
2.5 ± 0.1 

U-AG17 
400C20h-AG17 

11.8 ± 1.5 
24.3 ± 3.5 

2.3 ± 0.1 
3.1 ± 0.1 

11.9 ± 0.7 
25.9 ± 5.2 

2.4 ± 0.1 
2.8 ± 0.1 

U-330 
400C20h-330 

14.1 ± 1.0 
14.7 ± 1.2 

2.7 ± 0.1 
2.8 ± 0.1 

13.1 ± 1.3 
13.3 ± 3.2 

2.5 ± 0.1 
2.4 ± 0.1 

 

Considering sample coupons being repetitively indented by (sharp) SiC particles under 

‘multi-indentation’ rolling-abrasion, hard material surface should be worn less than soft 

material. However, the abrasion wear rate of the treated surfaces appeared somehow 

inversely correlated to the extend of surface hardness enhancement after TPN treatment at 

400°C for 20hrs (as shown in the hardness bar chart of Fig. 5.1b). The counterintuitive 

increased abrasion wear rate is attributable to the brittleness of γN layer, sharp layer/core 

interface and lack of sufficient layer thickness.  

 

Firstly, under ‘multi-indentation’ scenario during abrasion, the nitrided ASS could potentially 

experience brittle fracture, which accelerated abrasion wear rate. As illustrated by 

Christiansen et al. [103, 160], due to the strong chemical affinity between Cr and N (as 

compared to Cr and C), γN is able to accommodate much greater interstitial nitrogen (as 

compared to the accommodation of C in γC), giving rise to extremely high composition-

induced residual stress under high nitriding potential (a term in gaseous nitriding in Section 

2.1.1.1), and thus prone to brittle cracking. Apart from the stress relaxation as “brittle fracture” 

or as “grain elevation” (pushed-out) under high residual stress [103], the surface brittleness 

(after gaseous nitriding at high nitriding potential) has also been correlated to the potential 
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formation of ε-martensite “nucleated on SFs”, but no evidence of ε-martensite formation was 

given in their study [160].  

 

Furthermore, after tensile testing (instrumented with in-situ optical microscopy viewing) of 

AISI 316 “dogbone”-shaped samples after plasma immersion ion implantation (PI3) at 

360°C-520°C, Hoeft et al. [161] suggested that i) toughness of expanded austenite was not 

improved with the compressive residual stress developed, since the fracture toughness values 

measured from the compressively stressed γN surface layers (synthesised on AISI 316 

substrate) were significantly lower than that of untreated steels, and ii) the extensively 

observed surface cracks (in a direction perpendicular to the tensile stress) mainly nucleated at 

grain boundaries and defects during tensile testing. Noticeably, although the cracking features 

observed on γN-316 under tensile stress were similar to those of hard coatings on metals, 

“decohesion” that could be seen on coatings was not seen on γN-316 layer [161]. 

 

In this study, the extent of the decrease in abrasion wear rate of samples after TPN (Table 5.3) 

correlates well with the SF density and the volume fraction of ε-martensite observed in γN (i.e. 

increasing in the order: γN-330 → γN-304 → γN-AG17, as discussed in Chapter 4). Without 

the generation of SFs to accommodate nitrogen-introduced plastic flow in FCC grains during 

nitriding, γN-330 should have higher residual stress than γN-AG17 and γN-304, as also 

suggested by the volume push-out and grain boundary cracking observed of γN-330, but not 

of γN-AG17 and γN-304 (Chapter 4). The good correlation between abrasion wear rates and 

SF densities (rather than residual stress) of γN suggests that the increased level of lattice 

defects might contribute to degradation in layer toughness (thus degradation in abrasion 

performance), rather than (or to a lesser extent of) compressive residual stress. 
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However, as suggested by Christiansen et al. [160] and Hoeft et al. [161], layer brittleness of 

γN is likely to be a combined result from both residual stress and SF density in γN. 

Considering the layer brittleness of γN-316 under gaseous nitriding at high nitriding potential 

[160], the potential layer brittleness in this study could be eventually attributed to the high 

nitrogen absorbed  (~ 23-34 at.% N, Table 4.1, Chapter 4) at material surface under high 

“nitriding potential” in an intensified 7:3 N2:Ar (volume fraction) plasma atmosphere, which 

points to the need for future wear investigations of alloy AG17 and 330 under low-

temperature TPN with lower nitrogen volume fraction (such as 3:7 N2:Ar).  

 

Apart from the potential layer brittleness under TPN at high nitrogen volume fraction, both 

the sharp drop in nitrogen content at layer/core interface and the insufficient layer thickness 

could also contribute to the accelerated wear rate of ASS after low-temperature TPN. 

Different to coatings or bulk materials (i.e. homogenous materials), γN layers are non-

homogenous, having reducing nitrogen content from surface to core in the diffusion layer. 

Additionally, there is an characteristic abrupt drop in nitrogen content (and abrupt change in 

nitrogen composition-dependent properties) at the interface between γN and core [162].  

 

More importantly, the γN layers synthesised have insufficient thickness (~4-5 µm as shown in 

Fig. 5.2) with respect to the ~3 µm (mean size) SiC powder used in slurry. Although the 

measured crater depths were all much smaller than the treatment layer depths, the 25 µm 

diameter stylus tip (used for crater profilometry) was not able to detect the narrow local 

‘indents’ made by small SiC particles, which could have penetrated (across the layer/core 

interface) into the unmodified core and resulted in high abrasion wear rate. The ‘real’ 

abrasion-affected region could be much deeper than the measured values shown in Table 5.3.  
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 Fig.  5.6 SEM images, local SEM images and EDX profiles (corresponding to areas shown in local SEM 

images) for U-330 (a1-3, respectively), 400C20h-330 (b1-3, respectively), U-AG17 (c1-3, respectively) 

and 400C20h-AG17 (d1-3, respectively). For consistency, regions of interests were taken on the craters 

generated at normal load of 0.2N for abrasion distance of 2.39m and approximately halfway between 

the centres and the edges of the ‘circular’ craters observed under SEM.  
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As shown in Table 5.3, low-temperature TPN treatment (at 400°C and 20hrs) appears 

causing insignificant change and significant degradation in the surface abrasion performance 

of alloy 330 and alloy AG17, respectively. Therefore, the wear craters on alloy 330 and 

AG17 before and after low-temperature TPN were examined under SEM and EDX. Although 

no evident of 2-body abrasion (e.g. parallel abrasive grooves) were observed under OM, 

SEM images (in Fig. 5.6) clearly revealed – in addition to extensive ‘indents’ – several deep 

‘cutting grooves’ on the abrasion crates of ASSs both before and after TPN treatment. 

Compared to the paralleled grooves usually seen in the craters generated under 2-body 

abrasion mode, the cutting grooves observed in Fig. 5.6 are randomly oriented, short and 

discontinuous. Additionally, an intense Si Kα peak (at ~ 1.84 keV) and a strong C peak (at 

~0.28 keV) are evident in all EDX profiles (Fig. 5.6a3, b3, c4, d3), suggesting embedment of 

SiC abrasive particles (after indenting and cutting) onto the abrasion craters. A clear N Kα 

peak is also evident (at ~0.4 keV) in the EDX profiles of the abrasion craters on TPN-treated 

samples (Fig. 5.6b3, d3), which originates from γN layers. However, both the indents and 

cutting marks appear small and deep under SEM (compared to the 25 µm diameter stylus 

used for measurement), confirming that the real abrasion penetration depths could be much 

deeper than those detected as shown in Table 5.3. The γN layers on TPN-treated ASSs were 

mostly likely penetrated by the sharp SiC particles during abrasion.  

 

Compared to the wear morphology on the abrasion craters of other three samples (Fig. 5.6a2, 

b2, c2), the abrasion crater on 400C20h-AG17 (Fig. 5.6d2) appears rather ‘flat’. The 

indentation or cutting marks on 400C20h-AG17 appear shallow under SEM, which could be 

attribute to the superior surface hardness of 400C20h-AG17. Compared to the EDX profile 

for U-AG17 (Fig. 5.6c3), the relative Si Kα peak intensity is clearly lower in the EDX profile 
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for 400C20h-AG17 (Fig. 5.6d3), indicating reduced SiC particle embedment on 400C20h-

AG17.  

 

More importantly, no brittle cracks could be identified in the abrasion craters on TPN-treated 

surfaces (Fig. 5.6b2, d2). Nevertheless, several flat regions are observed in the abrasion 

craters of 400C20h-AG17 (as indicated using red arrows in Fig. 5.6d2), but are not observed 

in the abrasion craters on U-AG17, U-330 and 400C20h-330. These flat areas hint at faceted 

brittle fracturing of γN-AG17 layer on 400C20h-AG17 during abrasion. Intriguingly, abrasion 

morphology appears similar between U-330 and 400C20h-330 without any sign of brittle 

failure after TPN, in which case the potential brittle fracture of γN during abrasion (as 

suggested by the facets observed in abrasion crater of 400C20h-AG17, Fig. 5.6d2) seems 

associate more with high SF number density rather than high residual stress. 

 

Moreover, O was identified by INCA software (at ~0.525 keV) in EDX profiles (Fig. 5.6a3, 

b3, c3), hinting at another aspect for consideration (i.e. chemical reaction of sample surface 

in contact with wet SiC slurry). The surface of abrasion craters are, most likely, plastically 

deformed, oxidised and embedded with SiC particles (possibly fractured, if against TPN-

hardened ASS surfaces). It points to the need of future studies on cross-sectional 

microstructure and chemical composition of the abrasion craters (probably under SEM/TEM 

after FIB sectioning/thinning). 

 

To further investigate the potential brittle fracture of γN layers under ‘multi-indentation’ 

rolling-abrasion, several series of Vickers indents (with increasing indent load at 0.025, 0.05, 

0.1 and 0.3 kgf) were carried out on the untreated and the 400°C 20hrs nitrided samples. The 

Vickers indents at 0.3 kgf are shown in Fig. 5.7. Some indentation-introduced traces (as 
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indicated by red arrows in Fig. 5.7a), which could be slip lines under plastic accommodation 

of indentation, were seen on U-304 without any sign of brittle failure.  

 

After TPN at 400°C and 20hrs, however, ‘circumferential’ cracks (rather than radical cracks) 

were observed on all three ASS samples after indentation (as shown at indent load of 0.3 kgf, 

Fig. 5.7b-d). Considering the treated surfaces being compressed by indenter, the surface 

layers equivalently experienced a tensile component of stress/strain at directions towards 

indent centre (as indicated with the directions of the red arrows in Fig. 5.7b-d), where the 

cracks observed are at directions nearly perpendicular to the tensile components, similar to 

what was seen in Hoeft’s study [161].  

 

With these observations after Vickers indentation (Fig. 5.7), one could argue that the sharp 

~3 µm SiC particles could introduced brittle cracking of the γN layers during ‘multi-

indentation’ rolling-abrasion (especially after certain abrasion distances that the layer/core 

interfaces were affected by the ‘indentation’ from SiC particles), contributing to brittle 

fracture of nitrided surfaces and accelerating the abrasion wear rates. 

 

Nevertheless, brittle cracking was not seen on all 400°C 20hrs nitrided ASS samples under 

Vickers microindents at low load (e.g. at 0.025 kgf for the microindentation hardness given in 

Table 5.1), but clearly seen at indent load of 0.3 kgf as shown in Fig. 5.7. These cracks seen 

on nitrided samples under indentation at higher indent loads could be associated to the 

increasing indent-affected deformation zone across the abrupt layer/core interface.  

 



 130 

Fig.  5.7 Optical images of Vickers hardness indents (at 0.3 kgf) on a) U-304, b) 

400C20h-304, c) 400C20h-AG17, and d) 400C20h-330 

 

At indent load of 0.025 kgf, indent depths on all three nitrided samples are all less than 1 µm, 

using equation: ℎ = !

! ! !"#!"#°!

≈ !
!.!!!"

 (h is Vickers indent depth, d is the average length of 

diagonal and 136° is Vickers indenter angle). For the indents at 0.3 kgf on 400C20h-304, 

400C20h-AG17 and 400C20h-330 (Fig. 5.7b-d), indent depths are ~6.6, ~4.6 and ~7.0 µm, 

respectively. Brittle cracks observed on nitrided samples under Vickers indentation (Fig. 

5.7b-d) could be attributed to the insufficient load-bearing capacity of the unmodified core 

(and the abrupt layer/core interface) below thin γN layers on nitrided ASS samples. With this 

regard, the accelerated wear rate observed for ASS samples after nitriding (Table 5.3) under 
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the selected 3-body micro-abrasion condition appears to be a combined result from brittle 

fracturing and insufficient layer thickness.    

 

5.3 Corrosion Performance 

5.3.1 Open circuit potential 

Open circuit potential curves are plotted in Fig. 5.8. The stabilised open circuit potentials at 

3600s are shown in Table 5.4. After TPN at 400°C for 20hrs, OCP increased for Ni-

stabilised austenitic 304 and 330, and increased very slightly for AG17. OCP of 304 and 

AG17 decreased significantly after TPN at 450°C for 20hrs, while there was no significant 

variation of OCP between 400C20h-330 and 450C20h-330.  

 

Fig.  5.8 OCP curves of samples in 3.5 wt.% NaCl  
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Table 5.4 OCP, Tafel potential and current of tested samples 

Materials OCP, V Tafel potential, V Tafel current, ×10-6 A/cm2 
U-304 -0.09 -0.46 1.56 

400C20h-304 +0.08 -0.26 0.17 
450C20h-304 -0.60 -0.72 1.42 

U-AG17 -0.36 -0.47 1.70 
400C20h-AG17 -0.33 -0.50 0.61 
450C20h-AG17 -0.66 -0.75 1.61 

U-330 -0.24 -0.41 1.05 
400C20h-330 -0.13 -0.33 0.88 
450C20h-330 -0.14 -0.33 1.13 

 

5.3.2 Potentiodyanamic polarisation  

Potentiodynamic polarisation curves are shown in Fig. 5.9. Tafel potentials (Ecorr) and current 

densities (Icorr), which were derived via extrapolation of linear cathodic/anodic regions in the 

potentiodynamic polarisation curves, are given in Table 5.4. In terms of OCP, Ecorr and Icorr 

values, low treatment temperature is preferred (but should be sufficiently high for the 

generation of considerably thick and useful nitrogen-supersaturated layer) for nitriding ASS 

without the loss of corrosion performance.  

 

The nitrogen-supersaturated surfaces of ASS all showed improved corrosion performance 

after TPN at 400°C for 20hrs. For both Ni-stabilised austenitic 304 and 330 type ASS after 

low-temperature TPN, Ecorr shifted to higher potentials and Icorr shifted to lower current 

densities. The enhancement in corrosion performance of the two Ni-stabilised ASSs (i.e. 304 

and 330) upon colossal nitrogen-supersaturation at material surface (without formation of 

CrN) after TPN was obvious, with the evident shifts of the polarisation curves to the top-left 

(more noble) regions of the plot. Additionally, although Ecorr of 400C20h-AG17 did not vary 

significantly as compared to U-AG17, Icorr of AG17 was clearly reduced after TPN at 400°C 

(Table 5.4), indicating much smaller corrosion rate at equilibrium corrosion potential, Ecorr.  
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Fig. 5.9 Potentiodynamic polarisation curves of a) AISI 304, b) Staballoy AG17®, and c) 

RA330® before and after TPN at 400°C and 450°C for 20hrs 

 

Degradation of corrosion performance can be confirmed for 304 and AG17 after TPN at 

upper treatment condition, because of the shifts of polarisation curve to the bottom-right (less 

noble regions) of the plot. Degradation of material corrosion performance could clearly be 

attributed to the lattice decomposition to CrN and Cr-depleted phase. However, Ecorr of 

450C20h-330 was at a potential similar to that of 400C20h-330 but higher than U-330, while 

Icorr was at a value higher than that of both 400C20h-330 and U-330. Intriguingly, compared 

to the γN-330 layer on 400C20h-330, the coherent nano-particles in inside γN-330 grains (i.e. 
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limited re-distribution of Cr) and incoherent nano-sized CrN precipitates at grain boundaries 

on 450C20h-330 (i.e. small volume fractions of complete Cr re-distribution) did not result in 

a drop in Ecorr, but an increase in corrosion rate.  

 

5.3.1 Corrosion passivity and features on corrosion sites 

Austenitic stainless steels are known for their corrosion passivity owing to the protective Cr-

rich oxide film that naturally forms at the material surface in oxidising environments (i.e. in 

the anodic reaction region for dissolution of metallic elements into the electrolyte, 𝑀 →

𝑀!! + 𝑛𝑒!). The passivation and corrosion localisation of ASS in the anodic reaction region 

of the potentiodynamic polarisation curve (i.e. the upper part of potentiodynamic curves 

above Ecorr) needs further discussion.  

 

First of all, sudden increases in current density were observed for all three untreated alloys in 

potentiodynamic curves (at Epit-untreated, as indicated in Fig. 5.9), which are due to 

breakdown of the passive film on ASS and localised pitting corrosion. Owing to the different 

alloy compositions, corrosion passivity is different for the three untreated ASS substrates. 

Generally, following an order from Mn-N stabilised to Ni-stabilised ASS, Epit values were ~ -

0.1V, ~0.3 V and ~0.5 V for U-AG17, U-304 and U-330, respectively. The high Mn-N U-

AG17 had the smallest passivation region, whilst the high-Ni U-330 had the largest 

passivation region. High Ni content in ASS appears beneficial for large passivation region 

during corrosion in chloride solution. 

 

For all three ASS after low-temperature TPN (at 400°C 20hrs, Fig. 5.9), the passivation 

regions were extended to higher corrosion potentials, while the corrosion current densities in 

the anodic reaction regions were reduced. Although U-AG17 and 400C20h-AG17 had similar 

Epit values, 400C20h-AG17 exhibited much lower current density than U-AG17 after the first 
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breakdown of passivation at Epit (Fig. 5.9b). Given an incompletely decomposed structure, 

450C20h-330 showed higher current density than that of 400C20h-330 and U-330.  

 

Additionally, the features observed on corrosion sites of samples after potentiodynamic 

polarisation (Fig. 5.10) also indicated improved pitting resistance in 3.5 wt.% NaCl solution. 

Firstly, corrosion pits are observed on all three untreated ASSs after corrosion (see OM 

images, Fig. 5.10a, c, e). After low-temperature nitriding, pitting corrosion was clearly 

reduced as shown in Fig. 5.10b, d, f. The enhancement of pitting corrosion resistance of ASS 

after addition of nitrogen (either in equilibrium solid solution [163] or under paraequilibrium 

interstitial supersaturation [164-170]) were attributed to the formation of ammonium ions, via 

reaction:  𝑁 + 4𝐻! + 3𝑒! → 𝑁𝐻!!, which neutralised local pH level and inhibited (acidic) 

pitting. Low-temperature nitriding of ASS appears beneficial in preventing pitting corrosion 

in chloride solution. However, some localised features were still seen on the corrosion sites 

(see dark-field OM images, as highlighted in Fig. 5.10b, d, f).  

 

On the corrosion site of 400C20h-304 after potentiodynamic polarisation in 3.5 wt.% NaCl 

solution (Fig. 5.10b), some γN-304 grains showed slightly deeper corrosion depth than others. 

Parallel bright patterns were clearly revealed inside these grains in the dark-field image of 

Fig. 5.10b. Buhagiar et al. [170] presented similar patterns under SEM, which was attributed 

to stress-induced slip lines during corrosion, on low-temperature carbonitrided AISI 316 ASS 

after immersion corrosion test in Ringer’s solution. The parallel patterns in Fig. 5.10b, which 

could also be stress-induced slip lines, on 400C20h-304 after potentiodynamic polarisation in 

3.5 wt.% NaCl solution (i.e. a much less aggressive solution compared to Ringer’s solution) 

could be associated to and hinted at a high residual stress in the γN-304 layer investigated.  
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Fig.  5.10 OM showing features in the corrosion sites on untreated and 400°C treated 

surfaces for a, b) AISI 304; c, d) Staballoy AG17®; and e, f) RA330® (the local features 

are also highlighted under dark-field optical illumination at the left corner of image b, d, 

f) 
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The corrosion site of 400C20h-AG17 after potentiodynamic polarisation is shown in Fig. 

5.10d. Small rounded pits (~20 µm diameter) were evidently seen. Compared to corroded U-

AG17, which showed several large corrosion pits and large numbers of fine pits, corrosion 

pits on γN-AG17 were less in number and smaller (such that they can hardly be found). One 

could argue that the colossal nitrogen content in γN-AG17 inhibits both the initiation and 

growth of corrosion pits via contributing to NH4
+ formation during corrosion. However, as 

compared to Ni-stabilised ASS, high Mn-N ASS appears more susceptible to pitting 

corrosion in chloride solution after low-temperature nitrogen-supersaturation, due to the 

small rounded pits observed on corroded 400C20h-AG17. 

 

Relatively large features were observed on 400C20h-330, as shown in Fig. 5.10f. The rest of 

the surface of 400C20h-330 appeared very similar to that before corrosion testing (i.e. 

minimal corrosion). Considering the sharp and straight boundaries between these large 

features and the flat surface, this feature cannot be simply explained by (localised) corrosion, 

where surface volumes were dissolved in electrolyte; however, it could be due to a combined 

effect of both corrosion and the high residual stress in γN-330. Firstly, the volume 

displacements on 400C20h-330 along shear bands (as observed under TEM, Chapter 4) and 

possibly along grain boundaries (for the cracking observed) after TPN could expose the less 

nitrogen-supersaturated volumes in the underlying region. Secondly, once the surface 

volumes are dissolved away in the electrolyte, the high stresses (or strain energy) stored in 

the γN-330 layer on 400C20h-330 could be released further via such volume displacements, 

which in turn accelerate corrosion. Additionally, considering the tendency of γN-330 layer to 

crack along grain boundaries at elevated treatment temperature (Chapter 4), these large 

feature on the corrosion site of 400C20h-330 (Fig. 5.10f) could occur due to stress corrosion 

cracking, given the potentially highest residual stress in γN-330.  
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5.4 Summary 

In this chapter, three surface hardened ASS after TPN at 400°C for 20hrs were evaluated 

under sliding/abrasion wear testings; and both the 400°C 20hrs and the 450°C 20hrs treated 

ASSs were evaluated by corrosion testing in 3.5wt.% NaCl water solution. Several 

conclusions can be drawn, as follows: 

 

• Remarkable surface hardness enhancements were seen for all three ASSs after TPN 

treatment (Fig. 5.1). The superior nitrogen absorption in AG17 under low-temperature 

nitriding (associated with its ability to generate SFs under stain) provides this alloy with 

the highest surface hardness amongst the three investigated.  

 

• The prolonged low-temperature TPN treatments appears beneficial to material (dry) 

sliding wear performance (Table 5.2), via reducing adhesive wear and enhancing load-

bearing capacity of the treated surface during sliding against WC-Co ball; however, wear 

of the WC-Co counterface material tends to increase on the nitrided samples (Fig. 5.3).  

 

• As indicated by abrasion results (Table 5.3) and surface cracking under Vickers indents 

(Fig. 5.7), the high surface nitrogen content in γN might have damaged the toughness of 

ASS under the selected high nitrogen volume fraction in the chosen plasma atmosphere. 

Under 3-body abrasive wear, the accelerated wear rate of ASS after TPN (Table 5.3) 

could be attributed to i) brittle fracturing of ‘over-supersaturated’ γN layers under the 

selected treatment parameters and ii) the relatively shallow diffusion layer depths with 

respect to the ~3 µm (mean size) particles used in abrasive slurry.  
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• The prolonged low-temperature treated samples (i.e. at 400°C and 20hrs) all showed 

improved corrosion performance in 3.5 wt.% NaCl solution compared to untreated ASS 

substrates (Fig. 5.10). Additionally, low-temperature TPN could also inhibit pitting 

corrosion of ASS (Fig. 5.9 and Fig. 5.10). An expected loss of corrosion resistance was 

observed with the lattice decomposition of 304 and AG17 after TPN at 450 °C for 20hrs, 

whilst the sluggish decomposition at the surface of 450C20h-330 resulted in only a slight 

increase in Icorr as compared to U-330 (Fig. 5.9).  

 

• The surface chemistry and the distribution of essential corrosion-resistant elements (such 

as Cr) are the dominant factors for material corrosion performance. Both the surface 

nitrogen content and the pre-existing substitutional elements in substrate (i.e. Ni or Mn 

levels) determined the corrosion performance of γN layers synthesised. The high SF 

number densities (and the formation of ε-martensite) in γN-304 and γN-AG17 and high 

residual stress in γN-330, which were potential influential factors on material 

mechanical/tribological performance, did not translate to a decrease in material corrosion 

resistance. However, residual stress of γN layer needs to be concerned for applications of 

low-temperature nitrided ASS in corrosive environments regarding the potential 

breakdown of passive films via volume displacements during corrosive attack (owing to 

the tendency of γN layer to relax its residual stress, such as the potential stress corrosion 

cracking in γN-330, Fig. 5.10f). 

 

• Both the non-homogenous corrosion on γN-304 (Fig. 5.10b) and the large sharp features 

on γN-330 (Fig. 5.10f) suggested high levels of residual compressive stress, whilst no sign 

of high residual stress was seen on 400C20h-AG17 (Fig. 5.10d). A ranking order of 

residual stress level of γN layers, using the features observed after potentiodynamic 
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polarisation (Fig. 5.10b,d,f), could be given from high to low as γN-330, γN-304 and γN-

AG17, which was inversely correlated to the SF densities observed in these N-rich layers.   
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6 Characterisation of two Cr-free austenitic steels after 

triode plasma nitriding 

This chapter presents investigations on two Cr-free austenitic steels, Invar 36® (Fe-35Ni, in 

wt.%) and Hadfield steel (Fe-13Mn-1.2C, in wt.%) after TPN. Although Invar was reported 

by Williams et al. [87] under nitrogen ion beam processing at 400°C as showing two ‘new’ 

FCC structures after treatment, neither Invar nor Hadfield steel have been investigated under 

low-temperature nitriding in the open literature. Although Cr is believed being the essential 

element in formation of γN and short ranged ordered Cr-N clusters has been widely discussed, 

it might be possible to generate γN on Cr-free austenitic steels, given one of the key facts in 

γN formation is a sufficiently low temperature that phase transformation towards 

thermodynamic equilibrium is hindered. Apart from X-ray diffraction analysis with respect to 

the existing open database of powder diffraction patterns, a combination of techniques (such 

as EDX, BSE and TEM) is used, together with nano-indentation and Vickers indentation 

testing, to identify the ‘new’ surface phases formed on Invar and Hadfield samples under 

low-temperature TPN treatment – and to explore the possibility of nitrogen supersaturation in 

these alloys. 

 

In Section 6.1, TPN-treated Invar (at equivalent treatment conditions to those of ASS in 

Chapter 4) is characterised and compared to nitrided 330 to reveal to role of Cr, where both 

substrate materials have ~35 wt.% Ni, but one without Cr and one with ~19 wt.% of Cr. The 

differences in material surface crystal structure and mechanical property (i.e. indentation 

hardness) after TPN are discussed between the selected two high-Ni steels. In Section 6.2, 

TPN-treated Hadfield steel (at a different chamber configuration and a lower treatment 

temperature of ~300°C for 4-20hrs) is characterised and discussed. The surface phase 
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compositions and hardness of Hadfield steel are revealed with respect to treatment times. 

Because of the different treatment conditions applied and the different Mn and N content 

between Had and AG17, results of the former are not directly compared to the latter, but 

reveal nevertheless the crystallographic response of such high Mn-C austenitic steel to 

nitrogen absorption at a much lower diffusion treatment temperature.  

 

6.1 Characterisation of Invar, as compared to 330, after TPN treatment 

6.1.1 General characterisation 

6.1.1.1 Surface nitrogen content and Vickers hardness 

Surface nitrogen content of Invar ranges from ~18 to ~20 at.% after TPN (Table. 6.1), which 

are all significantly higher than the equilibrium N solubility in γ-Fe (i.e. ~10.3 at.% at 

~650°C [58]) and are very closed to that of γ’-Fe4N (i.e. ~20 at.% for one N in the centre of 

each FCC Bravais lattice). Nitrogen content increases very slightly with increasing treatment 

time, but no significant change with temperature is observed. Comparing the surface nitrogen 

content between Invar and 330 at each TPN-treatment condition, the presence of Cr in 

austenitic lattice of the latter does appear to be beneficial in obtaining a higher surface 

nitrogen uptake.  

 

Table 6.1 Surface nitrogen content (at.%) of Invar and 330 after TPN 

Treatment 330 Invar 
400°C 4hrs 23.1 ± 0.6 18.3 ± 0.4 
400°C 20hrs 24.0 ± 0.8 19.8 ± 0.3 
425°C 4hrs 24.1 ± 0.5 18.9 ± 0.3 
425°C 20hrs 25.7 ± 0.9 20.6 ± 0.3 
450°C 4hrs 22.6 ± 0.8 18.8 ± 0.6 
450°C 20hrs 25.1 ± 0.5 19.6 ± 0.6 
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Surface Vickers hardness values of Invar and 330 after TPN are tabulated in Table 6.2. 

Material surface hardness increases with both treatment temperature and time, from ~200 

HV0.025 for U-Invar to a maximum of ~734 HV0.025 for 450C20h-Invar. Comparing the 

surface Vickers hardness between Invar and 330 at each TPN-treatment condition, the 

stainless high-Ni alloy 330 possesses a significantly higher surface hardness, which is 

consistent with the much higher surface nitrogen content of 330 samples in Table 6.1. 

Nevertheless, nitrogen absorption and the consequent surface hardness enhancement needs to 

be discussed alongside the surface crystallographic structure and diffusion layer depths of the 

treated surfaces (as will be shown in the following Sections). 

 

Table 6.2 Surface Vikers hardness, HV0.025 

Treatment 330 Invar 
Untreated 210 ± 4 200 ± 3 

400°C 4hrs 520 ± 10 390 ± 5 
400°C 20hrs 1048 ± 62 498 ± 8 
425°C 4hrs 515 ± 17 531 ± 8 
425°C 20hrs 1494 ± 21 705 ± 25 
450°C 4hrs 786 ± 26 638 ± 8 
450°C 20hrs 1573 ± 18 734 ± 12 
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6.1.1.2 Surface morphology – OM on top of material surfaces 

 

Fig.  6.1 Optical micrographs of Invar 36® after TPN at a) 400°C 4hrs, b) 400°C 20hrs, 

c) 425°C 4hrs, d) 425°C 20hrs, e) 450°C 4hrs, and f) 450°C 20hrs 
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Material surface morphology after TPN is revealed under optical microscopy, as shown in 

Fig. 6.1. Grains are revealed under OM, showing grain size ranging from ~20 to ~50 µm. The 

parallel traces or ‘dimples’ (as an indication of γN or CrN formation, respectively, as already 

shown in Chapter 4) were not observed on top of Invar after TPN. Noticeably, some 

particles are revealed (as indicated with red arrows in Fig. 6.1d) on top of material surface of 

425C20h-Invar, which were examined under EDX being (Ti, W)-rich depositions. These 

particles, which could be due to a contaminated chamber environment (i.e. residual Ti-based 

depositions in the chamber from a previous coating process by other users), are not 

characteristic features to do with the nitrogen diffusion or phase transformation at the surface 

of Invar under TPN. Nevertheless, these contaminations (e.g. TiN particles) might introduce 

some errors in surface nitrogen content measurement during EDX of the treated surfaces of 

Invar, in which case 425C20h-Invar shows slightly higher nitrogen content than the other 

TPN-treated Invar samples (Table 6.1).   

 

6.1.1.3 BSE imaging of sample cross-sections 

The BSE images of the nitrided Invar cross-sections are shown in Fig. 6.2. Under BSE 

imaging, all the nitrided Invar surfaces show a discontinuous feature-containing surface zone, 

which grows thicker with increasing treatment temperature and time. No distinguishable 

features could be observed below these surface zones. Since Ni and Fe have similar atomic 

weight (of ~58.7 and ~55.8 g/mol) and N is much lighter (i.e. ~14.0 g/mol), these features 

observed under BSE imaging (in Fig. 6.2) should mainly originate from the distribution of 

nitrogen in the TPN-treated surfaces under nitrogen diffusion at different treatment 

temperatures and times. 

 



 146 

Taking the dark features as being N-rich phase(s), two phase morphologies (i.e. a ‘cellular’ 

and a homogenous region) are observed in Fig. 6.2. At 400°C, the dark (N-rich) homogenous 

regions start forming discontinuously from the very surface of material (Fig. 6.2a) and then 

grow and coalesce with treatment time (Fig. 6.2d). At 425°C, the ‘cellular’ regions observed 

are evidently composed of two phases, which should be a N-rich one (dark under BSE) and a 

N-depleted one (bright under BSE) with interlamellar spacing of several tens of nanometers. 

At 450°C treatment temperature, the feature-containing zone appears to be double-layered, 

containing a top layer of homogenous phase and an underlying layer of cellular phases.  

 

As shown in Fig. 6.2, neither the penetration depths nor the distributions of these N-rich 

features on nitrided Invar are homogenous, which is clearly different to the homogenous N-

supersaturated layers observed on 330 after TPN (see Fig. 4.7, Chapter 4). These feature-

containing zones under BSE imaging on Invar after TPN (typically ~1-3 µm on 400C20h-

Invar and ~3-5 µm on 450C20h-Invar) appear much thinner than those on alloy 330 after 

TPN (typically ~4 µm on 400C20h-330 and ~13 µm on 450C20h-330, Chapter 4). 
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Fig.  6.2 Cross-sectional BSE images of Invar 36® after plasma nitriding at a) 400°C 

4hrs, b) 425°C 4hrs, c) 450°C 4hrs, d) 400°C 20hrs, e) 425°C 20hrs, f-g) 450°C 20hrs. 

Image a-f were taken at same magnification (with scale bar shown in image d) for 

comparison reason, and image g was taken at a much lower magnification to show a 

larger cross-sectional surface area of this sample   

 



 148 

6.1.2 Phase identifications 

Nevertheless, as will be shown in this section, there are also rather deep zones of nitrogen 

solid solution, γ(N), on nitrided Invar below these feature-containing surface regions. As will 

also be discussed using GAXRD and TEM techniques in this section, all the dark features 

observed on nitrided Invar under BSE imaging in Fig. 6.2 − i.e. both the dark homogenous 

feature and the dark features in ‘cellular’ regions − correspond to γ’ iron-nickel nitride, whilst 

the bright lamellae in the ‘cellular’ region correspond to N-depleted unexpanded γ-austenite.   

 

6.1.2.1 GAXRD 

Fig. 6.3a shows the GAXRD profiles (at 2° incident angle) of all of the nitrided Invar 

samples. The strong GAXRD peaks of the nitrided samples match well with the iron-nickel 

nitride: γ’-Fe4-xNixN (PDF card 00-060-0479, stable for 0 < x < 3.3 under experimental 

conditions [171]). Considering the constant Fe:Ni ratio of ~2.6:1.4 for Invar before and after 

TPN (under surface EDX), this γ’	phase is most likely Fe2.6Ni1.4N (i.e. x=1.4 for γ’-Fe4-xNixN). 

A very weak γ’(110) peak is also observed for all the nitrided Invar samples, which is due to 

the N occupation at octahedral FCC centres – so that the FCC(110) plane is no longer 

‘forbidden’ − and is consistent with the PDF card. The dark features observed under BSE 

imaging in Fig. 6.2 could be attributed to this γ’ nitride.  
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Fig.  6.3 GAXRD profiles of Invar 36® a) after nitriding at all treatment conditions, and 

b) 400C20h-Invar and 450C20h-Invar after successive layer removal (for ~3/5/10/20/30 

µm, measured using a micrometer) by grinding the treated surfaces using P1200 SiC 

paper; γ’	– iron nickel nitride, γ(N) – isotropically expanded nitrogen solid solution, γ – 

substrate or unexpanded austenite 
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However, the BSE images in Fig. 6.2 show that the surface layer is clearly not homogenous, 

but contains ‘cellular’ regions of bright lamellae (especially after higher treatment 

temperatures). Apart from γ’ peaks, weak γ(111) substrate peak can be seen on 425C20h-

Invar, 450C4h-Invar and 450C20h-Invar in Fig. 6.3a. The bright lamellae in the ‘cellular’ 

region (under BSE imaging in Fig. 6.2b,c,e,f) could be attributed to the (N-depleted) γ phase. 

The cellular regions observed under BSE (Fig. 6.2b,c,e,f) could therefore be a mixture of γ’-

Fe4-xNixN and unexpanded γ. 

 

Owing to the shallow X-ray attenuation depths (i.e. ~0.6 µm) for 2° GAXRD on Invar, the 

peaks observed only correspond to the phases existing at the very surface of the material. To 

investigate surface phase compositions at depth, 400C20h-Invar and 450C20h-Invar were 

selected and ground successively using P1200 SiC paper for ~3/5/10/20/30 µm layer-depth 

removal for GAXRD profiles at different depths of the treated surfaces, as shown in Fig. 6.3b.  

 

Evidently, at depths from ~3 to 20 µm below the γ’-containing surface zone on both of the 

nitrided Invar samples, there is another FCC phase (indicated by the red arrow in Fig. 6.3) 

with continuously decreasing lattice parameter from surface to core until the unmodified 

substrate is reached. The gradually shifting FCC peaks (to higher 2θ angles at deeper regions 

within the treated surfaces) until γ-substrate could be attributed to isotropically expanded 

nitrogen solid solution in Invar, which has (presumably) decreasing nitrogen content from 

surface to core under nitrogen diffusion during TPN treatments. Noticeably, this γ(N) phase 

does not give rise to any distinguishable features under BSE imaging, probably due to the 

low nitrogen content of γ(N) and gradually decreasing nitrogen content in γ(N) towards core. 
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More importantly, comparing the GAXRD profiles between 400C20h-Invar and 450C20h-

Invar at a depth of ~3 µm (Fig. 6.3b), the γ-FCC substrate peaks evidently seen at this depth 

on 450C20h-Invar are not observed on 400C20h-Invar. Considering the relatively deep 

penetration of the ‘cellular’ region on 450C20h-Invar in Fig. 6.2f (as compared to the γ’ 

penetration in Fig. 6.2d), the strong substrate γ peaks at ~3 µm on 450C20h-Invar correspond 

to the bright lamellae in the ‘cellular’ region, which confirms that the cellular region is a 

mixture of γ’	+ γ. This cellular phase mixture is likely due to phase decomposition of N-

saturated γ(N). 

 

6.1.2.2 Cross-sectional TEM analysis 

The phase distribution was then confirmed via investigations of cross-sectional TEM samples 

prepared from 400C20h-Invar and 450C20h-Invar, covering a volume from the surface to a 

depth of ~6 µm (Fig. 6.4-6.6). Using a ~0.5 µm diameter diffraction aperture, the selected 

area EDPs of the near surface volume for 400C20h-Invar shows diffraction spot for γ’ (as 

shown at the two zone axis, Fig. 6.4b, e). In good agreement with γ’(110) GAXRD peaks 

observed in Fig. 6.3b, the weak ‘forbidden’ electron diffraction spots − e.g. FCC(110), 

FCC(100) and FCC(201) as shown in Fig. 6.4b,e – are due to N-occupation in octahedral 

centres of FCC Bravais unit cell (i.e. in centres of corner-sharing octahedra in FCC lattice).  

 

Using one of the ‘forbidden’ reflections, the DF-TEM image of Fig. 6.4d shows a bright γ’-

containing region just below the treated surface, which is consistent with the BSE 

observations (Fig. 6.2d) and XRD analysis. Additionally, the selected area EDPs of the 

volumes below the γ’-containing region on 400C20h-Invar (as shown at the two zone axis, 

Fig. 6.4c, f) reveal only FCC diffraction reflections without those ‘forbidden’ reflections, 

confirming the precipitation-free nitrogen solid solution (as indicated under GAXRD, Fig. 
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6.3b). Under TEM, γ’ is coherent to the underlying γ(N), with the cubic-to-cubic structure-

orientation relationships: <110>γ’//<110>γ(N) and <112>γ’//<112>γ(N).  

Fig.  6.4 TEM images of 400C20h-Invar. a) Low magnification BF-TEM image; b-c) 

selective area EDPs from regions as indicated in figure a; d) DF-TEM image 

constructed with electrons indicated in figure b; e-f) EDPs of the surface γ’-containing 

region and the underlying core, respectively, at another zone axis 
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Fig.  6.5 TEM images of 450C20h-Invar. a) Low magnification BF-TEM image; b-d) 

selective area EDPs from regions as indicated in figure a 

 

Similar to 400C20h-Invar, diffraction spots of γ’ (Fig. 6.5b) and γ(N) (Fig. 6.5c) are revealed 

at the very surface and at much deeper region on 450C20h-Invar. The topmost γ’ layer on 

450C20h-Invar shares the same crystallographic orientation of γ(N). For the ‘cellular’ region 

at the surface of 450C20h-Invar (Fig. 6.2f), selected area EDPs present two sets of diffraction 

patterns (i.e. as shown at the two zone axis, Fig. 6.6b, d). Such double diffraction indicates a 

pair of coherent phases with lattice constant ratio at ~1.054, which agrees with the lattice 

constant ratio between γ’ and γ (i.e. ~1.055, determined from peak positions of γ’ and γ from 

GAXRD at ~3 µm depth for 450C20h-Invar). Using the (100)γ’ diffraction spot, DF-TEM 
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images (Fig. 6.6a, c) clearly show a lamellar mixture of γ’ and γ, consistent with the ‘cellular’ 

morphology observed under BSE in Fig. 6.2f.  

 

Fig.  6.6 TEM images of 450C20h-Invar. a) Low magnification BF-TEM image; b-d) 

selective area EDPs from regions as indicated in figure a 
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6.1.3 On the role of Cr in nitrogen supersaturation of Fe-based FCC lattices 

As discussed above, N-rich phases (which are dark under BSE imaging in Fig. 6.2) are 

identified after GAXRD (Fig. 6.3) and TEM analysis (Figs. 6.4-6.6). Following a (presumably) 

decreasing nitrogen content from surface to core on the nitrided Invar, there is i) a topmost 

zone containing mainly γ’-Fe2.6Ni1.4N but also small fractions of  γ’-Fe2.6Ni1.4N + γ-Fe2.6N1.4 

phase mixture, and ii) an underlying nitrogen solid solution in Invar with continuously 

reducing lattice constants from a depth of ~3 µm to ~20 µm. 

 

6.1.3.1 On lattice expansion − XRD profiles and lattice parameters  

The XRD profiles of Invar after TPN (under Bragg-Brentano θ-2θ geometry, Fig. 6.7a) 

appear analogous to that reported for Invar under nitrogen ion beam processing at 400°C by 

Williamson et al. [87], where two ‘new’ FCC structures were denoted as γN1 and γN2 (as 

highly expanded and less-expanded FCC structures, respectively). However, after Section 

6.1.2, the XRD peaks of these two ‘new’ phases (Fig. 6.7a) could be attributed to γ’	nitride 

(i.e. γ’-Fe2.6Ni1.4N) and γ(N) (i.e. isotropically expanded nitrogen solid solution), respectively. 

Noticeably, due to different X-ray attenuation depths (i.e. ~2.4-4.4 µm for θ-2θ XRD and 

~0.6 µm for GAXRD), the γ(N) observed on the treated surfaces under Bragg-Brentano θ-2θ 

geometry (Fig. 6.7a) is not detected under Seeman-Bohlin geometry (Fig. 6.3a). Additionally, 

the weak peak at substrate γ-FCC positions observed in XRD profiles above 425C20h-Invar 

(Fig. 6.7a) could be attributed to the unexpanded (N-depleted) γ-FCC component in the 

‘cellular’ phase mixture.  
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Fig.  6.7 Theta-2theta XRD profiles of a) Invar 36® and b) RA 330® before and after 

TPN, both Invar and RA 330® are nitrided at equivalent conditions at 400°C 20hrs and 

450°C 20hrs; γN – anisotropic nitrogen-expanded austenite, γ’ – iron nickel nitride, γ(N) 

– isotropically expanded nitrogen solid solution, γ – substrate or unexpanded austenite  
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More importantly, comparing the results for Invar to those of alloy 330 after TPN (Fig. 6.7b), 

where the original γ-substrate peaks are shifted anomalously to lower 2θ angles for the latter 

(i.e. anisotropic lattice expansion under nitrogen supersaturation), the peak shifts on Cr-free 

Invar under TPN (Fig. 6.7a) are hkl-independent (i.e. isotropical lattice expansion, as also 

noticed by Williamson [87]). Lattice parameters of the three FCC structures identified in Fig. 

6.7 could be calculated from their experimental XRD peak positions. The derived lattice 

parameters − a(111) and a(200), as determined from FCC(111) and FCC(220) planes − are 

plotted in Fig. 6.8, where they are compared to the lattice constant of γ’-Fe4-xNixN (PDF card 

00-060-0479) and to those of γN-330 on 400C20h-330. Noticeably, the lattice parameters for 

γN and γ(N) derived here from XRD profiles correspond to material surface volumes with 

decreasing nitrogen content from surface to core. 

 

Fig.  6.8 Lattice parameters as determined from the FCC(111) and FCC(200) XRD peak 

positions of untreated and nitrided Invar, as compared to those of γN-330 on 400C20h-

330 (as highlighted in orange dashed box) and γ’ from PDF card 00-060-0479 (as shown 

in green dashed line) 
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The black triangles at the bottom of the plot represent the derived lattice constants for the 

(solution-annealed) Invar substrate at ~0.359 nm in Fig. 6.8, which is similar to that of 

(solution-annealed) the 330 alloy substrate (see Chapter 4). Above ~0.359 nm, the phases 

synthesised on both substrates after TPN could be regarded as being expanded either 

isotropically (Invar) or anisotropically (alloy 330) from the unexpanded γ-substrate.  

 

Firstly, the red triangles directly above the black triangles (of the γ-substrate) in Fig. 6.8 

indicate the lattice parameter of γ(N), which ranges from ~0.365 nm to ~0.363 nm. The 

lattice constants derived for γ(N) correspond to nitrogen levels in solid solution in Invar. The 

lattice constant for nitrogen at maximum solubility in pure Fe (~10.3 at.% N at ~650°C [58]) 

could be estimated as ~0.365 nm using  0.3572 + 0.00078 ×𝑎𝑡.%𝑁   from Ref. [63]. 

Although Ni addition in Fe is known to reduce nitrogen solid solubility in Fe-Ni alloys at 

high temperatures (e.g. under gaseous nitriding at ~900-1100°C [171]), it appears that this 

Fe-35Ni Invar alloy is capable of accommodating high nitrogen content in solid solution at a 

low nitriding temperature such as 400°C (probably to a level near ~10.3 at.% N, close to the 

equilibrium solid solubility limit of N in pure Fe). 

 

Moreover, nitrogen solubility in γ(N) on TPN-treated Invar decreases with increasing 

treatment temperature and time, as suggested by the decreasing lattice constant of γ(N) from 

left to right in Fig. 6.8. Such variation of the lattice constant for γ(N) is pronounced at high 

treatment temperatures (i.e. 425°C and 450°C) accompanied with the ‘cellular’ regions 

observed under BSE imaging (Fig. 6.2). In this case, the decrease in nitrogen solubility in γ(N) 

could be attributed to the cellular decomposition mechanism of N-rich isotropically-expanded 

γ(N) to γ’ nitride and N-depleted, unexpanded γ (which is enhanced at elevated treatment 

temperature), pointing to a need for further studies of Invar under TPN at even lower 
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treatment temperatures (<400°C) or lesser N2:Ar volume ratios (<7:3), to suppress γ’ formation 

and explore the maximum solid solubility of N in Invar. Noticeably, the decrease in nitrogen 

content of γ(N) with increasing treatment temperature is also hinted at by GAXRD analysis 

(after successive layer removal) in Fig. 6.3b, where the γ(N) peak positions at a depth of ~3 

µm are at slightly lower 2θ angles (i.e. slightly higher isotropic lattice expansion) in 

400C20h-Invar compared to those of 450C20h-Invar at the same depth.  

 

The solid solubility of N in Invar under TPN appears to be limited by the potency of γ’ nitride 

formation. The lattice parameter of γ’ (as extracted from PDF card 00-060-0479) is indicated 

using a horizontal green dashed line in Fig. 6.8. Different to the random nitrogen octahedral 

occupation in γ(N), γ’ (with lattice constant at ~0.383 nm provided by PDF card 00-060-0479) 

corresponds to ordered occupation (at ~20 at.% N in total) in the centres of corner-sharing 

octahedra in FCC lattice made by large metallic elements such as Fe and Ni. 

 

Most importantly, in contrast to γ(N) on nitrided Invar, the hkl-dependent lattice parameters 

derived for γN-330 in 400C20h-330 (highlighted by the orange dashed box in Fig. 6.8) are 

clearly higher than the lattice constant of γ’. Having ~19 at.% of pre-existing Cr in substrate, 

alloy 330 is able to accommodate interstitial nitrogen (above 20 at.%, Table. 6.1) under 

anisotropic lattice expansion (i.e. γN), without isotropic lattice expansion into γ’-Fe4N type 

nitride. Thus, the role of Cr in the formation of nitrogen-expanded austenite for alloy 330 

under TPN can be understood via the prevention of γ’-Fe4N-type nitride formation, owing to 

the strong chemical affinity between Cr and N. In accommodation of interstitial nitrogen in a 

rather ‘rigid’ FCC sub-lattice (i.e. ‘immobile’ substitutional elements) under TPN at selected 

low temperatures, the segregation of Cr is suppressed so that long-range ordering of the CrN 

nitride phase in the ASS substrate cannot be achieved; however, the preferential formation of 
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γ’ in a Cr-free FCC sublattice under equivalent TPN treatment is achieved rather easily, since 

the formation of γ’	 could be achieved by ordered N occupation without migration of 

substitutional elements, as indicated by the same crystallographic orientation between γ’ and 

matrix (under TEM, Fig. 6.4 and Fig. 6.6).  

 

Moreover, Menthe et al. [115] and Riviere et al. [117] demonstrated a Cr-N chemical 

bonding, instead of Fe-N (for γ’ formation) in γN-304L layers. According to the XPS spectra 

obtained of γN-304L layers, nitrogen atoms in the nitrogen interstitial supersaturated FCC 

sub-lattice are always in nitride state [115, 117], while Fe was essentially detected in the 

metallic state [117]. In this case, the presence of Cr (to a large level such as ~17-19 wt.%) in 

ASS prohibits the preferential Fe-N bonding for the Fe-based FCC sub-lattice under nitrogen 

insertion. 

In this regard, the difference between stoichiometric γ’ (isotropically-expanded from Invar) 

and γN (anisotropically-expanded from 330) is fundamentally reflected in the different 

chemical bonding between metallic elements (e.g. Fe, Ni and Cr) and nitrogen. Clearly, the 

γ’-Fe4N structure (stoichiometric at ~20 at.% for N and isotropic expansion to the parent FCC 

lattice) tends to form under Fe-N bonding for Invar under TPN, while γN formed with high 

and non-stoichiometric N absorption under potential ‘trapping of N by Cr and formation of 

short-ranged-ordered Cr-N clusters.  

 

Comparing the EDP between γ’-Fe2.6Ni1.4N	(Fig. 6.4e and Fig. 6.5b) and γN-330 (Fig. 4.16a 

and Fig. 4.18b, Chapter 4) at 400°C 20hrs and 450°C 20hrs, the absence of ‘forbidden’ FCC 

reflections in γN-330 indicates that interstitial nitrogen atoms are not always occupying at 

octahedral centres. Considering both the absence of ‘forbidden’ FCC reflections and the 

preferential Cr-N bonding in γN, nitrogen atoms probably locate in interstitial sites in vicinity 
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to Cr (rather than corner-sharing octahedral sites in the case of γ’-Fe4N) in FCC lattice of γN. 

Nevertheless, the ‘forbidden’ FCC reflections were observed in both γN-AG17 and γN-304 

(Chapter 4) with higher nitrogen content than γN-330. Compared to the absence of 

‘forbidden’ FCC reflections in γN-330, the observation of ‘forbidden reflections’ in γN-AG17 

and γN-304 is probably due to the higher interstitial occupation in octahedral interstices (i.e. 

high N:Cr ratio).  

 

6.1.3.2 On nitrogen diffusion mechanisms − cross-sectional hardness-depth profiles  

Assuming N trap sites provided by the randomly distributed Cr in ASS during nitrogen 

diffusion, Parascandola et al. [172] proposed a nitrogen diffusion model in γN based on 

trapping and detrapping of nitrogen (rather than the random walk model demonstrated in 

Chapter 2), which was qualitatively consistent with depth profiles of nitrogen isotopes on 

AISI 316 ASS under low energy high flux nitrogen implantation at 400°C (firstly using 15N 

and then using 14N) [173].  

 

As already shown in Table 6.1, the surface nitrogen content of alloy 330 under TPN is much 

higher than that of Invar. More importantly, under nitrogen diffusion during TPN, surface 

hardened zones are developed – owing to the N depth profiles developed − on both Invar and 

330 with reducing hardness values from surface to core (Fig. 6.9). The transverse hardness 

profiles from surface to core on 400C20h-Invar and 450C20h-Invar (Fig. 6.9a) can be 

compared to 400C20h-330 and 450C20h-330 (Fig. 6.9b) to reveal the different transverse 

nitrogen distribution with and without Cr in a high-Ni Fe-based FCC lattice.  
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Fig.  6.9 Cross-sectional nanoindentation profiles of a) Invar 36® and b) RA 330® after 

plasma nitriding at 400°C and 450°C for 20hrs (error bars − ± 95% confidence interval 

at each depth level) 
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The surface hardened zone on 400C20h-Invar and 450C20h-Invar are, respectively, ~11 µm 

and ~24 µm thick (Fig. 6.9a). The diffusion layer depths of 330 after TPN are ~4.4 µm and 

~12.9 µm for 400C20h-330 and 450C20h-330, respectively (as already determined from BSE 

images, Chapter 4), which are consistent with the hardness profiles (Fig. 6.9b). Comparing 

the nitrogen diffusion depths suggested by the hardened layer depths, the high Cr content in 

alloy 330 restricts the diffusion of N into deeper regions, which could be attributed to the 

nitrogen trapping effect from Cr.  

 

In terms of the shape of N depth profile of γN, nitrogen content reduces slowly in a plateau-

shape from surface to core and then drops abruptly in a sharp leading edge at the layer/core 

boundary [10]. In the hardness profiles, high hardness plateau (e.g. on 450C20h-330, Fig. 

6.9b) and abrupt drops in hardness between diffusion layer and the unmodified core are 

revealed on nitrided 330, which suggests that the ~19 at.% of Cr in alloy 330 enables 

retaining (or trapping [172]) of high N nitrogen content at material surface under nitrogen 

diffusion at low treatment temperatures. Different to those of γN-330 layers (Fig. 6.9b), the 

hardness of nitrided Invar (Fig. 6.9a) − after dropping rather abruptly from the γ’-containing 

zone to γ(N) zone − generally reduces gradually towards core owing to the gradually 

reducing nitrogen content from surface to core for nitrogen in isotropically expanded solid 

solution in Fe-35Ni). The large errors obtained at depths of ~3 µm in 400C20h-Invar and at 

depth of ~6 µm in 450C20h-Invar could be attributed to the inhomogeneous penetration of γ’ 

nitride at material surface.  

 

Both of the depths and shapes of hardness depth profiles (Fig. 6.9) suggest retaining of 

nitrogen at the treated surface by Cr, which could be attributed to the trapping of nitrogen by 

Cr as suggested in literature. Ni in the Fe-35Ni matrix does not provide such trapping effect 
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for interstitial nitrogen. Cr plays an important role for nitrogen supersaturation in ASS under 

low temperature nitriding and appears to be a key element under the topic of designation of 

low-temperature ‘nitridable’ alloys (‘nitridable’ in terms of γN formation after low-

temperature nitriding), which points to future studies on the minimum content of Cr (or other 

strong nitride-forming elements that are able to ‘capture’ N) required for nitrogen 

supersaturation in ASS (or other FCC matrix). 
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6.2 Characterisation of Hadfield steel after TPN 

6.2.1 General characterisation 

6.2.1.1 Surface nitrogen content and Vickers hardness 

The surface nitrogen content of treated Hadfield steel increases with treatment time (Fig. 6.3), 

until saturated at ~27 at.% after 12hrs at 300°C. Similar to those obtained for nitrided Invar, 

all nitrided surfaces of Hadfield steel have N-content higher than the equilibrium nitrogen 

solid solubility limit in γ-Fe (~10.3 at.%) [58]. The surface nitrogen content of TPN-treated 

Hadfield steel increases to a rather high value, near 27 at.%, after 12hrs of nitriding – which 

is higher than that of nitrided Invar (Table 6.1) and also higher than the minimum nitrogen 

content required for ε-Fe3N1+x type nitride formation (i.e. ~25 at.% N for ε-Fe3N).  

 

Table 6.3 Surface nitrogen content (at.%) and Vickers hardness (HV0.025) for Hadfield 

steel after TPN 

Treatment Surface nitrogen content, at%  Vickers hardness, HV0.025 
Untreated / 292 ± 6 

300°C 4hrs 19.5 ± 1.2 424 ± 18 
300°C 8hrs 24.4 ± 0.7 721 ± 72 
300°C 12hrs 26.9 ± 0.6 937 ± 112 
300°C 20hrs 26.8 ± 0.5 1080 ± 70 

 

Surface Vickers hardness values of Hadfield steel after TPN are tabulated in Table 6.3, with 

remarkable surface hardness enhancement after TPN. Similar to the trend observed for the 

surface nitrogen content, the alloy surface hardness increases with treatment time as well, and 

such hardness enhancement with time slows down at a treatment time of 12hrs. The surface 

hardness achieved on 300C20h-Had (i.e. ~1080 HV0.025) is significantly higher than that of 

nitrided Invar shown in Table 6.1. However, these observations could be due to nitride 

formation, which cannot prove the formation of γN and needs to be discussed in conjunction 

with XRD results – as will be shown in the following sections.  
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6.2.1.2 OM on top of material surfaces 

Fig.  6.10 Optical micrographs of a) 300C4h-Had, b) 300C8h-Had, c) 300C12h-Had and 

d) 300C20h-Had 

 

The 300°C triode-plasma nitrided Had presents a ‘woven’ surface morphology (Fig. 6.10), 

where the expected austenitic grain boundary outlines are not clearly seen. The parallel traces 

(for plastic accommodation of supersaturated nitrogen) and ‘dimples’ (for decomposition of 

nitrogen-expanded austenite) observed for ASS under TPN (Chapter 4) are not seen on the 

nitrided Hadfield steel samples. Considering plasma etching effects during TPN, such 

morphology suggests formation of lamellar phases at the material surface.  
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6.2.1.3 BSE imaging of treatment cross-sections 

Sample cross-sections were examined under BSE imaging, as shown in Fig. 6.11a-d). No 

evidence of homogeneous layers (which is a characteristic feature for γN) can be seen. 

Inhomogeneous dark phases are revealed in a rather bright diffusion zone at the treated 

surface of Had (Fig. 6.11). Diffusion layer grows inward with increasing treatment time. 

Based on Fig. 6.11d, a total layer depth of ~30 µm is achieved on 300C20h-Had.  

 

At such low treatment temperature, the phase evolution of the Hadfield steel surface after 

TPN could only be attributed to the diffusion of interstitial elements. Under nitrogen diffusion, 

the counterintuitive bright (high mean atomic weight) background phase in the diffusion zone 

on nitrided Had (Fig. 6.11) could be due to carbon-depletion, potentially owing to carbides or 

carbonitrides formation in the diffusion-affected zone and/or surface decarburisation [174]. 

 

Fig.  6.11 Transverse BSE images of a) 300C4h-Had, b) 300C8h-Had, c) 300C12h-Had 

and d) 300C20h-Had 

 

The dark precipitates at the top region in the diffusion-affected zone on nitrided Had (Fig. 

6.11) present different brightness/contrast levels (as shown clearly in Fig. 6.12b), suggesting 

different types of iron manganese nitrides (or ε-carbonitrides) with significantly different 
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interstitial content. The lamellar morphology of the dark nitrides (Fig. 6.12b) agrees with the 

‘woven’ morphology observed on top of material (Fig. 6.10). 

 

 

Fig.  6.12 Transverse BSE micrographs of 300C20h-Had in detail 

 

6.2.2 Phase identification  

6.2.2.1 XRD analysis of the treated surfaces 

Nitrided Hadfield steel samples are examined via XRD under Bragg-Brentano θ-2θ geometry 

(Fig. 6.13a) and under Seeman-Bohlin geometry (Fig. 6.13b). No evidence of γN nor γ(N) 

formation can be seen. After nitriding, the observed XRD peaks match well with ε-Fe3N1.47 

(PDF card 01-078-8900) and γ’-Fe4N (PDF card 04-018-4772), suggesting formation of ε-

Fe3N1+x type and γ’-Fe4N type iron nitrides at the surface of Hadfield steel after TPN. 

Considering the high Mn-C content in Hadfield steel, nitride precipitates could be iron 

manganese carbonitrides ε-(Fe, Mn)3(N, C)1+x and γ’-(Fe, Mn)4N. The dark phases (under 

BSE imaging, Fig. 6.12b) and the greyish phase (under BSE imaging, Fig. 6.12b and Fig. 

6.12c) could be identified as ε-type nitride (or carbonitrides) and γ’-type nitride, respectively.  
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Fig. 6.13 X-ray diffractograms of Hadfield steel before and after TPN a) under Bragg-

Brentano θ-2θ geometry, and b) Seeman-Bohlin geometry (at 2° glancing angle) 
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As suggested by the increasing ε(110) peak intensity with treatment time (Fig. 6.13a), the 

volume fraction of ε-nitrides (or ε-carbonitrides) increases with treatment time. According to 

the GAXRD profile of 300C4h-Had (Fig. 6.13b), both types of nitrides form on Hadfield 

steel after 4hrs of nitriding. Additionally, the different X-ray attenuation depths under 

different X-ray diffraction geometries (Table 3.4, Chapter 3) suggests that the XRD profiles 

in Fig. 6.13a corresponds to material surface volumes at depths of ~1.7-3.3 µm and the 

GAXRD profiles in Fig. 6.13b correspond to rather shallower surface regions to a depth of 

~0.4 µm. Comparing the peak intensities observed for ε-nitride and γ’-nitride between Figs. 

6.13a and 6.13b, ε-nitride appears to reside at the very surface and γ’-nitride locate at regions 

much deeper than ε-nitride on the TPN-treated Hadfield steel. The nitride distributions 

suggested by XRD profiles (Fig. 6.13) are consistent with BSE images (Figs. 6.11 and 6.12). 

 

Fig.  6.14 GAXRD of 300C4h-Had and 300C20h-Had as nitrided, after polishing and 

after grinding (~10 µm surface layer removal) 
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To reveal the crystal structure in depth, 300C4h-Had and 300C20h-Had were further 

investigated under GAXRD after grinding (for ~10 µm layer removal, measured using a 

micrometer) and polishing as shown in Fig. 6.14. Neither γN nor γ(N) can be seen after 

grinding or polishing the TPN-treated Hadfield steel samples. At a depth of ~10 µm (Fig. 

6.14), XRD profiles of both nitrided surfaces indicate γ’-nitride precipitate. Neither carbides 

nor ε-carbonitrides were clearly observed for TPN-treated Had after grinding and polishing 

under XRD in Fig. 6.14. However, the carbon depletion (indicated by the bright background 

phase under BSE imaging, Fig. 6.11) and the broad γ(111) peak at depth of ~10 µm (on 

300C4h-Had and 300C20h-Had, Fig. 6.14) suggests potential formation of fine carbides in 

deeper regions of the diffusion-affected zone on nitrided Hadfield (in small volume fractions 

that were not clearly detected under XRD).  

 

Different to TPN-treated Invar samples after TPN at 400-450°C, γ(N) is not observed in the 

diffusion zones on Had samples under TPN, which could be attributed to the low treatment 

temperature applied (i.e. 300°C for Hadfield steel is much lower than 400-450°C for Invar). 

Nitrogen diffusion at such low treatment temperature for Had most likely occurs along grain 

boundaries and the precipitate/matrix interfaces, rather than by bulk diffusion.    

 

6.2.2.2 XRD analysis of core microstructure  

Due to the high carbon content, Hadfield steel is vulnerable to carbide precipitation such as 

(Fe, Mn)3C during heat treatments between 300°C and 800°C [175]. The core microstructure 

(after etching) of Hadfield steel after TPN treatment presents a grain structure without visible 

precipitations, as shown in Fig. 6.15a,b. After grinding the treated samples using P1200 SiC 

paper (to depths of ~200 µm, measured with a micrometer), the core structures of Hadfield 
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steel after TPN are revealed under XRD as shown in Fig. 6.15c, where core material shows 

substrate peaks at positions close to U-Had without any detectable carbide formation. 

 

Fig.  6.15 OM images showing core microstructures of a) U-Had and b) 300C20h-Had 

(etched with 2% Nital); c) θ-2θ XRD profiles of core of Hadfield steels (at depths of 

~200 µm after grinding)	
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6.2.3 Transverse nanoindentation hardness-depth profiles 

Although γN does not form on nitrided Hadfield steel, the low temperature TPN treatment 

provides surface hardness enhancement (Table 6.3). As shown in cross-sectional 

nanoindentation hardness depth profiles (Fig. 6.15), surface hardened layers are revealed, 

showing increasing hardness and depth  with treatment time. A maximum hardness value, 

~12.6 GPa, was revealed at a depth of ~4µm in 300C20h-Had, which is over 2.5 times higher 

than that measured for U-Had (~4.8 GPa). The hardened layer depth determined from Fig. 

6.16 correlates well to the penetration depths of dark precipitates revealed under BSE 

imaging in Fig. 6.11 (e.g. ~30 µm on 300C20h-Had).  

 

Fig.  6.16 Cross-sectional nanoindentation hardness profiles (at 5000 µN) of untreated 

and nitrided Hadfield steels 

 

Comparing the hardness profiles of nitrided Had in Fig. 6.16 to those of nitrided 330 in Fig. 

6.9b, hardness of TPN-treated Had samples reduces gradually from surface to core (Fig. 
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6.16), whereby the hardness plateau and abrupt drop of hardness (characteristic of nitrogen-

supersaturation) is not observed. Clearly, Mn in the Fe-based FCC lattice does not provide 

the trapping characteristic of Cr to interstitial N under low-temperature TPN. 
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6.3 Summary 

In this chapter, Cr-free Fe-35Ni Invar alloy was compared to Fe-19Cr-35Ni ASS after TPN 

treatment under equivalent conditions, while Cr-free Fe-13Mn-1.2C Hadfield steel was also 

investigated after TPN, to explore the possibility of low temperature nitrogen supersaturation 

of Cr-free high-Mn steel. Nitrogen supersaturation was not observed on either of the selected 

Cr-free austenitic steels under the chosen nitriding conditions; however, several findings can 

be drawn, as follows:  

 

• After investigations using a combination of techniques such as BSE (Fig. 6.2), GAXRD 

(Fig. 6.3) and TEM (Figs. 6.4-6.6), the surface phases on nitrided Invar under XRD (Fig. 

6.7) could be identify as iron nickel nitride, γ’-Fe2.6Ni1.4N, and isotropically-expanded 

nitrogen solid solution, γ(N), respectively. Nitride precipitates were observed in the upper 

regions of the diffusion zone on the TPN-treated Invar (e.g. to depth of ~3-5 µm on 

450C20h-Invar, Fig. 6.2), while the isotropically-expanded nitrogen solid solution (below 

the nitride-containing region) extended deep into the core material (e.g. to a depth of ~24 µm 

on 450C20h-Invar, as suggested by the nanoindentation hardness-depth profile, Fig. 6.9).  

  

• Although Ni addition in Fe is known to reduce nitrogen solid solubility in Fe-Ni alloys at 

high temperatures, Invar alloy was capable of accommodating a rather large isotropic 

lattice expansion, from ~0.359 nm to ~0.365 nm under nitrogen dissolution at 400°C –  

without forming γ’ – as shown in Fig. 6.8 (c.f. a maximum lattice constant of ~0.365 nm 

for pure Fe with ~10.3 at.% N at equilibrium nitrogen solid solubility). However, such 

nitrogen dissolution in Invar under low temperature TPN was limited by γ’ formation in 

the N-saturated matrix.  
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• Relatively high surface nitrogen content (and surface hardness) was observed on the Cr-

free high-Mn Had under TPN at 300°C (Table 6.3); however, the high surface nitrogen 

content and hardness was owing to ε-Fe3N1+x type and γ’-Fe4N type iron nitride formation 

at the near surface, rather than γN (Fig. 6.13). ε-type nitrides resided at the upper region 

and γ’-type nitrides formed at deeper regions in the diffusion zone. A relatively deep 

surface hardened layer (up to ~30 µm after 12hrs of TPN-treatment, Fig. 6.16) is 

observed on the nitrided Had surface, but it is due to precipitation (as suggested by BSE 

imaging Fig. 6.11) rather than γN or γ(N).    

 

• Owing to the strong chemical affinity between Cr and N and the preferential Cr-N 

bonding under nitrogen supersaturation, the high amount of Cr in alloy 330 (~19 wt.%) 

prevented the formation of γ’ and Fe-N bonding for steels under low-temperature 

nitriding. In terms of the surface nitrogen content between Fe-35Ni and Fe-19Cr-35 under 

TPN (Table 6.1) and their transverse nitrogen distribution (as suggested by their hardness 

depth profiles, Fig. 6.9), Cr played an important role in retaining (or trapping) the 

interstitial nitrogen in the treated surface of ASS. Neither Ni nor Mn in Fe-based FCC 

matrix appeared to exhibit such trapping characteristics to interstitial nitrogen under low 

temperature TPN. 
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Conclusions 

In this study, four specific austenitic steels and AISI 304 ASS (i.e. Fe-18Cr-8Ni, in wt.%) 

were investigated under triode-plasma nitriding at selected treatment conditions. In Chapter 

4, the crystal structures of nitrogen diffusion layers developed on top of two proprietary ASS 

− i.e. AG17 (Fe-17Cr-20Mn-0.5N, in wt.%) and alloy 330 (Fe-19Cr-35Ni, in wt.%) after 

TPN treatment were compared under equivalent treatment conditions at 400°C, 425°C and 

450°C for 4hrs and 20hrs, respectively. In Chapter 5, the surface hardening of three ASS 

after prolonged treatment at a low treatment temperature of 400°C were investigated under 

dry sliding wear and SiC wet-slurry abrasive wear conditions; the ASS samples after surface 

nitrogen modification at 400°C 20hrs and 450°C 20hrs were evaluated under open circuit 

potential and potentiodynamic polarisation in 3.5 wt.% NaCl water solution. In Chapter 6, 

the Cr-free high-Ni Invar (Fe-35Ni, in wt.%) was compared to the proprietary high-Ni ASS 

alloy 330 (Fe-19Cr-35Ni, in wt.%) under TPN at equivalent treatment conditions; and the Cr-

free high-Mn/C Hadfield steel (Fe-13Mn-1.2C) was also investigated after TPN at a rather 

low treatment temperature of 300°C for 4, 8, 12 and 20hrs. Several conclusions could be 

drawn, as follows:  

• Under plastic accommodation of nitrogen at low treatment temperature, two possible 

types of nitrogen composition-induced plasticity mechanism were proposed for the matrix 

lattice with respect to material SFE (i.e. dislocation glide in the high SFE alloy 330 and 

dislocation dissociation in the low SFE AG17). 

• At elevated treatment temperature, two possible ‘diffusional’ phase transformation 

mechanisms were identified in association with CrN formation, which were: i) a 

uniformly-distributed eutectoid decomposition mechanism to CrN + α-Fe in AG17 

(similar to 304), and ii) a sluggish precipitation mechanism to CrN + (Ni stabilised) γ-Fe 

in alloy 330.  
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• The symbiotic relationship between SF number density and nitrogen uptake in a low SFE 

alloy such as AG17 during thermochemical treatment appeared beneficial in achieving 

high nitrogen absorption and lattice expansion at a relative low treatment temperature, but 

also tended to result in accelerated phase decomposition at higher treatment temperatures.  

• Given the potential for dislocation glide under lattice strain, high SFE alloys such as 330 

tend to accommodate less interstitial nitrogen overall (with rapid saturation – and 

relatively low anisotropic expansion − occurring under thermochemical treatment), but 

exhibit better structural integrity and thermodynamic stability.  

• Other than providing the basic (meta)stable room-temperature austenitic phase 

composition of the parent alloy, neither Mn nor Ni was essential for formation of γN. 

• Nevertheless, both Mn and Ni had a pronounced effect on lattice structure and 

metastability of ASS under low-temperature thermochemical treatment, via their 

influences on material SFE – and particularly with regard to the onset of crystallographic 

phase instability (e.g. SF initiation) at the point of alloy ‘over-supersaturation’ with 

nitrogen (in Fe-Cr-Ni/Mn-N systems) for specific, alloy composition-dependent, 

time/temperature envelopes.  

• The γN layers synthesised after low-temperature TPN provided beneficial load-bearing 

capacity and reduced adhesive wear to the treated ASS samples under dry sliding wear 

condition, hence remarkably enhanced material sliding wear resistance. 

• Nevertheless, material surface hardness enhancement after formation of γN layers did not 

necessarily translate to good abrasive wear performance. The increased abrasion wear 

rate after TPN-treatment could be attributed to the brittleness of γN layers under nitrogen 

‘over-supersaturation’ (as suggested by the cracking observed on γN layers after Vickers 

indentations) and relatively low layer thickness (of the order of the wear particle size).   
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• Improvements in corrosion performance (and inhibition of pitting corrosion) were evident 

for all three ASSs after TPN at 400°C for 20hrs – and the anticipated loss of corrosion 

resistance after CrN formation in γN was observed on ASS being treated at 450°C for 

20hrs.  

• The high SF number densities (and formation of ε-martensite) observed in γN-304 or γN-

AG17 and the high residual stress in γN-330, which were influential factors on material 

mechanical/tribological performance, did not appear to decrease material corrosion 

resistance.  

• However, the high residual stress developed (e.g. in γN-330) raised concerns for the 

application of γN in corrosive environments, where the relaxation of the high residual 

stress in γN layer during corrosion could lead to local breakdown of passive films in 

demanding corrosive environments (e.g. stress-corrosion cracking effects).  

• A ranking order of residual stress level of the γN layers tested could be given from high to 

low as γN-330 → γN-304 → γN-AG17, which appeared inversely correlated to the SF 

densities observed in them.   

• Surface nitrogen uptake, anisotropic lattice expansion, the resulting surface hardness and 

material tribological performance of γN layers could certainly be tailored via altering the 

nitriding parameters (voltage and/or gas mixture), but is also influenced by the elastic/plastic 

response of the N-rich lattice to the composition-induced lattice stress/strain during 

nitrogen interstitial diffusion. The compositional factors of ASS substrate (particularly on 

the Mn/Ni content and a selection criterion developed with respect to SFE) could also be 

ultilised to tailor the composition, structure and property/performance of γN layers.  

• For the Cr-free FCC steels, γ’-Fe2.6Ni1.4N and γ(N) nitrogen solid solution were identified 

in the diffusion zone of Invar under TPN at 400-450°C, whilst ε-Fe3N1+x type and γ’-Fe4N 

type nitrides were identified in the diffusion zone of Hadfield steel under TPN at 300°C.   
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• Before γ’ formation, the FCC lattice of Invar was capable of accommodating an isotropic 

lattice expansion from ~0.359 nm to ~0.365 nm under nitrogen interstitial diffusion at 

400°C.  

• The strong chemical affinity between Cr and N (and the preferential Cr-N bonding) 

appear to prevent the formation of γ’ (and Fe-N bonding) for Fe-based FCC lattice under 

nitrogen insertion. For the formation of γN, Cr played an important role of retaining (or 

trapping) the interstitial nitrogen at the treated surfaces, whereas neither Ni nor Mn 

appeared to exhibit such characteristic to interstitial nitrogen under low temperature TPN. 

 

This study explored the role of the main alloying elements in ASS substrates (such Cr, Mn 

and Ni) on the formation, crystal structure and structure metastability of nitrogen-expanded 

austenite under low-temperature TPN treatment, to i) extend the current understanding on γN 

formed particularly on two proprietary ASS substrates (ie. other than the commonly-

investigated AISI 304 or 316) under low-temperature nitriding with respect to the SFE of 

substrates (varied with the different Mn/Ni content), ii) provide evidence on trapping 

characteristics of Cr to N for Fe-based FCC alloys during low temperature nitriding (not 

shown by Ni or Mn) and, more importantly, iii) contribute to a basic methodology for the 

development of ‘nitridable’ (in terms of the ability to achieve nitrogen supersaturation of 

austenite under low-temperature nitriding conditions) austenitic alloys for low-temperature 

thermochemical diffusion treatment in the future.  
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Further Work  

The surface nitrogen content in this study was based on SEM-EDX and no composition-depth 

profile was given for respective surfaces. It is necessary to perform surface chemistry 

analysis of the nitrided surfaces (e.g. GDOES and XPS). Although positive results were 

observed in material sliding and corrosion performance (in 3.5 wt.% NaCl solution) for three 

ASS after low-temperature TPN, corrosion performance of γN in other corrosive media and 

the tribo-corrosion performance of γN still need to be studied in the future. The Ni-free Mn-N 

stabilised ASS and the high-Ni ASS (or the corrosion resistant Ni alloys) could be evaluated 

further with respect to their potential applications (e.g. biocompatibility testing or NACE 

corrosion testing, respectively, for biomedical and offshore applications). 

 

The relatively shallow diffusion depths (for insufficient abrasion protection using ~3 µm 

abrasive particles) and the layer brittleness (as hinted at by the poor abrasion performance, 

that could be attributed to the high ‘nitriding potential’ employed) points to future studies on 

ASS under TPN at different nitriding parameters (e.g. nitrogen gas volume fraction, bias 

voltage and/or working pressure) to explore the influence of plasma nitriding parameters 

(especially in triode-plasma configuration) on the crystallographic instabilities in γN layers. 

 

As discussed in this study, Cr played an important role in the formation of γN. However, it 

still remains unclear that: i) what is the minimum Cr content required in substrates (e.g. Fe-Cr, 

Ni-Cr and Co-Cr alloys) for the effective formation of nitrogen-expanded austenite, and ii) 

whether strong nitride-forming elements other than Cr (e.g. Ti, V, Nb, W) could also 

facilitate the formation of such metastable layers on candidate substrates. Additionally, apart 

from Mn and Ni, various other substitutional elements (e.g. Co, Cu, Al, Si, Mo, etc.) can also 

influence the SFE and/or lattice stability of austenitic iron and steel. 
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Under the scope of designing low temperature ‘nitridable’ austenitic alloys, future studies 

could be carried out on: i) low-SFE (e.g. Cr-containing TWIP/TRIP steels or Co-Cr alloys) or 

high-SFE (e.g. superaustenitic ASS or Ni-Cr alloys) materials and ii) on Fe/Ni/Co-based 

alloys containing different levels of Cr (or other strong nitride-forming elements). For 

example, the likely formation of coherent ε-martensite lamellae (or incoherent α’-martensite) 

in γN layers synthesised on Cr-containing TWIP or TRIP steels under low-temperature 

nitriding, which needs to be confirmed by respective studies in the future, could substantially 

influence material structure-property-performance considerations, particularly for optimal 

design of high-strength, light-weight steel structures in thin section. 
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