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Abstract 

Delivery of anti-cancer drugs to tumours is a fundamental requirement for cancer 

treatment. However, failure of drugs to reach tumours at sufficient concentrations due 

to poor bioavailability, rapid metabolism and elimination compromises effective 

treatment. A substantial number of potent anti-cancer drugs, exhibit hydrophobic 

properties that hinder their clinical use. Therefore, there is an urgent need for the 

development of a hydrophobic drug delivery system (DDS) that aims to effectively 

deliver and controllably trigger the release of these agents. This may improve drug 

bioavailability, efficacy and reduce severe side effects.  

Lipid-Oil-NanoDroplets (LONDs) are nanosized nanoemulsions and are proposed as 

a novel hydrophobic DDS for colorectal cancer (CRC) treatment. LONDs were 

produced using a two-step high pressure homogenisation process, producing LONDs 

with size ranges between 100-300 nm. The hydrophobic vascular disrupting agent 

Combretastatin A4 (CA4) was encapsulated and used as a proof-of-concept for 

LOND evaluation in vitro and in vivo. CA4 was dispersed in triacetin or tripropionin 

oil to form the LOND core, stabilised by a phospholipid-shell. Using a microfluidic 

production platform, CA4 LONDs were attached on-chip to gas-filled, phospholipid-

shelled therapeutic microbubbles (thMBs). CA4 thMBs were targeted to vascular 

endothelial growth factor receptor 2 (VEGFR-2) and used as LOND delivery vehicles. 

An external ultrasound (US) destruction pulse applied at the tumour site was used to 

trigger targeted release and enhance delivery.  

This project showed CA4 release and/or uptake from LONDs in both endothelial and 

human CRC cells by immunofluorescence and flow cytometry. Intratumoural delivery 

of CA4 LONDs was observed and quantified in CRC xenografts using liquid 

chromatography tandem mass spectrometry (LS-MS/MS). Administration of CA4 

LONDs resulted in a modest tumour growth inhibition in vivo, while a reduction in 

tumour perfusion was observed with CA4 thMBs. Combination therapy of CA4 thMBs 

with a chemotherapeutic agent, irinotecan, further reduced tumour growth compared 

to irinotecan alone, potentially through reduction in tumour perfusion. These results 

suggest that LONDs may serve as a novel hydrophobic DDS, while thMBs could 

further enhance tumour specific delivery. 
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1.1 Colorectal Cancer  

Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality. It is the 

fourth most common cause of cancer related deaths worldwide and second most 

common in the UK, with over 1 million people diagnosed annually worldwide and over 

40,0000 in the UK alone (Cancer Research UK, 2015). Although, a decline in the 

mortality and incidence rates of CRC has been reported since the early 1970s due to 

improved screening programmes for early detection, better and newly developed 

treatments, improved surgical techniques with an improved standard of pre and post-

operative care and improvements in adjuvant therapy, more than 40% of patients 

diagnosed do not survive the disease (Cancer Research UK, 2015; Welch & 

Robertson, 2016).  

1.1.1 CRC Carcinogenesis and molecular subtypes  

Cancer is a disease whereby normal cells acquire the ability through a number of 

genetic alterations to divide, grow uncontrollably and avoid apoptosis (Hanahan & 

Weinberg, 2000, 2011). CRC carcinogenesis is a multistep process whereby a 

number of  genetic alterations which may be inherited or occur sporadically over time 

from several years to decades (Welch & Robertson, 2016). 

Vogelstein and Fearon (1988, 1990) first described CRC as a linear progression, 

following studies in colon tumours that arose in patients sporadically or occurred from 

hereditary Familial adenomatous polyposis, an autosomal dominant condition in 

which numerous benign adenomas develop in the colon of an affected person 

(Vogelstein et al., 1988; Fearon & Vogelstein, 1990). Firstly, mutations in the 

Adenomatous polyposis coli (APC) tumour suppressor gene in the colon provide a 

growth advantage to the normal epithelium leading to the growth of a small benign 

adenoma, small adenomas are characterised by chromosomal instability (CIN) 

(Vogelstein et al., 1988; Fearon & Vogelstein, 1990; Vogelstein et al., 2013). CIN 

results from an imbalance in chromosome number, defects in chromosomal 

segregation, telomerase stability and DNA damage response (Pino & Chung, 2010). 

The APC gene along with other proteins such as Axin and glycogen synthase kinase 

3 β (GSK3 β) form a complex that regulates the β-catenin-dependent Wnt signalling 

pathway, the activation of this pathway due to mutations in APC is regarded as one 

of the initiating events in CRC (Aoki & Taketo, 2007; Markowitz & Bertagnolli, 2009; 

Fearon, 2011). The Wnt signalling pathway is activated when β-catenin accumulates 

in the cytoplasm, followed by its translocation in the nucleus where it binds to DNA 

binding proteins (T cell factor-lymphocyte enhancer family, TCF), this binding 
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complex acts as a transcription activator of genes involved in cellular activation such 

as the c-Myc, proto-oncogene (Markowitz & Bertagnolli, 2009; Fearon, 2011).  

Another major initiating step in the development of an adenoma is the activation of 

growth factor pathways such as prostaglandin signalling (Eberhart, Charles et al., 

1994; Sano et al., 1995). Cyclooxygenase-2 (COX-2) is one of the enzymes mainly 

responsible for the production of prostaglandin E2 (PGE2), which promotes 

inflammation and cell proliferation (Eberhart, Charles et al., 1994; Sano et al., 1995). 

Over expression of COX-2 was reported in approximately 60% of CRC (Eberhart, 

Charles et al., 1994; Sano et al., 1995; Chan, Andrew, Ogino & Fuchs, 2007).  

The acquisition of a second mutation in the KRAS gene results in further growth, 

leading to a large adenoma (Vogelstein et al., 1988; Fearon & Vogelstein, 1990; 

Powell et al., 1992; Jones et al., 2008; Vogelstein et al., 2013). Subsequent mutations 

in transforming growth factor (TGF)-β, SMAD family member 4 (SMAD4), p53 and 

other pathways such as phosphatidylinositol 3-kinase (PI3K), allow the tumour to 

evolve from a large adenoma to a carcinoma, carcinomas are malignant, they have 

the ability to invade and metastasise to other tissues (Jones et al., 2008). It takes 

approximately 17 years for a large adenoma to become an advanced carcinoma, 

however it takes only about 2 years for the advance carcinoma to invade and 

metastasise to the liver (Jones et al., 2008). Approximately 85% of sporadic or 

inherited CRC have mutations in the APC gene, KRAS and are characterised by high 

CIN, the remaining 15% are characterised by microsatellite instability and are caused 

by mutations or epigenetic changes in genes for DNA mismatch repair, mainly MutL 

homologue 1 (MLH1) and mutS homologue 2 (MSH2) (Vilar & Gruber, 2010; Fearon, 

2011) (Figure 1.1).  

Although, the model for CRC described above provided evidence for a step-wise 

accumulation of various genetic alterations leading from small adenomas to 

metastatic carcinomas, it did not fully provide an insight into the complexity and 

heterogeneity of CRC. Recently, in an effort to provide a more complete picture of 

CRC complexity and to provide a useful stratification tool for clinical translation and 

targeted therapies, the CRC Subtyping Consortium was formed (Guinney et al., 

2015). Members of the Consortium combined their genomic databases and 

generated four subgroups of CRC, these are termed the consensus molecular 

subtypes or CMSs (Guinney et al., 2015; Dienstmann et al., 2017).  
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Figure 1.1 CRC Development from Adenoma to Metastatic Carcinoma. 

According to Vogelstein and colleagues, the initial step in CRC tumorigenesis is the 

formation of a small benign adenoma which is associated with a mutation in the APC 

tumour suppressor gene. The APC gene is part of a destruction complex that 

degrades β-catenin, mutations in the APC lead to the activation of the Wnt signalling 

pathway and the over-accumulation of β-catenin in the nucleus which acts as a 

transcription factor for genes involved in cellular activation. A further mutation in 

KRAS results to further growth, from a small adenoma into a large adenoma. 

Mutations in p53, TGF-β and downstream target SMAD4 lead to the development of 

a malignant carcinoma. Carcinomas can acquire further changes that can promote 

metastasis and invasion into other tissues. CRC with microsatellite instability are 

characterised by inactivation of DNA mismatch repair system and epigenetic 

changes and do not develop in the same manner described for CIN, however 

mutations in KRAS and alterations in Wnt signalling are described (Walther et al., 

2009). Figure adapted from Walther et al., 2009.  
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CMS1 represents 14% of early stage tumours and have a distinct developmental 

pattern, these are mostly tumours with microsatellite instability, characterised by 

hypermutation, hypermethylation, frequent BRAF mutations and immune infiltration, 

mainly T helper (TH) 1 cells and cytotoxic T cells (Guinney et al., 2015). Tumours in 

CMS2-4 develop via the proposed model by Vogelstein and colleagues by acquiring 

mutations in the APC gene (Fearon & Vogelstein, 1990; Dienstmann et al., 2017). 

CMS2 represents 37% of tumours and is characterised by high CIN; tumours in this 

subtype are epithelial and have a significant upregulation of WNT and MYC 

downstream targets (Guinney et al., 2015). Tumours in the CMS3 subtype represent 

13% of tumours and have a number of altered metabolic gene signatures and KRAS 

mutations (Guinney et al., 2015). 23% of tumours are CMS4 and these are 

characterised by an upregulation of genes involved in epithelial-to-mesenchymal 

transition (EMT) and activation of TGF-β signalling, vascular endothelial growth factor 

receptor (VEGFR) upregulation, complement pathway activation and stromal 

infiltration which suggests that this subtype is pro-metastatic (Guinney et al., 2015). 

In terms of survival, CMS4 tumours have the worst survival rates and worst relapse 

free survival, while CMS1 tumours have a very poor survival only after relapse 

(Guinney et al., 2015). 

In light of this CMS classification system, research is now being focused on subtype-

specific therapies (Linnekamp et al., 2018). A panel of CRC cell lines, primary 

cultures and patient derived xenografts (PDX), were classified in the four CMSs, the 

aim being to ensure that CRC is modelled appropriately (Linnekamp et al., 2018). 

The authors used a number of available gene expression datasets used to classify 

the selected CRC cell lines and positively identified all four CMCs in approximately 

67% of CRC cell lines tested, primary cultures and PDX (Linnekamp et al., 2018). 

Morphologically culture of CMS2/3 cell lines were distinct and grew in colonies, while 

CMS4 cell lines were more dispersed and elongated. Moreover drug sensitivity 

assays revealed that CMS1-3 were more sensitive to conventional chemotherapy 

such as 5-Fluorouracil (5-FU) than CMS4 cell lines (Linnekamp et al., 2018). The 

data reported by Linnekamp et al., (2018), will be particularly important for future 

design of CMS-specific therapies (Linnekamp et al., 2018).  

1.1.2 Current treatments for CRC  

Staging of CRC is the most important prognostic factor for patients and also 

determines the appropriate treatment schedule (Wolpin & Mayer, 2009). The tumour-

node-metastasis (TNM) described by the American Joint Committee of Cancer is the 

most commonly used staging system (Greene, Stewart & Norton, 2002). The TNM 
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system is based on tumour size, depth of penetration into the bowel wall, extent of 

lymph node involvement and presence of metastasis (Greene, Stewart & Norton, 

2002). The depth of tumour penetration defines the T stage which increases from T1 

to T4, as T increases the risk of lymph node involvement increases, this defines the 

N stage from N0 (no lymph node involved) to N1 and N2 (more than 3 lymph nodes 

involved), metastasis is defined by the M stage and can be M0 (no metastasis) or 

M1, apparent metastasis detected (Wolpin & Mayer, 2009). The results from the TNM 

staging are combined and the stage of CRC is determined from I to IV (Wolpin & 

Mayer, 2009). As the stage of CRC increases the five year survival rates dramatically 

decreases: stage I > 90%; stage II > 80%; stage III > 60%; stage IV < 10% (Cancer 

Research UK, 2015). The CMS classification for CRC has not yet been adopted in 

the clinical setting, however, clinical translation would potentially improve patient 

stratification for treatment towards precision medicine and reduce the number of 

patients that undergo unsuccessful treatments (Inamura, 2018). 

Surgical resection is the first line of treatment for early stage CRC (Cancer Research 

UK, 2015). Following surgical resection, patients with stage II and above undergo 

chemotherapy (Cancer Research UK, 2015). As well as chemotherapy patients may 

also receive radiotherapy before or after surgery as an adjuvant therapy to prevent 

re-occurrence (Cancer Research UK, 2015). Patients with unresectable advanced 

CRC at stage IV also undergo chemotherapy with the main aim of converting 

unresectable CRC to resectable CRC, to prolong survival and to improve tumour-

related symptoms (Cutsem, Nordlinger & Cervantes, 2010). Some of the most 

commonly used chemotherapeutic agents for CRC include 5-FU, Irinotecan, 

Leucovorin and Oxaliplatin (Cutsem, Nordlinger & Cervantes, 2010).  

1.1.2.1 5-Fluorouracil  

5-FU has been approved for use in CRC for almost 60 years, it is an antimetabolite 

drug which works by inhibiting thymidylate synthase (TS) and by incorporating its 

active metabolites into RNA and DNA (Longley, Harkin & Johnston, 2003). Overall 5-

FU as a monotherapy agent in CRC has a low response rate, however, several 

adaptations have been made to increase the toxicity of 5-FU (Longley, Harkin & 

Johnston, 2003). The addition of folinic acid (leucovorin) greatly enhanced the anti-

tumour activity of 5-FU (Longley, Harkin & Johnston, 2003). In clinical trials however, 

the overall survival of patients was not greatly improved by 5-FU and leucovorin, 

leading to further combination with Oxaliplatin (Gramont et al., 2000). A clinical trial 

using the combination of leucovorin/5-FU and Oxaliplatin (FOLFOX) reported better 
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response rates than leucovorin/5-FU alone however, with neurosensory toxicity 

(Gramont et al., 2000).  

1.1.2.2 Irinotecan  

7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxy camptothecin (CPT-11), 

commonly referred to as irinotecan is the water soluble analog of camptothecin (CPT) 

which was first isolated from a plant Camptotheca acuminate native to the south of 

China (Kunimoto et al., 1987). Irinotecan was found to have a broad spectrum anti-

tumour activity and was less toxic than CPT (Kunimoto et al., 1987). Irinotecan acts 

as a prodrug as it is converted by carboxylesterases to 7-ethyl-10-

hydroxycamptothecin (SN38). SN38 is 100-1000 fold more potent than irinotecan 

(Mathijssen et al., 2001). SN38 works by inhibiting topoisomerase I an enzyme that 

catalyses the breakage and rejoining of DNA strands during DNA replication, it leads 

to DNA fragmentation and apoptosis (Mathijssen et al., 2001). Irinotecan has a very 

complex metabolic profile, following conversion by esterases to SN38, SN38 is 

further detoxified by undergoing glucuronic acid conjugation to form the glucuronide 

SN38G (Gupta et al., 1994; Mathijssen et al., 2001). SN38G is 100 fold less active 

than SN38 at inhibiting topoisomerase I (Mathijssen et al., 2001). The gut microflora 

can convert SN38G back to SN38 and this was found to be responsible for the 

diarrhoea associated with irinotecan (Gupta et al., 1994). Moreover, the combination 

of leucovorin/5-FU/irinotecan (FOLFIRI) is also used and has shown good response 

rates (Segal & Saltz, 2009).  

Efforts have been made in the clinical setting to evaluate the association of molecular 

subtype and response to irinotecan-based therapies for metastatic CRC (Del Rio et 

al., 2017). Using gene expression profiling of tumour samples (primary tumour site), 

Del Rio et al., (2017) identified a subtype of CRC which represented 28% of patients 

and these patients in particular had a high response and a longer overall survival 

when treated with FOLFIRI (Del Rio et al., 2017). This subtype was characterised by 

an upregulation in Wnt signalling and CIN, the molecular subtype specifically was C5 

which was described by Marisa, et al., (2013) as a classification prior to the CMSs, 

however was closely related to CMS4 (Del Rio et al., 2017; Marisa et al., 2013).  

Further clinical trials are required to evaluate the molecular subtypes and their 

correlation to patient response.  

1.1.2.3 Chemotherapy and its side effects   

Despite the overall success of chemotherapy, one of the major obstacles to effective 

cancer treatment is the number of side effects associated with systemic 
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chemotherapy which can be intolerable and have detrimental effects on the quality 

of life of patients. Clinical trials with FOLFOX and FOLFIRI reported a number of 

moderate adverse events such as diarrhoea, nausea, vomiting and severe side 

effects such as neutropenia, thrombocytopenia and neuropathy in patients with CRC 

(Goldberg et al., 2006a, 2006b; Fuchs et al., 2007).  

Conventional chemotherapy although used successfully in many cases in others is 

limited by systemic toxicity. With the gain of knowledge throughout the years on the 

step-wise development of cancer and moving away from the one gene one drug 

approach, more sophisticated and targeted therapies in combination with 

chemotherapy are being developed to target multiple genes/processes in cancer 

development.  

1.2 Vascular Targeting Therapies  

One of the key events and hallmarks of cancer development is the growth of new 

blood vessels through the process of angiogenesis, the oxygen and nutrients 

supplied by the new vasculature being crucial to the survival of cancer cells (Hanahan 

& Weinberg, 2000). The concept of tumour angiogenesis was first described by 

Folkman who hypothesised that for a tumour to grow it required new blood vessels 

and introduced anti-angiogenesis as a therapeutic strategy specifically preventing the 

growth of tumour blood vessels (Folkman, 1971, 1990). During tumour development 

the “angiogenic switch” drives tumour angiogenesis e.g. by upregulation of 

angiogenesis activators such as vascular endothelial growth factor (VEGF) (Hanahan 

& Folkman, 1996).  

Since the importance of angiogenesis in tumour development was observed vascular 

targeting therapies (VTTs) which include two distinct classes of agents: the anti-

angiogenic agents (AAs) and the vasculature disrupting agents (VDAs) have been 

developed and used clinically (Chase, Chaplin & Monk, 2017). AAs prevent the 

development of new blood vessels (angiogenesis) which is necessary for tumour 

growth (Chase, Chaplin & Monk, 2017).  

As VEGF has a crucial role in angiogenesis, a monoclonal antibody against VEGF 

was developed, bevacizumab (Avastin) to inhibit angiogenesis and tumour growth 

(Presta et al., 1997; Hurwitz et al., 2004). Initial work in CRC showed that 

bevacizumab in combination with leucovorin increased the survival of patients with 

metastatic CRC to 20.3 months when compared to the 15.6 months median survival 

time from patients treated with leucovorin (Hurwitz et al., 2004). Bevacizumab as well 
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as inhibiting the growth of new blood vessels, may also normalise the tumour 

vasculature and decrease interstitial fluid pressure, resulting in more efficient delivery 

of chemotherapeutics (Willett et al., 2004; Jain, 2005). Due to these improved survival 

rates in cancer patients bevacizumab was approved for use in patients with 

metastatic CRC in 2004 in the USA and 2005 in the EU and is usually used in 

combination with FOLFOX or irinotecan (FDA, 2004; European Medicines Agency, 

2005; Cohen et al., 2007).  

In contrast to AAs, VDAs target the established tumour vasculature, which is 

characterised as chaotic and lacking a proper endothelial cell lining (Siemann, 

Chaplin & Horsman, 2017). Often the endothelial cells have irregular shapes, poor 

investiture of smooth muscle cells (SMCs) or pericytes, subsequently leading to high 

vascular permeability and high interstitial fluid pressure (Baluk, Hashizume & 

McDonald, 2005). Treatment of the tumour vasculature with VDAs due to these 

morphological abnormalities leads to a rapid and catastrophic shutdown of blood flow 

(Tozer, Kanthou & Baguley, 2005). It should be noted that some agents can have 

both anti-angiogenic and anti-vascular properties (Tozer, Kanthou & Baguley, 2005). 

Currently, a number of VDAs are in clinical development and clinical trials however 

none have been approved for treatment of cancer (Siemann, Chaplin & Horsman, 

2017).  

The first classical VDA described was colchicine which was isolated from the 

meadow saffron, Colchicum autumnale (Lu et al., 2012). Colchicine was found to 

have a very low therapeutic index and a number of toxic side effects such as 

neutropenia, bone marrow damage and anaemia (Lu et al., 2012). Colchicine, 

however was approved for oral use by the U.S Food and Drug Administration (FDA) 

in 2009 as a monotherapy for gout and Familial Mediterranean fever (Lu et al., 2012).  

1.2.1 Combretastatin A4  

1.2.1.1 The origin of Combretastatins and the isolation of CA4 

Combretastatins are natural products originally extracted from the African tree 

Combretum caffrum with VDA activity (Pettit et al., 1988, 1989). Structurally related 

to colchicine, the combretastatins were found to be potent inhibitors of microtubule 

(MT) polymerisation by binding near the colchicine binding site on tubulin (Pettit et 

al., 1988, 1989). Combretastatin A4 (CA4) was one of the most cytotoxic and 

competitive inhibitors for the colchicine binding site from the 17 isolated compounds 

(Lin et al., 1988; Pettit et al., 1988, 1989). CA4 consists of two phenyl rings A and B 

linked by a carbon-carbon double bond bridge (ethylene) (Figure 1.2 A). CA4 can 
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exists as two isoforms cis and trans, active cis-CA4 can be isomerised to the less 

active trans-CA4 (Lin et al., 1988). The structure of CA4 in the two isoforms cis and 

trans is shown in Figure 1.2 A and B respectively. Isomerisation from cis to trans 

isomer can occur under the influence of heat and light (Tron et al., 2006). 

1.2.1.2 CA4 binding to tubulin  

CA4 binds to tubulin with high avidity, however this binding is reversible (Lin et al., 

1989). The rate at which colchicine or CA4 dissociates from tubulin is referred to as 

the dissociation rate and for colchicine this is 405 min (Lin et al., 1989). In contrast, 

CA4 rapidly binds and dissociates from tubulin, with a dissociation rate of 3.6 min at 

37°C (Lin et al., 1989).  

MTs are composed of α and β-tubulin heterodimers, existing in a dynamic equilibrium 

between their polymerised from and αβ-tubulin heterodimers (Rozas, 2017). MTs 

undergo elongation by the addition of αβ-tubulin heterodimers, bound to Guanosine 

triphosphate (GTP) to the MT polymer (Figure 1.3). The MT cylinder is mainly 

composed of Guanosine diphosphate (GDP)-bound tubulin however this is protected 

from depolymerisation by a stabilisation cap (Figure 1.3). MT catastrophe occurs 

following loss of the stabilisation cap and by the release of αβ-tubulin heterodimers 

(Rozas, 2017). Tubulin heterodimers in MTs assume a “straight” structure, in 

contrast, to un-polymerised heterodimers which assumes a “curved” structure, the 

curved-to-straight transition occurs during polymerisation (Gaspari et al., 2017; 

Brouhard & Rice, 2014). Recently, the crystal structure of cis-CA4 complexed with 

tubulin, specifically binding to β-tubulin has been resolved by Gaspari et al., (2017). 

Cis-CA4 inhibits tubulin by not only binding to the colchicine binding site but also 

because it inhibits the tubulin transition from “curved” to “straight” tubulin, which is 

essential for microtubule formation (Gaspari et al., 2017; Rozas, 2017). The 

difference in activity between the trans and cis-CA4 isomer was attributed to their 

interaction with tubulin as the interaction with the cis isomer is more stable (Gaspari 

et al., 2017). Using metadynamic stimulation Gaspari et al., (2017) studied the 

unbinding kinetics of colchicine and CA4, their results showed that cis-CA4 caused 

a small disturbance to the β-tubulin T7 loop structure during unbinding whereas 

colchicine required the complete displacement of the loop to be able to exit tubulin 

(Gaspari et al., 2017).  

As MTs are essential cellular structures required for maintaining cell shape, motility, 

intracellular trafficking, cell division and mitosis, they are an obvious target for cancer 

therapy (Jordan & Wilson, 2004). A number of clinically available compounds used  



11  

 

 

Figure 1.2 Chemical structures of Combretastatin A4 cis and trans isomers.  

The structure of Combretastatin A4 (CA4) consists of two phenyl rings A (containing 

a 3,4,5-trimethoxy group) and B that can be oriented either in cis (A) or trans (B) 

isomerisation. The two phenyl rings are linked by a carbon-carbon double bond 

(ethylene). Cis-CA4 is more active than trans-CA4 (Lin et al., 1988).  
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Figure 1.3 Schematic showing the polymerisation and depolymerisation of 

microtubules.  

MTs are hollow cylinders composed of αβ-tubulin heterodimers. MT polymerisation 

and depolymerisation is directed by the hydrolysis and exchange of guanine 

nucleotide GTP to GDP on β-tubulin subunit. MT polymerisation is initiated by the 

addition of GTP-bound αβ-tubulin (1) onto the MT ends. The growing MT varies 

between slightly curved and straight filaments (2). During GTP hydrolysis and shortly 

after incorporation into the growing MT the phosphate is released (GTP to GDP), 

leaving the core of the MT consisting of GDP bound-tubulin (3). The MT core is 

protected by the stabilisation cap on the GTP-bound tubulin which stabilises and 

maintains the MT structure (4). Loss of the stabilisation cap leads to MT 

depolymerisation whereby the curved protofilaments peeling outwards at the 

shrinking MT ends (5). Catastrophe refers to the switch from growth to shrinkage, 

while rescue refers to the switch from shrinkage to growth (Akhmanova & Steinmetz, 

2008; Brouhard & Rice, 2014). Figure adapted from Akhmanova & Steinmetz, 2008 

and Brouhard & Rice, 2014.  
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for cancer therapy bind to MTs and either stabilise them such as paclitaxel or 

destabilise them such as vinblastine, vincristine, CA4 and colchicine, however CA4 

and colchicine are not approved for cancer (Mukhtar, Adhami & Mukhtar, 2014). 

Vinblastine and Vincristine bind to the vinca domain while paclitaxel binds to the 

taxane site on β-tubulin (Mukhtar, Adhami & Mukhtar, 2014). 

1.2.1.3 CA4 phosphate and CA4 derivatives  

Although, CA4 was the most potent competitive inhibitor of colchicine for the tubulin 

binding site, it has a low water solubility with a logP1 value of 3.57 (Pettit et al., 1995; 

Royal Society of Chemistry, 2015). For further developmental studies using CA4, a 

water soluble phosphate salt of CA4 (CA4P) was synthesised with a logP of 1.98, by 

replacing the hydroxyl group on ring B with a phosphate group (Pettit et al., 1995; 

Royal Society of Chemistry, 2015). CA4P acts as a prodrug and it is rapidly cleaved 

by phosphatases to CA4 (Pettit et al., 1995). Following, the synthesis and 

development of CA4 and CA4P, a number of in vitro, preclinical and clinical 

evaluations were conducted. Most in vitro and preclinical work conducted in vivo has 

been performed using CA4P. However as CA4P acts as a prodrug data presented 

from herein applies to CA4.  

Hundreds of CA4 derivatives have been developed in order to avoid the cis/trans 

isomerisation such as the cis-locked analogues to improve the pharmacokinetics 

(PK) of the compound (Tron et al., 2006). Due to the simplicity of the structure of CA4 

(Figure 1.2 A), a large number of modifications can be carried out on either one of 

the phenyl rings or the double bond (Jaroch et al., 2016). However, the cis-

conformation of the double bond and the 3,4,5-trimethoxy group on ring A are 

essential for the biological activity of CA4 (Siebert et al., 2016). Duan et al., (2016) 

produced a CA4 analogue by replacing the double bond bridge and the B-ring on the 

CA4 structure resulting in a compound that retained the ability to inhibit tubulin 

polymerisation and in vivo inhibited the growth of lung cancer xenografts (Duan et 

al., 2016). Moreover, replacing the double bond bridge and also adding a second 

hydroxyl group greatly increased the solubility of the CA4 analogue while retaining 

tubulin inhibition and increasing the potency of the compound against CRC 

                                                
1 The partition coefficient (P) describes the tendency of an uncharged compound to dissolve in an lipid 
(oil, fat or organic solvent solution) and water. The LogP is a constant which is defined by LogP=log10(P);  
P=[organic]/[aqueous], [] indicates the concentration of a solute in the organic and aqueous partition. A 
negative logP means that the compound is more hydrophilic as the compound has a higher affinity for 
the aqueous phase; logP=0, the compound is equally partitioned between the oil and aqueous phase; 
a positive logP, means that the compounds has a higher affinity for the lipid phase and is therefore more 
hydrophobic or lipophilic (Bhal, n.d.).  
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xenografts (Tripodi et al., 2012; Valtorta et al., 2014). The CA4 derivative, AVE8062 

(Ombrabulin) was also developed by modifying the hydroxyl group on ring B (Jaroch 

et al., 2016). Ombrabulin entered clinical trials, however it failed to demonstrate 

clinical benefit in patients with ovarian cancer and had a number of side effects 

reported such as neutropenia (Chase, Chaplin & Monk, 2017).  

1.2.1.4 Cellular mechanism of action of CA4 

Short (< 2 h) exposure of endothelial cells to CA4 and CA4P leads to complete 

cytoskeletal disorganisation of MTs (Grosios et al., 1999; Galbraith et al., 2001). 

Disruption of MTs leads to the activation of Rho-GTPase, Rho kinase and mitogen 

protein kinase signalling pathways, which are responsible for further morphological 

and cytoskeletal changes (Kanthou & Tozer, 2002). The activation of Rho and Rho 

kinase leads to increased phosphorylation of myosin light chain (MLC), leading to the 

formation of actin lined surface protrusions referred to as blebs and increase in 

endothelial cell monolayer permeability (Kanthou & Tozer, 2002; Tozer, Kanthou & 

Baguley, 2005). The stress-activated protein kinase 2 (SAPK2)/ p38 pathway is also 

involved in the blebbing morphology, while extracellular-regulated kinase 1 and 2 

(ERK1/2), and MCL kinase protected against blebbing (Kanthou & Tozer, 2002). It 

was therefore believed that inhibiting ERK1/2 enhanced the cytotoxicity of CA4, 

whereas inhibition of p38 mitogen activated protein kinase (MAPK) compromised the 

cytotoxicity. Further reports however using hepatocellular carcinoma cells have 

shown that inhibition of p38 MAPK and not ERK1/2 synergistically enhanced rather 

than inhibited the activity of CA4 (Quan, Xu & Lou, 2008). The role of Rho and Rho 

kinase has also been observed in vivo (Williams et al., 2014).  

CA4 also promotes cell junction disassembly of unstable nascent tumour neovessels, 

lacking periendothelial support by SMC an indication of an anti-angiogenetic activity 

(Vincent et al., 2005). The way in which CA4P targets nascent tumour neovessels is 

by causing rapid disengagement of Vascular Endothelial (VE)-cadherin/β-catenin 

complexes which are essential for endothelial cell adhesion and survival during 

neovessel development and remodelling (Vincent et al., 2005). Indeed, the VE-

cadherin rearrangement rather than the loss of VE-cadherin on the cell surface, is 

responsible for increased vascular permeability (Shepherd et al., 2017). CA4P was 

found to inhibit endothelial cell migration and tube formation in vitro also 

demonstrating the anti-angiogenic and anti-metastatic activity of CA4P (Ahmed et al., 

2003). As the VE-cadherin/β-catenin complex lies upstream of the PI3K/Akt pathway, 

it was proposed that inactivation of this pathway was the mechanism leading to the 

inhibition of tube formation (Vincent et al., 2005).  
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The PI3K/Akt pathway plays a major role in cancer proliferation, migration, 

invasion/metastasis and apoptosis therefore, CA4P inhibiting angiogenesis through 

Akt inactivation, could also interfere with the proliferation of endothelial cells and 

metastasis (Vincent et al., 2005). Subsequent studies showed that CA4 decreased 

p-AKT expression in gastric, bladder and thyroid cancer cells and inhibited 

metastasis and proliferation (Lin et al., 2007; Shen et al., 2010; Liang et al., 2016). In 

thyroid cancer cells CA4, also decreased the expression of EMT related proteins 

such as N-cadherin, Vimentin, Snail1, Twist and ZEB1 further demonstrating the anti-

metastatic activity of CA4 (Liang et al., 2016). N-cadherin is an intracellular adhesion 

protein involved in the interaction between endothelial cells with SMC and pericytes 

(Shepherd et al., 2017). The loss/disruption of N-cadherin caused by CA4P treatment 

was also observed in endothelial cells (Shepherd et al., 2017).  

It has also been suggested that CA4P exerts its anti-angiogenic activity by 

upregulating, the multifunctional extracellular matrix protein connective tissue growth 

factor (CTFG) in endothelial cells which has anti-angiogenic properties, an effect that 

is dependent on MT disruption (Samarin et al., 2009). CTFG forms a complex with 

VEGF and interferes with VEGF induced angiogenesis (Samarin et al., 2009). There 

data show that CA4 acts to promote severe cytoskeleton changes following MT 

disruption which subsequently lead to the downregulation of major signalling systems 

involved in angiogenesis, cell proliferation and metastasis (Sherbet, 2017).  

1.2.1.5 CA4 induced cell-death 

Prolonged exposure of many hours to CA4 leads to cell-death through apoptosis 

which can be caspase independent or dependent, mitotic catastrophe and/or 

polyploidy (≥ 4N DNA) (Nabha et al., 2002; Shen et al., 2010; Greene, Meegan & 

Zisterer, 2015). Apoptosis can occur by two distinct pathways the extrinsic pathway 

is mediated outside the cell via death receptors leading to the activation of caspase 

8 (Elmore, 2007). In contrast, the intrinsic pathway is initiated inside cells through 

stress-induced signals which result in the release of apoptotic proteins from the 

mitochondria such as cytochrome c (Elmore, 2007). Mitotic catastrophe is a 

mechanism that involves a delayed mitosis-linked cell death which occurs from 

premature or inappropriate entry of cells into mitosis as a result of physical or 

chemical stresses (Vakifahmetoglu, Olsson & Zhivotovsky, 2008). DNA polyploidy is 

a phenomenon where cells fail to arrest and undergo apoptosis following early mitotic 

release and enter into S phase with > 4 N DNA content (Greene et al., 2012).  
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Initial studies in endothelial cells reported the initiation of apoptosis by CA4 through 

the activation of caspase 3 (Iyer et al., 1998). However, it was apparent that death of 

endothelial cells was not exclusively through apoptosis as only 10% of cells were 

observed to undergo apoptosis (Ahmed et al., 2003). CA4 was observed to also 

cause mitotic catastrophe by arresting leukaemia cells in G2/M phase of the cell cycle 

(Nabha et al., 2000). Cells in mitotic catastrophe are characterised by fragmented 

nuclei and the formation of giant multinucleated cells which are considered the 

hallmarks of mitotic catastrophe (Nabha et al., 2000).  

Nabha et al., (2002) studied the molecular mechanisms underlying mitotic 

catastrophe in leukaemia cells. They observed that a 24 h exposure to CA4P lead to 

the over-accumulation of a mitosis promoting factor, cyclin B in the nucleus indicating 

that cells were able to exit the G2 phase and enter M phase prior to arrest (Nabha et 

al., 2002). Cell-death through mitotic catastrophe was independent to apoptosis as 

CA4P did not change the expression of apoptotic proteins, however, it did induce 

caspase 9 activation presumably in the small proportion of cells undergoing cell-

death through apoptosis (Nabha et al., 2002). Cyclin B and p34/ cyclin division cycle 

protein 2 (cdc2) levels increase through prophase and metaphase and as cells move 

into anaphase, cyclin B1 is degraded leading to p34cdc2 inactivation (Kanthou et al., 

2004). However, treatment of endothelial cells with CA4P for 24 h leads to the over-

accumulation of cyclin B as observed in leukaemia cells, leading to the continued 

activation of p34cdc2 and arrest of cells in metaphase (Kanthou et al., 2004).  This cell-

death in endothelial cells without exiting mitosis was also caspase-independent 

(Kanthou et al., 2004).  

In lung cancer cells CA4 treatment induced the hallmarks of mitotic catastrophe, cells 

accumulated in metaphase with multinucleated cells observed (Vitale et al., 2007). 

Activation of caspases 3 and 9 in lung cancer cells was reported (Vitale et al., 2007). 

Further reports in lung cancer cells showed that MT disruption lead to the 

accumulation of the pro-apoptotic marker Bim in the mitochondria leading to the 

activation of caspases (Cenciarelli et al., 2008). Mendez et al., (2011) studied the 

role of Bim in apoptosis induced in lung cancer cells after exposure to CA4. Their 

results showed that Bim is physically bound to MTs through interactions with the 

cytoskeletal motor protein dynein, as MTs depolymerise as a result of CA4 treatment 

this results in the release of Bim from the MT network leading to its translocation to 

the mitochondria (Mendez et al., 2011). At the mitochondria Bim bound to B-cell 

lymphoma 2 (Bcl-2) which subsequently lead to the release of pro-apoptotic factor 

Bax, which in turn results in caspase activation (Mendez et al., 2011).   
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In human cervical cancer cells, an association between BubR1 a member of the 

spindle assembly checkpoint which prevents the premature exit from mitosis and 

CA4P was observed (Greene et al., 2011). CA4P induced the phosphorylation of 

BubR1 and induced G2/M arrest by preventing the progression from metaphase to 

anaphase (Greene et al., 2011). Moreover, activation of caspase 3 lead to the 

cleavage of BubR1 and the exit of cells from mitosis leading to polyploidy and 

subsequent apoptosis (Greene et al., 2011). Phosphorylation of BubR1 followed by 

caspase 3 cleavage, formation of multinucleated cells and apoptosis also followed 

CA4 in bladder cancer cells, specifically human bladder transitional carcinoma TSGH 

8301 and BFTC 905 cells (Shen et al., 2010). Collectively there data show that CA4 

or CA4P induce cell-death through various mechanisms dependent on cell-type and 

the machinery available (Vitale et al., 2007). Mitotic catastrophe although initially 

considered as a separate form of cell-death, is now accepted as a pre-stage process, 

proceeding cell-death through apoptosis or necrosis (Vakifahmetoglu, Olsson & 

Zhivotovsky, 2008). 

1.2.1.6 Rapid effects of CA4 on tumour vasculature in vivo  

Initial investigations into the anti-vascular activity of CA4P in a preclinical setting, 

showed that CA4P caused severe and rapid (within minutes) alterations to the blood 

flow or perfusion of tumours (Chaplin, Pettit & Hill, 1996; Dark et al., 1997). A number 

of methods such as uptake of radioactive molecules, fluorescence microscopy of the 

perfusion marker Hoechst 33342, magnetic resonance imaging (MRI), magnetic 

resonance spectroscopy (MRS) and contrast enhanced ultrasound (CEUS) were 

used to study perfusion in multiple preclinical models (Chaplin, Pettit & Hill, 1996; 

Dark et al., 1997; Maxwell et al., 1998; Grosios et al., 1999; Zhang et al., 2018). The 

observations included an almost complete vascular shutdown by 1 h which was 

sustained for up to 24 h in some tumour models, however after 24 h,  tumour blood 

flow started to recover (Chaplin, Pettit & Hill, 1996; Dark et al., 1997; Maxwell et al., 

1998). Table 1.1 summarises preclinical studies of CA4P and CA4 on perfusion, 

including the different tumour types and methods used to measure perfusion.  

Reduction in blood flow was found to be dose-dependent in a mouse breast cancer 

model at doses between 100-400 mg/kg, a significant reduction was observed at 175 

mg/kg and this reached a plateau at 250 mg/kg (Murata, Overgaard & Horsman, 

2001). Further investigations, into blood flow reductions caused by CA4P showed 

distinct differences in activity towards the tumour periphery and the central core 

regions of the tumour (Beauregard et al., 1998).  
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In a murine sarcoma model, blood flow was reduced significantly after 3 h in the 

central regions of the tumour but in sharp contrast, this increased in the periphery 

measured by MRI (uptake of gadolinium diethylenetriaminepentaacetate, GdDTPA) 

(Beauregard et al., 1998).  

Blood flow in the tumour as a whole initially decreased within 4 h, but significantly 

increased by 48 h, with a higher rate of recovery at the tumour periphery (Salmon & 

Siemann, 2007). Blood flow in a colon xenograft model decreased 1 h post-treatment, 

and by 24 h, perfusion was still reduced in the central parts of the tumour but had 

recovered at the tumour periphery (El-Emir et al., 2005). As a result of 70-87% 

reduction of blood flow, oxygen levels in tumours are also altered leading to hypoxia 

in both the central and some parts of the tumour periphery (El-Emir et al., 2005; Zhao 

et al., 2005a). The oxygen levels seemed to recover by 24 h in the tumour periphery, 

the oxygen levels were measured by fluorescence staining of the hypoxic marker 

pimonidazole and distribution of hexafluorobenzene (El-Emir et al., 2005; Zhao et al., 

2005a). 

1.2.1.7 Mechanisms of CA4 induced blood flow shutdown  

Rapid and direct vasoconstriction of the tumour-supplying arterioles has been 

reported for CA4P, subsequently leading to blood flow shutdown (Tozer et al., 2001; 

Tozer, Kanthou & Baguley, 2005). Small decreases in tumour blood vessel diameters 

can occur via a number of ways, firstly the increase in tumour vascular permeability 

to plasma proteins, could lead to leakage of water from the plasma into the interstitial 

space (oedema), causing an increase in interstitial fluid pressure, thus leading to 

vascular collapse (Tozer et al., 2001). Secondly, changes in diameter could be a 

result of the rounding up of tumour endothelial cells in vivo, which has been observed 

in vitro following low and/or short exposures to CA4P (Grosios et al., 1999; Galbraith 

et al., 2001; Tozer et al., 2001). Blood viscosity is also increased from the arterial to 

the venous end in the microcirculation as a result of water loss (Tozer, Kanthou & 

Baguley, 2005). Slowing of the blood flow causes red blood cells (RBCs) to stack 

further increasing blood viscosity and slowing down of blood flow (Tozer et al., 2001; 

Tozer, Kanthou & Baguley, 2005) (Figure 1.4).  A positive feedback loop is formed 

between blood flow reduction which leads to stacking of RBCs and further blood flow 

reduction (Tozer et al., 2001). Neutrophil infiltration following CA4P treatment into the 

tumour also contributes towards vascular damage due to the increase in 

myeloperoxidase (MPO) activity which subsequently leads to the generation of free 

radicals (Parkins et al., 2000). 
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Figure 1.4 Cellular events leading to tumour blood flow reduction and/or 

shutdown in vivo.   

Treatment of endothelial cells with CA4P causes endothelial cell changes due to the 

inhibition of tubulin polymerisation which leads to loss and/or disruption of cell-cell 

junctions such as VE-cadherin (Tozer, Kanthou & Baguley, 2005; Jaroch et al., 2016). 

This is characterised by the cells rounding up and adopting a blebbing like 

morphology, leading to increased vascular resistance (Tozer, Kanthou & Baguley, 

2005). An increase in vascular permeability to plasma proteins leads to water leaking 

into the interstitial space causing oedema. This leads to high interstitial fluid pressure 

and subsequent vascular shutdown (Tozer et al., 2001; Tozer, Kanthou & Baguley, 

2005). Blood viscosity is also increased due to water loss from the arterial to the 

venous end of the microcirculation and by red blood cells stacking due to reduced 

blood flow (Tozer et al., 2001; Tozer, Kanthou & Baguley, 2005). A positive feedback 

look is formed as blood flow slows down, RBCs stack together which then leads to 

high blood viscosity (Tozer et al., 2001; Tozer, Kanthou & Baguley, 2005). The figure 

was adapted from Tozer, Kanthou and Beguley 2005 and Jaroch et al., 2016.  
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1.2.1.8 Susceptibility of tumour vasculature to CA4 

Tumour perfusion is much more affected by CA4P than perfusion in normal tissues 

with no changes observed in heart and kidneys (Tozer et al., 1999; Murata, 

Overgaard & Horsman, 2001). The basis for the selectivity of CA4P towards tumour 

vasculature has been attributed to the: (i) heterogeneity in tumour blood flow; (ii) 

differences between tumour and normal endothelial cells in terms of proliferation rate, 

post-translational modifications of tubulin, interactions between tubulin and the actin 

cytoskeleton; (iii) microenvironmental differences (e.g. oxygenation); (iv) normal 

tissue vasculature is more mature therefore can sustain more endothelial injury 

without leading to vascular shutdown, whereas the newly formed immature 

endothelial vessels of tumours cannot (Tozer et al., 2001). Tumours with higher 

vessel permeability are also more susceptible to CA4P treatment (Beauregard et al., 

2001). 

1.2.1.9 Therapeutic effects of CA4 in preclinical models  

Histological examinations of subcutaneous (s.c.) and orthotopically transplanted 

human and mouse tumours showed that both CA4 and CA4P result in extensive 

haemorrhagic necrosis, with only a small rim of viable tumour cells at the tumour 

periphery (Dark et al., 1997; Grosios et al., 1999; Tozer et al., 1999). Haemorrhagic 

necrosis is apparent within the first few hours of treatment eventually leading to 

secondary central necrosis with a “viable rim” at the tumour periphery within 24 h of 

treatment (Dark et al., 1997; Grosios et al., 1999; Malcontenti-Wilson et al., 2001). 

This haemorrhage occurring within the first few hours of treatment is due to the loss 

in perfusion and increase in vascular permeability caused by mechanisms mentioned 

above which leads to leakage of blood. The viable rim is composed of well perfused 

vessels which have rapidly recovered after CA4 treatment. Tumours can re-

vascularise from the viable rim by acquiring a nutritive supply from the surrounding 

normal tissue (Chaplin & Hill, 2002).  

The effects of a single treatment with CA4 or CA4P on the growth of tumours is either 

none or very limited with modest growth delays only observed at doses higher than 

100 mg/kg. This is mainly attributed  to the viable rim remaining post-treatment (Dorr 

et al., 1996; Grosios et al., 1999; Chaplin & Hill, 2002). In an effort to improve the 

anti-tumour activity of CA4, multiple dosing regimens have been used (Boehle et al., 

2001; Malcontenti-Wilson et al., 2001). Daily dosing of 50 mg/kg CA4P for 21 

consecutive days caused a significant growth delay in non-small cell lung carcinomas 

(Boehle et al., 2001). Comparing dosing regimens in a lymphoma model, it was 
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observed that dividing a dose of 800 mg/kg CA4P into 4 x 200 mg/kg resulted in 

better anti-tumour activity (Nabha et al., 2001). Repeated doses on the same day in 

a murine breast tumour model also increased the effectiveness of CA4P. However, 

this also resulted in some toxicity (Hill et al., 2002).  

The increased effectiveness when repeated doses of CA4P were administered may 

be due to “self-trapping” of CA4 within the tumour tissue, leading to a longer exposure 

time to the drug and therefore preventing rapid recovery and eventually leading to 

tumour cell death (Hill et al., 2002). Table 1.2 summarises the anti-tumour activity of 

CA4P and CA4 used as a monotherapy and the importance of scheduling, repeated 

dosing, tumour type and vascular characteristics.  

1.2.1.10 Pharmacokinetics of CA4P  

For successful translation of drugs such as CA4P to the clinic it is important to 

understand the PK of these drugs in terms of absorption, distribution, metabolism 

and elimination (ADME), the toxicity (T) of a drug is also considered in ADMET 

(Hodgson, 2001). Absorption generally concerns orally delivered drugs (Hodgson, 

2001). Often the inefficient or incorrect ADME is what leads to undesirable side 

effects and early exclusion of a drug progressing into the clinic (Hodgson, 2001). In 

general drug metabolism involves a number of reactions categorised into phase I and 

phase II (Jaroch et al., 2018). Phase I includes reduction, hydrolysis and oxidation in 

contrast, phase II� mainly involves lipophilic compounds and occurs via the 

conjugation with endogenous compounds such as glucuronic acid or sulphate 

(Jaroch et al., 2018). Glucuronidation is a key metabolic process specifically 

designed to eliminate endogenous compounds from the body and it is the main 

metabolic pathway involved in CA4 clearance (Aprile, Del Grosso & Grosa, 2010).  

The metabolism of CA4P has been investigated in humans, dogs and mice while the 

distribution and excretion has been studied in rats (Dowlati et al., 2002; Rustin et al., 

2003; Kirwan et al., 2004; Wang et al., 2009; Xu et al., 2012). Early studies in CBA 

mice showed that CA4P had a very short plasma half-life approximately 15 min, 

which may explain the lack of anti-tumour activity observed (Tozer et al., 1999). CA4 

also bound to plasma proteins, which further reduced its activity as demonstrated in 

vitro (Tozer et al., 1999). The mean plasma terminal half-life2 of CA4P and CA4 in 

humans was found to be 0.47 h and 4.2 h respectively (Dowlati et al., 2002). 

                                                
2 Terminal half-life in plasma is defined as the time required to divide the plasma concentration of a 
drug by two (Toutain & Bousquet-Mélou, 2004).  
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A further human study showed that CA4P was rapidly dephosphorylated (within 

seconds) to the active form CA4, CA4 was further metabolised at a slower rate 

(minutes) to the glucuronide, CA4G (Rustin et al., 2003).  

The alpha half-life3 of CA4 was reported to be 0.2-0.3 h, while the beta half-life4 was 

approximately 2 h in humans (Rustin et al., 2003). In mice the half-life of CA4 reported 

in plasma was 0.35 h (Kirwan et al., 2004). In beagle dogs the plasma half-life of CA4 

was reported to be 2.27-2.75 h depending on the initial dose administered (Wang et 

al., 2009). The plasma terminal half-life of CA4 in rats was 0.39 to 1 h (Xu et al., 

2012). Kirwan et al., (2004) also studied the PK of CA4P and CA4 in MAC29 colon 

tumours following an i.p. injection of CA4P at 150 mg/kg and reported a tumour half-

life of 0.72 h and 9.62 h for CA4P and CA4 respectively (Kirwan et al., 2004).  

Distribution studies 15-90 min after intravenous (i.v.) administration of CA4P in rats, 

showed that CA4 was found mainly in the heart, intestine, lung, liver and spleen while 

to a lesser extent in the kidneys, stomach and brain (Xu et al., 2012). Excretion of 

CA4 in humans is through the urine as CA4G (Rustin et al., 2003). CA4 in rats was 

also mainly excreted as CA4G in the urine, however CA4 was also recovered in the 

faeces, urine and bile (Rustin et al., 2003; Xu et al., 2012). Toxicity associated with 

CA4P is discussed in the clinical trials section (1.2.1.12). 

Phase I and II drug metabolism of CA4 was studied in vitro using human and rat liver 

microsomes and in vivo in rats. This resulted in the identification of a number of 

metabolites including glucuronide and sulphate metabolites (Aprile et al., 2007; 

Aprile, Del Grosso & Grosa, 2009). Uridine diphosphate (UDP)-

glucuronosyltransferases (UGTs) are major phase II� metabolising enzymes in 

humans that catalyse the conjugation with UDP-glucuronic acid (Aprile, Del Grosso 

& Grosa, 2010) (Figure 1.5).  Glucuronidation mainly occurs in the liver where UGT1A 

is present, however it can occur in other extrahepatic tissues (Aprile, Del Grosso & 

Grosa, 2010). UGT1A9 was the main isoform observed to be involved in catalysing 

the glucuronidation of CA4, UGT1A6 was also recognised to play a major role in the 

process (Aprile, Del Grosso & Grosa, 2010).   

                                                
3 Alpha half-life: is defined as the rate of decline of a drug in plasma concentration as a result of drug 
redistribution from central to peripheral compartments (Teboul & Chouinard, 1990).  
4 Beta half-life: is defined as the rate of decline of a drug as a result of drug elimination due to the 
process of drug metabolism (Teboul & Chouinard, 1990).  
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Figure 1.5 Metabolism of CA4.  

The metabolism of CA4 has been studied in vitro using rat and human liver 

microsomes and in rats in vivo (Aprile et al., 2007; Aprile, Del Grosso & Grosa, 2009). 

O-demethylation and aromatic hydroxylation were the two pathways during phase I 

metabolism and resulted in metabolites with cis and trans configurations (Aprile et 

al., 2007). The metabolites produced by aromatic hydroxylation on phenyl ring B were 

further oxidised to para-quinone metabolites (Aprile et al., 2007). Phase II metabolism 

involved direct conjugation to glucuronic acid and or sulphate (Aprile, Del Grosso & 

Grosa, 2009). In vivo experiments in rats revealed that CA4 is excreted in faeces, 

urine and bile approximately 30% of the injected drug, as most of it excreted in the 

urine as CA4G (Xu et al., 2012). In humans CA4 is exclusively excreted as CA4G 

through the urine (Rustin et al., 2003).  
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1.2.1.11 Combination treatments with CA4 

Resistance of the viable rim which leads to tumour regrowth and the short plasma 

half-life limits the effectiveness and anti-tumour activity of CA4. Due to the resistance 

of the viable rim, CA4 is a good candidate drug for combination treatments. Tumour 

cells in the viable rim are well oxygenated and rapidly proliferating and are therefore, 

good targets for conventional treatments (Chaplin & Hill, 2002).  

Nitric oxide (NO) protects against neutrophil infiltration and vascular damage induced 

by CA4, indeed tumours with higher NO synthase activity tend to be more resistant 

to CA4P induced vascular damage (Parkins et al., 2000). Using NO inhibitors 

simultaneously or after CA4P treatment significantly potentiates its anti-vascular 

activity (Tozer et al., 1999; Parkins et al., 2000). Using anti-angiogenic agents such 

as anti-VE-cadherin agents in combination with anti-vascular CA4P also potentiated 

the anti-tumour activity (Vincent et al., 2005).  

There needs to be careful considerations of the timing of CA4 administration with 

conventional chemotherapy or radiotherapy, as for example the reduction in oxygen 

levels caused by CA4 will hinder radiotherapy (Siemann, 2011). However, there have 

been conflicting reports when CA4 or CA4P were administered with chemotherapy. 

Gemcitabine uptake in liver tumours for example was significantly decreased when 

CA4 was administered a few hours before gemcitabine (Fruytier et al., 2016). 

However CA4P in combination with irinotecan enhanced the anti-tumour activity of 

irinotecan and this was found to be independent of administration sequence (Wildiers 

et al., 2004). Administration of 5-FU 20 min prior to CA4P in a mouse colon cancer 

model also significantly enhanced anti-tumour activity (Grosios et al., 2000). 

1.2.1.12 Clinical trials with CA4P  

CA4P entered  clinical trials in 1998 (Galbraith et al., 2003). It has been used both as 

a monotherapy and in combination with chemotherapy and radiotherapy. Much like 

the preclinical work, measurements of tumour perfusion in Phase I�clinical trials using 

DCE-MRI and positron emission tomography (PET), showed that doses of ≥ 52 

mg/m2 significantly reduced tumour perfusion within the first few hours post CA4P 

treatment (Anderson et al., 2003; Galbraith et al., 2003). No changes in perfusion in 

normal tissues were observed (Galbraith et al., 2003).  

Clinical trials are assessed for response using the response evaluation criteria in solid 

tumours (RECIST) guidelines, complete response refers to the disappearance of all 

target lesions; partial response, means at least a 30% decrease in the diameter of 



27  

the lesion; progressive disease is at least a 20% increase in the diameter of the lesion 

and stable disease is no change, either decrease or increase in the lesion 

(Eisenhauer et al., 2009) (Table 1.3).  

Dose limiting toxicities including hypertension, neuropathy and vomiting were 

observed at doses > 68 mg/m2 (Anderson et al., 2003; Rustin et al., 2003). The 

maximum tolerated dose (MTD) in humans was determined to be ≤ 60 mg/m2 

(Dowlati et al., 2002). The MTD dose in humans is equivalent to a drug dose of 1.6 

mg/kg. In mice this is equivalent to 0.13 mg/kg, the commonly used dose of CA4P in 

mice is 100 mg/kg which is equivalent to 8 mg/kg in humans (or approximately 300 

mg/m2) calculated using the guidelines provided by the FDA, indicating that this is 

five times higher than the MTD in humans (U.S. Department of Health and Human 

Services Food and Drug Administration, 2005).  

The main concern associated with CA4P treatment is cardiovascular toxicities, 2/25 

patients with advanced tumours had acute coronary events, in a Phase I study 

assessing the cardiovascular safety of CA4P (Cooney et al., 2004). Cardiovascular 

toxicities have also been recorded in a Phase II trial, with 1/26 patients stopping 

treatment (Mooney et al., 2009). A further toxicity as well as vomiting and nausea 

that was frequently reported in Phase I and II trials was tumour pain (Dowlati et al., 

2002; Rustin et al., 2003; Mooney et al., 2009). Although one patient with advanced 

thyroid cancer had complete response to CA4P monotherapy (Dowlati et al., 2002), 

most clinical trials focused on combination regimes.  

The combination of CA4P and carboplatin simultaneously, resulted in CA4 altering 

the PK of carboplatin resulting in severe thrombocytopenia and lead to early 

termination of the study (Bilenker et al., 2005). Phase� I trials have also been 

conducted in combination with radiotherapy and bevacizumab (Nathan et al., 2012; 

Meyer et al., 2009). Both studies reported reduction in tumour perfusion, however 

had no complete or partial responses, patients either showed stable disease or 

progressive disease. However, side effects including neutropenia, 

myelosuppression, tumour pain and nausea were also reported (Meyer et al., 2009; 

Nathan et al., 2012). In particular, the combination of bevacizumab with CA4P 

seemed to potentiate the effects of CA4P (Nathan et al., 2012).  
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Although CA4P in preclinical models has shown some promising results as a 

monotherapy and in combination, in humans the rapid plasma half-life, metabolism 

and various adverse side effects has hindered its progression into clinical use. It 

would therefore be of interest to develop and evaluate a smart drug delivery system 

(DDS) for CA4 or CA4P that may overcome some of these problems.  

1.3 Nanoparticles as Drug Delivery Systems  

About 40% of currently approved and almost 90% of compounds in the discovery 

pipeline are poorly water soluble (Kalepu & Nekkanti, 2015). A number of these 

compounds also suffer from low permeability, rapid metabolism and elimination from 

the body and are characterised by poor safety and tolerability profiles (Kalepu & 

Nekkanti, 2015). Due to this, modified formulations of existing drugs such as CA4P 

are being developed. Formulation and delivery of hydrophobic drugs is particularly 

challenging and encapsulation in nanoparticles (NPs) may offer an alternative route 

to enable their formulation in aqueous solutions.   

NPs, as DDS have been designed to alter the PK of drugs in patients and enable the 

delivery of smaller doses to targeted tissues in an effort to improve the therapeutic 

index and reduce overall systemic toxicity (Wilhelm et al., 2016). This remains the 

key aim of an ideal NP for drug delivery. NP properties such as size, structure, 

surface properties including targeting ligands are amongst the most important factors 

extensively studied.   

A plethora of NP formulations are being studied including liposomes, polymer-based 

NPs, gold NPs, micelles, silica NPs, quantum dots, dendrimers, magnetic NPs, 

hydrogels and nanoemulsions. All these different NP formulations could be 

potentially engineered to encapsulate hydrophilic drugs or hydrophobic drugs. 

Liposomes are the most studied NPs and the first to be approved for clinical use. 

Doxil® a liposome with doxorubicin (DOX) was approved in 1995 and in 2015 

Onivyde® a liposomal formulation of irinotecan was approved (Tran et al., 2017).  

1.3.1 Size, Shape and Surface properties  

NP DDS aimed at cancer therapy can be modified in terms of size, shape and surface 

properties to treat specific tumours. NP size and size distribution are amongst the 

most important characteristics of NPs, it determines their in vivo biodistribution, 

toxicity and targeting ability. It also influences drug loading capacity, release and 

stability (Sing & Lillard Jr, 2009). A number of modalities are used to measure NP 
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size and size distribution including dynamic light scattering (DLS), transmission 

electron microscopy (TEM) and scanning electron microscopy (SEM) (Valencia et al., 

2011; Poojari, Srivastava & Panda, 2015). In terms of size distribution the 

polydispersity index (PDI) is usually quoted (Gaumet et al., 2008). Using a scale of 0 

to 1, a PDI lower than 0.1 is generally associated with a monodispersed particle 

population while higher PDI values are associated with a broader size distribution 

(Gaumet et al., 2008).  

Upon i.v. injection, NPs undergo opsonisation and are rapidly taken up by the 

mononuclear phagocytic system (MPS). The MPS includes a number of phagocytic 

cells in the liver, spleen and lymph nodes (Blanco, Shen & Ferrari, 2015). NPs can 

escape from the circulation via openings called fenestrations in the endothelial barrier 

(Gaumet et al., 2008). NPs of approximately 150 to 300 nm are usually found in the 

liver and spleen, particles of 30 to 150 nm are found in the bone marrow, heart, kidney 

and stomach after i.v. injection (Banerjee et al., 2002; Gaumet et al., 2008). In 

regards to spherical particles, i.v. administration of NP with a size ≤ 5.5 nm results in 

rapid accumulation and clearance from the kidneys (Choi et al., 2007). NP size also 

plays a major role in tumours with poor vascularity (Cabral et al., 2011). NPs of 30-

100 nm all accumulated within a tumour model with hyper-permeability whereas only 

NPs <50 nm were able to accumulate in hypo-vascular and hypo-permeable tumour 

(Cabral et al., 2011). This difference in uptake according to vascularity, demonstrates 

the effect of tumour-type heterogeneity in determining NP efficacy.  

Particle size also influences release kinetics, NPs less than 150 nm have a high 

surface area to volume, resulting in most of the drug incorporated at or near the 

surface of the NP resulting in rapid release (Redhead, Davis & Illum, 2001). Larger 

particles enable a high degree of drug incorporation per NP and give a slower release 

(Redhead, Davis & Illum, 2001; Sing & Lillard Jr, 2009).  

NP shape directly influences their intracellular uptake, rod-shaped NPs tend to have 

a higher delivery efficiency compared with spherical, plate or other shaped particles 

(Wilhelm et al., 2016). For example direct comparison of nanorods and nanospheres 

with the same hydrodynamic diameter5 measured by DLS, showed that nanorods 

diffused into tumours faster and deeper compared to nanospheres (Chauhan et al., 

                                                
5  The hydrodynamic diameter measured by DLS is defined as the size of a hypothetical hard sphere 
that diffuses in the same manner as the particle being measured in the sample (Malvern Instruments, 
2011).  
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2011). Moreover, NPs with neutral charge exhibit the highest delivery efficacy 

compared to positive or negatively charged particles (Wilhelm et al., 2016).   

Surface modifications can prevent rapid uptake by the MPS. Several surface 

modifications have been adopted to “camouflage” NPs from the MPS (Blanco, Shen 

& Ferrari, 2015). NPs can be functionalised with poly(ethylene glycol) (PEG) termed 

PEGylation, PEG is incorporated onto the surface of NPs, forming a hydrated shell 

that protects the NP from rapid clearance by the MPS (Milton Harris & Chess, 2003). 

PEGylation also increases NP half-life in the circulation and improves stability (Milton 

Harris & Chess, 2003). For example PEGylated liposomes had an 8 fold increase in 

plasma half-life compared to un-PEGylated liposomes (Harris, Martin & Modi, 2001).   

Another method to prolong the circulation time of NPs is to modify NPs to include 

“self-markers” that prevent normal cells from activating the MPS (Shi et al., 2016).  

The top-down approach involves coating NPs with membrane lipids and associated 

proteins of erythrocytes therefore, mimicking RBCs and avoiding elimination by the 

MPS (Che-Ming et al., 2011). These erythrocyte-membrane NPs (in that case 

polymeric NPs) also had  longer circulating half-lives when compared to PEG-coated 

NPs (Che-Ming et al., 2011). The bottom-up approach involves the chemical 

conjugation of “self” markers that specifically bind and signal to phagocytes to inhibit 

clearance (Rodriguez et al., 2013). One such self-marker is the “don’t eat me” marker 

CD47 “self” peptide and like the erythrocyte membrane prolonged NP circulation 

compared to PEG (Rodriguez et al., 2013).  

1.3.2 Nanoemulsions 

Nanoemulsions are oil in water (O/W) or water in oil (W/O) dispersions of two 

immiscible liquids (Mason et al., 2006). Their size is usually less than 500 nm (Singh 

et al., 2017). Among other applications, nanoemulsions have been used in the 

pharmaceutical industry to solubilise insoluble drugs, these hydrophobic drugs are 

dispersed directly into the oil phase (Zhang et al., 2014). Nanoemulsions as DDS, 

can improve the bioavailability of drugs, protect them from early metabolism and 

enable controlled release (Zhang et al., 2014).  

The oil phase can be soybean oil, coconut oil, sesame oil, peanut oil, olive oil, long 

chain triglycerides (LCT) such as peanut oil and short chain triglycerides (SCT) such 

as triacetin (TA) and tripropionin (TPP) (Singh et al., 2017). Choosing the appropriate 

oil is important as this will impact on drug loading, size, chemical properties and 
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stability (Ganta et al., 2014). Coalescence and Ostwald ripening6 effect 

nanoemulsion stability (Ganta et al., 2014). Oswald ripening is a phenomenon 

whereby larger droplets in a nanoemulsion grow at the expense of the smaller 

droplets (Wooster, Golding & Sanguansri, 2008). SCT produce smaller droplets that 

are resistant to physical destabilisation by coalescence however the high water 

solubility of STC oils can result in Oswald ripening (Ganta et al., 2014). Larger 

droplets produced by LCT are more stable to Oswald ripening (Wooster, Golding & 

Sanguansri, 2008).  

An emulsifier is used to stabilise the oil water interface of an emulsion and impacts 

on nanoemulsion stability (Ganta et al., 2014). The emulsifier should rapidly absorb 

at the oil water interface and reduce interfacial tension and prevent nanodroplet 

coalescence (Ganta et al., 2014; Singh et al., 2017). These can be an amphiphilic 

molecule such as a surfactant, phospholipids, polysaccharides or polymers (Ganta 

et al., 2014). PEG can also be attached to nanoemulsions to increase their blood 

circulation half-life (Jarzyna et al., 2009) 

Nanoemulsions can be produced by high energy emulsification or low energy 

emulsification (Qian & McClements, 2011). High energy emulsification uses 

mechanical devices such as high pressure valve homogenizers, microfluidic devices 

and sonication techniques, capable of producing disruptive forces that breakup the 

oil and water, subsequently leading to oil droplet formation (Qian & McClements, 

2011). Low energy emulsification involves spontaneous emulsification of oil droplets 

through temperature or environmental alterations in an oil-water-emulsifier system 

(Qian & McClements, 2011). The previously methods described for NP sizing are 

also applied to nanoemulsions. To ensure the safety of these nanoemulsions for 

clinical use, they undergo sterilisation (Ganta et al., 2014). Due to the nature of 

nanoemulsions they cannot withstand high pressure and high temperatures, 

therefore, the most commonly used method for sterilisation is by filtering through a 

0.22 μm filter (Ganta et al., 2014). Nanoemulsions are routinely checked for microbial 

contamination through plating for microbial growth or incubating in tissue culture 

growth medium (Ganta et al., 2014). In addition to nanoemulsions being excellent 

carriers for hydrophobic drugs, they have a good long-term stability and shelf-life up 

                                                
6 Ostwald ripening: is the process by which oil molecules from small droplets move to larger droplets 
i.e. larger particles grow at the expense of smaller particles. The speed of the process is dependent on 
the solubility of the oil in the aqueous phase (Capek, 2004).  
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to approximately 3 months (Jarzyna et al., 2009). This long-term stability is 

determined by measuring changes in size as an indication of particle alteration.  

Nanoemulsions have also been produced with multifunctional capabilities; imaging 

for diagnosing disease and visualising in vivo biodistribution and for delivery of 

therapeutic payload, the so called “theranostic” agents (Gianella et al., 2011). 

Gianella et al., (2011) produced a theranostic nanoemulsion, the particle had a 

soybean oil core encapsulating iron oxide nanocrystals for MRI imaging and a 

therapeutic agent. The lipid-shell included a PEG arm to ensure long blood circulation 

and enabled the attachment of a tumour specific targeting ligand and fluorescent dye 

for further fluorescence imaging.   

1.3.2.1 Lipid Oil NanoDroplets  

Lipid-based nanoemulsions have been produced for the hydrophobic delivery of CA4 

(Mico et al., 2017). Lipid Oil NanoDroplets (LONDs) were a concept developed by 

Professor Stephen Evans at the School of Physics and Astronomy at the University 

of Leeds and were produced by Dr Sally Peyman and Dr Victoria Mico at the School 

of Physics and Astronomy at the University of Leeds. Figure 1.6 is a schematic 

illustration of LONDs. Although, CA4 was used in this project as a proof-of-concept, 

LONDs are novel generic formulations that can be used to encapsulate other 

hydrophobic compounds or anti-cancer drugs.  

1.3.3 Passive and active targeting of NPs 

1.3.3.1 Passive targeting and the enhanced permeability and retention 

effect of NPs 

Tumour angiogenesis produces new blood vessels that are irregular and have 

fenestrations that range between 200-2000 nm depending on the tumour type and its 

microenvironment (Bertrand et al., 2014). These fenestrations enable the enhanced 

permeation of NPs, while the poor lymphatic system in tumours allows retention of 

NPs as they cannot efficiently be cleared (Bertrand et al., 2014).  

This preferential accumulation or passive targeting is referred to as the enhanced 

permeability and retention (EPR) effect and it was first described by Matsumura and 

Maeda (1986), which described the accumulation and retention of macromolecules 

in solid tumours through the leaky vasculature and poor lymphatic drainage 

(Matsumura & Maeda, 1986). The EPR effect is mainly associated with fenestrations 

in the tumour vasculature that allow extravasation of NPs with NP size, shape and  
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Figure 1.6 Schematic of a Lipid Oil NanoDroplet.  

LONDs consist of an oil core within which the hydrophobic drug Combretastatin A4 

is dispersed. LONDs are stabilised by a lipid shell. Biotinylated and pegylated lipids 

are also incorporated to increase stability and to enable further ligand attachment. 

LONDs can be ≤ 100-300 nm in diameter.  
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surface properties influencing their ability to do so. However, tumour type also 

influences uptake, with only smaller NPs able to penetrate hypo-permeable and 

hypo-vascular tumours (Cabral et al., 2011). 

Vascular permeability and ultimately the size of the tumour endothelial fenestrations 

in solid tumours is enhanced by the presence of permeability factors, such bradykinin, 

prostaglandins, NO and VEGF (Maeda, 2001; Maeda et al., 2003). The success of 

the EPR effect allowing NP uptake was also shown to be affected by the degree of 

collagen fibers in the basement membrane (Yokoi et al., 2014). A study by Yokoi et 

al., (2014) investigated the accumulation of PEG-liposomal DOX in a range of 

tumours and found that the relative ratio of Matrix metalloproteinase (MMP)-9 and its 

endogenous inhibitor, tissue inhibitor of metalloproteinase (TIMP)-1 correlated with 

the level of NP accumulation (Yokoi et al., 2014). High MMP-9 levels were associated 

with increased vascular permeability (Yokoi et al., 2014). 

Although passive targeting via EPR enhances the retention of NPs in tumour tissues, 

it does not necessarily mean that NPs encapsulating nucleic acids for example will 

reach their pharmacological target (Bertrand et al., 2014). For these NPs specific 

targeting is a more appropriate approach. 

1.3.3.2 Active targeting of NPs 

Active targeting or ligand-mediated targeting, involves the attachment of specific 

ligands on the surface of NPs, this increases retention and subsequent uptake by the 

targeted disease cells (Bertrand et al., 2014). Ligand recognition by its target 

substrate is the main mechanism underlying active targeting (Bertrand et al., 2014). 

Ligands include antibodies, proteins, peptides and nuclei acids, while target 

molecules can be proteins or lipids that are either tumour-specific or tissue-specific 

(Yu et al., 2010; Bertrand et al., 2014). Tumour specific ligands may include receptors 

that are upregulated in tumour vasculature (Yu et al., 2010). However, it is 

challenging identifying tumour specific ligands that are only present in tumour cells 

and not normal cells and therefore specificity is an important criterion for active 

targeting systems (Bertrand et al., 2014).  

Ligand conjugation on the NP is achieved through chemical conjugation or physical 

interaction (Yu et al., 2010). Conjugation can be done before (for small molecules, 

peptides and aptamers) and after (for small molecules, peptides, aptamers, 

antibodies and proteins) NP formation (Bertrand et al., 2014). Self-assembly NPs 

including a targeting ligand, cyclic arginine-glycine-aspartic acid (RGD) peptide 



36  

attached on their surface were produced through a chemical interaction with PEG on 

the surface and poly(-lactide-co-glycolide) (PLGA) as the core (Valencia et al., 2011). 

The RGD peptide, binds to αvβ3 integrin which is upregulated on the tumour 

vasculature and it is one of the most frequently used tumour targeting ligands 

(Desgrosellier & Cheresh, 2010).  

Another covalent interaction includes the conjugation of a maleimide group on the 

NP surface to a thiol group on a ligand (Bertrand et al., 2014). Moreover, PEG 

incorporated into the surface of NPs can be used as a linker between the NP and the 

targeting ligands (Yu et al., 2010). For example PEG incorporated into the NP 

(liposome) bilayer via a lipid anchor 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine (DSPE) including maleimide was used to attach a thiolated 

monoclonal antibody to human epidermal growth factor receptor 2 (HER2) (Eloy et 

al., 2017).  

Non-covalent interactions include the most commonly used avidin-biotin interaction, 

NPs coated with avidin can bind to biotinylated ligands (Bertrand et al., 2014). A 

molecular superstructure can be constructed whereby a biotin is covalently attached 

to the PEG chain on the surface of a NP, this can then bind to one avidin molecule 

(Gref et al., 2003). The remaining biotin binding sites on avidin available can allow 

the further attachment of a different biotinylated ligand (Gref et al., 2003). The 

targeted ligand can then bind to its target molecule (Gref et al., 2003). LONDs 

mentioned previously through their biotinylated PEG chains have the potential to be 

targeted through the building of such a targeted molecular superstructure. It should 

be noted that this conjugation method has a limitation, the presence of avidin which 

is an exogenous protein on the surface of NPs can result in an immunological 

reaction and therefore clinical application of this system is limited (Friedman, 

Claypool & Liu, 2013). However, avidin can be replaced by NeutrAvidin a non-

glycosylated analogue of avidin which prevents the nonspecific binding to cell surface 

proteins (Jain & Cheng, 2017).  

1.3.4 Cellular uptake mechanisms of NPs 

Following extravasation into the tumour microenvironment either by EPR or specific 

active targeting, NPs must undergo cellular internalisation to allow for payload 

release and subsequent therapeutic effect. The NP properties mentioned; size, 

shape and charge, will also influence the rate and cellular mechanism of uptake. The 

cellular mechanism of uptake will also depend on cell type and the machinery 

available. In general NPs are taken up by the process of endocytosis. During this, 
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the NP is engulfed in a membrane invagination and then pinched off to form an 

endosome (Sahay, Alakhova & Kabanov, 2010). The endosome, sometimes referred 

to as a phagosome, eventually fuses with a lysosome leading to the acidic 

degradation of the particle (Sahay, Alakhova & Kabanov, 2010). This endocytosis 

entry mechanism can be: 1: Clathrin dependent; 2: Caveolin-dependent; 3: 

Clathrin/Caveolin independent – diffusion; 4: Direct translocation. During clathrin 

dependent endocytosis a clathrin coated pit is formed and pinched off the membrane 

(Sahay, Alakhova & Kabanov, 2010; Selby et al., 2017). The caveolin dependent 

pathway leads to the fusion with a “caveosome” which has a natural pH and in some 

cases can bypass lysosomes (Sahay, Alakhova & Kabanov, 2010). Alternatively NPs 

can completely bypass these intracellular trafficking pathways and enter through 

membrane diffusion or direct translocation across the membrane (Selby et al., 2017).  

Due to  lysosome degradation in particular for NPs carrying nucleic acids for example, 

a number of studies have focused on strategies for NP escape from the endosomes. 

Adding natural lipids such as 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine 

(DOPE) to cationic liposomes enables stabilisation and promotes the rapid fusion 

with the endosomal lipid bilayer (Du et al., 2014). Moreover, membrane destabilising 

peptides have also been used to promote endosomal escape (Martens et al., 2014). 

The negatively charged endosomal membrane can interact with the positively 

charged NPs that are entrapped within the endosome and induce a flipping and 

further destabilisation (“flip-flop”) mechanism (Martens et al., 2014). Another strategy 

for endosomal escape is the proton sponge effect, here NPs absorb protons in 

response to acidification inside the endosome and leading to swelling, increased 

pressure and disruption of the endosome (Iversen, Skotland & Sandvig, 2011).  

Surface charge also plays a role in NP uptake, so much so that researchers have 

created surface charge switchable NPs for enhanced cellular uptake (Yuan et al., 

2012). Switchable NPs are able to change their surface charge as a response to 

external stimuli such as the pH in endosomes or in the tumour extracellular space 

(Yuan et al., 2012). For example Yuan et al., (2012) demonstrated that a DOX loaded 

NP having a negative charge was able to change to a positive charge NP in the acidic 

tumour environment (Yuan et al., 2012). This resulted in an improved tumour cell 

internalisation and increased in vivo responses (Yuan et al., 2012).   

NPs are excellent drug-loading carriers enabling the loading of both hydrophilic and 

hydrophobic agents. However, they need to be specifically engineered to avoid non-

specific binding and in vivo accumulation. Some NP designs, like LONDs lack 
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properties that enable externally triggered manipulation. In these cases conjugation 

to acoustically active Microbubbles (MBs) to create a multi-structure DDS would be 

of interest.  

1.4 Microbubbles  

1.4.1 Microbubble structure and production 

MBs are small microspheres with diameters ranging from 1-10 μm (Sirsi & Borden, 

2009). MBs are intravascular traces and have been used routinely as contrast agents 

for diagnostic Ultrasound (US) (Sirsi & Borden, 2009). The first generation of MBs 

used for contrast imaging were air filled (e.g. Albunex®), however the high water 

solubility of these limited there in vivo life-time to a few seconds (Sirsi & Borden, 

2009). This led to the production of MBs with insoluble gas (perfluorocarbon) cores 

which greatly increased their in vivo lifetime from seconds to minutes (Sirsi & Borden, 

2009). The shell surrounding the gas core is usually a protein, phospholipid, 

surfactant or biocompatible polymer (Hernot & Klibanov, 2008). The shell improves 

MB stability against gas loss, dissolution and coalescence (Hernot & Klibanov, 2008).  

MB size is particularly important in terms of their ability to pass through the circulation 

and their US responsive properties (Hettiarachchi et al., 2007). Although, MBs exist 

which are approximately 10 μm they need to ideally be less than 7 μm to pass safely 

through the lungs without causing obstruction therefore, the optimum MB size range 

is between 2 to 5 μm in diameter (Hettiarachchi et al., 2007). Traditionally MBs were 

produced via mechanical agitation or sonication, these methods resulted in MBs with 

very high variation in size, poly-dispersed populations of MBs (Martin & Dayton, 

2013).  

MB production via sonication involves dispersing liquid or gas in a suspension with a 

suitable coating using high intensity US (Stride & Edirisinghe, 2008). The size of the 

resulting MB depends on the US frequency, power and pulse regime (Stride & 

Edirisinghe, 2008). Due to the variability in MB size from methods such as sonication 

a number of techniques have been applied to improve MB size such as Coaxial 

eletrohydrodynamic atomisation (CEHDA) and microfluidic systems (Stride & 

Edirisinghe, 2008). CEHDA although results in the formation of near monodispersed 

MBs their size ranges between 5-12 μm in diameter, over the optimum size for in vivo 

application (Farook et al., 2007; Stride & Edirisinghe, 2008).  
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In contrast, microfluidic systems have been utilised for the production of MBs with 

smaller size ranges (Garstecki et al., 2004; Talu et al., 2006; Hettiarachchi et al., 

2007; Peyman et al., 2012). Microfluidics utilise a flow-focusing geometry whereby a 

liquid/lipid is forced under pressure to focus a stream of gas through a narrow 

opening referred to as orifice (Garstecki et al., 2004; Hettiarachchi et al., 2007). A 

microjet is created due to the focusing effect of the liquid which “pinches” off at the 

orifice due to the sudden change in pressure into MBs (Hettiarachchi et al., 2007). 

MBs <5 μm have been produced using this flow-focusing geometry (Hettiarachchi et 

al., 2007).  However, the size of the MBs depends on the gas and liquid flow rates 

and the diameter of the orifice (Talu et al., 2006). Moreover CEHDA and microfluidic 

devices enable the production of MBs in a single-step and can also be used for the 

production of MBs with multiple layers (Stride & Edirisinghe, 2008).  

1.4.2 Drug loading in MBs 

Due to their thin shell and gaseous interiors MBs have a very low drug-loading 

capacity (Wang & Kohane, 2017). A number of ways have been described for the 

attachment of payload to the MB shell, drugs can be dissolved in an oil layer inside 

the MB shell; Directly incorporated within the shell; Conjugated through electrostatic 

interactions onto the outside of the shell (Lentacker, De Smedt & Sanders, 2009). 

Another way and the one utilised in this project is by attachment of NPs onto the 

outside shell of the MBs via avidin-biotin linkages (Lentacker, De Smedt & Sanders, 

2009) (Figure 1.7).  

Binding of DNA onto the surface of albumin-shelled MBs with a perfluorocarbon core 

through electrostatic interactions protected the DNA against nucleases and thus 

rapid degradation (Lentacker et al., 2006). Unger et al., (1998) were among the first 

to incorporate an extra drug-encapsulating oil layer inside the phospholipid shell as 

observed in Figure 1.7 (Unger et al., 1998). Specifically paclitaxel was dissolved in 

soybean oil and used to form phospholipid shelled MBs with a perfluorobutane 

(C4F10) core, these were tested in vivo and significantly reduced the toxicity of 

paclitaxel (Unger et al., 1998).  

Paclitaxel has also been dissolved in TA oil and used to produce a MB containing an 

oil layer inside the phospholipid shell, these MBs are also referred to as acoustically 

active lipospheres (AAL) (Tartis et al., 2006). Zhao et al., (2005b) were one of the 

first to report the incorporation of hydrophilic therapeutic compound, Hirudin a 

thrombin inhibitor within the phospholipid membrane (Zhao et al., 2005b) (Figure 1.7).  
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Figure 1.7 Schematic of drug loading strategies to microbubbles. 

Drugs can be electrostatically attached to the shell of microbubbles; Nanoparticles 

encapsulating drugs can be attached onto the shell of microbubbles via avidin-biotin 

linkages; Drugs can be dissolved in an oil layer inside the microbubble phospholipid 

shell; Drugs can be incorporated within the shell of the microbubble. Image adapted 

from Lentacker, De Smedt & Sanders, 2009.  
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Liposomes with a phospholipid shell incorporating a biotinylated PEG chain (DSPE-

BPEG2000) were linked via NeutrAvidin to phospholipid-shelled MBs with DSPE-

BPEG2000) (Kheirolomoom et al., 2007). Liposome incorporation increased the drug-

loading capacity of the MB-liposome DDS, approximately 105 liposomes were linked 

to each MB (Kheirolomoom et al., 2007). The authors also compared avidin and 

NeutrAvidin binding and found that there was a 3-fold increase in binding with 

NeutrAvidin (Kheirolomoom et al., 2007). The same principles of attachment to MBs 

via avidin-biotin have been applied to DOX containing liposomes (Lentacker et al., 

2010). A common feature of all these payload-carrying MBs is that they retain their 

US responsiveness, this is particularly important as the release of the payload can 

be triggered by US (this will be further discussed below, external triggering section 

1.5). 

Another alternative approach is echogenic liposomes. These are liposomes that can 

encapsulate both drugs and gases (Huang, McPherson & MacDonald, 2008). The 

gas in echogenic liposomes can either reside between the two monolayers of the 

liposome bilayer or can exist as a separate air bubble covered by a single 

phospholipid monolayer within the aqueous compartment of the liposome (Huang, 

McPherson & MacDonald, 2008). Huang et al., (2008) produced an echogenic 

liposome containing both gas and a hydrophilic drug-like molecule calcein using a 

pressure-freezing method, freezing of the liposomes under high pressure promoted 

the encapsulation of gas (Huang, McPherson & MacDonald, 2008).  

1.4.3 MBs passive and active targeting  

Unlike NPs, micron-sized MBs cannot passively accumulate in tumours via the EPR 

effect. However, it has been shown that MBs can be passively targeted up to a certain 

point owing to their specific shell characteristics (Paefgen, Doleschel & Kiessling, 

2015). For example albumin and lipid-shelled MBs preferentially accumulate in 

injured tissues with ischemia/reperfusion and inflammation (Lindner et al., 2000a). 

This preferential accumulation is due to the binding of MBs to activated leukocytes 

(monocytes and neutrophils) that are bound to the venular endothelium in response 

to injury (Lindner et al., 2000a, 2000b). The binding of albumin MBs is due to 

interactions with integrins while the binding of lipid-MBs is due to interactions with the 

complement system (Lindner et al., 2000a).  

Active targeting refers to modifications on the surface of MBs to permit the 

attachment of targeting ligands to allow for subsequent binding to specific receptors  

(Kiessling et al., 2012). Targeting ligands can either be attached before (incubated 
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with the phospholipids prior to MB formation) or after (via non-covalent interactions 

with avidin-biotin) MB production (Kiessling et al., 2012). Several factors such as 

VEGFR2 are overexpressed on the tumour endothelium due to angiogenesis and are 

good targeting ligands (Willmann et al., 2008). Using streptavidin-biotin interactions 

an anti-VEGFR2 antibody was successfully attached onto the surface of lipid-shelled 

MBs (Willmann et al., 2008).  

An alternative approach was used when VEGFR2 binding peptides were pre-

conjugated onto phospholipids that were used to form MBs (Pysz et al., 2010). A 

clinical trial used this VEGFR2 or kinase insert domain (KDR) in humans targeted 

MB as a contrast agent for the molecular imaging and monitoring of KDR-expressing 

tumours (Willmann et al., 2017). Their results showed that the KDR-targeted MBs (or 

BR55) were well tolerated, and the US imaging signals matched the 

immunohistochemistry (IHC) results for KDR expression (Willmann et al., 2017). The 

shells of the AAL (section 1.4.2) were prepared with an RGD peptide, the targeting 

increased in vitro binding of the AAL compared to non-targeted MBs (Tartis et al., 

2006). MBs have also been prepared with antibodies specific for intracellular 

adhesion molecule-1 (ICAM-1) covalently attached on their shells (Villanueva et al., 

1998). In vitro data showed a significant increase in binding to activated endothelial 

cells overexpressing ICAM-1, when MBs were targeted to ICAM-1 compared to 

control cells not overexpressing ICAM-1 (Villanueva et al., 1998).  

1.5 External Triggering and controlled release for Drug 

Delivery – Ultrasound  

1.5.1 Definition of Ultrasound parameters 

US is defined as a longitudinal pressure wave at frequencies above the audible limit 

of human hearing (>20 kHz) (Wang & Kohane, 2017). US has been used as an 

imaging modality in medicine however, it has gained much interest in drug delivery 

(Wang & Kohane, 2017). US can be regulated by changing different parameters such 

as frequency (expressed in MHz), intensity (expressed as W/cm2) or acoustic 

pressure amplitude (or peak negative pressure expressed as kPa) and duty cycles; 

frequency regulates the depth of penetration which is inversely proportional to the 

frequency, in contrast, intensity regulates the amount of energy delivered to a desired 

site (US exposure) and duty cycle refers to the exposure time and succession of 

pulses (Boissenot et al., 2016). US can be described as low frequency (0.02-3 MHz) 

or high frequency (>3 MHz) (Boissenot et al., 2016). Lower US frequencies are 
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generally used for drug delivery as it ensures deeper tissue penetration, while higher 

US frequencies are used for diagnostic purposes as it ensures higher tissue 

resolution (Chowdhury, Lee & Willmann, 2017). For drug delivery in vivo the 

frequency can range between 0.3 to 2.2 MHz, the intensity from 0.06 to 3 W/cm2 and 

the duty cycles from 0.25 to 50% (Lammertink et al., 2015). Thermal index (TI) gives 

the rise in temperature in degrees for example a TI=1 will increase temperature by 

1.0°C, the FDA limit for TI is a body temperature rise of 6°C (Duck, 2007). Mechanical 

index (MI) is alternative parameter used to define US intensity, mainly used for 

medical US scanners it is expressed as the ratio of the peak negative pressure in 

MPa to the square root of the frequency in MHz (Lammertink et al., 2015). Mechanical 

indices are usually used between 0.1 and 1.9, however, due to the potential of US 

causing increase heat and therefore tissue damage, the FDA has set an upper limit 

for MI at 1.9 (Chowdhury, Lee & Willmann, 2017). Both TI and MI are used as safety 

indices for medical imaging (Duck, 2007). US alone can enhance drug delivery 

however it can also be used to the trigger the release of drug payloads from MBs  

(Wang & Kohane, 2017).   

1.5.2 Sonoporation via stable and inertial cavitation  

MBs that are exposed to an US pressure wave start to cavitate, cavitation is defined 

as the alternate shrinking and growing of MBs in response to the US pressure wave 

(Lentacker, De Smedt & Sanders, 2009). Stable cavitation or non-inertial cavitation 

mostly occurs at lower US intensities (peak negative pressure of < 100 kPa and MI 

< 0.1) whereas inertial cavitation occurs at higher US intensities (peak negative 

pressure 100 to ≥ 500 kPa, MI from 0.1 to ≥ 0.5) (Lentacker, De Smedt & Sanders, 

2009; Boissenot et al., 2016). Both stable and inertial cavitation can contribute 

towards MB mediated drug delivery (Chowdhury, Lee & Willmann, 2017).  

During stable cavitation MBs demonstrate linear low amplitude oscillations, these 

stable oscillations result in liquid flow around MBs referred to as microstreams 

(Lentacker, De Smedt & Sanders, 2009). When MBs are close to cell membranes the 

microstreaming causes shear stress on the membrane that may result in the transient 

opening of the cell membrane (Lentacker, De Smedt & Sanders, 2009). This transient 

opening of the cell membrane caused by US exposure is known as sonoporation 

(Lentacker et al., 2014). In vitro work using high-speed imaging has shown that 

oscillating MBs need to be in direct contact to the cell membrane to cause this 

transient pore formation (van Wamel et al., 2006). This pore formation allowed for the 

transient uptake of small molecules like propidium iodine (PI) (van Wamel et al., 

2006). Moreover, stable cavitation caused by targeted to cluster of differentiation-31 
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(CD31) for example MBs also cause membrane pore formation (sonoporation) more 

effectively than non-targeted MBs (Kooiman et al., 2011). Targeting is particularly 

important especially in vivo as it will ensure the close contact of the MBs with the 

endothelial cells (Kooiman et al., 2011).  

Improved drug uptake via small pore formation is not the only mechanism associated 

with improved drug delivery via stable cavitation, endocytosis has also been 

described (Meijering et al., 2009). An investigation into the mechanisms of uptake of 

fluorescently labelled dextrans following exposure to MBs and US revealed that the 

uptake of smaller molecules (≤70 kDa) was via the transient pores while uptake of 

larger molecules ( ≥155 kDa) was via endocytosis (Meijering et al., 2009).  

In contrast, during inertial cavitation the oscillation amplitude of the MBs can increase 

rapidly eventually causing MB collapse (Lentacker et al., 2014). This collapse results 

in the breakdown of the MB into smaller MBs (Lentacker et al., 2014). As the MB 

collapses shock waves are generated in the fluid close to the MB, if a cell is close to 

the collapsing MB a jet of liquid is formed towards the cell surface (Lentacker, De 

Smedt & Sanders, 2009; Lentacker et al., 2014). Moreover, these shock waves and 

resulting microjets cause very high forces that can also form membrane pores and 

may also permeabilise blood vessels (Lentacker et al., 2014). Pore formations were 

reported on the cell membranes of cells that were exposed to both US and MBs 

(Yang et al., 2008). The sizes of the pores strongly correlated with acoustic pressure, 

as pressure increased the size of the pores increased, with pore sizes ranging from 

a few nm (1 nm) up to a few μm (4 μm) (Yang et al., 2008). It should be noted that 

pores in the μm range are not transient and the cells are unable to repair this therefore 

non reparable sonoporation or sonolysis takes place eventually causes cell death 

(Yang et al., 2008).  

Sonoporation through stable cavitation requires direct contact of the MB with the cell 

membrane in contrast, to inertial cavitation where MBs can cause pore formations to 

cells that are in a certain distance (Zhou et al., 2012; Lentacker et al., 2014). This 

distance also the location of the MB at the start of the US was determined as the ratio 

of the distance (D) between the bubble and the cell and the diameter (d) of the MB, 

D/d which was found to be 0.75 (Zhou et al., 2012). The size of the pores also 

depends on the US pressure and duration as these can range from 0.1 μm to 0.8 μm 

(Zhou et al., 2012). US can therefore, be used to trigger the release of payload from 

MBs and depending on the US parameters such as frequency, pressure, MI and 
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pulse duration can either cause payload uptake via stable or inertial cavitation. More 

importantly drug delivery via MBs is restricted to the ultrasound treated region.  

De Cock et al., (2016) studied how NP-loaded MBs were able to deliver the NPs 

intracellularly. They predicted that loading rather than co-delivery improved 

intracellular delivery (De Cock et al., 2016). Using real-time imaging they showed that 

MBs deposited NPs directly onto the cell membrane a process that the group termed 

as “sonoprinting” (De Cock et al., 2016).  

1.6 Therapeutic Microbubbles  

Peyman et al., (2012) have previously used a microfluidic platform for the on-chip 

production of liposome-loaded MBs in a single step approach (Peyman et al., 2012). 

This microfluidic platform was used to generate therapeutic microbubbles (thMBs), 

these are MBs consisting of non-covalently via NeutrAvidin-biotin interactions 

attached liposomes encapsulating irinotecan or SN38 and targeted to VEGFR2 

(P.L.Coletta, personal communication). Using the same single step approach chip 

design and different chip design in a two-step approach, LONDs encapsulating CA4 

in an oil core were attached to MBs to produce thMBs for targeted triggered drug 

delivery. Figure 1.8 is a schematic representation of a thMB with LONDs.   

It is hypothesised that thMBs are able to travel through the circulation undisrupted 

and bypass normal tissues. Traveling through the circulation thMBs can bind 

specifically to VEGFR2 which is upregulated on the surface of the tumour 

endothelium. Following binding, a low frequency US destruction pulse directly applied 

at the tumour would lead to high amplitude MB oscillations that would cause MB 

collapse and subsequent release of the LONDs or fragments of LONDs and CA4 

near the tumour region, enhancing intratumoural and intracellular uptake of CA4. The 

collapsing MB would cause the production of high forces that would promote the 

transient pore formation (sonoporation) at tumour endothelium further enhancing 

LOND and CA4 intratumoural uptake. This proposed mechanism of delivery is 

summarised in Figure 1.9. This delivery platform specifically used in this project for 

CA4, can alter the PK by potentially preventing rapid metabolism, clearance and off-

site tissue distribution to enable restricted and controlled delivery only to US-exposed 

areas reducing any potential off-site toxicities.  
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Figure 1.8 Therapeutic Microbubble with Combretastatin Lipid Oil 

Nanodroplets.  

Therapeutic Microbubbles (thMBs) are defined as targeted microbubbles (MBs) 

loaded with CA4 encapsulating Lipid Oil NanoDroplets (LONDs) via NeutrAvidin-

Biotin non-covalent interactions. Briefly, Combretastatin A4 (CA4) is dispersed in oil 

and used to prepare the LONDs. The lipid monolayer shells of LONDs are then 

functionalised with NeutrAvidin and used for LOND-MB production. Prior to MB 

formation, C6F14 is included into the lipids that form the MB lipid-monolayer to 

increase MB stability and lifetime (Abou-Saleh et al., 2016). The gas core of the MB 

is C4F10 (perfluorobutane). Both LONDs and MBs have covalently attached 

biotinylated poly-(ethylene) (PEG) chains on their shells. This biotinylated PEG chain 

provides a linkage between the LONDs and the MB as a NeutrAvidin linker is added. 

Following production of a LOND-MB construct a biotinylated anti-VEGFR antibody 

can bind to the remaining NeutrAvidin binding site on the LONDs and the MBs, 

providing specific targeting to the tumour vasculature. The size of thMBs is usually 

between 2-4 μm in diameter, measured by light microscopy. Approximately 1-2 x 103 

LONDs can be loaded onto a single MB depending on the LOND and MB diameters.  

 

 

 



47  

 

Figure 1.9 Proposed mechanism for therapeutic delivery of drugs via LONDs 
and US triggered MBs.  
Intravenously injected thMBs can travel through the vasculature of normal tissue 

without releasing their payload (top panel) due to the lack of an US destruction pulse, 

trigger. Bottom panel (a) Upon arrival in the tumour vasculature thMBs can bind to 

their target VEGFR2 which is overexpressed on the tumour endothelium (b). 

Following binding an US destruction pulse, trigger (c) is applied directly at the tumour 

region causing high amplitude MB oscillation eventually leading to MB collapse (d) 

and release of LONDs and/or fragments of LONDs, CA4 and MBs (e). This collapse 

can lead to extreme forces that can enhance LOND and/or CA4 release, followed by 

intratumoural uptake via the transient opening of pores in the endothelial tumour 

membrane (sonoporation). Intratumoural LONDs or free CA4 can then be taken up 

intracellularly, intact LONDs release CA4 (f).  
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1.7 Project Aims  

The aim of this work was to test the efficacy of LONDs encapsulating CA4 alone or 

attached to MBs (thMBs) as a hydrophobic DDS in a CRC model. 

Specific aims of the project were: 

• To develop qualitative and quantitative assays to assess the drug delivery 

capability of LONDs in vitro by investigating the MT defects caused by 

delivery of the CA4 payload  

• To establish a liquid chromatography tandem mass spectrometry (LC-

MS/MS) protocol for the specific measuring of CA4 in LONDs and in tissue 

samples  

• To demonstrate intratumoural delivery and potential off-site delivery of CA4 

by LONDs and/or CA4 thMBs in vivo by measuring CA4 concentrations in 

tissue samples 

• To develop qualitative and quantitative immunostaining techniques to assess 

in vivo pharmacodynamic (PD) responses of CA4 LONDs and/or CA4 thMBs  

• To assess the use of an in vivo fluorescent technique (Hoechst 33342 marker 

for perfusion) to measure the effects of CA4 delivered via LONDs or CA4 

thMBs  

• To evaluate the anti-tumour activity and potential off-site toxicities of LONDs 

used as a monotherapy  

• To evaluate the anti-tumour activity of CA4 thMBs used in combination with a 

conventional anti-tumour drug, irinotecan 
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2.1 Cell lines 

2.1.1 Cell line maintenance and stock production  

Human Colorectal Adenocarcinoma cells SW480 were chosen as the in vivo model.  

SW480 cells are derived from a primary adenocarcinoma of the colon, these are part 

of the CMS4 subtype (“mesenchymal”) (section 1.1.1 for details on CMSs of CRC), 

which are characterised by an upregulation of genes involved in EMT (Guinney et al., 

2015; Berg et al., 2017). CMS4 tumours are classified as undifferentiated and are of 

particular interest for treatment as the have the worst prognosis (Berg et al., 2017). 

SW480, SVR murine pancreatic islet endothelial cells and EA.hy926 human 

endothelial cells were all obtained from ECACC (European collection of 

authenticated cell cultures - ecacc.org.uk). EA.hy926 endothelial cells are hybrid cells 

of HUVECs with A549/8 human lung carcinoma cells used as an in vitro model of 

angiogenesis and provide an alternative to HUVECs primary cells (Aranda & Owen, 

2009). 

SW480 were grown in Roswell Park Memorial Institute (RPMI-1640) with 10% (v/v) 

foetal calf serum (FCS, Sigma-Aldrich, UK). SVR and EA.hy926 cells were grown in 

high glucose (4.5 g/L), GlutaMAXTM Dulbecco’s modified Eagle’s medium (DMEM), 

supplemented with 5% and 10% (v/v) FCS respectively. All cell lines were maintained 

at 37°C in 5% CO2. SW480 cells were authenticated by single tandem repeat (STR) 

profiling and all cell lines screened negative for mycoplasma. Cells were harvested 

via trypsinisation at 80% confluence. Stocks of all cell lines were prepared in freezing 

media containing FCS and 10% (v/v) dimethyl sulfoxide, DMSO (Sigma-Aldrich, UK) 

and stored in vaporised liquid nitrogen below -180°C.  

2.2 LOND production and characterisation 

2.2.1 Lipid preparation and CA4 solubilisation  

The following lipids were purchased from Avanti® Polar Lipids, Inc. (Alabaster, 

Alabama, USA). 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC); 1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N[biotinyl(polyethyleneglycol-2000] 

(DSPE-BPEG2000); 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). 

Fluorescently tagged lipids Atto590 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

(Atto590-DOPE) were purchased from Atto-TEC (Siegen, Germany). All lipids were 

dissolved in 1:1 (v/v) chloroform/methanol.  
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CA4, TA and TPP oils were all purchased from Sigma (Sigma-Aldrich, UK).  An initial 

stock concentration of CA4 25 mg/mL or 50 mg/mL was obtained by dissolving CA4 

and vortexing vigorously in TA or TPP.  

2.2.2 LOND production by high pressure emulsification and 

purification  

LONDs were produced by a two-step high pressure homogenisation of an o/w 

solution containing lipids by Dr Victoria Mico and Dr Sally Peyman (School of Physics 

and Astronomy, University of Leeds) as previously described (Mico et al., 2017). The 

lipid shell of TA LONDs was composed of 95:5 mol% POPC and DSPE-BPEG2000 

while the lipid shell of TPP LONDs was composed of 75:20:5 mol% DSPC, 

Cholesterol and DSPE-BPEG2000. When required for fluorescence tracking 0.1 mol% 

Atto590-DOPE was added into the lipid mixture. After mixing the lipids, the 

chloroform/methanol solvents were evaporated under nitrogen for at least 30 min, 

these formed a lipid film around the walls of the vial. The lipid film was re-suspended 

in 0.7 mL of TA or TPP with or without CA4 (section 2.2.1) by vortexing and sonicating 

for approximately 10 min. Following this, phosphate buffered saline (PBS) was added 

to the lipid/oil/drug mixture to a final volume of 4 mL (Figure 2.1 A). The first 

homogenisation step was a blending step using the rotor-stator system, Polytron 

PT1300 D (Kinematic AG, Switzerland), at 12500 rpm for 10 min at 40°C and 

atmospheric pressure (Figure 2.1 B). The first homogenisation step roughly mixed 

the oil/lipid/PBS mixture. Following this, 6 mL of PBS was added to the mixture to a 

final volume of 10 mL. The second homogenisation step was performed with a high 

pressure homogeniser, Emulsiflex C5 (Avestin Europe GmbH, Germany) for 20 min. 

The pressure was maintained at 175 MPa (Figure 2.1 C).  

LOND preparations were cleaned to remove any excess lipid and unencapsulated 

drug. Purification was done either through cross-filtration or dialysis performed by Dr 

Victoria Micro (School of Physics and Astronomy, University of Leeds). Briefly, during 

cross-filtration, the LOND sample passes tangentially along the surface of the filter. 

Particles smaller than the filter can permeate across the membrane whereas larger 

particles are retained and continue circulating. The LONDs were flowed at 40 mL/min 

for 2 h. Dialysis was performed using 8 kDa dialysis tubes (Mini Dialysis Kit, GE 

healthcare) which were filled with 2 mL of LONDs. The dialysis tube was then placed 

inside a beaker containing 1 L of PBS. The sample was then placed at 4°C and stirred 

overnight. After dialysis the sample was stored at 4°C.  
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Figure 2.1 LOND production by a two-step high pressure homogenisation.  

(A) Lipids are re-suspended in 0.7 mL of oil (TA or TPP), PBS is added to the mixture 

up to a final volume of 4 mL. (B) The mixture is then introduced into the Polytron for 

initial blending at 12500 rpm for 10 min at 40°C for the first homogenisation step. This 

roughly mixes the lipids/oil/PBS and produces LONDs with a high variation in size. 

(C) The Emulsiflex C5 is used for the second fine homogenisation step at 175 MPa 

for 20 min. This second step reduces the size of the LONDs and improves the 

homogeneity.    
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2.2.3 Sizing and quantification of LONDs by DLS, qNano and 

NanoSight 

The LOND size was measured by three different techniques: DLS using a ZetaSizer 

Nano (Malvern Instruments, UK), qNano (Izon Science, UK)  and NanoSight (Malvern 

Instruments, UK) by Dr Victoria Mico, School of Physics and Astronomy, University 

of Leeds. DLS measures the hydrodynamic diameter and size distribution of particles 

that are dispersed in a liquid, by analysing the light scattering intensities of particles 

in Brownian motion. The hydrodynamic diameter was then calculated using the 

Stokes-Einstein equation (Murdock et al., 2008; Varenne et al., 2016). The q-Nano 

analyses particles using the Tunable Resistive Pulse Sensing principle by measuring 

the increase in electrical resistance as particles pass through a pore giving a precise 

measurement of concentration (Varenne et al., 2016). Single particle tracking is 

performed using a NanoSight which utilises both light scattering and Brownian motion 

of particles to analyse size and particle concentration (Varenne et al., 2016). Briefly, 

LONDs were diluted 1:100 in PBS and placed in a plastic disposable cuvette and 

analysed using a DLS system. The average size from three measurements was 

recorded. LONDs were diluted 1:100 and 1:106 for measurements using q-Nano and 

NanoSight respectively. 

2.2.4 Quantification of CA4 in LONDs by Ultraviolet-visible 

spectroscopy 

Ultraviolet-visible (UV-VIS) spectroscopy (Perkin Elmer, USA) is frequently used to 

measure the amount of light absorbed by a substance, the absorbance being 

proportional to the concentration. UV-VIS spectroscopy measurements of CA4 

concentration in LOND solutions were performed by Dr Victoria Mico (School of 

Physics and Astronomy, University of Leeds). Briefly, standards from 0-25 µg/mL 

were prepared for CA4 in the relevant oil (TA or TPP). The absorption of each 

concentration was measured at 300 nm, using quartz cuvettes with a 1 cm path 

length. A linear standard curve was produced and the equation of the line was used 

to calculate the concentration of CA4 in the LOND sample tested. The concentration 

of CA4 in LONDs was also confirmed by LC-MS/MS (section 2.6). The percentage 

encapsulation efficacy (% EE) for CA4 in LONDs was determined by dividing the CA4 

concentration provided by the UV-VIS or LC-MS/MS by the input concentration of 

CA4 before LOND production in the oil/lipid PBS mixture x 100.  
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2.3 In vitro evaluation of CA4 TA or CA4 TPP LONDs 

2.3.1 Cell cultivation in 6-well plates 

SVR cells were cultured on glass coverslips (sterilised in 70% (v/v) ethanol) in 6-well 

plates at 5 x 105 cells/well. These were allowed to grow for 24 h at 37°C with 5% CO2 

prior to treatments. Cells were treated with 10 μM CA4 TA LONDs, equivalent volume 

of TA alone, equivalent volume of TA LONDs and 10 μM free CA4 in DMSO, for 2 h 

at 37°C or 0.5 μM CA4 TA LONDs and 0.5 μM free CA4 in DMSO for 24 h at 37°C. 

2 mL of the appropriate treatment prepared in media (DMEM) were added to each 

well. Untreated cells were used as controls.  

2.3.2 Cell cultivation in µ-Slides VI 0.4  

Cells (SVR, SW480 or EA.hy926) were cultured in µ-Slides VI 0.4 (Ibidi, Germany). 

Briefly, 30 µL of cell suspension containing 3 x 105 cells/mL was plated in each of the 

six channels in the µ-Slides VI 0.4. The slides were then incubated for 1 h, at 37°C to 

allow cell adhesion. After 1 h, 60 µL of cell free medium was added. The cells were 

incubated for 24 h, at 37°C with 5% CO2 prior to treatments. Following this, the media 

was removed and the cells were treated with: CA4 TA LONDs or free CA4 in DMSO 

at 100, 60, 40, 20 and 10 nM for 2 h at 37°C (SVR); CA4 TPP LONDs, free CA4 in 

TPP or DMSO all at 10 μM, or TPP alone at an equivalent volume for 2 h at 37°C 

(SVR, EA.Hy926 and SW480); CA4 TPP LONDs at 10 μM or 0.1 μM (or 100 nM) and 

free CA4 TPP at 10 μM  for 30 min at 37°C (SVR); CA4 TPP LONDs at 100, 60, 40, 

20, 10, 4, 8 and 2 nM or free CA4 in TPP at 8 and 2 nM for 2 h at 37°C (SVR); CA4 

TPP LONDs or free CA4 in TPP both at 55 nM and 100 nM for 2 h or 24 h at 37°C. 

30 µL of appropriate treatment reagent was prepared in fresh media and added to 

the cells for the specified treatment time. For 24 h treatments, 100 µL of reagent was 

added to each channel to avoid drying.  

2.3.3 β-tubulin immunofluorescence and post-acquisition image 

analysis  

β-tubulin was visualised following a three-step indirect immunofluorescence (IF) 

method. Cells were washed x 3 with PBS and fixed with 4% (w/v) paraformaldehyde 

(PFA) in PBS for 10 min at room temperature. Cells cultured in µ-Slides VI 0.4 were 

permeabilised with 0.1% Triton X-100 (v/v) in dH2O for 5 min at room temperature. 

Cells were then incubated with antibody diluent (Thermo Fisher Scientific, UK) to 

block non-specific binding for 5 min at room temperature. 1:500 primary antibody, 

mouse monoclonal anti-β-tubulin (T4026 – Sigma-Aldrich, UK) in antibody diluent 
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was applied for 2 h, at room temperature. The primary antibody was then followed by 

sequential incubations of 1:200 biotinylated rabbit anti-mouse (E0354, DAKO) then 

1:250 fluorescein-isothiocyanate (FITC)-labelled avidin D (Vector Laboratories) both 

prepared in antibody diluent for 1 h at room temperature. Coverslips from 6-well 

plates were mounted onto glass slides with Prolong Gold with DAPI (P36935, Thermo 

Fisher Scientific, UK). Cells were mounted directly with Prolong Gold with DAPI in µ-

Slides VI 0.4. Fluorescent images were acquired using a Zeiss Axio Imager Z1 

microscope (Carl Zeiss Microscopy, USA) with AxioVision software.  

2.3.3.1 Semi-quantitative analysis of MTs 

Immunofluorescent images were used for scoring. Five different fields of view (FOV) 

from each treatment and/or control group were taken. The length of ten MTs was 

measured from five randomly selected cells in each of the five FOV (total of 250 MTs 

lengths measured), using Image J. Where not possible less MT lengths were 

measured. The data was plotted using GraphPad Prism 7 (GraphPad Software Inc., 

La Jolla, California, USA).  

2.3.4 Cell cycle analysis by flow cytometry 

SW480 and SVR cells were cultured in 12-well plates at 2.5 x 104 cells/mL (2 mL per 

well), for 48 h at 37°C. Cells were then treated with 55 or 100 nM CA4 in DMSO and 

CA4 TPP LONDs at equivalent concentrations for 24 h at 37°C. Vehicle controls were 

used, DMSO at < 0.01%, and TPP LONDs at equivalent LONDs/mL number 

approximately 4 x 1010/mL. After treatment all cells were collected as well as the 

media including any non-adherent cells. Cells were pelleted and washed with PBS. 

Cells pellets were obtained by centrifugation at 400 x g for 5 min. The supernatant 

was discarded and cells were fixed by drop-wise addition of  500 µL of ice-cold 70% 

(v/v) ethanol in dH2O. Samples were stored at -20°C until required. Fixed cells were 

transferred into round bottom polypropylene tubes (Thermo Fisher Scientific, UK), 

and pelleted by centrifugation at 200 x g for 3 min at 4°C. Cell pellets were extensively 

washed with 500 µL buffer containing 0.1% (w/v) bovine serum albumin (BSA) 

(Sigma-Aldrich, UK), 0.1% (v/v) Tween-20 (Sigma-Aldrich, UK) in PBS. Following 

washing, cell pellets were obtained by centrifugation at 200 x g for 3 min at 4°C. 500 

µL of staining solution (200 µg/mL Rnase A (Sigma-Aldrich, UK), 20 µg/mL PI 

(Sigma-Aldrich, UK) in the same buffer as above) was used to re-suspend the cell 

pellets. These were incubated in the dark for 20 min and at least 10,000 cells were 

analysed using an Attune 2 Laser 6 Colour flow cytometer (Thermo Fisher Scientific). 

Data analysis was carried out using Modfit LT Win 32 software version 3 (Verity 
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Software). The set-up of the method was performed with the help of Dr Adam Davison 

(School of Medicine, University of Leeds).  

2.4 ThMB production  

ThMBs (Figure 1.8) were produced on-chip using a single step and a two-step 

process in a microspray regime. The single step method was used for the attachment 

of NeutrAvidin functionalised CA4 TA LONDs to MBs and the two-step method for 

the attachment of NeutrAvidin functionalised CA4 TPP LONDs. Both microchips used 

for the microfluidic production were fabricated by Epigem Ltd (Redcar, UK) in 

poly(methyl methacrylate) (PMMA) and SU-8. The number (N) of LONDs that can 

theoretically fit around a single MB is related to the surface area of the MB and the 

cross-section of a LOND and can be calculated by ! = 4 $%&'()	+,	-./
$%&'()	+,	0123/.  

2.4.1 Lipid preparation   

84 µL of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (20 mg/mL 1:1 

chloroform/methanol) (Avanti Lipids (Alabaster, Al, USA) was mixed with 14 µL of 

DSPE-BPEG2000 (25 mg/mL 1:1 chloroform/methanol) to a final concentration of 2 

mg/mL for the single step and 1 mg/mL (42 µL of DPPC and 7 µL of DSPE-BPEG2000) 

for the two-step on-chip production method. The lipids were evaporated under 

nitrogen for 1 h. A film of lipids was formed around the walls of the glass vial, these 

were stored at -20°C prior to use.  

2.4.1.1 Single step on chip-production method 

The lipids produced at 2 mg/mL were re-suspended in 1 mL of bubble buffer (4 mg/mL 

NaCl (VWR International, UK) and 1% (v/v) glycerol (Sigma-Aldrich, UK) in dH2O), 

then vortexed for 1 min and placed in an unheated ultrasonic bath (VWR™ Ultrasonic 

Cleaner) for 1 h to facilitate re-suspension with additional vortexing every 15 min. 

Following this, the lipid solution was allowed to cool for 5 min at 4°C. 100 µL of CA4 

TA LONDs were surface functionalised by incubating with 3 µM of NeutrAvidin 

(Thermo Fisher Scientific, UK) for 15 min. The lipid solution was then mixed with the 

functionalised CA4 TA LONDs and incubated for a further 15 min. 10 µL/mL of 

tetradecafluorohexane (C6F14) (Sigma-Aldrich, UK) was then added to the lipid/CA4 

TA LOND solution to increase MB lifetime as described previously (Peyman et al., 

2012; Abou-Saleh et al., 2016). Lipid/CA4 TA LOND solution was transferred to a 1 

mL glass syringe (SGE gas tight luer lock, Supelco, Sigma-Aldrich, UK). An in-line 

filter (Santorius, Minisart SPR 4 mm x 45 µm slip, FIL6648) was then attached onto 
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the syringe to filter out any agglomerated lipids. The microchip had an inlet channel 

for gas (perfluorobutane, C4F10) and a liquid inlet. Both these inlets were evenly split 

on the chip to allow 4 simultaneous MB generation areas all feeding into one outlet. 

The multiplex microchip was mounted in a custom-built holder on a moveable stage 

of an inverted microscope (Eclipse Ti-U, Nikon, Japan). A manifold containing 

polytetrafluoroethylene (PTFE) tubes (Supelco Analytical USA) for the liquid and gas 

was tightly placed on the microchip using a lever clamping arm. Fluid from the 

lipids/CA4 TA LOND solution was delivered via the syringe at a rate of 60 µL/min and 

the gas flow was set on a digital gas flow controller (Alicat Scientific, USA) to 20 psi.  

2.4.1.2 Two-step on-chip production method 

The microchip design for the two-step production method incorporated a flow-

focusing region for MB production using a microspray regime and a serpentine 

channel to allow time for slow mixing of MBs with NeutrAvidin functionalised CA4 

TPP LONDs. The serpentine channel allowed extra time (approximately 1.14 s) for 

the NeutrAvidin functionalised CA4 TPP LONDs to bind onto the surface of the MB 

by increasing their contact time before collection (Figure 2.2 A). The microchip was 

mounted in a custom built holder with a manifold placed on top with PTFE tubes and 

sealed tightly. The fluid from the NeutrAvidin functionalised LONDs and lipids was 

delivered to the microchip via two syringe pumps (World Precision Instruments, USA) 

and the gas was controlled by a digital gas flow controller (Alicat Scientific, USA). 

The lipid syringe pump and gas controller were controlled via a PC while the 

NeutrAvidin functionalised CA4 TPP LONDs syringe pump was controlled manually. 

A schematic of the experimental set up is shown in Figure 2.2 B.  

The lipid film (1 mg/mL) (section 2.4.1) was re-suspended in 1 mL of PBS, vortexed 

and placed in an unheated ultrasonic bath for 2 h with occasional vortexing every 15 

min. CA4 TPP LONDs were diluted to a final concentration of 1 x 1011/mL and LONDs 

incubated with 3 µM of NeutrAvidin with occasional gentle shaking for approximately 

15 min, prior to MB production. 10 µL/mL of C6F14  was added to the lipid solution to 

increase MB lifetime. The lipid solution was then allowed to cool for 5 min at 4°C. 

Following this, it was transferred to a 1 mL glass syringe and an in-line filter was then 

attached onto the syringe to remove any agglomerated lipids. The lipid solution was 

introduced into the microchip through the lipid inlet. The lipid flow rate was 20 µL/min 

and the C4F10 gas was flowed through the central inlet at 15 psi. The NeutrAvidin 

functionalised CA4 TPP LONDs were introduced further downstream after MB 

production at a concentration of 1011 LONDs/mL at 20 µL/min flow rate.  
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Figure 2.2 Two-step on-chip production of MB-LOND constructs.  

(A) Schematic of the microchip design. Liquid was pumped through opposite inlets 

(lipid inlet) while the gas (C4F10) was flown through the centre (gas inlet). Post MB 

production through a flow-focusing microspray regime, NeutrAvidin functionalised 

CA4 TPP LONDs were introduced. (B) Schematic of the experimental set up for two-

step on chip production of thMBs. The microchip was mounted in a custom-built 

holder on a moveable stage of an inverted microscope. The PMMA manifold was 

custom-built and contained PTFE tubes. The PTFE tubes were connected onto the 

inlets for introducing the gas, lipid and LONDs solutions and onto an outlet for sample 

collection. The manifold was placed onto the microchip and sealed tightly using a 

lever clamping arm.  Two syringe drives were used to control the syringe containing 

the lipid solution used for MB production and one to control the syringe containing 

the NeutrAvidin functionalised CA4 TPP LONDs. An in line filter was placed onto the 

syringe with the lipid solution to filter out any lipid agglomerates.  
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2.4.2 LOND MB characterisation and VEGFR2 antibody targeting 

The size and concentration of thMB constructs were measured by taking bright field 

images using a Nikon Eclipse microscope (Eclipse Ti-U, Nikon, Japan) built into the 

production platform. Briefly polyethylene spacers were placed on a glass microscope 

slide, a coverslip was placed on the spacers creating a chamber. The thMB sample 

was gently mixed and 10 µL was taken from the middle of the sample. This was 

diluted 1:10 in PBS or bubble buffer (section 2.4.1.1). 30 µL from this diluted sample 

was pipetted into the counting chamber.  This was placed onto the stage and a set 

of 10 images were taken, using a 40 x objective with 1.5 x internal lens. The images 

were analysed using a macro written by Dr Sally Peyman (School of Physics and 

Astronomy, University of Leeds) specifically for MB sizing and counting in Image J.  

The thMB count was used to determine the amount of biotinylated VEGFR2 antibody 

(13-5821, eBiosciences, UK) to be added to the sample. 0.1 µg of VEGFR2 antibody 

was added per 107 MBs. This was incubated for a further 20 min with gentle mixing. 

The optimal amount of VEGFR2 antibody used for specific binding in vitro and in vivo 

was determined empirically by Dr Nicola Ingram (School of Medicine, University of 

Leeds) by testing different concentrations of VEGFR2 antibody on the surface of MBs 

and assessing binding to VEGFR2 expressing SVR cells.  

2.4.3 In vitro evaluation of CA4 thMBs  

SVR cells were cultured in µ-Slides VI 0.4 (section 2.3.2), 24 h prior to treatment. CA4 

thMBs were produced and characterised as described. Following production and 

characterisation of thMBs with CA4 TPP LONDs, these MBs were incubated with 

VEGFR2 expressing SVR cells. The µ-Slides VI 0.4 were inverted to allow binding of 

the CA4 thMBs to the SVR cells for 4 min. The lid on the µ-Slides VI 0.4 was removed 

and replaced by polypropylene luer adapters (10822, Luer Plug, Ibidi, Germany). 

After 4 minutes binding time, an US trigger (+T) was applied (section 2.5.5). The cells 

then remained in contact with thMBs-CA4 TPP LONDs for 2 h at 37°C before fixation.  

2.5 Mouse models  

Local approval was obtained and all experiments were undertaken in accordance 

with the UK Animals (Scientific Procedures) Act 1986.  BALB/c and CD-1®  nude mice 

were bred in-house under licence from Charles River Laboratories (Wilmington, MA, 

USA) and maintained in specific-pathogen free conditions in individual ventilated 
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cages (IVCs) with access to water and food ad libitum. During longitudinal studies 

mouse weights were monitored to ensure health status was maintained.  

2.5.1 Materials 

CA4P (Fosbretabulin disodium) and irinotecan (irinotecan hydrochloride) were 

purchased from Sigma (Sigma-Aldrich, UK). Peanut oil was purchased from a local 

supermarket. CA4 was dissolved in DMSO and then diluted in peanut oil, in this case 

the DMSO content was 10% (v/v) and the final concentration of CA4 was either 25 

mg/mL or 0.72 mg/mL. CA4P was dissolved in PBS at 15 mg/mL and in saline with 

0.9% NaCl (BD Biosciences, UK) at 0.00045 mg/mL. Irinotecan was dissolved in 

DMSO then diluted in PBS. The DMSO content was 1.5% (v/v) and the final 

concentration of irinotecan was 3 mg/mL.   

2.5.2 SW480 human CRC xenografts 

SW480 cells were cultured as described in section 2.1.1. The cells were trypsinised, 

washed with PBS, pelleted and re-suspended at 5 x 107 cells/mL in PBS. 100 μL (5 

x 106) of cells were injected subcutaneously in the right hind flank of 5 – 6 week old 

BALB/c male mice or CD-1® nude male mice to form xenografts.  

2.5.3 Tumour volume measurements by 3D High Frequency 

Ultrasound (HFUS)  

Tumour xenografts were imaged using a VisualSonics Vevo 770 high-frequency 

ultrasound system (Fujifilm VisualSonics Inc, Ontario, Canada) equipped with a 40 

MHz (RM-704) and 25 MHz (RM-710B) transducers as previously described 

(Abdelrahman et al., 2012; Ingram et al., 2013). Briefly, mice were anaesthetised 

using 5% (v/v) isoflurane in medical air at a flow rate of 2 L/min. Mice were then 

placed onto a heated pad (37°C), anaesthesia was maintained at 3%, heart rate and 

respiration were monitored throughout the procedure. Using the 3D B-mode, a 3D 

scan of the tumour was performed using the minimum step size possible for the 

length of the tumour. At the end of the procedure mice were allowed to recover in 

recovery chamber (37°C) and then placed back in their cages. Tumour volumes were 

calculated using an offline VisualSonics Vevo 770 version 3 software by delineating 

the tumour in the 3D mode single pane cube view (Figure 2.3 A) and subsequently 

reconstructing a 3D image of the tumour (Figure 2.3 B).  



61  

 

Figure 2.3 Tumour volume measurements by High frequency Ultrasound.  

Tumour volumes were measured by HFUS using a VisualSonics Vevo 770. The data 

was then analysed using VisualSonics Vevo 770 version 3 software. (A) Using the 

single pane cube view the tumour (Tu) outline was delineated at each point where 

the shape/outline changed. S: Skin. (B) 3D reconstruction of the tumour.  
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2.5.4 Tumour volume measurement with mechanical callipers  

Tumours volumes were  also measured with mechanical callipers twice per week 

once the tumour became palpable (approximately days 7-10). Tumour volume was 

calculated as follows: 

Tumour volume = (56789ℎ	;	<=>9ℎ)
@
/× B

C 

2.5.5 US parameters  

An US trigger (+T) was delivered to tumours using a specifically designed Ultrasound 

Array Research Platform (UARP) constructed by Dr James McLaughlan, School of 

Electrical and Electronic Engineering, University of Leeds. An unfocused ultrasound 

transducer with a centre frequency of 2.2 MHz (V323, Olympus NDT, UK) was placed 

on the µ-Slides channels or directly to xenografts, US contact gel was used as a 

coupling agent (15 mm distance between the transducer and the slide or xenograft). 

A 10 μs tone burst was generated with a peak negative pressure of 260 kPa and 1 

kHz pulse repetition frequency (PRF). The duration of the US was 5 s. 1% duty cycle 

and 29.4 mW/cm2 intensity. The TI in soft tissue was 0.09 and the MI was 0.21. 

2.5.6 Hoechst Perfusion Staining  

bisBenzimide H 33342 trihydrochloride (Hoechst 33342) (Sigma-Aldrich, UK) was 

dissolved in sterile dH2O at 4.5 mg/mL and administered at 15 mg/kg i.v. (100 µL 

injection volume). One minute post-injection, mice were sacrificed by cervical 

dislocation and tumour, liver and heart tissues were harvested. The tissues were 

placed in peel-a-way embedding moulds containing optimal cutting temperature 

(OCT) compound (VWR International, UK), followed by slow freezing over dry ice. 

These were subsequently wrapped in foil, placed in liquid nitrogen and stored at – 

80°C until required.  

2.5.7 Blood sample collections  

Murine blood samples were obtained immediately after death by cardiac puncture in 

ethylenediamine tetraacetic acid (EDTA) containing tubes (BD Biosciences, UK). 

Plasma was separated by centrifugation at 1,000 x g for 10 min at 4°C. After 

centrifugation, plasma was transferred into a 1.5 mL Eppendorf tube and stored at -

80°C.  
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2.5.8 Tissue processing and immunohistochemistry  

Following harvesting at the end of each in vivo protocol tissues were cut in half and 

either fixed in 4% (w/v) PFA overnight at room temperature for IHC or snap-frozen in 

liquid nitrogen and stored at -80°C for LC-MS/MS analysis. Following PFA fixation, 

tissues were washed in PBS and dehydrated in 70% (v/v) ethanol. PFA fixed tissues 

were subsequently processed using a tissue processor and embedded in paraffin by 

the Leeds Institute of Cancer and Pathology (LICAP) service at the University of 

Leeds. Tissue paraffin blocks were placed at 4°C overnight prior to sectioning. 

Following this, blocks were placed on wet ice for 1-2 h. 4-5 μm central serial sections 

were cut using a Leica Biocute 2030 microtome (Leica Biosystems) and mounted on 

glass slides poly-L-lysine coated. Tissue sections were dewaxed and rehydrated with 

100% (v/v) xylene, 100% (v/v) ethanol and water successively 4 x 3 min each. 

2.5.8.1 Haematoxylin and Eosin  

One section from each tissue sample was counterstained with haematoxylin and 

eosin (H & E). These were placed in haematoxylin for 2 min, followed by running 

water for 2 min and Scott’s tap water (20 g sodium bicarbonate and 3.5 g magnesium 

sulphate in 1 L of distilled H2O) for 2 min. Subsequently, sections were placed in 

eosin for 2 min followed by water for 1 min. Slides were then dehydrated in 100%  

(v/v) ethanol and xylene, 4 x 3 min each. The slides were then coverslipped using 

dibutylphthalate polystyrene xylene (DPX) mounting media (Sigma-Aldrich, UK) and 

left to dry overnight at room temperature.  

2.5.8.2 Immunohistochemistry  

IHC was performed for detection of CD31-positive blood vessels. Following, 

dewaxing and rehydration as described above, antigen retrieval was performed by 

heating the slides in 10 mM citrate buffer, pH 6.0 in a microwave (900 W) for 10 min. 

The slides were allowed to cool for 20 min at room temperature and then rinsed in 

water. Endogenous peroxidase activity was blocked by incubating with 0.3% (v/v) 

hydrogen peroxide (VWR International, UK), in MeOH for 10 min. The sections were 

rinsed in water and transferred to Tris Buffered Saline (TBS; 1 M Tris HCL, 6% NaCl, 

pH 7.4). Endogenous biotin and avidin were blocked using an Avidin/biotin blocking 

kit (Vectorlabs, Burlingame, USA). Slides were incubated with a drop of avidin for 15 

min followed by 15 min in biotin block with a TBS wash in between. Non-specific 

antigen binding was blocked using antibody diluent (Thermo Fisher Scientific, UK) 

for 5 min. Sections were incubated with monoclonal rat anti-mouse CD31 antibody 

(DIA 310, clone SZ31, Dianova, GmbH, Germany) 1:20 (v/v) in antibody diluent for 1 
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h at room temperature. After washing, for 2 x 5 min in TBS + 0.1% (v/v) Tween-20 

(TBST) and 1 x 5 min in TBS, the sections were incubated with a biotinylated rabbit 

anti-rat secondary antibody (E0468, DAKO, UK) at 1:200 (v/v) in antibody diluent for 

30 min. Following washes in TBST and TBS as above, avidin/biotin/horseradish 

peroxidase complex (ABC/HRP) (Vectastain Elite ABC HRP Kit, Vectorlabs, 

Burlingame, USA) was prepared according to the manufacturer’s instructions and 

applied for 30 min. The sections were washed in TBST and TBST and blood vessels 

were visualised by staining with 3,3’-Diaminobenzidine (DAB) + Substrate buffer 

(Imidazole-HCl buffer, pH 7.5 with hydrogen peroxide and anti-microbial agent) 

(DAKO, UK) for 10 min at room temperature. The sections were subsequently 

counterstained with haematoxylin, dehydrated and mounted using DPX as described 

above (section 2.5.8.1).  

2.5.9 Immunohistochemistry analysis  

Immunostained images of tissue sections were acquired using a Nikon Eclipse E1000 

microscope (Nikon Instruments Inc.). The quantitation of CD31 positive blood vessels 

is given as microvessel density (MVD) and was measured by initially identifying areas 

with the highest CD31 positive microvessel density (“hot spots”) within the entire 

tumour section. Then, individual CD31 positive vessels were counted from images of 

a sufficient area using Image J (0.79 mm2 per field using x10 objective) as previously 

described (Zhang et al., 2007). Four or five randomly selected “hot spots” were 

counted for each tumour. Some slides were digitally scanned at x 20 magnification 

using an Aperio digital slide scanner (AT2, Leica Biosystems) with Image Scope 

software (Leica Biosystems). Image Scope software was then used to manually 

annotate the area with haemorrhage (mm2) per tissue section. Percentage 

haemorrhage was then determined by dividing the area of haemorrhage (mm2) by 

the total area of the tumour section (mm2) x 100. The same principles were applied 

to determine the percentage area of tumour with necrosis. The number of mitoses 

were also counted per mm2.  

2.5.10 Fluorescence immunohistochemistry   

10 µm cryosections were cut from frozen tissue sections (section 2.5.6) at two 

different central levels using a Leica CM3050 S cryostat (Leica Microsystems, Ltd, 

UK), wrapped in foil and stored at – 80°C. After thawing, cryosections were fixed in 

100% (v/v) ice-cold acetone for 10 min and then washed 3 x 5 min in PBS. After 

blocking in antibody diluent for 5 min, sections were incubated with a rat anti-mouse 

antibody against CD31 (Clone MEC 13.3 (550274) BD Biosciences, UK) at 1:100 
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(v/v) in antibody diluent for 1 h at room temperature. Following washing 3 x 5 min in 

PBS, the sections were incubated with a goat anti-rat IgG secondary antibody Alexa 

Fluor 568 (A-11077, Thermo Fisher Scientific,  UK) at 1:300 (v/v) in antibody diluent 

for 30 min at room temperature. Sections were washed 3 x 5 min in PBS, mounted 

with ProLong™ Gold anti-fade mountant (Thermo Fisher Scientific,  UK) and left over 

night at room temperature. Fluorescent images were acquired using a Zeiss Axio 

imager Z1 microscope as described in section 2.3.3.  

2.5.10.1 Semi-quantitative analysis of perfusion  

To quantitate perfusion tumour sections stained with Hoechst 33342 and CD31 from 

sections 2.5.6 and 2.5.10 were used. Different FOV in order to capture the whole 

tumour section were taken from the tumour core. A Hoechst 33342 intensity score 

was assigned to each FOV from a scale of 0 to 3, with 0 showing no staining or very 

weak staining of Hoechst 33342 and 3 showing highest Hoechst 33342 staining 

intensity. A score of 2 was moderate staining intensity and 1 was weak staining. For 

each data set a different set of representative fluorescent images were used as a 

guide for the scoring and are shown in the relevant chapters. A median score for 

each mouse was calculated from the different FOV and used for statistical analyses. 

In the case where two independent assessors quantified the FOV a median score for 

each mouse was calculated and the median score from the two assessors was used 

for statistical analyses.  

2.6 Liquid chromatography tandem mass spectrometry  

2.6.1 Standards preparation and calibration curves for CA4 

The analytical reference standards of CA4 and colchicine used as internal standard 

(IS) were purchased from Sigma (Sigma-Aldrich, UK). DMSO and high-performance 

liquid chromatography (HPLC) grade methanol were purchased from Fisher 

Chemical (Thermo Fisher Scientific,  UK). Filtered dH2O was obtained from a Duo 

ultrapure and dH2O water system (Triple red, UK). CA4 and colchicine stock solution 

were prepared in DMSO to a concentration of 10 mg/mL for CA4 and 5 µg/mL for 

colchicine. All stock solutions were kept at -20°C. The IS working solution was 

prepared at 0.5 µg/mL by diluting the stock solution in MeOH. A five-point calibration 

curve diluted 1:2 was prepared in MeOH  0-1 or 0-10 μg/mL. Each calibration curve 

included a blank sample (no IS) and a zero blank sample (with IS).  
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2.6.2 Quantification of CA4 in analytical samples 

For the quantification of CA4 loading in LONDs and thMBs-LOND preparation, LC-

MS/MS was used. A five point calibration curve of CA4 was prepared in MeOH as 

described in 2.6.1. CA4 TA LONDs, CA4 TPP LONDs and thMBs were diluted 

accordingly within the range of the calibration curve in MeOH, vortexed and 

centrifuged at 10, 000 x g for 4 min at 4°C to remove lipids and oil. The supernatant 

was collected and transferred into a polypropylene fused insert vial with 9 mm screw 

thread (Chromatography Direct, Ltd, UK).  

Tissues were weighed and placed in reinforced polypropylene tubes (2 mL reinforced 

tubes with Screw Caps & Silicone O-Rings, OMIN International Inc) containing 2.8 

mm zirconium oxide beads (OMIN International Inc.). These were then transferred 

into a Bead Ruptor 24 Bead Homogenizer (OMIN International Inc.) for 

homogenisation in MeOH (1:4) (w/v) (instrument settings: speed: 5.6 m/s, number of 

cycles 2 x 45 sec, pause in between cycles 30 sec). Following homogenisation, the 

tubes were vortexed and centrifuged for 5 min at 10,000 x g at 4°C. The clear 

supernatant was then transferred to an Eppendorf tube and evaporated to dryness 

using a rotary evaporator (EZ2 plus rotary evaporator, Genevac Ltd, Suffolk, UK). 

The dried samples were reconstituted in MeOH with a volume depending on the initial 

sample volume. These were vortexed and transferred into a polypropylene fused 

insert vial with 9 mm screw thread (Chromatography direct, Ltd, UK). 

Plasma was thawed at room temperature and mixed with MeOH (1:4). These were 

subsequently vortexed and centrifuged for 5 min at 10, 000 x g at 4°C. The clear 

supernatant was then transferred to an Eppendorf tube and dried using a rotary 

evaporator as described above. Following, these were reconstituted in MeOH and 

transferred in tubes as described above.  All samples we analysed using the analytic 

method described below (section 2.6.4).  

2.6.3 In vitro glucuronidation assay 

CA4 glucuronidation was determined in mouse liver homogenates. CA4 (1 mg/mL) 

was incubated in a liver homogenate at 37°C, the reaction was activated by the 

addition of 10 μL uridine 5’-diphosphoglucuronic acid (UDPGA) for 1 h (final volume 

120 μL). 20 μL from the reaction mixture was removed and added 1:4 in MeOH. 

Analytes were separated from the liver homogenate by centrifugation at 10, 000 x g 

at 4°C for 5 min. These were analysed by LC-MS/MS described below (section 2.6.4).   
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2.6.4 Instrument and analytic conditions 

LC-MS/MS was conducted using a Waters Quattro Ultima triple quadruple mass 

spectrometer (Waters Corporation, Milford, MA, USA) with an electrospray ionisation 

(ESI) interface and in positive ionisation mode. Separation was obtained using an 

ACQUITYTM UPLC BEH C18 column (1.7 μm, 2.1 x 100 mm) (Waters Corporation, 

Milford, MA, USA) that was maintained at 40°C. The autosampler was maintained at 

8°C. The following instrument parameters were in place: ion source temperature 

120°C; desolvation temperature 300°C; Capillary voltage 3 kV; Cone energy 20 V; 

Gas flow desolvation 650 L/h; Cone 71 L/h. The samples were eluted using a 

stepwise gradient in mobile phase A (90:10:0.1% (v/v) MeOH:dH2O:formic acid) and 

mobile phase B (90:10:0.1% (v/v) dH2O: MeOH:formic acid). The flow rate was 0.25 

mL/min and 10 μL was injected for each analysis. The initial gradient of 70% A: 30% 

B was gradually increased over 18 min to 80% B and 20% A, then held for 2 min then 

returned to the initial gradient over 1 minute and held for 4 min, with a total run time 

of 25 min. A photodiode array detector which was connected with the LC-MS/MS 

system was used to detect samples between 190-400 nm. The mass spectra were 

initially scanned from m/z 50 to m/z 500. The analysis was performed in a multiple 

reaction monitoring (MRM) mode following optimisation to obtain the product ions 

with the highest signals. The full MRM settings are shown in Table 2.1. MassLynx 

software (Waters Corporation, Milford, MA, USA) was used to calculate the peak area 

(PA) under the curve and this was compared to a calibration curve to determine the 

concentration of CA4 in the samples.  

2.6.5 LC-MS/MS method validation  

The percentage extraction efficiencies were obtained by spiking tissue (tumour, liver, 

kidney, spleen, colon) and plasma with 1 µg/ml CA4 (A). The resulting peak areas 

were compared to those of 100% methanol spiked in the same way (B). The ratio of 

(A/B x 100) is defined as the % extraction efficiency. The limit of detection (LOD) and 

limit of quantification (LOQ) were determined by injecting decreasing concentrations 

of CA4 standard. Carry over between samples was assessed by injecting a blank 

sample following a 1 µg/ml CA4 standard and examination for any confounding mass 

peaks detected.  A 5 mg/mL CA4 standard was subjected to three freeze thaw cycles 

at -80°C and rapidly thawing at 37°C. This was performed to ensure the stability of 

CA4 under these conditions. Evaporation of CA4 calibration curves compared to no 

evaporation was also assessed.  
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Table 2.1 LC-MS/MS MRM settings for colchicine, CA4 and CA4G. 

 

 

2.6.6 LC-MS/MS for detection of Irinotecan, SN38 and SN38G 

Concentrations of irinotecan, SN38 and SN38G in tissues was analysed using a 

method developed by Dr Laura McVeigh (School of Medicine, University of Leeds) 

and Ms Antonia Wierzbicki (Institute of Cancer Therapeutics, University of Leeds) 

with supervision by Prof. Paul Loadman (Institute of Cancer Therapeutics, University 

of Bradford). Irinotecan, SN38 (Sigma-Aldrich, UK) and SN38G (Santa Cruz 

Biotechnology, Inc.) stock solutions were prepared in DMSO to a concentration of 10 

mg/mL, 1 mg/mL and 0.5 mg/mL respectively. All stock solutions were kept at -20°C. 

Seven point calibration curves for irinotecan, SN38 and SN38G diluted 1:2 were 

prepared in MeOH at 0-0.1 μg/mL, or 0-100 ng/mL or, 0-1 μg/mL respectively.  

Tumours and tissues were weighed, homogenised, vortexed and centrifuged for the 

acquisition of a clear supernatant as described in section 2.6.2. The clear supernatant 

was diluted 1:20 in MeOH and transferred to polypropylene fused insert vials 

(Chromatography direct, Ltd, UK) and analysed by LC-MS/MS. LC-MS/MS was 

conducted using a Waters Quattro Ultima triple quadruple mass spectrometer 

(Waters Corporation, Milford, MA, USA) with an ESI interface and in positive 

ionisation mode using the same column (maintained at 40°C), mobile phases A and 

B, flow rate and injection volume as described in section 2.6.4. The following 

instrument parameters were in place: ion source temperature 120°C; desolvation 

temperature 250°C; Capillary voltage 3.5 kV; cone energy 12 V; Gas flow desolvation 

650 L/h, Cone 60 L/h (information provided by Dr Laura McVeigh, School of Medicine, 

University of Leeds). Briefly, the samples were eluted using a stepwise gradient 

Compound Precursor/product 
ion (m/z)

Dwell 
(sec)

Cone voltage Collision 
energy (volts)

Colchicine 400.6 > 295 0.20 15 30

Colchicine 400.6 > 310.1 0.20 15 30

Colchicine 400.6 > 267.22 0.20 15 30

Combretastatin A4 317.5 > 286.2 0.20 15 15

Combretastatin A4 317.5 > 271 0.20 15 15

Combretastatin A4-G 493 > 302.21 0.20 15 25

Combretastatin A4-G 493 > 317.31 0.20 15 25



69  

method, the initial gradient of 80% A: 20% B was gradually increased over 15 min to 

80% B and 20% A, then increased over 1 min to 100% B and held for 4 min then 

returned to the initial gradient over 1 minute and held for a further 14 min, with a total 

run time of 35 min (information provided by Dr Laura McVeigh, School of Medicine, 

University of Leeds). The MRM settings for irinotecan, SN38 and SN38G are shown 

in Table 2.2. MassLynx software (Waters) was used to calculate PA under the curve 

and this was compared to the calibration curves to determine the concentration of 

irinotecan, SN38 and SN38G in the samples. 

2.7 Statistical analysis  

All statistical analyses were performed using GraphPad Prism version 7 software 

(GraphPad Software Inc., La Jolla, California, USA). The statistical test used for each 

experiment are described in the text and figure legends.  

 

Table 2.2 LC-MS/MS MRM settings for irinotecan, SN38 and SN38G. 

Information used to compile this table was provided by Dr Laura McVeigh (School of 

Medicine, University of Leeds).  

 

 

 

 

Compound Precursor/product 
ion (m/z)

Dwell 
(sec)

Cone voltage Collision 
energy (volts)

Irinotecan 587.3 > 124.0 0.15 25 45

Irinotecan 587.3 > 167.0 0.15 25 45

SN38 393.2 > 264.2 0.15 35 30

SN38 393.2 > 293.0 0.15 35 30

SN38 393.2 > 349.1 0.15 35 30

SN38G 569.8 > 393.8 0.20 35 30

SN38G 569.8 > 349.9 0.20 35 30
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3.1 Introduction  

The pharmaceutical industry produces a substantial number of compounds which 

have a poor solubility in aqueous solutions (Kalepu & Nekkanti, 2015). Earlier, the 

main aim within the pharmaceutical industry was to produce compounds with high 

potency and selectivity towards their target, although, many compounds produced 

showed excellent in vitro activity when dissolved in solvents such as DMSO, this was 

not the case when tested in pre-clinical studies (Hodgson, 2001). Typical problems 

associated with poorly soluble compounds are low bioavailability, low permeability, 

rapid metabolism and elimination from the body and poor safety and tolerability 

(Muller, Jacobs & Kayser, 2001; Kalepu & Nekkanti, 2015).  

A number of methods can be used such as pH modifications and the formation of salt 

forms of poorly soluble compounds in order to increase solubility. However, due to 

their high potency some compounds produced a number of toxic side effects upon 

systemic administration. Another way of improving solubility is by using co-solvents, 

however, these can also result in severe toxicity for example Cremophor®EL used to 

solubilise paclitaxel, is associated with nephrotoxicity, hypotension and anaphylactic 

reactions (Ganta et al., 2014).  

LONDs are proposed as a new hydrophobic DDS to overcome solubility and toxicity 

issues with such compounds. The first work with LONDs in this project used the VDA 

CA4 for a proof-of-concept study. Following production, a number of LOND 

preparations (prep.) were produced and characterised to assess reproducibility of the 

production method and the LOND structure in terms of drug encapsulation and size. 

Reproducibility is an important aspect of any proposed NP formulations aimed at 

large-scale synthesis for drug delivery (Tran et al., 2017).   

The aims of this study were therefore to establish qualitative and quantitative assays 

to assess drug release and/or uptake and/or cellular uptake of LONDs in vitro. 

Following this, the aim was to produce and test a multi-structure MB construct or 

thMB for drug delivery using CA4 TA LONDs in vivo.  

3.2 CA4 TA LONDs: Physical and chemical characterisation 

Prior to LOND production with CA4, initial solubility studies were performed by adding 

25 mg of CA4 into 1 mL of each candidate oil which included squalane, olive oil and 

TA and then visually inspecting for presence of drug precipitation (or crystal 

formation) (information provided by Dr Sally Peyman and Dr Victoria Mico, School of 
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Physics and Astronomy, University of Leeds). Precipitation was an indication of poor 

solubility. CA4 had dispersed into TA and was insoluble in olive oil and squalane.  

TA is a SCT, it has been recognised by the FDA as safe, nontoxic and it is commonly 

used as a carrier for food flavouring and cosmetic products (Fiume, 2003). TA has a 

logP value of 0.1 and it is soluble in water at 70 g/L (Fiume, 2003; Park et al., 2015). 

TA has been previously used as the oil phase in nanoemulsions (Park et al., 2014; 

Sobhani et al., 2015). The chemical structure, physical and chemical properties of TA 

are shown in Figure 3.1.  

TA LONDs with and without CA4 were produced, characterised and provided by Dr 

Sally Peyman and Dr Victoria Mico (School of Physics and Astronomy, University of 

Leeds). A total of six different prep. of TA LONDs were produced to evaluate 

reproducibility, in vitro and in vivo activity in terms of CA4 release and/or uptake for 

those preparations with encapsulating CA4. Briefly, 95:5mol% POPC and DSPE-

BPEG2000 were used to form the lipid monolayer shell of the CA4 TA LONDs, following 

solubilisation of CA4 in TA (stock concentration of CA4 1750 μg), CA4 TA LONDs 

were produced by high pressure homogenisation (section 2.2 for details).   

TA LONDs with and without CA4 had a mean size of 260 ± 124 nm (n=6 prep.) 

measured by DLS with a mean concentration of 2.4 x 109 ± 1.6 x 109 TA LONDs/mL 

(n=6 prep.) measured by qNano. Purification of TA LONDs was performed by cross-

filtration or dialysis for the removal of excess lipid and/or unencapsulated CA4. The 

concentration of CA4 in the TA LOND solution was then measured by UV-VIS 

spectroscopy and the %EE for CA4 in TA LONDs was 55 ± 33% (n=5 prep.). The 

physical and chemical properties of TA LONDs with/out CA4 used in this study are 

shown in Table 3.1.  

LONDs containing TA alone were produced as a drug-free control (prep. number 3 

in Table 3.1). Prep. numbers 1, 3 and 4 were evaluated in vitro. To increase the final 

concentration of CA4 in the TA LOND prep. for in vivo use, an initial stock 

concentration of CA4 of 3500 μg/mL was used (prep. number 6 in Table 3.1). This 

increase in initial CA4 stock concentration resulted in a 96.7% EE, however the mean 

size of the LONDs in prep. number 6 increased to 394 nm while the concentration 

decreased to 0.8 x109 LONDs/mL.  
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Figure 3.1 Chemical and physical properties of triacetin. 

(A) Chemical structure of Triacetin. Adapted from MP Biomedicals (MP Biomedicals, 

2018). (B) Chemical and physical properties of triacetin.  
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Six different preparations of TA LONDs were produced to assess reproducibility and 

in vitro and in vivo activity. 95mol% POPC and 5mol% DSPE-BPEG2000 were used to 

produce the TA LONDs lipid monolayer shell. CA4 was dispersed in TA the oil core. 

CA4 stock concentration in μg/mL refers to the concentration of CA4 in the 

oil/lipid/PBS mixture before LOND production. The concentration of LONDs/mL was 

measured by qNano while their size was measured by DLS in nm. CA4 concentration 

in the TA LONDs solution was measured by UV-VIS spectroscopy. %EE was 

calculated by dividing the CA4 measured by UV-VIS spectroscopy by the stock of 

CA4 prior to LOND production x 100. Cross-filtration and dialysis were used for 

purification (removal or excess lipid and/or CA4).  Prep. numbers 1 and 4  were 

evaluated in vitro, 2, 3 and 5 were produced for LOND production reproducibility 

studies. Double the concentration of CA4 was used in prep. 6 to increase the total 

concentration of CA4 in the LONDs these were evaluated in vivo. N/D: No data; N/A: 

Not applicable; - not evaluate in vitro or in vivo. All data used to compile this table 

were provided by Dr Sally Peyman and Dr Victoria Mico (School of Physics and 

Astronomy, University of Leeds).  
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3.3 CA4 TA LONDs disrupt the MT cytoskeleton in 

endothelial cells  

CA4 is known to cause MT disruption by inhibiting tubulin polymerisation within 30 

min of exposure of human umbilical vein endothelial cells (HUVECs) to CA4P 

(Galbraith et al., 2001; Kanthou & Tozer, 2002). Due to its effects on MT 

polymerisation in vitro, evaluation of CA4 TA LONDs was initiated by assessing the 

ability of CA4 TA LONDs to cause MT disruption in endothelial cells. VEGFR2 

expressing angiosarcoma SVR murine endothelial cells (Willmann et al., 2008) were 

used for in vitro evaluation. Although, the MT disruption occurs very rapidly after 

CA4P exposure, here, as CA4 TA LONDs are a novel hydrophobic DDS a 2 h 

treatment was used to account for any potential slow release and/or uptake of CA4 

TA LONDs in SVR cells.  

IF staining of β-tubulin in untreated SVR cells, showed filamentous MTs spreading 

throughout the cytoplasm presumably originating from the centrosomes (Figure 3.2 

A). In contrast, 10 µM CA4 TA LONDs showed disruption of MT within 2 h as tubulin 

inhibition by CA4 TA LONDs caused the MTs to depolymerise and tubulin to disperse 

throughout the cytoplasm which is subsequently uniformly stained (Figure 3.2 B). The 

same uniformed stained pattern has been reported for HUVECs treated with 10 µM 

of CA4P (Galbraith et al., 2001). The same effects were seen in SVR cells treated 

with 10 µM CA4 dissolved in DMSO (Figure 3.2 C). TA LONDs and TA alone were 

used as controls to eliminate any potential MT cytoskeletal changes caused by the 

LOND structure itself and or the TA oil. No disruption of the MTs was observed when 

treating with TA LONDs or TA alone as the MTs appeared similar to untreated MTs 

(Figure 3.2 D and E).  

MT disruption with CA4 TA LONDs was quantitated by measuring MT lengths where 

possible using Image J (Figure 3.3). A total of 50 cellular MT were measured in the 

untreated, TA LONDs and TA alone groups. As the effects of CA4 TA LONDs and 

CA4 in DMSO resulted in MT disruption (apparent from the uniformly stained 

cytoplasm with dispersed tubulin from depolymerised MTs) no MTs were measured 

in these groups, therefore, 0 µm was used to produce the graph and for statistical 

analysis. As no MT were present in the groups treated with 10 µM CA4 TA LONDs 

and 10 µM CA4 in DMSO this resulted in a statistically significant difference when 

compared to untreated SVR cells and SVR cells treated with TA LONDs and TA alone  

(p<0.0001, Mann-Whitney U test, two-tailed). No significant differences were 

observed between untreated control SVR cells and TA LONDs or TA alone. 
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Figure 3.2 CA4 TA LONDs cause MT disruption.  

To assess the efficacy of CA4 TA LONDs at causing MT disruption from the CA4 

payload, SVR murine endothelial cells were cultured in 6 well-plates and treated with 

10 µM of CA4 TA LONDs, 10 µM CA4 in DMSO was used as a positive control and 

untreated SVR cells were used as a free-drug control. TA LONDs and TA alone were 

also used as controls for the LOND structure and the TA oil. Following, a 2 h 

treatment at 37°C, cells were fixed, immunostained for β-tubulin using a mouse 

monoclonal anti-β-tubulin antibody and visualised using a biotinylated rabbit anti-

mouse and FITC-labelled avidin. The slides were mounted with prolong Gold 

containing DAPI. (A) Untreated cells with filamentous MT structures. (B) 10 µM of 

CA4 TA LONDs resulted in tubulin inhibition by the CA4 payload. The tubulin from 

the depolymerised MTs had dispersed within the cytoplasm resulting in a uniform 

staining. (C) Free CA4 in DMSO at 10 µM also resulted in MT depolymerisation and 

the dispersion of tubulin into a uniform fluorescence inside the cytoplasm. (D) TA 

LONDs, did not show any disruption to the MTs. (E) TA alone did not result in MT 

disruption. Inset images show magnified cells in each panel. Scale bars indicate 50 

µm. Prep. number 1 was used.  
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Figure 3.3 Quantitative analysis of MT lengths following treatment with CA4 TA 

LONDs. 

Fluorescent images were used to quantitate MT disruption caused by treatment with 

CA4 TA LONDs. A total of 50 MT from five cells were measured using Image J from 

untreated SVR cells and treated with TA LONDs and TA alone. The treatment with 

CA4 TA LONDs and CA4 in DMSO resulted in MT disruption and the presence of 

depolymerised MTs in the cytoplasm. Therefore, no MTs were measured in these 

groups and 0 μm was used to plot the graph. Data represents the median value from 

the measured MTs (n=1 biological replicate) and the error bars represent the 

interquartile range. ****, p<0.0001 calculated by Mann-Whitney U test (two-tailed).  
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3.4 CA4 TA LONDs cause a concentration dependent MT 

disruption  

To determine if CA4 TA LONDs had a concentration dependent effect on MT 

disruption, SVR cells were treated with escalating concentrations of CA4 TA LONDs. 

These experiments also investigated whether delivering CA4 in TA LONDs changed 

(enhanced or diminished) the ability of the CA4 payload to cause MT disruption. The 

effect of free CA4 in DMSO on MT disruption in HUVECs has been shown to be 

concentration dependent, with MT disruption observed at a concentration of 12.5 nM 

at a 30 min exposure time (Kim, Peshkin & Mitchison, 2012).  

IF staining of β-tubulin after a 2 h exposure time showed untreated SVR cells with 

MT filaments. Treatment with 10 nM CA4 TA LONDs did not cause any apparent MT 

disruption as the MTs appeared similar to untreated cells (Figure 3.4 A and B). In 

contrast, a 20 nM concentration of CA4 TA LONDs showed the initiation of MT 

disruption (Figure 3.4 C). The image inset in Figure 3.4 C shows a magnified cell with 

shortening of the MT filaments at the distal ends at the cell periphery (white arrow). 

At 40 and 60 nM concentration of CA4 TA LONDs, MTs had lost their radial 

filamentous structure and were tangled around the nuclei presumably near 

centrosomes and indicative of MT disruption (shown in the magnified inset images in 

Figure 3.4 D and E). At 100 nM concentration the CA4 TA LONDs had caused 

complete MT depolymerisation and as a result tubulin had dispersed throughout the 

cytoplasm which was subsequently uniformly stained (Figure 3.4 F, magnified inset 

image).  

MT disruption caused by CA4 TA LONDs at different concentrations was confirmed 

by measuring MT lengths using Image J (Figure 3.5 A and B). A total of 250 MTs 

were measured in control untreated SVR cells and those treated with 10, 20 and 40 

nM of CA4 TA LONDs. A total of 232 MTs were measured in the 60 nM CA4 TA 

LONDs group. As a result of complete MT depolymerisation in SVR cells treated with 

100 nM CA4 TA LONDs (Figure 3.4 F), no MT filaments were measurable and 0 μm 

was used for graphical and statistical analyses. MT lengths in SVR cells treated with 

20, 40, 60 and 100 nM of CA4 TA LONDs were significantly reduced or completely 

abrogated in the 100 nM group than those of untreated SVR cells (p<0.0001, Mann-

Whitney U test, two-tailed) (Figure 3.5 A). Significant longer MT lengths were 

observed in the 10 nM CA4 TA LOND group compared to the untreated SVR cells 

(p=0.03 Mann-Whitney U test, two-tailed).  
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Figure 3.4 CA4 TA LONDs cause dose-dependent MT disruption in SVR 

endothelial cells.  

SVR cells cultured in µ-slides VI 0.4 (ibidi) were treated with escalating concentrations 

of CA4 TA LONDs (10-100 nM) for 2 h at 37°C. The cells were subsequently fixed, 

immunostained for β-tubulin using a mouse monoclonal anti-β-tubulin antibody and 

visualised using a biotinylated rabbit anti-mouse and FITC-labelled avidin. The slides 

were mounted with prolong Gold containing DAPI. (A) Untreated cells showing MT 

filaments. (B) 10 nM CA4 TA LONDs, did not show any MT disruption as image is 

similar to untreated cells. (C) 20 nM CA4 TA LONDs treatment showed the start of 

MT disruption with evidence of shortening at the distal ends of MTs at the cell 

periphery as a result of MT depolymerisation; the inset image is a magnification of a 

cell showing this pattern (white arrow). (D) 40 nM CA4 TA LONDs treatment showed 

tangled MTs, white arrows in the small inset image shows a magnification of this. (E) 

60 nM CA4 TA LONDs treatment also showed tangled MTs; small inset image of a 

magnified cell is shown with white arrows showing the tangled pattern. (F) 100 nM 

CA4 TA LONDs treatment resulted in a uniform fluorescence as a consequence of 

MT depolymerisation causing tubulin to disperse in the cytoplasm. The white open 

arrows in the small inset image shows cells with this pattern. Scale bars indicate 20 

µm. Prep. number 1 was used.  
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As no effect on morphology was apparent in SVR cells treated with 10 nM CA4 TA 

LONDs, it was concluded that these cells were similar to untreated cells. Therefore, 

the difference in MT length was due to a difference in cell population, for example the 

median values of MT lengths in untreated SVR cells observed in Figure 3.3 and 

Figure 3.5 A were 22 μm and 17 μm respectively whereas the median value of MT 

length in SVR cells treated with 10 nM CA4 TA LONDs was 19 μm (Figure 3.5 A) 

demonstrating that the median length of untreated SVR cells is within this range.   

Significant differences were also observed between all the different CA4 TA LONDs 

concentrations tested and are shown in Figure 3.5 A and tabulated in Figure 3.5 B. 

This indicated that as the concentration of CA4 TA LONDs increased so did the ability 

of the CA4 payload to cause tubulin inhibition, starting from the loss of the long 

filamentous structure at 20 nM to tangled MTs at 40 and 60 nM eventually leading to 

complete depolymerisation at 100 nM. Using Spearman’s correlation a significant 

negative correlation was observed between MT length and CA4 TA LOND 

concentration (r=-1, p=0.02) (Figure 3.5 C).  

MT disruption was also studied in SVR cells treated with escalating concentrations 

of free CA4 in DMSO. IF staining of β-tubulin after a 2 h exposure time showed MTs 

of untreated SVR cells with long filamentous MTs (Figure 3.6 A). A 10 nM 

concentration of CA4 in DMSO caused MTs to lose their radial filamentous structure 

and tangle around the nuclei (Figure 3.6 B). The inset image in Figure 3.6 B shows 

a magnified cell with this pattern (white arrows). MTs in SVR cells treated with 20, 

40, 60 and 100 nM of CA4 in DMSO had lost their filamentous structure and a uniform 

fluorescence was observed as a result of depolymerised MTs with tubulin dispersed 

in the cytoplasm (Figure 3.6 C-F, inset images of magnified cells, white open arrows). 

This effect was confirmed by measuring MT lengths where possible (Figure 3.7 A 

and B). A total of 250 MT lengths were measured in the untreated group and 100 MT 

lengths from the 10 nM free CA4 in DMSO group. MT lengths were significantly 

reduced or abrogated in SVR cells treated with 10, 20, 40, 60 and 100 nM CA4 in 

DMSO compared to untreated SVR cells (p<0.0001, Mann-Whitney U test, two-

tailed). Due to the absence of any measurable MTs in SVR cells treated with 20, 40, 

60 and 100 nM CA4 in DMSO, statistically significant differences were observed 

when compared with measurable MT lengths from SVR cells treated with 10 nM CA4 

in DMSO (p<0.0001, Mann-Whitney U test, two-tailed) (Figure 3.7 B). Using 

Spearman’s correlation a negative but statistically insignificant correlation was 

observed between MT length of SVR cells and CA4 in DMSO concentration (Figure 

3.7 C). 
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Figure 3.5 CA4 TA LONDs cause a dose-dependent change in MT lengths.  

(A) Fluorescent images were used to quantitate MT disruption caused by treatment 

with escalating concentrations of CA4 TA LONDs for 2 h at 37°C. The lengths of 250 

MTs were measured (10 MTs/cell in 5 cells per FOV, 5 FOV in total per condition) 

using Image J from untreated SVR cells and SVR cells treated with 10, 20 and 40 

nM of CA4 TA LONDs and a total of 232 MTs from SVR cells treated with 60 nM CA4 

TA LONDs. Treatment with 100 nM of CA4 TA LONDs resulted in depolymerisation 

of MTs with tubulin dispersed within the cytoplasm uniformly immunostained. 

Therefore, in this group no MTs were measured and 0 μm was used to plot the graph. 

Data represents the median value from the measured MTs (n=1 biological replicate) 

and the error bars represent the interquartile range. ****, p<0.0001, * p=0.03 

calculated by Mann-Whitney U test (two-tailed). (B) Tabulated format of statistical 

results from A. (C) The relationship between MT length and CA4 TA LOND 

concentration using Spearman’s correlation showed a significant negative correlation 

between the two variables (r=-1, *, p=0.02, two-tailed). Data shows the median value 

and error bars interquartile range.  
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Figure 3.6 Dose-response of free CA4 in SVR endothelial cells.  

SVR cells cultured in µ-slides VI 0.4 (ibidi) were treated with escalating concentrations 

of free CA4 in DMSO (10-100 nM) for 2 h at 37°C. The cells were subsequently fixed, 

immunostained with β-tubulin using a mouse monoclonal anti-β-tubulin antibody and 

visualised using a biotinylated rabbit anti-mouse and FITC-labelled avidin. The slides 

were mounted with prolong Gold containing DAPI. (A) Untreated cells with MT 

filaments. (B) 10 nM free CA4 in DMSO showed tangled MTs (white arrows in inset 

magnified image of a cell). (C-F) 20, 40, 60 and 100 nM free CA4 in DMSO resulted 

in a uniform fluorescence throughout the cytoplasm from tubulin that had dispersed 

as a result of MT depolymerisation (white open arrows in inset magnified images of 

cells). Scale bars indicate 20 μm.  
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Figure 3.7 Quantitative analysis of MT lengths following treatment with free 

CA4 in DMSO. 

Fluorescent images were used to quantitate MT disruption caused by treatment with 

escalating concentrations of CA4 in DMSO (10-100 nM) for 2 h 37°C. The lengths 

from 250 MTs (10 MTs/cell in 5 cells per FOV, 5 FOV in total per condition) were 

measured in the untreated control group while the lengths from 100 MTs in the 10 

nM treatment group were measured using Image J. Treatment with 20, 40, 60 and 

100 nM of free CA4 in DMSO resulted in depolymerised MTs with tubulin dispersed 

within the cytoplasm uniformly immunostained. Therefore, in this group no MTs were 

measured and 0 μm was used to plot the graph. Data represents the median value 

from the measured MTs (n=1 biological replicate) and the error bars represent the 

interquartile range. ****, p<0.0001 calculated by Mann-Whitney U test (two-tailed). 

(B) Tabulated format of statistical results from A. (C) The relationship between MT 

length and CA4 in DMSO concentration using Spearman’s correlation showed a 

negative but statistically insignificant correlation between the two variables (r=-0.9, 

p=0.1, two-tailed). Data shows the median value and error bars interquartile range. 
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3.5 CA4 TA LONDs cause endothelial cell morphological 

changes characteristic of mitotic catastrophe 

Short term exposure (2 h) of SVR cells to CA4 TA LONDs at concentrations higher 

than 100 nM resulted in tubulin dispersed in the cytoplasm adopting a uniform 

fluorescence immunostained pattern as a result of complete MT depolymerisation. 

The experiments focused on the continuous exposure (24 h) of SVR cells to CA4 TA 

LONDs, as the delivery of CA4 TA LONDs or thMBs in vivo would potentially lead to 

a prolonged exposure of the tumour cells to LONDs due to the EPR effect. A 

concentration of 0.5 μM was used in order to equate to the dose that would be 

theoretically delivered in vivo using thMBs with CA4 TA LONDs (prep. number 4, 

Table 3.1).   

IF staining of β-tubulin after a 24 h exposure time showed untreated SVR cells with 

MT filaments (Figure 3.8 A). Figure 3.8 B and C show SVR cells treated with 0.5 μM 

CA4 TA LONDs and 0.5 μM CA4 in DMSO respectively, some cells were enlarged 

(white arrows) and others were multinucleated with fragmented nuclei and 

micronuclei (white open arrows). These observations were consistent with previous 

reports with CA4P and HUVECs (Kanthou et al., 2004). 

3.6 Delivery of CA4 TA LONDs by ThMBs  

To increase the drug delivery capabilities and enable controlled and triggered US 

release of CA4 TA LONDs, on-chip single step production of thMBs with CA4 TA 

LONDs was performed (section 2.4 for details). ThMBs (see Figure 1.8) are defined 

as a targeted (e.g. to VEGFR2) MB with attached LONDs via NeutrAvidin-biotin 

interactions, in this case CA4 TA LONDs. Work conducted by Dr James McLaughlan 

and Dr Victoria Mico (School of Electronic and Electrical Engineering and School of 

Physics and Astronomy, University of Leeds), showed that thMBs with CA4 TA 

LONDs retained the US properties of MBs and therefore, could be used as 

theranostic agents for both delivery of hydrophobic drugs such as CA4 and imaging 

(Mico, 2017).   

Mice bearing SW480 human CRC xenografts were sorted according to tumour 

volume into two groups, one group received an i.v. injection through the tail vein of 4 

x 108 thMBs with CA4 TA LONDs at 4.9 mg/kg and the other group received an 

intraperitoneal (i.p.) injection of free CA4 in TA at the same dose due to the oily nature 

of the TA solution (Figure 3.9 A and B) on day 23 of tumour growth.  
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Figure 3.8 Continuous exposure of SVR cells to CA4 TA LONDs cause 

endothelial cell morphology changes characteristic of mitotic catastrophe. 

SVR cells cultured in 6-well plates were treated with 0.5 µM CA4 TA LONDs or 0.5 

µM free CA4 in DMSO for 24 h at 37°C, untreated cells were used as control. 

Following 24 h treatment, cells were fixed, immunostained with β-tubulin using a 

mouse monoclonal anti-β-tubulin antibody and visualised using a biotinylated rabbit 

anti-mouse and FITC-labelled avidin. The slides were mounted with prolong Gold 

containing DAPI. (A) MTs and nuclei of untreated control cells at 24 h. (B) 24 h post-

treatment with 0.5 μM of CA4 TA LONDs resulted in MT disruption evident by 

depolymerised MTs with tubulin dispersed and uniformly fluorescent in the cytoplasm 

while some remaining MTs were tangled around the nuclei. Additionally the nuclei 

were enlarged (white arrows) and had fragmented into multiple and micro- nuclei per 

cell (open white arrows). (C) 24 h post-treatment with 0.5 μM of CA4 free in DMSO 

resulted in MT disruption. The nuclei were also enlarged (white arrows) and cells 

were present with multi- and micro- nuclei (open white arrows). Inset images show 

magnified cells in each panel. Scale bars indicate 20 μm. Prep. number 4 was used 

for B.  
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Figure 3.9 US triggered delivery of thMBs with CA4 TA LONDs and free CA4 in 

TA. 

(A) SW480 tumour xenografts were established in BALB/c nude male mice by s.c. 

injection of 5 x 106 cells on day 0. On day 18 of tumour growth, mice were sorted 

according to tumour volume into two experimental cohorts: thMBs with CA4 TA 

LONDs plus an US trigger (+ T) and a free CA4 in TA without an US trigger (- T) 

group . Both groups had n=12 mice, these were further subdivided into n=3 per time 

point post-injection 1, 3, 24 and 72 h. Mice in the thMBs with CA4 TA LONDs plus + 

T group received an i.v. injection through the tail vein of 4 x 108 thMBs with CA4 TA 

LONDs at a 4.9 mg/kg CA4 dose. Mice in the free CA4 in TA group received an i.p. 

injection of 4.9 mg/kg CA4 pre-dissolved in TA. The injections were carried out on 

day 23 of tumour growth. (B) Tumour volumes measured by HFUS on day 18 used 

for randomisation. Straight lines (⎯) represent the median value. No statistically 

significant differences were observed by Mann-Whitney U test, two-tailed.  
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The injections were performed with the help of Dr Gemma Marston (School of 

Medicine, University of Leeds). A low frequency, high amplitude US pulse was 

applied at the tumour site using the specifically designed UARP (methods section 

2.5.5) four minutes post-injection, to burst the thMBs. The time prior to the US trigger 

(+ T) allows for binding and retention of the thMBs to their target (VEGFR2) and was 

previously optimised by Dr Nicola Ingram (School of Medicine, University of Leeds). 

Previous contrast agents targeted to VEGFR2 used for molecular imaging of tumour 

vasculature in a breast cancer xenograft also showed optimal binding and retention 

of the contrast agents after a four minute waiting time (Lyshchik et al., 2007). The 

concentration, diameter and CA4 loading of the thMBs measured by LC-MS/MS was 

2 x 109 MBs/mL, 2.5 ± 1.2 µm and 488 µg/mL respectively (Appendix A, Figure A.1) 

(method development described below). The administration was well tolerated with 

no obvious toxic reaction observed. 

3.6.1 ThMBs with CA4 TA LONDs potentially cause haemorrhage 

in SW480 human CRC xenografts  

Previous in vivo data reported for CA4 and CA4P indicated that intratumoural delivery 

resulted in extensive haemorrhagic necrosis in the central regions of the tumour with 

only a small viable rim at the periphery (Dark et al., 1997; Grosios et al., 1999). These 

observations occurred within the first few hours of treatment and therefore 

haemorrhage in tumour sections from CA4 treated animals was used as an indicator 

of CA4 intratumoural delivery.  

Following 1, 3, 24 and 72 h post-injection with thMBs-CA4 TA LONDs + T or free 

CA4 in TA – T, evidence of haemorrhage was observed, usually associated with 

stromal areas of the tumour sections (Figure 3.10 A-H). However, haemorrhage was 

not associated with necrosis (Figure 3.10 A-H). Tumour vasculature was 

subsequently assessed on adjacent sections by immunostaining of CD31, to assess 

any potential damage caused by CA4 and correlation with areas were haemorrhage 

was observed (Figure 3.11). The results showed no differences in the number of 

tumour blood vessels at each of the time points assessed 1, 3, 24 and 72 h post-

injection with thMBs-CA4 TA LONDs and free CA4 in TA (Figure 3.11 A-H). To 

assess any potential differences between the two groups at the various time points, 

MVD (number of CD31+ vessels per 0.79 mm2 of tumour) was determined (Figure 

3.12). No statistically significant differences were observed between the groups by a 

Mann-Whitney U test (two-tailed).    
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Figure 3.12  MVD post-injection with thMBs-CA4 TA LONDs or free CA4 in TA. 

CD31 immunostained tumour images (n=3 hot spots) were used to determine the 

MVD 1, 3, 24 and 72 h post-injection with either ThMBs with CA4 TA LONDs or Free 

CA4 in TA. Straight lines (⎯) represent the median value. No statistically significant 

differences were observed by Mann-Whitney U test (two-tailed).  
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3.6.2 Development of a LC-MS/MS method for quantification of 

CA4 and its main metabolite CA4G in tissues   

LC-MS/MS represents the preferred analytical instrumental method for quantitative 

analysis of drugs due to its specificity and sensitivity (Rafiei, Michel & Haddadi, 2015). 

Specific LC-MS/MS methods have been developed for the quantification of drugs 

such as Docetaxel in NPs (Rafiei, Michel & Haddadi, 2015). The same LC-MS/MS 

methods can also be used to analyse tissue samples for PK and biodistribution 

studies, as performed for Docetaxel loaded NPs (Rafiei & Haddadi, 2017).  

The aim of the first in vivo experiment with thMBs and CA4 TA LONDs was to obtain 

evidence of intratumoural delivery of CA4. In parallel, PK and in vivo biodistribution 

of CA4 LONDs was also investigated. To do this, a specific LC-MS/MS method was 

developed at the Institute of Cancer Therapeutics (ICT), University of Bradford with 

the help of Ms Antonia Wierzbicki and supervised by Prof. Paul Loadman. The same 

method could also be used for the measurement of CA4 in LONDs.  

3.6.2.1 Method optimisation 

Standards of CA4 (Figure 1.2 A), IS colchicine (Figure 3.14 A) and CA4G (Figure 

3.15 A) were scanned and parent single ion recording (SIR) channels were 

established (Figure 3.13 A, Figure 3.14 B and Figure 3.15 B for CA4, colchicine and 

CA4G respectively). The precursor ions of CA4 m/z 317.5 (Figure 3.13 B), colchicine 

m/z 400.51 (Figure 3.14 C) and CA4G m/z 493.40 (Figure 3.15 C) passed through 

the first quadrupole into the collision cell and the collision energy was optimised to 

obtain the product ions with the highest signal. After fragmentation, the product ions 

for the three compounds were monitored in the third quadrupole at m/z 270.21, 

286.12 and 317.23 for CA4 (Figure 3.13 C), m/z 310.05, 294.98, 267.22 for colchicine 

(Figure 3.14 D) and m/z 302.20 and 317.31 for CA4G (Figure 3.15 D). Full MRM 

settings including collision energy details are shown in Table 2.1.  

CA4 was also monitored using the photodiode array capability to monitor cis-and 

trans conversion (Figure 3.13 D). The active cis-CA4 form was monitored at 290 nm 

(Figure 3.13 E) and the inactive trans-CA4 form at 330 nm (Figure 3.13 F). CA4, 

colchicine and CA4G had retention times of 11.07, 6.55 and 8.55 respectively, the 

total run time was 16 min. 
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Figure 3.13 LC-MS/MS method development for CA4 detection. 

(A) SIR scan for CA4 with retention time at 11.0 min. Total run time was 16 min. (B) 

Precursor ion for CA4 m/z 317.5 (molecular weight (MW) 316.35). (C) Product ions 

of CA4 m/z 286.12, 317.23, 270.21 after fragmentation. (D) Chromatogram with 

trans-CA4 (retention time 10.46 min) and cis-CA4 (retention time 11.12 min). (E) 

Photodiode array absorbance spectra monitoring for cis-CA4 at 290 nm. (F) 

Photodiode array  absorbance monitoring for trans-CA4 at 320 nm. a.u.: arbitrary 

units.  
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Figure 3.14  LC-MS/MS  method development for colchicine detection. 

(A) Chemical structure of colchicine. (B) SIR scan for colchicine with retention time 

6.55 min. Total run time was 16 min. (C) Precursor ion for colchicine m/z 400.51 

(molecular weight (MW) 399.4). (D) Product ions for colchicine m/z 267.22, 294.98 

and 310.05 after fragmentation.  
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Figure 3.15 LC-MS/MS development for CA4G detection. 

(A) Chemical structure of CA4G. (B) SIR scan for CA4G with retention time 8.53 min. 

(C) Precursor ion for CA4G m/z 493.40. (D) Product ions for CA4G m/z 302.20 and 

317.31 after fragmentation.  
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3.6.2.2 Method validation 

3.6.2.3 Calibration curve, limit of detection and carry over 

A calibration curve of  CA4 was prepared with the concentration range of 1-0.06 

µg/mL (Figure 3.16 A). The method described showed a linear response with a 

coefficient of determination (r2) value of 0.9996 (Figure 3.16 A). It should be noted 

that due to the increase in run time (25 min) the retention time of CA4 was 14.8 min. 

The LOD and LOQ were determined to be 10 ng/mL (Figure 3.16 B). Carry-over was 

not observed following injection of 1 μg/mL for CA4.   

3.6.2.4 Reproducibility, stability and extraction efficiencies  

Part of the method of extraction of CA4 from samples was drying (evaporating) at 

37°C, therefore the reproducibility of the calibration curves for CA4 were assessed in 

MeOH before and after drying by comparing the slope of the curves. The results in 

Figure 3.17 A and B showed no significant difference in the slope. The freeze-thaw 

stability of CA4 was investigated following three freeze-thaw cycles. CA4 at 1 μg/mL 

was stable following three freeze-thaw cycles (0.98 μg/mL measured concentration) 

(Figure 3.17 C). The % extraction efficiency for CA4 was calculated from tumour, 

liver, spleen, kidney, colon and plasma spiked with 1 μg/mL of CA4 compared with 

those spiked in methanol in the same way (Figure 3.17 D). The % extraction 

efficiency was expressed as the ratio of the PA of CA4 spiked into the relevant tissue 

by the PA of CA4 spiked in MeOH. All % extraction efficiencies for CA4 in the different 

tissues were within the FDA acceptable range of +/- 15% (U.S. Department of Health 

and Human Services Food and Drug Administration, 2013) (Figure 3.17 D).  

3.6.3 In vivo biodistribution of CA4  

The validated LC-MS/MS method above was used to quantitate the amount of CA4 

in tumours and tissues from mice administered with 4.9 mg/kg CA4 either in an i.v. 

injection of thMBs-CA4 TA LONDs or as free drug in TA (i.p.). Initial testing of plasma, 

tumour and liver tissues 1 and 3 h post-injection showed no detectable levels of CA4 

or CA4G. An example chromatogram of a liver tissue treated with free CA4 in TA 1 h 

post-injection is shown in Figure 3.18. Spiked IS was present at the expected 

retention time of 8.05 min for the 25 min run (Figure 3.18 A) but not CA4 (Figure 3.18 

B) or CA4G. The presence of IS in the liver tissue excluded any instrument or method 

issues and suggested that CA4 and CA4G were below the LOD. 

 



102  

 

Figure 3.16 CA4 calibration curve and limit of detection. 

(A) CA4 calibration curve. (B) LOD and LOQ at 10 ng/mL (Retention time of CA4 14.8 

min due to longer run time of 25 min).  
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A

Linear regression equation (y=ax + b) (Best-fit value ± SE)

Slope (a) Y-intercept (b) Correlation (r2)

MeOH (n=3) 32947 ± 409.9 41.1 ± 211.6 0.9995

MeOH – dried at 37ºC and 
re-suspendend in MeOH

(n=3)

30598 ± 938.3 -682.2 ± 484.3 0.9972

B
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Concentration of CA4 µg/mL
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A
) 

no drying

dried

Y = 32947*X + 41.1
Y = 30598*X - 682.2

Freeze/thaw Stability

CA4
Peak area 

(PA)

Measured
concentration

μg/mL

Standard 41185 1

F/T 40246 0.98

Mean 40715.5 0.99

SD 664 0.01

C

D
Extraction efficiency

Sample CA4 
(PA)a

MeOHb Extraction 
(%)

Tumour 30043 30368 98.9

Liver 32438 30294 107.1

Spleen 29029 28805 100.8

Kidney 30928 28818 107.3

Colon 31800 30091 105.7

Plasma 29772 29376 101.3
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Figure 3.17 Reproducibility, stability and extraction efficiencies for CA4 

detection.   

(A-B) Reproducibility of CA4 calibration curves in MeOH before and after drying at 

37°C by LC-MS/MS. The slopes of n=3 calibration curves was calculated using linear 

regression equation. No statistically significant  differences between the slopes was 

observed (p=0.062), a single pooled slope was determined 31772. The intercepts 

were significantly different (p=0.008) which indicated that the lines were not identical 

but parallel. (C)�Stability of CA4 1μg/mL standard following three freeze thaw (F/T) 

cycles. (D) Tissue homogenates (tumour, liver, spleen, kidney, colon and plasma) 

were spiked with 1 μg/mL of CA4 and compared with 100% methanol spiked in the 

same way. % extraction was calculated (a/b*100). 
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Figure 3.18 Chromatogram of liver tissue post-treatment with free CA4 in TA. 

(A) Example liver sample chromatogram following 1 h post-injection with free CA4 in 

TA. IS colchicine detection window showed a peak for colchicine at 8.05 min. (B) No 

detectable peak for CA4 at the CA4 detection window. Expected retention time was 

at 14.8 min.  
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3.7 Discussion 

3.7.1 Development of LONDs for CA4 delivery  

In the present work LONDs were evaluated as a novel hydrophobic DDS. Production 

of TA LONDs by high pressure homogenisation resulted in particles with sizes of 

approximately 150 to 400 nm and concentrations of 109 particles/mL. As with any 

novel DDS a crucial aspect to determine is the amount of drug encapsulated. This 

needs to be determined via an accurate, sensitive and reproducible analytical method 

(Rafiei, Michel & Haddadi, 2015). Some studies measure the amount of drug 

encapsulated by UV-VIS spectroscopy (Dhankar et al., 2011; Poojari, Srivastava & 

Panda, 2015), others utilise HPLC methods (Danhier et al., 2009; Torne et al., 2010; 

Eloy et al., 2017). The concentration of total CA4 in the TA LOND samples in this 

project was initially measured by UV-VIS spectroscopy following purification as this 

was used to remove excess lipids and any unencapsulated drug.  

The observed variability between the different preparations of LONDs in terms of  

%EE of CA4 was potentially caused by the water solubility of triacetin (70 g/L), 

resulting in the possible escape of the oil plus CA4 into the aqueous phase before or 

during dialysis and cross-filtration. Prep. number 6 (Table 3.1) in particular had a very 

high %EE compared to previous preparations. As double the concentration of CA4 

was used, this potentially lead to the formation of unencapsulated drug agglomerates. 

These agglomerates would have been unable to pass through the dialysis membrane 

and therefore, remained in the TA LOND solution resulting in the high %EE (Personal 

communications with Dr Victoria Mico, School of Physics and Astronomy, University 

of Leeds). A white precipitate was observed in the sample after a few hours that was 

initially thought as the lipids but further investigations showed that this contained 

approximately 80% of the total CA4 which suggested poor encapsulation and/or 

retention (Personal communications with Dr Victoria Mico, School of Physics and 

Astronomy, University of Leeds).  

CA4 has been incorporated in a number of DDS such as nanocells, liposomes, 

nanocapsules, dedrimers and micelles (Sengupta et al., 2005; Nallamothu et al., 

2006a; Wang & Ho, 2010; Zhang et al., 2010, 2011; Dai et al., 2012; Yang et al., 

2012; Su et al., 2014). CA4 in most of these DDS was incorporated into the lipid shell 

with %EE reported between 70-80% (Zhang et al., 2010; Dai et al., 2012; Su et al., 

2014). The mean size of CA4 TA LONDs was 260 nm with specifically prep. 6 being 

394 nm, these were bigger than previously reported CA4 NPs which had size ranges 

between 20-200 nm measured by DLS (Zhang et al., 2010; Yang et al., 2012; Su et 
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al., 2014). The size differences between CA4 TA LONDs and other CA4 nanovehicles 

are due to the use of different surfactants, core material and production methods. NP 

size greatly influences their uptake, biodistribution and clearance and an ideal NP 

size for cancer therapy is reported to be between 70 to 200 nm (Gaumet et al., 2008). 

Although, CA4 TA LONDs could enter the tumour endothelium as the fenestrations 

present in tumour vasculature can be up to 2000 nm, the large diameter of these 

LONDs could potentially lead to them being trapped in organs such as the spleen 

and lungs (Gaumet et al., 2008).  

3.7.2 In vitro evaluation of CA4 delivery by TA LONDs 

The next stage following TA LOND production and characterisation was in vitro 

evaluation of CA4 delivery to cells by TA LONDs. It should be noted that the precise 

mechanisms of uptake and/or potential release of LONDs into cells were not studied 

at this stage. Therefore, disruption of MTs by the CA4 payload was used as an 

indicator for drug release and/or uptake.  

In vitro work using CA4P has shown that MT disruption occurs within the first 30 min 

of exposure of HUVECs to CA4P (Kanthou & Tozer, 2002). A 2 h incubation period 

was used to allow for any potential delayed responses by the TA LONDs, which 

resulted in MT disruption characteristic of depolymerised MTs uniformly staining the 

cytoplasm (Figure 3.2). Encapsulating CA4 in TA LONDs did not appear to enhance 

the MT disruption caused by CA4 when compared to a free drug control (CA4 in 

DMSO) at the same concentration. Poojari et al., (2005) have reported that 

encapsulating CA4P in PEGylated polymeric NPs enhanced the MT disruption 

caused by CA4P when compared to free CA4P (Poojari, Srivastava & Panda, 2015). 

Unlike in this study, they treated human liver cells continuously for 24 h with 15.2 nM 

of CA4P polymeric NPs.  

Initial work showed that CA4 TA LONDs caused the same effects as free CA4, 

however, further investigations using different concentrations of CA4 TA LONDs 

revealed some differences. Free CA4 in DMSO caused depolymerised MTs to 

uniformly immunostain the cytoplasm at concentrations ≥ 20 nM consistent with 

previous reports (Kim, Peshkin & Mitchison, 2012) while CA4 TA LONDs caused this 

at concentrations ≥ 100 nM. These differences indicated the potential that CA4 was 

not being released by the TA LONDs sufficiently and this was only evident at lower 

concentrations.   
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The ability of CA4 TA LONDs to cause the characteristics of mitotic catastrophe 

following a continuous exposure for 24 h was studied. The results confirmed that CA4 

TA LONDs like free CA4 in DMSO lead to cells with multiple nuclei, micronuclei and 

enlarged nuclei as previously reported for CA4P (Nabha et al., 2002; Kanthou et al., 

2004). The in vitro data demonstrated that encapsulating CA4 in TA LONDs altered 

the ability of CA4 to cause MT disruption at lower concentrations potentially due to 

poor release when compared to free drug, while following a continuous exposure 

CA4 TA LONDs caused the characteristics of mitotic catastrophe.  

3.7.3 On-chip single step production of thMBs with CA4-TA 

LONDs and their in vivo evaluation  

CA4 TA LONDs were attached to thMBs to increase drug delivery and to enable the 

controlled and targeted release of CA4 only to areas exposed to US such as the 

tumour region. The US MI was 0.2, which is considered safe (Chowdhury, Lee & 

Willmann, 2017). The targeting ligand that was chosen and incorporated in the 

construct was VEGFR2 which is overexpressed during the process of angiogenesis. 

A VEGFR2 contrast agent (BR55) has been used successfully for the molecular 

imaging of tumour angiogenesis (Pochon et al., 2010). SW480 human CRC cells 

were used to produce xenografts, previous reports have shown that SW480 

xenografts and human clinical samples express 60% VEGFR2 positive blood vessels  

(Patten et al., 2010).  

SW480 tumour bearing mice were therefore administered with thMBs-CA4 TA 

LONDs and free CA4 in TA to investigate differences in in vivo biodistribution at early 

and late time points. The dose used was based on the maximum number of CA4 TA 

LONDs that could fit around a MB and was also dependent on the initial 

encapsulation of CA4 in the LONDs. Previous in vivo work with CA4 and CA4P have 

used doses 20 to 40 times higher (Grosios et al., 1999).  

As a secondary aim to in vivo biodistribution, tumour histology was used to 

investigate any potential enhancement of effect by the CA4 payload when delivered 

by thMBs in contrast, to free drug. Histological assessment of treated tumours 

showed evidence of haemorrhage which was not associated with necrosis and no 

differences were observed between the groups. 24 h post CA4P administration of 20 

times the dose used in this study, resulted in severe central necrosis with only a small 

viable rim of tumour cells (Dark et al., 1997; Griggs et al., 2001). Similar data reported 

that following i.p. administration of CA4 (dissolved in 10% DMSO/oil combination at 

150 mg/kg), haemorrhagic necrosis was apparent at 2 h post-treatment with 
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extensive necrosis by 24 h (Grosios et al., 1999). Central haemorrhagic necrosis with 

only a viable rim of tumour cells, 24 h post-treatment with CA4P were also reported 

for SW1222 tumour xenografts (El-Emir et al., 2005). These effects were due to the 

almost complete reduction in vascular perfusion associated with severe 

haemorrhage induced by CA4P 1 h post-injection (Chaplin, Pettit & Hill, 1996; Dark 

et al., 1997; Tozer, Kanthou & Baguley, 2005). As a consequence of this, the central 

regions of tumours were deprived of oxygen and nutrients resulting in cell death while 

cells in the tumour periphery acquire a nutritive supply from nearby normal blood 

vessels (Chaplin & Hill, 2002). 

Haemorrhage and the anti-vasculature effects of CA4P are often associated with a 

reduction in blood vessel number. In this study, no reduction in the number of tumour 

associated blood vessels was observed at any time point between the two groups 

tested. Previous work with CA4P, using approximately 20 and 160 times higher the 

dose showed a significant reduction in the number of blood vessels, 24 and 48 h 

post-treatment (Nabha et al., 2001). However, they did report that after 48 h an 

increase in blood vessels number consistent with tumour recovery reports following 

treatment with CA4P was observed (Nabha et al., 2001). Potentially the dose used 

in this study was too low to cause any reduction in MVD.   

CA4P following i.v. administration was distributed throughout the body (heart, 

intestine, lungs, liver and spleen) as studied in rats (Xu et al., 2012). Excretion of CA4 

is mainly through urine as CA4G (Rustin et al., 2003). The primary aim of this study 

was to investigate whether delivering thMBs with CA4 TA LONDs improved the 

biodistribution of CA4 and increased intratumoural delivery compared to free CA4 in 

TA. Variations in the PK of the two delivered agents was expected due to the different 

administration routes i.v. vs i.p.. I.v. allows for 100% of the drug to be in the 

bloodstream while drugs administered i.p. could potentially undergo hepatic 

metabolism before reaching the bloodstream (Turner et al., 2011).  

In order to undertake the PK study, an LC-MS/MS method was developed specifically 

for the detection of CA4 and its main metabolite CA4G. A gradient method in positive 

ionisation mode with a total run time of 16 min was initially developed and this was 

further optimised to achieve better separation to a total run time of 25 min. The LOD 

and LOQ was 10 ng/mL compared to a previously reported LOD for CA4 using LC-

MS/MS which was 5 ng/mL (Wang et al., 2009). This difference may be explained by 

different instruments used, mobile phases or method (ionisation mode, run time).   
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The developed and validated method was applied to the study where, surprisingly no 

CA4 or CA4G was detected in plasma, tumour or liver tissues tested at the very early 

time points. This could be explained by rapid clearance < 1 h which would be 

plausible for free CA4 as studies in mice have shown a very rapid half-life in plasma  

approximately 15 to 35 min (Tozer et al., 1999; Kirwan et al., 2004).  Due to the low 

dose administered (4.9 mg/kg), another plausible explanation is that any CA4 or 

CA4G present was below the LOD. This further suggested that CA4 was potentially 

free and not encapsulated in TA LONDs, leading to its rapid metabolism and 

elimination.  

3.7.4 Study limitations 

The semi-quantitative analysis of MT lengths had some limitations, this technique 

measured MTs in five cells per FOV (five in total) following one biological replicate 

as the effect of CA4 TA LONDs and free CA4 on the MTs was predicted and 

expected. The process of measuring individual MTs using Image J was time 

consuming, in the future other more efficient and less time consuming methods for 

measuring the effects of CA4 in LONDs or free on MTs would be preferred. Methods 

utilising high-content imaging systems such as the Operetta fluorescent microscope 

could be used to measure changes in cellular morphology following MT 

depolymerisation (Martin et al., 2014).  

The lack of a free-drug control hindered the study as it was difficult to draw any 

conclusions seen in the histology of tumours. The two treatment groups had no 

histological differences and the lack of a control resulted in the lack of evidence to 

show that the effects caused were due to the treatment. However, the primary aim of 

the present study was to investigate differences in drug biodistribution and histology 

was a secondary aim.  

The method for assessing MVD using “hot spots” had some limitations as the areas 

within the tumour stroma were in most cases the ones with the greatest expression 

of CD31 positive vessels and therefore scored. To improve the quantification, a 

specific macro in Image J in the future could be designed to assess MVD in the whole 

tumour section or to delineate and exclude areas of the stroma in order to assess 

MVD only in tumour cells.   

3.7.5 Conclusions  

Although TA LONDs encapsulating CA4 were successfully prepared, the in vitro data 

showed that potentially CA4 was not fully released or taken up into the SVR cells, in 
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contrast the in vivo data pointed towards CA4 particularly in prep. number 6 leaking 

from the LONDs or even potentially being free in the LOND solution due to the 

formation of drug agglomerates. In vitro assays utilising dialysis have been used to 

quickly study drug leakage from liposomes and micelles (Nallamothu et al., 2006a; 

Wang et al., 2010). Briefly, this is performed by placing a dialysis cassette with an 

aliquot of liposome or NPs of interest and further placing this in a beaker containing 

release medium (reverse osmosis water or PBS) and rotating the cassette 

(Nallamothu et al., 2006a). At different time points sample is taken from the release 

medium and replaced to maintain equal volume, the sample is then analysed by 

HPLC or any analytical method used to quantify drug (Nallamothu et al., 2006a).  

Dr Victoria Mico (School of Physics and Astronomy, University of Leeds), later 

studied leakage of CA4 from LONDs in particular prep. number 5 (Table 3.1) using 

the dialysis method, her results showed that almost 100% of CA4 had leaked out 

from the LONDs (Mico, 2017). Further analysis by Dr Victoria Mico (School of Physics 

and Astronomy, University of Leeds) into the single step production method for thMBs 

with CA4 TA LONDs showed that due to the high forces required for MB production 

this resulted in destabilisation of the LOND structure (Mico, 2017). In light of these 

limitations both the LOND structure and the production of thMBs with LONDs were 

refined.  
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4.1 Introduction 

The production of TA LONDs demonstrated that the novel LOND structure was 

capable of delivering a drug, in this case CA4, in vitro. However, stability and solubility 

issues regarding the structure and the TA oil used potentially caused the rapid 

disassembly of the particle and subsequent release of CA4 into the solution. 

Therefore, CA4 did not benefit by encapsulation in TA LONDs. The aim next was to 

firstly refine the LOND structure by substituting the TA oil core to a less water soluble 

oil, TPP and to increase the stability and rigidity of the shell. CA4 TPP LONDs were 

produced and following this the aim was to evaluate CA4 release and/or uptake from 

TPP LONDs in vitro.  

4.2 CA4 TPP LONDs: Physical and chemical 

characterisation  

TPP LONDs with and without CA4 were kindly produced and characterised by Dr 

Victoria Mico (School of Physics and Astronomy, University of Leeds). CA4 was 

soluble in TPP, which is structurally similar to TA however is less water soluble 0.003 

g/L at 37°C and has a logP value of 1.7 (Figure 4.1) (National Center for 

Biotechnology Information, 2005). TPP is used as a food flavouring agent (National 

Center for Biotechnology Information, 2005). The LONDs produced with TPP were 

stabilised with DSPC, cholesterol, DSPE-BPEG2000  in a 75:20:5 molar ratio % and 

0.1 mol% Attto590-DOPE was added for fluorescence imaging when required. This 

monolayer shell composition has been used previously to stabilise nanoemulsions 

(Hak et al., 2012, 2015). POPC used previously in TA LONDs was substituted to 

DSPC. DSPC has a higher transition temperature 55°C than POPC which is -2°C 

(Avanti Polar Lipids Inc., 2016). The transition temperature is the temperature at 

which phospholipids transit from a gel to a liquid phase (Li et al., 2014). The higher 

transition temperature of DSPC, means that at room temperature it is in a gel phase 

and as a result diffuses slower into the LOND shell subsequently this increases the 

rigidity of the shell and therefore reduces the leakage of TPP (Li et al., 2014; Mico, 

2017). In addition cholesterol in the shell reduces the permeability of LONDs and 

improves their stability as it induces a dense packing of the phospholipids by reducing 

the area per phospholipid (Bozzuto & Molinari, 2015). Cholesterol induces local 

ordering of the phospholipid acyl tails, these then are more extended causing the 

membrane to condense laterally and thicken to fit the extended tails (Olsen et al., 

2013).  
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Figure 4.1 Chemical and physical properties of tripropionin.  

(A) Chemical structure of TPP. (B) Chemical and physical properties of TPP. Details 

taken from National Center for Biotechnology Information, 2005.  
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A total of four prep. of TPP LONDs were produced using high pressure 

homogenisation, three encapsulating CA4 (prep. numbers 7, 8 and 10) and one 

without CA4 (prep. number 9). These were characterised in terms of size, number/mL 

and %EE for CA4 (Table 4.1). Using the previously developed LC-MS/MS method 

(section 3.6.2) the concentration of CA4 in the LOND solution was measured in prep. 

numbers 7, 8 and 10 and compared to UV-VIS spectroscopy. The PDI was lower 

than 0.2 (Mico, 2017).  The mean size of LONDs was 96 ± 10 nm by DLS and 89 ± 

11 by NanoSight with a mean concentration of 1.5 x 1014 ± 4.25 x 1013 per mL 

measured by NanoSight. Purification by filtering through a 0.22 μm filter was difficult 

with TPP LONDs due to the increased rigidity of the shell (Dr Victoria Mico, School 

of Physics and Astronomy, University of Leeds, personal communication) however, 

cross-filtration was performed for prep. number 7 and dialysis was performed for 

prep. number 10. To ensure sterility of TPP LONDs the samples were incubated with 

culture media to check for the presence of contaminants such as bacteria. If bacteria 

were present the LOND sample was discarded and not used for any further analyses, 

the LONDs presented in this study were all free from contaminants. The total 

concentration of CA4 in the LOND solution measured by UV-VIS spectroscopy was 

733 μg/mL, 1270 μg/mL and 1700 μg/mL for prep. numbers 7, 8 and 10 respectively 

by LC-MS/MS the concentration of CA4 was 720 μg/mL, 1300 μg/mL and 935 μg/mL 

for prep. numbers 7, 8 and 10 respectively (Table 4.1). The calibration curves used 

to extrapolate the concentration of CA4 in TPP LONDs by LC-MS/MS in prep. 

numbers 7, 8 and 10 are shown in Appendix B, Figure B.1. It should be noted that 

the concentration of CA4 measured by LC-MS/MS was used for any drug related 

calculations. 

The difference in CA4 concentration measured by UV-VIS spectroscopy and LC-

MS/MS in prep. number 10 was assumed to be a loss through dialysis. The %EE of 

CA4 for prep. numbers 7, 8 and 10 was 41%, 74% and 53% respectively (Table 4.1). 

The stability of CA4 TPP LONDs was assessed by measuring size changes over 

time. It was observed that the LONDs were stable over six weeks when stored at 4°C 

(Mico et al., 2017). CA4 TPP LONDs were incubated at 37°C for 2 h and no significant 

size changes were observed indicating the stability of these at physiological 

temperatures (Mico et al., 2017).  This is particularly important in vivo, as it indicates 

that CA4 TPP LONDs will have sufficient time to travel to the target site without 

destabilisation and premature release of CA4 (Mico et al., 2017).  
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4.3 CA4 TPP LONDs disrupt endothelial and CRC cell MTs in 
vitro 

CA4 TPP LONDs were assessed for the ability of the CA4 payload to cause MT 

disruption as an indicator of  drug release and/or uptake. This was performed in two 

endothelial cell lines SVR and EA.hy926 and in SW480 human CRC cells. SW480 

cells were used to assess the efficacy of CA4 TPP LONDs to cause MT disruption in 

a cancer cell line, as it has been observed that some cancer cells are more sensitive 

to CA4 treatment than endothelial cells (Ahmed et al., 2003). All cell lines were 

treated for 2 h to allow potential slow release and/or uptake of CA4 TPP LONDs.  

IF staining of β-tubulin in untreated SVR, EA.hy926 and SW480 cells Figure 4.2 A, 

Figure 4.3 A and Figure 4.4 A respectively showed filamentous MTs spreading 

throughout the cytoplasm. In contrast, the results shown in Figure 4.2 B, Figure 4.3 

B and Figure 4.4 B for SVR, EA.hy926 and SW480 cells respectively confirmed MT 

disruption following treatment with 10 μM of CA4 TPP LONDs. MT disruption was 

characteristic of a uniformly stained cytoplasm from tubulin that had dispersed as a 

result of MT depolymerisation. 10 μM CA4 dissolved in DMSO or TPP was used as 

a free drug control, and resulted in MT disruption in all three cell lines tested, 

characterised by the same uniformly stained pattern observed with 10 μM CA4 TPP 

LONDs (Figure 4.2 C & D, Figure 4.3 C & D and Figure 4.4 C & D for SVR, EA.hy926 

and SW480 respectively).  

The observed β-tubulin staining pattern in Figure 4.3 B of tubulin dispersed 

throughout the cytoplasm as a result of MT depolymerisation in EA.hy926 cells 

however had a “star-like” pattern at the cell periphery. Touil et al., (2009) observed a 

“star-like” pattern when EA.hy926 were treated with an inhibitor of actin 

polymerisation (Touil et al., 2009). A similar pattern referred to as bleb or blebbing 

was reported for actin cell surface protrusions observed in endothelial cells treated 

with CA4P (Tozer et al., 2002). This pattern was also evident in SW480 cells (Figure 

4.4 B and C).  

TPP alone did not cause any MT disruption in any of the three cell lines tested and 

showed the normal pattern of MTs filaments spreading throughout the cytoplasm 

(Figure 4.2 E, Figure 4.3 E and Figure 4.4 E, SVR, EA.hy926 and SW480 

respectively). The no primary antibody controls had minimal background 

fluorescence in all three cell lines, which validated the specificity of the β-tubulin 
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primary antibody (Figure 4.2 F, Figure 4.3 F and Figure 4.4 F for SVR, EA.hy926 and 

SW480 respectively). 

CA4 TPP LONDs caused MT disruption within the 2 h treatment time frame used. 

However, previous reports have shown that the effect of CA4P on MTs occurs within 

30 min of drug exposure (Kanthou & Tozer, 2002). Therefore, the next stage of the 

CA4 TPP LOND in vitro evaluation process was to assess the time taken for CA4 

TPP LONDs to cause MT disruption.  

IF staining of  β-tubulin after 30 min exposure of SVR cells to 10 μM CA4 TPP LONDs 

caused MT disruption with depolymerised MTs staining the cytoplasm in a perforated 

pattern (Figure 4.5 B, white open arrows). Free CA4 in TPP at 10 μM caused the 

same perforated pattern in SVR cells with some residual MTs still present following 

the 30 min exposure (Figure 4.5 C, white arrows). Subsequent experiments with 

different CA4 TPP LONDs prep. numbers 8 and 10 showed that these retained the 

ability to cause MT disruption after 30 min of exposure even at the lower 

concentration of 0.1 μM used with prep. number 10, without any evidence of a 

perforated staining pattern, suggesting that this was unrelated to treatment (Figure 

4.6).  

4.4 CA4 TPP LONDs cause a concentration dependent MT 

disruption  

10 μM and 0.1 μM CA4 TPP LONDs caused MTs to depolymerise and tubulin to 

disperse throughout the cytoplasm giving a uniform staining pattern on IF, which was 

evident within 30 min of treatment. To assess if CA4 TPP LONDs had a concentration 

dependent effect on MT disruption SVR cells were treated with escalating 

concentrations of CA4 TPP LONDs for 2 h. Lower than 10 nM concentrations were 

used as CA4P has been shown to cause a decrease in polymerised tubulin and/or 

begin to depolymerise at concentrations as low as 1 nM (Galbraith et al., 2001; 

Kanthou & Tozer, 2002). 

Morphological assessment of the IF stained β-tubulin images showed that 2, 4 and 8 

nM of CA4 TPP LONDs did not cause any change to the filamentous structure of MTs 

when compared to untreated SVR cells (Figure 4.7 A-C). As the same pattern of β-

tubulin staining was observed for 2, 4 and 8 nM CA4 TPP LONDs only 2 and 8 nM 

representative images are shown, for the 4 nM CA4 TPP LONDs representative 

image see Appendix B, Figure B.2.   
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Figure 4.2 CA4 TPP LONDs cause MT disruption in SVR cells. 

To assess the efficacy of CA4 TPP LONDs at causing MT disruption SVR cells 

cultured in µ-slides (ibidi) were treated with 10 μM of CA4 TPP LONDs, 10 μM of CA4 

dissolved in DMSO as a positive control, 10 μM of CA4 dissolved in TPP was also 

used as second free drug control and to control for CA4 in TPP without the LOND 

shell. Free TPP alone was used as a control of the oil without CA4. All treatment 

groups were compared to untreated control cells. Following the 2 h at 37°C, cells 

were fixed, immunostained for β-tubulin using a mouse monoclonal anti-β-tubulin 

antibody and visualised using a biotinylated rabbit anti-mouse and FITC-labelled 

avidin. The slides were mounted with prolong Gold containing DAPI. (A) Untreated 

cells with long MT filaments. (B) 10 μM of CA4 TPP LONDs resulted in MT disruption 

caused by the CA4 payload inhibiting tubulin polymerisation and subsequently 

causing MTs to depolymerise. The tubulin from depolymerised MTs appeared evenly 

dispersed throughout the cytoplasm leading to a uniformly stained pattern. (C) 10 μM 

free CA4 in DMSO resulted in the same pattern described for CA4 TPP LONDs. (D) 

10 μM free CA4 in TPP also resulted in tubulin inhibition and depolymerised MTs 

stained uniformly throughout the cytoplasm. (E) No MT disruption observed for SVR 

cells treated with TPP alone. Inset images show magnified cells in panels A-E. (F) 

No primary antibody control showed minimal background indicating the specificity of 

the anti-β-tubulin antibody. Scale bars indicate 50 µm. Prep. number 7 was used.   
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Figure 4.3 CA4 TPP LONDs cause MT disruption in EA.Hy926 cells. 

To assess the efficacy of CA4 TPP LONDs at causing MT disruption, EA.hy926 cells 

were cultured in µ-slides (ibidi) and treated with 10 μM  CA4  TPP LONDs and 10 μM 

of CA4 dissolved in DMSO as a positive control. 10 μM of CA4 dissolved in TPP was 

also used as second free drug control and to control for CA4 in TPP without the LOND 

shell. Free TPP alone was used as a control of the oil without CA4. All treatment 

groups were compared to untreated control cells. Following the 2 h at 37°C, cells 

were fixed, immunostained for β-tubulin using a mouse monoclonal anti-β-tubulin 

antibody and visualised using a biotinylated rabbit anti-mouse and FITC-labelled 

avidin. The slides were mounted with prolong Gold containing DAPI. (A) Untreated 

EA.Hy926 cells with normal MT filaments. (B) 10 μM CA4 TPP LONDs resulted in 

MT disruption caused by the CA4 payload inhibiting tubulin polymerisation and 

subsequently causing MTs to depolymerise. The tubulin from depolymerised MTs 

had dispersed throughout the cytoplasm and at the cell periphery formed “star-like” 

structures shown by the white arrows in the inset image of magnified cells (C) 10 μM 

free CA4 in DMSO resulted in the same “star-like” pattern caused by inhibition of 

tubulin polymerisation and subsequent depolymerisation (white arrows, inset image 

of magnified cells). (D) 10 μM free CA4 in TPP also resulted in the same patterns 

described for CA4 TPP LONDs and CA4 in DMSO (white arrows, inset image of 

magnified cells). (E) No MT disruption observed for EA.hy926 cells treated with TPP 

alone. (F) No primary antibody, with minimal background indicating the specificity of 

the anti-β-tubulin antibody. Scale bars indicate 50 µm. Prep. number 7 was used.   
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Figure 4.4 CA4 TPP LONDs cause MT disruption in SW480 cells. 

To assess the efficacy of CA4 TPP LONDs at causing MT disruption, SW480 cells 

were cultured in µ-slides (ibidi) and treated with 10 μM CA4 TPP LONDs and 10 μM 

of CA4 dissolved in DMSO as a positive control. 10 μM of CA4 dissolved in TPP was 

also used as second free drug control and to control for CA4 in TPP without the LOND 

shell. Free TPP alone was used as a control of the oil without CA4. All treatment 

groups were compared to untreated control cells. Following the 2 h at 37°C, cells 

were fixed, immunostained for β-tubulin using a mouse monoclonal anti-β-tubulin 

antibody and visualised using a biotinylated rabbit anti-mouse and FITC-labelled 

avidin. The slides were mounted with prolong Gold containing DAPI. (A) SW480 

control cells with MT filaments, the inset image shows magnified cells with this. (B) 

10 μM of CA4 TPP LONDs resulted in MT disruption caused by the CA4 payload 

inhibiting tubulin polymerisation. The staining pattern showed tubulin dispersed 

throughout the cytoplasm as a result of MT depolymerisation and formed “star-like” 

structures at the cell periphery, white arrow in inset image shows a cell with this 

pattern as an example.  (C) 10 μM free CA4 in DMSO resulted in the same “star-like” 

pattern caused by inhibition of tubulin polymerisation and subsequent 

depolymerisation (inset image, magnified cells, arrows showing the “star-like” 

pattern). (D) 10 μM free CA4 in TPP caused MT disruption characteristic by a uniform 

staining fluorescence by tubulin dispersed in the cytoplasm as a result of MT 

depolymerisation. (E) No MT disruption observed for SW480 cells treated with TPP 

alone. (F) No primary antibody, showing minimal background from the secondary 

antibody. Scale bars indicate 50 µm. Prep. number 7 was used.  
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Figure 4.5 CA4 TPP LONDs cause MT disruption in SVR cells within 30 min of 

exposure. 

To investigate the time at which CA4 TPP LONDs caused MT disruption, SVR cells 

cultured in µ-slides (ibidi) were treated with 10 μM CA4 TPP LONDs for 30 min and 

with 10 μM free CA4 in TPP as the positive control. SVR untreated were used as 

controls. Following 30 min at 37°C, cells were fixed, immunostained for β-tubulin 

using a mouse monoclonal anti-β-tubulin antibody and visualised using a biotinylated 

rabbit anti-mouse and FITC-labelled avidin. The slides were mounted with prolong 

Gold containing DAPI. (A) SVR control cells with untreated MTs. Inset image shows 

magnified cells. (B) 10 μM of CA4 TPP LONDs resulted in MT disruption. A perforated 

pattern of depolymerised MTs with tubulin dispersed in the cytoplasm was observed 

as a result of tubulin inhibition (white open arrows, inset image of magnified cells). 

(C) Free CA4 in TPP caused MT disruption evident by the uniform stained cytoplasm 

by depolymerised MTs. Residual MTs were also observed (white arrows, inset image 

of magnified cells). (D) No primary antibody control, showing very minimal 

background staining, validating the specificity of the anti-β-tubulin antibody. Scale 

bars indicate 50 µm. Prep. number 7 was used.  
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Figure 4.6 MT disruption within 30 min by different preparations of CA4 TPP 

LONDs.  

SVR cells cultured in µ-slides (ibidi) were treated with 10 μM of CA4 TPP LONDs for 

30 min at 37°C. SVR untreated were used as controls. Following 30 min at 37°C, 

cells were fixed, immunostained for β-tubulin using a mouse monoclonal anti-β-

tubulin antibody and visualised using a biotinylated rabbit anti-mouse and FITC-

labelled avidin. The slides were mounted with prolong Gold containing DAPI. (A) SVR 

control untreated cells with normal MTs. (B) 10 μM of CA4 TPP LONDs prep. number 

8 resulted in MT disruption. (C) 0.1 μM of CA4 TPP LONDs, prep. number 10 caused 

MT disruption. This MT disruption results in MT depolymerisation and tubulin 

dispersion throughout the cytoplasm uniformly staining it. Scale bars indicate 50 μm.  
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At 20 and 10 nM, CA4 TPP LONDs caused the MTs to lose the radial filamentous 

structure and were tangled around the nuclei, a representative image of this pattern 

is shown in Figure 4.7 D (for 10 nM representative image see Appendix B, Figure 

B.2). Complete MT depolymerisation evident by the uniformly stained cytoplasm was 

caused after treatment of SVR cells with 40, 60 and 100 nM of CA4 TPP LONDs 

(Figure 4.7 E, white open arrows and Appendix B, Figure B.2 for 60 and 100 nM). 

SVR cells were also treated with free CA4 in TPP at 2 and 8 nM, morphological 

assessment of these showed no MT disruption (Figure 4.7 F and G). 

To quantitate the response to CA4 TPP LONDs, MT lengths were measured using 

Image J (Figure 4.8 A). A total of 250 MTs were measured for untreated SVR cells 

and those treated with 2 and 8 nM CA4 TPP LONDs or free CA4 in TPP. 225 MTs 

were measured for 20 nM CA4 TPP LONDs, as 40 nM of CA4 TPP LONDs caused 

complete MT depolymerisation in SVR cells no MT filaments were measured and 0 

μm was used for graphical and statistical analysis. Although, SVR cells treated with 

2 and 8 nM CA4 TPP LONDs did not show qualitatively any difference (Figure 4.7 B 

and C) a statistically significant reduction or abrogation of MT lengths was observed 

after treatment of SVR cells with 2, 8, 20 and 40 nM CA4 TPP LONDs  (p=0.024 and 

p<0.0001, Mann-Whitney U test, two-tailed).  

Free CA4 in TPP LONDs at 2 nM did not cause a significant reduction in MT lengths 

of treated SVR cells, however 8 nM did (p<0.0001, Mann-Whitney U test, two-tailed). 

Significant differences were also observed between the different concentrations of 

CA4 TPP LONDs and free CA4 in TPP (Figure 4.8 B). Using Spearman’s correlation, 

a negative but statistically insignificant correlation was observed between CA4 TPP 

LONDs concentrations and MT lengths of SVR cells (r=-1, p=0.083) (Figure 4.8 C). 

4.5 MT recovery following transient treatment with CA4 TPP 

LONDs 

CA4 rapidly binds and dissociates from tubulin with a dissociation rate of 3.6 min at 

37°C (Lin et al., 1989). As a result of this rapid binding and dissociation, MT disruption 

and cellular disruption have been shown to recover following transient treatment with 

CA4P for 30 min with a 24 h recovery period (Galbraith et al., 2001).  
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Figure 4.7 CA4 TPP LONDs and Free CA4 in TPP MT disruption in SVR cells. 

SVR cells were treated with escalating concentrations of CA4 TPP LONDs, 2, 8, 20 

and 40 nM and 2 and 8 nM of free CA4 in TPP for 2 h at 37°C. Following, cells were 

fixed, immunostained for β-tubulin using a mouse monoclonal anti-β-tubulin antibody 

and visualised using a biotinylated rabbit anti-mouse and FITC-labelled avidin. The 

slides were mounted with prolong Gold containing DAPI. (A) Untreated SVR cells 

with filamentous MTs. (B) SVR cells treated with 2 nM of CA4 TPP LONDs, MTs 

appeared to have MT filaments similar to untreated SVR cells. (C) SVR cells treated 

with 8 nM of CA4 TPP LONDs showed MTs with long filament structures as in 

untreated SVR cells. (D). Treatment with 20 nM of CA4 TPP LONDs showed 

evidence of shortening of the filamentous MTs at the distal ends at the cell periphery 

and tangled around the nuclei (white arrows). (E) 40 nM CA4 TPP LONDs had a 

uniformly stained cytoplasm from the tubulin dispersing as a consequence of 

depolymerised MTs (open white arrows). (F) SVR cells treated with 2 nM of free CA4 

in TPP, appeared to have undisrupted MTs. (G) SVR cells treated with 8 nM of free 

CA4 in TPP did not show any evidence of MT disruption, as the MTs appeared as 

untreated. Scale bars indicate 50 µm. Prep. number 8 was used.   
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Figure 4.8 CA4 TPP LONDs cause a concentration-dependent reduction in MT 

lengths.  

(A) Fluorescent images were used to quantitate the MT disruption caused by 

treatment with escalating concentrations of CA4 TPP LONDs for 2 h at 37°C. The 

lengths of 250 MTs (10 MTs/cell in 5 cells per FOV, five FOV in total per condition) 

were measured using Image J from untreated SVR cells and SVR cells treated with 

2 and 8 nM of CA4 TPP LONDs or SVR cells treated with 2 and 8 nM of free CA4 in 

TPP. A total of 225 MT lengths were measured from SVR cells treated with 20 nM 

CA4 TPP LONDs. 40 nM of CA4 TPP LONDs caused MTs to depolymerise and 

tubulin to disperse throughout the cytoplasm uniformly staining it, therefore no MT 

lengths were measured and 0 μm was used to plot the graph. Data represent the 

median value from the measured MTs (n=1 biological replicate) and the error bars 

represent the interquartile range. * p=0.024. **** p<0.0001 calculated by Mann-

Whitney U test (two-tailed). (B) Tabulated format of statistical analyses from 

comparing the different concentrations. (C) The relationship between MT lengths and 

CA4 TPP LOND concentration using Spearman’s correlation showed a negative but 

statistically insignificant correlation between the two (r=-1, p=0.083, two-tailed). Data 

shows the median value and error bars interquartile range.  

10 20 30 40 50

-20

-10

0

10

20

30

40

M
ic

ro
tu

bu
le

 le
ng

th
(μ

m
)

CA4 TPP LONDs
(nM)

Untreated 2 8 20 40 2 8
0

10

20

30

40

50

M
ic

ro
tu

bu
le

 le
ng

th
(μ

m
)

CA4 TPP 
LONDs (nM)

Free CA4 in TPP
(nM)

n=250
n=250

n=250

n=250

n=250

n=225

n=0

****

****
*

****

****
A B

C

Statistical results: Mann-Whitney U test (two-tailed)
Groups

Significant P value
2 nM CA4 TA LONDs vs.
8 nM CA4 TA LONDs yes p=0.0002
20 nM CA4 TA LONDs yes p<0.0001
40 nM CA4 TA LONDs yes p<0.0001
2 nM Free CA4 in TPP yes p=0.020
8 nM Free CA4 in TPP yes p<0.0001
8 nM CA4 TA LONDs vs.
20 nM CA4 TA LONDs yes p<0.0001
40 nM CA4 TA LONDs yes p<0.0001
2 nM Free CA4 in TPP yes p<0.0001
8 nM Free CA4 in TPP no p=0.420
20 nM CA4 TA LONDs vs.
40 nM CA4 TA LONDs yes p<0.0001
2 nM Free CA4 in TPP yes p<0.0001
8 nM Free CA4 in TPP yes p<0.0001
40 nM CA4 TA LONDs vs.
2 nM Free CA4 in TPP yes p<0.0001
8 nM Free CA4 in TPP yes p<0.0001



131  

This recovery has also been observed in vivo as demonstrated by the rapid recovery 

of blood flow 24 h post-treatment (Dark et al., 1997; Maxwell et al., 1998; Murata, 

Overgaard & Horsman, 2001; Liu, Mason & Gimi, 2015). Concentrations > 40 nM 

CA4 TPP LONDs caused complete MT depolymerisation characterised by a 

uniformly stained cytoplasm within 30 min to 2 h of transient treatment (Figure 4.5 

and Figure 4.7). The next stage in this work therefore focused on the ability of MTs 

to recover following a 2 h transient treatment with CA4 TPP LONDs followed by a 24 

h recovery period. It was important to know if delivery of CA4 in a hydrophobic DDS 

such as LONDs delayed the recovery period of MTs as in vivo repeated injections 

could be administered prior to recovery to enhance the anti-tumour activity of CA4 

TPP LONDs.  

Qualitative analysis of IF stained β-tubulin images showed no differences in MT 

structures of untreated control SVR cells (Figure 4.9 A) and SVR cells treated with 

55 and 100 nM of CA4 TPP LONDs for 2 h and then followed by recovery in drug-

free media for 24 h (Figure 4.9 B and C, respectively). MT structures from SVR cells 

treated with free CA4 in TPP at 55 and 100 nM (Figure 4.9 D and E, respectively) 

appeared similar to untreated control SVR cells. These data point towards recovery 

of  MTs from the disruptive effects of CA4 delivered by LONDs.  

4.6 CA4 TPP LONDs cause cell cycle changes 

The above data showed that transient treatment of endothelial cells and SW480 cells 

with CA4 TPP LONDs caused MT disruption. However, this MT disruption was 

reversible in SVR cells. Intratumoural retention of CA4 TPP LONDs through the EPR 

effect in vivo however, could potentially lead to a prolonged exposure of the tumour 

cells to CA4. Therefore, the next stages focused on a continuous exposure of cells 

to CA4 TPP LONDs and the ability of these to induce mitotic catastrophe and cell 

cycle changes.  

IF staining of β-tubulin showed that cells treated for 24 h with 55 nM and 100 nM CA4 

TPP LONDs or free CA4 in TPP had disrupted MTs characterised by dispersed 

tubulin throughout the cytoplasm as a result of MT depolymerisation and some cells 

also had residual MTs (Figure 4.10). Treated cells also showed characteristics of 

mitotic catastrophe, giant multinucleated cells and enlarged nuclei (Figure 4.10).  
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Figure 4.9 MT recovery following transient treatment with CA4 TPP LONDs.  

To investigate the potential of MTs to recover following treatment with CA4 TPP 

LONDs, SVR cells were treated with 55 and 100 nM of CA4 TPP LONDs for 2 h at 

37°C. After the 2 h treatment, cells were washed and incubated in drug-free media 

for 24 h. Untreated SVR cells were used as a control, while SVR cells treated with 55 

and 100 nM of free CA4 in TPP were used as a positive control. Following 24 h 

recovery period at 37°C, cells were fixed, immunostained for β-tubulin using a mouse 

monoclonal anti-β-tubulin antibody and visualised using a biotinylated rabbit anti-

mouse and FITC-labelled avidin. The slides were mounted with prolong Gold 

containing DAPI. (A) SVR untreated cells with filamentous MTs. (B) SVR cells treated 

with 55 nM of CA4 TPP LONDs (C) SVR cells treated with 100 nM of CA4 TPP 

LONDs. (D) SVR cells treated with 55 nM of free CA4 in TPP. (E) SVR cells treated 

with 100 nM of free CA4 in TPP. All treated SVR cells had MT filaments similar to 

untreated control SVR cells in A. (F) No primary antibody control. Scale bars indicate 

50 µm. Prep. number 10 was used.  
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Figure 4.10 CA4 TPP LONDs cause cells to enter mitotic catastrophe. 

To investigate the potential of CA4 TPP LONDs at causing mitotic catastrophe (cell 

death pathway, characterised by giant multinucleated cells), SVR cells were treated 

with 55 and 100 nM of CA4 TPP LONDs for 24 h at 37°C. Untreated SVR cells were 

used as a control, while SVR cells treated with 55 and 100 nM of free CA4 in TPP 

were used as a positive control. Following 24 h at 37°C, cells were fixed, 

immunostained for β-tubulin using a mouse monoclonal anti-β-tubulin antibody and 

visualised using a biotinylated rabbit anti-mouse and FITC-labelled avidin. The slides 

were mounted with prolong Gold containing DAPI. (A) SVR untreated cells with 

filamentous MTs and undisrupted nuclei. Inset image shows magnified cell. (B) SVR 

cells treated with 55 nM of CA4 TPP LONDs for 24 h, lead to disrupted MTs, tangled 

around the nuclei and giant multinucleated cells (white arrow, inset image of 

magnified cell). (C) 100 nM of CA4 TPP LONDs caused disrupted MTs, with tubulin 

dispersing in the cytoplasm and uniformly staining it as a result of MT 

depolymerisation. Some of these cells were giant with multiple nuclei (white arrows, 

inset image of magnified cell). Residual MTs were also observed. (D) 55 nM of free 

CA4 in TPP caused MT disruption in SVR cells with a number of residual MTs 

present, multiple nuclei were also observed in cells (white arrow, inset image of 

magnified cell). (E) SVR cells treated with 100 nM of free CA4 in TPP resulted in MT 

disruption (tubulin dispersing as a result of MT depolymerisation and forming a 

uniform fluorescence around the cells nuclei). Cells also had multiple nuclei (white 

arrows, inset image of magnified cell) and enlarged nuclei (white open arrow, inset 

image of magnified cell) characteristic of cells that have entered mitotic catastrophe. 

(F) No primary antibody, showed minimal background indicating the specificity of the 

anti-β-tubulin antibody. Scale bars indicate 50 µm. Prep. number 10 was used.  
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Flow cytometry was used to examine the effect of CA4 TPP LONDs on the SVR cell 

cycle. As shown in Figure 4.11 A and Figure 4.12 A, CA4 TPP LONDs and free CA4 

in DMSO both at 55 nM and 100 nM caused a statistically significant effect on the 

cell cycle, a G2/M phase arrest was induced. ≥ 78% of treated SVR cells  were in the 

G2/M phase compared to 10% in the control group (p<0.0001, unpaired t-test). A 

G2/M phase arrest was not observed when SVR cells were treated with TPP LONDs 

alone. Statistical analyses are tabulated in Figure 4.12 B. Diploid analysis of the DNA 

content (Figure 4.11 A) showed that a proportion of cells treated with CA4 TPP 

LONDs or free CA4 in DMSO had entered a second cell cycle and were tetraploid 

(4N DNA). These were subsequently analysed using the polyploidy mode in the 

ModFitLT V3.2 software (Figure 4.11 B). ≥ 12% of SVR treated cells at both 

concentrations were tetraploid (4N DNA) (Figure 4.12 C).  

Flow cytometry of SW480 cells showed that CA4 TPP LONDs and free CA4 in DMSO 

both at 55 nM and 100 nM continuous exposure for 24 h caused a G2/M phase arrest 

(Figure 4.13 A and Figure 4.14 A). Over 80% of SW480 cells treated with CA4 TPP 

LONDs and free CA4 in DMSO were in the G2/M phase compared to 25% in free 

drug control cells (p<0.0001, unpaired t-test). TPP LONDs alone did not cause any 

changes to the cell cycle. Statistical analyses are tabulated in Figure 4.14 B. Diploid 

analysis of the DNA content (Figure 4.13 A) showed that a proportion of cells treated 

with CA4 TPP LONDs or free CA4 in DMSO had entered a second cell cycle and 

were tetraploid (4N DNA). These were subsequently analysed using the polyploidy 

mode in the ModFitLT V3.2 software (Figure 4.13 B). The % of cells which were 

tetraploid (in the second G2/M phase) was determined and graphed in Figure 4.14 

C. There was a statistically significant higher % of tetraploid SW480 cells following 

treatment with 100 nM CA4 TPP LONDs compared to 55 nM CA4 TPP LONDs 

(p=0.0002, unpaired t-test). In contrast, a higher % of tetraploid cells were observed 

in SW480 cells treated with 55 nM free CA4 in DMSO compared to 100 nM CA4 in 

DMSO (p=0.0005, unpaired t-test).  
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Figure 4.11 Cell cycle distribution of SVR cells following treatment with CA4 

TPP LONDs and free CA4 in DMSO.  

(A) ModFitLT V3.2 software results from diploid analysis, to obtain the % of cells in 

G2/M phase. SVR cells cultured in 12-well plates and treated with 55 and 100 nM 

CA4 TPP LONDs and 55 and 100 nM free CA4 in DMSO as a positive control. Control 

SVR cells with <0.01% DMSO were used as a free drug control, while TPP LONDs 

without CA4 were used to control for the CA4 TPP LONDs. Following a continuous 

treatment for 24 h at 37°C, SVR cells were fixed with 70% (v/v) EtOH, stained with 

PI and analysed by flow cytometry. Values (%) represent the mean ± SEM of n=21 

for control, n=18 for TPP LONDs, n=12 for 100 nM free CA4 in DMSO, n=9 for 55 nM 

free CA4 in DMSO and n=9 for both concentrations of CA4 TPP LONDs (n=3 

replicates for each experimental repeat). (B) Rectangles in A showed a proportion of 

cells in a second G2/M phase (4N DNA content) these were analysed using a 

polyploidy mode in ModFitLT V3.2 software and the % of cells in the second G2/M 

phase was determined.  
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Figure 4.12 Effect of CA4 TPP LONDs and free CA4 in DMSO on SVR cell 

cycle distribution. 

(A) To assess the ability of CA4 TPP LONDs to modulate the cell cycle, SVR cells 

were treated with 55 and 100 nM CA4 TPP LONDs and 55 and 100 nM free CA4 in 

DMSO as a positive control. Control SVR cells with <0.01% DMSO were used as a 

free drug control, while TPP LONDs without CA4 were used to control for the CA4 

TPP LONDs. Following, a continuous treatment for 24 h at 37°C, SVR cells were 

fixed with 70% (v/v) EtOH, stained with PI and analysed by flow cytometry. The 

results were subsequently analysed using ModFitLT V3.2 software. Values (%) 

represent the mean and the error bars the SEM of n=21 for control, n=18 for TPP 

LONDs, n=12 for 100 nM free CA4 in DMSO, n=9 for 55 nM free CA4 in DMSO and 

n=9 for both concentrations of CA4 TPP LONDs (n=3 biological replicates for each 

experimental repeat). Treatment with CA4 TPP LONDs or free CA4 in DMSO at both 

concentrations resulted in significant increase in the cells in G2/M phase when 

compared to control and TPP LONDs. (B) Results from statistical analyses which 

were carried out using unpaired t-tests. (C) % of tetraploid cells: A proportion of cells 

treated with CA4 TPP LONDs and/or free CA4 in DMSO were able to escape G2/M 

phase block and enter another cell division subsequently leading to tetraploid cells 

(4N DNA). Prep. number 10 was used.  
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Figure 4.13 Cell cycle distribution of SW480 cells following treatment with CA4 

TPP LONDs and free CA4 in DMSO. 

(A) ModFitLT V3.2 software results from diploid analysis, to obtain the % of cells in 

G2/M phase. SW480 cells cultured in 12-well plates and treated with 55 and 100 nM 

CA4 TPP LONDs and 55 and 100 nM free CA4 in DMSO as a positive control. Control 

SW480 cells with <0.01% DMSO were used as a free drug control, while TPP LONDs 

without CA4 were used to control for the CA4 TPP LONDs. Following a continuous 

treatment for 24 h at 37°C, SW480 cells were fixed with 70% (v/v) EtOH, stained with 

PI and analysed by flow cytometry. Values (%) represent the mean ± SEM of n=18 

for control, n=18 for TPP LONDs, n=9 for 100 nM free CA4 in DMSO, n=9 for 55 nM 

free CA4 in DMSO and n=9 for both concentrations of CA4 TPP LONDs (n=3 

replicates for each experimental repeat). (B) Rectangles in A showed a proportion of 

cells in a second G2/M phase (4N DNA content) these were analysed using a 

polyploidy mode in ModFitLT V3.2 software and the % of cells in the second G2/M 

phase was determined.  
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Figure 4.14 Effect of CA4 TPP LONDs and free CA4 in DMSO on SW480 cell 

cycle distribution.  

(A) To assess the ability of CA4 TPP LONDs to modulate the cell cycle, SW480 cells 

were treated with 55 and 100 nM CA4 TPP LONDs and 55 and 100 nM free CA4 in 

DMSO as a positive control. Control SW480 cells with <0.01% DMSO were used as 

a free drug control, while TPP LONDs without CA4 were used to control for the CA4 

TPP LONDs. Following a continuous treatment for 24 h at 37°C, SW480 cells were 

fixed with 70% (v/v) EtOH, stained with PI and analysed by flow cytometry. The 

results were subsequently analysed using ModFitLT V3.2 software. Values (%) 

represent the mean and the error bars the SEM of n=18 for control and TPP LONDs 

and n=9 for CA4 TPP LONDs and free CA4 in DMSO at both concentrations (n=3 

biological replicates for each experimental repeat). CA4 TPP LONDs and free CA4 

in DMSO cause a statistically significant increase in the % of cells in G2/M phase 

compared to control and TPP LONDs treated cells. (B) Results from statistical 

analyses which were carried out using unpaired t-tests. (C) % of tetraploid cells: A 

proportion of cells treated with CA4 TPP LONDs and/or free CA4 in DMSO were able 

to escape G2/M phase block and enter another cell division subsequently leading to 

tetraploid cells (4N DNA). SW480 cells treated with 100 nM CA4 TPP LONDs had a 

higher % of tetraploid cells compared to SW480 cells treated with 55 nM CA4 TPP 

LONDs (***, p=0.0002). A higher % of tetraploid cells was observed in SW480 cells 

treated with 55 nM free CA4 in DMSO compared to 100 nM free CA4 in DMSO (***, 

p=0.0005). A significant difference was also observed between 55 nM CA4 TPP 

LONDs and 55 nM free CA4 in DMSO with a higher % of tetraploid cells in the free 

CA4 in DMSO group (***, p=0.0007). A higher % of tetraploid cells was observed in 

SW480 cells treated with 100 nM CA4 TPP LONDs compared to 100 nM free CA4 in 

DMSO (***, p=0.0002). Significance was calculated using an unpaired t-test. Prep 

number. 10 was used.  
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4.7 Intracellular localisation of CA4 TPP LONDs in 

endothelial cells  

Using IF and cell cycle analysis, it was evident that CA4 TPP LONDs were capable 

of delivering CA4 to both endothelial cells and CRC cells in vitro. To investigate 

whether drug release and/or uptake of intact LONDs contributed to drug delivery, 

LOND distribution in SVR cells was investigated using IF to locate the fluorescence 

from the lipid shell (Atto590-DOPE) of the LONDs. Co-registered IF images from the 

CA4 TPP LOND shell and β-tubulin showed a potential co-localisation with disrupted 

MTs 24 h post-treatment with 0.5 μM CA4 TPP LONDs (Figure 4.15). As MTs were 

disrupted (Figure 4.15 B) this indicated that CA4 from TPP LONDs had been released 

into the cells and that the red fluorescence present was potentially lipids from the 

LOND shell following disassembly. TPP LONDs or LOND lipids were located around 

the nuclei and also co-localised with MTs (Figure 4.15 C).  

4.8 Discussion  

4.8.1 Development of CA4 TPP LONDs  

TPP LONDs were developed for the hydrophobic delivery of CA4 following the issues 

of solubility and retention/leaking inherent to TA LONDs. High pressure 

homogenisation produced TPP LONDs with a mean diameter of < 100 nm in contrast 

to the previously prepared TA LONDs which were > 250 nm. The decrease in size 

was due, in part, to the presence of cholesterol which induced the dense packing of 

the phospholipids (Bozzuto & Molinari, 2015). The concentration of particles 

produced was also increased compared to TA LONDs from 109 particles/mL to 1014 

particles/mL. The %EE of CA4 was the same in TA LONDs. However, it was assumed 

that due to the use of a less water soluble oil TPP (logP 1.7 vs TA logP 0.1), and the 

increase in shell stability and rigidity by the addition of cholesterol and DSPC that 

CA4 retention in the LOND would be improved. TPP LONDs were observed to be 

stable for six weeks at storage temperature 4°C and 2 h at 37°C.  

4.8.2 In vitro evaluation of MT disruption by CA4 TPP LONDs 

CA4 TPP LONDs caused MT disruption in both endothelial cell lines tested and 

SW480 cells within the 2 h treatment indicating successful release and/or uptake of 

CA4 from the LONDs. MT disruption was observed when free CA4 was dissolved in 

TPP further indicating that the oil was not inhibiting and/or changing the activity of 

CA4, as TPP alone did not cause any MT disruption.  
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Figure 4.15 Intracellular localisation of CA4 TPP LONDs. 

To investigate the localisation of LONDs in SVR cells, SVR cells cultured in µ-slides 

(ibidi) were treated for 24 h at 37°C with 0.5 μM CA4 TPP LONDs, incorporating a 

red fluorescence Atto590-DOPE in their shell. Untreated SVR cells and SVR cells 

treated with TPP LONDs were used as control. Following 24 h at 37°C, cells were 

fixed and immunostained for β-tubulin using a mouse monoclonal anti-β-tubulin 

antibody and visualised using a biotinylated rabbit anti-mouse and FITC-labelled 

avidin. Slides were mounted with prolong Gold containing DAPI. (A) Untreated control 

SVR cells showing filamentous MTs with no evidence of red fluorescence. (B) SVR 

cells treated with 0.5 μM CA4 TPP LONDs, showing a red fluorescence (white 

arrows) presumably from the LOND shell. The red fluorescence co-localised with the 

disrupted MTs (formed a uniform fluorescence in the cytoplasm, residual MTs were 

also present). (C) SVR cells treated with TPP LONDs, also showing co-localisation 

of red fluorescence from the LOND lipid shell and MTs. Scale bars indicate 20 μm. 

Prep. number 8 was used.  
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The release and/or uptake of CA4 from TPP LONDs was observed to occur within 30 

min of treatment of SVR cells, as MTs were disrupted when treated with 10 μM CA4 

TPP LONDs from prep. numbers 7, 8 and when tested at the lower concentration of 

0.1 μM CA4 TPP LONDs with prep. number 10. The data therefore, showed the 

rapidity of release and/or uptake of CA4 TPP LONDs and that this was reproducible 

with a different preparation of CA4 TPP LONDs and at a lower concentration.   

The ability of CA4 TPP LONDs to cause MT disruption in SVR cells at escalating 

concentrations was investigated compared to free CA4 in TPP. CA4 TPP LONDs 

caused a significant disruption to the MTs at the lowest concentration 2 nM compared 

to untreated SVR cells, without causing any qualitative changes to the appearance 

of the cells. Free CA4 in TPP showed no significant MT disruption at 2 nM, pointing 

towards an enhanced in effect when CA4 was encapsulated and delivered by TPP 

LONDs. However, at 8 nM no differences were observed between free CA4 and CA4 

TPP LONDs.  

Although, CA4 in vitro and in vivo causes very rapid effects the ability of MTs to 

reassemble and tumours to recover hinders the anti-tumour activity of this agent. The 

results presented in this study showed that the shape of MTs in SVR cells treated for 

2 h with CA4 TPP LONDs recovered within 24 h post drug washout. CA4 is a 

reversible inhibitor of MT assembly (Lin et al., 1989). Quan et al., (2008) investigated 

the reversibility of microtubule disassembly in hepatocellular carcinoma cells. Their 

results showed that microtubule disruption or disassembly resulted in the activation 

of ERK1/2 and p38 MAPK in hepatocellular carcinoma cells < 2 h followed by 

reassembly within a few hours. Inhibition of p38 MAPK blocked the MT reassembly 

in hepatocellular carcinoma and p38 MAPK inhibitors potentiated the cytotoxicity of 

CA4. The authors suggested that under shorter exposure times (less than 2 h) and 

low concentrations below 1 μM, CA4 is able to stimulate p38 MAPK but is not able to 

induce apoptosis, and therefore p38 MAPK protects cells against CA4 treatment as 

it enables reassembly (Quan, Xu & Lou, 2008). Here, the precise underlying 

mechanism involved in SVR MT reassembly is not currently known, activation of p38 

MAPK may be involved.  

4.8.3 Ability of CA4 TPP LONDs to modulate the cell cycle  

Prolonged exposure of cells to CA4 leads to mitotic arrest which results in a number 

of outcomes including apoptosis, mitotic catastrophe and polyploidy (Greene, 

Meegan & Zisterer, 2015). Mitotic catastrophe is characterised by cells with enlarged, 

fragmented and multiple nuclei. Following a 24 h exposure, CA4 TPP LONDs caused 
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SVR cells to enter mitotic catastrophe as confirmed by DNA content analysis using 

flow cytometry. A G2/M phase block was observed after treatment of SVR and 

SW480 cells with CA4 TPP LONDs but not TPP LONDs indicating that the effect was 

driven by the CA4 payload consistent with previous reports (Nabha et al., 2000, 2002; 

Kanthou et al., 2004).  

It can be speculated from previous reports that the cellular mechanism involved in 

this G2/M arrest caused by the release of CA4 from TPP LONDs is through the 

accumulation of cyclin B in the nucleus followed by the sustained activation of p34cdc2 

preventing the progression to anaphase and subsequent exit from mitosis which has 

been demonstrated in both endothelial and cancer cells (Nabha et al., 2002; Kanthou 

et al., 2004). The cells then die without exiting mitosis (“mitotic death”) either through 

caspase-dependent or independent pathways (Kanthou et al., 2004; Vitale et al., 

2007, 2011). It is evident from the above results that a proportion of both SVR and 

SW480 cells have escaped mitosis i.e. mitotic slippage and have entered polyploidy. 

One of the events potentially driving this mitotic slippage is the slow proteasomal 

degradation of cyclin B which after a prolonged arrest occurs (Vakifahmetoglu, 

Olsson & Zhivotovsky, 2008). Another, potential mechanism of mitotic slippage 

described in bladder cancer cells and cervical cancer cells is the activation of 

caspase 3 which cleaves a member of the spindle assembly checkpoint BubR1 

leading to multinucleation and polyploidy (Shen et al., 2010; Greene et al., 2011). 

The release from G2/M block in CRC cells (CT26 and Caco-2) following exposure to 

CA4P at 50 nM for 48 h results in approximately 30% of polyploidy followed by cell 

death (Greene et al., 2012). 

4.8.4 Cellular localisation 

IF imaging of the fluorescent lipid shell (via the Atto590-DOPE) showed that the lipids 

from the LONDs were located near the nuclear membrane and co-localised with MTs. 

At this stage the mechanism of intracellular release and/or uptake was not required 

in developing and translating the LONDs as a hydrophobic DDS.  

Fusogenic lipids natural or helper lipids like DOPE as well as provide stabilisation 

can also promote the endosomal escape of NPs from endosomes due to structural 

transition when exposed to low pH of the endosomal compartment (Biswas & 

Torchilin, 2014; Selby et al., 2017). The presence of the PEG which is used a steric 

stabiliser and improves in vivo circulation time however, can interfere with this fusion 

of DOPE and the cellular/endosomal membrane (Remaut et al., 2007; Selby et al., 

2017). Hak et al., (2012 and 2015) studied the potential of DSPE-BPEG2000 to affect 



149  

intracellular uptake of nanoemulsions with a similar size, approximately 100 nm and 

phospholipid-stabilised shell which including DSPC, cholesterol and at a 2.5 or 

5:62:33 molar ratio % respectively, the oil core was soybean oil. Their results showed 

intracellular uptake of the nanoemulsions via caveolae-dependent pathways and 

other clathrin- and caveolae-independent pathways within 2 h of incubation. Intact 

and disassembled nanoemulsions were co-localised with lysosomes, indicating the 

uptake of intact nanoemulsions followed by an immediate disassembly, the authors 

also concluded that once internalised the 5mol% DSPE-BPEG2000 did not affect 

nanoemulsion stability and disassembly (Hak et al., 2012, 2015).  

From previous data it can be speculated that fusion is unlikely to occur due to the low 

molar concentration of DOPE which was used as a fluorescent marker and the 

potential inhibitory effects of PEG preventing this. However, from the data collected 

by Hat et al., (2012 and 2015), it can be hypothesised that LONDs behave in a similar 

manner, rapid uptake by endocytosis into cells followed by a rapid release of CA4, 

as an effect on MTs is observed within 30 min and remaining lipids from LOND 

disassembly could potentially be localised in various intracellular compartments such 

as endosomes, lysosomes, Golgi or endoplasmic reticulum after 24 h of exposure. 

Although, the potential of LOND disassembly outside the cell prior to CA4 uptake 

through diffusion for example or LOND disassembly in an endosome followed by 

degradation and subsequent release of CA4 cannot be excluded.    

4.8.5 Conclusion 

Overall the initial in vitro results with CA4 TPP LONDs showed the successful and 

rapid release and/or uptake and subsequent release of CA4 into endothelial and 

human CRC cells. Encapsulating CA4 in TPP LONDs retained the MT disruption 

activity of CA4 with minor differences with free CA4. It was observed that SVR cells 

recover following transient treatment, however, both SVR and SW480 cells during 

prolonged treatment with CA4 TPP LONDs or free CA4 enter mitotic catastrophe 

which eventually can lead to cell death. This is particularly important as in vivo the 

potential retention of CA4 TPP LONDs by the EPR effect may lead to prolonged 

exposure of tumour cells to CA4 and subsequent cell-death.  
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5.1 Introduction 

As shown in the previous chapter, CA4 TPP LONDs appeared stable and 

demonstrated effects consistent with drug uptake and/or release in both endothelial 

cells and SW480 cells in vitro. Next, the potential of LONDs as a hydrophobic DDS 

was assessed in vivo using mice bearing SW480 human CRC xenografts. In vivo 

evaluation is key to the development of any DDS. A novel DDS such as LONDs needs 

to be stable enough to prolong circulation time without rapid clearance in order to 

reach the target site, accumulate at the target site and release the payload. During 

the initial stages of development, the PK of the proposed delivery system following 

systemic administration is therefore required.  

Delivery of encapsulated CA4 has been reported for both targeted and untargeted 

NPs (Wang et al., 2013; Li et al., 2015). Specifically delivery of CA4 in untargeted 

NPs resulted in an increase of CA4 intratumoral delivery due to the EPR effect, 

however CA4 was also found in a number of normal tissues such as the liver, heart 

and spleen (Wang et al., 2013). Others have shown that targeting CA4 NPs to 

VEGFR2 or RGD greatly improved tumour growth inhibition when compared to 

untargeted NPs, however it did not prevent the unspecific uptake in normal tissues 

(Su et al., 2014; Li et al., 2015). Pattillo et al., (2009) showed that multiple dosing of 

targeted CA4 liposomes was required for a significant growth inhibition (Pattillo et al., 

2009). These studies of CA4 NPs also co-delivered other agents such as DOX or 

used radiation in order to observed a tumour growth inhibition (Pattillo et al., 2009; Li 

et al., 2015).  

The first pilot studies with untargeted CA4 TPP LONDs specifically aimed to 

investigate intratumoral delivery and tumour pharmacodynamic (PD) responses 

following a single dose. Following this the aim was to investigate any potential tumour 

growth inhibition in human CRC xenografts following multiple doses of CA4 TPP 

LONDs.  

5.2 Delivery of CA4 TPP LONDs to mice bearing SW480 

human CRC xenografts  

The first stage of in vivo evaluation of CA4 TPP LONDs focused on the 

pharmacological responses in terms of tumour PD and tumour, plasma and liver PK. 

Mice (32-33 g) bearing SW480 xenografts on day 10 of tumour growth were sorted 

according to body weight into 3 groups (n=6 per group). To achieve the highest 
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possible concentration of CA4 TPP LONDs, a dose of 0.1 mL per 10 g of body weight 

was used, resulting in a dose of 12.8 mg/kg (or 4 mM per injection) which was well 

below the commonly used dose of 100 mg/kg. The other two groups were TPP 

LONDs at 0.1 mL per 10 g of body weight or free CA4 as a positive control at a 50 

mg/kg dose in 10% DMSO/peanut oil. 3.8 x 1013 CA4 TPP LONDs and 3.3 x 1013 

TPP LONDs were administered i.v. through the tail vein (slow bolus delivery). In 

contrast, free CA4 in 10% DMSO/peanut oil was administered i.p.. Peanut oil was 

chosen as the vehicle carrier for free CA4 as the i.p. injection of TPP was not well 

tolerated.  

At 1 and 24 h post-injection, three mice from each group were sacrificed and tumour, 

liver and plasma samples were harvested. All information including experimental 

cohorts, mouse body weight on day 10 and tumour volumes on day 7 are shown in 

Figure 5.1. The CA4 TPP LONDs dose per mouse including the number of LONDs 

per injection for CA4 TPP LONDs and TPP LONDs are summarised in Table 5.1.  

5.2.1 Pharmacodynamic response of SW480 xenografts to CA4 

TPP LONDs   

Tumour PD responses to CA4 TPP LONDs were assessed using biomarkers for 

haemorrhage, necrosis, mitoses and blood vessels (MVD). Tumour histology 1 h 

post-injection of CA4 TPP LONDs showed evidence of peripheral haemorrhage in 

1/3 tumours which was associated with large areas of viable tumour cells (Figure 5.2 

A). Evidence of potential haemorrhage was observed in 1/3 tumours treated with TPP 

LONDs, although this might have resulted from the inherent leaky tumour vasculature 

(Figure 5.2 B). In contrast, 2/3 tumours 1 h post-injection with free CA4 in 

DMSO/peanut oil showed evidence of central haemorrhage in the necrotic areas and 

peripheral haemorrhage (Figure 5.2 C).  

At 24 h post-injection of CA4 TPP LONDs, 3/3 tumours showed evidence of 

haemorrhage, one showed extensive central haemorrhage (Figure 5.3 A). Evidence 

of haemorrhage was also observed in 2/3 tumours, 24 h post-injection of free CA4 in 

DMSO/peanut oil (Figure 5.3 B). In contrast, no haemorrhage was observed in 

tumours with TPP LONDs, 24 h post-injection (Figure 5.3 C).   

The % area of tumours with evidence of haemorrhage (Figure 5.4 A) and necrosis 

(Figure 5.4 B) was determined. No statistically significant differences in % 

haemorrhage or necrosis were observed at any time point between the groups 

(Mann-Whitney U test, two-tailed).  
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Figure 5.1 Delivery of CA4 TPP LONDs to mice bearing human CRC xenografts.  

(A) Experimental cohorts: n=6 per group these were further sub-divided into n=3 for 

1 and 24 h time points post-injection for PD and PK analysis; CD-1® nude male mice 

bearing SW480 xenografts received i.v. injection through the tail vein of a dose of 

12.8 mg/kg CA4 TPP LONDs or TPP LONDs (* 0.1 mL per 10 g of body weight) or 

i.p. 50 mg/kg free CA4 in DMSO (10%)/peanut oil on day 10 of tumour growth. A 

mean number of 3.8 x 1013 CA4 TPP LONDs and a mean number of 3.3 x 1013 TPP 

LONDs were administered per injection. (B) Body weight in grams (g) post 

randomisation into sub-groups on day 10 prior to injections. Straight lines (⎯) 

represent the median. (C) Tumour volumes measured by mechanical callipers in mm3 

on day 7 of tumour growth. Straight lines (⎯) represent the median value.  
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Table 5.1  Dose and number of LONDs/injection for individual mice. 

 

N/A: not applicable.  

 

 

 

 

 

 

 

 

 

 

 

Group Weight
(g)

Dose 
(mg)/

injection
Dose (mM)/ 

injection
Number of LONDs/

injection Dose (mg/kg)
1 h CA4 TPP LONDs

Mouse 1 33.2 0.4 3.8 4 x 1013 12

Mouse 2 25.6 0.3 3.7 3.1 x 1013 12

Mouse 3 35.9 0.5 4.4 4.3 x1013 14

24 h CA4 TPP LONDs

Mouse 1 30.2 0.4 4.2 3.6 x1013 13.2

Mouse 2 32.5 0.4 4 3.9 x1013 12.3

Mouse 3 30.3 0.4 4.2 3.6 x1013 13.2

Mean ± SD 31.3 ± 3.5 0.4 ± 0.06 4.1 ± 0.3 3.8 x1013 ± 4.6 x1012 12.8 ± 0.8

1 h  TPP LONDs

Mouse 1 31.7

N/A N/A

3.5 x 1013

N/AMouse 2 33.6 3.7 x 1013

Mouse 3 25.2 2.7 x1013

24 h TPP LONDs

Mouse 1 35.3

N/A N/A

3.9 x1013

N/A
Mouse 2 27.5 3 x1013

Mouse 3 29.3 3.2 x1013

Mean ± SD 30.4 ± 3.8 3.3 x1013 ± 4.5 x1012
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Figure 5.2 Tumour histology 1 h post-injection with CA4 TPP LONDs, TPP 

LONDs or free CA4 in DMSO/peanut oil. 

Histological images of tumours stained with H & E 1 h post-injection. (A) CA4 TPP 

LONDs treated tumour showing some evidence of haemorrhage (H) surrounded by 

viable tumour cells (Tu). Top image show the entire tumour section and square box 

or boxes show the area of the bottom image or images. (B) Tumour post-injection 

with TPP LONDs showing potential haemorrhage in the necrotic area (N). (C) Tumour 

post-injection with free CA4 DMSO/peanut oil showing areas of central haemorrhage 

in the necrotic areas of the tumour and peripheral haemorrhage. Scale bars indicate 

2 mm and 0.2 mm. Prep. numbers 8 and 9 were used. 
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Figure 5.3 Tumour histology 24 h post-injection with CA4 TPP LONDs, TPP 

LONDs or free CA4 in DMSO/penaut oil.  

Histological images of tumours stained with H & E 24 h post-injection. (A) Tumour 

post-injection with CA4 TPP LONDs showing extensive central haemorrhage (H). (B) 

Tumour post-injection with free CA4 DMSO/peanut oil. Haemorrhage was observed 

near viable tumour cells (Tu). (C) Large areas of viable tumour cells were observed 

in tumour post-injection with TPP LONDs. Top image show the entire tumour section 

and square box shows the area of the bottom image. Scale bars indicate 2 mm and 

0.2 mm. Prep. numbers 8 and 9 were used.  
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The results however, showed that at 1 h post-injection there was higher % of 

haemorrhage in 1/3 (7%) tumours with free CA4 compared to TPP LONDs. 

Interestingly, substantial haemorrhage was only observed 24 h after administration 

of CA4 TPP LONDs in 1/3 tumours (9%). This result points towards a potentially 

delayed PD response from the CA4 TPP LONDs.  Less than 0.5% haemorrhage was 

observed in 1/3 tumours in the TPP LONDs group following 1 h post-injection, 

indicating that anything ≤ 0.5% haemorrhage could be considered as the background 

level. There was no correlation between the % area with haemorrhage and % area 

with necrosis using Spearman’s correlation coefficients (Figure 5.4 C).  

It was shown previously (section 4.6) that extended exposure (24 h) of SW480 cells 

to CA4 in vitro resulted in the accumulation of SW480 cells in G2/M phase of the cell 

cycle. To investigate the effect of CA4 TPP LONDs on cell cycle regulation in vivo, 

the number of mitoses in tumour tissues from CA4 TPP LONDs and control animals 

were determined (Figure 5.4 D). Although an increase in mitoses was observed 24 h 

post-injection with CA4 TPP LONDs and free CA4 in DMSO/peanut oil, these were 

not significantly different from control TPP LONDs (Mann-Whitney U test, two-tailed). 

Haemorrhage is often associated with a reduction in the number of blood vessels as 

shown previously with CA4P (Nabha et al., 2001). As CA4 delivered by TPP LONDs 

and free CA4 showed some evidence of haemorrhage 1 h and 24 h post-injection, 

MVD was determined in tumour tissues. The immunostained CD31 pattern 1 h and 

24 h post-injection in all experimental cohorts appeared very similar (Figure 5.5 A I-

IV) with no significant differences in MVD between the groups at any time point tested 

(Figure 5.5 C).  

5.2.2 Biodistribution of CA4 and its main metabolite CA4G 

following a single dose of CA4 TPP LONDs  

No statistically significant differences were observed in tumour PD response post-

injection with CA4 TPP LONDs, free CA4 in DMSO/peanut oil or TPP LONDs. To 

determine if delivering CA4 by TPP LONDs altered drug PK, the concentrations of 

CA4 and its main metabolite, CA4G, in tumour, liver and plasma were determined 

from all experimental groups harvested 1 h post-injection using LC-MS/MS (sections 

2.6 and 3.6.2 for method development details).   
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Figure 5.4  % haemorrhage, necrosis and number of mitoses per mm2 of tumour 

post-injection with CA4 TPP LONDs, free CA4 in DMSO/penaut oil and TPP 

LONDs.  

(A) % area with haemorrhage per mm2 of tumour. (B) % area with necrosis per mm2 

of tumour. (C) The relationship between % area with necrosis and % area with 

haemorrhage using Spearman’s correlation showed no correlation between the two 

variables (r=-0.04, p=0.9, 95% confidence interval -0.5 to 0.4, two-tailed). The solid 

line denotes line of best fit and the dotted lines indicate the 95% confidence band. 

(D) Number of mitoses per mm2 of tumour was determined. No statistically significant 

differences were observed between the experimental cohorts in terms of % 

haemorrhage, necrosis and mitoses (Mann-Whitney U test, two-tailed). Straight lines 

(⎯) represent the median. Prep. numbers 8 and 9 were used.  
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The results in Figure 5.6 A showed detectable/or above LOD (10 ng) CA4 in tumour 

tissues from 2/3 mice in the CA4 TPP LONDs group and 2/3 mice in the free CA4 in 

DMSO/peanut oil group. Interestingly, the concentration of CA4 measured (median 

1380 ng/g) from CA4 TPP LONDs treated tumours was not significantly different from 

that in tumours of the free CA4 in DMSO/peanut oil group (median 2389 ng/g) which 

received approximately four times the dose of CA4. CA4 was not detected in any liver 

or plasma samples from the CA4 TPP LONDs group. In contrast, it was detected in 

1/3 livers and 1/3 plasma samples with free CA4 in DMSO/peanut oil.  

Due to the lack of a CA4G standard, the presence and PA of CA4G could be recorded 

but not quantified (Figure 5.6 B) and therefore the LOD for CA4G is unknown. CA4G 

was present in 5/6 liver samples analysed and was only detected in tumour samples 

and plasma from mice receiving free CA4 DMSO/peanut oil. This suggested that CA4 

when free was rapidly glucuronidated. The ratio of the CA4 PA and CA4G PA was 

determined where possible (Figure 5.6 C). This showed that CA4 was mainly 

converted to CA4G in the liver and plasma and to a lesser extent in the tumour (Figure 

5.6 C). Due to technical issues, the 24 h post-injection PK samples were unable to 

be analysed.  

5.3 Multiple dosing of SW480 xenografts with CA4 TPP 

LONDs  

Following, confirmation of intratumoural delivery of CA4 by CA4 TPP LONDs (section 

5.2), the potential of CA4 TPP LONDs to improve the therapeutic index and therefore, 

anti-tumour activity of CA4 was investigated using a multiple dosing schedule. Mice 

bearing SW480 human CRC xenografts were sorted into three experimental cohorts 

receiving CA4 TPP LONDs (n=4), free CA4 in DMSO/peanut oil (n=6) or 

DMSO/peanut oil (n=6) according to tumour volume (Figure 5.7 A and B). On days 

11, 14 and 18 of tumour growth mice were i.v. injected with 2 x 1013 CA4 TPP LONDs 

which equated to a 3 mg/kg dose or i.p. free CA4 in DMSO (10%)/peanut oil at the 

same 3 mg/kg dose or an equivalent volume of DMSO (10%)/peanut oil (Figure 5.7 

B). Tumour volumes measured by HFUS were recorded the day before each 

treatment (Tx) and body weights were also monitored throughout the study as an 

indicator of wellbeing. 
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Figure 5.5 MVD 1 h and 24 h post-injection with CA4 TPP LONDs, free CA4 in 

DMSO/peanut oil and TPP LONDs.  

Immunohistochemical images of tumours stained with a rat anti-mouse CD31 

antibody and CD31 + vessels were visualised with DAB. (A-I) Tumour section 1 h 

post-injection with CA4 TPP LONDs showing CD31 positive vessels (V) (arrows, 

representative vessels). (A-II) Tumour section 1 h post-injection with free CA4 in 

DMSO/peanut oil, areas with a number of CD31 + vessels were observed. (A-III) 

Tumour section 1 h post-injection with TPP LONDs, CD31 + vessels were observed. 

(A-IV) 24 h post-injection with CA4 TPP LONDs. (A-V) 24 h post-injection with free 

CA4 in DMSO/peanut oil. (A-VI) 24 h post-injection with TPP LONDs. CD31+ vessels 

were observed in all experimental cohorts. Scale bars indicate 100 μm. (B) No 

primary control. (C) MVD: number of CD31+ blood vessels per 0.79 mm2 of tumour  

(n=4 hot spots). Straight lines (⎯) represent the median. No statistically significant 

differences were observed (Mann-Whitney U test, two-tailed). Prep. numbers 8 and 

9 were used.  
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Figure 5.6 In vivo concentrations of CA4 and its major metabolite CA4G, 1 h 

post-injection with CA4 TPP LONDs and free CA4 in DMSO/peanut oil.  

SW480 tumour xenografts were established in CD-1® nude male mice. On day 10 of 

tumour growth, mice were injected i.v. through the tail vein with a dose of 12.8 mg/kg 

CA4 TPP LONDs or i.p. with 50 mg/kg CA4 DMSO/peanut oil. After 1 h and tumour, 

liver tissue were excised and blood for plasma collected (n=3 per group). The 

samples were homogenised, dried, reconstituted in MeOH and analysed by LC-

MS/MS for CA4 and CA4G detection. (A) Concentration of CA4 in ng/g of tumour, 

liver and ng/mL of plasma. The LOD for CA4 on LC-MS/MS was 10 ng. (B) PA of 

CA4G in tumour, liver and plasma samples. (C) Conversation of CA4 to CA4G ratio. 

Straight lines (⎯) in A and B show the median. Using a Mann-Whitney U test (two-

tailed) no statistically significant differences were observed.  
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Figure 5.7 Treatment of SW480 human CRC xenografts with CA4 TPP LONDs. 

(A) SW480 human CRC xenografts were established in BALB/c nude male mice by 

s.c. injection of 5 x 106 cells on day 0. On day 7 of tumour growth mice were sorted 

according to tumour volume into three experimental cohorts: CA4 TPP LONDs (3 

mg/kg), Free CA4 in DMSO/peanut oil (3 mg/kg) or DMSO/peanut oil at the 

equivalent volume of free CA4 in DMSO/peanut oil (*). (B) Treatment schedule: 

Treatments (Tx) began on day 11 of tumour growth where mice received 2 x 1013 

CA4 TPP LONDs i.v. through the tail vein, free CA4 DMSO/peanut oil and 

DMSO/peanut oil i.p. Further treatments were performed on days 14 and 18. Tumour 

volume was monitored by HFUS. On day 21, 72 h after the final treatment mice were 

sacrificed and tumours and tissues were collected for ex vivo analysis. CA4 TPP 

LONDs prep. number 7 was used.   
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5.3.1 Anti-tumour activity following multiple dosing with CA4 TPP 

LONDs 

CA4 TPP LONDs inhibited tumour growth compared with DMSO/peanut oil control 

however, this failed to reach a statistical significance (Figure 5.8). The CA4 TPP 

LONDs group and free CA4 in DMSO/peanut oil group showed similar growth rates 

(Figure 5.8). Free CA4 in DMSO/peanut oil treatment significantly inhibited tumour 

growth of SW480 xenografts after the first treatment when compared to control 

DMSO/peanut oil (p=0.01, Mann-Whitney U test, two-tailed) and CA4 TPP LONDs 

(p=0.04, Mann-Whitney U test, two-tailed) (Figure 5.8). Actual tumour volumes from 

HFUS and individual mice tumour volume data for each group are shown in Appendix 

C, Figure C.1. A modest increase in tumour doubling time was observed in CA4 TPP 

LONDs (median tumour doubling time 4.9 days) and free CA4 in DMSO/peanut oil 

(median tumour doubling time 4.4 days) treated groups however, these were not 

significantly different compared to control DMSO/peanut oil (median tumour doubling 

time 3.7 days) (Figure 5.9 A).  

72 h after the final treatment, mice were sacrificed, tumours harvested and weighed 

(Figure 5.9 B). The median tumour weights were 0.8 g, 0.9 g and 1.1 g for CA4 TPP 

LONDs, free CA4 in DMSO/peanut oil and DMSO/peanut oil respectively. It should 

be noted that tumour mass was not recorded for 1/4 animals in the CA4 TPP LONDs 

group. These data support the increased tumour doubling time and growth delay in 

tumours from mice treated with either CA4 TPP LONDs or free CA4 DMSO/peanut 

oil as they weighed less than control DMSO/peanut oil treated tumours. The % 

tumour mass to body weight ratio was also calculated the median % of tumour/body 

weight ratio for mice treated with CA4 TPP LONDs and free CA4 DMSO/peanut oil 

was 4% in both cases, compared to 5% in DMSO/peanut oil mice (Figure 5.9 C).  

As an indication of wellbeing mouse body weight was monitored and the % change 

in body weight throughout the treatment was calculated (Figure 5.9 D). Although not 

statistically significant from control mice treated with DMSO/peanut oil, a mild loss in 

weight (0.4%) was observed in mice treated with CA4 TPP LONDs after the second 

treatment (Figure 5.9 D). Individual mouse weights throughout the treatment regime 

are shown Appendix C, Figure C.2.  
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Figure 5.8 Tumour growth during multiple dosing with CA4 TPP LONDs, free 

CA4 in DMSO/peanut oil and DMSO/peanut oil.  

Tumour volume ratios to day 10 are shown for each group. Tumour growth in the free 

CA4 DMSO/peanut oil group was significantly inhibited on day 13 compared to 

control DMSO/peanut oil  (*, p = 0.01) and CA4 TPP LONDs (*, p = 0.04). Data 

represent the mean and error bars the SEM, p values were determined by Mann-

Whitney U test, two-tailed. The absence of error bars indicates that the errors were 

smaller than the size of the symbol.  
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Figure 5.9 Analysis of tumour response and mouse wellbeing during multiple 

treatments with CA4 TPP LONDs, free CA4 in DMSO/peanut oil and 

DMSO/peanut oil.  

(A) Tumour volumes doubling time in days: Although not significantly different (Mann-

Whitney U test, two-tailed) treated tumours with CA4 TPP LONDs and free CA4 

DMSO/peanut oil had higher doubling times compared to control DMSO/peanut oil. 

Straight lines (⎯) represent the median. (B) Tumour mass (g) on excision following 

three treatments. Tumours were smaller in the two treatment groups, however these 

were not statistically significantly different from DMSO/peanut oil control (Mann-

Whitney U test, two-tailed). Straight lines (⎯) represent the median. (C) % Tumour 

mass/Body weight ratio. Straight lines (⎯) represent the median. (D) % change in 

mouse body weight throughout the treatment regime. This was calculated by dividing 

the weight gained or lost at each measurement by the starting weight x 100. Mice 

treated with CA4 TPP LONDs had a mild loss in body weight after the first and second 

treatment on days 11 and 17. Data represents the median and error bars the 

interquartile range.  
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5.3.2 Tumour histology following multiple dosing with CA4 TPP 

LONDs  

Treatment with CA4 or CA4P leads to extensive haemorrhage evident within the first 

few hours post-injection followed by severe secondary necrosis (Dark et al., 1997; 

Grosios et al., 1999; Malcontenti-Wilson et al., 2001). Perfusion (Table 1.1) in 

tumours treated with CA4 or CA4P begins to recover 24 h post-injection (Maxwell et 

al., 1998; Zhao et al., 2005a; Liu, Mason & Gimi, 2015). This is particularly relevant 

for this study, as tumours were excised 72 h after the final treatment and these would 

potentially be sufficient time for vascular recovery.    

Examination of CA4 TPP LOND treated tumour sections showed areas of central 

haemorrhagic necrosis surrounded by viable tumour rim (Figure 5.10 A-I). In contrast, 

another tumour section from the same group was almost completely necrotic with 

only very small areas of viable tumour cells (Figure 5.10 A-II). These results suggest 

intratumoural delivery of CA4 from the TPP LONDs. Extensive central necrosis with 

a viable tumour rim was also observed after treatment with CA4 in DMSO/peanut oil, 

a large area of haemorrhage was seen at the tumour periphery (Figure 5.10 B). Areas 

of haemorrhage were also observed in tumours from mice treated with control 

DMSO/peanut oil (Figure 5.10 C). Suggesting that some haemorrhage was unrelated 

to treatment and was potentially associated with leaky vasculature.  

To quantitate the degree of haemorrhage and necrosis in each group, the % area of 

tumour per mm2 with haemorrhage and necrosis were determined (Figure 5.11). 

Interestingly, the higher % of haemorrhage was observed in the control 

DMSO/peanut oil group compared to CA4 TPP LONDs and free CA4 in 

DMSO/peanut oil (Figure 5.11 A). However, no statistically significant differences 

were observed between the groups (Mann-Whitney U test, two-tailed). This further 

supported the assumption that the extent of haemorrhage observed was related to 

the inherently leaky tumour vasculature. 

As seen in Figure 5.8 and Figure 5.9 B, tumours treated with DMSO/peanut oil were 

among the largest in terms of size (mm3) and mass (g) from the treatment cohorts. 

Therefore, a correlation between tumour size and % haemorrhage was next 

determined for all groups combined and a weak positive correlation was observed 

using Spearman’s correlation coefficient (r=0.6, p=0.03, Figure 5.11 B). No significant 

differences were observed between the groups in terms of % necrosis (Mann-

Whitney U test, two- tailed) (Figure 5.11 C). Moreover, no significant correlation was  
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Figure 5.10 Tumour histology after multiple treatments with CA4 TPP LONDs, 

free CA4 in DMSO/peanut oil and DMSO/peanut oil. 

Histological images of tumours stained with H & E. (A- I) Tumour tissue 72 h post-

treatment with CA4 TPP LONDs, showing areas of central haemorrhagic necrosis 

(haemorrhage labelled as H and necrosis labelled as N). (A-II) Additionally a different 

tumour from the CA4 TPP LONDs treatment group was completely necrotic with only 

small areas of viable tumour cells (labelled as Tu). (B) Tumour tissue 72 h post-

treatment with free CA4 DMSO/peanut oil showing extensive central necrosis (N) 

with viable tumour cells (Tu) and a large area of haemorrhage at the tumour 

periphery. (C) Tumour tissue 72 h post-treatment with control DMSO/peanut oil 

showing areas of haemorrhage (H), extensive necrosis (N) and viable tumour cells 

(Tu). Adipocytes labelled as A in images. Top image show the entire tumour section 

and square box shows the area of the bottom image. Scale bars indicate 3 mm and 

0.2 mm. CA4 TPP LONDs prep. number 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



170  

observed between % necrosis and tumour volume (Figure 5.11 D) or % haemorrhage 

and % necrosis (Figure 5.11 E) using Spearman’s correlation coefficient. 

MVD was determined to investigate any potential differences in the number of blood 

vessels (Figure 5.12 A and B). The immunostained pattern appeared very similar 

between the two treatment groups and control DMSO/peanut oil. No statistically 

significant differences were observed in MVD between the groups (Mann-Whitney U 

test, two-tailed).  

5.3.2.1 Assessment of heart tissue for cardiovascular toxicity  

A major concern associated with the use of CA4P is cardiovascular toxicity with a 

number of clinical trials reporting such toxicities (Dowlati et al., 2002; Rustin et al., 

2003; Mooney et al., 2009). Previous in vivo work with CA4P in rats at doses ≤ 60 

mg/kg revealed after histopathological examinations of heart tissue, infiltration of 

inflammatory cells around capillaries, pyknosis of the capillary endothelial cells and 

oedema around the capillaries while at a 120 mg/kg dose severe necrosis of the 

myocardium was observed (Tochinai et al., 2016).  

Longitudinal sections of the myocardium from treated animals are shown in Figure 

5.13. The presence of infiltrating inflammatory cells around capillaries, pyknosis 

around the endothelial cells of capillaries or necrosis of the myocardium were not 

observed in any of the cohorts assessed (Figure 5.13 B-D for CA4 TPP LONDs, free 

CA4 DMSO/peanut oil and DMSO/peanut oil respectively).  

5.4 Discussion  

5.4.1 Single dose of CA4 TPP LONDs, free CA4 in DMSO/peanut 

oil and TPP LONDs 

Tumour histology showed that CA4 TPP LONDs caused extensive central 

haemorrhage 24 h post-injection, in contrast, free CA4 in DMSO/peanut oil had 

extensive haemorrhage in the central and peripheral regions of the tumour 1 h post-

injection. As CA4 TPP LONDs are untargeted particles and their average size is <100 

nm it would be plausible to assume that one of the main mechanism of intratumoural 

uptake is the EPR effect. The EPR effect is where NPs ≤ 200 nm such as LONDs 

passively accumulate in tumours due to leaky vasculature. This may explain why 

there is a delayed response in terms of haemorrhage. Another possibility is that CA4 

TPP LONDs are being retained in the tumour where the CA4 payload is slowly 

released. A study with a untargeted NPs carrying both methotrexate and CA4 showed  
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Figure 5.11 Quantitative analysis of tumour histology following multiple 

treatments with CA4 TPP LONDs, free CA4 in DMSO/peanut oil and 

DMSO/peanut oil. 

(A) % are of haemorrhage per mm2 of  tumour. Straight lines (⎯) indicate the median 

value. (B) The relationship between % area with haemorrhage and tumour volume 

using Spearman’s correlation showed a weak positive correlation between the two 

variables (r=0.6, * p=0.03, 95% confidence interval 0.07 to 0.8, two-tailed). (C) % 

necrosis per mm2 of tumour. Straight lines (⎯) indicate the median value. (D) 

Relationship between necrosis and tumour size using Spearman’s correlation 

showed no correlation between the two variables (r=0.3, p=0.31, 95% confidence 

interval -0.3 to 0.7, two tailed). (E) Relationship between % haemorrhage with % 

necrosis. Spearman’s correlation showed no correlation between the two variables 

(r=-0.12, p=0.63, 95% confidence interval -0.6 to 0.4, two tailed). The solid line 

denotes line of best fit and the dotted lines indicate the 95% confidence band in B, D 

and E. CA4 TPP LONDs prep. number 7 was used.  
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Figure 5.12 MVD following multiple treatments with CA4 TPP LONDs, free CA4 

in DMSO/peanut oil and DMSO/peanut oil. 

Immunohistochemical images of tumours stained with a rat anti-mouse CD31 

antibody and CD31 + vessels were visualised with DAB. (A-I) Tumour section from 

CA4 TPP LOND treatment showing a number of  CD31 positive + vessels (labelled 

as V and arrows show some representative vessels). (A-II) Tumour section from free 

CA4 DMSO/peanut oil treatment showing a number of CD31 + vessels. (A-III) 

Tumour section from DMSO/peanut oil treatment group, also showing a number of 

CD31 + vessels. Scale bars indicate 100 μm. Image 1 and 2 represent two different 

FOV from the same tumour section. (B) MVD: number of CD31+ blood vessels per 

0.79 mm2 of tumour  (n=5 hot spots). Straight lines (⎯) represent the median. No 

statistically significant differences were observed by Mann-Whitney U test, two-tailed. 

CA4 TPP LONDs prep. number 7 was used. 
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Figure 5.13 Histological examination of heart tissue following multiple 

treatments with CA4 TPP LONDs, free CA4 in DMSO/peanut oil and 

DMSO/peanut oil. 

Histological images of hearts stained with H & E. (A) Myocardium longitudinal section.  

(B) CA4 TPP LONDs treated heart tissue section. (C) Free CA4 DMSO/peanut oil 

treated heart tissue. (D) DMSO/peanut oil treated heart tissue. No evidence of 

endothelial cell pyknosis around the capillaries or myocardium necrosis, or infiltrating 

inflammatory cells were observed. Scale bars indicate 100 μm and 50 μm. CA4 TPP 

LONDs prep. number 7 was used.   
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a longitudinal increase in CA4 tumour concentration compared to free drug due to 

the EPR effect (Wang et al., 2013). TPP LONDs caused a < 0.5% haemorrhage, the 

low level presumably is due to the inherent leaky architecture of the tumour 

vasculature. Tumour vessels are predominantly thin-walled capillaries or sinusoids 

with more often just an endothelial lining stabilised by a basement membrane 

(Vincent et al., 2005). These are prone to spontaneous haemorrhage (Vincent et al., 

2005).  

Secondary to the haemorrhage effect of CA4 is extensive, central necrosis with a 

characteristic viable tumour rim usually 24 h post-treatment (Grosios et al., 2000). 

CA4 TPP LONDs (12.8 mg/kg) and free CA4 in DMSO/peanut oil (50 mg/kg) did not 

cause any significant central necrosis post-injection. A single i.p. dose of 100 mg/kg 

in murine adenocarcinoma NT tumours and human breast cancer (MDA-MB-231) 

tumours showed the characteristic haemorrhagic necrosis with less than 5% viable 

tumour cells around the rim (Dark et al., 1997). Similar data was reported for SW1222 

tumour xenografts where a single 200 mg/kg dose of CA4P i.p. showed no 

morphological changes after 1 h but at 24 h the centre of the tumour was necrotic 

with only a small viable rim (El-Emir et al., 2005). Another study on SW1222 tumours 

showed that at 30 mg/kg, CA4P produced patchy haemorrhagic necrosis 24 h after 

treatment, whereas 100 mg/kg and 200 mg/kg produced extensive necrosis with only 

a viable rim present consistent with previous reports (Lankester et al., 2007). 24 h 

post-treatment with CA4P (150 mg/kg) in MAC29 tumours caused 90.4% central 

haemorrhagic necrosis within a viable tumour rim (Holwell et al., 2002). 100 mg/kg 

CA4P used in KHT sarcoma xenografts also showed extensive central necrosis and 

a viable rim 24 h after treatment (Li, Rojiani & Siemann, 1998). There was an increase 

in the cell killing effect in KHT sarcomas and this was dose dependent (Li, Rojiani & 

Siemann, 1998).  

Although treatment with free CA4 and CA4 TPP LONDs showed evidence of 

haemorrhage suggesting extravasation of RBCs from vessels, the MVD was not 

affected. A single dose of 100 mg/kg CA4P was found to significantly reduce vessel 

density after 1 h in a mouse model of colorectal cancer metastases (Malcontenti-

Wilson et al., 2001). The same study also reported on the heterogeneity that occurs 

within the tumour after CA4P treatment as some areas of the tumour were affected 

more or differently hence the presence of a viable rim (Malcontenti-Wilson et al., 

2001). The vasculature and endothelial structures in the periphery and central core 

of tumours are different, the vasculature in the periphery being composed of larger 

vessels with faster flowing blood compared to the central vessels with any changes 
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to blood flow at the tumour periphery are less damaging (Tozer et al., 2001). It should 

be noted that lack of significant reduction in MVD does not necessarily point towards 

treatment failure as the functional biology of the tumour, the perfused vasculature, 

maybe altered. Studies using Hoechst 33342 as a marker of perfusion showed that 

blood vessels were still distributed throughout the tumour after a 1 h i.p. dose of 200 

mg/kg but perfusion was confined to the tumour rim (El-Emir et al., 2005). The study 

presented here measured the total number of CD31+ vessels of tumours rather than 

the CD31+ vessels that were actually functional.  

Another histological feature that was examined following single treatment with CA4 

TPP LONDs, TPP LONDs and free CA4 was mitosis. CA4 causes G2/M block 

following 24 h of in vitro exposure therefore, the ability of CA4 to cause G2/M block 

was assumed to lead to increased numbers of mitoses in vivo. This block occurs in 

metaphase during the M phase of the cell cycle (Kanthou et al., 2004) .The results 1 

h post-treatment showed similar numbers of mitoses whereas at 24 h free CA4 and 

CA4 TPP LONDs, showed a trend to a higher number of mitoses compared to the 

control. G2/M arrest was not observed in non-Hodgkin’s lymphoma following 

treatment with 800 mg/kg of CA4P, the authors suggested that the levels of CA4 in 

plasma did not reach the necessary level to cause G2M arrest in vivo as in vitro which 

may be the case here (Nabha et al., 2001).  

Conventional delivery of free drugs requires very high circulating doses to achieve 

the desired bioavailability in tumour tissue. This then produces high concentrations 

of drug circulating throughout the body leading to harmful side effects to other tissues. 

However, NP PK may be very different and the initial stages of NP development 

require insight into tissue biodistribution following systemic administration (Sanhai et 

al., 2008). This work showed that CA4 TPP LONDs at approximately four times lower 

the dose of free CA4 (12.8 mg/kg vs 50 mg/kg), following 1 h post-injection delivered 

similar amounts of CA4 intratumourally. As CA4 was not detected in liver or plasma 

of CA4 TPP LOND treated mice, the levels present might have been below the LOD 

(10 ng). The EPR effect and the LONDs structure, PEG on the surface to increase 

circulation time and improve uptake, small size to allow cellular uptake, may promote 

accumulation in tumour. CA4G was found in the liver of CA4 TPP LONDs treated 

mice suggesting release from the LONDs that were distributed in the liver, this would 

eventually be excreted.  

In contrast, CA4 was found in liver and plasma samples of free CA4 treated mice 

demonstrating non-specific distribution/uptake. Although most of the drug in both 
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cases was in the inactive glucuronide form CA4G suggesting the rapid metabolism 

of CA4 when administered free. CA4G was also detected in the tumour of free CA4 

treated mice, drugs injected i.p. could undergo hepatic metabolism before even 

entering the bloodstream however, this may have escaped from the liver or direct 

intratumoural metabolism.  

Glucuronidation is a key metabolic process involved in CA4 clearance and is 

catalysed by UDP glucosyltransferases, specifically UGT1A9 and UGT1A6 mainly 

expressed in the liver (Aprile, Del Grosso & Grosa, 2010). Previous reports have 

shown that normal colon also expresses UGT1A, including UGT1A9 isoform 

(Strassburg, Manns & Tukey, 1998; Strassburg et al., 1999), possibly as a first-pass 

metabolism before compounds reach the liver. It is therefore not surprising that some 

CRCs have maintained the ability to express some of these UGT1As (Landmann et 

al., 2014). SW480 were found to express low levels of UGT1A, enabling tumour cells 

to directly metabolise drugs (Landmann et al., 2014). This tumour cell direct 

metabolism severely impairs the efficacy of anti-cancer drugs and promotes cancer 

cell resistance. This may also explain the presence of CA4G in tumour samples from 

mice treated with free CA4 in DMSO/peanut oil. CA4G was not detected in tumour 

samples from mice treated with CA4 TPP LONDs, the levels were either below the 

LOD for CA4G (unknown) as CA4 TPP LONDs were slowly releasing CA4 into the 

tumour or CA4 was potentially still trapped in an intracellular compartment 

(endosomes) and not yet released into the tumour cells. However, the former is more 

plausible as extensive haemorrhage is also only observed after 24 h post-injection 

with CA4 TPP LONDs.  

5.4.2 Multiple treatments with CA4 TPP LONDs, free CA4 in 

DMSO/peanut oil and DMSO/peanut oil  

Single doses of CA4P or CA4 are known to either cause no or very modest tumour 

growth delays at doses ranging between 50-500 mg/kg, in contrast, to repeated 

dosing schedules which cause significant growth delays (Grosios et al., 1999; Hill et 

al., 2002). The anti-tumour activity of CA4 TPP LONDs was therefore, evaluated 

following multiple treatments (three in total). Tumour doubling time was insignificantly 

increased in both the CA4 TPP LONDs and free CA4 in DMSO/peanut oil compared 

to DMSO/peanut oil control. Although, tumour volumes were significantly lower in 

mice treated with free CA4 in DMSO/peanut oil than those treated with CA4 TPP 

LONDs and DMSO/peanut oil control after the first treatment. Despite, tumour 

histology showing extensive central necrosis (85% in 1/4) and evidence of 
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haemorrhage after multiple treatments with CA4 TPP LONDs, these observations 

were not statistically different from free CA4 in DMSO/peanut oil and DMSO/peanut 

oil.  

Vincent et al., (2005) treated B16 melanoma tumours with CA4P every 2 days and 

monitored tumour growth for a total of 8 days (four treatments in total) (Vincent et al., 

2005). They used a dose of 5 mg/kg and showed a significant growth delay which 

was associated with extensive necrosis and a reduction in MVD (Vincent et al., 2005). 

In contrast, tumour growth inhibition in colorectal liver metastases was only observed 

after daily dosing of 15 mg/kg for a consecutive 21 days, lower doses were tested 

and, although were all well tolerated, had no effect (Malcontenti-Wilson et al., 2001). 

A significant growth delay was reported in lung cancer xenografts following daily 

doses of 50 mg/kg CA4P for a total of 21 days, this effect was not associated with 

any changes in MVD (Boehle et al., 2001). Another study in non-Hodgkin’s lymphoma 

xenografts investigated the antitumor and anti-angiogenic activity of CA4P (Nabha et 

al., 2001). Different dose ranges were studied; a single dose of 800 mg/kg, two doses 

of 400 mg/kg, four doses of 200 mg/kg and eight doses of 100 mg/kg. Interestingly 

the maximum antitumor activity was observed when CA4P was given at 200 mg/kg 

every day for 4 days (Nabha et al., 2001). This further demonstrates that CA4 activity 

is greatly enhanced when administered at lower doses and more often. The same 

paper demonstrated that 24 h after treatment there was a significant reduction in 

blood vessel % (in the 800 mg/kg or 100mg/kg x8 dose), however after 48 h the 

vessel number started to return (Nabha et al., 2001). Here, no statistically significant 

difference in MVD was observed 72 h after the last treatment potentially this was due 

to recovery such as in the lymphoma xenograft model.  

Collectively, previous work with CA4P show the heterogeneity in tumour response 

between the different types of tumours and the dosing required to cause a significant 

growth delay.  Tumour size also affects tumour response to CA4 treatment. A single 

i.p. injection of 25 mg/kg in rhabdomyosarcomas xenografts in rats showed significant 

growth delay in large tumours >7000 mm3 and no growth delay was observed in small 

tumours <1000 mm3  (Landuyt et al., 2000). Interestingly this tumour growth delay or 

antitumor activity following single treatment was not permanent as tumours resumed 

tumour growth (Landuyt et al., 2000).  

NP formulations of CA4 have also been used in preclinical work. Wakaskar  et al., 

(2005) used polymer micelles to encapsulate CA4. In vivo, they investigated the PK 

of the polymer micelles compared to CA4P 2 and 24 h post-injection with 1 mg/kg 
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and also monitored breast tumour growth after a single 1 mg/kg dose for 5 days. 

Their results showed that the polymer micelles enhanced the potency of CA4 by 

increasing intratumoural uptake and retention compared to CA4P therefore causing 

a significant growth delay (Wakaskar et al., 2015). However, CA4 from the polymer 

micelles was also present in liver, spleen, lungs and kidney tissue 2 h post-injection 

(Wakaskar et al., 2015). A liposome formulation (approximately 100 nm in size) with 

a derivative of CA4 was produced and the group studied their anti-tumour activity in 

Wnt-1 breast cancer xenografts (22 and 40 mg/kg) (Moiseeva et al., 2012). Following 

four treatments once a week the liposome formulation did not cause any significant 

growth inhibition (Moiseeva et al., 2012). The lack of anti-tumour activity might have 

been due to the timings between the treatments as this would allow tumour recovery.   

Systemic administration of non-targeted NPs can preferentially accumulate in tumour 

due to the EPR effect and poor lymphatic drainage however, they can also escape 

from the circulation through vascular openings known as fenestrations into other 

organs (Gaumet et al., 2008). The low dose used 3 mg/kg was well tolerated and did 

not cause any severe toxicities in terms of weight loss or cardiac toxicities when 

assessing heart histology as previously reported in rats treated with 120 mg/kg CA4P 

(Tochinai et al., 2016).  

5.4.3 Conclusions  

The  single dose experiment had some limitations, firstly the small numbers of 

animals per group, made it difficult to distinguish any statistical significant differences 

between the groups. Due to equipment issues, the acquisition of 24 h biodistribution 

data from single treatment with CA4 TPP LONDs was not possible. This might have 

shown an increase in CA4 uptake to support the assumption of a slow release of drug 

from CA4 TPP LONDs or longer retention in the tumour.  

However, in contrast, a longer retention of CA4 TPP LONDs in tumour should 

therefore equate to an enhanced anti-tumour activity, which is not the case following 

multiple treatments with low dose CA4 TPP LONDs. This might be explained by PK, 

non-targeted particles such CA4 TPP LONDs are assumed to have a longer blood 

circulation therefore there is an accumulation of drug in the tumour as shown by the 

1 h biodistribution data (early PK response), however because they are non-targeted 

and not bound to any part of the tumour they can be easily washed out back to the 

blood circulation (late PK response) (Durymanov, Rosenkranz & Sobolev, 2015). 

Figure 5.14 summarises some of these key points. From the literature on CA4P 

tumour resumes growth between 24 and 48 h post-treatment, therefore the timings 
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between the treatments in this study possibly allowed the tumour enough time to 

clear CA4 and begin regrowth. Moreover, the mode of action of CA4 itself might 

hinder the activity of CA4 TPP LONDs. An initial release and/or uptake of a number 

of CA4 TPP LONDs in the tumour could potential cause rapid vascular shutdown 

preventing any further uptake of remaining CA4 TPP LONDs circulating. A full PK 

time course would be required to fully understand the kinetics of intratumoural 

delivery and/or retention. 

In conclusion, CA4 TPP LONDs were able to successfully deliver drug intratumourally 

and cause some initial histopathological changes indicating drug release. The 

multiple dosing schedules pointed towards poor retention in the tumour, indicating 

the need for some form of targeting or potentially a more frequent dosing schedule 

<48 h.  
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Figure 5.14 Schematic showing potential mechanisms for PK and tumour 

histopathological responses following administration of CA4 TPP LONDs.  

(A) It is assumed that untargeted CA4 TPP LONDs preferentially accumulate in the 

tumour region of the vasculature following intravenous administration. (B) Uptake and 

initial over accumulation of CA4 TPP LONDs in the tumour due to the leaky 

vasculature and poor lymphatic drainage (EPR effect) (early pharmacokinetics). 

Because CA4 TPP LONDs are untargeted some fail to remain in the tumour and are 

extravasated back out and washout out through the circulation due to high interstitial 

pressures (late pharmacokinetics). Any trapped CA4 TPP LONDs in the tumour result 

in slow release of CA4 over time and the cause of haemorrhage. (C) Delivery of CA4 

at a high enough dose > 50 mg/kg via the circulation occurs within the first 0.35 h 

(plasma half-life of CA4, Kirwan et al., 2004) of administration resulting in extensive 

haemorrhage due to the rapid effects of CA4. CA4 is then cleared from tumour and 

the circulation. (D) 24 h post-injection of high dose CA4 (free) most of the tumour 

core is necrotic with patchy areas of haemorrhage and the periphery of the tumour 

remains viable. In the case of slow release of CA4 from trapped CA4 TPP LONDs 

the histopathological response would be higher % of haemorrhage and subsequent 

necrosis with a viable rim at a > 24 h time point. The tumour can resume growth from 

this viable rim as it can acquire oxygen and nutrients from nearby normal vessels.  
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6.1 Introduction  

Delivery of CA4 TPP LONDs in vitro leads to extensive changes to the endothelial 

cell cytoskeleton whilst in vivo the results suggested that there is an initial 

accumulation of CA4 TPP LONDs in tumour due to the EPR effect, while the histology 

results suggested that any retained CA4 TPP LONDs lead to the slow release of CA4 

over time into the tumour. However, as CA4 TPP LONDs were untargeted and 

delivered systemically it does not eliminate the potential of unspecific uptake into 

other organs through vessel fenestrations.  

To further improve drug delivery CA4 TPP LONDs were attached to thMBs and 

targeted to VEGFR2 to produce CA4 thMBs as performed for CA4 TA LONDs, 

although, these were produced using a two-step method to avoid the destabilisation 

of the LONDs. The rationale for developing the MBs-LOND construct and using an 

external US trigger as performed for CA4 TA LONDs was to enable the controlled 

release of CA4 at a specific target region thereby minimizing drug release in areas 

not exposed to US. This approach of direct attachment to MBs is preferred over co-

delivery for example, as it will increase the local concentration of drug where US is 

applied and reduces systemic concentrations (Kooiman et al., 2014).  

Significant changes to tumour histology were not observed early post-injection with 

low doses of CA4 TPP LONDs alone, indicating that assessment of tumour histology 

was not sufficient to detect any subtle changes caused by CA4 TPP LONDs. CA4P 

treatment has been shown in a number of studies to cause significant changes to the 

functional vasculature of tumours with the rapid reduction in blood flow caused by 

vasoconstriction or vascular occlusion (Table 1.1. and Figure 1.4). The reduction in 

blood flow was dose-dependent and maximal blood flow shutdown was observed 

within 1-6  h post-injection and was sustained for 24 to 48 h (Siemann, 2011).    

The fluorescent dye, Hoechst 33342, can be used to identify and quantify the 

functional vasculature of tumours in frozen tissue sections when viewed under 

ultraviolet light (Smith et al., 1988). Following, i.v. injection of Hoechst 33342, cells 

surrounding blood vessels are the first to incorporate the dye (Smith et al., 1988). 

Although, not specific for endothelial cells, the rapidity of intracellular uptake of 

Hoechst 33342 in combination with its poor diffusion across cell layers make it a 

useful and easy imaging tool for measuring tumour perfusion in situ (Smith et al., 

1988; Goertz et al., 2002). Measurements of tumour perfusion by Hoechst 33342 

have been correlated with measurements of perfusion by High Frequency Doppler 

US imaging (Goertz et al., 2002). Detection of total Hoechst 33342 in the tumour can 
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act as a relative global index of the whole tumour perfusion (Wildiers et al., 2003). 

Hoechst 33342 has been extensively used to study perfusion in CA4P and CA4-

treated tumours, with results showing a significant reduction within the first few hours 

post-injection (Dark et al., 1997; Grosios et al., 1999; Chaplin & Hill, 2002; El-Emir et 

al., 2005; Salmon & Siemann, 2007).  

Following, production of ThMBs with CA4 TPP LONDs (CA4 thMBs), the aim of this 

work was to test potential release of CA4 from US-triggered thMBs in vitro and to 

assess, using Hoechst 33342, changes in tumour blood flow as an indicator of drug 

release and/or uptake from CA4 in vivo.  

6.2 CA4 ThMBs in vitro 

To enable the controlled delivery, retention and release of CA4 from LONDs, they 

were attached to thMBs which are targeted to VEGFR2. CA4 thMBs were produced 

on-chip using a two-step process (methods section 2.4.1.2). Briefly, MBs were 

formed prior to LOND attachment. The NeutrAvidin functionalised LONDs were 

introduced into the chip via a different inlet channel further downstream from MB 

production. MBs and LONDs were then allowed to mix along a serpentine channel 

and assemble via NeutrAvidin-biotin binding (Figure 1.8). The duration of LOND MB 

mixing along the serpentine was approximately 1.14 s. (Mico, 2017).  

To investigate delivery of CA4 via thMBs with and without the US trigger, +/- T, in 

vitro, assessment of MT disruption using IF was performed. 5 x 104 CA4 thMBs which 

equated to a 100 nM CA4 concentration were used to treat VEGFR2 expressing SVR 

cells for 2 h at 37°C. An US trigger was applied to the SVR cells using the specifically 

designed UARP, four minutes after the CA4 thMBs were added to the SVR cells 

which allowed for optimal binding. The trigger was tone burst and results in thMB 

destruction (McLaughlan et al., 2017). The results in Figure 6.1, showed untreated 

SVR cells exposed to the US trigger alone with MT filaments spreading throughout 

the cytoplasm (Figure 6.1 A), indicating that the trigger alone did not cause any 

apparent morphological changes to the cells. In contrast, SVR cells treated with CA4 

TPP LONDs + T and CA4 thMBs + T showed  MT disruption characteristic of the 

uniformly stained pattern of dispersed tubulin throughout the cytoplasm as a result of 

depolymerised MTs (Figure 6.1 B and C).  
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Figure 6.1 CA4 thMBs with an US trigger in vitro.  

To assess delivery of CA4 by US-triggered thMBs, SVR cells were treated with CA4 

thMBs followed by an US trigger (+ T) and MT disruption was investigated by IF. CA4 

thMBs (targeted to VEGFR2) were produced on-chip using a two-step process, with 

the slow mixing and attachment of NeutrAvidin functionalised CA4 TPP LONDs 

downstream of MB production. 3.4 x 107/mL CA4 thMBs were produced with a mean 

size of 2.4 ± 1.5 μm. 5 x 104 CA4 thMBs were added onto the SVR cells which 

equated to a 100 nM CA4 concentration. CA4 thMBs were allowed four minutes to 

bind to VEGFR2 on SVR cells and then were burst by an US using the specifically 

designed UARP (10 µs, tone burst, PRF 1 kHz with a peak negative pressure of 260 

kPa). Following, US the cells were incubated for 2 h at 37°C, cells were subsequently 

fixed, immunostained for β-tubulin using a mouse monoclonal anti-β-tubulin antibody 

and visualised using a biotinylated rabbit anti-mouse and FITC-labelled avidin. The 

slides were mounted with prolong Gold containing DAPI. (A) Untreated control SVR 

cells + T, showed filamentous MTs spreading throughout the cytoplasm. (B) SVR 

cells exposed to 100 nM CA4 TPP LONDs + T, caused MT disruption characteristic 

of tubulin dispersed throughout the cytoplasm as a result of MT depolymerisation. (C) 

SVR cells treated with 5 x 104 thMBs with CA4 TPP LONDs at 100 nM + T showed 

disrupted MTs, characterised by complete depolymerisation with a subsequent 

tubulin dispersion throughout the cytoplasm. Inset images show magnified cells in 

panels A-C. (D) No primary antibody, with minimal background indicating the 

specificity of the anti-β-tubulin antibody. Scale bars indicate 50 μm. Prep. number 8 

was used. 
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IF staining of β-tubulin from untreated SVR cells without T, showed long filamentous 

MTs spreading throughout the cytoplasm (Figure 6.2 A). Treatment with CA4 TPP 

LONDs which were used as a positive control at 100 nM caused MT disruption and 

this was characterised by tubulin dispersed throughout the cytoplasm as a result of 

MT depolymerisation and uniformly stained it and with tangled MTs around nuclei 

(Figure 6.2 B). Interestingly, 100 nM CA4 thMBs – T also caused MT disruption with 

the same pattern as observed for CA4 TPP LONDs (Figure 6.2 C). This suggested 

that CA4 was released from the thMBs construct and entered into SVR cells in the 

absence of an US trigger. The 2 h incubation time presumably resulted in dissolution 

of thMBs whereby the gas core was lost and CA4 TPP LONDs were free to be 

internalised into SVR cells.  

6.3 Delivery of CA4 thMBs in vivo  

To investigate delivery of CA4 via US-triggered thMBs in vivo for the first time a small-

scale pilot study was conducted and measurements of tumour and tissue perfusion 

using Hoechst 33342 as a marker of perfusion were performed. Mice bearing SW480 

human CRC xenografts on day 11 of tumour growth were sorted into three groups 

according to HFUS tumour volume measurements (Figure 6.3). On day 14 of tumour 

growth one group (n=4) received a 200 μL i.v. infusion (0.1 mL/min) of 1.65 x 106 

thMBs with CA4 TPP LONDs at a dose of 0.001 mg/kg. The concentration, diameter 

and CA4 loading of the CA4 thMBs solution measured by LC-MS/MS was 8.25 x 

106/mL, 2.6 ± 1.5 µm and 0.0001 mg/mL respectively (Appendix D, Figure D.1). It 

should be noted that this dose is the maximum possible dose that can be delivered 

by CA4 thMBs when using prep. number 10 (Table 4.1) for production as this needed 

to be diluted by 2000 to 1011 LONDs/mL which is further diluted by 2. The second 

group (n=3) received a 100 μL i.v. infusion (0.1 mL/min) of CA4P in PBS at 50 mg/kg 

as a positive control as this dose has been shown to cause reduction in perfusion 

and also to enable i.v. administration (Chaplin, Pettit & Hill, 1996). The third group 

(n=3) received a 100 μL i.v. infusion (0.1 mL/min) of PBS. The i.v. infusion was well 

tolerated with no immediate adverse reactions. 1 h post-injection all mice received a 

15 mg/kg i.v. injection of Hoechst 33342 and were sacrificed 1 min later and tumour, 

liver and heart tissue were harvested. To assess tumour perfusion 1 h post-injection 

was chosen as previous studies using CA4P in both colon and mammary carcinoma 

cells have shown this to be the time of maximal perfusion reduction (Murata, 

Overgaard & Horsman, 2001; El-Emir et al., 2005).  
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Figure 6.2 CA4 thMBs without an US trigger in vitro.  

To assess delivery of CA4 thMBs in vitro, MT disruption was investigated. CA4 TPP 

LONDs were used as a positive control at the same concentration. CA4 thMBs were 

produced on-chip using a two-step process, with the slow mixing and attachment of 

NeutrAvidin functionalised CA4 TPP LONDs downstream of MB production. 3.4 x 

107/mL CA4 thMBs were produced with a mean size of 2.4 ± 1.5 μm. 5 x 104 CA4 

thMBs were added onto the SVR cells which equated to a 100 nM CA4 concentration. 

Cells were incubated for 2 h at 37°C. Following 2 h at 37°C, cells were fixed,  

immunostained for β-tubulin using a mouse monoclonal anti-β-tubulin antibody and 

visualised using a biotinylated rabbit anti-mouse and FITC-labelled avidin. The slides 

were mounted with prolong Gold containing DAPI. (A) Untreated SVR cells with long 

MT filaments. (B) 100 nM CA4 TPP LONDs resulted in MT disruption, with some 

tangled MTs around the nuclei and some that had depolymerised and tubulin 

dispersed throughout the cytoplasm. (C) 5 x 104 CA4 thMBs at 100 nM, caused MT 

disruption characteristic of depolymerised MTs uniformly staining the cytoplasm of 

cells. Inset images show magnified cells in panels A-C. (D) No primary antibody, with 

minimal background indicating the specificity of the anti-β-tubulin antibody. Scale 

bars indicate 50 μm. Prep. number 8 was used.  
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Figure 6.3 Delivery of CA4 by US triggered thMBs in vivo. 

(A) Schematic showing the experimental cohorts: Briefly, SW480 tumour xenografts 

were established in CD-1®  nude mice by s.c. injection of 5 x105 cells on day 0. On 

day 11 of tumour growth tumour volumes were measured by HFUS and mice were 

sorted into three groups accordingly: CA4 thMBs (0.001 mg/kg) + T (n=4); Free CA4P 

in PBS (50 mg/kg) + T (n=3); PBS (* equivalent volume to CA4P) + T (n=3). All were 

administered via i.v. infusion through the tail vein (0.1 mL/min). (B) Tumour volumes 

on day 11 used for randomisation. Straight lines (⎯) represent the median value. No 

statistically significant differences were observed between the tumour volumes of the 

three experimental cohorts (Mann-Whitney U test, two tailed). Prep. number 10 was 

used.  

 

 

CA4 thMBs

(0.001 mg/kg)

+ T

n=4

PBS

+ T

n=3

Free CA4P in 
PBS

(50 mg/kg)

+ T

n=3

A

B

CA4 thMBs Free CA4P PBS 
0

200

400

600

Tu
m

ou
r V

ol
um

e 
(m

m
3 )

 
(H

FU
S)

D
ay

 1
1

in PBs
+T

+T+T



189  

6.3.1 Tumour histology 1 h post-injection with CA4 thMBs, CA4P 

and PBS 

The morphology of SW480 xenografts 1 h post-injection with very low dose CA4 

thMBs was assessed. The results shown in Figure 6.4 A-C for CA4 thMBs + T, free 

CA4P + T and PBS control + T respectively, showed that tumour morphology was 

similar between the groups. Although, areas with haemorrhage, especially in the CA4 

thMB + T group and CA4P + T treated xenografts were observed, this was also 

observed in the PBS + T group suggesting that this was the background level of the 

inherent leaky tumour vasculature.  

6.3.2 Tumour perfusion 1 h post-injection with CA4 thMBs, CA4P 

and PBS  

In vivo functional vasculature was assessed by in-situ staining with Hoechst 33342. 

CD31 staining was also used as a marker of endothelial cells (blood vessels). Co-

registration of fluorescence labelling for Hoechst 33324 and CD31 showed that 

tumour perfusion in the tumour core was reduced in SW480 xenografts 1 h post-

injection with CA4 thMBs + T and free CA4P + T compared to PBS + T controls 

(Figure 6.5). The reduction in perfusion was evident by the very weak intensity of 

Hoechst 3342 staining. Occasionally, within the same tumour at a different FOV in 

both CA4 thMBs and free CA4P, well perfused vessels and surrounding cell nuclei 

were observed (Figure 6.5). In the CA4 thMB + T and free CA4P + T groups in 

contrast to the tumour core, the periphery of the same tumours was well perfused 

similar to the PBS + T group (Figure 6.6) suggesting, that the tumour core was more 

susceptible to the effects of CA4 thMBs + T and CA4P + T.  

To quantitate the reduction in perfusion observed, fluorescent images from tumour 

core were scored as described in section 2.5.10.1. Hoechst 33342 intensity was 

scored as an index of tumour perfusion, using a scale from 0 to 3, with 0 being the 

least perfused with no Hoechst 33342 staining and 3 being the highest score (Figure 

6.7). Although the median score values for Hoechst 33342 intensity were lower in the 

treated groups (CA4 thMBs + T and CA4P + T) compared to PBS these did not reach 

statistical significance (Figure 6.7 B). This was potentially due to the small animal 

numbers used per group. A no Hoechst 33342 perfusion marker tumour control is 

shown in Appendix D, Figure D.2.  
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6.3.3 Perfusion in heart and liver tissue 1 h post-injection with 

CA4 thMBs, free CA4P and PBS 

To investigate potential off-target toxicity and release of CA4 from thMBs, perfusion 

in heart and liver tissues was assessed using Hoechst 33342. Heart was chosen due 

to the cardiovascular toxicities associated with CA4 and liver because it is the main 

organ responsible for metabolising CA4 (Rustin et al., 2003; Aprile et al., 2007).  

The results for liver and heart tissue are shown in Figure 6.8 and Figure 6.9 

respectively. Qualitative assessment of the fluorescent images between the three 

experimental groups in both liver and heart tissue did not show any significant 

differences in the staining pattern of Hoechst 33342 and hence tissue perfusion. 

 

6.4 Discussion 

6.4.1 Production of CA4 thMBs  

External triggering of NP loaded MBs through US enhances drug uptake, while 

targeting enhances the accumulation and attachment to the target side (Lentacker, 

De Smedt & Sanders, 2009).  The initial aim of the study was to produce CA4 thMBs 

using a two-step method, which resulted in a concentration of thMBs of approximately 

107/mL. The concentration produced in this two-step microspray regime was 

significantly lower than previously reported for the single step regime used for 

production of thMBs carrying liposomes (approximately 109 bubbles/mL) (Peyman et 

al., 2012). The lower CA4 thMB/mL concentrations were due to the addition of CA4 

TPP LONDs downstream of MB production, which increasing the overall liquid 

volume produced and diluting the final CA4 thMB concentration/mL by 2. The low 

CA4 drug concentration is due to the initial dilution of CA4 TPP LONDs to a 

concentration of 1011/mL. Moreover, this low concentration of CA4 thMBs/mL also 

hinders their use for imaging the hydrophobic delivery of CA4 as a bolus of at least 

107 MBs is required for contrast (Lyshchik et al., 2007). 
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Figure 6.5 SW480 tumour perfusion in the core, 1 h post-injection with CA4 

thMBs, free CA4P and PBS.  

Co-registered IF images with Hoechst 33342 and CD31 from frozen tumour sections 

1 h post-injection with CA4 thMBs + T, free CA4P + T and PBS + T. Perfusion staining 

with Hoechst 33342 was performed in-situ while CD31 staining was performed ex-

vivo using a rat monoclonal antibody against CD31 and visualised using a goat anti-

rat secondary antibody Alexa Fluor 568. (A-I) Tumour core 1 h post-injection with 

0.001 mg/kg CA4 thMBs + T showing central reduction in the intensity of Hoechst 

33342 staining therefore, perfusion which was indicative of vascular shutdown. (A-II) 

Different FOV of the same tumour section treated with CA4 thMBs showing a well 

perfused area. (B-I) Tumour core 1 h post-injection with 50 mg/kg free CA4P in PBS 

+ T used as a positive control, showing extensive central reduction in perfusion 

evident by the low intensity of Hoechst 33342. (B-II) Different field of view within the 

same tumour section treated with free CA4P showing a vessel that was well perfused.  

(C) Tumour core 1 h post-injection with PBS + T, showing intense staining of Hoechst 

33342 suggesting good perfusion within the tumours. Scale bars indicate 50 µm. 

Prep. number 10 was used. 
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Figure 6.6 SW480 tumour perfusion in the periphery, 1 h post-injection with 

CA4 thMBs, free CA4P and PBS.  

Co-registered IF images with Hoechst 33342 and CD31 from frozen tumour sections 

1 h post-injection with CA4 thMBs + T, free CA4P + T and PBS + T. Perfusion staining 

with Hoechst 33342 was performed in-situ while CD31 staining was performed ex-

vivo using a rat monoclonal antibody against CD31 and visualised using a goat anti-

rat secondary antibody Alexa Fluor 568. (A) Tumour periphery 1 h post-injection with 

0.001 mg/kg CA4 thMBs + T, had intense staining of Hoechst 33342 indicative of 

good perfusion. (B) Tumour periphery 1 h post-injection with 50 mg/kg free CA4P + 

T, showing intense staining of Hoechst 33342. (C) Tumour periphery 1 h post-

injection with PBS + T, showing intense staining of Hoechst 33342. Scale bars 

indicate 50 µm. Prep. number 10 was used. 
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Figure 6.7 Semi-quantitative analysis of Hoechst 33342 intensity 1 h post-

injection with CA4 thMBs, free CA4P and PBS .  

(A) Representative fluorescence images of Hoechst 33342 and CD31 are shown to 

describe the perfusion intensity scoring system. The number 3 was given to the 

images with the highest Hoechst 33342 intensity, 2 was moderate Hoechst intensity 

33342, 1 was low Hoechst 33342 intensity and 0 was very low intensity to no Hoechst 

33342. Scale bars indicate 50 μm. (B) Results from the semi-quantitative analysis of 

Hoechst 33342 intensity. No statistically significant differences were observed 

between mice treated with PBS + T compared to CA4 thMBs + T (p=0.14, Mann-

Whitney, U-test, two-tailed) or PBS + T compared to CA4P + T (p=0.1, Mann-

Whitney, U-test, two-tailed) or CA4 thMBs + T compared to CA4P + T (p=0.11, Mann-

Whitney, U test, two-tailed). The data represents the median and error bars the 

interquartile range. a.u.: arbitrary units. 
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Figure 6.8 Perfusion of liver tissue 1 h post-injection with CA4 thMBs, free 

CA4P and PBS. 

Co-registered IF images with Hoechst 33342 and CD31 from frozen liver sections 1 

h post-injection with CA4 thMBs + T, free CA4P + T and PBS + T. Perfusion staining 

with Hoechst 33342 was performed in-situ while CD31 staining was performed ex-

vivo using a rat monoclonal antibody against CD31 and visualised using a goat anti-

rat secondary antibody Alexa Fluor 568. (A) Liver tissue section, 1 h post-injection 

with 0.001 mg/kg CA4 thMBs + T. (B) Liver tissue section 1 h post-injection with 50 

mg/kg free CA4P + T. (C) Liver tissue section 1 h post-injection with PBS + T. In all 

three groups the liver tissue around the CD31 positive vessels appeared to be well 

perfused. Scale bars indicate 50 µm. Prep. number 10 was used.  
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Figure 6.9 Perfusion of heart tissue 1 h post-injection with CA4 thMBs, free 

CA4P and PBS.  

Co-registered IF images with Hoechst 33342 and CD31 from frozen heart sections 1 

h post-injection with CA4 thMBs + T, free CA4P + T and PBS + T. Perfusion staining 

with Hoechst 33342 was performed in-situ while CD31 staining was performed ex-

vivo using a rat monoclonal antibody against CD31 and visualised using a goat anti-

rat secondary antibody Alexa Fluor 568. (A) Heart 1 h post-injection with 0.001 mg/kg 

CA4 thMBs + T. (B) Heart 1 h post-injection with 50 mg/kg free CA4P + T. (C) Heart 

1 h post-injection with PBS + T. In all three groups the heart tissue around the CD31 

positive vessels appeared to be well perfused. Scale bars indicate 50 µm. Prep. 

number 10 was used.  
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6.4.2 In vivo evaluation of CA4 thMBs by assessing tumour and 

tissue perfusion  

In vivo delivery of very low dose CA4 thMBs showed that there were no differences 

in tumour histology compared with free CA4P or PBS control group. However, there 

were differences in tumour perfusion in the central core shown by the reduce staining 

of Hoechst 33342 in certain FOV. These did not reach statistical significance 

potentially due to the small mouse numbers per group. 50 mg/kg CA4P caused a 

more severe reduction in perfusion than 0.001 mg/kg CA4 thMBs as the median 

score for Hoechst 33342 intensity was lower but not statistically significant, this was 

potentially due to the difference in dose. Reduction in perfusion has been shown 

previously to be dose-dependent in mammary carcinoma tumours (Murata, 

Overgaard & Horsman, 2001). Tumour periphery was unaffected by CA4 thMBs and 

CA4P as the Hoechst 33342 staining intensity was similar to PBS control. 

Similar results with differences in response between the tumour core and periphery 

have been reported in a number of preclinical studies. For example, studies using 

CA4P at a much higher dose of ≥ 200 mg/kg in SW1222 CRC xenografts reported 

that tumour morphology was unaffected 1 h post-injection while tumour perfusion 

assessed using Hoechst 33342 was significantly reduced in the tumour core 

(approximately 85% reduction) and not the tumour periphery (Pedley et al., 2001; El-

Emir et al., 2005). The same studies in SW1222 CRC xenografts also assessed 

tumour morphology and perfusion 24 h post-injection, they observed that treatment 

with CA4P caused extensive central necrosis with perfusion being reduced in the 

core, in contrast the periphery was composed of viable tumour cells which were well 

perfused (Pedley et al., 2001; El-Emir et al., 2005).  

Salmon and Siemann (2007) assessed tumour perfusion in the periphery or the viable 

rim after CA4P treatment. They reported that following 4 h post-injection with 100 

mg/kg CA4P, an 80% reduction in perfusion was observed in the tumour as a whole 

with a 50% reduction specifically at the tumour periphery assessed by Hoechst 33342 

(Salmon & Siemann, 2007). However, after 48 h post-injection perfusion in the 

periphery had returned to normal levels while in the tumour core it was still 

significantly reduced (Salmon & Siemann, 2007). 

DCE-MRI has also been used to study perfusion in CA4 treated tumours in both 

animal models and phase I human trials (Beauregard et al., 1998; Maxwell et al., 

2002; Galbraith et al., 2003; Stevenson et al., 2003; Zhao et al., 2005a). Initial results 

showed the same patterns as previously mentioned with Hoechst 33342 perfusion 
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staining, 3 h post-treatment with CA4P (100 mg/kg i.p.) there was a reduction in 

perfusion in the central regions of the tumour but not the periphery, perfusion in the 

periphery increased after treatment (Beauregard et al., 1998). DCE-MRI was also 

used to study perfusion in rat breast carcinoma (Zhao et al., 2005a). The results 

showed that a single dose of CA4P (30 mg/kg) caused a significant reduction in blood 

flow (indicative from the reduction in signal) 2 h post administration (Zhao et al., 

2005a). 24 h later, complete recovery was observed in the tumour periphery but not 

the central regions of the tumour (Zhao et al., 2005a). The data from DCE-MRI was 

also confirmed by Hoechst 33342 staining (Zhao et al., 2005a). A phase I clinical trial 

which was conducted in parallel with an in vivo study in rat P22 sarcomas showed 

significant reductions in blood flow measured by DCE-MRI in rats and humans at 4 

to 6 h after administration of CA4P (30 mg/kg for rats, ≥ 52 mg/m2 for humans) with 

no significant reduction in blood flow observed in kidney and muscle tissue (Galbraith 

et al., 2003).  

CEUS using SonoVue MBs has recently been used to quantitatively evaluate the 

efficacy of CA4P in a CT26 CRC model specifically the tumour periphery and core 

(Zhang et al., 2018). Their results showed significant reduction in tumour perfusion 

in the central regions of the tumour compared to the periphery (between 2-12 h post-

treatment), however they observed recovery to the whole tumour by 48 h (Zhang et 

al., 2018).  

There is a clear difference in susceptibility of the tumour to CA4 treatment in the core 

and the tumour periphery. The reason behind this is attributed to the difference in the 

vasculature of the two compartments. The vasculature in the periphery is composed 

of larger vessels with presumably faster flowing blood compared to the central 

vessels (Tozer et al., 2001). Therefore, any changes to the blood flow at the tumour 

periphery are less damaging (Tozer et al., 2001). Nguyen, et al., (2012), investigated 

the differences in tumour vasculature in the periphery and the core of a mouse 

colorectal liver metastases model. They reported that vessels in the periphery due to 

a greater investiture of SMCs were more stable and mature than in the core (Nguyen 

et al., 2012). Other differences include, low levels of hypoxia presumably due to the 

close proximity of normal vessels, higher expression of proangiogenic factors and 

receptors (VEGF) and immune cells in the periphery compared to the central region, 

all these contributed to resistance to treatment with Oxi4503 (Combretastatin A1) a 

derivative of CA4P (Nguyen et al., 2012). It should however be noted that different 

types of tumours will have a different degree of vascularisation therefore, vessel 

morphology and maturity (Nguyen et al., 2012).  
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CA4 thMBs and CA4P did not appear to cause any significant reduction in perfusion 

in heart or liver consistent with previous reports which have studied normal tissue 

perfusion after 1 h and 6 h post-injection with 250 mg/kg CA4P (Murata, Overgaard 

& Horsman, 2001).  

6.4.3 Potential method of release and or uptake of CA4 TPP 

LONDs from thMBs 

US can lead to MB cavitation and depending on the US parameters this can cause 

stable or inertial cavitation subsequently leading to drug uptake through several 

pathways including membrane pore formation-sonoporation, endocytosis and/or 

opening of cell-cell junctions (van Wamel et al., 2006; Meijering et al., 2009; Kooiman 

et al., 2014). The US parameters used such as centre frequency, pulse repetition 

frequency, pulse length acoustic pressure and total exposure time of cells or tumour 

all influence the mechanism of drug uptake (De Cock et al., 2015). It is difficult to 

compare and contrast uptake mechanisms induced by US exposed MBs as in the 

literature a variety of different US settings are used. In vitro, it has been demonstrated 

by De Cock et al., (2015) that high acoustic pressures promote membrane pore 

formation through which drugs can passively diffuse, in contrast, low acoustic 

pressures promote endocytosis through the stimulation of the cytoskeleton (De Cock 

et al., 2015).  

Attached drug carriers such as liposome could also potentially rupture due to the 

applied US (Klibanov et al., 2010). A study using DOX-liposome-loaded 

microbubbles and US (the US exposure settings MI 0.17) showed that these were 

able to improve the anti-tumour activity of DOX compared to DOX-liposomes alone 

and with US (Lentacker et al., 2010). They proposed that US destroys the liposome 

coupled to the MB releasing free DOX near the cell membrane allowing free drug to 

enter more easily and that the resulting perforations on the cell membrane caused 

by the imploded MBs increased uptake of both free DOX and DOX-liposomes 

(Lentacker et al., 2010). De Cock et al., (2016) also studied the release of NPs 

(mRNA lipoplexes) from MBs following US exposure, and they observed two different 

release mechanisms the one being the previously reported local release of NPs 

and/or their contents in the cell surroundings followed be uptake through pores and 

endocytosis and the other mechanism which they termed sonoprinting this was direct 

deposition of the NPs onto the cell (De Cock et al., 2016). Sonoprinting, occurs when 

the MB is close to the cells as the close contact is what promotes NP delivery and 

this can be ensured by targeting (De Cock et al., 2016).  



201  

In this study VEGFR2 targeting promotes the close contact and binding of the CA4 

thMBs to tumour vasculature, subsequently the US applied should lead to MB 

destruction as demonstrated in liposomes (McLaughlan et al., 2017). The applied US 

could potentially also rupture the LONDs leading to the release of CA4, while the high 

forces, shock waves and microjets that are generated during the collapse of the MB 

could lead to the formations of pores and enhanced uptake of free CA4 or any 

remaining intact CA4 TPP LONDs. The proposed mechanism is also summarised in 

Figure 1.9.  

6.4.4 Conclusion 

In conclusion CA4 thMBs were successfully produced, however future work will 

require improvement of the production method to reduce the overall liquid required 

for production and increase the thMB concentrations. It was difficult to distinguish any 

differences in effect caused by CA4 thMBs compared to CA4 TPP alone in vitro using 

the IF assay and the 2 h time point.  

Hoechst 33342 was shown to be a good initial indicator of tumour response to CA4 

thMBs in contrast to the traditionally used methods of histology and tumour volume. 

Collectively the in vivo data presented in this study and previously reported show that 

the very early effects of CA4 treatment either as free drug or delivered by CA4 thMBs 

result in changes in the functional biology of tumours as an early indication of tumour 

response even though there is no evidence of morphological changes. Importantly, 

the very low dose of CA4 in thMBs were sufficient to cause a reduction in perfusion, 

potentially indicating the local release of CA4 via US which subsequently increased 

uptake into tumour cells eliminating the need for high circulating concentrations.  
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7.1 Introduction  

Preclinical data with CA4P as a monotherapy report that despite the rapid reduction 

in tumour perfusion and extensive secondary central necrosis, only moderate effects 

on tumour growth are observed after multiple treatments (Nabha et al., 2001; Hill et 

al., 2002). Tumours regrow from the viable rim, which is a major cause of recurrence 

(Dark et al., 1997; Chaplin & Hill, 2002). CA4P induced hypoxia through upregulation 

of hypoxia-inducible factor-1α (HIF-1α) expression and vascular mimicry can promote 

cell survival and angiogenesis (Yao et al., 2015; Liang, Ni & Chen, 2016). Mobilisation 

of bone marrow derived circulating endothelial progenitor cells (CEPs) has also been 

described, and together with hypoxia represent two key factors in treatment 

resistance (Liang, Ni & Chen, 2016). Treatment with CA4P leads to the accumulation 

of CEPs, these home to sites of viable tumour cells in the rim, where they incorporate 

into the endothelial cells of tumour vessels and promote revascularisation (Shaked, 

2006). An  increase in CEPs after CA4P treatment has also been observed in a Phase 

I clinical trial (Nathan et al., 2012). To control or prevent regrowth from the viable rim, 

VDAs such as CA4P have been used in combination with anti-angiogenic agents 

(e.g. bevacizumab) (Nathan et al., 2012), chemotherapy (e.g. 5-FU and irinotecan) 

(Grosios et al., 2000; Wildiers et al., 2004), radiotherapy (Murata, Overgaard & 

Horsman, 2001; Ng et al., 2012) and radio-immunotherapy in vivo and in clinical trials 

(Pattillo et al., 2005; Meyer et al., 2009).  

Low dose US triggered CA4 thMBs caused a reduction in tumour core perfusion 1 h 

post-injection, indicating the release and subsequent intratumoural uptake of CA4 

from the thMB construct (Chapter 6). CA4 thMBs could be used as a monotherapy, 

as the attachment to the thMB is hypothesised to enhance CA4 delivery and 

therefore, improve the therapeutic effect. However, previous data presented (Chapter 

5), using CA4 TPP LONDs as a monotherapy showed a modest but insignificant 

tumour growth inhibition. Although, a better tumour response was anticipated with 

US triggered CA4 thMBs, the very low doses that can be achieved may limit its use 

as a monotherapy, CA4 thMBs were therefore evaluated as a combined therapy with 

the conventional chemotherapeutic agent, irinotecan (section 1.1.2.2). Irinotecan is 

a topoisomerase inhibitor used in the treatment of CRC and liver metastases and has 

been shown to have efficacy in low dose treatment schedules (Houghton et al., 1995; 

Fioravanti et al., 2009) and combined therapies (FOLFIRI) (Del Rio et al., 2017).  
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7.2 Irinotecan and US triggered CA4 thMBs combination 

therapy 

To determine the effect of combination therapy with irinotecan and US triggered CA4 

thMBs on the growth of human CRC xenografts, mice bearing SW480 xenografts 

were sorted according to tumour volume into four experimental groups (Figure 7.1). 

Mice received an i.p injection of irinotecan at 10 mg/kg followed 1 h later by an i.v. 

injection through the tail vein of 0.001 mg/kg CA4 thMBs or CA4P at the same dose. 

Control mice were treated with 10 mg/kg irinotecan alone or PBS and all groups 

received an US trigger (+ T). Each group received two Tx per week for a total of five 

Tx. 1 h after the final treatment, mice were administered with 15 mg/kg Hoechst 

33342 to image vascular perfusion in situ and sacrificed one minute later. Tumour 

and tissues were collected for ex vivo analysis (Figure 7.1). The injections were 

performed with the help of Dr Nicola Ingram and Dr Milene Volpato (School of 

Medicine, University of Leeds).  

The mean concentration, diameter and CA4 loading of the thMBs used for the five 

treatments was 3.5 x 107 ± 3.5 x 107 MBs/mL, 4 ± 0.3 μm and 0.0001 ± 0.00006 

mg/mL respectively (Table 7.1 and Appendix E, Figure E.1). Using a mean CA4 thMB 

bolus of 7 x 106 MBs this equated to the 0.001 mg/kg CA4 dose. Irinotecan was 

administered 1 h before CA4, as it was plausible that administering CA4 first would 

result in vascular collapse therefore, potentially hindering the penetration of 

irinotecan. The half-lives of irinotecan, SN38 and SN38G in mouse plasma following 

i.p. administration were determined as approximately 6 h for all three compounds 

(Guichard et al., 1998).  

7.2.1 Effect of irinotecan with US triggered CA4 thMBs on tumour 

growth  

The combination therapy of irinotecan with CA4 thMBs significantly inhibited the 

growth of SW480 xenografts after the first three treatments compared to the PBS 

control group (p=0.05, Mann-Whitney U test, two-tailed, Figure 7.2). The combination 

therapy of irinotecan with CA4P significantly inhibited the growth of SW480 

xenografts from day 17 onwards compared with irinotecan alone and PBS control 

(p=0.04, Mann-Whitney U test, two-tailed, Figure 7.2). The results indicated an 

enhanced effect when irinotecan was combined with CA4P. For pairwise 

comparisons of relative tumour volumes see Appendix E, Figure E.2. Tumour volume  
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Figure 7.1 Treatment schedule for irinotecan and CA4 combined therapy in 

mice bearing SW480 human CRC xenografts.   

(A) Schematic showing the experimental groups used: SW480 tumour xenografts 

were established in CD-1® nude male mice by s.c. injection of 5 x 105 cells on day 0. 

On day 10 of tumour growth tumour volumes were measured by mechanical callipers 

and mice were sorted into four groups according to tumour volume; Irinotecan 

followed 1 h later by CA4 thMBs plus US trigger (+T) (n=6); Irinotecan followed 1 h 

later by CA4P + T (n=9); Irinotecan followed 1 h later by T (n=8); PBS + T (n=5). 

Irinotecan was administered i.p. at a dose of 10 mg/kg, CA4 thMBs and CA4P were 

administered i.v. through the tail vein at a dose of 0.001 mg/kg. (B) Treatment 

schedule: Mice received five treatments (Tx) in total. Tumour volume was measured 

by mechanical callipers before each treatment. 1 h after the final treatment, mice 

received an i.v. injection of 15 mg/kg Hoechst 33342 and sacrificed 1 min later. 

Tissues were collected for ex vivo analysis.  
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Table 7.1 Characterisation of CA4 thMBs. 

 

A total of five preparations of CA4 thMBs were prepared using CA4 TPP LONDs 

prep. number 10. The mean ± SD concentration, diameter and CA4 loading 

measured by LC-MS/MS of the thMBs used for the five treatments was 3.5 x 107 ± 

3.5 x 107 MBs/mL, 4 ± 0.3 μm and 0.0001  ± 0.00006 mg/mL respectively. The mean 

dose administered based on the injection volume of 0.2 mL to a 32 g mouse (average 

weight) was 0.00002 mg which equates to a 0.001 mg/kg dose.  

 

 

 

 

 

 

 

 

 

 

 

CA4 thMB 
prep.

ThMBs
concentration 

x107/mL
Size

µm ± SD
CA4

mg/mL
Dose
mg/kg

1 9 4 ± 2.6 0.0002 0.001

2 5 4.4 ± 2.6 0.0001 0.001

3 2 3.7 ± 2.6 0.0001 0.001

4 0.7 4.2 ± 3.1 0.0002 0.001

5 1 3.6 ± 2.5 0.00006 0.0003

Mean 3.5 4 0.0001 0.001

SD 3.5 0.3 0.00006 0.0003
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Figure 7.2 Effect of combination therapy with irinotecan and CA4 on tumour 

growth.  

Tumour volume ratios to day 10 are shown for each group. Tumour growth in the 

irinotecan with CA4P + T group was significantly inhibited from day 17 onwards 

compared to PBS + T (p=0.01, p=0.02 and p=0.04 respectively). By day 24 after the 

fourth treatment, tumour growth in the combined irinotecan with CA4P + T group was 

inhibited when compared to irinotecan alone + T (*, p=0.04). Tumour growth was also 

significantly inhibited on day 21 in the irinotecan with CA4 thMBs + T group compared 

to PBS control (*, p=0.05). Data represents the mean ± SEM, p values were 

determined by Mann-Whitney U test, two-tailed. 
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data over the treatment course of individual mice from each experimental group are 

shown in Appendix E, Figure E.3. 

After the final treatment, tumours were excised and weighed (Figure 7.3 A). Tumour 

masses were significantly lower in the irinotecan with CA4P group compared to PBS 

(p=0.02, Mann-Whitney U test, two-tailed). Although tumour masses in the irinotecan 

with CA4 thMBs were lower compared to control PBS (median values 0.06 g vs 0.15 

g respectively) these did not reach statistical significance. Tumour mass relative to 

mouse body weight (%) was calculated (Figure 7.3 B) and these were significantly 

lower in the irinotecan with CA4P group compared to PBS (p= 0.03, Mann-Whitney 

U test, two-tailed). The median tumour doubling time in the irinotecan and CA4P 

group was insignificantly increased and tumour regression was observed in 5/9 mice. 

Tumour doubling time was not increased in the irinotecan with CA4 thMBs group 

compared to PBS however regression was observed in 3/6 mice. One tumour from 

the irinotecan alone group had regressed. Tumour doubling time data has been 

divided into two graphs for simplicity (Figure 7.3 C and D). No significant differences 

were observed in tumour doubling time between the groups.   

During treatment, mouse body weight was monitored as an indicator of wellbeing and 

drug toxicity. The % change in body weight was determined (Figure 7.4) and mice in 

the irinotecan alone + T group showed a mild weight loss (< 2%) after the first 

treatment, before recovering by treatment three. Individual mouse body weights 

during the treatment course from day 10 prior to the first treatment are shown in 

Appendix E in Figure E.4.  

7.2.2 Effects of combined therapy of irinotecan and CA4 on 

tumour perfusion  

To assess mechanisms by which the combination therapy of irinotecan and CA4 

thMBs or CA4P enhanced tumour growth inhibition, tumour perfusion was assessed 

by fluorescence microscopy for the perfusion marker, Hoechst 33324. It should be 

noted that 2/9 tumours from the irinotecan with CA4P + T group were not available 

for perfusion analysis due to them being too small as a result of tumour regression. 

Tumour sections were fixed and immunostained with a fluorescent anti-CD31 

antibody to delineate the blood vessels. Co-registration of fluorescent images with 

Hoechst 33342 and CD31 showed that tumour tissue in the PBS and irinotecan alone 

groups was well perfused around areas with CD31 positive blood vessels (Figure 7.5 

A and B). In contrast, perfusion in the core of tumours treated with irinotecan and 

CA4P or CA4 thMBs was almost abolished (Figure 7.5 C, I and D, I). This indicated  
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Figure 7.3 Tumour responses following combination therapy with irinotecan 

and CA4.   

(A) Tumour mass (g) on excision following five treatments. Tumours were 

significantly smaller in the irinotecan with CA4P + T compared to PBS + T (*, p=0.02). 

(B) Tumour mass to body weight ratio (%). Mice in the irinotecan with CA4P + T group 

had a significantly smaller tumour mass to body weight ratio compared to PBS + T 

group (*, p=0.03). (C & D) Tumour doubling time in days divided in two graphs for 

simplicity. Negative values in D indicate tumour regression. Straight lines (⎯) in the 

data represent the median. Significance was determined using a Mann-Whitney U 

test, two-tailed.  
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Figure 7.4 % body weight change during the treatment course with irinotecan 

and CA4. 

CD-1® nude mice bearing SW480 human CRC xenografts were weighed one day 

before each treatment (Tx) and the % body weight change throughout the treatment 

course was determined. This was calculated by dividing the weight gained or lost at 

each measurement by the starting weight x 100. Although, mice in all treatment 

groups showed some mild body weight loss during the treatment course, these were 

not statistically significant (Mann-Whitney U test, two-tailed). Data represents the 

median value and error bars the interquartile range.  
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Figure 7.5 Effect of the combination therapy with irinotecan and CA4 on tumour 

core perfusion. 

Mice bearing SW480 human CRC xenografts were treated twice weekly for a total of 

five treatments, 1 h after the fifth and final treatment, mice were injected with Hoechst 

33342 and sacrificed 1 min later. 10 μm frozen sections were cut from the centre of 

the tumour, fixed and immunostained with a fluorescent rat monoclonal antibody 

against CD31 and visualised using a goat anti-rat secondary antibody Alexa Fluor 

568. Images I and II in each group are of different FOV from the same tumour section. 

(A I-II) Tumour post-treatment with PBS + T showing that the tumour cell nuclei 
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around the CD31 positive blood vessels were well perfused. (B I-II) Tumour post-

treatment with irinotecan + T showing that the tumour cell nuclei around CD31 

positive blood vessels were well perfused. (C – I) Tumour post-treatment with 

irinotecan and CA4P + T showing that perfusion was reduced around the tumour cell 

nuclei. (C – II) Tumour cell nuclei around a CD31 positive blood vessel that was well 

perfused. (D – I) Tumour post-treatment with irinotecan and CA4 thMBs + T where 

perfusion around the CD31 positive blood vessels was almost completely abolished. 

(D – II) An area of a tumour which was not as affected as D – I.  Scale bars indicate 

50 μm.  
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a reduction in functional vasculature suggesting that tumour microenvironmental 

changes may promote the enhanced effect. Occasionally, in both the experimental 

groups treated with irinotecan and CA4P or CA4 thMBs, areas with CD31 positive 

vessels within the same tumour section were more perfused, indicating heterogeneity 

in tumour response to treatment (Figure 7.5 C, II and D, II). Perfusion was also 

assessed in the tumour periphery. Compared to the tumour core, perfusion in the 

periphery was retained in all experimental groups in a manner similar to the PBS 

control group (Figure 7.6 A-D).  

To quantify the reduction in perfusion, different FOV acquired from co-registered 

fluorescent images with Hoechst 33342 and CD31 from the tumour core were scored 

by two blinded independent assessors (the author and Dr Nicola Ingram, School of 

Medicine, University of Leeds). Using a pre-determined scoring system, Hoechst 

33342 intensity was given a score on a scale from 0 to 3, with 0 being the FOV with 

no Hoechst 33342 and 3 being the most intense staining (Figure 7.7 A). Results are 

shown in Figure 7.7 B. Despite changes in Hoechst 33342 intensity when assessing 

the co-registered fluorescence images and the lower median Hoechst 33342 intensity 

scores in the combination groups these failed to reach statistical significance 

(Figure 7.7 B). The data however suggested that there was a greater reduction in 

perfusion in the combination group indicating that this was due to CA4 either from 

CA4 thMBs or CA4P.  

Tumour cell morphology with adjacent immunostained CD31 sections were 

examined to see if the reduction in perfusion observed with Hoechst 33342 intensity 

was associated with necrosis (Figure 7.8). Morphologically, tumours treated with 

irinotecan alone had extensive necrosis (Figure 7.8 B) compared to the other tumours 

which were mainly viable tumour cells (Figure 7.8). The correlation between necrosis 

and perfusion was not formally scored as only a few of the tumours from each group 

were available for histopathological examinations as the tumour tissue available was 

used for perfusion and PK analysis.  
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Figure 7.6 Effect of the combination therapy with irinotecan and CA4 on tumour 

periphery perfusion.  

Mice bearing SW480 human CRC xenografts were treated twice weekly for a total of 

five treatments, 1 h after the fifth and final treatment, mice were injected with Hoechst 

33342 and sacrificed 1 min later. 10 μm frozen sections were cut from the centre of 

the tumour, fixed and immunostained with a fluorescent rat monoclonal antibody 

against CD31 and visualised using a goat anti-rat secondary antibody Alexa Fluor 

568. (A) Tumour post-treatment with PBS + T. (B) Tumour post-treatment with 

irinotecan + T. (C) Tumour post-treatment with irinotecan and CA4P + T.  (D) Tumour 

post-treatment with irinotecan and CA4 thMBs + T. The tumour periphery in all groups 

was well perfused, indicative of the Hoechst 33342 staining intensity. Scale bars 

indicate 50 μm. 
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Figure 7.7 Semi-quantitative analysis of tumour core perfusion using Hoechst 

33342 intensity.  

(A) Representative fluorescence images of Hoechst 33342 and CD31 are shown to 

describe the perfusion intensity scoring system. A score of 3 was given to the image 

with the highest Hoechst 33342 intensity, 2 was moderate, 1 was low and 0 was very 

low or no Hoechst 33342 staining across the FOV. Scale bars indicates 50 μm. (B) 

FOV from the tumour core were scored from two assessors (the author and Dr Nicola 

Ingram, School of Medicine, University of Leeds) blinded to the treatment groups. No 

statistically significant differences were observed between PBS + T compared to 

irinotecan + T (p=0.3), irinotecan and CA4P + T (p=0.2) or irinotecan and CA4 thMBs 

+ T (p=0.05). No statistically significant differences between irinotecan + T compared 

to irinotecan and CA4P + T (p=0.7) or irinotecan and CA4 thMBs + T (p=0.5) were 
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observed. Hoechst 33342 intensity in the irinotecan and CA4P + T was not 

significantly different from irinotecan and CA4 thMBs + T (p=0.7). The data 

represents the median score from the two assessors and the error bars denote the 

interquartile range. Significance was calculated using a Mann Whitney U test, two 

tailed. a.u. arbitrary units.   
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7.2.3 Assessment of liver toxicity following combination therapy 

of irinotecan with CA4 

In rare cases, irinotecan is associated with drug induced steatohepatitis mainly 

characterised by steatosis (when the cytoplasm of the hepatocyte is occupied by fat) 

and lobular inflammation (Ramachandran & Kakar, 2009). Liver histology on H and 

E sections was assessed for these drug-induced toxicities. Perivascular inflammation 

characterised by mononuclear inflammatory cells was observed in all the groups 

(Figure 7.9). Specifically it was observed in 2/5 mice from the PBS group, 3/6 mice 

treated with irinotecan and CA4 thMBs + T, 4/9 mice treated with irinotecan and CA4P 

+ T and 3/8 mice treated with irinotecan alone + T. Inflammatory cells in the control 

PBS group may represent normal resident inflammatory cells that are present in 

healthy livers. The inflammation was considered very mild as it was also observed in 

the PBS group and was only observed in small areas of liver.   

7.2.4 Tumour and tissue metabolism of irinotecan after 

combination therapy with CA4 

To investigate whether or not the metabolism of irinotecan when administered 1 h 

prior to CA4 thMBs or CA4P was altered, concentrations of irinotecan and its active 

and inactive metabolites SN38 and SN38G respectively were determined in tumour 

samples. The concentrations of irinotecan and its metabolites were also determined 

in liver, kidney, spleen, colon, lung, heart and plasma samples to investigate if CA4 

thMBs or CA4P altered the metabolism and/or biodistribution of irinotecan in these 

tissues.  

The LC-MS/MS method used for irinotecan, SN38 and SN38G detection was 

developed by Dr Laura McVeigh (School of Medicine, University of Leeds) and Ms 

Antonia Wierzbicki (Institute of Cancer Therapeutics, University of Bradford) with 

supervision by Prof. Paul Loadman (Institute of Cancer Therapeutics, University of 

Bradford). The concentration of CA4 and the presence of CA4G were also 

determined using the previously described method in sections 2.6 and 3.6.2.  

 



219  

 

Figure 7.9 Liver histology following combination therapy with irinotecan and 

CA4. 

Histological images of liver stained with H & E. (A) Liver from a mouse treated with 

PBS + T. Hepatocytes are shown by the black arrows. (B) Liver from a mouse treated 

with irinotecan +T. (C) Liver tissue from a mouse treated with irinotecan and CA4P + 

T. (D) Liver tissue from a mouse treated with irinotecan and CA4 thMBs + T.  

Mononuclear inflammatory cells are circled in the inset images and were observed in 

all the groups. Scale bars indicate 100 μm. 
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Tumour and tissue drug concentrations are shown in Figure 7.10 and summarised in 

tabulated format in Table 7.2. Irinotecan, SN38 and SN38G calibration curves used 

to extrapolated the data are shown in Appendix E, Figure E.5.  Some tumour samples 

were too small to be cut in half and were used for perfusion analysis only. For LC-

MS/MS analysis these were 8/8 tumours from the irinotecan + T, 6/9 tumours from 

the irinotecan with CA4P + T and 3/6 tumours from the irinotecan with CA4 thMBs + 

T. Not all tumours or tissues analysed had detectable levels of compounds 

(Irinotecan, SN38, SN38G or CA4), potentially due to levels being below the LOD. 

The LOD of all three compounds irinotecan, SN38 and SN38G was 100 pg/mL 

(Information provided by Dr Laura McVeigh, School of Medicine, University of Leeds). 

The LOD of CA4 was 10 ng/mL (Figure 3.16).  

The rationale for administrating irinotecan 1 h prior to CA4P or CA4 thMBs was that 

following intratumoural delivery of irinotecan/SN38/SN38G, CA4 would disrupt the 

vessels causing a reduction in vascular perfusion and subsequently “trapping” the 

compounds in the tumour. The 1 h post-treatment tumour data however, showed no 

significant change in the median concentrations of irinotecan or its two metabolites 

when CA4 was administered either as CA4P or in CA4 thMBs (Figure 7.10 A). CA4 

was not detected in any tumour tissue analysed from the two groups with CA4 

suggesting that this was below the LOD. 

The biodistribution of irinotecan/SN38/SN38G and CA4 was analysed in liver, kidney, 

spleen, colon, lung, heart and plasma samples (Figure 7.10). A significantly higher 

concentration of irinotecan was detected in both liver and heart tissue in the 

irinotecan + T group compared to the irinotecan and CA4 thMBs + T group (p=0.02 

and p=0.04, respectively, Mann-Whitney U test, two-tailed) (Figure 7.10 B and G).  

A significantly higher concentration of SN38G in colon was observed in the irinotecan 

and CA4P + T group compared to the irinotecan + T group (p=0.03, Mann-Whitney 

U test, two-tailed, Figure 7.10 E). The irinotecan + T group had significantly higher 

concentration of SN38 in lung and plasma compared to irinotecan and CA4P + T 

(p=0.04 and p=0.01 respectively, Mann-Whitney U test, two-tailed, Figure 7.10 F and 

H). The concentration of SN38 in plasma of irinotecan + T group was also significantly 

higher than in the irinotecan and CA4 thMBs group (p=0.001, Mann-Whitney U test, 

two-tailed, Figure 7.10 H). CA4 was detected in liver (1/9), kidney (1/9) and spleen 

(2/9) from the irinotecan and CA4P + T group and in the kidney (1/6) and spleen (1/6) 

from the irinotecan and CA4 thMBs + T (Figure 7.10 B-D). Detectable levels of CA4 

in the liver, kidney and spleen are not surprising as CA4 is glucuronidated in the liver 
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and excreted via the kidneys and is consistent with previous biodistribution studies in 

rats (section 1.2.1.10 and Figure 1.5). Moreover, detection of CA4 in one kidney and 

one spleen sample from different mice in the CA4 thMBs + T group suggested that 

CA4 thMBs were present in these tissue, however due to the fact that LC-MS/MS 

measures the total concentration of drug present in a tissue homogenate, it was 

unclear if CA4 was still encapsulated or free.  

The relative % of irinotecan, SN38 and SN38G in each tissue analysed from each 

groups are shown in Figure 7.11. The data shows that the highest levels of 

conversion of irinotecan to SN38 and SN38G are in plasma and liver. Irinotecan, 

SN38 and SN38G were widely distributed in the various tissues. This is presumably 

due to the fact that irinotecan is subject to extensive metabolic conversion by various 

enzymes mainly UGT1A1 which mediates the conversion of SN38 to SN38G and 

cytochrome P-450 isoform 3A (CYP3A4) which gives rise to a number of inactive 

metabolites. (Mathijssen et al., 2001). 

The data showed that the highest % of conversation of irinotecan was in the plasma, 

however, irinotecan was administered i.p. and previous work has shown that 

following i.p. administration, a small fraction of irinotecan can be metabolised in the 

peritoneal space to SN38 via carboxylesterase which have crossed the peritoneal 

membrane from plasma into the peritoneal space (Ahn et al., 2010). Irinotecan is 

subsequently absorbed into the plasma for further metabolism, explaining the highest 

relative % of conversation of irinotecan in the plasma. Irinotecan can be converted to 

SN38 in a number of tissues including lungs, colon, stomach, uterus, pancreas and 

as previously mentioned the liver (Guichard et al., 1998). 

7.3 Discussion  

7.3.1 Anti-tumour activity of combination therapy with irinotecan 

and CA4  

Combined therapies of free CA4P or encapsulated CA4 in targeted NPs with 

conventional chemotherapeutic agents or radiation have shown enhanced tumour 

growth inhibition (Wildiers et al., 2004; Pattillo et al., 2005; Su et al., 2014). In order 

to improve drug delivery of CA4 TPP LONDs and avoid non-specific uptake and 

release into normal tissues, CA4 thMBs were produced. To further enhance 

therapeutic efficacy of CA4 thMBs these were combined with irinotecan. Escoffre et. 

al., (2013) delivered US-triggered MBs 1 h after irinotecan (20 mg/kg) and showed 

an enhanced delivery and tumour growth inhibition. Therefore, delivery of CA4 thMBs  
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Figure 7.10 In vivo biodistribution of irinotecan, SN38, SN38G and CA4. 

Tumour, Liver, kidneys, spleen, colon, heart, lungs and plasma were harvested and 

snap-frozen for LC-MS/MS analysis. (A) Tumour tissue concentrations of 

irinotecan/SN38 and SN38G in ng/g of tissue. 8/8 tumours from the irinotecan + T; 

6/9 tumours from the irinotecan and CA4P + T; 3/6 tumours from the irinotecan and 

CA4 thMBs + T were available for analysis. (B) Liver tissue concentrations of 

irinotecan, SN38, SN38G and CA4 in ng/g of tissue. A significantly higher 

concentration of irinotecan was observed in the irinotecan alone group compared to 

irinotecan with CA4 thMBs (*, p=0.02). (C) Kidney tissue concentrations of irinotecan, 

SN38, SN38G and CA4 in ng/g of tissue. (D) Spleen tissue concentrations of 

irinotecan, SN38, SN3 G and CA4 in ng/g of tissue. (E) Colon tissue concentrations 

of irinotecan, SN38 and SN38G in ng/g of tissue. A significantly higher concentration 

of SN38G was observed in the irinotecan with CA4P group compared to irinotecan 

alone (*, p=0.03). (F) Lung tissue concentrations of irinotecan, SN38 and SN38G in 

ng/g of tissue. Irinotecan + T showed a higher concentration of SN38 compared to 

SN38 in the irinotecan with CA4P + T group (*, p=0.04). (G) Heart tissue 

concentrations of irinotecan, SN38 and SN38G in ng/g of tissue. A higher median 

concentration of irinotecan was observed in heart tissue in mice treated with 

irinotecan + T compared to irinotecan with CA4 thMBs + T (*, p=0.04). (H) Plasma 

tissue concentrations of irinotecan, SN38, SN38G in ng/g of tissue. A higher median 

concentration of SN38 was observed in the irinotecan + T group compared to 

irinotecan with CA4P + T group and CA4 thMBs (*,  p=0.01, **, p=0.001 respectively). 

Straight lines (⎯) represent the median value. Significance was determined using a 

Mann-Whitney U test, two-tailed.  
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Figure 7.11 Relative % of irinotecan, SN38 and SN38G in tissue samples.  

Tumour, Liver, kidneys, spleen, colon, heart, lungs and plasma were collected for 

LC-MS/MS after five treatments and the relative % of irinotecan/SN38/SN38G was 

determined. (A) Relative % of irinotecan, SN38 and SN38G in tissue samples from 

mice treated with irinotecan + T. (B) Relative % of irinotecan, SN38 and SN38G in 

tissue samples from mice treated with irinotecan and CA4P + T. (C) Relative % of 

irinotecan, SN38 and SN38G in tissue samples from mice treated with irinotecan and 

CA4 thMBs + T.  
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was anticipated to improve drug delivery of irinotecan and also enhance its efficacy 

by the presence of CA4 through microenvironmental changes.  

The schedule of administration and tumour type are particularly important for effective 

anti-tumour activity. In this study irinotecan was administered 1 h before CA4, 

because of potential tumour microenvironmental changes hindering the penetration 

of irinotecan following CA4 treatment. A previous study with irinotecan and CA4P in 

a sarcoma model demonstrated that enhanced tumour growth inhibition was 

independent of the administration sequence due to the already increased sensitivity 

of the model to CA4P (Wildiers et al., 2004). Tumour responses have been enhanced 

when CA4P was administered 1 h after cisplatin in rodent and human tumour 

xenografts (Siemann et al., 2002). Triple drug combinations including CA4P, 

paclitaxel and carboplatin have also been conducted in preclinical animal models of 

anaplastic thyroid cancer (Yeung et al., 2007). This study administered CA4P a day 

before carboplatin followed 1 h later by paclitaxel, the triple combination showed a 

significant tumour growth inhibition against anaplastic thyroid cancer (Yeung et al., 

2007). In contrast, another studied in liver tumours showed that if CA4 was 

administered 2 h prior to gemcitabine it significantly decreased the uptake of 

gemcitabine (Fruytier et al., 2016). Work conducted with CA4 in combination with 

radiation in two different mammary carcinoma models KHT and C3H demonstrated 

the importance of scheduling in terms of tumour type (Murata, Overgaard & Horsman, 

2001). Administration of CA4 after or concurrently with radiation in C3H enhanced 

cell killing but not if it was administered before radiation, in contrast, in the KHT 

model, the enhanced activity was independent of sequence (Murata, Overgaard & 

Horsman, 2001). Therefore, generally the greatest anti-tumour activity is observed 

when CA4 or CA4P is administered after or concurrently with a chemotherapeutic 

agent.  

The growth of tumours treated with irinotecan and CA4 thMBs was moderately 

delayed when compared to PBS control xenografts, only reaching statistical 

significance on day 17 after the first two treatments. In contrast, the combination of 

irinotecan with CA4P resulted in significant tumour growth inhibition as well as tumour 

regression. This was also significantly different from irinotecan administered alone. 

The data support the hypothesis that CA4 enhances the anti-tumour activity of 

irinotecan or irinotecan is potentially potentiating the anti-tumour activity of CA4. 

There are at least three mechanisms that can explain the potential in enhanced 

activity: (i) trapping, (ii) different cell targets or (ii) microenvironmental changes.  
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7.3.1.1 The trapping effect 

The potential of trapping chemotherapeutic agents in tumours through vascular 

collapse caused by CA4 and therefore prolonging the exposure time of tumour cells 

to the chemotherapeutic agent, is one of the key features initiating combination 

studies (Siemann et al., 2002; Siemann, 2011). 

The results in the present study did not demonstrate a trapping effect with the 1 h 

time point following the final treatment. The addition of CA4 thMBs or CA4P did not 

appear to alter the early tumour and tissue metabolism of irinotecan as the 

concentrations of irinotecan, SN38 and SN38G were similar between the three 

experimental groups. However, this does not rule out the possibility of trapping. 

Wildiers  et al., (2004) administered irinotecan 1 h before CA4P and observed a 

significant increase in the intratumoural concentration of SN38 measured by HPLC 

from 1 h to 5 h, suggesting the potential trapping of SN38 (Wildiers et al., 2004). 

Morinaga et al., (2003) demonstrated that a CA4 derivative administered at the same 

time as cisplatin, increased the concentrations of cisplatin over time, with the highest 

concentration observed after 96 h (Morinaga et al., 2003).  Therefore, in the present 

study it is plausible that either the time point for collection was too soon to observe a 

trapping effect or potentially the amount of CA4 was insufficient to trap effectively. 

The trapping effect of CA4 has been demonstrated using a NP system, the nanocell, 

encapsulating both CA4 and DOX (Sengupta et al., 2005). The work conducted with 

the nanocell demonstrated a timely release of CA4 in the tumour causing vascular 

collapse followed, by the release and subsequent trapping of DOX in the tumour, 

enhancing anti-tumour effects and reducing toxicity (Sengupta et al., 2005). Gao et 

al., (2015) used MRI to study the trapping of GdDTPA by CA4P, when these two 

agents were co-administered. Their results showed that CA4P prolonged the 

retention time of GdDTPA in tumour, as there was an enhanced contrast signal over 

time without a rapid decline and therefore, concluded that this was due to effective 

trapping (Gao et al., 2015). 

7.3.1.2 Different cell targets 

In a mouse colon adenocarcinoma model (MAC 29) the administration of 5-FU (125 

mg/kg),  20 min prior to CA4P (125 mg/kg) caused a significant growth delay, without 

any evidence of trapping of 5-FU in tumours (Grosios et al., 2000). The study 

therefore, demonstrated that trapping of drugs does not fully explain the enhanced 

anti-tumour activity when CA4 is used in combination (Grosios et al., 2000). The 20 

min time point used was potentially due to the plasma half-life of 5-FU being 15 min 
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in mice (Chadwick & Rogers, 1972). Analysis of the PK parameters in tumour tissue 

using HPLC 4 h post administration of 5-FU with CA4P, showed that 5-FU was rapidly 

cleared from tumours in the combined group vs 5-FU alone (Grosios et al., 2000). 

This was explained by increased metabolism of 5-FU, although the concentrations of 

5-FU in the tumours were lower in the combined group, theoretically the severe 

necrosis caused by CA4P left only a small proportion of target cells for example the 

viable rim for therapy (Grosios et al., 2000). Therefore, irinotecan was potentially able 

to target and eliminate the remaining or CA4 resistant cells in the viable rim.  

The studies described previously investigated the combination of CA4 or CA4P with 

chemotherapeutic agents after a single treatment. In the present work, irinotecan was 

administered using a frequent low dose treatment schedule followed by CA4 thMBs 

or CA4P. CEPs are a major cause for tumour resistance to CA4 as they are recruited 

to the viable rim (Nathan et al., 2012). Frequent low dose administration of 

chemotherapy can exhibit anti-angiogenic properties (Kerbel & Kamen, 2004). Low 

dose irinotecan administered at 10 mg/kg twice a week for a total of four weeks, as 

well as demonstrating an enhanced anti-tumour activity also showed anti-angiogenic 

effects (Murakami et al., 2011). Specifically, low dose irinotecan administered in this 

frequent dosing schedule decreased and continuously suppressed CEPs in a colon 

cancer model (Murakami et al., 2011). This anti-angiogenic activity of low dose 

irinotecan could also explain the potential in enhanced activity when CA4 thMBs or 

CA4P are combined.   

7.3.1.3 Microenvironmental changes  

Tumour microenvironmental changes caused by CA4P or CA4 thMBs may have also 

contributed to the potential enhanced activity. After the final treatment measurements 

of perfusion using Hoechst 33342 showed that both CA4P and CA4 thMBs caused a 

reduction in perfusion compared to PBS control when qualitatively assessing the 

images. However following quantitative assessment despite the lower median 

Hoechst 33342 intensity scores in the combination groups these did not reach 

statistical significance compared to PBS or irinotecan alone (Figure 7.5 and 7.7). 

A previous study reported that a 75 mg/kg single dose of irinotecan alone did not 

cause any reduction in perfused vasculature (Chaplin & Hill, 2002). It should also be 

noted, that a reduction in perfusion is also expected as after the five treatments over 

a two week period of growth, central areas of tumour would be necrotic due to both 

the irinotecan and the fast growth characteristics of tumour xenografts that outstrip 

the growth of corresponding vasculature to feed it. However, in this case the 
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reduction in perfusion was observed qualitatively to be greater than the control 

groups which does indicate an additional effect from CA4 release. Demonstrating 

both the release of CA4 from the CA4 thMB construct and the changes in tumour 

microenvironment in terms of blood flow. Therefore, trapping may have occurred as 

perfusion was reduced, however was not observed as mentioned at the time point 

analysed.  

Wildiers et al., (2004) also suggested that CA4P was directly influencing the 

intratumoural metabolism of irinotecan, caused indirectly due to the tumour 

microenvironmental changes induced by CA4 such as reduction in oxygen levels, 

perfusion or alterations in pH (Wildiers et al., 2004). Irinotecan can be metabolised 

to SN38 in tumour tissue (Atsumi, Okazaki & Hakusui, 1995; Guichard et al., 1999). 

Previous studies have demonstrated that changes in interstitial fluid pressure caused 

by CA4P enhance the retention and uptake of paclitaxel NPs in breast cancer (Gao 

et al., 2016). CA4P was administered 1 h prior to paclitaxel NPs and reduced the 

overall interstitial fluid pressure, providing the ideal tumour microenvironment that 

lead to enhanced paclitaxel NP uptake in tumour, compared to paclitaxel NPs alone 

(Gao et al., 2016).  

7.3.1.4 Toxicity and dosing 

Very mild perivascular inflammation in the liver was observed in this study in all the 

treatment groups involving irinotecan, indicating no additional change in toxicity from 

the combination therapy. Also inflammation was observed in the PBS group 

indicating that resident inflammatory cells were also potentially present in healthy 

livers. Other studies have used much higher doses of CA4 than are currently able to 

encapsulated in LONDs. However, this study suggested that high doses may not be 

required to cause reduction in perfusion, but the timing for effective chemotherapy 

trapping may potentially need refining or the method of delivery e.g. with thMBs.  

7.3.2 Potential mechanism of action of CA4 delivery by thMBs 

compared to CA4P  

The difference in anti-tumour activity between the group that received CA4P and the 

group that received CA4 thMBs was potentially attributed to the different delivery 

routes, although, tumour growth was not significantly different between the two 

groups. This may be due to a number of plausible reasons: firstly delivery of CA4 via 

thMBs has altered the PK of CA4 and secondly the US alone was enhancing the 

delivery of the two free drugs.  
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The US trigger caused MB destruction, which may have cause LOND rupture and 

subsequent release of CA4 near the tumour region, however, release of intact CA4 

TPP LONDs near the tumour region would have potentially led to uptake of these 

and subsequent entrapment in endosomal compartments, leading to a slow release 

of the drug. Therefore, the levels of CA4 required to work in combination with 

irinotecan were potentially not as high as CA4P delivered unencapsulated at the 

desired time. Chapter 5 discusses in detail the potential of slow release, followed by 

a delayed response when CA4 TPP LONDs are delivered as a monotherapy. Data 

presented in Chapter 6 suggested that CA4 thMBs caused a reduction in tumour 

perfusion 1 h post-injection, demonstrating that there is a release of CA4 

intratumourally from LOND thMB structures, however the concentration required to 

cause a change in perfusion may not necessarily correlate with the concentration 

required to entrap irinotecan.   

However, it could also be argued that a slow release of CA4 would be beneficial for 

additional anti-tumour effects when administered after irinotecan, due to the 

sustained reduction in tumour perfusion leading to a decrease in oxygen and nutrient 

content that would eventually lead to necrosis of tumour cells. The compounds in this 

case could potentially be administered at the same time.  

Choijmants et al., (2011) have shown that US alone enhanced the delivery of low 

dose irinotecan and caused a significant tumour growth reduction in a human uterine 

sarcoma xenograft model (Choijamts et al., 2011). The US trigger, may therefore be 

enhancing the intratumoral delivery of both irinotecan and CA4P leading to an 

enhanced efficacy.  

7.3.3 Conclusion  

In conclusion the above study findings support the hypothesis that CA4 thMBs have 

the potential to enhance the anti-tumour activity of a conventional chemotherapeutic 

agent such as irinotecan. Further optimisation and refinement of the treatment 

schedule is required to determine the optimal timing of delivery of CA4 thMBs and 

US to achieve the greatest anti-tumour response. The results demonstrated that the 

combination of irinotecan with CA4P and US enhanced the anti-tumour response 

compared to irinotecan alone and US. However, the exact mechanism of action 

leading to this enhanced efficacy is not clear although microenvironmental changes 

such as reduction in perfusion may be occurring as suggested by the data presented. 

Later, PK data would also be required to potentially identify any trapping or retention 

of irinotecan, SN38 and SN38G in the tumour.  
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8.1 Towards clinical translation of a novel drug delivery 

system 

CRC is the fourth most common cause of cancer related deaths worldwide, surgery 

is the first line treatment in early stage CRC and following surgical resection most 

patients and particularly patients with advance disease undergo chemotherapy. 

However, conventional delivery of anti-cancer drugs is an inefficient process caused 

by low bioavailability, rapid metabolism and elimination and poor solubility. This 

project was undertaken to assess LONDs as a novel hydrophobic DDS. LONDs can 

be used as a generic particle to aid the delivery of poorly soluble compounds to a 

number of cancers or diseases, however this study was focused on the treatment of 

CRC.    

Drug delivery via passively and actively targeted NPs has a number of advantages 

including drug solubilisation, protection from rapid degradation, rapid metabolism and 

elimination and it also enables the control release into target tissues (Öztürk-Atar, 

Eroğlu & Çalış, 2017). Limitations of this technology include unspecific uptake into 

normal tissue due to the small size of NPs, potential aggregation of particles during 

storage and limitations in drug loading depending on the particle properties (Öztürk-

Atar, Eroğlu & Çalış, 2017).  

There is a substantial amount of research ongoing on the use of NPs for drug 

delivery, currently approximately 50 NPs are approved for use clinically by the FDA, 

from these 34% are polymer NPs, 30% are nanocrystals, 20% are liposomes (Doxil® 

and Onivyde®), 10% inorganic NPs, 4% are protein NPs (Abraxane) and 2% are 

micelles (Ventola, 2017). Doxil® and Abraxane have also been approved for cancer 

treatment including metastatic breast cancer and pancreatic cancer by the European 

Medicines Agency (EMA) (Tran et al., 2017). To receive approval, the FDA has 

issued some guidelines regarding assessment of nano-formulations for clinical use 

(U.S. Department of Health and Human Services Food and Drug Administration, 

2017). A full physical and chemical characterisation of the nano-formulations is 

required, including information on size, surface charge, shape, morphology, 

concentration, in vitro release kinetics, at least 85% release of drug from the particle 

is required, capacity of loading, stability, sterility and endotoxin levels. Thorough 

investigations need to be conducted in terms of the PK and PD responses of the 

released compound as well as the PK of the particle which acts as the carrier for the 

active compound. Most importantly nano-formulations intended for clinical use need 

to be produced in accordance with the current good manufacturing practice (CGMP) 
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regulations (U.S. Department of Health and Human Services Food and Drug 

Administration, 2017).  

8.1.1 Physiochemical properties of LONDs and in vitro evaluation  

The multidisciplinary nature of this project permitted development and evaluation of 

different LOND particles and this was the first study describing their in vitro and in 

vivo evaluation. CA4 was encapsulated in LONDs and used in proof-of-concept drug 

delivery studies during the course of the project. It was shown that the first LOND 

structure using TA to produce CA4 TA LONDs were unsuitable for use as drug 

delivery vehicles. This was due to issues with stability in terms of the shell and the 

solubility of the TA oil, leading to rapid leakage of CA4. These issues were overcome 

by replacing the TA oil with TPP and improving the shell rigidity by incorporating 

DSPC and cholesterol to produce CA4 TPP LONDs. The highest %EE of CA4 

achieved in CA4 TPP LONDs was > 70%, these were stable for over 6 weeks at 4ºC 

(Mico, 2017; Mico et al., 2017). 

In order to advance LONDs as hydrophobic drug delivery vehicles their stability and 

physiochemical properties and loading capacity need further investigation. Unlike 

liposomes for example, which rely on the incorporation of hydrophobic drugs in the 

lipid bilayer and are restricted in the amount of drug that can be encapsulated 

(Nallamothu et al., 2006a), nanoemulsion such as LONDs have a higher loading 

capacity as hydrophobic compounds are encapsulated in their oil core. However, 

further optimisation in LOND production is required to achieve a higher loading.  

Stability of LONDs over time is currently assessed through the evaluation of size 

changes and further experiments potentially using dialysis techniques are required 

to study drug leakage from CA4 TPP LONDs consistent with size reduction. Dialysis 

could also be used to study the in vitro release kinetics of CA4 from the LONDs over 

time at 37ºC by measuring the concentration of CA4 released at different time 

intervals by LC-MS/MS. This technique is routinely used to study the release kinetics 

of drugs from NPs (Nallamothu et al., 2006a, 2006b; Wang et al., 2010).  

The surface charge of LONDs was not determined in this project, however as surface 

charge is another factor that determines delivery efficacy of NPs (Wilhelm et al., 

2016) measurement in LONDs should be evaluated.  DLS has been used previously 

to measure surface charge of polymeric CA4P NPs (Poojari, Srivastava & Panda, 

2015).  
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The first in vitro results with CA4 TPP LONDs in this study showed the rapid release 

and/or potential uptake of CA4 from LONDs within 30 min of exposure of endothelial 

and human CRC cells. CA4 released from the TPP LONDs following transient 

treatments resulted in the characteristics of MT disruption, while prolonged 

treatments resulted in a mitotic block in G2/M phase and mitotic catastrophe.  

8.1.2 CA4 thMB production, optimisation and upscaling  

LONDs are nanosized drug delivery vehicles and similar to liposomes may suffer 

from non-specific uptake and distribution in vivo. In order to target drug delivery and 

increase the concentration of drug delivered at the target site, LONDs were attached 

to thMBs in this study and their release was triggered by an external US destruction 

pulse designed to destroy the MBs and further enhance the uptake of LONDs and/or 

free drug to tumour cells.  

Production of thMBs with LONDs was initiated using a single step method based on 

previous results with liposomes (Peyman et al., 2012). However, production of thMBs 

with CA4 TA LONDs using the single step method resulted in the destabilisation of 

the LONDs and the release of oil in the solution affecting MB production and stability 

(Mico, 2017). Further, optimisation resulted in the design of the two-step on-chip 

system whereby LONDs were attached to MBs after production. CA4 thMBs were 

produced in this manner and used in vitro and in vivo. This study showed that using 

the on-chip two-step method for production of CA4 thMBs, 107 MBs/mL were 

produced, this needs further optimisation to reduce the initial volume and potentially 

increase the concentration of MBs/mL. This would subsequently increase the number 

of LONDs per thMB and the concentration of CA4 delivered. To enable contrast 

imaging of hydrophobic delivery of drugs via LONDs and thMBs, concentrations of 

108 MBs/mL would be required at production, this would result in a 107 bolus injection 

of MBs which is normally used for contrast imaging (Lyshchik et al., 2007). 

Alternative conjugation to NeutrAvidin-biotin for attachment of LONDs to thMBs or 

targeting antibodies to the surface of LONDs or thMBs need to be explored in the 

future. NeutrAvidin could potentially bind to physiological biotin in the human body 

which is needed for fatty acid synthesis and gluconeogenesis therefore, may lead to 

unanticipated non-specific binding (Kaufmann, 2009). Another potential issue is that 

the binding of NeutrAvidin to biotin through a multivalent manner may induce cross-

linking of the CA4 thMB components. To overcome these potential issues, alternative 

conjugation approaches are being explored such as maleimide-thiol linkages, which 

have been used previously (Eloy et al., 2017). A maleimide-PEG-lipid (DSPE) would 
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replace the DSPE-BPEG2000 lipid on the LOND and thMB shell, following a thiol-

carrying antibody would be able to react with maleimide forming a thioether bond 

(Klibanov, 2005). Preliminary work has been conducted by Dr Victoria Mico (School 

of Physics and Astronomy, University of Leeds) using maleimide-thiol as an 

alternative conjugation approach.   

To scale-up, simplify and improve reproducibility of the normal on-chip production of 

thMBs, progress has been made by the Leeds Microbubble Consortium at the 

University of Leeds with the development of the Horizon Microbubble Maker for the 

on-demand production of MBs. This approach may well be adapted in future for the 

production of thMBs with LONDs.  

The combination of NPs-attached to MBs and US has not yet been performed in a 

clinical trial setting. However, co-delivery of a commercially available MB with 

gemcitabine and combined with US improved gemcitabine efficacy and showed an 

increase survival of patients with pancreatic cancer (Kotopoulis et al., 2013; 

Dimcevski et al., 2016). Demonstrating the potential of clinical translation of this novel 

approach of thMBs with LONDs. Encapsulation of a drug in a NP and direct 

attachment to MB is anticipated to further enhance efficacy and reduce systemic 

concentrations of toxic drugs.  

8.1.3 In vivo evaluation of LONDs and CA4 thMBs  

To further progress the use of LONDs and LONDs with thMBs as DDS, more 

investigations of PK, PD responses and drug penetration will be required prior to 

further translation of this technology towards clinical trials. This may involve the 

introduction of new techniques to measure the early response to therapy and 

methodologies to measure drug penetration into tissues as methods like LC-MS/MS 

used in this project measure the total drug concentration in a tissue homogenate and 

therefore, do not provide an image of the heterogeneity of drug distribution within the 

tissues and specifically within the complex microenvironment of a solid tumour 

(Giordano et al., 2016).  

8.1.3.1 Measuring early response to therapy  

This study showed by using CA4 TPP LONDs as a monotherapy and assessing 

tumour responses after 1 and 24 h post-injection, that tumour histology in terms of 

haemorrhage, necrosis and mitoses was not sensitive enough when using small 

cohort numbers and low doses. Therefore, despite minor differences such as higher 

% of haemorrhage 24 h post-injection these were insignificant when compared to 



236  

control and free CA4 tumours. Staining of tumour perfusion using Hoechst 33342 

was then developed as an assay to assess tumour response to CA4 thMBs, as a 

significant reduction in blood flow is reported after CA4P treatment (El-Emir et al., 

2005). The fluorescent images with Hoechst 33342 showed a reduction in tumour 

perfusion 1 h post-injection with CA4 thMBs however, these did not reach statistical 

significance due to the small animal numbers used per group. Although Hoechst 

33342 was a better marker for detecting early responses to CA4 and provided some 

semi-quantitative data, future work will involve using CEUS. Xie and co-workers 

(2018), used CEUS to measure the early changes in tumour perfusion after CA4P in 

the core and periphery (Zhang et al., 2018).  

8.1.3.2 PK and drug penetration   

An LC-MS/MS method was developed for the specific detection of CA4 in LOND and 

tissue samples. The LOD for CA4 was 10 ng, further optimisation and validation to 

potentially improve the method will be required. Following this, further PK studies in 

the future will be conducted using LC-MS/MS to measure total drug concentration in 

various tissue samples, however in order to obtain more information about drug 

penetration and particularly distribution within solid tumours, methods like Mass 

Spectrometry Imaging (MSI) will be performed. MSI is a technique that can be used 

to visualise the localisation and distribution of parent drug and its metabolites in 

tissues, which is important for ADMET and PK studies (Prideaux & Stoeckli, 2012). 

Briefly, the basic steps in MSI start by obtaining a tissue specimen via snap-freezing 

and cryo-sectioning, followed by tissue section mounting, spectra are then collected 

from a tissue in a raster pattern creating a grid of points where molecules have been 

ionised and detected according to their m/z (Lietz, Gemperline & Li, 2013).  

One of the most widely used MSI techniques is Matrix-Assisted Laser 

Desorption/Ionisation MSI (MALDI-MSI). MALDI-MSI allows molecular imaging and 

profiling of compounds such as lipids, peptides and drugs in tissue sections, 

specifically it acquires an array of single mass spectra across a tissue sections at a 

predefined resolution (20-200 μm), these are then combined to generate a molecular 

image (or map) of the position, distribution, abundance intensity of a specific ion 

signal within the tissue section (Cole et al., 2011). However, it should be noted that 

MALDI-MSI has some drawbacks specifically when required for drug localisation. 

MALDI was specifically designed for molecules with high molecular weight and the 

matrix used is optimal for these, however most drugs have low molecular weight and 

therefore, there is a high background noise with a substantial amount of molecules 
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with similar molecular weights, also sensitivity is an issue when administering very 

low doses (Morosi et al., 2013b).   

As a “standard” Metrix is not available researchers have started to adapt protocols 

by using NPs as matrices to remove background noise, this has been carried out, 

and the visualisation of paclitaxel distribution in a number tumour xenografts was 

achieved and showed the heterogeneity in distribution and differences in paclitaxel 

penetration between the different tumour types (Morosi et al., 2013a; Giordano et al., 

2016).  

MALDI-MSI has also been used to study drug penetration of liposomal doxorubicin, 

irinotecan and their metabolites in vitro using spheroids (Liu, Weaver & Hummon, 

2013; Lukowski, Weaver & Hummon, 2017). Spheroids  are aggregates of tumour 

cells grown in tissue culture, these potentially have many properties of a solid tumour 

and are used to study drug penetrations (Minchinton & Tannock, 2006). Using 

patient-derived colorectal cancer organoids the drug response, distribution and 

metabolism of irinotecan was assessed using MALDI-MSI (Liu et al., 2018). There is 

therefore, the potential to use MALDI-MSI to study drug penetration and distribution 

after treatment with LONDs or thMBs. The hypothesis in this study is that US through 

sonoporation is allowing the penetration of drug or LONDs deeper into the tumour 

core following thMB delivery. 

8.1.4 US trigger optimisation for improved targeted drug delivery 

Alternative US parameters could also be used and tested to identify the optimal 

conditions for drug delivery via CA4 thMBs. For example a longer 2.2 MHz tone burst 

could be tested or a 5 MHz chirp sequence. In vitro it has been shown that exposure 

of cells to a 5 MHz chirp pulse had a greater uptake of drug than a 2 min 2.2 MHz 

tone (McLaughlan et al., 2013). Increasing the MI or more US cycles could also 

improve delivery of CA4 TPP LONDs by thMBs. 

In the current studies an unfocused US transducer was used, as the nature of the 

pre-clinical setting permitted the direct placement of the US transducer onto the 

tumour-xenograft region it was assumed that there was minimal effect if any, on 

surrounding normal tissues. In the future alternatives to improve drug delivery such 

as a focused US maybe used. Focused US accumulates all of the acoustic energy to 

a specific region of interest inside the body with negligible effects on the surrounding 

tissue (Fan & Yeh, 2014). Using focused US, higher MI 0.4-0.5, higher duty cycles 
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2.5-3 % have been shown to improve NP uptake in tumours previously (Eggen et al., 

2014; Snipstad et al., 2017).  

8.1.5 Orthotopic model for CRC 

Following pre-clinical studies in xenografts, the effectiveness of the CA4 TPP LONDs 

and CA4 thMBs would also be tested using an orthotopic model of CRC providing a 

more physiological relevant model to human disease (Evans et al., 2016). This could 

be achieved by direct orthotopic implantation of CRC cells into the bowel wall, which 

is performed by surgery under general anaesthesia (Tseng, Leong & Engleman, 

2007; Evans et al., 2016). A laparotomy is performed to expose the cecum and then 

CRC previously grown in culture or small pieces of a tumour grown subcutaneously 

in another mouse and excised are injected into the cecal wall (Tseng, Leong & 

Engleman, 2007). However, surgery is invasive and can potentially lead to mortality 

and is complex and time consuming. Another less invasive technique is ultrasound-

guided inoculation which has been employed in an orthotopic bladder cancer model, 

this is less invasive, rapid and reproducible (Jäger et al., 2013). Ultrasound-guided 

inoculation could be used for direct injection into the bowel wall. Successful orthotopic 

models of CRC liver metastases have been already established using this technique 

(P.L.Coletta, personal communication).   

8.1.6 The combination of irinotecan with CA4 thMBs and US 

The combination of low dose irinotecan followed with CA4P or CA4 thMBs showed 

some interesting results in terms of anti-tumour activity. In particular the results, 

showed that high doses of these drugs are not required to cause a significant growth 

delay. To avoid any potential off-target effects of systemic irinotecan it could also be 

delivered in a liposomal formulation. Irinotecan has been encapsulated in liposomes 

and attached to thMBs using the single step method described previously (Peyman 

et al., 2012) (P.L.Coletta, personal communication). Irinotecan liposomes attached 

to thMBs with the same US destruction pulse used in this study, have shown excellent 

results when compared to free irinotecan in CRC xenografts (work conducted by Dr 

Nicola Ingram, University of Leeds). CA4 TPP LONDs and irinotecan liposomes could 

potentially be attached on the same thMB and delivered simultaneously to tumours. 

Preliminary work has been conducted by Professor Steve Evans group at the 

University of Leeds showing that LONDs and liposomes could be attached on the 

same MB (Personal communication).  
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8.1.7 LONDs as generic vehicles for hydrophobic drug delivery  

CA4 encapsulated in LONDs was used as a proof-of-concept, however the results 

are encouraging in terms of progressing and using this compound in the clinic as an 

alternative approach to CA4P, particularly in combination studies to enhance and 

potentiate the efficacy of other chemotherapeutic agents. The LOND technology, is 

generic and could be used for the encapsulation of other hydrophobic agents for 

cancer treatment. For example, Rapamycin (or Sirolimus) a hydrophobic drug with a 

LogP of 4.3, could be encapsulated in LONDs, rapamycin is an antibiotic used 

traditionally as an immunosuppressant, however, also has potent anti-tumour activity 

by inhibiting the mammalian target of rapamycin (mTOR) (Li, Kim & Blenis, 2009). 

Rapamycin has been used previously in nanoemulsions (Sobhani et al., 2015). CPT, 

the parent compound of irinotecan, could also be tested for encapsulation in LONDs, 

it has strong anti-tumour activity against a variety of cancer however its use is 

hampered due to its poor solubility in aqueous solutions and toxicity (Gao, Li & Zhai, 

2008). 

8.2 Conclusion  

The work presented in this thesis shows that LONDs are promising novel NP vehicles 

for hydrophobic drug delivery. Their use alone or in combination with US triggered 

VEGFR2 targeted thMBs suggest that this technology has the potential to greatly 

enhance drug delivery of highly potent but poorly soluble anti-cancer drugs, while 

significantly reducing the need for high circulating concentrations for therapeutic 

effect and subsequently reducing systemic toxicity. Further optimisation and 

preclinical evaluation is required prior to clinical translation.  
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Appendix A 

Supplementary information to Chapter 3 

 

Figure A.1  Calibration curve of CA4 used to measure the concentration of CA4 

in thMBs.  

(A) Calibration curve of CA4. (B) Peak area (PA) data. The equation of the line was 

used to calculate the concentration of CA4 in the thMBs with CA4 TA LONDs. The 

concentration was 0.122 μg/mL x 4000 (dilution factor) = 488 μg/mL or 0.488 mg/mL. 
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Appendix B 

Supplementary information to Chapter 4 

 

Figure B.1 Calibration curves for CA4 used to measure the concentration of 

CA4 in TPP LONDs. 

(A-C) Top images: Calibration of CA4 used to measure the concentration of CA4 in 

prep. numbers 7, 8 and 10 respectively. Bottom image: Tabulated peak area (PA) 

data. The equation of the line was used to calculate the concentration of CA4 in the 

different prep. samples. The concentration in prep. number 7. was 7.2 μg/mL x 100 

(dilution factor) = 720 μg/mL. The concentration in prep. number 8 was 0.13 μg/mL x 

10000 (dilution factor) = 1300 μg/mL. The concentration in prep. number 10 was 

0.187 μg/mL x 5000 (dilution factor) = 935 μg/mL.  
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Figure B.2 CA4 TPP LONDs disruption in SVR cells. 

SVR cells were treated with escalating concentrations of CA4 TPP LONDs, 4, 10, 60 

and 100 nM for 2 h at 37°C. Following, cells were fixed and immunostained for β-

tubulin using a mouse monoclonal anti-β-tubulin antibody. The slides were mounted 

with prolong Gold containing DAPI. (A) SVR cells treated with 4 nM of CA4 TPP 

LONDs, MTs appeared to have undisrupted MT filaments. (B) SVR cells treated with 

10 nM of CA4 TPP LONDs showed evidence of shortening of the filamentous MTs at 

the distal ends at the cell periphery and tangled around the nuclei (white arrows). (C-

D) 60 and 100 nM CA4 TPP LONDs had a uniformly stained cytoplasm from the 

dispersed tubulin caused by the depolymerisation of the MTs (open white arrows). 

Scale bars indicate 50 µm. Prep. number 8 was used.   
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Figure C.1 Tumour volumes measured by HFUS per treatment group.  

Individual tumour volumes measured by HFUS in mm3 from BALB/c nude male mice 

treated with three treatments (Tx) of (A) CA4 TPP LONDs or (B) Free CA4 in 

DMSO/peanut oil or (C) DMSO/peanut oil control.  
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Figure C.2 Body weight during the treatment course of individual mice treated 

with CA4 TPP LONDs, free CA4 in DMSO/peanut oil and DMSO/peanut oil.  

Mouse body weight in g of individual SW480 tumour bearing BALB/c nude male mice 

weighed one day before each treatment (Tx) on day 11, 14 and 18 of tumour growth. 

(A) Mice body weight (g) treated with 3 mg/kg CA4 TPP LONDs (n=4); (B) Mouse 

body weight (g) treated with 3 mg/kg free CA4 in DMSO (10%)/peanut oil (n=6); (C) 

Mouse body weight (g) treated with control DMSO/peanut oil (n=7).  
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Figure D.1 Calibration curve of CA4 used to measure the concentration of CA4 

in thMBs by LC-MS/MS.  

(A) Calibration curve of CA4. (B) Actual Peak area (PA) data.  The equation of the 

line was used to calculate the concentration of CA4 in the thMB with CA4 TPP LONDs 

sample. The concentration was 0.063 μg/mL x 2 (dilution factor) = 0.126 μg/mL or 

0.0001 mg/mL.  
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Figure D.2 Hoechst 33342 perfusion marker tumour control.  

SW480 xenograft that was not stained in situ with the Hoechst 33342 perfusion 

marker. A 10 μm frozen tumour section was fixed and immuno-labelled with a rat 

monoclonal antibody against CD31 and visualised using a goat anti-rat secondary 

antibody Alexa Fluor 568. Scale bars indicate 50 µm.  
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Figure E.1 Measurement of CA4 loading in thMBs using LC-MS/MS. 

(A) CA4 thMBs were analysed by LC-MS/MS to determine the concentration of CA4 

loading in the five different preparations. The equation of the line was used to 

calculate the concentration of CA4 thMBs. (B) Tabulated format of data presented in 

A.  
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Figure E.2 Pairwise comparisons of tumour growth response following 

combination treatment of irinotecan and CA4. 

(A-F) Straight lines (⎯) represent the median value. Statistical analysis was performed 

using a Mann-Whitney U-test, two-tailed. 
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Figure E.3 Tumour volumes of individual mice per treatment group.  

(A-D) Tumour size of individual SW480 tumour bearing mice measured by 

mechanical callipers treated with either (A) 10 mg/kg irinotecan i.p. followed 1 h later 

by CA4 thMBs plus US trigger (+T), or (B) CA4P +T at 0.001 mg/kg i.v., or (C) 

irinotecan + T alone i.p. or (D) PBS + T i.v. as control. 
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Figure E.4 Mouse body weights over time per treatment group.  

(A-D) Mouse body weight in g of individual SW480 tumour bearing mice weighed one 

day before each of the four treatments (Tx) with (A) irinotecan i.p. followed 1 h later 

by CA4 thMBs plus US trigger (+T), or (B) CA4P +T at 0.001 mg/kg i.v., or (C) 

irinotecan + T alone i.p. or (D) PBS + T i.v. 
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Figure E.5 Calibration curves for irinotecan, SN38 and SN38G.  

(A-F) The equation of the line of individual calibration curves of irinotecan, SN38 and 

SN38G were used to calculate the concentration of the compounds in the different 

tissue samples.  
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