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Abstract

Consider a hyperbolic flow φt : M→M on a smooth manifold M, and a sequence

of open balls (∆n)n∈N with ∆n ⊂ M and measure m(∆n) > 0 but also satisfying

limn→∞ m(∆n) = 0. The expected time it takes for the flow to hit the set ∆n, known

as the hitting time, or the return time if the flow started in ∆n, and each subse-

quent hit thereafter, is proportional to the measure m(∆n) of that set, provided the

measure is ergodic.

In this thesis I study how the distribution of hitting times (and return times),

rescaled by an appropriate sequence of constants, converges in the limit. I show

conditions under which a Poisson limit law holds by considering the hitting time

distributions of an associated discrete dynamical system.
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Chapter 1

Introduction

One of the classic problems in dynamical systems and ergodic theory is the ques-

tion of how long it takes to reach or return to a particular state, or equivalently

how long does it take for a particle to reach a particular region of interest? Classic

results on this due to Poincare and Kac and can be found in most ergodic theory

textbooks (eg [15]). In theorem 1.1 and theorem 1.2 below, they suggest conditions

under which orbits will take a finite time to reach a given region and Kac gives the

expected amount of time to hit a region. The natural next step is to understand how

long before the second, third, and subsequent times the particle reaches our region

of interest. In this thesis I will consider this problem, in particular focussing on

how the distribution of these times is affected when the target region is reduced to

a set of measure zero.

Consider a dynamical system (T,Ω,µ,B), with transformation T : Ω→ Ω

and µ a T -invariant probability measure.

Theorem 1.1 (Poincare’s Recurrence Theorem). If µ is T -invariant and A ∈ B
with µ(A) > 0 then for µ-a.e. x ∈ A the orbit {T nx}n∈N intersects A infinitely
often.

Using this theorem, given a set A ∈B then for x ∈ A we can define the return

time to A by

ηA(x) := inf{k > 0 : T kx ∈ A}.

If µ(A)> 0 then ηA(x) will almost surely be finite by Poincare’s Recurrence The-
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orem.

Theorem 1.2 (Kac’s Theorem). If µ is ergodic then for A ∈B with µ(A)> 0 and
x ∈ A

E[ηA] =
1

µ(A)

∫
A

ηA(x)dµ =
1

µ(A)
.

In view of this theorem, given an ergodic system it is reasonable to consider

return times to sets of positive measure. The expected time needed to return to a

set of positive measure is proportional to the inverse of the measure of that set.

Definition 1.1. Given x ∈Ω and A⊂Ω such that µ(A)> 0, a hitting time for x to
the set A is a measurable function X : Ω→ R satisfying

X(x) = inf{i ∈ N : T ix ∈ A}.

It is worth noting that the difference between a hitting time and a return time

is the location of the initial point x; for a hitting time x ∈ Ω but for a return time

x ∈ A. Although these two ideas are related, properties of one do not always imply

properties of the other, see for example irrational rotations of the circle as discussed

in the paper [6]. By assuming ergodicity however, Poincare’s recurrence theorem

extends to the full space. That is to say that the hitting times to a set of positive

measure will be finite almost surely for an ergodic tranformation.

Throughout this thesis we are interested in what happens in the limiting case

where sequence of target sets have measures tending to zero. Kac’s theorem clearly

indicates that it is not reasonable to expect that such a time might be finite, so we

will consider the limiting case for a sequence of sets with positive measure, where

the measure converges to zero. We now introduce some notation to describe this

setting.

Consider a sequence of sets An ∈B such that µ(An)> 0 and

lim
n→∞

µ(An) = 0.

for x ∈Ω denote the first hitting time to An by

r(1)n (x) := inf{i ∈ N : T ix ∈ An},
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and subsequent hitting times are defined inductively as

r(k)n (x) := inf{i > r(k−1)
n : T ix ∈ An}.

It is expected that these hitting times will be finite for µ-almost every x ∈ Ω by

Theorems 1.1 and 1.2, but when one considers the hitting times in the limit as n

tends to infinity Kac’s Theorem implies that the hitting times and subsequent return

times will become infinitely large. In order to tackle this problem and understand

the limit law, the process must be rescaled.

This motivates the introduction of the point process of rescaled hitting times

Xn(x) = ∑
k∈N

δ
r(k)n (x)cn

where δ denotes the Dirac point mass and (cn)n∈N is a sequence of positive real

numbers.

In this form Xn simply records the times at which a process hits the set An by

assigning a point mass at each hitting time. By representing the process in this way

it is possible to understand how the times are distributed. For the general hitting

time problem the aim now is to find a suitable scale, cn, such that Xn converges in

distribution, and to then find the process to which it converges.

The main results in this thesis will be for a continuous dynamical system

(φt ,Ω,m,B) with a continuous flow (φt : t ∈ R) and an invariant probability mea-

sure m. Consider a sequence of open sets (Un)n∈N ⊂B with measure 0 < m(Un)<

m(Ω) but again

lim
n→∞

m(Un) = 0.

For ω ∈Ω define the first hitting time to Un by

τ
(1)
n (ω) = inf{t > 0 : φt(ω) ∈Un} ,

and inductively define the subsequent hitting times

τ
(k)
n (ω)= inf

{
t > τ

(k−1)
n : φt(ω) ∈Un and ∃s ∈ (τ

(k−1)
n , t) such that φs(ω) /∈Un

}
.
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The hitting time process will be denoted

Zn(ω) = ∑
k∈N

δ
τ
(k)
n (ω)cn

.

In this thesis I will give conditions on the flow φt and on Ω, along with suit-

able rescaling, and show that under such conditions the hitting time process (and

the return time process) converges in distribution to a Poisson point process. I will

do this by making use of known results in discrete systems introduced by Cha-

zottes, Coelho and Collet [4, 5], Hirata [11], and Pitskel [14], and relating these to

continuous systems, particularly making use of results by Bowen and Ruelle [1, 2].

Lemmas 3.2, 3.4, 3.14, 3.15, 3.16, and 3.17 along with Theorems 2.6, 3.10,

3.11, 3.13, 3.18, 3.19, and 3.21 are original results in this thesis.

First I will introduce notations and results from probability and ergodic theory.

1.1 Ergodic Theory

Here we will recall some theory and notation from ergodic theory which will be

useful throughout this thesis.

Definition 1.2. Consider a dynamical system (T,Ω,µ,B), with measurable trans-
formation T : Ω→Ω, and probability measure µ .

1. T is measure preserving if µ(T−1(A)) = µ(A) for any A ∈B.

2. T is ergodic if whenever T−1(A) = A then µ(A) = 0 or 1.

Noting for example that Kac’s theorem only applies to ergodic measures, these

properties are therefore key to understanding recurrence times.

The following ergodic theorems are some of the main results in ergodic theory,

and proofs of which can be found in [15]. Before stating these theorems some

definitions are required.

Definition 1.3. Let ( fn)n∈N be a sequence of measurable functions on the measure
space (Ω,B,µ). Then
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1. fn converges (µ-)almost surely to f if

µ

{
x ∈Ω : lim

n→∞
fn(x) = f (x)

}
= µ(Ω).

2. a function f : Ω→ R is said to be Lp or f ∈ Lp(Ω,B,µ) for 1 ≤ p < ∞ if
the integral ∫

Ω

| f (x)|p dµ(x)

exists and is finite.

3. fn converges in Lp, for 1≤ p < ∞, to f if

lim
n→∞

∫
| fn(x)− f (x)|p dµ(x) = 0.

Theorem 1.3 (The Birkhoff Ergodic Theorem). Let T : Ω→Ω be an ergodic mea-
sure preserving transformation for the probability measure µ and let f : Ω→R be
measurable and integrable. That is to say that the integral,

∫
| f | dµ , exists and is

finite. Then for µ-almost every x ∈ Ω the ergodic averages converge in the limit,
that is

lim
n→∞

1
n

n−1

∑
i=0

f (T ix) =
∫

Ω

f (x)dµ(x).

Theorem 1.4 (The Von Neumann Ergodic Theorem). Let T : Ω→ Ω be an er-
godic measure preserving transformation for the probability measure µ and let
f ∈ L2(Ω,B,µ). Then

lim
n→∞

1
n

n−1

∑
i=0

f (T ix) =
∫

Ω

f (x)dµ(x)

where the convergence is in L2.

A proof for both of these ergodic theorems can be found in [15]. It is worth

noting that later in this thesis we will need similar versions of these theorems,

where n is replaced by an increasing sequence (rn) which diverges to infinty in the

limit. In which case it follows that both theorems still hold and

lim
n→∞

1
rn

rn−1

∑
i=0

f (T ix) =
∫

Ω

f (x)dµ(x)

µ-almost surely or when the convergence is L2, by noting that this is a subsequence

of a convergent sequence.
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Equilibrium Measures and Pressure

Definition 1.4 (Conditional Measures). Let (Ω,µ,B) be a measure space. Then
for measurable sets A and B, with µ(B)> 0, the measure of A conditioned on B is
written as

µ(A|B) = µ(A∩B)
µ(B)

.

It is also possible to define conditional measures with respect to sub-σ -

algebras. Let A be a sub-σ -algebra of B then the conditional measure of B ∈B

given A is the function

µ(B|A ) = E(χB|A ),

which is to say that it is a A -measurable random variable satisfying∫
A

µ(B|A )dµ = µ(A)

for each A ∈A .

Definition 1.5 (Entropy). 1. Given a countable measurable partition, α =
{A1,A2, . . . ,}, of Ω, that is Ai ∈B and

⋃
i Ai = Ω but Ai ∩A j = /0 up to a

set of µ-measure zero, then the conditional entropy of α given A is defined
as

H(α|A ) :=− ∑
A∈α

µ(A|A ) log µ(A|A ).

2. If T : Ω→ Ω is measure preserving transformation then the entropy of the
partition α relative to the transformation is defined as

h(T,α) := lim
n→∞

H(α|
n−1∨
i=1

T−i
α)

where
∨n−1

i=1 T−iα is a common refinement of the partitions
α T−1α , . . . , T−n+1α .

3. The measure theoretic entropy of T : Ω→Ω is defined as

h(µ) = hµ(T ) := sup{h(T,α) : H(α) is finite}.

Definition 1.6 (Equilibrium States). Given a potential f : Ω→ R, an equilibrium
measure (or equilibrium state), where it exists, is a measure µ = µ f which realises

10



the supremum

P( f ) := sup
{

h(m)+
∫

f dm : m is a T -invariant probability measure
}

= h(µ)+
∫

f dµ,

where P is the pressure function and h(m) is the measure-theoretic entropy of the
system (T,m).

The pressure of a dynamical system and equilibrium measures are useful tools

when attempting to understand how the system can behave when restricting the

system to a smaller subsystem (see [4]). They are also useful for their relationship

with the transfer operator, introduced in Chapter 2, and the spectral properties that

emerge.

1.2 A Motivating Example: A Self-Similar Model

In 1999, Floriani and Lima [8] constructed a suspension flow which they described

as a self-similar system. The model was developed in order to demonstrate prop-

erties of turbulence seen in fluid dynamics. In particular the structure gives rise

to interesting flow patterns where a particle will remain in small pockets for long

periods before potentially moving quickly between different areas until it reaches

another small pocket. We will construct the model used and discuss some of the

results, and why this example is of interest.

Starting with the interval I = [0,1) and the doubling map T : I → I : x 7→ 2x

mod 1, with a T -invariant measure µ define a sequence of sets by the following

fractal construction: A0 =
[1

4 ,
3
4

]
is the centre half of I. A1 is then the union of

the centre halves of each disjoint interval of I \A0, that is A1 =
[ 1

16 ,
3

16

]
∪
[13

16 ,
15
16

]
.

A2 is then the union of the centre halves of each of the four remaining intervals in

I \ (A0∪A1) and An is the union of the centre halves of each of the 2n remaining

intervals in I \
⋃n−1

k=0 An. Continuing as such, it should be clear that I =
⋃

∞
n=0 An.

See Fig 1.1.
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Figure 1.1: Showing the fractal construction of the sets A0,A1,A2 in the unit inter-
val.

Now create a suspended space above the interval by using a height func-

tion γ : I → I given by γ(x) := λ n if x ∈ An for some λ > 1 and call the blocks

An × [0,λ n] = ∆n. The value of λ should be chosen appropriately so that∫
γ dµ < ∞ (in particular if µ is lebesgue then 1 < λ < 2). The suspended space is

defined by

Ω := {ω = (x,y) : x ∈ I, 0≤ y < γ(x)}=
∞⋃

n=0

∆n,

(see Fig 1.2) and define a new measure on Ω

ν :=
µ×Leb∫

γ dµ
.

The suspension flow is then given by

St(ω) = St(x,y) =

(
T η(t)x , y+ t−

η(t)−1

∑
i=0

γ(T ix)

)
where η(t) is the unique natural number which satisfies

0≤ y+ t−
η(t)−1

∑
i=0

γ(T ix)< γ(T η(t)x).

This construction gives the model a self-similar ‘island within island’ struc-

ture which closely mimics the effects of turbulence. Since the particle moves at a

constant unit speed, once a particle reaches a set ∆n for a large n it will remain in

∆n for a disproportionate time while it travels the full height of ∆n. However for a

large n the width of ∆n will be small so the probability of reaching such a pocket

will be small. Kac’s Theorem implies that the time taken for the base map T to

reach An ⊂ I will be proportional to
1

µ(An)
.
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Figure 1.2: Showing the construction of the suspended space.

Floriani and Lima [8] considered the distribution of the first return times for

the flow, given by

Fn(t) =
ν

{
(x,y) ∈ ∆n : τ

(1)
n > t

}
ν(∆n)

,

and the first return times for the discrete system on the base, given by

Fn(t) =
µ

{
x ∈ An : τ

(1)
n > t

}
µ(An)

.

By considering rescaling factors c+n ∝ λ n and c−n ∝ λ n−1, Floriani and Lima

showed bounds for these distributions satifying

F−n (t)≤ Fn(t)≤ F+
n (t)

and similarly

F−
n (t)≤Fn(t)≤F+

n (t).

For both cases

F−n (t), F−
n (t)≈

(
t

c−n

)−α

for t� λ
n,
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and

F+
n (t), F+

n (t)≈
(

t
c+n

)−α

for t ≥ c+n � λ
n,

where α = log2
logλ

. The rescaling constants are given explicitly as

c−n = λ
n−1

c+n =
2(λ +1)

λ −1
(2λ )n (3Γ(α +1))1/α

where Γ is the gamma function.

Remark 1.5. The notation f (t)≈ g(t) is taken here to mean f and g have the same
limiting behaviour and in particular

lim
t→∞

f (t)
g(t)

= c ∈ R>0.

The notation t � s means t ≥ cs for some constant c ∈ R. Here it is needed
as there are terms that will converge to constants for large t, but the main result is
how these functions behave in the limit so these are omitted.

Here we say cn ∝ Cn if the limit

lim
n→∞

cn

Cn

exists and is finite.

Floriani and Lima suggested that their bounds indicate a polynomial law for

the first return time distribution for any finite n ∈ N, since the limiting behaviour,

but do not rule out an exponential law.

This motivates the work to investigate the distribution of the rescaled hitting

and return time processes of this system and other similar systems. This is es-

pecially due to the relationship between suspended flows and axiom A flows on

manifolds, which will be discussed later in the thesis.

I will show in this thesis that for any n ∈ N and in the limiting case where n

diverges to infinity, the distribution of return times follows a poisson law and that

the first return time is indeed exponential.
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1.3 Point Processes and Probabilistic Methods

I will now introduce some useful concepts from probability theory and statistics,

and discuss briefly how these can be used in hitting time problems. First define a

probability space (Ω,P,B) where the probability, P, is a probability measure.

Definition 1.7. 1. A random variable X = X(ω) is a measurable function
X : Ω → R.

2. A random vector X = X(ω) = (X1, . . . ,Xn) is a vector consisting of random
variables Xi.

Notice that a hitting time is a random variable since it is a measurable funtion

t : Ω→ R. The idea of a random variable can be extended to the idea of a random

element, something that takes on the same role as a random variable yet does not

necessarily take on real values.

Definition 1.8. Given measurable spaces (Ω,B) and (Ω′,B′) a random element
taking values in Ω′ is a measurable function X : Ω→Ω′.

It is worth noting that random variables and random vectors are examples of

random elements.

The objects we are to study are the times at which each orbit will hit the desired

sets. These can be denoted as sets of events for example as

{Xi : Xi is the i -th hitting time }.

To understand the distribution of these times it is desirable to be able to count how

many of these points are within an arbitrary time interval. This can be achieved by

utilising the Dirac point measure, δx, on R which puts unit mass at x ∈ R. That is

for A ∈B)

δx(A) :=

1 x ∈ A

0 otherwise.

Then describe the process as a random measure which puts a unit mass at each

hitting time on the real numbers. That is to say let

X = ∑
i∈N

δXi.

15



This means that for an open interval B ∈ R, X(B) simply counts the number of

hitting times that occur within the interval B. This motivates the following formu-

lation of a point process.

Definition 1.9 (Point Process). Consider a measurable spaces (Ω,µ,B) and a se-
quence of random variables (Xi)i∈N defined on this space. A point process is a
σ -finite measure on (0,∞) with discrete support and can be written

X = X(ω) =
∞

∑
i=1

δXi

where δx is the Dirac point measure with its mass at x ∈ R.

We’re particularly interested in point processes as hitting processes, that is

where the Xi are in fact hitting times.

Given a sequence of sets An ⊂ Ω the hitting times to An can be written as a

point process, that is as a point process where the random variables are the hitting

times. So let the random variable r(k)n = Xk : Ω→ R be the k-th hitting time to An,

then for each n use

rn =
∞

∑
k=1

δ
r(k)n

to describe the hitting time process to the set An.

One particular point process of interest is the Poisson point processes on the

real numbers. This process is characterised by the distribution of the intervals

between consecutive random variables. Given random variables Xi : Ω→ R the

interval (or difference) between each consectutive pair given by Xi+1−Xi is expo-

nentially distributed and is independent of the index i, the size of any other interval

X j+1−X j, and the value Xi.

Definition 1.10 (Poisson Point Process). A Poisson point process of rate λ is a
point process

X =
∞

∑
i=1

δXi

where

1. X(B1), . . . ,X(Bn) are independent for disjoint subsets B1, . . . ,Bn ⊂ R

16



2. For any bounded subset B ⊂ R the random variable X(B) : Ω→ R has a
Poisson distribution of rate λ Leb{B}, that is to say that the distribution is
given by

P(X(B) = k) = e−λ Leb{B} (λ Leb{B})k

k!
,

where ’Leb’ is used to denote the Lebesgue measure on R.

Convergence of Point Processes

There are many types of convergence when dealing with random variables, but here

we are mostly interested in convergence in distribution, also known as convergence

in law. This corresponds to a convergence of distribution functions.

Definition 1.11 (Distribution Functions). Consider a measureable space (Ω,B).

1. For a random variable X : Ω → R, a distribution function is a function
F : R→ R given by

FX(t) = P(X < t) = µ{ω ∈Ω|X(ω)< t}.

2. For a random vector X = (X1,X2, . . . ,Xn) : Ω→Rn a distribution function is
a function F : Rn→ R given by

FX(t1, . . . , tn) = P(Xi < ti ∀i).

3. A sequence of random variables (Xn)n∈N converges in distribution to X if the
sequence of respective distribution functions, (Fn)n∈N, converge pointwise to
F : Rn→ R, the distribution function for X , for all continuity points x ∈ Rn.

The following theorem gives a useful understanding of the idea of convergence

in distribution, and is a standard result from probability theory.

Theorem 1.6. A sequence of random variables Xn converges in distribution if and
only if for all continuous functions h : R→ R with compact support the expecta-
tions E(h(Xn)) converge to E(h(X)) in the usual sense of convergence.

This motivates the following generalisation of convergence in law (distribu-

tion) for a point process.
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Definition 1.12. A point process

Xn =
N

∑
k=1

δ
X (k)

n

converges in distribution to X if and only if for all continuous g : R→ R with
compact support the random variables given by

Nn(g)(ω) =
∫

∞

0
g(t)dXn(ω)(t) =

N

∑
k=1

g(X (k)
n (ω))

converge in distribution, as n→ ∞, to

N(g)(ω) =
∫

∞

0
g(t)dX(ω)(t).

A point process Xn is said to have a Poisson limit law (or converge in distribu-
tion to a Poisson process) if X is a Poisson point process.

This gives a simple object to study when considering the convergence in distri-

bution of random processes, and so for the rest of this thesis we will be considering

these objects and how they behave in the limit. The goal is to find Poisson limit

laws for the systems under consideration.
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Chapter 2

Discrete Dynamics

In this chapter we will discuss some previous results within the discrete dynamical

setting. We will also make use of and develop ideas appearing in [4] to build theory

around the self-similar model introduced earlier in section 1.2.

2.1 Markov Chains and Subshifts of Finite Type

Let V = {1, . . . , `} be a finite set of symbols and let A = {Ai j} be an `× ` matrix

of zeros and ones, that is Ai j ∈ {0,1}. Define the phase space

ΣA :=
{

ω = (ω0,ω1,ω2, . . .) ∈VN : A(ωi,ωi+1) = 1 ∀i ∈ N
}
,

and associate with it the shift map σ : ΣA → ΣA defined by

σ(ω0, ω1, ω2, . . .) = (ω1, ω2, ω3, . . .).

This is the one-sided subshift of finite type. By considering sequences which are

inifite in both directions, that is sequences of the form (. . . ,ω−1,ω0,ω1 . . .), along

with the same shift map σ , we obtain the two-sided subshift of finite type.

Definition 2.1. (Markov Measures). Let P= {Pi j} be an irreducible `×` stochastic
matrix, that is any irreducible matrix such that Pi, j ≥ 0 for all 1 ≤ i, j ≤ ` and the
rows sum to one, i.e.

`

∑
j=1

Pi j = 1,
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and Pi j = 0 if and only if Ai j = 0. Then let p = (p1, . . . , p`), satisfying ∑ j p j = 1,
be the left eigenvector which has eigenvalue 1. A Markov measure µ on ΣA, with
stochastic matrix P, is defined on cylinder sets by

µ ([ω−m, . . . ,ωn]) := pω−mPω−mω−m+1 . . .Pωn−1ωn.

A subshift of finite type with a Markov measure is called a Markov Chain.

Limit Laws for Open Balls

In 1991, Pitskel [14] studied the hitting time process to a sequence of open balls for

mixing Markov chains, in the space of two sided sequences, and found a Poisson

limit law.

Definition 2.2 (Mixing). The system (Ω,B,µ,T ) is called mixing, or strong mix-
ing, if for any A,B ∈B

lim
n→∞

µ(A∩T−nB) = µ(A)µ(B).

Let Ω be the space of allowable two sided sequences, σ the shift map, and µ

a σ -invariant, mixing Markov measure. Then consider cylinder sets of the form

An = An(ω
∗) = {ω ∈Ω : ωi = ω

∗
i ,−n≤ i≤ n}

for an arbitrary, and fixed ω∗i . Pitskel looked at the hitting times to these cylinder

sets. So let r(k)n = r(k)n (ω) denote the k-th hitting time to An, and call the process

rn(ω) =
∞

∑
k=1

δ
cnr(k)n

where (cn) is a rescaling sequence. Pitskel [14] showed the following theorem for

such Markov chains.

Theorem 2.1. Let An be a cylinder set in Ω, and λ > 0 then the hitting time process
rescaled by cn = λ µ(An) converges to a Poisson point process of rate λ .

Axiom A Diffeomorphisms

In 1993, Hirata [11] produced a Poisson limit law for discrete axiom A diffeomor-

phisms. This is closely linked to the new work appearing in this thesis in that we

obtain a result for axiom A flows in continuous dynamical systems.

20



Let M be a compact C∞ Riemannian manifold and f : M→M be a C1 diffeo-

morphism. The notion of axiom A was first introduced by Smale in [18]. We first

require the definitions of hyperbolicity and non-wandering sets.

Definition 2.3 (Hyperbolic Sets). A closed f -invariant set Λ ⊂M is hyperbolic if
the tangent bundle restricted to Λ can be written TΛ M = Es ⊕ Es where Es, Eu

are f -invariant subbundles and there are constants c > 0 and λ ∈ (0,1) such that

1. ‖D f k(z)‖ ≤ cλ k‖z‖ for every z ∈ Es, k ∈ N.

2. ‖D f−k(z)‖ ≤ cλ k‖z‖ for every z ∈ Eu, k ∈ N.

Definition 2.4 (Basic Hyperbolic Sets). A closed invariant set Λ is a basic hyper-
bolic set if the following are satisfied:

1. Λ is hyperbolic.

2. The periodic orbits of f |Λ are dense in Λ.

3. For any open sets U , V ⊂ Λ, there is an integer n ∈ N satisfying

( f |Λ)n(U)∩ f |Λ(V ) 6= /0

4. There is an open set U ⊃ Λ with

Λ =
⋂
k∈Z

f kU.

Definition 2.5 (Non-Wandering Sets). The non-wandering set Ω = Ω f ⊂ M is
given by

Ω f :=
{

z ∈M : for every open V 3 z, k0 > 0 ∃ k > k0 with f k(V )∩V 6= /0
}
.

Definition 2.6. A diffeomorphism, f : M → M, is said to satisfy axiom A if its
non-wandering set Ω f is a hyperbolic set.
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Smale’s spectral decomposition theorem states that the non-wandering set for

an axiom A diffeomorphism is a disjoint union of a finite number of basic sets.

And that without loss of generality it can be assumed that the diffeomorphism f is

mixing.

As an example, consider the Smale horseshoe map.The horseshoe map f : S→
S is a diffeomorphism defined on S⊂R2 into itself. The region S is a square capped

by two semi-disks. f is defined through the composition of three transformations:

First the square is contracted along the vertical direction by a factor a < 1
2 . The

caps are contracted so as to remain semi-disks attached to the resulting rectangle.

a < 1
2 so that there will be a gap between the branches of the horseshoe. Next the

rectangle is stretched horizontally by a factor of 1
a . Finally the resulting strip is

folded into a horseshoe-shape and placed back into S.

The interesting part of the dynamics is the image of the square into itself. Once

that part is defined, the map can be extended to a diffeomorphism by defining its

action on the caps. The caps are made to contract and eventually map inside one

of the caps. The extension of f to the caps adds a fixed point to the non-wandering

set of the map. To keep the class of horseshoe maps simple, the curved region of

the horseshoe should not map back into the square.

In this example the non-wandering set will be the limiting matrix of points

which when mapped are contained in each iteration of f n(S). The horseshoe map

is one-to-one, when restricted to the non-wandering set.

Hirata [11] considered an axiom A diffeomorphism, f : M → M, with non-

wandering set Ω=Ω f , and assumed that f |Ω is mixing. Let u : Ω→R be Lipschitz

and consider the associated unique equilibrium state µ = µu, that is the unique

measure µ which realises the supremum

P(u) = sup
{

h(m)+
∫

udm : m is a T -invariant probability measure
}

= h(µ)+
∫

udµ,

where P is the pressure function and h(m) is the measure-theoretic entropy of the

system (T,m). For a fixed z∈Ω, consider the neighbourhoods of radius ε , denoted
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{Uε(z)}. Hirata showed the following Poisson limit law.

Theorem 2.2. For µ-a.e. z ∈ Ω the return time process to Uε(z), rescaled by
µ(Uε), converges in distribution to a Poisson point process of rate 1 as ε → 0.

In order to show this Hirata looked at Markov partitions and in particular sub-

shifts of finite type and produced the following result. This was achieved by show-

ing that normalised waiting times, for each successive return, are mutually inde-

pendent and are exponentially distributed in the limit. The return times were also

shown to satisfy a Poisson limit law.

Theorem 2.3. For µ-a.e. z ∈ ΣA the return time process to Uε(z), rescaled by
µ(Uε(z)), converges to a Poisson point process of rate 1 as n→ ∞.

Poisson Laws for Repeated Events

In 2009, Chazottes, Coelho and Collet [4] gave sufficient conditions for a Poisson

limit law for hitting time processes. In particular they considered the structure of

the target sets An.

Chazottes, Coelho and Collet considered the problem of how long until the

same event is repeated n times in a row, and then considered the distribution of

the waiting times between each of these sequences of repeat events. For example

consider how long until a series of coin flips produces n heads in a row. They

showed a Poisson limit law exists as n diverges to infinity.

Consider a subshift of finite type, (ΣA,σ), for an irreducible and aperiodic

matrix of allowable paths A and let ∆⊂ ΣA be a set of positive measure. Construct

An to be the set of points that are restricted to ∆ for the first n iterates of T . That is

An = ∆∩σ
−1

∆∩·· ·∩σ
(−n)

∆.

In order to obtain a Poisson limit law Chazottes, Coelho and Collet showed

that the process of hitting times to An satisfies two particular properties. These two

properties are enough to show a Poisson limit law for a general hitting time process

to a sequence of measurable sets (∆n), with positive meaasure satisfying

lim
n→∞

µ(∆n) = 0.
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Property 1. The following limit exists:

Cm = lim
n→∞

cn ∑
0=q0<···<qm−1

qs−qs−1≤
n
m

E

(
m−1

∏
s=0

χ∆n ◦T qs

)

where cn is taken to be µ(∆n).

Property 1 is used to acheive a distribution of points in the point process that

fits that of a Poisson process in the limit, and is controlled sufficiently by the se-

quence cn. By considering all possible sequences satisfying the condition that

qs−qs−1 ≤ n
m and summing the expectation that all points lie in the target set gives

a sufficient estimate for the return time and hitting time for the process to ∆n.

Property 2. There exist Km > 0 and 0 < γ < 1 such that for every 0 = j0 < j1 <
· · ·< jm satisfying js − js−1 ≤ n

m we have for sufficiently large n,∣∣∣∣∣E
(

m

∏
s=0

χ∆n ◦T js ·χB ◦T r+ jm

)
−E

(
m

∏
s=0

χ∆n ◦T js

)
µ(B)

∣∣∣∣∣ ≤ Kmγ
r+ jm µ(B)

for every r > 0, and for every B ∈B.

Property 2 is often called the ‘ decay of correlations’ and gives a strong enough

condition for the dependence of the waiting times between each event to diminish

so that in the limit the waiting times are independent.

In [4] the following theorem is established.

Theorem 2.4. Let (∆n) be a sequence of sets in Σ such that limn→∞ µ(∆n) = 0 and
(cn) be a sequence of positive real numbers. If (∆n) and (cn) satisfy properties
1 and 2 then thehitting time process rescaled by cn converges to a Poisson point
process of rate 1.

They then apply this result to their construction, which satisfies properties 1

and 2, and conclude the following theorem.

Theorem 2.5. The hitting time and return time process to An, rescaled by e−nP∆ ,
converges in law to a Poisson point process with rate 1.
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Here P∆ is the pressure restricted to ∆. That is to say that if for some potential

f : Ω→ R the pressure is defined as

P( f ) = sup
{

h(m)+
∫

f dm : m is a T -invariant probability measure
}

where h(m) is the measure-theoretic entropy of the system (T,m), then the poten-

tial restricted to ∆⊂Ω is given by

P∆( f ) = sup
{

hm(T |∆+
∫

∆

f dm : m is a T -invariant probability measure
}
.

2.2 Hitting Times for the Doubling Map with the
Self-Similar Model

Recall the motivating example introduced by Floriani and Lima (see section 1.2).

We shall be interested in the action of the doubling map on the base, I = [0,1),

and make use of the self-similar set structure to show that the hitting time process

associated with this construction satisfies properties 1 and 2 and therefore show a

Poisson limit law.

Recall the construction of An. A0 =
[1

4 ,
3
4

]
is the centre half of I. A1 is then the

union of the centre halves of each disjoint interval of I \A0, that is A1 =
[ 1

16 ,
3
16

]
∪[13

16 ,
15
16

]
. A2 is then the union of the centre halves of each of the four remaining

intervals in I \ (A0∪A1) and An is the union of the centre halves of each of the 2n

remaining intervals in I \
⋃n−1

k=0 An. See Fig 1.1 in section 1.2.

The remainder of this section will be dedicated to proving the following theo-

rem.

Theorem 2.6. The hitting time and return time process to An, rescaled by e−nP∆ ,
where P∆ is the pressure function restricted to ∆ converges in law to a Poisson point
process with rate 1.

The following lemma follows directly from the construction of the sets An.

Lemma 2.7. For the system described above, the sets An can be written

An = ∆∩T−2
∆∩·· ·∩T−2n+2

∆∩T−2n
∆

c,
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where ∆ = Ac
0 = [0, 1

4)∪ (
3
4 ,1].

Proof. First let n = 0 and consider

A0 = ∆
c = [1

4 ,
3
4 ].

Then for general n∈N assume the theorem holds and I will show it holds for n+1.
An+1 is the union of the centre halves of each disjoint interval of I \ (A0∪·· ·∪An).
But this is the same as the union of the centre halves of

Bn = I \ (∆c∪·· ·∪ (∆∩T−2
∆ . . .T−2n

∆
c)

= ∆∩ (∆∪T−2
∆

c)∩·· ·∩ (∆∪·· ·∪T−2n
∆

c)

= ∆∪T−2
∆∪·· ·∪T−2n+2

∆∪T−2n
∆

c.

Therefore

An+1 = Ac
1∩·· ·∩Ac

n∩T−2Bn

=
n⋂

i=0

(∆c∪T−2
∆

c∪·· ·∪T−2i
∆)∩ (T−2

∆∪T−4
∆∪·· ·∪T−2n−2

∆
c)

= ∆∩T−2
∆∩·· ·∩T−2n

∆∩T−2(n+1)
∆

c.

It follows from this lemma that T 2(An) = An−1.

Compare lemma 2.7 to the construction in [4], which shows that for an ergodic

transformation and a sequence of sets of the form

∆
n = ∆∩T−1

∆∩·· ·∩T−n
∆

the limit distribution of return times is indeed Poisson for a scaling sequence given

by cn = enP∆ . P∆ is the pressure function restricted to the region ∆. We will use a

similar method to show that for the sets

An = ∆∩T−2
∆∩·· ·∩T−2n+2

∆∩T−2n
∆

c

there is a Poisson limit law.
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Let Σ = {0,1}N be the space of one-sided sequences on the symbols 0, and 1,

and let σ : Σ→ Σ be the shift map. That is σ(ωn)n∈N = (ωn+1)n∈N. There is an

injective map π : I→ Σ satisfying

π ◦T = σ ◦π.

Explicitly this maps a point x ∈ I to a sequence ω = (ωn) ∈ Σ as follows. If x ∈ ∆

then ω0 = 1, otherwise ω0 = 0. Then for each n ∈ N let

ωn :=

1 if T nx ∈ ∆,

0 otherwise.

In the space Σ one can describe sets called cylinder sets. These are usually

denoted with square brackets and are defined as follows:

[ai, . . . ,ai+m]i := {ω ∈ Σ : ωi = ai, . . . ,ωi+m = ai+m}.

These cylinder sets form a basis of open sets for the topology of Σ, and can also

be shown to be closed in Σ. By using cylinder sets, the problem of the orbit of a

point in I hitting An can be reformulated in terms of the shift space, since x ∈ An is

equivalent to

ω ∈ [1]0∩ [1]2∩ [1]4∩·· ·∩ [1]2(n−2)∩ [0]2n.

In order for

ω ∈ [1]0∩ [1]2∩ [1]4∩·· ·∩ [1]2(n−2)∩ [0]2n

there is only a dependency on the first n even entries of the sequence ω , and the

odd entries are entirely independent of whether or not

ω ∈ [1]0∩ [1]2∩ [1]4∩·· ·∩ [1]2(n−2)∩ [0]2n.

This means that the problem under consideration comes down to studying the sys-

tem given by the map T 2.
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Lemma 2.8. Let µ be the Lebesgue measure on I, and consider the transformation
R : I→ I given by R(x) = T 2(x) = 4x mod 1. Then consider also the hitting times
to An for a point x ∈ I, with respect to R, given by

φ
(1)
n (x) = inf{i > 0 : Rix ∈ An},

φ
(k)
n (x) = inf{i > φ

(k−1)
n (x) : Rix ∈ An}

and the hitting times for the point T x ∈ [0,1) given by

ψ
(1)
n (x) = inf{i≥ 0 : Ri(T x) ∈ An},

ψ
(k)
n (x) = inf{i > ψ

(k−1)
n (x) : Ri(T x) ∈ An}.

Assume there exists a sequence cn such that the point processes

Xn(φ)(x) = ∑
k∈N

δ
φ
(k)
n (x)cn

and
Xn(ψ)(x) = ∑

k∈N
δ

ψ
(k)
n (x)cn

both converge in distribution to a Poisson point process of rate 1, as n tends to
infinity. Then the full point process, given by

Xn(x) = ∑
k∈N

δ
τ
(k)
n (x)cn

,

also converges in distribution to a Poisson point process of rate 1.

Proof. Since µ is the lebesgue measure on I, with transformation T : x 7→ 2x
mod 1, µ is a bernoulli measure with respect to T and T 2. This can be seen by
considering a partition of I, {[0, 1

2), [
1
2 ,1)} and {[0, 1

4), [
1
4 ,

1
2), [

1
2 ,

3
4), [

3
4 ,1)} respec-

tively. It therefore follows that the two point processes are independent and the full
point process can be written as the sum

Xn(x) = ∑
k∈N

δ
τ
(k)
n (x)cn

= ∑
k∈N

δ
2φ

(k)
n (x)cn

+ ∑
k∈N

δ
(2ψ

(k)
n (x)+1)cn

= Xn(2φ)(x)+Xn(2ψ +1)(x)

Now recall that a point process converges in distribution to a Poisson process
if and only if the random variable Nn(g)(x) converges in distribution for every
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continous g :R→R with compact support. So let g be such a function and consider
this as a random variable.

Nn(g)(x) =
∫

∞

0
g(t)dXn(x)(t)

= ∑
k∈N

g(t)χ
[τ

(k)
n (x)cn]

(t)

= ∑
k∈N

g(τ(k)n cn)

= ∑
k∈N

g(2φ
(k)
n cn)+ ∑

k∈N
g((2ψ

(k)
n +1)cn)

Xn(φ) and Xn(ψ) both converge in distribution to a Poisson process of rate
one, and 2φ

(k)
n and (2ψ

(k)
n +1) are independent since φn and ψn are dependent on

alternate points in the orbit of (T ix)i∈N, and the measure µ is Bernoulli. Therefore
the two random variables in the last line both converge in distribution to Poisson
processes of rate 1

2 . And so it follows that Nn(g)(x) converges in distribution to a
Poisson process of rate 1.

With these ideas now consider, for a general ergodic measure µ and transfor-

mation T , the sets ∆n defined by

∆
n = ∆∩T−1

∆∩·· ·∩T−n+1
∆∩T−n

∆
c.

As explained earlier in order to show a Poisson limit law it is sufficient to

check that two properties are satisfied. Recall property 1:

Property 1. The following limit exists:

Cm = lim
n→∞

cn ∑
0=q0<···<qm−1

qs−qs−1≤
n
m

E(
m−1

∏
s=0

χ∆n ◦T qs)

where cn is taken to be µ(∆n).

To see that this property is satisfied first observe that for m = 1

C1 = lim
n→∞

µ(∆n)−1E(χ∆n) = lim
n→∞

µ(∆n)

µ(∆n)
= 1.
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For m > 1, I argue that Cm = 0: The sum is over a sequence of points, (qs), which

satisfy qs− qs−1 ≤ n
m < n. Therefore if T qsx ∈ ∆n then it cannot be the case that

T qs−1x ∈ ∆n, since

∆
n = ∆∩T−1

∆∩·· ·∩T−n+1
∆∩T−n

∆
c.

So it then follows that the product is given by

m−1

∏
s=0

χ∆n ◦T qs = 0,

which has expectation equal to zero, and hence Cm is zero, whenever m > 1.

This proves property 1 is satisfied, so now consider property 2.

Property 2. There exist Km > 0 and 0 < γ < 1 such that for every 0 = j0 < j1 <
· · ·< jm satisfying js− js−1 ≤ n

m we have for sufficiently large n,∣∣∣∣∣E
(

m

∏
s=0

χ∆n ◦T js ·χB ◦T r+ jm

)
−E

(
m

∏
s=0

χ∆n ◦T js

)
µ(B)

∣∣∣∣∣ ≤ Kmγ
r+ jm µ(B)

for every r > 0, and for every B ∈B.

This property is not as easy to check. To begin with we introduce and recall

notions from symbolic dynamics and thermodynamic formalism.

Let V = {1, . . . , `} be a finite alphabet. A will denote an irreducible and ape-

riodic `× ` transition matrix, with entries either a 0 or a 1, indicating allowable

transitions between vertices of a directed graph. Define the space of one-sided

allowable paths in the graph by

ΣA = {x = (xn) ∈VN : A(xi−1,xi) = 1∀i≥ 1}.

ΣA is compact and metrisable with Tychonov product topology. Let T : ΣA→ ΣA

be the shift map, given by T (x)n = xn+1.

For ϕ ∈ C(ΣA), let varn(ϕ) = sup{|ϕ(x)−ϕ(y)| : xi = yi, i ≤ n}, and given

0 < θ < 1, define

|ϕ|θ := sup
{

varn(ϕ)

θ n

}
.
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Then the space

Fθ := {ϕ ∈C(ΣA) : |ϕ|θ < ∞}

is a Banach space with norm ‖ϕ‖θ := ‖ϕ‖∞ + |ϕ|θ .

Given a potential ϕ ∈Fθ , let Lϕ be the transfer operator on Fθ defined by

(Lϕψ)(x) = ∑
Ty=x

eϕ(y)
ψ(y).

This operator Lϕ has a maximum positive eigenvalue eP(ϕ) which is simple and

isolated and the rest of the eigenvalues lie in a disc around the origin of radius

strictly less than eP(ϕ). The value P(ϕ) is the pressure of ϕ which satisfies

P(ϕ) = sup
{

h(m)+
∫

ϕ dm : m is a T -invariant probability measure
}

= h(µ)+
∫

ϕ dµ,

where h(m) denotes the measure-theoretic entropy of the system (T,m), and µ is

the equilibrium state corresponding to ϕ which maximises the supremum above.

The positive function given by

ω := lim
n→∞

e−nP(ϕ)L n
ϕ (1),

where 1 denotes the constant function equal to 1, can be shown to be an eigen-

function of Lϕ corresponding to the eigenvalue eP(ϕ). Normalising ϕ by replacing

it with ϕ ′ = ϕ −P(ϕ) + log(ω)− log(ω ◦ T ) gives Lϕ ′(1) = 1 and P(ϕ ′) = 0.

Furthermore ϕ and ϕ ′ have the same equilibrium state. So assume without loss of

generality that ϕ is normalised. Thus Lϕ satisfies∫
ϕ1 · (ϕ2 ◦T )dµ =

∫
Lϕ(ϕ1) ·ϕ2 dµ

for any ϕ,ϕ1,ϕ2 ∈C(ΣA).

Now consider a sub-alphabet ∆⊂V such that ∆ 6=V , and consider the associ-

ated closed T -invariant subset Σ∆ ⊆ ΣA defined by

Σ∆ = {x ∈ ΣA : xi ∈ ∆ ∀i≥ 0}.
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I will only consider the case where Σ∆ is an irreducible and aperiodic subshift

of finite type. This is to say that the matrix A restricted to ∆ defines a matrix A∆

which is irreducible and aperiodic.

Let ϕ∆ denote the restriction of ϕ to the subsystem Σ∆, and P∆ be the pressure

of ϕ∆ with respect to (Σ∆,T ). If ϕ is normalised, then Pϕ = 0 and so P∆ < 0.

Let µ∆ denote the equilibrium state of ϕ∆. Let ω∆ be the strictly positive, Hölder

continuous function on Σ∆ given by

ω∆ = lim
n→∞

e−nP∆L n
ϕ∆
(1).

Now define the restricted transfer operator L∆, acting on the space of Hölder con-

tinuous functions Fθ , by

L∆ϕ = L (ϕ ·χ∆)

and consider the subset of ΣA

Y∆ = {x ∈ ΣA : ∃b ∈ ∆
c, A(b,x0) = 1}.

Since A is irreducible and aperiodic in V , Y∆ is a non-empty finite union of cylinder

sets of ΣA, and in particular µ(Y∆)> 0.

To continue we recall the following result from [4].

Proposition 2.9. There exists a Hölder continuous function h∆ defined on Σ∆ such
that

L∆(h∆) = eP∆h∆

and h∆|Σ∆
≡ ω∆. h∆ is strictly positive on Y∆ and is zero on the complement Y c

∆
.

Moreover
‖e−nP∆L n

∆ (ϕ)−h∆

∫
Σ∆

ϕ dµ‖∞ −→
n→∞

0

for all ϕ ∈C(Σ∆).

I am now ready that to show that property 2 is satisfied. I will do this via the

following two lemmas.

Lemma 2.10. Using the notation used above

lim
n→∞

e−nP∆ µ(∆n) =
∫

∆c
h∆ dµ.
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Proof. Recall that

∆
n = ∆∩T−1

∆∩·· ·∩T−n+1
∆∩T−n

∆
c.

Then it follows that

µ(∆n) =
∫

χ∆n dµ

=
∫

χ∆ · (χ∆n−1 ◦T )dµ

=
∫

L∆(1) ·χ∆n−1 dµ

=
∫

L n
∆ (1) ·χ∆0 dµ

where ∆0 := ∆c. Thus by Proposition 2.9, we have that

e−nP∆ µ(∆n) =
∫

h∆ ·χ∆c dµ + e−nP∆o(enP∆)

and therefore
lim
n→∞

e−nP∆ µ(∆n) =
∫

∆c
h∆ dµ.

Lemma 2.11. There exists K > 0 and 0 < γ < 1 such that

|E(χ∆s ·χB ◦T s+r)−µ(∆s)µ(B)| ≤ K γ
r esP∆ µ(B)

for every s,r > 0 and for every Borel set B⊆ Σ∆.

Proof. First note that from the properties of the transfer operator

E(χ∆s ·χB ◦T s+r) =
∫

χ∆s ·χB(T s+r)dµ

=
∫

χB ·L r
ϕ(L

s
∆(1))dµ

= E(χB ·L r
ϕ(L

s
∆(1)).

The spectral properties of Lϕ imply the existence of 0 < γ < 1 and K > 0 such
that for all k > 0

‖L k
ϕ ω‖∞ ≤ Kγ

k‖ω‖θ ,

whenever ω ∈F and
∫

ω dµ = 0. Since e−sP∆L s
∆

1 has uniformly bounded Hölder
norm, taking

ω = ωs = e−sP∆(L s
∆1−µ(∆s)),

33



then ∫
ω dµ = e−sP∆

∫
L s

∆(1)−µ(∆s)dµ = e−sP∆(µ(∆s)−µ(∆s)) = 0,

and there exists K′ > 0 independent of r,s such that

|E(χB ·L r
ϕωs)| ≤ K′γ r

µ(B)

for all r,s > 0. The result now follows.

With lemmas 2.10 and 2.11 property 2 is now satisfied. The following theorem

now follows immediately by theorem 2.4.

Theorem 2.12. The hitting time and return time process of ∆n, rescaled by enP∆ ,
converges in law to a Poisson point process with rate 1.

Theorem 2.6 now follows as an immediate corollary.

In the example of Floriani and Lima, I showed that the structure of the dynam-

ics was such that it could be separated into two (sub-)sequences by considering

alternate points. This means that in order to study the distribution of hitting and

return times in this system it is enough to consider, without loss of generality, the

map T : x 7→ 4x mod 1. This can be described using the double iteration of the

shift map on the space of sequences of 0s and 1s with the map σ2 = σ2 : Σ→ Σ

where Σ = {x = (xi) : (x2i,x2i+1) ∈ {00,01,10,11}∀i ∈ N} and associating cylin-

ders [00], [01], [10], [11] with the intervals [0, 1
4), [

1
4 ,

1
2), [

1
2 ,

3
4), [

3
4 ,1) respectively.

This has a normalised potential of − log4 (noting that this is different from the

normalised potential of the doubling map which is − log2), and this can be shown

by calculating

P(− log4) = lim
n→∞

1
n

log ∑
σn

2 x=x
exp(−n log4)

= lim
n→∞

1
n

log(22n ·2−2n)

= 0.

The sub-alphabet for ∆ will be the set of pairs {01,10}. The restriction to ∆ cor-

responds to the set of sequences Σ∆ = {x = (xi)N : x2i 6= x2i+1}, and is therefore
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aperiodic and irreducible. Now calculating the pressure of the normalised potential

restricted to ∆ gives

P∆(− log4) = lim
n→∞

1
n

log ∑
σn

2 x=x,x∈Σ∆

exp(−n log4)

= lim
n→∞

1
n

log(2n ·2−2n)

=− log2.

Therefore the rescaling constants, as given in Theorem 2.6, can be calculated as

enP∆ = exp(−n log2) = 2−n.
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Chapter 3

Continuous Dynamics

In this chapter we will relate the results from discrete dynamics and probability

theory to a continuous setting, in order to obtain sufficient conditions under which

a Poisson limit law exists.

3.1 Manifolds and Axiom A Flows

As stated in the previous chapter, axiom A was first introduced by Smale [18].

We previously described axiom A diffeomorphisms; we now need an equivalent

formulation for axiom A flows, and so we develop similar notions of hyperbolic

sets for flows.

Let M be a compact Riemannian Manifold, that is a smooth manifold with a

Riemannian metric, and let φt : M→M be a differentiable flow on M, that is a one

parameter family of diffeomorphisms such that φt+s = φtφs.

Definition 3.1 (Hyperbolic Sets). A closed (φt)-invariant set Λ⊂M containing no
fixed points is called hyperbolic if for every x ∈ Λ the tangent space can be written
TxM = E⊕Es⊕Es where E, Es, Eu are (Dφt)-invariant and continuous subspaces
and there are constants c > 0 and λ ∈ (0,1) such that

1. E is the one dimensional subbundle tangent to the flow φt .

2. ‖Dφt(z)‖ ≤ ce−λ t‖z‖ for every z ∈ Es, t ≥ 0.

3. ‖Dφ−t(z)‖ ≤ ce−λ t‖z‖ for every z ∈ Eu, t ≥ 0.
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It is possible to choose appropriate t0 > 0 and λ > 0 for a given hyperbolic set

Λ ⊂M such that the above conditions still hold with c = 1 when t ≥ t0. Assume

that t0 ≤ 1 since this can be achieved by rescaling t→ t ′ = t
t0

.

Definition 3.2 (Basic Hyperbolic Sets). A closed invariant set Λ is called basic
hyperbolic if the following are satisfied:

1. Λ contains no fixed points and is hyperbolic.

2. The periodic orbits of φt |Λ are dense in Λ.

3. φt |Λ is a topologically transitive flow.

4. There is an open set U ⊃ Λ with

Λ =
⋂
t∈R

φtU.

Definition 3.3 (Non-Wandering Sets). The non-wandering set Ω = Ωφ ⊂ M is
given by

Ωφ = {z ∈M : for every open V 3 x, t0 > 0 ∃ t > t0 with φt(V )∩V 6= /0} .

Definition 3.4. A flow, φt : M→M, is said to satisfy Axiom A if its non-wandering
set Ωφ is the disjoint union of a hyperbolic set with a finite number of hyperblic
fixed points.

Smale’s spectral decomposition theorem states that this hyperbolic set is a

disjoint union of a finite number of basic sets.

In the remainder of this thesis we will only consider continuous dynamical

systems (Ωφ ,φt ,m,B) with a probability measure m on Ωφ and flows φt : Ωφ→Ωφ

satisfying axiom A.

3.2 Suspension Flows and Axiom A Flows

Some of the ergodic theory and dynamics of axiom A flows have been studied by

Bowen and Ruelle (see [1, 2]), who made the link to suspended flows. We will first

define and construct a general suspended flow.
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Given a measure preserving discrete dynamical system (X ,T,B,µ) and a

measurable function γ : X → (0,∞) with
∫

γ dµ < ∞, define a new space, the sus-

pended space

Ω = Ωγ := {ω = (x,y) ∈ X×R : 0≤ y≤ γ(x)} ,

identifying points (x,γ(x)) with (T x,0). Associate with this the product σ -algebra,

and define a probability measure on Ω as the normalised product measure of µ and

the Lebesgue measure

dνγ = dν :=
dµ×d Leb∫

γ dµ
.

Define a flow St = St,γ : Ωγ →Ωγ on the new measure space (Ωγ ,ν) by

St(ω) = St(x,y) =

(
T η(t)x , y+ t−

η(t)−1

∑
i=0

γ(T ix)

)
,

where η(t) is the unique natural number which satisfies

0≤ y+ t−
η(t)−1

∑
i=0

γ(T ix)< γ(T η(t)x).

See Figure 3.1

Definition 3.5 (Suspension Flow). (Ωγ ,ν) defined as above is a suspended space
with respect to γ and St is a suspension flow.

We will only consider suspended flows over X = Σ = ΣA, that is the space of

two-sided sequences, and T = σ = σA is the shift map, so that (ΣA,σA) is a subshift

of finite type.

The link between suspension flows and axiom A flows has been investigated

by Bowen and Ruelle (see [1, 2]) and this relationship is described in the the theo-

rem below.

Theorem 3.1. For γ : Σ→ (0,∞) let

varn(γ) := sup{|γ(x)− γ(y)| : x,y ∈ Σ, xi = yi ∀|i| ≤ n}

and

F := {γ ∈C(Σ) : ∃b > 0, α ∈ (0,1) so that varnγ ≤ bα
n ∀n≥ 0} ,
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0 1

γ(x)

(x,y)

(x,γ(x))

T x T 2x

Figure 3.1: Showing the motion of a suspension flow for a height function γ . The
flow travels vertically upwards until y= γ(x), at which point it jumps back to y= 0,
and shifts along to T x.

where C(Σ) is the set of continuous functions on Σ, taking values in R. Let φt be
an axiom A flow on (M,ν) and Λ a basic hyperbolic set for φt . Then there is a
subshift of finite type (ΣA,σA) and a positive γ ∈F and a continuous surjection
ρ : Ωγ → Λ so that ρ(St(ω)) = φt(ρ(ω)).

A proof of this theorem can be found in [2]. This theorem along with Smale’s

decomposition theorem [18] means that for any axiom A flow there is a suspension

flow which shares many of its properties. In particular note that if τ(z) is a hitting

time of z ∈ Λ to some open set A ⊂ Λ with positive measure then there exists a

(small) ε > 0 such that φt(z) ∈ A for t ∈ (τ,τ + ε) and φt(z) /∈ A for t ∈ (τ− ε,τ).

But

ρ
−1 (φt(z)) = St(ρ

−1z),

and ρ−1(φt(z)) ∈ ρ−1(A) if and only if φt(z) ∈ A. Therefore τ(z) ≡ τ(ω) when

z = ρ(ω). So in order to study the hitting and return times of φt to a set A it
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is enough to look at the hitting and return times of the corresponding suspension

flow, St , to the set ρ−1A.

3.3 Hitting times in Suspended Flows

Recall that a suspended flow over a measure preserving discrete dynamical system

(X ,T,B,µ) with a measurable height function γ : X→ (0,∞) such that
∫

γ dµ < ∞

is a flow on the suspended space

Ω = Ωγ := {ω = (x,y) ∈ X×R : 0≤ y≤ γ(x)} ,

where the points (x,γ(x)) are identified with (T x,0). Associate with this the prod-

uct σ -algebra, and define a probability measure on Ω by

dνγ = dν =
dµ×d Leb∫

γ dµ
.

The suspension flow (St : Ωγ →Ωγ : t ∈ R) is given by

St(ω) = St(x,y) =

(
T η(t)x , y+ t−

η(t)−1

∑
i=0

γ(T ix)

)
where η(t) is the unique natural number which satisfies

0≤ y+ t−
η(t)−1

∑
i=0

γ(T ix)< γ(T η(t)x).

Consider the projections π : Ω→ X such that π(x,y) = x and π ′ : Ω→ R the

projection to the vertical axis such that π ′(x,y) = y.

Let (∆n ⊂ Ω) be a sequence of open balls with positive measure such that

limn→∞ ν(∆n) = 0. Observe that µ(An)> 0 since otherwise

ν(∆n) =
µ×Leb∫

γ dµ
(∆n)≤

µ(π(∆n)×Leb(π ′(∆n))∫
γ dµ

= 0.

Now consider the the hitting times, τ
(k)
n , to ∆n. Notice that from the construction

of suspended flows these hitting times can be related to the hitting times, r(k)n , of

the system (X ,T,B,µ) at the base of the flow, to the projected sets An = π(∆n).

This is formalised in the following lemma.
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Lemma 3.2. Let (X ,T,B,µ) be a T -invariant system with probability measure µ ,
and let (Ωγ ,St ,B,ν) be the associated suspension flow with height γ : X → (0,∞)
uniformly bounded away from 0. Then consider a sequence of open balls ∆n ⊂Ωγ

with positive measure such that limn→∞ ν(∆n) = 0. Let τ
(k)
n be the k-th hitting

time for the suspension flow to hit ∆n and let r(k)n be the k-th hitting time for the
transformation T : X → X to hit the projected sets An = π(∆n). Then

τ
(k)
n = r(k)n Y (k)

n

where

Y (k)
n (ω) = Y (k)

n (x,y) =
1

r(k)n

r(k)n −1

∑
i=0

γ(T ix)− y+h(T r(k)n x)


and h : X → R is a positive measurable function with 0≤ h(x)≤ γ(x).

Remark 3.3. The sequence of balls ∆n ⊂ Ωγ are such that the measure converges
to zero. In this setting of a suspended space there are two possible conditions
that would give this convergence, convergence in measure of the projected sets
to X given by An = π(∆n), or convergence in measure of the projected sets to R
given by π ′. It will be shown later that convergence in measure of the projection
to X is associated to the r(k)n term, and therefore it is sufficient to only consider
convergence of µ(An).

Proof. τ
(k)
n (ω) is the time it takes for the flow St to hit some particular set ∆n of

positive measure, starting at the point ω = (x,y). At the time t = τ
(k)
n (ω)

S
τ
(k)
n
(x,y) =

T η(τ
(k)
n )x , y+ τ

(k)
n −

η(τ
(k)
n )−1

∑
i=0

γ(T ix)

 ,

where η(τ
(k)
n ) is the unique natural number which satisfies

0≤ y+ τ
(k)
n −

η(τ
(k)
n )−1

∑
i=0

γ(T ix) < γ(T η(τ
(k)
n )x).

We will show that η(τ
(k)
n ) = r(k)n

Each term in the sum coincides with the flow reaching the top of the suspen-
sion once, which is to say that the x-coordinate is translated to T x for each term
in the sum. In order for the flow to hit ∆n for the k-th time, it will therefore have
to continue until the x-coordinate hits the projected set An = π(∆n) ⊂ X for the
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k-th time. After the first translation (that is the time to reach the point (Tx, 0)) S
has travelled a distance of γ(x)− y, the height of γ over the first point minus the
starting position. At subsequent translations the distance adds on the height of γ(x)
for each x coordinate visited so that after r(k)n translations S has flowed a distance
of

γ(x)− y+ γ(T x)+ · · ·+ γ(T r(k)n −1x).

This must be at most the distance required to hit ∆n for the k-th time. Since St
travels at unit speed,

τ
(k)
n ≥

r(k)n −1

∑
i=0

γ(T ix)

− y.

Rearranging gives the left hand inequality

0≤ y+ τ
(k)
n −

r(k)n −1

∑
i=0

γ(T ix).

To get the right hand inequality observe that St must hit ∆n before the next
translate. Therefore

τ
(k)
n < γ(x)− y+ γ(T x)+ · · ·+ γ(T r(k)n x).

Rearranging this inequality gives

y+ τ
(k)
n −

r(k)n −1

∑
i=0

γ(T ix) < γ(T r(k)n x).

It follows that there is some function h : X → R which satisfies

τ
(k)
n =

r(k)n −1

∑
i=0

γ(T ix)− y+h(T r(k)n x)

where 0≤ h(x)< γ(x) for every x ∈ X . Define h(x) to be the height required for S
to hit ∆n from (x,0) if x ∈ An or 0 otherwise, that is to say

h(x) =

{
τ
(1)
n (x,0) x ∈ An

0 otherwise.

The measurability of h follows from the measurability of τ .
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We have now separated the hitting times into two random variables. The rea-

son for this, as shown in the following lemma, is because the Y (k)
n terms converge

almost surely to a constant.

Lemma 3.4. Y (k)
n converges µ-almost surely to

∫
γ dµ as n→ ∞.

Proof. This can be shown by rearranging and considering three terms separately,
by writing

Y (k)
n =

1

r(k)n

r(k)n −1

∑
i=0

γ(T ix)− y

r(k)n

+
h(T r(k)n x)

r(k)n

where h(x) is the height required for S to hit ∆n from (x,0) if x∈ An or 0 otherwise,
that is to say

h(x) =

{
τ
(1)
n (x,0) x ∈ An

0 otherwise.

For the second term, we recognise that r(k)n → ∞ almost surely as n→ ∞ since
the measure of the target set converges to zero and so the hitting times diverge
according to Kac’s theorem. As y is a constant here it follows that

y

r(k)n

→ 0

µ-almost surely as n→ ∞.

For the third term it’s already known that 0 ≤ h(T r(k)n x) < γ(T r(k)n x). Since
γ ∈ L1 it follows that by the Birkhoff Ergodic theorem

1

r(k)n

r(k)n

∑
k=0

γ(T ix)→
∫

γ dµ.

So consider

1

r(k)n

h(T r(k)n x)<
1

r(k)n

γ(T r(k)n x)

=
1

r(k)n

r(k)n

∑
k=0

γ(T ix)− 1

(r(k)n −1)

r(k)n −1

∑
k=0

γ(T ix)

Taking a limit as n→ ∞, and noting that r(k)n is a subsequence of (n)n∈N, then both
terms in the final expression converge to the integral of γ by the Birkhoff ergodic
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theorem. In particular, on a set of full measure,

0≤ lim
n→∞

1

r(k)n

h(T r(k)n x) ≤
∫

γ dµ −
∫

γ dµ = 0,

and so 1
r(k)n

h(T r(k)n x)→ 0 almost surely.

For the first term we use a generalised version of the Birkhoff ergodic theorem
and notice that r(k)n diverges almost surely so the averages must converge almost
surely to the integral due to the ergodic properties of µ . That is

1

r(k)n

r(k)n −1

∑
i=0

γ(T ix)− y

→ ∫
γ dµ

almost surely as n→ ∞.

The result now follows.

Remark 3.5. Here γ does not need to be continuous for the previous two lemmas
to hold, but needs only be integrable in order to use the Birkhoff ergodic theorem
in the proof.

Slutsky’s Theorem and the Continuous Mapping Theorem

We now consider a theorem of Slutsky [9] and give a proof, along with some gen-

eral and relevant remarks. We also consider related ideas including the continuous

mapping theorem and how these ideas might be applied to the hitting time problem

being considered in this thesis.

Theorem 3.6 (Continuous Mapping Theorem). Let Zn be a d-dimensional random
vector which converges in distribution to the random vector Z. If g : Rd → R is a
continuous map with compact support then g(Zn)→ g(Z) in distribution.

A proof of the continuous mapping theorem can be found in [13]. I now

give a proof of Slutsky’s theorem, in its usual form, using the continuous mapping

theorem.

Theorem 3.7 (Slutsky’s Theorem). Let (Xn) be a sequence of random variables
that converge in distribution to X, and (Yn) another sequence of random variables
that converge in probability to a constant c ∈ R. Then the product XnYn converges
in distribution to the product Xc.
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Remark 3.8.

1. Convergence in probability of Yn to c is defined as the convergence

lim
n→∞

P(|Yn− c|< ε) = 0

and is implied by convergence almost surely, so convergence of the variable
Yn almost surely to a constant is enough for the result to hold.

2. It is important that Yn converges to a constant, and it is not generally the case
that this theorem holds when Yn converges to an arbitrary random variable.
As a counterexample consider Ω = {0,1}N. This is the one-sided full shift
on two symbols. Consider the probability measure µ = (1

2 ,
1
2)

N. Now for
ω = (ω1,ω2, . . .) define a sequence of random variables by Xn : Ω→ R by

Xn(ω) =


0 if ω1 = 0, n = 2k
1 if ω1 = 1, n = 2k
1 if ω1 = 0, n = 2k+1
0 if ω1 = 1, n = 2k+1

Then both X2k and X2k−1 converge in distribution to X = X0, since they all
have the same distribution function. However note that X2k×X2k−1 is iden-
tically equal to the constant random variable 0, and this does not converge to
X0×X0 = X0 as k→ ∞.

Whilst proofs of this theorem can be found elsewhere (e.g. see [9]) we will

consider a new proof as we will use it to generalise Slutsky’s theorem later in the

thesis.

Proof. We will prove this theorem using the continuous mapping theorem (theo-
rem 3.6). The function that will be needed is g(x,y) = xy and the random vector is
(Xn,Yn). The remainder of this proof is now devoted to showing that (Xn,Yn) con-
verges in distribution to (X ,c), since from this the continuous mapping theorem
can be used to complete the proof.

For any bounded and continuous function with compact support h : R2 → R
consider the difference

|E [h(Xn,Yn)]−E [h(X ,c)]|
= |E [h(Xn,Yn)]−E [h(Xn,c)]+E [h(Xn,c)]−E [h(X ,c)]|
≤ |E [h(Xn,Yn)]−E [h(Xn,c)]|+ |E [h(Xn,c)]−E [h(X ,c)]|
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Define g(x) := h(x,c), which is continuous and has compact support from the
compact support of h. Then the second term converges to zero as n tends to infinity
since Xn converges to X in distribution.

The first term is harder and uses the fact that Yn converge in probability. That
is to say that for any ε > 0, P(|Yn−c|> ε)→ 0 as n→ ∞. Using this notation, for
any ε > 0 it follows that

|E [h(Xn,Yn)]−E [h(Xn,c)]|

=

∣∣∣∣∫ h(Xn,Yn)−h(Xn,c)dP
∣∣∣∣

=

∣∣∣∣∫|Yn−c|>ε

h(Xn,Yn)−h(Xn,c)dP

+
∫
|Yn−c|≤ε

h(Xn,Yn)−h(Xn,c)dP
∣∣∣∣

≤
∣∣∣∣∫|Yn−c|>ε

h(Xn,Yn)−h(Xn,c)dP
∣∣∣∣

+

∣∣∣∣∫|Yn−c|≤ε

h(Xn,Yn)−h(Xn,c)dP
∣∣∣∣

≤ sup
{x,y:|y−c|≤ε}

{|h(x,y)−h(x,c)|}P(|Yn− c| ≤ ε)

+2‖h‖∞P(|Yn− c|> ε).

Observe that h is continuous with compact support. In particular h is uni-
formly continuous, which is to say that for any η > 0 there is a δ = δη > 0
such that d1 ((x1,y1),(x2,y2)) < δ =⇒ d2 (h(x1,y1),h(x2,y2)) < η , where d1
and d2 are the metrics for R2 and R respectively. So there is a δ > 0 such
that d1 ((x,y),(x,c)) < δ =⇒ d2 (h(x,y),h(x,c)) < η . But the distance
d1 ((x,y),(x,c)) = |y− c|, so since in the above calculation ε was arbitrary, pick
ε < δη . Now for any η > 0 there exists ε such that

|E [h(Xn,Yn)]−E [h(Xn,c)]| ≤ η +2‖h‖∞P(|Yn− c|> ε).

Yn converges in probability so in particular there exists some N ∈ N such that for
n > N

|E [h(Xn,Yn)]−E [h(Xn,c)]| ≤ η +η = 2η .

But η is arbitrary it follows that

lim
n→∞

E [h(Xn,Yn)−h(Xn,c)] = 0.
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Remark 3.9. In the statement of the continuous mapping theorem the condition of
convergence in distribution of Zn→ Z can be changed for convergence in probabil-
ity (or convergence almost surely) to give g(Zn)→ g(Z) in probability (or almost
surely respectively).

We are interested with the convergence in distribution of the processes given

by

τn(ω) = ∑
k∈N

δ
τ
(k)
n (ω)cn

to the Poisson point process which will be denoted

τ(ω) = ∑
k∈N

δ
τ(k)(ω).

It is enough to check that the integral∫
gdτn

converges to ∫
gdτ

for any continuous g : R → R with compact support. We will now attempt to

construct some theory generalising Slutsky’s theorem and the continuous mapping

theorem with this motivation, first by considering a point process with one point,

and extending this to a more general point process.

A General Slutsky’s Theorem for One Point

Consider again a sequence of random variables (Xn) which converge in distribu-

tion to X and another sequence of random variables (Yn) which converge to a con-

stant c ∈R almost everywhere, which in particular means that Yn converges to c in

probabililty. Define a point process τn(ω) = δXn(ω)Yn(ω). This process converges

in distribution to τ = δXc if for any continuous function with compact support,

g : R→ R, ∫
gdτn = g(XnYn)→ g(Xc) =

∫
gdτ.
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It is enough to check this is true for arbitrary indicator functions g = χ[a,b] for

a < b. Making use of Slutsky’s Theorem above

P(χ[a,b](XnYn)≤ t) =

P(XnYn ∈ [a,b]) if t = 1

1−P(XnYn ∈ (a,b)) if t = 0

→

P(Xc ∈ [a,b]) if t = 1

1−P(Xc ∈ [a,b]) if t = 0

= P
(
χ[a,b](Xnc)≤ t

)
.

So τn converges in distribution to τ as n tends to infininty.

A General Slutsky’s Theorem for Two Points

This time consider two sequences of random variables X (1)
n and X (2)

n which con-

verge in distribution to X (1) and X (2) respectively and sequences Y (1)
n and Y (2)

n

which converge almost everywhere to Y (1) and Y (2) respectively. Assume that

X (1) and the difference (X (2) − X (1)) are independent and that Y (1) = Y (2) = c

is a constant. We are concerned with the convergence of the process given by

τn(ω) = δ
X (1)

n Y (1)
n

+δ
X (2)

n Y (2)
n
.

To see that this converges in distribution it is enough to show that for any

continuous function with compact support, g : R→ R,∫
gdτn = g(X (1)

n Y (1)
n )+g(X (2)

n Y (2)
n )

converges to ∫
gdτ.

The goal is to use the continuous mapping theorem to show this, using the function

G : R4→ R given by

G(u(1),u(2),v(1),v(2)) = g(u(1)v(1))+g((u(2)−u(1))v(2))

and substituting X (1)
n = u(1), (X (2)

n −X (1)
n ) = u(2), Y (1)

n = v(1), and Y (2)
n = v(2). For

ease of notation let Z(1)
n = X (1)

n , Z(1) = X (1) and similarly Z(2)
n = (X (2)

n −X (1)
n ) and
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Z(2) = (X (2)−X (1)). We must show that the random vector (Z(1)
n ,Z(2)

n ,Y (1)
n ,Y (2)

n )

does indeed converge to (Z(1),Z(2),c,c).

Assume that (Z(1)
n ,Z(2)

n ) converges in distribution to (Z(1),Z(2)). Now

we can adapt the proof of Slutsky’s Theorem to show the convergence of

(Z(1)
n ,Z(2)

n ,Y (1)
n ,Y (2)

n ).

Let Zn = (Z(1)
n ,Z(2)

n ), Yn = Y (1)
n , and similarly Z = (Z(1),Z(2)) and Y = Y (1) =

c. For any bounded and continuous function with compact support h : R3 → R
consider the difference

|E [h(Zn,Yn)]−E [h(Z,c)]|

= |E [h(Zn,Yn)]−E [h(Zn,c)]+E [h(Zn,c)]−E [h(Z,c)]|

≤ |E [h(Zn,Yn)]−E [h(Zn,c)]|+ |E [h(Zn,c)]−E [h(Z,c)]|

Define g(z) = h(z,c) which is continuous and has compact support from h. There-

fore by the continuous mapping theorem the second term converges to zero as n

tends to infinity since Zn converges to Z in distribution.

The first term is less difficult and uses the fact that Yn converges in probability,

which is to say that for any ε > 0, P(|Yn− c| > ε)→ 0 as n→ ∞. Using this

notation, for any ε > 0 it follows that

|E[h(Zn,Yn)]−E [h(Zn,c)]|

=

∣∣∣∣∫ h(Zn,Yn)−h(Zn,c)dP
∣∣∣∣

=

∣∣∣∣∫|Yn−c|>ε

h(Zn,Yn)−h(Zn,c)dP+
∫
|Yn−c|≤ε

h(Zn,Yn)−h(Zn,c)dP
∣∣∣∣

≤
∣∣∣∣∫|Yn−c|>ε

h(Zn,Yn)−h(Zn,c)dP
∣∣∣∣+ ∣∣∣∣∫|Yn−c|≤ε

h(Zn,Yn)−h(Zn,c)dP
∣∣∣∣

≤ sup
{z,y:|y−c|≤ε}

{|h(z,y)−h(z,c)|}P(|Yn− c| ≤ ε)+2‖h‖∞P(|Yn− c|> ε).

Observe that h is continuous with compact support, in particular this means

that h is uniformly continuous, which is to say that for any η > 0 there is a

δ = δη > 0 such that d1 ((x1,y1),(x2,y2)) < δ =⇒ d2 (h(x1,y1),h(x2,y2)) < η ,
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where d1 and d2 are the metrics for R2 and R respectively. So there is a δ > 0

such that d1 ((x,y),(x,c)) < δ =⇒ d2 (h(x,y),h(x,c)) < η . But the distance

d1 ((x,y),(x,c)) = |y− c|, so since in the above calculation ε was arbitrary, pick

ε < δη . For any η > 0 there exists ε > 0 such that

|E [h(Xn,Yn)]−E [h(Xn,c)]| ≤ η +2‖h‖∞P(|Yn− c|> ε).

Yn converges in probability so there exists some N ∈ N such that for n > N

|E [h(Xn,Yn)]−E [h(Xn,c)]| ≤ η +η = 2η .

But η is arbitrary so it follows that

lim
n→∞

E [h(Xn,Yn)−h(Xn,c)] = 0.

It follows that (Zn,Yn) converges in distribution to (Z,Y ).

Now let Zn = (Z(1)
n ,Z(2)

n ,Y (1)
n ) and Yn = Y (2)

n and repeat the calculation, to get

that (Z(1)
n ,Z(2)

n ,Y (1)
n ,Y (2)

n ) converges in distribution to (Z(1),Z(2),c,c). Then by the

continuous mapping theorem G(Z(1)
n ,Z(2)

n ,Y (1)
n ,Y (2)

n ) converges in distribution to

G(Z(1),Z(2),c,c) which is to say the process τn converges in distribution to τ .

A General Slutsky’s Theorem for Multiple Points

This time now consider m sequences of random variables X (1)
n ,X (2)

n , . . . ,X (m)
n

which converge in distribution to X (1),X (2), . . . ,X (m) respectively and sequences

Y (1)
n ,Y (2)

n , . . . ,Y (m)
n which converge almost surely to Y (1),Y (2), . . . ,Y (m) respec-

tively. Assume that X (1)
n and the difference (X (2)

n −X (1)
n ) are asymptotically inde-

pendent and that for i = 2, . . . ,m−1 each pair consecutive intervals, (X (i)
n −X (i−1)

n )

and (X i+1
n −X (i)

n ), are pairwise asymptotically independent, and that Y (1) =Y (2) =

c∈R. Here two variables, Z1
n ,Z

2
n are considered asymptotically independent if they

converge in distribution to Z1 and Z2 respectively, and Z1 and Z2 are independent.

We are concerned with the convergence of the process given by

τn(ω) =
m

∑
i=1

δ
X (i)

n Y (i)
n
.
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To see that this converges in distribution it is again enough to show that for

any continuous function with compact support, g : R→ R,

∫
gdτn =

k

∑
i=1

g(X (i)
n Y (i)

n )

converges to ∫
gdτ.

This can be shown using the continuous mapping theorem for the continuous func-

tion G : R2m→ R given by

G(u(1), . . . ,u(m),v(1), . . . ,v(m)) = g(u(1)v(1))+
m

∑
i=2

g((u(i)−u(i−1))v(i))

and substituting X (1)
n = u(1), (X (i)

n −X (i−1)
n ) = u(i), Y (i)

n = v(i) for i≥ 2.

For ease of notation let Z(1)
n = X (1)

n , Z(1) = X (1) and similarly Z(i)
n =

(X (i)
n −X (i−1)

n ) and Z(i) = (X (i)−X (i−1)) for i ≥ 2. We therefore need to show

that the random vector (Z(1)
n , . . . ,Z(m)

n ,Y (1)
n , . . . ,Y (m)

n ) does indeed converge to

(Z(1), . . . ,Z(m),c, . . . ,c). Assume also that (Z(1)
n , . . . ,Z(m)

n ) converges in distribu-

tion to (Z(1), . . . ,Z(m)).

Let Zn = (Z(1)
n , . . . ,Z(m)

n ), Yn = Y (1)
n , and similarly Z = (Z(1), . . . ,Z(m)) and

Y = Y (1) = c. For any bounded and continuous function with compact support

h : Rm+1→ R consider the difference

|E [h(Zn,Yn)]−E [h(Z,c)]|

= |E [h(Zn,Yn)]−E [h(Zn,c)]+E [h(Zn,c)]−E [h(Z,c)]|

≤ |E [h(Zn,Yn)]−E [h(Zn,c)]|+ |E [h(Zn,c)]−E [h(Z,c)]|

Defining g(z) := h(z,c), which is continuous and has compact support from h.Then

it follows from the continuous mapping theorem that second term converges to zero

as n tends to infinity since Zn converges to Z in distribution.

For the first term we will use the fact that Yn converge in probability, which is

to say that for any ε > 0, P(|Yn− c| > ε)→ 0 as n→ ∞. Using this notation, for
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any ε > 0

|E[h(Zn,Yn)]−E [h(Zn,c)]|

=

∣∣∣∣∫ h(Zn,Yn)−h(Zn,c)dP
∣∣∣∣

=

∣∣∣∣∫|Yn−c|>ε

h(Zn,Yn)−h(Zn,c)dP+
∫
|Yn−c|≤ε

h(Zn,Yn)−h(Zn,c)dP
∣∣∣∣

≤
∣∣∣∣∫|Yn−c|>ε

h(Zn,Yn)−h(Zn,c)dP
∣∣∣∣+ ∣∣∣∣∫|Yn−c|≤ε

h(Zn,Yn)−h(Zn,c)dP
∣∣∣∣

≤ sup
{z,y:|y−c|≤ε}

{|h(z,y)−h(z,c)|}P(|Yn− c| ≤ ε)+2‖h‖∞P(|Yn− c|> ε).

Observe that h is continuous with compact support. In particular this means

that h is uniformly continuous, which is to say that for any η > 0 there is a

δ = δη > 0 such that d1 ((x1,y1),(x2,y2)) < δ =⇒ d2 (h(x1,y1),h(x2,y2)) < η ,

where d1 and d2 are the metrics for R2 and R respectively. So there is a δ > 0

such that d1 ((x,y),(x,c)) < δ =⇒ d2 (h(x,y),h(x,c)) < η . But the distance

d1 ((x,y),(x,c)) = |y− c|, so since in the above calculation ε was arbitrary, pick

ε < δη . Therefore for any η > 0 there exists ε > 0 such that

|E [h(Xn,Yn)]−E [h(Xn,c)]| ≤ η +2‖h‖∞P(|Yn− c|> ε).

Yn converges in probability so there exists some N ∈ N such that for n > N

|E [h(Xn,Yn)]−E [h(Xn,c)]| ≤ η +η = 2η .

But η is arbitrary so it follows that

lim
n→∞

E [h(Xn,Yn)−h(Xn,c)] = 0.

Therefore (Zn,Yn) converges in distribution to (Z,Y ).

Now let Zn = (Z(1)
n , . . . ,Z(m)

n ,Y (1)
n ) and Yn = Y (2)

n and repeat the cal-

culation, to get that (Z(1)
n , . . .Z(m)

n ,Y (1)
n ,Y (2)

n ) converges in distribution to

(Z(1),Z(2),c,c) and continue for Yn = Y 3
n then Yn = Y 4

n etc. until we have that

(Z(1)
n , . . . ,Z(m)

n ,Y (1)
n , . . . ,Y (m)

n ) converges in distribution to (Z(1),. . . ,Z(m),c,. . . ,c).
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Then by the continuous mapping theorem G(Z(1)
n , . . . ,Z(m)

n , Y (1)
n , . . . ,Y (m)

n ) con-

verges in distribution to G(Z(1), . . . ,Z(2),c, . . . ,c) which is to say that the process

τn converges in distribution to τ .

This proves the finite, m-dimensional case, where

τn(ω) =
m

∑
i=1

δ
X (i)

n Y (i)
n
.

But for convergence in distribution for the infinite dimensional situation it is

enough to prove convergence for every finite m. This can be seen by recalling

the definition of convergence in distribution of a point process: τn converges in

distribution to τ if and only if for all continuous g : R→ R with compact support

the random variables
∞

∑
i=1

g(X (i)
n Y (i)

n )

converge in distribution to
∞

∑
i=1

g(X (i)Y (i)).

Theorem 3.10. Let the process given by

Xn =
∞

∑
i=1

δ
X (i)

n

converge in distribution, as n→ ∞, to

X =
∞

∑
i=1

δX (i),

where X is a Poisson point process of rate 1. If Y (i)
n converges µ-almost surely to a

constant c ∈ R for all i ∈ N then the process

τn =
∞

∑
i=1

δ
Y (i)

n X (i)
n

converges in distribution, as n→ ∞, to

τ =
∞

∑
i=1

δcX (i),

which is a Poisson point process of rate 1
c .
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3.3.1 Poisson Law for Suspended Flows

Consider a discrete dynamical system (X ,T,B,µ) with T -invariant probability

measure µ , and the associated suspended space (Ωγ ,St ,B,ν) for a height function

γ : X→R. Let ∆n⊂Ωγ be a sequence of open sets with positive measure satisfying

limn→∞ ν(∆n) = 0. Recall the k-th hitting time for the action of St to hit ∆n is

denoted τ
(k)
n and the k-th hitting time for the action of T to hit the projected sets

An = π(∆n) is denoted r(k)n .

Theorem 3.11. Assume there is a positive sequence of real numbers (cn) such that
the hitting time process given by

rn(x) = ∑
k∈N

δ
r(k)n (x)cn

converges in distribution to a Poisson point process of rate 1. Then it follows that
the process of rescaled hitting times

τn(ω) = ∑
k∈N

δ
τ
(k)
n cn

converges in distribution to a Poisson point process of rate 1∫
γ dµ

.

Proof. First check the criteria for Theorem 3.10 are satisfied. Lemma 3.2 states
that τ

(k)
n = Y (k)

n r(k)n and by lemma 3.4, Y (k)
n converges almost surely to

∫
γ dµ as

n→ ∞, for any k ∈ N. It therefore follows that τn(x,y) converges in distribution
(with respect to the measure µ) to a point process of rate 1, which will be denoted
τ .

For any continuous function g : R→ R with compact support, consider the
sequence of random variables given by

Nn(g)(ω) = Nn(g)(x,y) =
∫

∞

0
g(t)d

(
∞

∑
k=0

δτk
n(ω)cn

)
.

Theorem 3.10 states that∫
Σ

Nn(g)(x,y)dµ →
∫

Σ

N(g)(x,y)dµ

where

N = N(ω) =
∫

∞

0
g(t)d

(
∞

∑
k=0

δτk(ω)

)
.
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However to show convergence in distribution with respect to the full measure given
by

ν =
µ×Leb∫

γ dµ

we need to show convergence of the integral∫
Ω

Nn(g)(ω)dν(ω).

Consider the integral∫
γ dµ

∫
Ω

Nn(g)(ω)dν(ω) =
∫

Ω

Nn(g)(ω)dµ(x)⊗d Leb(y)

=
∫

Σ

(∫
γ(x)

0
Nn(g)(x,y)d Leb(y)

)
dµ(x).

The internal integrals can be bounded above and below. First consider a lower
bound.

Up to a set of µ-measure zero, the number of hits will eventually be minimised
by considering a starting point (x,0), as this requires the flow to travel the maxi-
mum distance before making the first hit, and then each subsequent hit. That is to
say that

γ(x)Nn(g)(x,0)≤
∫

γ(x)

0
Nn(g)(x,y)d Leb(y)

except on a set of µ-measure equal to zero. Therefore it follows that∫
Σ

γ(x)Nn(g)(x,0)dµ(x)≤
∫

Σ

(∫
γ(x)

0
Nn(g)(x,y)d Leb(y)

)
dµ(x).

Similarly for an upper bound up to a set of µ-measure zero, the number of hits
will eventually be maximised by considering the highest starting point, (x,γ(x)) =
(T x,0), as this requires the flow to travel the minimum distance before making the
first hit, and each subsequent hit after. That is to say that∫

γ(x)

0
Nn(g)(x,y)d Leb(y)≤ γ(x)Nn(g)(x,γ(x)) = γ(x)Nn(g)(T x,0)

except on a set of µ-measure equal to zero. Therefore it follows that∫
Σ

(∫
γ(x)

0
Nn(g)(x,y)d Leb(y)

)
dµ(x)≤

∫
Σ

γ(x)Nn(g)(T x,0)dµ(x).
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To understand the convergence of∫
Σ

(∫
γ(x)

0
Nn(g)(x,y)d Leb(y)

)
dµ(x)

it is therefore enough to understand the convergence of the bounds∫
Σ

γ(x)Nn(g)(x,0)dµ(x)

and ∫
Σ

γ(x)Nn(g)(T x,0)dµ(x).

Consider the lower bound (given by the first integral). The two random variables
given by g(τ(k)n (·,0)cn) and γ are asymptotically independent for any k ∈ N; con-
sider

g(τ(k)n (x,0)cn) = g

cn

r(k)n −1

∑
i=1

γ(T ix)+h(T r(k)n x)

 .

As g is a continuous function with compact support, this converges µ-almost
surely, in the limit as n tends to infinity, to the integral

g
(

r(k)(x)
∫

Σ

γ dµ

)
which is independent of γ(x). Therefore

lim
n→∞

∫
Σ

γ(x)Nn(g)(x,0)dµ(x) = lim
n→∞

∫
Σ

γ(x)

(∫
∞

0
g(t)d

(
∞

∑
k=1

δτk
ncn

))
dµ(x)

= lim
n→∞

∫
Σ

γ(x)

(
∞

∑
k=1

g(τk
n(x,0)cn)

)
dµ(x)

= lim
n→∞

∞

∑
k=1

∫
Σ

γ(x)g(τk
n(x,0)cn)dµ(x).

Here we have made use of the monotone convergence theorem. Since g is contin-
uous with compact support the sequence given by(

j

∑
k=1

g(τk
ncn)

)
j∈N

must eventually be monotonic (for a fixed n), yet also finite as τ
(k)
n diverges to

infinity as k diverges. So the infinite sum and the integral may be exchanged.
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Now observe that∫
Σ

γ(x)g(τk
n(x,0)cn)dµ(x)≤

∫
γ(x)dµ‖g‖∞.

By the dominated convergence theorem

lim
n→∞

∫
Σ

γ(x)Nn(g)(x,0)dµ(x) = lim
n→∞

∞

∑
k=1

∫
Σ

γ(x)g(τ(k)n (x,0)cn)dµ(x)

=
∞

∑
k=1

lim
n→∞

∫
Σ

γ(x)g(τ(k)n (x,0)cn)dµ(x)

=
∞

∑
k=1

∫
Σ

γ(x)dµ

∫
Σ

g(τ(k)(x,0))dµ(x)

=
∫

γ dµ

∫
N(g)(x)dµ.

Similarly for the upper bound (given by the second integral), noting again that
since g(τ(k)n (·,0)cn) and γ are asymptotically independent for any k ∈ N

lim
n→∞

∫
Σ

γ(x)Nn(g)(T x,0)dµ(x) = lim
n→∞

∫
Σ

γ(x)

(∫
∞

0
g(t)d

(
∞

∑
k=1

δ
τ
(k)
n cn

))
dµ(x)

= lim
n→∞

∫
Σ

γ(x)

(
∞

∑
k=1

g(τ(k)n (T x,0)cn)

)
dµ(x)

= lim
n→∞

∞

∑
k=1

∫
Σ

γ(x)g(τ(k)n (T x,0)cn)dµ(x)

= lim
n→∞

∞

∑
k=1

∫
Σ

γ(x)g(τ(k)n (T x,0)cn)dµ(x)

=
∞

∑
k=1

lim
n→∞

∫
Σ

γ(x)g(τ(k)n (T x,0)cn)dµ(x)

=
∞

∑
k=1

∫
Σ

γ(x)dµ

∫
Σ

g(τ(k)(T x,0))dµ(x)

=
∫

γ dµ

∫
N(g)(x)dµ.

The upper and lower bound both converge to the same limit, therefore

lim
n→∞

∫
Σ

(∫
γ(x)

0
Nn(g)(x,y)d Leb(y)

)
dµ(x) =

∫
Σ

γ(x)dµ(x)
∫

Σ

N(g)(x,0)dµ(x),

and τn converges in ν-distribution to a Poisson process of rate 1∫
γ dµ

.

57



Corollary 3.12. Consider an ergodic subshift of finite type, (ΣA,σ), equiped with
a suspended flow St : Ωγ → Ωγ for some γ ∈F , and let ∆n ⊂ Ωγ be a sequence
of open balls with measure ν(∆n) > 0 and limn→∞ ν(∆n) = 0. Then there is a
sequence of positive real numbers (cn)n∈N such that the process of hitting times
given by

τn(ω) = ∑
k∈N

δ
τ
(k)
n (ω)cn

converges in distribution to a Poisson point process of rate 1.

This follows as a direct corollary from Theorem 3.11, and Pitskel’s result (the-

orem 2.1), which gave a Poisson limit law for open balls in a Markov chain.

These results will extend naturally to give a Poisson limit law for the hitting

time processes to a sequence of more general open sets ∆n and not just open balls,

so long as the hitting time process of the discrete system given by rn converges to

a Poisson process.

3.3.2 Poisson Law for Axiom A Flows

By applying Theorem 3.11 to the developed theory of axiom A flows, the following

theorem holds.

Theorem 3.13. Let φt : Λ→Λ be an axiom A flow on a basic hyperbolic set, Λ, and
{∆n}n be a sequence of open sets with positive measure such that limn→∞ m(∆n) =
0. Then the hitting time process to ∆n given by

τn =
∞

∑
k=1

δ
cnτ

(k)
n

converges in distribution to a Poisson point process of rate 1, where cn =
µ(∆n)

∫
γ dµ .

Proof. The distribution of the rescaled hitting times in an axiom A flow is the same
as the distribution of rescaled hitting times in the corresponding suspension flow.
Open sets in the original space will also correspond to open sets in the suspended
space. It therefore follows from Theorems 2.1 and 2.2 that there is a rescaling
sequence cn such that the rescaled hitting time process, of the action on the base
of the suspension flow, converges in distribution to a Poisson point process of rate
1. Therefore by Theorem 3.11 there is a rescaling sequence such that the rescaled
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hitting time process of the full flow converges in distribution to a Poisson point
process of rate 1. Therefore, for the same rescaling sequence, the rescaled hitting
time process in the axiom A flow converges to a Poisson point process of rate
1.

3.4 Return Times

So far I have been looking at hitting times for flows, and I will now show how simi-

lar methods can be used to understand the distributions of the return times, proving

a theorem on the rescaled limit distribution of return times in a similar setting. In

general one would expect to find the return time process and hitting time process

have similar limiting distributions, especially if the system has sufficient mixing

properties, and I will show that the rescaled return time distribution is the same in

the limit as that of hitting times, provided that similar conditions are satisfied.

Start by defining the return times. Consider a sequence of measurable open

sets ∆n ⊂Ω such that ν(∆n)> 0 and

lim
n→∞

ν(∆n) = 0.

For ω ∈ ∆n denote the first return time to ∆n by

τ
(1)
n (ω) := inf{t > 0 : φt(ω) ∈ ∆n and ∃s < t such that φs(ω) /∈ ∆n},

and subsequent return times are defined inductively as

τ
(k)
n (ω) := inf{t > τ

(k−1)
n : φt(ω) ∈ ∆n and ∃s ∈ (τ

(k−1)
n , t) such that φs(ω) /∈ ∆n}.

We use the exact same notation here as for hitting times, as the definitions are

identical, with the only exception being that return times are restricted to the target

set. Because of this many of the useful observations made for hitting times still

hold true for return times.

One of the main differences of studying the distribution of return times and the

distribution of hitting times however is that because of the restriction to the target

sets the distributions must be measured using conditional probability measures.
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Denote by νn the conditional measure of ν given the condition ∆n. That is to say

for a measurable ∆⊂Ω

νn(∆) := ν(∆|∆n) =
ν(∆∩∆n)

ν(∆n)
.

3.4.1 Return Times for Suspension Flows

Consider a measure preserving discrete dynamical system, (X ,T,B,µ), with a

measurable height function γ : X → (0,∞) such that
∫

γ dµ < ∞. The suspended

space is given by

Ω = Ωγ := {ω = (x,y) ∈ X×R : 0≤ y≤ γ(x)} ,

where the points (x,γ(x)) are identified with (T x,0). Associate with this the prod-

uct σ -algebra, and define a probability measure on Ω by

dνγ = dν =
dµ×d Leb∫

γ dµ
.

The suspension flow (St : Ωγ →Ωγ : t ∈ R) is given by

St(ω) = St(x,y) :=

(
T η(t)x , y+ t−

η(t)−1

∑
i=0

γ(T ix)

)
where η(t) is the unique natural number which satisfies

0≤ y+ t−
η(t)−1

∑
i=0

γ(T ix)< γ(T η(t)x).

Recall also the projections π : Ω→ X given π(x,y) = x and π ′ : Ω→ R given by

π ′(x,y) = y.

Consider a sequence of open balls (∆n ⊂ Ω) with positive measure such that

limn→∞ ν(∆n) = 0. Denote π(∆n) = An and observe that µ(An)> 0 since otherwise

ν(∆n) =
µ×Leb∫

γ dµ
(∆n)≤

µ(π(∆n)×Leb(π ′(∆n))∫
γ dµ

= 0.

Now consider the the return times τ
(k)
n to these sets. As shown with the hitting

times, these return times can be related to the return times, r(k)n , of the system

(X ,T,B,µ) at the base of the flow, to the projected sets An = π(∆n).
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Lemma 3.14. Let (X ,T,B,µ) be an invariant dynamical system with probability
measure µ , and let (Ωγ ,St ,B,ν) be the associated suspension flow with height
given by the L1 integrable function γ : X → R. Then consider a sequence of open
balls ∆n ⊂ Ωγ with positive measure such that limn→∞ ν(∆n) = 0. Let τ

(k)
n be the

k-th return time for the suspension flow to hit ∆n and let r(k)n be the k-th return time
for the transformation T : X → X to hit the projected sets An = π(∆n). Then

τ
(k)
n = r(k)n Y (k)

n

where

Y (k)
n (ω) = Y (k)

n (x,y) =
1

r(k)n

r(k)n −1

∑
i=0

γ(T ix)− y+h(T r(k)n x)


and h : X → R is a positive measurable function with 0≤ h(x)≤ γ .

Proof. τ
(k)
n (ω) is the time it takes for the flow St to hit some particular set ∆n of

positive measure, starting at the point ω = (x,y). At the time t = τ
(k)
n (ω)

S
τ
(k)
n
(x,y) =

T η(τ
(k)
n )x , y+ τ

(k)
n −

η(τ
(k)
n )−1

∑
i=0

γ(T ix)

 ,

where η(τ
(k)
n ) is the unique natural number which satisfies

0≤ y+ τ
(k)
n −

η(τ
(k)
n )−1

∑
i=0

γ(T ix) < γ(T η(τ
(k)
n )x).

We will show that η(τ
(k)
n ) = r(k)n

Each term in the sum coincides with the flow reaching the top of the suspen-
sion once, which is to say that the x-coordinate is translated to T x for each term in
the sum. In order for the flow to hit ∆n for the k-th time, it will therefore have to
continue until the x-coordinate hits the projected set An = π(∆n) ∈ X for the k-th
time. After the first translation (that is the time to reach the point (Tx, 0)) S has
travelled a distance of γ(x)− y, the height of γ over the first point minus the start-
ing position, and at subsequent translations the distance just adds on the height of
γ each x coordinate visited so that after r(k)n translations S has flowed a distance of

γ(x)− y+ γ(T x)+ · · ·+ γ(T r(k)n −1x).
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This must be at most the distance required to hit ∆n for the k-th time. Since St
travels at unit speed,

τ
(k)
n ≥

r(k)n −1

∑
i=0

γ(T ix)

− y.

Rearranging gives the left hand inequlity

0≤ y+ τ
(k)
n −

r(k)n −1

∑
i=0

γ(T ix).

To get the right hand inequality observe that St must hit ∆n before the next translate.
So

τ
(k)
n < γ(x)− y+ γ(T x)+ · · ·+ γ(T r(k)n x).

Rearranging gives

y+ τ
(k)
n −

r(k)n −1

∑
i=0

γ(T ix) < γ(T r(k)n x).

It follows that there is some function h : X → R which satisfies

τ
(k)
n =

r(k)n −1

∑
i=0

γ(T ix)− y+h(T r(k)n x)

where 0≤ h(x)< γ(x) for every x ∈ X . Define h(x) to be the height required for S
to hit ∆n from (x,0) if x ∈ An or 0 otherwise, that is to say

h(x) =

{
τ
(1)
n (x,0) x ∈ An

0 otherwise.

The measurability of h follows from the measurability of τ .

Lemma 3.15. Y (k)
n converges µ-almost surely to

∫
γ dµ as n→ ∞.

Proof. This can be shown by rearranging and considering three terms separately,
by writing

Y (k)
n =

1

r(k)n

r(k)n −1

∑
i=0

γ(T ix)− y

r(k)n

+
h(T r(k)n x)

r(k)n

where h(x) is the height required for S to hit ∆n from (x,0) if x∈ An or 0 otherwise,
that is to say

h(x) =

{
τ
(1)
n (x,0) x ∈ An

0 otherwise.
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For the first term use a generalised version of the Birkhoff ergodic theorem
observing that since r(k)n diverges almost surely then the averages must converge
almost surely to the integral due to the ergodic properties of µ . That is

1

r(k)n

r(k)n −1

∑
i=0

γ(T ix)

→ ∫
γ dµ

almost surely as n→ ∞.

For the second term recognise that r(k)n → ∞ almost surely as n→ ∞ since the
measure of the target set converges to 0 and so the hitting times diverge according
to Kac’s theorem. As y is a constant here so it follows that

y

r(k)n

→ 0

µ-almost surely as n→ ∞.

For the third term it’s already known that 0 ≤ h(T r(k)n x) < γ(T r(k)n x). Since
γ ∈ L1 it follows that by the Birkhoff Ergodic theorem

1

r(k)n

r(k)n

∑
k=0

γ(T ix)→
∫

γ dµ.

So consider

1

r(k)n

h(T r(k)n x)<
1

r(k)n

γ(T r(k)n x)

=
1

r(k)n

r(k)n

∑
k=0

γ(T ix)− 1

(r(k)n −1)

r(k)n −1

∑
k=0

γ(T ix)

Taking a limit as n→ ∞, and noting that r(k)n is a subsequence of (n)n∈N, then both
terms in the final expression converge to the integral of γ by the Birkhoff ergodic
theorem. In particular, on a set of full measure,

0≤ lim
n→∞

1

r(k)n

h(T r(k)n x) ≤
∫

γ dµ −
∫

γ dµ = 0,

and so 1
r(k)n

h(T r(k)n x)→ 0 almost surely.

The result now follows.
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This is where the immediate similarities with hitting times end, as in order to

construct a general version of Slutky’s Theorem which can be used here, a slightly

different proof will be needed. The lemmas below will be required in that proof.

Lemma 3.16. If γ ∈ L2(X ,B,µ) then Y (k)
n converges in L2 to

∫
γ dµ as n→ ∞.

Proof. Again this can be shown by rearranging and considering three terms sepa-
rately, by writing

Y (k)
n =

1

r(k)n

r(k)n −1

∑
i=0

γ(T ix)− y

r(k)n

+
hn(T r(k)n x)

r(k)n

where h(x) is the height required for S to hit ∆n from (x,0) if x∈ An or 0 otherwise,
that is to say

hn(x) =

{
τ
(1)
n (x,0) x ∈ An

0 otherwise.

For the first term use a generalised version of the Von Neumann ergodic theo-
rem observing that since r(k)n diverge almost surely then the averages must converge
in L2 to the integral due to the ergodic properties of µ . That is

1

r(k)n

r(k)n −1

∑
i=0

γ(T ix)

→ ∫
γ dµ

in L2 as n→ ∞.

For the second term note that since γ ∈ L2 and y≤ γ(x) the integral of y2 exists
and is finite and ∫ ∣∣∣∣ 1

r(k)n
y
∣∣∣∣2 dµ ≤

∫ ∣∣1
ny
∣∣2 dµ

≤ 1
n

∫
|y|2 dµ,

and this final term converges to zero as n→ ∞.

For the final term, again note that since γ is L2 and 0≤ hn(x)< γ(x) then 1
r(k)n

hn

is also L2. Noting that hn is zero outside of An the integral can be restricted to the
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set An and making use of the upper bound h < γ and that both h,γ ≥ 0 then

∫ ∣∣∣∣ 1
r(k)n

hn

∣∣∣∣2 dµ ≤
∫

An

(
1

r(k)n
γ

)2

dµ

≤
∫

An

γ
2 dµ

≤ µ(An)
∫

γ
2 dµ.

But limn→∞ µ(An) = 0 and so this converges to zero.

The result now follows.

Lemma 3.17. If Y (k)
n converges in L2 to a constant c ∈ R then the probability

conditioned on An converges. That is to say

lim
n→∞

Pn

(∣∣∣Y (k)
n − c

∣∣∣> ε

)
= 0.

Proof. Let ε > 0 and use the Markov inequality to calculate

Pn

(∣∣∣Y (k)
n − c

∣∣∣> ε

)
=

P
(

χAn ·
∣∣∣Y (k)

n − c
∣∣∣> ε

)
P(An)

≤ 1
εP(An)

∫
χAn ·

∣∣∣Y (k)
n − c

∣∣∣ dµ

≤ P(An)

εP(An)

∫ ∣∣∣Y (k)
n − c

∣∣∣ dµ

=
1
ε

∫ ∣∣∣Y (k)
n − c

∣∣∣ dµ.

But ε was fixed and so noting that Y (k)
n converges in L2 to c, and therefore in L1 to

c, then taking a limit as n→ ∞ the result now follows.

Theorem 3.18. Let An ⊂ X be a sequence of subsets such that µ(An) > 0 and
limn→∞ µ(An) = 0. Let X (i)

n be a sequence of random variables defined on An such
that the processes given by

Xn =
∞

∑
i=1

δ
X (i)

n

converge in distribution, as n→ ∞, to

X =
∞

∑
i=1

δX (i),
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a Poisson point process of rate 1. Let Y (i)
n be another sequence of random variables

on An and c ∈ R be such that for any ε > 0 the limit

lim
n→∞

Pn

(
|Y (i)

n − c|> ε

)
= 0.

Then the process given by

τn =
∞

∑
i=1

δ
Y (i)

n X (i)
n

converges in distribution, as n→ ∞, to

τ =
∞

∑
i=1

δcX (i),

which is a Poisson point process of rate 1
c .

Proof. Consider m sequences of random variables X (1)
n ,X (2)

n , . . . ,X (m)
n which

converge in distribution to X (1),X (2), . . . ,X (m) respectively and sequences
Y (1)

n ,Y (2)
n , . . . ,Y (m)

n which converge almost everywhere to Y (1),Y (2), . . . ,Y (m) re-
spectively. As Xn converges to a poisson process, X (1)

n and the difference (X (2)
n −

X (1)
n ) are asymptotically independent and for each i = 2, . . . ,m−1 the pair of dif-

ferences (X (i)
n −X (i−1)

n ) and (X i+1
n −X (i)

n ) are pairwise asymptotically independent.
Let Y (i) = c ∈ R. We are concerned with the convergence of the process given by
τn(ω) = ∑

m
i=1 δ

X (i)
n Y (i)

n
.

To see that this converges in distribution it is sufficient to show that for any
continuous function, g : R→ R, with compact support∫

gdτn =
m

∑
i=1

g(X (i)
n Y (i)

n ),

converges in distribution to ∫
gdτ =

m

∑
i=1

g(X (i)Y (i)).

Recall theorem 3.6, the continuous mapping theorem: if Zn is a d-dimensional
random vector which converges in distribution to the random vector Z and g :Rd→
R is a continuous map with compact supoprt then g(Zn)→ g(Z) in distribution.

Let G : R2m→ R given by

G(u(1), . . . ,u(m),v(1), . . . ,v(m)) = g(u(1)v(1))+
m

∑
i=2

g((u(i)−u(i−1))v(i))
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and substituting X (1)
n = u(1), (X (i)

n −X (i−1)
n ) = u(i), Y (i)

n = v(i) for i ≥ 2. For ease
of notation write Z(1)

n = X (1)
n , Z(1) = X (1) and similarly Z(i)

n = (X (i)
n − X (i−1)

n )
and Z(i) = (X (i) − X (i−1)) for i ≥ 2. We will show that the random vector
(Z(1)

n , . . . ,Z(m)
n ,Y (1)

n , . . . ,Y (m)
n ) does indeed converge to (Z(1), . . . ,Z(m),c, . . . ,c).

Note that (Z(1)
n , . . . ,Z(m)

n ) converges in distribution to (Z(1), . . . ,Z(m)).

Let Zn = (Z(1)
n , . . . ,Z(m)

n ), Yn = Y (1)
n , and similarly Z = (Z(1), . . . ,Z(m)) and

Y =Y (1)= c. Let En denote the conditional expectation, that is the expectation with
respect to the measure µn = µ( · |An). For any bounded and continuous function
with compact support h : Rm+1→ R consider the difference given by

|En [h(Zn,Yn)]−En [h(Z,c)]|= |En [h(Zn,Yn)]−En [h(Zn,c)]
+En [h(Zn,c)]−En [h(Z,c)]|

≤ |En [h(Zn,Yn)]−En [h(Zn,c)]|
+ |En [h(Zn,c)]−En [h(Z,c)]|.

Define g(z) := h(z,c), which is continuous and has compact support from h. Then
by the continuous mapping theorem the second term converges to zero as n tends
to infinity since Zn converges to Z in distribution.

For the first term, note the assumption that for any ε > 0,

Pn (| Yn − c | > ε) → 0

as n→ ∞. Using this notation, for any ε > 0

|En[h(Zn,Yn)]−En [h(Zn,c)]|

=

∣∣∣∣∫ h(Zn,Yn)−h(Zn,c)dPn

∣∣∣∣
=

∣∣∣∣∫|Yn−c|>ε

h(Zn,Yn)−h(Zn,c)dPn +
∫
|Yn−c|≤ε

h(Zn,Yn)−h(Zn,c)dPn

∣∣∣∣
≤
∣∣∣∣∫|Yn−c|>ε

h(Zn,Yn)−h(Zn,c)dPn

∣∣∣∣
+

∣∣∣∣∫|Yn−c|≤ε

h(Zn,Yn)−h(Zn,c)dPn

∣∣∣∣
≤ 2‖h‖∞Pn(|Yn− c|> ε)

+ sup
{z,y:|y−c|≤ε}

{|h(z,y)−h(z,c)|}Pn(|Yn− c| ≤ ε).

Observe that h is continuous with compact support. In particular h is uniformly
continuous, which is to say that for any η > 0 there is a δ = δη > 0 such that
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d1 ((x1,y1),(x2,y2))< δ =⇒ d2 (h(x1,y1),h(x2,y2))< η , where d1 and d2 are the
metrics for R2 and R respectively. So there is a δ > 0 such that d1 ((x,y),(x,c))<
δ =⇒ d2 (h(x,y),h(x,c))< η . But the distance d1 ((x,y),(x,c)) = |y− c|. In the
above calculation ε was arbitrary, so pick ε < δη . Therefore for any η > 0 there
exists ε > 0 such that

|En [h(Xn,Yn)]−En [h(Xn,c)]| ≤ 2‖h‖∞Pn(|Yn− c|> ε)+η .

Since
lim
n→∞

Pn (|Yn− c|> ε) = 0

there exists some N ∈ N such that for n > N

|En [h(Xn,Yn)]−En [h(Xn,c)]| ≤ η +η = 2η .

But η is arbitrary so it follows that

lim
n→∞

En [h(Xn,Yn)−h(Xn,c)] = 0.

Therefore (Zn,Yn) converges in distribution to (Z,Y ).

Now let Zn = (Z(1)
n , . . . ,Z(m)

n ,Y (1)
n ) and Yn = Y (2)

n and repeat the cal-
culation, to get that (Z(1)

n , . . . ,Z(m)
n ,Y (1)

n ,Y (2)
n ) converges in distribution to

(Z(1), . . . ,Z(m),c,c) and continue for Yn = Y 3
n then Yn = Y 4

n etc. until we have that
(Z(1)

n , . . . ,Z(m)
n ,Y (1)

n , . . . ,Y (m)
n ) converges in distribution to (Z(1),. . . ,Z(m),c,. . . ,c).

Then by the continuous mapping theorem

G(Z(1)
n , . . . ,Z(m)

n , Y (1)
n , . . . ,Y (m)

n )

converges in distribution to

G(Z(1), . . . ,Z(m), c, . . . ,c)

which is to say that the process τn converges in distribution to τ .

This proves the finite, m-dimensional case, where

τn(ω) =
m

∑
i=1

δ
X (i)

n Y (i)
n
.

But for convergence in distribution for the infinite dimensional situation it is
enough to prove convergence for every finite m. This can be seen by recalling
the definition of convergence in distribution of a point process: τn converges in

68



distribution to τ if and only if for all continuous g : R→ R with compact support
the random variables

∞

∑
i=1

g(X (i)
n Y (i)

n )

converge in distribution to
∞

∑
i=1

g(X (i)Y (i)).

Therefore the result follows.

This shows a Poisson limit law, with respect to the measure µ , for the return

time process rescaled by µ(An). Now we will prove a full result for the flow with

respect to the product measure given by

ν =
µ×Leb∫

γ dµ
.

Theorem 3.19. Assume there is a positive sequence of real numbers (cn) such that
the return time processes given by

rn(x) = ∑
k∈N

δ
r(k)n (x)cn

converge in distribution to a Poisson point process of rate 1. Then processes of
rescaled return times

τn(ω) = ∑
k∈N

δ
τ
(k)
n cn

converges in distribution to a Poisson point process of rate 1∫
γ dµ

.

Proof. Lemma 3.14 states that τ
(k)
n = Y (k)

n r(k)n , and by lemma 3.15 Y (k)
n converges

almost surely to
∫

γ dµ as n→∞, for any k ∈N. It therefore follows from Theorem
3.18 that τn(x,y) converges in distribution (with respect to the measure µ) to a point
process of rate 1∫

γ dµ
, which will be denoted τ .

For any continuous function g : R→ R with compact support, consider the
sequence of random variables given by

Nn(g)(ω) = Nn(g)(x,y) =
∫

∞

0
g(t)d

(
∞

∑
k=0

δτk
n(ω)cn

)
.

Theorem 3.18 states that∫
An

Nn(g)(x,y)dµn→
∫

A
N(g)(x,y)dµ

∗
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where

N = N(ω) =
∫

∞

0
g(t)d

(
∞

∑
k=0

δτk(ω)

)
,

and (N(g),µ∗) describe a Poisson point process of rate 1∫
γ dµ

. To show convergence
in distribution with respect to the full measure given by

ν =
µ×Leb∫

γ dµ

we will show the convergence of the integral∫
Ω

Nn(g)(ω)dνn(ω).

Note that for continuous γ an open ball ∆n with respect to a product metric will
be a square, if it has sufficiently small diameter, given by ∆n = π(∆n)×π ′(∆n) =
An× (an,bn), and so the conditional measure is given by

νn =
ν(∆n∩ ·)

ν(∆n)

=
µ (π(∆n∩ ·))×Leb(π ′(∆n∩ ·))

µ(π(∆n))×Leb(π ′(∆n))

∫
γ dµ∫
γ dµ

= µn×Lebn .

Then consider∫
Ω

Nn(g)(ω)dνn(ω) =
∫

Ω

Nn(g)(ω)dµn(x)⊗d Lebn(y)

=
∫

Σ

(∫
γ(x)

0
Nn(g)(x,y)d Lebn(y)

)
dµn(x).

This double integral can be bounded above and below. First consider a lower bound
by restricting the Lebesgue integral to only the points y ∈ π ′(∆n) = (an,bn), and
noting that the number of hits will eventually be minimised by starting at the high-
est possible y value as the flow will need to travel the maximum distance for each
hit. That is to say that∫

Σ

(∫
γ

0
Nn(g)(x,y)d Lebn(y)

)
dµn(x)

=
∫

Σ

(
1

Leb(π ′(∆n))

∫ bn

an

Nn(g)(x,y)d Leb(y)
)

dµn(x)

≥
∫

Σ

bn−an

bn−an
Nn(g)(T x,0)dµn

=
∫

Σ

Nn(g)(T x,0)dµn.
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But it’s already known that this converges to
∫

N(g)dµ∗.

Similarly for an upper bound, the number of hits will be maximised by starting
at the lowest possible y value as it will hit ∆n immediately, before continuing to the
subsequent hits. Therefore∫

Σ

(∫
γ

0
Nn(g)(x,y)d Lebn(y)

)
dµn(x)

=
∫

Σ

(
1

Leb(π ′(∆n))

∫ bn

an

Nn(g)(x,y)d Leb(y)
)

dµn(x)

≤
∫

Σ

bn−an

bn−an
Nn(g)(x,0)dµn

=
∫

Σ

Nn(g)(x,0)dµn.

Again it is already known that this converges to
∫

N(g)dµ∗.

The upper and lower bound both converge to the same limit, therefore

lim
n→∞

∫
Σ

(∫
γ(x)

0
Nn(g)(x,y)d Lebn(y)

)
dµn(x) =

∫
Σ

N(g)(x,0)dµ
∗(x),

and so τn converges in ν distribution to a Poisson process of rate 1∫
γ dµ

.

By applying this result with that of Pitskel (theorem 2.1, [14]) which gave a

Poisson limit law for open balls in a Markov chain we obtain the following corol-

lary.

Corollary 3.20. Consider an ergodic subshift of finite type, (ΣA,σ ,ν), equiped
with a suspended flow St on Ωγ for some γ ∈F . Let ∆n ⊂ Ωγ be a sequence of
open balls with measure ν(∆n) > 0 and limn→∞ ν(∆n) = 0. If γ ∈ L2(ΣA,σ) then
there is a sequence of positive real numbers (cn)n∈N such that the process of return
times given by

τn(ω) = ∑
k∈N

δ
τ
(k)
n (ω)cn

converges in distribution to a Poisson point process of rate 1.

These results will extend naturally to give a Poisson limit law for the return

time processes to a sequence of any open sets ∆n and not just open balls, so long

as the return time process of the discrete system given by rn also converges to a

Poisson process.
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3.5 Hitting times to the Self-Similar Model

Recall the self-similar model (see [8] and section 1.2), creating a suspended flow

over the unit interval, starting with the interval I = [0,1) and the doubling map

T : I→ I : x 7→ 2x mod 1, with a T -invariant measure µ . Define a sequence of sets

by the following construction: A0 =
[1

4 ,
3
4

]
is the centre half of I. A1 is then the

union of the centre halves of each disjoint interval of I \A0, that is A1 =
[ 1

16 ,
3
16

]
∪[13

16 ,
15
16

]
. A2 is then the union of the centre halves of each of the four remaining

intervals in I \ (A0 ∪A1) and An is the union of the centre halves of each of the

2n remaining intervals in I \
⋃n−1

k=0 An. Continuing as such, it should be clear that

I =
⋃

∞
n=0 An. See Fig 3.2.

1
2

1
4

3
40 1

A0 A1A1A2 A2 A2 A2

Figure 3.2: Showing the fractal construction of the sets A0,A1,A2 in the unit inter-
val.

For the suspended space use a height function γ : I → I given by γ(x) =

λ n if x ∈ An for some λ > 1 and call the blocks An × [0,λ n] = ∆n. The value

of λ should be chosen appropriately so that
∫

γ dµ < ∞. The suspended space is

defined by

Ω := {ω = (x,y) : x ∈ I, 0≤ y < γ(x)}=
∞⋃

n=0

∆n,

(see Fig 3.3) and define a new measure on Ω by

ν :=
µ×Leb∫

γ dµ
.

The suspension flow is then given by

St(ω) = St(x,y) :=

(
T n(t)x , y+ t−

η(t)−1

∑
i=0

γ(T ix)

)
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Figure 3.3: Showing the construction of the suspended space.

where η(t) is the unique natural number which satisfies

0≤ y+ t−
η(t)−1

∑
i=0

γ(T ix)< γ(T η(t)x).

Let π : Ω→ I be the projection given by π(x,y) = x. Recall theorem 2.6, that

the hitting and return time process of the doubling map, T : I→ I, equipped with

a T -invariant measure, to the sets An = π(∆n), rescaled by e−nP∆ , converges in law

to a Poisson point process with rate 1.

In order to consider the hitting time process of the full suspension flow of

the system, the problem is very similar to that handled in the previous sections.

The aim is to use the convergence of the base process to get a convergence of the

full process. The principle difference here is that instead of having a continuous

height function, the height funtion is only integrable and is discontinuous on a set

of measure zero.

As before it is possible to write the hitting times as two components, as shown
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in Lemma 3.2, as

τ
(k)
n (ω) = X (k)

n (x)Y (k)
n (ω)

where X (k)
n is the hitting times in the base system, and

Y (k)
n (ω) = Y (k)

n (x,y) =
1

X (k)
n

X (k)
n −1

∑
i=0

γ(T ix)− y+h(T X (k)
n x)


with h : X → R a positive measurable function such that 0 ≤ h(x) ≤ γ . Recall the

modified version of Slutsky’s Theorem, which is given in Theorem 3.10, which

states that since Y (k)
n converges in probability to a constant

∫
γ dµ , then τn con-

verges in law with respect to the measure µ .

The proof of the final theorem requires more care now that the height function

γ can take infinite values.

Theorem 3.21. The hitting time process for the self similar model, given by

τn(ω) = ∑
k∈N

δ
τ
(k)
n (ω)cn

converges to a Poisson point process of rate 1, where cn = e−nP∆
∫

γ dµ .

Proof. First check the criteria for Theorem 3.10 are satisfied. Lemma 3.2 states
that τ

(k)
n = Y (k)

n X (k)
n , and by lemma 3.4, and noting the Birkhoff ergodic Theorem

applies for any integrable γ , Y (k)
n converges almost surely to

∫
γ dµ as n→ ∞, for

any k ∈ N. It therefore follows that τn(x,y) converges in distribution (with respect
to the measure µ) to a point process of rate 1, which will be denoted τ .

Now, for any continuous function g : R→ R with compact support, consider
the sequence of random variables given by

Nn(g)(ω) = Nn(g)(x,y) =
∫

∞

0
g(t)d

(
∞

∑
k=0

δτk
n(ω)cn

)
.

Theorem 3.10 states that∫
Σ

Nn(g)(x,y)dµ →
∫

Σ

N(g)(x,y)dµ

where

N = N(ω) =
∫

∞

0
g(t)d

(
∞

∑
k=0

δτk(ω)

)
.
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To show convergence in distribution with respect to the full measure

ν =
µ×Leb∫

γ dµ

it is sufficient to show convergence of the integral∫
Ω

Nn(g)(ω)dν(ω).

Consider∫
γdµ

∫
Ω

Nn(g)(ω)dν(ω) =
∫

Ω

Nn(g)(ω)dµ(x)⊗d Leb(y)

=
∫

Σ

(∫
γ(x)

0
Nn(g)(x,y)d Leb(y)

)
dµ(x).

The internal integrals can be bounded above and below. First consider a lower
bound: The bounds are clear in the case γ is finite, however they are not where γ

is infinite. Fortunately the set of discontinuities for γ has measure zero and so the
infinite values of γ can be ignored as it is still integrable. Therefore, except on a set
of µ-measure zero, the number of hits will be minimised by considering a starting
point, (x,0). That is∫

Σ

γ(x)Nn(g)(x,0)dµ(x)≤
∫

Σ

(∫
γ(x)

0
Nn(g)(x,y)d Leb(y)

)
dµ(x).

Similarly, except on a set of µ-measure zero, the number of hits will be maximised
by considering the highest starting point, (x,γ(x)) = (T x,0), so∫

Σ

(∫
γ(x)

0
Nn(g)(x,y)d Leb(y)

)
dµ(x)≤

∫
Σ

γ(x)Nn(g)(T x,0)dµ(x).

To understand the convergence of∫
Σ

(∫
γ(x)

0
Nn(g)(x,y)d Leb(y)

)
dµ(x)

it is therefore enough to understand the convergence of∫
Σ

γ(x)Nn(g)(x,0)dµ(x)

and ∫
Σ

γ(x)Nn(g)(T x,0)dµ(x).
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Consider the first integral. The two random variables are asymptotically inde-
pendent as the time interval for counting hits (weighted by g) will expand, and
therefore by the same arguement used in the proof of Theorem 3.11, using Lemma
A.1, the value of the height function at the starting point and the number of hits are
independent in the limit. Therefore

lim
n→∞

∫
Σ

γ(x)Nn(g)(x,0)dµ(x) = lim
n→∞

∫
Σ

γ(x)dµ(x) lim
n→∞

∫
Σ

Nn(g)(x,0)dµ(x)

=
∫

Σ

γ(x)dµ(x)
∫

Σ

N(g)(x,0)dµ(x).

Similarly the same result will hold for the upper bound and

lim
n→∞

∫
Σ

γ(x)Nn(g)(T x,0)dµ(x) =
∫

Σ

γ(x)dµ(x)
∫

Σ

N(g)(T x,0)dµ(x)

=
∫

Σ

γ(x)dµ(x)
∫

Σ

N(g)(x,0)dµ(x).

The upper and lower bound both converge to the same limit, therefore

lim
n→∞

∫
Σ

(∫
γ(x)

0
Nn(g)(x,y)d Leb(y)

)
dµ(x) =

∫
Σ

γ(x)dµ(x)
∫

Σ

N(g)(x,0)dµ(x),

and so τn converges in ν-distribution to a Poisson process of rate 1.

Therefore we have found a suitable rescaling sequence for a Poisson limit law

for the hitting time processes to the sets given in this self-similar model.
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Chapter 4

Conclusion

This thesis has focussed on the limiting behaviour of hitting and then return time

processes of flows to a sequence of sets with asymptotically small measure. Chap-

ter 1 introduced a motivating example and notations being used in this work, before

exploring some of the known results in discrete systems.

Chapter 3 created the link between continuous and discrete systems by consid-

ering suspension flows and axiom A flows: flows which could be identified with

suspended flows making use of results by Bowen and Ruelle. Using this link I

showed that for axiom A flows, if the rescaled hitting time process for an associ-

ated discrete system had a Poisson limit law of rate 1 then it would follow that the

rescaled hitting time process for the flow would also have a Poisson limit law, with

rate
1∫

γ dµ
,

the integral of the height funtion for the suspended space.

I then showed, using similar techniques, that if the height function γ that de-

scribes the suspended space is L2 then the rescaled return time process for the flow

has a Poisson limit law if the rescaled return time process also has a Poisson limit

law. The extra condition that γ ∈ L2 was used to ensure that the conditional prob-

abilities behaved in such a way as to give a property analagous to convergence in

probability. A natural next question is whether L2 is a necessary condition for this

property to hold and whether it is necessary for the Poisson limit law to hold.

77



By making use of previous results for Poisson limit laws of hitting time pro-

cesses and return time processes in discrete dynamics, the new results in chapter 3

can be extended to give Poisson limit laws for hitting and return time process for a

wide variety of axiom A flows.

Theorem 2.6 gave a Poisson limit law for the hitting time process of the dis-

crete system as described in Floriani and Lima’s self-similar model. By then ap-

plying similar working I showed that the hitting time process for the continuous

suspension flow in this model also had a Poisson limit law. This expanded on

the results produced in the original paper to give an explicit limit law, and found

suitable rescaling constants.

The main results in this thesis have focussed only on axiom A flows so that

they can be identified with suspended flows and hence described using discrete

systems. Next steps and further work could include looking for similar limit laws

for hitting and return time processes for a wider class of flows, and whether axiom

A is a necessary condition on flows to achieve a Poisson limit law.

Other work to note in the area is that of Rousseau [17], which studies in par-

ticular recurrence rates of Anosov flows, linking the Poincare recurrence rate with

the dimension of the local measure.
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Appendices
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Here we will prove an asymptotic independence of two random variables,

which is used in the proofs of theorem 3.11, theorem 3.19 and theorem 3.21.

Asymptotic independence is independence in the limit between sequences of pairs

of random variables where each finite pair may not be independent.

Let g :R→R be continuous with compact support and using the notation used

throughout this thesis let

Nn(g)(ω) = Nn(g)(x,y) =
∫

∞

0
g(t)d

(
∞

∑
k=0

δ
τ
(k)
n (ω)cn

)
(t) =

∞

∑
k=0

g(τ(k)n (ω)cn).

Lemma A.1. The random variables g(τ(k)n (·,0)cn) and γ : Σ→ R are asymptoti-
cally independent for any k ∈N. That is to say that if Fn and Fγ are the cumulative

distribution functions of g(τ(k)n (·,0)cn) and γ respectively and Fn,γ the joint distri-
bution function then

lim
n→∞

Fn,γ = lim
n→∞

FnFγ .

Proof. For a,b > 0 we will show that the conditional probability

P
(

g(τ(k)n (x,0)cn) ∈ (0,a)|γ(x)< b
)

converges as n tends to infinity to

P
(

g
(

τ
(k)(x,0)

)
∈ (0,a)

)
.

It follows that

lim
n→∞

P
(

g(τ(k)n (x,0)cn) ∈ (0,a)|γ(x)< b
)

= lim
n→∞

P

cn

r(k)n −1

∑
i=1

γ(T ix)+h(T r(k)n x)

 ∈ g−1(0,a)|γ(x)< b


= lim

n→∞
P

cnr(k)n

 1

r(k)n

r(k)n −1

∑
i=1

γ(T ix)

 ∈ g−1(0,a)|γ(x)< b


= P

(
r(k)

∫
γ dµ ∈ g−1(0,a)|γ(x)< b

)
= P

(
r(k)

∫
γ dµ ∈ g−1(0,a)

)
.
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For the last equality notice that
∫

γ dµ is a constant and that r(k) does not depend
on γ .
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