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Abstract

A more advanced understanding of basic plasma physics processes is essential to the success

of commercial fusion energy. Here we study two processes of considerable importance to

power handling and injection in tokamak reactors, using two linear plasma devices.

Plasma detachment is vital for the reduction of heat and particle fluxes to the divertor

(the exhaust region of a tokamak) below the 10 MW m−2 limit imposed by the material

properties of the target plates. However, the physics of detachment is not fully understood.

An area of particular concern is the potential influence of intermittent plasma transport

perpendicular to the confining magnetic field.

In the first study, using the York Linear Plasma Device, we employ fast frame imaging

and Langmuir probe diagnostics to identify fluctuations in the plasma column that are

associated with the onset of detachment. Evidence is found for the intermittent outward

radial transport of filamentary structures, which then cool to initiate the recombination

necessary for detachment. A hypothesis suggesting the centrifugal instability as a mecha-

nism for this transport is proposed.

The second study focuses on the potential use of helicon plasma devices as efficient,

caesium-free negative ion sources for tokamak neutral beam injection (NBI) systems. A

caesium catalyst is currently necessary to increase the negative ion production rate, but

eliminating this is important for simplifying the maintenance requirements of these sources.

We examine the negative ion population behaviour in the helicon device MAGPIE.

Peak densities of 1.25×1018 m−3 (an order of magnitude above the required NBI threshold)

are measured using laser photodetachment, and a simple model of the time evolution of

the negative ion population is in agreement with the experimental data. Neutral depletion

is proposed as a mechanism governing the evolution of the plasma, and is consistent with

additional experimental and simulation results.
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Chapter 1

Introduction

The need for nuclear fusion arises from the environmental problems caused by the con-

tinually increasing energy demands across the planet. The fossil fuels that we currently

burn are finite resources, and are contributing to the emission of greenhouse gases into

the atmosphere. Conventional renewable energy solutions, such as wind and solar power,

are less reliable for baseload electricity supplies than fossil fuel plants, and nuclear fission

plants produce radioactive waste that requires long-term storage. Fusion has the potential

to provide a continual source of clean energy that could work alongside other renewables

to fulfil our energy requirements for thousands of years into the future. However, there are

still a number of issues that need to be addressed in both plasma physics and materials

science before commercial fusion power plants can become a reality.

1.1 Fusion energy

Nuclear fusion is the process that fuels stars, through the ‘burning’ of lighter elements to

create heavier elements. In general, the process involves two reactant nuclei fusing together

to create a larger nucleus, plus a smaller particle such as a neutron. The total mass of

the products is slightly less than that of the reactants, with the excess mass converted to

energy (manifested as kinetic energy of the products). The most fundamental reactions

in stars occur between protons (hydrogen nuclei), but stellar fusion goes on to involve

progressively heavier elements until the most stable element, iron-56, is formed.

Fusion in stars relies on the compression of extremely large masses of fuel by gravi-

tational forces, and occurs over million-year timescales. Clearly this is inappropriate for

terrestrial fusion reactors, and alternative reactions and confinement methods must be ex-
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plored. The most probable reaction at realistically achievable conditions is that between

deuterium and tritium [4]:

2
1D + 3

1T→ 4
2He (3.5 MeV) + n (14.1 MeV).

The products of this reaction are an alpha particle (the helium nucleus), which is trapped

and acts to heat the remaining fuel, and a high-energy neutron. The neutron escapes

the reaction region and is then slowed down, converting its energy to heat to produce

electricity via steam (as in conventional power plants).

The neutrons will also be used to breed more tritium fuel for the reactor. Deuterium

is sufficiently abundant in water (33 mg in every litre of seawater [5]) to provide an almost

inexhaustible supply, but tritium is an unstable isotope, with a half-life of 12.3 years. It

will therefore be necessary for a reactor to create its own tritium supply, currently intended

to be done using tritium ‘breeder blanket’ modules surrounding the vacuum vessel. The

breeder blanket will contain lithium, which reacts with neutrons to produce tritium:

6
3Li + n→ 4

2He + 3
1T +4.8 MeV;

7
3Li + n→ 4

2He + 3
1T + n −2.5 MeV.

Lithium is also an abundant resource, with proven land-based resources estimated to

contain 1000 years’ supply, and the potential to extract enough from seawater to last for

millions of years [5].

In order to undergo fusion reactions, the nuclei must be able to overcome electrostatic

repulsion and approach each other closely enough for the strong force interaction to dom-

inate. This requires high energies (in the keV range), pushing the fuel into the plasma

state. Plasma is the fourth state of matter, occurring when gas is heated to a high enough

temperature to ionise the neutral atoms. The result is a gas composed of positive ions

and electrons, and in some plasmas, negative ions as well. A general definition is given

by Chen: “A plasma is a quasineutral gas of charged and neutral particles which exhibits

collective behaviour” [6].

The fundamentals of plasma physics are covered in detail by Chen [6]; here we briefly

discuss the defining features of a plasma. Firstly, “collective behaviour” refers to the long-

range forces from the electromagnetic fields that arise from the motion of the charged

particles in a plasma. Particles in one area are influenced by the fields produced by

more remote regions in the plasma, not just the local conditions. This leads to extremely

complicated behaviour and makes plasma physics a complex field to study.
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The quasineutrality property stems from the concept of Debye shielding: the movement

of plasma particles to reduce the effects of an applied external potential. The length scale

of plasma shielding is given by the Debye length:

λd =

√
ε0Te

en∞
, (1)

where n∞ is the bulk plasma density and Te is the electron temperature in eV. This

expression for λd is derived by solving Poisson’s equation for the potential in the presence

of an external charge. We assume that the electrons have a density determined by a

Boltzmann factor, and dominate the shielding as they are much more mobile than the

ions [6]. If λd � L (the length scale of the system), the shielding occurs in a region small

compared to the size of the plasma, and no large electric fields can be applied to the bulk

plasma, where the electron and ion densities are equal (generally to better than one part

in 106 [6]). This gives rise to the concept of quasineutrality on large scales, where it can

be approximated that ni ' ne ' n∞, but on the scale of λd the plasma is not perfectly

neutral and electromagnetic forces are still able to exist.

A second condition for an ionised gas to be termed a plasma is that there must be

sufficient particles in the shielding region for Debye shielding to be effective. This is

quantified by requiring the number of particles, Nd, in a sphere of radius λd to be large:

Nd =
4

3
πλd

3n� 1. (2)

Finally, we consider collisions. If the charged particles collide frequently enough with

neutral particles, the dominant forces controlling their motion will be hydrodynamic rather

than electromagnetic [6]. We therefore require the collisional timescale (given by the

mean time between collisions, τ) to be larger than the timescale of plasma behaviour. To

characterise the latter, we use the frequency of plasma oscillations, ω =
√
ne2/ε0mi, leading

to the third condition for a plasma: ωτ > 1.

Given the high energies and densities required to put the fuel into the plasma state

and allow fusion to occur, confining the plasma presents complex technological challenges.

The two common research approaches are inertial confinement fusion (ICF) and magnetic

confinement fusion (MCF). There is a key condition which must be fulfilled in order to

ignite fusion reactions, irrespective of which method is used. This condition (the Lawson

criterion) constrains the magnitude of the fusion ‘triple product’: the product of the

plasma density, n, plasma temperature, T , and the energy confinement time, τe, which

characterises the timescale on which energy is lost from the core plasma. The Lawson
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Figure 1.1: The value of nτe required to obtain ignition for deuterium-tritium fusion, as

a function of T . Reproduced from [4].

criterion is illustrated in Figure 1.1, which shows nτe as a function of T . For a temperature

range of 10−20 keV (close to the minimum of the Lawson criterion, and a reasonable goal

for an MCF reactor), the condition for fusion ignition reduces to [4]:

nTτe > 5× 1021 m−3 keV s. (3)

In ICF research, multiple lasers are focused onto a small fuel pellet to compress and

heat it (see e.g. [7]). There is no confinement other than that provided by the material’s

own inertia, so τe is small, of the order of nanoseconds or less. Hence the densities and

temperatures achieved by the laser compression must be extremely large (up to around

1030 m−3 and 100 keV respectively once ignited). MCF, on the other hand, aims to confine

the plasma on much longer timescales (on the order of seconds) using shaped magnetic

fields. The most common configuration is a toroidal vacuum vessel, known as a tokamak.

The largest tokamak in operation, the Joint European Torus (JET), is illustrated in Figure

1.2. With an extended confinement time, the plasma does not need to be as dense as in

ICF experiments: values in the range 1019 − 1020 m−3 are sufficient. It is MCF that the

research in this thesis focuses on.
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Figure 1.2: Cutaway illustration of the Joint European Torus (JET), at the Culham Centre

for Fusion Energy, UK [8].

Figure 1.3: Illustration of the magnetic mirror configuration. The higher field strength

at either end reflects all particles with a low enough velocity parallel to the field lines

(indicated by the forces
−→
F ) [9].
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Magnetic confinement of plasma has developed considerably over the years, from linear

configurations to the toroidal geometry seen in tokamaks now. Linear confinement is based

on the ‘magnetic mirror’ concept, shown in Figure 1.3. Charged particles are confined to

helical paths around the field lines, and if their velocity parallel to the field line is low

enough, they are reflected by the high-field regions. However, the more energetic particles

are able to escape the mirror, and as the plasma is not perfectly collisionless, energy is

transferred between particles and the plasma losses are significant.

The natural progression is to bend the magnetic mirror around to form a closed tube

of plasma with toroidal field lines, thus preventing end losses. This introduces further

complications, however, as the resulting gradient and curvature of the magnetic field lead

to particle drifts [6]. Not only do these drifts directly degrade plasma confinement, but the

dependence of the drift direction on the particle charge causes a charge separation in the

plasma, creating electric fields which reduce confinement further. In order to counteract

this, a small poloidal field component is added by both using more magnetic field coils

and driving a toroidal current through the plasma.

This toroidal configuration with helical field lines is the basis of the tokamak, and is

illustrated in Figure 1.4. This diagram shows the core plasma confinement region in pink.

In the core region, the field strengths are chosen to ensure that the field lines eventually

close on themselves as they wind around the tokamak. This creates surfaces of constant

magnetic flux, nested within one another. In a collisionless plasma, the plasma particles

would be perfectly confined to a flux surface and there would be no losses. In reality

there are collisions, which together with turbulence cause plasma to be lost from the core

confinement region. Outside the core plasma, the field lines are no longer closed, and

eventually intersect the walls of the vacuum vessel. The structure outside the core will be

discussed further in Section 1.3.

Magnetically confined fusion in tokamaks was first studied in the USSR in the 1950s

(see e.g. [10]). These early experiments obtained plasma temperatures on the order of

1 keV [11], and in the past six decades, research has progressed considerably. Energy

confinement times of over a second have been attained in JET, which also holds the

record for the most fusion power (16.1 MW) achieved from a D-T pulse [12]. Figure 1.5

shows the progress that has been made towards reaching the nTτe threshold given in (3),

through research on multiple tokamak experiments around the world. The next stage in

this research is ITER (projected nTτe value shown in red in Figure 1.5), a global project
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Figure 1.4: Diagram of the key features of a tokamak. The plasma is contained in a vacuum

vessel (not shown) in the pink region. The confining helical magnetic field (black arrows)

is produced by the toroidal and poloidal field coils, and also contains a contribution from

the plasma current (toroidal green arrow) that is driven by the inner poloidal field coils [8].

designed to be the largest tokamak in the world [5]. It will be an experimental reactor that

aims to test concepts for a demonstration fusion power plant, and has been designed to

achieve ‘breakeven’, i.e. produce more energy from fusion reactions than must be supplied

to ignite and sustain them.

The progress that has been made in the design and construction of tokamaks has pre-

dominantly been achieved by increasing the size of the tokamak. However, this introduces

further significant problems: how to provide enough energy to ignite the fusion plasma,

and how to deal with the huge amount of power that is produced.
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Figure 1.5: The progress that has been made over the years, using various tokamaks

around the world, to meet the required nTτe threshold for fusion ignition. The projected

values for ITER are shown in red [8].

1.2 Power injection in tokamaks

A considerable amount of energy is required in order to create the plasma in a tokamak and

initiate fusion reactions: ITER will require around 50 MW of heating power to produce

500 MW of fusion power over pulse lengths of up to 600 s [5]. The three main methods

of heating a plasma are ohmic heating, microwave injection and neutral beam injection

(NBI). Ohmic heating relies on inducing a current in the plasma by ramping the current

through a central solenoid (cf. a transformer), and is therefore limited in both magnitude

and duration by the maximum current that can be achieved. An estimate of the ohmic

heating capability for ITER is an initial ramp of power up to 10 MW [13].

Injection of microwaves (RF heating) and neutral particles (NBI) can provide much

higher power input over a sustained period. The RF heating systems for ITER are planned

to provide up to 40 MW of power, and the NBI systems up to 33 MW, with the potential

for future upgrades to add up to a further 50 MW of power [14]. These methods can be

used to supply energy to the plasma as part of the initial start up phase, and during
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Figure 1.6: Schematic diagram of the main components of a neutral beam injection system

for a tokamak fusion plasma [16].

operation if additional heating is required to sustain the fusion reaction. NBI is also able

to refuel the plasma, as the neutral beams are formed from deuterium (hydrogen in some

experimental campaigns), and can drive additional toroidal current around the tokamak.

The technology for these systems is sufficiently advanced to be implemented in the

design for ITER, but there is room for further development (particularly in NBI) to im-

prove efficiency for future tokamak reactors. NBI systems accelerate ions from a plasma

source to form a high energy beam, which is then neutralised to produce the beam that

is injected into the tokamak [15]. A schematic diagram of a typical NBI system is shown

in Figure 1.6.

The deuterium beam energy required to both heat and drive current in a large tokamak

such as ITER is in excess of 1 MeV [15]. These high energies are needed to allow the

neutrals to reach the core of the fusion plasma, and to increase the efficiency of the

current drive [17]. Either positive or negative ions can be used in NBI systems, and the

selection is made based on the achievable rates of production and neutralisation.

In the case of the production rates, positive ions are more advantageous: standard

plasma sources typically predominantly generate positive ions and electrons. In contrast,

a caesium catalyst must be used to create a sufficient number of negative ions [18]. The

catalyst is applied to a grid within the source to improve the rate of negative ion production

via surface processes on the grid. The use of caesium increases both cost and safety

concerns due to its high reactivity and the need to regularly replace it.
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Figure 1.7: Variation of the neutralisation efficiency of negative (solid line) and positive

(dashed line) hydrogen ions with energy. Circles show experimentally obtained efficiencies

for negative ions. Reproduced from [17].

Figure 1.7 shows the effect of increasing the beam energy on the neutralisation efficiency

for both positive and negative hydrogen ions. The efficiency for positive ions drops below

15 % at ∼ 100 keV, whereas that for negative ions does not reduce below 55 %. It is

clear that negative ions are most appropriate to create the required high energy beams.

This far outweighs the disadvantages of needing a catalyst for negative ion production,

and caesiated negative ion sources are planned for ITER [15]. However, an ideal NBI

source would be able to maintain a high production rate without the use of caesium, and

the development of an alternative, caesium-free solution would be extremely beneficial in

improving the overall efficiency of a fusion power plant.

1.3 Power handling in tokamaks

The amount of fusion power produced by a tokamak scales with the volume of the plasma;

that is, it is roughly proportional to R3, where R is the major radius of the tokamak

(the distance from the central axis to the centre of the plasma), assuming that the power

density remains constant. Since confinement of the plasma is not perfect, and additional

heating will be required to start up and sustain the fusion reaction, not all of this power
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Figure 1.8: Cross-section through the magnetic flux surfaces in JET. The core plasma

region, with closed magnetic flux surfaces, is represented in dark orange. The scrape-off

layer, or SOL, is outside the last closed flux surface (LCFS, also called the separatrix) and

is shown in light orange [8].

will be converted to electricity and there will be a considerable amount of ‘exhaust’ power.

How to handle this without causing extensive damage to the walls of the tokamak is one

of the key problems in fusion research.

Currently, exhaust power is handled using a ‘diverted’ tokamak configuration (illus-

trated in Figure 1.8). In Section 1.1 we introduced the concept of closed magnetic flux

surfaces in the core plasma region, and open field lines outside the core which eventually

intersect the walls of the vacuum vessel. This configuration is achieved by additional field

coils at the bottom and/or top of the tokamak, which create magnetic nulls below/above

the core plasma. The configuration in Figure 1.8 shows a lower single null, which will be

used as the example in this discussion. The last closed flux surface, or separatrix, defines

the edge of the core plasma region and contains the magnetic null, known as the X-point.
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The plasma outside the separatrix is called the scrape-off layer (SOL), and in this

region the field lines continue to wind helically around the tokamak until they meet the

vacuum vessel wall. The exhaust power is transported out of the core of the tokamak into

the SOL by the plasma particles that move across the confining magnetic flux surfaces.

For the lower single null (illustrated in Figure 1.8), the field is designed so that the plasma

is carried down to the bottom of the tokamak (known as the divertor), where the majority

of the plasma-wall interactions occur in the vessel. The power transported into the SOL

(Psol) for JET can range between 2 − 12 MW [19], whereas in ITER Psol is expected to

be around 80 MW [20].

The power flux to the divertor plates depends on both Psol and the ‘wetted area’

(the area of the divertor plate which is impacted by the plasma). The latter is given by

A = 2πRλq, where λq is the fall-off length of the power in the scrape-off layer. The scaling

of λq in a tokamak has been determined to vary most strongly with the poloidal magnetic

field, Bpol, with a small dependence on Psol and no dependence on R [19]:

λq ∝ Bpol−0.8 Psol
0.1 R 0.

λq for JET is in the region of 1 − 2 mm, and the scaling predicts that λq in ITER will

be ∼ 1 mm [19]. The area, A, therefore scales with R, but we have already seen that the

power will increase as R3. The potential maximum divertor heat flux thus increases with

tokamak size: example values are 500 MW m−2 for JET, and over 2 GW m−2 in ITER.

It is imperative that the divertor plates are able to withstand these high heat loads

for a reasonable operating period before a maintenance shut-down is required. Current

research suggests that the most appropriate material for the divertor plates is tungsten,

but the acceptable steady-state power flux limit for a viable component lifetime is still

only 10 MW m−2 [20, 21]. In the relatively small tokamaks that are currently operational

(such as JET), there are methods of mitigating the heat flux to reduce it to a reasonable

level. These measures all aim to spread the power load over an increased area, and

include: angling the surface of the plates relative to the field lines; creating a region of

flux expansion of the field lines next to the divertor; and sweeping the plasma strike point

over the divertor plates by changing the magnetic field profile [4].

Some of these measures will be employed in ITER (for example angled divertor target

plates), but the size of the machine means that they will be insufficient to reduce the

2 GW m−2 flux below the 10 MW m−2 limit. Commercial reactors are likely to be even

bigger, with Psol for a large, 3 GW reactor estimated to be around 600 MW [4]. It is there-
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fore essential to find further methods of limiting the divertor heat flux in order to ensure

that the component lifetime is long enough. Offline maintenance periods will necessarily

be relatively long, as working inside the large vacuum vessels is not straightforward, par-

ticularly once tritium (a radioactive element) has been introduced and the wall materials

have become activated through neutron irradiation. Maintenance requirements must be

carefully managed in order to reduce the impact on the production capacity.

One method of reducing the exhaust power flux, which will be implemented on ITER,

is that of plasma detachment from the divertor plates. To achieve detachment, the neutral

density in the divertor region (away from the core) must be high enough to cause significant

cooling of the plasma through ion-neutral friction. This creates a low enough plasma

temperature for recombination processes to occur, neutralising a high proportion of the

plasma that would otherwise impact the plates over a relatively small area. In addition,

the excited neutral products radiate energy over 4π steradians in the form of photons, and

the rate of divertor damage decreases. The recombination can occur simply when the

core density in a tokamak is increased to a sufficiently high level (as was achieved in the

ASDEX tokamak, Figure 1.9 [22]), but can also be caused by injecting neutral gas (e.g.

hydrogen or nitrogen) into the divertor region.

The physics of detachment will be discussed further in Chapter 2. Note that, while

the phenomenon was first studied around forty years ago [24], the processes involved are

still not fully understood. In particular, there has been little work that focuses on the

relationship between the onset of detachment and the radial transport and instabilities

present in the plasma.

1.4 The role of basic plasma experiments

Experimental tokamaks exist around the world and form the basis of a considerable pro-

portion of experimental research into MCF: developing operation scenarios, testing com-

ponent designs and increasing our knowledge of the plasma physics phenomena behind

the observations. However, the toroidal geometry of a tokamak is not straightforward to

study, and diagnostic access into the machines is limited. It is helpful to support tokamak

research with studies carried out on basic plasma experiments, built to replicate certain

aspects of tokamak plasma physics. These machines are generally constructed with a linear

geometry, reducing the complexity of the problem, and have more diagnostic accessibility

than tokamaks.
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Figure 1.9: Divertor target density (ned, left-hand axis) and temperature (Tid and Ted,

right-hand axis) data from the ASDEX tokamak, plotted as a function of density in the

core plasma (ne). The target density ‘rollover’, where ned begins to decrease at high

core densities (from approximately 5.5 × 1013 cm−3), is characteristic of the reduction in

particle flux to the divertor surface as the plasma undergoes detachment in the vicinity of

the divertor (discussed further in Section 2.1.3). Original data from [22]; figure reproduced

from [23].

A primary focus of research on many basic plasma devices is the interaction between

plasma and material surfaces; for example the effects of deuterium irradiation on tungsten

samples in Magnum-PSI [25] and PISCES-A [26]. Fuel retention in the reactor wall will

be a major consideration, as there is a limit to the amount of tritium permitted to be on

site, and unreacted tritium will need to be recycled back into the core plasma. Another

key aspect is the amount of damage caused by transient events in the plasma such as

edge localised modes (ELMs). These events can temporarily increase the power fluxes to

as much as 10 GW m−2 (the projection for ITER), and studying the effects of this (for

example in Magnum-PSI [27]) is an important task.
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Development of diagnostics is made much more straightforward by utilising linear

plasma devices. Experimental time is in demand on tokamaks, and it is more efficient to

develop and test instruments on smaller machines before implementing them on tokamaks.

Two examples are the development of a vorticity probe on the Large Plasma Device

(LAPD) [28], and using fast imaging measurements to extract information about coherent

waves in the plasma in CSDX [29].

CSDX has also been used to study turbulence in plasma flows, including transitions

between turbulent states and those that exhibit shear flow (see e.g. [30, 31]). This has

important applications to confinement in tokamaks. It has been suggested that shear flows

in the boundary region of the plasma play a role in the appearance of the high-confinement,

or H, mode, which produces more favourable conditions for fusion [32]. Turbulence and

other plasma instabilities such as drift waves have been studied in other machines such as

Mirabelle [33] and Mistral [34]. Mistral has also been used to look at plasma recombination

for simulations of a detached divertor [35].

The most common way to induce plasma recombination for detachment studies, par-

ticularly in linear devices, is to use neutral gas puffing (see Chapter 2). The York Linear

Plasma Device (YLPD) is one of several basic plasma devices capable of studying detach-

ment in this way. Examples of previous detachment studies on linear machines will be

discussed in Chapter 2, and research using the YLPD forms the major focus of this thesis.

A final application of basic linear machines is to power injection in tokamaks. Neutral

beam injection (NBI) systems use compact plasma sources to produce the negative ions

they require. Research is ongoing in order to improve the efficiency of these sources and

develop a caesium-free alternative, for which basic plasma devices are invaluable. One

potential solution is the use of a helicon plasma source, such as the Magnetised Plasma

Interaction Experiment (MAGPIE). A study of the negative ion population in MAGPIE

and its applications to NBI is presented in Chapter 6.

1.5 Thesis outline

This thesis is structured as follows. Chapter 2 introduces the physics of the tokamak

power handling issue and discusses previous research in tokamaks and linear devices. The

first section describes the scrape-off layer of a tokamak and the transportation of particles

and heat from the core to the divertor, focusing on the processes involved in detachment.

The second and third parts of this chapter outline some of the detachment research that
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has been undertaken both in tokamaks and linear plasma machines. Chapter 3 introduces

the YLPD, and the diagnostic techniques that were employed in the detachment study

presented in this thesis.

Chapter 4 provides a detailed review of the previous work on detachment using the

YLPD, and presents the author’s own work in replicating the detached state in the ma-

chine. The third section of this chapter identifies the key research topic to be addressed:

an improved understanding of the radial structure of the detached plasma in the YLPD.

Chapter 5 discusses the experimental observations and analyses carried out to search for

evidence of radial transport in the detached plasma in the electron-ion recombination

regime, using fast frame imaging and high frequency measurements of the floating poten-

tial. Based on these results, a hypothesis for the mechanism behind the observed behaviour

is presented.

Chapter 6 returns to the issue of power injection. The first section recaps the moti-

vation for studying the negative ion population in MAGPIE, and the diagnostic methods

used are described in the second part. The results of the investigation are then presented.

Finally, in Chapter 7 the overall conclusions of this thesis are drawn, and the possibilities

for extension of these studies are outlined.

32



Chapter 2

Scrape-off layer and detachment

physics

This chapter discusses the physics underlying the behaviour of the scrape-off layer plasma

as it transitions between operation regimes, focusing on detachment in Section 2.1.3. Fol-

lowing this, an overview of some of the key research concerning detachment on both

tokamaks (Section 2.2) and linear plasma devices (Section 2.3) is provided, highlighting

the gaps in current understanding. A summary is given in Section 2.4.

2.1 The scrape-off layer

As was seen in the previous chapter (Section 1.2), the scrape-off layer, or SOL, is the

channel through which all unconfined plasma flows in order to reach the exhaust region,

or divertor. For convenience, Figure 1.8, depicting the tokamak SOL, is reproduced in

Figure 2.1. The behaviour of the SOL plasma can follow one of several regimes, depending

on the plasma parameters both upstream (feeding into the SOL) and downstream (at the

divertor target). Broadly, an increase in the upstream density causes the SOL to pass from

the sheath-limited regime through the conduction-limited and high-recycling regimes, to

eventually reach a state of detachment. This was illustrated by data from the ASDEX

tokamak in Figure 1.9 in the preceding chapter. A key distinguishing property between

these regimes is the “existence or absence of a significant temperature drop along the

length of the SOL”, as described by Stangeby, and the collisionality of the plasma plays

an important role in determining this [23]. In this section, an overview of the four SOL

regimes is given, following Stangeby’s guide (see [23]) unless otherwise referenced.
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Figure 2.1: Reproduction of Figure 1.8, showing the magnetic flux surfaces in JET. The

midplane of the tokamak is now labelled in red. One-dimensional models of the SOL (light

orange region) ‘straighten out’ the section between the midplane and the divertor plate

(Section 2.1.1). Diagram adapted from [8].

2.1.1 Sheath-limited regime

A scrape-off layer in the sheath-limited regime can also be termed a ‘simple SOL’, as a

number of assumptions are made. The characteristics of a simple SOL are as follows:

1. Constant electron and ion temperatures along each flux tube;

2. Electrons and ions are thermally decoupled, and both are Maxwellian;

3. No ionisation in the SOL (cross-field transport provides the only source of particles);

4. No volumetric recombination, neutral friction or radiative cooling (the sheath at the

target provides the only sink for both heat and particles).

The sheath in question refers to the region close to a material surface that is put in contact

with a plasma: in this case, the divertor plates. The presence of the surface alters the

plasma properties on a length scale given by the Debye length, λd, introduced in (1),

Chapter 1.
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Figure 2.2: Schematic of the ‘straightened-out’ scrape-off layer plasma used for 1D SOL

analyses (not to scale). x = 0 corresponds to the ‘upstream’ position (the midplane of the

tokamak, indicated in Figure 2.1). Diagram adapted from [23].

To describe the sheath qualitatively, we first consider an isotropic, homogeneous plasma.

The particle flux crossing unit area per unit time is given by Γ = 1
4nv̄ for both electrons

and ions. Even if the species densities (ni,e) are equal and it is a thermal plasma (so the

electron and ion temperatures are similar), the electron flux through an arbitrary plane

will be greater than the ion flux, as the smaller electron mass increases their average speed,

v̄. Therefore the initial electron flux to a surface will be larger than the ion flux and the

surface will become negatively charged with respect to the plasma. The plasma in the

local region then adjusts to prevent the effects of this negative charge from penetrating

into the bulk plasma. The fluxes to the surface are altered and the result is a shielding

region around the surface (the sheath), which decays on the scale of λd.

The mathematical description of the physics of the sheath-limited SOL is discussed in

multiple sources with varying degrees of complexity (e.g. [23, 36]), and Appendix A gives

details of a simple derivation of the main results. The 1D sheath analysis is based on the

concept of ‘straightening out’ the SOL, from an ‘upstream’ position to the divertor target

(illustrated in Figure 2.2). Here we define ‘upstream’ as the midplane of the tokamak, as

shown in Figure 2.1, but it can also be taken to be the midpoint between the two divertor

plates (at the top of the tokamak). In simple SOL analyses the difference is negligible.

Sketches of the plasma density and temperature profiles in a 1D sheath-limited SOL

are shown in Figure 2.3 (further details in Appendix A). The ion flux to the surface is:

Γi =
1

2
n0cs, (4)

where n0 is the upstream plasma density and cs =
√
kTe/mi is the ion sound speed. This

result is obtained by considering conservation of flux (Γ = nv) at the sheath edge; see

Appendix A, (A.20) and (A.24), for details.
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Figure 2.3: Approximate profiles of the plasma density, n, and temperature, T , throughout

the SOL in the sheath-limited regime. The sheath region (not to scale) is shaded yellow.

Diagram adapted from [37].

Figure 2.4: Schematic of the origins of the particle (Γin) and power (qin) fluxes in the

sheath-limited SOL (not to scale). The hatched section in front of the target at x = L is

the sheath. Diagram adapted from [23].

In the sheath-limited SOL, both the particle and power sources originate upstream,

away from the divertor target. A schematic diagram is shown in Figure 2.4. This gives rise

to a significant particle flow from the edge of the core plasma to the divertor target, and

this convective motion transports power as well as particles. The dominance of convection

is permitted by the low collisionality of the SOL plasma in this regime. In the next

section, we consider the conditions on the collisionality, (5) and (6), which result in the

sheath-limited and conduction-limited behaviour respectively.

The convective behaviour and low collisionality of the sheath-limited SOL mean that

there is no significant temperature gradient along the field lines (again, this is discussed

further in the next section). Total pressure is also conserved, although the static and

dynamic pressure components vary in opposing ways throughout the SOL. The gradient
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in the static pressure is caused by the presence of an upstream source and the downstream

sink (surface recombination on the target), and this produces the plasma flow through the

SOL (see Chapter 1 of [23]). The difference in the static pressure is then compensated for

by an increase in the dynamic pressure as the electron and ion velocities increase.

In a tokamak SOL, operating in the sheath-limited regime has a considerable effect on

the edge plasma properties, as it is the plasma-surface interaction at the divertor target

which determines the boundary conditions. The presence of the sheath therefore affects

the form of the relationship between the plasma properties that are determined by the

operating conditions of the tokamak (such as the input power and total number of particles

in the plasma) and those which can vary, namely the density and temperature of the edge

plasma entering the SOL.

It should be noted that the analysis for the simple sheath-limited SOL is based on a

fluid model, which requires relatively high collisionality in order for the approximations to

be valid. However, as we have seen, the collisionality in the SOL is low, and thus the fluid

model is strictly invalid. Fortunately, more rigorous analyses show that the fluid model

does provide a good approximation to first-order (see Chapters 1 and 10 of [23]).

2.1.2 Conduction-limited and high-recycling regimes

The presence of a parallel temperature gradient strongly alters the behaviour of the SOL,

bringing it into the conduction-limited regime. The thermal conductivity of a plasma varies

as T
5
2 , and at the very high temperatures in the core plasma, conditions are essentially

isothermal. However, in the cooler SOL, conduction can be restricted and temperature

gradients arise. There are still sheaths present at the divertor surfaces in this regime,

but the properties of the SOL are now defined by the conductive behaviour. This regime

can be accessed in a tokamak by increasing the core plasma density (the transition begins

approximately in the range (1− 2)× 1013 cm−3 in Figure 1.9).

The conduction-limited SOL is more complicated than the sheath-limited SOL: a wider

range of phenomena can be introduced which were not included in the simple SOL analysis.

These include ionisation within the SOL, radiative cooling, collisions with neutrals and

energy transfer between electrons and ions, among other possibilities. The key process we

consider here is ionisation within the SOL.

Allowing ionisation of neutrals within the SOL reduces the relative strength of convec-

tion compared to conduction. As we saw in the previous section, convection plays a major
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Figure 2.5: Schematic of the origins of the particle (Γ) and power (qin) fluxes in the

conduction-limited SOL (cf. Figure 2.4, not to scale). The hatched section in front of the

target at x = L is the sheath, and the cross-hatched region from which Γ originates is the

ionisation region. Diagram adapted from [23].

role in particle and energy transport in the sheath-limited SOL. However, when ionisation

interactions can take place downstream, the mean free path for these reactions is generally

short enough compared to the SOL length that the ionisation occurs close to the source of

the neutrals (recombination of ions and electrons on the target surface). This is illustrated

in Figure 2.5. Plasma flow and convection processes are therefore less important in this

regime, allowing conduction to dominate the heat transport and the temperature gradient

to increase.

While the plasma particle source in the conduction-limited regime has moved close to

the target, the power source is still upstream, as shown in Figure 2.5. The power now

has to be conducted out of the core plasma and through the SOL. This implies that the

collisionality in the SOL must be higher in this regime, in order to transport the power

without significant particle flow. Stangeby considers criteria for the existence of the high

temperature gradients required in this regime, and finds the following SOL collisionality

parameter for equal ion and electron temperatures in terms of the upstream parameters

(Chapter 4 in [23]):

ν∗sol ≡
L

λ
≈ 10−16nuL

T 2
u

,

where L is the length of the SOL (along a field line), λ is the mean free path for collisions,

and the subscript u indicates an upstream parameter. Units for the quantities are metres

for lengths, m−3 for the density nu, and eV for the temperature Tu (the prefactor 10−16

having units of eV2 m−2). The conditions on ν∗sol for small and significant temperature

gradients are found to be:

ν∗sol . 10 (small∇T ); (5)

ν∗sol & 15 (significant∇T ). (6)
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Figure 2.6: Schematic of flow reversal in a conduction-limited SOL of length L (not to

scale). Ionisation occurs between x = L and x = xend. The source excess in the hot region,

close to the separatrix, causes flow away from the target beyond a ‘watershed’ distance,

xws. This sets up a convective flow in the SOL. Diagram adapted from [23].

In the one-dimensional model of the conduction-limited SOL, the presence of the parti-

cle source close to the target implies that there is no need for particle flow in the majority

of the SOL, and therefore most of the plasma is stagnant (Chapter 15 in [23]). However,

this is undesirable, as impurities would not be removed from the core plasma by particle

flow, and is also inconsistent with measured density profiles along the SOL. A stagnant

SOL plasma would be expected to have little variation in density, but measurements show

that the density decreases along the SOL.

The explanation for this discrepancy is two-dimensional, and is known as ‘flow reversal’.

It arises from a perpendicular temperature gradient across the SOL near the target, as

the plasma cools away from the separatrix. The phenomenon is illustrated in Figure 2.6.

Ionisation predominantly occurs in the hotter region close to the separatrix, regardless of

whether the neutrals were recycled from the target in this region or from the outer target

(where the SOL plasma is cooler). Therefore the flux tubes close to the separatrix have

a source excess, and the flux tubes in the outer SOL have a source deficit, compared to

the number of particles that recombine on each part of the target. Flow reversal therefore

occurs in the inner flux tubes in order to restore particle balance: some plasma flows away

from the target, ‘drains’ into the outer flux tubes via cross-field transport, and returns to

the target in the outer flux tubes. This plasma flow is then able to remove impurities and

account for the radial density profiles observed along the SOL.
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Figure 2.7: Approximate profiles of the plasma density, n, and temperature, T , throughout

the SOL in the high-recycling regime. The yellow shaded region (not to scale) has strong

radiative losses. Diagram adapted from [37].

If we consider the behaviour of the target density as the upstream density increases

(as was shown in Figure 1.9), we see that there is an approximately linear relationship

between the two initially, which then becomes a stronger, cubic dependence before rolling

over into the detached region. This can be explained by the two-point model of SOL

physics, which links the upstream and downstream plasma parameters [23,38].

In the sheath-limited regime, and at lower upstream densities in the conduction-limited

regime, the target flux Γi, and therefore target density, ntarget, are proportional to the

upstream density n0, as seen in (4). As the upstream density increases further, however, we

reach the ‘high-recycling’ regime. This is sometimes seen as an extension of the conduction-

limited behaviour rather than necessarily an entirely different regime. The dependence

of ntarget on n0 now becomes cubic, and Γi becomes proportional to n0
2. The two-point

model describing this behaviour is laid out by Stangeby (Chapter 5 of [23]), and sketches

of the plasma density and temperature profiles arising in a high-recycling SOL are shown

in Figure 2.7. The recycling flux, φrecycle, is proportional to the impacting target flux,

and therefore also transitions from a linear to a quadratic dependence on n0; hence the

label ‘high-recycling’. In this regime, the plasma source from ionising recycled neutrals is

sufficient to sustain the plasma in the SOL.

There are significant advantages to operating a tokamak SOL in the conduction-limited

regime (and beyond). The large temperature gradients mean that the upstream temper-
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Figure 2.8: Approximate profiles of the plasma density, n, and temperature, T , throughout

the SOL in the detached regime. The detached region is shaded yellow (not to scale).

Diagram adapted from [37].

ature can be high (implying that the edge plasma can be hotter, which improves con-

finement), whilst maintaining a cooler plasma at the divertor. This reduces the amount

of damage caused to the divertor plates: processes such as sputtering are mitigated by

decreasing the ion energy, which can be achieved by lowering the electron temperature (as

determined by sheath physics).

2.1.3 Detachment

In the detached regime, the range of phenomena occurring again increases and the SOL

behaviour becomes yet more complicated. Two of the most important processes are neu-

tral frictional drag and volume recombination. There are two key features of the detached

regime: a significant decrease in the plasma flux to the divertor target; and the intro-

duction of a pressure gradient, in addition to the temperature gradient observed in the

conduction-limited regime [24]. This regime occurs when the downstream temperature

in the conduction-limited or high-recycling SOL becomes so low (< 1 eV, compared to

hundreds of eV in the core plasma) that recombination of the plasma begins to compete

with ionisation in front of the divertor target, reducing the peak power and particle fluxes

that reach the target surface.

The plasma density and temperature profiles arising in a detached SOL plasma are

illustrated in Figure 2.8. The temperature dependence of the reaction rate coefficients for
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Figure 2.9: Plot of the temperature dependence of the reaction rate coefficients for ionisa-

tion, recombination (both collisional and radiative; for a plasma density of 1018 m−3) and

charge exchange processes in hydrogen. The fits for ionisation and charge exchange are

taken from Janev [39], while the recombination curve is a fit to data taken from Bates et

al. [40].

hydrogen ionisation, charge exchange and total recombination are compared in Figure 2.9.

The recombination rate is calculated using both collisional and radiative processes, and is

plotted for a plasma density of 1018 m−3.

The detached behaviour is not simply the result of replacing the surface recombination

sink at the target with a volume recombination sink in front of it, however. The level of

neutral recycling from the surface, φrecycle, is able to take any value, as it only depends

on the relative balance of the surface recombination and ionisation in front of the target.

The level it reaches has to be determined by the requirement that momentum and power

are conserved along the SOL.

We first consider the conservation of momentum. In the detached regime, momentum

is lost through processes such as ion-neutral collisions, which cause a frictional drag force

on the plasma. This gives rise to the observed drop in particle flux, and hence the pressure

gradient. A simple gas discharge model of the plasma flow to the wall shows the reduction
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of the particle flux, Γ, with increasing collisionality. The analysis assumes that the particle

flow is due to ambipolar diffusion, with the diffusion coefficient given by:

Damb ≈
kTe

miνin
,

where νin is the ion-neutral momentum-transfer frequency due to collisions. νin is propor-

tional to λ−1
in , the inverse of the mean free path between collisions. Evaluation of the flux

to the wall gives:

Γ =
πDambn0

2L
.

We therefore see that:

Γ ∝ λin

L
,

i.e. the flux decreases as the collisionality increases (the mean free path of collisions

goes down). Details of this and more sophisticated analyses (which also yield the same

dependence) are discussed in Chapter 16 of [23].

For the conservation of energy, we must look at the radiative processes that occur in

the SOL plasma, which result in the loss of energy and a reduction in the power flux to

the divertor target. Upstream, closer to the edge plasma, a significant amount of power

can be lost due to radiation from excited hydrogen atoms or impurities. This helps the

temperature drop low enough for volume recombination processes to occur closer to the

target [23].

If we look more closely at these volume recombination processes, we find that there are

two main categories: electron-ion recombination (EIR); and molecular-activated recombi-

nation (MAR). Each has been observed both in tokamaks and in detachment experiments

in linear plasma machines. An overview of some of these results will be given in the next

two sections; here we introduce the two types of recombination.

EIR pathways create neutral hydrogen atoms in a single step, involving only a plasma

ion and electron, or, in the case of three-body recombination (the third reaction in (7)

below), a third species which carries off some of the energy released in the reaction. The

three reaction pathways are as follows:

e– + H+ H + hν

e– + H+ H∗∗ H + hν

e– + H+ + ξ H∗+ ξ′.

(7)

In the final reaction in (7), the third body, ξ, is usually a second electron, making the

process the direct inverse of ionisation. This is the dominant EIR pathway, as the presence
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of the third body makes the conservation of both energy and momentum easier. The

highly excited neutral atoms that are produced in these interactions give EIR detachment

a characteristic spectroscopic signature. As they relax to the ground state, they emit

photons in the blue/UV range of the electromagnetic spectrum (high-n Balmer emission

lines). This gives the detached plasma a bright blue colour (as opposed to the red/pink

colour of a hydrogen plasma dominated by ionisation). The reaction rate for three-body

recombination is proportional to n2T
− 9

2
e , and hence this regime occurs when the plasma

density is high but the electron temperature drops below around 1 eV [41].

MAR occurs via the following two-step reactions:

H2(v) + e– H– + H followed by H– + H+ H + H∗ (8)

H2(v) + H+ H +
2 + H followed by H +

2 + e– H + H∗ (9)

H2(v) indicates a vibrationally excited molecular state. The excitation considerably in-

creases the cross-sections of the reactions, by orders of magnitude [42]. Unlike the EIR

regime, MAR detachment has few characteristics that are easily identified spectroscopi-

cally. The plasma emission fades as the onset of detachment occurs, and there is no colour

change, but the presence of the vibrationally-excited molecules can be inferred from the

optical spectrum, where peaks from the vibrational band occur between 600 and 640 nm.

The observation of negative ions is also an indicator of MAR detachment. This regime

occurs at lower densities than EIR, and the electron temperature must be around 2−3 eV

in order for the vibrationally-excited molecules to exist.

Since there are multiple processes occurring in a detached SOL plasma, and the bal-

ance between them can vary for different divertor configurations, full understanding of

detachment has not yet been achieved. Processes that still need to be considered fully in

models include the transition to detachment, the stability of the radiation front, and tur-

bulence and radial transport [43]: all key areas with the potential to have a large impact on

the performance of ITER and future machines. Experimental research into the behaviour

of detached divertor plasmas is essential to improve our understanding and optimise the

operation of fusion reactors. In the next sections, the state of current research, using both

tokamaks and linear plasma machines, is considered.

44



2.2 Detachment in tokamaks

Detached divertor plasmas have been studied in multiple tokamaks, including JET (see

e.g. [44]), JT-60U (e.g. [45]) and Alcator C-Mod (e.g. [46]). The detachment behaviour

varies between machines, and it is important to study a wide range of scenarios in order

to understand it fully. Boedo et al. have reviewed the experimental detachment research

in tokamaks and the various diagnostic techniques employed [47]. Here, a brief overview is

given of some of the experimental and computational research that has been undertaken

on the DIII-D and ASDEX Upgrade tokamaks, as well as some more recent ‘advanced

divertor configurations’ that are in place or planned on TCV and MAST-U.

2.2.1 DIII-D

Early research on DIII-D in the 1990s studied the effects of deuterium gas puffing and

divertor pumping on both the control of the heat flux to the divertor and the core plasma

density (see [48] and references therein). This work observed the large drop in plasma

pressure between the upstream (Pmid) and downstream (Pdiv) regions that is characteristic

of the detached state. The ratio Pmid/Pdiv was observed to increase from ∼ 2 to ∼ 40 with

deuterium gas puffing near the midplane of the tokamak.

Some of the most recent work at DIII-D has established a system for the control of

the detached state [49]. This system is able to change the gas puffing rate in response

to changes in the measured electron temperature at the divertor target, and consequently

hold the plasma in a partially detached state. It is also able to hold the plasma near the

detachment threshold in an ELMing plasma (ELMs are edge localised modes: an instability

which has a significant effect on the core plasma behaviour and wall heat fluxes [50]). The

variation of particle fluxes throughout the ELM cycle causes multiple transitions between

attached and detached plasmas, which means that DIII-D can be particularly useful for

the study of the detachment transition, and its interaction with ELMs [49].

Experimental observations on DIII-D are also used to develop simulations of divertor

behaviour. Recent 2D simulations using the UEDGE code are compared to Thomson

scattering measurements in the DIII-D divertor in order to study the differences between

the inner and outer divertor legs [51]. The results of this study showed that the detached

behaviour is not always reproduced by the simulations, with the discrepancies attributed

to the need for better models of plasma transport.
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Figure 2.10: Heat flux (Q⊥) profiles, based on infrared camera measurements, plotted

as a function of divertor radial location, R, for the four DIII-D magnetic flux surface

configurations shown in the inset. Reproduced from [52].

Research into the effects of the magnetic geometry of the separatrix and scrape-off

layer on DIII-D complements the work of the wider community on advanced divertor

configurations (Section 2.2.3). Petrie et al. studied multiple configurations, varying in

X-point height, outer divertor leg length and outer divertor strike point radius, and their

effect on the divertor heat flux, plasma density and temperature (while holding core plasma

parameters steady to within 10%) [52]. The authors note that two of the configurations,

with the outer divertor strike point in a ‘closed’ region of the vessel, were able to reach

a partially detached regime. This was attributed to increased trapping of neutrals in

the closed geometry versus the open geometry of the third configuration. The heat flux

profiles to the divertor target for four configurations are reproduced in Figure 2.10. The

experimental results were replicated relatively well with the SOLPS code, using effective

diffusivity parameters to model the transport.
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2.2.2 ASDEX (Upgrade)

The original ASDEX tokamak was used to obtain some of the first reported results on

detached divertor plasmas [22]. The key plot showing the target density rollover as the

core density is increased was reproduced in Chapter 1 (Figure 1.9). Since these early

experiments, ASDEX and its upgraded version (AUG) have continued to play a key role

in detachment research.

Some of the early work on AUG investigated a ‘completely detached high confinement

regime’ [53]. This study found that the tokamak could be operated in a detached regime

while still retaining a high level of core plasma confinement, and without inducing an

unmanageable level of ELM activity. Deuterium and neon gas puffing were used simul-

taneously to obtain the detached divertor plasma, and some of the radiative cooling was

due to carbon impurities in the plasma. It should be noted that carbon is no longer a

relevant material for ITER due to problems with tritium retention (see e.g. [54]), but this

work has nevertheless provided a starting point for further research.

More recent work, with full tungsten armour on the vacuum vessel surfaces, aimed to

study divertor detachment induced by ramping the density of low-confinement modes in

AUG [55]. The results indicated that there were three parts to the detachment process:

an onset state (OS); a fluctuating state (FS); and finally, complete detachment (CDS).

These are illustrated in Figure 2.11. The second state is characterised by the observation

of fluctuations in the soft X-ray/UV emission from around the X-point of the SOL (panels

(c) and (d) in Figure 2.11), and is of the most interest here.

These are the first observations of fluctuations that directly relate to detachment in

AUG, and one of the few measurements of such fluctuations that have been made. Further

studies of these radiative fluctuations in AUG have attributed them to oscillations in the

position of the ionisation front [56]. This work also observed filamentary plasma transport

in the fully detached state, which has been studied further by Nikolaeva et al., although

a fully comprehensive data set has not yet been obtained [57]. The mechanisms driving

the detachment and associated fluctuations are not fully understood, and it may be that

the two are strongly related. The possible existence of such a link is particularly pertinent

to the experimental observations of the EIR detached state in the York Linear Plasma

Device, described in Chapter 5.
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Figure 2.11: Calculated and measured total ion flux to (a) the inner and (b) the outer

target; (c) the line-integrated radiated power measured by an AXUV diode; and (d) the

power spectrum of the AXUV diode data from an AUG discharge. The three detachment

states (OS), (FS) and (CDS) are indicated. Reproduced from [55].
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2.2.3 Advanced divertor configurations

In order to achieve the reduction in divertor power flux that is required for future, larger

reactors, multiple alternative tokamak divertor designs have been suggested. These are

reviewed by Soukhanovskii [43]. A key feature of many of these designs is the introduction

of one or more additional X-points in the magnetic configuration; either by adding extra

divertors (e.g. the double null configuration with an upper and lower divertor), or by

extending the existing divertor and introducing an extra X-point along the divertor leg

to spread the power further. Flux expansion (weakening the magnetic field strength to

spread out the field lines in the divertor) can also be included to deposit power over a

larger area.

Here, two experimental tokamaks which are key to the study of these advanced diver-

tor configurations are discussed. TCV has an open vacuum vessel configuration and 16

separate poloidal field coils, which together allow a wide variety of plasma and divertor

shapes to be created [58]. Detachment studies have been carried out with several divertor

configurations, including single null and flux expansion scenarios, measuring the density

rollover and how this is affected by both flux expansion and divertor leg length [59]. Of

particular interest is the snowflake configuration, which (in the ideal case) consists of a

single null, but of second order, introducing extra divertor legs from the same X point.

In practice, multiple X points are positioned in close proximity. A number of snowflake

configurations are illustrated in Figure 2.12. A focus of detachment studies in this scenario

is the distribution of particle and power fluxes between the different divertor legs [59].

MAST-U is currently under construction, and will be an upgraded version of the

MAST spherical tokamak. A key focus of the upgrade design is the study of different

divertor shapes, in particular the ‘Super-X’ configuration, which brings the outer divertor

leg through a baffle out to a large radius [60]. The ‘conventional’ and Super-X double-

null divertor configurations are illustrated in Figure 2.13. A number of simulations using

the SOLPS code have been carried out in order to predict the behaviour of the MAST-U

divertor and how detachment will be accessed (see e.g. [61–63]). Results from the operation

of MAST-U will validate and inform the simulations, which in turn will continue to support

the experimental research.
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Figure 2.12: Snowflake divertor configurations produced in TCV: (a) high-field side

snowflake minus; (b) snowflake plus; (c) low-field side snowflake minus. Strike points

(SP) are labelled in (b). Reproduced from [59].

Figure 2.13: Representative double-null divertor configurations in the MAST-U tokamak.

The Super-X divertor (right-hand panel) utilises flux expansion in the extended outer

divertor legs. Reproduced from [60].
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2.3 Linear plasma devices

Linear plasma machines are extremely useful for the study of detachment, as they are gen-

erally capable of running in steady state, allowing continuous measurements to be made at

a relatively low cost (compared to a tokamak) [64]. The linear geometry makes diagnostic

access more straightforward, as well as providing a simpler domain for simulations. Ohno

reviews key detachment research that has been carried out on linear devices [64]; here an

overview of several machines is provided, finishing with the YLPD.

2.3.1 QED device

The QED (Quiet Energetic Dense) device, illustrated in Figure 2.14, was the first to

demonstrate the feasibility of the detached divertor concept [65]. The key observation

made in this study was that a relatively high neutral gas pressure of a few millitorr was

able to ‘absorb’ the entire power flux from the plasma and distribute it over the walls of

the vessel. Axial heat flux measurements recorded a decrease as the neutral gas pressure

increased, while the radial heat flux at the walls increased. This research provided the

starting point for further detachment studies on linear devices.

2.3.2 PISCES-A

Early work on PISCES-A (shown in Figure 2.15) gave similar results to those from the QED

device: observations of a ‘neutraliser’ (detached) regime at high neutral gas pressures, in

which a density drop in front of the target was measured [66]. However, the vessel radius

is larger than in the QED device, which enabled a study of radial transport in the plasma.

Using experimental data to fit a classical diffusive transport model yielded an anomalously

high diffusion coefficient, which the authors were unable to explain.

Later research by Schmitz et al. studied detachment in PISCES-A in more detail,

investigating its causes [67]. The regime was attributed to loss of momentum due to ion-

neutral collisions (supported by simulations), and radial transport reducing particle flux

to the target. However, the level of radial transport observed remained anomalously high

compared to a classical diffusive picture, and while the authors linked this to fluctuation-

induced transport, a full understanding was not reached.

More recent research into the particle balance in detached PISCES-A plasmas (achieved

via neutral gas puffing) suggests that cross-field transport can provide a dominant
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Figure 2.14: Schematic diagram of the QED linear plasma device. Key: (A) arc-jet plasma

source; (Q) plasma column; (L1,2) limiters; (Ca,r) calorimeters; (M) main plasma chamber;

(D) divertor chamber; (Pm,d) pressure gauges; (P1,2,3) pumps. Reproduced from [65].

Figure 2.15: Experimental setup for the detached divertor experiments in PISCES-A.

Reproduced from [66].
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particle sink [68]. Measurements of particle fluxes showed that the radial flux became

larger than the axial flux for the fully detached regime, and transport was not observed to

be significantly affected by the neutral gas pressure. The authors conclude that turbulent

radial transport, not ion-neutral collisions, is the main particle sink. However, there is

some discussion as to whether this is due to the nature and geometry of the linear machine,

and hence whether the same conclusions can be applied to tokamaks [69]. It is clear that

further study of the relationship between turbulent transport and detachment is required

to fully understand it.

2.3.3 NAGDIS-II

MAR detachment in a linear device was first observed in NAGDIS-II, illustrated in Figure

2.16 [70]. The work was carried out using hydrogen gas puffing into a helium plasma,

and the emission spectra were analysed to deduce which recombination processes were

occurring. Above a critical hydrogen density, the emission corresponding to the EIR

regime disappeared, leaving only a contribution from MAR. To identify the dominant

regime, the spectra were compared to those predicted by simulations.

The questions surrounding the role of radial transport in detached plasmas have also

been considered in research on NAGDIS-II. Intermittent radial transport of blob-like

plasma structures was observed using fast-frame imaging (see [71]), and analysed fur-

ther by Tanaka et al. [72]. The blob transport was seen to increase between attached and

detached conditions, and the authors suggest that the transport could play a significant

role in the reduction of particle and power fluxes to the target.

2.3.4 MAP-II

MAR studies have also been carried out using MAP-II (shown in Figure 2.17), again by

puffing molecular hydrogen gas into a helium plasma [73]. The negative ion density across

the plasma column was measured using laser photodetachment (see Section 6.4), and it

was found that the species was localised in the edge of the plasma. This was consistent

with temperature measurements across the column: negative ions are able to exist in the

cooler edge plasma, but not in the hot central region.

Development of a new monochromator system (the hetero-tandem double monochro-

mator) for use with the Thomson scattering diagnostic technique allowed the low temper-

atures of EIR recombining plasmas to be more accurately measured [74]. The results were
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Figure 2.16: Schematic diagram of NAGDIS-II. Reproduced from [75].

Figure 2.17: Schematic diagram of the MAP-II linear plasma device. Two vacuum pumps

(D.P. 3000 and TMP) are connected to the chamber by gate valves (GV1 and 2) and a

variable butterfly valve (BV2). Probes denoted by P1, 2 and 3. Reproduced from [76].
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found to be consistent with those obtained using optical emission spectroscopy (Section

3.3) and simulations of a collisional radiative model.

2.3.5 YLPD (ULS)

The YLPD (previously known as the UMIST Linear System, or ULS) has been used for

detachment studies since 2000 [77]. The machine is illustrated (Figure 3.2) and described in

detail in Section 3.1 in the following chapter. The ion speed in this device was measured to

be approximately three times the ion sound speed in the plasma, and therefore the authors

acknowledge that the behaviour is unlikely to exactly replicate that of a tokamak divertor,

but the results can contribute to research concerning the interaction of a plasma with

neutral gas [77]. The results from this early study, based on estimated rate coefficients,

indicate that MAR processes are likely to occur in this device.

The EIR and MAR regimes have both been studied on the YLPD, with a focus on

how the transition between the two depends on the upstream plasma parameters [78].

It was found that higher upstream densities tended to lead to EIR detachment. The

experimental measurements were compared to those predicted by a simplified model of

cooling and recombination processes, and found to agree relatively well. This study also

notes that the reduction of the particle flux to the end plate of the YLPD (ULS) appears

to be a result of the MAR processes rather than cross-field transport.

Further characterisation of both detached regimes has been undertaken using spatially-

resolved spectroscopy [79]. In the EIR regime, the emission of the high-n Balmer lines

from excited atomic hydrogen provides a straightforward indication of the location of the

detached region, and the axial spatial evolution along the plasma column towards the

target is clear. No emission from the Fulcher bands of molecular hydrogen is seen. In

contrast to this, the MAR regime does not show abrupt changes as the axial position

varies; instead both the Balmer and Fulcher band emission decrease gradually towards

the target. The evidence for the presence of MAR detachment is less conclusive, but the

authors report that the results are consistent with 1D modelling of a plasma in this regime.

These studies are reviewed in more detail in Section 4.1.
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2.4 Summary

In this chapter, we have discussed the evolution of the scrape-off layer plasma as the

collisionality and upstream density change. The behaviour can be broadly divided into

three regimes: sheath-limited; conduction-limited; and detached. For operation of toka-

mak fusion reactors, the most relevant regimes are conduction-limited and, in particular,

detachment. Detached divertor plasmas will be essential to sufficiently reduce divertor

target heat and particle fluxes to restrict divertor damage to manageable levels.

There is already a significant amount of research into the observation and prediction

of the behaviour of detached plasmas in tokamaks and in linear devices. However, the

presence of an anomalous contribution to radial particle transport (and other complicated

processes) means that the state is not yet fully understood, and further work is needed in

order to improve our knowledge and allow us to predict and control its behaviour. One

particular aspect that requires attention is the relationship between plasma fluctuations,

cross-field transport and the detached state, and this is the focus of the next three chapters

of this thesis.
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Chapter 3

The YLPD and diagnostic

techniques

The study of detachment presented in this thesis (Chapters 4 and 5) was carried out using

the York Linear Plasma Device (YLPD) in the York Plasma Institute at the University of

York. This machine has a DC source which creates a steady-state column of plasma. In

this chapter we discuss its operation (Section 3.1) and introduce the diagnostic techniques

employed in the study: Langmuir probes; optical emission spectroscopy; target plate ion

flux measurements; and fast-frame imaging (Sections 3.2-3.5).

3.1 YLPD

The York Linear Plasma Device is a 1.5 m long vacuum vessel with a Demirkhanov-type

duoplasmatron source [77]. The source and system are illustrated in Figures 3.1 and

3.2 respectively. The main components of the plasma source are the cathode filament,

anode, intermediate electrode, reflector electrode and magnetic field coil. The cathode

consists of a nickel mesh strip formed into a twisted ‘U’ shape and coated with powdered

barium carbonate, strontium carbonate and nickel (10:10:80 wt.%), which are mixed with

methanol to create an easily-applied solution. The coating increases the ability of the

cathode to act as an electron emitter when heated by a current passing through it. These

electrons initiate the breakdown of gas into plasma.

The duoplasmatron source is discussed in detail by Bradley et al. [80], and references

therein. The following is an overview of its operation. The anode, intermediate and

reflector electrodes all have a central hole of diameter 5.5 mm, through which the plasma
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Figure 3.1: Simplified schematic diagram of the cross-section through the YLPD plasma

source. Key: (1) solenoid coil; (2) cathode filament; (3) intermediate electrode; (4) anode;

(5) outer casing, which acts as the reflector electrode, and through which the gas feed and

the water coolant flow. A and B are the power supplies for the cathode heater and the

DC bias between the anode and cathode respectively.

can travel towards the the main chamber. A constant DC bias is applied between the

anode and cathode (200 V for plasma ignition, reducing to ∼ 80 V), and the intermediate

electrode (IE) is allowed to float, taking on values in the range (−65±5) V. On the cathode

side of the IE, a potential sheath forms which focuses electrons through the IE towards

the anode. A coil creates a uniform, axial magnetic field of magnitude (94± 3) mT, which

also acts to focus the electrons. Neutral gas molecules are fed into the anode chamber and

are ionised by the energetic electrons.

A potential ‘hill’ is formed between the anode and the intermediate electrode, which

accelerates ions either through the anode and out of the source chamber (to create the

plasma column), or back towards the IE and cathode. The impact of the ions on the

cathode maintains the electron emission, causing secondary electron emission as well as
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Figure 3.2: Schematic diagram of the main chamber of the YLPD machine. Key: (1)

duoplasmatron source (for details see Figure 3.1); (2) position of diaphragm; (I-X) copper

solenoid coils; (A-J) nine of the fourteen diagnostic ports (the remaining five are directly

opposite ports A, B, D, F and H).

helping to heat the filament. The reflector electrode is also floating, and has a similar bias

to that of the IE. Since this is negative with respect to the anode, most electrons oscillate

between the reflector and intermediate electrodes, continuing to ionize further neutral

molecules and sustain the plasma. However, as ions are accelerated out of the source

chamber, some electrons are also pulled through in order to maintain quasineutrality.

Once in the main chamber, the plasma column is confined by an axial magnetic field,

created by the ten water-cooled, 18-turn copper coils which are evenly spaced along the

length of the chamber. The field is uniform along the majority of the length of the

chamber, and can reach a maximum strength of (98 ± 4) mT. Two thirds of the way

along the chamber is a diaphragm which effectively separates the chamber into two. The

diaphragm supports a removable baffle plate, allowing variation of the diameter of the

orifice through which the plasma passes. In this work, no baffle plate was used, and the

diameter of the orifice was 40 mm.

There is a diffusion pump at each end of the chamber, meaning that each section is

pumped separately. This enables neutral hydrogen to be puffed into the target chamber

(the section furthest from the source), creating a ‘gas box’ in which plasma-neutral inter-

actions can be studied. A sufficient increase in the target chamber pressure can induce

detachment of the plasma column from the end plate of the machine.
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To facilitate the observations, YLPD has fourteen ports along its length which can act

as windows into the machine, or be used to attach diagnostic instruments to the chamber

(e.g. Langmuir probes). A wide range ion gauge (capable of measuring down to 10−9 mbar)

is installed at the source end of the YLPD to measure the base pressure (∼ 10−6 mbar)

before the plasma is ignited, and there is a Pirani gauge (> 10−4 mbar) at the end of the

target chamber, which monitors the pressure as detachment is induced.

Operation of the YLPD requires a balance between the magnetic field strengths (both

around the source and in the main chamber), the cathode heating current, the DC bias

voltage and current, and the gas flow into the source. During preliminary operation,

it was found that EIR detachment could be reliably obtained using: a high magnetic

field strength in the main chamber (∼ 94 mT); a cathode heating current of 28 A (or the

maximum available from the 6 V power supply - this depended on the cathode used); and a

DC bias voltage of approximately 80 V, providing a fixed emission current of 15 A. These

parameters remained fixed, but day-to-day fluctuations in the behaviour of the YLPD

required slight alterations in the DC bias voltage and the source gas flow.

The alterations were found to be necessary in order to produce the same potential

across the intermediate electrode (Vie) for all periods of operation, as Vie was identified as

the key parameter in achieving EIR detachment. The value of Vie was kept at (−68.0 ±

0.2) V for the current study by adjusting the gas flow to the source (between 30 and

40 cc min−1) until Vie stabilised. The DC bias voltage also varied as a result of this, with

values of (79± 2) V. However, as will be discussed in Section 4.2, these variations did not

affect the reproducibility of the EIR detached state within experimental error.

3.2 Langmuir probes

3.2.1 Single probe theory

There are multiple ways of measuring the temperature and density of a plasma, but a

relatively simple method is to use a Langmuir probe: a small wire which is inserted into

the plasma and electrically biased. The probe draws a current from the plasma which

varies according to the bias applied, as the balance of collected ions and electrons changes.

A plot of the probe current versus applied voltage (IV curve) can be analysed to estimate

the plasma parameters. The theory of Langmuir probes has been discussed in multiple

sources (e.g. [23, 81] and references therein); here we give an overview of the technique.
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Figure 3.3: An example IV characteristic from a Langmuir probe, taken during the course

of this work. Dashed vertical lines separate the ion and electron saturation regions and the

transition region, and indicate the floating and plasma potentials (Vf and Vp respectively).

The fit shown in red follows the four-parameter fitting equation, (18).

Before discussing the quantitative analysis of IV curves, we first give a qualitative

introduction to their key features, which correspond directly or indirectly to the plasma

parameters. A typical IV curve from a Langmuir probe is illustrated in Figure 3.3. Firstly,

there are two important values of the potential to be noted. The plasma potential, Vp,

is the true potential of the bulk plasma (away from the region perturbed by the probe).

The floating potential, Vf , is the potential at which a probe insulated from the rest of the

plasma device would sit if no bias were applied. In this case, the initial accumulation of

negative charge from the higher electron flux repels further electrons and attracts ions,

until the system balances with zero net current to the probe (as described in Section 2.1.1).

There are three key regions of the IV curve. At high-magnitude negative potentials,

all electrons are reflected from the probe and only ions are collected; this is known as the

ion saturation region. In practice, the magnitude of the current does not fully saturate,

but slowly increases as the bias becomes more negative. This is due to sheath expansion

effects, which we will return to in the discussion of the quantitative analysis. In this work,

the direction of current is defined such that the ion saturation current is negative.
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As the bias voltage increases, the most energetic electrons in the population (assumed

to follow a Boltzmann distribution) become able to reach the surface of the probe and the

net current starts to become more positive. As the bias voltage continues to rise, passing

through Vf , the probe is able to collect an increasing number of electrons and the current

rises exponentially. This is known as the transition region, and it is from this region that

Te can be estimated. Once the bias reaches Vp, we enter the electron saturation region,

where no ions are able to reach the probe. In theory it should be possible to calculate the

electron density from the electron saturation region, but in practice saturation is difficult

to obtain, as more complicated effects come into play (for example secondary electron

emission from the surface of the probe).

We now consider the theory behind the shape of the IV curve, assuming that the Debye

length, λd, of the plasma (and hence the size of the sheath formed) is small compared to

the size of the probe. The total current collected by the probe is:

I = A(je + ji) = Ae(Γe − Γi), (10)

where A is the collection area of the probe, and je and ji are the current densities due to

the electrons and ions respectively. The Maxwellian electron flux to the probe is given by:

Γe =
1

4
npc̄e,

where c̄e is the average electron speed, and np is the electron density at the probe. Since

we assume a Boltzmann distribution of the electrons in the sheath, we can substitute an

expression for np in terms of the plasma density at the sheath edge (nse), the probe bias,

V , and Te:

Γe =
1

4
nsec̄e exp

(
eV

kTe

)
. (11)

The ion flux at the probe is not given by an equivalent expression to that for the

electrons [82]. Instead, flux conservation dictates that it is always equal to that at the

sheath edge. The details are set out in Appendix A, and the result is:

Γi = nsevse =
1

2
n0cs. (12)

cs =

√
kTe

mi

is the ion sound speed in the plasma (mi is the ion mass), and we have also used the key

relationship (A.24):

nse =
n0

2
, (13)

where n0 is the bulk plasma density (away from the probe).
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We can now consider the values of the particle fluxes at the floating potential, Vf . As

no net current is drawn here, we can equate (11) and (12) for Γe (evaluated at Vf ) and Γi.

With varying manipulation, this gives us both an equation for Γi (14), and a relationship

between cs and c̄e (15).

Γi =
1

4
nsec̄e exp

(
eVf
kTe

)
; (14)

cs =
1

4
c̄e exp

(
eVf
kTe

)
. (15)

Subsituting the fluxes (11) and (14) into the expression for the current (10) yields:

I =
1

4
Aensec̄e

[
exp

(
eV

kTe

)
− exp

(
eVf
kTe

)]
.

Removing the first exponential term from the brackets and substituting in (13) and (15)

gives our final expression for the current:

I = −1

2
Aen0cs

[
1− e

e(V−Vf )
kTe

]
.

We can group the constants together as the ion saturation current, Isat, to give:

I = −Isat
[
1− e

e(V−Vf )
kTe

]
; (16)

Isat =
1

2
Aen0cs. (17)

A three-parameter fit to an IV curve can be used to estimate Isat (and hence the

plasma density, n0, from (17)), Vf and Te for the data set. However, this analysis is only

valid for values of V for which a sheath forms, which effectively limits the upper limit of

the fitting range to Vp (see Appendix A and [23,81]).

It is possible to modify this equation to account for sheath expansion. Approximating

the thickness of the sheath using Poisson’s equation shows that it depends linearly on

the probe potential [81]. As the sheath thickness changes, so does its surface area, which

is effectively the probe’s collection area. This then affects the magnitude of the current

drawn by the probe. We account for this by adding an extra term into (16) to model the

sheath expansion as a linear function of the bias voltage [83]. This adds a fourth fitting

parameter, the sheath expansion coefficient, α:

I = −Isat
[
1− α(V − Vf )− e

e(V−Vf )
kTe

]
. (18)

Taking IV curve data from a single Langmuir probe is quite straightforward to set up

and analyse, but the technique is fairly limited. Firstly, it is an invasive diagnostic, which
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disturbs the plasma around it, so may affect the phenomena that are under observation.

The accuracy of the density measurements is limited to around 10% [81]. The temperature

estimate is unreliable under ∼ 1 eV, as the gradient of the transition region steepens and

it becomes harder to capture and fit the behaviour accurately.

Secondly, the time required to ramp the bias voltage to obtain the full IV curve is on

the order of milliseconds, which limits the time resolution that can be achieved. Events

that occur on shorter timescales (including many plasma instabilities) cannot be studied

using conventional IV curves, but it is still possible to gain some information by altering

the approach. Isat (using a constant negative probe bias) and Vf (if the probe is allowed

to float) can be recorded on much faster timescales, which allows the investigation of these

phenomena. These methods are discussed in more detail in Section 3.2.2. IV curves can

still be used to measure the equilibrium profiles of the plasma parameters in these cases,

however.

Thirdly, the application of large magnetic fields introduces further complications, as

the confinement of the charged plasma particles to helical paths around magnetic field

lines restricts the flow to the probe. The effect is limited if the Larmor radius of the

particles is large compared to the probe dimensions, so in weak fields only the electrons

are significantly affected and the above analysis still holds for bias potentials in or close

to the ion saturation region. In stronger fields, the effect on the ions becomes significant,

but it is still possible to use the above analysis as an approximation, if the collection area

is taken to be the cross-section of the probe perpendicular to the field [81]. In the YLPD,

the ion Larmor radius is of the order of a millimetre (the probe size), and for electrons it

is on the order of microns. The collection area was therefore taken to be the perpendicular

cross-section of the probe.

3.2.2 Fast timescale probe measurements

Recording the floating potential, Vf , at a high frequency allows statistical analyses of the

data to be carried out in order to understand the fluctuating behaviour of the plasma, with

spatial resolution determined by the Langmuir probe. The distributions of the Vf time

series can be plotted as histograms, and the skewness and kurtosis calculated to quantify

the deviation of each distribution from a Gaussian function. Random noise in the data is

normally distributed, and hence these methods are useful for the identification of noise,

as well as outlying intermittent events.
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Figure 3.4: Example Vf time series data from the reference probe in the EIR detached

plasma. Inset: 1 ms segment around an example large amplitude event chosen for correla-

tion analysis.

Skewness is a measure of the asymmetry of a distribution: whether there are more high

(or low) valued data points compared to the Gaussian distribution (which has a skewness

of zero). Positive skew means that there is a longer high valued tail, and the mean of the

distribution is larger than the median. A negatively skewed distribution has a long low

valued tail, and the mean is smaller than the median. The formula for the skewness, S,

of a data set with N points (x1, x2, . . . , xN ), mean x̄ and standard deviation σ is:

S =
1

σ3

∑N
i=1(xi − x̄)3

N
.

The kurtosis indicates whether there are more, or fewer, outlying data points (both

positive and negative compared to the mean) than would occur in a Gaussian distribution.

In this thesis, we take the Gaussian function to have a kurtosis of zero, a definition known

as ‘excess kurtosis’. Distributions with positive kurtosis have longer tails (more outlying

points), while a negative kurtosis value indicates that there are fewer outliers and the

distribution has truncated tails compared to a Gaussian. The equation for the excess

kurtosis, K, of the general data set described above is:

K =
1

σ4

∑N
i=1(xi − x̄)4

N
− 3.

Power spectra were also calculated for each radius by taking the fast Fourier transform

of the Vf time series. Two-dimensional spectrograms were created to map the evolution of
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the power spectrum as the radial position of the probe was changed. Narrow peaks in the

power spectrum indicate the presence of coherent modes or waves in the plasma, whereas

a broadband spectrum suggests that intermittent events are occurring which do not have

a fixed frequency.

The motion of events in the plasma can be tracked by simultaneously recording data

using both the moveable probe and a fixed reference probe, and considering the time

delay in the appearance of significant events. The correlation between the moveable and

reference probe signals was studied for 40 large negative events in the reference signal (an

example event is shown in Figure 3.4).

A time window of ±10 µs around each event was selected, and its correlation with

segments of equal duration in the moveable probe data was calculated (using the Python

function scipy.signal.correlate). The moveable probe data window was scanned over 20 µs

either side of the event to find the time delay that yielded the maximum correlation value.

The optimum time delay values for all events at each radius were then averaged, and

the standard error of each set calculated. Plotting the average optimum delay versus

radius can indicate whether events are travelling radially: if a straight line can be fitted

to consecutive data points, events may be propagating through the plasma with a velocity

given by the slope of the line.

3.2.3 Probes on the YLPD

Two Langmuir probes were mounted radially on the YLPD, at port F and its counter-

part opposite (see Figure 3.2). Both probes have a full range of motion in the two-

dimensional vertical plane perpendicular to the plasma column axis, with motorised in-

sertion/retraction along the axis of the probe (radially across the column), and manual

alteration of the angle of the probe to the horizontal.

The main probe in this research has a single tungsten wire tip, 1 mm in diameter and

0.72 mm in length, encased in a ceramic insulator tube. This probe was used both for

the time-averaged IV measurements, and as the moveable probe in recording the fast Vf

data. The reference probe for the fast measurements was the largest tip in a triple probe

arrangement (with tip length and diameter both ∼ 1 mm), with the probe head aligned

to reduce the disturbance to the plasma from the other probe tips. For the same reason,

both probes were retracted out of the plasma column at all times when not in use.

IV curves were recorded using the ESPsoft software from Hiden Analytical, with the
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Table 3.1: Properties of the hydrogen Balmer emission lines of interest in this study,
including: upper (n) and lower (m) transition levels; the statistical weight of the upper
level, gn; the Einstein coefficient for the decay transition, Anm; and the wavelength of the
emitted photon, λnm.

Line n m gn Anm [s−1] λnm [nm]

Hα 3 2 18 4.410× 10−1 656.285
Hβ 4 2 32 8.419× 10−2 486.128
Hγ 5 2 50 2.530× 10−2 434.046
Hδ 6 2 72 9.732× 10−3 410.174
Hε 7 2 98 4.389× 10−3 397.007
Hζ 8 2 128 2.215× 10−3 388.905
Hη 9 2 162 1.216× 10−3 383.538

fitting analysis code written in the Python programming language. This program allows

multiple IV curves to be recorded and averaged, and the current range can be adjusted

to maximise the signal to noise ratio. The 100 ms Vf time series for fast-timescale mea-

surements were taken using a Teledyne LeCroy HDO6054 oscilloscope, on a 1 µs timescale

with 1 MΩ AC coupling. These data were again analysed using a Python script.

3.3 Optical emission spectroscopy

3.3.1 Boltzmann temperature analysis

Temperature estimates obtained from Langmuir probes tend to become unreliable for low

values (< 1 eV), and so it is necessary to use an alternative diagnostic in order to improve

the accuracy of temperature measurements for detached plasmas. For EIR detachment,

the presence of the high-n Balmer emission lines means that a spectroscopic analysis can

be undertaken. The theory of this analysis is discussed in detail by e.g. Griem [84]; here

we give an overview of the method used. Details of the hydrogen Balmer emission lines of

interest in this work are listed in Table 3.1.

If we assume that the high-n electron energy levels of the neutral atoms are in local

thermodynamic equilibrium (LTE; discussed at the end of this section), their populations,

Nn, can be described by the Boltzmann relation [81]:

Nn

gn
=
Ni

gi

h3Ne

2(πmeTe)
3
2

exp

(
∆En
Te

)
. (19)

The subscripts e, i and n refer to the electron, ion, and nth energy level populations

respectively. N denotes the density, T the temperature, and g the statistical weight of the
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specified population. me is the mass of the electron, and ∆En is the ionisation energy of

the nth energy level, given by:

∆En =
13.6

n2
eV. (20)

The excited energy level populations, Nn, can be calculated from the spectral inte-

gration of emission lines, assuming an optically thin plasma with line of sight of length

l. The transition occurs between the excited nth state and a lower level, labelled m. For

the hydrogen Balmer emission lines, m = 2. The equation for the integrated emission of

a single line is: ∫
Inm(λ) dλ =

hcl

4πλnm
AnmNn, (21)

where λnm is the wavelength corresponding to the transition, and Anm is the appropriate

Einstein coefficient (both listed in Table 3.1 for the lines of interest here). Rearranging

for Nn and substituting into (19) yields:

λnm
Anmgn

∫
Inm(λ) dλ =

h4clNiNe

8πgi(πmeTe)
3
2

exp

(
∆En
Te

)
. (22)

We then take the natural logarithm to give the equation of a straight line:

ln

[
λnm
Anmgn

∫
Inm(λ) dλ

]
=

∆En
Te

+ ln

[
h4clNiNe

8πgi(πmeTe)
3
2

]
. (23)

A plot of the quantity on the left-hand side against ∆En (using multiple emission lines)

can be fitted with a straight line if LTE is valid. The slope of the fit will be equal to

the inverse of the electron temperature of the plasma. An example spectrum and the

corresponding Boltzmann plot are shown in Figures 3.5 and 3.6.

The validity of the LTE assumption for the nth energy level can be tested using a

critical level threshold criterion, as set out by Griem [84]. LTE holds if n > ncrit, where:

ncrit ≈

[ 5Z2

ne
√
π

(
α

a0

)3
]2(

Te

Z2EH

) 1
17

.

Here, Z is the ionisation state of the ion (Z = 1 for neutral hydrogen); α is the fine

structure constant; a0 is the Bohr radius; and EH is the Rydberg energy (13.6 eV). The

value of ncrit lies between 5 and 6 for typical plasma parameters in the YLPD as EIR

detachment is approached, and hence LTE can generally be considered to be valid for

the Hδ Balmer line (n = 6) and above. In some cases in this work, the Hδ line was not

included in the analysis as it clearly did not fit a straight line with the higher-n data.
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Figure 3.5: Example high-n Balmer spectrum taken from the EIR detached region of a

hydrogen plasma in the YLPD. The peaks shown are the n = 5 transition (Hγ , λ =

434.046 nm) to the n = 9 transition, Hη (λ = 383.538 nm).

3.3.2 Hγ/Hα ratio measurements

The ratio of the strengths of different hydrogen Balmer lines is often used in tokamaks as an

indicator of the behaviour of the plasma. In the normal, attached state, the emission from

the plasma column is dominated by the Hα line, with small contributions from the higher-

n emission lines [85]. As the pressure is increased to induce detachment, the balance of the

emission alters depending on the regime. For MAR (molecular-activated recombination)

detachment, the ratio of the different line strengths remains relatively constant, but in

the EIR (electron-ion recombination) regime, the excited hydrogen atoms that are formed

mean that the higher-n lines increase in strength relative to Hα.

In this work the Hγ and Hα lines were chosen, as lines that are further apart introduce

difficulties in recording their intensities on the same scale. Every spectrum taken for the

line ratio analysis in this study was an average of five exposures (700 or 1000 ms depending

on the data set). A background spectrum, with no plasma present, was recorded for each

exposure time in the same manner in order to correct the plasma spectra. The total line

strength of each peak was calculated by integrating under a quadratic spline fit to the

data. The ratio of the integrated values was then taken for each spectrum.
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Figure 3.6: The Boltzmann plot obtained by analysing the Hδ to Hη lines in the Balmer

emission spectrum in Figure 3.5. The data points are labelled with the corresponding

emission line, and the blue line is the fit used to estimate the temperature. Error bars are

derived from a 10% error estimate in the spectral line integration. The analysis yields a

temperature of (0.20+0.09
−0.02) eV.

3.3.3 OES diagnostics on the YLPD

The simple spectroscopic system in use on the YLPD consists of an Ocean Optics Maya2000

Pro spectrometer (wavelength range from 200 − 1090 nm, with a resolution of 0.46 nm)

and the Ocean Optics SpectraSuite software, capable of recording and averaging spectra

covering the full range of hydrogen Balmer emission. Light was collected through port G

of the YLPD (see Figure 3.2) using an optical fibre.

3.4 Target plate flux measurements

As illustrated in Figure 2.11 in Section 2.2, studies of detachment commonly use mea-

surements of the ion flux to the divertor target plates to determine the plasma regime.

The ‘rollover’ in flux as it peaks and then drops again is a characteristic feature of the

transition to the detached state. In this study, therefore, the total ion current through the

end plate of the YLPD is measured to determine the ion flux delivered to the target.
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Figure 3.7: Schematic diagram of the experimental setup for measurement of the ion flux

to the end plate of the YLPD. A power supply applies a negative bias to the plate in order

to collect only ions, and the voltage across a resistor (R = 0.1 Ω) in series with the plate

is measured. This voltage is converted to flux during analysis.

The end plate of the YLPD is electrically isolated from the rest of the chamber by an

insulating spacer ring and insulating plugs around the screws. A negative bias voltage can

therefore be applied to collect only the ion saturation current, which gives us a measure

of the ion flux to the plate. A schematic diagram of the set up is shown in Figure 3.7.

A 0.1 Ω resistor was placed between the plate and the power supply used to apply the

bias voltage, which was then connected to ground. The voltage across the resistor was

measured using the Teledyne LeCroy HDO6054 oscilloscope, and converted to flux values

during analysis. As the plasma fluctuates over time, 100 ms of voltage data was recorded

for each set of plasma conditions using 1 MΩ DC coupling and a sampling rate of 1 MHz.

The average and statistical error of each data set were then calculated, and converted to

the total flux over the end plate (Γend) according to:

Γend =
Iend
e

=
V

eR
.

Iend is the ion saturation current to the end plate, given by the measured voltage, V ,

divided by the resistance, R = 0.1 Ω.

Following the experiments, it was recognised that problems with grounding of the

measurement circuit meant that the bias voltage was incorrectly applied, and the voltage

measured is likely to be in the electron transition region of the IV curve. The measurement

is therefore more closely related to the electron current than the ion saturation current,

and while it is still indicative of the plasma flux to the end plate, it cannot be used to infer

the ion flux. However, recombination has a similar ‘rollover’ effect on the overall plasma

flux, and the results are presented in Section 4.2.3 as an estimate of the total plasma flux.
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3.5 High-speed imaging

Fast frame imaging (FFI) cameras are used to capture light emission from events that

occur on rapid timescales (for an example on the MAST tokamak, see [86]). The frame

rate of the camera determines the time resolution of the data. A balance must be struck

between the resolution and exposure time and the light level and image processing time.

In this work, a Photron Fastcam SA4 camera and a Nikon 50 mm F1.4 lens were used

to view the plasma column in the YLPD target chamber through the port in the end

plate (port J in Figure 3.2), with a depth of field on the order of millimetres. Continuous

sequences of 5000 images were recorded for varying target chamber pressures, from the

attached to the EIR detached state. The frame rate was 50 kHz, with the corresponding

maximum exposure time of 20 µs. An example frame from the attached plasma is shown

alongside an ordinary photograph through the same port in Figure 3.8.

Analysis of the FFI data was carried out in several ways, with the processing scripts

based on those written by B. Law, with permission [87]. Firstly, mean-subtracted images

were produced for each pressure value by taking the average of each pixel over the 5000

frames, and subtracting the resulting image from each individual frame. This process

highlights the differences from frame to frame more clearly. Histograms were also plotted

for three reference pixels to consider the distribution of the mean-subtracted intensities.

The power spectra for the intensity series of each pixel through time for the 5000 frames

were then calculated using the cross spectral density (CSD) function from the SciPy signal

processing package (scipy.signal.csd).

Cross spectral density, Sxy(ω), is defined as the Fourier transform of the cross-correlation

(γxy(τ)) of two time series, x(t) and y(t):

Sxy(ω) =

∫ ∞
−∞

γxy(τ) e−iωτ dτ,

γxy(τ) =

∫ ∞
−∞

x∗(t) y(t− τ) dτ,

where x∗(t) is the Fourier transform of x and ω is the frequency. When x = y, the cross-

correlation becomes the autocorrelation of x (γxx) and the cross-spectral density becomes

the power spectral density, Sxx (PSD, the power spectrum). However, instead of taking

the Fourier transform of the full time series, the SciPy function uses Welch’s method,

which first splits a data set into overlapping segments. The transform is carried out on

each segment, and the results are averaged to reduce noise in the final answer.
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(a) Photograph of the attached plasma in the tar-

get chamber.

(b) Example raw FFI image of the attached

plasma in the target chamber.

Figure 3.8: (a) Ordinary photo and (b) example high speed (50 kHz frame rate) cam-

era image of the attached plasma in the target chamber of the YLPD (chamber length

∼ 60 cm). In both cases, the images are taken through port J (Figure 3.2) and show the

plasma column entering the target chamber through the aperture in the diaphragm (diam-

eter 40 mm) towards the top of the image. The FFI camera is focused in the plane of the

Langmuir probe that enters from the right of the photograph (at approximately y = 40),

and has a smaller field of view; the horizontal scale is approximately 0.25 mm pixel−1. The

vertical scale is similar in the plane of focus, but is affected elsewhere in the image by the

small depth of field (of the order of mm). The line of sight from the cameras to the probe

is at an angle of approximately 5◦ above the column axis.

The PSD measurements for the FFI data at each pressure show how the amplitude

of different frequency components varies across the plasma column. To consider how the

full range of frequencies (up to the Nyquist limit of 25 kHz) varies, a line of pixels can be

chosen and a 2D spectrogram produced of frequency against radial position. Alternatively,

the line of pixels can be used to plot the evolution of the power component at a particular

frequency with pressure in the YLPD target chamber. These different types of plots are

utilised in Chapter 5.

Further analysis was carried out to compare the behaviour of different pixels. If a

reference pixel is chosen, the CSD calculation can be carried out between the time series

of that pixel and those of all others in the image. CSD analysis for x 6= y generally yields

complex (rather than real) results: the amplitude at a particular frequency indicates the

extent to which the two series share features at that frequency; and the phase of the CSD
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gives the phase difference between the components of the series at that frequency. In

this work we utilise the phase values calculated from CSD analysis to look at the phase

differences between the intensity fluctuations of different regions of the plasma column.

Cross spectral density amplitude values between two time series can be compared more

easily by converting them into the coherence, Cxy(ω). This normalises the CSD at each

frequency to the amplitudes of the power spectral density for both series:

Cxy(ω) =
|Sxy|2

|Sxx| |Syy|
.

When the two series are perfectly matched at frequency ω, Cxy(ω) = 1. The SciPy co-

herence function (scipy.signal.coherence) again uses the Welch method to calculate the

coherence of two series, and was used here to study how the matching of frequency com-

ponents varies across the plasma column.

3.6 Summary

In this chapter, we have introduced the experimental equipment and analysis techniques

employed in Chapters 4 and 5, which focus on the observations of the EIR detached state

in the York Linear Plasma Device (YLPD). The design and operation of the YLPD itself

have been described, along with the four diagnostic techniques employed in the study.

Langmuir probes are conventionally used to measure plasma density and temperature,

but are restricted to time-averaged values due to their limited resolution. As well as using

a single probe to measure equilibrium values in the YLPD (on millisecond timescales), two

probes are used for analyses of microsecond-resolution time series of the floating potential.

Optical emission spectroscopy can provide more accurate temperature estimates below

1 eV, through Boltzmann analysis of the hydrogen Balmer emission lines, and the same

spectra can be used to calculate Balmer emission line intensity ratios. The diagnostic setup

for the measurement of the plasma flux to the end plate of the YLPD, and its implications,

have been outlined. Finally, we discussed fast frame imaging using a high-speed camera,

and the various techniques used to analyse the resulting data.
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Chapter 4

Detachment in the YLPD

In this chapter we consider previous measurements of the detached state in the YLPD in

more detail, and present further observations which complement and extend the study. The

majority of these further results are the work of the author, excepting the radial optical

emission profiles, which were obtained by Lisgo [88]. Insight from these measurements

allows us to propose a new explanation of the behaviour of the electron-ion recombination

(EIR) detachment regime in the YLPD.

The first section reviews the detachment studies carried out by Mihaljčić using the

YLPD, which covered both the EIR and MAR (molecular-activated recombination) regimes

[85]. We highlight the key experimental and simulation results, and identify areas in which

the study can be expanded. Mihaljčić characterises the detached plasma in one dimen-

sion (along the axis of the machine) and on the relatively slow, millisecond timescales

of Langmuir probe IV measurements, neglecting fast timescale behaviour and the radial

broadening of the plasma column in the EIR regime.

Section 4.2 presents more recent observations of EIR detachment on the YLPD, contin-

uing to focus on the slow timescale of Langmuir probe measurements in order to replicate

the plasma conditions observed by Mihaljčić. The final experimental results detailed in

this section are radial emission profiles of the hydrogen Balmer lines, which suggest that,

instead of being one-dimensional, the EIR detached plasma in fact has a significantly

broadened radial structure [88].

The radial observations, combined with the lack of fast-timescale measurements of

EIR detachment, lead to the conclusion that there are flaws in the assumptions that

fast timescale behaviour and the broadening of the plasma column are unimportant. In

Section 4.3, the following alternative explanation of the behaviour is proposed. If relatively
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high density plasma from the centre of the column propagates radially outwards on sub-

millisecond timescales, it will no longer be connected to the source by the central core

of hot plasma (emitted from the source orifice with a diameter of 5.5 mm) and will cool

to create regions of low temperature, high density plasma. Simple simulations to study

the time-averaged behaviour of such a broadened, cooled plasma column are carried out,

showing that these conditions yield high EIR reaction rates, and are able to qualitatively

reproduce the experimental EIR emission profiles.

4.1 Previous observations

The results presented in this section were predominantly obtained by Mihaljčić, who fo-

cused on characterising both the EIR and MAR detachment regimes in the YLPD, and

studying the transition between them [85]. The work consists of both experimental obser-

vations (Section 4.1.1) and a computational model (Section 4.1.2).

4.1.1 Experimental data

Section 4.1.1.1 studies the threshold between the MAR and EIR regimes; and Sections

4.1.1.2 and 4.1.1.3 present axial and radial profiles of the plasma parameters in each state.

4.1.1.1 EIR/MAR threshold

An initial study mapped the threshold between the EIR and MAR regimes in density and

temperature space (using the parameters measured upstream, in the main chamber where

the detached state does not reach). Figure 4.1 plots the distribution of the two regimes

as a function of the upstream density, nu, and temperature, Tu, for a target chamber

pressure of 1.2 × 10−2 mbar [85]. A power law fit to the approximate threshold between

the two is shown as a solid grey line, and is in reasonable qualitative agreement with

simple analytical models (see Section 4.1.2 for further details).

The threshold is relatively well-defined, although there is some overlap between the two

regimes. We see a general trend in which the EIR regime dominates at higher densities,

but the value of nu at which the transition occurs increases as Tu increases. Mihaljčić

took further data at lower target chamber pressures, and found that as the pressure was

decreased, the threshold between the MAR and EIR regimes moves to higher densities.

Thus lower pressures result in a wider range of conditions that produce MAR detachment.
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Figure 4.1: The YLPD operating space for the MAR and EIR detachment regimes in

terms of the upstream (main chamber) density and temperature, for a target chamber

pressure of 1.2 × 10−2 mbar. Conditions yielding MAR detachment are denoted by open

circles, and EIR detachment by filled circles. The solid grey line is an approximate power

law fit to the threshold between the two, based on the experimental data. Filled squares

are threshold data points obtained from 1D modelling (Section 4.1.2), and the solid black

is a power law fit to these points. Figure reproduced from [85].

4.1.1.2 Axial profiles

The majority of Mihaljčić’s work is concerned with axial profiles of the detached plasma,

using both Langmuir probe and optical emission spectroscopy (OES) techniques. He

chooses a single ‘case study’ for each of the two detachment regimes to determine their

characteristic behaviour. Both regimes have an upstream temperature of 5 eV, but for

the MAR case the upstream density (nu) is 4.7× 1017 m−3, whereas for the EIR detached

plasma, nu = 1.5 × 1019 m−3. The target chamber pressures used to produce a stable

detached plasma in each case were 1.0 × 10−2 mbar (MAR) and 1.2 × 10−2 mbar (EIR).

The confining magnetic field strengths along the axis of the chamber were 30 and 50 mT

for the MAR and EIR cases respectively.
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(a) MAR detachment; target chamber pressure of 7.7 mTorr (1.0× 10−2 mbar).

(b) EIR detachment; target chamber pressure of 9.2 mTorr (1.2× 10−2 mbar).

Figure 4.2: Axial electron density (squares) and temperature (circles) profiles through the

target chamber of the YLPD for (a) the MAR and (b) the EIR detachment regimes. The

‘orifice’ is the baffle; its location is taken as the 0 cm position. The target plate is located

at 56 cm. Plots reproduced from [85].
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An axial Langmuir probe was used to measure both density and temperature along

the axis of the target chamber in the YLPD [85]. The profiles for the MAR case are

shown in Figure 4.2a, and those for EIR detachment in Figure 4.2b. We see that both the

density and temperature exhibit a steady decrease throughout the target chamber for the

MAR case, and reflect the need for temperatures of a few eV to sustain the population of

vibrationally excited molecules that is required (Section 2.1.3). In contrast, the EIR data

shows that the density remains high while the temperature drops sharply, with ne only

starting to decrease once the temperature has reached ∼ 1 eV.

Given the unreliable nature of the Langmuir probe temperature measurements below

1 eV (see Section 3.2.1), a moveable OES probe was also employed to provide more accurate

estimates of the temperature for the EIR case, by using a Boltzmann analysis of the

hydrogen Balmer emission lines (discussed in Section 3.3.1). In the axial range 14−34 cm,

termed the ‘recombination zone’, the OES analysis yields Te values between 0.1 and 0.2 eV,

an order of magnitude below those estimated by the Langmuir probe.

The recombination zone encompasses the position in Figure 4.2b where the density

starts to drop sharply. These observations are consistent with the conditions expected for

EIR: the recombination rate is fastest for high densities, but its inverse dependence on

temperature (∝ n2T−
9
2 ) means that it can only become significant once the temperature

has dropped to ∼ 1 eV. Hence, once Te in the plasma is low enough, we see ne start to

decrease as the recombination process removes ions and electrons.

Full OES spectra comprise both the atomic hydrogen Balmer emission lines and Fulcher

band emission, which arises from vibrationally excited states of molecular hydrogen. Mi-

hajčić compares the behaviour of the two detachment regimes using two features of the

spectra: the Hα/Hγ ratio (see Section 3.3.2); and the total emission from three of the

strongest Fulcher band lines. The Fulcher emission is calculated by integrating over the

three lines in the v′ − v′′ = 2− 2 vibrational band, in the wavelength range 622− 624 nm.

The MAR and EIR axial profiles for both of these measures are plotted in Figure 4.3.

First, considering the Hα/Hγ ratio, we see that the MAR value remains fairly constant,

particularly in the first 20 cm of the chamber, as the emission from all the Balmer lines

decreases at the same rate. Beyond this point there is more variation, but this is likely to

be attributable to difficulties in resolving the lines as they become weaker. For EIR, on the

other hand, there is a significant drop between 5 and 15 cm, meaning that the population

of the more highly excited state which produces the Hγ line is not decreasing as quickly
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Figure 4.3: Variation of (top) the Hα/Hγ ratio and (bottom) the molecular Fulcher band

emission throughout the target chamber for both the MAR (dashed lines) and EIR (solid

lines) detachment regimes. The Fulcher band emission is calculated by integrating three

lines in the v′ − v′′ = 2− 2 vibrational band (622− 624 nm). The ‘orifice’ is the baffle; its

location is taken as the 0 cm position. The target plate is located at 56 cm (beyond the

range of the OES probe). Figure reproduced from [85].
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as that which causes the Hα emission (or indeed may not be decreasing at all). The ratio

remains low throughout the rest of the chamber.

The Fulcher band emission for the MAR case shows a steady decrease throughout the

target chamber as the plasma cools, with a final, sudden drop at around 39 cm. OES

data is not available beyond this point due to the limitations of the probe, but the low

temperatures observed in the final 10 cm before the target plate (Figure 4.2a) indicate

that there is no longer enough energy to excite molecules in this region. The sudden drop

in the EIR case occurs at around 15 cm, coinciding with the start of the recombination

zone. The extremely low temperatures in this region are undoubtedly unable to sustain

vibrationally excited molecules. Prior to this point, the Fulcher emission exhibits a steady

decrease similar to the MAR case, but with a steeper gradient, consistent with the faster

rate of temperature decrease through the EIR detached plasma.

4.1.1.3 Radial profiles

The final experimental data considered here are radial profiles of density and temperature

across the plasma column in both the MAR and EIR regimes (Figure 4.4). These profiles

were taken with a Langmuir probe inserted radially from port F (see Figure 3.2), located

approximately 25 cm from the baffle in the target chamber.

The MAR profiles are reasonably symmetric about the centre of the beam, peaking

around the 0 cm position and decreasing as the radius increases. The full width half max-

imum (FWHM) value of the density plot (Figure 4.4a) is approximately 1 cm. The tem-

perature profile (Figure 4.4b) appears to be slightly narrower (with a FWHM of ∼ 6 mm),

but the larger errors make this plot harder to interpret, particularly outside ±0.5 cm where

the temperature drops below 1 eV.

The EIR profiles have fewer data points, and the accuracy is restricted by the low

temperature values across the majority of the column. The density data (Figure 4.4c)

shows a roughly symmetric peak around 0 cm, with ne falling off by an order of magnitude

within ±0.5 cm. Te only rises above 1 eV at the centre of the column (Figure 4.4d); all

that can be inferred from the Langmuir probe data is that the temperature is likely to be

below 1 eV in the edge region of the column. Mihaljčić also notes, from visual inspection

of the EIR detached plasma (see Figure 4.5), that the ‘blue glow’ recombination zone

has a radial extent that is greater than that of the plasma column that enters the target

chamber through the baffle (estimating a radius of 3 cm, compared to 0.5 cm).
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(a) Radial ne profile (MAR). (b) Radial Te profile (MAR).

(c) Radial ne profile (EIR). (d) Radial Te profile (EIR).

Figure 4.4: Radial variation of density and temperature across the plasma column in

the target chamber for both the MAR (top row) and EIR (bottom row) detachment

regimes. The measurements were taken using a probe through port F (see Figure 3.2),

approximately 25 cm downstream of the baffle. Figure reproduced from [85].
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Figure 4.5: Photograph of an EIR detached plasma in the target chamber of the YLPD, as

studied by Mihaljčić. In this work the aperture diameter is approximately 14 mm. Figure

reproduced from [85].

These probe measurements were recorded using standard Langmuir probe methods,

and thus were limited to millisecond time resolution (see Section 3.2.1). Mihaljčić acknowl-

edges the work on the PISCES-A linear machine (Section 2.3.2), which concludes that,

in that device, intermittent radial transport events (‘blobs’ of plasma with high radial

velocities) are the most significant cause of plasma loss to the target plate, rather than

recombination processes. These events can occur on shorter timescales than are detectable

using a conventional Langmuir probe. To study this possibility on the YLPD, Mihaljčić

employs a fast probe configuration, capable of recording data at a rate of 1 MHz.

The resulting radial profiles show the ion saturation current drawn by the probe as a

proxy for density (Figure 4.6). The plot shows two pairs of profiles: one pair taken using

the slow, conventional probe technique; and the other with the fast probe configuration.

All profiles were recorded using the same upstream conditions (those used for the MAR

case study), but one in each pair has gas injected into the target chamber, whereas the

other does not. For the ‘with gas’ profiles, the target chamber gas pressure was raised to

induce MAR detachment in the same way as for the case study. The ‘no gas’ profiles were

taken from the attached plasma, with the target chamber gas valve remaining closed.
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Figure 4.6: Variation of ion saturation current across the plasma column in the target

chamber, as recorded by both ‘slow’ (< 1 kHz, square markers) and ‘fast’ (1 MHz, circular

markers) probe methods. Data were taken for the same upstream plasma conditions as in

Figures 4.4a and 4.4b: the ‘with gas’ data (filled markers) was taken in the detached state;

and the ‘no gas’ data (open markers) was taken without the injection of neutral gas into

the target chamber (attached conditions) for comparison. Figure reproduced from [85].

All four profiles are of similar shapes, peaking at the 0 cm position before falling away

with a full width half maximum value of 1 cm, as previously observed. The slow probe

technique measures peak values that are around 20% higher than those obtained from the

fast configuration, but beyond a radius of ∼ 0.2 cm the differences are very small. This

data provides no evidence that high-frequency radial transport effects are broadening the

plasma column in the MAR detachment regime.

However, Mihaljčić does not repeat these measurements for EIR detachment, extending

the MAR conclusion to suggest that radial transport does not play a role in either detach-

ment regime. The failure to confirm the results for EIR may be a significant omission,

particularly given the previously-noted observation that the EIR ‘blue glow’ recombination

zone is visibly broadened compared to the upstream plasma column. This broadening is

not apparent in the radial density profile obtained by the slow Langmuir probe technique,

which could indicate that faster transport processes are present.
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4.1.2 Modelling

To continue with the review of the previous detachment studies using the YLPD, we now

consider the simulation work carried out by Mihaljčić [85]. He employs a one-dimensional

fluid model (along the axis of the plasma column) to replicate some of the atomic and

molecular processes which occur in the target chamber of the YLPD in both MAR and

EIR detached plasmas. The model uses the particle and energy conservation equations,

and includes ionisation as well as both electron-ion and molecular activated recombination.

By changing the initial conditions, Mihaljčić was able to simulate different upstream

plasma conditions and use the predicted axial density and temperature profiles (along

with those for particle and energy flux) to distinguish between MAR and EIR detachment

cases. The EIR regime exhibits much steeper reductions in these profiles than MAR.

The resulting prediction for the threshold between MAR and EIR is plotted on Figure

4.1 in Section 4.1.1.1. This prediction is a similar shape in density and temperature space

to the experimentally obtained threshold, but the density values are approximately an

order of magnitude too high. The discrepancy could in part be due to the assumptions

made in the model (for example ignoring convective terms for simplicity), but the limited

accuracy of the Langmuir probe measurements may also contribute [85].

Another key result from the model is the attempt to replicate the axial density and

temperature profiles for both the MAR and EIR case studies. These profiles are shown in

Figure 4.7. The general trends of the experimental data are replicated well by the simu-

lation, with gradual decreases in both ne and Te for the MAR case, and steeper gradients

in the EIR regime. The temperature data are also reasonably quantitatively accurate

(bearing in mind that the experimental EIR temperature data is overestimated by the

Langmuir probe beyond ∼ 0.22 m). The density values, on the other hand, are consider-

ably overestimated by the code; again this may arise from a combination of the simplifying

assumptions made in the model, and inaccuracies in the experimental technique.

The one-dimensional simulation used by Mihaljčić is able to replicate the behaviour

of the plasma parameters along the axis of the YLPD relatively well. We can conclude

that this simplified model provides a foundation for understanding the processes behind

plasma detachment in both the MAR and EIR regimes, but the discrepancies that are

observed between simulation and experiment indicate that this one-dimensional picture is

insufficient for a full explanation.
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Figure 4.7: Comparison of the simulated and experimental axial profiles for temperature

(Te, dashed lines) and density (ne, solid lines) for detached plasma regimes in the YLPD.

The top row shows (a) the simulated and (b) the experimental profiles for MAR detach-

ment. In the bottom row, we show (c) the simulated and (d) the experimental profiles

for EIR detachment. Note that the experimental temperature profile beyond 0.22 m in

the EIR regime, (d), is overestimated by approximately an order of magnitude (Section

4.1.1.2). The baffle is located at 0 m and the target plate at 0.56 m. Figure reproduced

from [85].
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4.1.3 Summary of previous work

The work carried out by Mihajčić investigates the conditions required to produce both

MAR and EIR detachment in the YLPD, and provides a detailed case study of the time-

averaged properties of each regime. The threshold between MAR and EIR in terms of the

upstream plasma density and temperature is well characterised, and can be qualitatively

reproduced by a simplified one-dimensional fluid model of the plasma (although the ap-

proximations lead to discrepancies in the predicted densities of approximately a factor of

ten, as shown in Figure 4.1).

Langmuir probe and optical emission spectroscopy diagnostics are used to produce ax-

ial profiles of the plasma density and temperature for both regimes. These clearly highlight

the differences between the two recombination mechanisms, particularly in the temper-

ature profiles. In the MAR regime, the relatively high (2 − 5 eV) electron temperatures

that are required to produce the vibrationally excited molecules are observed. In contrast,

the EIR case exhibits the < 1 eV temperatures that increase the three-body recombina-

tion rate. These experimental profiles are also reasonably accurately predicted by the 1D

model, although again the absolute density values are overestimated by up to an order of

magnitude.

Two important shortcomings of this work are: the focus on only one dimension of the

system (on-axis through the target chamber); and the use of primarily time-averaged mea-

surements, with resolution on timescales of milliseconds or longer. Mihajčić acknowledges

this in discussing a range of possible improvements to his work, suggesting alternative

diagnostic techniques to further investigate the intermittent radial transport of plasma

‘blobs’, and the use of radially resolved emission spectra to map the plasma parameters

over two dimensions [85].

As noted in Section 4.1.1.3, these shortcomings are manifest in the omission of short-

timescale measurements of the EIR detached plasma. The broadening of the plasma

column in the recombination zone, observed through visual inspection, is not reflected in

the slow probe measurements, and consequently has not been properly quantified. It is

possible that this broadening may be occurring on much faster timescales. The key focus

of the current study, therefore, is to extend the characterisation of the EIR detachment

regime to two dimensions, and employ higher frequency diagnostic techniques to capture

shorter timescale events.
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4.2 Further observations

Before introducing further diagnostics, the first aim was to create an EIR detached plasma

comparable to that studied by Mihaljčić, and characterise it in a similar manner. The

YLPD system has altered in the intervening period, with upgrades to the vacuum pumps

and power supplies, and it was therefore necessary to confirm that EIR detachment could

still be obtained.

The current diagnostics are limited to a single axial position in the target chamber,

approximately 25 cm downstream of the baffle. A Langmuir probe (able to move across

a plane perpendicular to the plasma column) is fixed through the port opposite port F,

and optical emission spectra were recorded in the same plane through port G (see Figure

3.2). The Langmuir probe was used for ion saturation current, density and temperature

measurements, and optical emission spectroscopy (OES) for Hα/Hγ ratios, as well as a more

accurate estimation of the temperature of the EIR detached plasma. In addition, the total

ion saturation current to the end plate of the YLPD was measured. The results from these

diagnostics are discussed in Sections 4.2.1 - 4.2.4.

These plasma characteristics were observed as the flow of neutral hydrogen into the

target chamber was increased to produce a stable, EIR detached plasma (determined by

visual inspection of the ‘blue glow’ of the EIR regime). A number of profiles were therefore

obtained which show the evolution of these parameters with target chamber pressure, from

the initial attached state to full EIR detachment. An example image of an EIR detached

plasma from the current study is shown in Figure 4.8 (cf. Figure 4.5).

The final data presented in this section are the hydrogen Balmer emission profiles

across the diameter of the EIR detached plasma column, as recorded by Lisgo (Section

4.2.5) [88]. Again, these time-averaged measurements were taken through port G, at an

axial position of ∼ 25 cm downstream of the baffle.

It should be noted that the some of the above data sets were recorded during separate

periods of operation, due to various technical limitations. In order to reproduce the

starting attached plasma conditions as closely as possible for each set of data, the same

magnetic field strengths and cathode and DC emission currents were used. The flow of

hydrogen gas to the source was then altered to adjust the potential across the intermediate

electrode, Vie.

Matching Vie resulted in some variation of initial gas pressure in the target chamber

(ranging between 2.3 × 10−4 and 3.6 × 10−4 mbar), but only a small (∼ 2 %) variation
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Figure 4.8: Photograph of an EIR detached plasma in the target chamber of the YLPD.

The view is through the port in the end plate (port J, Figure 3.2), and the Langmuir

probe used for IV measurements enters from the port on the right. The blue glow (which

appears white in the brightest region) around the central plasma column is indicative of

the detached regime.

in DC bias voltage, and hence in the input power to the plasma. This approach was

found to yield more consistent plasma detachment than matching the gas flow and initial

chamber pressure. To illustrate this, repeat data (referred to as data sets 1 and 2) for

the ion saturation current, electron temperature and hydrogen emission line ratios are

presented in the following sections. A comparison of the plasma conditions used for these

observations and the EIR case study used by Mihaljčić is made in Section 4.2.6.

4.2.1 Ion saturation current

To improve the reliability of the results, the ion saturation current, Isat, is considered

as a proxy for the plasma density: the density calculation involves the temperature that

is estimated from the Langmuir probe IV curve and therefore introduces further errors

(Section 3.2.1). At each pressure, five IV curves were recorded, each in themselves an

average of ten voltage sweeps in order to reduce noise in the data. Example IV curves

for both the centre and edge probe positions in attached and EIR detached plasmas are

shown in Figure 4.9.
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The four-parameter fitting analysis (see (18) in Section 3.2.1) was carried out for all

five IV curves at every pressure value. The resulting five Isat values were averaged to

produce one data point for each target chamber pressure. This was repeated with the

probe positioned in the centre of the plasma column (0 mm, Figure 4.10a) and in the edge,

at a radial position of 3 mm (Figure 4.10b). The error bars shown on the plots arise from

the difference between the full fit to the IV curves and a fit to only the ion saturation

region (excluding the exponential term) in each case.

Data sets 1 and 2 are qualitatively very similar. The 0 mm profiles initially show a slow

rise, before a sharp increase at around (1−2)×10−3 mbar. A broad (∼ 2×10−3 mbar width)

peak follows this jump (the ‘rollover’ which indicates the onset of detachment), which then

decreases slowly to approximately half the maximum value in the final, detached state.

There are some quantitative differences: the sharp increase occurs at a pressure that is

approximately 4× 10−4 mbar lower for Set 2 than Set 1; the peak is broader in Set 2; and

Isat is slightly higher for Set 1 as detachment is reached. However, given the errors, and

the differing initial operating conditions (as discussed above), the agreement between the

two sets of data is very good.

The edge (3 mm) profile values are generally a factor of ∼ 6 weaker than the central

data, in line with the radial decrease in density that Mihaljčić observed in the EIR detached

plasma. The peaked ‘rollover’ is still seen at just over 2× 10−3 mbar, where Isat starts to

decrease as the pressure increases further. In this case, however, the jump is less sharp

and the final decrease appears to flatten out slightly beyond 5 × 10−3 mbar. In general,

Isat is slightly higher for Set 1, but the overall behaviour of the profile is reproduced well.

The ‘rollover’ shape of the profiles as the target chamber gas flow is increased is similar

to that observed in the plots of target density against core density as detachment is induced

in tokamaks (an example from ASDEX was shown in Figure 1.9). In the YLPD, the gas

flow to the upstream plasma is not increased, but adding neutral hydrogen gas to the target

chamber does appear to increase the ion saturation current (and hence the density) before

the rollover occurs. Visual inspection of the plasma in the target chamber shows that

there is an initial increase in the brightness of the attached plasma when the additional

gas is first introduced, which also suggests that the density of the plasma is increasing.
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(a) IV curves from the centre of the plasma column.

(b) IV curves from the edge (3 mm) of the plasma column.

Figure 4.9: Example IV curves from the Langmuir probe at (a) 0 mm (the centre of the

column) and (b) 3 mm (in the edge of the column), for both attached (target chamber

pressure 2.3× 10−4 mbar, in black) and EIR detached (8.75× 10−3 mbar, in red) plasmas.
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(a) Centre (0 mm) profiles.

(b) Edge (3 mm) profiles.

Figure 4.10: Evolution of Isat at (a) the centre (0 mm) and (b) the edge (3 mm) of the

plasma column with pressure in the YLPD target chamber as EIR detachment is induced.

Repeat measurements produced data sets 1 (+, in black) and 2 (×, in red). Dashed lines

indicate the pressure ranges in which the onset of the ‘blue glow’ of the EIR detached state

was first observed for each data set. Blue circles and green stars show the attached (low

pressure) and detached (high pressure) Langmuir probe Te values at both 0 and 3 mm, for

the plasma in the Γend (Section 4.2.3) and Vf (Section 5.2) experiments respectively.
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4.2.2 Temperature

The same IV curves which yielded the Isat data above were also used to estimate the

evolution of the electron temperature at the 25 cm axial position as EIR detachment was

induced. Figures 4.11a and 4.11b show the resulting profiles for the centre (0 mm) and edge

(3 mm) radial positions respectively. Errors were estimated by adjusting the temperature

parameter in the fits to the IV data to obtain approximate upper and lower bounds.

The 0 mm data shows an initially high temperature (roughly 10−15 eV) which decreases

steadily beyond ∼ 1× 10−3 mbar to a final value of approximately 3 eV. The start of the

decrease coincides with the location of the sharp increase in Isat. The difference between

the initial Set 1 and Set 2 values is likely to arise from the variation in the start-up

conditions that has previously been discussed. There is also some discontinuous variation

within each data set at pressures below 1 × 10−3 mbar, which can be attributed to more

difficulty in fitting the data (as indicated by the larger errors).

The edge profiles have a similar shape, although the absolute values are lower by a

factor of three or more, starting at around 3 eV and reducing to below 1 eV. As for the

Isat (density) data, we expect to see lower values as we travel radially outwards from the

centre of the plasma column (as seen by Mihaljčić). The decrease begins at a slightly lower

pressure than for the 0 mm data, which is also to be expected, since the neutral gas will

predominantly interact with the more easily-cooled plasma in the edge region. The edges

of the column are less well heated by the core plasma (which is in direct contact with the

source).

The onset of detachment (denoted by the dashed lines in Figure 4.11) occurs just after

the temperature decreases below 1 eV in the edge of the plasma column. This is consistent

with the expectation that the plasma enters the EIR detachment regime when Te < 1 eV:

once the temperature has cooled sufficiently, three-body recombination starts to dominate

the behaviour and the ‘blue glow’ becomes visible. The temperature drops further as the

pressure is increased and the plasma continues to cool, until stable detachment is reached.

The inaccuracy of temperature measurements below 1 eV using the Langmuir probe

technique means that the 3 mm temperature profiles are likely to only provide an upper

bound beyond ∼ 4×10−3 mbar. Where possible, more accurate temperatures for the ‘blue

glow’ region at the edges of the column were calculated from Boltzmann analysis of the

hydrogen Balmer emission spectrum (Section 3.3.1). Spectra were collected through port

G with exposure times of 700 ms (concurrent with the Set 1 Langmuir probe data) and
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(a) Centre (0 mm) profiles.

(b) Edge (3 mm) profiles (Langmuir probe: black + and red ×. OES: black � and red N).

Figure 4.11: Evolution of Te at (a) the centre (0 mm) and (b) the edge (3 mm) of the

plasma column with pressure in the YLPD target chamber as EIR detachment is induced.

Repeat measurements produced data sets 1 (in black) and 2 (in red), and in (b) additional

OES measurements (from the ‘blue glow’ in the column edge) are denoted by squares

and triangles. Dashed lines indicate the pressure ranges in which the onset of the EIR

detachment ‘blue glow’ was first observed for each data set. Blue circles and green stars

show the attached and detached Langmuir probe Te values at both 0 and 3 mm, for the

plasma in the Γend (Section 4.2.3) and Vf (Section 5.2) experiments respectively.
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(a) Spectrum from the attached plasma column, showing Hα (656.3 nm) to Hδ (410.2 nm).

(b) Spectrum for the EIR detached plasma, showing Hα (656.3 nm) to Hη (383.5 nm, inset).

Figure 4.12: Visible emission spectra (700 ms exposure) of (a) the attached and (b) the

EIR detached plasma at a position 25 cm from the baffle in the YLPD target chamber.

The Balmer emission lines are labelled.
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Figure 4.13: Boltzmann analysis plot from the spectrum shown in Figure 4.12b. Data

points are labelled with the corresponding emission line; the blue line is the fit used to

estimate the temperature, yielding a value of (0.20+0.09
−0.03) eV. Error bars are derived from

a 10% error estimate in the spectral line integration.

1000 ms (concurrent with Set 2). Examples for the Set 1 pressures of 2.30 × 10−4 mbar

(attached) and 8.75× 10−3 mbar (detached) are shown in Figures 4.12a and 4.12b respec-

tively. The spectra are analysed further in Section 4.2.4, but here only those pressures

where Boltzmann analysis is possible are considered. These vary between the two data

sets. Enough high-n lines must be measurable, and the excited levels must meet the local

thermal equilibrium approximation (see Section 3.3.1).

The resulting Te estimates are plotted in Figure 4.11b, for all pressures in data sets 1

and 2 where the Boltzmann analysis could be carried out. An example Boltzmann plot,

corresponding to the detached plasma in Set 1 (8.75 × 10−3 mbar), is shown in Figure

4.13. In this case, the Hδ to Hη lines are used, as a reasonable linear fit to the data can

be obtained. For all other OES data points, the Hδ line was not included: its population

was not in local thermodynamic equilibrium and the data point did not fit a straight line.

The OES temperature estimates suggest that the Langmuir probe results overestimate

Te by up to a factor of two in the edge of the detached plasma (above ∼ 4× 10−3 mbar),
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Figure 4.14: Variation of the plasma flux to the end plate with pressure in the YLPD

target chamber. The dashed lines indicate the pressure range in which the onset of the

‘blue glow’ of the EIR detached state was first observed.

although there is greater variation between the data sets around the onset of detachment.

The larger Te values calculated from the probe data in the centre of the column are likely to

be more reliable, as they do not decrease below ∼ 3 eV. Visual inspection of the detached

region of the plasma suggests that the blue glow region dominates in the edges of the

column (see Figure 4.8), meaning that it is possible that the electron temperature remains

higher in the centre.

If these Te profiles are again compared with those obtained from ASDEX (Figure 1.9),

we find that the behaviour is similar. The initial high temperature decreases steadily as

the density peaks and rolls over, although the absolute values differ (to be expected given

the differences between the machines).

4.2.3 Target plate flux measurements

The total plasma flux to the end plate of the machine (Γend) was measured as a function of

target chamber pressure (see Section 3.4 for details), in a separate experiment. As noted

in Section 3.4, a grounding issue meant that the plate was not biased to the ion saturation

region, and hence the data are presented as a measure of the total plasma flux to the
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plate. Data were not acquired below a target chamber pressure of 8× 10−4 mbar, but the

measurements made are still sufficient to show the expected rollover in Γend as the pressure

increases and the plasma detaches. The results are plotted in Figure 4.14. For this data

the rollover peak occurs at approximately 1.5× 10−3 mbar: a slightly lower pressure than

was observed in the Isat profiles. Standard errors for the data were calculated, but are

negligibly small.

The Langmuir probe at the 25 cm axial position was used to measure the ion saturation

currents and electron temperatures at the 0 and 3 mm radial positions for the initial and

final pressure values in the Γend data set. These data points are plotted in Figures 4.10

and 4.11 in the previous section, in order to compare the operating conditions with those

that produced the full Isat and Te pressure profiles. The data for the Γend plasma are

consistent with the previous profiles, indicating that the observed behaviour of Γend is

representative of the general EIR detached state in the YLPD.

The shape of the Γend profile is reasonably consistent with that of the ion saturation

current, as is expected given the dependence of both of these quantities on the plasma

density. The peak of the rollover appears at a slightly lower pressure than that of Isat, but

given that the Langmuir probe is positioned ∼ 30 cm upstream of the target plate, and

the detachment front propagates up from the target, this observation is not inconsistent

with expectations.

4.2.4 Hydrogen emission line ratio

Finally, the ratio of the α and γ hydrogen Balmer emission lines (Hγ/Hα) was studied.

Spectra, such as those shown in Figure 4.12, were recorded concurrently with the Langmuir

probe IV curves that produced the Isat and Te data as the pressure in the target chamber

was increased (see Section 3.3.2). The exposure times were 700 ms for Set 1 and 1000 ms

for Set 2. Hγ/Hα is plotted against target chamber pressure for both sets in Figure 4.15.

The errors were estimated by varying the width of the integration region for each peak.

The general trends for each data set are similar, although there is some variation

(up to a factor of two) in the values, which is likely to relate to the differing temperatures

estimated by the OES analysis (Figure 4.11b). An initial sharp decrease in Hγ/Hα indicates

the rising dominance of the Hα line, with the minimum coinciding with the pressure at

which Isat (and hence the plasma density) is highest. In this region, ionisation is the main

process occurring in the plasma. As the pressure in the target chamber increases further,
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Figure 4.15: Variation of the Hγ/Hα ratio at 25 cm from the baffle as a function of pressure

in the YLPD target chamber. The measurements were repeated to produce data sets 1

(+, in black) and 2 (×, in red). The dashed lines indicate the pressure ranges in which

the onset of the ‘blue glow’ of the EIR detached state was first observed for each data set.

the ratio increases, and a local maximum occurs just after the initial appearance of the

‘blue glow’ of the detached state. Hγ/Hα then decreases again before rising sharply to reach

the maximum value in the fully stable, EIR detached state. The relative strength of the

Hγ line is therefore greatest in the detached plasma, which is consistent with the excited

high-n atomic states that are expected to be produced by the recombination reactions

which result in EIR detachment.

4.2.5 Radial emission profiles

The radial emission profiles of the EIR detached plasma produced by Lisgo are now con-

sidered [88]. These profiles were calculated for the Hα to Hδ Balmer lines using Abel

inversion of optical emission imaging data. Figure 4.16 shows the radial profiles for the

25 cm axial position, with an inset showing a 2D colour map of the Hγ emission.

These profiles are symmetrical about the axis, but hollow: peaks appear in all four

lines at approximately ±6 mm. The ‘blue glow’ of the Balmer emission therefore arises

predominantly in the edges of the plasma column (the central column having a diameter
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Figure 4.16: Main plot: Abel inverted radial profiles of four Balmer emission lines (Hα, Hβ,

Hγ and Hδ) across the EIR detached plasma column in the YLPD, at an axial position

of 25 cm. Inset: 2D colour map of the radial and axial variation of the Hγ emission

throughout the target chamber for the EIR detached plasma, with axial (x) and radial (y)

dimension units in centimetres. Figure courtesy of S. Lisgo [88].

of a few millimetres), confirming the observations made from visual inspection of the EIR

detachment regime. This is consistent with the Langmuir probe temperature estimates:

in the column edges, the observed < 1 eV temperatures mean that Te is low enough for

three-body recombination to take place. In the centre of the column, however, the ∼ 3 eV

temperatures reduce the recombination rate, leading to less Balmer emission. These data

provide strong evidence for the broadening of the plasma column when EIR detachment

occurs.

4.2.6 Comparison to previous EIR case study

To enable a comparison between the above plasma conditions and Mihaljčić’s EIR case

study, the plasma density was estimated from the 0 mm IV curves. The initial downstream

density is approximately 1× 1018 m−3, with the peak value around a factor of ten higher.

The low temperatures in the detached state make the density estimate at the highest

pressures unreliable, but it lies in the range 1018 − 1019 m−3.
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Mihaljčić measures the density of the EIR detached plasma at 25 cm into the target

chamber to be just under 1 × 1019 m−3 [85]. In the main chamber (effectively in the

attached state) in the centre of the plasma column, he records 1.5 × 1019 m−3. These

values are reasonably consistent with our more recent observations.

The central temperatures observed by the Langmuir probe in the attached plasma

in the current study (around 15 eV) are almost a factor of three higher than the values

obtained by Mihaljčić (5 eV at the baffle). The probe estimate of Te in the centre of

the detached plasma also remains relatively high at 3− 4 eV, whereas the previous study

recorded 1−2 eV. Te in the edge region of the plasma column, however, is more consistent

with the temperatures observed by Mihaljčić. In the attached plasma, it is below 4 eV,

dropping to < 1 eV (measured by the Langmuir probe) for the detached plasma. The OES

temperature results for the detached plasma at the 25 cm axial position differ by a factor

of two: 0.2 eV compared to the previous value of 0.1 eV.

These temperature differences are likely to arise from the altered operation conditions

of the YLPD. The increased axial magnetic field strength (previously 50 mT, now 95 mT)

and variation in cathode size, the emission current provided by the DC bias voltage, and

the gas flow change the optimum operating parameters for the machine, which may affect

the plasma parameters. In particular, the increased emission current (15 A compared to

8 A) means that the input power is greater, which is the most likely cause of the increased

electron temperature in the centre of the plasma. It is harder to determine the effect on

the density due to the errors in the Langmuir probe analysis. It is possible that the higher

power results in the central region remaining dense and hot, while the behaviour observed

by Mihaljčić is more accurately replicated in the cooler edge of the column.

Despite the differences in quantitative values, particularly in the column centre, the

general behaviour of the plasma parameters follows the trends expected from the onset of

EIR detachment, and the visual observations of the detached state match well (Figures

4.5 and 4.8). The results suggest that it is the cooler edge region of the plasma that is

most important for EIR detachment, in the broadened ‘blue glow’ recombination zone.

4.3 Modelling the time-averaged radial behaviour

In light of the observations presented above, we propose that the inclusion of the radial

behaviour of the plasma is vital to a full description of EIR detachment in the YLPD,

and that fast (sub-millisecond timescale) events could play an important role in this. We
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suggest a hypothesis in which ‘blobs’ of plasma are intermittently ejected radially outwards

from the centre of the plasma column. If these blobs occur frequently enough, and cool

quickly as they disconnect from the hot core of the column, they could create high density,

low temperature regions in the plasma edge in which three-body recombination could occur

at a sufficiently high rate to produce the observed detached plasma.

Such transient events would not be individually discernable on the timescales of the

measurements discussed thus far, but when averaged over time could lead to a broadened

radial density profile. As an initial study of the plausibility of this hypothesis, a simple

model is presented to estimate the extent to which changing the density and temperature

profiles across the plasma column affects the balance between EIR and excitation processes.

The simulation compares the two sets of plasma density (n) and electron tempera-

ture (Te) profiles shown in Figure 4.17. One set of profiles corresponds to the peak density

attached plasma, and the other to the final stable EIR detached state (target chamber pres-

sures of ∼ 2×10−3 and ∼ 9×10−3 mbar respectively). Simple, Gaussian-like Pearson VII

functions, covering the radial range over ±4 mm, were chosen to reflect the approximate

densities and temperatures indicated by the most recent Langmuir probe measurements

at the 0 and 3 mm radial positions at these two pressure values (Figures 4.10 and 4.11).

The n and Te profiles for the attached plasma parameters (Figure 4.17a) both have the

same width parameter of 3.5 mm (N.B. this is not the full width half maximum value), and

are allowed to fall to zero beyond the ±4 mm range. In the detached plasma profiles, shown

in Figure 4.17b, the density width parameter is broadened to 4.3 mm in order to match the

0 and 3 mm experimental measurements; this also reflects the average broadening of the

column due to the proposed fast timescale events. The temperature profile, on the other

hand, is narrower (2.0 mm width parameter), and sits on a constant pedestal of height

0.2 eV. This profile was chosen to replicate the (0.20+0.09
−0.03) eV temperature of the blue glow

region in the edge, as measured by the OES diagnostic, without causing unrealistically

small Te values at the outermost points where the plasma density is still relatively high.

As three-body recombination is the dominant process in EIR detachment, initial cal-

culations estimated the reaction rate per unit volume for this process (Srec) across the

predicted plasma profiles, according to [41]:

Srec = 8.75× 10−39 n3 T
− 9

2
e ,

where n is the plasma density in m−3, and the electron temperature, Te, is in eV. The

resulting profiles are plotted in Figure 4.18. The peak recombination is much stronger
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(a) Attached plasma.

(b) EIR detached plasma.

Figure 4.17: The plasma density (n, in black) and temperature (Te, in red) profiles used

to simulate (a) the attached and (b) the EIR detached plasmas.
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(a) Attached plasma.

(b) EIR detached plasma.

Figure 4.18: Simulated radial profiles of the three-body recombination rate per unit volume

in (a) the attached and (b) the EIR detached plasmas (note the difference in scale factor

between the two).

104



(by three orders of magnitude) in the EIR detached case than in the attached plasma, as

expected. Most significantly, the hollow profile observed in the experimental radial profiles

of the Balmer emission (Figure 4.16) is replicated by the model of the EIR detached plasma.

The model was then extended further to consider the excited atomic energy level

populations responsible for the Hα (p = 3) and Hδ (p = 6) Balmer emission. p is used

instead of n here to denote the principle quantum number of the energy levels to avoid

confusion with densities. The contributions to the level populations from both excitation

and three-body recombination processes were estimated, employing the equations and

coefficients of Johnson and Hinnov in the same way as Lumma et al., which we summarise

here (Johnson and Hinnov [89]; Lumma et al. [90]).

The population of excited level p that is produced by three-body recombination is

given by:

nrec(p) = r0(p)ne(p), (24)

and the population produced by collisional excitation of ground state atoms (for which

p = 1) by:

nex(p) = r1(p)n(1)
ne(p)

ne(1)
. (25)

n(1) is the density of hydrogen atoms in the ground state, which we assume to take a

constant value of 1 × 1018 m−3 here. The dimensionless coefficients r0(p) and r1(p) are

tabulated by Johnson and Hinnov for a range of plasma density and temperature values,

and have been interpolated between these points for the purposes of this analysis. The

original data tables are reproduced in Appendix B for reference. Note that the tables

do not contain r1(p) data for temperatures below 0.34 eV, and extrapolation of the fit

was only possible for the p = 3 (Hα) level. For the p = 6 (Hδ) level, an upper value of

r1(6) = 3 × 10−5 (an overestimation of at least a factor of three) was used for all points

in the EIR detached profile where Te < 0.34 eV.

In the notation of Johnson and Hinnov, the quantity ne(p) in (24) and (25) denotes

the Saha equilibrium density of level p, given by:

ne(p) = n(H+)ne p
2

(
h2

2πmieTe

) 3
2

exp

(
Ip
Te

)
, (26)

where in this case quasineutrality of the plasma means that the ion and electron densities,

n(H+) and ne, are assumed to be equal (n(H+) = ne = n). Ip is the ionisation energy of

level p (I1 = 13.6 eV, I3 = 1.51111 eV and I6 = 0.37778 eV), Te is in eV, and all constants

have their usual values (mi being the mass of the hydrogen ion).
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The resulting population density profiles are shown for the attached and detached cases

in Figures 4.19 and 4.20 respectively. In both cases, the populations due to collisional

excitation of ground state atoms (nex, Figures 4.19a and 4.20a) have centrally-peaked

profiles, with the Hα level population a factor of ∼ 8 higher than that for the Hδ level.

This is to be expected: collisional excitation of atoms is more likely to occur in the central

region, where the temperature is highest and the more energetic electrons are located; and

the higher-energy Hδ level is less likely to be reached than the lower lying Hα level. The

hotter, broader temperature profile of the attached plasma compared to the detached case

is reflected in the populations of both levels.

The population profiles due to three-body recombination (nrec) show very different

features. The Hδ level is preferentially populated over the Hα level, by factors of 4 and

16 in the attached and detached cases respectively. The profiles for the attached plasma

(Figure 4.19b) again show single, central peaks, but they are broader than the attached

nex profiles due to the T
− 9

2
e dependence of the recombination rate. The detached case

(Figure 4.20b) differs even more significantly, with two peaks centred at approximately

±2.6 mm for both lines. This hollow profile structure is very similar to that observed in

the radial Balmer emission line profiles (Section 4.2.5).

The assumption that n(1) (the density of ground-state atomic hydrogen) has a uniform

value of 1 × 1018 m−3 across both the attached and detached plasmas is a considerable

simplification. However, consideration of the ratio of the contributions of the excitation

and recombination processes for each emission line across the plasma in both cases shows

that it is still possible to gain some understanding from this model.

For the attached plasma, taking the ratios nex(3)/nrec(3) and nex(6)/nrec(6) (Figure

4.21a) shows that the contribution from excitation is dominant at all radii except in the

very edges of the modelled region. This conclusion can be tested by estimating the effect

of changing the assumed n(1) value. If the value of n(1) is an underestimate in this

region, a more accurate higher value would further increase this dominance. Conversely,

even an overestimation of two orders of magnitude would not cause recombination to

become significant at radii smaller than 3.5 mm. Thus it is not implausible to conclude

that three-body recombination is negligible in the bulk of the attached plasma column.

In the detached case, the balance of the two processes varies considerably across the

plasma column (Figure 4.21b). In the centre, both the p = 3 and p = 6 levels are again

predominantly populated by excitation, but at radii beyond approximately ±1.85 mm,
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(a) Level populations due to excitation.

(b) Level populations due to three-body recombination.

Figure 4.19: Simulated radial profiles of the Hα (p = 3, in black) and Hδ (p = 6, in red)

upper level populations produced by (a) excitation, nex, and (b) three-body recombination,

nrec, for the attached plasma. Note the much larger density scale factor in (a).
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(a) Level populations due to excitation.

(b) Level populations due to three-body recombination.

Figure 4.20: Simulated radial profiles of the Hα (p = 3, in black) and Hδ (p = 6, in red)

upper level populations produced by (a) excitation, nex, and (b) three-body recombination,

nrec, for the EIR detached plasma. Note the increase in density scale factor between the

two.
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(a) Attached plasma.

(b) EIR detached plasma.

Figure 4.21: Ratios of the excitation and three-body recombination contributions to the

Hα (p = 3, in black) and Hδ (p = 6, in red) upper level populations in (a) the attached

and (b) the EIR detached plasmas.
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recombination becomes the more important process. Decreasing n(1) by two orders of

magnitude moves the boundary radius inwards by ∼ 0.25 mm, but this is insufficient to

overcome the dominance of excitation in the centre of the column. If, on the other hand,

n(1) is an underestimation by even four orders of magnitude (bringing it to 1022 m−3), the

influence of excitation would still not extend beyond ±2.2 mm, and three-body recombi-

nation would remain the dominant process in the column edges.

The small step-like structure in the edges of Figure 4.21b is caused by the limited

density and temperature resolution of the interpolated coefficient values, which becomes

significant when taking the ratios. The larger jump at approximately ±2.3 mm is caused by

the introduction of the constant upper bound on the r1(6) coefficient used at temperatures

below 0.34 eV. This is a considerable overestimate at this position, but it is clear that the

overall effect on the behaviour is minimal.

The p = 3 and p = 6 level populations can be used to estimate the Balmer emission

from the Hα and Hδ lines for the detached profile, in order to compare it to the experimental

profiles measured by Lisgo (Figure 4.16, Section 4.2.5). Since the peaks of the hollow

profile lie outside the ±2.2 mm position which bounds the excitation-dominated region,

only the contribution from the three-body recombination process is considered. Inclusion

of the excitation contribution merely produces a central peak which is much stronger than

the edge emission, but the exact magnitude of this peak is entirely dependent upon the

chosen value of n(1), as previously discussed. As the excitation peak does not obscure

the contribution from recombination in the edges, it can be removed from consideration

without affecting the qualitative conclusions.

The spontaneous emission from an excited atomic level is calculated by multiplying

the level population by the relevant Einstein A coefficient, Apq. The values used here are

A32 = 4.410×10−1 (Hα) and A62 = 9.732×10−3 (Hδ), as noted in Table 3.1 (Section 3.3.1).

The profiles for both emission lines are plotted, along with their ratio (Hδ/Hα), in Figure

4.22a. For the purposes of comparing the simulation with the experimental data, Figure

4.16 is reproduced for convenience in Figure 4.22b. The radial range of the simulated

profiles has also been extended to ±15 mm for comparison, using the 4 mm values of r0(p)

to provide an upper bound on the emission.

From Figure 4.22a, it can be seen that the Hα emission always dominates due to its

larger Apq value, but the maximum ratio (∼ 0.35) is achieved in the edges of the column

where the emission peaks are located. Comparing these profiles with the experimental
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(a) Simulated radial emission profiles for the Hα (in black) and Hδ (in red) emission lines (left-hand

axis). Plotted on the right-hand axis is the ratio of the two, Hδ/Hα (in blue).

(b) Experimental radial emission profiles for the Hα, Hβ , Hγ and Hδ lines (reproduced from Figure

4.16) [88]. Note the logarithmic counts scale on the y-axis.

Figure 4.22: (a) Simulated and (b) experimental profiles of hydrogen Balmer emission line

intensities across the EIR detached plasma column.
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data shows that the hollow profile is qualitatively well replicated, and the ratio between

the peak values of Hδ and Hα emission is also in good agreement.

The most significant difference occurs in the radial scale: the peaks of the hollow profile

in the simulation appear at a radius approximately half that observed in the experimental

emission, and the overall radial extent of the emission is smaller by a factor of three. This

is likely to be the result of choosing n and Te profiles for the model which do not accurately

replicate the experimental profiles, as only two data points were used.

Despite the uncertainty in the model n and Te profiles, the qualitative agreement

between the modelled and experimental data indicates that the process of three-body

recombination is extremely important in the EIR detachment regime, and a cooler, broad-

ened density profile is necessary for producing the high density, low temperature regions

in the edges of the plasma column that allow recombination to take place. These simula-

tions support the two-dimensional nature of the proposed hypothesis, but cannot exactly

reproduce the experimental data: the correct forms of the n and Te profiles are not known,

as the mechanism which causes the broadening of the plasma column is not understood.

4.4 Summary

The first section of this chapter provided an overview of previous detachment studies using

the YLPD, which covered both the molecular-activated and electron-ion recombination

regimes (abbreviated to MAR and EIR respectively). This work formed a comprehensive

study of the time-averaged behaviour of the plasma in each regime, with a focus on the

variation along the axis of the machine. Results from a simple one-dimensional fluid

model were found to agree relatively well with the experimental measurements, but the

work neglected the possible importance of both fast timescale (sub-millisecond) events and

radial broadening of the plasma column, particularly in the EIR regime.

More recent observations were then presented, which aimed to reproduce the conditions

for EIR detachment and characterise the onset of this regime as the pressure in the target

chamber is increased. These measurements continued to focus on slow (millisecond and

above) timescale events, but included measurements in both the centre and edge of the

plasma column. It was found that, despite alterations in the operation of the YLPD, the

behaviour of the previously-studied EIR detached plasma could be replicated.

The final experimental observations discussed were the radial profiles of hydrogen

Balmer emission across the EIR detached plasma column, which showed a distinctive
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hollow structure in which the emission predominantly arose from the edges of the column

[88]. These results, coupled with the clear broadening of the ‘blue glow’ region of the

detached plasma that is visible by eye, strongly suggest that the radial dimension must

also be included in a full explanation of the behaviour of EIR detachment.

A hypothesis was therefore proposed in which ‘blobs’ of plasma are intermittently

ejected from the centre of the column, and travel radially outwards on sub-millisecond

timescales. Cooling of these blobs in the edges of the column as they disconnect from the

hot core plasma could result in high-density, low-temperature regions where three-body

recombination could occur. As a preliminary exploration of the effects of broadening the

plasma column, a simple simulation of the time-averaged radial density and temperature

profiles was carried out for both the attached and EIR detached regimes. This work

investigated the effects of broadening and cooling the column on the relative importance of

three-body recombination (the key process in EIR detachment) and excitation of hydrogen

atoms.

The results showed that a detached regime with a time-averaged, broadened density

profile and cooler temperatures in the edges of the plasma would be dominated by three-

body recombination in the edges. In addition, calculation of the resulting Hα and Hδ

Balmer line emission produced hollow radial profiles that were qualitatively very similar

to those measured experimentally. The ratio of the peak Hα and Hδ emission also matched

the experimental data well, but the positions of the hollow profile peaks were closer to the

centre of the column than was observed experimentally.

We conclude that the average broadened, cooled plasma profiles yield similar recom-

bination emission profiles to those that have been measured experimentally. However,

the mismatch in radial scale between the simulated and observed emission indicates that

further work is required to understand the mechanism which causes the broadening of the

column, as the plasma profiles used in the model are not fully capturing the behaviour. To

fully test the ‘blob’ transport hypothesis, it is necessary to increase the time resolution of

the experimental measurements in order to discern transient events. In the following chap-

ter, the possible presence of such events in the plasma is investigated using high frequency

diagnostics.
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Chapter 5

Evidence for radial transport in

the YLPD detached plasma

Having proposed an explanation for the radial broadening of the EIR detached plasma

column that relies on sub-millisecond timescale events, this chapter presents observations

to investigate this. Fast frame camera imaging (Section 5.1) and fast Langmuir probe

floating potential measurements (Section 5.2) are used to study the plasma column on the

short timescales required. The results from these diagnostics suggest that radial transport

processes intermittently eject filamentary plasma structures from the column.

In Section 5.3, we hypothesise that the presence of centrifugal instabilities in the de-

tached plasma column causes the observed radial transport. This explanation is found

to be in relatively good agreement with the experimental measurements that have been

made, but is not capable of explaining all the observations without further development

of both theory and experiment. The findings are summarised in Section 5.4.

5.1 Fast frame imaging

The fast frame imaging (FFI) data were taken through port J in the end plate of the YLPD

(Figure 3.2): the line of sight is tilted at an acute angle above the axis of the plasma column

in the target chamber. To orient the reader, Figure 5.1 shows both ordinary camera images

and example raw FFI frames for the attached and detached plasmas. The FFI camera is

focused in the plane of the Langmuir probe that is visible in the ordinary photographs

(approximately y = 40). Video 5.1 (see [91]) shows the YLPD plasma detaching in real

time.
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(a) Photograph; attached. (b) Photograph; EIR detached.

(c) Example raw FFI image; attached. (d) Example raw FFI image; EIR detached.

Figure 5.1: Ordinary photographs (top row) and example high speed (50 kHz frame rate)

camera images (bottom row) of the attached and EIR detached plasmas in the target

chamber of the YLPD. The Langmuir probe that enters horizontally from the right of the

photographs has a tip 1 mm in diameter, encased in a ceramic sheath of 3 mm diameter.

The FFI camera is focused in the plane of the Langmuir probe (approximately y = 40

in the FFI images), and the x pixel scale is approximately 0.25 mm pix−1. The viewing

angles are not identical: the FFI camera is rotated clockwise about the vertical compared

to the ordinary camera.
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Data were recorded and analysed (as described in Section 3.5) at a range of target

chamber pressures as EIR detachment was induced. 5000 images were recorded at a frame

rate of 50 kHz, with an exposure time of 20 µs. The results presented here predominantly

focus on the initial (attached) and final (EIR detached) states, which occur for this set

of data at target chamber pressures of 3.1 × 10−4 and 7.25 × 10−3 mbar respectively.

Excerpts from the FFI data for these pressures are shown in Videos 5.2 (attached) and

5.3 (detached) [91].

Firstly, mean-subtracted image frames are considered (see Section 3.5), which show

the variation between frames more clearly than the raw images, and allow us to begin to

understand how the plasma varies through time (Section 5.1.1). Analysis then moves to

the frequency domain, with power spectra calculated for each pixel and pressure (Section

5.1.2). Finally, three reference pixels are used to study the coherence and phase differences

(Sections 5.1.3 and 5.1.4 respectively) between these pixels and the rest of the image. These

results are discussed in Section 5.1.5.

Video 5.1: Detachment of the hydrogen plasma column in the YLPD in real time. The

target chamber gas valve is opened over approximately 15 seconds to increase the flow

of neutral hydrogen into the chamber. The onset of detachment occurs between 11 and

12 seconds, as the column dims and begins to turn blue. The fully stable detached state

(characterised by the bright blue glow) is reached by 14 seconds, and the gas valve is

closed again from around 19 seconds, returning to the attached state by the end of the

video. Video available from [91].

Video 5.2: FFI video of the attached plasma in the YLPD, recorded at 50000 frames

per second (playback is slowed by a factor of 10000). The narrow plasma column remains

steady, with some flickering in the edges. The data has been enhanced to show the features

more clearly. Video available from [91].

Video 5.3: FFI video of the EIR detached plasma in the YLPD, recorded at 50000 frames

per second (playback is slowed by a factor of 10000). The plasma is clearly much broader

than when in the attached state, and we see the ejection of intermittent filaments of plasma

in the edges of the column. The data has been enhanced to show the features more clearly.

Video available from [91].
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5.1.1 Mean-subtracted images

Initial analysis of the FFI images converted the raw data for each 5000-frame sequence into

mean-subtracted images, as described in Section 3.5. Examples of eight consecutive frames

from each of the attached and detached plasmas are shown in Figure 5.2 to illustrate the

differences between the two behaviours. In both plasmas, the fluctuation amplitude of a

pixel can reach up to a third of its average intensity. Figure C.1 (Appendix C) contains

an example frame from each pressure value to show the evolution of the plasma column

as EIR detachment is induced.

The attached plasma column (Figure 5.2a) is narrow (∼ 15 mm in diameter) and

relatively uniform across the width. There are some fluctuations in the intensity of the

column: an m = 1 mode appears to be visible along the column in some of the frames,

where half the pixels are above their average value, and the other side of the column is

weaker than average. Dashed lines overlaid on the relevant frames show the approximate

boundary between these out-of-phase regions.

The structures in the EIR detached plasma state are much more irregular. The column

is broader (∼ 32 mm), and filaments of bright plasma are visible at varying locations in the

outer edges of the column, generally at radii beyond 6 mm. These filaments are extended

azimuthally within the plane of focus, over angles of up to 180° in some cases, but are

relatively narrow in the radial direction (∼ 5− 8 mm). The limitations on the frame rate

imposed by the required field of view and the available light levels mean that the motion

of individual filaments cannot be tracked with the current data set, although the relevant

timescales must be shorter than the 20 µs exposure time.

To gain further understanding of the behaviour of the plasma throughout the 100 ms

data record, three reference pixels along the y = 40 line are considered: one in the centre

of the column, and two in the edges to the left and right (illustrated in Figure 5.3). The

pixels in the edges of the column are chosen to coincide with the observed filamentary

structures in the EIR detached plasma. Histograms of the mean-subtracted intensity time

series for these pixels are shown in Figure 5.4 (the edge pixels are not included for the

attached plasma, as the narrow column width means that the signal is negligible at this

radius).

The sensitivity of the FFI camera is limited, producing highly discretised data sets.

However, these plots can still provide insight into the distribution of the intensities through

time. The attached plasma (Figure 5.4a) has a narrow central peak, with extended, low
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(a) Attached plasma; target chamber pressure of 3.1 × 10−4 mbar. Dashed lines indicate the

approximate boundary between two out-of-phase regions in a possible m = 1 mode.

(b) EIR detached plasma; target chamber pressure of 7.25× 10−3 mbar.

Figure 5.2: Sequences of eight consecutive mean-subtracted images of (a) the attached

and (b) the EIR detached plasmas in the YLPD, recorded at a 50 kHz frame rate. Each

frame is 151× 151 pixels, and each pixel has a width of approximately 0.25 mm.

118



(a) Mean-subtracted image; attached. (b) Mean-subtracted image; EIR detached.

Figure 5.3: The reference pixels chosen for analysis of the FFI image data, relative to

example mean-subtracted FFI frames for both the attached and EIR detached plasmas in

the target chamber of the YLPD.

(a) Centre; attached.

(b) LHS; EIR detached. (c) Centre; EIR detached. (d) RHS; EIR detached.

Figure 5.4: Histograms of the mean-subtracted intensity time series for (a) the centre

reference pixel in the attached plasma; and (b)-(d) all three reference pixels in the EIR

detached plasma in the YLPD.
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count rate positive and negative tails. This indicates that the central column intensity is

relatively stable, with occasional fluctuations yielding both bright and dark outliers.

In the detached plasma, the distribution of the central pixel (Figure 5.4c) is also narrow,

but has a more pronounced positive tail and fewer negative outliers than in the attached

case. The edge pixel distributions exhibit an even stronger positive skew, and the full

time series of these pixels suggest that the high-intensity events are scattered throughout

the observation time. It is therefore likely that the filamentary structures seen in the

mean-subtracted EIR detached image frames occur on an intermittent basis.

5.1.2 Power spectra

To further investigate the potential intermittent behaviour of the EIR detached plasma,

the power spectrum was calculated for each pixel across the 5000-frame time series. The

frequency range is 0− 25 kHz, with a resolution of 757 Hz. 2D colour maps of the 3030 Hz

component across the image are shown for the attached and EIR detached plasmas in

Figure 5.5, with the reference pixels chosen in the previous section highlighted. 3030 Hz

has been chosen as an arbitrary example of the power distribution: the variation with

frequency is minimal, with the exception of a large DC/low frequency component at 0 and

757 Hz. For completeness, all the images across the full frequency range for both states

are shown in Figures C.2 and C.3 in Appendix C.

The distribution of the power components reflects the differences between the two

regimes that were seen in the mean-subtracted images. The power in the attached plasma

is concentrated in the centre of a narrow column (∼ 7 mm across), whereas in the detached

regime, the column is much wider, with two peaks in the edges. These peaks are centred

at approximately ±9.5 mm, and have widths of ∼ 5 mm in the x-direction, coinciding with

the average positions of the bright filamentary structures that are observed in the images.

To illustrate the evolution of the power distribution as detachment is induced, Figure

5.6 is a 2D plot of the 3030 Hz component strength along the line of pixels at y = 40

(which lies approximately in the plane of the camera focus) as the target chamber pressure

increases. The distribution remains narrow until the pressure surpasses 6 × 10−3 mbar,

at which point the two peaks in the edges of the column are first seen. This transition,

indicated by a dashed line overlaid on the plot, marks the onset of full EIR detachment.

These peaks grow in strength until the final stable detachment state is reached, at a target

chamber pressure of 7.25× 10−3 mbar.
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(a) Attached plasma (3.1× 10−4 mbar). (b) EIR detached plasma (7.25× 10−3 mbar).

Figure 5.5: The distribution of power at 3030 Hz over the FFI data range for (a) the

attached and (b) the EIR detached plasmas. Black crosses mark the positions of the three

reference pixels chosen for focused analyses.

Figure 5.6: Evolution of the power component at 3030 Hz for the line of pixels at y = 40

as the pressure in the YLPD target chamber increases. The white scatter points show

the pressures at which the data were recorded, and the white dashed line indicates the

approximate pressure at which the onset of EIR detachment occurs.
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(a) Attached plasma (3.1× 10−4 mbar).

(b) EIR detached plasma (7.25× 10−3 mbar).

Figure 5.7: Spectrograms showing the variation of the power components in the FFI data

across the plasma column at y = 40 for (a) the attached and (b) the EIR detached plasmas.

No data was available for pixels coloured black.
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2D spectrograms of the frequency components of the line of pixels with y = 40 are

shown for both the attached and detached plasma states in Figure 5.7. The DC component

at the lowest frequencies is excluded, as it dominates the spectrum. These spectrograms

again emphasise the differing radial power distributions of the two states. The attached

data consists of a strong central region ∼ 7 mm across, and there is no data beyond

approximately ±13 mm. In contrast, the EIR detached data has a much wider distribution.

There are components presents across a radial distance of almost 30 mm, and the strong

peaks that were observed in Figure 5.5b at ±9.5 mm (width ∼ 5 mm) are shown to extend

over the full frequency range.

The relatively constant contributions across the full range of frequencies for both the

attached and detached plasma suggest that no coherent, single frequency modes are present

in this range. Instead, the fluctuations in pixel intensity are likely to be caused by in-

termittent events. For the EIR detached state in particular, this implies that the bright

filamentary structures occur intermittently in time, rather than at a regular frequency.

However, the spectral behaviour cannot be determined for either regime above the Nyquist

limit of 25 kHz, which is dictated by the camera frame rate.

5.1.3 Coherence

As discussed in Section 3.5, the coherence analysis indicates the extent to which pixels

share frequency components. For this, the reference pixels that were highlighted in Figures

5.3 and 5.5 are used. Figure 5.8 shows the 2D coherence plots for each of the three pixels

for the attached and detached plasmas, again for the example frequency of 3030 Hz. The

structure of these plots remains relatively constant across the full frequency range (as an

example, the plots for all frequency components of the left-hand pixel in the detached

plasma are shown in Figure C.4 in Appendix C). This supports the conclusion that the

fluctuations occur intermittently, as short timescale events have wider frequency spectra.

In the attached case, the intensity of the image in the edge regions is very low due to

the narrow width of the column, and the left- and right-hand pixels therefore show little

to no coherence with the rest of the image. The central pixel data, on the other hand,

indicates that the centre of the column is relatively coherent over a width of ∼ 13.5 mm.

The EIR detached plasma shows a very different structure. There is no longer a narrow

beam that is coherent with the centre reference pixel; instead the region of coherence is

broadened, and is weaker compared to that of the attached state. In each edge of the
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column, there is a region of relatively strong coherence. These have a similar azimuthally

elongated shape to the filaments seen in the mean-subtracted images (Figure 5.2b), and

their positions are coincident with the positions of both the brightest regions of these

filaments, and the peaks observed in the power spectrum.

There are some differences, however. The structures in the coherence plots for the

edge pixels have a greater spatial extent compared to those in the power spectrum. In

particular, the x = 40 pixel coherence (Figure 5.8d) has a weak tail that extends around

the top of the column to the opposite side. In the mean-subtracted image frames, we see

that the filaments’ position and shape vary over time, and it is possible that this weakly

coherent tail is the result of this variation. It is also important to note that the camera

captures light from the plasma column behind and in front of the focal plane, which could

affect the analysis (particularly at the top of the field of view, where the bright plasma

enters the target chamber in the background).

5.1.4 Phase

The same reference pixels were used to study the phase differences across the images in

the attached and detached regimes. 2D colour plots are shown for the 3030 Hz frequency

in Figure 5.9 (again, there is little variation across the frequency spectrum, illustrated for

the left-hand pixel in the detached plasma in Figure C.5 in Appendix C). In the attached

case, the entire plasma appears to be in phase across the column, with very little variation

except in the edges where the image intensity is low. This does not reflect the m = 1

mode structure that is visible in the mean-subtracted frames (Figure 5.2a), but this may

be influenced by the choice of reference pixels.

The structure in the EIR detached plasma is more difficult to interpret. The central

pixel appears to be in phase with the majority of the rest of the image, whereas the edge

pixels are each out of phase with a region on the opposite side. These regions are quite

sharply defined, with very narrow transitions between the areas that are in phase and out

of phase, and could be caused by the plasma filaments: an excess of plasma on one side

could deplete the opposite side of the column, leading to the phase difference.

There are also some pecularities in this data, for which the explanation is not clear.

The structures in the EIR detached state do not fully reflect the distributions seen in the

power and coherence plots, as they have a much greater spatial extent. Secondly, each

of the three reference pixels is out of phase with a different region of the column in the
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(a) LHS; attached. (b) Centre; attached. (c) RHS; attached.

(d) LHS; EIR detached. (e) Centre; EIR detached. (f) RHS; EIR detached.

Figure 5.8: Coherence between each reference pixel and all other pixels at 3030 Hz, for the

attached (top row) and EIR detached (bottom row) plasmas in the YLPD.

(a) LHS; attached. (b) Centre; attached. (c) RHS; attached.

(d) LHS; EIR detached. (e) Centre; EIR detached. (f) RHS; EIR detached.

Figure 5.9: Phase difference between each reference pixel and all other pixels at 3030 Hz,

for the attached (top row) and EIR detached (bottom row) plasmas in the YLPD.
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detached state, but the in-phase region in each image encompasses all three of the pixels.

This implies that the three reference pixels are in phase with each other, but it is unclear

why the out-of-phase regions are not the same for each of the pixels. It is possible that

the limited resolution of the pixel intensity, seen in Figure 5.4, and the noise (particularly

in the centre of the column) reduces the effectiveness of this phase analysis.

5.1.5 Discussion of FFI results

The fast frame imaging data has first and foremost shown that bright filamentary struc-

tures appear intermittently in the edges of the plasma column in the EIR detached state.

These structures are generally centred at a radius of approximately 9.5 mm, and are ex-

tended azimuthally around the column, in some cases over an angle of 180°. This broad-

ening effect is roughly three times greater than that predicted by the three-body recom-

bination model presented in Section 4.3, suggesting that additional processes are likely to

be involved in producing the observed behaviour of the EIR detached plasma.

The broadening observed in the FFI data is in fact more pronounced than that seen in

the time-averaged radial Balmer emission profiles obtained experimentally (Section 4.2.5).

However, the result still supports the need for one or more additional processes to increase

the width of the emission profile beyond that produced by three-body recombination alone.

It is possible that the broadening mechanism could be affected by changes in the operating

conditions, which may explain the increased effect in the most recent data.

The positively-skewed distribution of the mean-subtracted pixel intensity is consistent

with higher intensity, filamentary events, the intermittent nature of which is suggested

by the broadband power spectra. Multiple short-lived, high intensity events occur, but

do not exhibit any coherent oscillatory modes. Note that the 25 kHz Nyquist frequency

(dictated by the frame rate and sensitivity of the camera) limits the frequency analysis,

and it is not possible to track individual filaments over their lifetime.

The importance of the broadening of the EIR detached plasma is highlighted by the

differences between the attached and detached data. The mean-subtracted images illus-

trate the transition from the narrow, confined beam to the broadened column in the final

stages, once the pressure reaches 6× 10−3 mbar (Figure C.1, Appendix C). The transition

is also visible in the 2D plot of the variation of the 3030 Hz power component with target

chamber pressure along a line of pixels (Figure 5.6), which clearly shows a jump from the

narrow, central peak of the attached plasma to the hollow profile of EIR detachment.
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Calculations of coherence and phase difference across the image using three different

reference pixels are more difficult to interpret. The coherence measurements do reflect

the filamentary nature of the detached plasma to some extent, although there seems to

be some blurring of the features into the central regions of the column. The phase plots

indicate that the intensity fluctuations on opposite sides of the plasma are out of phase,

but the plots for each reference pixel do not appear to be consistent.

In summary, the FFI data show that the broadening of the emission from the EIR

detached plasma column is more significant than that predicted by only considering the

process of three-body recombination. At least one alternative mechanism must therefore

be included in order to fully explain EIR detachment, but the limitations of the FFI frame

rate mean that this data cannot provide enough information to determine the nature of

this mechanism. The emission predominantly arises from intermittent, bright filamentary

events that occur on timescales that are shorter than the 20 µs exposure time, and thus

it is not clear how these filamentary structures are produced or destroyed, nor how they

travel. In the following section, therefore, 1 MHz floating potential measurements are used

to study their behaviour further.

5.2 Fast floating potential measurements

The time series of the floating potential, Vf , of the plasma were recorded for 100 ms with

1 µs resolution at radial positions from 0 to 8 mm, for both the attached and EIR detached

states (see Section 3.2.2 for details). The target chamber pressures were 3.5 × 10−4 and

1.0× 10−2 mbar for the attached and detached cases respectively. For each position of the

moveable probe, the same data was recorded simultaneously using the reference probe,

radially inserted to 6 mm from the column centre on the opposite side of the plasma

column. The measurements were taken with the probes AC coupled to the oscilloscope,

meaning that the measured variable is Ṽf : the fluctuation of Vf around its DC value. Isat

and Te were measured by the Langmuir probe in the column centre and edge for both

the attached and detached cases. These values are plotted in Figures 4.10 and 4.11 to

demonstrate the plasma reproducibility.

First, the distribution of the moveable probe data is analysed for each radius in both the

attached and detached plasmas, using histograms and skewness and kurtosis calculations

(Section 5.2.1). In Section 5.2.2, the frequency spectra for each radius are plotted in

a 2D spectrogram to compare the radial variation of the power distribution in the two
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plasma states. The reference probe data are then used to look for time delays between the

occurrence of events at different positions in the plasma, which would imply radial motion

of structures inside the column (Section 5.2.3). The results are discussed in Section 5.2.4.

5.2.1 Statistical analysis

Firstly, the distribution of the Ṽf data is considered, focusing on the moveable probe.

Histograms of the time series for each radial position are plotted for both the attached

and EIR detached plasma states in Figures 5.10 and 5.11 respectively. These plots show

the natural logarithm of the number of counts, which both increases the visibility of the

lower-frequency Ṽf values and highlights the e−x
2

dependence of the normal distribution,

where present.

In the attached case, the signal at the 3 mm position and beyond (Figures 5.10d-5.10i)

has a maximum amplitude of 0.06 V, and the parabolic shape of these plots implies that

the data at these radii are normally distributed. This suggests that at these positions, the

probe is outside the bulk of the plasma column, and the signal is dominated by random

noise. The amplitudes of the 0, 1 and 2 mm data are larger by factors of 10− 30, with the

largest fluctuations at 1 mm, and are not straightforward Gaussian distributions. At 0 mm,

the distribution appears to be formed of two overlapping peaks, whilst at 1 and 2 mm some

negative skew is apparent. The causes of these distributions are not immediately clear.

The data for the EIR detached plasma show even more variation. At the centre of

the column, the distribution is positively skewed, and the maximum Ṽf amplitudes are

observed. |Ṽf |max continually decreases as the radius increases, and none of the data from

the other positions exhibit a distribution close to a Gaussian shape. From 2− 6 mm, the

largest amplitude fluctuations are negative, whereas at 7 and 8 mm, they are positive.

Note that the reference probe, situated at 6 mm on the opposite side of the column, may

influence the behaviour of the plasma outside this radius. The structure that supports

the probe tip has a diameter of the order of 10 mm, which is sufficiently large to produce

a significant disturbance to the plasma column and reduce the accuracy of the results

obtained from the moveable probe at 7 and 8 mm.

To provide further insight into these distributions, the skewness and kurtosis were

calculated for the Ṽf data at each radial position. The results are plotted in Figure 5.12.

The data from the attached plasma again suggests the presence of a narrow column of

radius < 3 mm: inside this radius, the skewness and kurtosis are relatively large, but at
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(a) 0 mm. (b) 1 mm. (c) 2 mm.

(d) 3 mm. (e) 4 mm. (f) 5 mm.

(g) 6 mm. (h) 7 mm. (i) 8 mm.

Figure 5.10: Histograms of the Ṽf time series for each radial position of the moveable

probe in the attached plasma in the YLPD (target chamber pressure 3.5× 10−4 mbar).
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(a) 0 mm. (b) 1 mm. (c) 2 mm.

(d) 3 mm. (e) 4 mm. (f) 5 mm.

(g) 6 mm. (h) 7 mm. (i) 8 mm.

Figure 5.11: Histograms of the Ṽf time series for each radial position of the moveable probe

in the EIR detached plasma in the YLPD (target chamber pressure 1.0× 10−2 mbar).
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(a) Attached plasma (3.5× 10−4 mbar).

(b) EIR detached plasma (1.0× 10−2 mbar).

Figure 5.12: Skewness and kurtosis values as functions of radial position across the plasma

column in the YLPD target chamber, for (a) the attached and (b) the EIR detached cases.
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3 mm and beyond they fall to zero, with very little fluctuation. This is consistent with

the conclusion that at these radii the signal is dominated by normally distributed random

noise, and the probe is outside the bulk of the plasma column.

The negative skewness values inside the attached column verify the negative bias iden-

tified in the histograms for these positions. The negative kurtosis at the centre of the

column indicates that a relatively small number of outlying events occur here. At 1 and

2 mm, the positive kurtosis values show that the distributions at these positions have

longer tails compared to a standard Gaussian.

In the EIR detached plasma, the skewness fluctuates considerably with radius, reflect-

ing the significant variation in the histogram shapes. The kurtosis also does not exhibit

any obvious trend, but remains positive at all radii except 4 mm. This indicates that at

the majority of positions, the number of outlying high amplitude fluctuations is larger

than would occur in a Gaussian distribution. It is difficult to draw conclusions from this

data, but the broadening of the detached column is again clear. Both parameters remain

relatively high out to the 8 mm position rather than falling to zero, which implies that

there is still sufficient plasma at these radii to yield a signal other than noise.

5.2.2 Power spectra

To increase understanding of the Ṽf time series, the power spectra from each radial position

are next considered. The resulting 2D spectrograms for the attached and detached regimes

are shown in Figure 5.13. Note that the Nyquist limit for these data (recorded with a

time resolution of 1 µs) is 500 kHz, compared to the 25 kHz limit for the FFI data.

Again, the spectrograms emphasise the difference in the radial extent of the two plasma

states: in the attached plasma (Figure 5.13a), the spectral power is predominantly con-

tained within a radius of 2 mm, whereas the detached plasma spectrum is still strong at low

frequencies at 5 mm (Figure 5.13b). The highest amplitude frequency components in the

attached plasma appear at around 300 kHz and above, with several smaller peaks below

50 kHz. In contrast, with the exception of a narrow peak at approximately 350 kHz, the

spectrum for the EIR detached state is dominated by frequencies below 200 kHz. The rel-

atively narrow peaks, at approximately 390 kHz and 350 kHz in the attached and detached

spectrograms respectively, could be associated with the E×B rotation of the column.

The structure of the detached spectrogram differs from that obtained from the FFI

data for the same state (Figure 5.7b, Section 5.1.2). There we saw a hollow profile, with
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(a) Attached plasma (3.5× 10−4 mbar).

(b) EIR detached plasma (1.0× 10−2 mbar).

Figure 5.13: Spectrograms showing the variation of the frequency components in the Ṽf

time series with radial position across the plasma column in the YLPD target chamber,

for (a) the attached and (b) the EIR detached cases. Blue scatter points indicate the

positions at which data were recorded.
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two well-defined peaks at radial positions of approximately ±9.5 mm, and lower power

across the centre of the column. In the Ṽf spectrogram, however, the strongest components

are seen in the centre. The radial range of the Ṽf data is smaller than the width of the

FFI field of view, but the peaks are in evidence at 8 mm in the latter, and there is no

increase in amplitude at the widest radii in the Ṽf spectrogram.

The ability to compare the FFI and Ṽf power spectra is restricted by the differing

Nyquist frequencies of the diagnostics, but the lowest frequencies of the EIR detached Ṽf

spectrogram clearly do not exhibit the hollow profile structure of the FFI power data. The

most likely explanation is that the effects of EIR detachment on the floating potential and

Balmer emission properties of the plasma are different. Vf , and Ṽf , are determined by the

balance of ion and electron densities and temperatures, whereas the photons captured by

the FFI camera are emitted from neutral hydrogen atoms that are the product of three-

body recombination processes. The different density and temperature dependences may

be sufficient to alter how these properties fluctuate. In particular, in the hotter core of the

plasma column, the recombination rate is low and there is little EIR emission to provide

a signal for FFI. Secondly, the lack of any increase in the Ṽf power spectrum amplitude

at the largest radii could be explained by the disturbance from the large reference probe.

It is possible that removing this probe and recording moveable probe data beyond 10 mm

would result in an increased power amplitude.

5.2.3 Correlation with a reference probe

We now turn to considering the relationship between the Ṽf time series recorded by the

moveable and reference probes. A correlation analysis was carried out, as described in

Section 3.2.2, for the 40 highest amplitude negative events in the reference probe data

for each position. An example event is illustrated in Figure 5.14. The plots of average

optimum time delay for the selected events at each radius are shown for both the attached

and EIR detached plasmas in Figure 5.15. The errors are calculated from the standard

deviation of the time delay values for the 40 events.

In the attached case, there is very little variation around the average 0 µs delay, al-

though there are errors of up to 2 µs. Recall that the reference probe is positioned at

6 mm, which according to the earlier results is outside the bulk of the plasma column.

The reference signal is therefore likely to consist predominantly of random noise, and the

correlation analysis averages to zero.
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Figure 5.14: Example Ṽf time series data from the reference probe in the EIR detached

plasma, with one of the selected large negative events highlighted. Inset: expanded view

of the event.

The results for the EIR detached plasma exhibit more interesting behaviour. Ignoring

the data at 7 and 8 mm, which, as discussed above, may be affected by the presence of the

reference probe, there appears to be some structure that travels between 2 and 6 mm in a

time of approximately 5 µs (indicated by the red dashed line in Figure 5.15b). Taking the

minimum and maximum possible slopes of these five data points, accounting for the error

bars, yields an estimate of (650±250) m s−1 for the outward radial speed of this structure.

It may be expected that the time delay is zero when both probes are positioned at 6 mm,

but an offset is introduced as the filamentary structures have limited azimuthal extent,

and do not encircle the entire column.

Figure 5.15b may also indicate that a second structure is present, originating from the

same point but travelling inwards (indicated by the blue dashed line in the figure). The

data points are less well aligned here, but the estimated speed is (380±70) m s−1. It is not

clear whether this is an artefact in the data, but it is possible that a disturbance of the

plasma, appearing at approximately 2 mm, could propagate radially in both directions.
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(a) Attached plasma (3.5× 10−4 mbar).

(b) EIR detached plasma (1.0×10−2 mbar). Data beyond the black dashed line (7 and 8 mm) is in

the shadow of the reference probe. The red (outward velocity) and blue (inward velocity) dashed

lines highlight the general trends in the data up to 6 mm.

Figure 5.15: Variation of the optimum time delay between the moveable and reference

probe floating potential signals, as a function of radial position across the plasma column

in the YLPD target chamber, for (a) the attached and (b) the EIR detached cases. Time

delay values were obtained by cross-correlating the signals in the vicinity of large events

in the reference signal.
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5.2.4 Discussion of Ṽf results

Obtaining a complete interpretation of the Ṽf time series data is not straightforward, but

the radial behaviour of the results for the attached and EIR detached states is consistent

with broadening of the detached plasma column. The attached plasma data exhibits the

characteristics of random noise beyond 2 mm, and the power spectrum is also confined to

the 2 mm range. In the detached case, no noise-dominated signals are recorded, and the

low frequency (< 200 kHz) broadband spectrum extends up to 6 mm, implying that the

width of the detached plasma column is greater. However, the radial range of the data is

limited by the likely disturbance caused by the reference probe, situated at 6 mm.

Time-delay correlation analysis of the reference and moveable probe Ṽf data appears

to show the radial propagation of events through the EIR detached plasma (Figure 5.15b).

Despite the relatively large errors, the increase in the time delay observed between the 2

and 6 mm positions is a reasonably strong indication of the radial motion of structures

out of the column, with a speed of (650± 250) m s−1. Inward propagation from 2 to 0 mm

is also indicated, with a speed of (380 ± 70) m s−1, although the smaller number of data

points reduces the reliability of this conclusion.

It is possible that the radial propagation detected by the Ṽf analysis corresponds to

the motion of the plasma filaments observed in the FFI data. In this scenario, a trigger

at approximately 2 mm would result in the ejection of a filament of plasma, which, as

it travels outwards, causes the observed fluctations in Vf . The inward motion suggested

by the time delay data at the smallest radii could be attributed to the propagation of

the region of density depletion left by the filament. An upper limit on the radial extent

of the filaments is ∼ 3 mm, based on the maximum speed estimate (900 m s−1), and an

approximate Vf event duration of 3 µs. The current experimental setup means that we

are unable to track the filament beyond 6 mm with the Langmuir probe, but from here

it becomes visible to the FFI camera, which captures the Balmer emission produced by

three-body recombination (assuming the filament has cooled as it travels).

Observations of similar radial transport of plasma filaments, or blobs, have been made

on multiple machines: both in linear devices (e.g. PISCES [92], NAGDIS-II [72, 93]) and

in tokamaks (e.g. NSTX [94], DIII-D [95] and Alcator C-Mod [96,97]). In particular, the

results of Boedo et al. describe intermittent transport in the scrape-off layer (SOL) of DIII-

D [95]. These authors also studied large-amplitude events, with a more comprehensive set

of diagnostics, and found that large positive fluctuations in the ion saturation current
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(corresponding to plasma blobs) were correlated with large negative fluctuations in the

floating potential, similar to those observed in the YLPD. The presence of negative Vf

fluctuations in plasma blobs is also supported by Ṽf histograms from Alcator C-Mod,

which have a similar, negatively-skewed distribution to those from the YLPD [96].

The DIII-D measurements also detect negative (low density) events, moving inwards

towards the core of the tokamak, as well as the outward-moving high density blobs. This

is again consistent with the observations in the YLPD. Furthermore, the authors measure

how rapidly the blob density and temperature equilibrate with the average background

values as they travel out of the SOL, and find that the temperature equalisation occurs

much more quickly (on a length scale of ∼ 1 cm compared to > 5 cm for density equali-

sation). Detachment in DIII-D is not considered in this work, but these results indicate

that if blobs of plasma cool quickly enough as they travel radially (potentially with the

aid of neutral gas puffing), recombination and detachment could occur.

In the following section, the possibility of radial transport in the YLPD is explored

further. The physics of this scenario is considered, and a possible mechanism for the

formation of filaments and their subsequent radial motion is proposed.

5.3 Hypothesis for filament formation

Having made fast frame imaging measurements that imply that plasma filaments are

transported radially out of the column, and found some evidence for the radial motion of

plasma structures in the Ṽf data analysis, the reason for this behaviour is now considered.

A plausible mechanism for radial transport of filamentary plasma structures is the cen-

trifugal instability, caused by the rotation of the linear plasma column. This is a form of

the Rayleigh-Taylor instability [98], in which the rotation provides an effective gravity [99].

Centrifugal forces have been discussed in several papers on the theory of instabilities in

magnetised linear plasmas (e.g. [100–102]), and observations of the centrifugal instability

have been made in plasma devices such as Mistral [103,104] and Mirabelle [99].

We begin by making some general notes pertinent to the analysis in Section 5.3.1,

before outlining the mechanism of this instability (Section 5.3.2). This hypothesis, and

the testing thereof, are discussed in Section 5.3.3.
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Figure 5.16: The cylindrical coordinate system describing the YLPD plasma column. The

observer is situated at the target plate, looking upstream towards the plasma source at

the cross-section of the column.

5.3.1 Notes on plasma physics and the coordinate system

Firstly, when describing the motion of ions and electrons in a plasma, it is common to

separate the cyclotron rotation of the particles around magnetic field lines from the motion

of the guiding centre of this circular path, as the cyclotron frequency of the rotation

(Ωi,e = qi,eB/2πmi,e) is generally faster than other types of motion [6]. In the YLPD plasma,

with B ≈ 95 mT, the approximate times taken for ions and electrons to complete one

revolution (1/Ωi,e) are 0.7 µs and 0.7 ns respectively. From here, terms describing the motion

of ions and electrons refer to the movement of the guiding centres of the cyclotron rotation.

The description that follows uses a cylindrical coordinate system. To orient the reader,

the YLPD plasma column is directed along ẑ, travelling in the positive z direction from

source to target plate. r̂ points radially outwards from the centre of the column, and the

azimuthal coordinate θ̂ is in the anticlockwise direction when observing the plasma from

the target plate (so that ẑ is directed towards the observer). The confining axial magnetic

field is described by the vector B = Bẑ. The system is illustrated in Figure 5.16.

Finally, we note that the application of a constant force F to a magnetised plasma

will always produce a constant drift of the ion and electron guiding centres in the plane

perpendicular to both F and B [6]. The general equation for the drift velocity, vd, is:

vd =
1

q

F×B

|B|2
. (27)
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(a) The electric field derived from the radial Vp

profile, and the resulting E×B drift velocity of

the plasma.

(b) The centrifugal force felt by the rotating

plasma, and the direction of the Fc×B ion drift

velocity (reversed for the electrons).

Figure 5.17: Diagrams of (a) the plasma potential (Vp) profile across the column in the

YLPD, and the resulting electric field (E) and E×B drift velocity; and (b) the centrifugal

force (Fc) and the direction of the resulting ion drift velocity that arises due to the Fc×B

rotation. Observer is situated at the target plate, looking upstream towards the source.

Not to scale.

5.3.2 The centrifugal instability

The presence of an electric field across a plasma causes a common drift known as the

E × B drift. In the YLPD plasma column, there is a positive radial gradient in the

plasma potential, which produces a radial electric field directed inwards towards the centre

(E = −∇Vp = −Er̂). This is illustrated in Figure 5.17a. The force on a particle of charge

q due to an electric field is F = qE; substituting this force into (27) yields the E×B drift

velocity:

ve×b =
E×B

|B|2
. (28)

In the YLPD, the direction of this drift is anticlockwise around the column (along θ̂)

for both ions and electrons, as shown in Figure 5.17a. The detached plasma has a potential

gradient of ∼ 650 V m−1 beyond the centre of the column, and the axial magnetic field

strength is approximately 95 mT. The E ×B drift therefore causes the plasma to rotate

anticlockwise around the column with a speed of ∼ 7000 m s−1.
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The rotation of the plasma then results in the particles feeling an effective centrifugal

force, Fc, directed radially outwards (Figure 5.17b):

Fc =
mve×b

2

r
r̂.

Substituting this force into (27) leads to a second drift velocity, which is dependent on

both the mass and charge of the plasma species:

vc =
1

q

mve×b
2

r

r̂ ×B

|B|2
.

The magnitude of this centrifugal drift velocity is:

vc =
mve×b

2

q r B
. (29)

The centrifugal drift acts in the clockwise direction for ions, and anticlockwise for electrons,

due to the dependence on q.

If we estimate vc for both plasma species at a radius of 2 mm, we find that:

vc,i ≈ 2700 m s−1 clockwise;

vc,e ≈ 1.5 m s−1 anticlockwise.

The mass dependence of (29) means that the effect has greater significance for the ions

than the electrons. The total rotational speeds for each species are therefore:

vtot,i ≈ 4300 m s−1 anticlockwise;

vtot,e ≈ 7000 m s−1 anticlockwise.

We see that the ions travel more slowly around the column than the electrons, but if the

plasma is azimuthally uniform, equilibrium is maintained.

We now consider the effect of introducing a localised density perturbation, illustrated

in Figure 5.18. A small element, or ‘blob’, of plasma is moved radially outwards (Figure

5.18a), leaving a density deficit at its original position (Figure 5.18b). If we first focus

on the blob, we see that the plasma that moves outwards is not travelling at the same

speed as the plasma that is already there, thanks to the radial dependence of (29), and

so the difference in the ion and electron speeds becomes important. The electrons in the

displaced plasma travel faster than the ions, producing a charge separation across the

blob. This results in an azimuthal electric field in the anticlockwise direction, which we

denote Ep = Epθ̂, as shown in Figure 5.18a.
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(a) Charge separation and electric field (Ep) in

the displaced plasma blob, and the resulting out-

ward drift direction.

(b) Charge separation and electric field (Eq) in

the region of density depletion, and the resulting

inward drift direction.

Figure 5.18: Diagrams of the effects of a density perturbation on the motion of the rotat-

ing plasma column, showing the charge separation and resulting electric fields and drift

velocity directions for (a) the displaced plasma element; and (b) the density deficit left by

the displacement. Ion and electron rotation velocities are indicated in blue. Observer is

situated at the target plate, looking upstream towards the source. Not to scale.

Using (28) once more, we find that there is a second, local E×B drift from the force on

the plasma blob due to Ep. This drift is directed radially outwards (illustrated in Figure

5.18a) and has a magnitude of:

vep×b =
Ep
B
.

The effect of the local perturbation is therefore amplified, causing the system to become

unstable. The plasma blob is ejected radially outwards, creating a filament.

Returning to the density deficit left by the removal of the blob, we find that a charge

separation also arises here (Figure 5.18b). In this case, the faster electrons re-enter the

region of depleted density before the ions. The charge separation is thus in the opposite

direction to that in the blob, and the resulting electric field is in the clockwise direction:

Eq = −Eq θ̂. Applying the drift analysis as for the filament, we find that the local Eq ×B

drift velocity is directed radially inwards.

The overall effect of perturbing the plasma density, then, is the radial motion of a

filament of plasma out of the column, and the motion of the corresponding density deficit

inwards towards the centre.

Brochard, Gravier and Bonhomme describe a number of properties that can be used

to distinguish between the centrifugal instability, drift waves and the Kelvin-Helmholtz
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Table 5.1: Criteria for the characterisation of centrifugal instabilities, drift waves and
Kelvin-Helmholtz instabilities. vd,e and vd,i are the electron and ion diamagnetic velocities
respectively; k⊥ and k‖ are the perpendicular and parallel wavenumbers of the instabilities;
ρs is the ratio of the ion sound speed to the ion cyclotron frequency; and L is the lengthscale
of the machine. Adapted from [99].

Parameter Centrifugal Drift waves Kelvin-Helmholtz

Phase velocity ve×b
vd,e

1 + k2
⊥ρ

2
s ± ve×b

(0.2− 0.6) ve×b

k‖ 0 ∼ 1

L
0

Location of max.
fluctuations

max

(
1

n

dn

dr

)
Position of max.
ωd,i = vd,i/k⊥

Position of max.
velocity shear

max

(
eṼ

kBTe

)
1 1 � 1

max

(
eṼ

kBTe

/ ñ
n

)
≥ 1 ≤ 1 � 1

Local radial variation
of phase of Ṽ

40° − 90° ≤ 45° 90° − 180°

instability in linear plasmas, and employ them to study the instabilities in Mirabelle [99].

They base their analysis on the theory discussed by Jassby [100]. The properties of

interest include the azimuthal phase velocity of the instability (the speed at which the

perturbation travels around the plasma column) and the radial location of the maximum

relative amplitude fluctuations, as well as the relative amplitude and phase of fluctuations

in the plasma density and potential. These are summarised in Table 5.1. The data set

presented in this work allows us to consider the criterion for the maximum potential

fluctuation (line four of Table 5.1).

As full Langmuir probe characteristics were only recorded at the 0 and 3 mm positions,

the analysis of the magnitude of fluctuations is restricted to these radial positions. At

0 mm, the measured Te value is (2.8 ± 0.5) eV (Figure 4.11; Vf data), and the maximum

fluctuation amplitude is ∼ 2 V. The value of eṼ/kBTe (= Ṽ/Te when Te is given in eV) is

therefore around 0.6 − 0.9. At 3 mm, Te = 0.34 ± 0.15 eV as measured by the Langmuir

probe (again, see the Vf data in Figure 4.11), but is estimated to be (0.20+0.09
−0.03) eV by

the OES diagnostic. The maximum Ṽ amplitude is ∼ 0.4 V at this position, and the

maximum ratio lies in the range 1.3− 2 (taking the more reliable OES temperature).
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These ratios are both consistent with the hypothesis. We certainly expect to see

evidence for the centrifugal instability at 3 mm as the associated filamentary structures

move outwards. At 0 mm, the plasma potential is at its minimum, and the electric field and

associated azimuthal E×B drift are negligibly small. The rotation velocity of the plasma

will thus be much smaller and the centrifugal instability is unlikely to be significant. The

indication that drift waves occur at the centre of the column highlights the need to include

the other criteria in fully identifying the instabilities in the column. This hypothesis, and

the need to develop and test it further, are discussed in the following section.

5.3.3 Discussion

The centrifugal instability is a plausible mechanism for the formation of filamentary struc-

tures in the EIR detached plasma in the YLPD. The results presented in the first two sec-

tions of this chapter suggest the presence of such radially transported ‘blobs’ of plasma,

but do not provide a fully comprehensive picture of the behaviour. Here we discuss the

shortcomings of this data set, and outline what is required to develop our understanding.

Firstly, the data is insufficient to fully test the presence of instabilities according to

the criteria outlined in Table 5.1. Upgrading the Langmuir probe diagnostic on the YLPD

to improve the spatial range and resolution of the probe measurements would increase the

accuracy with which the evolution of the filaments could be tracked, and allow detailed

density and temperature profiles to be measured. Increased spatial and temporal resolution

would also assist in the evaluation of the amplitude and phase of ñ and Ṽ .

Previous observations of the centrifugal instability in the linear plasma device Mistral

have shown that it leads to the formation of spiral ‘arms’ of plasma that grow and rotate

over tens of microseconds [104]. A similar evolution in the YLPD could lead to the

elongated azimuthal structures seen in the 20 µs exposure FFI images, but the E × B

velocity in the YLPD plasma is a factor of ∼ 4 higher than in the Mistral experiments,

and we therefore might expect to see even more elongation than is observed.

In the case of the radial motion in the YLPD, the (650±250) m s−1 outward radial drift

velocity estimated by the Ṽf measurements predicts that a filament would be displaced

by 8− 18 mm in the radial direction in the FFI camera exposure time. This displacement

would be expected to correspond to the radial widths of the structures in the images, but

instead the observed widths are in the region of 5− 8 mm. This suggests that the higher

filament velocity estimates may be more accurate, and also implies that the filaments
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are likely to be relatively narrow (< 1 mm), limiting their apparent width during the FFI

exposure time. This is reasonably consistent with the maximum filament width of ∼ 3 mm

estimated from the duration of the Vf events, but these analyses are unable to conclusively

determine the behaviour of the EIR detached plasma.

These discrepancies show that more thorough measurements of the detached plasma

are needed in order to produce an enhanced model of the radial transport due to the

centrifugal instability. It is also likely that the axial motion of the ions and electrons must

be included in such a model: the plasma continually streams from source to target plate,

and so filaments which detach from the main column will no longer be directly replenished

by the upstream source. This could place a limit on their lifetime.

Optimising the FFI system and the image analysis procedures to allow a higher frame

rate would enable the evolution of the emission from the plasma filaments to be captured

in more detail. Characterisation of the scale of the images is also needed to properly

evaluate the size and velocity of the features. However, linking the emission captured

by the FFI diagnostic with the instabilities observed through probe measurements can

only be fully achieved by including particle interactions as well as transport in a model

of the plasma. Cooling of the filaments as they travel is key to the onset of three-body

recombination, which produces the Balmer emission line photons captured by the FFI

camera, and ultimately results in EIR detachment.

These improvements to the diagnostic systems would enable the radial transport in the

YLPD to be characterised more thoroughly (in a similar manner to blob transport in e.g.

DIII-D [95]). The inclusion of fast frame imaging of the high-n Balmer line emission and

modelling of recombination would extend the studies to consider the links between radial

transport and EIR detachment, which previous research has not focused on. Observations

of similar radial blob transport have been made in a detached helium plasma in the linear

machine NAGDIS-II [72,105], but the relationship between the centrifugal instability and

EIR detachment in hydrogen plasmas has yet to be studied in detail.

The development and experimental testing of a comprehensive theory describing EIR

detachment in the YLPD is beyond the scope of this thesis, but the experiments described

here have provided a foundation on which to base the next steps of this research. Having

identified the presence of intermittent radial transport events in which filaments of plasma

are ejected from the column, future studies can now focus on the characterisation and

identification of the instability mechanism which drives them.
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5.4 Summary

In this chapter, two types of fast timescale diagnostics have been used to look for fast

radial transport events in the detached EIR plasma in the YLPD, and compare this state

to the attached plasma. Fast frame imaging (FFI) with a camera operating at a 50 kHz

frame rate showed clear evidence for filamentary structures in the plasma at radii of 6 mm

and beyond, occurring intermittently on timescales faster than 20 µs. These structures are

extended azimuthally, over angles of up to 180°, but limited to narrow radial widths of

approximately 5− 8 mm.

The limited temporal resolution of the FFI data means that the evolution of individual

filaments cannot currently be tracked, but comparing the attached and detached images

clearly shows that the plasma broadens significantly (by at least a factor of two) when

it detaches. However, there is still some discrepancy between the broadening observed

in the FFI data and the location of the peaks of the Balmer emission profiles presented

in Chapter 4. The peaks of the hollow profile were situated at ±6 mm, whereas the

bright filaments in the images appear beyond this radius. This implies that an additional

broadening mechanism, such as radial transport, is required to explain the observations.

Further understanding is also needed in order to interpret the FFI coherence and phase

plots.

The Ṽf data again strongly indicates the broadening of the detached plasma column

compared to the attached state, in which the signal beyond the 2 mm radius only consists

of random noise. The detached Ṽf time series indicate that plasma is present over the

full radial range of the measurements, although the size of the reference probe limits the

accuracy of the data beyond 6 mm.

A time delay correlation analysis between the reference and movable Langmuir probes,

focusing on the highest amplitude negative fluctuation events in the reference time series,

suggests that radial transport of structures in the plasma does occur in the EIR detached

state, possibly in the inwards direction as well as out of the column. This led to the hypoth-

esis that centrifugal instabilities in the detached plasma result in the radial propagation

of blobs, or filaments, of plasma towards the edges of the column, and inward-directed

transport of the corresponding depleted density region.

Calculations of the maximum ratio of the Vf fluctuation amplitude to the electron

temperature at the 0 and 3 mm positions appear to be consistent with the centrifugal

instability hypothesis, according to one of several criteria [99]. There are multiple criteria
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which cannot be tested with this limited data set, however, and discrepancies arise between

the location and extent of the filaments observed by the FFI and Vf diagnostics, and the

speeds with which the simple theory predicts them to travel.

We conclude that further studies are required, both theoretical and experimental. A

model of the EIR detached state must be developed that includes plasma transport in three

dimensions, as well as particle interactions within the plasma and with the background

neutral gas, and further measurements must be made in the YLPD to characterise the

detached behaviour more thoroughly. Only then can the links between radial transport

and detachment of the YLPD plasma be fully understood.

The similarities between features of the YLPD observations and previous measure-

ments of intermittent radial transport in tokamaks have been briefly discussed, and the

lack of research linking such transport to EIR detachment in these machines was high-

lighted. The wider impact of the YLPD observations and the resulting hypothesis for the

EIR detachment mechanism are discussed further in Chapter 7. In the next chapter, we

turn to the issue of power injection in tokamaks.
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Chapter 6

Characterisation of negative

hydrogen ion production in the

RF plasma device MAGPIE

In this chapter, observations of negative hydrogen ions in the linear plasma device MAG-

PIE (Magnetised Plasma Interaction Experiment) are presented. The study aims to in-

vestigate the viability of helicon plasmas as caesium-free negative ion sources for neutral

beam injection (NBI) in tokamaks. In the first section, we recap the requirements for

tokamak NBI systems that were discussed in Section 1.2 of Chapter 1. MAGPIE and the

additional diagnostic techniques employed in the study (laser photodetachment and B-dot

probes) are introduced in Section 6.2. The results from the diagnostics are presented in

Sections 6.3-6.6, and we summarise in Section 6.7.

This work was carried out in collaboration with C. Corr and J. Santoso at the Aus-

tralian National University. The majority of the experimental work and analysis, excepting

the B-dot probe measurements (obtained by J. Santoso), was carried out jointly. The rate

coefficient study (Section 6.4.2) and all frequency analyses (Sections 6.5 and 6.6.2) are

solely the work of this author. All simulation data were obtained by J. Santoso.

6.1 Motivation

The primary motivation for this work is the characterisation of the negative hydrogen ion

population in the pulsed helicon plasma produced by MAGPIE. As introduced in Chapter

1, negative ion sources are integral to the NBI systems used for plasma heating, fuelling and
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current drive in tokamaks [15, 17]. Ions are produced by an inductively coupled plasma

source, and accelerated to create a high-energy beam. The ions are then neutralised,

yielding a beam of neutral atoms that is injected into the tokamak.

Beam energies in excess of 1 MeV are necessary to meet the requirements of NBI

systems for large tokamaks (e.g. ITER [5]). High particle energies increase the mean free

path for ion-neutral interactions, meaning that the neutral beam is able to reach the core

of the tokamak before depositing its energy through collisions with the plasma.

An efficient NBI system needs the neutralisation reaction to have a high cross-section

once the ions have been accelerated. Comparison of the neutralisation rates for positive

and negative ions shows that at high energies the process is around four times more efficient

for negative ions (∼ 55 % compared to < 15 %, as was shown in Figure 1.7) [17]. However,

the efficiency of the initial production of negative ions remains an issue. Current designs

use inductively coupled plasma sources, which incorporate a caesium catalyst to improve

the negative ion yield [18]. This increases the complexity of the system, as the caesium

must be continually replaced, and its high reactivity introduces safety concerns. It is

therefore preferable to develop a negative ion source of equivalent (or greater) efficiency

that does not require the use of caesium. As a guideline, an approximate threshold for

the density of negative ions that such a source must produce is 1× 1017 m−3 [106].

It has been suggested that helicon plasma sources (such as MAGPIE) could be em-

ployed as caesium-free negative ion sources, due to their efficiency at producing high

density plasmas with low electron temperatures [107,108]. However, further research into

the operation and optimisation of these sources is needed in order to demonstrate that the

required negative ion production rate can be sustained. This work studies the behaviour

of the helicon plasma discharge in MAGPIE, focusing on its negative ion population. NBI

systems in fusion reactors will operate with deuterium, but this study (and much other

negative ion source research) uses hydrogen, which is the more readily available isotope.

6.2 Methods

6.2.1 MAGPIE

The Magnetised Plasma Interaction Experiment (MAGPIE) is a 1.7 m long vacuum vessel

with an RF helicon antenna source, driven at 13.56 MHz [109]. A schematic diagram of

the machine is shown in Figure 6.1. It consists of two sections: the source chamber, a
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Figure 6.1: Diagram of the main chambers of the MAGPIE machine. The helicon antenna

is shown in green and the magnetic field coils in red. The 0 mm position is aligned with

the right hand end of the antenna [110].

borosilicate tube 1 m in length; and the aluminium target chamber, which is 0.7 m long.

Each region has its own set of water-cooled magnetic field coils, shown in red in Figure 6.1,

which enable tailored magnetic mirror field profiles to be created. The maximum field in

the source region is 90 mT, whereas the maximum field in the target chamber is 190 mT;

the higher field strength in the target region means that the highest densities occur there.

The working gas is fed into the end of the target chamber at the opposite end to

the outlet, which is beyond the source region. A turbo pump at the outlet creates a fill

pressure gradient in the same direction as the expected plasma density gradient. Plasma

is created by coupling energy into the gas using a Nagoya III helicon antenna, 20 cm long

and 12 cm in diameter (shown in green in Figure 6.1). The antenna has a left-handed,

180◦ helical twist, which launches m = +1 waves towards the target region [111]. Plasma

generation using RF antennas is discussed further in e.g. [112,113] and references therein.

Helicon waves are able to propagate through higher density plasmas than other types of

wave, which increases the maximum plasma density that can be produced [109].

The transparent borosilicate tube which forms the source chamber enables easy opti-

cal diagnostic access, and the end plate of the chamber has small ports for windows or

diagnostics. The aluminium target chamber has two large Pyrex windows, as well as fixed

ports on the sides and in the end plate.

Previous work on MAGPIE has found that negative ion densities of up to 6×1015 m−3

can be obtained in a hydrogen plasma with 1 kW of input power, a 10 mTorr fill pressure

(1.33 × 10−2 mbar), and an axial magnetic field of a few milliTesla [108]. The electron

density was ∼ 8 × 1016 m−3. In the present study, the power to the helicon antenna
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Figure 6.2: Plot of the power coupled from the helicon antenna to the plasma in MAGPIE

throughout a typical 40 ms pulse.

Figure 6.3: The DC magnetic field profile on-axis through the target chamber of MAGPIE

for 50 A source field coil current and 800 A mirror field coil current. The right-hand edge

of the antenna is at 0 mm (see Figure 6.1) [110].

is increased to 20 kW, and the evolution of the plasma throughout 40 ms RF pulses is

considered in order to elucidate the behaviour of the negative hydrogen ion population.

Figure 6.2 shows the absorbed power profile throughout the pulse. The confining magnetic

field profile for these pulses was produced using a current of 50 A through the source field

coils, and 800 A through the mirror field coils. The resulting field profile is shown in

Figure 6.3; the field strength in the antenna region is ∼ 10 mT, with a peak field strength

of ∼ 170 mT in the target chamber. The gas fill pressure was 10 mTorr (1.33×10−2 mbar).

6.2.2 Laser photodetachment

Negative ion species in a plasma can be studied with Langmuir probes, but the applicability

of the technique is limited. The reliability of probe measurements is restricted by the

assumptions made in the sheath analysis, and the error becomes relatively large in plasmas
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Figure 6.4: Sketch of the laser photodetachment setup in MAGPIE (not to scale). The

dog-leg probe tip is first positioned within the plasma, then the laser focus and alignment

are adjusted to maximise the photodetachment signal.

where the negative ion population is small compared to the electron density [114, 115].

More accurate results can be achieved using probe-based laser photodetachment, which

is used to study the negative ion population through photodissociation of the ions [116].

This technique is able to measure the negative ion density local to a Langmuir probe by

focusing a laser pulse in the vicinity of the probe. The concept is illustrated in Figure 6.4.

The laser wavelength is chosen so that the photons passing through the plasma have

sufficient energy to dissociate a negative ion into a neutral atom and electron, without

undergoing other, higher energy interactions with the plasma (particularly the ionisation

of neutral atoms). For negative hydrogen ions, for which the electron affinity is 0.754 eV,

a 1064 nm (1.17 eV photon energy) laser is suitable [116].

The probe is biased positively, 60 V above the plasma potential, so that all electrons

and no positive ions are collected. The current drawn by the probe without the laser

gives the background value, denoted Idc. When a laser pulse passes through the plasma,

it dissociates the negative ions and creates a population of ‘photoelectrons’, increasing

the electron density by ∆ne. The photoelectrons in the region of the Langmuir probe

are collected by the probe, causing a spike in the probe current of magnitude ∆Ipd. The

fractional change in current, which we will label as η, is equal to the fractional change in

density:

η =
∆Ipd

Idc
=

∆ne

ne
. (30)

The current returns to the background level after the laser pulse, once the electron pop-

ulation settles. The voltage from the probe is recorded by an oscilloscope (giving ∆Vpd)

and then converted to current. Figure 6.5 illustrates an example photodetachment signal.

Assuming that all negative ions in the laser path are dissociated, no other processes

occur and all photoelectrons are collected by the probe, one photoelectron is released from
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Figure 6.5: Example of a laser photodetachment signal from a hydrogen plasma in MAG-

PIE, showing the time evolution of the voltage drop across a positively-biased Langmuir

probe in response to the photoelectron current caused by a laser pulse. The data has

been background-corrected using the time evolution of the current drawn from the plasma

without the laser firing. The initial large voltage drop is ignored as it is thought to be

caused by probe ablation [116]. The measured signal, ∆Vpd, is denoted by the red arrow.

each negative ion, and ∆ne is equal to the negative ion density, nh− . Substituting this into

(30) shows that η is the negative ion fraction within the plasma (the electronegativity):

η =
nh−

ne
. (31)

To calculate nh− from η, it is only necessary to multiply by ne. However, as discussed

in Section 3.2.1, direct Langmuir probe measurements of the electron density are not par-

ticularly reliable. Instead, we use the property of plasma quasineutrality to assume that,

overall, the positive ion, electron and negative ion densities are subject to the following

relationship:

ni = ne + nh− . (32)

Combining this expression with that for η, (31), allows us to calculate both ne and nh− .

In order to obtain accurate values, it is important to set up the photodetachment

diagnostic correctly. The saturation of ∆Ipd with both the energy of the laser pulse and

the probe bias voltage must be checked. The pulse energy must be sufficient to dissociate

all the negative ions in the vicinity of the probe, but should not be increased over the

saturation level to minimise any other interactions between the laser and the plasma.

Similarly, the probe bias voltage must be high enough to collect all the photoelectrons,
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but should not be significantly over this threshold to limit the disturbance caused to the

plasma. These requirements are further discussed in the review paper by Bacal [116].

The axial dog-leg Langmuir probe illustrated in Figure 6.1 was used for conventional

density and temperature analyses by recording IV curves (as described in Section 3.2),

as well as for laser photodetachment measurements of nh− in conjunction with a 1064 nm

Nd:YAG laser. The laser was operated with a pulse energy of approximately 80 mJ and

pulse length of a few nanoseconds. Details of these measurements and the results are laid

out in Sections 6.3 and 6.4 respectively. The probe was also used to record time series

of the floating potential throughout the 40 ms pulses, in order to analyse the frequency

spectra of modes present in the plasma (Section 6.5).

6.2.3 B-dot probe

B-dot probes are so-called due to their ability to measure time-varying magnetic fields

using the principle of induced voltage, V , in a loop or coil of wire (Faraday’s law):

V = −NAdB

dt
,

where N is the number of loops in the coil and A is the area enclosed by one loop. Measur-

ing the voltage induced in a coil of wire inserted into a plasma enables the calculation of

the magnetic field strength perpendicular to the coil, B, through time. Increasing N im-

proves the sensitivity of the measurement, but also increases the inductance of the probe.

The maximum time resolution that can be recorded is reduced by a higher inductance, so

the number of turns in the coil must be chosen as a compromise between the sensitivity

and measurement frequency. B-dot probes and their construction and applications are

discussed further in e.g. [81, 117,118] and references therein.

The B-dot probe employed in this study consisted of a 6-turn coil, used to measure

the x and y (i.e. radial) components of the magnetic field along the axis of MAGPIE.

This field is induced in the plasma by the helicon antenna: the confining axial magnetic

field produced by the field coils around the chamber is constant in time and therefore is

not measured by the probe. The z component (along the machine) of the field produced

by a Nagoya III antenna is zero on the axis of symmetry. Data were recorded at a rate of

125 MHz.
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6.3 Langmuir probe IV measurements

6.3.1 Results

Langmuir probe data were taken at axial positions from 0 to 650 mm in 50 mm steps, with

a final measurement at the maximum possible distance of 690 mm (positions relative to the

target-end edge of the antenna; see Figure 6.1). A signal generator was used to continually

sweep the bias voltage applied to the probe throughout the 40 ms pulse. The period for a

full voltage cycle (positive → negative → positive) was 0.2 ms, yielding 200 up-sweep and

200 down-sweep IV -curves for each pulse. The results for each position were averaged over

16 pulses to reduce noise (using the oscilloscope), and corrected for the probe inductance.

Then, the up- and down-sweeps for each 0.2 ms voltage cycle were averaged in the analysis

process, producing a single IV curve for each 0.2 ms time segment between 0.6 and 39.8 ms

(inclusive). These curves were then analysed (as detailed in Section 3.2) to yield the time

evolution of the axial profiles of the positive ion density (ni) and electron temperature

(Te), shown in Figures 6.6a and 6.6b respectively.

6.3.2 Discussion

The 2D density and temperature plots in Figure 6.6 show that the axial profiles vary

with time during the first half of the pulse, and then relax into a steady state for the

remaining ∼ 20 ms. ni initially peaks around the maximum applied magnetic field strength

(∼ 400 mm), with the variation between the minimum and maximum densities reaching

almost two orders of magnitude. The peak then decreases in strength and travels away

from the antenna (towards 550 mm). The steady state profile is more uniform along the

machine: ni varies only by a factor of 2− 3 between the minimum and maximum values.

The electron temperature exhibits a different evolution, but the timescale remains the

same. At the beginning of the pulse, Te decreases by a factor of ∼ 5 between the antenna

edge (at 0 mm) and 400 mm, dropping below 1 eV at this point and remaining low beyond

it. The plasma then heats up as the higher temperatures propagate through the machine.

After around 20 ms a steady state profile is reached, with a variation of less than a factor

of two between the 0 and 690 mm positions.

From the temperature data, the propagation speed of the plasma heating front through

MAGPIE is calculated to be in the region of 10 − 20 m s−1 during the first 20 ms of the

pulse. This is two or three orders of magnitude below the velocities associated with typical
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(a) Positive ion density evolution.

(b) Electron temperature evolution.

Figure 6.6: Time variation of axial (a) density and (b) temperature profiles throughout

MAGPIE during a 40 ms pulse, as measured by the Langmuir probe.
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(a) Initial ni and Te axial profiles (taken at 6 ms).

(b) Final ni and Te axial profiles (taken at 39.8 ms).

Figure 6.7: (a) Initial and (b) final axial profiles of experimental and simulated ion density

(in black, left-hand axes) and electron temperature (in red, right-hand axes) during the

40 ms plasma pulse in MAGPIE. Experimental values are plotted as individual points; the

modelled data are shown as continuous lines.
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particle transport processes in plasma (e.g. the ion sound speed or ambipolar diffusion).

We therefore suggest the alternative process of neutral depletion to explain the observed

evolution of the plasma properties in MAGPIE [119].

Neutral depletion is caused by the coupling of plasma and neutral particle dynamics

in high power discharges, or those with low neutral pressure [120]. The creation of a high

density plasma necessarily reduces the amount of neutral gas, leading to regions of lower, or

depleted, neutral density and limiting further ionisation. For an overview of experimental

and computational neutral depletion studies, see the review by Fruchtman [120].

One such study considered neutral depletion in a helicon plasma discharge using xenon

gas, in which the system was observed to reach steady state on a timescale of ∼ 2 s

[121]. The difference between this and the 20 ms timescale seen in the hydrogen plasma in

MAGPIE can be accounted for by the mass ratio of hydrogen molecules and xenon atoms,

and the difference in transport rates that this causes [119]. The agreement of timescales

suggests that it is the propagation of a neutral depletion channel through the plasma in

MAGPIE that produces the observed time evolution of the plasma properties.

The neutral depletion hypothesis is further supported by a 2D axisymmetric simulation

of the hydrogen plasma in MAGPIE, using a global model that incorporates both plasma

and neutral dynamics [119]. This model is used to predict the observed plasma properties

at a particular time in the pulse by choosing a neutral density profile to simulate a neutral

depletion channel. Thermal expansion and diffusive transport are included, but inertial

flow terms are neglected for simplicity.

Figure 6.7 shows both the experimental and simulated ni and Te axial profiles at times

of 6 ms and 39.8 ms, as an illustration of the capabilities of the global model. The mod-

elled values for both parameters agree relatively well with those observed experimentally,

supporting the hypothesis that neutral dynamics have a significant role in determining the

plasma evolution.

6.4 Photodetachment measurements

6.4.1 Results

Photodetachment data were taken at axial positions of 0, 200, 400, 500, 600, 650 and

690 mm, averaging over 32 pulses to reduce noise. The measured negative ion fraction

(η) values are shown in Table 6.1. The times at which the data were recorded varied for
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Table 6.1: Measurements of the negative ion fraction (η) in MAGPIE, obtained from
the laser photodetachment diagnostic. Data were taken for a number of axial positions
at different times during the 40 ms pulse. Values of 0 with an error of 0.005 represent
positions and times where no photodetachment signal was distinguishable from the back-
ground noise. Errors that are equal to their corresponding value indicate points where
an appropriate photodetachment signal appeared to be visible, but potentially could have
been caused by background noise.

Time [ms]
Position [mm]

0 200 400 500 600 650 690

2
0 0 0.034 0.04 0.046 0.089 0.14

+ 0.005 + 0.005 ± 0.012 ± 0.02 ± 0.018 ± 0.017 ± 0.06

4
0 0

-
0.04 0.05 0.083 0.21

+ 0.005 + 0.005 ± 0.03 ± 0.03 ± 0.016 ± 0.09

5
0 0 0.015

- - - -
+ 0.005 + 0.005 ± 0.013

6
0 0

-
0.02 0.07 0.063 0.18

+ 0.005 + 0.005 ± 0.02 ± 0.04 ± 0.013 ± 0.07

8
0 0

-
0.009 0.030 0.085 0.10

+ 0.005 + 0.005 ± 0.009 ± 0.027 ± 0.017 ± 0.06

10
0 0 0.004 0.007 0.017 0.046 0.06

+ 0.005 + 0.005 ± 0.004 ± 0.007 ± 0.017 ± 0.012 ± 0.04

12
0 0

-
0.005 0.012 0.0146 0.026

+ 0.005 + 0.005 ± 0.005 ± 0.012 ± 0.008 ± 0.018

14
0 0

-
0.007 0.012 0.009 0.019

+ 0.005 + 0.005 ± 0.007 ± 0.012 ± 0.009 ± 0.019

15
0 0 0.012

- - - -
+ 0.005 + 0.005 ± 0.012

16
0 0

- -
0.001 0.003 0.011

+ 0.005 + 0.005 ± 0.001 ± 0.003 ± 0.011

18
0 0

- - -
0.004

-
+ 0.005 + 0.005 ± 0.004

20
0 0 0.008 0.003 0.009 0.003 0.010

+ 0.005 + 0.005 ± 0.008 ± 0.003 ± 0.009 ± 0.003 ± 0.010

25
0 0 0 0 0.011 0.004 0.006

+ 0.005 + 0.005 + 0.005 + 0.005 ± 0.011 ± 0.004 ± 0.006

30
0 0 0 0 0.08 0.004 0.007

+ 0.005 + 0.005 + 0.005 + 0.005 ± 0.008 ± 0.004 ± 0.007

35
0 0 0 0

-
0.003

-
+ 0.005 + 0.005 + 0.005 + 0.005 ± 0.003

40
0 0 0 0 0.014 0.0018 0.008

+ 0.005 + 0.005 + 0.005 + 0.005 ± 0.014 ± 0.0018 ± 0.008
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each position, due to limitations imposed by the minimum measurable signal and the data

acquisition time. The time of recording corresponds to the time at which the laser was

triggered; the measurement takes place on a scale of microseconds following the laser pulse.

Data points for which no photodetachment signal was discernible are denoted by a 0 value,

with an upper limit of η = 0.005 determined by the average noise level. Points which have

a non-zero η but for which the error is equal to η showed an apparent photodetachment

signal at the expected time, but with a low signal to noise ratio, which may have produced

artefacts in the signal.

To enable comparison with the plasma density and temperature data from the Lang-

muir probe measurements, the η data for each position were interpolated to yield a value

every millisecond from 2 to 40 ms. Both the electron and negative ion densities (ne and

nh− respectively) were calculated using (31) and (32), as set out in Section 6.2.2. The

time evolution of the axial ne and nh− profiles are plotted in Figure 6.8.

6.4.2 Discussion

The maximum observed negative ion density was 1.25 × 1018 m−3, obtained at axial po-

sitions of 400 mm (at 2 ms into the pulse) and 500 mm (at 4 ms). The error on this peak

measurement is approximately 1×1018 m−3. The peak is transient, lasting only a few mil-

liseconds, and travels away from the antenna. The negative ion population is effectively

extinguished by 10 ms.

Comparison with the temperature plot (Figure 6.6b) shows that nh− is only significant

when Te is low, below ∼ 2.5 eV. This is consistent with the low temperatures required

to produce negative ions from vibrationally-excited hydrogen molecules (Section 2.1.3).

As the electron heating front propagates down the plasma from the antenna, the higher

temperatures dissociate the negative ions and nh− decreases.

To validate the behaviour of the negative ion density evolution, the reaction rate

coefficients for the formation and destruction of H– (〈σv〉form and 〈σv〉destr respectively)

were modelled using the measured temperature profile. The formation reaction is:

e– + H2(v ≥ 4) H –∗
2 H– + H,

where v indicates the vibrationally-excited molecular states included in the calculation.

The contributions from lower v states are negligible [39]. The destruction equation is:

e– + H– e– + H + e–.
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(a) Electron density evolution.

(b) Negative ion density evolution.

Figure 6.8: Time variation of axial (a) electron density and (b) negative ion density profiles

throughout MAGPIE during a 40 ms pulse, measured using laser photodetachment.
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Figure 6.9: The rate coefficients, 〈σv〉, for the formation and destruction of negative ions

as a function of electron temperature.

The expression used to determine the rate coefficients (assuming a Maxwellian distri-

bution of electrons) takes the form of a sum of nine terms, giving the natural logarithm

of the coefficient as follows [39]:

ln〈σv〉 =

8∑
n=0

bn(lnT )n,

where T is the electron temperature in eV. The sets of coefficients bn used for the reactions

considered here are given in Appendix D. 〈σv〉form and 〈σv〉destr are plotted as functions

of temperature in Figure 6.9.

〈σv〉form and 〈σv〉destr for the 40 ms plasma pulse in MAGPIE were calculated using

the temperature measurements from the Langmuir probe. A 2D plot showing the variation

of the balance between the two with axial position and time is shown in Figure 6.10. The

values of 〈σv〉form, 〈σv〉destr and nh− against time for a single axial position (500 mm,

corresponding to the maximum value of nh− at 4 ms) are plotted in Figure 6.11.

The observed nh− behaviour matches the predicted rate coefficients fairly well. The 2D

plot (Figure 6.10) shows that the region in which the formation reaction rate coefficient is

largest coincides with the region of low electron temperature and high negative ion density.

This is illustrated further by Figure 6.11, in which the initial domination of 〈σv〉form is

coincident with the observed increase and peak in nh− .
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Figure 6.10: Evolution of the balance between the rate coefficients for the formation

(〈σv〉form) and destruction (〈σv〉destr) of negative ions on axis throughout MAGPIE during

a 40 ms pulse. Positive values correspond to the domination of 〈σv〉form.

Figure 6.11: Evolution of the estimated negative ion formation and destruction rate coef-

ficients at the 500 mm axial position throughout a 40 ms pulse (solid lines, left-hand axis).

The negative ion density data (+) are plotted on the right-hand axis for comparison.
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Figure 6.12: Axial experimental (scatter points) and simulated (solid lines) nh− profiles

throughout MAGPIE in the initial and final stages of the 40 ms plasma pulse. Initial

(6 ms) data is shown in black and final (39.8 ms) data in red.

〈σv〉destr starts to increase at approximately the same time as nh− starts to fall.

〈σv〉form also begins to decrease, and nh− drops dramatically as the destructive pro-

cess begins to dominate. The rate coefficients and the observed density become steady

after ∼ 20 ms. We conclude that the qualitative behaviour of the negative ion density is

consistent with that expected from consideration of the interactions of the plasma species

and the temperature values measured using the Langmuir probe.

nh− profiles were also modelled using the global simulation discussed in Section 6.3.2.

The initial (6 ms) and final (39.8 ms) experimental and simulated data are plotted in Figure

6.12. The agreement is relatively good: the initial peak position is approximately in the

correct place, although the model underestimates nh− behind the neutral depletion front

(< 450 mm). Such discrepancies are to be expected, however, as the simulation does not

evolve in time, meaning that the transient nature of the neutral depletion channel and

negative ion peak cannot be captured.
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Figure 6.13: Spectrogram showing the evolution of the frequency components (up to

1000 kHz) present in the floating potential signal at an axial position of 500 mm. Overlaid

in black are the fundamental and second harmonic components of the Alfvén frequency,

estimated from the plasma density measurements (using a scale factor to match the peaks

in the spectrogram).

6.5 Vf frequency spectra

In a similar analysis to that carried out on the YLPD, the evolution of the frequency

spectrum of the plasma floating potential, Vf , was studied. The potential across the

Langmuir probe was allowed to float throughout the 40 ms pulse, and the voltage across it

(Vf ) was recorded with a sampling rate of 40 MHz. The probe position was again chosen

to be on axis at 500 mm to correspond to the observed peak in nh− .

A running fast Fourier transform analysis was applied to the data to track changes in

the spectrum throughout the pulse. The width of the data window used for each spectrum

was 0.5 ms, and the step between windows was 0.05 ms. Figure 6.13 shows the resulting

spectrogram for the 500 mm axial position. The frequency range studied was restricted to

0− 1000 kHz, and hence the large RF component at 13.56 MHz is not shown.

Overlaid on this plot is the estimated behaviour of the fundamental and second har-

monic modes of the Alfvén frequency, νa (see e.g. [122]). This is calculated from the
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measured plasma density data at 500 mm according to:

νa =
B

λ
√
µ0mini

,

where B is taken to be the magnetic field strength from the DC field coils at 500 mm, and

λ is the wavelength of the mode. λ is an unknown quantity, and its value has been chosen

to match the calculated frequencies with those of the strongest peaks in the spectrum:

λ = 2.2 m for the fundamental mode and 1.1 m for the second harmonic for these data.

The chosen wavelengths are comparable to the 1.7 m total length of MAGPIE, and we

note that, as B varies axially, the real wave structure will not replicate the ideal ‘plucked

string’ case.

Selecting the wavelength in this way means that the predicted and observed frequen-

cies cannot be quantitatively compared. On a qualitative basis, however, the shape of

the νa evolution appears to correspond relatively well to that of the peaks seen in the

spectrogram after ∼ 10 ms. It is therefore likely that there are Alfvénic modes present in

MAGPIE throughout the remaining 30 ms of the pulse. The onset of these modes occurs

at approximately the same time as the rise in the electron temperature above 2 eV and

the negative ion density dropping by a factor of 10 from its peak value.

To attempt to explain the cause of the onset of these Alfvénic modes, we return to

neutral depletion. If the Alfvén frequency is on a similar scale to the collision frequencies

between the hydrogen ions and neutral species, these collisional interactions will damp

the Alfvén waves. To investigate this, we again study the output of the 2D global model

of MAGPIE (Section 6.3.2), which calculates collision frequencies between a number of

species in the plasma, as well as their densities [119].

Figure 6.14a shows the predicted densities of atomic and molecular hydrogen (nh and

nh2 respectively) for 6 ms and 39.8 ms into the plasma pulse. The calculated collision

frequencies between hydrogen ions (H+) and both of these neutral species are plotted for

the same times in Figure 6.14b.

Initially, the neutral depletion channel does not extend throughout MAGPIE (for the

6 ms simulation data it is set to reach 450 mm), and the atomic neutral density peaks

in the mirror region at around 530 mm. The molecular hydrogen density is much lower

in this region and therefore interactions with atomic hydrogen dominate. The collision

frequency between H and H+ follows a similar distribution to that of nh, with a peak

height of ∼ 230 kHz just past 500 mm. The approximate fundamental Alfvén frequency

of the plasma at 500 mm at this time is expected to be ∼ 280 kHz (Figure 6.13). The two
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(a) Neutral atomic and molecular density profiles.

(b) Collision frequency profiles for ion-neutral interactions.

Figure 6.14: Simulated axial profiles for (a) neutral species densities and (b) H+-neutral

collision frequencies in MAGPIE towards the beginning and end of the pulse. Data for

atomic hydrogen (H) are shown in black, and that for molecular hydrogen (H2) in red.

The initial values (+) simulate the profile at 6 ms into the pulse, and the final values (×)

are taken at 39.8 ms.
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frequencies are of the same order of magnitude, suggesting that interactions between ion

and atomic neutrals could plausibly suppress the Alfvénic modes in the first ∼ 15 ms.

At the end of the pulse, the neutral depletion channel has propagated to the end of

the target chamber, and nh has decreased sufficiently to lower the collision frequency by

almost a factor of five (to around 50 kHz). The Alfvén frequency (∼ 400 kHz) is dominant,

meaning that Alfvénic modes are able to propagate through the plasma. The H+ − H2

collision frequency remains insignificant compared to the Alfvén frequency.

It is clear from the spectrogram that these Alfvénic modes are not the only features

present. Prior to the transition at around 10 ms, there are weak modes at lower frequencies

(below ∼ 200 kHz). More features appear after this transition, most of which show the

same time evolution as the Alfvénic modes. The strongest ones appear below 400 kHz,

and are regularly spaced in frequency. These may be the result of another coherent mode

(potentially due to molecular ions) interacting with the Alfvén wave, creating a cascade of

features. An alternative cause could be the non-uniform magnetic field profile throughout

MAGPIE, but these possibilities have not yet been investigated in detail.

6.6 B-dot probe measurements

6.6.1 Evolution of the magnetic field strength

Bx and By data were recorded throughout the 40 ms pulse with a sampling rate of 125 MHz,

at axial positions from 0 mm to 660 mm in 30 mm steps. The root mean square amplitudes

of the x and y components were combined to give the average magnitude of the radial

component of the magnetic field strength on axis. Figure 6.15 is a 2D colour map showing

the evolution of the axial profile of this average radial field strength (|Br|) throughout

the pulse. The profile remains fairly constant until ∼ 17 ms, at which point it undergoes

significant changes. In the 50 mm closest to the antenna, and beyond ∼ 150 mm, |Br|

increases, but between these two regions it appears to decrease, and then slowly increase

again after 30 ms. At all times, however, the field strength weakens considerably beyond

the ∼ 200 mm position.

Similar behaviour of the evolution of |Br| in MAGPIE has been previously observed

[123]. The significant reduction of the field strength away from the antenna indicates that

the helicon waves it launches are damped before travelling the length of the machine.

The observation suggests that these waves are not the direct cause of the plasma heating
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Figure 6.15: Time evolution of the root mean square amplitude of the radial component

of the magnetic field strength on-axis throughout MAGPIE [110].

that is observed in the evolution of the electron temperature (Section 6.3), which does

reach the full length of the target chamber. This is consistent with the hypothesis that

neutral dynamics are most important in determining the plasma behaviour in MAGPIE,

although it is also possible that the diffusion of hot electrons produced by the antenna

causes this effect. Further study of the neutral depletion hypothesis is necessary to confirm

its applicability to the plasma in MAGPIE.

6.6.2 Frequency spectra

Running fast Fourier transform analyses (as for Vf in Section 6.5) were also carried out

on the raw x and y component data at a position of 510 mm. Figures 6.16a and 6.16b

show the spectrograms for the Bx and By data respectively. Again, the frequency range is

restricted to 0−1000 kHz, and the large RF component at 13.56 MHz is not shown. Mode

structures are visible which are similar to those in the Vf spectra. At low frequencies

(< 400 kHz), the shape of the evolution of the visible peaks closely follows that of the

modes in the Vf spectrogram, although the exact frequencies appear to be shifted. The

peaks are also weaker relative to the background in the B data compared to the Vf data

and, while the majority of the features in the B spectrograms appear after the 10 ms

transition, the highest frequency mode is visible from ∼ 6 ms.
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(a) Bx spectrogram.

(b) By spectrogram.

Figure 6.16: Spectrograms showing the evolution of the frequency components (up to

1000 kHz) present in (a) the x and (b) the y components of the magnetic field from the

antenna, at an axial position of 510 mm.
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It is not yet clear what causes the differences between the Vf and B spectrograms.

The similarity of the time evolution of the peaks suggests that the modes observed in the

B data are also linked to the plasma density, and it is possible that the ion motion which

propagates the Alfvén waves produces oscillations in Bx and By at a similar frequency.

The cause of the early appearance of a coherent mode at 6 ms is less clear, but could

potentially be attributed to the motion of molecular ions which is not damped by ion-

neutral collisions. To study these fluctuations further, a more detailed, time-dependent

simulation would be required to model the wavefields throughout MAGPIE.

6.7 Summary

The behaviour of 40 ms hydrogen plasma pulses has been observed in the helicon device

MAGPIE. Peak negative ion densities of 1.25 × 1018 m−3 (error ∼ 1 × 1018 m−3) were

measured in regions where the temperature dropped below 2.5 eV. This is consistent with

the expected behaviour of negative ions, which are neutralised at higher temperatures.

The evolution of the plasma properties throughout the pulse occurs on a timescale

of milliseconds, with a steady state axial profile reached within ∼ 20 ms. This timescale

is inconsistent with those expected from consideration of e.g. the ion sound speed or

diffusion, but appears to correlate well with the behaviour predicted by including neutral

dynamics in the system. Scaling of previous measurements of neutral depletion timescales

in xenon plasmas to account for the mass difference of hydrogen molecules is consistent

with the observations made here [119,121]. We suggest that the observed plasma dynamics

can be explained by the propagation of a neutral depletion channel through MAGPIE from

the antenna to the target region.

Analysis of the power spectrum of the floating potential throughout the pulse revealed

the possible presence of Alfvénic modes in the plasma after ∼ 10 ms, coinciding with the

passage of the electron heating front through the plasma. These measurements are also

consistent with the hypothesis that neutral dynamics and neutral depletion are dominant

in the system. Simulations of the plasma in MAGPIE, including neutral dynamics, show

that ion-neutral collision frequencies are initially comparable to the predicted Alfvén fre-

quency, but are significantly lower when the Alfvénic modes are measurable. We therefore

conclude that a high neutral density initially suppresses Alfvénic activity, but once the

neutral depletion channel has travelled through the plasma, collisions are reduced and the

ions are able to support Alfvén waves.
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Measurements of the helicon magnetic wavefield strength on axis through the plasma

(Figure 6.15) show that the helicon waves are strongly suppressed within 200 mm of the

antenna. This further supports the hypothesis that neutral dynamics, rather than helicon

wave heating, are predominantly responsible for the observed plasma evolution. The power

spectra of the magnetic field components bear a strong resemblance to that of the floating

potential.

The measured peak value of nh− shows promise for the use of helicon plasma sources for

neutral beam injection systems, as it is an order of magnitude above the required threshold

for NBI applications. However, it is clear that, with these operating parameters, the peak

density is a transient feature, whereas an NBI source would require high densities to be

sustained over much longer timescales in order to operate effectively. Further investigation

of the properties of the plasma pulse, particularly the effects of the neutrals in the system,

is needed to better understand the plasma behaviour and increase the duration of the peak

negative ion density. An extension of the study to deuterium plasmas is also required in

order to fully understand the implications for tokamak NBI applications [107].
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Chapter 7

Conclusions and future work

The issues surrounding the input and removal of power in a tokamak are significant ob-

stacles to the success of fusion as the clean commercial energy source of the future. This

thesis focuses on studies relevant to power injection and handling using two different lin-

ear plasma devices: the York Linear Plasma Device (YLPD) and the Magnetised Plasma

Interaction Experiment (MAGPIE).

How to handle the large levels of exhaust power from a fusion plasma in a tokamak is

a key focus of research around the world. It is predicted that the power fluxes in ITER

and future large tokamaks will be well in excess of the 10 MW m−2 limit imposed by the

material properties of the divertor plates, and the development of methods to reduce the

amount of power delivered to the divertor is therefore crucial.

Plasma detachment from the divertor plates is one such method, requiring recombina-

tion of the plasma to be induced in the vicinity of the divertor target plates. Recombination

not only removes charged particles before they can impact (and damage) the plates, but

also results in the emission of photons from the excited neutral particles that are pro-

duced. These photons carry energy in all directions, dissipating some of the power and

hence reducing the flux to the divertor.

Detachment will be employed on ITER, and experimental tokamak research is ongoing

to attempt to describe and control the process more fully. Linear plasma devices can also

contribute to our understanding in this field, as they can be used to replicate divertor

plasma conditions and study the processes fundamental to detachment. The linear ge-

ometry removes the complexity of the tokamak’s toroidal shape, and improves the level

of diagnostic access. These advantages are conducive to running steady state or high

repetition rate experiments to study the basic plasma physics governing detachment.
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In the case of power injection, smaller plasma sources are vital for producing the ion

beams that are accelerated and neutralised for tokamak neutral beam injection (NBI)

heating systems. Current NBI sources use caesium catalysts to increase the negative ion

production rate of inductively coupled plasma sources. A highly reactive element, caesium

introduces further safety and cost considerations, and an ideal negative ion source would

be able to function without it. It is possible that helicon plasma devices could be developed

to achieve a sufficiently high negative ion production rate without the need for a catalyst.

The preceding chapters presented work in both these areas. Detachment in a linear

hydrogen plasma was studied in the YLPD, with a particular focus on fast, kHz timescales,

and the behaviour of the negative hydrogen ion population in the helicon device MAGPIE

was studied. This research has provided insight into the key phenomena in both cases,

and highlighted areas in which further work is required.

We first address the study of the electron-ion recombination (EIR) regime of detach-

ment in the steady-state, hydrogen plasma column in the YLPD, which aimed to de-

velop understanding of the detachment process. The current level of understanding of

detachment in tokamaks is restricted in particular by the lack of knowledge of anoma-

lous transport across magnetic field lines (see e.g. [51, 124, 125]), which in turn limits the

effectiveness with which detachment can be implemented. A more comprehensive un-

derstanding of cross-field transport would increase the predictive capabilities of divertor

plasma models, and lead to enhanced optimisation of future fusion reactors.

In linear devices, several studies have concluded that radial transport plays a role in

achieving detachment, for example in PISCES-A [68] and NAGDIS-II [71, 75]. However,

the mechanisms of the process are not well understood. We have reviewed previous work

in the YLPD which studied both the EIR and MAR (molecular-activated recombination)

detachment regimes by injecting neutral hydrogen gas into the target chamber [85]. This

previous study only considered the behaviour along the axis of the plasma column, con-

cluding from fast Langmuir probe measurements (of the MAR regime only) that radial

broadening and fast timescale events in the EIR detached plasma were unimportant.

During tests confirming that the EIR detached plasma previously studied in the YLPD

could be sufficiently well replicated under altered operation conditions, visual inspection

of the plasma column implied that the detached plasma column was in fact broader than

in the attached state. Time-averaged hydrogen Balmer emission profiles (measured by

Lisgo [88]) were presented which confirmed this. The radial profiles are hollow, with
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peaks situated at ±6 mm and extending out beyond ±10 mm, compared to the attached

plasma column which has a radius of less than 3 mm.

To investigate the cause of the spatial distribution of the emission, a simple calculation

of the three-body recombination rate across the plasma column was carried out. This

showed that combining a broadened density profile with a narrower, cooler temperature

profile (chosen to match experimental data taken at the 0 and 3 mm radial positions)

yielded a similar hollow emission profile to that measured experimentally. However, the

overall width of the profile was smaller by a factor of ∼ 2, suggesting that simply cooling

and broadening the time-averaged density profile is insufficient to describe the processes

occurring in the detached YLPD plasma.

This discrepancy led to the suggestion that radial transport takes place in the plasma

column on timescales faster than the 1 ms resolution of the Langmuir probe diagnostic,

providing an additional mechanism for the observed broadening. The remainder of the

experimental investigation therefore focused on two diagnostic techniques with higher

temporal resolution: fast frame imaging (FFI), with an operating frequency of 50 kHz;

and 1 MHz floating potential fluctuation (Ṽf ) measurements using two Langmuir probes.

The FFI data showed bright filamentary structures, radially narrow (5− 8 mm width)

and azimuthally extended (up to 180°), appearing intermittently at radii larger than 6 mm.

This broadening of the plasma column beyond ±6 mm is even greater than the time-

averaged emission profiles showed. The filaments appear to be coherent, and out of phase

with the activity on the opposite side of the column, but these analyses are difficult to

interpret. They are potentially affected by the limited resolution of the pixel intensity, as

well as by the foreground and background plasmas.

The radial and azimuthal extent of the filaments in the images is likely to partially

result from the relatively long 20 µs exposure time of the camera, which limited the ability

to track the motion of individual filaments. The actual filament sizes may therefore be

much smaller than is indicated by the FFI data, a conclusion supported by the radial

velocities predicted by the Ṽf time-delay correlation measurements. The long exposure

time also meant that the creation and destruction of the filaments was unable to be studied.

Recording Ṽf with 1 µs resolution gave more insight into the behaviour of the EIR

detached plasma. These measurements again show that the plasma column broadens

by a factor of at least two when detached compared to the attached state. The large

reference probe at the 6 mm position limits the radial range of these data, as it perturbs
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the column beyond this radius. Nonetheless, time-delay correlation analysis between large

amplitude negative events recorded by the reference probe and the Ṽf signals recorded

by the moveable probe implies that some radial transport of events occurs in the plasma.

The strongest evidence indicates a velocity directed out of the column, but there is also a

suggestion of inward motion.

The estimated outward velocity of the plasma filaments is (650 ± 250) m s−1, which

suggests that a filament would travel a radial distance of at least 8 mm in the 20 µs FFI

exposure time. This is at the upper end of the observed filament width in the FFI data,

implying that the actual width of the structures may be on the order of 1 mm or less. This

is consistent with the 3 mm upper limit on the width determined from the duration of the

events in the Vf data, and these results appear to support the theory that radial transport

is responsible for the broadening of the plasma beyond that predicted by the three-body

recombination model.

Finally, a hypothesis was presented in which the centrifugal instability provides the

mechanism for the observed radial transport. This mechanism arises due to the rotation

of the plasma column caused by the E × B drift. The rotating plasma feels an effective

centrifugal force, which leads to a second azimuthal drift. This second drift is dependent

on both mass and charge, and the ions and electrons therefore have different velocities.

A charge separation then arises across any element (or ‘blob’) of plasma that is displaced

in the column, resulting in an azimuthal electric field and an associated E×B drift, this

time directed radially outwards.

This mechanism could plausibly result in the intermittent ejection of ‘blobs’ of plasma

from the column, producing the filamentary structures that have been observed. It also

provides an explanation for the inward-directed motion suggested by the Ṽf correlation

analysis: ejection of the blob leaves a region of depleted density, which experiences a

charge separation in the opposite direction, and a resulting inward E×B drift.

As well as being consistent with the propagation observed in the Ṽf data, the centrifugal

instability hypothesis is also supported by the maximum ratio of the Ṽf amplitude to the

measured temperature in the column, which lies in the range 1.3−2 at the 3 mm position.

According to one of several criteria listed by Brochard et al., the presence of the centrifugal

instability is suggested by values ≥ 1 [99]. However, the current data set is limited, and

there are more observations that can be made to confirm whether this instability is indeed

present. The data presented here have provided sufficient information to suggest a possible
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explanation for the behaviour of the EIR detached plasma in the YLPD, but a more focused

study is required to continue this work.

Firstly, the remaining criteria listed by Brochard et al. for instability identification can

be tested to provide a more thorough assessment of the detached plasma behaviour. This

will require accurate measurements of the time averaged values of density and temperature

across the column, as well as fast timescale measurements of their fluctuations. To achieve

this, improvements to the Langmuir probe system on the YLPD should be made to increase

the spatial and temporal resolution of the diagnostic, and decrease the disturbance to the

plasma column. Improving the resolution and azimuthal range of the probes will also

increase the accuracy of the time-delay correlation measurements, which will allow the

two-dimensional motion of the filaments to be tracked with greater precision.

The behaviour of the emission from the filaments can also be observed in more detail

to increase understanding of the links between the radial transport and the three-body

recombination processes that occur in the detached state. Clearly the time resolution of the

FFI diagnostic must be improved, which may require a more sensitive detection system to

compensate for the lower light levels. Filtering the emission to separate the high-n Balmer

lines produced through three-body recombination from the Hα photons emitted from the

main, ionisation-dominated plasma beam may also be of use in analysing the images with

greater accuracy.

These detailed observations should not only provide stronger evidence for verification

of the radial transport mechanism in the EIR detached plasma, but can also feed into

the formation of a comprehensive model of the processes that take place to produce and

sustain detachment in the YLPD. Ideally, such a model will describe the formation and

motion of filaments, how they cool as they travel (enabling recombination to occur), and

how they drain away as the plasma density is depleted. An iterative process of simulating

synthetic diagnostic results and comparing them to the experimental data can be used to

refine the behaviour of the model. This is particularly important for FFI, which is only

able to observe the filaments when they have become cool enough to recombine and emit

high-n Balmer emission.

Additional experimental information which would inform the detachment model in-

cludes measurements of the axial speed of the plasma column and the local neutral hy-

drogen density. A retarding-field energy analyser has previously been used to measure the

axial ion speed in the YLPD (see Rusbridge et al. [77]), and could be employed to study
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how the interaction with neutral hydrogen in the target chamber affects the speed along

the plasma column. This would be important in understanding how the axial motion of

the plasma contributes to the draining of the plasma filaments. Measuring the neutral

density (for example with two-photon absorption laser-induced fluorescence [126]) would

increase the accuracy with which plasma-neutral interactions, and hence the cooling of

the plasma, can be modelled.

A full model of EIR detachment, including three dimensional motion of the plasma

and the interactions between plasma particles and with neutrals, is an ambitious goal,

but working towards this will result in a deeper understanding of how instabilities and

transport in the plasma lead to its detachment. The results thus far appear to suggest that,

rather than a single mechanism dominating the behaviour, there is an interplay between

transport and particle interactions in which the radial transport of plasma filaments allows

them to interact with neutral gas and cool sufficiently to undergo recombination.

The BOUT++ modelling framework (developed by Dudson et al. [127]) has previously

been used to simulate the transport of plasma filaments in the tokamak SOL (for example

in JET [128–130]). It has also been employed in studies of turbulence in linear devices (see

e.g. [131, 132]), which have recently been developed to include a number of basic atomic

physics processes, including ionisation, three-body recombination and charge exchange [3].

These simulations could provide a starting point for the development of a comprehensive

model of EIR detachment in the YLPD.

Results from the suggested experimental and modelling work could have significant

implications for our understanding of detachment in tokamaks. The presence of blobs

in tokamaks has been well documented (see e.g. [133] and references therein), but there

is limited knowledge of the relationship between blob transport and detachment. Some

observations have been made in AUG which focus on characterising fluctuations in density

and radiation, but the physics linking these processes is not fully understood [56,57].

The mechanism proposed as an explanation for radial transport in the YLPD is not

directly applicable to tokamaks, as the centrifugal instability arises only in linear devices

due to the rotation of plasma column. However, mass- and charge-dependent drifts occur

in tokamaks due to both the curvature and gradient of the magnetic field, and these can

result in similar instabilities which may drive cross-field plasma blob transport [133,134].

If a model can be developed to predict the recombination and detachment resulting from

blob transport in a linear device, elements of the theory may be transferrable to tokamaks
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to predict similar behaviour in the scrape-off layer and divertor plasma. This would lead

to a much greater understanding of the detached divertor regime, and hence would be key

to optimising the operation of fusion reactors.

We now return to the study of the negative hydrogen ion population in the helicon

plasma device MAGPIE, which aimed to investigate the plausibility of using helicon plasma

devices as caesium-free negative ion sources for neutral beam injection (NBI) systems in

tokamaks (a possibility suggested by e.g. Franzen and Fantz [15]). There are several

requirements which such a source must meet.

Firstly, it must be able to operate continuously in order to provide heating for steady-

state tokamak operation. It must be capable of producing a sufficiently high negative ion

current density (represented here by a guideline density threshold of 1×1017 m−3), and the

negative ions must be efficiently extracted from the source. Finally, it should be capable of

operating with deuterium (the relevant isotope for fusion reactors). MAGPIE is inherently

a pulsed plasma source, as its operation time is limited by heating of the chamber and

the magnetic field coils. The evolution of the plasma parameters was therefore studied

throughout a 40 ms pulse, with a particular focus on the negative hydrogen ion density

(nh−), as a first step towards determining the feasibility of such a system.

A variety of diagnostics were employed. An axial Langmuir probe was used to track

the evolution of the plasma density and temperature with 0.2 ms resolution throughout the

pulse. The same probe was also used to record the time series of the floating potential (Vf )

with a sampling rate of 40 MHz in order to consider the power spectrum of fluctuations

in the plasma at the 500 mm axial position. The addition of a 1064 nm laser enabled the

use of the laser photodetachment technique to measure the axial nh− profile, and a B-dot

probe was used to consider the amplitude and power spectrum of the oscillating magnetic

field produced in the plasma by the helicon antenna.

The primary result is the measurement of a peak nh− value of 1.25×1018 m−3 (with an

error of ∼ 1×1018 m−3). This is an order of magnitude higher than the required threshold

density, and is a promising initial indication that helicon devices are capable of producing

sufficient negative ions to operate an NBI system. However, the time evolution of the

nh− profile throughout the 40 ms pulse shows that this peak is a transient feature. The

peak is visible at the 400 and 500 mm axial positions (approximately coinciding with the

maximum in the applied DC magnetic field profile) within the first 5 ms of the pulse, but

decays to negligibly small values within a further 10 ms.
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Inspection of the temperature profile evolution shows that the region in which negative

ions are present coincides with the coldest region of the plasma, and the nh− decay occurs

as this region heats up beyond 2 eV. To confirm the link between the plasma temperature

and nh− , the negative ion formation and destruction rates were modelled using the mea-

sured temperature values, which yielded results that were consistent with the experimental

data. The heating of the plasma destroys the vibrationally excited hydrogen molecules

that are required to produce the negative ions, and neutralises those negative ions that

are already present. The reduction of nh− and the heating of the coldest region of plasma

therefore occur on the same timescale.

The ion density profile exhibits a general increase over the first 10 ms, with a peak

at around 400− 500 mm, before decaying again to reach a lower magnitude, steady state

distribution by 20 ms. The evolution of the frequency spectrum of the 500 mm Vf data

shows a similar behaviour: coherent modes appear at approximately 10 ms, which increase

in frequency before stabilising at around 20 ms. The time dependence of the mode frequen-

cies correlates reasonably well on a qualitative basis with that predicted by calculating

the Alfvén wave frequency from the density measurements through time (with the mode

wavelength chosen to match the observed frequency values).

Based on the axial observations made, we suggest that neutral dynamics in the helicon

plasma could be responsible for the observed behaviour, and propose neutral depletion

as the driving mechanism. Neutral depletion introduces an upper density limit in high-

power systems, where the large input power is able to ionise a significant fraction of the

available neutrals. This depletes the reservoir of neutral ‘fuel’ which can create more

plasma, imposing a limit on the maximum plasma density which can be obtained [120]. In

MAGPIE, we propose that a neutral depletion front propagates upstream of the antenna

towards the neutral gas source within the first 10− 15 ms, with formation and heating of

plasma occurring in front of it as it travels.

Initial tests of this hypothesis were carried out using a global model to simulate the

plasma parameters in the initial and final stages of the pulse. The neutral density pro-

files for this model were chosen to replicate neutral depletion, and the simulated results

reproduce the measured density and temperature profiles reasonably well.

The results of this model are also consistent with the features observed in the evolution

of the Vf power spectrum. The suppression of Alfvénic mode frequencies at 500 mm prior

to 10 ms is suggested by the high plasma-neutral collision frequencies predicted by the
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global model for the initial plasma state, due to the high neutral density at this position.

These simulated collision frequencies have a similar magnitude to the Alfvén frequency,

and could act to suppress Alfvénic oscillations in the plasma. Conversely, the predicted

collision frequencies are significantly reduced in the final modelled state, and so Alfvén

waves would be able to propagate as observed.

The B-dot measurements of the evolution of the magnetic wavefield produced by the

helicon antenna also seem to suggest that the helicon waves are not the direct cause of

plasma heating upstream of the antenna. Suppression of the helicon waves in the upstream

plasma has been previously observed in MAGPIE (see [123]), and is consistent with the

theory that the dominant mechanism controlling the plasma formation and heating is

the neutral dynamics. The power spectra from these B-dot measurements are harder to

interpret. The visible modes exhibit a similar time evolution to the Alfvénic modes in

the Vf data (possibly indicating that they too are linked to the plasma density), but they

occur at different frequencies, and the onset of some modes is as early as 6 ms.

These experiments to investigate the behaviour of the negative ion population in the

helicon source MAGPIE have yielded promising results regarding the potential use of heli-

con devices as negative ion sources for tokamak NBI systems, and have led to the proposal

of neutral depletion as a possible mechanism governing the evolution of the plasma. In

a similar manner to the YLPD detachment study, this work has laid some important

foundations on which future studies can build to further develop our understanding of

the processes involved. We know that high negative ion densities are achievable, but the

mechanism must be understood more fully in order to develop the technology into the

steady state source of negative deuterium ions that is needed for NBI for fusion reactors.

One clear development requirement is for the transient nh− peak to be sustained

throughout the plasma pulse in order to provide a continual source of negative ions. To

achieve this, a more thorough understanding of the mechanism behind the creation of

the negative ions is needed, which can be obtained through developing the experimental

methods and the global model in tandem via an iterative feedback process.

Extending the measurements of the plasma parameters to consider their radial profiles

is key, not only to improve our understanding of the plasma behaviour, but also because

nh− may increase off-axis (cf. [135]). A negative ion population spread over a wide cross-

sectional area will also eventually assist in their extraction. Other measurements that

would be of use in improving the accuracy of the global model are the ion speed (for
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example using a Mach probe, cf. [73]) and neutral density (using e.g. the two-photon

absorption laser-induced fluorescence technique [126]). These additional measurements

can be used to verify the simulation results, and feed back into improving the model

input.

Finally, once the helicon plasma evolution can be reasonably well described, it will be

necessary to test the behaviour of the source when operating in deuterium. The larger

mass of this isotope may cause differences in the mechanisms governing the plasma, and it

will be extremely important to understand these. An efficient extraction system will also

be required in order to complete the development of a source that can be used for NBI.

Overall, the two exploratory studies described in this thesis have illustrated the ca-

pabilities of linear plasma devices in aiding the understanding of basic plasma physics

processes relevant to key issues impeding the commercial success of fusion power. Detach-

ment is extremely important for the handling of the exhaust power from a fusion plasma

in the divertor region of a tokamak, and the development of a caesium-free negative ion

source would be highly beneficial to the operation and maintenance of the neutral beam

injection systems used for heating and fuelling tokamaks. This work has taken some im-

portant steps towards elucidating the mechanisms responsible for both detachment via

electron-ion recombination processes, and high density negative hydrogen ion production

in a helicon plasma source.
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Appendix A

Sheath physics

Here we provide the details of the one dimensional fluid analysis used to determine the

conditions in the sheath region that forms around a surface in a plasma [23]. When an ob-

ject is inserted into a plasma, it charges up negatively: the electron flux in a quasineutral,

thermal plasma is always greater than the ion flux (because the electron mass is much

smaller, giving them a greater velocity), so the electrons reach the surface first. This sets

up a negative potential around the surface, which accelerates ions and decelerates elec-

trons to balance out the fluxes. In this analysis, we take the potential, V , relative to the

plasma potential, Vp (i.e. Vp = 0).

In order to describe the plasma behaviour in the sheath, we begin by assuming cold

ions, with temperature Ti = 0. We can analyse the potential in the sheath region by

considering the imbalance between the electron and ion densities that arises there:

d2V

dx2
= − e

ε0
(ni − ne). (A.1)

The ion density, ni, can be expressed using the conservation of energy (A.2) and ion flux

(A.3) throughout the sheath region (subscript se denotes the sheath edge):

1

2
mivi

2 = −eV =⇒ 1

2
mivse

2 = −eVse; (A.2)

nivi = const. = nsevse. (A.3)

Substituting vse yields:

ni = nse

(
Vse
V

) 1
2

. (A.4)

For the electrons, we use a Boltzmann distribution, so that:

ne = nse exp

[
e(V − Vse)

kTe

]
. (A.5)
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If we substitute (A.4) and (A.5) into (A.1), the Poisson equation becomes:

d2V

dx2
= − e

ε0
nse

[(
Vse
V

) 1
2

− exp

(
e(V − Vse)

kTe

)]
. (A.6)

We proceed by considering a position just inside the sheath, where the potential sat-

isfies V = Vse −∆ such that ∆ is small and positive. First order Taylor expansions can

then be applied to both terms within the square brackets in (A.6), yielding (after some

manipulation):
d2∆

dx2
=
e∆

ε0
nse

[
e

kTe
− 1

2|Vse|

]
. (A.7)

As Vse is negative, we have written the equation in terms of its absolute value for clarity.

(A.7) has two solutions. When the right hand side is negative, the solution is oscil-

latory: this is unphysical and is not observed experimentally. A sheath does not form,

therefore, for Vse > −kTe/2e, and the sheath analysis is invalid close to the plasma potential.

The positive solution is exponential, and arises when:

e

kTe
≥ 1

2|Vse|
.

Removing the absolute value, and substituting for Vse using (A.2), gives us the following

criterion for the velocity at the sheath edge:

vse ≥
√
kTe

mi
= cs. (A.8)

This is the Bohm criterion: the velocity at the sheath edge must be greater than or equal

to the ion sound speed in the plasma, cs. A similar analysis for non-zero Ti yields the same

result with the full expression for the sound speed, in which Te is replaced by (Te + Ti).

To further constrain vse, we consider the fluid equations for conservation of particles

(A.9) and momentum (A.10):
dΓ

dx
=

d(nv)

dx
= Sp; (A.9)

nF = nqE − dp

dx
− nFdrag. (A.10)

These equations apply to both the ion and electron species. Γ is the particle flux (the

product of density, n, and velocity, v); Sp describes the particle source (from ionisation of

stationary neutrals); q is the charge of the species; E is the electric field; and p the pressure.

F on the left hand side is given by the classical ‘mass times acceleration’ formula. Fdrag

describes the frictional force on the fluid, which we assume to arise from the acceleration

of newly-formed ions up to the fluid velocity. We can therefore rewrite (A.10) as:

nmv
dv

dx
= neE − dp

dx
−mvSp. (A.11)
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We first apply conservation of momentum to the electron fluid. Assuming an isothermal

plasma, and that p = nkT , we can substitute (A.9) for the source term in (A.11), which

becomes:

nmev
dv

dx
= −neE − kT dn

dx
−mev

d(nv)

dx
. (A.12)

We then approximate the spatial derivatives using a characteristic length scale of the

system, L. This gives:
nmev

2

L
= −neE − nkT

L
− nmev

2

L
. (A.13)

As we saw in (A.8), the speed of particles in the sheath is characterised by the isothermal

ion sound speed:

cs =

√
k(Te + Ti)

mi
. (A.14)

If we substitute this expression for v in (A.13) in the isothermal approximation (Te = Ti =

T ), and rearrange, we obtain:

4nkT

L

me

mi
= −neE − nkT

L
. (A.15)

Since me � mi, the left hand side is negligible, and we can conclude that the electron

force balance is between the electric field and pressure gradient terms (first and second

terms on the right hand side respectively). We therefore write:

neE = −kT dn

dx
= −dp

dx
. (A.16)

We now turn to the ions. Conservation of momentum becomes:

nmiv
dv

dx
= neE − kT dn

dx
−mivSp. (A.17)

If we substitute (A.16) from the electron analysis, and then use the ion sound speed,

(A.14), we find:

nmiv
dv

dx
= −2kT

dn

dx
−mivSp;

nmiv
dv

dx
= −mic

2
s

dn

dx
−mivSp. (A.18)

Using (A.9) to write the density gradient in terms of Sp, (A.18) can be rewritten as:

nv
dv

dx
= −cs

2

v

(
Sp − n

dv

dx

)
− vSp,

and rearranged to give:

n
v2

cs2

dv

dx
= n

dv

dx
−
(

1 +
v2

cs2

)
Sp.
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Finally, we can introduce the Mach number, M = v/cs to subsitute for v and its derivative:

dM

dx
=

Sp
ncs

1 +M2

1−M2
. (A.19)

Since the ions are accelerated towards the surface, the right hand side of (A.19) must

be positive in order to avoid the occurrence of an unphysical singularity. This means that

M must be less than or equal to unity. We have therefore further constrained the Bohm

criterion (A.8) to:

vse = cs, (A.20)

i.e. the plasma fluid flow becomes sonic at the sheath edge.

We can then consider the density variation within the sheath. Summing the electron

and ion momentum conservation equations, (A.12) and (A.17), yields the conservation of

momentum equation for the plasma fluid:

n(me +mi)v
dv

dx
= −dpe

dx
− dpi

dx
− (me +mi)v

d(nv)

dx
. (A.21)

Neglecting me in comparison to mi, and with some manipulation of the derivative in the

third term on the right hand side, we obtain the relation:

d

dx

(
minv

2 + pi + pe

)
= 0. (A.22)

The sum within the brackets is therefore constant along the fluid flow. If we again use

p = nkT , the pressure terms can be grouped together and the constraint becomes:

nv2 + n
k(Ti + Te)

mi
= const.

The second term on the left hand side is ncs
2, and we can use the Mach number to write:

n(1 +M2) = const.

In the bulk plasma (x = 0), the density is denoted by n0, and as we are assuming

that the ions are stationary here, M = 0 and the constant is equal to n0. The density

distribution is therefore given by:

n =
n0

(1 +M2)
, (A.23)

and at the sheath edge (where M = 1):

nse =
n0

2
. (A.24)
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Figure A.1: Profiles of the potential (Φ); ion and electron densities (ni and ne); and ion

and electron velocities (vi and ve) throughout the sheath. xw is the position of the surface

(i.e. 0 on the horizontal axis corresponds to the surface, with the bulk plasma in the

negative direction). All quantities are normalised. Figure from [36].

The distributions of M , and hence v and n, can be obtained by integration of (A.19),

which is detailed further in Chapter 1 of [23]. We can also find the distribution of the

potential, V , by using the Boltzmann distribution, (A.5), to relate V to n and therefore

M . Other analyses yield similar results, e.g. that by Chodura [36]. Example sketches of

distributions for both electrons and ions are shown in Figure A.1.
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Appendix B

Hydrogen excited level population

coefficients

This appendix contains the coefficients used to calculate the populations of the upper levels

of the hydrogen Balmer alpha (Hα, quantum number p = 3) and gamma (Hγ , p = 6) lines

in the model of emission from the detached plasma in the York Linear Plasma Device

(Section 4.3). The coefficients are taken from the tables of Johnson and Hinnov, and are

given as functions of plasma temperature, Te, and density, n [89].

Tables B.1 and B.2 give the coefficients r0(p) for the level populations due to recombi-

nation for the Hα and Hγ lines respectively. The population, nrec, is calculated as follows:

nrec(p) = r0(p)ne(p),

where ne is the Saha equilibrium density of level p (as given by (26) in Section 4.3).

The coefficients for the level populations due to collisional excitation, r1(p), are shown

in Tables B.3 (Hα) and B.4 (Hγ). In this case, the equation for the population, nex is:

nex(p) = r1(p)n(1)
ne(p)

ne(1)
.
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Table B.1: The coefficents r0(3) used to calculate the population of the Hα line upper
level due to recombination, nrec(3) [89].

Te [eV]
n [m−3]

1× 1016 1× 1017 1× 1018 1× 1019 1× 1020

0.17 2.20× 10−05 4.00× 10−05 1.10× 10−04 7.00× 10−04 6.90× 10−03

0.34 2.20× 10−03 3.10× 10−03 6.00× 10−03 2.20× 10−02 1.30× 10−01

0.69 2.60× 10−02 3.30× 10−02 5.00× 10−02 1.20× 10−01 4.30× 10−01

1.38 1.10× 10−01 1.30× 10−01 1.60× 10−01 3.00× 10−01 6.80× 10−01

2.76 2.70× 10−01 2.90× 10−01 3.40× 10−01 5.00× 10−01 8.20× 10−01

5.52 4.80× 10−01 5.00× 10−01 5.40× 10−01 6.80× 10−01 9.00× 10−01

11.03 7.30× 10−01 7.40× 10−01 7.70× 10−01 8.50× 10−01 9.50× 10−01

22.06 1.00× 10+00 1.00× 10+00 1.00× 10+00 1.00× 10+00 1.00× 10+00

Table B.2: The coefficents r0(6) used to calculate the population of the Hγ line upper level
due to recombination, nrec(6) [89].

Te [eV]
n [m−3]

1× 1016 1× 1017 1× 1018 1× 1019 1× 1020

0.17 3.40× 10−02 1.10× 10−01 4.00× 10−01 6.60× 10−01 7.60× 10−01

0.34 1.10× 10−01 2.70× 10−01 6.40× 10−01 8.60× 10−01 9.40× 10−01

0.69 2.40× 10−01 4.50× 10−01 7.90× 10−01 9.40× 10−01 9.80× 10−01

1.38 3.80× 10−01 6.00× 10−01 8.70× 10−01 9.70× 10−01 9.80× 10−01

2.76 5.30× 10−01 7.20× 10−01 9.10× 10−01 9.80× 10−01 1.00× 10+00

5.52 6.80× 10−01 8.10× 10−01 9.40× 10−01 9.90× 10−01 1.00× 10+00

11.03 8.20× 10−01 9.00× 10−01 9.70× 10−01 9.90× 10−01 1.00× 10+00

22.06 9.70× 10−01 9.90× 10−01 1.00× 10+00 1.00× 10+00 1.00× 10+00

Table B.3: The coefficents r1(3) used to calculate the population of the Hα line upper
level due to collisional excitation, nex(3) [89].

Te [eV]
n [m−3]

1× 1016 1× 1017 1× 1018 1× 1019 1× 1020

0.34 1.00× 10−07 1.00× 10−06 1.00× 10−05 1.00× 10−04 1.10× 10−03

0.69 8.20× 10−08 8.10× 10−07 8.00× 10−06 7.70× 10−05 6.10× 10−04

1.38 7.10× 10−08 7.00× 10−07 6.80× 10−06 5.90× 10−05 3.30× 10−04

2.76 6.80× 10−08 6.70× 10−07 6.30× 10−06 4.90× 10−05 2.10× 10−04

5.52 7.20× 10−08 7.00× 10−07 6.50× 10−06 4.70× 10−05 1.80× 10−04

11.03 8.10× 10−08 7.80× 10−07 7.20× 10−06 5.10× 10−05 1.90× 10−04

22.06 9.10× 10−08 8.90× 10−07 8.20× 10−06 5.80× 10−05 2.10× 10−04
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Table B.4: The coefficents r1(6) used to calculate the population of the Hγ line upper level
due to collisional excitation, nex(6) [89].

Te [eV]
n [m−3]

1× 1016 1× 1017 1× 1018 1× 1019 1× 1020

0.34 5.20× 10−08 4.30× 10−07 2.30× 10−06 1.00× 10−05 7.20× 10−05

0.69 4.10× 10−08 3.00× 10−07 1.20× 10−06 4.00× 10−06 1.70× 10−05

1.38 3.40× 10−08 2.20× 10−07 8.70× 10−07 2.10× 10−06 6.60× 10−06

2.76 3.10× 10−08 1.90× 10−07 6.00× 10−07 1.50× 10−06 3.80× 10−06

5.52 3.20× 10−08 1.90× 10−07 5.90× 10−07 1.40× 10−06 3.20× 10−06

11.03 3.60× 10−08 2.10× 10−07 6.70× 10−07 1.60× 10−06 3.50× 10−06

22.06 4.10× 10−08 2.50× 10−07 8.20× 10−07 1.90× 10−06 4.30× 10−06
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Appendix C

Fast frame imaging data

This appendix contains additional fast frame imaging (FFI) data to give further details of

the results presented in Section 5.1 of Chapter 5.

Figure C.1 shows the full pressure evolution of the FFI data, from the attached plasma

to the EIR detached state. One example frame is shown for each target chamber pressure

value. We see the progression from the narrow column to the broadened detached state,

with the most significant transition occurring at the penultimate pressure value, between

Figures C.1x and C.1y as the pressure changes from 6.25× 10−3 to 6.5× 10−3 mbar.

Figure C.2 shows the full set of spectral data for the attached plasma state (3.1 ×

10−4 mbar): each image is a 2D colour map of the distribution of a single frequency

component across the image. The same data for the EIR detached state (7.25×10−3 mbar)

is presented in Figure C.3.

Both data sets show very strong DC and low frequency components, which saturate the

plot on the scale shown (Figures C.2(1), C.2(2), C.3(1) and C.3(2)). At higher frequencies,

neither state shows significant variation in the distribution. There is some fluctuation in

the peak strength (less than a factor of two), but the spatial distributions remain relatively

constant: the narrow column of the attached plasma; and the broadened, double peak

structure of EIR detachment. The only exception is at 25000 Hz in both cases (Figures

C.2(34) and C.3(34)), which retains the structure, but is a factor of 2− 3 weaker.

The full set of coherence data for the left-hand reference pixel (x = 40, y = 40) across

all frequency components is shown in Figure C.4. The behaviour with frequency is similar

to the power distribution, with strong coherence across the majority of the image at 0

and 757 Hz, and very little variation of the filamentary structure across the rest of the

spectrum.
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The phase data for the same reference pixel is shown for each frequency in Figure C.5.

Again, there is little to no phase difference across the plasma at 0 and 757 Hz, and the

structure due to the filaments is visible across the remaining frequencies. The resolution

of the 25000 Hz component is very limited (Figure C.5(34)). There is also some slight

variation in how the phase changes across the column, but the general distribution of the

in-phase and out-of-phase regions remains relatively constant.
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(a) 3.1× 10−4 mbar. (b) 3.7× 10−4 mbar. (c) 4.3× 10−4 mbar.

(d) 5.5× 10−4 mbar. (e) 6.5× 10−4 mbar. (f) 7.25× 10−4 mbar.

(g) 8.5× 10−4 mbar. (h) 1.05× 10−3 mbar. (i) 1.2× 10−3 mbar.

(j) 1.45× 10−3 mbar. (k) 1.75× 10−3 mbar. (l) 2.05× 10−3 mbar.

(m) 2.45× 10−3 mbar. (n) 2.65× 10−3 mbar. (o) 2.95× 10−3 mbar.

Figure C.1: Example mean-subtracted FFI frames for all target chamber pressures from

3.1× 10−4 mbar (attached) to 7.25× 10−3 mbar (EIR detached). Continued overleaf.
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(p) 3.2× 10−3 mbar. (q) 3.4× 10−3 mbar. (r) 3.6× 10−3 mbar.

(s) 3.8× 10−3 mbar. (t) 4.1× 10−3 mbar. (u) 4.5× 10−3 mbar.

(v) 5.0× 10−3 mbar. (w) 5.5× 10−3 mbar.

(x) 6.25× 10−3 mbar.

(y) 6.5× 10−3 mbar. (z) 7.25× 10−3 mbar.

Figure C.1: Example mean-subtracted FFI frames for all target chamber pressures from

3.1× 10−4 mbar (attached) to 7.25× 10−3 mbar (EIR detached).

194



(1) 0 Hz. (2) 757 Hz. (3) 1515 Hz.

(4) 2272 Hz. (5) 3030 Hz. (6) 3787 Hz.

(7) 4545 Hz. (8) 5303 Hz. (9) 6060 Hz.

(10) 6818 Hz. (11) 7575 Hz. (12) 8333 Hz.

Figure C.2: Distribution of power components across the FFI data for the attached plasma

(target chamber pressure of 3.1× 10−4 mbar). Continued overleaf.
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(13) 9090 Hz. (14) 9848 Hz. (15) 10606 Hz.

(16) 11363 Hz. (17) 12121 Hz. (18) 12878 Hz.

(19) 13636 Hz. (20) 14393 Hz. (21) 15151 Hz.

(22) 15909 Hz. (23) 16666 Hz. (24) 17424 Hz.

Figure C.2: Distribution of power components across the FFI data for the attached plasma

(target chamber pressure of 3.1× 10−4 mbar). Continued overleaf.
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(25) 18181 Hz. (26) 18939 Hz. (27) 19696 Hz.

(28) 20454 Hz. (29) 21212 Hz. (30) 21969 Hz.

(31) 22727 Hz.

(32) 23484 Hz. (33) 24242 Hz.

(34) 25000 Hz.

Figure C.2: Distribution of power components across the FFI data for the attached plasma

(target chamber pressure of 3.1× 10−4 mbar).

197



(1) 0 Hz. (2) 757 Hz. (3) 1515 Hz.

(4) 2272 Hz. (5) 3030 Hz. (6) 3787 Hz.

(7) 4545 Hz. (8) 5303 Hz. (9) 6060 Hz.

(10) 6818 Hz. (11) 7575 Hz. (12) 8333 Hz.

Figure C.3: Distribution of power components across the FFI data for the detached plasma

(target chamber pressure of 7.25× 10−3 mbar). Continued overleaf.
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(13) 9090 Hz. (14) 9848 Hz. (15) 10606 Hz.

(16) 11363 Hz. (17) 12121 Hz. (18) 12878 Hz.

(19) 13636 Hz. (20) 14393 Hz. (21) 15151 Hz.

(22) 15909 Hz. (23) 16666 Hz. (24) 17424 Hz.

Figure C.3: Distribution of power components across the FFI data for the detached plasma

(target chamber pressure of 7.25× 10−3 mbar). Continued overleaf.
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(25) 18181 Hz. (26) 18939 Hz. (27) 19696 Hz.

(28) 20454 Hz. (29) 21212 Hz. (30) 21969 Hz.

(31) 22727 Hz.

(32) 23484 Hz. (33) 24242 Hz.

(34) 25000 Hz.

Figure C.3: Distribution of power components across the FFI data for the detached plasma

(target chamber pressure of 7.25× 10−3 mbar).
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(1) 0 Hz. (2) 757 Hz. (3) 1515 Hz.

(4) 2272 Hz. (5) 3030 Hz. (6) 3787 Hz.

(7) 4545 Hz. (8) 5303 Hz. (9) 6060 Hz.

(10) 6818 Hz. (11) 7575 Hz. (12) 8333 Hz.

Figure C.4: Coherence between the left-hand reference pixel (x = 40, y = 40) and all other

pixels in the detached plasma (target chamber pressure of 7.25 × 10−3 mbar). Continued

overleaf.
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(13) 9090 Hz. (14) 9848 Hz. (15) 10606 Hz.

(16) 11363 Hz. (17) 12121 Hz. (18) 12878 Hz.

(19) 13636 Hz. (20) 14393 Hz. (21) 15151 Hz.
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Appendix D

Negative ion reaction rate

coefficients

The expressions for the rate coefficients for negative ion formation and destruction (as

functions of temperature, T ) in Section 6.4.2 both take the form [39]:

ln〈σv〉 =

8∑
n=0

bn(lnT )n.

The coefficients bn used for each reaction are listed in Table D.1.

Table D.1: The coefficents bn used in the expressions for the rate coefficients for negative
ion formation (〈σv〉form) and destruction (〈σv〉destr) [39].

n
bn

〈σv〉form 〈σv〉destr
0 −1.774398466232× 10+1 −1.801849334273× 10+1

1 −6.207038732492× 10−1 2.360852208681× 10 0

2 −2.811412695673× 10−1 −2.827443061704× 10−1

3 2.540958044519× 10−2 1.623316639567× 10−2

4 6.643467825225× 10−3 −3.365012031363× 10−2

5 −8.877629159412× 10−4 1.178329782711× 10−2

6 −3.705776394283× 10−4 −1.656194699504× 10−3

7 9.313511559362× 10−5 1.068275202678× 10−4

8 −5.995758360037× 10−6 −2.631285809207× 10−6
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