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Summary 

Optimisation of the Heat Treatment of Steel using Neural Networks 

10nathan Tenner 

Heat treatments are used to develop the required mechanical properties in a 

range of alloy steels. The typical process involves a hardening stage (including a 

quench) and a tempering stage. The variation in mechanical properties achieved is 

influenced by a large number of parameters including tempering temperature, 

alloying elements added to the cast, quench media and product geometry, along with 

measurement and process errors. The project aim was to predict the mechanical 

properties, such as Ultimate Tensile Strength, Proof Stress, Impact Energy, 

Reduction of Area and Elongation, that would be obtained from the treatment for a 

wide range of steel types. 

The project initially investigated a number of data modelling techniques, 

however, the neural network technique was found to provide the best modelling 

accuracy, particularly when the data set of heat treatment examples was expanded to 

include an increased variety of examples. 

The total data collected through the project comprised over 6000 heat 

treatment examples, drawn from 6 sites. Having defined a target modelling accuracy, 

a variety of modelling and data decomposition techniques were employed to try and 

cope with an uneven data distribution between variables, which encompassed non­

linearity and complex interactions. Having not reached the target accuracy required 

the quality of the data set was brought into question and a structured procedure for 

improving data quality was developed using a combination of existing and novel 

techniques. 
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The stability of model predictions was then further improved through the use 

of an ensemble approach, where mUltiple networks contribute to each predicted data 

point. This technique also had the advantage of enabling the reliability of a given 

prediction to be indicated. 

Methods of extracting information from the model were then investigated, 

and a graphical user interface was developed to enable industrial evaluation of the 

modelling technique. This led to further improvements enabling a user to be provided 

with an indication of prediction reliability, which is particularly important in an 

industrial situation. 

Application areas of the models developed were then demonstrated together 

with a genetic algorithm optimisation technique, which demonstrates that automatic 

alloy design under optimal constraints can now be performed. 
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1.1 Aims 

Chapter 1 

Introduction 

Specialist heat treatments are used to develop the required mechanical 

properties in a range of alloy steels. The heat treatment process consists of two main 

stages; hardening and tempering. The hardening stage involves the steel being heated 

to a temperature of typically 850°C for a period of time allowing transformation to 

austenite, following which it is quenched in an oil or water medium or is 

occasionally allowed to air cool. The tempering stage is required to improve 

ductility in the hardened material. Tempering involves heating the product to a lower 

temperature, for example 630°C, for a further period of time and then cooling again. 

The mechanical properties of the material are dependent on many factors, 

however the tempering temperature is believed to be a major one. The process does 

involve many other variables, these include quench type used, composition of the 

steel, geometry of the bar, test sample location on the bar, batch distribution in the 

furnace, measurement tolerances and variations in process equipment and operators. 

A heat treatment metallurgist would balance these parameters through application of 

metallurgical knowledge and experience, to obtain the required mechanical 

properties. 

It is not possible to accurately describe the process behaviour using 

mathematical models due to the complexity of the underlying physical mechanisms. 

With modern industrial processes being associated with large amounts of data, 

empirical models are increasingly being used to describe the industrial process. 

Through application of data modelling techniques, the aim was to utilise process data 

to build empirical models capable of predicting mechanical test results for steels 

covered by the range of the data available. 



Once constructed, these models would allow optimisation of the heat 

treatment process by predicting the mechanical test results that would be achieved 

for a given treatment pattern on a particular steel product. It was envisaged that this 

would lead to improved product reliability and reduce process costs. 

The types of mechanical test result of interest in this project include Ultimate 

Tensile Strength, Proof Stress, Reduction of Area, Elongation and Impact Energy. 

The precise nature of these tests will be described in chapter 3. 

There are a number of methods that can be used to perform regression on data 

such as that obtained from an industrial process. One technique of particular interest 

was that of Artificial Neural Networks (ANN), however other relevant techniques of 

regression were evaluated, taking into account their suitability to this particular 

problem. 

1.2 Project Foundation 

IMMPETUS (Institute for Microstructural and Mechanical Process 

Engineering at The University of Sheffield) is an interdisciplinary research institute 

involving the Departments of Engineering Materials, Mechanical and Process 

Engineering, and Automatic Control and Systems Engineering. The project is part of 

this initiative and is supported by a Materials Forum Scholarship and has been 

proposed by British Steel Engineering Steels, Bridon Wire, Special Melted Products, 

Aurora Forgings and British Steel Technical. The Materials Forum is a group of steel 

manufacturers local to Sheffield, who support research with the aim of improving 

process techniques and knowledge. 

The project was based in the Department of Automatic Control and Systems 

Engineering within the intelligent systems laboratory. There was however extensive 
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collaboration between University departments as well as with the industrial sponsors 

involved, with the aim of solving a practical problem to benefit British industry. 

1.3 Brief Background of the Companies Involved 

The companies involved in the project all perform heat treatment in some 

form on their steel products, however the production techniques of each company 

vary significantly depending on their business. To maximise the use of the industrial 

links associated with the project, preliminary visits were carried out to the main 

companies involved in the project. The purpose of these visits was to establish the 

part each company could play in the project's development. 

British Steel Engineering Steels produce high-grade steels to order for a large 

variety of markets. The steels encompass a wide range of alloying elements. The 

specification required varies depending on the application, and the country ordering 

the product. It would usually, however, consist of Ultimate Tensile Strength and 

Impact requirements (the details of which will discussed in chapter 4), which are to 

be met for a specified range of temperatures. The mechanical properties are 

developed through a hardening and tempering process as mentioned briefly above. 

Product is usually in the form of rolled bars or slabs. 

Bridon Wire manufacture wire for a range of applications which include wire 

rope for safety fences, rigging for boats, wires for mining and mineral extraction, 

suspension wires for bridges and strength members for fibre optic cables. The 

process is still essentially a heat treatment one, however unlike the other companies 

Bridon use a continuous heat treatment process as opposed to a batch one. 

Essentially this means that the product to be heat-treated passes though the hardening 

and tempering stages continuously. 
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Aurora Forgings produce precision forgings for a range of applications 

including Rolls Royce engines and earth moving machinery. The forgings are often 

manufactured from a range of alloy steels supplied by British Steel as rolled product 

or slabs that have not undergone the heat treatment process. The forging process 

causes mechanical work to be done on the steel and so heat treatment needs to follow 

the forging process in order to control the mechanical properties of the manufactured 

parts. 

British Steel Technical is a research facility of British Steel. There are two 

sites, of which the Swinden Technology Centre in Rotherham was our main contact. 

The Technology Centre researches into many aspects of steel production and 

contains a wealth of expertise in the field of steel heat treatment. They aim to cater 

for short, medium and long-term research needs of the business. The purpose of their 

research is to improve product quality and process efficiency. Whilst the other 

companies involved in the project represented a good source of data and plant-based 

information, the Technology Centre offered interpretation of results and support on 

metallurgical issues. 

1.4 Structure of the Thesis 

This chapter provides a statement of the problem, together with a description 

of the companies involved in the project. What follows is a description of the key 

points covered in the following chapters. 

Chapter 2 covers the main data modelling techniques that may be useful to 

the project. These include Linear, Polynomial, Neural Network and Partial Least 

Squares techniques. A comparison of accuracy and implementation requirements is 

made, together with details on the theoretical background behind each technique. 

Citations are made demonstrating where, within the related fields, each technique has 
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been used in heat treatment, together with their development and limitations. The 

citations provide an insight into the work that has already been done in this field, 

thereby providing clues as to the suitability of each technique to this particular 

application, whilst also highlighting where future work should concentrate. 

Chapter 3 provides a detailed description of the heat treatment process from 

both a metallurgical and industrial perspective. Details of the specific processes from 

which data have been collected are described, together with their main sources of 

variability. This chapter also describes how data were collected from the processes, 

which are the important variables and what part they play in the resulting mechanical 

properties. Finally, the measurement error and incompatibility between mechanical 

test types are investigated along with the use of mechanical test facilities when 

supplying steels to companies such as Aurora. 

Chapter 4 concentrates on the pre-processing aspects of data for empirical 

modelling. The data handling system used during the project together with methods 

to overcome data incompatibilities are described. Basic correlation analysis and 

initial modelling investigation are performed, aiming to break into subgroups the 

wide range of steels contained within the data, in order to establish the initial 

information within the data and evaluate the initial accuracy of the various data 

modelling techniques. 

Chapter 5 investigates methods of data cleaning techniques, together with 

existing work in the area. The aim of data cleaning is to improve the predictive 

accuracy of the resulting models. A methodology for performing data cleaning on 

industrial process data is proposed and applied to the data set in the project. The 

improvement in neural modelling accuracy provided by the technique is then 

demonstrated experimentally. 
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Chapter 6 looks at possible ways in which the neural modelling technique can 

be improved. Having experimented with a variety of techniques, an ensemble 

approach, where a group of neural networks are used to make each prediction is 

employed, and careful consideration is given to the architecture of neural model 

used. The data set is then extended to include additional mechanical test results, and 

the data cleaning technique is applied to this additional data to develop further 

mechanical test result models. A comparison is made between the unc1eaned and 

cleaned data sets for each new model developed. 

Chapter 7 is concerned with enabling information extraction from the models 

developed. A sensitivity analysis method is investigated for finding the significance 

of each input variable to the model outputs, along with another technique, which 

allows the effects of each variable to be visualised. These techniques are used to help 

validate the functioning of the model. A Graphical User Interface (GUI) is then 

developed, which allows information extraction and validation of the model within 

industry. The feedback from these evaluation results shows that the model prediction 

accuracy is very dependent on the type of data used for prediction. Experimentation 

into possible techniques for assessing the reliability of the model's predictions IS 

therefore conducted and a suitable solution is chosen and evaluated. 

Chapter 8 considers using the developed models for process optimisation. A 

number of possible applications within industry are highlighted, followed by 

experimentation to demonstrate the ability of a model to generalise to a new process, 

and how measurement inaccuracies affect the models predicted values. Automatic 

and optimal design of alloys is then considered using the genetic algorithm 

optimisation approach, which demonstrates that the optimal design of alloys is now 

feasible. 
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Finally, chapter 9 details conclusions resulting from the work within this 

project, together with further research work required in this subject area. 
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Chapter 2 

Data modelling techniques 

2.1 Introduction 

In the last chapter it was mentioned that there are a variety of regression 

techniques available. The principle of regression is the formulation of a model, 

relating one or more independent variables to one or more dependant variables. This 

project involved estimating a mechanical test result (the dependant parameter) from a 

set of process variables. For classical regression techniques this requires one to 

postulate a model form, for example linear, polynomial or some other non-linear 

function. Once a form of model is established, one then needs to estimate the values 

of the model parameters, this being done from a set of experimental data. 

Once a model is established, interpolation can be performed to estimate the 

value of the dependant variable given the value of the independent variables. 

Whilst a brief introduction to other techniques is made, the main content of 

the theory section of this chapter will be concerned with the neural network 

technique which was ultimately used in the project. 

A literature review exploring the use of predictive models for mechanical 

property and other process parameters is then provided. This aims to summarise the 

current work that has been undertaken together with its limitations. 

2.2 Least squares linear regression 

The simplest form of regression is that of bivariate linear regression 

(regression of y on x). Such a linear model might take the form: 

y= X{3 +£ (2.1 ) 
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In equation 2.1, y is an n by 1 vector of observations, X is an n by p matrix of 

regressors, {3 is a p by 1 vector of parameters and e is an n by 1 vector of random 

disturbances. We therefore need to estimate the unknown vector of parameters {3. 

This can be done using the least-squares solution of: 

fi = (X' X)-l X' Y (2.2) 

Equation 2.2 is the basis of the least squares estimate, however it is important to note 

that there should not be dependancy between the regressors and hence methods such 

as orthoganal triangular decompositon are used to prevent the inversion of an ill­

conditioned matrix. 

We can then use the vector of estimated parameters to find the predicted y values as: 

(2.3) 

2.3 Interaction effects and higher order regression 

It has been assumed so far that the variable effects in a multiple linear 

regression case are additive. Interaction effects exist when the impact of one 

independent variable depends on the value of another independent variable. Such a 

model might take the form: 

(2.4) 

In a similar manner a variable effect might involve a quadratic or higher order term 

such as: 

(2.5) 

Linear regression is a popular technique, firstly, because very many relationships 

have been found empirically to be linear. Secondly, it is sometimes argued that a 
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linear relationship is the most parsimonious. Thirdly, there is often little knowledge 

of what form the non-linear specification would be. 

2.4 Principal component methods 

Principal Component Analysis (PCA) is essentially a dimensionality­

reduction technique, where, given a high dimensional data set which may have no 

obvious features, it is possible to describe the data via new variables which are linear 

combinations of the original variables. PCA is not a regression technique, however 

its function has been readily applied to two forms of regression, namely Principal 

Component Regression (PCR) and Partial Least Squares (PLS). 

As well as regression, PCA can also be used for multi-dimensional data 

reduction and process fault detection; this is considered in chapter 5. 

2.4.1. Principal Component Analysis (PCA) 

When using the PCA technique, it is usual to scale data such that it is mean 

centred. If the data is represented by a set of p variables XI> ... , Xp, PCA transforms 

this set of variables into a (preferably) much smaller set X'I> ... , X'k of linear 

combinations of the original variables {Xi} which accounts for most of the variance 

of the original set. The new variables {Xi} are referred to as 'principal components' 

and are usually presented in the order of decreasing contribution to the total variance. 

The value of the /h variable on the ith object can be written as Xi). All measurements 

for all variables can therefore be written in the form of an n x p matrix, which is 

known as the 'property matrix' : 
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XII X lp 

X= 
X 21 X 2P 

(2.6) 

X nl X np 

The first principal component, X 'I' is defined as the linear combination of the original 

variables {Xi} : 

X'I = lWJjx; 
;=1 

(2.7) 

This combination is such that the variance of X'I is maximised, subject to the 

constraint: 

(2.8) 

The coefficients Wij can be thought of as components of a column vector. Subsequent 

principal components are defined analogously. The l principal component Xj is the 

linear combination: 

(2.9) 

Whose variance is maximal under the constraints: 

(2.10) 
p 

L w jk w ki = 0 for all k<j 
;=1 

The variance-covariance matrix of the original values {Xi} provides the solution of 

this constrained maximum problem. The variance-covariance matrix is defined in 

equation 2.11, where Xm is the mean corrected property matrix. 
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(2.11) 

The coefficients { W Ji } of the linear combination defining the first principal 

component are given as the components of the eigenvector WI corresponding to the 

largest eigenvalue AI of S. The coefficients of w may also be referred to as the 

'scores'. The variances of the principal components are equal to their corresponding 

eigenvalues; therefore the percentage variance in the original data explained by one 

or more principal components can be calculated. Mardia et al provide a more detailed 

description of this technique I . 

peA has also been combined with neural networks to Improve learning 

problems in both supervised and unsupervised systems2
,3,4. 

2.4.2. Principal Component Regression (peR) 

The peR technique involves using the principal component transformation of 

the independent variables X in equation 2.2. The collinearity problem of multiple 

linear regression is now solved, since the component scores are mutually orthogonal. 

This means that an invertible matrix is guaranteed in equation 2.2. Only the principal 

components that are most intuitive need be included in the transformed independent 

variable matrix, such that the noise penalty of less significant variables can be 

reduced. There is a problem, however, that peR is a two step method and thereby 

useful predictive information may end up in the discarded principal components. 

2.4.3. Partial Least Squares regression (PLS) 

This technique is similar to peR except that the dependent variables are 

transformed as well as the independent variables. The components are now chosen 

such that the correlation between dependent and independent variables is maximised 
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as well as the retention of variance between the independent variables. The PLS 

model can therefore be considered as consisting of outer relations (input and output 

blocks individually) and an inner relation (linking both blocks). 

The algorithm and full explanation of the PLS technique can be found in a 

tutorial by Geladi and Kowalski 5. The PLS algorithm is regarded as one of the most 

flexible multivariate extensions of the linear regression problem. This flexibility 

allows it to be used in situations where the use of traditional multivariate methods 

would be severely limited, such as when there are fewer observations than predictor 

variables. 

2.4.4. Extension of peA and PLS to non-linear data sets. 

As it stands, the peA and PLS techniques described are designed to work on 

linear data sets (in that they cannot explain variance attributed to non-linear 

variables). There is however, a large amount of literature where attempts have been 

made to extend these linear techniques to cover non-linear data. 

Hiden et al 6 investigated using a genetic programming method for this 

purpose. Other examples of non-linear PLS modelling involve the use of Neural 

Networks 7.8.9, however this is a rapidly developing field. 
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2.5 Neural networks: an introduction. 

The neural network technique differs from the classical regression techniques 

in that a precise model structure does not have to be previously defined. Whilst the 

neural network technique is no more than a form of statistical non-linear function 

approximation, its foundation stems from modelling of biological nervous systems in 

the 1940'SIO. 

2.5.1 A Simple Artificial Neuron (SAN) 

((.) y 

Fig.2.1. A simple artificial neuron 

Neural networks were first used for classification problems before being used for 

regression purposes, although it is later shown that the technique'S extension to 

regression is straightforward. A classification problem involves assigning input 

patterns to a class, for example given the binary inputs of an AND logic gate, a 

neuron can compute the binary output as class 1 or O. MuCulloch and Pitts 10 first 

introduced the idea of an artificial neuron for processing data. Following this, 

neurons were arranged into layers to perform more complex pattern recognition tasks 

- this work was performed by Rosen in the late 1950s. A diagram of a Simplified 
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Artificial Neuron (SAN) is shown in Figure 2.1. The SAN represents the abstraction 

of several properties from the study of natural neural dynamics, in a vastly simplified 

form. The weights w, operate on the inputs to the neuron and are variable. The 

neuron can be used for simple pattern classification tasks in the following manner. 

The net input, which is the weighted sum of its n inputs, can be calculated as: 

m 

net; = IWijXj 
j=1 

(2.12) 

where wij is used to denote the weights acting between the j th input and the i th 

neuron. The term, e, shown in Figure 2.1 acts as a threshold, such that the net input 

must equal or exceed it for neuron activity. A function of the net input is then used to 

denote the state of the neuron, this being termed an activation function, a simple 

version of which is the step function which can be defined as: 

{
I x~O 

f(x) = o x<O 
(2.l3) 

If finet-e) is used where f(.) is the step function shown in (2.13), then the 

output of the neuron, y, for a discrete time interval t is: 

net ~ (J 

net < (J 
(2.14) 

The weights of the SAN can therefore be adjusted such that, given two binary 

inputs, the output of the neuron represent that of the AND logic gate. It has therefore 

been seen that a SAN can be used to represent a two-class binary classification 

problem. The drawback with this approach, however, is that the user needs to set the 

weights manually, which implies that the problem has to be solved beforehand. An 

automatic method of finding the weights was therefore required and was invented in 

the form of the simple Perceptron. 
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2.5.2. The simple Perceptron 

The simple Perceptron allows the process of weight adjustment to be 

automated, the correct weights can be found using previous experience (past data). 

Rosenblatt's Perceptron was originally designed as a pattern classifier, and is capable 

of classifying data which, in a two-dimensional sense is separable by a straight line 

or in an N-dimensional sense is separable by a (N-I) dimensional hyperplane. The 

simple Perceptron is shown in Figure 2.2. The function of the Perceptron is similar to 

that of the simple artificial neuron, except that the bias e is replaced by Wo with an 

input of -1, and that there is now error feedback and a learning algorithm. 

Xm 

Perceptron 
algorithm 

Wo 

-1 

Fig.2.2. A simple Perceptron. 

e 
d 

y 

Equation (2.13) is still used as the node activation function and the net output IS 

therefore given by: 

m m 

net. = ~ w.x. - Wo = ~ W.X. 
J £..Jlf £..Jrl (2.15) 

;=1 ;=0 

where Xo = -1, is the bias input. The output y can therefore be written as: 

(2.16) 

where equation (2.15) is represented in vector form. 
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The Perceptron learns from data which comprises two finite sets, such that: 

set XI of vectors x, belong to class 1 (desired output d= 1) and, 

set X2 of vectors x, belong to class 0 (desired output d=O), 

In order to achieve automatic learning, the following algorithm can then be fol1owed: 

1. Initialise the weights to small random values (including the threshold bias wo). 

2. The input vector is then presented, x(t) = (-1, xdt), ... ,xm(t)/ , together with the 

desired response d( t) corresponding to that particular pattern. 

3. The Perceptron's response is then calculated for the input pattern from equation 

(2.15). 

4. The weights are then adapted using the learning rule: 

Wj (t + 1) = Wj (t) + 7Je(t)x j (t) (2.17) 

where eft) is the error between the desired values and the Perceptron's output such 

that: 

eft) = (d(t)-y(t» E {-1,0,1} (2.18) 

and 7J is a learning constant, where ° < 7J $; 1. 

5. The process is repeated from step two until there are no errors. 

The important feature about the Perceptron is that it will only converge to a solution 

if the two pattern classes are linearly separable. Also, if a solution does exist then it 

will not always be a unique one. If a Perceptron does converge, then it can be used as 

a classifier. The constraint of linear separability, limits the usefulness of the 

Perceptron, however, it will be seen in the next subsection that this problem may be 

partial1y solved by using a different learning technique and error feedback loop, this 

new arrangement being termed the adaline. 
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2.5.3. The Adaline 

e 

Fig.2.3. The adaline 

A diagram of the adaline unit with error feedback is shown in Figure 2.3. 

This is quite similar to Figure 2.2 of the Perceptron, however, if the two diagrams are 

compared it is evident that the point where the error feedback is taken from is now 

different. The Perceptron requires that the actual unit output if fed back to update the 

weights, this means that the error will take only three discrete values {-I ,0,1 }. 

Therefore the error of the Perceptron only reflects the sign of the error, rather than its 

magnitude. The adaline, however, does take into account the magnitude of the error 

since the net input is fed back before it is passed through the node activation 

function. This gives the same weight update rule as in equation (2.17) except that the 

error can now be written as: 

e(t) = (d(t)-y(t)) (2.19) 

The weight update rule is known as the Widrow-Hoff learning rule now updates the 

weight values in proportion to the size of the error. The term Least-Mean-Squares 

(LMS) is also used to describe the rule because when used within a training 

algorithm it attempts to minimise the mean square error. 

The LMS rule can be explained by the fact that a cost function of the error can be 

defined as: 
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(2.20) 

where e(p)=(d(p)-y(p)) denotes the error for the p th pattern and N is the number of 

input patterns in the training set data. The cost function is with respect to the weights 

because y(t) = w~. The cost function in equation 2.20 can be thought of as an error 

surface where low error energy, which represents a low classification error, is the 

target. Finding the minimum error energy means finding a set of weights, which 

signify the optimum set of weights for the system, which may not necessarily 

produce the lowest rate of misclassification. The error surface can be thought of as a 

parabolic curve, where the minimum error energy can be found by following the 

steepest negative gradient of that curve. This leads to the gradient descent learning 

rule: 

aE 
w;(t + 1) = w;(t) -71-

aw; 
(2.21 ) 

Given the cost function in equation (2.20) it is possible to write that the error for one 

pattern is given by: 

121 2 
Ep =-e (p)=-(d(p)- y(p») 

2 2 
(2.22) 

which means that the total error energy can be written as the sum of the error 

energies contributed by each individual pattern, which gives: 

(2.23) 

The total error E can then differentiated with respect to the weights, which, using the 

chain rule of partial differentiation gives: 

aE -f aEp - = £.J- = -(d(p) - y(p»)x; (p) 
aw; p=1 aw; 

(2.24) 
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Combining equation (2.24) with equation (2.21) will then result in the Widrow-Hoff 

or LMS error learning rule. 

The adaline is attempting to minimise the size of the error rather than the 

misclassification rate and will therefore always converge to a solution, which partly 

solves the problems of the Perceptron. This may mean, however, that even when 

attempting to solve a problem which is linearly separable (which the Perceptron 

could solve), the adaline may misclassify patterns even though the minimum error 

energy is still reached. 

Development of neural networks slowed down after the late 1960s when it 

was shown by Minsky and Papertll that a single layer of Perceptrons could not 

compute the Exclusive-OR problem (Table 2.1) 

Table 2.1. The Exclusive-OR Logic Problem 

It was realised that multiple layers of Perceptrons could be used to solve this problem 

however there were problems in finding a suitable learning algorithm since as will be 

seen in the next section it requires the differentiation of the activation function. 

Multiple layers of adaline units, without the step function included (since this only 

acts to quantise the outputs) can be formed, but are not useful, since their outputs are 

linear and have therefore been found to be equivalent to a single layer network. It 

was therefore realised that what was needed was a differentiable non-linear 

activation function to overcome the single layer equivalence problem. Research into 
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this area led to the development of the Multi-Layer-Perceptron containing a non­

linear activation function, which is commonly used today. 

2.5.4. The Multilayer Perceptron (MLP) 

INPUT HIDDEN OUTPUT 

Fig.2.4. Multiple layers of neurons used to make a network of arbitrary size. 

An example of the MLP with one hidden layer is shown in Figure 2.4. Each unit in 

the network is similar to that of the SAN described in section 2.5.1. (the bias weights 

are not shown for clarity) except that there is now a non-linear activation function as 

opposed to a step one. A sigmoid function provides a smooth differentiable function, 

which tends asymptotically to corresponding threshold function levels, an example of 

which is the logistic function which has the form: 

I 
f(x)=---­

l+exp(-x) 
(2.25) 

A diagram of this function is shown in Figure 2.5. It is argued in Bishop12, that an 

alternative sigmoid function which may provide faster convergence times is the 

hyperbolic tangent function: 

21 



g(x)= tanh(x) (2.26) 

1.2 
1 

E -
-10 -5 o 5 10 

x 

Fig.2.5. A sigmoid activation function 

If the outputs of the hidden layer, Vj are treated as the inputs to the output layer, then 

a learning law for the output layer neurons can be derived as: 

(2.27) 

where N denotes the number of patterns in the training set, n is the number of output 

units, and Yi (p)=f(ne(pi) is the output activation of the output layer node, which is 

given by: 

(2.28) 

The gradient descent update rule (equation 2.21) can now be written as: 

(2.29) 

for each pattern on a pattern-by-pattern basis, where Ep is the error for an individual 

training pattern, which is now given by: 

(2.30) 
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The chain rule can now be used to differentiate (2.30) with respect to the weights 

such that: 

therefore the weight update rule for units in the output layer is: 

(2.32) 

The differential of the activation function in equation (2.25) using the quotient rule 

is: 

f'(x) = df(x) = f(x)(l- f(x» 
dx 

Therefore the output layer error term 0 becomes: 

(2.33) 

(2.34) 

The hidden layer learning rule can be found by apply the gradient descent rule again, 

where: 

(2.35) 

The chain rule can once again be applied with the result that: 

(2.36) 
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Ep is not an explicit function of Vj, however through further application of the chain 

rule it can be found that: 

(2.37) 

If this is then substituted into (2.36) then, 

(2.38) 

Using equation (2.34), the hidden layer 0 term can be defined as, 

n 

0;; =f'(net~j)Lw~O;; (2.39) 
;=1 

Therefore: 

dE p () 
--=-0 ,xk (p) 
'l .. h Pl 
oW jk 

(2.40) 

which when substituted into the gradient descent rule of equation (2.35), gives the 

hidden layer weight update rule: 

(2.41 ) 

using the derivative of the sigmoid activation function, equation (2.33), the hidden 

layer error term becomes: 

n 

O;j =Vj(l-Vj)Lw~O;; 
;=1 

(2.42) 

The output and hidden layer weight update rules (equations (2.32) and (2.41) 

respectively) together with their error terms (equations (2.34) and (2.42)) form the 

basis of the back error propagation algorithm used in the MLP. 
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2.5.5 Application of the MLP to continuous, real-world data 

The outputs of the MLP are continuous, due to the use of logistic or tanh 

activation functions. For classification purposes a threshold can be used to determine 

if a given input pattern falls into class 1 or 0 (with a single output neuron). The 

continuous output of the network can also be used for function approximation, which 

was the interest of this project in the technique. Results by Cybenkol3 and Homikl4 

in 1989, independently showed that any continuous function of N real variables may 

be approximated by an MLP with a single hidden layer. These theorems do not, 

however, give practical advice as to the network size and configuration for a given 

mapping task. Some techniques for choosing these parameters will be investigated, 

however there are some further complications of the standard MLP back-propagation 

algorithm that have to be noted first. As with a single layer network, the gradient 

descent method does not necessarily mean that the minimum error energy will be 

reached. Figure 2.6 shows the problem of local minima, which can exist. 

E 

minimum 

Steepest gradient 
~descent 

minimum 

w 

Fig.2.6. The local minima problem 
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The problem of local minima is related to the dimension of the weight space and the 

network architecture. There is still, however, a large amount of research into these 

areas and heuristic methods are often adopted. The local minima problem may to a 

certain extent be avoided by modifying the MLP with a momentum term; this 

consists of a proportion of the previous weight changes, which are combined with the 

weight update equation. Equation 2.43 shows the momentum term in the weight 

update equation, where .1w(t) denotes the weight changes at time t for an arbitrary 

weight. 

w(t + 1) = w(t) + ~w(t + 1) +~w(t) (2.43) 

The momentum term helps 'push' a trajectory out of a local minima in a similar way 

to a ball rolling at a fast enough speed having enough momentum to overcome a 

barrier. 

A second problem of the standard back error propagation algorithum is that of 

'paralysis', this is due to the sigmoidal activation function. It has been shown that the 

weight changes are proportional to an error, which in turn, depends on the derivative 

of the sigmoidal activation function. If the hidden layer network input forces the 

activation function out of the linear region around zero, then the output is 

approximately constant. This causes the corresponding derivative to be close to zero, 

making the weight changes very small, hence further training achieves little. This 

problem can be overcome by adding a decay term to the update equation. Thus 

equation 2.43 can be written as in 2.44. 

w(t + 1) = /"N(t) + ~w(t + 1) + ~w(t) (2.44) 
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With equation 2.44, even if the weight changes, .1w(t), are negligable, the weights 

will gradually decay, bringing the input to the activation funcion within the linear 

region. 

Finally, a further problem of the MLP is that of overtraining. This problem is related 

to the data which are modelled, the network architecture and the number of itertions 

for which the network is trained. Before considering overtraining, the concept of 

generalization should be discussed. When a network has been trained on a given set 

of data, it will usually be used to predict the outcome for previously unseen inputs. It 

is usual to evaluate the prediction performance of a neural network for these new 

cases by using a test set. The ability of a given network to predict new input patterns 

is known as 'generalisation'. When training a neural network the aim is to obtain the 

best possible generalisation performance with the training data available. 

Figure 2.7 illustrates the probem of overtraining on the prediction of some noisy 

data with a linear relationship. If a given network architecture is trained for too many 

iterations then the network will tend to learn the noise on the data rather than the true 

underlying function in the data. To help prevent this it is usual 15,12 to use a validaton 

y y 

o 

x x 

(a) Cb) 

Fig.2.7 The problem of overtraining, Ca) the true approximation, (b) an overtrained 
approximation. 
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set. 

Thus for a given data set for which one would like to construct a neural model, the 

data is randomly partitioned into training, validation and test sets. The training data is 

that used to provide the inputs and target values that directly alter the weights in the 

network. The validation set is used to monitor the generalisation performance of the 

network as it trains. After each complete presentation of all the data points in the 

training data set (termed an eon), the ability of the network to generalise on the 

validation set is evaluated. This evaluation is made by using the mean squared error 

functon (MSE) shown in equation 2.45, for which tn and Yn are the target and 

predicted outputs for a given input pattern. When the MSE of the validaton set starts 

to rise beyond its minima, training is halted. The generalisation performance of the 

network to a completely unseen data set, the test set, can then be investigated for 

performance evaluation. 

(2.45) 

The selecton of the number of hidden layers and the number or hidden layer neurons 

is also known to affect the generlisation ability of the MLP, however these factors 

are usually determined experimentally for a given data set. The effect of network 

architecture will be investigated in chapter 6. 

It should be noted that there is a degree of disagreement in the definitons of the 

Validation and Test sets in the literature, as some authors use a Test set to validate 

the performance of the network as it is trained and do not use a third data set to 

analyse the true generalisation of the network. Tarassenko and Bishop define a test 

set as unseen data (not used in any part of the networks training) and use a validation 

set for deciding network architecture and when to stop training. 

28 



2.5.6 The Radial Basis Function network 

The Radial Basis Function network (RBF) is another neural network that can 

be used for function approximation. It still uses the basic idea of an artificial neuron 

calculating the weighted sum of some inputs and then operating on an activation 

function, however the architecture and training used are different. RBF networks 

Basis 
Functions 

YJ 

Yn 

Fig.2.8. A Radial Basis Function Network 

were not utilised in this work for several reasons that will be outlined at the end of 

this section, however a brief introduction to their architecture as found in 

Tarassenkol5 will be made so as to explain the main differences they have when 

compared to the MLP. Further information on the RBF technique can also be 

gathered from Bishopl2. A simplified diagram of an RBF network is shown in Figure 

2.8, the bias weights are not shown. 

Before explaining the functionality of an RBF it is important to be aware that 

clustering algorithms exist functioning as Tarrassenko states: 

Given P patterns in n-dimensional space, find a partition of the patterns into K 

groups, or clusters, such that the patterns in a cluster are more similar to each other 

than to patterns in different clusters. 
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Euclidean distance can be used as a measure of closeness between two vectors and , 

this is the case for a clustering algorithm known as the K-means clustering algorithm, 

which can iteratively partition data into K numbers of clusters. The outcome of such 

a clustering algorithm is a set of centres (with respect to a cluster of data in n-

dimensional input space), which are also known as prototype patterns. 

As shown in Figure 2.8, an RBF network has one hidden layer, an input layer and an 

output layer. The Euclidean distance between x and a set of prototype vectors 

determine the hidden unit activation function output in the RBF. Equation 2.46 

shows the output of the l hidden layer unit, where Jij is the centre of the basis 

function and CIj is the width of the basis function. 

(2.46) 

The output of the RBF (equation 2.47) is a weighted linear combination of non-linear 

basis functions. 

J 

Yk = I WjklP j + W Ok 
j=1 

(2.47) 

Training an RBF is a two stage process, firstly clustering techniques are used to 

determine the centres, this is an unsupervised technique (no target values are required 

for a given set of input vectors). Once the clustering is complete the basis function 

widths are determined such that the spread of the data associated with each center is 

represented sufficiently. The second stage is a linear optimisation of the output layer 

weights using a supervised optimisation technique (taking into account the target 

values). 

The initial unsupervised stage is advantageous in some problems as target values are 

not always known for a given data set, thus information can still be gained from this 

'unlabelled' data. 
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Bishopl2 and Tarassenkol5 make a comparison of the RBF with the MLP, and the 

following points can be summarised. 

• RBF and MLP networks provide similar techniques for approximating arbitrary­

non-linear functional mappings between an input vector x and one or more 

output(s) y. 

• An MLP network uses weighted summation of inputs, transformed by a 

continuously differentiable function. An RBF network uses a distance to a 

prototype vector and then a transformation with a localised function. 

• The MLP forms a distributed representation in the space of activation values for 

the hidden units. For a given input, many of the hidden layer weights will usually 

contribute to the output value. These hidden layer units are then combined by the 

linear activation functions in the output later with weights such that the desired 

output is achieved over a range of output values. Slow convergence in MLPs 

arises because of the cross coupling and interference between the hidden units. 

RBF networks form a localised representation of the input space, for a given 

input pattern it is usual that only a few significant hidden layer activations occur. 

• There is a global training strategy in an MLP, with all parameters being 

determined at the same time. A radial basis function has a two stage training 

procedure. The first stage involves determining the basis functions via an 

unsupervised technique and the second stage requires linear supervised 

techniques for determining the weights of the network. 

The RBF and was not found to be suited to the data obtained in this project which 

had an uneven distribution, causing problems in cluster centre location (many centres 

may be assigned to dense areas of data). Additionally, the RBF's formulation of 
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localised models is not beneficial for interpolation between clusters of data within 

the input space in contrast to the MLP's distributed representation of the input space. 

The RBF's ability to benefit from unlabelled data was also not an advantage with the 

data in this project because all input data tended to have target values labelled. 

2.6 Literature review 

The project brief encompassed a multitude of disciplines, which made 

generating a concise literature review on all aspects of the project challenging. The 

aim of the literature review was to provide a base understanding of the heat treatment 

and modelling technique sides of the project, whilst also identifying where work 

relating to the project brief had already been carried out. A further aspect of the 

review, which could not be carried out in the review's initial stage was to keep pace 

with developments in the subject areas whist the project was undertaken, and 

investigate the feasibility of new ideas as the project developed. It was therefore 

decided to perform the review in a number of stages specific to the subject areas of 

interest as the project developed. An important starting point, however, was to 

concentrate initially on areas of the literature where modelling techniques, 

particularly non-linear versions such as neural networks, have been used in processes 

relating to manufacturing, especially in the steel industry. 

2.6.1 Modelling of steel and other industrial processes 

The literature search showed numerous hits for neural network or other 

techniques alone. It was therefore necessary to combine these hits such that literature 

specific to industrial process modelling was emphasised. This combination still 

yielded an unmanageable number of hits. When steel processes were also considered, 

this number was dramatically reduced, even when other intelligent systems 
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techniques were considered. The literature indicates that modelling of steel processes 

is performed for a number of reasons, these being as follows: 

• Prediction of process or product parameters 

• Process or product optimisation 

• Model-based process control 

• Fault Detection / Quality inspection 

It is acknowledged that there is some overlap between these fields, for example one 

might predict some process parameters and then perform optimisation of the process 

using this model. In a similar respect, optimisation might be in the form of open-loop 

or closed-loop control. The techniques behind all of the above categories were 

therefore relevant to this project, which aimed to predict parameters, thus optimising 

the process. 

The literature pertaining to steel processes also indicates that each of these 

categories may apply to either batch or continuous heat treatment or rolling 

processes. 

2.6.2. Prediction of process or product parameters 

There is not a large amount of literature on predicting the mechanical 

properties of steels, however there are several groups of authors who have performed 

research in these areas. Using neural techniques for mechanical property prediction 

seems to be a recent idea as most of the literature dates between 1986 and 1999. 

One group of papers, which was relevant to the project aims was written by 

researchers at the Laboratory for Materials Science at Delft University. All of the 

papers in this group concentrated on the application of neural networks to heat 
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treatment processes. The first of these papers by van der Wolk et al. 16 investigated 

the prediction of the finishing temperature in a hot strip mill after the last finishing 

stand from a number of process parameters. Rolling processes can be categorised 

into hot or cold types. The mills tend to use a series of rolling stations (known as 

stands), to reduce the thickness of steel strip, such that the mechanical properties and 

surface finish of the strip are as required. The hot rolling process, similar to the batch 

heat treatment process this project was concerned with, is a very complex one. In 

order to produce strip metal with a uniform mechanical properties (and therefore 

microstructure), it is necessary to know the strip temperature at key stages of the 

process. The model in this paper was trained to predict the temperature at the last 

finishing stand, from data for 10 thickness groups of C-Mn steel. A feed- forward 

MLP neural network architecture with back-error propagation training similar to that 

illustrated in this chapter was utilised in all this research group's papers. This paper 

in particular investigated the performance of the neural network model in comparison 

to that of linear and PLS modelling techniques. It was felt that the neural model 

should be capable of encompassing the entire range of strip thickness (which affects 

the output parameter in a complex manner). When performing the linear and PLS 

techniques, the authors took two approaches, a group of models, one trained on each 

thickness, and a single linear and PLS model trained on the entire data set. The work 

concludes that the neural technique outperforms the linear model significantly. The 

optimised linear model (PLS technique), was as accurate as the neural model for 

some thickness groups, however overall the performance of the neural technique was 

superior in that it offered better generalisation to a range of thicknesses. An 

important feature of this paper is the recognition that for the model to be applicable 

to a new industrial process (not the one the model is trained on), an adaptation 
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procedure may be required to account for systematic differences between the model 

and the new process. 

A further paper by this group looked at the use of a neural model for the 

prediction of marten site start temperature) 7. Martensite start temperature is a product 

parameter relating to the phase transformation kinetics of steels, and is the 

temperature at which super-cooled austenite transforms into martensite. The 

marten site start temperature is affected by the steel's composition, amongst other 

parameters. This paper is unusual in that the data points were collected from 

literature, rather than from an industrial process. The neural models were compared 

to the PLS and linear model techniques, and also to a statistical model found from 

the literature. There were only 164 data points used for model construction. This is 

an important area of neural modelling because it is often found that very large 

training data sets are required, depending upon the complexity of the problem and 

the number of input parameters. As this paper demonstrates, however, the location of 

the data points within the input space is important, and if the training and testing data 

are selected from specific areas, a good model can still be formed. 

It is important to mention that not all of the literature reviewed used a 

separate test set in accordance with definitions set out earlier of this chapter. 

Sometimes authors accommodated for validation data within the training data, or 

simply used the validation performance as an assessment of generalisation ability. 

One technique in the martensite start temperature paper, which was seen across the 

range of parameter prediction papers, is that the effects of certain parameters can be 

investigated on the model's output parameter by keeping all other model inputs 

constant whilst varying only one input parameter. This does not show the effect of 

parameter interactions and so a progression is to vary two input parameters at once, 

such that the interaction effects between the two parameters could be seen. 
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The next paper by this group is concerned with the prediction of Continuous 

Cooling Transformation (CCT) diagrams for vanadium containing steels l8
. CCT 

diagrams show microstructural transformation start and finish temperatures at 

various, approximately constant, cooling rates, along with the resulting 

microstructure and hardness values at each cooling rate. The motivation behind the 

neural model, as with most of the projects found in the literature search, was that 

accurate physical models were not yet available and so an empirical model was 

required. The authors found that it is possible to predict CCT diagrams on the basis 

of chemical composition, however, fine detail of the diagrams was hindered by 

limited data. 

Vermeulen et al. investigated the prediction of Jominy hardness profiles of 

steels 19. The Jominy test is a simple test for determining the hardenabilty, that is the 

hardness as a function of depth into the bar. The key feature of this paper, apart from 

the actual model aim, is that the data for the model were pre-processed in a way such 

that abstract data points in the training set were excluded. For example, a steel grade 

out of the normal range of the rest of the data was excluded such that it would not 

hinder the other predictions of the model. 

The final paper by this group of authors is that by van der Wolk et al 20, who 

looked at the problems associated with modelling hardenabilty of steels when the 

data is obtained from multiple sources. 

The other main group of authors in this area is Cambridge University. The 

first paper, by Bhadeshia21
, concentrated on using neural networks for the prediction 

of C-Mn steel arc weld toughness. There is emphasis in this paper on the aspect of 

using neural networks to analyse the process, such that the models generated are used 

to learn something about the process, for example the effects of key variables. The 

neural network technique used by authors associated with Cambridge University 
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differs in some respects to the standard back-error propagation network explained at 

the beginning of this chapter. This difference is that they used a Bayesian statistical 

framework by MacKay22,23, the techniques of which are the subject of a review 

paper24. The Bayesian framework helps control the complexity of the models 

generated, thus helping to prevent over-fitting and promote parsimonious models. 

Another feature claimed by the Bayesian neural network technique is that it provides 

error bars on model predictions, which give a guide to the confidence in the model's 

predictions. When choosing the input variables for the model, it is evident that 

metallurgical knowledge was utilised, such that only variables that give significant 

effect were included. The main reason for not simply adding all process variables 

available is that the variables which do not give a significant effect on the output 

variable carry a noise penalty with them which hinders the accuracy of the resulting 

model. It is therefore important that the variables selected for a model are relevant to 

the output variable concerned. There was, however, a problem with the input 

variables used in the arc weld toughness paper, which seemed to highlight the two 

approaches that there are for modelling the mechanical properties of steels. The 

variables used comprise, amongst other things, alloying additions to the steel and 

also microstructure. The mechanical properties are believed to be a function of 

microstructure, however the microstructure is also a function of alloy addition. 

Therefore the input variables were over-described as the author noted in his analysis. 

Another important aspect of this paper is that the author attempted to extrapolate 

beyond the input range of the model. It is widely felt that this is not a good idea, as 

network outputs tend to saturate25. The results are, as one would expect, 

unpredictable and hence this notion is confirmed. 

A further paper by the Cambridge group, connected with weld properties is 

by Coo126, who looked at predicting the yield and ultimate tensile strengths of steel 
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welds. The inputs to the UTS model are interesting here since the yield strength was 

used as an input parameter. Although not stated, this may have meant that there 

would be overlap between this and the other parameters used as model inputs such as 

alloy additions and tempering temperature, in a similar way to that found by 

Bhadeshia. Evaluation of the effect of the major alloying addition variables on the 

output was used to confirm the final model's representation of metallurgical 

knowledge. 

Modelling of microstructure formation has also been performed by Bhadeshia 

et a127
. This work involved predicting the start and finish temperatures of austenite 

formation. Like the martensite model of the Delft group, the data were drawn from 

literature. Various experiments were performed to confirm certain metallurgical 

phenomena and once again the effect of data quality was seen when it was noted that 

the prediction accuracy of start temperature was poorer than the finish temperature. 

The authors believe this to relate to problems in the procedure for measuring the start 

temperature. 

Rolling processes have also been modelled using the Bayesian technique. A 

model using steel composition and screw gate settings for the mill over a range of 

passes has been built to predict the yield and ultimate tensile strengths of the 

resulting material28
• This model had the largest number of inputs noted in the 

literature, which totalled 108 variables. From personal communication with experts it 

is a matter of opinion whether all were justified. 

Finally, Jones29 looked at predicting the yield and tensile strength of nickel­

base super-alloys. The data set, comprised approximately 200 data points, 100 of 

which were used for validation of generalisation performance, i.e. testing. Some 

consideration was given to pre-processing of the data prior to the model training; this 

was done using max/min scaling of input variables such that all variables had the 
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same range. Sensitivity analysis of the network's output, to each of the inputs, was 

used to show the significance of certain variables in the model to the output value. 

This is another way of confirming metallurgical knowledge and learning from the 

model constructed. 

Alloy design was the aim of a paper by Bulsari and Hockse1l30
, who used a 

standard back-error propagation technique to predict yield and tensile strength of 

steels after a hardening process. A brief review of some of the areas where neural 

networks have been used in the steel industry is provided, followed by details of the 

modelling work undertaken. The ranges of the alloy additions in the steels covered 

by the model were unclear, however, only 236 observations were available. The 

training algorithm used is an optimised form of the gradient descent algorithm called 

the Levenberg-Marquardt method, which the authors claimed to provide faster 

training times with the overhead of more computer memory usage. No metallurgical 

analysis was made of the model, as in previous papers, however the prediction 

accuracy of linear and non-linear models was compared, using a range of network 

architectures. Non-linear versions of even the simplest network architectures were 

shown to be more accurate than the linear techniques. The authors viewed the 

prediction accuracy of their model to be slightly worse than the measurement error 

on the output values in the training data and attributed the rest of the variance in 

predicted results to errors in the measurement of the input data. They are therefore 

claiming that the variables used in the model fully describe the process. 

Using neural networks for mechanical property prediction on a batch 

annealing process for thin steel strip was the subject of a paper by Myllyoski et a131
• 

A data acquisition system was used in this work enabling data to be retrieved directly 

from a rolling mill giving -3500 data points. Parameters describing the reduction in 

strip thickness during the rolling process, the temperatures in the annealing stage, the 
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composition of the steel strip and the sample locations in the strip were used to 

predict yield and tensile strength results. 70% of the data was generated from two 

steel grades, however the mechanical properties of some rarer grades were also 

modelled. During the model's design, hidden layer experimentation was used to 

determine the optimum network configuration, as seen before. Moreover, 

investigation into the optimum learning rate was also considered, such that the 

network could be trained in an optimum time, whilst not making the learning rate too 

high, such that the process becomes unstable. For one particular steel grade in the 

model, the prediction accuracy was poor. The authors considered that their neural 

model, covering a range of steel grades, might have been trying to form sub-models 

within the input space to accommodate for the different grades. It was postulated that 

there might not have been enough freedom in the descriptive power of the neural 

network concerned to accurately describe the results pertaining to one particular 

grade giving poor results when the network was also describing the functions behind 

the other grades. The authors therefore tried a 'localised' model, which was only 

trained on the problematic steel grade. It was seen that on this occasion the prediction 

accuracy did not improve beyond that of the model covering the entire range of data, 

and it was later found that the quality of this data was to blame. This is a poignant 

reminder that the neural network can only be used to describe an industrial process if 

the features of that process are accurately described within the training data set. 

Kudav and Dengke32 illustrate one example of a slightly misleading approach 

to modelling hardness characteristics in carbon steels. In a similar way to previous 

literature they utilised literature as a data source. These data consisted of a series of 

hardness versus tempering temperature curves for steels ranging in carbon, 

chromium and molybdenum (three alloying additions believed to affect the hardness 

of a steel). The network was basically trained on the data from these curves and then, 
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when 'tested', the network was used to predict the same compositions of steel, which 

was done with excellent accuracy. Whist this might have resulted in a network that 

was capable of predicting for the training set compositions, it provided no insight 

into the generalisation of the network to new compositions within the original input 

range and was essentially using the neural network as a look-up table. 

There are two papers relating to the hot metal stage of steel production. The 

first paper, by Datta et ae3
, is concerned with the desulphurization of hot metal, and 

specifically investigated the prediction of sulphur content in the desulphurization 

process. This process involves injecting powdered calcium diamide CaD through a 

submerged lance into a 'torpedo ladle' used to hold the molten material. The network 

was only trained on 40 examples, and yet the authors reported satisfactory 

generalisation. They did however note the need to select an optimum network 

architecture and demonstrated that if a particular data example is uncommon in the 

data set, it will not be modelled as accurately as a frequently occurring one. 

The second hot metal paper, by Singh34
, attempted to predict the silicon 

content of hot metal in a blast furnace. This is a desirable thing to do because silicon 

has a number of effects on the basic oxygen steel-making process, which follows the 

blast furnace stage. It appears that like other steel processes covered in the literature, 

the blast furnace is a very complex process, with a number of important variables 

believed to have complex non-linear relationships. Some physical equations were 

designed by previous authors in an attempt to describe the level of silicon, however, 

as is so often the case, these were not adequate to describe such a complex process. 

The author has used some interesting approaches in the modelling stage. Linear 

regression was attempted but was unsuccessful, and the standard back-error 

propagation algorithm was also utilised. However, the interesting features include a 

number of modifications on the standard back error propagation algorithm being 
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utilised including adaptive learning rate algorithms and variable momentum terms. 

Although the performance of these techniques overall was good, training times were 

said to have been increased. One useful adaptation to the neural technique involved 

using a neuro-fuzzy technique, which did improve the models predictive 

performance under certain circumstances. The neuro-fuzzy technique consists of 

using fuzzy logic to encode the normally continuous inputs or outputs of the neural 

model into membership values of fuzzy sets. More information on the fuzzy logic 

technique can be found in Zadeh35. Briefly it can be explained that fuzzy logic 

enables imprecision in measurements to be expressed, for example one might say the 

weather is hot, where hot is a linguistic expression of temperature. To fuzzify a 

measured temperature one might have two sets in which temperature could be a 

member, a cold set, and a hot set. Depending on the shape and configuration of these 

sets, a temperature of say, 20°C might be 5% a member of the cold set and 80% a 

member of the hot set. Therefore, the temperature of 20% could be translated into 

two inputs of 0.2 and 0.8. The authors found that encoding the inputs to the network 

using the fuzzy logic technique produced the best results for their particular 

modelling problem. A fuzzy logic technique has also been used by Schooling et al36 

to model the fatigue threshold behaviour in Ni-Base Super-alloys. The authors here 

claim that the technique enables a priori knowledge to be readily combined into a 

neural model, and that when the technique is integrated throughout the architecture 

of the neural network, fuzzy rules are generated, which can provide 'transparency' to 

the so called 'black-box' modelling technique. 

When considering the combination of neural networks with other intelligent 

techniques, Wiklund37 used neural networks very differently for prediction. The 

temper rolling process was modelled using a Finite Element Modelling (FEM) 

technique, which is a way in which physical equations can be used to describe a 
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process by breaking the problem down into elements. This technique is effective, 

however, it requires a large amount of computer time to simulate the results. The 

neural network technique was used on this occasion to learn a variety of results for a 

number of parameter configurations of the FE model. The interpolation ability of the 

neural network allowed the results of the FE model to be accessed quickly. If enough 

parameter variation exists in the simulation of FE model then the neural network can 

save simulation time by predicting for a new set of parameters. 

The final paper in this section is by Dumortier et a138
, who looked at 

modelling the yield and ultimate tensile strength of microalloyed steels in a rolling 

process. The author was motivated to investigate the neural technique when 

considering the poor prediction accuracy of regression formulae in the literature, 

which was demonstrated in a review paper on microalloy steels39
. Dumortimer, 

unlike many others, considered the data integrity and utilised a multivariate data 

analysis technique to find data points that were outliers in a statistical sense. The 

model building was performed by starting with a number of input variables and then 

removing those variables that appeared not to have a significant effect on the output 

variable predicted. Binary or dummy variables were also used to describe aspects of 

the process which are non-continuous, such as the test type used. The authors once 

again conclude that the performance of the neural technique is superior to that of the 

linear techniques, but also recognise that data integrity and training set size are 

important factors in prediction accuracy. 

It has been seen from the literature that there are examples of mechanical 

property prediction, as well as a number of other applications where other product 

parameters have been predicted. All of the literature covered in this part of the 

review used neural networks capable of non-linear function approximation to make 

the necessary predictions. The processes using these techniques were all complex 
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ones, containing non-linear effects and interactions between variables. It was 

frequently stated that traditional linear techniques were unable to describe these 

aspects of the processes and therefore produced less favourable models. Moreover it 

was felt that knowledge of the physical mechanisms behind these processes was 

insufficient to describe the processes adequately and therefore empirical techniques 

were required. Where, in the case of the FE model, knowledge did exist, the neural 

network technique was still useful in making a range of results accessible by 

interpolating between FE model results, enabling a variety of results to be produced 

in real-time. Generally, the inputs to the modelling process comprise process 

parameters such as roll gap or heat treatment temperatures and product parameters 

such as dimensions and alloy composition. In several of the papers, as well as 

producing a single predicted value, sensitivity analysis or procedures to investigate 

the effect of one or more variables were employed to confirm metallurgical 

knowledge and learn more about the processes concerned. The effect of the quality 

of the data was not widely investigated, and many of the models were trained on only 

a few hundred examples. Despite the use of Bayesian statistical techniques to aid 

network architecture selection, there are still few guidelines as to the appropriate 

architecture or training regime one should use for a given problem. It is indicated, 

however, that the network parameters are problem dependant and that 

experimentation seems to be the key to finding the optimum parameters for a given 

problem. 

It is noted that the alloy ranges, which the models covered, tend to be quite 

narrow and are often restricted to a particular grade of interest over a range of 

manufacturing conditions. Moreover it is also noted that a neural model should only 

be used to predict data in the same range as that of the training data. 
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2.6.3. Product or process optimisation 

There is a close link between product or process prediction and optimisation. 

The term optimisation can be quite vague, as simply prediction of a parameter can be 

classed as optimisation, since one is allowing experimentation with input parameters 

to the model in order to obtain a required output value which corresponds to the real 

process. In this section, however, examples of literature were considered where 

authors have utilised models on steel processes to enable an optimisation routine that 

finds a set of optimal parameters for process or product design. 

The design of an accurate model is clearly still important and has therefore 

been noted. Apart from the research based at Cambridge University, one other author 

who used a Bayesian neural network for this type of model is Grylls4o. His paper 

investigated using neural networks for modelling the mechanical properties of 

Marinel,.a high strength marine alloy. The motivation of this paper is clear in that 

the author aimed to use the model generated to experiment with the composition and 

post-forging heat treatment in such a way as to produce a new alloy with a higher 

strength, but with maintained impact properties. The next chapter in this thesis 

details impact and tensile strength tests, however for now, the reader needs to accept 

that as a general rule there is a trade-off between strength and Impact energy 

(representing toughness of the material). A data set comprising 398 points was used 

to train the neural network to predict Proof Stress, UTS, Elongation and Impact 

Energy (four mechanical test results of a material that will be discussed in chapter3). 

Good model prediction accuracy was obtained, however it should be noted that the 

range of alloy additions was quite narrow. An iterative optimisation technique was 

then performed on the model and allowed a new alloy to be found which gave 50% 

more toughness without reducing the Proof Stress of the material. 
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Nakamura and Sagara
41 

used an optimisation procedure for calculating the 

most cost-effective combination of reagents to use in a hot metal de-sulphurization 

process. This work aimed to find a replacement for an existing semi-automated 

optimisation technique based on a series of linear models. The model needed to 

predict the sulphur content at the end of a de-sulphurisation process for a range of 

operational conditions. The aim of the optimisation in this work was to obtain the 

required final sulphur content with the minimum financial costs. The authors looked 

for a unified model of the process to enable this optimisation to be successful, since 

piecewise linear models (one model for each region of the data), are difficult to 

maintain and often have gaps between the boundaries of each the models. 

A unified model was constructed using the neural network technique with standard 

back error propagation. Although the authors said that the model was not very 

accurate due to the noise associated with the process data, optimisation was still 

possible. The authors mentioned that if the 'hidden' parameters pertaining to this 

noise could be found then the model could be improved. Input variables to the model 

were classed as controllable or uncontrollable. The controllable variables were 

examined using sensitivity analysis and two parameters, corresponding to two 

reagents used in the process were found to be significant to the optimisation 

procedure. The optimisation procedure employed used equal cost lines of the two 

reagents to analyse the operating range of the data collected from previous 

treatments. This enabled a series of guidance charts to be generated to optimise the 

use of the reagents for a given situation. This procedure was estimated to save 10% 

off the total annual reagent costs. 
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2.6.4. Model-Based process control 

The motivation for process control may be to achieve better product quality 

or lower process costs. The control procedure may even be part of an optimisation 

routine. This area of the literature search concentrated on areas of steel processing 

where models were used as part of the control strategy. Kim et al42 described the 

application of a model-based control strategy to a continuous annealing process. 

Steel strip passed through a number of stages in the process, each with a different 

temperature profile. One stage in particular, the rapid cooling section, required 

control dependent on the temperature, types of strip and other process conditions. 

The control actions available changed the amount of cooling applied to strips. 

Traditionally a look-up type table had been used to calculate the control action 

required, however it was felt that a more complex and continuous model may be 

more effective. A neural model was trained on 8,000 examples of process operation 

and was then used to provide the information previously gained by the look-up table. 

The results show that the neural network provided superior performance overall 

compared with the lookup table, however when the control action was very large, the 

look-up table gave a more stable result. 

Rolling mills appear to be suited to control techniques incorporating neural 

networks, with their varying time delays, gains and complex interactions between 

stands. Most of the applications used the neural network for supervisory control 

architectures, where the neural network predicts the values of the controller set-up 

parameters. Examples of this type of work were a prediction model supplied set-up 

parameters in a supervisory manner include roll force prediction for a cold rolling 

mill43 and parameter pre-setting for a temper mill44. Sbarbaro-Hofer, Neumerkel and 

Hunt45 have used a neural model for direct control, and used a variety of control 
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schemes including model predictive control. In this work a radial basis network was 

used to construct a plant model. The authors used this technique as it encompassed a 

simple learning algorithm, and commented that it was easier to obtain a uniform 

distribution of the modelling error over the complete space of the training patterns. 

The noise sensitivity of the RBF technique was not a problem since training data was 

generated by solving an analytical model of the plant equations. Stability of the 

neural network control scheme was of primary concern and the authors showed that 

for certain kinds of control systems the models were input-output stable. The control 

performance of all neural schemes increased the control precision over a 

conventional PI controller. 

In a hot strip mill, there is an area where strip is cooled, this is called the run­

out table. The control of temperature in the hot strip mill is important because it 

greatly affects the mechanical properties of the product (in a similar way to batch 

heat treatment). Work by Loney, Roberts and Watson46 investigated the cooling 

section of the run-out table as it was questioned whether the existing model used for 

feed-forward control was accurate enough. This work was based at the Port Talbot 

steelworks in Wales, and so a perspective of the industrialist's concerns was 

provided. The authors mentioned that a neural technique holds the advantage of 

providing complex non-linear mappings to describe process data, however they were 

aware that the technique is a black box one, and that it may yield unstable predictions 

under certain circumstances. It was also argued, however, that although concerns 

have been aired about empirical models over mathematical models based on process 

knowledge, mathematical models are often fitted to a particular plant using some 

process data, and therefore in some senses are data based. Various architectures of 

MLP network were trained, however no significant difference was seen between 

them. When compared to predictions of the existing control system model, the neural 
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network was shown to be superior, however for reasons of comparison, only the first 

stage of the cooling section was modelled. The neural model needed to be extended 

to cover the whole run-out table before it could be incorporated into the control 

scheme. In order for this to happen more data had to be available to train a reliable 

model. The authors placed emphasis on the importance of selecting appropriate 

examples from a larger database in order to build a suitable model. 

It has therefore been shown that neural networks can be utilised for process 

control in two ways, either directly for model-based control or indirectly in a 

supervisory manner. The earlier case is rarer as the stability of the model is obviously 

very important and this work seems to be not as far advanced. Even with the 

supervised control schemes there are still concerns about stability43, and a great deal 

of research still concentrates on creating reliable prediction models. 

Although the work in this project did not encompass generating a control scheme for 

a heat treatment process, the considerations for making the prediction model still 

apply. 

2.6.5. Fault detection/quality inspection 

Fault detection and quality inspection are applications that span a range of 

industrial processes47
,48. The problems of providing checks for product quality and 

consistency can often produce bottlenecks in processes, and fault detection on a 

process often requires the interpretation of multidimensional data. 

As with the other categories in this review, one might argue that fault detection and 

quality inspection could be considered as an optimisation technique, since the result 

should be an improvement in product consistency and plant reliability. However 

special consideration is given to literature concentrating on fault detection and 
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quality inspection since the authors motivations were quite different to that of 

optimisation control and property prediction. 

This section can therefore be divided into two categories, off-line fault 

detection and on-line (real-time) fault detection. Model-based offline fault detection 

has been applied to a rolling mill49 to predict the occurrence of a defect known as 

"R5 Hook". The fault occurs at the roughing stage of the rolling mill, which is used 

to reduce the dimensions of a steel slab to a predetermined intermediate thickness or 

width. When the fault occurs the steel has to be removed from the mill and cannot be 

processed any further. A mathematical model was used to calculate the required set 

points to the mill regulators, however it could not account for the occurrence of the 

fault, which is related to the prior furnace conditions for a range of mill conditions. A 

variety of neural models were evaluated to predict the occurrence of this fault with 

the aim that the particular settings that cause the faults could be avoided. The authors 

comment MLP technique was found to provide better performance in the application 

than the RBF technique in this particular case. The model was used to evaluate which 

variables were most important in the generation of the fault. 

Another off-line application is that of a ball steel process, where an adaptive 

logic network (ALN) was used to predict the percentage of faulty bars in a cast50
. 

The ALN is a simplified, special case of the Multilayer Perceptron network. The 

difference is that its operation is strictly Boolean, with a fixed threshold so that each 

neuron is able to calculate the AND, OR, LEFT or RIGHT of its inputs. Because of 

its Boolean implementation, each output value contributes to one bit of a binary 

output value, and a series of nets is required to calculate the full output value. For 

continuous values to be evaluated all input and output data need to be encoded for a 

number of quantisation levels. In this paper, the bars were produced from scrap 

materials, which were melted down using an electric arc furnace. The molten metal 
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was then cast into blooms (bars with a square cross section), which were then rolled 

into rounds. After the rolling process, ultrasonic testing was used to detect voids. If 

the bar passed this test then it was reheated and made into balls. As with many of 

these types of modelling process, prior knowledge was used to select which variables 

were to be used in the model. The networks target values were the results of the 

ultrasonic testing. There were problems, however, that not all of the examples in the 

data set contained a full input vector, so there was missing information. This reduced 

the training set to 102 points. Due to the low number of examples in the data set, a 

technique known as "leave one out" cross validation was used to evaluate the 

model's generalisation performance. As the name suggests this technique entails 

using all but one example for training the network and then testing on that example. 

The example is then returned to the training set and the procedure is repeated until 

the entire data set has been tested. The cumulative test result can then be calculated, 

however as one might expect many iterations are required. One of the important 

features of this new type of model is the level of quantisation used in the encoding. 

When there are few data points it appears to be advantageous to use fewer 

quantisation levels and preserve the accuracy of the model (trading precision for the 

number of mistakes). The authors reported some success in the ability of the ALN to 

model the percentage of defect bars, considering it to be a quick way to obtain an off­

line model for analysis of the fault, however they comment that the limited data 

reduced the success of the models. 

When considering real-time fault detection the speed of the computation 

becomes more important. Neural networks are usually time consuming when the 

training phase is considered, however, they are able to provide a fast modelling 

technique for predicting. On-line models have been used in a variety of process fault 

detection applications, largely due to the need for interpretation of multidimensional 
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data. Although the cause of a fault may not be known, through supervised learning 

with appropriate process variables, detection may be possible. 

Continuous casting has become an increasingly popular technique in recent 

years, enabling large quantities of molten steel to be cast into a continuous bar. There 

is however a serious fault that can occur in this process known as 'breakout'. This 

fault occurs because although the wall of the newly formed bar solidifies at an early 

stage, the centre of the bar is stilI liquid, and under certain conditions this liquid 

centre can literally break out of the bar's wall. This fault causes extended plant 

shutdown, and so model-based techniques have been employed to predict its 

occurrence. Nippon Steel in Japan used the neural network technique to forecast the 

occurrence of such a fault and claim "nearly 100% accuracy"51, significantly better 

than previously existing methods. The models were tested off-line before 

implementing on-line. One problem, however is that, even with on-line 

implementation, by the time the fault is predicted, the breakout cannot be avoided. 

Production can, however, be halted to minimise the damage and down time 

associated with the fault. The models could also be used off-line to study the 

mechanisms behind the fault's occurrence. 

Domingues, Campoy and AraciI52 consider a very high-speed product fault 

detection application on a steel strip mill. This application used a CCD camera to 

inspect steel strip as it passes at speeds up to 15 m/s. Data are supplied to a neural 

network from a digital signal processing board which supplies 18 features of the 

image. There was no data available to train a supervised network and so a form of 

unsupervised network was used to classify faults and learn as faults occurred in the 

strip. The detection of a fault was fairly simple as it corresponds to a deviation in 

grey scale, however, the network performed categorisation of faults and helped to 

allow for noise on the data which could cause false classifications. Once a section of 
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strip had been inspected, it could be graded in terms of quality. These data were then 

passed to a production scheduling system that optimised the product distribution 

based on customer specification, and produced more strip where required. The 

important aspect here for this project was that feature extraction could be used on 

raw data before training the neural network. 

To conclude this section, it has been seen from the literature that model based 

fault detection and quality inspection has been performed in a number of steel 

processes, both on-line and off-line. In most cases the principles of designing a 

property predictive model apply, in that the models need to describe complex 

interactions and non-linear effects. Neural networks are therefore also dominating 

this field, replacing existing models in certain circumstances. The problems 

associated with data acquisition apply once more and in one case this has lead to an 

on-line learning technique being applied. 

2.7 Chapter conclusion 

This chapter initially investigated the theory behind a number of data 

modelling techniques. The multi-layer Perceptron neural network technique was 

investigated in particular detail since it enables very flexible data based modelling 

and can easily accommodate for non-linearities and variable interactions. 

Literature relating to the prediction of mechanical properties was then 

investigated, and it was seen that some work to predict the mechanical properties of 

steel has been undertaken, however, this often only relates to a relatively narrow 

range of steel types. Often in the literature, the performance of the neural network 

approach has been compared to that of linear and polynomial techniques. Many 

authors from a range of model application areas have found the traditional linear and 

polynomial techniques to provide reduced modelling accuracy, compared with the 
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neural network technique. The difference in performance is largely thought to be due 

to non-linearities and variable interactions in the processes. 

The next chapter now introduces the principles behind the heat treatment 

process, together with information specific to the companies involved with the 

project. 
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Chapter 3 

Heat treatment process 

In this chapter the heat treatment process theory is examined in greater detail. Two 

industrial processes connected with the project as possible data sources are then 

presented. The BSES process is selected as an initial data source and information 

gathered from BSES about the process, at the initial stages of the project, is then 

discussed. Details of variables measured from the plant and material processed are 

then presented, together with their relative inaccuracies and incompatibilities. 

3.1 Brief overview of the steel making process. 

Before describing the heat treatment process, it is important to describe 

briefly the main stages involved in the production of steel. The basic steel making 

process consists of the following stages: 

Traditionally, iron ore is made into molten iron in the blast furnace, using 

coke as a reduction agent and limestone to produce slag, which carries away 

impurities. 

2 From the blast furnace, molten iron is transported to a basic oxygen furnace 

(BOF) for a conversion (or smelting) process, which produces molten steel. 

The major element removed from the molten iron in the oxygen steelmaking 

process is carbon, which is removed via oxidation to carbon monoxide (CO). 

Other impurities are also controlled in this stage. 

3 Alternatively, molten steel can be produced in an Electric Arc Furnace 

(EAF); this procedure involves the melting of scrap charge by electric arcs. 

The main heat treatment process modelled in this project is fed by steel 
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produced from an electric arc furnace. The reactions in the EAF are similar to 

those in the BOF. 

4 Steel makers are increasingly employing a relatively new process known as 

ladle metallurgy. This involves molten steel from the EAF or BOF being 

poured into a refining vessel, where the temperature and composition of the 

molten iron are closely controlled to produce various grades of steels as 

required by the customer. 

5 Traditional steel-making involves the production of ingots, where molten 

steel is poured into moulds to produce large blocks. After ingots cool they are 

reheated to a uniform temperature, and shaped into semi-finished sections 

such as blooms, billets and slabs. 

Continuous casting is, however, rapidly replacing the production of ingots. 

This involves the use of a casting machine that is capable of producing a 

continuous piece of solid steel, giving higher yield than ingot formation. The 

intermediate step of rolling ingots into semi-finished sections is also avoided. 

6 Following stage 5, further rolling, forging and heat treatment may be required 

to obtain the correct geometry and properties in the finished product. This is 

of primary interest to the project and will be considered in section 3.3 

3.2 The structure of steel and the effect of alloy addition 

Another feature of steel that is very important when understanding the heat 

treatment process is its structure. This section presents some basic information to 

show how steels are composed, however more detailed information can be gained 

from heat treatment and physical metallurgy text books53
.
54

. Much of the information 

presented in this section has been gained from attending courses within the 

Department of Engineering Materials at the University. In providing background 

metallurgical information on the casting and rolling stages, as described in section 
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3.2.1 and 3.2.2, the major mechanisms believed to affect the mechanical properties of 

steel are presented. However, it will also be seen that while previous research by 

metallurgists has enabled discovery of the knowledge presented in this section, it 

does not allow one to accurately estimate the mechanical properties resulting from a 

given combination of treatments. The heat treatment process will be considered in 

section 3.3. Throughout the production route the mechanisms presented here may 

interact in a complex manner and other more exotic underlying mechanisms not 

mentioned in this section may also be present. 

3.2.1 Casting 

Metals have a uniform, geometrical arrangement of atoms that is repeated 

through the material and are therefore said to be crystalline. The regular 3-D atomic 

pattern is known as the space lattice and the unit cell is the smallest unit of the lattice 

that retains the overall structure of the lattice. The term crystal structure, refers, 

therefore, to the size, shape and atomic arrangement of the lattice unit cell and is 

what varies from one substance to another. 

When liquid metal is cooled below its liquid state, the process of 

solidification occurs. A process of nucleation and growth achieves the solidification 

of a crystalline structure. When a pure molten metal is cooled just below its freezing 

point, minute nuclei of the solid form in the liquid. The crystal then grows in a tree­

like formation called a dendrite. The main 'trunk' of the dendrite grows quickly in the 

direction of the fastest heat loss and then secondary and tertiary branches develop in 

a geometrical pattern consistent with the lattice structure. Each dendrite then 

continues to grow until it meets other neighbouring ones, at which point the branches 

thicken to form a totally solid grain of metal. Each grain has a similar lattice 

structure but usually has a different orientation. This concept is illustrated in Figure 

3.1. 
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(a) formation of nuclei (b) dendrites formed 

(c) dendritic growth (d) grain formation 

Fig.3.l Dendritic growth of crystal grains 

Grain size is a very important feature affecting the mechanical properties of a 

metal. The grain size is affected by the rate of cooling of a metal, gradual cooling 

will result in only a few nuclei being formed and therefore a large grain size, whereas 

rapid cooling produces many nuclei and therefore a small grain size. When casting 

molten steel it important to remember the effect of temperature on the grain size 

since the cooling due to the mould temperature may not be uniform. 

A key feature of interest to this project when considering solidification is that 

it is the impurities in the metal which provide the centre for the growth of the grains 

(heterogeneous nucleation). The solidification of a pure metal will exhibit no 

dendritic growth. The reason why this is important, is because the addition of 

impurities can therefore produce a larger number of grain boundaries, which in turn 

can prevent a defect from passing through a given metal. This mechanism is termed 
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gram size strengthening. However, too many impurities can also weaken the 

material. 

Another strengthening mechanism in metals is that of solid solution 

strengthening. This is achieved by intentionally introducing interstitial or 

substitutional defects in the crystal lattice. An interstitial defect occurs when an extra 

atom is present in the lattice, which causes compression of the surrounding atoms 

(Figure.3.2). A substitutional defect occurs when alloying compounds of impurities 

cause an atom to be replaced by an atom of a different substance (Figure.3.3). Both 

defects cause stress fields to form around them and therefore it requires a higher 

stress to deform the material at the point of these defects. 
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Fig 3.2 interstitial point defect 

3.2.2 Rolling 
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Steel is rolled for two main reasons, to affect the mechanical properties and to 

produce the required section size or finish. A further strengthening mechanism is 

present when considering the rolling process, which is the result of another lattice 

imperfection. This strengthening mechanism is known as strain hardening. Whilst at 

the rolling stages connected with this project strain hardening should not occur, it is 

desirable to explain how it is avoided. 
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An incomplete line of atoms within the lattice causes a linear imperfection, 

which is termed a dislocation. Dislocations occur as two types, edge dislocations and 

screw dislocations. If a shear force is applied perpendicular to the plane of the atoms 

where an edge dislocation is present, the bonds between the atoms in the next row 

can be broken down such that the original row where the dislocation was is now 

complete. In this way a dislocation can move through a material. This phenomenon is 

termed slip, and is demonstrated in Figure 3.4. 
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Fig. 3.4. The movement of a dislocation through a metal 
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The strength of a metal may be increased through the presence of many 

dislocations since they will block one another and may also be blocked by point 

defects as mentioned in section 3.2.1. 

When work is done to a metal at an ambient temperature such that strain 

hardening occurs it is termed cold working. As will be seen in section 3.3, when a 

metal is reheated, recrystallisation may occur, therefore the effect of doing work on a 

steel above the recrystallisation temperature is quite different as dislocations may be 

removed. This is termed hot working, and is a method commonly adopted when 

rolling to produce the required sections prior to heat treatment. Hot rolling with a 

large reduction in sectional area produces a refined grain structure, which can lead to 

improve mechanical properties later in the process. 
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3.2.3 The iron carbon phase diagram 

Iron is said to be allotropic, that is it can have more than one crystalline 

structure. There are three structures that can be formed, these occur when it is cooled 

below its freezing point of 1535°C, at key temperatures, known as arrest points. 

Each of these three phases has either a body-centred-cubic (BCC) or face-centred­

cubic structure (FCC), as shown in Figs 3.5 & 3.6 . 

• 

Fig. 3.5 Body-centered-cubic structure Fig. 3.6 Face-centred-cubic structure 

The three phases of iron are: 

• 0 iron, a BCC structure stable above 1390°C 

• Y iron, a FCe structure stable between 1390°C and 910°C 

• a. iron, a BCC structure, stable below 910°C 

The changes in the structure that occur on heating iron do not occur at the same 

temperatures. The addition of carbon to iron also alters the arrest points, and apart 

from in the liquid phase, carbon is only partially soluble. When carbon combines 

with iron, it forms interstitial solid solutions of carbon atoms in iron. In Bee 

structures there is only limited solubility of carbon, which produces ferrite at low 

temperatures and 0 ferrite at high temperatures. In Fee structures increased carbon 

solubility occurs and austenite is formed by solid solution strengthening, providing 

ductile yet increased strength when compared to pure iron. When the solubility in a 
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given structure is exceeded, a compound called cementite is formed, which is hard 

but brittle. 

An iron-carbon equilibrium phase diagram as shown in Figure 3.7, is used to show 

the phases present in iron carbon alloys up to 6.7% carbon content. The term 

equilibrium is used to describe the fact that the phases have had the required amount 

of time to fully transform. Strictly, Figure 3.7 is not an equilibrium diagram as 
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Fig.3.7 The iron-carbon equilibrium phase 

cementite can decompose to graphite and so it is called a metastable system. 

Throughout the diagram there are key points which indicate certain types of reactions 

between the phases. Point E, at 4.3% carbon and 1 130°C is the eutectic point at 

which liquid alloy solidifies to a mixture of austenite and cementite. 

Point G is an important point of the phase diagram since here at 0.8% carbon and 

737°C solid austenite transforms into a fine laminar structure of soft ferrite and 

harder, more brittle cementite, by a process of diffusion. Under a microscope this 
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laminar structure has a pearly appearance and is known as pearlite. Steels with less 

than 0.8% carbon are referred to as Hypoeutectoid steels, and in a similar manner 

those with more than 0.8% carbon are known as Hypereutectoid steels. 

The iron-carbon equilibrium phase diagram has been included to demonstrate 

how phase transformations can occur in plain carbon steels. However in reality it is 

rare to find commercially produced steels with more than 1.4% carbon. Commonly, 

engineering steels are hypoeuctectoid. Other alloying additions such as manganese, 

nickel and chromium are also added to improve the steel's properties. Elements such 

as phosphorous and sulphur are present in the original ore and are classed as 

impurities. 

3.3 Heat treatment 

It has been seen that point defects and other imperfections in the structure of 

a steel are crucial to the subsequent mechanical properties. It has also been noted that 

the changes in the crystalline structure are related to the solidification process 

through dendritic growth and that the grain size and orientation is related to the 

temperature at which this occurs. Moreover, as the solid steel cools, the equilibrium 

diagram shows that more phase changes can occur, however because the mechanism 

for these changes is solid state diffusion, these changes are unlikely to proceed to 

conclusion. This in turn can cause coring, which is a situation where the composition 

varies between the grain boundaries and the centre of the grain. Coupled with the 

volume change that occurs between the FCC. and BeC. structures due to the FCC 

crystal structure being more densely packed, this causes many internal strains to 

result in the metal. The structure will tend to re-arrange its atoms such that these 

strains are relieved, however this can only occur when the atoms are excited into 

moving, Le. by the steel being re-heated. For the re-arrangement to occur this heating 
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needs to occur at a sufficiently high enough temperature, and for a long enough time 

to allow the transformations to occur. The procedure for heating steel to a specific 

temperature, for a period of time, is known as soaking. It is a general rule that when 

the steel's internal structure is strained, it has a higher strength, but is less ductile. 

Therefore when these stresses are relieved, ductility improves, but the material is 

weakened. 

If a steel containing a sufficiently high amount of alloying addition is cooled 

fast enough, then non-equilibrium structures of bainite and martensite can be formed . 

800 

.,.---r-----.~"T""T""-'-,- ---r--r-r-r-r--"""-TI T! Tl-'-"""-'!"'!-'--'---'I TT"--T 

I 
I 

--~ -; Tl 

! 600 I 
a 

1400 ~~~~~~~~ 
~ 

200 

o +--~-L-..J.-'-+-~~~t--
1 10 102 103 

Time (s) 
104 105 

Fig. 3.8. Continuous Cooling Transformation diagram for a 34 CrMo 4 Steel 
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In chapter two the modelling of a continuous cooling transformation (C.C.T) 

diagram was described, which was at that stage described as a diagram showing the 

microstructures which would result from near constant cooling of a given steel. Such 

a diagram is shown in Figure 3.8. This is demonstrated for a 34CrMo 4 steel 

although it must be remembered that the phase boundaries will be different 

depending on alloying addition. 
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The continuous cooling transformation diagram shows various cooling 

trajectories for increasing times to the right. The cooling curves cross various 

bounded regions, which show the microstructures that will be generated. The letters 

M, A, F, P, B are used to represent the Martensite, Austenite, Ferrite, Pearlite and 

Bainite regions respectively. In reality, most industrial processes would aim to either 

produce the marten site or pearlite microstructures, since bainite is a very variable 

microstructure which is more difficult to control. The martensite microstructure is a 

highly distorted form of the ferrite Bee microstructure. To obtain sufficient hardness 

in steel it is common for industrial processes to aim for the martensitic 

microstructure as it can be later tempered to obtain the required mechanical 

properties. Figure 3.8 indicates, however, that to obtain a martensitic microstructure, 

rapid cooling needs to occur, however on an industrial scale this may not be practical 

with large pieces of material. An additional complication is that if a quench which is 

too harsh is used, then cracking will occur in the steel due to the thermal stresses. 

Due to the complications of obtaining a rapid quench, alloy additions to improve the 

hardenabilty of steel are made, examples of these are chromium, molybdenum, 

manganese, nickel and occasionally vanadium. These elements act so as to move the 

phase boundaries, so that martensite can be formed at lower cooling rates. If enough 

hardenabilty exists, but there are problems of cracking, an oil, or even polymer 

quench can be used to give a slower cooling rate. This is therefore the hardening 

stage of the heat treatment process, however, the martensite results in brittle steel that 

would be impractical for most engineering steels, therefore tempering is required to 

transform some of the martensite into a tougher structure. 

Before describing the tempering process it is first necessary to describe the 

annealing and normalising processes. 
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There are two forms of annealing, subcritical and full annealing. Subcritical 

annealing is used to remove the effects of work hardening and takes place over the 

temperature range of 650-700°C (no phase changes). It is important that the 

component being annealed is allowed to soak so that it reaches an even temperature, 

and it must then be allowed to cool slowly. 

The second annealing process, full annealing, is used to reverse the formation 

of non-equilibrium structures. This means that the steel must be heated to allow all of 

the bainite or martensite formations to revert back to austenite. Once again it is 

necessary to allow the components to soak (stay at a given temperature in the 

furnace), until the transformation to austenite is complete and then cool slowly to 

give equilibrium structures. Slow cooling may be achieved by allowing the steel to 

cool in the furnace or in a brick lined chamber. 

Normalising is a process closely related to annealing and is used on steels to 

give a finer grain structure. The very slow cooling of annealing gives a soft, ductile 

structure but there is also excessive grain growth. A faster cooling rate usually 

achieved by cooling in air, gives smaller grains and therefore a tougher and stronger 

material. 

The definition of normalising may be complicated by the fact that in industry 

normalising is a term used for air cooled heat treatments, however through alloy 

additions it is possible to have an air hardenable steel. 

The tempering process, like the annealing and normalising processes is very 

temperature dependent. The amount of martensite, which may transform is related in 

a complex manner to the alloying additions made to the cast. The re-heat temperature 

is important, however, because it shouldn't be so high that too much grain growth 

occurs, and the steel becomes too weak. After 'soaking' the steel at the required 
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temperature, the material is allowed to cool at a lower rate than with the hardening 

stage, in either an air or an oil medium. 

From this section and the previous sections so far in this chapter it has been 

seen that metallurgical theory, even the basic material covered here, can describe the 

mechanisms of microstructural formation, which lead ultimately to the mechanical 

properties of the steel. However, this has only been demonstrated for fixed 

compositions that do not contain complex alloying additions, and has not been 

directly related to mechanical properties, although this may be done. The problem is 

that to predict the mechanical properties of steels in this manner (based on physical 

models), much more knowledge would be needed, which could only be the 

culmination of time consuming experimental work, which may then not cover an 

area of commercial production needed. Indeed it is widely accepted that human 

judgement based on past experimentation, coupled with a metallurgical knowledge, 

are the techniques currently used to 'predict' which mechanical properties may result 

from a given heat treatment and alloy addition. The theory does however show that 

the solution predicting mechanical properties is likely to encompass non-linearities, 

if one considers the situation where phase changes in the material may be likely to 

occur. This is the impression given by the 'text book' description of the process, 

however, the next stage is to look more closely at the actual industrial process 

involved with the project, and examine under these conditions what other 

complications may result. 

3.4 The industrial process 

At the beginning of the project a meeting was held with the Materials Forum 

members, to establish a suitable process to investigate. The process chosen needed to 

be potentially beneficial to most Forum members and so those involving obscure 
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steel grades requiring unusual treatments unique to one manufacturer were to be 

avoided. 

Another function of this initial meeting was to establish how the Forum 

members interpreted the project brief. An important aspect is that all parties should 

agree on a common goal, and so it was useful to confinn that what would be initially 

expected, was a predictive model capable of predicting mechanical properties. At this 

initial stage it was felt that the prediction of UTS would be the best place to start, and 

concerns relating to the prediction of impact test results were aired - this will be 

discussed later in the mechanical test result section. 

It was suggested that the batch heat treatment processes of BSES and Aurora 

forgings would be suitable for the modelling work, these processes were to be 

investigated so as to establish a suitable starting point for the modelling work. 

Suggestions from metallurgists present at this meeting were that once a process was 

selected it would be advisable to firstly concentrate on a specific composition and 

treatment pattern, in order to investigate the potential of the modelling techniques. 

Site visits were arranged to British Steel Engineering Steels and Aurora 

Forgings, in order to establish the best process to concentrate on first, and the 

following points were noted in the following sub sections. 

3.4.1 British Steel Engineering Steel's heat treatment processes 

The heat treatment process at BSES, as mentioned in chapter!, is concerned 

mainly with mid-low carbon steel, which has been cast into ingots and then rolled 

into round section bars, or occasionally square section bars. A range of heat 

treatments are used throughout the sites connected with BSES, these include 

hardening and tempering, but may also include annealing, nonnalising and dummy 
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nitride techniques depending on specific design requirements. Occasionally multiple 

tempering treatments may also be performed. It was evident from the visit that 

treatments normally occurred in a pattern of different stages, such that the resulting 

product qualities were achieved as required by the customer. 

Although the steels have been rolled prior to heat treatment, it was decided 

that, because during the hardening stage the microstructure would become fully 

austenitic, the effect of the strain hardening effects of the rolling could be ignored 

since full re-crystallisation would have occurred. Therefore, when modelling any 

treatment pattern commencing with a hardening stage, one can consider the 

microstructure to have approximately the same starting point. 
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During the hardening stage, batches of bars that may individually weigh up to 

4 tonnes and have a cross sectional diameter of 400mm, are loaded into large 

furnaces in a pack of bars as indicated in Figure 3.9. 

Grooves to enable 
loader pickup 

Fig 3.9. Typical arrangement of bars on pallet prior to 
austenitising treatment 

A special loader on a parallel track performs this task usmg pallet 

arrangement supporting the bars. During the hardening stage, the bars are soaked at a 

temperature around 860°C, which may vary slightly depending upon the treatment 

required. Figur 3.1 0 shows the removal of the bars from the furnace for transfer to 

an oil quench tank after the austenitising stage. Furnace soaking times have to allow 

for the au tenite transformation, and are also dependent on bar diameter and the 

volume of the furnace charge however a soak time of 5 hour is typical. Once the 

steel has soaked at it required austenitising temperature it is then either transferred 

70 



to a quench bath (for cooling in either water or oil mediums), or is allowed to air cool 

(for slower cooling), this may also be performed in a brick lined chamber for very 

slow cooling. Transfer to the required quenching medium must occur as rapidly as 

possible so that the rate of cooling is regulated. The quench bath temperature is 

controlled, since it will be heated by the high amounts of thermal energy released by 

the bars, and if the bath temperature becomes too high the cooling effect will not be 

significant enough. The water quench tank contains a cooling skid such that the 

temperature is kept below 38°C. The oil quench tank is kept between 38°C and 80°C 

and so both heating and cooling control are used. There is an additional safety 

interest here, since the oil quench media has a flash point of approximately 200°C 

and also has a high coefficient of expansion. To ensure even cooling, the bars are 

either moved up and down by the crane to provide agitation or the coo lent is agitated. 

Fig 3.10. Bars at 875° being unloaded from the furnace before transfer to 
an oil quench 
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The tempering stage, which then follows, involves re-heating the steel to a 

lower temperature, around 630°C, so as to allow the transformation of some 

martensite to the softer structures as mentioned earlier. Cooling at this stage is 

usually performed using air, however oil can also be used. With the steels 

manufactured in the processes connected with the project, the tempering stage is 

crucial to the mechanical properties of the resultant material. The hardening stage 

will tend to mainly produce a fairly uniform structure throughout the range of steel 

made. For scheduling and specialist treatment reasons, up to five furnaces may be 

used at each of the heat treatment sites. 

The furnaces used in the heat treatment process vary depending upon the 

treatment that is being performed. The control and heating mechanisms used in the 

furnaces also vary, however, complex thermodynamic and control aspects are 

considered for each type of furnace charge to ensure effective heating in the manner 

required for the treatments. The furnaces used by BSES have gas fired burners which 

either act from each end of the furnace (resulting in one zone), or in pairs along the 

sides of the furnace (resulting in multiple zones). The configuration used is 

dependent upon the length of the furnace, since burners have a limited firing range; 

therefore a furnace length exceeding 6m would normally be a multiple zone type. 

Figure 3.11 shows a typical arrangement of burners and control 

thermocouples in a multiple zone furnace. The burners are offset so as to provide gas 

flow through the furnace. The thermocouples are placed in the gas stream at the 

opposite side of the burner they control. Linings and furnace shape can also affect the 

heating mechanism, together with the amount of air that is allowed to flow through 

the furnace. At the high temperatures used for the hardening stages, gas and airflow 

rates are reduced such that radiant heat is the main mechanism. In the tempering 

72 



stage, the temperatures are lower, therefore the heat radiation is lower and the 

velocity of the burner's gases is the main mechanism used to heat the bars, with 
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Fig.3.11 Typical control scheme for multi zone heat 
treatment furnaces 

increased gas and airflow. The furnace will therefore run less efficiently m the 

tempering stage, however this is required to force the heat between the bars. 

One important thing to remember is that particularly at the tempering stage, 

the temperatures throughout the furnace may vary, therefore it is very important 

where thermocouples are placed for control and temperature measurement. For this 

reason it is usual to use perhaps 12 thermocouples distributed throughout the furnace 

for temperature measurement, and then a control thermocouple in the gas stream per 

burner in the furnace. 

There are two types of calibration performed with the furnaces, the first is the 

thermocouple calibration and the second type is a dummy charge calibration. The 

thermocouple calibration is typically made to within ± O.5°C at lOOO°C. The dummy 
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charge consists of either a frame or scrap bars, containing thermocouples, to look at 

the temperature distribution with respect to the heating of the bars. This can be used 

to formulate improved control or burner settings. The overall furnace temperature 

provided by the control system is ± 5°e below 7500e and ± 100e on temperatures 

above 750oe. 

When the required treatments are completed, mechanical property testing is 

performed along with a visual inspection for surface defects (for example cracking or 

warping). A full description of the procedures used for obtaining the mechanical 

property test results will be provided in section 3.7. Depending upon the customer 

order, the test results obtained from the heat treated product must lie within the range 

dictated by the z-card, which is a type of specification document, stipulating key 

features which the end product must fulfil. 

The production method described above is known as the 'as treated' product 

supply, however steel may also be supplied 'as rolled', to customers wishing to 

perform their own heat treatment. In the 'as rolled' case, a certificate has to be 

provided with the steel supplied, to confirm that under certain treatment conditions, 

the mechanical properties required by the customer can be achieved. This is done via 

a laboratory scale heat treatment that is performed on a sample of the steel, which is 

going to be supplied without treatment. The hardening and tempering operations in 

this laboratory process are similar to those described in the plant, except that the 

furnaces and heat-treated sections are smaller. 

Throughout both laboratory and plant based processes, a database is used to 

record information relating to the metallurgical analysis of a particular cast of steel, 

the subsequent heat treatments including temperatures and quench mediums, and the 

mechanical test results and conditions relating to the tests. This information can be 

recalled on a chronological, metallurgical or specific batch basis, and has been held 
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in this fonn since 1986. Although process instrumentation is connected to the 

computer systems throughout the works, the real-time process infonnation used for 

control is not logged automatically to the database. Infonnation about each heat 

treatment is instead entered at discrete intervals throughout a given product's 

production. Because customer requirements vary, not all-mechanical tests are always 

perfonned. 

3.4.2 Aurora Forging's heat treatment process 

The Aurora Forgings heat treatment process has two main sites of interest 

from a modelling point of view. The first is the Meadowhall works and the second is 

the Parkgate works, both are situated in South Yorkshire in England. A third site, at 

River Don, specialises in drop stamp and press forgings, some of which are for the 

automotive industry, these processes do not however involve heat treatment. 

Representatives present at the first visit to the site explained that the Parkgate works 

specialise in stainless steel and titanium alloys using open die forgings and batch heat 

treatment. The Meadowhall works has several specialist forging processes, however 

the steels used here are closely related to the compositions of BSES. Despite the heat 

treatment equipment of the Parkgate works being newer and possibly providing more 

unifonn results, it was advised that the Meadowhall plant may be of more interest 

due to the applicability of these alloy steels to the rest of the Forum. 

Aurora is not a steel manufacturer, instead it buys steel in an 'as rolled' fonn, 

80% of purchases are from BSES. This steel is then used to make various parts for 

Rolls Royce, the petrochemical industry, the M.O.D, mining machinery 

manufacturers and producers of large earth moving machinery such as Caterpillar 

and Komatsu. Depending on the application the steel ordered will have to meet 

certain mechanical testing requirements when it is treated. Figure 3.12 shows the 
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interaction between the steel supplier and Aurora (the purchaser and forging 

supplier). Steel is purchased with a test certificate that is proof that the properties 

ultimately required by the forger can be achieved, this is done by the lab treated 

sample from the main bar. The forger then performs their forging operation and then 

heat treats the forged component. They then test a sample of the completed forging to 

prove to their customer that it meets their requirements. 

The Meadowhall works houses a 3,500 tonne and 5,500 tonne CNC 

controlled back extrusion press, which enables hollow cylindrical forgings to be 

made thorough a multistage process. Prior to the forging process the billet needs to 

be heated in a furnace at 1200-1500°C, this softens the billet, allowing it to be 

deformed easi ly. Several re-heats may be necessary to enable the desired shape to be 

achieved. When the forging is complete, it is allowed to air cool, before the heat 

treatment process. 

In a similar way to BSES, the forgi ng process commonly consists of a 

hardening and a tempering stage. The hardening stage is operated at temperature 

ranging from 800-900°C. The forged components are put into the furnace in batches, 
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Fig. 3.12. The interaction between forger and steel supplier 

however unlike the BSES process the configuration of this loading is dependent on 

the geometry of the components. When the components have soaked at their 

76 



hardening temperature they are transferred to a quench bath containing oil, water, or 

a polymer quench. The quench tanks contain heat exchangers to allow cooling when 

the temperature becomes too high. Agitation of the quenchent is provided via a pump 

as opposed to the movement of the bars as with BSES. All quenching media are also 

monitored for quality, in particular the polymer quench, which requires its 

concentration to be checked daily with a refractometer along with quarterly checks of 

the long chain polymer lengths as these can break down with use. 

An unusual feature of Aurora is that, due to some component shapes, vertical 

as well as horizontal heat treatments can be performed. This is usually required for 

long components where distortion is critical, it should be remembered that these 

components are very size critical and changes in size due to heat treatment can be a 

problem. 

Apart from one electric furnace, all furnaces at Aurora are gas fired. Different 

furnaces are used for hardening and tempering. The hardening furnaces tend to have 

greater convection, providing a fiercer heat, whereas the tempering furnaces tend to 

provide less convection. Furnace lining may also vary with some having brick lining 

and some having fibre linings, this affects the rate at which they heat up and cool 

down. The linings of the furnaces are also replaced every 10 years, as this will 

change the temperature dynamics and therefore the effect of the tempering in 

particular. 

The furnaces at Aurora commonly have six burners, divided into two zones. 

Each zone contains two thermocouples, one for temperature recording (via a chart 

recorder), and one for temperature control, via a Eurotherm PID control unit. This is 

a similar arrangement to that of BSES. Additionally there is a 'police' thermocouple, 

by way of a safety mechanism, to override control of the two zones if the 

temperature becomes too high. Charts of the furnace temperature are kept with 
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reference to a batch number to allow investigation into possible heat treatment 

problems. 

All furnaces are calibrated to within ±5°C at 500°C and ±lO°C at 700°C every 

3 months. This calibration is performed using a dummy charge as with BSES, which 

enables the thermocouples to be adjusted. Due to furnace dynamics variations, 

certain regular orders are often treated in designated furnaces to ensure reliable 

results. 

When the heat treatment is completed hardness testing is first performed, as a 

go, no-go test. This simple test, described in section 3.7.4 is first used because further 

tensile and impact tests can be expensive to perform. A Brinell hardness test enables 

a cheap, rough prediction of the tensile properties of the material. If the hardness 

properties are sufficient then further testing is performed. 

As with the BSES process, details pertaining to the steel analysis forging and 

heat treatment were available in a database format. 

3.5 Selection of an appropriate process 

This project was now in the fortunate position of having two potential processes 

from which to draw data. However it was decided that initially only one process 

should be investigated, due to the incompatibilities which the data from each process 

may have because of differences in the processes and working practices. It was 

therefore necessary to decide which process to concentrate on in order to build a 

suitable model. It was decided that the BSES process would be chosen for the 

following reasons: 
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• The bar form prior to rolling would provide a more uniform mechanical history 

(Aurora's components vary far more in geometry from batch to batch, depending 

on the customer, which will also affect the microstructure of the untreated steel). 

• BSES appeared to have data available on a standard geometry of product 

throughout a range of treatment sites, which also perform a similar working 

practice. 

• A wider range of steel analyses are treated within the BSES plants 

• The laboratory treatments would cover a range of analyses under one 'plant' 

which may also have closer control and therefore could produce a source of 

'pure' data. 

• BSES were keen to provide data that could first be selected by an expert in their 

processes, thus enabling the data collected to meet the needs of the modeller. 

• The Swinden Technology Centre would enable metallurgical support in the form 

of evaluation of the modelling process as it develops whilst also providing help in 

a technical context. 

The next step was now to establish in what form the data were available and what 

types of steels should be concentrated on first. 

3.6 The BSES data 

In this section, an introduction into the variables contained in the available 

data is presented, together with some points to note about the use of these variables 

from a modelling perspective. Much of this section is part of the knowledge 

acquisition process undertaken at the beginning of the project. It was essential to gain 

a detailed picture of the process procedures and problems in order to construct an 

accurate model. This knowledge was developed through meeting metallurgists and 
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specifically a test house manager at BSES Stocksbridge. A common problem with 

this process is that a person who is an expert on a process, may be too close to it to 

explain the assumptions or motivation behind what may be a basic procedure that 

may be important in the context of the resulting model. It was therefore important to 

question all aspects of the process in order to extract this information. Jackson55 

provided a useful insight into this problem. 

3.6.1. The 'MET' database 

At BSES all data relating to previously heat-treated steels is kept on the 'Met' 

database. This database tracks orders from cast to batches of heat-treated bars, using 

a variety of codes. 

When a cast of steel is made, it is given a Cast Number, the cast may be 

larger than the amount of steel which can be heat treated in a single batch, and so 

each batch of heat treated steel from a cast is allocated a heat treatment batch 

number. It is therefore possible for several heat treatment batch numbers to relate to 

the same composition code, however this does not mean that the treatment profile 

needs to be the same. The allocation of cast and heat treatment batch codes is 

important, because it allows for checks to be made relating to the treatments given to 

certain orders, and in the event of a problem, allows the user to reference furnace 

temperature logs and test samples pertaining to the treatment. In chapter 5 it will be 

seen that these codes have also been of assistance in the modelling process. 
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3.6.1.1 Process and product variables contained in the database 

The MET database contains a number of variables relating to the process, the 

cast, and batch of heat-treated steel in the process, these are shown in table 3.1, 

together with an explanation of their significance. 

Variable Explanation 
Cast The cast number (as explained in Section 3.4.1) 
Year The year the cast was made 
ComR An alpha numeric code relating to the composition of the cast 

Piece id A unique identifier for trackinA individual bars through the l~Jant 
Position The ~osition of the bar in the ingot 

Specimen Depth The depth in the treated bar from which a mechanical test sample 
(mm) is taken 

Specimen Orientation The orientation can either be transverse or longitudinal in relation 
to the len-..s.th of the bar 

Size (mm) Original size of the bar 
Forge Size (mm) The size of the bar heat treated (normally the forge size will 

equal the size for plant based treatments, but will be significantly 
less than the original bar for laboratory treatments. 

Heat Treatment Batch An alphanumeric code relating to the batch in which the piece 
Number was treated (as explained in Section 3.4.1) 
Location The location at which the treatment was performed 

C Carbon 
Si Silicon 
Mn Man-..s.anese The chemical 
P Phosphorus composition of the metal 

S Sulphur in the heat-treated item. 

Cr Chromium 
Mo MolYbdenum This includes alloying 

Ni Nickel additions and residual 

Cu Copper levels of impurities 

N NitroKen 
present after the 

Nb Niobium 
steelmaking process. 

Ti Titanium This is measured as a % 
AI Aluminium weight. 
V Vanadium 
W Tungsten 

Z-Card An alphanumeric code relating to a set of properties, test 
conditions and heat treatment schedules which the finished 

j)foduct must have. 
locx The location at which a specific treatment was 

performed (if different to the overall location) The treatment 
treat x The treatment type performed schedule may 
tempx The temperature at which the piece was incorporate up to 

soaked 6 treatment stages 
cool x The quench medium used to cool the piece (x = t :6) 

Table 3.1. The product and process variables available in the MET database 
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The variables relating to the mechanical test results are shown in Table 3.2. These 

relate to the tests described in Section 3.7. The data relating to the variables in this 

table is generated by the routine testing laboratory, and is performed on all heat 

treatment batches. 

Variable Explanation 
Elongation gauge length The specimen length for the elongation test 

40 or 50 sample (either 4 or 5 times diameter of 
specimen) 

.1 % Proof stress (N/mm~) The percentage proof stress of the treated 

.2% Proof stress (N/mm~) sample 

.5% Proof stress (N/mm2) 
Yield Stress (N/mm2) The Yield Stress of the sample 
Reduction of Area (%) The percentage reduction in area during 

elongation 
Elongation (mm) The elongation of the relevant specimen 

diameter 
Hardness The Brinell hardness value of the sample 

Impact 1 a (Joules) The impact energy required to fracture the 
Impact 2 a (Joules) sample type used, three measurements are 
impact 3 a (Joules) taken for reliability. A second set of impact 

results may also be ~resent (b). 
Temperature a (OC) The temperature of the specimens in the impact 

test (may be different for a second set of impact 
results. 

Type (a) The type of impact test used for the current set 
of im~act results 

Units (a) The method used to measure the impact energy 
(Backed off or absolute) 

Test Reference A unique code relating to a set of tests 
Result Status A flag to signify if the sample passed or failed 

the specifications set in the Z-Card 

Table 3.2. The mechanical test result variables in the MET database 

The variables in Tables 3.1 and 3.2 can be downloaded from the MET database in a 

variety of spreadsheet type forms, for the required compositional range, treatment 

batches or cast numbers required. In this way the variables are the columns and the 

data points are rows of the matrix. 
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3.7 Mechanical properties testing 

This section describes the mechanical tests used to obtain the mechanical 

testing results for the heat-treated steels. It is necessary to understand the 

mechanisms behind the tests in order to understand their limitations and sources of 

errors. The section also explains why certain test types are incompatible and why 

certain customers require different test types to others. Information in this section is 

the results of visiting the test houses at BSES, but also from background reading 

from a number of texts56,53,57,58. 

3.7.1 Introduction to mechanical properties and their testing 

Mechanical properties can be divided into static and dynamic properties. A 

static property is independent of the loading rate at which a force may be applied to 

test piece, however a dynamic property is dependent on this. Strength and hardness 

are examples of static properties, whereas fatigue, creep and impact resistance are 

examples of dynamic properties. 

Before commencing the explanation of the tests it is worth first stating some 

definitions to explain the meaning of the properties tested for. Although these 

definitions are basic knowledge, it is surprising how often they are misused. Of the 

static properties: 

• Strength is the ability to resist a force without breaking; three kinds of loading 

which might test a materials strength are tensile, compressive and shear. 

• Elasticity is a material's ability to return to its original shape after being 

deformed. 
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• Plasticity is the readiness to defonn to a stretched state when a load is applied, 

where plastic defonnation is pennanent even after the load is removed. 

• Ductility is the ability to be drawn out longitudinally (therefore it must have 

plasticity). 

• Hardness is the resistance to wear or indentation. 

• Malleability is the ability of a material to be stretched in all directions. 

Of the dynamic properties: 

• Creep is a slow plastic defonnation under a prolonged load. 

• Fatigue is where a failure can result in a material where a load is applied 

repeatedly (whereas the material might be able to withstand that load if it was 

applied a lower number of times). 

• Toughness is the ability of a material to withstand sudden loading. 

• Brittleness implies lack of ductility or toughness. 

Not all of the above properties are measured directly in the test house at BSES, 

however all of these properties are important when designing engineering steels and 

therefore from the tests made these properties must be inferred. Some tests therefore 

relate directly to one property and provide an indirect indication of another property 

at the same time. An example of this has been seen already in the way that Aurora 

forgings used a hardness test to provide an indication of Ultimate Tensile Strength. 

3.7.2 Tensile testing 

Tensile testing is one of the most important fonns of mechanical property 

testing, it results in the detennination of a number of values, namely the Ultimate 
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Tensile Stength (UTS) the Proof Stress (PS), the Yield Stress of the material (YS), 

and the Elongation and Reduction of Area of the specimen. Tensile testing has to be 

performed on a designated test piece, this is commonly determined by BS 18:1987 

'Tensile testing of metals'. The test piece is stipulated to have the form shown in 

Figure 3.13, with a uniform central gauge length and shape, which will both affect 

the results obtained. The Figure shows d the diameter if the test piece, le the gauge 

length, 10 the parallel length and r the radius at the shoulder. 

r ,. 

..... --- L 0 ----.t 

....... ---- L (. -----I ... 

Fig. 3.13 British Standard tensile test piece with circular cross section 

The British Standards sets out a range of proportions that can be used. One important 

aspect of the test piece is that if there is a non uniformity in its construction then 

premature failure can result, this is easy to spot for dramatic defects, however may be 

less obvious for slight detects which may cause inaccuracies in the results. The 

testing machines used at BSES incorporate a hydraulic mechanism to apply an 

increasing tensile force along the length of the specimen, which is clamped at either 

end by a gripping arrangement. Modern equipment uses load cells to measure the 

strain and extensometers to measure the extension of the specimen. The actual 

features measured are load and extension, however this can be readily translated into 

stress and strain, where stress is a nominal value of unit stress, which is the load 
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divided by the original cross-section area of the parallel proportion of the test piece. 

In a similar manner, strain is the extension divided by the original gauge length. An 

example of a tensile stress-strain graph, such as might be generated from a low alloy 

steel is shown in Figure 3.14. 

Stress 

Elastic 
ranQe 

Plastic 
range 

rracture 

Strain et. 

Fig. 3.14 Stress-strain curve as exhibited by a low alloy material 

The load is increased until the yield point is reached, until which point elastic 

deformation is occurring. At the point where plastic deformation occurs, the 

specimen undergoes internal structural changes, with many dislocations being 

formed at stress points which travel through the material as observable lines known 

as Luders bands. At the upper yield point a relatively large extension of the test bar 

takes place with a constant load value, and thus the stress reading will fall to what is 

the lower yield point. This may appear as an oscillatory point as the load is increased 

and the yield proceeds. Depending upon the specifications used the lower or upper 

yield point may be considered. Not all materials exhibit a clear yield point, and 

indeed at BSES this is the case with many steels containing high alloy contents. 

Figure 3.15 shows the Stress-strain curve for such steel. 
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Fig. 3.15 Stress-strain curve for a high alloy steel or material without a clear yield point. 

The proof stess is often used instead of yield stress in situations where there is no 

clear yield point. It important to consider therefore that composition may be highly 

correlated with the type test used here. The proof stress may be determined by 

applying a load to the specimen such that when it is removed a permanet elongation 

of say 0.2% strain remains, this is termed the 0.2% Proof stress. Fenner57 describes a 

variety of methods in which this can be done. Another technique, however is to draw 

a line parallel to the elastic slope (fig. 3.15), through the point corresponding to 0.1 % 

strain to intersect with the stress strain curve. This would give the 0.1 % Proof Stress. 

0.2 and 0.5% Proof Stress values are also reported by BSES where necessary. 

After the yield point (Fig. 3.14), if present, the load will continue to increase 

again, and the rate of strain is commonly increased since work hardening is now 

taking place and extensions of up to 20% may be reached. In either case, the point of 

maximal stress will be reached; this is the ultimate tensile strength of the material. 

Beyond this point the material will narrow or 'neck' and the nominal stress falls. 

Eventually fracture will occur at the end of the plastic range. Fractures may be 
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classed as either ductile or brittle. Brittle fractures occur by rapid propagation of a 

crack through the material after little plastic deformation. A ductile fracture would 

occur after much more plastic deformation and exhibit a 'cup and cone' effect. The 

rate of loading can affect the type of fracture that occurs, if the loading is too fast 

then a brittle fracture may occur. It is usual for a metallurgist to examine the fracture 

under a microscope if the results are unusual, since this may enable the determination 

of a fault in the steel's composition. 

The ultimate, yield and proof stress measurements considered so far are 

concerned with the strength of the material, however the elongation and reduction of 

area also provide a guide to the ductility of the steel. The elongation and reduction of 

area are measured as percentage changes in the gauge length or diameter of the 

specimen after fracture, and are dependent on the specimens used. For this reason 

two elongation results relating to different gauge lengths cannot be compared. It is 

common practice to mark the specimen with a sharp punch along its length prior to 

the tensile test, such that after fracture the pieces can be re-joined for the elongated 

length and final diameter to be recorded. This procedure carries obvious inaccuracies 

of measurement and alignment. 

3.7.3 Impact testing 

Impact testing produces some notoriously complex results due to the 

multitude of standards that exist and is argued by some to be imprecise due to the 

variety of results that can occur due to slightly less than perfect test conditions. It is 

also important to note that the impact tests described here are used as an indicator of 

toughness and are used by BSES for quality control rather than the indication of 

fracture toughness during a particular application. An example of this is in the cases 

of pressure vessels and similar safety critical applications; here it is usual to perform 

88 



an impact test on a similar section thickness as would be used in the real application. 

The fracture in this case will often propagate from an initial fatigue crack, which is 

generated artificially prior to the main impact test. This type of test is primarily to 

investigate the severity a crack might have on a material in its application. The types 

of tests described below do still vary based on the application, in the sense that the 

impact toughness may be investigated at sub zero temperatures. However, most test 

variations are due to customer preferences of the test type used, which is commonly 

dependent on the country from which the order stems. 

The principle of impact testing is to measure the energy necessary to fracture 

a standard notched bar specimen, by an impulse load. There are two commonly used 

types of test, and both are used by BSES. In both test types a striker swings in an arc 

striking an appropriately mounted specimen. Figure 3.16 shows the arrangement 

Scale .. - ---./ 
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Striking edge -"1 .... ./)0 

upports 
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X 

Fig. 3.16 Diagram of standard impact testing arrangement 

used to perform the test. 

The energy absorbed by the specimen is measured by the angle of 

displacement of the pendulum after the fracture. The striker angle, shape, test piece 

geometry and rate of loading effect the results obtained, therefore standardised 
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equipment and specimen sizes are used. The Charpy specimens tested at BSES exist 

with either V or U shaped notches, and may have a depth of 2, 3, or 5 mm. The 

Izod specimens have a V shaped notch, with a fixed depth, and are often favoured by 

Germany and France as a standard test type. 

The ways in which the two specimens are supported are quite different, 

Figure 3.17 shows the cantilever arrangement of the Izod specimen and the 3-point 

beam arrangement of the Charpy test. 

cantilever specimen beam specimen 
(b) 

Fig. 3.] 7 (a) The Izod and (b) Charpy V test specimen positions. 

The energy required to fracture the specimen is measured in Joules for both methods, 

however, a mechanical interpretation of Figure 3.] 7 would show that the Izod and 

Charpy test types are not compatible. This is important from a modelling perspective 

since data containing both test types would need to be separated as there is no 

conversion from one test type to the other. Moreover, from discussions with the test 

house manager at BSES and from consulting Thelning53 it is apparent that Charpy 

test results of different sizes and notch shapes may not be compared either. This i 

due to the differences in fracture profiles that the shape changes cause and the 

behaviour of the fractures at low temperatures. At reduced temperatures the impact 
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strength also reduces. With a U notched sample this reduction appears to be quite 

continuous with falling temperature, however with a V notched sample the values 

tend to undergo a transition between high values on an upper shelf and then a steep 

incline to the low values at the low temperature. 

Two types of fracture can occur, brittle and ductile fracture. The brittle fracture 

occurs after propagation of a crack after little or no plastic deformation. The brittle 

fracture can occur along grain boundaries or preferred cleavage planes. Because of 

the difference in the orientation of the planes, the brittle fracture will have a shiny 

granular appearance. When fracture occurs along a grain boundary it may be the 

result of an embrittling film such as that caused by sulphides. This is one reason why 

de-sulphurisation processes exist in steel making processes. 

In a BCC structure such as ferrite the fracture may change from ductile to 

brittle at reduced temperature, this brings about the definition of a 'transition' 

temperature above which the metal is ductile and below which it is brittle. This 

temperature is commonly used as a guide to a steel's low temperature suitability. 

A further complication of the charpy impact test is that there are two methods 

IOmm 

Fig 3.18 Notch depth in Charpy sample. 

in which the impact energy can be calculated. The first method is termed the 

'absolute' calculation and the second is termed the 'backed off' calculation. Figure 

3.18 shows a Charpy test piece with a IOmm x lOmm cross sectional area. The 

91 



impact energy for the absolute method would take into account the fracture across 

the whole of the 10mm section size. The backed off value, however, takes into 

account the fracture energy across the length at the center of the specimen, which 

results in a higher impact energy due to fracture occurring over a shorter distance. 

Results at BSES are recorded in terms of both backed off and absolute values, 

however unlike the test types it is possible to convert from one to the other using the 

relation: 

Absolute value = Backed Value * (lO-x) (3.1 ) 

3.7.4 Hardness testing 

A variety of hardness tests exist, these include the Vickers, Rockwell, Knoop 

and Brinell Tests. All tests are measuring the materials resistance to indentation in 

one form or another. Often the test type used is specific to the type of material being 

tested. The hardness data generated in the MET database is that from the Brinell test. 

The BrineIl hardness test uses a hardened steel or tungsten carbide ball to make an 

indentation into a flat test specimen. The ball usually has a diameter of 10mm and a 

3000Kg force is used to make the indentation. The specimen must be at least 8 times 

as thick as the indentation made. If multiple tests are performed on the same 

specimen they must be 40 mm apart (for reasons of work hardening). The diameter 

of the indentation made is measured using a microscope. The following relation is 

then used to calculate the Brinell hardness, where F is the force used, D is the 

diameter of the ball and d is the diameter of the indentation. 

(3.2) 
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A rough estimate of the tensile strength of the sample can be found by 

multiplying the Brinell hardness by 3. 

3.8 Accuracy of variables contained in the database. 

Having established which variables were collected in the MET database, 

another important task was to establish how accurate they were. This was done 

through consulting plant engineers and the test house manager. This enabled the 

following table of measurement tolerances to be devised. 

Variable Tolerance 
Composition ±O.004*(wtrO.5 

Hardening Temperature ±lO°C 
Tempering Temperature ±5°C 

Tensile Strength ±1% 
Size ±lmm 

Table 3.3. Accuracy of measured variables in the MET database 

At this initial stage of the project it was also necessary to establish the degree of 

accuracy a predictive model would have to achieve in order to be useful in its 

application. The accuracy of the UTS model was primarily considered and was to be 

defined by a standard deviation of model error of 30N/mm2. 

3.9 Chapter conclusion 

In this section the main metallurgical and practical issues of commercial heat 

treatment processes have been examined. The processes connected with the project 

have been discussed and a suitable initial data source selected. A number of 

problems to do with incompatibility in the variables have been examined by 

exploring the test methods. These had to be overcome in the following modelling 

stages. Finally, the accuracy of the variables in the MET database at British Steel 
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have been examined, this being important in establishing the accuracy to which the 

predicted values may be obtained and is discussed later in the project. The next 

chapter deals with the initial collection of the data in spreadsheet format and its 

initial analysis and modelling. The data were collected for a constrained group of 

steels in order to allow initial experimentation and rapid data familiarisation. It was 

also apparent that the data may not always be fully accurate and indeed contained 

some faulty points. The following chapter considers data handling, investigation, 

initial modelling and 'cleaning' of these faulty points. 
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Chapter 4 

Familiarisation and initial modelling of heat treatment 
data 

4.1 Introduction 

This chapter details the development of a suitable data set from the industrial 

process data of BSES. Initially a small data set pertaining to a single grade of steel 

was evaluated for consistency and data familiarisation, however this was later 

extended to a much larger set covering a wide range of steel types. The modelling 

abilities of linear and polynomial techniques were evaluated at various stages of the 

data sets development. As the data grew, an increasing amount of incompatibilities 

within the data set were seen. A variety of methods were examined to tackle this 

problem, in order to increase the accuracy and usability of the predictive model. 

Finally, having noted spurious points in the data set, a structured methodology to 

'clean' the data set, with the aim of further improving its representation of the 

process is presented. Much of the work in this chapter, although based on the 

prediction of UTS, is aiming to develop a large, accurate set of data which may be 

applied to any of the process' outputs. 

4.2 An introductory data set 

Having established the structure of the process data and mechanical test 

results as seen in chapter3, the next stage was to select a data set from the MET 

Database. There is a very wide variety of steels available in the MET database, and 

so it was important to agree upon which types should be included in the data set. At 

initial project meetings with BSES representatives, it was suggested that in the long-

term, it may not be possible to construct a single model covering a wide range of 
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steels, and that the data may need to be 'decomposed' into sub sets relating to key 

grade types. The metallurgists felt that the decomposition may be required to 

overcome the problem that, as steel grades change, so do the underlying mechanisms 

which produce the mechanical properties in a steel. The additional complications of 

varying sites, quenches and test types were also highlighted at this stage, and so it 

was agreed that an 'introductory' data set, which would largely avoid these 

complications, would be beneficial to aid data and process familiarisation. A data set 

relating to a grade of steel classed as 3%CrMo was therefore initially selected. The 

process experts felt that the 89 batches of heat treatment and test data relating to this 

grade should show relatively 'straightforward' trends typical of the process. The term 

3%CrMo is used to illustrate that the steels in this group typically have a 3%Cr 

addition, together with an addition of molybdenum. 

4.2.1 Simplifications of the 3%CrMo data set 

The complications of multiple sites, quench types and treatments are reduced 

in the 3%CrMo data set since it only contains data from the Lab or West Bank works 

of British Steel. The hardening quenches, believed to be more significant to the 

mechanical properties than the tempering quench, are also all of the oil type. A 

further simplification is that the data set relates only to one hardening and then one 

tempering treatment. This also eliminates the problem of dealing with multiple 

tempering treatments. Initially, only the UTS output was considered, since it was felt 

that this would have a more predictable behaviour. 

All variables in the 3% CrMo data-set were checked for missing values and 

also to make sure the range of the variables were within the max and min limits 

expected by the experts. Later in this chapter it will be seen that this form of basic 

validity check can be expanded to locate a variety of faulty data points. 
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4.2.2 Initial investigations into the 3%CrMo data set 

The first investigation was to look at the basic statistics of the data. This 

could only be performed on continuous variables which exhibited some variance in 

the data set. Additionally, it was recognised that the 'forge size' variable (see Table 

3.1) should be used instead of size, since it related to the actual size of bar heat 

treated in both lab and works based situations. The Max, Min, Mean and Standard 

Deviation values were found for each variable. The mean and standard deviation 

were calculated as: 

LX 
).l =- (4.1) and, (4.2) 

n 

Variable Max Min Mean SD 
Depth 15 12.5 12.691 0.516 

Forged Size 280 30 118.267 64.882 
C 0.315 0.235 0.253 0.017 
Si 0.29 0.18 0.239 0.032 

Mn 0.66 0.5 0.554 0.028 
P 0.023 0.006 0.011 0.005 
S 0.034 0.002 0.013 0.009 
Cr 3.46 3.04 3.229 0.107 
Mo 0.61 0.51 0.538 0.017 
Ni 0.3 0.12 0.206 0.055 
Cu 0.19 0.09 0.142 0.030 
N 0.013 0.008 0.010 0.001 

Nb 0.004 0.001 0.002 0.001 
Ti 0.002 0.001 0.001 0.000 
AI 0.032 0.016 0.024 0.005 
V 0.01 0.006 0.008 0.001 
W 0.03 0.01 0.015 0.007 

Temp 1 910 895 900.170 1.599 
Temp2 700 570 601.591 17.079 
UTS 1295 716 994.538 117.015 

Table 4.1 Basic statistics of 3% CrMo data set (n=89) 

Because the data set relates only to one grade of steel, there is very little variation in 

some variables. However, simply looking at the statistics of the data did not explain 

whether the variance in a given variable was significant; it may have been due to the 
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tolerances involved with the measurement and control of the elements in the cast 

instead of relating to an intentional addition. Moreover, it was realised that certain 

elements are more 'potent' and 'better controlled' than others, but the effect that 

these tolerances have on the output is not yet known. 

Having discussed Table 4.1 with a metallurgist it was apparent that e, Si, 

Mn, er and Mo are the only compositional variables which represent intentional 

additions in the 3%erMo steel. The variation in the other variables is due to variation 

in the scrap metal put in to the electric arc furnace to make a particular cast, and is 

not 'controllable' within the ranges found in the data via purification processes. It is 

possible that these 'residual' variables may not have much effect on the mechanical 

properties at the levels they are present in the data set, indeed within this narrow 

composition range even the variables which do represent an addition may have little 

effect. It is important to note that in a wider range of steel grades, intentional 

additions of what are in this case termed the residual elements may be made. It can 

also be seen from the table that there was little variation in the test depth and the 

austenitising temperature (Temp 1), however the variations in site and tempering 

temperature (Temp2) were significant. 

Part of the familiarisation process was to identify variables that were 

important in the prediction of UTS. One method of doing this was to look at the 

correlation of input variables with the UTS test results. When looking at the 

correlations it is important to remember that the data are from both the lab and the 

plant based sites and also that, whilst the most important quench, the hardening 

quench, is of only one type, the tempering quenches consist of water or air types. 

From examining the data set, however, it was apparent that the second quench type 

strongly relates to the treatment location, i.e. in this case the lab treatments use an air 

cool after the tempering stage, whereas the works treatment mainly use a water cool. 
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Realising that this may cause an amount of unexplained variance in the data when 

these variables are not taken into account, together with the problem that there may 

be non-linear or interaction effects in the data, the correlation of the relevant input 

variables with the UTS were examined. The following formula was used to calculate 

the correlation coefficient: 

(4.3) 

This yielded the following correlation values with UTS. 

Variable PUTS 
Temp2 -0.828 

Forged Size -0.642 
C 0.414 
Ni -0.376 
P -0.352 

Cu -0.337 
V -0.259 
W -0.250 
Nb 0.184 
Cr -0.176 
Si -0.157 
Al -0.156 

Depth 0.137 
N 0.136 

Temp 1 -0.090 
Ti 0.067 
Mn 0.053 
S -0.045 

Mo 0.044 

Table 4.2 Continuous variable correlation with UTS for 3%CrMo data 

The variables in Table 4.2 have been arranged in order of decreasing correlation with 

UTS, therefore it is apparent from the use of this statistic that the tempering 

temperature has most effect on the UTS, followed by the forged size and then 

carbon. It was noted that the effect of tempering temperature and size were negative 

in relation to the UTS whereas the carbon variable had a positive correlation. This 
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confirms knowledge presented in chapter 3, where it was seen that at higher 

temperatures, more excitation is provided to the atoms in the steel and more 

martensite is transformed into softer structures, therefore the UTS of the material 

reduces. The size has a negative effect because as the section size gets bigger, the 

volume of steel that is hardened at a fixed depth increases. Hardenability is a term 

used to describe the ability of a steel to be hardened to a certain depth, however, this 

is dependent on composition, and is therefore basically fixed in this case. However 

even with a fixed hardenability, as the section size increases, the volume of steel that 

needs to be hardened at fairly constant test depth (Table 3.1) also increases. The 

thermodynamic effects this causes in relation to the heating and quenching of the 

steel during the hardening stage means that as the steel bar gets larger, at a near 

constant test depth it also gets softer. A metallurgist examining the coefficients did, 

however, comment that the effect of section size on UTS for the 3%CrMo grade, 

should not perhaps be as great as illustrated here, since it was a high hardenability 

steel and therefore the section size should have less effect. The interstitial 

strengthening mechanism of carbon is also confirmed by its positive correlation with 

UTS. As the correlation of each variable continues to reduce, so theoretically does 

the usefulness it has in the predictive model, since it also carries a noise penalty. 
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Fig. 4.1 3%CrMo data scatter plots of (a) tempering temperature vs. UTS and 
(b) carbon content vS.UTS 

Figure 4.1 shows the graphical difference in the relative correlation of 

tempering temperature and carbon with UTS, using an XY scatter plot of the raw 

data. Whist the correlation of carbon is still quite high at 0.4, its effect on the UTS is 

much less apparent when viewed as raw data. One problem in constructing a model is 

deciding upon the number of variables to include as inputs. For example the effect of 

vanadium on UTS is known to be positive, but very non-linear in that it doesn't have 

much effect until a concentration of 0.1 %. In this example where there was no 

vanadium addition a negative correlation resulted, this may well be due to noise in 

the data at the low levels seen in the data set. Methods of determining the optimum 

variables to include in a model will be discussed later in this chapter. However, for 

this constrained data set it will be seen that the UTS could be predicted with 

reasonable success for this group of steels, using a least squares linear model with 

tempering temperature forged size and carbon content as inputs and UTS as the 

output. 
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4.2.3 The linear modelling program 

A program to perform the least squares estimation, as described in chapter 2, 

was written in the MATLAB programming environment. This was to enable frequent 

models to be built for evaluation purposes. The program is capable of loading a 

randomly ordered data set in matrix form, with a single output variable as the last 

column of the matrix. The data were then separated into a modelling data set, which 

was used to find the least squares model coefficients, and a testing set, used to 

investigate the ability of the coefficients to predict new values. The testing set chosen 

was one third of the total data set available. Throughout the work in thesis, 

histograms have been used to confirm that the data distribution of the test sets is 

representative of the training sets. 

Plots could then be generated of the measured and predicted values for each 

example in the data set, the measured vs. predicted values and the error values of the 

coefficients for the model data and the test data. 

The data to be modelled were normalised with zero mean and unit standard 

deviation throughout the project unless otherwise stated. The purpose of this was that 

the input variables to the model for this type of data have very different ranges, and 

only by normalising the data can the model coefficients be investigated for 

significance. 

4.2.4. Linear modelling of the 3%CrMo data 

The program was used to model the 3%CrMo data with the three inputs of 

tempering temperature, size and carbon content. The following normalised variable 

coefficients were generated: 
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Variable Coefficient 
Carbon 0.413 

Tempering -2.560 
Temperature 
Forged Size -0.062 

Table 4.3. Normalised linear model coefficients for 3% CrMo data 

The coefficents in Table 4.3 essentially represent the significance of the various 

inputs to the linear model for the prediction of UTS. It is apparent from these 

coefficients that, although the previous correlation coefficients showed forged size to 

be more important than carbon content, the model coefficients now show the 

converse is true. This may be due to the fact that the univariate correlation analysis 

did not detect the significance of carbon when it is acting with tempering 

temperature. 

Figure 4.2 shows the measured and predicted and measured vs. predicted 

graphs for the model and test data sets. 
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Fig. 4.2 (a) Measured & Predicted and (b) Measured vs. Predicted Model set 
estimates of 3% CrMo Data 

These graphs show the same information in different ways, however it was decided 

that since the number of data points would be increasing, the measured vs. predicted 

plot would give a clearer view of the fit of the data over a range of output values. On 

a smaller data set the measured and predicted plot can be helpful in visualising which 

103 



batch of data a particular result relates to. With the measured vs. predicted plot, a 

perfect model fit to the measured data would mean that all points lie along the 45° 

1: 1 line. Both plots show a reasonable fit to the original data, however one data point 

which was also present in Figure 4.1 seems to be of a much lower tensile strength 

than all of the others and is creating a large error between the measured and predicted 

value. 

When the model coefficients were used to predict the UTS for new 3%CrMo 

test data the results shown in Figure 4.3 were obtained. 
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Fig 4.3 Ca) Measured vs. predicted plot of test set predictions and Cb) 
absolute errors on predictions of 3%CrMo test set. 

It can be seen from Figure 4.3(a) that the predictions were generally good 

over the range of UTS results measured. The error or residual values of the 

predictions can be calculated as: 

error = (measured - predicted) (4.4) 

The errors per batch of data are shown in Figure 4.3(b) which shows that the largest 

errors were about lOON/mm2 
and because this error was positive, it means that the 

model was predicting a value that was too low in these cases. Initially, in order to 

provide an idea of the significance of a given error, it was felt that the largest 
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percentage error would be a reasonable estimate of model performance. The 

percentage error is given by: 

error 
percentage error = -------

- measured _ value 
(4.5) 

This was an initial idea since, if a predictive model were to be used in reality one 

would want to know the worst possible prediction performance it would provide. It 

will be seen later that this measure was not used alone, and was eventually dropped 

in preference to more significant measures. Using this measure, however, the worst 

case percentage accuracy for the model data was 77.1 % and for the test set was 

91.8%, this is mainly due to the outlying data point present in the data set. This will 

be discussed further in chapter 5. This accuracy was felt to be reasonable, especially 

considering that the data, although constrained to only one grade of steel, may have 

had some variation present due to the Lab or West Bank site it stemmed from. 

Indeed, by ordering the data by treatment site the variation between the Lab and the 

Works treatments may be seen (Figure.4.4). 
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Fig 4.4 UTS values of 3%CrMo data ordered by treatment site. 

For this constrained data set the difference between the two sites was very apparent, 

however as the variabilities of treatment type and composition increase as the data 

numbers increase it will be seen that this is not the case for a wider range of data. 

This graph shows that generally the lab data contains lower UTS values than that of 

the West Bank works treated data. This does not necessarily show a 'systematic' 

difference in treatment, since a systematic difference would only be present if the 

same treatments had been performed on the same steels at both sites producing 

different results. Process differences between the two locations are quenching type 

after the tempering stage and the section size of the specimens. 
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4.3 Expanding the data set 

It has been seen that a model can be built using a linear technique with only 

three variables as inputs to the data. This grade of steel upon which this model was 

based was very tightly controlled and has reasonably straightforward underlying 

process mechanisms. In order to enable investigation into other process variables in 

hope of developing a more useful model, it was decided that a larger data set 

covering a wider range of steel grades, locations and treatment types, should be 

investigated now initial familiarisation had taken place. The new data set contained 

2040 examples of heat treatments performed on a wide range of steel grades in 1996. 

This was confirmed by the fact that the data covered 112 different z-cards, where a z­

card can be thought of as a specification of a steel type. The test house manager at 

BSES selected these steel types from over 6000 examples so that they represented 

frequently made grades but with significant variation in composition. The data 

stemmed from 6 different sites; West Bank, Roundwood, Whithams, Special Steels, 

Stocks bridge Lab, Pearsons. 

The data did not contain variables relating to the test depth and gauge length 

of the test samples, this information was derived from the z-Card relating to each 

example, as this defines the test conditions. A macro in Microsoft Excel was used to 

make these additions. 

This new data set also contained all of the test results in Table 3.2, however 

not all were present for all examples in the data set as the test types used are often 

steel grade dependant. 

4.3.1 Variables in the 1996 data 

The 1996 data set contains results from a variety of impact test types which, 

as was seen in chapter 3, cannot be compared. The increased number of sites was 
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expected to make a systematic difference, but may also only treat certain types of 

steel in certain ways. 

Multiple tempering treatments were also present in the data set. This should 

have had an accumulative softening effect. The model needed to operate with a 

single tempering stage for the purposes of prediction and so examples with multiple 

treatments were not used unless they could be converted into a single tempering 

stage. Other treatments such as stress relieving and normalising were also present in 

the data set and would also not present relevant data to the harden and temper model. 

Because we were dealing with a variety of steel compositions, the sample size 

and test depth should now have been important, as the hardenability of the steels may 

have varied depending on the composition. In particular there were now steels 

containing high aluminium and vanadium contents, which should have significant 

non-linear effects on the steel's mechanical properties. 

An additional process variability is that the quenching media used may be 

either oil or water at the hardening stage and oil, water or air at the tempering stage. 

The problem was now how to deal with all these variations when constructing 

a single model. It is important to utilise as many treatment examples as possible, 

however it was realised at this stage that if all the examples were 'thrown together' in 

a model based only on the continuous variables, then the model would not accurately 

represent the process. This is because it would not take into account the information 

relating to the sites or quench types used, moreover it would be very difficult to build 

a model which could take data relating to a differing number of treatment stages, 

without modifying the data. It was also realised that impact test results could not be 

converted and therefore this data should be kept separate in relation to the modelling 

of this output. 
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It was realised that the neural network techniques may be capable of forming 

'sub models' for data sets that are inherently different. However, for reliable and 

meaningful model predictions, it was understood from the literature review in 

chapter 2 that it is often unwise to treat the neural network technique as a black box 

technique. For this reason various methods of overcoming the incompatibilities in 

data were investigated. The effectiveness of these techniques were investigated 

initially on linear and polynomial models as well as neural models. This was 

because, although the project title suggests the use of a neural network for the 

solution of this problem, a basic regression model may have been adequate if a 

suitable method for decomposing the problem existed. 

Finally, another variable now present in the data set was a Pass or Fail 

variable, to indicate whether the treated steel in its final heat treated state passed or 

failed its specification requirements set out in the z-card. At first one would think 

that this could be taken as an indicator of examples that should not be included in the 

model since 'if the steel failed its tests then something must have gone wrong'. From 

discussions with the test house manager, however, it was apparent that with tight 

specification boundaries put on the mechanical test results, a steel could fail a test 

simply because it wasn't given quite the right treatment. This highlights the need for 

a reliable predictive model as, particularly when an uncommon grade of steel is 

being treated, a certain amount of 'educated guesswork' is clearly required and 

sometimes it is incorrect. Despite the steel failing its mechanical specifications, 

assuming nothing went wrong in the process, then that heat treatment example would 

represent a useful data point with which to train or test the model. The pass/fail 

statistic cannot therefore be viewed as one for locating faulty heat treatments. 
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4.3.2 Methods for decomposing the data 

Initially it was decided that only data with a single tempering stage should be 

used as this would still give 1214 examples, whilst avoiding the problems of multiple 

tempering stages and other treatment types invalidating the data. The problem of the 

incompatibilities of the impact and elongation results would be ignored as this is only 

relevant for the development of the impact and elongation models, and would reduce 

the number of data points available for the initial investigation of the UTS model. 

Having made this initial simplification, the problem of site and quench types 

was still present, therefore the following ideas for decomposing the data further were 

recognised: 

• To find some way of categorising the microstructure of the steel after the 

hardening and tempering stage of the process, as this is may indirectly summarise 

the effects of site or quench type as well as being a function of composition and 

bar geometry. Although the type of microstructure would not allow one to 

calculate the mechanical properties of the steel, it is recognised as being an 

important factor. It may therefore be possible to use it as a method of 

decomposition to put 'similar' types of steel together. This seemed an unlikely 

method to use because unlike many rolling data sets, the microstructure of the 

heat-treated steels is not measured and recorded. 

• To decompose the data according to the site and then for each site decompose the 

data further based on the quenches used at each stage. The results will then be 

many sub models dependant on the sites or quench types used. Because certain 

types of steel are treated in certain ways this may also be indirectly decomposing 

the data by steel grade. 

110 



4.3.2.1 Microstructural decomposition 

The BS metallurgists were consulted to see if there would be any way of 

breaking the process into stages based on the variables included in the data set. It was 

discovered that the ratio of two of the mechanical test results, the Proof Stress and 

the Tensile Strength, could be used to estimate the microstructure of the steel after 

the hardening stage. It was apparent that, although in general the microstructure after 

the hardening stage would be martensitic, this was not always be the case, and for 

example, some bainite microstructures were also present. As was described in 

chapter 3 the bainite microstructures are very different to the martensite ones and are 

considered less controllable, they do however exist in some steel grades and 

treatments. If present in the 1996 data then their underlying transformation 

mechanisms would be very different to those of the martensitic steels and would be 

difficult to include in the same model. 

The following criterion to locate martensitic steels within the data set was 

used: 

PS >0.8 
UTS 

(4.6) 

On inspection of the data set two complications arose, the first being that 

while there were UTS measurements available for each example, there was not 

always a proof stress measurement available, so this further reduced the number of 

data points available. The second problem was that, as seen chapter 3, there are at 

least three methods of proof stress measurement available. It appeared that the most 

common method used was the 0.2% Proof Stress and therefore this was used to 

maximise the number of data points available. 
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It was found that 734 out of the 1214 complete, single tempering temperature 

examples had a PSIUTS ratio greater than 0.8, this reduction in data numbers was 

obviously also a function of the number of 0.2 % PS measurements available. 

On investigating the statistics and correlation of output to continuous input 

variables, together with advice from metallurgists on significant variables in the data 

set, it was found that the addition elements of Mo, Cr, Si, Ni and Mn were all now 

expected to be important with respect to the mechanical properties developed. 

Vanadium also would be a very important element where additions of it were made, 

however this was not indicated by correlation analysis since there were only 3 

vanadium additions present in the 1996 martensitic data set. 

It was apparent that correlation analysis was now of limited worth ID indicating 

variables which would be important in a model to predict the mechanical properties. 

One example is that the correlation of carbon content with UTS was very low, and it 

is widely accepted that, with carbon varying between 0.2-0.5 wt % as in this data set, 

a significant effect on the UTS would be seen. For this reason variables used for the 

construction of a model were heavily based on expert knowledge of the process. It 

was decided that experimental re-modelling with a variety of input variables could be 

used to determine the optimum variable configuration when a suitable method of 
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Fig 4.5 (a) Linear model data of martensitic subset (b) Linear test predictions of 
martensitic subset. 
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data composition became clear. 

A linear model was therefore constructed on the 1996 martensitic data set to 

predict the UTS using Specimen Size, C, Si, Mn, Cr, Mo, Ni, & the tempering 

temperature as inputs. Note the absence of an austenitising temperature since this is 

only important in determining the microstructure properties at the hardening stage, 

together with the quench which cannot be included as a continuous variables. 

As part of the Matlab modelling program written, the accuracy of the models could 

be printed on the measured vs. predicted graphs. It can be seen that the maximum 

error for the model set was 204.7 and for the test set was 217.8. This yielded 'worse 

case' percentage accuracies of 78.2 and 80.09 for the model and test sets 

respectively. Compared with modelling just the 3% CrMo data the model accuracy 

had improved and the test set accuracy had deteriorated. It was apparent that through 

the decomposition, the outlying data present in the 3%CrMo model data set was now 

not present in the martensitic model data. This was thought to explain the 

improvement in worst case accuracy of the martensitic data set. The deterioration in 

test set accuracy indicates that the linear model, which now covered a more complex 

(although stiB very refined) range of steels, had a limited ability to cope with the 

increase in process complexity. 

Through discussions with representatives of the Technology Centre it was 

decided that an additional statistic would be included to more objectively evaluate 

the fit of the model. The problem is that the worst case accuracy was very sensitive 

to outlying results (it is determined by the worst case error). The new statistic used 

was therefore the r-Square statistic, which is the square of the Pearson product 

moment correlation coefficient calculated from the measured and predicted values. 

This can be interpreted as the proportion of the variance in y attributed to the 

variance in x and is given by, 
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r= ~[nLx2 -(LxyInLy2 -(LyY] 
(4.7) 

The r-square value varies between 1 for a perfect fit to 0 for no fit. 

It can be seen from Figure 4.5 that with an r-Square value of - 0.82 for both the 

model and the test set that the linear model of the martensitic data provided a 

reasonable fit. 

A polynomial model was then developed with the same input variables and 

martensitic data set as with the previous linear example. Identical points were placed 

in the test set for comparison purposes. This model took the multiple regression form 

of, 

Theoretically the polynomial form of the regression model allows greater 

modelling flexibility than the linear form, and so if there was a polynomial 

relationship in the data which could not be modelled by the linear model, then the 

modelling accuracy should improve. The results of this technique are shown in 

Figure 4.6. 
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Fig. 4.6 (a) Polynomial model data of martensitic subset (b) Polynomial test predictions 
of martensitic subset. 
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squared values of the polynomial regression model, however this was not a very 

significant improvement given the increase in model complexity. The literature often 

recommends the use of parsimonious models (i.e. the simplest model, which gives 

the best performance) and in this case this would still favour the linear model. 

4.3.2.2 Site and treatment based decomposition 

The next method of decomposition was site and treatment based. With the 

martensitic decomposition method alone, only two treatment pattern stages could be 

considered, however with the site and treatment based method this was not the case. 

For example, if for a given site a three stage treatment is regularly made, then a 

model may be constructed taking into account the temperatures throughout that 

treatment. A tree diagram was constructed to visualise the number of treatment 

patterns that were undertaken for each site, however this diagram proved to be 

extensive. This was due to the fact that many treatment patterns were for 'one-off 

jobs'. It was decided therefore to concentrate on the main patterns in the martensitic 

data, with the aim of further increasing the modelling accuracy for each subset. This 

yielded the following groupings: 
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Site Total Treat / Treat / Treat / Treat / Treat / Subset 
number Quench Quench Quench Quench Quench size / 

of (1) (2) (3) (4) (5) RefNo. 
points 

West 345 HR (Oil) TM - - - 21 
Bank (Air) (Nol) 

HR TM - - - 34 
(Oil) (Water) (No.2) 
HR TM SR HR TM 22 

(Oil) (Air) (Air) (Oil) (Air) (No.3) 
HR TM HR TM - 30 

(Oil) (Water) (Oil) (Water) (No.4) 
HR TM SR - - 54 

(Water) (Water) (Air) (No.5) 
Lab 162 HR TM - - - 112 

(Oil) (Air) (No.6) 
Special 39 HR TM - - - 30 
Steels (Water) (Air) (No.7) 

Whitha- 37 HR TM - - - 26 
ms (Oil) (Air) (No.8) 

Round- 151 HR TM - - - 43 
wood (Oil) (Air) (No.9) 

HR TM - - - 74 
(Oil) (Water) (No.lO) 

Table 4.4. 10 data sets relating to the site and treatment based decomposition of 
the martensitic subset. 

Each data set was randomised and then separated into 2/3 model and 113 testing data. 

Once randomised, the same training and testing data were used for each modelling 

method. At this stage in the project it was decided that as well as the linear and 

polynomial methods, a neural network technique would also be used to model the 

data set. 

To enable rapid experimentation, initially, a commercial package called 

'NNmodel' that executed a MLP network with a selection of training algorithms was 

used. The package allows experimentation through a spreadsheet based data driven 

system, enabling inputs to the network to be readily varied along with the network 

parameters. It was felt that by using such a package, one could quickly ascertain 

whether the data available were of suitable quantity and quality for neural modelling, 

whilst providing a comparison to the traditional modelling techniques. It was 
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envisaged that once a suitable data set decomposition had been established, if the 

neural network technique provided the best performance, then a variety of networks 

architectures would be tried along with the possibility of programming such a system 

ones self. 

For the purposes of the modelling of these data sets, a MLP network with one 

hidden layer containing 6 hidden layer neurons was used. Although it wao; recognised 

that the architecture of the network should be individually suited to the data set in 

question, at this stage this fixed semi-optimal configuration wao; useful for 

comparison purposes. In a similar manner, rather than using a validation set to 

'guarantee' the prevention of over-fitting, experimentation resulted in 1000 training 

iterations being used for each neural model. The weights of the neural network were 

initialised to small random values before beginning training ao; described in chapter 

2. This initialisation can make small differences in the weight values to which the 

network converges. For this reason, so as to provide a comparison between results, 

the weights of the network were always initialised using the same random seed, such 

that this variation wao; eliminated from all the experiments. 

The Matlab programs written to perform the linear and polynomial regression 

were used ao; previously described and the following results in Table 4.5 were 

obtained. The inputs used for all modelling techniques were bar size, C, Si, Mn, Cr, 

Mo, Ni, V, and the tempering temperatures (as many ao; present in the treatment 

pattern). Vanadium has been included as an additional input here in order to account 

for the few vanadium steels present in this data set. Exclusion of these steels and/or 

the vanadium input parameter did however appear to have little effect. 
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Datal Linear Polynomial Neural 
Set Model Test Model Test Model Test 

R~ Ace RZ Ace RZ Ace R~ Ace R~ Ace RZ 

% % % % % 
1 0.97 98.0 0.59 73.0 0.99 99.5 0.39 91.8 0.91 69.8 0.69 
2 0.89 95.4 0.53 96.5 0.97 97.8 0.02 35.2 0.68 87.8 0.59 
3 0.99 94.5 0.98 95.3 0.99 97.6 0.80 88.0 0.99 96.6 0.99 
4 0.81 96.8 0.54 88.0 0.81 97.1 0.00 77.7 0.83 96.8 0.06 
5 0.96 93.2 0.91 87.6 0.98 92.9 0.41 22.2 0.94 90.1 0.95 
6 0.93 91.9 0.87 78.5 0.94 91.9 0.80 78.1 0.93 92.4 0.86 
7 0.45 93.4 0.02 76.5 0.97 97.8 0.14 74.3 0.68 92.9 0.25 
8 0.63 95.2 0.01 6.1 0.64 95.4 0.01 7.0 0.49 95.2 0.50 
9 0.98 95.3 0.80 89.3 0.99 98.4 0.63 85.9 0.97 96.3 0.63 
10 0.69 95.0 0.87 93.8 0.93 96.9 0.04 46.9 0.86 95.4 0.74 

Table 4.5. Results of modelling the site and treatment decomposed martensitic 
subset with linear. polynomial and neural techniques. 

Ace 
% 

91.8 
95.1 
94.4 
91.0 
90.2 
77.5 
87.4 
95.4 
87.8 
87.9 

The first thing that is evident from the results in Table 4.5 is that the worst case 

percentage accuracy does not always fall when the r-square statistic is low. This can 

occur if there is little spread in the predicted and measured values (i.e. little error) but 

the predicted and measured values are not correlated. The predicted values are 

therefore not related to the inputs very well, but are confined to a certain range. 

In this sense the R-square statistic provides a much more realistic measure of the 

model's fit to the measured data. 

The polynomial model has a very good model set performance, however it 

can be seen that the test set performance is quite spurious, with some very low R-

square values. The polynomial modelling technique is notorious for providing such 

results as it can produce an over-parameterised model, which produces unreliable 

predictions. 

Overall the neural models perform most favourably, however both the linear 

and neural model's performances are close and are better at some data sets than 

others. One data set in particular provides low R-square values for all modelling 

methods, being dat .. set 7. Special Steel's hardening and tempering process with 

water and air quenches .. fler each respective stage. This poor result may be due to the 
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fact that there is a greater variety of steels manufactured at this site, and yet a low 

number of data points from which the models train. 

The most significant performance improvement provided by the neural model 

is that seen in data set 8. The test set accuracy of the linear and polynomial models is 

very low, however the neural model is significantly better at generalising to the test 

set. Closer investigation revealed that an outlying data point wa<; present in the test 

set for this data set and that the neural network appeared to be less affected by it than 

the linear and polynomial methods. 

The problem with decomposing the data in this way is that the number or data 

points in each suhset can hecome very low. Linear regression methods may be 

capable of functioning on low d.lt .. numhers, however one would typically aim to use 

data in the order of 1000's for training a neural network, particularly one which has 9 

inputs a<; are used in this case. 

4.3.2.3 Combining data from more than one site 

Having decomposed the data set and ohserved the modelling performance 

that could be achieved. the next stage w .. s to see whether hy using the neural network 

technique the data set could he comhined. The linear and polynomial techniques 

were still used to evaluate whether, as the data set was increa<;ed, the neural model 

was capable of forming 'suh models' due to it's additional degrees of modelling 

freedom. 

Values for the martensitic harden and temper treatments with oil and air 

quenches respectively for .. 11 the sites were combined into a single data set. This 

resulted in a total of 202 data points. The test sets from each of the individual data 

sets (numhered 1.6.8 & 9) were kept as the test sets of the combined data set so that 
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any outlying points previously in the model or test sets would still be in the same 

area of the data partition. 

Table 4.6 shows the statistics that this data set now covers. When compared 

with Table 4.1 it can he seen that the alloy content range, and therefore the grades of 

steel which the data covers is significantly increa<;ed from the original 3% CrMo data 

set. It is desirable to try to produce a single model that covers a wide range of alloy 

contents since if many. narrow range models are developed it would be difficult in 

application of the models to interpolate hetween grades when predicting the 

mechanical properties. 

Max Min Mean SD 
Bar Size 290 25 116.5 53.4 

C 0.45 0.26 0.37 0.05 
Si 0.35 0.18 0.27 0.04 

Mn 0.93 0.36 0.62 0.12 
er 3.13 0.63 1.08 0.45 
Mo 0.57 0.16 0.37 0.16 
Ni 2.71 0.11 1.54 0.89 
V 0.27 0.002 0.012 0.04 

Temp 695 520 591.6 36.5 
UTS 1358 801 1046 122.6 

Table 4.6 Statistic of the comhined site HR(Oil) TM(Air) 
martensitic data. 

The linear, polynomial and neural models were trained with the inputs and 

parameters previously descrihed in the site and treatment ba~ed models. The results 

of the model and test sets are shown in Table 4.7. 
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Linear Polynomial Neural 
Model Test Model Test Model Test 

Rl 0.799 0.826 0.836 0.829 0.845 0.885 
Acc % 84.9 86.2 83.6 85.5 87.5 87.8 

Table 4.7 Results of modelling the combined site HR(Oil) TM(Air) martensitic 

data set. 

It can be seen from these results that the performance of the neural network is 

better than the linear and polynomial techniques. however this improvement is not 

very marked. Moreover it can be seen that the combination of the data from the 

individual sites hao; in fact improved the model accuracy especially in the cao;e of the 

neural network. It was postulated that it might be possible to include additional 

inputs to the neural network so a'i to help the data from each site to be offset by the 

network. The aim of this was to encourage a separate 'sub model' to be formed for 

each site whilst also allowing all of the data to contribute to a useful model offering 

effective interpolation. 

An additional input was therefore added to the data set, which contained the 

entry I, 2. 3. or 4 depending on which site the heat treatment examples came from. 

The linear. polynomial and neural networks were then retrained with the 

same inputs and data sets as before. but with the additional input of site, the results 

being shown in Table 4.8. 

Linear Polynomial Neural 
Model Test Model Test Model Test 

Rl 0.799 0.823 0.843 0.821 0.860 0.913 

Acc % 85.2 86.4 83.0 83.7 85.6 87.3 

Table 4.8 Results of modelling the combined site HR(Oi\) TM(Air) martensitic data 
set with the addition of a single input variable to denote site. 

The results show that there is little effect on the linear and polynomial model's 

performance. however there is a small improvement in the neural model's 

performance. Because there are still a low number of data points, it wa" decided to 
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request more data from BSES to see if a further improvement in the neural model's 

performance could be developed. 

4.3.3 Time at tempering temperature 

In an attempt to detennine possible reasons other than bar size or quench type 

for systematic differences that may result between sites, it wa~ considered that the 

tempering time between sites might be different. On investigation, although these 

data were not recorded a .. part of the data set available, it was confirmed that key 

sites hold the steel at the soak temperature of the tempering stage for different 

amounts of time. It should be noted that the operator at each site will generally work 

with a given duration of tempering time and will adjust the tempering temperatures 

to obtain the required mechanical properties. The model is combining data from 

various sites and so it wa .. considered that it may benefit from a variable relating to 

the duration of the tempering temperature soak. 

The soak time for each site where known. together with the site's code is shown in 

Table 4.9. 

Site Code Site Tempering Time (Hr) 
I West Bank 3 
2 Lab I 
3 Whithams unknown 
4 Roundwood 1.5 

Table 4.9. Soak time and site code for HR(Oi\) TM(Air) data. 

Holloman and 1affe ~<j have made an investigation into the relation between tempering 

time and temperature. The work was undertaken in 1945, and concentrated initially 

on the principle of predicting the properties of a quenched steel. It transpires that this 

wa~ done through working out the relationship between time and tempering 

temperature in order to oht<lin a given hardness. Although the hardness predictions 

were made on one hase composition of steel which varied only in carbon content. 
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and would not be applicable to a range of alloy steels, the relation between tempering 

time and temperature may still be useful. 

The hardness relation quoted in the paper can be written as: 

Hardness = j[T(c + log t)] (4.9) 

where T is the absolute tempering temperature, t is the soak duration in hours and c is 

a coefficient relating to the steel. The tempering parameter allows a linear 

approximation to be made so that the functionjis linear. 

The coefficient c may be determined via a variety of methods, the first of 

which is to use some past data relating hardness to tempering temperature and time. 

However this technique was not possible given the distribution of the data available, 

since it did not contain data for all grades over a range of tempering times, so two 

other options remain. The first remaining option is to use the 'rule of thumb' value of 

c, which is 19.5 for ordinary carbon and alloy steels (0.25-0.42 %C) and 15 for tool 

steels (0.90-1.20 %C). All our steels were of the first type. 

The second remaining method of finding c was to use the following relation, 

c = 21.3 - 5.8(%C) (4.10) 

The authors claimed that the calculation of c from this method is more accurate than 

the rule of thumb, but less accurate than finding the coefficient experimentally. The 

authors also claimed that the relationship between time and temperature holds 

whether the initial microstructure is martensite (with or without retained austenite), 

banite, or pearlite. 

From reading the paper, ideas relevant to the final application of the model 

were also developed. For example, one might be able to provide an option for the 

tempering temperature relating to a change in time so that if, for processing reasons, 

the material should not be tempered at a certain temperature then a comparative 
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treatment could still be made. In a similar manner it may be more economical to 

perform a treatment at an elevated tempering temperature, but for a reduced duration 

of time, so as to provide the same treatment, but at a reduced cost. 

4.3.3.1 Experimentation with tempering parameter 

From Table 4.9 it can be seen that the tempering time for the Whithams site 

was undetermined, therefore the examples in the martensitic harden and temper data 

with oil and air quench respectively which relate to this site were removed. This left 

176 data points in the data set. It was decided that experimentation would be carried 

out on this small data set and, if an indication of model performance improvement 

was seen, then the technique could be applied to a larger data set when available. 

Experimentation to determine the effect of adding the tempering parameter 

was carried out in a variety of configurations. In each configuration the data rows 

were kept in the same random order, and the modelling parameters were kept 

constant (initial conditions, hidden layers etc.). In all, five new data sets were 

configured and modelled with each technique. The contents of which are described in 

the points below. 

• Data set 1 : 

Initially, the data set with the Whithams examples removed was remodelled so 

that a benchmark accuracy could be determined with the linear, polynomial and 

neural techniques. 

• Data set 2: 

The tempering parameter was simply added to data set 1 as an additional 

variable. The fixed form of constant c was used, the value of which was 19.5, for 

ordinary carbon and alloy steels. 
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• Data set 3: 

Assuming that the temperature information was now described by the tempering 

parameter the tempering temperature was removed from data set 2. 

• Data set 4: 

This data set is similar to that of set 3 except that c was determined from equation 

(4.10) dependent on the carbon content of each batch rather than as a fixed value. 

• Data set 5 

Finally, the bench mark data set was used but with the addition of the tempering 

time as an extra variable (no tempering parameter was present). 

The results of modelling these five data sets are indicated in Table 4.10. 

Dab Linear Polynomial Neural 
Set Model Test Model Test Model Test 

R2 Ace Rl Ace R2 Ace R2 Ace R2 Ace R2 Ace 
% % % % % % 

1 0.84 85.7 0.86 84.0 0.87 85.0 0.84 79.8 0.95 92.1 0.89 81.3 

2 0.84 87.8 0.85 86.5 0.94 93.1 0.86 82.2 0.95 95.5 0.85 85.4 

3 0.84 87.7 0.85 86.5 0.87 84.3 0.85 83.1 0.94 91.0 0.86 81.8 

4 0.84 87.6 0.86 86.8 0.87 84.3 0.87 84.7 0.95 91.1 0.87 81.5 

5 0.84 88.0 0.86 86.3 0.87 85.0 0.84 79.8 0.94 92.2 0.87 82.2 

Table 4.10. Results of modelling the five data sets for the inclusion of a tempering 
parameter in the HR(Oil) TM(Air) martensitic data set. 

As with the results in Table 4.8 the neural network technique produces the most 

accurate predictions. However, with regard to the tempering parameter there appears 

to be little improvement in the performance regardless of the configuration used, in 

fact with the neural network the addition of the tempering parameter causes a lower 

test set R 2 statistic than the benchmark set. 

From examining the tempering parameter analytically, it can be seen that the 

actual variation in the variation of the tempering parameter for the same steel 

tempered between 1 and 3 hours is very small. For example at 968°K and using 
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c=19.5 in equation (4.9), the tempering parameter for a 1 hour soak is 18876, and for 

a 3 hour soak is 19338 yielding a difference of only 462. 

It was, however, expected that the tempering parameter may be useful in the 

future if enough two stage harden and temper data were not available since it may be 

possible to use it to convert two tempering stages into one at an elevated temperature. 

The conclusion of this experimentation was that the addition of the tempering 

parameter or indeed the tempering time did not improve the prediction accuracy of 

models, and therefore would not be used in this form any further. 

At this stage the performance measures used were once more reviewed. It 

was decided that instead of using the worst case accuracy, the standard deviation of 

the residuals would provide a good estimation of model error, that would not be 

offset by outlying points as much as the worst case percentage error. The standard 

deviation assumes a normal distribution of the model errors. 

4.3.4. The 1995 heat treatment data. 

The 1995 data set was acquired from the MET database. This contained a 

total of 3971 batches, however this included a variety of treatment patterns as with 

the 1996 data. It was noted that the 1995 data contained fewer treatments at 

Roundwood and more treatments at West Bank. It was also noted that the maximum 

carbon levels were now higher with the 1995 data, together with extended 

manganese and nickel levels. 

To ensure that the modelling results from each year's data were consistent it 

was decided to keep each year's data separable. This was achieved by allocating a 

code to each example in the data set for each year. The first two digits of the code 

pertained to the year from which the data came, for example 96 or 95. The following 

four digits related to the row number which the example for each year has once it has 
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been randomised in the data set, for example 951002 would be the l002'nd example 

in the 1995 data set. In this way, tracking of each example was ensured from the 

reduced variable model set, to the fully described original spreadsheet containing 

useful data about the example which was not used in the model's construction (for 

example the heat treatment batch number). 

Initially the 1995 data were modelled separately to see if a similar accuracy to 

that of the 1996 data could be obtained. 

4.3.4.1 Extending the 1995 martensitic data set to cover multiple quench 

types 

At first it was intended to select just the harden and temper data with oil and 

air quenches respectively, however it was realised that with only one other data set 

potentially available, this would result in a small data set. Moreover, because certain 

grades of steel are given particular quenches, restricting the model to one quench 

type would result in a narrow range model, for example only high alloy air 

hardenable grades of steel are hardened with an air quench after the hardening stage. 

It had already been established that decomposition of data into different 

treatment patterns results in many models with low numbers of data points which are 

difficult to interpolate between, and so the aim was to find ways of linking data from 

the individual subsets of quench type into a single model. 

In section 4.3.2.3 the addition of a variable to denote the site to which the 

data pertained had enabled an improved accuracy in the modelling of data from a 

combination of sites. In a similar way it was anticipated that codes could be allocated 

to the data set to denote quench type after the hardening and tempering stages. 

Initially a single variable code was allocated for each quench type in the two stage 

process. The effects of adding this code in a variety of ways was first investigated on 
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harden and then temper data of the 1995 marten si tic examples. When this subset was 

separated from the main 1995 data set 584 examples remained. This was a 

substantial number of examples and should also allow the effect of an increased 

number of data points on the neural network to be seen against the other modelling 

techniques. 

The codes allocated for each quench type are shown in Table 4.11. Because the 1995 

data set had not been previously modelled a benchmark data set was made. The 

following data set configurations were therefore formed: 

• Data set I: 

This data set contained no site or quench codings, and was intended as a 

benchmark. The standard model inputs shown in Table 4.6 were used. 

• Data set 2: 

Here the site codes were added as described with the 1996 data, this helped to 

see if an improvement could be seen for the 1995 data as was observed with the 

1996 data. 

• Data set 3: 

This data set was as with data set 2, but with the addition of two variables to 

denote the quench at each stage of the process. 

Ouench Type Ouench Code 
Oil 1 

Water 2 
Air 3 

Table 4.11 Quench codes allocated for each type of quench. 
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The four data sets were modelled with each technique, with fixed data set order and 

training parameters in the case of the neural network. The results are shown in Table 

4.12. Note the new use of the SD of model error instead of worst case percentage 

error as described in the previous section. 

Data Linear Polynomial Neural 
Set Model Test Model Test Model Test 

R2 SD Rl SO R~ SO R~ SO Rl SO R2 SO 
orE orE orE orE orE ofE 

1 0.71 74.6 0.81 59.5 0.72 71.0 0.83 55.1 0.73 72.1 0.70 79.4 
2 0.72 73.9 0.82 56.9 0.75 70.5 0.84 55.4 0.76 68.4 0.84 54.6 
3 0.72 73.2 0.82 55.7 0.77 66.8 0.84 56.0 0.86 51.9 0.85 52.1 

Table 4.12. Results of experiment to determine the effect of adding a quench type 
code to the input of the model when combining all two stage marten si tic data for the 
1995 data set. 

The results in Table 4.12 show several interesting points. The first is that without 

coding, the linear and polynomial models are more accurate than the neural one. This 

is different to the 1996 data and on investigation it was found that faulty data points 

in the 1995 were to blame. The detection and removal of these faulty data points will 

be investigated further in chapter 5, however it was suspected that the linear and 

polynomial models were less affected by the outlying data points than the neural 

model which had more flexibility to model faulty data. Another interesting feature of 

the linear and polynomial models is that the test sets are consistently more accurate 

than the model sets, whereas for the neural model the converse is true. 

The linear and polynomial models do not appear to exhibit any significant 

differences with inclusion of the site and or quench parameters in the training set, 

however the neural model does benefit significantly from the addition of the site 

parameter, for both the model and test sets. The inclusion of the quench parameter 

further improves the neural model's accuracy, however, this is less substantial than 

the improvement seen from the site code. The results for the addition of site and or 
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quench code demonstrate the neural model to be more accurate than the traditional 

regression techniques. From discussion with the metallurgists at BSES it appears that 

the use of a quench code may be increasingly useful if the data set was further 

extended to include data from a range of microstructures after the tempering stage. 

4.3.5. Extending the 1996 martensitic data to cover multiple quenches 

Having demonstrated that inclusion of site codes and quench codes resulted 

in an improved accuracy in the 1995 data pertaining to a variety of quench types, this 

technique was applied to the 1996 data. The inclusion of additional quench types in 

the 1996 data set resulted in an increase in the number of examples available, from 

220 to 445, statistical analysis showing that this covered a wider range of 

manufacturing conditions and grades. The results in Table 4.13 were obtained when 

this extended data set was modelled. 

Model Test 
R2 SD of Error R2 SD of Error 

Neural 0.92 37.5 0.89 43.9 
Linear 0.83 55.1 0.76 64.3 

Polynomial 0.86 50.4 0.80 58.0 

Table 4.13 Modelling of the 1996 data martensitic data set when extended to include 
multiple quench types with the addition of 2 indicator variables. 

The SD of error was not used in the results prior to the extension of the 1996 data set 

to include multiple quench types shown in Table 4.8. It can be seen, however, that 

the neural network results of extending the model with the aid of the quench codes 

has, for this year's data, actually improved the R2 statistic of the model. It is 

considered that this is because, although the model is covering a wider range of data, 

it is more accurate due to the increased data numbers. 
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4.3.6 Combining the 1995 and 1996 data 

At this stage it was suspected that both sets may include some faulty data 

points, particularly with the 1995 data set, where it had been observed that the SD of 

error was much higher than with the 1996 data. However, before investigating how 

to deal with these faulty points the effect of combining the two data sets was 

investigated. There was a chance that, by combining both years worth of data, the 

modelling accuracy might improve due to the extended data numbers as was the case 

with extending the 1996 data set. 

The martensitic two quench data from each year were combined such that the 

examples in the test sets of the separate models were now forming the test set of the 

combined model. This resulted in a total of 1029 examples, which was split 2: 1 for 

model and test sets. Therefore, any outlying points previously in the model or test 

sets would still be in the same division so that this would not influence any change in 

accuracy. 

Neural, linear and polynomial models were constructed as previously 

described with the descriptive codes for site and quench type. The results are shown 

in Table 4.14. 

Model Test 
R2 SD of Error R2 SD of Error 

Neural 0.81 59.4 0.85 50.9 

Linear 0.72 72.8 0.77 63.2 

Polynomial 0.75 67.8 0.78 62.0 

Table 4.14. Results of modelling the combined 1995 and 1996 martensitic two-stage 
data set. 

For the neural model, the results show that there is a slight improvement in 

accuracy over modelling just the 1995 data with similar input variables, however 

when compared with modelling just the 1996 data, the results indicate a deterioration 

in model performance. It is difficult to say at this stage if the model has improved or 

whether the 1996 data set is simply improving the statistics of the 1995 data when 
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the combination is made. What is clear is that neural performance is consistently 

improved over the linear and polynomial models, particularly with the increasing 

diversity of the data. However, even though this is the case, on examining the 

measured-vs-predicted graphs in Figure 4.7 of the model and test sets it is clear that 

even the neural model contains a number of high residuals that need to be improved. 

Also, a target standard deviation of residuals of 30 N/mm2 set by BSES has not yet 
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Fig. 4.7 Measured vs. predicted graphs of martensitic 2 stage, multiple quench 
type, multiple site, 1995 and 1996 combined (a) model data and (b) test data, 
with neural network technique 

been reached. Overall, the distribution of the predictions for both the model and test 

set also appears to show a bias, such that the model is consistently over predicting. 

Throughout the experimentation in this chapter a fixed training strategy has been 

used for the neural model in respect to the number of training iterations and hidden 

layers. This was to avoid additional sources of variation other than the data set. 

However, as was described in chapter 2, it is widely accepted that, particularly as the 

data set becomes more complex, the neural model should be trained with a variety of 

architectures, together with a validation set, to achieve an optimum generalisation 

performance. 
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4.4 Chapter conclusion 

Initially, this chapter dealt with process data familiarisation. The significance 

of key variables in the process was noted, and this resulted in the definition of a 

number of input variables for the development of a predictive model which are 

ultimately dependant on the data they describe. The main aim of the work has been 

to develop a data set capable of representing a range of quench types and site 

locations. The idea of categorising the microstructure of the steel after the hardening 

stage, to only include those steels with a martensitic microstructure, was enabled 

through the generation of a new variable obtained from expert knowledge of the 

process. It has been seen that further decomposition of the data to avoid a mixture of 

site locations or quench types results in reduced data numbers and segregated models 

which would be difficult to interpolate between. Experimentation has revealed that 

the neural network technique allows descriptive variables to be introduced, thus 

successfully representing a range of site and quench types within one model. This 

result should ultimately produce a model that covers a wide range of steel grades, 

enabling interpolation between the data in a more desirable way. The prediction of 

UTS test results has been used to investigate the development of this combined data 

set. It has also been demonstrated that the accuracy of the neural technique is 

superior to that of the linear and polynomial regression techniques, particularly as the 

data set becomes more diverse and carries a larger number of examples. The 

accuracy of the 1995 martensitic model was seen to be poorer than that of the 1996 

data, which was thought to be caused by a greater range of steel grades, but also by 

data points that may be faulty. Similar points may also be present in the 1996 data 

set. Outlying predictions can be seen on the measured vs. predicted graphs as those 

lying far away from the 45° line. These may relate to faulty data points, however the 

expectation was also that some faulty data points might have been modelled, 
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especially by the more flexible neural technique, so as to produce low model set 

errors, but high errors in the predictive case. Through the experimentation, agreed 

measures of statistical performance have also been established, and a target value 

standard deviation of residual of 30 N/mm2 has been set. 

The following chapter now investigates the techniques that were used for 

locating faulty data points and correcting them where possible. The effect of this 

'data cleaning' on the model accuracy is demonstrated. The chapter also introduces 

another data set comprising steels from the 1997 data set, resulting in an increased, 

cleaned data set, which can then be modelled in a more extensive manner. 
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5.1 Introduction 

Chapter 5 

Data cleaning 

Following a recognition that there may be some faulty data points present in 

the 1995 and 1996 data set, this chapter describes research and the development of 

techniques to enable such points to be detected and in some cases corrected. Initially, 

an investigation into the possible reasons for faulty data points with relation to the 

process was made through consulting experts at BSES. A literature review was then 

undertaken to investigate existing methods established to detect and correct faulty 

data points. As a result of this literature review combined with expert process 

knowledge, a structured procedure for the detection of outliers was then developed 

and validated through iteraction with BSES. Corrections of these faulty points have 

been made where possible. Finally, the improvement in modelling accuracy resulting 

from this data cleaning is demonstrated on a data set, which includes heat treatment 

examples from the 1995, 1996 and 1997 database records. 

5.2 Possible reasons for outlying data points 

One may think that outlying data points are faulty data points, and indeed 

often in the literature review, which follows, it was seen that papers spoke of 

removing outlying data points. An outlying data point can be defined as a sample that 

is statistically different to the rest. Martens60 defines an outlier as a sample that 

carries a high statistical leverage. When investigating the possible reasons as to why 

'outlying' data points might occur in the heat treatment process, it was evident that 

not all outlying points are faulty. And indeed some faulty data points may be 

'inlyers' that is, they may be faulty, but as an individual point may not be statistically 
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different from the rest. When a faulty data point is referred to in this thesis it means a 

measurement that has a tolerance from the actual value which is greater than the 

measurement tolerances established for that point. 

The reasons for outlying data points in the heat treatment process can be 

classed as shown in the following remarks. It is expected that, with many modem 

industrial processes using similar systems for data collection and retrieval, these 

categorisations would also hold for other processes. 

• Data handling errors 

• 

These are errors related to the way in which data are stored, sorted or retrieved. 

In the case of the MET database, data relating to the process are stored in more 

than one database. In such cases, there is scope for errors to result in the way the 

retrieval is made. Moreover, the resulting data set may contain a section of data 

that has been retrieved multiple times due to the way a search is carried out. This 

would result in repeated values. Repeated values are not faulty data points, 

however they may create a model which does not represent the true underlying 

process, since they affect the prior probability of the model. Another problem 

that can occur with data handling is when data is sorted according to an index in 

order to enable the merging of variables. For example, if the order of the index 

relating input variables to output variables becomes corrupted then a whole set of 

faulty data may result. 

When sorting data sets, as was done for the work in chapter 4 in a spreadsheet 

application, it should also be remembered that there is always a chance of 

invalidating data with accidental keystrokes. 

Measurement faults 
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As seen in chapter 3, the data are the result of many measurements taken 

throughout the process. In the case of bar size or test depth, the instrumentation is 

robust to malfunctions, however the measurements may be prone to human 

error, which may generate faulty results. 

The composition measurements are determined via specialist equipment that 

is regularly calibrated, but is obviously still open to malfunction. Specimen 

preparation may also play an important part here in terms of producing faulty 

results. 

Temperature measurement is complex since it introduces the concept of 

measurements taken to control the process. They do appear to be quite robust, 

although it was seen in chapter 3 that the furnaces comprise a set of control and a 

set of measurement thermocouples. The temperature measurement entered in the 

database is that prescribed by the metallurgist, which under normal conditions 

would be reached within the tolerances stated. The measurement thermocouples 

are closely watched to make sure that the temperature throughout the furnace is 

as desired. Because several thermocouples are used, a malfunction in one 

thermocouple would not greatly jeopardise the overall representation of the 

temperature in the furnace. Faults in the control thermocouples would affect the 

temperature within the furnace, however it is unlikely that this would not be 

noted by the measurement thermocouples and the necessary action taken. 

• Process faults 

This category can comprise many features, the most important of which are 

factors which may vary from treatment to treatment, but are not logged in the 

data set to be modelled. Even if a feature of the process is monitored locally and 

is acceptable. a combination of events relating to variables not logged may still 
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generate a faulty data point in that it does not relate to the data recorded in the 

database. This would include faults that cause variations in the furnace 

atmosphere or burner intensity. Time at temperature, from the hardening aspect, 

where it is important the bar has soaked thoroughly and from the tempering 

aspect where a particular soak temperature must be maintained for a specified 

period of time are two areas where problems may occur. On the cooling side of 

the process, delays in advancing the hot bars to the quench tanks and problems 

which cause significant variation in the temperature of the quench tanks may all 

generate faulty data points. 

• Typographical/transcription errors 

These relate to human generated errors when recording results manually or 

transferring data to the database via a keyboard. Faulty data would be generated 

in both cases, however this may not always generate vastly outlying points, for 

example if temperature was incorrectly entered as 675 instead of 657. 

• Incorrect treatment prescription 

This is a situation where the metallurgist may decide to use a specific treatment 

in order to obtain a particular set of mechanical properties, as set out by a z-card. 

Particularly with rare grades (where a predictive model is required), because the 

process is complex, the treatment recommended may be incorrect and this could 

result in the situation where that example may be very different to the rest. This 

would generate an outlying data point, but this may still be a valid one and 

indeed useful to the model, provided that the treatment was carried out as logged. 
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5.3. Literature on 'data cleaning' 

A literature review was made on subjects relating to outlier and faulty data 

point detection and correction. In total only eleven relevant publications were found. 

Occasionally, authors of modelling papers may note the possible occurrence of 

problems caused by outlying data points, but it was rare to find any methodology for 

dealing with such anomalies. 

Of the papers located, not all were directly related to a static industrial 

process model. Those that were not, tended to relate to time series problems such as 

that by Simoudis, Livezey and Kerber61
, who investigated a data mining package, 

which claimed to include methods for removing outlying data points. The data were 

from a financial problem and many of the methods of outlier detection relied on the 

rate of change of variables. Two dimensional scatter plots were also used to examine 

variables believed to have a fixed relationship. The paper shows that the techniques 

used in the package do not function efficiently without the interaction of an expert 

knowledge about the system. No procedures for dealing with outlying data points are 

discussed, and all outlying points are treated as faulty and hence the definition of 

false positive is introduced to describe points detected as outlier which are not faulty. 

The next paper, by Wu and Cinar62
, is also related to a dynamic process. It is 

concerned with developing a knowledge-based input / output modelling system. It 

claims the system can provide autonomous outlier detection and the development of 

a parsimonious model. The outlier detection methods were based around two 

techniques, the first was a leave k-out validation method, where high residual points 

may be excluded, and the second was an outlier criterion. The outlier criterion 

involved data points being removed based upon a statistical measure of noise, which 

was known for the arbitrary data set used in this application. Although not stated, one 
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would assume that expert knowledge was used to set parameters relating to outlier 

thresholds for both methods. 

The next four publications relate to learning algorithms that have been 

developed to cope with outlying data points. The first entitled 'Clearning' by 

Weigend, Zimmermann and Neuneier63
, details an unusual approach that combines 

cleaning data with learning. The authors introduced the concepts of the data 

modifying the model and then the model modifying the data. Clearning was used in 

conjunction with a pruning algorithm (where weights in the neural network were 

removed when they had little variance compared to their value). The technique 

modified the standard back-error propagation rule to accommodate for a cleaning 

term where, as well as weights being modified, the input data were also modified to 

reduce the cost function. Although the clearning technique may work well for some 

data sets, it was considered that there might be complications in data sets containing 

an uneven data distribution. In such a situation, there is a possibility that an example 

(correct or faulty) in an area of low data density may simply become modified 

towards an area of high data density but lower error, regardless of what its true 

values are or should have been. A similar technique64
, not directly related to data 

cleaning but carrying similar concerns, related to an adaptive neural network where 

new data that generated high residuals on prediction by the neural network were 

automatically included in the training set. The assumption is that the high residuals 

showed the data point to be novel, and did not account for the fact that it may be 

faulty. 

The third publication relating to a modified learning algorithm is by Danuser 

and Sticker65
, who applied a robust generalised least squares algorithm to a specialist 

pattern recognition application. This does not directly relate to the application in this 
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thesis, however the concept of inlying data points is noted in terms of faulty points 

which are within the max and min limits of the variable ranges. 

The fourth publication in this category, by Kosk066
, suggests that the standard 

back-error propagation algorithm, using the least squares training error, is sensitive 

to large training error and thus sensitive to outliers. Robust backpropagation was 

therefore suggested, where instead of having a least squares training error that 

amplifies large training errors, one can use the following error that treats the large 

errors and small errors linearly: 

p 

E - ~I pred I i - £..J Yij - Yij (5.1) 
j;\ 

This approach gave improved outlier tolerance, but at the cost of longer training 

times. 

The next three publications concentrated on the pre-processing aspect of 

outlier detection, that is data set preparation prior to learning. The first of these 

papers by Famili et a167
, considered the reasons for the occurrence of faults in detail, 

but offered little advice as to how these can be detected or corrected. 

The second publication, by Guyon et a168
, contained a section on data 

cleaning in relation to inductive learning for data mining. This introduced the 

concept of an 'information criterion', which essentially means the value (rarity) of a 

data point. They proposed two data cleaning techniques using this criterion, one fully 

automatic and one semi-automatic. In the fully automatic technique, an algorithm 

removed points that had a high information criterion (those that are most surprising). 

The authors recognise that the danger of this method was that by automatically 

removing such examples, valuable data points which may genuinely carry large 

amounts of information may be excluded. The semi-automatic technique was more 

realistic in that an expert was used to investigate points with a high information 
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criterion, which in turn could decide whether or not to exclude a data point. This 

therefore acted as a filter, preventing an expert having to investigate all the data. 

The third paper that classified outlier detection as pre-processing of data is by 

Qin and Rajagopal69
• The authors mentioned two types of outlier, obvious ones and 

non-obvious ones. He defined obvious outliers as points that exceeded maximum or 

minimum limits for that particular variable. The non-obvious outliers were defined as 

the converse, lying within the limits of the data, which was earlier termed 'inlying 

faulty points' in section 5.2. The authors also noted that outlying data points 

generally caused high model errors, something which was noted in this project and 

which started the investigation into outlier detection techniques. In relation to non­

obvious outlier detection techniques, work by Wold et al70 is cited. This work relates 

to the multivariate statistic analysis technique of peA, mentioned in chapter 2 of this 

thesis, for its capabilities to visualise the underlying process functions of a high 

dimensional system through the projection of the higher dimensions onto a reduced 

number of variables. This method was traditionally used to monitor changes in 

processes, however in this reference it was applied to detecting non-obvious samples 

that were statistically different. Qin also discusses the possibility of correcting 

outlying data points, and suggests that they may be treated as missing values, which 

can be replaced with a mean or otherwise interpolated value from either the input or 

the output of the data set. 

The final paper in the literature search considered a very different reason for 

data cleaning. Hernadez and Stolf071 were concerned with the merge/purge problem; 

that is when merging data from multiple data sources (realising when examples have 

been previously encountered). This appears to be a considerable problem when 

dealing with marketing data such as that used for mailshot and customer relation 

applications. Although their application was unlike the one in this project, especially 
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considering their data was often alphanumeric, it raised interesting points in relation 

to repeated values when data are merged from multiple sources. 

With this literature in mind, together with the particular features associated 

with the heat treatm nt application, a structured method for the detection of outliers 

was developed and is described in the following section. It was felt that much of this 

work could be readily applied to other industrial processes, and as a result the 

following work was publi hed72 at a conference entitled ' Intelligent Processing and 

Manufacturing of Materials'. 

5.4. Structured method of outlier detection 

It wa felt that rather than ju t con idering outlier detection as something that 

should be perfomled as a pre-processing stage, it should be used throughout the 

Problem 
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Implementation 
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•••••••• ••• 
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• • • 
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• 

Fig 5.1. The main tage of a neural model 's development 
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model's development. The basic stages of a neural model's development are shown 

in Figure 5.1. From Figure 5.1 it can be seen that the neural modelling process 

consists of 5 main stages. Progress through the problem identification and data 

collection stages has already been described in chapters 3 and 4, however there are 

also aspects of these stages which are important from a data cleaning point of view, 

as will be seen. The second part of the second stage is data pre-processing, some of 

which has been described in chapter4. As seen from the literature review, outlier 

detection is often performed as a data pre-processing stage and this indeed can also 

be done with some of the techniques developed in this project. The network training 

and testing stages generate a model accuracy, which, if it meets the specified 

accuracy, will indicate that the model may be ready for implementation. If the 

accuracy of the model does not meet the specified accuracy then modifications need 

to be made by repeating either or both of stages three and four. Sometimes re­

training the model with a different algorithm or network architecture may be 

effective; however, additional data or data pre-processing may also be needed to 

reach the required accuracy. In this project the expectation was that improved data 

pre-processing and outlier detection would enable the attainment of the required 

model accuracy. 

Once the model is implemented, it is important to also remember that many 

modem day process are under constant review, and that products manufactured and 

equipment used may change. Therefore, the maintenance stage forms the final stage 

of the modelling process, moreover it should be remembered that during the 

maintenance stage, all new data added should be checked for outlying data points. 

In total, four methods of outlier detection were used through the stages of the 

model's development; these will now be presented with reference to each stage of the 

modelling process. 

144 



5.4.1. Problem familiarisation 

The data cleaning process really began in the problem familiarisation stage 

in the form of information acquisition. Minimum and maximum variable boundaries 

were defined for variables, together with expected process behaviour, such as how 

one variable may relate to another, for example carbon content with hardness. 

Advice was sought on physical rules governing the data, while knowledge of 

indicator variables was also gained. Indicator codes are variables that are not used 

directly as the input to the model, but may play an important part in its development. 

For example, when considering a batch process, each example will often carry a code 

relating to its manufacture (a batch number) which may also contain a code relating 

to the location of its production. Whilst appearing abstract at first, this information 

may prove useful for outlier detection and correction as will be seen in the following 

sections. Knowledge of known process faults can also be gained, together with 

indications in the data to watch out for. Other important information gained at this 

stage was that of the expected model performance, as seen from Figure 5.1, this was 

important in knowing the amount of pre-processing and data cleaning that may be 

required. 

5.4.2. Pre-processing 

During the data pre-processing stage three methods for outlier detection were 

utilised. 
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5.4.2.1 Basic outlier detection 

The first of these methods was 'basic detection', having found the maximum 

and minimum values of the input variables; an obvious place to start was to 

investigate points that exceeded these limits, Qin and Rajagopal69 used a similar 

approach. Although this had partly been done during the data acquisition stage, on 

repetition, after the 1995 and 1996 data sets had been constructed, a number of points 

were investigated for each data set because they exceeded these limits. Building on 

this principle, known physical relations were also investigated, for example the 

correlation between UTS and Hardness. As described in chapter 3, these are two 

mechanical property tests, which have an approximately linear relationship. Through 

graphical inspection, any points that did not fit within limits of this linear correlation 

were investigated. An example of this is shown in Figure 5.2, where graphical 

inspection shows a number of data points to be outliers. 
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Fig 5.2 Graphical inspection of the relationship between Hardness and 
VTS can be used to locate outlying data points. 

On analysing the outlying data points detected, it was found that the basic 

outlier detection method was useful for locating typographical and large process or 

measurement errors. 

5.4.2.2. 'Sames' outlier detection 

The second method of outlier detection used in the data pre-processing stage 

was the 'sames' method of outlier detection. The idea behind this method was to use 

the data to check its own integrity. The principle of this technique is that in the 

industrial process, the likelihood is that a similar size and type of steel may have 

been manufactured before under similar heat treatment conditions. Therefore, by 

picking one input vector in the data set, and searching for a similar ones, the 

mechanical test results of two or more similar examples can be compared. 

This method is not only useful for finding outlying data points, it can also 

locate repeated values, which may also invalidate the data set. 
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The 'sames' method is easily automated, and in this case a program was 

written in Matlab to perform the search. The first stage of the automated 'sames' 

procedure is illustrated in the Figure 5.3. 

Pick the next 
,...-. available example 

J. 
Remove all Analyse ~. 

Find all similar tagged UTS values 
input vectors for r--- examples 

-----
of tagged, 

that example & from data similar input 
tag them set vectors 

I 

Fig 5.3. The first stage of the 'sames' outlier detection procedure 

The loop continues until all the examples (not previously tagged) have been checked 

for similar input entries. The inputs to the data sets were site, size, test depth, C, Si, 

Mn, S, Cr, Mo, Ni, AI, V, hardening temperature and tempering temperature, 

together with the codes relating to the quench type used after the hardening and 

tempering stages. It should be noted that the inputs in the data sets for the 1996 and 

1995 and the newly acquired 1997 examples had been increased after consultation 

with the BSES metallurgists. It was suggested that the variables AI, S and hardening 

temperature should be added in order to include any variables, which may affect the 

UTS beyond just the martensitic data set. The data relating to two treatment stages, 

with a mixed microstructure was included in the cleaning process, in case at a later 

date it was required for modelling purposes. Table 5.1 shows the number of 

examples available in each data set. 

Data Set Number of two stage mixed microstructure 
examples 

1995 2094 
1996 1216 
1997 3038 

Table 5.1. The number of harden and temper treatment examples available 
when the martensitic restriction was removed. 
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The test depth variable added was believed to be important from a hardenability 

point of view, and likewise was the hardening temperature and its quench type. The 

additional alloying elements of S and Al were added as it was envisaged that with 

some microstructures these may be important. There wasn't the same danger of 

introducing additional input variables into the 'sames' test as with building a model, 

since if not many similar input variables were found then the match criterion could 

be widened. This could be done by finding close input vectors instead of actually 

similar input vectors, in the form of a clustering algorithm, where the distances for 

each variable relied upon the significance of each variable to the model. 

Having found a large number of examples to have similar input vectors the 

UTS values of the similar input values were then analysed. Expert knowledge was 

important here, since an idea of the process variation was needed in order judge the 

amount of variation that should normally be present in the UTS values of a group of 

identical steels treated in a similar manner. It was estimated that any group of similar 

input vectors should have UTS values within 40 N/mm2 of each other. This meant 

that any variation within 40 N/mm2 could be put down to process variation, but a 

deviation above that level may have indicated a process or data point invalidity. 

The groups of similar input vectors were therefore categorised in the 

following way based on the difference between the UTS values within each group: 

1 Groups having zero difference in their UTS values 

2 Groups having a difference less than 40 N/mm2 but more than zero. 

3 Groups having UTS values with a difference greater than 40 N/mm2 for the 

same input vectors. 

149 



In total, 109 examples over the three data sets fell into category 1. It was 

surprising at first that even two examples may have had an exactly equal UTS value. 

This is because even if the same test sample had been formed into two specimens and 

tested twice, then the likelihood is that the measurement tolerance associated with the 

UTS result would have resulted in a slightly different result. The UTS test ID codes 

for each group were examined and were found to be identical for each group; these 

groups therefore represented repeated entries in the data sets. For each group of 

similar inputs, only one example was retained, with the rest being deleted from the 

data set. 

There were 1976 examples in category 2. In this category, one is not looking 

to find faulty data points, or indeed duplicate entries as with case 1. However, it was 

found that repeated test results for the same heat treatment, which were not duplicate 

entries, were present and needed to be dealt with. Because there were a large number 

of examples in this category, having made an initial investigation, a rule based 

correction method was utilised. 

Upon investigation of the groups of similar input vectors, it was evident that 

the indicator codes, mentioned in section 5.4.1 were now very important. When 

investigating the cast number for each example, it was found that the cast number for 

each group of similar input variables was the same. This was to be expected, since it 

would be unlikely that one could obtain exactly the same composition in two 

separate casts given the nature of the steel making process. 

Because the quantity of steel which may be produced from one cast exceeds 

that which may be heat treated within one batch, it was found that for a group of 

similar input vectors, a range of results would be present, pertaining to the same cast 

but different heat treatments. This was one of the reasons why the variation of up to 

40 N/mm2 was occurring. Each of these individual heat treatments represented a 

150 



valid result about the same composition, however it was also found that for some 

groups there may be two or more results with different test ID (therefore not a 

duplicate entry), but which pertained to the same heat treatment batch. After 

consideration, it was obvious that this related to the situation where for some large 

batches, more than one test sample was taken, and both entries were present in the 

database. It was decided that these multiple test results on the same heat treatment 

should be avoided, as they would unfairly represent the occurrence of one heat 

treatment based upon what was really a distribution due to the testing procedure 

used. It was therefore decided that a rule could be constructed to automatically 

remove these multiple tests on the same batch, and replace them with an average 

value based on the multiple test results. There was now only one entry in the 

database for each heat treatment performed. 

Finally 370 examples were found to belong to category 3, these were similar 

input vectors which had a difference in UTS greater than 40 N/mm2 (that which was 

attributed to the process variation). One group found in this category is shown in 

Figure 5.4. It can be seen that the majority of the values lie around 840 N/mm2, 

however one example appears to be significantly different with a UTS of 785 

N/mm2. 
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Fig. 5.4. A group of similar input vectors with a difference in UTS 
values exceeding 40 N/mm2 

The examples present in this category were referred to the test house manager for 

expert interpretation. Although there were 370 examples included in this category, 

because the 'sames' check had shown that these tended to fall into groups of several 

points where there would be 1 obvious outlier, investigation was fairly rapid. Heat 

treatment records were investigated, together with test records. Corrections were 

made where possible, or, where there were other examples in that area of the input 

space, the faulty examples were simply deleted. One interesting point was that some 

batches with a deviation slightly over 40 N/mm2 were found not to be faulty. This 

was because although on average the process variation is within 40 N/mm2, for some 

compositions that are harder to control, there may be greater variation due to process 

conditions without any specific malfunction. In chapter 7, detailed analysis of the 

UTS model highlights this phenomena. 

To summarise the use of this method, it has been useful in finding repeated 

entries, and ambiguous data resulting from process variations or file handling errors. 
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5.4.2.3. Multivariate data analysis 

Potentially, multivariate statistical analysis methods, such as PCA, can be 

utilised in two ways. The first is that because PCA reduces a large number of 

variables with some redundancy into a set of lower dimensional, new variables, 

which are orthogonal, the noise associated with many correlated inputs may be 

reduced. The effectiveness of this will be investigated in chapter 6. 

The second way in which PCA may be used, more directly for data cleaning, 

is that, by viewing the many dimensions of the model inputs as a lower number of 

principal components, examples that are statistically different may be revealed, with 

the potential that these may be outliers. This technique is analogous to the numerous 

applications of PCA within industry for process monitoring and fault 

detection 73,74,75,76,77.78.79,80,81. Within these applications, PCA was used to provide a 

summarised view of the high number of process variables, in order to aid a process 

drift or fault to be identified more easily. 

The first example of this technique relates only to the 1996 harden and 

temper martensitic data with oil and air quench which was lab treated. Principal 

component analysis was performed as described in chapter 2, on the data set 

containing the variables of bar size, C, Si, Mn, Cr, Mo, Ni, V, tempering temperature 

and UTS. It should be noted that the UTS can be used as an input to the PCA 

calculation, since it may contain outlying data points, and will be correlated with 

other input variables, therefore forming part of a new variable. The data were 

normalised by dividing by the mean. The PCA program was then implemented from 

a set of functions available in the Matlab statistical toolbox. 

The principal components were arranged in order of most significance and by 

investigating the principal component vectors, one gained an appreciation of which 
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variables most affected each principal component. The weights that corresponded to 

the first 3 principal components are shown in Table 5.2. These are the linear 

combinations of the original variables that generate the new variables. The largest 

weights in the first column indicate which variables are most important in the 1 sI 

principal component, in this case molybdenum & nickel. The most important 

variable in the second principal component is carbon. It should be remembered, 

however that each principal component is the weighted sum of all the variables. 

Variable 1st Principal 2nd Principal 3rd Principal 
Component Component Component 

Size 0.3155 -0.0207 0.0816 
C -0.0363 -0.6608 0.1570 
Si -0.0072 -0.2013 0.4847 

Mn -0.3327 -0.4110 0.0453 
Cr -0.3228 0.3818 0.3499 
Mo 0.4197 0.2228 -0.0090 
Ni 0.4480 0.0010 -0.2068 
V -0.3277 0.3706 0.2995 

Temperature -0.3205 -0.0922 -0.4259 
UTS 0.3120 -0.1104 0.5434 

Table 5.2. Weight values for the first three principal components of the Lab HR(Oil) 
TM (Air) martensitic data. 

1 st and 2nd Principal Component Scores for HR(Oil) TM(Air) Martensitic Data 
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Fig 5.5 Scores plot for 1 sI two principal components generated from the HR(Oil) 
TM(Air) martensitic data. 

154 



The data set was then projected onto the new co-ordinate system defined by the first 

two principal components. These two principal components were then plotted against 

one another as a scatter plot, which is shown in Figure 5.5. 

Figure 5.5 shows three main clusters of data along the 1 sI principal component, and 

three points that are outliers on the second principal component. By identifying 

which examples these scores related to, it was found that the distribution of the 

points was due to normal variation in the data. In particular, the 3 points that were 

outliers on the second principal component related to very low carbon values which, 

due to the negative term of carbon in the 2nd principal component, caused a high 

positive score. 

The variance explained by each principal component can be investigated to 

determine how much variation in the data the first two principal components 

describe. Figure 5.6 shows that with the first two principal components 

approximately 60% of variance in the data was explained. 

For this data set, only data points that were statistically different from the rest had 

Varial'l:e explained by Pril'l:ipal Components for HR(Oil) TM(Air) Martensitic Data 
100 

90 

80 

~ 70 
~ 

i 60 
:i 
~ 50 w 
(I) 

~ 40 tU .c:: 
tU 
> 30 

20 

10 

0 
2 3 4 5 6 

Principal Component 

Fig. 5.6 The variance explained by each principal component of the HR(Oil) 
TM(Air) data. 
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been located, which did not represent faulty data points. In a further experiment, the 

data from the 1995, 1996 & 1997 examples with harden and temper treatment stage, 

multiple quench types, sites and locations were investigated with the PCA method. 

The data set consisted of the variables test depth, size, C, Si, Mn , S, Cr, Mo, Ni, Al 

,v, hardening temperature, tempering temperature & UTS. These were similar to 

those used for the structured analysis of the combined data sets to account for the 

mixed microstructures, but with the addition of UTS and removal of the binary 

codes. The scores plot shown in Figure 5.7 was obtained. 

Principal Component Scores for 95, 96 & 97 Two Quench Data with All Quench Types and Microstructures 
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Fig. 5.7 Principal component scores for combined 95, 96, & 97 data sets covering all quench types, 
sites and microstructures. 

When the examples relating to the outlying points of the scores plot were 

investigated, it was found that the point marked 2198 at the top left of the plot was a 

faulty data point. This example had a large typographical error in the hardening 

temperature resulting in an entry of 150°C instead of 800°e. The outlying points at 

the bottom of the plot were found to relate to vanadium-containing steels, which 

behave very differently due to this potent addition. As with the previous data set, 

156 



there was nothing wrong with most of these points except that they were statistically 

different. The conclusion of this work was that the peA technique could help 

visualise the underlying process features in a reduced number of variables. However, 

the only faulty points which were readily located were those which related to what 

Qin termed 'obvious outliers', which could also be detected by a max/min basic 

detection method. The technique did readily help with the location of faulty inlying 

data points. The problems here are similar to the data cleaning technique in the 

literature review which selected data points with a high 'information criterion', it 

shows more what is different than that which is actually faulty. 

5.4.3 Network training and testing 

During the network training and testing stage, a model-based outlier detection 

procedure was utilised. In the literature review it was noted that outlying data points 

generally cause high model errors. 

5.4.3.1 Model-based outlier detection 

There are two reasons why a high residual may result. The first is that the 

modelling technique may not be capable of fitting the data. A graphic example of this 

is when a linear technique is used to model non-linear data; residuals will be present, 

not because the data is faulty but because the modelling technique is simply not 

flexible enough. Realistically, even with a flexible technique like neural networks, a 

level of residual will always be present because of noise in the data meaning that 

regularisation is required to prevent overfitting so as to provide good generalisation. 

The second reason why large residuals may be present is because the data may not fit 

the model, even though the model provides a good representation of the process. 
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There are then two possibilities in this case, the first is that the data are correct but 

are statistically different to that previously seen by the model and the second is that 

the data is faulty in some way. 

Provided that a model covering a diverse range of examples was utilised, it 

was found that the highest residuals from both the model and the test set could be 

used as a basis for finding outlying data points. 

There is a danger that if a faulty data point lies within a sparse area in relation 

to the model data set, that with little else to contradict this faulty point, the neural 

network would tend to fit the faulty data point. However, by constructing models a 

repeated number of times with different model and test set partitions, this problem 

may be avoided. 

Initially, model-based outlier detection was performed with the 1995 and 

1996 martensitic data using the linear and polynomial modelling techniques to 

investigate whether the modelling technique used would affect which examples were 

modelled with a high residual. The inputs to the model were Size, C, Si, Mn, Cr, Mo, 

Ni, V and tempering temperature. The output variable of UTS was used to locate 

high residuals. It was found that the examples relating to high residuals in the linear 

model and test sets tended to have high nickel contents. It was also noticed that the 

predictions for these points were always higher than the true value (the model was 

over predicting). From discussion with metallurgists it became evident that from 

experience they had found nickel to have a non-linear effect which reduced in 

strength at high addition levels. This illustrates the first reason why high residuals 

may result (because the modelling technique is not capable of fitting the data); 

therefore there was not necessarily anything wrong with these data points. After this 

experimentation it was decided that the neural technique would be used for all 

model-based outlier detection work. 
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Initially, the performance of the technique on the 1995 and 1996 martensitic, 

multiple-quench type data sets was observed. A neural model of each data set was 

constructed with the inputs described above as for the linear model. It was noted in 

chapter 4 that outlying data points might have been the reason for reduced model 

accuracy in the 1995 data set compared with the 1996 data set. It was therefore 

decided that an original, random ordered data set would be constructed for both 

years' data before and after data cleaning. The high residuals of the model and test 

sets were then analysed and corrected where archive records were available. When a 

replacement value was not available for a faulty data point, the offending point was 

deleted. A partition of 2/3 to 113 was made for the original model and test data set for 

each year's data. When the re-modelling of the 'cleaned' data was performed, the 

order and partition of the data was preserved so that when re-modelling with similar 

parameters was performed, a reasonable comparison of the model performance 

before and after cleaning with the model-based technique could be made. 

From the 1996 data set, 20 points were found to have a residual greater than 

two standard deviations from the mean; of these: 7 were found to be faulty, 5 

corrections were made and 2 deletions. 

From the 1995 data set, 25 points were identified as outliers and 11 of these 

were found to be faulty; 1 deletion and 10 corrections were made. 

The results of the modelling performance before and after outlier detection 

for the neural model are shown in Table 5.3. 

Data Before Data Cleaning After Data Cleaning 
Set Model Test Model Test 

R~ SDof R~ SDof R2 SDof R-z SDof 
Error Error Error Error 

1996 0.90 36.2 0.89 44.1 0.91 35.7 0.88 39.0 

1995 0.86 51.9 0.83 54.7 0.91 38.4 0.903 42.0 

Table 5.3. 1995 & 1996 mixed quench martensitic model performance before and 
after data cleaning. 
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It can be seen from Table 5.3 that the performance of both years' models has 

improved, particularly for the 1995 data set, whose performance is now much closer 

to that of the 1996 model. 

To improve the efficiency of this technique, a file handling system was 

established whereby an example that had been checked, corrected or removed could 

be tracked. This was facilitated by the addition of a column in the spreadsheet 

containing the letters A, R, or C, where these denoted: 

• Altered (where a data point was faulty and could be altered) 

• Removed (where no correction of a faulty data point was possible) 

• Checked (where the data point in question was not faulty, but had been checked 

for validity). 

This notation helped, because if a point that contained the letter 'C' recurred as an 

outlying data point, it would not be referred for checking by the expert. Moreover, 

points which persistently re-accrued as outliers, but which were correct, indicated 

examples that the model could not cope with, and could therefore be used to target 

future data acquisition. The notation also provided a safeguard against typographical 

errors when correcting values, since if an altered point was present as a high residual, 

its allocated value could be checked. Points containing the removed flag could be 

filtered out when constructing a data set, but were still available for reference if 

required. 

The use of the model-based outlier detection method was then extended to 

cover the mixed microstructure and mixed quench 1995, 1996 and 1997 data sets. 

The high residuals were selected from the model and test sets generated from a 

model of each of the years data, with multiple-quench types and sites, and without 

the martensitic constriction. Each year's data were treated separately at first. The 

criterion for a high residual was set as those greater than 2 standard deviations from 
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the mean. The procedure was performed iteratively as illustrated in Figure 5.8. The 

inputs to the model were those mentioned for the data set used with the structured 

detection algorithm. 

INITIAL 
MODEL 

EXAMINE HIGH 
RESIDUALS & 

CORRECTIREMOVE 
FAULTY POINTS 

RE­
TRAIN 
MODEL 

Fig 5.8. The iterative approach of model based outlier detection. 

FINISH 

Having performed 3 iterations on the individual years' data sets, re-randomising the 

data contained in the model and test sets each time, the three data sets were 

combined, and outlier detection was performed for a further 3 iterations. The data set 

resulting now covered a range of microstructures after the hardening stage, and 

contained some 5711 examples. 194 faulty data points were found in the uncleaned 

data set. An effect of 'diminishing returns' was seen on the last iterations of the 

single and combined outlier detection, where there was initially a large performance 

improvement with the removal of some dramatic outliers, which was followed by a 

lesser improvement as more 'subtle' mistakes were detected. 

Where possible, expert knowledge was applied to mistakes which may have 

related to a number of examples, such as one error where results pertaining to a 

certain Z-Card were entered in KSi (Kilograms per square inch), instead of N/mm2 ! 

Using such knowledge, bulk corrections could be made using a conversion factor. 

5.5. Review of inputs and network training procedure used to model the 
combined data set. 

Before experimentation to determine the effect of data cleaning on the 

modelling accuracy, it was decided that, having added the additional 1997 data, a 
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range of experiments would be conducted to monitor the effect of the additional 

input variables suggested to allow for the martensitic microstructures in the data. 

These additional input variables of hardening temperature, AI & S were added to the 

combined data set to account for the additional range of the model. From discussions 

with metallurgists it was also expected that the effect of quench medium after the 

tempering stage may have little effect on the UTS model's accuracy, and so the 

removal of this variable was also attempted in the experimentation. Additionally, 

having read a section on binary coding by Tarasenko15
, it was decided to investigate 

the effects of using a series of binary codes to describe the sites at which the steels 

were treated instead of a single number. 

The method used to train the neural network was also varied slightly to allow 

for the varying complexity of the data sets, by using a validation set. This involved 

calculating the RMS (Root-Mean-Squared) error of the model and validation set at 

intervals of the networks training. When the validation set's error started to rise, 

signifying over-fitting, the training could be stopped. In this way each data set could 

be trained to its maximal point possible and would not be limited by a fixed number 

of training iterations. At this stage, the number of hidden layer neurons was still kept 

at 6 and the fixed weight initialisation procedure was maintained for comparison 

purposes. 

The experiments in data set formulation were performed for the 1995,1996 

and 1997 data sets combined for a range of sites using the neural network technique. 

The following points describe the configuration of the data sets in the experiment. 

• Data set 1: 

This contained all suggested inputs i.e. depth, size, C, Si, Mn,S, Cr, Mo, Ni, AI, 

V, temping temperature, hardening temperature and the new binary form of the 

site and quench inputs (for both quench stages). With the binary coding scheme, 
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one bit was allocated to each of the 6 sites now present in the combined data set. 

Each bit formed a separate input variable in the data set. The quench codes 

functioned in a similar manner with each binary input representing a separate 

input. Both schemes are shown in Tables 5.4 and 5.5. 

Site Input! Input2 Input3 Input4 InputS In~ut6 

Pearsons 1 0 0 0 0 0 
Whithams 0 1 0 0 0 0 
WestBank 0 0 1 0 0 0 

Special 0 0 0 1 0 0 
Steels 

Roundwood 0 0 0 0 1 0 
Lab 0 0 0 0 0 1 

Table 5.4. Binary coding scheme used for treatment site locations. 

Quench Type Input! Input2 In~ut3 

Air 1 0 0 
Water 0 1 0 

Oil 0 0 1 

Table 5.5 Binary coding scheme used to describe quench types after hardening and 
tempering stages 

• Data set 2: 

This data set was similar to data set 1 but with the standard, single variable, 

numerical codes to represent each quench stage and the site location. 

• Data set3: 

Similar to data set 1 except that the sulphur input was removed from the model 

• Data set4: 

Similar to data set 1 except that the aluminium input was removed from the 

model. 

• Data set5: 

Similar to data set 1 except that the second quench type binary codes (after the 

tempering stage) were removed. 

• Data set6: 
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Similar to data set 1 except that the hardening temperature was removed. 

The results of the modelling of these 5 data sets are shown in Table 5.6. for the 

modelling and validation data sets. 

Data Set Model Validation 
SD of Error R2 SD of Error R~ 

1 34.1 0.953 38.4 0.931 
2 37.7 0.938 42.6 0.911 
3 34.6 0.951 38.7 0.929 
4 34.8 0.951 38.8 0.928 
5 34.1 0.953 38.4 0.930 
6 35.2 0.942 39.8 0.919 

Table 5.6. Results of modelling the 6 data sets developed for the review of inputs to 
the combined model experiment. 

Looking at the results of data sets 1 & 2, it can be seen that the binary input scheme 

does improve the performance of the model significantly. When comparing the data 

sets 3 and 4 with data set 1 it can also be seen that the suggested additional variables 

of S and Al have benefited the model, albeit to a lesser degree than changing the 

quench and site coding. Although the change in accuracy from the removal of these 

values was small, it should be remembered that this is over all of the grades of steel 

in the model. It is expected that for certain examples relating to additions of these 

elements, the effect of including these elements would be more dramatic. 

When comparing the results of data set 5 to data set 1, it can be seen that the effect of 

removing the quench type after the tempering stage of the model is negligible. 

Therefore, as a result of this review, only the binary variables relating to quench type 

after the hardening stage were used. 

Finally, the results of data set 6 show that the effect of removing the 

hardening temperature from the model causes a reduction in accuracy, which 
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therefore justifies its inclusion in the suggested set of input variables for the UTS 

model. 

5.6 Experimentation to determine the effect of data cleaning on the 

model accuracy 

Having investigated the effects of the additional variables in the data set, the 

inputs to the model were reviewed and it was decided that an experiment to show the 

effect of the data cleaning on the model's accuracy could now be performed. 

The statistics of the 5711 cleaned data set's input and output variables are shown in 

Table 5.7. 

Variable Name Type Min. Max. Mean SD 
Test Depth Input 4 140 16.08 9.35 

Bar Size Input 8 381 156.4 83.95 
Treatment Site Input Binary codes represent 6 

locations 
C Input 0.12 0.63 0.39 0.06 
Si Input 0.11 1.87 0.26 0.04 

Mn Input 0.35 1.75 0.76 0.22 
S Input 0.0005 0.21 0.02 0.012 

636 
Cr Input 0.05 3.46 1.04 0.45 
Mo Input 0.01 1.0 0.26 0.14 
Ni Input 0.02 4.21 0.79 0.86 
Al Input 0.005 1.08 0.04 0.09 
V Input 0.001 0.27 0.008 0.023 

Temperature at Input 820 980 856.9 16.9 
Hardening Stage 

Type of Quench at Input Binary codes represent 3 
Hardening Stage quenches; oil water or air. 
Temperature at Input 20 730 604.9 70.7 

Tempering Stage 
Ultimate Tensile Output 516.2 1841 929.1 156.1 

Strength 

Table 5.7. Statistics of the cleaned 1995,1996 and 1997 combined, mixed 
microstructure, site and quench type data. 
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An indication of the increased range of grades covered by the data set can be gained 

from comparing the statistics of the variables in Table 5.7 with Table 4.6, covering 

just the martensitic harden with oil and temper with air quench. A much wider 

variable spread has been obtained, representing a wider range of grades and 

treatments covered within this single data set. 

5.6.1 Experimental procedure and results for demonstrating the effect 

of the data cleaning technique 

In order to show the effectiveness of the data cleaning process the following 

experiment was devised, thus demonstrating a predictive model's generalisation on 

an unseen test set both before and after cleaning. 

When training and evaluating the neural network performance, data were 

partitioned into equal training, validation and test sets l5
. As previously described, the 

validation set was used to prevent over-fitting of the training data, by stopping 

further training when the validation set error started to rise. Having performed the 

data cleaning a test set was randomly selected from the data that had not been deleted 

by the cleaning process. These points were removed from the cleaned and uncleaned 

data sets; the cleaned test set was reserved for testing. The remaining data in the 

cleaned and uncleaned sets formed the training and validation sets. Due to deletions 

in the cleaned data, points were randomly deleted from the uncleaned set to make the 

number of data points equal thus not biasing the standard deviation calculation used 

in the results. The training and validation sets were constructed five times to show 

the effect of certain data points falling in the training and validation sets. The training 

was performed with a MLP containing 6 hidden layer neurons, using back error 

propagation with gradient descent and momentum. The weights were initialised 

randomly each time the network was trained. 
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The five models resulting from the cleaned and uncleaned data were then used to 

predict UTS values on the unseen test set. With a relatively low proportion of faulty 

points in the original data, it can be seen from the results shown in Fig.5.9, that the 

cleaned data have a lower standard deviation of residuals for both the training and 

test sets. Additionally it can be seen that the predictive accuracy of the cleaned data 

is more stable with the different random ordering of the training and validation sets. 

A further investigation, which highlighted the performance of the data cleaning 
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Figure 5.9. Re ults of experiment to determine effect of data cleaning on (a) 
model set and (b) un een test set. 
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techniques, was to investigate the measured vs. predicted graphs of the individual 

models presented in the results. Figure 5.10 shows the test set predictions of two 

models predicting the same clean test data (identical measured values). The model 

shown in Figure 5.IO(a) was trained on uncleaned data and the model shown in 

Figure 5.1O(b) was trained on cleaned data. It can be seen than the model trained on 

uncleaned data has mis-predicted a number of tensile strengths above the 1400 

N/mm2 area, and generally has a poorer fit overall. The model trained on cleaned 

data has a closer fit and does not experience problems with the examples relating to a 

UTS around 1400 N/mm2
• 

Model Trained on Uncleaned Data - UTS Test Set 
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Fig.5.IO(a). Measured vs. Predicted plot of model trained on 
un cleaned data. Predictions made on unseen test set. 
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Fig.5.IO(b). Measured vs. Predicted plot of model trained on 
cleaned data. Predictions made on identical unseen test set. 

Upon examination of the uncleaned data it became apparent that a number of 

examples relating to a grade of steel had been entered in the wrong units, having a 

faulty value of around 1800 instead of a true value which should have been in the 

region of 14ooN/mm2. The uncleaned model had learnt this as a feature of these 

types of steel and when tested on them again, produced incorrect results for that 

grade. Overall, other faulty points also contributed to the poorer performance seen 

throughout the uncleaned model's range. 

One further point which should be noted about both the uncleaned and 

cleaned models in Figure 5.10 is that, having trained the network using the validation 

set, there is no longer a 'bias' in the distribution of the points along the measured vs. 

predicted graphs as was seen in Figure 4.7. 
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5.7 Chapter conclusion 

This chapter has seen the development of a structured technique for the 

detection of faulty data points within the BSES data sets. Research into current work 

on outlier detection revealed that only a small number of authors had tackled outlier 

related issues, often only providing information on why outlying data points were 

present as opposed to how they might be detected and corrected. The literature 

review did, however, generate a number of ideas towards possible methods of outlier 

detection, whose implementation was described throughout the chapter. The 

description of all the techniques used is related to the entire model development 

process, as opposed to existing authors who consider data cleaning purely a data pre­

processing stage. One technique, the 'sames' checking method is particularly novel 

and has also solved the problem of repeated values within the data set. 

Having cleaned all the two stage data relating to the BSES processes, it was 

decided that with the addition of other input variables, the martensitic constraint 

placed on the modelled data in chapter 4 could now be removed, in order to model a 

range of microstructures after the hardening stage. This was important since some 

important steel grades contain non-martensitic microstructures after the hardening 

stage and are now accommodated by the model. A review of the effect these 

additional variables have on the prediction accuracy was then made, which also saw 

the introduction of binary input variables instead of numerical codes to denote site 

and quench type. The review also utilised an improved training technique, and 

showed that all the additional inputs were justified, but that the second quench 

descriptive variables could be removed as they had little effect. 

The expansion of the data set resulted in a wider range of steels and 

treatments being represented by the model, which was demonstrated with statistical 

measures on the cleaned data set. 
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The effect of the data cleaning on the prediction accuracy was then 

investigated in the form of an experiment, where it was seen that the model accuracy 

is very dependant on the quality of the data. The work has demonstrated that even if 

a small group of points are faulty, a significant deterioration in performance will 

result. 

The project aims to model a wide range of steel grades accurately. The ideas 

of data decomposition have now come full circle, through the use of expert 

knowledge for the selection of variables and data cleaning, a wide range of 

microstructures have now been modelled with improved accuracy over the 

decomposed data sets considered in chapter4. 

Having developed a clean data set with suitable input variables to encompass 

a range of treatments, the next chapter now shows the use of more advanced neural 

modelling techniques. These techniques are used with the data set developed to 

produce a UTS model, the primary project aim, which meets the specification 

accuracy requested by BSES, and also a range of other mechanical property 

prediction models such as proof stress, reduction of area, elongation and impact 

properties. Previously acquired data cleaning knowledge is then applied to these 

additional output variables and the resulting model performances are evaluated in 

detail. 
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Chapter 6 

Improvements and extensions to data modelling 

6.1 Introduction 

This chapter uses the cleaned data, developed in chapter 5, to generate 

models capable of predicting a range of mechanical properties. Initially, 

improvements in network training techniques and architecture are considered, with 

the aid of a brief literature review into key topics considered important in producing 

models of improved accuracy. 

Having previously kept most neural model parameters constant, the effects of 

the number of hidden layer neurons and hidden layer initialisation weights are now 

considered. Modular and ensemble techniques are investigated as a result of the 

literature review in a variety of configurations. Their relative performances are 

evaluated on a fixed test set. 

Having generated a UTS model of increased accuracy, the data set is 

expanded to include additional outputs and an investigation is made into other 

incompatibility problems which result from this. 

Experimentation in network architectures and training techniques led to the 

use of the Matlab neural network toolbox to produce much of the experimentation in 

this chapter, as this provided more flexibility than the commercial package 

previously used in this project. Additionally, given the growth in the data set size, 

multiple processor Unix machines at the University were used to produce models 

more quickly. 
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6.2. Improvements to the MLP neural modelling technique 

Having generated a cleaned set of data it was found in chapter 5 that a further 

improvement was needed in the model's standard deviation of residual value in order 

to meet the specification of 30N/mm
2 set by BSES at the original project meeting. 

Having previously only used a 'fixed' set of parameters to train the network with a 

simple back error propagation rule with a momentum term, it was decided that 

investigations should be made into more advanced techniques of network training. 

Already in chapter 5, the use of a validation and test set had led to an improved 

distribution of data on the measured vs. predicted graph and so similar techniques to 

'tailor' the network to the data were needed. 

Literature relating to methods of improving the MLP networks performance 

was therefore investigated in order to establish a suitable technique to use. 

6.2.1. Finding the optimum number of hidden layer neurons 

Throughout much of the literature reviewed in chapter 2 and indeed in the 

texts of Tarrasenko l5 and Bishopl2 it was seen that the number of hidden layer 

neurons used in a single layer network plays a very important part in determining the 

model performance. In the early stages of the work, experimentation with this 

parameter led to 6 hidden layer neurons being used even when the data set had been 

expanded to include data relating to many different grades of steels. The main reason 

for this was because the network parameters were being kept constant in order to 

determine the optimum data set configuration. 

If too many hidden layer neurons are used, it is likely that the network may 

behave like an associative memory, storing individual training points rather than 

learning the underlying function. This would be similar to the effects of over-training 

a network. The converse of this is that if there are not enough hidden layer neurons, 
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then the network will tend to under-fit the data and therefore not describe the 

underlying process functions effectively. 

It was decided that an experiment should be performed to determine the 

effect of the number of hidden layer neurons on the cleaned data set. In order to 

accurately determine the optimum number of neurons it was realised that a range of 

models would need to be produced for each incrementing number of hidden layers 

used, each with different initialisation weights. This was because the initialisation 

weights are believed to affect the final value to which the network converges, and if 

one is trying to find an optimum solution this needs to be varied. 

The Matlab neural network tool box was used to write a script which would 

alter the number of hidden layer neurons used by the MLP with back error 

propagation with momentum from 1 to 33 neurons, ten initialisations being made for 

each configuration. In most literature and texts where such experimentation has been 

performed, it was noted that the MSE was used as a statistic to measure model 

performance and so, as this was readily available through training in the Matlab 

package, it was utilised. The model inputs and output established in Table 5.7. were 

used initially. The network was trained using the validation set early-stopping 

criterion and the results of the Training, Validation and Test sets were logged for 

each of the 320 models trained. 
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The results of this experimentation are shown in Figure 6.1, which shows the 

average result of the ten initialisations made. It can be seen that there were some 

fluctuations in the results, despite taking the average of ten initialisations. As the 

number of hidden layer neurons are incremented the training (or model) error falls 

steadily. The validation and test set errors also fall to begin with, however after 10 

hidden layers a plateau is reached which, after 17 hidden layer neurons, begins to 

increase. Close inspection reveals that the lowest validation and test set error was 
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Fig.6.1. The effect on the average MSE value of ten networks trained 
with varying hidden layer neurons on UTS data. 

reached at 17 neurons, however there is minimal improvement on the performance at 

10 neurons. To promote a parsimonious model and reduce computational intensity it 

was decided that 10 hidden layers would be sufficient for this data. A noticeable 

effect was also seen from the initialisation weights on model accuracy, however this 

will be discussed further in section 6.2.4. 
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If upon detailed investigation of the model, it appears that it does not 

generalise effectively, another method to prevent overfitting is to use a 

'regularisation' technique, which involves altering the training algorithm in some 

way to generate a smooth mapping which does not fit the training data noise. This 

enables one to construct a network with a generous number of hidden layers and yet 

still not over-fit the training data. One popular method as suggested by Bishop12 is 

the weight decay method which involves adding a penalty term n such that the 

squared error function becomes: 

E=E+Jill. (6.1) 

where: 

(6.2) 

This sort of technique is particularly useful when one is trying to model 

unfamiliar data, with little time to experiment and investigate the effects of hidden 

layer neurons on generalisation performance. 

One further form of regularisation which is also claimed to have other 

advantages in 'automated' neural network training is that of the 'Bayesian 

framework' for training the MLP. This will be discussed further in chapter 7 from a 

different perspective than model accuracy. Literature such as that by Penny82, 

suggest that although the Bayesian technique of regularisation may offer an 

'automated' approach to training a model with good generalisation, techniques such 

as cross validation and model ensembles may provide equally good results. 
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6.2.2. Improved training algorithms 

It appears that there are two main reasons why improved training algorithms 

exist, these being for increased accuracy in the final model, and improved training 

speed. 

In chapter 2, the addition of a momentum term was shown to improve model 

accuracy, by helping to avoid the problems of local minima, and represents a 

historical advance in improving the final accuracy to which a MLP may converge. 

It has already been mentioned in chapter 2 that the selection of a learning rate which 

is too large will result in an unstable network, and that if the learning rate is too small 

then the network will take too long to converge. It is easy to see that a network is 

diverging and so the use of an algorithm that incorporates an adjustable learning rate 

could therefore be considered a speed rather than an accuracy improvement. 

When considering improvements in training speed, there is a range of 

algorithm improvements that exist. These take two approaches, heuristic and those 

that utilise standard numerical optimisation techniques. 

Of the heuristic algorithms, the use of a variable learning rate has already 

been considered. Another major method that falls into this category is that of the 

conjugate gradient l2
• With basic gradient descent, the direction of each step is given 

by the local negative gradient of the error function and the step size is fixed. The 

conjugate gradient method came about through a realisation that moving along a 

search direction given by the local negative gradient vector is not necessarily the 

optimal strategy; instead, a sequence of successive search directions such that each is 

'conjugate' to all previous directions is used. This forms the basis of the conjugate 

gradient optimisation algorithms83
,84,85. 
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Of the numerical methods, Newton's method is the first 12
• Newton's method 

is an alternative to the conjugate gradient methods for fast optimisation, where local 

quadratic approximation can be used to directly obtain an expression for the location 

of the minimum point of the error function. This gives the basic step of: 

(6.3) 

where g is the gradient at step k and H is the Hessian matrix (second derivatives) of 

the performance index at the current values of the weights and biases. Bishop 

explains that the exact computation of the Hessian matrix and moreover its inverse 

for non-linear networks is computationally demanding and becomes prohibitive if 

performed at each stage of an iterative algorithm. Quasi-Newton methods have 

therefore been developed to overcome this computational intensity. Instead of 

calculating the Hessian directly and then calculating its inverse, they build up an 

estimation of the inverse over a number of steps, utilising the first order derivatives. 

The Levenberg-Marquart algorithm is similar to the Quasi-Newton methods in that 

they were designed to approach a second order training speed without having to 

compute the Hessian matrix. However, the Levenberg-Marquart algorithm was 

specifically designed to minimise the sum of squares error function. Under this 

condition the Hessian can be approximated as: 

(6.4) 

And the gradient can be computed as: 

(6.5) 

J is the lacobian matrix, which contains first order derivatives of the network errors 

with respect to the weights and biases. 
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Hagan and Menha/6 provide a full description of the algorithm, however the weight 

update can be written as: 

(6.6) 

The Matlab neural network tool box contains an implementation of the Levenberg­

Marquart algorithum. The variable A is decreased after every step where there is a 

reduction in the performance function, and is increased only when a tentative step 

would increase the error function. The aim is therefore to keep A small and thus stay 

towards a newton-like update, whereas if A is large the standard gradient descent rule 

is used more. It is claimed that the algorithm provides between 10-100 times 

improvement on the computational time of the standard gradient decent 

backpropagation method. 

The Levenberg-Marquart algorithm was applied to the 5711 examples heat 

treatment data set in this project with inputs as established in Table 5.7 and the 

output of UTS. It was found that a training time in the order of 10 minutes as 

opposed to 3 hours could be obtained when the algorithm was used instead of the 

standard back error propagation with momentum algorithm. 

The drawback of any method that utilises the lacobian matrix is the high 

memory requirements of the algorithm. The size of the lacobian matrix is W x N 

where W is the number of weights and N is the number of samples in the training 

data set. However, having access to computers with relatively large amounts of 

memory, coupled with a relatively small network size meant that this was not a 

problem. If this was ever a problem, then reduced memory algorithms have also been 

developed where the 1 acobian matrix is split into sub matrices which can be 

computed in turn, but this does however impose a significant computational 

overhead. 
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6.2.3. Pre-processing with peA 

The use of peA for data analysis has already been considered in chapter 2 

from a theoretical point of view and chapter 5 when applied to the data cleaning 

problem. It was considered in chapter 5 that another method of improving the model 

performance might be to use principal component analysis to transform the input 

data matrix to the neural network, so as to remove any redundancy in the input 

variables, and therefore any unnecessary noise penalty. The technique was 

mentioned to have three effects on the data set: 

1 It orthogonalises the components of the input vectors 

2 It orders the resulting orthogonal components (principal components) so that 

the greatest variation is in the first component 

3 By setting a cut-off point in the variance explained by each component it can 

eliminate those components which contribute least to the variation in the data 

set. 

It was decided that an experiment would be performed to establish whether the peA 

technique could improve model accuracy (and yet reduce its complexity) when 

applied to the cleaned data set. Having recently varied the number of hidden layers, 

and changed to the Leveberg-Marquart training algorithm it was decided that ten 

benchmark models would be constructed using these techniques in order to establish 

a set of average results before peA was applied to the model inputs. Then, having 

performed the principal component analysis, experimentation into the number of 

hidden layer neurons required to model the 'reduced' data set was performed. Having 

selected the required number of hidden layer neurons though experimentation, the 
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model with peA inputs was then trained 10 times, this being done with the new 

algorithm with varying initialisation weights. 

The peA algorithm was implemented within the Matlab neural network 

toolbox environment, where it is possible to select the number of components kept as 

inputs to the model as a function of the 'minimum fraction of variance explained'. 

This was initially set to be 2%, but in order to monitor the variable reduction this 

gave, the level was then later increased to only include those components accounting 

for 10% or more variation in the data set. 

The results are shown in Table 6.1 for the three configurations used in the 

experiment, using the average of the 10 initialisation's standard deviation of 

residuals as the performance measure for each data set. 

Data set Minimum Number of Training Validation Test set SD 
variance principal set SD of setSD of of residual 
explained components residual residual 

1 0% N/A 36.4 39.7 40.1 
(Full (22)) 

2 2% 16 45.3 55.2 55.4 
3 10% 2 99.4 98.6 97.1 

Table 6.1 Results from experimentation with peA inputs to neural model trained on 
the Levenberg-Marquart algorithm. 

It can be seen from Table 6.1 that even when a large number of principal components 

are used as the input to the model, the performance of the training, validation and test 

sets deteriorates significantly. This deterioration is worsened when only the two most 

significant principal components are kept as inputs to the model. This suggests that 

the variation in the data set is distributed throughout the variables, and that there is 

little redundancy. Figure 6.2 shows the variance explained by the first 10 principal 

components. When this is compared to Figure 5.6, for the harden and temper 

martensitic data with just oil and air quench, it can be seen that the variance 

explained by the first two principal components is now significantly less than the 
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60% explained before. This is believed to be due to the additional complexity that the 

Variance Explained for Input inc Binary(No UTS) 
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Fig 6.2. Variance explained by the first 10 principal components of the 
cleaned data set. 

multiple quench types and microstructures now bring to the data set. It should also be 

remembered that the standard principal component analysis algorithm can only 

establish a 'linear' relation between two or more variables and therefore will be less 

effective on a data set with increased non-linearities. Non-linear methods of this 

. h d I . f' Id87,9 techmque are, owever, a eve opmg le . 

Following this experimentation it was decided that the peA method of data 

pre-processing would not be used in this case. 

6.2.4. The effect of random weight initialisation on network training 

It has already been mentioned in both chapter 2 and the data set development 

chapters 4 and 5, that the random initialisation of the network weights affects the 

final convergence of the neural model. Previously the weights have either been kept 
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constant or an average of several initialisations has been taken to allow for the effects 

this may have. 

Table 6.2 shows the standard deviation of the test set residuals obtained for 

10 different initialisations of the same network, with fixed training, validation and 

test sets. 

Initialisation Attempt SD of Residual 
of Test Set 

1 36.1 
2 41.6 
3 41.8 
4 38.8 
5 36.8 
6 36.7 
7 37.3 
8 36.1 
9 35.2 
10 39.8 

Table 6.2. The variation in SD of residual from making random weight 
initialisations. 

It can be seen that there is a significant variation in the test set accuracy based 

on the effects of random initialisation. Tarassenko suggests that many networks 

should be generated with varying weight initialisations and, where data is sparse, 

with different training, validation and test set partitions. Then the network that 

provides the best performance in relation to a pre-defined set of criteria should be 

selected. He warns against the use of the test set as a means of selection since this 

may also become part of the optimisation procedure (unlike the validation set, the 

test set should be unseen in the respect that it should play no part in the training of 

the model). 

One paper, concerned with reliable roll force prediction43
, used more than one 

model (in this case a neural and a mathematical model) to make a model prediction. 

This claimed to increase the reliability and accuracy of the model produced, it was 
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therefore decided that literature relating to the combination of several models would 

be researched, the results of which will be discussed in the following section. 

6.2.5 Combining models 

The literature search revealed a number of papers that considered the 

combination of models, specifically neural models. 

Two literature reviews on the combination of neural networks have been 

performed by Sharkey88,89. These reviews reveal that there are in fact two main 

architectures for combining neural networks for regression. The first is the ensemble 

of networks and the second is the modular approach. Various authors have claimed 

improved results with certain data sets when modeling both techniques, and indeed 

the main reason for combining networks is to gain a performance improvement. A 

secondary advantage of combining networks, particularly in the case of the modular 

approach, can be the problem simplification that task decomposition brings. The 

function of the individual network in each topology is quite different. 

When combining a set of networks using the modular approach, each network 

is trained on a different portion of the data such that it represents a different function 

of the process. This 'task decomposition' may either be automatic (via an algorithm) 

or explicit (based on expert knowledge). An example of a modular approach relating 

to the data in the project would be to train a network for each site of steel production. 

In a sense, through the decomposition already described in this project, the modular 

approach has already been followed to some extent. 

Sharkey notes that the relationship between the networks in a modular 

topology may be successive, co-operative or supervisory. In a successive 

arrangement, the first network may be used to pre-process the data before passing to 

the next network. A co-operative relationship is typically where a gating network is 
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used to combine the predictions from certain modules. An example of a supervisory 

approach is where one module might be trained to select the parameters of a second 

net, on the basis of observations of the effect of various parameter values on the 

performance of that net. 

The idea of the co-operative relationship between modules brings us to the 

concept of an ensemble arrangement. The function of each of the networks in an 

ensemble is identical (to represent the whole of the input space). When one wishes to 

use the ensemble to make a prediction, it is made up of a weighted sum of the 

predictions of all of the networks. The ensemble technique does however rely on the 

fact that, despite learning data about the same problem domain, each network should 

still be different. If each network produced identical predictions, then there would be 

little advantage in combining networks. Instead, the differences in each network lead 

to a robustness in the overall prediction, and may be obtained by the following 

techniques: 

• Varying initial conditions 

• Varying training data (but from the same problem) 

• Changing individual network architectures 

• Training each network with different algorithms. 

The papers revealed by the literature search all outlined examples where the 

ensemble approach had been followed. However, enough information was gathered 

from Sharkey's paper to enable the modular approach to be performed on the cleaned 

data set with a variety of decomposition methods. This will be investigated further in 

section 6.2.5.1.1 

Theoretical proof that diversity of networks can lead to reduced 

generalisation error can be seen in papers written by Sollich and Krough90 and 
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BishopI2. Within these publications, the increased accuracy that may be obtained 

from an ensemble network is illustrated by considering the bias and variance of the 

predicted values on the test set. This is considered for the usual case where one is 

trying to approximate a target functionfo from ItV to R, where only noisy samples of 

the target function can be obtained. The inputs to the network are drawn from a 

distribution P(x), and it is assumed that an ensemble average of k independent 

predictors is denoted as: 

j(x) = L wkfk (x) (6.7) 
k 

where Wk is a weight representing the strength of 'belief' in each network, which has 

a positive value, where all the weights total to one. 

For an input x the error of the ensemble (x), the error of the kth predictor 

£k(X), and its 'ambiguity' ak(x) may be defined as: 

e(x) = (y(x) - j(X»2 (6.8) 

(6.9) 

(6.10) 

Within these publications the ensemble error is written as: 

e(x) = e(x) - a(x) (6.11) 

where, 

(6.12) 

which is the average error, and, 

(6.13) 
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is the average of their ambiguities, which as equation (6.10) shows, is the variance of 

the output over the ensemble. When averaged over the input distribution, and 

therefore y(x), the following generalisation is suggested: 

(6.14) 

Hence Sollich and Krough separate the generalisation error of the average of 

the ensemble into two terms, the weighted average of the generalisation errors of the 

individual predictors and the weighted average of the ambiguities. The relation 

therefore shows that the more the predictors differ, the lower the error will be, 

provided that the individual errors remain constant. 

Much of the literature concentrates on methods for generating ensembles 

which provide a low generalisation error, but whose individual members have errors 

which are uncorrelated for the reasons described by equation (6.14). 

Varying training data is one method whereby a set of uncorrelated error 

networks can be generated. Krough and Vedelsby9J explored the possibility where a 

no-overlap technique of training and test set selection was made for an ensemble. 

They therefore considered the average test set error for generalisation purposes, 

which resulted in a fixed test set. They claim that this not only generates diverse 

networks but also allows the entire data set to be used for training and testing, in a 

similar manner to cross validation techniques. 

Further experimentation where individual networks of an ensemble were 

trained on randomly selected data is given in a paper by Opitz and Maclin92. This 

was actually applied to a classification problem, but the methodology is also 

applicable to regression problems. This paper terms the random selection of data sets 

(which may be overlapping) as 'bagging', and also examines the performance 

obtained from another technique which is termed 'boosting'. When training using the 
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boosting technique, the probability of points being selected for the next ensemble 

member is increased for points which yielded high errors in the previous model's 

training set. In this way it is claimed that the performance of the overall ensemble is 

improved by boosting the representation of points which have a high training error. 

Although the basic philosophy behind this technique seems sensible, the technique 

raises some concerns when one also considers that data points with high residuals 

also tend to be faulty outliers. One would not wish to train a model based on such 

points, as their existence in future data may be unpredictable. The author confirms 

this suspicion when noting that the technique of bagging is probably appropriate for 

most processes, but that the boosting may produce improved results on some data 

sets. Drucker et al93 also examined the boosting technique, by comparing it to the 

bagging method. The computational cost of training the networks was also taken into 

account on an OCR (Optical Character Recognition) problem as part of the 

evaluation. It was found that for a large data set, some form of boosting was best. 

The next group of papers all concentrate on techniques which modify the cost 

function of the individual neural networks, to incorporate a term which encourages 

decorrelation of network errors. The first of these papers, by Rosen94 

considered a sequential co-operation between the networks, where, after an initial 

network was trained, each subsequent network had to obtain an optimal performance 

not only in terms of error but also in terms of decorrelation in training errors. This 

scheme has been successfully demonstrated with reference to a noisy sine function 

and another one-dimensional non-linear function, and appears to provide improved 

performance over ensembles that comprise independently trained networks. The 

author does suggest that this method is most advantageous when there is insufficient 

data to train each individual network on a disjoint subset of training patterns. 
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One problem with this approach, however, is that if a term is added to the standard 

sum-of squares cost function to penalise correlation in errors between networks, then 

the balance between this and the 'error' part of the function is critical. A term was 

added to the modified cost function presented in the paper which, the author 

explains, did need some adjustment to prevent very decorrelated networks being 

produced, which have a high error. Liu and Ya095 also investigated learning with 

decorellation, but this time performed the training of the networks simultaneously, 

they term this idea CELS (Co-operative Ensemble Learning System). The authors 

suggest that with simultaneous training, an opportunity is provided for networks to 

co-operate and specialise. One important result shown through experimentation was 

that an ensemble generated with independently trained networks produced an 

ensemble prediction with reduced variance, however the bias was unaffected. 

However when training with the CELS method, the authors have shown a reduction 

in bias as well. The problem of choosing the amount of importance of decorrelation 

in respect of each networks training is, however, still an issue. The authors would 

also like to resolve problems such as varying the architecture of individual networks, 

so as to provide an optimum set of nets, as well as dynamically determining the 

number of ensemble members needed. The final paper in this group of 'active' 

decorrelation papers is by Opitz and Shavlik96
, who detail a method of ensemble 

generation that uses genetic algorithms to search explicitly for a highly diverse set of 

accurate trained networks. This works by generating an initial population and then 

testing the diversity of them, they are then arranged in order of a fitness function 

consisting of accuracy and diversity as entries. Then a genetic algorithm forms new 

candidate networks by making changes to the topology of existing candidates based 

on the present population. When combined with expert knowledge, this algorithm 

was shown to provide improvements over the bagging method. 
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Two papers relating to the ensemble technique in a different way are by 

Hansen et al97 and Hasse-Sorrensen et a198. These papers are primarily concerned 

with a technique called LULOO (Linear Unlearning Leave One Out). This method 

has been developed to overcome the computational expense required to train using 

the leave-one-out cross validation procedure on larger data sets. Instead it is assumed 

that the unlearning of a single example only affects the network weights slightly, and 

under this hypothesis they use approximation techniques to estimate the change of 

network parameters. It was also shown in the earlier paper that if the networks 

produced from the cross-validation technique were pooled into an ensemble with 

linear combinations, the generalisation performance is identical to that of a single 

network trained on the full set of data. 

The review also shows that weights of the linear combination of each 

component network can be determined by several methods. Sharkey's review on 

ensemble networks89 showed that very often, equal contributions of each network 

can be used to establish the network output. Krough and Vedelsby91, however, found 

the optimal combinations of network weights using gradient descent minimisation. In 

a similar manner, Igelnik et al99 used least squares regression to solve the problem of 

optimal weight calculation. 

Several authors have also postulated that regularisation methods, when 

applied to each component network, may not be appropriate. Naftaly et al lOo suggest 

that through 'overtraining' a network a smaller bias but larger variance is obtained in 

an individual network's prediction. However, when combined as a standard 

ensemble, the bias of the ensemble is unaffected, but the variance is reduced. In this 

way, it is suggested that overtraining might be beneficial. Sollich and Krough90 also 

considered this phenomenon but suggest its use in large ensembles. 
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Naftaly et al 100 also showed that even through varying just initial conditions, a 

significant reduction in the variance of the ensemble could be seen. 

Having made the review of the techniques of combining neural networks, and 

investigated the reviews of Sharkey, it was concluded that deciding upon the method 

of combination may be quite data set dependant in relation to its size, quality and 

target function. Ueda10l showed that under some situations, combining neural 

network estimators does not always increase the generalisation performance - this 

varies depending on the data set. 

It was therefore proposed to combine networks using a variety of methods, in 

order to establish a technique suitable for the heat treatment data. 

6.2.5.1 Methods of combining neural network models 

Within this section, experimentation into both modular and ensemble 

approaches is described. The results were evaluated on a fixed test set to enable an 

evaluation to be made into the best technique for the final application. The best 

technique may not however end up as the most accurate, since retraining and 

implementation of the models also had to be considered. 

6.2.5.1.1 Modular decomposition of steel data 

The first idea was to investigate the effects of performing the modular 

approach on the full, cleaned data set, with two methods of decomposition: site and 

composition based. Previously, as the data set was expanded, aspects of site-based 

decomposition were investigated, however at that stage, decomposition resulted in 

small data sets and was therefore thought not to be useful, and the results of modular 

decomposition were not investigated across a data set of varying sites. 
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Composition based decomposition was considered in the sense that data sets 

had been restricted to steels pertaining to a martensitic microstructure after the 

tempering stage, however this did not relate explicitly to the types of steel present in 

the data set. One problem with this second method was that, although a 

compositional analysis was provided with each example in the data set, there was no 

reference to the 'family' of steels to which the example belonged, for example, a 

CrMo (chrome-molybdenum) steel or a NiCr (nickel-chrome) steel. It was concluded 

from metallurgists that the 'family' to which the example belonged would influence 

the steel's mechanical property behaviour extensively. By decomposing by 'families' 

of steels the idea was therefore to allow each network to specialise on a different type 

of steel. The problem of allocating a general steel type to each example was 

overcome by the knowledge that each example was allocated a composition code, 

this code in itself, however did not directly relate to a generic type of steel. Instead, a 

unique list of composition codes were generated, for steels within the database, 

which was then passed to a metallurgist for expert interpretation, and the grouping of 

the codes into families of steels. The codes have a pre-defined alphanumeric format, 

which relates to the most important alloy additions within the steel. Once a 'family 

name' was allocated to a set of composition codes, each example within the cleaned 

data set was allocated a number based on the expert information obtained, to allocate 

it to a family of steels. Initially, the groupings proposed by the expert were quite 

detailed, for example 1 % CrMo, 2%CrMo and 3%CrMo (where the percentage 

represents the chromium addition), instead of just CrMo steels. Then, some 

groupings were merged so a to allow variation within the data set. This 

amalgamation of some sub groupings resulted in 15 families of steel, shown in Table 

6.3. 
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Category Group Number 
Cr 10 

CrMoV 11 
CrMoAI 12 

CrMo l3 
CrY 14 

C 20 
Mn 30 

MnMo 31 
MnV 32 
MnCr 33 

MnNiCrMo 34 
MnNiMo 35 

NiCr 40 
NiCrMo 41 

NiCrMoV 42 
SiCr 50 

Table 6.3. Categorisation of examples within the cleaned data set based on steel 
'family' 

Having categorised the steels as in Table 6.3 it was realised by the metallurgists that 

the SiCr steel, of which there was only one example, was in fact not a suitable type to 

include in the data set, and so it was removed from the cleaned data sets. 

For each approach of modular decomposition (site and composition based), 

the data sets were then constructed so as to enable a comparison between the two 

methods. A test set was separated from the cleaned data containing 113 of the 

examples present. This enabled the performance of each decomposition method to be 

compared on the same data. The remaining data were then used for training and 

validation of the individual models in the modular approach. The number of data 

points present for each site is shown in Table 6.4. 

Site Number of Training/Validation Set 
Examples 

Pearsons 15 
Whithams 314 

Lab 1195 
Special Steels 516 
Roundwood 202 
West Bank 1517 

Table 6.4. The number of examples present for training and validation in 
each model of site 
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Despite the increased number of data samples within the full, cleaned data set, the 

number of examples present for the Pearsons model was still very small. Although 

the test set and validation set selection was random, a check was made to ensure that 

a proportional number of examples related to each model. However, it was decided 

that models would be constructed for all sites, to enable the overall performance to 

be evaluated. The models for each site were trained using the inputs of size, depth, C, 

Si, Mn, S, Cr, Mo, Ni, AI, V, hardening temperature, tempering temperature, 

hardening Quench Type and UTS as the output. 

Each network was trained using the Levenberg-Marquart algorithm, with 10 hidden 

layer neurons, using the validation set to enable early stopping (to prevent 

overfitting). Each model was constructed ten times with different random weight 

values, to enable an average performance to be assessed. The average standard 

deviation of the residuals for each model of each site is shown in Table 6.5. for the 

model validation and test sets. 

Site Model SO of Validation SO of Test SO of 
residual residual residual 

Pearsons 0.01 76.8 48.6 
Whithams 18.11 32.2 30.8 
WestBank 21.8 26.7 28.6 

Special Steels 22.4 29.1 34.5 
Roundwood 16.0 49.1 34.9 

Lab 28.2 42.5 41.4 

Table 6.5. The model, validation and test results for each site's model. 

It can be seen that the worst results relate to the Pearsons model, which has an 

unreasonably low number of examples, meaning that the model set obtains an 

outstanding accuracy, which does not generalise well. The best accuracy and 

generalisation is obtained with the modelling of the West Bank data. 
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The overall performance of the multiple models on the test set was evaluated, by 

'gating' the test set input to the appropriate model based on the example's site code. 

This was performed for each of the 10 random initialisations and a SD of residual of 

34.3 was obtained. 

When the data sets for the second method of modular decomposition were 

constructed it was realised that, once again, the number of examples in some 

categories was insufficient to train a suitable network, even if cross-validation 

techniques were employed. And, so, as the numbering of the groups in Table 6.3 may 

suggest, the 'families' were further amalgamated into groups relating to the main 

alloy addition of the steel. With the removal of the SiCr steel as mentioned earlier, 

this resulted in four categories of steel, namely Cr, C, Mn and nickel based. 

The number of training and validation points relating to each composition type is 

shown in Table 6.6. 

Composition Cate20ry Number of Trainin2! Validation set 
Cr 1963 
C 176 

Mn 97 
Ni 1524 

Table 6.6. The number of examples for training and validation in each 
composition category 

This table shows the uneven distribution of the data. However, despite composition 

categorisation, the distribution in relation to the hyperspace represented by the input 

variables of the model may not be so uneven: this will be further investigated in 

chapter 7. 

The model for each composition category was trained ten times with different 

random weight initialisations, to enable an average result to be obtained. Initially this 

was performed with a network containing 10 hidden layer neurons, using the 
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Levenberg-Marquart algorithm. The validation set was used as a means of 

regularisation with the early stopping criterion. 

The inputs to the individual models were the same as with the site based 

models, but with the addition of the 6 variable binary site codes since this was no 

longer part of the decomposition. The average results for each model type for the 

training, validation and test sets are shown in Table 6.7. 

Composition Training SO of Validation SO of Test SO of 
Model residual residual residual 

Cr 34.0 37.6 37.6 
C 12.8 18.8 24.8 

Mn 28.8 52.1 54.3 
Ni 30.3 38.7 37.9 

Table 6.7 Results of modular, composition based decomposition approach for average 
individual model. 

It can be seen that the worst generalisation once again relates to the model 

based on the smallest number of training examples. However the best model 

performance does not relate to the composition category with the most examples. 

The implementation of this method is more difficult than the site-based model since, 

when a previously unseen input is applied to the model, one will need to somehow 

direct the input to the appropriate model, based on which composition type it is 

closest to. This is not such a problem with the site-based method because one will 

know which site the proposed steel was treated at. However with composition, a 

composition code may not have been generated at the experimentation stage which 

the model was being designed for. It was therefore expected that, if this method 

proved to be the most successful, some sort of distance function (for example the 

Euclidean distance) could be used to work out which steel model (or combination of 

models) the unknown examples' mechanical properties should be calculated from. 

More research into this particular subject area is considered in chapter 7, in relation 

to a slightly different problem area associated with the project. 
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At this prototype stage the composition codes were known for the test set 

examples and so a simple algorithm was used to pass the examples to the appropriate 

model. The average, overall test set error obtained was a SD of residual of 33.8, this 

is slightly more accurate than the site based approach. 

It was considered that with both methods of modular decomposition a less 

complex model, containing fewer hidden layer neurons, may be sufficient or indeed 

more accurate, since the decomposition may mean that each sub model was 

performing a simpler task. However, through experimentation this was proven not to 

be the case with 10 hidden layers being the optimal amount for both setups. 

6.2.5.1.2. Ensemble modelling of steel data 

The next experimentation to investigate the effect of combining neural 

models with the cleaned steel data was to consider the ensemble approach. As was 

seen from the literature review (section 6.2.5), this does not involve decomposition 

of the problem domain, but involves generating diversity in the component networks. 

It was decided that 3 different methods of generating ensemble diversity 

would be investigated. 

1 Varying the initial conditions for a fixed set of data. 

2 Varying the training and validation set members, whilst also varying the 

initial conditions for each ensemble network. 

3 Varying the architecture and initialisation conditions of the networks in the 

ensemble. 
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The same test set which was reserved for the testing of the modular network 

would be used so that the performance of the modular networks could be compared 

with that of the ensemble approach. 

The data remaining after the extraction of the test set used for the modular 

approach were randomly organised into training and validation sets for the first 

experiment. Ten models, each with different random initialisation weights, were 

trained using the Levenberg-Marquart training algorithm. The variation in the 

training, validation and test set results obtained (over the 10 initialisations) is shown 

in Table 6.8. 

Model Training SO of Validation SO of Test SO of 
residual residual residual 

1 29.6 39.8 45.8 
2 28.9 40.8 42 
3 28.9 40.1 40 
4 28 37.3 39.5 
5 28.4 39.2 41.4 
6 29 37.2 37.1 
7 29.5 38.4 36.9 
8 28.3 39.9 39.4 
9 30.4 40.3 40.1 
10 28.3 38.4 37.4 

Table 6.8. The SO of residuals for the training, validation and test sets of the 10 
models created with different initialisation. 

When predictions of each test sample were made using the mean of all of the 

ensemble members, the SO of residuals of the resulting predictions was 34.6. This is 

slightly less accurate than both the modular methods of decomposition that had SO 

of residuals of 33.8 for the composition approach and 34.3 for the site based 

approach. Note from Table 6.8 however, that this is more accurate than the most 

accurate test set predictions of any of the unitary models. Therefore the combination 

of the models has reduced the variance of the predicted values from the values 

measured. An investigation into how other statistical measures are affected will be 

shown in chapter 7. 
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Next, the experiment to determine the effect of varying the training and 

validation partition was carried out. The fixed testing data was removed as before, 

however, on this occasion, the examples present in the training and validation sets 

were randomly re-selected with each of the ten models in the ensemble, which were 

each initialised with different random weights. 

The results of the training and validation sets are shown in Table 6.9 below. 

Model Training SD of Validation SD of TestSDof 
residual residual residual 

1 30.9 40.5 41.7 
2 30.9 36.6 39.5 
3 33.0 38.2 42.4 
4 32.6 41.6 43.3 
5 31.3 37.1 40.3 
6 34.2 40.2 40.7 
7 32.1 39.9 40.0 
8 33.6 39.8 42.3 
9 35.0 38.5 41.8 
10 29.6 37.1 41.2 

Table 6.9. The SD of residuals for training and validation sets with different 
data selection and initialisation for each model. 

The results show a greater variation in SD of residual than in Table 6.8 without the 

variation in training and validation sets. When the average of the ensemble of these 

networks was used to predict the test set values, a SD of residual of 36.1 was 

obtained. This is the worst accuracy obtained with any of the combination methods 

so far and, contrary to the literature review, shows poorer performance than the 

random initilisation alone. 

The next experiment with the ensemble approach was to vary the architecture 

and the initialisation weights of the ten models. From knowledge of Figure 6.1, it 

was decided that the number of hidden layers would be varied from 9 to 18. This 

was done for a fixed training and validation set partition. The results of this 

experimentation for the training and validation sets are shown in Table 6.10. 
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Number of Hidden Layer Training SD of residual Validation SD of residual 
Neurons 

9 32.1 36.2 
10 36.8 43.0 
11 31.6 37.9 
12 30.3 39.4 
13 34.9 43.9 
14 36.6 44.4 
15 30.2 38.1 
16 31.2 38.3 
17 34.1 41.9 
18 26.7 38.6 

Table 6.10. Results of ensemble members with hidden layer neurons varying 
between 9 -18 units. 

One interesting point from the results in Table 6.10 is that, unlike the graph 

showing the effect of hidden layer neurons on MSE error, the training SD of the 

residual is lowest for the configuration with 18 hidden layer neurons. This may not 

actually be a genuine effect of network complexity however, since the error appears 

to fluctuate for all numbers of hidden layer neurons. This effect is almost certainly 

due to the effect of the random initialisation of each model and is why, when 

determining the number of hidden units required, one takes an average of several 

initialisations for the same configuration. When the average of the ensemble of these 

networks was used to predict the test set, a standard deviation of residual of 34.8 was 

obtained. This is very similar to the accuracy obtained for varying just the initial 

conditions. 

6.2.5.1.3 Selection of an appropriate method for improving neural 

modelling performance 

From the literature review it was evident that a variety of methods have been 

established for combining neural network predictors, the primary reason for doing 

this being to increase model accuracy. Some of these techniques have been 
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investigated with respect to the cleaned steel data, and their performance has been 

evaluated on a fixed test set. The modular approaches have used expert knowledge 

for task decomposition, and the ensemble approach has been attempted using some 

of the methods for diversity generation outlined by Sharkey89. Active decorrelation 

methods have not been investigated in this project, partly due to development time 

constraints, but also because the improvement in accuracy seen for any the ensemble 

methods, leaves the accuracy of the model very close to that set out in the project 

aims. Furthermore, it is envisaged that increasing the ensemble members would lead 

to a greater reduction in variance of the predicted values, however a collection of 10 

networks was used for practical reasons. 

When selecting an appropriate method to use for further model development 

it was decided that the accuracy of all the methods was a significant improvent on a 

single unitary network. Although the modular approaches were more accurate in 

terms of lower SD of residual, it was decided that the ensemble approaches were 

more appropriate for retraining and effective implementation. Because certain sites 

treat key grades, by decomposing a modular network by site it would restrict the 

compositional range that the model could predict for each site. Similarly there 

appeared to be a great deal of problems in effectively classifying new compositions 

to groupings set out in the compositional-based model approach. When deciding 

which approach to use, one has to ask if the model needs to cover a wide 

interpolatable range, or if an increased accuracy and lower interpolation ability 

would be more appropriate. Given the nature of the project brief and the small 

reduction in accuracy of the ensemble approaches it was therefore decided that the 

ensemble approach would be more appropriate. 

The next stage was to decide which ensemble approach to use. There was 

very little variation in the ensemble methods results, apart from when the training 
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and validation data was varied, which may be a feature of the distribution of the data. 

Despite the multiple initialisation method not being the most accurate method (or the 

least) with respect to standard deviation of error, it is found that it carries the benefit 

of assessing the reliability of the predictions that are made as a function of data 

density. This development is further discussed in chapter 7. Therefore it was decided 

that the first ensemble method of multiple initialisations on a fixed data set would be 

used for model construction. 

6.3 Developing models for the prediction of other mechanical test sets 

Having established an optimal modelling technique and input data set using 

the UTS test results as an output, it was decided that further models could now be 

constructed to predict the other mechanical test results described in chapter 3. These 

additional test results are; impact energy, proof stress, reduction of area and 

elongation. 

Separate models were constructed for each output variable. However, because 

not all types of mechanical test results were present for all examples in the data set, 

the number of training/validation and test examples varied depending on the test 

result modelled. When the inputs to each model were considered, expert knowledge 

to determine extra variables was gathered as will be described in the following 

sections. 

During the data cleaning stage (chapter5), examples were tagged with a code 

to disclose whether they had been altered, removed or corrected. This information 

was now useful when constructing the new models for the additional output 

variables, since UTS results are present for all examples, and any faults in the inputs 

of the UTS model would therefore also affect the other output variables. Altered 

values present in the UTS data, which also corresponded to one of the new test 

202 



results, were therefore used. Examples removed due to un-correctable faults (such as 

process faults) were also removed, where present, from the data sets of the additional 

test results. This was under the assumption that these faults had affected the 

properties of the steels produced. 

The prior data cleaning knowledge would remove faulty points relating to 

process errors and correct data where possible, however it was anticipated that there 

would still be an additional source of error relating specifically to the individual test 

results. For example, a process fault relating to a data sample manifesting itself with 

a high residual may only be highlighted through prediction of impact test results. It 

was also considered in chapter 3 that the mechanical test itself might also be a source 

of error. For this reason, after each data set had been cleaned with prior knowledge, 

an investigation was made to see if it should also be cleaned using the model-based 

method of outlier detection (investigating high residual values). A decision for this 

was made based on the accuracy level of the model after cleaning with existing 

knowledge and if used, was stopped if the proportion of faulty points found on a 

particular run of the model based detection method was very low. Repeated values 

were also removed from each respective data set, using the 'sames' method as 

described in chapterS. In this way both prior and data set specific knowledge was 

used to clean the data generated by additional test results. 

The following sections now detail specific considerations, which were taken 

into account for the construction and modelling of each data set. These 

considerations included input selection and incompatibility problems that may be 

present between different test types on the same mechanical property. When 

modelling each data set, it was important that, although the process characteristics 

should be similar, the procedures for hidden layer selection should be followed, as 

initially described in section 6.2.1. The difference now, however, is that because the 
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ensemble approach is being utilised, it was felt that the optimum number of hidden 

layers used should be found for the MSE of the ensemble prediction. This is already 

averaged over 10 initialisations and therefore multiple runs of ensembles were not 

felt to be necessary. 

6.3.1 Impact energy 

The impact test results of a material encompass a variety of problems, due to 

the fact that, not only is the impact property highly non-linear in relation to the 

steel's composition and heat treatment regime, but the test types used may also be 

incompatible. The impact test was described in section 3.7.3, where it was mentioned 

that the results from different fracture profile and test depths, could not be compared 

or converted. Upon investigating the number of samples utilising each test type, it 

was decided that only the Charpy 2mmV samples would be used for data set 

construction, as these occupied the maximum number of samples. An explanation of 

these test conditions is presented in section 3.7.3. 

Impact test results are logged in sets of three due to the variable nature of the 

test, for each set of results, the average value was taken as the impact result to be 

used for training and prediction. Additionally, two sets of results may be present for 

the same sample, due to customer requirements (for example a test at both room and 

sub-zero temperature may be required). 

There were fewer impact results available than in the UTS data set, so when a 

second set of impact results had been obtained this information was entered into the 

data set as a new sample, by copying the input information and appending the 

average of the second result to it. 

The next problem to be overcome was that, even though all the test types 

were now of type Charpy 2mm V, the units used to measure the impact energy were 
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in the two forms of absolute and backed-off. This problem is discussed in section 

3.7.3, where equation 3.1. is presented to allow the backed off impact values to be 

converted into absolute ones. Having performed this conversion, the uncleaned data 

set consisted of 2042 examples. Data cleaning based on past knowledge (UTS 

sample faults) was then applied, together with investigation of max/min limits and 

removal of repeated values. It was found that the original uncleaned data had an 

impact energy range from 4-341 Joules, however practically no impact energies 

should exceed 300 Joules. 

Specific outlier analysis then followed, with two iterations of the model­

based detection method. In total, 60 points were examined and 23 specific errors 

were found. The final cleaned data consisted of 1748 examples. 

The next stage was to determine if any changes should be made to the impact 

model compared with those needed for UTS model. After discussion with 

metallurgists it was decided that no other alloy addition inputs would be relevant, 

however the test temperature at which the impact test was performed should be 

included as an input. 

The variables used for the construction of the impact model, together with the 

statistics of the cleaned data are shown in Table 6.11. 
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Variable Name Type Min. Max. Mean SD 
Test Depth Input 5.5 69.8 16.8 6.59 
Bar Size Input 11 381 185.1 82.8 
Treatment Site Input Binary codes represent 6 

locations 

C Input 0.12 0.52 0.39 0.064 
Si Input 0.11 0.38 0.260 0.032 
Mn Input 0.41 1.75 0.833 0.242 
S Input 0.0008 0.052 0.019 0.008 
Cr Input 0.1 3.25 1.081 0.295 
Mo Input 0.02 0.99 0.242 0.101 
Ni Input 0.03 4.21 0.428 0.567 
Al Input 0.003 0.047 0.027 0.004 
V Input 0.001 0.26 0.008 0.025 
Temperature at Input 820 980 863.2 17.68 
Hardening Stage 
Type of Quench at Input Binary codes represent 3 
Hardening Stage quenches; oil water or air. 
Temperature at Input 190 730 634.3 46.65 
Tempering Stage 
Impact Test Input -59 23 5.712 23.32 
Temperature 
Impact Energy Output 4 251.6 90.80 33.11 

Table 6.11 Impact model data and variable content. 
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The data was re-randomised and experimentation to determine the optimum 

number of hidden layers was performed. The number of hidden layers was varied 

from 1 to 35, and the MSE of the ensemble prediction was logged, these results being 

plotted and are shown in Figure 6.3. The first thing that was evident from the graph 

is that unlike Figure 6.1 (for the average effects ten predictors), there is an offset 

between the validation and the test set. This was thought to be due to the relatively 

small range of the variable predicted (as indicated in Table 6.11), and also the 

complexity and sparsity of the data set. It was anticipated that, because one is now 

looking at the ensemble error, the random initilisations of the ten component 

networks would be sufficient to remove fluctuations in the results due to network 

initilisations. However, it is evident from Figure 6.3 that this was not the case. It was 

thought that because the impact data was known to have a number of sparse regions, 

the effect of random intilisations would be greater. More networks may therefore be 

required to smooth the MSE error curve so as to make a decision on the number of 

hidden layer neurons used. The training time required, however, for 10 networks 

with 1 to 35 hidden layer neurons, was already 17 hours on a multiple processor 

Unix machine, and it was not felt that more extensive experimentation was feasible. 

Another factor influencing this decision was that the classical overfitting features 

were not shown in Figure 6.3 and 6.1. One would expect both for increasing training 

iterations and number of hidden layers, that the training error would continue to fall 

and the validation error to reach a turning point. It was thought that this could be due 

to the fact that the validation set was already preventing overfitting even with a high 

number of hidden layer neurons. Therefore, due to the randomness of the results, 

rather than using the graphs to pinpoint a specific number of hidden layers required, 

it was decided that they should instead be used to determine a reasonable number of 
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hidden layers needed to provide an accurate result. It was therefore decided that 11 

hidden layer neurons should be sufficient. Note that although the test error curve is 

plotted for information in this thesis, it was not used to evaluate the number of 

hidden layer neurons required, as its purpose is to evaluate the performance of the 

final model on an 'unseen' data set. It is interesting, however, that even though the 

predictions of each ensemble are comprised of ten random initilisations, those points 

which have higher or lower error results Ca spike in the curve), are carried through 

the validation and test sets. This means that when the error curve is flat as it is in this 

graph, that by selecting a low error validation point, one is probably as much 

selecting a good network due to random initialisation as hidden layer effect. The test 

results do, however, show that this produces a model network with a better 

generalisation error. 

The standard deviation and r-square values of the final cleaned impact model 

and an impact model trained and validated on the original un cleaned data are shown 

in Table 6.12. The test result for both sets was selected from the clean data set as 

points that had not been deleted from the unclean data set as with the UTS example 

in chapterS. 

Impact Trainin2 Validation Test 
data set SO of RSQ SO of RSQ SO of RSQ 

error error error 
Cleaned 13.2 0.84 17.1 0.74 18.3 0.71 

Uncleaned 17.7 0.76 22.0 0.57 19.4 0.63 

Table 6.12 SD of ensemble error and r-square values for impact models trained and 
validated on cleaned and uncleaned data. 

The measured vs. predicted plots produced by these models on the cleaned 

test set are shown in Figure 6.4. It can be seen from these plots that once the data are 

cleaned, the fit of the predicted points is significantly improved. It was thought that 

the fit of the uncleaned model might have been significantly affected by faulty points 
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above 300 Joules in the original uncleaned data that were anticipated to have placed 

a skew on the distribution of the data. The graphs do however show that even with 
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Fig 6.4. Measured vs. predicted plots for impact models trained on (a) unclean ed 
and (b) cleaned data. 

the cleaned data, there is still a significant amount of spread about the Measured = 

Predicted line, this being a feature of the difficulties involved with modelling the 

impact data. The modelling of the highest impact properties is improved through data 

cleaning but is still not perfect. The r-square value of 0.71 for the cleaned model on 

the test set is, however, acceptable given the nature of the data. 

6.3.2. Proof Stress 

Proof Stress (PS) is a tensile test result as described in section 3.7.2. The 

Proof Stress result is obtained from the same test (and specimen) as with the UTS 

results. It was also explained in section 3.7.2 that for the BSES steels in the data set, 

there is no yield point and so the PS can be measured in a variety of ways, for 

example the 0.1, 0.2 and 0.5% stress from the stress-strain curve. As with the impact 

results this causes incompatibility problems in the data and so it was decided that 

only the 0.2% Proof Stress results would be modelled since these related to the 

majority of results. A 0.2 Proof Stress result was not available for all examples and 
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the original uncleaned proof stress data set with repeated values removed, consisted 

of 4015 results. Data cleaning based on existing knowledge was applied. However, 

having investigated one iteration of the model-based, specific outlier detection 

method, it was not felt necessary to perform additional data cleaning. The final 

cleaned data set therefore consisted of 4003 examples. The statistics of the cleaned 

data set are shown in Table 6.13. It should also be noted from Table 6.13 that the 

inputs to the proof stress model are identical to those used for the impact model 

except that the impact test temperature is no longer required. 

Variable Name Type Min. Max. Mean SD 
Test Depth Input 4.00 90.0 16.3 10.08 

Bar Size Input 8.00 381.0 156.9 87.13 
Treatment Site Input Binary codes represent 6 

locations 
C Input 0.14 0.63 0.39 0.06 
Si Input 0.11 1.87 0.26 0.04 

Mn Input 0.35 1.72 0.75 0.17 
S Input 0.00 0.05 0.02 0.01 
Cr Input 0.05 3.25 1.02 0.41 
Mo Input 0.01 1.00 0.25 0.14 
Ni Input 0.02 4.18 0.76 0.86 
Al Input 0.01 1.08 0.03 0.05 
V Input 0.00 0.27 0.01 0.02 

Temperature at Input 820.0 980.0 856.6 16.78 
Hardeninj!; Staj!;e 

Type of Quench at Input Binary codes represent 3 
Hardening Stage quenches; oil water or air. 
Temperature at Input 170.0 730.0 602.9 68.8 

Temperinj!; Stage 
Proof Stress Output 336.9 1418 760.0 178.6 

Table 6.13 Proof Stress model data and variable content. 

Experimentation into the number of hidden layer units needed to accurately 

model proof stress was then undertaken in the usual manner. The results from this 

experimentation can be seen in Figure 6.5. There is much less fluctuation in the 

results with the proof stress data than with the impact data shown in Figure 6.3. This 
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was thought to be attributable to the comparatively more uniform data distribution of 

the proof stress data (sparse areas would not be generated through test temperature as 

with impact results). It was decided that 11 hidden layer neurons should be used to 

model the proof stress data. As with the impact data there was not a significant rise in 

validation error at high numbers of hidden layer neurons and this was likewise 

thought to be attributed to the effective function of the validation set. 
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Fig 6.5 The effect of hidden layer neurons on MSE ensemble error for 0.2% 
proof stress data 

The standard deviation and r-square statistics of models trained on clean and 

uncleaned proof stress data with 11 hidden layer neurons are shown in Table 6.14. 

These results once again show an improvement in the model trained on cleaned data 

compared with that trained on uncIeaned data. This improvement is less dramatic 

than the UTS examples in chapterS, however, Figure 6.6 shows that the effect of this 

cleaning is noticeable on the test set predictions of both models, particularly around 

the 850 and 1200 N/mm2 regions. It should also be remembered that this 
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improvement in prediction accuracy has been achieved solely with past data cleaning 

knowledge obtained from the UTS data set. 

0.2% PS Trainin2 Validation Test 
data set SDof RSQ SDof RSQ SDof 

error error error 
Cleaned 32.6 0.97 43.6 0.94 41.4 

Uncleaned 33.9 0.96 46.2 0.93 43.5 

Table 6.14 SD of ensemble error and r-square values for proof stress models 
trained and validated on cleaned and uncleaned data. 
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Fig. 6.6 Measured vs. predicted plots of proof stress models trained on (a) uncleaned 
and (b) cleaned data. 

6.3.3 Reduction of Area 

Reduction of area (ROA) is part of the tensile testing procedure described in 

section 3.7.2. The reduction of area is measured as the percentage change in the 

diameter of the specimen after fracture. The original uncleaned data set consisted of 

5573 data points (with repeated values removed). Prior cleaning knowledge was then 

applied, followed by one run of the model-based detection method, where 11 

examples were removed and 1 was corrected. These outliers tended to have low 

values. The final cleaned data set consisted of 5559 examples. 
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It was felt that the existing input variables would be sufficient for the 

modelling of ROA. The statistics of the cleaned data set for the variables used are 

shown in Table 6.15. 

Variable Name Type Min. Max. Mean SD 
Test Depth Input 4.0 140.0 16.2 9.4 

Bar Size Input 8.0 381.0 156.8 84.4 
Treatment Site Input Binary codes represent 6 

locations 
C Input 0.12 0.63 0.39 0.07 
Si Input 0.11 1.87 0.26 0.04 

Mn Input 0.35 1.75 0.77 0.22 
S Input 0.00 0.21 0.02 0.01 
Cr Input 0.05 3.46 1.04 0.45 
Mo Input 0.01 1.00 0.26 0.14 
Ni Input 0.02 4.21 0.78 0.86 
AI Input 0.01 1.08 0.04 0.09 
V Input 0.00 0.27 0.01 0.02 

Temperature at Input 820.0 980.0 857.1 17.02 
Hardening Stage 

Type of Quench at Input Binary codes represent 3 
Hardening Stage quenches; oil water or air. 
Temperature at Input 20 730 604.9 71.54 

Tempering Stage 
% Reduction of Area Output 21.8 79.4 60.4 6.42 

Table 6.15 Statistics of the cleaned data set for the modelling of Reduction of Area. 

Having cleaned the data set, experimentation to determine an appropriate 

number of hidden layer neurons was performed. Figure 6.7 shows the effect of the 

number of hidden layer neurons on the mean squared ensemble error. It can be seen 

that a minima in the validation error is reached later than in the other data sets, and it 

was therefore decided that 13 hidden layer neurons would be used to train the ROA 

model. This graph also has a greater gap between the validation error and the test set 

error, indicating that the model does not generalise as well to an unseen data set. The 

results of this training, validation and testing for models trained and validated on 

clean and unclean data can be seen in Table 6.16. 
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Effect of Hidden Layer Units on Ensemble Error for ROA Data 
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Fig. 6.7 Effect of hidden layer neurons on the mean-squared ensemble error 
of the ROA model. 

ROAdata Training Validation Test 
set SDof RSQ SDof RSQ SDof RSQ 

error error error 
Cleaned 2.82 0,828 3,05 0.758 3.27 0.748 

Uncleaned 2.79 0.827 3.29 0.741 3.34 0.734 

Table 6.16 SD of ensemble error and r-square values for reduction of area models 
trained and validated on cleaned and uncleaned data. 

It appears that the data cleaning has not had much effect on the reduction of 

area model and in the case of the training data the un cleaned model is actually more 

accurate than the cleaned one. The valiation and test sets do, however, show an 

improvement in accuracy. A possible explanation for this is that the training data 

may have either fitted some faulty data, or that the random data set selection has 

resulted in mainly clean data in the training set. 
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The measured vs. predicted plots generated for the test set predictions of the 

models trained on cleaned and uncleaned data can be seen in Figure 6.8. These do 

show a slight improvement in the distribution of the points for the cleaned 

predictions. What is most striking, however is that the low value ROA points are 

modelled poorly, even though they have been checked in the cleaned data set for 

accuracy. The distribution of the ROA is obviously skewed towards the higher 

values, and this was thought to have affected the accuracy of the low-end values. It 

was also thought that the effect of the data cleaning was less noticeable given the 

sparse area around the low values of ROA and the poorer fit generally of the model. 
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Fig. 6.8 Measured vs. predicted plots for ROA models trained on (a) unclean and (b) 
cleaned data. 

6.3.4 Elongation 

Elongation is the final property derived from the tensile test, described in 

section 3.7.2, it being the percentage change in gauge length after fracture. Unlike 

reduction of area, however, it is dependent on the gauge length used for the 

specimen, which may be defined as either 4 or 5 times the diameter of the specimen. 

The specimens used for data collection in this project are all of identical diameter, 

however the gauge length does vary. It is not possible to convert a result from one 

gauge length to another. However, it was decided that there were two possible 
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procedures for modelling the elongation results. The first was to only model 4 or 5 D 

results. The second method was to include an additional input to enable both gauge 

lengths to be modelled, with the hope that information from one gauge length may 

also benefit the other. Even though the measurements are not compatible, it was 

anticipated that a 'mapping integral to the network' might be generated as with the 

site code, so as to benefit the overall model from the acquisition of more data. 

Before experimentation into the best method to use proceeded, the data 

cleaning approach was applied. The uncleaned data set covering both gauge lengths 

(but with repeated values removed) consisted of 5710 data points. Data cleaning 

based on existing knowledge was then performed, followed by one run of the model­

based detection method, where 3 points were removed and 2 were corrected. 

Specimens with a gauge length of 5D are most common in the elongation 

data set and so the effect of modelling a data set comprising of only the 5D 

specimens (4623 examples) and a data set comprising of both specimen lengths (but 

with an additional input) was investigated. 

It is difficult to compare the performances of the two models, because one 

cannot use identical data sets for training, validation and testing, when one is trying 

to compare the use of additional data to the model. However, it was felt that the 

experiment did provide a guide to the performance change of modelling 4&5 D 

specimens together. The results of the two modelling approaches can be seen in 

Table 6.17, and relate to ensemble predictions where each component network has a 

nominal number of 10 hidden layer neurons. 
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Data set Training Validation Test 
type SDof RSQ SDof RSQ SDof RSQ 

error error error 
4D&5D 1.45 0.79 1.37 0.79 1.73 0.75 

data 
Just 4D 1.27 0.74 1.3 0.71 1.72 0.62 

data 

Table 6.17. Results of modelling elongation data with and without mixed gauge 
length specimens. 

The results show that the SD of residual for the combined gauge length model 

is higher (model is less accurate), however the r-square values are also higher (model 

shows a stronger correlation between its measured and predicted points). This may 

not be entirely relevant, because the data sets are obviously different, however the 

experiment has demonstrated that there is not a significant performance degradation 

from modelling both data gauge lengths, and suggests that it may benefit the overall 

fit of the model. Given the aim of the project, it was decided that the combined 

model would be developed further. 
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Fig 6.9 Effect of hidden layer neurons on the mean-squared ensemble error 
for elongation models 
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Experimentation was therefore conducted to determine the optimum number 

of hidden layer neurons needed to model the combined guage length data set. The 

results of this experimentation can be seen in Figure 6.9. It can be seen from Figure 

6.9 that 9 hidden layer neurons appear to be an appropriate number to use. An 

elongation ensemble model was therefore constructed using this architecture and the 

results for this and a model trained and validated on unclean data can be seen in 

Table 

6.18. 

Elongation Training Validation Test 
data set SDof RSQ SDof RSQ SDof RSQ 

type error error error 
Cleaned 1.44 0.81 1.38 0.81 1.61 0.76 

Uncleaned 1.39 0.85 1.53 0.79 1.61 0.76 

Table 6.18. Results of modelling elongation data with cleaned and uncleaned data. 

These results are similar to those for ROA (Table 6.16) in that for the training set the 

accuracy of the model actually appears to be better for the uncleaned data. The 

validation set shows an improvement for the cleaned data, however the test set shows 

no change, this being confirmed from the measured vs. predicted test set graphs in 

Figure 6.10. 
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Fig. 6.10 Measured vs. predicted plots for elongation models trained on (a) unclean 
and (b) cleaned data 
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These results were disappointing, however it was thought to be due to the small 

number of points affected by the specific cleaning process. For this data set and 

indeed the Proof Stress and Reduction of Area data, there were no 'catastrophic' 

faults such as with the UTS data, and therefore it was expected that the cleaning 

process would have less effect. The effect of the cleaning process on these additional 

test results has, however, been evident from the validation set in all cases, and was 

still felt to be a significant benefit in most cases. 

6.4 Effect of ensemble error on UTS hidden layer units decision 

Although the development of a UTS ensemble model was detailed earlier in 

this chapter, the decision as to the appropriate number of hidden layers was based on 

the average predictions of 10 individual networks. It was therefore decided that the 

hidden layer experiment should be repeated with the mean-square prediction error of 

the ensemble, rather than the average of the individual networks, to see if a different 

decision area results. 

A graph showing the effect of hidden layer units on the mean-squared 

ensemble prediction error was obtained as with the other test results in this chapter, 

and can be seen in Figure 6.11. 
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Fig 6.11 The effect of hidden layer neurons on the mean-squared ensemble 
prediction error. 

The first noticeable difference between Figure 6.11 and the original graph 

(Figure 6.1, (pp. 175)) showing the average of 10 network's predictions is that the 

minimum mean-squared error is lower with the ensemble. Additionally, the error 

curve is also smoother; there is less variance in the predictions based on random 

initialisation. The plot seems to still indicate that 10 hidden layer neurons are 

appropriate. One interesting feature of this experiment was, however, that when the 

UTS model was re-trained with a new set of initialisation weights for each 

component network, but with the same architecture as before, a similar test set SD of 

residuals was obtained to that in section 6.2.5.1.2. The results of this, together with 

ensemble statistics for the training and validation sets are shown in Table 6.19. 

Uncleaned performance has not been included here since this has already been 

shown in chapter 5. 
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UTS Trainin2 Validation Test 
MODEL SDof RSQ SDof RSQ SDof RSQ 

error error error 
Cleaned 27.8 0.97 33.2 0.96 34.4 0.95 

Table 6.19 Statistics obtained from re-modelling UTS data with 10 hidden layer 
neurons. 

The measured vs. predicted plot for this final version of the UTS model is 

shown in Figure 6.12. 
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Fig. 6.12 A measured vs. predicted plot showing the test set 
predictions of the final UTS model 
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6.4 Chapter conclusion 

This chapter initially investigated some methods for improving the accuracy 

of the neural network technique. Initially, training parameters such as the number of 

hidden layer units had been kept constant in an attempt to compare the effects of data 

set changes, however, experimentation into ways of improving training was now 

221 



performed. Experimentation to determine the optimum number of hidden layer 

neurons was initially performed using the average prediction error from a set of 10 

networks. This was used to obtain the minimum number of hidden layers needed to 

accurately model the UTS data initially, given that a more complex network 

architecture may over fit the data and generalise less well. Improvements in the 

training algorithms were then investigated, and the Levenberg-Marquart algorithm 

was utilised for its increased speed of convergence - this did however have a memory 

overhead. The effect of random initialisations on the network accuracy were then 

investigated and shown to be significant, therefore it was decided that for reliable 

predictions, network predictions should be combined. Research into possible ways of 

combining neural networks was then made, and revealed that two main methods 

existed - ensemble and modular techniques. Experimentation with these techniques 

was carried out, in several forms, which for the modular techniques utilised expert 

knowledge of the steel types described by the data. The results of these experiments 

showed that although one form of the modular technique was slightly more accurate, 

it was practically restrictive in terms of usage. Therefore, an ensemble technique 

which makes its predictions based on ten networks which are given separate random 

initialisations was used. This technique also has benefits in terms of prediction 

reliability assessment, which will be discussed in the following chapter. 

These improved modelling techniques were then applied to the other test 

results available in the original data set, which are impact, proof stress, reduction of 

area and elongation. Investigation into network architecture and input variable 

selection have been made in each case, however given that the ensemble architecture 

was being adopted, the ensemble prediction error was utilised instead of the mean of 

the individual network predictions. Data cleaning knowledge gained from the UTS 

data set has been applied to these additional test results based on the Altered, 

222 



Corrected and Removed coding scheme developed in chapter 5. Additionally, where 

appropriate, model based data cleaning has been performed to find errors specific to 

each test. The effect of this data cleaning was noticeable for the impact and proof 

stress data sets, but was less significant for the reduction of area data set and made 

little difference for the elongation set. It was felt that the quantity and severity of 

outliers in the data set affected the 'impact' of the data cleaning technique. 

Additionally, unlike UTS, these additional test results were generally not modelled 

with a high r-square statistic, and therefore the effect of faulty points may have been 

less significant. The data cleaning technique was, however, felt to have been 

beneficial when applied in this manner to the additional output variables. 

The next chapter now investigates methods of exploring the function of the 

neural network. This is applied to each model developed so as to validate the effect 

of each variable from a metallurgical perspective, rather than a statistical one. The 

development of a Graphical User Interface (GUI) is then detailed, allowing the UTS 

model to be evaluated in its industrial context. Feedback from this is then discussed 

and further improvements to the GUI are described. One important issue in an 

industrial context is that the model should be safe and dependable, but black box 

models are notorious for producing spurious predictions under certain conditions, 

and so a technique to 'supervise' the function of the model is developed. 
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Chapter 7 

Information extraction from the neural model 

7.1 Introduction 

The work in this chapter investigated techniques for extracting information 

from the models that have been constructed in the previous chapter. Initially some 

techniques that allow an insight into the function of the model were investigated. 

These include a method for determining the sensitivity of the output of each model to 

its inputs, and a method for visualising the effect each input has on each output over 

the range covered by the model. Once again, expert knowledge was used to allow 

this experimentation to provide useful results. 

Results from analysis of the models are presented and then work focuses on 

how the models might be used in an industrial context. Research into potential users' 

needs led to the development of a Graphical User Interface (GUI), which allows 

users to make predictions and investigate the effects of variables within the UTS 

model. 

An evaluation version of the graphical user interface was then released into 

the industrial situation for which it was designed, to enable feedback on possible 

improvements. This feedback resulted in a series of suggested improvements to make 

to the GUI. 

One improvement that was very important was that there is a need to 

determine the reliability of a prediction produced by the neural model. This is crucial 

to a neural model's usage within an industrial context, particularly when the input 

space of the model has a non-uniform distribution as with this project. Research into 

several methods for performing this was undertaken, however a spin-off from the 

ensemble technique proved to provide the best solution. 
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The benefits of this reliability indicator are then demonstrated, and opinions 

of metallurgists sought to ensure that the information it provides is representative of 

the problem domain. 

An additional use of this technique was then investigated, which aims to aid 

someone constructing a model to determine the quantity and location within the input 

space of additional data which might be required to make the model more reliable. 

7.2. Methods of model analysis 

This section looks at two methods of model analysis, which were utilised in 

the project for assessing the functionality of the models developed. There is a 

difference between the functionality and the accuracy of a model. That is that, 

although a black box model such as a neural network may be capable of accurately 

predicting, UTS for example, the way in which it used the input variables to perform 

this calculation may not be consistent with the theory behind the process. Therefore, 

by looking at the way in which the individual or combined input variables contribute 

to the output of the model, one can begin to satisfy oneself that the model is valid 

and has a greater chance of performing well on previously unseen data. This is also 

an important process when the model is to be used within an industrial context since 

it allows understanding and confidence in the ways a certain model might work. 

7.2.1 Data set based sensitivity analysis 

When a linear model is developed it is straightforward to determine the inputs 

which the model regards as important, by looking at the linear model coefficients 

which relate to the individual inputs. This has already been seen in chapter 4. With a 

neural model, however, interpretation of the network weights is somewhat more 

225 



complex, and so an empirical method for determining the model output's sensitivity 

to it's inputs was used. The work was based on methods employed by commercial 

neural network packages such as Neural Fusion's NNmodel program to determine 

network sensitivities. The method used the data set from which the network was 

trained to determine the effect on network output of varying each variable in turn by 

a small amount (+1- 1 % of the variable range) for all examples. Although the training 

set is typically used, validation, and test sets or a combined data set could also be 

utilised. The variation in output variable was noted for each of the variables for each 

of the examples, and then the average effect of each variable was calculated as a 

percentage of the total variation for all variables. 

After consideration, it was decided that this method would provide an overall 

impression of the importance of each variable, given that the data set used was 

representative of the problem domain (this was determined by comparing histograms 

of the training, validation and test sets for a certain model). It was, however, also 

considered that the binary input variables should not be included in the calculation 

since these variables firstly did not vary continuously and, secondly, a change in site, 

for example, was represented by a simultaneous change in all variables. The effect of 

site and quench will therefore be analysed later in this chapter. 

An algorithm to perform the sensitivity analysis was written in Matlab, the 

operation of which is described by the block diagram in Figure 7.1. Once the average 

difference for each variable was calculated over all samples, a normalised sensitivity 

value was obtained for all variables by dividing all results by the sum of the modulus 

of all sensitivity values for each variable. 
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.. For sample = 1 to n 
~ Select nth example 

+ 
For variable = 1 to m 

r+ select mth sample 

• Add 1% to mth 
Log UTS for nth variable and find 

UTS with nth ~ example and mth 

modified. variable (matrix A) 

• Subtract 1 % to mth 
Log UTS for nth 

variable and find 
'--- UTS with nth ~ example and mth 

modified. 
variable (matrix 8) 

I 

+ 
Find difference between 

matrix A and 8 (matrix C) 

• Find average difference 
of all variables over n 

examples from matrix C 

Fig. 7.1 Diagrammatic representation of a program to determine the 
sensitivity of a neural model's output to its inputs. 

There are, however, two considerations to take into account when using this method. 

The first of these is that the effects of interactions between the input variables are not 

taken into account. The second is that the sensitivity of the input variables will not be 

the same for two input samples representing two different grades of steel, this is why 

the sensitivities produced by the method are only a guide over the distribution of the 

data set used to make the calculation. One method for visualising the effect of 

interactions between two input variables will be seen in section 7.2.3. Although the 

significance of certain input variables may change depending upon the levels of all 

the input variables, it was felt that an overall data set would provide a useful 
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validation method of the model function. This is because a metallurgist familiar with 

the plant from which the data originated, would have an overall idea of the general 

significance of the variables in the process. Analysis of variable effects at a fixed 

composition (and therefore input level) will be investigated in section 7.2.2. 

The input sensitivities of each mechanical test result model were calculated as 

has been described. The results of this together with their interpretation are as 

follows. 

The UTS model's sensitivities are shown in Table 7.1. In this table, the 

variables and their results are arranged in order of decreasing significance. 

Input Variable Average Sensitivitt 
Tempering Temp. -0.3367 

C 0.147211 
Cr 0.123117 
Mo 0.115782 
Ni 0.079006 

Depth -0.0423 
Size -0.03995 
Mn 0.03714 
Al 0.026736 
S -0.02102 
Si 0.016413 
V 0.009841 

Hardening Temp. 0.004791 

Table 7.1. Sensitivity results for UTS ensemble model 

It can be seen that the most significant variable is tempering temperature; carbon, 

chromium and molybdenum and nickel then follow this. This order concurs with 

metallurgical knowledge in that Tempering temperature is thought to be the most 

significant variable in the process and carbon should be the most significant alloying 

element. The variables chromium, molybdenum and nickel are were also expected to 

be high in the sensitivity analysis since these variables work together to affect the 

hardenability of the steel. It can also be noted from Table 7.1, that some variables 
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have negative terms and some positive. To obtain correct 'polarity' of results it is 

important that the results obtained in Matrix B are subtracted from Matrix C (see 

Figure 7.1). The negative values also concur with metallurgical knowledge because, 

for example, tempering temperature is known to soften the material. Increasing test 

depth and forged size also reduces the tensile strength of a sample since the 

quenching effect at increased depth and volume will be reduced. Another variable 

that has a negative effect on UTS is sulphur, which is considered an impurity, which 

typically occurs at a residual level but is widely known to reduce the strength of a 

material. Metallurgists regard vanadium to be a very potent element, having a 

significant effect on UTS. However, only a small number of samples within the data 

set (127 out of 5710), contained a vanadium addition. This meant that, overall, the 

effect of vanadium was not found to be as strong as would be expected if all the 

examples had been vanadium containing. From running the sensitivity simulation 

with different data sets (i.e. with different data selected for the training set), it was 

found that slightly different order could be obtained for some variables which had a 

sparse distribution, such as vanadium. This is obviously due to the fact that the 

number of samples within the data set represents many different types of steel, and 

therefore when there is a slight change in the distribution of the training data, the 

average sensitivity results will also change. The method could be made more 'stable' 

by using all samples available for the sensitivity calculation, however the existing 

method using just the training data took around 5 hours to run on a multiple 

processor Unix machine. It was, found that the high significance variables which 

were well represented in the data set were stable in their order, this was because they 

commonly occurred across many grades of steel. This fact should, however, be 

remembered when considering variables with low sensitivities. The sensitivity could 
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also be calculated on a particular grade of steel rather than a distribution as will be 

seen in section 7.2.2. 

The sensitivity results for the impact model are shown in Table 7.2. 

Input Variable Average Sensitivity 
Temp2 0.289632 

C -0.17539 
Cr 0.101467 

TempA 0.092869 
Size -0.06855 
Mn 0.046936 
Al 0.043362 
V -0.04118 

Mo -0.0404 
Size -0.03178 

Templ 0.026028 
Ni -0.01834 
S -0.01431 

Depth -0.00975 

Table 7.2. Sensitivity results for impact ensemble model 

These results show that tempering temperature is the most significant variable 

affecting impact properties, as was confirmed by metallurgists, but that carbon, 

chromium and Impact Test Temperature are also important. The importance of the 

impact test temperature was described in chapter 3, it will be seen in section 7.2 how 

this can be used to generate an impact transition curve, which shows the effect a low 

temperature has on impact properties. The final feature of the results in Table 7.2, is 

that the effect of carbon, and indeed several other alloying elements which would 

normally promote a higher UTS, on impact energy is negative, this is because 

toughness tends to reduce in higher strength materials. 

The sensitivity results relating to the proof stress model are shown in Table 

7.3. It can be seen that tempering temperature is the most significant variable as one 

would expect, followed by the hardenability variables of chromium, molybdenum 

and nickel. carbon, which also will have a significant effect, comes after these other 
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alloy additions. Close inspection of the contribution values relating to molybdenum, 

nickel and carbon, reveals that these additions have similar significance in the 

prediction of Proof Stress. All results so far show that hardening temperature has low 

significance, this is because the majority of steel compositions are fully martensitic 

after the hardening stage as described in chapter 4, and therefore the effect of 

hardening temperature is not as important for these steels. Adding hardening 

temperature to the models did, however, benefit the accuracy of the model and 

therefore is significant for some grades of steel. 

Input Variable A vera2e Sensitivity 
Temp2 -0.22962 

Cr 0.14227 
Mo 0.1089 
Ni 0.092735 
C 0.090764 

Depth -0.08751 
Al 0.085947 
Mn 0.065499 
Size -0.05098 

V 0.034443 
Si 0.007005 

Hardening Temperature 0.002237 
S -0.0021 

Table 7.3. Sensitivity results for the proof stress ensemble 
model 

Table 7.4 shows the sensitivity results for the elongation model. Once again, 

tempering temperature is the most significant variable as would be expected, but as 

with the impact model its effect is positive, i.e. a steel with less martensite is softer, 

tougher and more ductile. carbon, chromium and molybdenum are then the next 

significant variables, but they negatively effect the elongation properties. This is 

because these variables positively affect the UTS of the material and so they 

negatively affect the ductility of the material. The vanadium sensitivity appears to be 

higher for this model than for others previously investigated, however process 

knowledge that only a relatively small number of steels contain vanadium tells us 

231 



that this is also a feature of how many vanadium-containing examples lie within the 

experimental data set. 

Input Variable A verage Sensitivity 
Tempering Temperature 0.389907 

C -0.11247 
Cr -0.10772 
Mo -0.08114 
V -0.07011 
Al 0.061272 

Depth -0.05178 
Ni -0.05054 
S -0.0317 

Mn -0.02994 
Hardening Temperature -0.00548 

Si -0.00402 
Size -0.00394 

Table 7.4. Sensitivity results for the Elongation ensemble 
model 

Finally, sensitivity results for the reduction of area model are shown in Table 7.5. 

Like the impact and elongation results these also show tempering temperature to be 

the most significant effect, which is positive due to the increase in ductility this 

causes. Many of the classical strengthening variables such as C also now have a 

negative effect on reduction of areas since these reduce the ductility of the material. 

Input Variable A vera2e Sensitivity 
Tempering Temperature 0.8168 

C 0.7615 
Depth -0.5444 

Al -0.4306 
S -0.2544 

Mn -0.1353 
Mo -0.0737 
Si -0.0588 
V -0.0452 
Ni -0.0369 
Cr -0.0278 

Hardening Temperature -0.0183 
Size 0.008 

Table 7.5. Sensitivity results for the reduction of area 
ensemble model 
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7.2.2 Composition-based variable effect analysis 

Having performed sensitivity analysis based on a distribution of 

compositions, it was decided that a more detailed method, which would allow 

visualisation of the non-linearity of the input variables, would be used to keep all 

inputs constant whilst varying each input variable independently. The output of the 

model with this variation could then be plotted so that the effect of the input variable 

could be seen on the output of the model. It was decided that initially, each variable 

could be varied throughout its max and min range for the model. The only problem 

was deciding the levels at which the remaining variables should be set. At first it was 

thought that the mean or median values could be used to as inputs for the variables 

not under variation, however it was found that because these values did not actually 

represent a valid composition the results were difficult to interpret. Instead, it was 

----- ---------, 

Types of Steel in UTS Model 

Fig. 7.2 Classification of UTS data set into steel type 
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decided that the expert composition data gathered for use in the modular 

decomposition section of chapter 6 should be used. This information is summarised 

in Figure 7.2, which shows the relative proportions of each family of steel in relation 

to the data collected from BSES. It can be seen that the main steel grades in the data 

set are of types CrMo and NiCrMo. The CrMo steel type occupies the largest 

proportion of the data set, and represents a family of grades containing additions of 

chromium and molybdenum, of which there can still be sub-categorised a number of 

steel types. Of these sub-types, the most common compositional form is that of the 

1 %CrMo steel (containing I % chromium). The data set obtained from BSES 

contained a variety of I %CrMo steel examples, depending upon the precise 

composition obtained over each case. In order to obtain the most common 1 %CrMo 

composition, the median of these examples was found, and this was then used as the 

base composition for the variable effect experiment. A popular composition was used 

initially, since the metallurgists who helped to validate the results, would be more 

familiar with this steel's behaviour. Additionally, the most common specimen size 

and test depth for this steel grade was found from the data set as the median of those 

I %CrMo examples, and the most common site and quench median based on the 

binary codes in the data set with the highest frequency. This was important, since 

certain grades of steel are more commonly treated at certain sites and are also 

produced in certain section sizes. The inputs used to represent the 'median' steel are 

shown in Table 7.6. 

The UTS model was the first to be investigated using the composition-based method, 

with the I %CrMo analysis. For clarity only a selection of variable effects will be 

presented in this section, since a full set of results will be generated in section 7.4, 

after further improvements were made to the technique. Figure 7.3 shows the effect 

of tempering temperature on UTS for the 1 %CrMo analysis, and for the full range of 
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the model. It can be seen that effects are non-linear, the gradient of the curve re-

iterates the findings of the sensitivity analysis, showing tempering temperature to 

have a significant effect. 

C\I 

E 
E 

1 % CrMo ANALYSIS 
Variable Value 
Site (1-6) 3 
Size (mm) 180 

Test Depth (mm) 12.7 
C (%) 0.41 
Si (%) 0.27 
Mn(%) 0.78 
S (%) 0.023 
Cr(%) 1.08 
Mo(%) 0.22 
Ni (%) 0.19 
Al (%) 0.027 
V (%) 0.005 

Hardening Temp 860 
(QC) 

Tempering Temp 630 
(oC) 

Impact Test Temp 20 
(OC) 

Table 7.6 The 'median' model inputs representing the 1 %CrMo 
analsyis 
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Fig. 7.3 The effect of tempering temperature on UTS. 
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The effect of carbon was also seen to be significant and can be seen in fig 7.4, which 

shows it to have a more linear effect than tempering temperature. 
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Fig. 7.4 The effect of carbon on UTS 
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Fig. 7.5 The effect of chromium on UTS 
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Ensemble Network Prediction of Impact Energy vs,Tempering Temperature 
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Fig, 7,6 Effect of tempering temperature on impact energy 
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Fig, 7,7 Effect of impact test temperature on impact energy 

One very interesting effect was that of chromium on UTS, shown in Figure 

7,5, This shows chromium to have a non-linear effect, which reached a plateau after 
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about a 2% weight addition. This is interesting, because chromium additions are 

made primarily to increase the hardenability of the material, and yet it seems to have 

little effect beyond this 2% point. It was, however, noted by metallurgists that most 

additions made within the data set were made up to about the 1.5% chromium level. 

In section7.4.3, further analysis of this graph will be made, which explains why this 

phenomenon occurs. 

Some interesting results were also seen with the impact model, Figure 7.6, 

which shows the effect of tempering temperature on Impact Energy. This is a very 

non-linear effect, which shows the reduction in impact energy produced from a 

reduced tempering temperature. 

Another plot obtained from the impact model is the effect of test temperature on 

impact energy, shown in Figure 7.7. This is a classic curve used by metallurgists to 

determine the transition temperature of a material, which is the point of transition 

between ductile and brittle fracture, as explained in chapter3. 

7.2.3 Interaction effects between variables 

An extension of the composition based variable effect method, was to 

investigate the effect of varying two model inputs at once. An example of this was 

investigating the effects of varying tempering temperature and carbon content at the 

same time, the results of which were plotted on a 3-dimensional graph, which is 

shown in Figure 7.8. The graph shows that the strength of this 1% CrMo steel is 

greatest at low tempering temperatures and high carbon contents (as was agreed by 

metallurgists). Conversely high tempering temperature and low carbon content 

produce low UTS. More detailed analysis also reveals, however, that at low carbon 

contents, the effect of tempering temperature is quite linear, however at high carbon 

contents, the effect is somewhat more non-linear, the gradient of the curve above 
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Fig 7.8 Interaction effect of tempering temperature and carbon content on UTS 

500°C at high carbon content is much steeper than at the low carbon content. This is 

important when mea urement and control tolerances are taken into account since a 

±sOC difference in tempering temperature will have a greater effect with a 1 %CrMo 

steel containing greater carbon content. 

Another xampl was generated from the Proof Stress model, where the 

elements chromium and molybdenum were seen to be important in previous 

sensitivity anal si . Th interaction effects between these two variables can be seen 

in Figure 7.9. Th graph how how the two variables work together to produce a 

higher Proof tr ,the ffect at low values for both variables is also much more 

pronounced than at higher le el . 

The final 'ample of variable interaction is that between carbon and 

tempering temp ratur on r duction of ar a. It was noted in the sensitivity analysis 

section that th ffi ct of carbon and tempering temperature are reversed for the 
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reduction of area model , because ductility is (when described in a very basic way) 

traded off for strength and can also be seen in Figure 7.10 . 
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Fig. 7.9 Interaction effects between chromium and molybdenum on Proof Stress. 

Many more of both the interaction effects and single variable effects could be 

demonstrated for just the 1 %CrMo steel, in order to validate the model. Moreover the 

effect of changing the bas composition (the median' analysis) to another grade of 

steel or indeed a n w grade of steel would allow further insight into the models, and 

indeed this was th purpo e of project. 

To allow th UT model to be evaluated, and eventually be used in an 

industrial situation it was decided that ultimately a Graphical User Interface (GUI) 

would need to be de lop d to allow potential users to interact with the neural 

models de elop d. 
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7.3. Development of a graphical user interface 

Before d scribing the development of the graphical user interface it is 

important to note that the work which is described in this section was undertaken 

before the ensembl method was employed for neural network prediction. The 

feedback which r ulted from it partly motivated the investigation of ensemble 

methods and the usage of a ten-network ensemble trained with different random 

initialisation w ights. It was however felt appropriate that discussion of the graphical 

user interface should be made after model analysis methods were described, to 

enable an insight into it design. There are, obviously slight differences between the 

results of the b t ingl network in the GUJ, and ensemble predictions in use in 

section 7.2 th differ nce being due to the increased accuracy of the ensemble 

method. 
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7.3.1. GUI design considerations 

When designing the graphical user interface it was important to establish the 

needs of its potential users; liaison with contacts at BSES achieved this. The main 

issues discussed were: 

• Information which should be provided by the interface 

• Information which should be entered into the interface 

• Layout of the interface (including methods of information extraction and entry) 

• Maintenance requirements 

• Operating system requirements 

It was decided that initially, the evaluation version of the GDI would only be 

used to provide UTS predictions, this was partly because the UTS model was one of 

the first to be ready for use in the project, and was potentially of the greatest value. 

Having seen results similar to those in earlier sections of this chapter, it was agreed 

that the interface should be capable of providing UTS calculation (i.e. one test result 

value for a given input vector), together with individual variable effects on a given 

base composition. 

It was also decided that all input variables to the model should be able to be 

entered through the graphical user interface. In particular it was decided that 

continuous input data such as composition or size should be able to be entered 

directly, whereas binary values such as site or quench type should be entered through 

toggle switches. Additionally, rather than entering the six binary site codes or three 

quench codes, a linguistic term should be displayed in the toggle arrangement, 

allowing the user to select say, the 'lab' as the treatment site or 'water' as the quench 

type. 
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Sketches of potential layouts were made and discussed, and a single screen layout 

was designed, such that all inputs, variable effects and calculated results could be 

viewed at the same time. 

Maintenance of any predictive model is important, since processes are 

continually changing and if a model is not updated, then it will begin to become 

unrepresentative of the process as described by Myllyskoski31. For this reason it was 

decided that a 'slot in' neural network module to the network would be preferable, 

such that the neural model could be updated without having to alter the entire user 

interface program. 

Finally, the graphical user interface was required to work as a stand-alone 

package (i.e. without the need for Matlab to be installed on the system, for example), 

which should be capable of running under the Windows 95/98 or NT operating 

environments. 

7.3.2 GUI construction 

The aUI was developed while the commercial package NNMODEL by 

Neural Fusion was still being utilised for model construction. An added benefit of 

this package was that models could be exported to Visual Basic and Visual c++ 

programming environments. It was therefore decided that this evaluation version of 

the GUI would be constructed using visual basic, as this would enable short 

development times, and allow modifications to be made readily. The exportation of 

models from the NNMODEL package to interface with the aUI also meant model 

maintenance could be achieved without disruption to the software that would be 

installed to provide the aul. 
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Fig. 7.11 Scr en shot of Graphical User Interface to enable interaction with UTS 
model 

The software was written and distributed to three metallurgists at BSES in 

order to enable e aluation and has successfully been used on both Windows 95 and 

NT operating en ironment . A creen shot of the completed user interface is shown 

in Figure 7.11. The cr n shot shows the interface in use withln a window 

environment. The ar a to the left of the GUI enables input selection, and then the 

variable effect graph ar generated in the central region. The generation of these 

graphs uses a loop to ary ach input variable from its maximum to its minimum 

value. It was found that 20 pr dictions per graph were adequate to obtain a smooth 

curve, without taking an unrea onabl amount of time (the Visual Basic program was 

found to run relati ely lowly when performing loop operations). Two buttons were 

implement d to allo th u er to ither ' Analyse' a set of inputs by creating the 

variable effect graph , or ju t alculate' a single UTS value if required. During the 
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development of the program, four other requirements also became apparent in the 

design. The first was that markers were placed on the variable effect graphs to 

highlight at what point the inputs fitted were in comparison to the graphs generated, 

these can be seen as vertical green lines in Figure 7.11. Secondly, a scaling option 

was added, such that all graphs generated could either fit the max and min of the 

UTS values predicted, or, have user defined fixed axes to determine the significance 

of one variable effect compared with another. Thirdly, the program was designed to 

default with input values set to the 'median' analysis inputs described in section 

7.2.1. This set of input values relates to the most commonly made grade specimen 

type, and treatment. Therefore, it was intended that the user would most commonly 

be interested in investigating a variation around those inputs and would therefore 

have to make minimal input to the interface in order to satisfy their query. Finally, it 

was necessary that all model inputs were limited to the maximum and minimum 

values of the training data used to construct the model. This is because it is widely 

accepted that neural networks should not be used for extrapolation, and attempts to 

achieve such have been seen to result in predictions of poor predictive accuracy. One 

such finding of this was concluded by Bhadeshia et al21
, who tried to extrapolate 

beyond the data set for impact toughness predictions on C-Mn steel. 

7.3.3 Feedback 

There were three main types of feedback that resulted from the evaluation 

version of the model. The first type related to the usability of the GUI, the second 

type related to the accuracy of the model on steels currently being treated in the 

plant, and the third related to a more experimental investigation which was made on 

more abstract steel grades. 

The following points were made in relation to the usability of the GUI: 
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• The system ran at an acceptable speed using a Pentium 133 Pc. The calculations 

and drawing of the graphs was a little slow, however this did not need to be done 

for each prediction. 

• The screen layout appeared acceptable with the graphs showing the effect of each 

element being very useful. 

• The TAB sequence between fields is not in order and does not move logically 

down the screen. 

• When within a field, any old values within that field are not overwritten when 

inputting new values. 

• When a test depth was at the mid radial position the value had to be calculated 

and entered each time. It would be easier if an option of Mid-Radial could be 

selected which would automatically select the correct depth from the size. 

• It was very time consuming entering a cast analysis each time that the cast was 

changed. Ideally, capability for a cast number to be input should exist and then if 

the cast had been used before its input values could automatically be set. 

It was felt that all of the points raised by the users were valid and could be easily 

accommodated with future versions of the aUI; most relate to 'bugs' in this early 

version of the software. It was however felt that a gain in speed could be achieved by 

coding the interface in Visual C and that this may further be enhanced if only 

selected plots were updated during the 'Analyse' function. This would be helpful 

because graphs of, for example, the effects of residual elements are not always 

significant and by viewing fewer graphs, a larger scale could be used to aid clarity. 

The next stage of the feedback concerned the accuracy of the neural model, 

when it was predicting commonly treated steels at the plant. The performance of the 

single neural model was compared to that of an existing linear model developed by 
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British Steel specifically for predicting tensile strengths at one plant, named 'West 

Bank'. This linear model will be referred to as the 'West Bank predictor'. The results 

of both predictors performance were presented by a heat treatment at the plant, for a 

number of popular steel grades. The statistic used to measure the performance was 

(%) error which was defined as: 

(Predicted Result - Actual Result) / Actual Result * 1 00 (7.1) 

Percentage Predition Error of UTS for CrMo 4140 Type Steels 
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Fig. 7.12 ompari on of neural predictor with the West Bank linear predictor by 
BSE for er-Mo 4140 typ teels. 

The re ult u ing thi p rformance measure are shown in Figure 7.12. It can be seen 

that, on the whole neith r predictor seems significantly worse than the other. When 

looking at th maximum and minimum percentage errors generated by the models, 

the linear mod I ha a wider rang of percentage prediction error (-9.50% to 9.78% 
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as opposed to -4.66% to 8.32% for the neural model). It was however noted that both 

models tend to over predict (predict higher than the actual result). The mean 

percentage error was used by the metallurgist as an overall indication of the 

prediction accuracy of each model, this was found to be 1.76% for the neural model 

and 1.51 % for the West Bank predictor. This was disappointing at first since the 

performance of the neural model appeared to be slightly worse than that of a linear 

model, however, when a fuller investigation of the results was made, using SD of 

error, and r-square statistics, the following results in Table 7.7 were obtained. Note 

that the predicted UTS values have been converted to Psi (pounds per square inch) to 

enable a comparison with the actual results which were measured using these units. 

Model Type Mean SDof r-square 
percentage residual statistic 
error (%) (PSI) 

Neural Model 1.76 5018.9 0.88 
West Bank Predictor 1.51 5681.7 0.84 

Table 7.7 Investigation of Neural model and West Bank predictor' accuracy, 
using the usual r-square and mean-percentage error statistics. 

The results in Table 7.7 shows that although the 'bias' of the neural model's 

predictions is slightly higher than that of the West Bank predictor, the variation of 

the predictions are lower and the correlation of predicted and actual values is higher, 

indicating a better neural model fit. It was felt that because the West Bank predictor 

was specifically designed on West Bank data that this might be a reason why the 

predictions obtained from it had a lower bias that those of the neural model trained 

on data from a range of sites. After this evaluation, it was decided that the 

performance of a neural model trained only on West Bank data would be 

investigated. Such a model was developed in chapter 6, section 6.2.5.2.1, as part of 

the modular decomposition investigation. This 'West Bank neural model' was used 
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to predict the same examples used in the previous evaluation. The results of this, 

together with those obtained from the existing West Bank predictor are shown in 

Table 7.8. 

Model Type Mean SDof r-square 
percentage residual statistic 
error (%) (PSI) 

West Bank Neural Model -0.84 6384.2 0.82 
West Bank Predictor 1.51 5681.7 0.84 

Table 7.8. Investigation a Neural model trained solely on West Bank Data and 
the West Bank predictor's accuracy, using the usual r-square and mean­
percentage error statistics. 

The results in Table 7.8 were interesting because they show that the neural model 

trained specifically on West Bank data, and then tested on test data from the plant 

has a much lower bias than with the neural model trained on more data from a range 

of sites (Table 7.7). The results from the West Bank predictor in Table 7.8 are 

obviously the same as those in Table 7.7 since the same data test data was used, but 

are included to aid comparison. It can be seen that the neural models bias is now 

significantly less than that of the West Bank predictor, however the standard 

deviation of its predictions are now higher and the r-square statistic is lower. This 

indicates that although the neural model trained on just the West Bank data has a 

lower bias, the model has suffered in terms of variance, perhaps from the limited 

training set. 

Since the evaluation version of the software was released, the ensemble 

approach has been applied to the neural network predictor. This was stilI trained on 

the entire data set (for all six sites), but has increased accuracy over the standard 

neural network model as shown in Table 7.9. It can be seen that compared with the 

standard neural network, the ensemble predictions have a slight reduction in average 

percentage error, and a significant reduction in standard deviation of residual, 

accompanied by an increase in r-square statistic. This shows the ensemble technique 
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is beneficial for more accurate predictions, but does not solve the problem of bias 

error as well as a model trained solely on data from West Bank. 

Model Type Mean SD of r-square 
percentage residual statistic 
error (%) (PSI) 

Ensemble Neural Model 1.67 4207.1 0.90 
West Bank Predictor 1.51 5681.7 0.84 

Table 7.9 Investigation the Ensemble Neural model trained on the entire data 
set and the West Bank predictor's accuracy. 

The conclusions from this investigation were that the statistics used to 

investigate a model s performance are very important. If a low bias is required then a 

model trained only on data [Tom that plant would be the best solution, however it 

should be recognised that this model may have more variance due to a reduced 

training set. The range of situations handled by the model are also important, since if 
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a model which is supposed to be broad ranging is trained on data from only one site 

it may predict less well in other situations. Having investigated the possibility of 

various decompositions previously in this project, it was decided that a model 

covering a wider range of steel grades and sites was to be developed. The aim of the 

work in this project was therefore to develop a wide-ranging model, rather than one 

dedicated to a particular site since its primary purpose was intended to provide 

predictions for a wide range of steel types. 

The final part of the feedback looked at the performance of the original neural 

network model (as distributed to BSES), when predicting steels which are not 

described by the training data of the model. Such a group of steels was those of type 

ASTMA 1 05 which are a group of very low carbon steels not found in the training 

data at all, but ones which lie within the max and min ranges of the training data. The 

graph in Figure 7.13 shows the percentage error of the standard neural and West 

Bank predictors on data from this class of steel. It is clear from the graph that in this 

case the neural model is producing very poor predictions for this grade of steel. The 

linear model on the other hand, appears to produce much more stable and accurate 

predictions. Having investigated this matter further it was clear that the training set, 

although containing a range of steel grades, did not contain any compositions close 

to that of the ASTMA 1 05 grade. This grade of steel is not commonly made and 

therefore was not represented within the input space of the neural model. The inputs 

used to make this prediction did, however lie within the maximum and minimum 

range of the model, and so a user would have had no warning in an industrial 

situation that a poor prediction may result. As described earlier in this section, it is 

widely known that extrapolating with a neural network can produce unreliable 

predictions. However, with an uneven input space, as with the data in this project, it 

has also been found that, when within a sparse area of that input space, spurious 
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results can also occur even when not technically extrapolating. It therefore appears 

that model accuracy is a function of data density. This was a major problem of the 

neural model and one that needed resolving. It was understandable that the model 

might make poor predictions on an unusual grade of steel, but there must be some 

indication of when this was going to happen, particularly when the user may not have 

knowledge of the types of steel used to train the model. For this reason the next 

section considers the development of a reliability framework, to allow an indication 

to the user of the reliability of a prediction produced by the model. 

7.4. Reliability framework 

Research into possible ways of illustrating to the user the reliability of the 

network predictions was sparked by the discovery that spurious predictions could be 

made by the neural network predictor when they were away from a populated region 

of the input space. 

7.4.1. Literature connected with neural model prediction reliability 

One solution, which claims to provide an estimation of prediction error, is 

that of Mackay's Bayesian framework for backpropagation which was the subject of 

a review paper24. The technique was mentioned in chapter 6, for its ability to produce 

regularised networks. The technique does, however, require the calculation of a term 

called 'evidence', which measures how probable a model is given the data set it was 

trained on and assuming equal prior probability. Pennl2 mentions that the technique 

assumes a Gaussian approximation to the posterior distribution and notes that with a 

finite number of data points, the approximation breaks down. He also notes that the 

approximation may be tested by looking at the correlation between evidence and test 
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set error (in theory a model with high evidence should have a low test set error), 

however in several experiments he shows that this is not always the case. At this 

stage in the project it was already suspected that the error distribution on the data set 

might not be uniform. It was felt that extensive research would need to be performed 

in order to satisfy oneself that the Bayesian technique would be applicable to the data 

sets described in this project. Additionally, the literature search indicated that other 

techniques could also be used to provide an indication of prediction reliability. One 

such paper which indicated this is by Cho et al43
, who recognises that neural 

networks are prone to unpredictable behaviour in what they term a 'novel' 

environment. A variety of techniques for improving the reliability of the model were 

suggested in this paper, the first was to train an additional neural network to predict 

the error of the original network, however this technique was unsuccessful in their 

particular case. Another approach was to detect the novelty of a point input into a 

predictive network. This is based on the assumption that a more novel input vector 

would result in a less reliable prediction as was shown by Pican et al44 who defines 

the sparse area of the input space as the 'aberrant domain'. Pican did this by 

investigating the effect that varying binary values (used to denote steel type) had on 

prediction error, and then used a linear model for predicting areas of the model 

corresponding to high error values. This method would however be more complex 

when the entire input space was considered. Finally, an auto-associative technique 

such as that described by Krammer lO2 was suggested as a popular technique for 

novelty detection. This works on the principle that it is possible to train a neural 

network with the same inputs and outputs, such that the network learns to predict its 

own input space. If a common input is given to the network, a similar prediction 

should result, however if a novel input is applied, the auto associative network 

should produce a very different output to that input. The authors also note that using 
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a committee of networks (such as with the ensemble technique) is another good way 

of improving prediction reliability, this has already been seen within this thesis and 

was demonstrated in chapter 6. 

Having seen the literature, three approaches to further improve the reliability 

of the model were investigated, all of these approaches aim to inform the user when 

an input may result in an unreliable prediction. 

7.4.2 Experimentation into techniques for improving prediction 

reliability 

Initially, it was decided that the key to identifying the reliability of the 

model's prediction would be to see how close a particular input vector was to 

examples in the training set. The problem of finding how close a particular input 

vector is to the examples in the data set is that, as has already been explained, the 

input space is of high dimension. It is therefore difficult to visualise how close a 

particular input might be to others in the training data set. The peA technique has 

already been mentioned in chapters 2, 5 and 6 for its ability to reduce high 

dimensional data. Even though the technique had been of limited use previously, it 

was decided that it would be used to try and visualise the input space. It was decided 

that one way of investigating the ability of the peA method to visualise the input 

space would be to plot the first two principal component scores, with a colour coding 

for each point to represent the main alloy addition the steel it represented contained. 

Having performed classification of the training data previously this information was 

readily available. In addition to colour of the point relating to each example in the 

data set, symbols were also assigned to see if sub-categories could also be seen on 

the peA chart. 
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It was decided that only the composition of the examples should be used for this 

experiment, since the categorisation was known for this composition. If tempering 

temperature or other treatment variables were included, then the appearance of the 

plot would change and the distribution colour and symbols relating to composition 

would have less meaning. 

Table 7.10 shows the colour and shape coding used to generate the scores 

plot of the 1 sI and 2nd principal components, which is shown in Figure 7.14. 

Steel Type Colour and symbol type 
Cr Yellow + 

CrMoV Yellow 0 

CrMoAI Yellow x 
CrMo Yellow * 
CrY Yellow > 

C Green + 

Mn Blue + 
MnMo Blue 0 

MnV Blue x 
MnCr Blue * 

MnNiCrMo Blue > 
MnNiMo Blue s 

NiCr Magenta + 
NiCrMo Magenta 0 

NiCrMoV Magenta x 

SiCr Black + 

Table 7.10. The colour and symbol-coding scheme used to denote steel 
grade on PCA plot. 

Figure 7.14 shows that if one looks at the distribution of the colours of the steel types 

the technique seems to be showing the distribution of the compositional space quite 

well. There is some overlap, however, and the separation of the sub categories of 

steel is not very defined. One of the problems with this experiment is not explicitly 

how far in a distance sense one steel grade is from another, and indeed, two steel 
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grades may be ver different in a compositional sense, but may lay close together in 

the input space. The PCA plot is thought to be good at representing the main steel 

grades, because it is has been concluded from discussions with metallurgists that 

alloy additions are made in respect of each other. In other words, there might be a 

correlation between say, an addition of a certain level of chromium and 

molybdenum. One other explanation for the overlap in the plot, however, is that the 

variance in the composition has not been sufficiently explained by the first two 

principal components to enable an interpretation of the input space. It was found that 

the first two principal components only accounted for about 50% of variance of the 

data. One interesting point is that the PCA plot was generated before the SiCr steel 

was removed from the data set. The SiCr steel was removed from the data set in the 

peA of composnion.'.n"ysls ror 951$f.!7 steels 
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Fig. 7.14 A principaJ component scores plot of composition for the 1995,1996 
& 1997 data et . 

finaJ cleaned data t, b cause it was considered that this type of steel had vastly 

different beha iour to all other type selected by the metallurgist for inclusion in the 
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database. The point at the uppermost region of the PCA plot corresponds to the SiCr 

steel type. 

It was decided that the PCA method was useful for visualising the distribution of the 

input data to a certain extent. However, because the first two principal components 

did not explain a larger amount of variation within the data set there were therefore 

uncertainties concerning the relation of the PCA scores to a distance measure of the 

input space (for example the Euclidean distance). Additionally, even when this 

relationship was determined, there would still be additional problems in 

automatically finding the distance of a model input to the clusters produced by the 

PCA chart. 

Having considered a technique of 'visualising' the distance between inputs, it 

was decided that a better approach to determining how close a new model input was 

to the training set the model was based on, would be to actually calculate it. The 

distance of the new input compared with the training set can be found using the 

Euclidean distance measure. 

The Euclidean distance D between two vectors X and Y can be defined as: 

N 

D = L(xn - Yn)2 (7.1) 
n=1 

where the vectors contain N elements. 

A Matlab program was then written that takes a potential input vector to the 

model, and then calculates the Euclidean distance of that to every other example in 

the data set. In order for the distance measure for each variable to be meaningful, it 

was necessary to scale all the variables with a minimum of -1 and a maximum of 1. 

This provides each variable with an equal significance in the distance calculation. 

The result of the program is that a vector of distances between the input vector and 

each of the data set examples is produced. Initially, the 'input' vector to the program 
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was selected at random, and in this example related to a MnCr steel, a histogram 

from the distances between this example and the other examples in the data set is 

shown in Figure 7. 15. 

Euclidean Distances With Max & Min Normalisation 
450~-----'-------'------'-------r------.------~ 
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Fig. 7.15 A histogram of Euclidean distances between a MnCr steel 
example and the remaining data set. 

Figure 7.15 shows that there are a number of 'clusters' of examples away 

from the example selected. The histogram also shows that the frequency of these 

clusters, i.e. the density of the data varies as well as the distribution. It was therefore 

thought because the weight update of the neural network is a function of error and 

the frequency of that error that, rather than just taking into account the distance of the 

input to the training data, distance should perhaps be weighted against frequency as 

well. Moreover, given that certain variables are believed to be more important that 

others in the calculation of UTS, then if the distance/density measure is used as an 

indication of reliability, each variable could also be weighted in terms of 

significance. The concept of this approach seemed very exciting, however, it was 
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found that a large amount of computation power was needed to perform the 

Euclidean distance calculation for every member of the training set. Whilst this was 

acceptable in off-line experimentation, it was thought that during online 

experimentation this would be prohibitive. One potential solution to this problem 

would be to perform clustering of the input data based upon a method such as the K­

means method (described in chapter 2). The weighted distance to each cluster centre 

could then be calculated to provide an impression of the input space, at a vastly 

reduced computational intensity given that the histogram in Figure 7.15 suggests that 

less than 10 clusters exist with respect to a given data point. One problem that would 

still remain with this technique, however, is that the significance of the binary codes 

is difficult to gauge. Indeed with an insight into the project it was realised that certain 

grades of steel are made across a range of sites, whereas others may be restricted to 

one site. In other words, the relationship between site or indeed quench and 

prediction reliability may not be straightforward. 

It was then realised that there was a more direct method of indicating the 

reliability of the predictions produced by the various models, which was integral to 

the neural network technique used to produce the final models in this project. As 

described in chapter 6, the final technique used to model the cleaned data was that of 

an ensemble of 10 individual networks, which were trained on the same data but with 

different random initialisation weights. The diversity between the ensemble members 

in this arrangement was therefore occurring due to the amount of significance the 

initialisation weights has on the final solution of a given area of the weight space. It 

was expected that this would therefore relate to the density and quality of the data on 

which the ensemble of networks was trained. This hypothesis was shown empirically 

on a two dimensional example initially. Ten networks containing 3 hidden layer 

neurons were trained on 16 data points generated from a noisy sine function for a 
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fixed number of training iterations. The mean and the standard deviation of the 

ensemble predictions were then investigated and are shown in Figure 7.16 together 

with the sine function and the data points generated. 

x 
c 
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-1 

Effect of data density on de\1ation betw3en predictors 

o DATA POINTS 
SINE FUNCTION 
MEAN PREDICTION OF ENSEMBLE 
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Fig. 7.16 A two dimensional example of the effect of data density on the 
deviation b tween predictions of 10 ensemble members. 

Figure 7.16 show that ther IS clearly a greater prediction deviation between 

ensemble memb r where the data density is low in particular at each extreme of the 

populated r gion of the ine function and at the x=0.35 region. If one considers the 

mean prediction of the nsemble it is clear that there is an amount of overfitting, 

however the network wa trained with a fixed number of training iterations. It is 

accepted that th deviation between ensemble members may vary with factors such 

as the number of individual networks in the ensemble and the architecture and 

training condition of ach net since, for example, networks which overfit their data 

may also b more effected by random initilisation weights. However, it was decided 
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that this technique may provide a good indication of the reliability of predictions for 

the ensembles trained in chapter 6 since it is a true indication of the uncertainty 

between the predictiors which provides valuable information about the mean 

prediction. It was decided that the behaviour of the standard deviation of the 

individual ensemble networks should be investigated for the mechanical property 

prediction models developed and the expert knowledge relating to their indication 

was sought to validate the technique. 

7.4.3. Evaluation of the deviation between ensemble predictors method 

In order to evaluate the deviation between ensemble members' method of 

prediction reliability indication, it was decided that variable effect plots should be 

generated, using the median analysis in Table 7.6. A full set of graphs relating to the 

continuous input variables of the five mechanical test result models were generated 

with additional curves relating to the mean ensemble prediction plus and minus the 

standard deviation of the residual, these are shown in appendix B. A selection of 

these graphs is presented in greater detail within this section to demonstrate the 

effectiveness of the technique. 

Figure 7.17 shows the graph relating to the effect that tempering temperature has on 

UTS, this is the same as Figure 7.3 except that the deviation between predictors is 

now also shown. It can be seen that the deviation between predictors for tempering 

temperatures above 500°C is very narrow, particularly around the 630°C region, 

which relates to the most common tempering temperature for the 1 %CrMo 

composition. The statistics of the cleaned UTS data was shown in Table 5.7. this 

showed that despite the tempering temperature range provided by the data being 

between 20-730°C, with a mean of 604°C the standard deviation of the tempering 

temperature was just 70. There are therefore only a small number of examples in the 
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data set (let alone relating to the 1 % CrMo analysis), which have a tempering 

temperature lower than the 500 region. This data sparsity relating to the low 

tempering temperatures is indicated in Figure 7.17 by the deviation between the 

individual ensemble members. 

Another example of the deviation between predictions relating to the distribution of 

Ensemble Network Prediction of UTS vs. Tempering Temperature 
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Fig 7.17 Effect of tempering temperature on UTS with SD of deviation between 
ensemble members marked as dashed-lines 

the UTS data is shown in Figure 7.18. This shows the effect of carbon content on 

UTS and also shows the fact that for a 1 % CrMo steel type, the data set contains 

examples with a good distribution of carbon additions. It can, however also be seen 

that the minimal amount of deviation between members exists at 0.41 % C, which 

relates to the most popular carbon addition for a 1 %CrMo steel. It can also be seen 

that at the extreme values of carbon addition the deviation between predictions is 

greatest. Metallurgists have commented that the 'error bands' produced by the 
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standard deviation of individual predictions of the ensemble, indicate the steel-

making ranges used for the data in the models training set. The steel-making range is 

the range of additions and temperatures applied to a particular steel type. 
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Fig. 7.18 Effect of carbon content on UTS with SD between individual 
prediction members marked as dashed lines. 

The importance of having an indication of model reliability is particularly 

demonstrated with the next graph Figure 7.19, which shows the effect of chromium 

on UTS. It has previously been commented that the graph in Figure 7.5 shows an 

interesting feature that the effect of chromium appears to reach plateau beyond an 

addition of 2%. It can be seen from Figure 7.19, that this effect may not be as 

genuine as it first appeared. When the error bands are taken into account, it is 

realised that there are very few additions above 2% and therefore the predictions 

above that point will not be very reliable. The information provided by the error 

bands is therefore crucial to an accurate interpretation of the variable effects. 
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Fig. 7.19 Effect of chromium content on UTS with SD between individual 
prediction members marked as dashed lines. 

The final graph shown in Figure 7.20 demonstrates a feature of the impact 

model, which was well known through knowledge to the data set, this is that the 

number of sub-zero impact test results available at the time of model construction 

was very limited. These points were, however included to provide useful 

information to the model, however, it was suspected that the reliability of the 

predictions generated by the model in this region would be reduced. The graph 

demonstrates this reduction in model reliability, and shows that although the user 

could accept a general downward trend, it would be preferable to limit predictions to 

the room temperature area for the 1 %CrMo inputs, if the best reliability is to be 

achieved. 
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Fig, 7.20 Effect of impact test temperature content on impact energy with SD 
between individual prediction members marked as dashed lines. 

7.4.4. The effect of binary codes on predicted values 

So far, evaluation of variable effects has been limited to those variables 

which can be varied continuously, however it would also be interesting to note the 

effect that the binary variables have on the prediction. 

Details of this investigation have been limited to just the UTS model in this 

section, however, it will be demonstrated that variation of the binary codes can be 

quite difficult to interpret, particularly if the deviation between predictors is not taken 

into account. 

Using the I %CrMo analysis, the quench codes were varied such that an oil 

water and then air quench was input into the modeL The resulting mean ensemble 

predictions and their standard deviations are shown in Table 7.11. 
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Quench Type Mean UTS prediction SD of ensemble 
(N/mm2) predictions 

Water 890 6.9 
Oil 805 9.7 
Air 893 72.2 

Table. 7.11 Effect of quench change on 1 %CrMo input vector 

After discussion with metallurgists, it was ascertained that if the same quenches were 

applied to a particular steel, then one would expect the quenches to act in the 

following order of decreasing cooling effect: 

1. Water - Greatest 

2. Oil 

3. Air - Least 

From chapter 2 it is known that the greatest cooling effect (after the hardening stage) 

will cause the greatest hardening effect in the end product (assuming that the 

tempering temperature and other parameters remain constant). However, from Table 

7.11 it is apparent that this is not the case. If just the mean prediction is used, then it 

appears that the air-cooled steel has the highest strength, even though a metallurgical 

and thermodynamics understanding would suggest it to have the least effect. The 

reason for this is that the Air cooled steels occur very infrequently within the data set 

and relate only to one grade of steels, in fact there are only 53 air cooled steels within 

the whole data set of 5709 points. This anomaly is caused because Air-cooling is 

only actually applied to one type of steels within the data set. These steels are termed 

'high-hardenability' steels and have a nickel content of 3-4%. A high hardenability 

means that the steel is easily hardened, and therefore it can develop a high tensile 

strength without water or oil quench. The examples of this class of steel have a high 

tensile strength and because this is the only example relating to the binary code for 
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air cooling, when the I %CrMo steel is input with an air quench (which never 

happens in the real world because it is not a high hardenability steel) a higher 

prediction is obtained than that which would be expected. There is no easy way of 

knowing what tensile strength an air cooled 1 %CrMo steel should have, however one 

can expect that the neural network prediction is unreliable by inspecting the standard 

deviation of the individual predictions of the ensemble. The water quench and oil 

quench have very low deviations, however the air cool causes a much larger 

deviation between the predictors indicating that the predictions are unreliable and 

that there is very little information regarding this area of the model. 

The effect of site was also investigated for the 'median' inputs of the 

1 %CrMo analysis. The site input to the model was varied throughout the SIX 

possibilities available in the training data and the results are shown in Table 7.12. 

Site Mean Prediction SO of predictors 
(N/mm2) 

Pearsons 892.8 17.6 
Whithams 881.5 7.2 
WestBank 890.6 6.9 

Special Steels 875.8 7.5 
Roundwood 934.7 19.6 

Lab 909.8 9.9 

Table 7.12. Effect of varying site code on mean and standard deviation of 
predicted values 

The effect of varying the site codes is a lot harder to interpret that that of the 

quench codes. Ideally any site should be able to manufacture the same steel with 

identical mechanical properties, however systematic differences from one site to 

another mean that in practice this ideal situation may not occur. All predictions 

appear to be roughly the same values, however, using the SD of predictors as a 

reliability guide it can be seen that the sites where the least number of examples are 

from, i.e. Pearsons and Roundwood, have higher standard deviations of residuals 

confirming the data distribution. If these two results are therefore ignored, it is 
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noticeable that the lab result seems to be higher than the results for Whithams, West 

Bank and Special Steels. One possible explanation for this is that because the Lab 

uses smaller samples, as explained in chapter 3, they also use a shorter tempering 

time resulting in a harder property. Additionally, the quench effect on a smaller 

sample is more severe, this too will result in a higher UTS. Even though the bar size 

of the median analysis (the inputs from which these results were obtained from) was 

180mm, which is not a lab sample, the systematic differences of heat treating with a 

shorter tempering time and more severe quench action appear to have been 

transferred. 

7.4.5. Using reliability indicators for active data selection 

One further experiment was to see if the error bands could be used to provide 

a method of determining where in the input space additional data should be selected 

in order to improve the model's reliability. It was anticipated that this could be 

assessed thoroughly by generating variable effects plots with error bands for every 

variable with every main steel type as a 'median' input vector within the data set 

(Table 7.10 details these groupings). One could then look for areas of the model that 

consistently showed a large deviation between predictors and then if it was possible 

to produce data in that area, actively search for or even specially heat treat some 

samples in that area of the input space to strengthen the model. 

The principle of this can be demonstrated with reference to the impact 

transition curve of the I %CrMo steel, which is shown in Figure 7.20. It has already 

been noted that there is a sparse sub-zero data region in the model, which is in turn 

causing a large deviation between predicted values. A narrow search was made 

within the BSES metallurgical database to find examples of 1 %CrMo steel Charpy 

2mm V impact results with sub zero impact test temperatures. In total 489 results 
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were found, which were mainly distributed at the West Bank and Special Steels sites 

with a water quench after the hardening stage. The statistics of the non-binary 

variables of this additional data set are shown in Table 7.13. 

Variable Max Min Mean SD 
Depth 146.05 12.50 30.95 21.60 
Size 340.00 69.85 143.96 67.44 

C 0.43 0.31 0.41 0.03 
Si 0.34 0.18 0.24 0.02 

Mn 0.99 0.51 0.87 0.14 
S 0.03 0.00 0.01 0.01 
Cr 1.20 0.95 1.06 0.04 
Mo 0.24 0.16 0.23 0.01 
Ni 0.29 0.07 0.19 0.04 
Al 0.05 0.02 0.03 0.01 
V 0.01 0.00 0.00 0.00 

Hardening 900.00 810.00 866.05 6.77 
Temperature 
Tempering 720.00 530.00 676.69 44.59 

Temperature 
Impact Test -3.00 -59.00 -32.71 6.48 
Temperature 

Impact Energy 186.33 3.47 86.00 32.93 

Table 7.13 Statistics of the additional data set selected to improve sub-zero 
impact prediction. 

It can be seen that the majority of these results are at a test temperature around -

30°C. These data were added to the original training set used to produce the graph in 

Figure 7.20, so as to 'boost' the model's sub zero performance. Ideally, the 

validation and test sets used to train the model should have been balanced in 

distribution to training data, however it was decided that on this occasion all the 

additional results would be used in the training set so as to maximise their effect. 

The model was trained using ten ensemble members with the same 

architecture as previously used to develop the impact model. The statistics of the 

resulting model (using the same training and test sets as before) are shown in Table 

7.14. 
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Impact Training Validation Test 
data set SDof RSQ SDof RSQ SDof RSQ 

error error error 
Cleaned 13.86 0.82 19.05 0.68 19.3 0.66 
Extra Set 

Table 7.14 SD of ensemble error and r-square values for impact models trained and 
validated on cleaned and uncleaned data. 

The results in Table 7.14 show a slight worsening in the statistical accuracy of the 

model with the addition of the extra data points when compared with the previous 

impact results in Table 6.12. This may be due to the widened input space of the 

model or due to a less optimal set of random initialisation weights occurring on this 

particular training of the ten ensemble members. The variable effect graph, shown in 

Figure 7.21, however, shows an improvement in shape metallurgically (an inflection 
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Fig. 7 .21 The effect of additional 1 %CrMo test results to the median 
prediction and standard deviation between prediction members for the 
prediction of Impact energy against impact test Temperature 

270 



now showing around the transition region), and reduced error bands around the area 

of data addition. 

7.5. Chapter conclusion 

This chapter has investigated a variety of techniques for extracting data from 

the models developed in chapter6. Initially a technique to analyse the significance of 

variable inputs to the model was investigated, which utilised the data set used to train 

the model. One drawback with this method was that the calculation to determine the 

significance of a given input variable was affected by the distribution of the data 

used to train the model. Conversely, however, this might be seen as an advantage in 

allowing one to gain an overall impression of the most and least important variables 

in the model, over a range of steel types, during which the significance of key 

variables may change. The results of this data based sensitivity analysis method 

appeared to concur well with metallurgical knowledge of the process, helping to 

validate the function of the model. 

The next method of extracting information from the model involved 

investigating the effects of individual variables around a given composition. For the 

purpose of the experiments, expert knowledge was utilised to enable a common 

composition and treatment pattern to be used as the fixed inputs to the model while 

each variable was independently varied. This method provided visual confirmation of 

the model function which correlated well with metallurgist's knowledge. The effect 

of chromium on UTS was, however, seen to be not as expected; an explanation for 

this later became apparent. 

The variable effect was then extended to enable the generation of three­

dimensional graphs, thus enabling the interaction effects between two variables on a 

mechanical test result prediction to be studied. 
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Having demonstrated two methods of extracting information from the 

models, other than just predicting a single mechanical test result value, a graphical 

user interface was developed to enable further evaluation of the model in an 

industrial situation. There were two important issues in the evaluation of the resulting 

software, the first was the ease of use and maintainability of the software and the 

second was the accuracy of the UTS model on trial. The GUI evaluation was made 

on a single UTS model, prior to the development of the ensemble technique. A 

number of suggestions relating to the usability of the package were raised, many of 

which could easily be implemented with future versions of the program. The 

accuracy of the neural model distributed was compared to a linear existing predictor 

already in use in one particular plant. In making a comparison between the neural 

and the existing West Bank predictor, it was found that the statistics used to compare 

the two techniques were important. The neural model tended to have a lower 

variance, whilst the linear model specific to the site had a lower bias. Having seen 

this, a neural model was developed which was trained only on data from the site of 

interest. This model had a lower bias than that of the linear site-specific model, 

however this was at a cost of variance. The conclusions of this real application of the 

model should be considered carefully when developing a model. In the case of this 

project, a wide-ranging model was required, and so a multiple site model was 

developed. 

One significant point of feedback was that when the neural model was used to 

predict a steel grade which did not relate to any of the steels used to train the model 

(but which was still within the maximum and minimum range of the model) a guide 

to the reliability of the predictions was required. It was found both in the literature 

and in practice that when a neural network extrapolates or interpolates on an input 

vector that is in a sparse area of the training data spurious predictions may result. It 

272 



was realised through the evaluation work with BSES that serious problems may 

result if the user of a model was not aware when an input inquiry to the model fell in 

a sparse area of the training data. Experimentation therefore began to find a suitable 

method for providing an impression of data density and therefore reliability of model 

predictions. One method that was particularly suited to this project, given that an 

ensemble approach had already been adopted, was to look at the standard deviation 

of the ten ensemble members' predictions. It was shown on a two dimensional 

example that when in a sparse area of the model, ensemble members trained using 

random initialisation weights (but the same training data), deviate more from one 

another in areas of low data density. This technique was then applied to the 

predictive models developed in chapter 6, and the performance of the resulting error 

bands was demonstrated with key examples involving the UTS and Impact models. It 

was seen that the 'mysterious' plateau effect of chromium on UTS beyond a 2% 

addition may not have been as significant as first thought since the error bands 

indicated that there were little data above the 2% region and therefore the reliability 

of the predictions should be questioned. 

Interpretation of the effects site and quench codes was also made possible 

through the use of the standard deviation of the individual predictions, where 

predictions which would appear confusing without a reliability guide became 

understandable once the data density was taken into account. 

Finally, it was postulated that the deviation the between predictors may 

provide a good indicator as to where in the input space additional data for the model 

should be selected from (if available). An example of this was given where extra 

Charpy 2mm V impact results were obtained. Despite no statistical improvement in 

accuracy, a noticeable improvement in the shape of the impact transition curve was 
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seen, together with a reduction in the error bands around the sub zeros region of the 

model which had been 'filled' with data. 

The next chapter now investigates application areas of the models developed, 

and demonstrates how the UTS model can be used to ascertain the effect of 

measurement tolerances on the resulting tensile strength of a steel. The model 

application area of alloy design is also considered, and some preliminary work to 

find an optimum composition and treatment temperature which produces a steel with 

user defined mechanical properties is investigated using the genetic algorithm 

approach. 
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Chapter 8 

Application of the models for process optimisation 

8.1. Introduction 

The ultimate aim of developing the mechanical test result models is to 

facilitate process optimisation (as was explained in chapterl). This chapter 

investigates the possible application areas of the models within industry and then 

demonstrates several investigations of these applications. The first investigation 

starts to look at the UTS model's ability to generalise to a new process, involving 

data from steel types dissimilar to the training set it was developed from. The second 

investigation then uses the UTS model to see what effect measurement inaccuracies 

in the process have on the UTS at a given composition. Finally, a preliminary 

investigation into optimal alloy design is considered using UTS and ROA models as 

examples. This work uses the Genetic Algorithm (GA) approach which is applied to 

a set of input variables that will produce pre-specified mechanical test result values. 

8.2. Model application areas within industry 

It is anticipated that the models developed in this project could have the 

following applications within industry: 

• 

• 

• 

• 

Optimal design of new alloys under constraints 

Validation of process measurement requirements 

Elimination of testing requirements on common steels 

In the heat treatment works 

Fault detection 

Setting required treatment parameters including tempering time 
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The first application, to design an alloy which aims to meet one or more pre­

specified requirements, such as strength, ductility or cost will be discussed and then 

examined in detail in section 8.5. It is worth noting at this stage that metallurgists 

already experiment with alloy compositions in order to meet pre-specified targets or 

to reduce the cost of a steel. However, given the complexity of the relationship 

between the variables in the process, an automated more methodical way of 

'searching' for new alloy and treatment combinations would be desirable. 

Exploration of the effects of measurement tolerances on the predicted UTS 

will be examined further in section 8.4. It is expected that, having developed a model 

of the process, the effects of certain scenarios such as measurement inaccuracies 

could be estimated via simulation of the model for a given set of input values. 

It was mentioned in chapter 3 that mechanical tests are often performed on 

steels which are supplied to other companies (such as Aurora Forgings) in an 'as 

rolled' state. This means that the company who purchases the steel is planning to 

perform their own heat treatment of the metal and that BSES has to lab treat a sample 

of the steel to prove that, given a certain treatment regime, the required UTS (and 

possibly other test results) could be obtained. It is postulated that testing time and 

costs could be reduced if commonly made steel types (i.e. those which the model can 

predict accurately), could be supplied with predicted mechanical properties instead of 

tested ones. This idea obviously carries assumptions that the treatment progressed as 

documented in the model's inputs. 

In the heat treatment Works it was also considered that the model could be 

used again on commonly manufactured steel grades, as the basis of a fault detection 

system. The composition and treatment temperatures could be entered for a particular 

treated steel and then, if the test results relating to that steel differed significantly, 

276 



the possibility of a process fault could be investigated. The model may also be useful 

in the plant situation (without automatic optimisation techniques) for determining the 

tempering temperature which may be required for a given set of input parameters to 

the model. It has already been seen how graphs of the effect of tempering 

temperature can be produced, which would enable the determination of a tempering 

temperature for a given set of variable settings. An extension of this may also be to 

use the tempering parameter by Holloman and Jaffe59 to allow for the predicted 

results to be supplied according to varying time and temperature combinations (as 

explained in chapter 4). 

8.3. Ability of the UTS model to generalise to 'new' processes 

Ultimately in the application of the model, it may be desirable to use the 

model to predict UTS values on a new process or treatment site. An investigation 

would obviously need to be made in terms of determining the prior thermo­

mechanical treatment of the steels involved in the process (such as forging), together 

with any other difference in the process that may exist including the distribution of 

the treated steels at that site. Assuming that the process was similar in terms of 

stages, it was decided that it would be interesting to see if the UTS model developed 

could predict the test results of steel specimens treated at another site. An initial 

investigation into the model's capability was made using results obtained from a 

range of steels treated at a different laboratory to that where the existing lab data set 

was created. The compositions of some of these steels were now very different from 

that of the 1 %CrMo median analysis used for model investigation up until this point. 

In total, 5 different steel compositions treated at varying tempering temperatures 

were used in the investigation. The main alloying additions relating to each steel type 
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are shown in Table S.I. For all steel types, a bar size of 30mm and a test depth of 

15mm was used, all treatments also used an oil quench after the hardening stage. 

Steel Type C Si MD S Cr Mo Ni AI V 
37Cr4 0.37 0.16 0.57 0.02 1.1 0.05 0.21 0.046 0.005 
(Ref. 1) 

30NiCrMoS 0.31 0.16 0.47 0.021 2 0.42 2.01 0.031 0.005 
(Ref. 58) 

30NiCrM08 0.29 0.33 1.46 0.016 1.64 0.06 0.23 0.035 0.005 
(Ref. 59) 

30NiCrM08 0.32 0.26 1.3 0.017 1.65 0.14 0.21 0.037 0.005 
(Ref. 60) 

30NiCrM08 0.33 0.33 1.34 0.017 1.66 0.05 0.21 0.039 0.1 
(Ref. 61) 

Table 8.1. Compositions of the five steels treated at the 'new' lab process 

Measured UTS values were obtained for the compositions shown in Table 8.1 

hardened at 870°C, and tempered at a range of temperatures of 500, 550, 600 and 

650°C. This enabled a plot to be made for each of the compositions tempered at the 

'new site' which showed the effect of tempering temperature on UTS. The neural 

model was then used to generate a similar set of values, such that the fit of the model 

to the unseen process could be established. 

The site code input of the model was varied to determine the best fit of the 

predicted values to those measured from the new process. It was found that the best 

fit on the new data (the smallest prediction error) was obtained when the binary 

inputs denoting 'Lab' were used as site inputs to the model. This is reasonable since 

the scale of the furnaces and treatment methodology used in the new process and the 

lab data in the training set should be similar. It was anticipated that, if a new plant 

was to be used as part of the prediction process in a real situation, a sample data set 

representative of the new process could be used to determine which site code setting 

would be suitable for the new plant. 
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The ensemble predictions for the first two compositions together with the 

measured values (ref. I and ref. 58) are shown in Figure 8.1. 
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Fig 8.1 Ensemble predictions of data from a new treatment site for the 37Cr4 
steel and 30NiCrMo8 steel (ref.58) tempered at varying temperatures 

The two steel types for which the predictions are shown in Figure 8.1 are not 

'common' steel grades in the sense of the 1 %CrMo analysis. However, metallurgists 

have commented that similar compositions to these steels do exist with the data set. 

The predictions have been generated using the mean ensemble prediction, and the 

error bars show the SD of the individual ensemble members' predictions. It can be 

seen that the predicted values of the model fit quite well to this unseen process. The 

error bars, particularly for the 30NiCrMo8 steel, indicate that there is significant 

deviation between predictors which accommodate the measured values, signifying 

the less common nature of this steel compared to the I %CrMo analysis previously 

seen. The 37Cr4 predictions above 550°C, particularly at the 600°C tempering 
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temperature appear to indicate a more reliable prediction than with the 30NiCrM08 

steel, however the point at 500 °C seems to be somewhat miss-predicted. 

The next three steel analyses to be predicted (ref. 59, 60 and 61) are in the 

'family' of the 30NiCrM08 steel type. However, they were actually produced as part 

of an experiment by a metallurgist at British Steel, to investigate the possibility of 

using different combinations of alloy addition in order to produce similar mechanical 

properties at reduced cost. These three 'variants' on the original type 58 steel were 

not expected to appear in the data set as training examples, but do lie within the 

maximum and minimum ranges of the model. The predictions for these variant 

compositions are shown in Figures 8.2, 8.3 and 8.4. 

The graphs have been shown on separate Figures for clarity, however similar 

axis ranges have been used to epable a comparison between the prediction accuracy 
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Fig. 8.2 Predicted and measured effect of tempering temperature on UTS 
for the type 59 variant of the 30NiCrM08 steel treated at a new site. 
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in each case. 

The graphs in Figures 8.2 and 8.3 for the type 59 and 60 variants of the 

30NiCrM08 analysis show that a reasonably good fit has been obtained from the 

predicted values. The error bars indicate that the standard deviation between the 

individual predictors is higher than with the more common 37Cr4 and type 58 steel, 

however, they appear to indicate well the uncertainty in the model's predictions. The 

predictions in Figure 8.4 show a somewhat worse situation for the type 61 steel. The 

predictions are quite poor, and the error bars are, generally, the largest of all the 

plots. When the composition for this steel (ref. 61) is examined it can be seen that it 

contains a vanadium addition. This explains why the predictions are so bad, since 

there are not many examples of vanadium steels in the training data set anyway, and 

so a novel composition with a vanadium addition produces poorer predictions. The 

error-bars provided by the ensemble technique are not quite big enough to 
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Fig. 8.3 Predicted and measured effect of tempering temperature on UTS 
for the type 60 variant of the 30NiCrM08 steel treated at a new site. 
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Fig. 8.4 Predicted and measured effect of tempering temperature on UTS 
for the type 61 variant of the 30NiCrM08 steel treated at a new site. 

accommodate the error in prediction in the case of the type 61 steel. It should be 

remembered, however, for all predictions that the process is different to that from 

which the training data came, and therefore one cannot expect that the uncertainly 

between the individual predictor values will definitely accommodate for the 

prediction error. It is also important to note that, although the SD between individual 

predictors in the ensemble appears to provide an accurate guide to the model 

prediction error, this has only been observed empirically, and is primarily used as a 

guide to data density. 

8.4 Assessment of effects of measurement tolerances on predicted UTS 

This section briefly looks at how the neural models can be used to assess the 

effect of measurement inaccuracies in the process, on the predicted UTS values of 

the model. There are three main sources of error in the predicted value, the first is 
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that caused by the measurement of the variables in the data set (inputs and outputs), 

the second is the unknown effects error (factors influencing the UTS which are un­

determinable) and the third error is the fitting error of the model to the data. The 

following prediction accuracy assessment should however provide an estimation of 

the sensitivity of the model to the measurement errors in the process. 

The tolerance (2a) of each input variable's measurement was established in 

the process familiarisation stage, and was shown in Table 3.3. Note that the binary 

values carry no measurement tolerance. These values could now be used to 

determine the effect of the measurement tolerances on the UTS. If one is using a 

linear model, the effect of the variance of each input can be calculated arithmetically. 

However, with the neural model this is not the case since the relationships between 

the inputs and outputs are non-linear and contains interactions between the variables. 

It was therefore decided that the effect of input measurement tolerances on a certain 

composition could be calculated for a fixed composition by creating a distribution of 

errors around the input variables for that composition, geometry and treatment 

regime. The 1 %CrMo median analysis (Table 7.6) was used as the basis for this 

experimentation. Measurement noise is typically normally distributed and a function 

within the Matlab statistical tool box allows one to generate a random distribution of 

N points, which follow the normal distribution with mean 1.1 and standard deviation 

a. This function was used to generate 6000 data points with the mean of the 

1 %CrMo inputs and a standard deviation of one half the tolerance values shown in 

Table 3.3. A large number of points were generated to ensure that the data set 

followed the normal distribution. This was clarified by finding the mean of the 6000 

generated examples and making sure it equalled the 1 %CrMo inputs. 

The effect of the measurement tolerances on the model inputs could then be 

investigated in a variety of ways using this data distribution. Firstly it was decided 
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that the measurement effects (size and test depth), compositional effects, and 

temperature effects (hardening and tempering) would be investigated separately. This 

would show which set of measurements had the most effect on the predicted UTS 

values. This was implemented by only using the normally distributed error data as 

inputs to the model for the variables under consideration. The remaining variables in 

this 'simulation' data set were kept constant at the 1 %CrMo median values. For each 

part of the experiment, a distribution of 6000 predicted UTS values was generated 

from which the standard deviation of the predicted value could be calculated, which 

represented the effect of the input variation (measurement tolerances) on the output. 

The effect of the measurement tolerances on all of the relevant inputs was then also 

calculated. The results of this experiment, together with the effect of varying all of 

the affected input variables are shown in Table 8.2 

Measurement variation SD of predicted UTS 
in the simulation value 
Size measurement 0.138 

Compositional 17.3 
Temperature 5.46 

All non-binary variables 18.4 

Table 8.2 Standard deviation in predicted UTS caused by individual and 
combined measurement inaccuracies. 

The results show that the greatest effect on the predicted UTS value of the 

1 %CrMo analysis is caused by the inaccuracies involved in measuring the 

composition of the cast analysis, and that the size measurement tolerances have least 

effect. It has been found from experience that the measurement tolerance effect on 

each variable varies depending upon the composition of the steel. 
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8.5 Optimal design of alloys using genetic algorithms 

This section details some preliminary work which has been undertaken to 

investigate the feasibility of using an optimisation technique such as genetic 

algorithms in combination with the neural network models developed in chapter 6, 

with the objective of finding an optimal set of process inputs in some sense. 

The genetic algorithm has been selected as a suitable optimisation technique to use 

for this experiment because, as will be explained in the next section, it requires no 

information on underlying differential equations. 

Examples of an objective for which an optimal set of parameters may need to 

be found may include simply a target tensile strength, or a combination of 

mechanical properties. In the case of finding a combination of mechanical properties 

the results from chapter 6 should be remembered, since these show that two types of 

mechanical test result (for example ROA and UTS), may have conflicting variable 

effects. The real advantage of using a genetic algorithm in such as situation as this, is 

that an optimal set of parameters may be found that gives a material with, say, the 

best ROA and UTS possible in the same steel. 

Before presenting details of the work which has been undertaken it is first 

necessary to explain the key principles behind the genetic algorithm optimisation 

approach. 

8.5.1 Introduction to the Genetic Algorithm approach 

Genetic Algorithms (GA) are exploratory optimisation methods that stem 

from nature's principles of evolution and popUlation genetics. The technique was 

first developed in 1973 by Holland 103, and since its first development the technique 

has been used for a large number of research studies, a detailed review of the 

technique and its applications being given by Goldberg104. It has already been stated 
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that the GA approach does not utilise differential equations to perfonn a gradient-

based search, this makes it particularly suitable to use with the neural network 

approach. Instead of gradient descent the GA approach uses a 'fitness function'. The 

fitness function is used to assess the suitability of a particular set of values to solve 

the problem. For example how close is the UTS value generated by the model to that 

which was required if the inputs to the model are set to particular values. Initially, the 

GA approach generates a random population of possible candidate solutions to the 

problem. One can think of this as guessing a variety of different input combinations 

to give the desired solution out of a particular model or function. In GA, the initial 

population of candidates is encoded using binary values such that it is a well-defined 

number of chromosomes. Having generated the initial population, the candidates are 

Crossover line 

-----------_ .... 

• 

Fig. 8.5 The genetic operation of crossover 
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then ranked according to the particular fitness function that was devised to solve the 

problem. The initial population is generated at random, so all candidates will 

probably perform quite badly, however due to the random nature of the candidate 

generation, some will be better than others. The population of available candidates is 

then improved by a 'mating' process, where the fittest individuals in the previous 

generation are randomly combined in pairs to produce an 'offspring' (a new 

candidate which results from the two parent candidates). The candidates are 

combined by 'crossing over' parts of their chromosomes at a randomly chosen 

position of the string, as shown in Figure 8.5. 

More excitation is given to the process through the use of the 'mutation' operation 

shown in Figure 8.6. The mutation procedure involves randomly selecting and 

inverting bits in the chromosome strings, this process helps to speed up convergence 

and provides an increased variety in generated candidates. 

Bits selected for 
mutation 

/l~ 
ji";""i!o 11 li";""i!o r~""i!1 1 
•••••••• •••••••• • ••••••• 

• 
o 0 1 001 1 

Fig. 8.6 The genetic operation of mutation 

The selection of the GA parameters such as population size, the nature and rates of 

cross-over and mutation and the reproduction rate (the process by which parent 
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chromosomes are selected), all play an important part in the successful running of the 

GA algorithm. 

The following steps summarise the function of the GA algorithm: 

I An initial population of trials, TI(O)=Am(O), m=J, ... ,M, are generated, where 

M is the number of trials in the population. 

2 For successive sample instances: 

• The performance of each trial, j.l(Am(t)), t =O,J, ... ,T, is evaluated and 

stored. 

• A number of trials are selected by taking a sample of TI(t) using the 

probability distribution: 

p(Am (t» = teAm (t» 

L j.l(Ai(t)) 
;=1 

(8.1) 

• One or more of the genetic operators are then applied to the selected trials 

to produce the offspring, AmO(t), m=J, ... ,N, where N is the number of 

offspring which is typically equal to the number of selected trials 

(parents) 

• The next generation of population, TI(t+ I), is formed by selecting Aj(t)E 

TI(T), j=J, ... ,N to be replaced by the offspring, A/(t). A variety of 

criterion for selecting which trials should be replaced can be used 

including random selection or selection on the basis of fitness. 

3 The GA algorithm is terminated after a pre-specified number of generations 

or according to a convergence criterion of the population. 

The procedure of reproduction can replace members of the old generation. The 

method of choosing an individual for the production of offspring also determines its 

life span and the number of its offspring. Holland 103 showed that if PI is the 
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probability that an individual AE TI is selected to produce offspring during a sample 

step and P2 is the probability that it will be deleted during that sample step, then the 

expected number of offspring of A is given by ~ 
P2 

The most common types of reproduction techniques are Generation Replacement 

(GR), Steady-State(SS), Generational Gap(GG), and Selective Breeding(SB), 

however the SB technique was the only method used in this investigation. Selective 

breeding was used because it overcomes some of the shortcomings of the other 

methods, however a thorough evaluation of reproduction techniques was not part of 

this investigation. 

8.5.1.1 The selective breeding reproduction technique 

The selective breeding procedure is as follows: 

1 An initial population TI(O) is created in the usual manner. 

2 The population is evaluated to determine the fitness of each individual. 

3 For successive generations thereafter: 

• An entire population TIo(O) is produced by selecting parents and applying 

the genetic operators. 

• The offspring of the population are evaluated 

• The next generation of population is obtained by choosing the best M 

individuals from both TI(T) and TIO(T). 

Each individual chromosome in the population is a potential solution candidate to the 

optimisation problem under consideration. The procedure of evaluation of these 

candidate solutions therefore consists of submitting each one to the simulation model 
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(in this case a neural model) and returning an assessment value in terms of the pre­

defined fitness function. 

The next section describes how the GA was used with two of the neural 

models developed in chapter 6. 

8.5.2 Procedure for using the GA with the neural model 

Implementation of the GA algorithm described previously was available 

within the Intelligent Systems Laboratory, and so by linking this program to the 

neural models developed within the Matlab environment, the feasibility of this idea 

could be investigated. It was decided that initially the GA would be used to find a set 

of input values to the neural model which gave a certain target UTS value. As has 

been explained throughout this thesis, the models developed contain a large number 

of inputs (22 in total for the UTS model), and it has been seen, both in chapter 3 and 

through the modelling work, that there are many factors which can influence the 

UTS of a steel. It is possible that the GA could operate on all inputs to the model. 

However, it was decided that the number of 'free' parameters of the model (i.e. those 

variables that the GA would be able to adjust) would be limited to five variables in 

order to reduce the computational burden. 

Having performed sensitivity analysis of the models in chapter 6 it was 

decided that the variable set which the GA would adjust should include carbon, 

manganese, chromium, molybdenum and tempering temperature. For each variable, a 

binary term containing 12 bits was generated, which had a maximum and minimum 

value for each variable according to those defined in Table 5.7. This meant that the 

total chromosome comprised 60 bits, and was arranged as shown in Figure 8.7. 
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Fig. 8.7 Construction of the chromosome representing the 5 model inputs 

The next decision to make was deciding how to deal with the other inputs to the 

model whilst the GA was adjusting the five variables in Figure 8.7. The remaining 

inputs, despite not being selected as the most significant variables in the optimisation 

process, would also affect the UTS values of the steel. For this reason it was 

important that the values to which the remaining variables were set so they would not 

prevent the GA from reaching its objective. It was decided that if the remaining input 

variables were set to that of the median 1 %CrMo values (Table 7.6) and the target 

value was set to that which was found within the database as the median UTS result 

for the I %CrMo analysis, then it should definitely be possible for the GA to set the 

free parameters in order to reach the target UTS value. There would, however, still 

be a variety of combinations which the free variables could take and therefore the set 

of values found by the GA for these free variables may not be those of the median 

analysis, however this would still be a valid solution according to the model. 

8.5.2.1. Using GA to find a target UTS value 

The first experiment performed in this investigation was to see if the GA 

could find the values for the free variables; carbon, manganese, chromium, 

molybdenum and tempering temperature, which would give a UTS result of 

868N/mm2
• The remaining model inputs were kept constant at the 1 %CrMo analysis. 

Table 8.3 shows the probability values of the GA operators that were used for 

this preliminary investigation. A population size of 50 candidates was chosen. 
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Operator Probability (%1 
Crossover 0.95 
Mutation 0.06 

Table 8.3 Probability of genetic operator values used for the GA experimentation 

Initially, the following objective function was used to determine the fitness 

of each candidate: 

JUTS = (x, - Xc) 2 (8.2) 

where x, is the target UTS value and Xc is the UTS value of the candidate solution. 

The genetic algorithm was allowed to run until the UTS target value was reached, 

and the values of the five free variables were stable. The trajectories of the five 

variables produced by the subsequent generations are shown in Figure 8.8. This 

shows the adjustments made by the GA with respect to objective function defined in 

equation (8.2). Plots of the objective function and the UTS values obtained over 

successive generations are shown in Figure 8.9. 
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Fig. 8.8 Values of the five inputs adjusted by the GA plotted over 
successive generations 
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Fig. 8.9 Overall objective and resulting UTS values over successive generations 
of the experiment 

Figure 8.9 shows that the overall obective was reached within a small number 

of generation cycles of the algorithm. The UTS target (marked with a dotted line), 

was also reached within 10 generations, however the sensitivity of this to subsequent 

geneation changes is more apparent than with the overall objective. 

Looking at the adjustment of the variables (Figure 8.8), it can be seen that despite the 

overall objective and therefore target UTS being reached within 10 generations, the 

GA has provided a number of solutions which meet the target value. This is evident 

because the variable trajectories continue to move between solutions through the 

experiment. Having reached the overall objective the experiment was terminated 

after 38 generations, since a solution had been reached and without any other 

requirements in the objective other than UTS, no other criterion were to be fulfilled. 

The final composition and UTS provided by the GA's solution is shown in Table 8.4, 

together with that of the median analysis. 
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Variable GA Adjusted Values 1 %CrMoValue 
Site (1-6) 3 3 
Size (mm) 180 180 

Test Depth (mm) 12.7 12.7 
C(%) 0.13 0.41 
Si (%) 0.27 0.27 

Mn (%) 1.66 0.78 
S (%) 0.023 0.023 
Cr(%) 2.13 1.08 
Mo(%) 0.27 0.22 
Ni (%) 0.19 0.19 
AI (%) 0.027 0.027 
V(%) 0.005 0.005 

Hardening Temp (oC) 860 860 
Tempering Temp (oC) 597 630 

Table 8.4 The composition found by the GA to provide a UTS of 868 N/mm2 
with the adjusted variables in bold type, compared with the median 1 %CrMo 
analysis 

Table 8.4 shows that despite the fixed variables being the same as the median 

analysis, the GA has provided a (non unique) solution which is quite different to that 

of the median analysis. The main differences compared with the median 1 %CrMo 

analysis is that the GA has used much less carbon (which would reduce UTS), and 

yet dramatically increased the amount of chromium and manganese, in order to 

increase the UTS at an approximately similar tempering temperature. The question 

is, in reality would a metallurgist be able to create steel with the target UTS value 

given this composition. No similar examples of this steel composition were found in 

the database, and therefore there may well be metallurgical (let alone cost) reasons 

for not using this analysis. With reference to cost, carbon is regarded as a relatively 

cheap element and chromium a relatively expensive one. Taking this alone into 

account, without any of the complex metallurgical reasoning that may exist, it would 

not make financial sense to use less carbon and more chromium if the only 

mechanical test requirement was a certain UTS value. With regards to the question of 

whether this steel could be made, or more importantly if the neural networks 

prediction at this composition would be correct, one can return to the standard 
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deviation between the ensemble predictions as a guide. The GA composition shown 

in Table 8.4 gives a mean ensemble prediction of 868 N/mm2, but this has a standard 

deviation between predictor members of 96.3! This would suggest that the prediction 

should not be relied upon and that the GA has been 'exploring' a sparse area of the 

model from which the solution has been found. Data sparsity has already been 

discussed in chapter 7, and with regard to GA interaction with a neural network it 

presents some severe problems. The GA should be free to search the input space for 

possible candidate solutions. It has been shown, however, that in sparse areas of the 

model, spurious predictions may result. If these spurious predictions happen to 

provide a good solution to the GA, it has no other way of knowing that this may not 

represent a realistic or accurate solution. 

It was therefore decided that a more realistic and reliable solution might be 

obtained if the SD between the predictors was included in the cost function of the 

GA. In this way it was hoped that the GA would tend towards a solution which was 

close to that which had been found before in terms of data density, and for which the 

neural model should provide a more reliable prediction. In this way, it was therefore 

anticipated that the GA would be provided with Information of the metallurgical 

experience that led to the data set's development. 

The improved cost function can therefore be written as: 

(8.3) 

where Se is the SD of the ensemble member's preidctions for a given set of input 

variables. From experimentation, it was found that factor of A.=5 should be used to 

weight the effect the SD term has in the cost function. The amount of effect the Se2 

term has appears to be important, since if it is too small, the data density of model is 

not taken into account, however it if it is too large, then the target value may not be 

met unless it lies in a very dense area of the data. 
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The GA was therefore run again for the same target UTS value and fixed 

input variables but with the modified cost function shown in equation (8.3). 
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Fig. 8.10 UTS model input variable adjustment ofthe GA over successive 
generations with the modified cost function including SD of predictors. 

The algorithm was allowed to run for 150 generation, by which time, the variable 

adjustment had been seen to be stable. The graph in Figure 8.10 demonstrates the 

stability of the variable adjustment, and also shows that the search area of good 

candidates is now limited, in other words the variable adjustment at the early stages 

of the algorithm shows less variance. This would indicate that the possible number of 

good solutions has been limited by the introduction of the SD term. Figure 8.11, 

shows that the overall objective was once again closely met after a small number of 

generations, however it can also be seen that there is a slight error between the UTS 

value of the solution and that of the target. The error in the UTS is only slight, a 

value of 869.2 was obtained instead of the target 868. Through balancing the 

importance of data density with the need to meet the target (i.e. though adjustment of 

the significance of the SD term), it may be possible to reach an even closer solution. 
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Fig. 8.11 The overall objective, UTS value and SD of predictors over 
subsequent generations of the algorithm 

The important features of the experiment are that a set of variable values was found 

that gave a test result value close to that required, and that the SD of the individual 

predictors for this set of values was 3.44. Therefore, the solution should be within a 

high area of data density, and therefore should be accurate. 

The values of the adjusted variables for GA solution in this experiment are 

shown in Table 8.5. It can be seen that the adjusted values appear to be much closer 

to that of the median analysis than in Table 8.4 (without the modified cost function). 

The tempering temperature is lower, however this is likely to be due to the reduced 

carbon content, however the low SD of predictors value indicates that the GA has 

reached a realistic solution. 
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Variable GA Adjusted Values 1 % CrMo Value 
Site (1-6) 3 3 
Size (mm) 180 180 

Test Depth (mm) 12.7 12.7 
C (%) 0.33 0.41 
Si (%) 0.27 0.27 

Mn (%) 0.78 0.78 
S (%) 0.023 0.023 
Cr(%) 1.03 1.08 
Mo(%) 0.19 0.22 
Ni (%) 0.19 0.19 
AI (%) 0.027 0.027 
V(%) 0.005 0.005 

Hardenin~ Temp tC) 860 860 
Tempering Temp (QC) 577 630 

Table 8.5 The composition found by the GA to provide a UTS of 869.2 
N/mm2 with the adjusted variables in bold type, compared with the median 
I %CrMo analysis when SD of predictors was taken into account 

It should be remembered that only one test result is being used as a target in this 

experiment, whereas in a real alloy design situation, many mechanical, metallurgical 

and cost requirements would have to be taken into account. It is expected that the 

metallurgical requirements should be accommodated within the data set and 

therefore a solution in a high area of data density should relate well to that which a 

metallurgist would endorse, since steels will have been produced in this area of the 

input space. 

The next subsection briefly looks at the possibility of using two target values 

in the cost function, so that a set of variables can be found which meet two 

mechanical test result critera. 

8.5.2.2. Using GA to find a target UTS and ROA value 

The next experiment with the GA technique was to investigate whether a 

composition could be found which would meet two target test results. It was decided 
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that the ROA would be a good target value to use with UTS since in chapter 7 it was 

seen that there is generally a trade-off between steel strength and ductility. So to 

validate the results easily, it wa'\ decided that the GA adjustable inputs would be kept 

to the same variables as in the previous sub-section, as would be the fixed model 

inputs. A target ROA value was then selected in the same way that the target UTS 

value wa'\ selected (the median ROA value for the 1 %CrMo examples in the data 

set). As before, this would ensure that a solution existed within the freedom of the 

GA adjusted inputs. The cost function was then modified to take account of the target 

ROA value, and also the SD of the ROA ensemble model's predictors. This was 

important since there may be slightly different data distribution or uniformity 

between the predictors of the UTS and ROA models. 

The modified cost function was therefore: 

lrrs l1TS)2 (k2 ) (ROA ROA)2 (k2 » 
JUTS&ROA = «X, - Xc + t(UTS) + X, - Xc + t(ROA) (8.4) 

where the superscripts UTS and ROA denote the target and candidate values of each 

model and the bracketed subscript on the Se term denotes the standard deviation 

between the predictor members of each ensemble model, and A was set to 5. 

It should be noted that, whilst there is more than one term in the objective 

function, the GA is still operating with a single objective function. Multi-objective 

GA techniques do exist, but were not investigated as part of this work, however more 

information on this subject can be found in Goldberg lO4
• 

The algorithm was run with the cost function described by equation (8.4). 

The algorithm was stopped when it was decided that the adjusted variables had 

stabilised and that a reasonable solution had been obtained. 

The trajectories of the GA adjusted variables are shown in Figure 8.12, which 

shows that the input variables found relatively stable values after about 25 
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generations. The trajectory of the output variables over successive generations is 

shown in Figure 8.13. 
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Fig. 8.12 UTS & ROA model input variable adjustment of the GA over 
successive generations with the modified cost function including SD 
between both ensembles' predictors. 
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Fig. 8.13 The overall objective, UTS value ROA value and SD 
between both predictors over subsequent generations of the algorithm. 
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Figure 8.13 shows that the solution provided by the GA yields small SD values 

between the ensemble members for both models, and that the UTS and ROA values 

are close to that of their target values. 

Given the target UTS and ROA values of 868 N/mm2 and 62.4 % respectively, the 

GA found values of the model inputs that would give UTS values of 869.5 N/m2 and 

an ROA of 63.0%. This solution is very close to that required and carries a standard 

deviation between ensemble member's predictions of 3.4 for the UTS model and 

1.29 for the ROA model. These are low deviations between predictor values for each 

model, ao; wao; found from experimentation for single variable effects around the 

median analysis indicating areas of high data density. Table 8.6 shows the values of 

the input values (in bold type) which relate to this multiple target experiment, 

compared with that of the median analysis. 

Variable GA Adjusted Values 1 % CrMo Value 
Site (1-6) 3 3 
Size (mm) 180 180 

Test Depth (mm) 12.7 12.7 
C(%) 0.34 0.41 
Si (%) 0.27 0.27 

Mn (%) 0.76 0.78 
S (%) 0.023 0.023 
Cr(%) 1.05 1.08 
Mo(%) 0.19 0.22 
Ni (%) 0.19 0.19 
AI (%) 0.027 0.027 
V (%) 0.005 0.005 

Hardening Temp (QC) 860 860 
Tempering Temp (oC) 580 630 

Table 8.6 The composition found by the GA to provide a UTS of 869.2 
N/mm2 and an ROA of 62.4% with the adjusted variables in bold type, 
compared with the median 1 %CrMo analysis when SD of both predictors 
was taken into account 

It can be seen from Table 8.6 that as with the results in Table 8.5 a very similar 

solution to that of the median analysis has been obtained and therefore the solution 

hao; been obtained based on what is already within the data base, as is preferable. 
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There is undoubtedly a great deal more experimentation in terms of cost function 

structure that could be carried out. For example, one could weight the ROA and UTS 

terms differently to allow for differences in test result magnitude or importance in a 

particular optimisation. It should also be possible to find, for example, a steel 

composition which gives the optimum ROA and UTS combination (this could be 

applied to other mechanical test results). Additionally, other factors like cost could 

be embedded within the cost function such that steel with certain target properties 

could be produced at a minimal cost. Experimentation with the cost function 

structure is also important since it has been already found that there is a trade off 

between having a solution with a low SD between individual predictors and one 

which meets its target values. This problem was largely avoided in this 

experimentation because one knows that there is a solution in a highly populated area 

of the input space. However, if 'new' steel alloys are to be developed using this 

method, then a balance between a desired solution and one that is close enough to 

what is already known (the data set) will have to be found. 

8.6 Chapter conclusion 

This chapter initially investigated some potential application areas within 

industry for the models developed in chapter 6. A more detailed investigation into 

some of these idea., was then made. Initially, an investigation was made into the 

ability of the UTS ensemble model to predict test results for a new treatment site (in 

the form of a different lab) on steels of varying novelty. It was found that for the 

more common steel types, the prediction error and deviation between prediction 

members was lower. Three steel compositions were also examined which were not 

close to examples in the training set and it was seen that a poorer fit between 

measured and predicted values resulted. Overall the error bars on these predictions 
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generated usmg the standard deviation of the individual ensemble members' 

predictions appeared to give a good guide to the prediction error of the model, even 

though it was effectively predicting a new heat treatment process. It is expected that 

generalisation to an actual plant process may not be as good, since there may be 

more reasons why systematic process differences may occur in a plant environment. 

It was, however, also postulated that the binary codes denoting the treatment site in 

the model could be used to 'fit' the model to an example set of data of a new process, 

and indeed this wa<; performed for the Lab data in the experiment. 

The next model application investigated was that of assessing the effects of 

measurement tolerances on the predicted UTS values. It was seen that, rather than 

calculating the tolerance effect analytically, a simulation was required to assess the 

effect of normally distributed measurement noise. The proportional effects of size, 

composition and temperature inaccuracies were then investigated, as well as the 

variation in UTS caused by all the model inputs. 

Finally, preliminary work to find optimal model inputs given one or more 

constraints wa<; investigated, using the GA approach. The ability of a GA to vary five 

significant input parameters to meet a target UTS value was initially demonstrated. It 

was seen that if no constraint was placed on where in the input space the GA 

searched, an unreliable and often impractical solution was obtained. If, however, the 

SD of the ensemble's individual predictor values was used as a guide to data density 

and was included in the cost function, it was seen that the solution obtained by the 

GA technique became more rational. This was demonstrated with reference to the 

I %CrMo median inputs and average UTS value as a target. The ability of the GA to 

find a set of model inputs which met two different and generally conflicting 

predicted test result values (UTS and ROA) was then also successfully demonstrated 

for the constrained I %CrMo example. It is noted that more research in terms of cost 
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function design could be performed, having found that a 'balance' was required 

between the terms in the single objective function. This is anticipated to be 

particularly important when finding an optimal set of values whose solution may 

relate to a set of inputs in an area of lower data density with respect to the input 

space. Given this situation, one may need to decide between meeting the targets of 

the cost function or remaining near past experience, i.e. a higher data density. 

The fea"ibility of using GA to optimise the neural models has been 

demonstrated. It is anticipated that this could have significant financial value in the 

optimisation of the heat treatment process, since alloy cost could also be taken into 

account as part of the optimisation routine. Additionally, automation of the alloy 

design approach should lead to reduced alloy design time and therefore reduced steel 

development costs. 
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Chapter 9 

Conclusions and further work 

This final chapter draws some conclusions from the work that has been 

undertaken in this project and then suggests possible areas for future research in the 

subject area. 

9.1. Conclusions 

This project has detailed the development of a set of neural models for the 

prediction of ultimate tensile strength, proof stress, impact energy. elongation and 

reduction of area from a set of variables relating to the heat treatment process. 

At the beginning of the project a great deal of time was invested in selecting a 

suitable heat treatment process that would enable a large amount of historical data to 

be collected. 

Process and data familiarisation work dominates the early chapters of this 

thesis, demonstrating the importance that has been placed on the need for expert 

process knowledge throughout the models' development. This expert information has 

played an important part in deciding upon the selection of training data and input 

variables, cleaning faulty process data, investigating possible data decomposition 

strategies, and validating the final models. 

A structured data cleaning approach has been applied to the data sets 

involved in the project following the realisation that faulty data points were present 

in the process data. Experimentation has shown this technique to be effective, 

particularly in the UTS data set where the greatest improvement in modelling 

accuracy was seen. The investigations showed that the quality of the data used to 
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train and validate a neural model plays a crucial role in its successful application for 

prediction using unseen data sets. 

Various approaches have been used to deal with the problem of an uneven 

data distribution. These methods include modular network approaches and the use of 

descriptive inputs to a single neural model. Ultimately, the aims of the project dictate 

that a single model covering a wide range of steels would be preferable, providing a 

more valuable tool for alloy design applications. 

The drawback of this approach was seen when a graphical user interface was 

developed to enable model evaluation within industry. This interface enabled 

information to be extracted from the model in terms of individual variable effects and 

a single predicted value. It was then realised that a number of sparse regions were 

present in the data set, largely due to its extended range. Ensemble techniques were 

therefore introduced to improve prediction reliability. It was demonstrated that the 

reliability of the resulting predicted values could still vary significantly depending 

upon the quality and density of data used to train the model. It was realised, 

therefore, that spurious prediction may result from the neural model even when the 

input variables were within the maximum and minimum ranges of the training data. 

An extension of the ensemble approach using the deviation of the individual 

ensemble members' predictions, was therefore developed as a technique which was 

shown to provide a clear indication of data density within the input space, therefore 

helping the user to determine the reliability of the predicted value. This technique 

was also found to be useful as a guide for active data selection and experimentation. 

The purpose of developing the predictive models was to optimise the heat 

treatment process. Using a variety of applications within industry as examples, it has 

been shown that this is now a possibility. The feasibility of using the genetic 

algorithm approach to perform automatic and optimal alloy design has also been 
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demonstrated for a constrained example. An important conclusion from this work 

was that without a guide to data density, the genetic algorithm approach did not 

provide reliable and practically viable solutions to a given optimisation problem. The 

data density indication provided by the deviation between the individual ensemble 

members' predictions was therefore included as part of the cost function to guide the 

optimal solution effectively towards design conditions which encompass sound 

metallurgical experimental knowledge. 

It is considered that with further development, the techniques and application 

areas explored within this project would lead to improved product reliability and 

process efficiency. The following section now details further work recommended 

towards this goal. 

9.2 Recommendations for further work 

The first area of further work, only briefly tackled in this project, IS to 

investigate the ability of the model to generalise to new processes. A small 

assessment of this was carried out using a 'new' lab process, however, generalisation 

to a new plant should present additional systematic differences. An effective 

technique for validating whether the steels produced performed by a new plant are 

compatible with a given model developed would therefore be desirable. Further 

exploration of the effects that the site codes within the model have on predicted test 

results over a range of steel compositions may help in this area. 

The second area of work recommended is to establish a system of model 

maintenance, which is important for any predictive model in a process subject to 

change. The system would ideally highlight when a data set update should take place, 

together with which production examples should be included. It is not recommended 

that the system work on duration of model installation, since process changes do not 
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occur at a fixed rate of time. The importance of the data cleaning approach should be 

remembered in such an update situation, and it is felt that the techniques outlined in 

this thesis would enable an effective approach to this. 

The method of prediction reliability indication used in the later work of this 

project, has been shown to be an effective and important feature for the safe and 

useful application of the model to process optimisation (automated or otherwise). 

However, this has so far only been demonstrated empirically, using knowledge of the 

problem domain. It would be valuable to investigate the relationship between 

individual ensemble members' predictions further and possibly prove analytically the 

relationship between data density and deviation between predictors. 

Finally, the genetic algorithm approach has been introduced as a viable 

method of automatically performing the optimal design of new alloys. The feasibility 

of this approach has been demonstrated if the reliability of the model's predictions is 

taken into account. The final recommendation is for the further development of this 

technique, so as to explore the weighting effects of terms in the cost function 

dictating the balance between meeting a constraint and staying towards existing 

knowledge. Financial as well as mechanical property optimisation should ultimately 

also be possible using this technique and would beneficially lead to an optimised heat 

treatment process. 
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UTS data distribution 
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Proof Stress data distribution 
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Impact Energy data distribution 
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Reduction of Area data distribution 
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Elongation data distribution 
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Appendix B 

Variable effects of each model developed in chapter 6 
on the 'median' 1% CrMo analysis. 
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UTS model variable effects 
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Proof Stress data distribution 
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Impact model variable effects 
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Reduction of area model variable effects 
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Elongation model variable effects 
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