
A Genetic Study of Liver Metastasis from Primary Colorectal 

Cancers and Uveal Melanomas 

by 

Mr Kirtikbhai Amratlal Patel 

Thesis submitted for the Degree of MD 

Department of Surgical and Anaesthetic Sciences 

Royal Hallamshire Hospital, Sheffield 

Department of Ophthalmology and Orthoptics 

Royal Hallamshire Hospital, Sheffield 

Institute for Cancer Studies 

University of Sheffield Medical School, Sheffield 

March, 2003 



IMAGING SERVICES NORTH 
Boston Spa, Wetherby 

West Yorkshire, LS23 7BQ 

www.bl.uk 

ORIGINAL COpy TIGHTLY 

BOUND 



DECLARATION 

I hereby declare that no part of this thesis has been previously submitted in support of any 

other degree or qualification, at this, or any other university or institute of learning. 

II 



ACKNOWLEDGEMENTS 

I would like to thank my supervisors Karen Sisley and Ali Majeed for their support and 

patience over the last few years. I would also like to thank, Professor Johnson, Professor 

Meuth and Professor Rennie for not only allowing me to undertake this research in their 

departments but also for their continuing guidance. 

The work would not have been possible without the aid of my colleagues especially Neil 

Cross, Julia Baker, Shona Elshaw, Noel Edmondson, Fleur Talbot and also to Elizabeth 

Parry Anil Ganesh, Carmel Nicholls, Robin Farr and Peter Henderson. Special thanks to 

Jane McDaid and Rhona Jacques for their tireless efforts in the collection of all the clinical 

data and my gratitude to the histopathologists Rob Landers, Simon Cross, Mahariz 

Muzaffer and Andrew Parsons. Many thanks to Rosie Taylor for all her statistical advice 

and especially to all the surgeons, pathologists, technicians and secretaries in the teaching 

and district general hospitals, whose dedication and assistance made this research possible. 

Finally, but not least, I would like to thank my family and friends for their love and 

encouragement over the years. For my endeavours and achievements would not have been 

possible without them. 

111 



CONTENTS 

Declaration 

Acknowledgements 

Contents of Thesis 

Tables 

Figures 

Abbreviations 

Summary of thesis 

CHAPTER 1 - INTRODUCTION 

1.1 Neoplasia 

1.2 Cancer Genetics 

1.3 Genetic Instability 

1.4 Overview of Cancer Tumourigenesis 

1.5 Metastasis 

1.6 Overview of Metastasis 

1.7 Colorectal Cancer 

1.8 Genetics of Coloredal Cancer 

1.9 Colorectal Cancer Metastasis 

1.10 Uveal Melanoma 

1.11 Genetics of Uveal Melanoma 

1.12 Uveal Melanoma Metastasis 

1.13 Aims of the Study 

CHAPTER 2 - MATERIALS AND METHODS 

2.1 

2.2 

2.3 

Materials 

Methods 

List of Suppliers 

IV 

ii 

iii 

iv 

vii 

viii 

xi 

xiii 

3 

4 

6 

9 

10 

14 

18 

27 

39 

43 

46 

47 

48 

53 

65 

87 



CHAPTER 3 - FLUORESCENCE IN SITU HYBRIDISATION ANALYSIS OF 

CHROMOSOME 3 AND 8 USING ALPHA SATELLITE PROBES, 

ON PRIMARY UVEAL MELANOMAS AND PRIMARY 

COLORECT AL CANCERS AND THEIR CORRESPONDING 

LIVER MET AST ASES 

3.1 Introduction 

3.2 Results 

3.3 Discussion 

93 

97 

113 

CHAPTER 4 - COMPARATIVE GENOMIC HYBRIDISATION ANALYSIS OF 

PRIMARY AND LIVER MET ASTATIC COLORECTAL CANCER 

4.1 Introduction 

4.2 Results 

4.3 Discussion 

124 

128 

142 

CHAPTER 5 - MICROSATELLITE ANALYSIS OF PRIMARY AND LIVER 

METASTATIC COLORECTAL CANCER 

5.1 Introduction 

5.2 Results 

5.3 Discussion 

149 

152 

166 

CHAPTER 6 - FISH, CGH AND MICROSATELLITE ANALYSIS OF A 

SINGLE FRESH-FROZEN PRIMARY COLORECT AL CANCER 

AND ITS LIVER MET AST ASIS 

6.1 Cell Culture and Karyotypic Analysis offCRCl and fLMI 171 

v 



6.2 Fluorescent In Situ Hybridisation of fCRCl and fLMl 

6.3 Comparative Genomic Hybridisation of fCRCl and fLMl 

6.4 Microsatellite Analysis of fCRCl and fLMl 

6.5 Summary 

CHAPTER 7 - GENERAL DISCUSSION AND FUTURE RESEARCH 

7.1 

7.2 

7.3 

General Discussion 

Future Research 

Conclusion 

172 

174 

177 

177 

179 

182 

184 

REFERENCES 185-243 

Appendix I: Summary of treatment options for colorectal cancer. 244 

Appendix II: The various staging classifications used for colorectal cancer. 245 

Appendix III: Primer sequences, annealing temperatures and chromosomal 

location. 

Appendix IV: Publications and Abstracts. 

VI 

246 

247 



TABLES 

Table 2.1 Volumes of the various constituents used to prepare a specific 63 

concentration of polyacrylamide gel. 

Table 3.1 FISH results for Colorectal Cancer Sample 1. 102 

Table 3.2 FISH results for Colorectal Cancer Sample 2. 102 

Table 3.3 Results of dual colour FISH analysis. 105 

Table 3.4 Results of GI status and tumour characteristics. 106 

Table 3.5 Results of statistical analysis. 107 

Table 4.1 Combinations of the various organic solvents used in DNA 

purification. 129 

Table 4.2 The various organic solvents used in the de-waxing of formalin-

fixed paraffin-embedded tissue. 130 

Table 4.3 The results of pepsin digestion pre-treatment for various 

durations. 138 

Table 5.1 Results of MSI status and clinicopathological characteristics. 160 

Table 5.2 Results of the microsatellite marker analysis showing the number 

and loci affected for each case. 161 

Table 5.3 Results of univariate statistical analysis. 163 

Table 5.4. Results of logistic regression analysis of the clinicopathological 

variables. 164 

Table 6.1 Results of the FISH analysis. 173 

vii 



FIGURES 

Figure 1.1 Diagrammatic representation of the metastatic cascade. 10 

Figure 1.2 Diagrammatic representation of tumour progression: Waves of 

clonal divergence. 16 

Figure 1.3 The various surgical resections that can be performed for 

colorectal cancer. 22 

Figure 1.4 Pathological staging of colorectal cancer. 26 

Figure 1.5 The chromosomal instability pathway of colorectal cancer 

tumourigenesis. 28 

Figure 1.6 A genetic model for colorectal cancer tumourigenesis. 38 

Figure 1.7 Diagrammatic representation of the studies undertaken, with 

the techniques used and the archival tissue available for analysis. 49 

Figure 3.1 FISH results for Normal Blood Sample 1 with pepsin digestion 

for various times. 98 

Figure 3.2 FISH results for Normal Colon Tissue Sample 1 with pepsin 

digestion for various times. 100 

Figure 3.3 FISH results for Normal Colon Tissue Sample 2 with pepsin 

digestion for various times. 101 

Figure 3.4 A Captured FISH image of Normal Blood Sample 1. 108 

Figure 3.5 A Captured FISH image of Normal Blood Sample 5. 108 

Figure 3.6 A Captured FISH image of Uveal Melanoma Tumour Mel 53. 109 

Figure 3.7 A Captured FISH image of Uveal Melanoma Tumour Mel 50. 109 

Figure 3.8 Kaplan-Meier survival curves for all deaths due to liver 

metastases - Analysis of chromosomes 3 and 8. 110 

Figure 3.9 Kaplan-Meier survival curves for all deaths - Analysis of 

chromosomes 3 and 8. 110 

Figure 3.10 Kaplan-Meier survival curves for all deaths - Monosomy 3. III 

Figure 3.11 Kaplan-Meier survival curves for all deaths due to liver 

metastases - Monosomy 3. 

Figure 3.12 Kaplan-Meier survival curves for all deaths - Gain of 

Chromosome 8. 

VIll 

III 

112 



Figure 4.1 A diagrammatic representation of comparative genomic 

hybridisation. 126 

Figure 4.2 Captured image of a 1% agarose gel showing the results of the 

various DNA purification methods utilised. 129 

Figure 4.3 Two captured images of a 1% agarose gel showing the various 

DNA extraction methods used. 

Figure 4.4 Captured image of a 1% agarose gel showing DNA smears of 

aliquots of a nick translated DNA sample. 

Figure 4.5 Captured images of Spectrum Red and Spectrum Green labelled 

DNA run on a 1% agarose gel viewed under UV light without (figure 4.5a) 

and with (figure 4.5b) ethidium bromide staining. 

Figure 4.6 Captured images of the various DNA labelling techniques used, 

run on the same 1% agarose gel viewed under UV light without (figure 4.6a) 

131 

132 

133 

and with (figure 4.6b) ethidium bromide staining. 134 

Figure 4.7 Captured images showing the green 'halo-effect' around a 

metaphase spread when CGH was performed using Ulysis dGreen labelled 

tumour DNA (figure 4.7a) and no 'halo-effect' when CGH was performed 

using Ulysis rhodamine labelled fragmented normal female blood DNA 

(figure 4.7b). 135 

Figure 4.8. A typical captured image of a Ulysis dGreen labelled DNA from 

formalin-fixed paraffin-embedded normal colon tissue (figure 4.8a), with 

its DAPI stained image (figure 4.8b). Figure 4.8c shows the Ulysis dGreen 

filtered image whilst figure 4.8d shows the Ulysis rhodamine filtered image. 136 

Figure 4.9 A typical two-colour image of pLMI8 (tumour DNA labelled 

Ulysis rhodamine and normal reference DNA labelled Spectrum Green). 140 

Figure 4.10 The DAPI stained image of the target metaphase spread as 

seen in figure 4.9, for pLMI8. 140 

Figure 4.11 The average ratio profile of several metaphase spreads for 

pLMI8. 

Figure 4.12 The average ratio profile ideogram for pLMI8, where vertical 

lines to the left of the chromosome ideogram indicates deletion whilst to the 

right indicates amplification. 

Figure 5.1 peR products electrophoresis on a 1 % agarose gel, using primers 

IX 

141 

141 



D18S58, BAT40, APC, BAT25 and D2S123 on samples from case pCRCI4. 154 

Figure 5.2 PCR products electrophoresis on 8% polyacrylamide gel using 

the MYCLI primer on samples from cases pCRC2, pCRCI2, pCRC14 and 

pCRCI5. 154 

Figure 5.3 PCR products electrophoresis on a 25cm LongRanger gel using 

primers MYCLI and APC with samples pCRC2, pCRCI2, pCRCI4, 

pCRCI5, pCRCI7, pCRC18 and pCRC25. 155 

Figure 5.4 Results of the pH correction experiment performed on the 

second batch of microdissected formalin-fixed paraffin-embedded tumour 

~mp~~ 1~ 

Figure 5.5 PCR products electrophoresis for cases pCRCI5, pCRCI7, 

pCRC34, pCRC89 and pCRC94 on a 25cm LongRanger gel. 162 

Figure 5.6 Kaplan-Meier survival curves for all deaths in patients with 

primary colorectal cancers exhibiting MSI-H and primary colorectal 

cancers classified as MSS or MSI-L. 164 

Figure 5.7 Kaplan-Meier survival curves for all deaths in patients with 

primary colorectal cancers exhibiting MSI-H and primary colorectal 

cancers classified as MSS or MSI-L. 165 

Figure 5.8 Kaplan-Meier survival curves for all deaths in patients with 

originally staged Dukes B, C and D primary colorectal cancers. 165 

Figure 6.1 A typical karyotype for fCRCl, showing a loss at 

chromosome 13q, a 15p: 17p translocation and a gain at chromosome 20q. 172 

Figure 6.2 A typical two-colour image of fCRCl (tumour DNA labelled 

Ulysis rhodamine and normal reference DNA labelled Spectrum Green). 175 

Figure 6.3 A DAPI stained image of the target metaphase spread as seen in 

figure 2, for fCRCl. 175 

Figure 6.4 An average ratio profile of several metaphase spreads for 

fCRCl. 176 

x 



ABBREVIATIONS 

5-FU 
ADP 
APC 
APS 
ATM 
ATP 
B-CLL 
bp 
CCD 
eDNA 
CEA 
CGH 
CIN 
CNS 
COMS 
CT 
DAPI 
DCC 
DLM 
DMSO 
DNA 
dNTP 
DOP-PCR 
dTTP 
DUK 
DUR 
dUTP 
EDTA 
EGF 
EGF-R 
FAP 
FISH 
FITC 
GAP 
GDP 
GI 
GTP 
H&E 
HNPCC 
IRD 
LFU 
LOH 
MAMA 
MCC 
MCR 
Min 

5-fluorouracil 
adenosine diphosphate 
adenomatous polyposis coli 
ammonium persulphate solution 
ataxia telangectasia 
adenosine triphospahte 
B cell - chronic lymphoid leukaemia 
base pair 
(cooled) charged couple device 
complementary DNA 
carcinoma embryonic antigen 
comparative genomic hybridisation 
chromosomal instability 
central nervous system 
Collaborative Ocular Melanoma Study 
computed tomography 
4'-6-Diamidino-2-phenylindole 
deleted in colon cancer 
died with liver metastases 
dimethylsulphoxide 
deoxyribonucleic acid 
deoxyribonucleotide triphosphate 
degenerated oligonucleotide primer - PCR 
deoxy-thymine triphosphate 
died of unknown causes 
died of unrelated causes 
deoxy-uracil triphosphate 
ethylene diamine tetraacetic acid 
epidermal growth factor 
EGF-receptor 
familial adenomatous polyposis 
fluorescent in situ hybridisation 
fluoroscein isothiocyanate 
GTPase activating protein 
guanosine diphosphate 
genetic imbalance 
guanosine triphosphate 
haematoxylin and eosin 
hereditary non-polyposis colorectal cancer 
infra-red dye 
lost to follow-up 
loss of heterozygosity 
monoallelic mutation analysis 
mutated in colon cancer 
mutation cluster region 
multiple intestinal neoplasia 

Xl 



MMP 
MMR 
MOM-l 
MRI 
mRNA 
MSI 
MSI-H 
MSI-L 
NER 
NICE 
NIH 
NSAID 
OCT 
PCR 
PHA 
PBS 
PBSe 
RB 
RER 
RNA 
SKY 
SSC 
SSCT 
SSCTM 
Taq 
TBE 
TE 
TEMED 
TGF 
TIMP 
ULS 
UV 
VEGF 
VHL 
YAC 

matrix metalloproteinase 
mismatch repair 
modifier of Min 
magnetic resonance imaging 
messenger RNA 
microsatellite instability 
MSI - high level 
MSI - low level 
nucleotide excision repair 
National Institute for Clinical Excellence 
National Institutes for Health 
non-steroidal anti inflammatory drug 
optimum cutting temperature (compound) 
polymerase chain reaction 
phyto-haemagglutinin 
phosphate buffered saline 
phosphate buffered saline-EDTA 
retinoblastoma 
replication error 
ribonucleic acid 
spectral karyotyping 
standard saline citrate 
standard saline citrate-Tween 20 
standard saline citrate-Tween 20-MarveI™ 
Thermus aquaticus 
Tris-borate-EDT A 
Tris-EDTA 
N, N, N', N', -tetramethylethylenediamine 
transforming growth factor 
tissue inhibitor of metalloproteinase 
Universal Linkage System 
ultra violet 
vascular endothelial growth factor 
Von Hippel-Lindau 
yeast artificial chromosome 

xu 



SUMMARY OF THESIS 

Cancer is a multifactorial disease, with the development of metastases being a 

major cause of morbidity and mortality. Several molecular pathways are thought to be 

involved in the tumourigenesis of colorectal cancer and possibly metastasis. The aim of 

this research was to explore aspects of these pathways and relate genetic changes to 

clinicopathological variables and outcome, with the goal of ascertaining novel genetic 

abnormalities predictive of metastasis. A second cancer, uveal melanoma was also studied 

as a comparison, as these cancers invariably metastasise to the liver, in which abnormalities 

of chromosomes 3 and 8 have already been shown to be predictive of liver metastasis and 

hence a poor prognosis. Fluorescent in situ hybridisation (FISH) analysis of fresh-frozen 

uveal melanomas using alpha-centromeric probes for chromosomes 3 and 8 confirmed a 

significant association between genetic imbalance and the presence of liver metastasis and 

reduced survival. Difficulties were encountered with using FISH for the analysis of 

chromosomal abnormalities in formalin-fixed paraffin-embedded samples of colorectal 

cancers and their liver metastases. Therefore, comparative genomic hybridisation (CGH) 

was utilised for the genome-wide analysis for regions of chromosomal amplification and 

loss. The technique was partially successful; however problems were encountered in 

obtaining analysable target metaphase slides, this was partly overcome by the manufacture 

of target slides in-house. The analysis of microsatellite instability (MSI) using polymerase 

chain reaction (PCR) was more successful with the presence of MSI being associated with 

the presence of solitary metastases, but interestingly not with an improved prognosis. 

Finally, the collection of a single paired fresh-frozen sample of a colorectal cancer and its 

metastasis enabled all the techniques to be applied, thus showing that prospective 

collection and analysis is not only feasible but would allow the clinical significance of 

genetic abnormalities to be assessed more accurately. 
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One in three people will develop a cancer during his or her lifetime, with one in four 

dying as a consequence of the disease (Cancer Research Campaign, 1999). Worldwide, 

cancer is the third most common cause of death, after death from infectious diseases and 

diseases of the circulatory system (Franks, 1997). 

1.1 NEOPLASIA 

Neoplasia literally means "new growth," and the new growth is termed a neoplasm. 

The term neoplasm is used interchangeably with the term "tumour," which was 

originally applied to the swelling caused by inflammation and cancer is the common 

term for all malignant tumours. It should be noted that the term neoplasia reflects both 

benign and malignant tumours the only absolute criterion is the ability of malignant 

tumours to invade surrounding tissue and to colonise distant sites (metastasis), (Cotran 

et aI., 1989). The best available definition of a neoplasm is one that was suggested by 

Sir Rupert Willis (1952), 

"A neoplasm is an abnormal mass of tissue. the growth of which exceeds and is 

uncoordinated with that of the normal tissues, and which persists in the same excessive 

manner after the cessation of the stimulus which has evoked the change." 

Analysing this definition in functional terms, it becomes clear that there are at least 

four types of disturbance of cell behaviour inherent within it: 

1) A disturbance in cell proliferation. 

2) A disturbance in cell differentiation. 

3) A disturbance in the relationship between cells and their surrounding structure. 

4) A disturbance in normal programmed cell death (apoptosis). 

There is no single cause for malignancy, but the influence of a number of 

environmental and genetic events playa part in the malignant transformation. Evolution 

through natural selection is a concept that applies to many biological systems (Darwin, 

1859). It can also be applied to cancer development, where a multi-step process involves 

the selection of a number of somatic mutations and therefore clones of cells (Nowell, 
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1976; Vogelstein and Kinzler, 1993; Klein, 1998). A number of reports also reveal a 

distinctive pattern of genetic alterations in different tumours, implying that the 

carcinogenic process may proceed through a variety of genetic pathways (Shackney and 

Shankey, 1997). The extent to which different alleles are favoured in the selection 

process is totally dependant on the surrounding milieu, with different genes and 

phenotypes being selected for, by environmental variations (Breivik and Gaudemack, 

1999). There are many types of malignant tumours occurring in man, which are causally 

related to environmental factors. Such factors may be chemical, physical or viral. The 

genetic influence in malignant transfonnation is by the interplay of so-called cancer 

genes. A cancer gene is any gene sequence contributing directly to neoplastic change. 

1.2 CANCER GENETICS 

There appears to be four groups of genes, at present, that are thought to contribute to 

neoplastic change and tumour progression by constitutive activation, mutation or 

deletion. These are oncogenes, tumour suppressor genes, DNA repair genes and 

apoptotic genes 

However, as with most biological systems, there is some functional overlapping 

among these categories. 

1.2.1 Oncogepes 

Oncogenes in general have a positive effect on tumour development and tend to be 

highly conserved "household" genes involved in a variety of cell signalling pathways, 

coding for growth factors, growth factor receptors or signal transduction proteins. 

Others code for transcription factors that when activated as a result of mutations, 

retroviral insertions, chromosomal translocations or gene amplifications, result in cell 

growth and division. Examples of oncogene activation include, c-myc, which becomes 

activated when an immunoglobulin locus is inserted next to it, resulting in Burkitt's 

lymphoma (Teich, 1997) and the fonnation of the Philadelphia chromosome, which 

results in the fonnation of a new protein the product of the fusion of BCR and c-abl 

genes as a result of chromosomal translocation in chronic myeloid leukaemia (Rowle, 

1973). 
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1.2.2 Tumour Suppressor Genes 

Tumour suppressor genes conversely tend to negatively regulate cell growth and 

whose absence can lead to tumourigenesis. It has been known for sometime that the 

fusion of normal cells to malignant cells, results in the suppression of the malignant 

phenotype, as long as the chromosome complement derived from the normal parent is 

maintained (Klein, 1987). Further information was derived from studies of 

retinoblastoma, a malignant tumour of the eye. There are two clinical forms of 

retinoblastoma, one of which is sporadic (always unifocal and unilateral) and the other 

hereditary (often multifocal and/or bilateral). Knudson (1971) proposed that the 

development of any retinoblastoma was the consequence of two mutations within a 

retinoblast, the "two-hit" hypothesis. One of these mutations was inherited while the 

other was acquired spontaneously during the child's development. Comings (1973) 

proposed that the Knudson's two genetic targets could be the two alleles of a single 

gene, whose product negatively regulated cellular growth. Thus, a germ line mutation in 

one retinoblastoma (RB) allele was followed by a somatic loss of the remaining gene, as 

a result of chromosome loss, mutation, deletion or mitotic crossing over, resulting in 

tumour formation (Cavenee, 1983). Other examples of tumour suppressor genes include: 

p53;pJ6 andpJ5, cyclin dependant kinase inhibitor genes; Von Hippel-Lindau disease 

gene (VHL) and E-cadherin gene, although many more exist (Klein, 1998; Kok et aI., 

1997). 

1.2.3 DNA Repair and Apoptotic Genes 

A number of genes exist which act either to repair DNA or are involved in 

programmed cell death (apoptosis). There are those that directly repair DNA, such as 

those involved in nucleotide excision repair (NER) and DNA mismatch repair (MMR), 

(e.g. hMSH, hMLH), but also those that act as cell checkpoint genes, thus allowing DNA 

to be repaired prior to progression through the cell cycle (e.g. hBUBJ, p53), (Janin, 

2000). 

Genes which influence apoptosis include p53, bel-2 and v-abl. The protein product of 

bel-2 acts by interacting with the protein products of BAX, BAD and several other genes, 

which act in concert to either accelerate or inhibit apoptosis (White, 1996). 
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The onset of cancer is generally initiated by mutations in normal (wild-type) cellular 

genes. These mutations develop as a result of uncorrected errors in DNA replication e.g. 

after exposure to physical or chemical carcinogens. The gene function can either be 

activated or inactivated by these mutations. These mutations may arise as a result of 

several mechanisms. the process being termed "genetic instability" (Lengauer et aI., 

1998) 

1.3 GENETIC INSTABILITY 

It is generally accepted that cancers arise as a result of mutations in genes that control 

cell genesis and cell apoptosis (Lengauer et aI., 1998). Mutations in these genes may 

arise as a result of alterations in chromosome number, chromosome translocations, 

subtle sequence changes or gene amplifications. 

1.3.1 Alteratiops ip Chromosome Nymber 

Alteration in chromosome number involves losses and gains of whole chromosomes 

(aneuploidy). For example, the complete loss of chromosome 3 in uveal melanomas is 

associated with liver metastasis (Prescher et aI, 1990; Sisley et aI., 1990). Cytogenetic 

studies have shown that the majority of cancers have lost or gained chromosomes, so 

called "chromosomal instability" (CIN), (Reichman et aI., (1981). However, these 

cytogenetic studies may actually underestimate the true extent of such changes, and the 

loss of heterozygosity (LOH), where either the paternal or maternal allele is lost, is 

commonplace in the majority of tumours (Kinzler and Vogelstein, 2002). Even in 

instances where the chromosomes themselves appear to be unaffected, the true genetic 

status may vary as the loss of one allele is often accompanied by the duplication of the 

remaining allele, thus leaving a cell with a normal karyotype but an abnormal allelotype 

(Vogelstein et aI., 1989). 

Genes that when altered that could lead to eIN include those involved in: 

chromosome condensation; sister chromatid adhesion; kinetochore structure and 

function; centrosome/microtubule function and dynamics; and cell "checkpoint" genes 

which monitor progression of the cell through the cell cycle (Lengauer et aI., 1998). One 

type of checkpoint, the "DNA-damage checkpoint", prevents cells with DNA damage 

from entering mitosis. DNA damage could have arisen as a result of: base mismatches 
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by DNA polymerase; exogenous mutagens (such as ultraviolet light); endogenous 

mutagens (such as oxygen free radicals); or from incomplete repair. Chromosomes 

containing damaged DNA could segregate abnormally because sister chromatids may 

still be connected to each other by abnormal DNA-DNA or DNA-protein links 

(Lengauer et aI., 1998). Several genes have been implicated in DNA-damage checkpoint 

control, including ataxia telangectasia mutated (ATM), the ATM-related gene (ATR), 

BRCA J and BRCA 2 genes, and p53 (Lane, 1998). A second checkpoint effectively 

targets cell division itself, the "spindle checkpoint," ensuring that chromatids do not 

separate until they have aligned along the mitotic spindle. A disruption at this 

checkpoint could lead to daughter cells receiving an abnormal complement of 

chromosomes (Cahill, 1998). Potential spindle checkpoint genes mutated in colorectal 

cancer include hBUBJ (Cahill, 1998). Another cause of aneuploidy, involves abnormal 

numbers of centrosomes and although abnormal numbers of centrosomes have been 

detected in breast, lung, prostate, colon and brain cancers, specific genes responsible for 

centrosome formation have not yet been found (Doxsey, 1998). 

1.3.2 Chromosome Translocatiops/RearraPlemepts 

These alterations can be seen on cytogenetic analysis as fusions of different 

chromosomes or of normally non-contiguous segments of a single chromosome. This 

can have the result of fusing two genes together, thus leading to the activation of a 

normally quiescent gene or the inactivation of an active gene. In addition, the loss of 

large proportions of chromosomal material can also occur during the complicated 

rearrangements that take place during translocation. These deletions can often be seen as 

loss of heterozygosity at the molecular level. 

Two patterns of chromosome translocation are seen in human cancers, the complex 

type and the simple type. The complex type involves many random translocations not 

only between tumours, but also between individual cells and can also result in the gain 

and loss of chromosome material. The simple type is characterised by a distinctive 

rearrangement of chromosome segments, and is found in certain lymphomas and rare 

sarcomas (Le Beau and Rowley, 1986), and also in chronic myeloid leukaemia with the 

Philadelphia chromosome, where the c-ab/ gene on chromosome 9 is joined to the BCR 

gene on chromosome 22 (Rowle, 1973). 
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1.3.3 Subtle SegueDce CbaDges 

These involve either base substitutions, or the insertion or deletion of nucleotides 

resulting in either translational errors or the premature cessation of protein synthesis. 

For example, missense mutations in the K-ras gene occur in over 50% of colorectal 

cancers (Fearon et aI., 1993). There are three separate mechanisms involved in the repair 

mismatched bases, one involves the detection and replacement of mismatched bases by 

DNA polymerase and the others are nucleotide excision repair and DNA mismatch 

repair. As yet no consistent pattern of defects of DNA polymerase has been seen in 

tumours (Lengauer et aI., 1998). 

Nucleotide excision repair (NER) is primarily involved in repairing damage caused 

by exogenous mutagens. Defects in NER are notably seen in patients with xeroderma 

pigmentosum, who develop skin tumours in response to exposure to ultraviolet light 

(Cleaver, 1968). 

The mechanism of DNA mismatch repair involves the correction of mismatched 

and/or unmatched bases, which arise after DNA replication, or occasionally secondary 

to mutagens (Jircny, 1998). Defects in DNA mismatch repair enzymes usually results in 

the non-correction of mismatched bases, particularly in long base repeating tracts known 

as micro satellites, thus the genetic instability produced is also termed "microsatellite 

instability" (MSI), (Jircny, 1998). 

1.3.4 GeDe Amplifications 

These are seen as homogenously stained regions or double minutes on cytogenetic 

analyses, and usually represent multiple copies of growth promoting genes (Lengauer et 

aI., 1998). Gene amplifications tend to occur in late stage cancers and tend to affect a 

few specific genes, notably, genes that may be important in the metabolism or 

inactivation of certain chemotherapeutic agents. The mechanism of gene amplification is 

largely unknown, although inactivation of p53 may play an important role (Yin et aI., 

1992). Examples of specific gene amplifications include, the amplification ofN-myc 

that is seen in approximately 30% of advanced neuroblastomas (Seeger et aI., 1985) and 

that of HER21neu gene in breast cancers, which is also thought to have prognostic 

significance (Pegram et aI., 1998). 
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Mutations in genes do not necessarily imply a tumourigenic state, as these mutations 

may initiate apoptosis or a selective growth advantage may not be induced. For 

mutations to produce a tumourigenic state, the mutation must either initiate growth and 

clonal expansion at a rate greater than its surrounding normal cells, or apoptosis is not 

induced until the cell has replicated several generations more than its normal 

counterparts. 

1.4 OYERYIEW OF CANCER TUMOURIGENESIS 

In summary, several key events may need to occur in order for a neoplasm to arise: 

genetic instability; activation of oncogenes; inactivation of tumour suppressor genes; 

defects in DNA repair mechanisms; functional loss of cell cycle checkpoint control; 

mutational or regulatory changes in genes that protect cells against apoptosis. However, 

as with any biological system, there are exceptions; leukaemias and lymphomas may 

require a smaller number of changes than solid tumours, whereas retinoblastoma 

appears to only require two mutational losses (Lengauer et aI., 1998). 

Unfortunately, for many patients the primary tumour is not the prime cause of death, 

the development of metastases poses the major cause of morbidity and mortality in 

patients with cancer, with symptoms including cachexia, anorexia, apathy and pain as a 

result of bone or liver metastases. 
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1.5 METASTASIS 

Metastasis describes the spread and growth of a tumour from its original (primary) 

site to a distant (secondary) site via the blood stream (haematogenous metastasis), the 

lymph vessels (lymphatic metastasis) or transcoelomic (through the pleural or peritoneal 

spaces). There are several steps in the metastatic process: invasion into adjacent 

structures; intravasation into blood or lymphatic vessels; arrest of the liberated cancer 

cells at a receptive site; extravasation out of the vessel and into the surrounding tissues 

and for growth to occur angiogenesis must take place (neovascularisation) to supply the 

growing tumour with nutrients (figure 1.1). 

Figure 1.1 Diagrammatic representation of the metastatic cascade (adapted from 

Fidler, (1990)) . 
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At each of these steps the cancer cell must have the ability to complete each step of 

the metastatic cascade. The cancer cell does not necessarily have to be very efficient in 

completing each step but must be able to do so eventually, in order to proceed to the 

next step. Therefore, inefficiency can be expressed as the death of large numbers of 

cancer cells entering each step of the metastatic cascade, or inefficiency may manifest as 

the length of time required completing one or another of the metastatic process, and so 

may explain why some tumours metastasise more readily than other tumours (Weiss, 

1990). 

1.5.1 Invasion 

There appears to be two processes involved in the penetration of tissues by cancer. 

Firstly, the proliferation of cancer cells causes them to expand along the pathways of 

least resistance and secondly, the active locomotion of cancer cells through the tissues, 

which involves attachment of the cancer cell to the basement membrane, degradation of 

the connective tissue, and finally migration (Liotta et ai., 1991). 

The degradation of the basement membrane involves the release of enzymes e.g. the 

metalloproteinases, a family of metal-dependant endopeptidases (Stetler-Stevenson, 

1990) which include enzymes with degradative activity for interstitial collagen, type IV 

collagen, type V collagen, gelatin and proteoglycans, as well as the release of certain 

enzyme inhibitors, such as tissue inhibitor ofmetalloproteinases (TIMPs) which can 

inhibit interstitial collagenase, stromelysin and type IV collagenase (Khokha et aI., 

1989). This is because maintenance of the normal basement membrane is a continuous 

process of degradation and synthesis. Therefore, a reduction in the synthesis of 

connective tissue by normal cells could also result in cancer cell invasion (Adams et ai., 

1982). Studies by Segain et al. (1996), suggest that the expression of gelatinase by 

fibroblasts is induced to a greater extent by cell lines derived from the primary tumour 

as compared to metastases, suggesting that the primary tumour not only induces 

degradation of the surrounding connective tissue to aid metastasis but the expression of 

gelatinase by the surrounding fibroblasts is then switched off once the tumour cells have 

reached their metastatic site and thus enabling adhesion; or, a specific subclone of cells 

induce gelatinase in the primary tumour which enable the release of a metastatic 

subclone of cells. The expansion of the tumour itself could also cause pressure atrophy 
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of the surrounding tissue, thus allowing the spread of cancer cells (Gabbert et aI., 1987). 

Neutrophils are known to play an important role the inflammatory response, releasing 

proteolytic enzymes and generating oxygen free radicals, thus providing another 

mechanism in which to facilitate the spread of cancer cells (Glaves, 1983). 

In the case of colorectal cancers, metastatic efficiency appears to be greater in cells 

cultured from the deep part (serosal surface) of the tumour as compared to cells cultured 

from the superficial part (mucosal surface) of the tumour (Jass et aI., 1989; Danova et 

aI., 1995; Inomata et aI., 1998). This could be explained by differing phenotypes 

(subclones) between the superficial and deep parts of the tumour (Kim et aI., 1991) or, 

the fact that intravasation and spread is facilitated by a rich lymphatic and vascular 

system, which is, absent superficial to the muscularis mucosa (Fenoglio et aI., 1973). 

Talbot et al. (1980), showed that invasion of the thick walled extramural veins located 

on the serosal surface of the bowel, was associated with a poorer prognosis and the 

frequent development of liver metastases. 

1,5.2lptmasatiop 

This usually involves the active migration of cancer cells into the lumen of lymphatic 

and blood vessels, in a similar manner to leukocytes (de Bruyn and Cho, 1982). 

Migration may be facilitated by certain motility aiding factors, such as MRP 1, which 

appears to be highly expressed in primary tumours as compared to its metastases (Cajot 

et al., 1997). Another method could be tumour erosion into lumen of these vessels as a 

consequence of pressure necrosis (Ouichi et aI., 1996). 

1.5.3 Arrest of Capcer Cells 

During haematogenous metastasis, cancer cells become arrested in the 

microvasculature of many organs. The majority of cancer cells will arrest in the first 

microvasculature system they encounter, which in the case of colorectal cancers, this 

could be the liver, via the portal system. Studies have shown that the site for major 

cancer cell death is in these microvasculature systems (Weiss, 1990). Cell death within 

the microvasculature system is biphasic, the majority of cells being destroyed within 5 

minutes of entering the system and then the remaining survivors over a variable length 

- 12 -



of time. The rapid phase of post intravasation cancer cell death may occur as a result of 
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and Dimitrov, 1986). The slow phase of post intravasation cancer cell death involves 

destruction by the host defence system (Weiss et aI., 1989). However, Chambers et ai. 

(2000), using in vivo video-microscopy studied the outcome of fluorescently labelled 

cancer cells in the microcirculation of a variety of murine tissues and found that rather 

than being destroyed, the vast majority of cancer cells survived arrest and deformation, 

and then went on to extravasate into the tissue. 

Arrest of cancer cells at certain sites is probably enhanced by the expression of cell 

surface receptors, which enhance the arrest of the cancer cell and allow the cells to 

survive the host defences once they have arrested. For example, cell adhesion molecules 

such as ganglioside GM2, oligosaccharides (sialylle structures, (Ono et aI., 1996; Sato 

et aI., 1997; Yamada et aI., 1997», ~ I integrins, bcI-2 (Skopelitou et aI., 1996), EGF-R 

(Parker et aI, 1998), CEA (carcinoma embryonic antigen), (Kim et aI., 1997) and CD44 

(Guo et aI, 1994) may enhance colorectal cancer cell arrest and survival within the liver 

(Singh et aI., 1997). 

1.5.4 Extmasatjon 

There appears to be two different extravasation mechanisms, the first involves the 

active migration of cancer cells in a similar way to leukocytes and the other, follows 

intravascular growth, when after the tumour reaches a certain size it bursts through and 

out of the vessel (Crissman et aI., 1985). Movement of tumour cells into the liver could 

be further aided by the fact that the liver sinusoids are heavily fenestrated and so 

allowing an easier passage of metastatic colon cancer cells (Fukumura et al., 1997). The 

intravascular growth of the tumour itself may induce an inflammatory reaction, which 

may weaken the vessels adventitial tissues and thus aid extravasation (Weiss et aI., 

1989). As stated previously, Chambers et al. (2000) propose that the rate-limiting step is 

not arrest and extravasation but post-extravasation events, suggesting that nearly all 

cancer cells, be they highly metastatic or not, can arrest, deform and extravasate into the 

surrounding tissue, but only cells with the genotype and phenotype to divide and 

continue to grow, can survive in these tissue beds. 
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1.5.5 NeoyascularjzatioQ 

The growth of tumour emboli beyond 0.1-0.2cm3 requires the growth of blood 

vessels into the tumour, as the nutritional requirements of the cells will not be satisfied 

by the diffusion of nutrients alone (Carlsson et aI., 1979). Work by Folkman (1989) has 

established that angiogenesis is necessary for both primary and metastatic tumour 

growth, indicating the higher the vascularity of the primary tumour, greater is the chance 

of distal metastases. In both uveal melanoma and colorectal cancer, increased vessel 

density has been associated with the development of metastases (Folberg et aI., 1993; 

Rummelt et aI., 1995; Takahashi et aI., 1995). The secretion of angiogenic factors, such 

as VEGF appears to aid angiogenesis (Brown et al., 1993; Tokunaga et aI., 1998), but 

the process of angiogenesis is also controlled by anti-angiogenic factors, such as 

angiostatin and the modulation of these various factors may provide a suitable point of 

action for anti-metastatic therapy (Warren et aI., 1995; Cherrington et aI., 2000). 

1.6 0YERYIEW OF METASTASIS 

It has long been observed that certain tumours show an organ-specific pattern of 

metastasis. Breast cancers preferentially metastasise to the bone, liver, brain and lung 

and the incidence of liver metastases from primary cutaneous melanoma and ocular 

melanoma is greater than metastases to any other single organ, even though these 

tumours do not directly drain into the liver (Pickren et aI., 1982). In 1889, Stephen Paget 

proposed the "seed and soil" hypothesis of metastasis, stating, "when a plant goes to 

seed, its seeds are carried in all directions; but they can only live and grow if they fall on 

congenial soil." This is most probably due to specific cancer cell ("seed")-target organ 

("soil") interactions allowing and facilitating invasion, intravasation, arrest, 

extravasation, neovascularisation and growth at a distant site (Fidler and Hart, 1982; 

Fidler, 1990, 1995; Radinsky, 1995; Radinsky and Ellis, 1996). Ewing 40 years later 

challenged Paget's "seed and soil" hypothesis, claiming that metastasis occurred solely 

as a result of the arrest of the majority cancer cells in the first microvasculature system 

they come across, which in the case of colorectal cancer would be the microcirculation 

of the liver. However, studies by Sugarbaker (1981), concluded that common regional 

metastases could be attributed to anatomic or mechanical considerations, such as 
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efferent venous circulation or lymphatic drainage to regional lymph nodes, but that 

distal organ colonisation by metastatic tumour cells from numerous types of cancers 

established their own patterns of site specificity. It is interesting to note that cells from 

hepatic metastases show different karyotypes and phenotypes when compared to lymph 

node metastases even from the same patient, suggesting that site-specific interactions 

relevant to the selection of various clones from the same cancer (Fidler and Kripke, 

1977; Gregoire et aI., 1993; Singh et aI., 1997; Nicolson and Moustafa, 1998). 

It is known that intra-tumoural heterogeneity exists with different subclones of cells, 

each with a slightly different phenotype and possibly genotype (Fidler and Hart, 1982; 

Kim et aI., 1991; Danova et aI., 1995; Katsura et ai, 1996). Nowell proposed a genetic 

theory of tumour evolution in 1976, where there is sequential selection of variant 

subclones being undertaken by either genetic changes within the metastatic cascade or 

by local host defence systems, mechanical and/or biological (figure 1.2). Tollenaar et al. 

(1997) provided evidence that clonal divergence seemed to take place during the 

transition from adenoma to carcinoma, where several different phenotypes were seen, 

but only one would be required to produce metastases. The outcome of metastasis is 

also dependant on the cell interacting with the local microenvironment in order to avoid 

the host immune response, vascularise and hence grow (Radinsky, 1995; Fidler 1995; 

Singh et aI., 1997). The newly formed metastasis may then progress to metastasise itself 

(Fidler, 1990). 

Variations in metastatic potential is not necessarily dependant on increased 

aneuploidy (Frankfurt et aI., 1984; Jass et aI., 1989; Lind et aI., 1992), but requires only 

that genes which aid metastasis are switched on and that those genes which suppress 

metastasis (at any stage in the metastatic cascade) are switched off (Schirmacher, 1985; 

Klein and Klein, 1985). 

It is unlikely that there is a single metastatic gene, but the interactions of multiple 

metastasis-related genes occur. Studies have shown that when cells derived from 

metastases were injected into nude mice, they were more likely to produce metastases 

than those cells derived from the primary tumour (Morikawa et aI., 1988; Adachi et ai, 

1999). 
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Figure 1.2 Diagrammatic representation of tumour progression: Waves of clonal divergence adapted from Nicolson and 

MOllstafa, (1998). 

Dominance 

Factors Affecting Malignant Cell Properties -
(Qualitative Changes) 

-Activation of oncogenes 
-Loss of tumour suppressor genes Initial Transformation _ [Time I" 
-Release of angiogenic factors 
-Release of motility factors - enzymes, cytokines 
-Expression of growth/inhibitory receptors 

- 16 -

r; 
btl 

= = .c 
U 
~ 

.~ -= -.--= = == 01 
I 

= o ... -= Col e.:: 
.~ 
~ 

> 
~ 



1.6.1 Metastatic Gepes 

Cancer metastasis is a highly complex process and as such is unlikely to be 

controlled by a single gene. It is more plausible that a number of genes may be either 

activated or inactivated (Sobel, 1990). These genetic changes may occur permanently or 

transiently within the genome (Radinsky and Ellis, 1996). Several different approaches 

have been taken in the search for genes involved in metastasis. One approach uses 

techniques to identify genes that are differentially expressed in cells with different 

metastatic properties. Differential ("plus-minus") screening of cDNA libraries 

constructed from metastatic and non-metastatic cells of the same tumour type, relying 

on the premise that the metastatic phenotype is associated with a change in the 

transcription of various genes (Dong et aI., 1995; Cajot et aI., 1997). Subtractive 

hybridisation, involves the physical removal of sequences of mRNA which are common 

to both populations of metastatic and non-metastatic cells, thus isolating mRNA which 

is different in the two populations (Lee et ai., 1996). A third technique involves the use 

of reverse transcription and the polymerase chain reaction to compare cDNA from 

paired metastatic and non-metastatic cells in a search for either genetic loss (putative 

tumour suppressor gene) or over-expression (putative oncogene) in cells with different 

metastatic potentials (Fidler and Radinsky, 1996). A second approach relies on the 

isolating of genes that encode for proteins of known functions involved in one or more 

steps of the metastatic cascade (Fidler and Radinsky, 1996). Thirdly, the karyotypic 

analysis of metastasising and non-metastasising cells from the same tumour can identify 

regions of chromosomal gains, which may predict the site of a putative oncogene, 

whereas regions of chromosomal loss may predict for a putative tumour suppressor gene 

(Mertens et ai., 1997). Karyotypic analysis involves the preparation of metaphase 

spreads from short term cultures of the tumour under investigation and provides a basis 

from which techniques such as fluorescence in situ hybridisation (FISH) can be used. 

Another technique which allows for the examination of the entire genome is 

comparative genomic hybridisation (CGH), (Kallioniemi et al., 1992). 
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1,7 COLORECTAL CANCER 

Colorectal cancer is the third leading cause of cancer deaths worldwide every year, 

after lung cancer and stomach cancer (Cancer Research Campaign, 1999). In the United 

Kingdom colorectal cancer was the second commonest cause of death due to cancer 

accounting for nearly 16,000 deaths in both men and women in 1994, with a reported 

incidence of approximately 29,000 (Office for National Statistics, 2000). 

1.7,1 Aetiology 

It is now generally accepted that most colorectal cancers arise from the progression 

from an adenoma to a carcinoma (Muto et aI., 1975). There are numerous aetiological 

factors, environmental and genetic, all interacting to initiate and promote the formation 

of an adenoma into a cancer (Wilmink, 1997). 

1.7,1.1 Environmental Factors 

A number of investigators have proposed that a diet high in fat (especially saturated 

fats), protein, calories, red meat and alcohol, and low in fibre, dietary fruit and 

vegetables, calcium, folate and other micro-nutrients are associated with an increased 

incidence of colorectal cancer (Haenszel and Kurihara, 1968; McKeown-Eyssen and 

Bright-See, 1985; Armstrong and Doll, 1975; Jacobs 1988; Vargas and Alberts, 1993). 

Several studies have shown a positive association between alcohol intake and colorectal 

cancer, possibly by stimulating mucosal cell proliferation and by activating pro­

carcinogens (Boutron and Faivre, 1993; Kune and Vitetta, 1992). Interestingly, aspirin is 

thought to have a protective effect against the development of colorectal cancer (Thun et 

aI., 1991; Smalley et aI., 1999) however, not all epidemiological studies have 

substantiated this claim (Gann et aI., 1993). 

Smoking has also been linked with the genesis and development of adenomas, with 

data directly linking the duration and the amount of smoking to the size of adenomas 

(Giovannucci et aI., 1994a, 1994b; Giovannucci and Martinez, 1996). 

The presence of inflammatory bowel disease is also thought to playa role in the 

development of colorectal cancer with patients with ulcerative colitis having an 

increased risk, especially if they were young and have extensive disease at diagnosis 
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(Ekbom et aI., 1990a). The risk in Crohns disease although initially less certain (Glotzer, 

1985), also appears to be associated with an increased risk of colorectal cancer, 

particularly if there is extensive colonic involvement (Ekbom et aI., 1990b). 

1.7.1.2 Genetic Factors 

Genetic factors were thought to play an important role after several cancer families 

were found. Studies divided these familial colorectal cancers into two groups, those 

characterised by the presence of multiple colorectal polyps (polyposis) and those 

without polyposis, hereditary non-polyposis colorectal cancer (HNPCC). 

There are several types of polyposis syndromes, which include; familial adenomatous 

polyposis coli (F AP), Peutz-Jeghers syndrome, Cronkkite-Canada syndrome and 

hyperplastic polyposis. F AP is an autosomal dominant inherited disorder, in which 

individuals are affected with hundred to thousands of adenomatous polyps, although 

only one to two ever become malignant. The average age of diagnosis of polyposis is 27 

years of age, with the median age of cancer in these patients at 39 years. The incidence 

of F AP in the United States is I in 5000 to 10,000 although only 1 % of all colon cancers 

occur in these patients because of the practise of prophylactic colectomy. A variant of 

F AP is Gardner syndrome, a rare autosomal dominant disease, where as well as the 

colonic manifestations there are also soft tissue tumours, osteomas, dental abnormalities 

and congenital hypertrophy of the retinal pigment epithelium (Gardner, 1951; Gardner 

and Plenk 1952; Gardner 1962). Another variant is Turcot's syndrome, a rare autosomal 

recessive disease, which is characterised by the presence of CNS tumours as well as a 

predisposition to colorectal cancer. 

HNPCC also displays an autosomal dominant inheritance pattern and is characterised 

by the early onset of colorectal cancers, which are predominantly right-sided and with 

multiple primary sites (synchronous and metachronous). There is also a predisposition 

to developing carcinoma of the ovary, endometrium, stomach, small bowel, ureters and 

renal pelvis (Lynch and Smyrk, 1996). The syndrome is diagnosed according to the 

Amsterdam criteria, where at least three relatives have had colorectal cancer, affecting 

two or more generations, one a first degree relative of the other two and diagnosed 

before the age of 50 years, all in the absence of F AP (Vasen et aI., 1991). HNPCC 

accounts for around 2-3% of all colorectal malignancies and of which there are two 

subtypes described; the Lynch I and Lynch II syndromes. Lynch syndrome I, or site-
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specific colorectal cancer is characterised by an early age of onset, on average 45 years 

and a predilection to proximal colon cancers (70%). In Lynch syndrome II or cancer 

family syndrome, frequent carcinomas in other organs occur in addition to this (Lynch et 

aI., 1985, 1993). 

The majority of colorectal cancer cases are sporadic with only 3-5% occurring in 

those with well-characterised inherited diseases. However, studies have shown that 

relatives of those with colorectal cancer have a higher than average lifetime risk of 

colorectal cancer. Therefore, a person may have a genetic predisposition to colorectal 

cancer, but environmental factors may initiate and/or promote tumourigenesis. Primary 

prevention therefore involves the identification of genetic and environmental factors that 

are involved in the aetiology of colorectal cancers. 

1.7.2 Clipical Coune 

Approximately 60-70%% of all colorectal cancers are located within the rectum, 

recto-sigmoid or sigmoid colon, 5% within the descending colon, 12% within the 

transverse colon and 22% within the ascending colon (Mortensen et aI., 1992). Clinical 

symptoms depend on the site of the tumour. Left sided tumours tend to present with 

prominent features of disturbance of bowel function such as malaena, diarrhoea and 

constipation, whereas, right-sided tumours tend to present with non-specific symptoms 

of weakness, weight loss and unexplained anaemia (Forrest et aI., 1991). All colorectal 

tumours spread by direct extension into adjacent structures and also by metastasis via 

the lymphatic and blood vessels. Sites of metastatic spread include the regional lymph 

nodes, liver, lung, bones and occasionally the brain (Dayal and DeLellis, 1989). 

Diagnosis relies on a careful history and examination, proctoscopy and 

sigmoidoscopy, faecal occult blood tests followed by either a colonoscopy or a double 

contrast barium enema. If the cancer is particularly large and especially if it is a rectal 

cancer, other imaging techniques may be used such as magnetic resonance imaging 

(MRI), computed tomography (CT) and/or transrectal ultrasonography, in order to 

assess the size of the tumour and to see if it is invading adjacent structures (Mortensen 

et aI., 1992). 

Useful blood tests include the measurement of CEA, which is raised in 19-40% of 

patients with early tumours and almost 100% of patients with large metastatic tumours 
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and has also proven to be a useful indicator of recurrence. However, raised levels of 

CEA may also be produced by cancers of the lung, breast, ovary, urinary bladder and 

prostate, and also in a variety of non-neoplastic disorders, such as alcoholic cirrhosis, 

pancreatitis and ulcerative colitis (Haier et aI., 2000). 

1.7.3 Treatmept 

The treatment options considered for a patient with colorectal cancer is dependant on 

the patient's clinical state and any co-morbid disease, the site of the tumour and the 

clinical stage of the disease as outlined in appendix I. Essentially, the treatment offered 

to a patient, must be in the best interests of the patient with due consideration of any 

morbidity or mortality as a result of the therapy. 

1.7.3.1 Surgery 

Surgery is the only curative treatment option for colorectal cancer. The cancer and 

involved bowel is excised together with the regional lymph nodes (which usually lie 

adjacent to the major blood vessels). The length of bowel resected is dependent on the 

site of the cancer and the blood supply to that part of the bowel (figure 1.3). If there are 

multiple tumours within the colon, a total colectomy may be performed, with the small 

bowel being anastomosed to the rectum. If tumours are also present in the rectum, a pan­

proctocolectomy is performed to excise the entire large bowel. This may be required for 

patients with F AP. For small polyps, a colonoscopic polypectomy may be all that is 

required, as long as the stalk of the polyp is clear of malignant invasion (Bond, 1993; 

Winawer et al., 1993; Byers et aI., 1997). 

Local recurrence rates for colorectal cancer are dependant on a number of factors 

including tumour involvement of either the circumferential or resection margins and on 

surgical technique, this is more so in the case of rectal cancer, where recurrence rates 

vary from 4-40%, depending on the operating surgeon. For rectal cancers, the technique 

of total mesorectal excision (where there is meticulous dissection outside the mesorectal 

fascia, with conservation of the nerve supply to the bladder and genital organs), offers 

the lowest local recurrence rates (Heald et aI., 1998). 
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Figure 1.3 The various surgical resections that can be performed for colorectal 

cancer (adapted from Mortensen et aI., 1992). 

Right hemicolectomy Left hemicolectomy 

Sigmoid colectomy Abdomino-perineal resection 

1.7.3.2 Chemotherapy 

Chemotherapy may be given either pre-operatively (known as neo-adjuvant 

chemotherapy) or post-operatively (adjuvant chemotherapy). Currently, adjuvant 

chemotherapy is only offered to patients with stage III (Dukes C) colorectal cancers, 

comprising of a combination of 5-fluorouracil (5-FU) with either levamisole or 

leucovorin (National Institutes of Health, 1990; Wolmark et aI., 1993). Adjuvant 

chemotherapy has also been given via the hepatic portal vein in an attempt to reduce the 

occurrence of liver metastases, however a randomised trial by the Swiss Group for 

Clinical Cancer Research revealed no survival differences between systemic 5-FU 

versus hepatic portal vein infusion (Laffer et al. , 1998). The use of adjuvant 

chemotherapy in patients with stage II (Dukes B) cancers remains controversial, but a 

recent large meta-analysis study claimed a survival advantage of 2% when surgery alone 
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was compared with surgery plus 5-FU/leucovorin (International Multicentre Pooled 

Analysis of B2 Colon Cancer Trials (IMP ACTB2), 1999). 

In stage IV (Dukes D) cancers, distant metastases are already present and 

chemotherapy has been administered either systemically or via a hepatic artery infusion 

in an attempt to be curative, however, there have been no consistent improvement in 

survival. Chemotherapy with 5-FU has been used palliatively, given either as a 

continuous infusion or in bolus doses (Moertel, 1994). Newer agents such as Irinotecan 

(CPT-II), a topoisomerase-I inhibitor and Tomudex, a specific thymidylate synthase 

inhibitor have recently been licensed for use in patients with metastatic disease, who 

have either not previously received chemotherapy or are refactory to 5-FU therapy 

(Rothenberg et aI., 1996; Conti et al., 1996; Cunningham, 1998; Von Hoff, 1998). 

Chemotherapy is not without side-effects, such as nausea, vomiting, diarrhoea, 

mucositis, neutropaenia, hair loss and malaise but, chemotherapy has demonstrated 

improved survival and quality of life when compared to supportive care alone 

(Scheithauer et aI., 1993). 

1.7.3.3 Radiotherapy 

Short-term radiotherapy (over five days) has yielded excellent results in terms of 

reducing local recurrent rates after surgery for small rectal cancers, while long-term 

radiotherapy has primarily been used to down size large rectal tumours (Marijnen and 

van de Velde, 2001). However, its main role has been in palliating recurrent tumours 

(Forrest et at, 1991). Some studies have shown that either neo-adjuvant or adjuvant 

radiotherapy reduces the incidence of local recurrence by up to 50%, though some 

researchers claim that radiotherapy may be compensating for imperfect surgery (Willett 

et aI., 1993; Schild et al., 1997). Radiotherapy is not without its side-effects, which 

include erythema to the skin, small bowel radiation enteritis, small bowel obstruction 

and perforation. The growing trend is for radiotherapy to be used for large tumours only. 

1.7.3.4 Biologic Therapy 

Newer treatment modalities are currently being developed such as immunotherapy 

and radio-immunotherapy. The use of monoclonal mouse antibodies to colorectal cancer 

(such as MOAB 17-1 A, which is an antibody directed to an epithelial cell surface 

glycoprotein present on normal and malignant cells), has been used successfully in the 
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laboratory setting and clinical trials are currently on-going (Colacchio, 1997; 

Riethrnuller et al., 1998; Pazdur et al., 1999). Radio-immunotherapy with radioactive 

iodine bound to anti-CEA monoclonal antibody and autologous tumour vaccines may 

also provide clinicians with other options in their armaments (Benson, 1996). 

1.7.4 Histopathology 

A single layer of epithelial cells lines the colon and rectal surfaces. These arise from 

4-6 stem cells, which are situated at the base of crypts. These stem cells give rise to a 

population of absorptive cells, mucus secreting goblet cells or neuroepithelial cells. 

These cells then migrate from the base of the crypts towards the apex, differentiating en 

route, where at the apex the cells slough off with the passage of faeces. This journey 

takes 3-6 days (Lipkin et al., 1963). 

Nonnally, the rate of genesis of these cells equals that of cell loss at the luminal 

surface. If however, the rate of genesis exceeds that of loss, then a tumour arises. This 

early tumour usually appears as a small elevated button or as a small polypoid mass. 

These epithelial tumours tend to produce polyps. These polyps can be divided into non­

neoplastic or neoplastic depending on whether they have malignant potential, however 

there is some overlap between the two. 

Generally, non-neoplastic polyps include: hyperplastic polyps, which histologically 

are composed of well fonned glands and crypts lined by well differentiated epithelial 

cells, and as stated have no malignant potential, but a small proportion of these with 

adenomatous foci may undergo neoplastic transfonnation; hamartomatous polyps, 

which represent developmental malfonnations resulting in lesions, which consist of 

essentially nonnal mucosal components but which are arranged abnonnally, malignant 

degeneration is extremely rare but can occur; inflammatory polyps, which occur in 

patients with long standing inflammatory bowel disease, predominantly in ulcerative 

colitis and rarely Crohns disease and lymphoid polyps, which occur as a result of 

mucosal protrusions secondary to reactive hyperplasia of the mucosal and submucosal 

lymphoid tissues (Dayal and DeLellis, 1989). 

Neoplastic polyps include a group of adenomas, which can be divided histologically 

into tubular, tubulo-villous and villous adenomas. They are differentiated on the basis of 
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the majority tissue present, whether it is tubular or composed of finger like papillae 

(villous type). 

There is a definite increase in the risk of cancer from tubular to tubulo-villous to 

villous type adenomas (Day and Morson, 1978). Increasing malignant potential also 

relates to the size of the polyp, and increases from 1 % if it is less than 1 cm in diameter 

to 10% ifit is between 1-2cm in diameter, and finally up to 45% ifit is greater than 2cm 

in diameter (Muto et aI., 1975; Day and Morson, 1978). Carcinoma in situ, i.e. without 

invasion of the underlying fibrovascular core or submucosa, of the colon is present in 

about 10% of villous adenomas, with frank invasive carcinoma in an additional 25-40% 

(Coutsoftides et aI., 1979). As the tumour increases in size it eventually extends to 

encircle the lumen, which can take up to one to two years. The deeper layers are invaded 

slowly, and so for a long time the tumour tends to remain superficial. 

Ninety-five per-cents of all colorectal carcinomas are adenocarcinomas, many of 

which produce mucin. Commonly this mucin is secreted within the gland lumen or 

within the interstitium of the gut wall. This secretion of mucin is thought to aid the 

extension of the cancer by dissecting the gut wall layers and thus leading to a poorer 

prognosis (Bresalier et al., 1998). 

1.7.5 Proposis 

Various factors influence survival after surgery, but the most important factors which 

determine prognosis are the stage (the extent of spread), tumour-free surgical margins, 

lack of lymphatic/blood vessel invasion and the grade (the level of differentiation) of the 

cancer (Hobday and Erlichman, 2001). 

Currently the most reliable indicator of prognosis is the stage of the disease. Staging 

can only be performed once the cancer has been excised and analysed by a pathologist. 

The characteristics that form the basis of the staging system are the degree of 

penetration of the tumour through the bowel wall, the presence or absence of lymph 

node metastases and the presence or absence of distant metastases, such as liver or lung 

metastases (figure 1.4). There are three widely used staging classifications, the Dukes, 

the Astor-Coller modified Dukes staging and the TNM classification (American Joint 

Committee on Cancer, 1997), (see appendix II). 
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Figure 1.4 Pathological staging of colorectal cancer (adapted from Dayal and 

DeLellis, 1989). 

Stage 1 - TI or T2, NO, MO 
(Dukes A) 

Stage III - Any T, N 1-3, MO 
(Dukes C) 

Stage II - T3 or T4, NO, MO 
(Dukes B) 

Stage IV - Any T, any N, Ml 
(Dukes D) 

Generally, the 5-year survival rates, when corrected for age is between 70-90% for 

Dukes' A and B cancers, 30-40% for Dukes' C cancers and less than 20% for those with 

distant metastases. The development of complications, particularly perforation or 

obstruction, adversely affects survival (Mortensen et aI. , 1992). However, if all patients 

including those with inoperable cancers are taken into account, the five-year survival 

rate is between 35-49%, which is particularly disheartening in view of the potential for 

cure, if the disease is diagnosed early (Dayal and DeLellis, 1989). 
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1.8 GENETICS OF COLORECTAL CANCER 

The clonal nature of cancer is that it is derived from a single cell. That cell has a 

growth advantage over its adjacent cells. as a result of a mutation in its genetic make-up. 

With successive cycles of cell division. further mutations occur. conferring further 

growth advantages for individual cells and also conferring abilities that enable them to 

metastasise and grow at distant sites (Nowell. 1976). 

The clonal nature of cancer as proposed by Nowell (1976) was examined in 

colorectal cancers by Vogelstein et al. (1987). They looked at the X chromosome in 

these cancers. A female has two X chromosomes. one derived from her mother and the 

other from her father. In any given cell only one of the X chromosome is active i.e. 

either the maternal or paternal X chromosome. When looking at normal colonic mucosa. 

inactivation of either chromosome is distributed equally throughout the population. 

however. in the case of benign or malignant tumours. there was a monoclonal pattern of 

X inactivation. This was consistent with other cytogenetic studies performed on many 

carcinomas (Martin et aI .• 1979; Reichmann et al.. 1981) and adenomas (Mitelman et 

a1.. 1974; Reichmann et a1.. 1985). 

It is generally accepted that there is a step-wise progression from adenoma to 

carcinoma, involving the accumulation of a number of genetic mutations. There appears 

to be two pathways in colorectal cancer tumourigenesis, the first involves gains and 

losses of chromosome segments (chromosomal instability), accounting for 

approximately 90% of all colorectal cancers and the other involving mutations of DNA 

mismatch repair genes (micro satellite instability), (Vogelstein et aI., 1988; Aaltonen et 

aI., 1993; Peltomaki et al., 1993; Ionov et aI., 1993; Thibodeau 1993). However, there 

may be a third pathway with alterations in the level of DNA methylation resulting in 

genomic instability (Jones and Gonzalgo, 1997; Breivik and Gaudernack, 1999). 

1.8.1 Chromosomal Instability Pathway of Colorectal Cancer Tumourigenesis 

The chromosomal instability pathway as proposed by Vogelstein et al. (1988), 

involves the sequential accumulation of several mutations: the loss or mutation of the 

APe gene on chromosome 5q; mutation ofK-ras; the loss of Dee on chromosome 18q 
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and the loss or mutation of p53 (figure 1.5). It also appears that accumulation. rather 

than the order of genetic mutations is important (Fearon and Vogel stein. 1990). 

Figure 1.5 The chromosomal instability pathway of colorectal cancer 

tumourigenesis (adapted from Fearon and Vogelstein. 1990). 

APC K-ras DCC/SMAD p53 

Nonnal Dysplasia Early Intennediate Late Carcinoma 
epithelium adenoma adenoma adenoma 

1.8.1.1 Chromosome 5g: The APe gene 

? 

Metastasis 

Chromosome 5q losses were reported to occur in 20-50% of colorectal cancers. but 

also of interest is the fact that loss of chromosome 5q sequences occurred not only in 

large cancers but also in small benign colorectal tumours. suggesting that the 

inactivation of this tumour suppressor gene occurred as an early event (Vogel stein et aI.. 

1988). Another line of evidence came from the examination of patients with familial 

adenomatous polyposis coli (F AP). where loss of 5q was visible on cytogenetic analysis 

(Herrera et al .• 1986). 

The area of alteration was a small region on chromosome 5q 21 (Bodmer et aI.. 1987; 

Leppert et al .• 1987). Four genes were mapped to this region MCC. TB2 (DP 1). SRP 19 

and APC (Joslyn et al .• 1991). The adenomatous polyposis coli (APC) gene is found to 

be mutated in the germ line of F AP patients and in some sporadic cancers (Nishisho et 

aI.. 1991). Most mutations occur in the central region of the APC gene. called the 

mutation cluster region (MCR). and usually result in COOH-terminally truncated 

proteins. Mutations in the first or last thirds of the APC gene are associated with a 

milder form of polyposis. termed attenuated polyposis (AAPC). which is associated with 

fewer polyps and a later time of onset (Spirio et aI.. 1993). Conversely. mutations in the 

central mutation cluster region are associated with a more severe phenotype. with 

thousands of polyps. an earlier age of onset and extra-colonic manifestations such as 

osteomas and retinal lesions (Polakis. 1995). The majority of mutations (60%) occur in 
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the mutation cluster region, which only accounts for 10% of the entire coding region. 

Almost all the mutations, of which there are 737 mutations recorded so far, are either 

nonsense mutations (30%) or frame-shift mutations (68%), resulting in a truncation of 

the APe protein (De Vries et aI., 1996; Beroud and Soussi, 1996). Approximately 80% 

of patients with FAP have been shown to have mutations of the APC gene. To 

determine the cause of F AP in the remaining 20%, Laken et al., (1999) used monoallelic 

mutation analysis (MAMA) to determine independently the status of each of the two 

APC alleles. They found that there was reduced expression from one of the two alleles 

suggesting that complete loss of both alleles is not necessarily required and that there 

may be an additional gene involved in F AP patients, such as APCL located on 19p 13.3 

which is a homolog of APC (Nakagawa et aI., 1998; van Es et aI., 1999). 

The importance of the APC gene in tumourigenesis comes from evidence collected 

from chimeric mice which produce a truncated APe protein and who develop on 

average 30-50 intestinal tumours by the age of 90 days, and are known as Min (multiple 

intestinal neoplasia) mice (Moser et aI., 1990). Homozygous mice for the mutation at 

the APC allele invariably die in utero, while those heterozygous for the mutation 

develop polyps from the third week onwards. Analysis of these polyps by Oshima et aI., 

(1995), showed that these polyps consisted of a microadenoma surrounded by normal 

intestinal epithelium. The analysis of the dissected microadenoma revealed loss of the 

wild-type allele with preservation of the mutant allele. Dietrich et aI., (1993) also found 

that a gene located on chromosome 4, was able to modify the number of polyps formed 

and was named Mom-l (modifier of Min-I). Halberg et al., (2000) also found that the 

combination of APC and p53 mutations in Min mice leads not only to an increased 

number of polyps but also to an increased malignant potential of these polyps. 

The wild-type APC is thought to be primarily involved in apoptosis (Morin et aI., 

1996). Immunohistochemical analysis indicates that the APe protein is located on the 

basolateral membrane and levels increase as the cell migrates from the base of the crypt 

upwards (Miyashiro et al., 1995). The APe protein is also thought to play an integral 

part in the intra- and inter-cellular signalling pathway and has several functional 

domains, some of which act as binding and degradation sites for ~-catenin. Beta-catenin 

is also involved in cell-to-cell adhesion, and plays an important role in the activation of 

E-cadherin (Rubinfeld et al., 1993). With the ability of the APe protein to bind to ~­

catenin, it may also inhibit the ~-cateninffCF regulated transcription of certain genes 
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such as c-myc (Morin et aI., 1997; He et aI., 1998). Another function of the wild-type 

APC protein is its involvement in chromosome segregation by binding to, and 

promoting the assembly of microtubules (Munemitso et aI., 1994; Smith et aI., 1994). 

1.8.1.2 The Ras Oncogene 

The first ras genes were identified as the transforming components of the Kirsten and 

Harvey rat sarcoma virus genomes. Later, other ras genes were found. Three very 

closely related proteins in the Ras family, H-Ras, K-Ras, and N-Ras were found to be 

the primary regulators of cell growth and are frequently mutationally activated in 

tumours, although K-Ras appears to be involved in malignancy much more frequently 

than either H-Ras or N-Ras (Bos et al., 1987; Forrester et aI., 1987; Bishop, 1991). 

The activated Ras protein hydrolyses GTP to GDP, and so may be involved in the 

transduction of signals (Roussel, 1998). It is also thought to act on the cytosolic 

serine/threonine protein kinase, Raf, where the activated Raf kinase phosphorylates 

another enzyme MAP (mitogen activating protein) kinase, which in turn acts on several 

target proteins some of which are involved in gene regulation. However, the RaflMAP 

kinase pathway is not the only pathway in altering gene expression and there are 

probably others (Neer, 1995; Pawson, 1995). 

Recently, the gene responsible for neurofibromatosis type 1 (NFl) was found to have 

GAP activity (Martin et aI., 1990). GAP's are negative regulators of ras and so if the 

healthy allele of NFl is lost, ras cannot be switched off (Haubruck and McCormick, 

1991). In 50% of colon cancers there is no ras gene mutation but in a few there was a 

mutation of NFl (Li et al., 1992). 

1.8.1.3 Chromosome 18g: The Dee and SMAD genes 

While 17p is the most common region of allelic loss in colorectal cancer, 

chromosome arm 18q is the site of the second most common region, lost in 

approximately 70% of cases (Vogelstein et aI., 1988). There are several tumour 

suppressor genes located on 18q. The first to be described was that for the Dee (deleted 

in colon cancers) gene located on chromosome 18q21.3 (Fearon et aI., 1990). The 

protein sequence of DCC is very similar to that of neural cell adhesion molecules that 

are involved in cell-to-cell adhesion (Cho et al., 1994). Loss of Dee may allow 

increased motility of the cells and thereby enhancing metastasis (Fearon et aI., 1990; 
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Goi et aI., 1998). Studies by Jen et aI., (1994) and later by Shibata et aI., (1996) found 

that colorectal cancers with either a loss of DCC gene or a loss of DCC expression had a 

worse prognosis in terms of liver metastasis, as compared to cancers which expressed 

DCC. However, Gotley et aI., (1996) found no cases of complete loss of DCC 

expression in either the primary or metastatic colorectal cancer. 

Interestingly, approximately 90% of pancreatic carcinomas also show allelic loss at 

18q. Hahn et aI., (1996) reported the identification of a putative tumour suppressor gene 

on chromosome 18q21.1, which was termed DPC4 (for homozygously deleted in 

pancreatic carcinoma, locus 4). The gene DPC4 coded for a protein which was very 

similar to the Drosophila Mad ('mothers against decapentaplegic') protein and the 

Caenorhabditis elegans Sma protein, both of which were implicated in signal 

transduction by members of the IGF-~ family, in these organisms (Sekelsky et aI., 1995; 

Hoodless et aI., 1996). Derynck et aI., (1996) proposed a revised nomenclature 

incorporating the Sma and Mad roots to form SMAD. DPC4 was designated as 

SMAD4. Subsequently other SMAD proteins were found to exist, all sharing a certain 

degree of homology. These were termed SMAD1, SMAD2, SMAD3 and SMAD5 

encoded for by genes situated on chromosomes 4q28, 18q21.1 (approximately 3Mb 

proximal to SMAD4), 15q21-22 and 5q31 respectively (Riggins et aI., 1996; Eppert et 

aI., 1996; Nakao et aI., 1997). All are involved in the signal transduction of the 

transforming growth factor-beta (TGF-~) family of cytokines, which also include 

activins, inhibins, bone morphogenetic proteins and Mullerian-inhibiting substance (Zhu 

et aI., 1998). Members of the TGF-~ family exert a wide range of biologic effects 

including regulation of cell growth, differentiation, matrix production and apoptosis. 

TGF-~ suppresses growth in normal cells, however, the action ofTGF-~ is further 

complicated because it can also increase the growth and metastatic potential of colon 

cancer cells (Huang et aI., 1995). They also play an important role in mouse 

embryogenesis, determining tissue differentiation and body plan (Waldrip et aI., 1998). 

Zhu et al., (1998) reported that disruption of the SMAD3 gene in mice resulted in the 

mice developing large colorectal neoplasms, which metastasised to the lymph nodes. 

Bruno et aI., (1998) showed that SMAD5 played a vital role in the signalling pathway by 

which TGF-~ inhibits the proliferation of human haematopoietic progenitor cells. 

- 31 -



1.8.1.4 The MCC gene 

The MCC (mutated in colon cancer) gene was identified on 5q 21 several months 

before the APC gene (Kinzler et aI., 1991; Lindgren et aI., 1992). Although there were 

several reported incidence of mutation in 6% of sporadic colorectal cancers, there were 

no mutations seen in 90 F AP kindreds (Nishisho et aI., 1991). Therefore, the role of the 

MCC gene in colorectal cancer tumourigenesis appears to be limited. 

1.8.1.5 Chromosome 17pI3.1: The p53 gene 

Certain DNA viruses can induce tumour formation. In particular, the SV40 DNA 

virus causes tumour formation through the activity of a protein called large T antigen. In 

order to understand the mechanism by which large T antigen induces oncogenesis, 

attempts were made to detect the host cell protein to which large T antigen binds. 

Immunoprecipitation of large T antigen from cells infected by SV 40 revealed a host cell 

protein of 53 kDa (known as p53) in addition to large T antigen itself (Lane and 

Crawford, 1979). 

The p53 gene was originally thought to be a proto-oncogene, partly because of its 

increased expression on tumours and because it was apparently able to transform rat 

embryo fibroblasts in collaboration with ras oncogenes (Eliyahu et aI., 1984). However, 

subsequent studies in colorectal cancers indicated that the wild-type p53 gene was a 

tumour suppressor gene and not a proto-oncogene. The studies in colorectal tumours 

consistently showed losses of 17p (Baker et aI., 1990). The common region of deletion 

was mapped to 17p 13.1 (lsobe et aI., 1986). 

Drawing on Knudson's "two-hit" hypothesis, it was hypothesised that loss of 17p 

13.1 removed one copy of the suppressor gene, while the remaining copy was mutant. 

The majority of somatic mutations of the p53 gene were single base substitutions (point 

mutations) resulting in a replacement of one of the amino acids (missense mutation). 

There are several sites at which mutations can occur, so called "hot spots" and this 

normally causes a loss of function (Nigro et aI., 1989; Malkin et aI., 1990; Hollstein et 

aI., 1991). Normal p53 protein exists as a tetramer and binds to specific DNA sequences 

and thus regulates the transcription of genes (Kern et ai., 1991). One of the genes that 

p53 protein regulates is the p21 gene (WAF llCIP 1) (EI-Deiry et aI., 1993), which codes 

for a protein that inhibits cyclin-dependant kinases, which control entry into the cell 

cycle (Waldman et aI., 1995). This is not the only pathway that controls cell cycle and 
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there are several others where p53 protein acts to control genes involved in cell 

proliferation, by either acting to induce apoptosis or arresting the cell in the G 1 phase, 

which may optimise the time available for DNA repair within the cell (Clarke et aI., 

1993). The interaction between certain DNA tumour virus proteins, such as the EIB 

protein of adenoviruses and the E6 protein of papilloma viruses can also result in the 

inactivation of many of the functions of the p53 protein, hence mimicking the effects of 

a mutation in the gene (Oliner et aI., 1992). 

Germline mutations in the p53 gene are responsible for the Li-Fraumeni cancer 

syndrome, characterised by an increased risk of early breast cancer, childhood sarcomas 

and other neoplasms. Carriers of a mutated p53 gene also have an increased risk of 

developing early cancers, with the likelihood of a cancer developing, increasing to 

nearly 90% by the time they are 65 years old (Malkin et aI., 1990). Interestingly, p53 is 

not required for the normal development of the embryo in mice, but these mice are more 

susceptible to tumour formation (Donehower et aI., 1992). Also worthy of note, is that 

cancers without functional p53 protein are resistant to DNA damaging chemotherapeutic 

agents, as the cell continues to divide and does not undergo apoptosis, such as Wilm's 

tumour and B-CLL. Tumours that have low proportions of p53 mutations such as 

testicular tumours are more sensitive to DNA damaging chemotherapeutic agents. 

It is notable that the genes identified in colorectal tumours affect almost all the 

cellular compartments; APC in the cytoplasm, ras at the cell membrane and p53 within 

the nucleus, and that they also have similar sites of action, such as on TGF-p. 

Suggesting that normal cells have evolved several levels of cellular protection and that 

many of these protective mechanisms must be disassembled before a cancer can develop 

(Kinzler and Vogel stein, 1998). Even when malignancy does occur, the subclones 

continue to evolve, developing varying degrees of metastatic capability, together with 

radiation and drug resistance (Nowell, 1976). It must be noted that not all tumours have 

abnormalities of p53 or APC and not all have ras mutations, it can therefore be assumed 

that there are also other pathways involved in colorectal tumourigenesis (Kinzler and 

Vogelstein, 1998). 
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1,8,2 Microsatellite Instability Patbway of Coloredal Cancer Tumouriaennis 

Microsatellites are short tandemly repeated base sequences that occur randomly 

throughout the genome and may be of varying sizes both between cells and individuals 

(Bocker et aI., 1997). A microsatellite sequence is defined as two or more bases, which 

are repeated e.g. CACAo Microsatellites may be either monomorphic and show no 

variation between individuals or polymorphic, showing a variety of sizes. Very 

occasionally, the length of a microsatellite changes between one cell and its offspring 

after cell division, which has been ascribed to a slippage by DNA polymerase during 

DNA replication (Frayling, 1999). Slippage is where one DNA strand rides over its 

complementary partner and is more likely to happen in regions of repetitive sequences 

probably because DNA polymerase is less able to process through these regions (Strand 

et aI., 1993). When this alteration is found somatically in tumour cells, as compared to 

normal tissue cells, it is termed replication error. Thus, tumour cells showing changes in 

microsatellite lengths are termed replication error positive (RER+). Genes involved in 

the detection and repair of these replication errors are termed DNA mismatch repair 

genes. Mutations in these DNA mismatch repair genes lead to microsatellite instability 

(MSI), thus the terms replication error positive and microsatellite instability can been 

used interchangeably. The presence of MSI has been further categorised into MSI-H 

(when MSI is present in more than 30% of micro satellites examined) and MSI-L «30% 

of microsatellites examined), (Boland et aI., 1998). This generalised genomic instability 

may affect cancer-related genes and result in tumour formation (Aaltonen et aI., 1993; 

Peltomald et aI., 1993; Thibodeau 1993; Ionov et aI., 2000; Janin, 2000). Genes that 

could possibly be inactivated due to frame-shift mutations include those with long 

microsatellite tracts such as TGFp receptor II gene (where TGFp is known to inhibit 

growth and induce apoptosis), the BAX gene (which also induces apoptosis) and the 

APe gene (Janin, 2000). 

Microsatellite instability has been found in up to 90% of tumours of the hereditary 

non-polyposis colorectal cancer (HNPCC) syndrome (Aaltonen et aI., 1993) and in 

nearly 20% of sporadic colorectal cancers (Thibodeau et al., 1993; Aaltonen et aI., 1993; 

Kim et aI., 1994; RUschoff et aI., 1995). The incidence of HNPCC is around 2-3% of all 

colorectal malignancies (Evans et al., 1997) and are characterised by early onset of 

colorectal cancer (usually before the age of 50 years), location of tumours in the right 
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side of the colon, and an increased risk of developing tumours in other organs such as 

the uterus, stomach, bladder, small intestine and ovary (Marra and Boland, 1995). Sites 

where there is a rapid turnover of cells and where cells are sloughed off as a result of 

nonnal physiological processes (Peltomaki and de la Chapelle, 1997). Janin (2000), 

proposes that the loss of the remaining wild-type allele of an MMR gene in RER+ 

cancer prone individuals occurs many times in a number of cells at sites where there is a 

continuous proliferation of cells, the ensuing genetic instability then leads to the 

accumulation of numerous mutations in a number of genes, which can then either lead 

to carcinogenesis or early senescence and apoptosis. The mutated cells, which have 

escaped apoptosis and have not been sloughed off, could then continue to mutate at an 

explosive rate, fonning the so-called "aggressive polyp". This hypothesis could explain 

why several cases of advanced cancers have occurred in patients less than three years 

after nonnal colonoscopic screening (assuming these polyps were not missed at the 

initial screening). However, the small bowel also has a rapid turnover rate of mucosal 

cells and yet the risk of small bowel tumours is only 1 % compared to the risk of 

colorectal cancers in hereditary non-polyposis cancer syndrome, which is close to 80% 

(Aarnio et al., 1995). This may be explained by the differing luminal environments at 

the two sites, where differences in water and potential carcinogen contents could affect 

the selection of these mutated cells (Janin, 2000). The effect of environment could also 

explain why the majority of endometrial cancers, in HNPCC kindreds, occur in pre­

menopausal women as compared to post menopausal women as the hormone dependant 

endometrium proliferation, leads to an increased risk (Aarnio et aI., 1995). Conversely, 

the absence of childhood tumours could be explained by a more efficient induction of 

apoptosis in young stem cells, which may become less efficient with increasing age 

(Jan in, 2000). 

The microsatellite instability found in colorectal cancers is very similar to that found 

in yeast, where mutations in DNA mismatch repair (MMR) genes cause a 100-700 fold 

increase in microsatellite instability. The first human MMR gene MSH2 (MutS 

homologue 2) was so called because of its close similarity to the MMR homologue, 

MutS. The second major locus found to be mutated in HNPCC was identified as MLH J 

(MutL Homologue 1). Other MMR genes have also been identified: PMSJ and PMS2, 

so called because mutations in these genes cause aberrations in the post-meiotic 

segregation of chromosomes (Baker et aI., 1995), and GTBPIMSH6 (G:T mismatch 
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binding protein). The human homologue of these yeast genes, are represented by 

hMSH2, hMLHI, hPMSI and hPMS2 which are located on chromosomes 2, 3, 2 and 7 

respectively (Nicolaides et aI., 1994; Papadopoulos et aI., 1994). Liu et at., (1996) found 

that the majority (90%) of micro satellite instability found in HNPCC patients was 

associated with mutations of MSH2 and MLH 1, a very small percentage are associated 

with mutations of PMSJ and PMS2 and none with mutations ofGTBPIMSH6. Although 

no mutations of GTBPIMSH6 were found in colorectal cancers from patients with 

HNPCC, endometrial cancers showing microsatellite instability from HNPCC kindred 

do show mutations in GTBPIMSH6 (Wijnen et aI., 1999). Another DNA mismatch 

repair gene, MSH3 (MutS homologue 3), located on chromosome 5q, although not 

directly implicated in HNPCC, has been found to be mutated in some colorectal cancers 

from HNPCC patients (Akiyama et aI., 1997). 

The tumours that develop with microsatellite instability are usually situated in the 

right side of the colon, have a near diploid chromosomal constitution and are thought to 

be less aggressive in terms of growth, rate of relapse or recurrence, and metastases as 

compared to the tumours associated with loss of heterozygosity for genes (Lothe et aI., 

1993; Thibodeau et al., 1993; Bubb et aI., 1996; Myrhoj et aI., 1997). These tumours are 

also less likely to have loss of heterozygosity on 5q, 17p and 18q (Thibodeau et aI., 

1993; Kim et aI., 1994). 

DeWeese et aI., (1998) reported that mouse embryonic stem cells from mice carrying 

mutations in either one or both alleles for MSH2, displayed an increased survival 

following protracted exposures to low level ionising radiation as compared to wild-type 

embryonic stem cells. The increased survival was attributed to a failure to execute 

apoptosis efficiently, when a defect in DNA mismatch repair was present. There is also 

preliminary evidence that the presence of MSI might also confer increased resistance to 

the cytotoxic effects of alkylating agents of the types used in cancer chemotherapy (Fink 

et aI., 1996; Carethers et al., 1999). 

1.8.3 Methylatjou as a Pathway for Coloreetal Capcer Tuwouduucsjs 

Primordial germ cells and embryonic stem cells can progress through the cell cycle 

and divide without any detectable levels of DNA methylation (Lei et aI., 1996). 

However, once differentiation begins, DNA methylation is essential for the cell's 
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viability (Baylin et aI., 1998; Okano et al., 1999) and appears to play an important role 

in stabilising the active (euchromatic) and inactive (heterochromatic) DNA regions 

(Bird, 1992). 

It is known that in colorectal cancer cells there is generalised hypomethylation of the 

genome. In normal cells, about 80% of the 51_CO_3 1 dinucleotides are methylated and it 

is thought that methylation plays a role in gene expression and chromosome 

condensation (Bird, 1992). In mammalian cells, DNA methylation occurs at the 5-

position of cytosine within the CpG dinucleotide with approximately 70% of all CpG 

dinucleotides being methylated. The distribution of these CpO dinucleotides is not 

random within the genome, but appears to be concentrated in small genomic regions 

called "CpG islands," and which appear to reside within or near the promoter regions of 

various genes, where methylation apparently impairs the ability of transactivating 

factors to bind and initiate gene expression (Goel et aI., 2001). Conversely, the same 

mechanism has been found to silence tumour suppressor genes in a variety of tumours 

(Herman et aI., 1998). This distinct pathway, involving transcriptional silencing in 

selected genes in cancer has been termed CpG island methylator phenotype (CIMP), and 

is distinct from age-related methylation which has been observed in gene promoters as a 

function of age (Toyota et aI., 1999). 

The majority of tumour cells have less methylation than normal cells but, in 

conjunction with this generalised hypomethylation is a region specific gain of 

methylation within the CpO islands, which is associated with an increase in activity of 

the DNA methyltransferases (Baylin et aI., 1991; Laird and Jaenisch, 1994; Jones, 

1996). Genes which can become silenced by CpG island hypermethylation, include; the 

retinoblastoma gene, the Von Hippel-Lindau gene, the E-cadherin gene and the cyclin 

dependant kinase inhibitor genes, p 16 and p 15 (Baylin et aI., 1998). Thus, alterations in 

the level of methylation in genes can either activate normally silenced genes or silence 

normally active genes (Baylin et aI., 1998; Robertson and Wolffe, 2000). 

A correlation between micro satellite instability and aberrant DNA methylation has 

also been recently highlighted, with a strong association between CpO island 

methylation and MSI being reported in sporadic colorectal cancers (Ahuja et aI., 1997; 

Viegl et al., 1998; Miyakura et aI., 2001; Hawkins et al., 2002). Yamamoto et ai. (2002), 

analysed both hereditary (from HNPCC patients) and sporadic colorectal cancers for 

aberrant DNA methylation, and stated that 53% of the sporadic colorectal cancers with 
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high-level microsatellite instability (MSI-H) also exhibited CpG island methylation 

whereas only 23% of the HNPCC tumours did so. Concluding that the differential 

methylation within these CpG islands, may be associated with divergent developmental 

pathways in hereditary and sporadic colorectal cancers, despite both exhibiting similar 

MSI-H phenotypes. 

1.8.4 A Genetic Model for Coloredal Cancer Tumourigenesis 

Thus, the process of colorectal tumour evolution is probably the interaction of several 

mechanisms; chromosomal instability, microsatellite instability, methylation and 

probably others, as yet not described (figure 1.6). 

Figure 1.6 A genetic model for coloredal cancer tumourigenesis. 
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1.9 COLORECTAL CANCER METASTASIS 

Colorectal cancers can metastasise to a variety of organs. Sites of metastatic spread 

include the regional lymph nodes, liver, lung, bones and occasionally the brain (Weiss et 

ai., 1986). Liver metastases are present in 15-25% of patients at the time of diagnosis of 

colorectal cancer and another 20% of patients will develop liver metastases following 

resection of the primary tumour (Ballantyne and Quin, 1993; Fong et aI., 1996). The 

median survival time of patients with liver metastases from colorectal cancer, and 

receiving no treatment for these metastases, is less than 1 year (Ballantyne and Quin, 

1993). Thus, metastases represent a significant cause of morbidity and mortality in 

patients with colorectal cancer. 

1.9.1 Diagnosis of Liver Metastases 

In the case of colorectal cancer, prospective studies indicate that serial serum 

carcinoma embryonic antigen (CEA) assays are the most effective screening method for 

the detection of subsequent metastases, with 85-90% of patients with liver metastases 

having an elevated CEA (Kemeny et ai., 1982). Investigations prior to any therapy 

include a detailed history and examination, CT scan of the chest, abdomen and pelvis 

and regional imaging of the liver with magnetic resonance imaging (MRI) and possibly 

angiography (Fong et al., 1996). 

J .9.2 Treatment or Metastases 

Several modalities exist for the treatment of liver metastases; liver resection surgery, 

systemic chemotherapy, hepatic artery chemotherapy of the liver, cryoablation, 

microwave coagulation therapy, radiation therapy, chemo-embolisation, ethanol 

injection and laser photocoagulation (reviewed in Geoghegan and Scheele, 1999; 

Shibata et ai., 2000). Although all of these therapeutic methods may offer some 

palliative benefit, none of them provides satisfactory effectiveness in the control of liver 

metastases as compared to liver resection performed in selected patients. Thus, liver 

resection remains the treatment of choice, if feasible (Shibata et aI., 2000). 

- 39-



1.9.2.1 Chemotherapy and De-arterialisation 

Chemotherapy may be administered either systemically or regionally directly to the 

liver. Recently, the National Institute for Clinical Excellence, (2002), published 

recommendations on the use of chemotherapy in patients with colorectal cancer 

metastases confined to the liver, when shrinkage of the metastases might permit 

potentially curative surgery, recommending 5-fluorouracil (5-FU)/folinic acid and 

oxaliplatin as first line combination therapy and irinotecan as second line monotherapy. 

However, multidrug resistance is found in virtually all colorectal cancers and appears to 

be an inherent property of colonic mucosa cells (Fong et aI., 1996). The exact 

mechanism of 5-FU inactivation is not completely understood, but future trials of 

chemotherapeutic agents may incorporate biologic studies of cancer cells in the hope of 

identifying cancer cells resistant to 5-FU and so direct therapy using other 

chemotherapeutic agents (Leichman et aI., 1995). 

As the liver metastasis grows it begins to derive most of its blood supply from the 

hepatic artery as compared to the hepatic portal veins, whilst the normal hepatocytes 

derive their blood supply mostly from the portal circulation (Breedis and Young, 1954). 

Thus, hepatic artery chemotherapy would preferentially target the growing liver 

metastases. However, hepatic artery chemotherapy is not without significant 

complications and as yet has not been shown to improve survival as compared to 

systemic chemotherapy (reviewed in Geoghegan and Scheele, 1999). Similarly, 

occlusion of the hepatic artery should have a greater effect on the tumour than the 

normal liver. Three main approaches have been employed; embolisation, hepatic artery 

ligation and intermittent occlusion of the hepatic artery using an implanted intra-arterial 

balloon (the use of intermittent occlusion is an attempt to prevent the development of a 

collateral circulation from the portal vein circulation). Only a few studies have been 

undertaken investigating the usefulness of de-arterialisation, all with inconclusive 

results (reviewed in Fong et aI., 1996). 

1.9.2.2 Cryoablative and Mi~rowave Coagulation Therapy 

Rapid freeze/thaw of tissues results in cellular crystal formation and is associated 

with significant cellular damage and cell death. This cytotoxic effect is the basis of 

cryoablative therapy of liver metastases (Hass and Taylor, 1948). It appears to be a safe 

and effective procedure in experienced centres, however, complications can arise such 
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as; intra-operative hypothennia, cardiac dysrhythmias, cracking of the ice ball resulting 

in catastrophic haemorrhage, pleural effusions, liver abscesses, bilomaslbile fistulae, 

myoglobinuria resulting in acute renal failure, cryoshock (a phenomenon similar to 

septic shock, but without any evidence of infection) and death (Seifert et aI., 1998). Its 

efficacy as a curative treatment has yet to be established. 

Microwave coagulation therapy was first developed in the late seventies, primarily 

for use in liver surgery as a method of cutting and coagulating the bleeding surface 

simultaneously (Shibata et aI., 2000). Its use in the treatment of colorectal cancer liver 

metastases is only recent and its efficacy has yet to be established. However, it has been 

used successfully in the treatment of hepatocellular carcinoma (Hamazoe et aI., 1995). 

Shibata et aI., (2000) reported a prospective study comparing microwave coagulation 

therapy with liver resection surgery and found similar survival rates in both groups, 

concluding that microwave coagulation therapy was equally effective in the treatment of 

multiple metastases and also associated with less blood loss. Further prospective large­

scale studies will need to be undertaken to verify their results. 

1.9.2.3 Surgery 

Surgical resection however, remains the treatment of choice for liver metastases and 

as yet remains the only modality that offers any chance of a cure (Fong et aI., 1996; 

Harmon et al., 1999). 

Several surgical liver resections are possible as well as isolated segmentectomy 

(Blumgart, 1994), but curative resection is dependant on the complete removal of the 

tumour with clear margins of at least 1 cm (Shirabe et aI., 1997; Cady et aI., 1998). 

A number of factors are involved in influencing prognosis in patients undergoing a 

liver resection. Age, gender, primary tumour grade and primary tumour location are not 

major factors. Factors associated with a poor prognosis includes; symptomatic clinical 

presentation, extensive disease affecting more than 50% of the liver, the presence of 

four or more metastases, metastases greater than Scm in diameter, the presence of 

satellite metastatic lesions, regional lymph node metastases, the presence of portal vein 

invasion, hepatic vein invasion, the presence of tumour in the resection margins 

indicating that residual tumour may be present and interestingly the absence of a fibrous 

pseudocapsule on histological examination (Ballantyne and Quin, 1993; Ambiru et aI., 
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1999; Nagashima et aI., 1999; Yamamoto et aI., 1999; Okano et at, 2000; Rodgers and 

McCall, 2000). 

Liver resection in selected patients is associated with a 30-40%, five-year survival 

and a 20% long-term disease free survival, with an associated mortality of less than 5% 

in experienced centres. The majority of deaths arise from either, peri-operative 

haemorrhage, infection or liver failure (Fong et aI., 1996; Harmon et aI., 1999). Major 

complications include bile leak and biliary fistula (3-8%), peri-hepatic abscesses (2-

10%), pneumonia (5-22%), significant haemorrhage (1-3%) and liver failure (3-8%) 

(Schlag et aI., 1990; Doci et aI., 1991; Scheele et aI., 1991; Ballantyne and Quin 1993; 

Harmon et aI., 1999). 

In patients in whom liver resection surgery is not performed, the duration of survival 

is closely related to the extent of liver involvement, where the one-year survival is 60% 

in patients with a solitary liver metastasis but is less than 10% in patients with 

widespread liver disease (Wood et aI., 1976). There are several retrospective case­

controlled studies comparing hepatic resection with no resection, five-year survival in 

the resectional group was approximately 25% but was less than 5% in the non­

resectional group (Wilson and Adson, 1976; Scheele et at, 1991). 

Most patients surviving after liver resection surgery die of recurrent disease, 

indicating that microscopic disease is present at the time of the surgery, the most 

common sites for recurrence being the liver and lungs (Ekberg et aI., 1987). At present 

the use of adjuvant chemotherapy after liver resection surgery for colorectal cancer 

metastases remains unproven, but since the liver is the prime site of recurrence, hepatic 

artery chemotherapy may provide a useful modality (Koea and Kemeny, 2000). 
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1.10 UVEAL MELANOMA 

Melanoma of the uveal tract (iris, ciliary body and choroid) is the commonest 

malignancy of the eye, with 5-7 cases per million population each year in the USA. 

Uveal melanomas can be divided into two sub-types, anterior affecting the iris and 

posterior affecting the ciliary body and choroids, with the most common subtype being 

the posterior melanoma, which affects 80% of all patients (Char, 1997). Uveal 

melanomas are rare in childhood, with the median age at diagnosis for posterior 

melanomas being 55 years (Egan et aI., 1988), whilst for iris melanomas the average age 

of presentation being in the mid forties (Rennie, 1991). 

1.10.1 Aetiology 

There are a number of risk factors associated with the development of uveal 

melanomas, which include pre-existing ocular naevi, ocular melanocytosis, primary 

acquired melanosis, eye colour, skin colour, cutaneous naevi, ultra-violet light and 

genetic factors, but as yet no definitive causative factor has been found (Egan et aI., 

1988; Seddon et al., 1990). 

Familial occurrences of uveal melanoma appear to be rare, however in a survey of 

kindreds with a first degree relative also affected with uveal melanoma, it was shown 

that these cases were unlikely to be due to coincidence, suggesting that a genetic 

predisposition to uveal melanoma was present in these families (Singh et aI., 1996). 

Some cases of uveal melanoma may indeed be related to systemic hereditary cancers, 

with some evidence to suggest a link between uveal melanoma and, breast and ovarian 

cancers (Sinilnikova et al., 1999). Certain pre-neoplastic syndromes have also been 

associated with the predisposition to uveal melanoma. Familial atypical multiple mole 

and melanoma syndrome (FAMM-M), also known as dysplastic naevus syndrome is an 

autosomal dominant inherited syndrome, characterised by the presence of large numbers 

of irregular and multi-coloured naevi and a hereditary susceptibility to cutaneous 

melanoma and possibly uveal melanoma (Singh et aI., 1995). Congenital ocular 

melanocytosis is a disorder characterised by melanocytic hyper-pigmentation and which 

is associated with melanomas of the uveal tract, optic nerve, skin and the central 

nervous system (Kanski 1999). 
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1.10.2 Clinical Course 

The majority of uveal melanomas occur in the choroid, followed by tumours in the 

ciliary body, with tumours occurring in the iris the least common. Melanomas of the iris 

are relatively slow growing and rarely metastasise, with a 5-year survival of 

approximately 95%. Iris melanomas are generally detected at an early stage and are 

usually small. Posterior melanomas tend to be more malignant, are usually detected later 

and metastasise more frequently than iris melanomas, presenting with either blurred 

vision in the case of ciliary body melanomas or with symptoms similar to that of retinal 

detachment (flashing lights or visual shadows), in the case of choroidal melanomas 

(Rennie, 1991). 

Diagnostic investigations include slit lamp biomicroscopy, ultrasonography, 

indocyanine green angiography, CT and/or MRI and fine needle aspiration biopsy in 

selected cases. A general medical examination is essential in order to either exclude a 

metastasis to the choroids (most frequently from the lung or breast, but occasionally 

from the kidneys or gastrointestinal tract), and to detect any metastatic spread to either 

the lungs or the liver (Kanski, 1999). 

1.10.3 Treatment 

Iris melanomas can generally be managed conservatively, with careful observation 

and serial photography for small asymptomatic tumours, but surgical intervention may 

be required for large tumours or those that are growing rapidly and have become 

symptomatic (Geisse and Robertson, 1985). Surgical options include broad iridectomy 

for small tumours, iridocyclectomy for tumours invading the corneo-conjunctival angle 

or enucleation for large diffusely growing tumours (Kanski, 1999). 

The management of posterior melanomas is more complex, with treatment being 

individualised for each patient taking into consideration the size and location of the 

tumour, together with the state of the unaffected eye and the general fitness of the 

patient. However, there is still no general consensus as to the management of these 

melanomas and a number of treatment options are available. A major clinical trial, The 

Collaborative Ocular Melanoma Study (COMS) is in progress in order to address this 

question. Treatment options include, careful and frequent observation of asymptomatic 
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small tumours (Barr et aI., 1978; Thomas et aI., 1979), local irradiation with either 

cobalt-60 or iodine-125 plaques (Shields et aI., 1982; Packer et aI., 1992), proton beam 

(Seddon et aI., 1986; Gragoudas et aI., 1988) or helium ions (Char et aI., 1990) and 

enucleation with or without external-beam irradiation (Fine et aI., 1989). 

1.10.4 Prognosis 

A number of factors influence prognosis. The most important are size, location, cell 

type, extra-ocular extension and cytogenetic abnormalities (Gragoudas et aI., 1991; 

White et aI., 1998). The selection of treatment modality depends on the location 

(whether iris, ciliary body or choroid), size, any co-morbid conditions that the patient 

suffers from and whether any extra-ocular invasion or metastases have occurred 

(Gragoudas et al., 1991). 

The size of the tumour is determined by its elevationlheight and basal diameter. 

Small tumours are 2-3mm or less in elevation, medium-sized tumours range from 2-

3mm up to 10mm in elevation and have a basal diameter of up to 16mm and large 

tumours have a basal diameter of more than 16mm with an elevation greater than 

10mm, where large tumours are associated with a poorer prognosis (McLean et aI., 

1982; Sato et aI., 1997). 

Uveal melanomas can be further classified according to the major cell type present 

within the tumour. These are the spindle cell variety (types A and B) and non-spindle 

cell variety (epithelioid melanomas, mixed cell type melanomas and necrotic 

melanoma). Patients with tumours composing of spindle cells have a better prognosis 

than those with non-spindle cells (Jensen, 1982). 

The major determinant for prognosis as in the case of colorectal cancers is the extent 

of local spread and the development of metastases (Rennie, 1991). 
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1.11 GENETICS OF UVEAL MELANOMA 

Uveal melanomas unlike most solid tumours are amenable to karyotypic studies and 

also seem to have relatively simple chromosomal abnormalities (Horsman and White, 

1993; Wiltshire et aI., 1993). Early reports suggested that abnormalities of chromosomes 

I, 6, 3 and 8 (in particular isochromosome 8q) were associated with posterior 

melanomas (Horsman et aI., 1990; Prescher et aI., 1990, 1992; Sisley et aI., 1990, 1992; 

Horsthemke et aI., 1992; Dahlenfors et al 1993; Horsman and White, 1993; Gordon et 

aI., 1994; Singh et aI., 1994; Speicher et aI., 1994; Ghazvini et aI., 1996; Becher et aI., 

1997). Later studies confirmed these early findings and also associated monosomy 3 and 

increase in 8q with tumours of the ciliary body, which are also associated with a poorer 

prognosis (Prescher et aI., 1996; Sisley et aI., 1997; White et aI., 1998). It was initially 

postulated that monosomy 3 was the primary event with gains of chromosome 8q as a 

secondary event in the development of uveal melanomas (Prescher et aI., 1994). 

However, it has been shown that both monosomy 3 and gain of 8q are independent 

indicators of poor prognosis, with additional copies of 8q being directly related to 

reduced survival (Sisley et aI., 1997). 

Numerous tumour suppressor genes are thought to be located on chromosome 3, with 

deletions of chromosome 3 being a frequent finding in a number of malignant tumours, 

such as lung, renal and cervical cancer (Kok et aI., 1997). Loss of heterozygosity of 

chromosome 3 in uveal melanomas can also occur through the loss of one copy of 

chromosome 3 followed by the duplication of the remaining copy, thus resulting in a 

functional monosomy, termed isodisomy, and so on cytogenetic analysis appears to be 

normal with two copies of chromosome 3, but by molecular analysis there appears to be 

only one copy (White et aI., 1998). Similarly, gain of 8q also appears to be a consistent 

finding in a number of malignant tumours, notably breast, endometrial and ovarian 

cancers, with the amplification of the c-myc oncogene appearing to playa major role in 

tumourigenesis (Fejzo et aI., 1998). 

There are as yet no prospective studies analysing chromosomal abnormalities of 3 

and 8 with long-term follow-up, but there have been several retrospective studies 

relating the presence of monosomy 3 and gains of 8q to a worse prognosis (Prescher et 

aI., 1996; Sisley et aI., 1997; White et aI., 1998). 
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1.12 UVEAL MELANOMA METASTASIS 

The major routes of spread for uveal melanomas are by local invasion and metastatic 

spread via the blood stream (haematogenous metastasis). The uveal tract is extremely 

vascular but has no lymphatic system and so when regional lymph nodes are involved 

(pre-auricular, sub-mandibular and cervical nodes), it is usually as a result of sub­

conjunctival extension of the primary tumour. Uveal melanomas invariably metastasise 

to the liver, accounting for 70-90% of all metastatic cases, with other sites including the 

skin (24%), presenting as subcutaneous nodules, the lungs (7%) and the vertebrae (7%) 

(Kath et aI., 1993; Luyten, 1996; Char, 1997). 

The majority of patients show no evidence of metastases at the time of presentation 

of the primary tumour (Gragoudas et aI., 1991), with the incidence of metastases 

peaking usually at 2-4 years after primary enucleation (Diener-West et aI., 1992), but 

may present many years after the primary has been excised (Shields et aI., 1985). 

Therefore, it is likely that metastases have already been established, as micro­

metastases, prior to the detection of the primary tumour (Wang et aI., 1993). As a 

consequence, by the time liver metastases present clinically, resectional surgery is not 

possible as the metastases tend to be multiple, and present within both lobes of the liver 

(Salmon et aI., 1998; Pyrhonen, 1998), thus, liver metastatic tissue from uveal 

melanomas is rarely available for study. Consequently, prognosis is generally poor, with 

a 5-year tumour-related mortality of between 16-53% (McClean et aI., 1982; Diener­

West et aI., 1992; Kath et aI., 1993). Most studies have reported a recurrence rate of 

approximately 20-30% within 5 years following treatment (Pach et aI., 1986; Gamel et 

aI., 1992). 
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1.13 AIMS OF THE STUDY 

Liver metastases pose significant morbidity and mortality to patients with colorectal 

cancer, occurring either synchronously or several years after the primary tumour has 

been resected, and as yet no specific histopathological or genetic factor is available to 

predict the development of metastases. The principle aim of the study was to identify 

either a single or set of genetic abnormalities which could predict the development of 

liver metastases. 

At the commencement of the study no protocol was in place for the collection and 

storage of fresh-frozen specimens of primary colorectal cancers and their liver 

metastases, and as such multi-centre ethical approval was sought and obtained prior to 

establishing collection, storage and analysis of tumour specimens. Since this would take 

time to institute, and the prospective collection of uveal melanomas had already been 

established for several years, the decision was taken to commence analysis of archival 

formalin-fixed paraffin-embedded colorectal cancer and their liver metastases and 

simultaneously that of the fresh-frozen uveal melanoma samples, prior to the analysis of 

fresh specimens of colorectal cancers and their liver metastases. 

Abnormalities of chromosomes 3 and 8 are known to be associated with liver 

metastasis in the case of uveal melanomas and as such would provide a starting point for 

our study into the genetic changes involved in the development of liver metastases from 

primary colorectal cancers and uveal melanomas. Thus, the study was divided into three 

main phases, which were as follows: 

1. The analysis of abnormalities in copy numbers of chromosomes 3 and 8 in primary 

colorectal cancers and uveal melanomas with their paired liver metastases, using 

fluorescent in situ hybridisation (FISH), in order to establish the clinical significance 

of changes in copy numbers of chromosomes 3 and 8 with liver metastasis and to 

assess the feasibility and efficacy of FISH to predict prognosis. 

2. The analysis of gross genomic changes in primary colorectal cancers and uveal 

melanomas compared with their liver metastases using comparative genomic 

hybridisation (CGH), in an attempt to elucidate any specific chromosomal 

abnormalities associated with liver metastasis. 
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3. As microsatellite instability appears to play an important role in a group of colorectal 

cancers, the third study was to assess the presence of microsatellite instability in 

primary colorectal cancers and uveal melanomas to the presence or absence of liver 

metastases. 

As the outlined investigations were too extensive for the duration of the study, some 

of the study was divided between a colleague who was investigating uveal melanomas 

(Mr Neil Cross) and myself; this is outlined more clearly in figure 1.7. Unfortunately, no 

liver metastases were available from uveal melanomas for analysis, as clinically patients 

with liver metastases from uveal melanomas tend to present late and with metastases 

present in both lobes of the liver, thus precluding curative resection. The Department of 

Ophthalmology and Orthoptics had already established the collection of fresh uveal 

melanoma tissue with storage at -80°C, whereas no such system of collection and 

storage had been established for colorectal cancers or their liver metastases, thus parts of 

the study was reliant on formalin-fixed paraffin-embedded tissue specimens. 

Figure 1.7 Diagrammatic representation of the studies undertaken, with the 

techniques used and the archival tissue available for analysis. 
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CHAPTER 2 

2.1 MATERIALS 

2.1.1 General LaboratoO' Equipment and Reagents 

Chemicals 

All chemicals were purchased from BDH Laboratory Suppliers or Sigma-Aldrich Co 

Ltd. unless stated otherwise, and all were at least of analar grade. 

Water 

Deionised water for preparing aqueous solutions and rinsing equipment was obtained 

from either, a Purite Select Analyst HP system or Permulab HQ filter system. 

Glassware 

Disposable glass Pasteur pipettes were purchased from John Poulton Ltd. Low iron 

'Superfrost' slides were purchased from BDH Laboratory Suppliers. Coplin jars were 

obtained from general glassware supplies. 

Plastics and disposable laboratory equipment 

Sterile serological pipettes (10ml), 12ml centrifuge tubes. O.5ml and 2ml 

microcentrifuge tubes (eppendorf tubes) were purchased from Sarstedt Ltd. Abgene 

Thermo-Fast 96 low profile plates were purchased from Advanced Biotechnologies Ltd. 

Sterile disposable scalpels were purchased from Swann Morton Ltd. Disposable plastic 

syringes (lml and 10ml) and sterile needles (Microlance 3) were purchased from Becton 

Dickinson Ltd., the accompanying filters (Acrodisc O.8J.1110.2J.11) were purchased from 

Pall Gelman Sciences. Petri dishes (lOOx15mm) and 20ml universals were purchased 

from Bibby Sterilin Ltd. Disposable gloves were purchased from Ansell Medical. 

Blotting paper for use in slide preparation was bought from Raymond Lamb Ltd. 

Heating equipment 

Grant water baths were purchased from Scientific Laboratory Supplies Ltd., while the 

heating block was a Dri-block DB.2A purchased from Techne Ltd. 
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Automatic pipettes and tips 

Gilson Pipetmans (20/J.I, 200/J.I and 1000/J.I) were purchased from Anachem Ltd., the 

accompanying tips were provided by Sarstedt, and sterilised by autoclaving at 15p.s.i. 

and 120°C for 15 minutes. 

Centrifugation 

Cells obtained from tumour disaggregation were pelleted at 1000rpm for 10mins unless 

stated otherwise in a Megafuge I.OR purchased from Deraeus Sepatech. For all other 

techniques a microcentaur MSE purchased from Scientific Laboratory Supplies Ltd. was 

used. 

Storage 

Reagents were either stored at 4°C in an Electrolux fridge or at -20°C in a LabCold 

0020 freezer purchased from Scientific Laboratory Supplies Ltd. Fresh frozen tissue 

samples were stored in a BioStor liquid nitrogen container purchased from Statebourne 

Cryogenics. 

General Equipment 

A water-jacketed CO2 incubator from Sanyo Gallenkamp was used. Sartorius Basic 

weighing scales were purchased from Sartorius Ltd. A Stuart Scientific mini orbital 

shaker and test-tube rotator was purchased from Scientific Laboratory Supplies Ltd. 

Adjustment of pH of prepared solutions was carried out on a 3020 pH meter from 

Jenway. The vortex rotamixer was from Hook and Tucker Instruments Ltd. Both the 

fume safety cabinet and microbiological safety cabinet were purchased from Walker 

Safety Cabinets Ltd. A Speed Vac Concentrator connected to a Vacuubrand diaphragm 

vacuum pump were purchased from Savant Instruments Inc. and Vacuubrand GMBH + 

Co. respectively. DNA spectrometry was conducted on a Lambda Bio UVNIS 

spectrophotometer purchased from Perkin-Elmer Ltd. Finally, the microscope for 

analysis of slide preparations was an Olympus CK2. 

- 54-



2.1.2 Biological Samples 

Fresh uveal melanoma tumour specimens were obtained following surgical procedures 

carried out at the Royal Hallamshire Hospital in Sheffield. Ethical approval was 

obtained for specimen collection. The majority of patients were treated by enucleation, 

with tumour material being removed immediately after the globe had been opened and 

then embedded in optimal cutting temperature (OCT) compound and subsequently 

stored at -20°C. 

All liver metastatic tissue was obtained from the Royal Hallamshire Hospital, while 

primary colorectal cancer tissue was obtained either from the Royal Hallamshire 

Hospital, Barnsley District General Hospital, Chesterfield Royal Hospital, Doncaster 

Royal Infirmary or Rotherham District General Hospital. Ethical approval for specimen 

collection was obtained from each individual NHS Trust Local Research and Ethics 

Committee. Tissue specimens obtained were either paraffin-embedded or were collected 

from theatre and stored in liquid nitrogen until required. 

All tissue samples were coded and stored in a secured area. 

2.1.3 Reagents used in Cell Culture and Cell Hanesting 

Cell culture medium 

All short-term cell cultures were grown in modified RPMI 1640 medium with L­

glutamine, purchased from GibcoBRL. Standard RPMI 1640 medium (500ml) was 

modified with the addition of 10% fetal calf serum purchased from Helena Biosciences, 

50000 IV of penicillin-streptomycin purchased from GibcoBRL, 250VG of fungi zone 

also purchased from GibcoBRL and 45% d-glucose. 

Phosphate buffered saline solution with EDT A (PBSe) 

PBS tablets were purchased from Oxoid. Prepare by dissolving 1 tablet in lOOmis of 

deionised water followed by the addition of 0.2g EDT A. Sterilize in an autoclave. 
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Trypsin 1 :20 

Trypsin 1 :20 is produced by the dilution of trypsin 1 :250 with PBSe. 

2.1.4 Reagents used for Chromosome Banding 

Sorensen's buffer 

Dissolve 9.47g of disodium hydrogen orthophosphate (Na2HP04) with 9.08g of 

potassium dihydrogen orthophosphate (KH2P04) in one litre of deionised water. 

Gurr's buffer 

Buffer tablets pH6.8 were purchased from BDH. Prepare by dissolving 1 tablet in 

lOOmis of deionised water and store at room temperature. 

Leishman's staining solution 

Prepare the Leishman stain working solution by diluting the Leishman stain stock 

solution (purchased from BDH) with Gurr's buffer to a ratio of 1 :4. 

2.1.5 Reagents used in Fresh-Frozen Tumour Disaggregation 

Hypotonic solution (O.075M Kel) 

Dissolve 5.5875g of potassium chloride (KCI) into 1 litre of deionised water and 

sterilize by autoclaving. Store at 4°C and pre-warm in an incubator at 37°C prior to use. 

Fixative 

Fixative is freshly prepared, by adding methanol to glacial acetic acid in a ratio of 3: 1. 
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2.1.6 Equipment and Reagents used in Fluorescent In Situ Hybridisation (FISH) 

RNase 

RNase A was purchased from Boehringer Mannheim. Stock solution was prepared by 

dissolving Rnase with lSmM of sodium chloride (NaCI) into 20mglml of 10mM Tris­

HCI (pH 7.S) then stored at -20°C, in aliquots of 100J-l1 until required. 

Pepsin solution 

Pepsin stock 10% (lOOJ-lglml) was purchased from Sigma-Aldrich. Add 2SJ-l1 of 10% 

pepsin stock solution (100J-lglml) to 100ml of pre-warmed O.OlM HCI solution. Pepsin 

stock solution was stored at -20°C until required. 

Phosphate buffered saline (PBS) solution 

PBS tablets were purchased from Oxoid. Dissolve 1 tablet per lOOmis of deionised 

water and sterilise in an autoclave. 

Magnesium chloride solution (MgCh) 

AIM solution of magnesium chloride is prepared by making up to SOOml, by adding 

10 1.6Sg of MgCh.6H20 to de ionised water. The resulting solution is then sterilised by 

autoclaving. 

PBS - magnesium chloride solution (PBS-MgCh) 

Add SOml of the 1 M magnesium chloride solution to 9S0ml PBS, mix thoroughly and 

store at room temperature. 

Alpha satellite centromeric probes 

Initially, both probes were purchased from Cambio, the chromosome 8 probe was 

directly labelled with FITC, whereas the probe for chromosome 3 was conjugated with 

biotin and indirectly labelled with avidin-Texas Red. The probes purchased from 

Appligene-Oncor were indirectly labelled. The chromosome 8 probe being conjugated 

with biotin and the chromosome 3 probe with digoxigenin, thus indirectly labelled with 

avidin-FITC and anti-digoxigenin rhodamine respectively. 
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Denaturation solution 

Add 35ml formamide, 5ml20xSSC and 10mi deionised water into a Coplin jar, mix 

thoroughly and adjust the pH to 7.0. 

FISH hybridisation buffer 

A 10)11 hybridisation buffer solution consists of 5)11 of formamide, 2)11 of 50% dextran 

sulphate (which had been prepared with deionised water and autoclaved), 2)11 of 

deionised water and 1)11 of20xSSC. 

Rubber solution 

This is a polyurethane adhesive purchased from Phillips. 

Tween 20 

10% Tween 20 was purchased from Pierce. 

20xSSC 

Add 175.3g of sodium chloride (NaCl) to 88.2g oftri sodium citrate (Na3C6Hs072H20) 

and make up to 800ml with deionised water. Adjust to pH 7.0 and make up to 1 litre 

with deionised water before being autoclaved. 

2xSSC 

Add 50ml of20xSSC to 450ml of deionised water and adjust to pH 7.0. 

Stringency wash 

Add SOml formamide, 10ml 20xSSC and 40ml deionised water into a Coplin jar, mix 

thoroughly and adjust pH to 7.0. 

SSCT 

This consisted of 100mi of20xSSC, 2.5ml of 10% Tween 20 and mixed with 397.5ml 

of deionised water. 
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SSCTM 

Add 10ml of SSCT through a 0.45J.lm filter to 0.5g of dried semi-skimmed milk powder 

(MarveI™). The resulting solution is vortexed and then mixed on a test-tube rotator for 5 

minutes. 

Detection reagents 

Texas red conjugated to avidin was obtained from Vector for use with the Cambio 

chromosome 3 probe. Indirect Labelling Solution containing avidin-FITC and anti­

digoxigenin rhodamine was purchased from Appligene-Oncor for use with their 

chromosome 8 and 3 probes. 

Slide mountant 

Antifade (PBS/Glycerol) was purchased from Citifluor. Counterstain contained 2J.lI of 

OAPI stock solution added to 1 ml of anti fade. 

FISH analysis 

FISH preparations were analysed using a Cohu high performance CCO camera attached 

to a fluorescent microscope. Images of FISH results were captured and manipulated 

using a PSI Powergene programme running on a Power PC 8500/180 computer from 

Apple Macintosh. 

2.1.7 Reagepts used (or DNA Extractiop 

Proteinase K 

Proteinase K (fungal) 100mg (>20 Units/mg) was purchased from Life Technologies. 

Stock solution was prepared by dissolving proteinase K in 10mM Tris HCI (pH 7.5), 

20mM Calcium chloride and 50% glycerol. Then stored in aliquots of 50J..lI at -20°C, 

until required. 
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Digestion buffer 

Prepare by dissolving 60.57g Tris (pH 8.5), 0.372g EDTA and 5m110% Tween into 

1000ml deionised water to prepare a 50mM Tris (pH 8.5), 1 mM EDT A, 0.5% Tween 20 

stock solution. 

QIAamp@ DNA Extraction Kit 

The DNA extraction kit was purchased from Qiagen Ltd. The kit contained QIAamp® 

spin columns, 2ml collection tubes, AL buffer (lysis buffer), ATL buffer (wash buffer), 

AWl buffer (wash buffer), AW2 buffer (wash buffer), AE buffer (elution buffer) and 

proteinase K enzyme solution. 

TE buffer 

Add 8g ofTris HCL and 2g EDT A into 500ml of deionised water and mix thoroughly, 

adjust pH to 7.4. 

2.1.8 Reagepts used ip DNA Labelljpg 

Two methods for DNA labelling were employed. One was nick translation, reagents for 

which were purchased from Vysis UK, Ltd., the other was Ulysis® labelling purchased 

from Kreatech diagnostics. The QIAquickTM PCR purification and QIAquick™ 

nucleotide removal kits, used in the purification of ULS® labelled DNA probes, were 

purchased from Qiagen Ltd. The kits were supplied with PB buffer (binding buffer for 

use in the QIAquickTM PCR purification kit), PN buffer (binding buffer for use in the 

QIAquick™ nucleotide removal kit), PE buffer (wash buffer containing ethanol) and EB 

buffer (elution buffer-l OmM Tris-CI, pH 8.5). 

2.1.9 Equipmept apd Reagepts used for Comparative Gepomic Oybridisatjop 

(eGO) 

All reagents, normal metaphase target slides and control DNA used for CGH were 

purchased from Vysis UK, Ltd. 
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20xSSC, pH5.3 

Add 66g of20xSSC to 200ml deionised water and mix thoroughly. Make up to a final 

volume of 250m I and adjust pH to 5.3. 

Denaturation solution 

Add 49ml formamide, 7ml20xSSC (pH 5.3) and 14ml deionised water into a Coplin jar 

and mix thoroughly. Adjust the pH to 7.4. 

O.4xSSC/O.3% NP-40 Stringency wash solution 

Add 20ml of20xSSC to 950ml of deionised water and mix thoroughly. Add 3ml ofNP-

40 and using a magnetic stirrer mix thoroughly until the NP-40 is completely dissolved. 

Adjust the ph to 7.4. Aliquot out 50ml into clean 50ml centrifuge tubes and store at 

ambient temperature. Discard these aliquots after six months or if the solution appears 

cloudy. 

2xSSC/O.l % NP-40 Stringency wash solution 

Add 100ml of20xSSC to 850ml of deionised water and mix thoroughly. Add Iml of 

NP-40 and using a magnetic stirrer mix thoroughly until the NP-40 is completely 

dissolved. Adjust the ph to 7.4. Aliquot out 50ml into clean 50ml centrifuge tubes and 

store at ambient temperature. Discard these aliquots after six months or if the solution 

appears cloudy. 

Test and Control DNA 

Test and control DNA were labelled using either nick translation or ULS direct labelling 

methods. 

CGH analysis 

CGH slides were analysed using a Cohu high performance CCD camera attached to a 

fluorescent microscope. Images of CGH results were captured and manipulated using a 

MacProbe programme running on a Power PC 8500/180 computer from Apple 

Macintosh. 
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2.1.10 Equipment and Realents used (or Polymerase Chain ReactiOn (PCR> 

Primers 

Infra-red dye (lRD) labelled and unlabelled primers were purchased from MWG­

Biotech (UK) Ltd. (For details of primer sequence and annealing temperatures see 

appendix III). 

Taq polymerase 

Taq polymerase together with the nuclease free water, ammonium buffer, magnesium 

and dNTP master mix were purchased from Bioline Ltd. 

PCR thermo cyclers 

PCR thermo cyclers used included the Primus 96 Plus thermo cycler purchased from 

MWG Biotech (UK) Ltd. and the Biometra UNO-Thermoblock purchased from 

Scientific Laboratory Supplies Ltd. 

2.1.11 Equipment and Realen's used (or Alarose and Polyacrylamide Gel 

Electrophoresis 

All reagents were purchased from either BDH Laboratory Suppliers or Sigma-Aldrich 

Co Ltd. A Bio Rad 1000/500 power supply was used for all electrophoresis procedures. 

A Bio Rad Protean II xi Cell tank was used for polyacrylamide gel electrophoresis and a 

Bio Rad Mini Sub DNA Cell was used for agarose gel electrophoresis. All Bio Rad 

equipment was purchased from Life Science Research. Gels stained with ethidium 

bromide were visualised on a UV transilluminator purchased from UVP Inc. and images 

were captured using a Kodak DC290 Zoom digital camera connected to an Apple iMac 

computer running Kodak Scientific Imaging Systems 1 D software purchased from 

Anachem Ltd. 

PCR loading buffer 

Add 0.25g of bromophenol blue to a 40% glycerol solution and mix thoroughly. 
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10xTBE buffer 

Add 121g ofTris HCL, 61g of boric acid and 7.4g of EDT A into 800ml of de ionised 

water, mix thoroughly, adjust pH to 8.0 and make up to a final volume of I litre. 

20% Ammonium persulphate solution (20%, APS) 

Add 4g of ammonium persulphate to 20ml of deionised water, mix thoroughly and store 

at 4°C. 

Polyacrylamide gel solution 

A 20ml polyacrylamide gel solution was prepared according the concentration of gel 

required (table 2.1). The 20% APS and TEMED (N, N, N', N',­

tetramethylethylenediamine) were added just prior to the gel being poured. 

Table 2.1 Volumes of the various constituents used to prepare a specific 

concentration of polyacrylamide gel. 

6% 8% 10% 

Deionised Water 30ml 28ml 26ml 

40% 29: I Polyacrylamide 6ml 8ml 10mi 

10xTBE 4ml 4ml 4ml 

20%APS 200J.lI 200J.lI 200J.lI 

TEMED 20J.lI 20J.lI 20J.lI 

2.1.12 Reagents used for Ethidium Bromide Staining and Silver Staining 

All reagents were purchased from either BDH Laboratory Suppliers or Sigma-Aldrich 

Co Ltd. Ethidium bromide is a potent carcinogen and all precautions must be used in 

handling and disposing of this compound. 

Solution 1 (Initial fix solution) 

A solution of SOml 100% ethanol, Sml glacial acetic acid and 44Sml deionised water. 
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Solution 2 (Silver nitrate solution) 

Dissolve 0.5g silver nitrate into 500ml deionised water. 

Solution 3 (Developer) 

Dissolve 1.5ml formaldehyde and 2.25g sodium hydroxide into 500ml deionised water. 

Solution 4 (Final fix/stop solution) 

Dissolve 7.5g sodium carbonate into 500ml deionised water. 

2.1.13 Equipment and Reagents used (or LOngRanger Gel Electrophoresis 

All reagents were purchased from either BDH Laboratory Suppliers or Sigma-Aldrich 

Co Ltd., with the exception of 50% LongRanger Gel Solution which was purchased 

from BioWhittaker Molecular Applications Inc., urea from United States Biological and 

Chill-out 14 liquid wax from MJ Research Inc. Electrophoresis was performed on a 

LiCor 4200 LongRead IR automated sequencer (Li-Cor Technologies), with the 

products visualised using the LiCor ImagIR software on a PC computer, purchased from 

MWG-Biotech (UK) Ltd. 

Stop solution 

Prepare a solution of95% (v/v) formamide with 10mM EDT A, 0.4% basic fuchsin and 

adjust pH to 9.0. 

LongRanger gel solution 

A 25cm LongRanger gel was prepared by mixing 4ml of 50% LongRanger Gel Solution 

with 1 0.5g urea, 2.5ml of 10xTBE buffer, 250111 DMSO and make up to 25ml with 

deionised water. Add 25111 TEMED and 175111 of fresh APS just prior to pouring the 

gel. 
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2.2 METHODS 

2.2.1 Cell Culture Protocols 

2.2.1.1 Producing a Short-Term Cell Culture 

I. All the steps are performed in a sterile safety cabinet. 

2. Transfer the tumour tissue into a Petri dish. Discard any fat, muscle, fibrous or 

necrotic tissue. 

3. Add a small amount of PBS and fragment the tumour tissue manually using two 

scalpels. Try and squeeze cells loose from the clumps of tissue. Tilt the Petri dish to 

allow the larger fragments to settle and harvest the cell suspension into a sterile 

plastic centrifuge tube. 

4. Centrifuge the harvested cell suspension at 1000rpm for 10 minutes. 

5. Remove the supernatant and add 5ml of cell culture medium (RPMI 1640) gently 

and re-suspend the pelleted cells. 

6. Divide this sample into three and aliquot out into sterile T25 culture flasks. 

2.2.1.2 Cell Culture Passage 

1. Assess the culture flasks to ensure that the cell culture layer is 60-80% confluent. 

2. Remove the media. Note that some cells that are actively dividing will detach from 

the flask bottom. To assess whether these cells in suspension are viable or not, 

perform a tryphan blue test. 

3. Add 5ml of trypsin 1:20 to the flask and gently agitate the flask and incubate for 15 

minutes at 37°C. 

4. Assess the flask to ensure that the cells have lifted off the bottom of the flask and are 

in suspension. The flask may need to be tapped to dislodge the cells completely. If 

the cells are still adhering to the flask bottom, incubate for a further 10 minutes and 

re-assess. 

5. Once the majority of the cells are in suspension, aliquot a small volume into a sterile 

flask and add IOml of fresh medium. Other aliquots may be cryopreserved in 20% 

DMSOIRPMI 1640 medium. 
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2.2.1.3 Tryphan Blue Test for Cell Viability 

1. Remove the cell/medium suspension and transfer to a clean centrifuge tube. 

2. Centrifuge the cell suspension at 1000rpm for 10 minutes. 

3. Remove the supernatant except for O.S-lml remaining above the cell pellet and 

gently re-suspend the pelleted cells in the remaining medium. 

4. Transfer SOJlI of the suspended cells into a clean microcentrifuge tube and add SOJlI 

of tryphan blue. 

S. Pipette out 10JlI of the cell/tryphan blue suspension onto a clean haemocytometer 

and examine under a microscope. 

6. Dead cells will be stained dark blue, whilst living cells will not be stained. 

2.2.1.4 Slide Washing 

1. Place 20ml of Decon 90 detergent into a 21 beaker, and dilute with IS00ml of hot tap 

water. 

2. Place as many slides as required into this solution and cover with aluminium foil. 

Leave the slides to soak overnight. 

3. Rinse the slides thoroughly with hot tap water on each side for approximately 10 

seconds. And then rinse with cold tap water and finally deionised water. 

4. Store the washed slides in a covered beaker of deionised water at 4°C. 

2.2.1.5 Preparation of Metaphase Chromosome Spreads 

1. Assess the culture flasks to ensure that the cell culture layer is 60-80% confluent so 

that the cells will be still dividing and to ensure a good yield of cells. 

2. Add 0.1 ml of colcemid (final concentration 10Jlglml) to 10ml of media and incubate 

for 3-4 hours at 37°C. 

3. Remove the media and any non-adherent cells and transfer to a clean plastic 

centrifuge tube. 

4. Add Sml of trypsin 1 :20 to the flask and gently agitate the flask and incubate for 15 

minutes at 37°C. 
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S. Assess the flask to ensure that the cells have lifted off the bottom of the flask and are 

in suspension. The flask may need to be tapped to dislodge the cells completely. If 

the cells are still adhering to the flask bottom, incubate for a further 10 minutes and 

re-assess. Once the majority of the cells are in suspension, transfer them into the 

clean tube containing the initial sample. 

6. Centrifuge the cells at 1000rpm for 10 minutes. 

7. Remove the supernatant, except for O.S-I ml remaining above the cell pellet. Gently 

re-suspend the pelleted cells in the remaining medium and carefully add Sml of pre­

warmed (37°C) hypotonic solution, drop-by-drop, with gentle agitation. (Hypotonic 

treatment causes a swelling of the cells, thus causing the cell membrane to burst 

when the cells are dropped onto a microscope slide to prepare metaphase spread). 

The optimal time of hypotonic solution treatment varies for different cell types and 

must be determined empirically. 

8. Incubate for 15 minutes at 37°C. 

9. Centrifuge the cells at 1000rpm for 10 minutes. 

10. Remove the supernatant, except for O.S-Iml remaining above the cell pellet. Gently 

re-suspend the pelleted cells in the remaining medium and carefully add Sml of 

freshly prepared fixative, drop-by-drop, with gentle agitation. 

11. Repeat steps 9 and 10 two to three times. 

12. After the last centrifugation, re-suspend the cells in a small volume of fixative and 

drop a drop of the suspension onto a cold, wet, clean microscope slide. The height 

from which the drop is dropped is determined empirically. Then add a drop of 

fixative onto the cell spot to facilitate further spreading. The quality of the 

metaphase spreading is dependent on a number of factors, including humidity, 

airflow and cell concentration. 

13. After the required number of slides have been prepared, add Sml of fixative to the 

cells gently and store at -20°C. 

2.2.1.6 Leishman '8 Stain Banding 

1. Age the prepared metaphase spread slides for one week at room temperature. 

2. Place a slide on a rack over the sink and cover with trypsin solution 1 :20 for 10-20 

seconds. 
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3. Wash the slide with Sorenson's buffer for 10-20 seconds and then quickly drain. 

4. Cover the slide with Leishman's stain working solution and leave for 30-90 seconds 

and then quickly drain and wash with Gurr's buffer. The optimal time for staining 

will need to be determined empirically. 

5. Carefully blot-dry the slides and examine without mounting. 

2,2,2 Tumour Cell DisaggregatiQn Protocols 

2.2,2.1 Disaggregation of Tumour Cells from Formalin-Fixed Paraffin-Embedded 

Tissue 

1. Cut a 50J.ID1 section from each block of paraffin-embedded tumour specimen using a 

cryostat machine. 

2. Remove excess paraffin wax using a scalpel. Then transfer the tumour sample to a 

polyurethane test tube and place in a water bath at 70°C for -20 minutes, in order to 

melt the wax. 

3. Once the wax has completely melted, add 5ml of xylene into the tube, and leave in a 

water bath at 70°C for 10mins. Gently vortex the tube midway through the wash to 

aid removal of the wax. Centrifuge the tube at 1000rpm for 10 minutes and carefully 

pipette off the supernatant. 

4. Add 5ml of 100% ethanol into the tube and gently vortex. The tumour sample is 

then left in suspension for 10 minutes at room temperature. Centrifuge the tube at 

1000rpm for 10 minutes and carefully pipette off the supernatant, so as not to disturb 

the pelleted tissue. This procedure is repeated at ethanol concentrations of 95%, 70% 

and 50%. 

5. Add 10ml of deionised water into the tube and gently vortex. The tumour material is 

then left in suspension for 10 minutes at room temperature. Centrifuge the tube at 

1000rpm for 10 minutes and carefully pipette off the supernatant, so as not to disturb 

the pelleted tissue. 

6. The tumour sample is then digested with Iml of protease at 37°C. The aim of which 

was to release single tumour cells into suspension, allowing these cells to be more 

accessible for FISH. The tumour sample is digested until a fine suspension is 
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produced. During the digestion process gently vortex the tumour sample every five 

minutes. (The length of time required for digestion is partially dependent on the 

individual tumour; however, most tumours were digested for approximately 

30mins). Following the digestion process, remove any large clumps of undigested 

tumour material centrifuge at 1000rpm for 10 minutes. Then carefully pipette off the 

supernatant except for 0.5-1ml remaining above the cell pellet. 

7. Gently re-suspend the pelleted cells in the remaining supernatant and carefully add 

5ml of freshly prepared fixative, drop-by-drop, with gentle agitation. Then 

centrifuge the tube at 1000rpm for 10 minutes and carefully pipette off the 

supernatant except for 0.5-1ml remaining above the cell pellet. Repeat this fixation 

step twice. 

8. Finally, re-suspend the disaggregated tumour cells in 5ml of fixative and store at -

20°C until required. 

2.2.2.2 Disaggregation of Tumour Cells from Fresh-Frozen Tissue 

I. Retrieve fresh-frozen tumour samples out of frozen storage and place in a Petri dish. 

2. If the sample has been stored in optimal cutting temperature (OCT) compound, 

remove excess OCT from around the sample and add a small amount of deionised 

water, in order to dissolve out the remaining OCT. 

3. Using a scalpel blade, mince the tumour as finely as possible in order to release 

individual intact tumour cells. Use two scalpels in a sweeping action rather than a 

cutting action, so as to reduce the amount of damage to the individual cells. 

4. Transfer the suspension containing the released tumour cells into a clean centrifuge 

tube using a pipette. Rinse the Petri dish with deionised water, to ensure that the 

maximum numbers of disaggregated cells are collected. Then centrifuge at 1000rpm 

for 10 minutes and carefully pipette off the supernatant. 

5. Re-suspend the pelleted tumour cells with 3ml of hypotonic solution with gentle 

agitation, so as to cause the cells to swell and incubate at 37°C for 15mins. 

Following the incubation, centrifuge the tube at 1000rpm for 10 minutes and 

carefully pipette off the supernatant except for 0.5-1ml remaining above the cell 

pellet. (Initially, the cells were digested with protease at this stage; however, this 

was found to destroy the cells. Consequently this step was abandoned). 
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6. Gently re-suspend the pelleted cells in the remaining supernatant and add 5ml of 

PBS. Then carefully add Sml of freshly prepared fixative, drop-by-drop, with gentle 

agitation. Centrifuge the tube at 1000rpm for 10 minutes and carefully pipette off the 

supernatant except for O.S-lml remaining above the cell pellet. Repeat this fixation 

step twice. 

7. Finally, re-suspend the disaggregated tumour cells in 5ml of fixative and store at 

-20°C until required. 

2.2.3 Slide Preparatjop for FISH 

1. Centrifuge the tumour cell suspension at 1000rpm for 10 minutes. Remove the 

supernatant, except for 0.5-1 ml remaining above the cell pellet. 

2. Gently re-suspend the pelleted cells in the remaining supernatant and carefully add 

5ml of freshly prepared fixative, drop-by-drop, with gentle agitation. 

3. Allow any large particles of tumour to settle to the bottom of the tube, before 3-4 

drops of the re-suspended cells are dropped onto the centre of a cooled washed slide, 

from a height of about 1 em. The ends of the slide are then blotted dry with blotting 

paper. 

4. Air-dry the slide slightly until the surface appears frosted. At this point, a further 1-2 

drops of the re-suspended cell suspension is dropped onto the cell spot, if required. 

5. Finally, a drop of fixative is dropped onto the cell spot, causing the cells to spread 

out into a single layer. 

6. Air-dry the slides completely, and store in slide holders for 1 week prior to 

Fluorescent In Situ Hybridisation. 

2.2.4 Fluorescent In Sjtu Hybridjsatjop 

Day 1 

Preparation of Solutions 

1. Freshly prepare denaturation solution (consisting of 35ml formamide, 5ml20xSSC 

and 10ml deionised water and adjusted to pH7) and pre-warm to 70°C in a water 

bath placed in a fume cupboard. 
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2. Prepare the working solution for pepsin digestion (consisting ofO.Sml of INHCl in 

49.Sml of deionised H20) and pre-warm to 37°C in a water bath. 

Pre treatment with RNase 

1. The RNase working solution is made by adding SOIlI of RNase stock to IOml of 

2xSSC in a universal container and mixing. 

2. Pipette 120111 of the RNase solution onto each 22x50mm cover slip. Each slide is the 

carefully touched on top of each cover slip and incubated in a humid chamber at 

37°C for 1 hour. 

3. Remove the cover slips by tapping the slides vertically. Then immerse the slides into 

a Coplin jar containing 2xSSC at room temperature, and agitate on a shaker for 5 

minutes. Repeat this wash twice. 

Pepsin Digestion 

1. During the third wash in 2xSSC, add 25 III of pepsin stock into the working solution 

prepared at the beginning of the procedure. 

2. Immerse the slides into the pepsin solution for between 10-15 minutes depending on 

the cells under investigation. Tumour cells are generally digested for 10-15 minutes; 

whereas the blood spreads (positive controls) require only IOminutes. 

3. Then wash the slides in PBS at room temperature on the shaker for 5 minutes. The 

wash is repeated once. Following this, the slides undergo a wash in PBS-MgCh 

(50ml MgCh in 950ml PBS) at room temperature on the shaker for 5 minutes. 

Fixation 

1. Freshly prepare the fixative solution by adding I.35ml of formaldehyde to 50ml of 

PBS-MgCh. 

2. Immerse the slides into the fixative solution at room temperature for 10 minutes and 

place the Coplin jar in a fume cupboard. 

3. Immediately following fixation, wash the slides in PBS at room temperature on a 

shaker for 5 minutes. 

4. Then dehydrate the slides through an ethanol series (70%, 95% and 100%) at room 

temperature for 3 minutes each. 

5. Allow the slides to air-dry at room temperature. 
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Probe Preparation 

I. The probes are prepared while the slides are in the fixative solution. 

2. Prepare a master mix in a microcentrifuge tube. For each slide add 3111 of salmon 

sperm, 61lJ of 100% ethanol and O.5IlJ and I.OIlI of chromosome 3 and 8 centromeric 

probes. Microfuge the microcentrifuge tube at 13000rpm for 3 minutes. 

3. Then pJace the microcentrifuge tube onto a heating block at 80°C, in order to 

remove all traces of ethanol, which could seriously affect hybridisation. This usually 

takes approximately 12-15 minutes. 

4. Once dry, add IOIlI of hybrid is at ion mix for each slide into microcentrifuge tube 

containing the master mix. Denature the probes by placing the microcentrifuge tube 

onto the heating block at 80°C for 8 minutes. 

5. Then place the microcentrifuge tube immediately onto ice so as to prevent re­

annealing of the DNA probes. 

Slide Denaturation 

I. Place the slides momentarily onto a heating block at 80°C to warm. 

2. Then rapidly immerse the slides into the denaturation solution, which had been 

prepared at the beginning of the procedure. Leave the slides to stand for exactly 2 

minutes. 

3. Having been denatured, the slides are then swiftly transferred into an ice-cold 

(-20°C) ethanol series (70%,95% and 100%) for 3 minutes each, before being left to 

air-dry at room temperature. 

Loading the Probes 

1. Pulse-microfuge the probe mixture immediately prior to use. 

2. Pipette lOf.1l of the probe mixture onto a 22x22mm cover slip. Touch each slide on 

top of each cover slip and seal with rubber solution. It is important to ensure that the 

position of the probe mix on the slides coincide with that of the greatest 

concentration of cells. 

3. Incubate in a humid chamber at 37°C for 24 hours. 
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Day 2 

Post-Hybridisation Stringency Washes 

I. Freshly prepare a stringency solution (containing SOml formamide, 10ml 20xSSC 

and 40ml deionised water and adjusted to pH 7.0) and warm to 42°C in a water bath, 

in a fume cupboard. 

2. Remove the slides from the humid chamber and remove the cover slips by removing 

the rubber sealant and tapping the slides vertically. Then place the slides into the 

stringency solution for S minutes. Repeat this wash once. 

3. Then immerse the slides into 2xSSC (adjusted to pH 7.0), also at 42°C, for S 

minutes. Repeat this wash once. 

Detection 

I. Wash the slides in SSCT for 3mins. 

2. Prepare SSCTM and transfer I ml to a microcentrifuge tube. Microfuge at 13000rpm 

for 2 minutes and pipette 120~1 of the supernatant onto the centre of a 22xSOmm 

cover slip. Touch each slide on top of each cover slip and incubate in a humid 

chamber at room temperature for 10 minutes. 

3. Remove the cover slips by tapping the slides vertically, and then immerse the slides 

in SSCT for 3 minutes. 

4. Pipette 30~1 of the detection solution onto the centre ofa 22xSOmm cover slip. 

Touch each slide on top of each cover slip and incubate in a humid chamber at 37°C 

for 20 minutes. 

5. Remove the cover slips by tapping the slides vertically and immerse the slides in 

SSeT at room temperature for 3 minutes, in the dark. Repeat this wash twice. 

6. Then immerse the slides in PBS for 5 minutes, in the dark. Repeat this wash once. 

7. Dehydrate the slides through an ethanol series (70%, 95% and 100%) at room 

temperature for 3 minutes each, in the dark. The slides are then left to air-dry, in the 

dark. 

8. The counterstain is produced by adding 2~1 ofDAPI to Iml of anti fade in a 

microcentrifuge, which is then vortexed and pulsed in a microfuge. 

9. Pipette 25)..1.1 of the counterstain onto the centre ofa 22x50mm cover slip. Touch 

each slide on top of each cover slip, care being taken to avoid the introduction of air 
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bubbles, and allow the counterstain to spread right across the area of hybridisation. 

Use nail varnish to seal the edges of the cover slip. 

10. Use lightproof slide boxes to hold the completed slides and store at 4°C until 

required for viewing. 

2.2.5 DNA Extraction Protocols 

2.2.5.1 DNA ExtractiOn usin& PbenoljCbloroform for Formalin-Fjxed Paraffin-

Embedded Tissue for use in CGO 

De-waxing of Paramn-Embedded Tissue 

Slide preparation 

Prepare twelve 51lm sections from the paraffin-embedded tissue. The first and last slides 

are stained with haematoxylin and eosin (H&E), to ensure that there is no abrupt change 

in the tumour cell population throughout the sectioned tumour specimen. The remaining 

slides are left unstained and the tumour cell population microdissected using the H&E 

stained slide as a guide. 

The various protocols utilised for the de-waxing of the microdissected paraffin­

embedded tissue are discussed more fully in chapter 4.2.1 Optimisation of DNA 

Extraction from Formalin-Fixed Paraffin-Embedded Tumour Samples. 

Tissue Digestion 

I. Place the microdissected tissue sample into a 2ml microcentrifuge tube and add 

600111 of digestion buffer and 30,...1 of proteinase K and incubate on a rotator at 55°C 

for 24 hours. 

2. Centrifuge at 13000rpm for 10 minutes at room temperature. 

3. Place on a heating block and boil for 10 minutes in order to de-activate the 

proteinase K. 

4. Centrifuge again at 13000rpm for 10 minutes at room temperature. 
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DNA Purification using Phenol:Chloroform 

1. Add an equal volume of phenol:chloroform to the de-waxed and digested DNA 

solution sample in a polypropylene tube with a plastic cap. (Ensure that the phenol 

has been equilibrated to ph 7.8-8.0, otherwise the DNA will partition into the 

organic phase). 

2. Mix the contents of the tube until an emulsion forms. 

3. Centrifuge at 13000rpm for 10 minutes at room temperature. 

4. Remove the aqueous layer (top clear layer, which contains the DNA) avoiding the 

white interface layer (which contains protein) and place into a fresh tube. 

5. Repeat steps I through to 4 until no white interface layer is present. 

6. Add an equal volume of cold (-20°C) chloroform (to remove any phenol) and repeat 

steps 2 through 4. 

7. Add an equal volume of cold (-20°C) 100% ethanol and precipitate the DNA by 

centrifuging at 13000rpm for 30 minutes. 

8. Carefully remove the supernatant, ensuring not to disturb the pellet and then vacuum 

dry at ambient temperature, so as to remove all traces of ethanol. 

9. Finally, resuspend the DNA pellet in either 1O-20~1 of deionised water (if the DNA 

is to be used immediately) or 1O-20,.d ofTE buffer (pH 7.4) and store at _20DC. 

2.2.5.2 DNA Extraction using the OIAamp@ DNA Mini Kit for Formalin-Fixed 

Paraffin-Embedded Tissue for use in CGH 

I. Microdissect 8-10 unstained 51lm sections and place in a 2ml microcentrifuge tube. 

2. Add 1200~1 xylene and vortex vigorously for at least 30 seconds. 

3. Centrifuge at 13000rpm for 5 minutes at room temperature. 

4. Carefully remove the supernatant, without disturbing the tissue pellet. 

5. Add 1200111 of 100% ethanol and gently vortex. 

6. Centrifuge at 13000rpm for 5 minutes at room temperature. 

7. Carefully remove the supernatant, without disturbing the tissue pellet. 

8. Repeat steps 5-7 once more. 

9. Place the microcentrifuge tube onto a heating block set at 37°C, with the lid off for 

between 10-20 minutes, until all the ethanol has evaporated. 

10. Re-suspend the tissue pellet in 180~1 of Buffer A TL. 
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11. Add 20, . .tl of proteinase K, gently vortex and incubate at 56°C until the tissue has 

been completely digested. Vortex occasionally during incubation to disperse the 

sample. (The tissue digestion usually takes 24 hours but the addition of a further 

20, . .tl of proteinase K after 24 hours and incubation for a further 24 hours will 

improve DNA yields). 

12. Briefly centrifuge and add 200J.ll of Buffer AL. Gently vortex the microcentrifuge 

tube and place on a heating block set at 70°C for 10 minutes. (A white precipitate 

may form during this step, but it will dissolve during the incubation). 

13. Add 200J.ll of 100% ethanol and gently vortex for 15 seconds. Briefly centrifuge to 

remove drops from the inside of the lid. 

14. Transfer the contents of the microcentrifuge tube into a QIAamp spin column 

without wetting the rim. Close the cap and centrifuge at 8000rpm for 2 minutes. 

Place the spin column in a clean 2ml collection tube and discard the tube containing 

the filtrate. (Ensure that all of the solution has passed through the membrane of the 

spin column, ifit has not, then centrifuge at 13000rpm for a further 2 minutes). 

15. Carefully open the lid and add 500J.lI of Buffer AWl without wetting the rim. Close 

the cap and centrifuge at 8000rpm for 2 minutes. Place the spin column in a clean 

2ml collection tube and discard the tube containing the filtrate. 

16. Carefully open the lid and add 500J.lI of Buffer A W2 without wetting the rim. Close 

the cap and centrifuge at I3000rpm for 5 minutes. Place the spin column in a clean 

2ml collection tube and discard the tube containing the filtrate. 

17. Place the spin column in a clean 2ml collection tube and centrifuge again at 

13000rpm for 5 minutes, to ensure that there is no carry over of any Buffer A W2. 

18. Place the spin column in a clean 2ml collection tube and discard the tube containing 

the filtrate. Carefully open the lid and add 50J.ll of Buffer AE. Close the lid and 

incubate at room temperature for at least 30 minutes. Centrifuge at I3000rpm for 5 

minutes and transfer the filtrate to a clean 0.5 ml centrifuge tube. 

19. Store the eluted DNA at -20°C until required. Determine the DNA yield using a 

spectrophotometer. 
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2.2.5.3 DNA Extraction using the OIAamp@ DNA Mini Kit for Fresh Frozen Tissue 

for use in CGH 

1. Retrieve the tissue sample from storage and place in a Petri dish. 

2. Finely mince approximately 25mg of the tissue into small pieces and place in a 2ml 

microcentrifuge tube. 

3. Add 180,...,1 of Buffer ATL and gently vortex. 

4. Follow steps 11-19 as for the DNA Extraction Protocol for Paraffin-Embedded 

Tissue (QIAamp@ DNA Mini Kit). 

2.2.5.4 DNA Extraction of Formalin-Fixed Paraffin-Embedded Tissue for use in 

Slide Preparation 

Two S,...,m sections are required. One is stained with H&E the other with 0.01 % aqueous 

toludine blue. The H&E stained slide is used as a guide when dissecting the toludine 

blue stained slide. Wet the toludine blue slide before microdissection with digestion 

buffer, so that the microdissected cells are not blown away. 

Tissue Digestion 

I. Pipette 200,...,1 of digestion buffer into a microcentrifuge tube (100,...,1 for small 

samples). 

2. Place the microdissected material into the microcentrifuge tube. 

3. Add 10,...,1 (5,...,1 for small samples) proteinase K. 

4. Incubate at 55°C overnight (after 1.5 to 3 hours, give the bottom of the tube a "flick" 

to re-suspend any settled material; do not vortex. 

5. Centrifuge at 13000rpm for 10 minutes at room temperature. 

6. Place on a heating block and boil for 10 minutes in order to de-activate the 

proteinase K. 

7. Centrifuge again at 13000rpm for 10 minutes at room temperature. 

8. Store at -200C. 
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2.2.6 DNA Labelling Protocols for Comparative Genomic Hybridisation 

2.2.6.1 Nick Translation Labelling of DNA 

Nick translation is a process of incorporating a fluorochrome label to the test DNA. The 

process fragments large pieces of DNA into smaller pieces tagged at the 3' - end with 

either Spectrum Green or Spectrum Red dUTP, depending on which fluorochrome is 

used to label the control DNA. Test DNA would be labelled with Spectrum Green 

dUTP, when the control DNA is labelled with Spectrum Red dUTP, and vice-versa. 

1. Place a clean 0.5ml microcentrifuge tube on ice and allow to cool. 

2. The following constituents are added into the microcentrifuge tube in this order: 

(17.5 - x)JlI nuclease free water 

XJ.11 for 1 Jl.g extracted genomic test DNA 

2.SJlI 0.2mM Spectrum Green or Spectrum Red dUTP 

5Jl.I 0.1 mM dTTP 

10Jl.I dNTP mix 

SJl.I lOx nick translation buffer 

10Jl.I nick translation enzyme 

50Jl.I total volume 

x = volume of extracted test DNA in solution which is equal to 1 Jl.g of test DNA 

3. Vortex the microcentrifuge tube briefly and incubate at 15°C for 2-4hrs. 

4. The reaction is stopped by heating the microcentrifuge tube on a heating block to 

70°C for 10minutes. 

5. Then either place the microcentrifuge tube on ice or store at -20°C until required. 

Determining Nick Translated DNA Probe Size 

Determining the probe size is essential, in order to ensure that the genomic test DNA 

has been effectively nick translated to the desired size of - 600-2000 bp. If the probe 
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size is either too large or too small then the hybridisation will either appear too dim or 

appear granular. The probe size is determined using 1% agarose gel electrophoresis with 

ethidium bromide staining. 

2.2.6.2 Ulysis@ ULS Labelling of DNA 

1. Add 2, . .tl of either rhodamine-ULS® or dGreen- ULS® to Illg of the test DNA to 

label it with rhodamine or dGreen respectively into a 0.5ml microcentrifuge tube. 

2. Adjust the volume with labelling solution to 20111 and vortex. 

3. Incubate at 65°C on a heating block for 15 minutes. 

4. Briefly centrifuge the tube to remove droplets from the lid. 

5. Purify the labelled DNA using QIAquickTM PCR purification Kit spin columns. 

2.2.6.2.1 QIAguick peR Purification/Nucleotide Removal Protocol 

1. Add IOOIlI of PB buffer to 20111 of the Ulysis labelled DNA and vortex briefly and 

pulse microcentrifuge. (Originally, the QIAquick nucleotide removal protocol was 

employed to purify the labelled DNA, which involved the addition of either 100111 or 

200111 ofPN buffer to 20111 of the Ulysis labelled DNA. However, it was found that 

more efficient CGH hybridisations were obtained using the PCR purification 

protocol). 

2. Transfer the solution into a QIAquick spin column and centrifuge at 13000rpm for 1 

minute. 

3. Discard the filtrate and add 750111 ofPE buffer into the spin column. Centrifuge at 

13000rpm for I minute and discard the filtrate. Repeat the centrifugation at 

13000rpm for a further 1 minute and ensure that the membrane in the spin column 

appears dry. 

4. Place the spin column into a clean 2ml microcentrifuge tube and place 30111 of EB 

buffer onto the membrane of the spin column. 

5. Leave at room temperature for at least 30 minutes and the centrifuge at 13000rpm 

for 5 minutes. Transfer the eluted filtrate into a clean 0.5ml microcentrifuge tube. 

6. Store the eluted labelled DNA at -20°C until required. 
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2.2.7 Comparative Gepomjc Hybridjsatjop 

Day 1 

Preparation of Denaturation solution 

1. Freshly prepare the denaturation solution (containing 49ml formamide, 7ml 20xSSC 

and 14ml deionised water and adjusted to pH 7.0) and heat in a water bath to 

73± 1°C, in a fume cupboard. 

Preparing the Probe Mix 

1. Combine the following in a 1.5ml microcentrifuge tube: 

10J.11 (200ng) labelled test DNA 

IJ.11 (100ng) labelled total genomic reference DNA 

1OJ.11 (10J.1g) Human Cot-l DNA 

2. Add 2.11l1 (0.1 volume) of 3M sodium acetate to the mixture followed by 52.51l1 

(2.5 volumes) of 100% ethanol, in order to precipitate the DNA. The sodium acetate 

acts as a carrier. Then place the microcentrifuge tube in a -70°C freezer for 15-30 

minutes. 

3. Microfuge the microcentrifuge tube at 12,000rpm for 30 minutes in order to pellet 

the DNA. 

4. Carefully remove the supernatant so as not to disturb the pellet and then vacuum dry 

in a vacuum centrifuge at room temperature so as to remove all traces of ethanol. 

5. Re-suspend the dried DNA pellet in 3111 of purified water and 7111 of CGH 

hybridisation buffer. 

6. Then denature the DNA mixture by heating in a water bath at 73°C for exactly 5 

minutes. 

Hybridising the Probe DNA to the Target Metaphase 

1. Mark the hybridisation areas on the target metaphase slides using a diamond tipped 

scribe. 

2. Then immerse the slides in the denaturation solution for exactly 5 minutes. 
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3. Having been denatured, dehydrate the slides at room temperature in an ethanol series 

(70%, 85% and 100%) for 1 minute each, before being left to air-dry at room 

temperature. 

4. Apply 1O1l1 of the denatured DNA mixture to the marked hybridisation area. 

5. Then apply a cover slip immediately to each hybridisation area and seal with rubber 

solution. 

6. Incubate the slides in a humid chamber at 37°C for between 48-72 hours. 

Day 3 

Preparation of Solutions 

1. Prepare a fresh stringency wash solution (containing 0.4xSSC/O.3% NP-40 and 

adjusted to pH 7.0-7.5) was and heat to 74±1 °C in a water bath placed in a fume 

cupboard. 

2. Freshly prepare a second stringency wash solution (containing 2xSSC/O.l % NP-40 

and adjusted to pH 7.0-7.5) and place at room temperature in a fume cupboard. 

Post-Hybridisation Stringency Washes 

I. Remove the slides from the humid chamber and remove the cover slips by removing 

the rubber sealant and tapping vertically. Immerse the slides into the 0.4xSSC/0.3% 

NP-40 stringency solution, agitate gently for 1-3 seconds and then allow to stand in 

the stringency solution for 2 minutes. 

2. Remove the slides and immediately immerse them into the 2xSSC/O.I % NP-40 

stringency solution, agitate gently for 1-3 seconds and allow to stand for 1 minute. 

3. Then allow the slides were to air-dry in darkness. 

Detection and Visualising the Hybridisation 

1. Once the slides are dry apply IOll1 of DAPI II counterstain to each hybridisation area 

and apply a cover slip. Use nail varnish to seal edges of the cover slip. The slides 

can then be stored in lightproof slide boxes at 4°C, until required for viewing. 

2. Visualise the hybridisation using a CCD camera and image enhancement software, 

with appropriate filters for the fluorochromes and DAPI used. 
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2.2.8 Polymerase Chaip Reactiop 

2.2.8.1 PCR using O.5ml Microcentrifuge tubes and the Biometra UNO­

Thermoblock for use on Agarose or Polyacrylamide Gels 

1. Place all 0.5ml microcentrifuge tubes to be used for the PCR reaction on ice and 

allow to cool. 

2. Add the following constituents into a 2ml microcentrifuge tube, also placed on 

ice, to produce a master mix in this exact order: 

19.1 J..ll nuclease free water 

2.5J..l11 OxN~ buffer Each constituent was multiplied by (n+2) 

0.75,.!l MgCh before being added into the master mix. 

O.5J..ll dNTP mix Where n = number of tumour DNA 

0.5J..ll forward primer (lOOpmol/J..ll) samples and 2 extra volumes to allow for 

0.5J..lI reverse primer (1 OOpmol/J..ll) 

0.15J..lI Taq polymerase 

24J..lI total volume per reaction 

one negative control and any mis­

pipetting 

3. Place an aliquot of 24J..lI from the master mix into each 0.5ml microcentrifuge 

tube. 

4. Pipette IJ..lI of the tumour DNA to be amplified into the microcentrifuge tube. 

5. Add a drop of mineral oil to each microcentrifuge tube to prevent evaporation of 

the PCR reaction mixture during thenno-cycling. 

6. Finally, pulse each microcentrifuge tube briefly in the microfuge and place on 

the PCR block for thenno cycling. All samples underwent an initial denaturation 

step at 94°C for 3 minutes followed by 30 cycles of denaturation at 94°C for 1 

minute, an annealing step at the optimal temperature as shown in appendix III for 

30 seconds and extension at 72°C for 30 seconds, with a final extension step at 

72°C for 5 minutes. 
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2.2.8.2 peR using the Abgene Thermo-Fast 96 Low Profile Plate and the Primus 96 

Plus thermo cycler for use on LongRanger Sequencing Gels 

I. Place a 2ml microcentrifuge tube on ice and allow to cool. 

2. Add the following constituents into the microcentrifuge tube to produce a master 

mix in this exact order: 

7.05JlI nuclease free water 

1 JlI 1 OxNHt buffer 

0.3JlI MgCh 

0.2JlI dNTP mix 

0.15JlI unlabelled forward primer 

(100pmoIlJlI) 

0.15JlI unlabelled reverse primer 

(lOOpmoIlJll) 

0.15JlI Taq polymerase 

9JlI total volume per reaction 

Each constituent was multiplied by (n+2) 

before being added into the master mix. 

Where n = number of tumour DNA 

samples and 2 extra volumes to allow for 

one negative control and any mis­

pipetting 

3. To the final master mix add 3JlI of the IRD labelled forward primer. 

4. Place an aliquot of 9JlI from the master mix into each well of the 96 well plate. 

5. Pipette IJlI of the tumour DNA to be amplified into the well. 

6. Add a drop of Chill-out 14 liquid wax (purchased from MJ Research Inc.) into each 

well to prevent evaporation of the PCR reaction mixture during thermo-cycling. 

7. Place the 96-well plate immediately onto the PCR block for thermo cycling. All 

samples underwent an initial denaturation step at 94°C for 3 minutes followed by 30 

cycles of denaturation at 94°C for I minute, an annealing step at the optimal 

temperature as shown in appendix III for 30 seconds and extension at 72°C for 30 

seconds, with a final extension step at 72°C for 5 minutes. 
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2.2.9 Agarose Gel Electrophoresis 

1. The agarose gel is prepared by mixing 1 g agarose to 100ml 1 xTBE buffer, and 

heating the solution in a microwave until the agarose is in solution. Take care not to 

super heat the solution. 

2. Allow the agarose solution to cool to approximately 45°C and add 2.5J.11 of ethidium 

bromide. 

3. Pour the agarose solution into a mini-gel fitted with combs and allow to set. 

4. Pour TE buffer over the gel so as to cover it completely by approximately lmm. 

5. In a O.5ml microcentrifuge tube, mix 9J.11 of the reaction mixture with IJ.11 ofPCR 

loading buffer and pipette the resultant solution into one of the wells. 

6. Electrophorese the reaction mixture with a lkb DNA marker placed in another well, 

in order to determine the size of the DNA product. 

7. Electrophorese the gel at 10 V fcm until the peR loading buffer is approximately 2-

3cm from the edge of the gel. Visualise the gel with UV light, using all appropriate 

precautions. 

2.2.9.1 Ethjdjum Bromide Staipjpg 

Ethidium bromide is a potent carcinogen and all precautions must be used in handling 

and disposing of this compound. Ethidium bromide may either be incorporated directly 

into a gel or may be added to a volume of electrophoresis buffer placed in a plastic tray 

and the gel immersed into the buffer for a variable period of time so as to stain the 

DNA. This immersion technique may be used to stain either agarose or polyacrylamide 

gels. 

2.2.10 Polyacrylamjde Gel Electrophoresis 

1. Prior to pouring the gel, ensure that the glass plates are perfectly clean by cleaning 

with methanol and wiping dry with tissue paper. 
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2. Place the spacers between the glass plates and clamp the plates onto a casting tray, 

ensuring that there is a tight seal between the glass plates and the casting tray, in 

order to prevent leakage of the polyacrylamide gel solution. 

3. Pour the gel solution quickly in between the glass plate and carefully insert the 

comb, ensuring that no air bubbles are trapped between the comb and gel. 

4. Allow the gel to set for approximately 30 minutes. 

5. Once the gel is set, the comb is carefully removed and the wells washed with IxTBE 

buffer using a syringe, in order to remove any polyacrylamide gel that has not yet 

set. 

6. The gel and glass plates are removed from the casting tray and clamped into the gel 

running tank and the tank filled with 1 xTBE buffer. 

7. Pre-electrophorese the gel at 175 volts for 30 minutes, so as to warm the gel, so that 

the PCR products electrophorese uniformly along the gel. 

8. 5111 ofPCR loading buffer is added to each sample. 

9. Using a Hamilton syringe, load 20111 of each PCR sample into each well, ensuring 

that the syringe is washed out prior to loading the next sample. 

10. The gel is then electrophoresed at 175 volts for approximately 16 hours. 

11. Once the loading dye has reached the end of the gel, the power is switched otT and 

the glass plates and gel removed from the tank. Carefully separate the glass plates 

and slide the gel into a clean plastic tray containing IxTBE buffer. Cut off the top 

right corner of the gel for orientation, prior to silver staining. 

2.2.10.1 Silyer Stainipg 

1. Remove the polyacrylamide gel from the tray containing the 1 xTBE butTer and 

carefully place into a clean plastic tray containing solution 1 (initial fix solution) and 

leave at room temperature for 10 minutes. 

2. Remove the gel and place in a clean tray containing solution 2 (silver nitrate 

solution) for approximately 15 minutes. 

3. Remove the gel and place in a clean tray containing deionised water and rinse once. 

4. Remove the gel and place in a clean tray containing solution 3 (developer) and 

gently shake the tray until the bands appear on the gel and have reached the desired 
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intensity. (Over-development will result in a dark brown background with low 

contrast bands rather than a grey background with sharp bands). 

5. Remove the gel and place in a clean tray containing solution 4 (final fix/stop 

solution) for 5 minutes. 

6. After the final gel fix the gel is removed and sealed in a plastic sleeve. 

2.2.11 LongRanger Gel Electrophoresis 

1. Prior to pouring the gel, ensure that the glass plates are perfectly clean by 

cleaning with methanol and wiping dry with tissue paper. 

2. Place the spacers between the glass plates and clamp the plates onto a casting 

tray, ensuring that there is a tight seal between the glass plates and the casting 

tray, in order to prevent leakage of the polyacrylamide gel solution. 

3. Pour the gel solution quickly in between the glass plate and carefully insert the 

comb, ensuring that no air bubbles are trapped between the comb and gel. 

4. Allow the gel to set for approximately 30 minutes. 

5. Once the gel is set, the comb is carefully removed and the wells washed with 

1 xTBE buffer using a syringe, in order to remove any gel that has not yet set. 

6. The gel and glass plates are removed from the casting tray and clamped into the 

LiCor 4200 LongRead automated sequencer and the tank filled with 1 xTBE 

buffer. 

7. Pre-electrophorese the gel at 800 volts for 20 minutes, so as to warm the gel to 

50°C. 

8. Prior to loading the gel, add 4J.lI of stop solution to each well and denature at 

75°C for 5 minutes. 

9. Using a Hamilton syringe, load IJ.lI of each PCR sample into each well, ensuring 

that the syringe is washed out prior to loading the next sample. 

10. The gel is then electrophoresed at 800 volts. 

11. The PCR products will be visualised automatically with the LiCor Base ImagIR 

software on a PC computer. 
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2.3 LIST OF SUPPLIERS 

Advanced Biotechnologies Ltd. 

Longmead Business Centre. Blenheim Road. Epsom. KT19 9QQ. 

Ansell Medical 

Ansell House. 119 Ewell Road. Surbiton, KT6 6A Y. 

Anachem Ltd. 

Anachem House, Charles Street, Luton, LU2 OEB. 

Appligene-Oncor 

Parc d'Innovation, B.P.72, F-67402, Illkirch, France. 

Becton Dickinson Ltd. 

Between Towns Road, Cowley, Oxford, OX4 3L Y. 

BDH Laboratory Suppliers 

Merck Ltd, Hunter Boulevard, Lutterworth, LE17 4XN. 

Bibby Sterilin Ltd. 

Tilling Drive, Stone, Staffordshire, ST15 OSA. 

Bioline Ltd. 

16 The Edge Business Centre, Humber Road, London, NW2 6EW. 

Bio Whittaker Molecular Applications Inc. 

191 Thomston St, Rockland, Maine, USA. 

Boehringer Mannheim 

Boehringer Mannheim House, Bell Lane, Lewes, BNY 1 LG. 
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Cambio 

34 Millington Road, Cambridge, CB3 9HP. 

Citifluor 

UKC, Chemical Laboratories, Canterbury, CT2 7NH. 

Corning Costar UK Ltd. 

I The Valley Centre, Gordon Rd, High Wycombe, HB 13 6EQ. 

Flowgen 

Novara House, Excelsior Road, Ashby de la Zouch, LE65 ING. 

Gibco Life Technologies Ltd. 

PO Box 35, Trident House, Renfrew Rd, Paisley PA3 4EF. 

Helena Biosciences 

Sunderland Enterprise Park, Sunderland SR5 3XB. 

John Poulton Ltd. 

75-93 Tanner Street, Barking, IG 11 8QD. 
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CHAPTER 3 

3.1 INTRODUCTION 

Uveal melanomas are the commonest malignancy of the eye with an annual incidence 

of 5-7 cases per million population (Egan et at., 1988; Jensen, 1982). They account for 

approximately 80% of all non-cutaneous melanomas (Scotto et at., 1976), and are 

classified as either posterior when located in the ciliary body or choroid or anterior when 

located in the iris (Char, 1997). Uveal melanomas invariably metastasise to the liver, 

with the incidence of metastases peaking usually at 2 years after primary enucleation 

(Diener-West et aI., 1992). Thus prognosis is generally poor, with a 5-year tumour­

related mortality of between 16-53% (Diener-West et al., 1992). 

A number of prognostic indicators have been established for uveal melanomas, which 

include: a maximum tumour diameter of greater than 15mm; the presence of epithelioid 

cells; extra-scleral extension; tumour location in the ciliary body (Coleman et at., 1993; 

McLean et at., 1982) and possibly vascular patterns (Folberg et at., 1993; Rummelt et 

at., 1995). More recently, cytogenetic studies have shown that a loss of chromosome 3 is 

a significant prognostic indicator of early relapse and poor survival (Prescher et at., 

1996; Sisley et at., 1997). Several groups have also shown that a gain of chromosome 8, 

principally in the form of an isochromosome 8q, is also associated with a worse 

prognosis (Dahlenfors et at., 1993; Horsman and White, 1993; Horsthemke et at., 1992; 

Prescher et at., 1992, 1996; Singh et at., 1994; Sisley et at., 1990, 1992). Other groups 

have found that the presence of chromosome 6 abnormalities is predictive of a good 

prognosis even when associated with abnormalities of chromosomes 3 and 8 (White et 

al., 1998). 

However, cytogenetic analysis requires the short-term culture of tumours followed by 

producing good quality metaphase spreads. This process is not only time consuming but 

could also induce in-vitro genetic changes (Fox et at., 1995). This presence of 

aneuploidy has also been studied using flow cytometry and static image analysis on both 

fresh and archival material, with conflicting results (Mooy, 1998), which may in part be 

as a result of limitations of the various techniques (Koss et at., 1989; Shankey et at., 

1993). The development of fluorescence in situ hybridisation (FISH) allows the 

interphase cytogenetic analysis of either fresh or archival tumour tissue not only quickly, 
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but also accurately. It also allows for the examination of multiple genetic changes, by 

the use of probes labelled with spectrally distinct fluorescent dyes (Pinkel et aI., 1988; 

Matsumura et aI., 1992; Kallioniemi et aI., 1996). 

3.1.1 Fluorescence In Situ Hybrjdjsatjon (FISH) 

In situ hybridisation is a method of localising either mRNA within the cytoplasm or 

DNA within the nucleus, by hybridising a strand of nucleotide probe to the 

complimentary target sequence of interest. In situ hybridisation techniques were 

developed in the late 60's based mainly on work undertaken by Gall and Pardue (1969). 

However, it was only in the 1980's that scientists started using the procedure to localise 

single copy base sequences cloned from individual genes (Lichter and Cremer, 1992). 

Formerly radioactive isotopes e2p, 35S or 3H) were used as markers, but the recent 

development of fluorescent dyes (fluorochromes) has not only improved the safety 

aspect, but also the resolution of the procedure (McNeil et aI, 1991). 

FISH not only allows the examination of cells in the interphase stage - so called 

interphase cytogenetics (Cremer et aI., 1986), it also allows for the examination of 

multiple genetic changes, by the use of probes labelled with spectrally distinct 

fluorescent dyes. The resulting examination of the cells can be performed by a charge­

coupled device camera, each image being recorded with a specific filter for each 

fluorochrome (Morrison, 1993). 

In situ hybridisation is based on the site specific annealing of single stranded DNA 

molecules (probes) to denatured complementary DNA sequences (targets) in the cells of 

the tissue under study. Probes can be as small as 20-40 base pairs (bp), and up to 1000 

bp. There are essentially three types of DNA probes used; oligonucleotide probes 

(Lengauer et aI., 1994a; Meyne and Moyzis, 1994), single-stranded DNA probes (Meyne 

and Goodwin, 1994) and double stranded DNA probes (Lengauer et aI., 1994b). The 

DNA probe can consist of base sequences specific for the whole chromosome, 

chromosomal region or specific loci. Chromosome specific repetitive probes target the 

tandemly repeated chromosome specific alpha satellite DNA, which is present at or near 

the centromeres of chromosomes (Hopman et aI., 1997). These probes are useful in 

determining the copy number of various chromosomes and can easily be applied to 

interphase nuclei. The centromeric regions tend to be highly condensed and so a probe 
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hybridised to these regions, appears as a small fluorescent dot. By using a number of 

probes each labelled with a spectrally distinct fluorochrome, it is possible to 

simultaneously detect a number of chromosomal aberrations within each hybridisation. 

However, the use of these alpha satellite centromeric probes is limited to the assessment 

of copy number changes (Fox et aI., 1995). 

Target cells for FISH analysis can be obtained from a number of sources, including 

fine needle aspirates, touch or imprint preparations or histological sections from either 

fresh or paraffin-embedded. Cells may also be disaggregated from either archival fresh 

frozen or formalin-fixed tissue samples (Matsumura et aI., 1992; Schofield and Fletcher, 

1992). The disadvantage of using isolated cells from disaggregated tissues is that it can 

produce a bias in the sample of cells, as examination may only be undertaken of those 

cells that have been easily dislodged. Another disadvantage is the loss of morphological 

correlation from the tissue sample. Morphological correlation can be achieved by using 

tissue sections. However, thin sections (4-6 J.1m) result in the cutting of cells and thus 

producing partial nuclei, which can lead to an underestimation of polysomy (Hopman et 

aI., 1991; Weremowickz et aI., 1994; Brothman et aI., 1994). The use of thick sections 

(40-60 J.1m) overcomes this, however this can lead to difficulties in the interpretation of 

cell superimposition (Southern and Herrington, 1996). A suitable compromise is to use 

thin sections together with the analysis of inflammatory and stromal cells, acting as 

internal controls (Kim et aI., 1993). A recent technique of using laser-scanning confocal 

microscopy on thick (20J.1m) sections may solve this problem. Confocal microscopy 

allows different planes within the section to be observed, thus allowing the presence of 

hybridisation signals to be related to the histological architecture (Kozubek et aI., 2001). 

The use of a control specimen with normal nuclei, preferably from the same tissue of 

origin is essential in order to recognise hybridisation efficiency problems and possible 

signal cross-reactions between different probes (Kallioniemi et aI., 1996). The 

interpretation of FISH relies on the degree to which the apparent hybridisation signals 

accurately correspond to the specific target site for the probes. The number of apparent 

signals will be smaller than the true number of target sites if target DNA is lost during 

preparation or, remains inaccessible to the probe detection reagents or, if signals 

overlap. Extra signals can arise from the fragmentation of target DNA or from the non 

specific binding of the detecting reagents (Devilee et aI., 1988; Matsumura et aI., 1992). 
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There are shortcomings to FISH technology. Firstly, there needs to be the 

development of a specific probe for each genetic defect, by contrast, conventional 

karyotypic analysis looks at the entire genome. Secondly, FISH has a minimum size of 

visualisation, requiring a probe size of around 40-200 kb of genomic DNA, and so can 

miss very small genetic alterations (Kallioniemi et aI., 1996). For aberrations that are 

too small to be detected by conventional FISH (- I 0 kb or less), other techniques may 

be used, such as high-resolution FISH mapping (Raap et aI., 1996), primed in situ 

hybridization (Koch et aI., 1996) and ligase-mediated chain reaction (Landegren et aI., 

1996). 

FISH has already proved useful in clinical practice and is routinely used in the 

diagnosis of trisomy 21 (Klever et aI., 1992; Klinger et aI., I 992; Ward et aI., 1993). 

FISH may also prove useful in the diagnosis of certain constitutional microdeletion 

syndromes (Ledbetter, 1992), the diagnosis of carrier status in X-chromosomal 

recessively inherited diseases associated with deletions, such as Duchenne muscular 

dystrophy (Ried et aI., 1990), and the identification of deleted tumour suppressor genes 

in certain types of cancers (Stilgenbauer et aI., 1993) 

3.1.2 Aims of this Study 

The first part of this study was to perform a retrospective analysis of uveal melanoma 

tumours using centromeric probes for chromosomes 3 and 8 and to correlate the analysis 

with various clinicopathological characteristics and patient survival, in an attempt to 

define any prognostic factors. 

The study was to be repeated using the same centromeric probes to analyse primary 

coiorectal cancers and their corresponding liver metastases, in order to compare the 

findings between colorectal cancers and uveal melanomas, and to assess whether 

abnormalities in the copy numbers of chromosomes 3 and 8 are associated with the 

development of liver metastases, in the case of colorectal cancers. 
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3.2 RESULTS 

A series of 33 tumour samples from 33 patients treated between 1987 and 1995 were 

analysed using FISH. All tumours were categorized histopathologically according to the 

AFIP system of classification for uveal melanomas (Spencer, 1986). Tumour diameter 

was assessed pre-operatively by B scan ultrasonography and subsequent clinical follow­

up was conducted at the Department of Ophthalmology and Orthoptics, University of 

Sheffield. 

Six normal blood controls were analysed using FISH to assess the sensitivity of the 

centromeric probes, 300 cells being counted for each sample. For each uveal melanoma 

tumour sample, again 300 cells were counted (table 3.3). Cells were excluded from 

analysis if they were clumped together or if they appeared to have been cut. 

Patient outcomes were divided into two groups: 1) absence of genetic abnormalities 

(no genetic imbalance) and 2) presence of genetic abnormalities (genetic imbalance). No 

genetic imbalance was defined as a cell having the normal complement of two target 

hybridisation signals for each chromosome (figures 3.4 and 3.5), and the presence of 

genetic imbalance was defined as any combination of target hybridisation signals other 

than two for chromosome 3 and two for chromosome 8 (figures 3.6 and 3.7). Genetic 

imbalance was said to be present if the number of abnormal cells exceeded 70% of the 

total population observed. A value of 70% was taken, following the manufacturers 

recommendations for probe sensitivity, which indicated that approximately 70% of 

normal cells analysed would show constitutional hybridisation signals for either 

centromeric probe. Therefore if the total number of cells analysed showed a normal 

complement in more than 70% of cells analysed, the tumour was said to show no 

genetic imbalance. FISH was performed on six normal blood controls to confirm this 

sensitivity value. 

Statistical Analysis 

Independent samples t-test, chi-square test or Fisher's exact test were used to assess 

any differences in sex, age, tumour cell types, location and mean tumour diameter 

between the two groups. The log-rank test was used to compare survival, which was 

represented by Kaplan-Meier survival curves. Statistical analysis was performed using 
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SPSS statistical software package on a PC computer, with a p value for significance set 

at <0.05. 

3.2.1 Optimising Conditions for FISH on Normal Blood Controls 

A standard FISH protocol was initially used (see Materials and Methods section 2.2.4 

Fluorescent In Situ Hybridisation), and optimum pepsin digestion times were evaluated 

on several normal blood samples. Figure 3.1 show the results of pepsin digestion of a 

normal blood sample (Normal Blood Sample 1), ranging from 0 to 30 minutes. 

Optimum hybridisation for both probes i.e. two constitutional hybridisation signals for 

either probe was with 10 minutes pepsin digestion, where the number of normal cells 

with constitutional hybridisation signals was 82%. Two further blood samples were also 

analysed to confirm this with the duration of pepsin digestion ranging from 5 to 15 

minutes and both samples confirmed optimal hybridisation efficiency at 10 minutes 

pepsin digestion. Normal constitutional hybridisation signals were observed in 91 % and 

90% of cells in normal blood samples 2 and 3 respectively. 

Figure 3.1 FISH results for Normal Blood Sample 1 with pepsin digestion for 

various times. Fifty cells were counted at each pepsin digestion time. 
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A total number of six normal blood sample controls were analysed using FISH with 

chromosomes 3 and 8 centromeric probes. Three hundred cells were counted for each 
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sample with the average number of cells with a normal number of hybridisation signals 

being 96.72% (range 94.33% - 97.67%), and a median of97%. Thus, the sensitivity of 

the two probes in combination concurred with the value supplied by Appligene Oncor, 

which stated that a normal sample of cells would show two hits for each chromosome in 

70% of cells analysed. 

3.2.2 Optimisiog COnditions for FISH 00 Formalin-Fixed Paramo-Embedded 

Tumours 

Preservation of tumour material initially fixed in formalin and then embedded in 

paraffin wax, allows for the convenient storage of tumour tissue over many years. 

Tissue architecture and morphology are both conserved in these paraffin blocks, 

allowing retrospective analysis to be undertaken. This allows a collection of tumour 

specimens to be built up which can be analysed a number of years later. These 

retrospective studies have the advantage of facilitating the correlation of data acquired 

to clinical progression and outcome determined by follow-up undertaken over many 

years. 

Tissue preservation in paraffin wax is not without its problems when attempting to 

use novel techniques to analyse the tissue. A number of protocols exist to allow the 

analysis of paraffin-embedded tissue material. However, difficulties arise when 

chemicals and procedures for tissue fixation are not standardised either between 

Institutions or even within an Institution. 

In this study, dual colour FISH analysis was attempted on eight tissue samples of 

paired primary colorectal cancer and metastatic formalin-fixed paraffin-embedded 

tissue. However, following hybridisation a great deal of auto-fluorescence was 

observed, thus concealing the number of true specific hybridisation signals. A number 

of factors could have been responsible for this: 

1. Operator error. 

2. Problems with the reagents and solutions. 

3. Inefficient removal of paraffin from the tumour sample. 

4. Insufficient permeabilization of tumour cells by pepsin. 
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Operator error and substandard solutions could "be discounted as allhybridisations 

were performed with a normal blood sample to act as a control. Normal blood samples 

consistently showed bright, clear constitutional hybridisation signals for both 

chromosomes 3 and 8. 

To improve the removal of paraffin from the tumour samples, extra washes of xylene 

and ethanol were introduced. However, this had very little effect on reducing auto­

fluorescence and improving hybridisation signals. It was concluded that auto­

fluorescence was an inherent problem with using paraffin-embedded material. An 

attempt was made to improve the intensity of the hybridisation signal by increasing the 

permeablization of the nuclei to the centromeric probes. This was initially performed by 

increasing the duration of pepsin digestion. Care would need to be taken during this 

procedure, as over-digestion by pepsin would destroy cellular and nuclear morphology, 

resulting in a loss of true target hybridisation signals (Kopf et al., 1996). Several slides 

were prepared from two formalin-fixed paraffin-embedded tissue samples of normal 

colon tissue and digested in pepsin for various durations, ranging from 10-60 minutes 

(figures 3.2 and 3.3). 

Figure 3.2 FISH results for Normal Colon Tissue Sample 1 with pepsin digestion 

for various times. Fifty cells were counted at each pepsin digestion time. 
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Figure 3.3 FISH results for Normal Colon Tissue Sample 2 with pepsin digestion 

for various times. Fifty cells were counted at each pepsin digestion time. 
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One would expect to observe two constitutional hybridisation signals for both the 

chromosome 3 and chromosome 8 centromeric probes, however, the number of normal 

hybridisation signals recorded were maximal at 60 minutes for sample 1 (80% of cells 

analysed) but could not be evaluated for sample 2 as there appeared to be poor 

hybridisation of the chromosome 3 centromeric probe, even though optimum 

hybridisation of the chromosome 8 centromeric probe appeared to be at 40 minutes. 

Although not investigated, the better hybridisation efficiency of the chromosome 8 

centromeric probe may have been as a result of its smaller size, thus being able to 

penetrate the permeablised nucleus more readily than its larger counterpart. Another 

interesting finding was the two peaks of optimal hybridisation with the chromosome 8 

centromeric probe. Similar findings are sometimes seen with chromosome banding, 

although the reason for this has never been fully elucidated. Thus, it was concluded that 

different tumour samples would require different durations of pepsin digestion to 

facilitate hybridisation by the probes. 

Two paraffin-embedded colorectal cancer tissue samples were analysed using FISH 

for abnormalities in copy numbers of chromosomes 3 and 8. However, results were 

inconsistent at the various pepsin digestion times, ranging from 30-50 minutes. For 

colorectal cancer sample 1, the majority of cells showed no hybridisation signals for 
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either probe at any duration of pepsin digestion (table 3.1). While for colorectal cancer 

sample 2 the majority of cells at 30 and 40 minutes pepsin digestion showed 3 

hybridisation signal for chromosome 8 and none for chromosome 3, while at 50 minutes 

pepsin digestion the majority of cells showed no hybridisation signal for either probe 

(table 3.2). 

Table 3.1 FISH results for Coloredal Cancer Sample 1. Fifty cells were counted at 

each pepsin digestion time. 

Duration of Pepsin digestion (minutes) 

30 40 50 

Results (Chromosome 3 0:0=49 0:0=31 0:0=25 

hybridisation signals: 0:1=1 2:0=11 1:1=10 

Chromosome 8 1:1=10 2:2=6 

hybridisation signals) 0:1=7 0:2=3 

0:2=3 1:2=2 

1:2=2 0:1=2 

2:2=2 2:1=2 

Table 3.2 FISH results for Colorectal Cancer Sample 2. Fifty cells were counted at 

each pepsin digestion time. 

Duration of Pepsin digestion (minutes) 

30 40 50 

Results (Chromosome 3 0:3=19 0:3=18 0:0=26 

hybridisation signals: 1:3=8 1 :3=15 0:3=7 

Chromosome 8 0:2=8 2:2=5 0:2=7 

hybridisation signals) 2:3=4 1:2=4 1:2=4 

1:2=3 0:2=3 1:3=2 

3:3=2 2:3=2 0:1=2 

0:4=2 1:4=2 1:1 =1 

2:4=2 0:4=1 3:2=1 

2:2=2 
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Therefore, in order to ascertain the true number of hybridisation signals for either 

probe for each paraffin-embedded primary and metastatic tumour analysed, a normal 

tissue control would need to be disaggregated from an adjacent block of paraffin­

embedded tissue, so as to control for tissue fixation and processing differences. 

A further attempt to improve permeablization of the tumour sample was performed 

by increasing the duration of protease digestion in the tumour disaggregation procedure. 

Tumour sample were digested with protease for between 10-60 minutes. The optimal 

duration of digestion was determined by visualising the disaggregated tumour samples 

under a microscope, to ensure that cellular morphology remained intact. However, even 

this procedure failed to improve the intensity of the hybridisation signals. 

It was concluded that, as the duration of digestion with either pepsin or protease 

could not be standardised for all samples and that hybridisation would have to be 

repeated with normal tissue controls for each tumour analysed, the total number of 

hybridisations required for all tumour samples would not be feasible in terms of time or 

reagents. 

3.2.3 Qptimising COnditions (Of FISH On Fresh-Frozen Tumouf Samples 

FISH analysis was successfully completed on 33 fresh-frozen uveal melanoma 

tumour samples that had been embedded in optimal cutting temperature (OCT) 

compound and subsequently stored at -20°C. FISH performed on the original 

disaggregated tissue samples was extremely poor, with very few intact cells and 

abundant cellular debris. This was thought to be attributable to poor disaggregation 

techniques and attempts were employed to rectify this. In these early samples, tissue 

disaggregation employed a combination of coarse tumour mincing using two scalpel 

blades followed by protease digestion. Omitting the protease digestion step and instead 

relying solely on mechanical disaggregation improved disaggregated tumour slide 

preparations. To prevent large clumps of disaggregated tissue from being dropped onto 

slides during slide preparation, tumour samples were freshly fixed using methanol: 

glacial acetic acid fixative and then left to stand for several minutes in order for the 

large clumps of tissue to settle and the upper clearer solution used to prepare slides. 

Thus, with slight adjustments in the tissue disaggregation protocol and in the 

preparation of slides, high quality hybridisations were obtained. 
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3.2.4 FISH Analysis of Fresh-frozen Uveal Melanoma Tumours Using Centromeri~ 

Probes for Chromosomes 3 and 8 

Of the 33 tumours analysed, 16 showed evidence of genetic imbalances. Of these 16 

tumours, 14 patients had died by the end of the study, with 10 having died of liver 

metastases. The cause of death was unknown in two patients, with the rest having died 

of unrelated causes. The median duration of survival for these patients was 37months 

(14-52 months). Of the tumours without evidence of genetic imbalances, 5 patients had 

died by the end of the study, although none had died as a result of either liver metastases 

or from the primary uveal melanoma. The median duration of survival for these patients 

was 114 months (44-204 months), (table 3.5). Two patients were lost to follow up, one 

from each group and were thus excluded from the survival analyses (tables 3.4 and 3.5). 

Of the 16 tumours that showed genetic imbalance, imbalance was due to a loss of 

chromosome 3 in 15 of these cases, with associated additional copies of chromosome 8 

in 5 tumours only. Only one tumour had a gain of chromosome 8 not associated with a 

loss of chromosome 3 (Mel 50) where the patient died due to liver metastases and 

survived only 52 months (table 3.4). In several tumours the results obtained using FISH 

were in accord with previous cytogenetic analysis (Sisley et aI., 1990). 

If only those deaths due to liver metastases are considered, the difference between the 

two groups is statistically significant (p<0.000 1). If it is assumed that all patients who 

died may have had occult metastases, the difference between the two groups is again 

statistically significant (p<O.OOOI). Both scenarios are represented by the Kaplan-Meier 

survival curves (figures 3.8 and 3.9). 

Specific analysis of the predictive value of monosomy 3 with survival showed it to be 

significantly associated with reduced survival in all patients (p<0.000 1) and in those 

with liver metastases (p<0.0001). Both scenarios are represented by the Kaplan-Meier 

survival curves (figures 3.10 and 3.11). However, the gain of chromosome 8 and 

reduced survival did not reach statistical significance (p=0.133), (figure 3.12). 

No significant differences were observed in sex (p=0.732), age (p=0.889), tumour 

cell type (p=0.73), location (p=0.498), or mean tumour diameter (p=O.574) between the 

two groups (table 3.5). 
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Table 3.3 Results of dual colour FISH analysis. 

Patient Results (Chromosome 3 hybridisation GIINoGI 
signals:Chromosome 8 hybridisation si2nals) 

Mel 1 2:2=285 1:2=82:1=5 1:1=14:4=1 NoGI 
Mel 5 2:2=272 1:3=141:2=93:3=22:1=24:4=1 NoGI 
Mel 7 2:2=282 1:3=4 1:2=33:3=3 1:1=22:1=22:3=2 1:4=1 NoGI 

2:4=1 
Mel 8 2:2=2442:1=271:1=141:2=15 NoGI 
Mel 13 2:2=275 1 :2=25 NoGI 
Mel 14 1:2=1661:3=892:2=42 1:1=22:1=1 GI 
Mel 15 1:3=1641:2=1162:2=14 1:4=6 GI 
Mel 16 1 :2=207 2:2=55 1 :3=29 1: 1 =9 GI 
Mel 21 2:2=2902: 1 =3 1 :3=3 1 :2=3 1: 1 =1 NoGI 
Mel 22 2:2=2832:1=41:2=42:3=33:3=24:2=14:4=1 NoGI 
Mel 24 2:2=236 1 :2=26 No GI (8% GI) 
Mel 26 2:2=200 1 :2=97 1 :3=3 GI 
Mel 28 2:2=2401:2=571:3=1 3:1=14:2=1 No GI (19% GI) 
Mel 31 2:2=289 1 :2= 11 NoGI 
Mel 36 2:2=1801:2=113 1:3=62:1=1 GI 
Mel 37 2:2=1691:2=651:3=602:4=23:3=2 1:4=1 2:1=1 GI 
Mel 40 2:2=128 1:2=871:3=78 1:4=3 1:1=23:3=1 2:3=1 GI 
Mel 44 2:2=1861:2=691:3=12 No GI (27% GI) 
Mel 45 1:2=1672:2=981:3=282:4=2 1:4=1 2:1=1 2:3=1 1:1=2 GI 
Mel 46 1 :2=2402:2=45 1 :3=13 GI 
Mel 47 2:2=261 2:1=191:2=94:4=3 NoGI 
Mel 48 2:2=269 1 :2=202: 1 =6 1 :3=2 1: 1 =3 NoGI 
Mel 50 2:4=1952:2=371:4=282:6=15 1:5=71:3=52:5=3 GI 

1:6=2 
Mel 51 1:2=233 1:3=462:2=13 1:4=4 1:1=32:1=1 GI 
Mel 52 1:2=1292:2=35 1:3=26 1:1=72:4=22:1=1 GI 
Mel 53 1:3=173 1 :2=1162:2=11 GI 
Mel 57 1 :2=213 1 :3=62 2:2=16 1: 1 =8 1 :4=1 GI 
Mel 68 1:2=1122:2=105 1:3=572:4=10 3:3=5 2:1=4 GI 
Mel 69 2:2=203 1 :2=86 1 :3=3 2: 1 =3 1: 1 =5 No GI (29% GI) 
Mel 71 2:2=296 1 :3=24:4=1 3:3=1 NoGI 
Mel 73 2:2=2784:4=12 1:2=32:4=32:1=4 NoGI 
Mel 75 2:2=281 1:2=122:1=7 NoGI 
Mel 94 1:2=2161:3=51 1:1=10 1:4=2 GI 

GI = Genetic imbalance present; No GI = No Genetic imbalance present. 
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Table 3.4 Results of GI status and tumour characteristics. 

Patient Sex Age Cell Location Mean Results Status 
(years) Type tumour (months 

diameter alive since 
jmm) dia~osis) 

Melt M 52 S C 12 NoGI A(153) 
Mel 5 F 48 Mix CB 4.75 NoGI LFU 
Mel 7 M 82 E C 16.5 NoGI DURJ11 11 
Mel 8 M 40 Mix C 12.2 NoGI Al}461 
Mel 13 F 55 Mix CB/C 12.7 NoGI OUR (88) 
Mel 14 M 52 Mix C 15.25 GI DLM(32) 
Mel 15 M 56 Mix C 11.75 GI DUKJ701 
Mel 16 F 61 Mix CB/C 19.75 GI DUR(l~ 
Mel 21 M 54 Mix CB/C 16 NoGI A(134) 
Mel 22 M 79 Mix CB/C 12.7 NoGI DUR1441 
Mel 24 F 69 Mix C 10.05 NoGI A (134) 
Mel 26 M 72 Mix C 8.5 GI DLM (55) 
Mel 28 F 59 E C 25 NoGI DURl1281 
Mel 31 F 38 Unknown C Unknown NoGI A (204) 
Mel 36 M 55 E Conj. 9 GI DLM(40) 
Mel 37 F 70 Mix CB/C 15 GI DLM181 
Mel 40 F 48 Mix C 11 GI Al1201 
Mel 44 F 76 Mix CB/C 15.3 NoGI Al1201 
Mel 45 F 57 Mix C 13.4 GI LFU 
Mel 46 F 64 E CB/C 14.35 GI DLMl6~ 
Mel 47 M 67 Mix C 13.25 NoGI A(IIS) 
Mel 48 M 35 Mix C 15.25 NoGI All 171 
Mel 50 F 48 Mix CB/C 10.35 GI DLM (52) 
Mel 51 F 61 E CB Unknown GI DLM (26) 
Mel 52 F 72 Mix C 17 GI DURi461 
Mel 53 M 46 Mix CB/C 15.6 GI DLM1541 
Mel 57 F 63 Mix CB/C 14.75 GI DLM(38) 

Mel 68 M 71 S Conj. 30 GI DUK(l9) 
Mel 69 F 53 Mix C 9 NoGI A(l021 
Mel 71 M 35 S C 13.45 NoGI Al1001 
Mel 73 M 64 Mix CB/C 20.6 NoGI DUK1631 
Mel 75 F 70 S C 12.3 NoGI A1981 
Mel 94 M 33 Mix C 16.6 GI DLMlrrr 

M = Male; F = Female; E = Epithelioid; Mix = Mixed; S = Spindle; C = Choroid; CB = 

Ciliary Body; Conj. = Conjunctiva; A = Alive; DLM = Died with liver metastases; OUR 

= Died of unrelated causes; DUK = Died of unknown causes; LFU = Lost to follow-up. 

GJ = Genetic imbalance present; No GJ = No Genetic imbalance present. 
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Table 3.5 Results of statistical analysis. 

Genetic Imbalance Genetic Imbalance p value for 

Absent (No GI) Present (GI) difference 

Number of 17 16 

patients 

Sex MIF 9/8 7/9 0.732 

Age (years) 

Mean (SD) 57.41 (15.18) 58.06 (10.96) 0.889 

Median 55 59 

Tumour diameter Incomplete data for Incomplete data for 

(mm) 1 tumour 1 tumour 

Mean (SD) 13.82 (4.60) 14.82 (5.23) 0.574 

Median 12.975 14.75 

Cell type Incomplete data for 

1 tumour 
....., 

Spindle 3 1 

Mixed 11 12 0.730 

Epithelioid 2 3 

Location 

Choroid 7 11 

Ciliary body 1 1 

Ciliary 6 5 0.498 

body/choroid 

Conjunctiva 2 0 
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Figure 3.4 A Captured FISH image of Normal Blood Sample 1. A captured image 

showing the normal complement of two target hybridisation signals for each 

chromosome pair, thus signifying no genetic imbalance. 

Figure 3.5 A Captured FISH image of Normal Blood Sample 5. A captured image 

showing a normal complement of split-target hybridisation signals. The split signals are 

di tributed equally and are of imilar intensity for each chromosome pair. 

- 108 -



Figure 3.6 A Captured FISH image of Uveal Melanoma Tumour Mel 53. A 

captured image showing cells with monosomy 3 (red hybridisation signals - rhodamine) 

and trisomy 8 (green hybridisation signals - FITC), thus signifying genetic imbalance. 

Figure 3.7 A Captured FISH image of Uveal Melanoma Tumour Mel 50. A 

captured image also showing genetic imbalance with four hits for chromosome 8 (green 

hybridisation signals - FITC) but with a normal complement of two hybridisation signals 

for chromosome 3 (red hybridisation signals - rhodamine). 
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Figure 3.8 Kaplan-Meier survival curves for all deaths due to liver metastases -

Analysis of chromosomes 3 and 8. 
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Figure 3.9 Kaplan-Meier survival curves for all deaths - Analysis of chromosomes 

3 and 8. 
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Figure 3.10 Kaplan-Meier survival curves for all deaths - Monosomy 3. 
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Figure 3.11 Kaplan-Meier survival curves for all deaths due to liver metastases -

Monosomy 3. 
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Figure 3.12 Kaplan-Meier survival curves for all deaths - Gain of Chromosome 8. 
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3.3 DISCUSSION 

3.3.1 Effect of Tissue Fixation on FISH 

FISH is an effective technique for analysing genetic changes in interphase nuclei and 

a number of studies on archival paraffin-embedded tissues have been published 

(Deviliee et aI., 1988; Hopman et aI., 1991; Matsumura et aI., 1992; Qian et ai., 1996). 

However, results are dependent on the method oftumour fixation with a number of 

protocols available for tumour fixation prior to being embedded in paraffin wax (Baker, 

1960). Tumour material may not necessarily be fixed in formalin but a solution of 

various chemicals, some of which will hinder analysis by FISH (Kapranos et al., 1997). 

The purpose of fixation of fresh tissue samples is two-fold. Firstly, the process of 

autolysis and bacterial degradation should be prevented. Secondly, the tissue should be 

preserved in its original state without the loss of small molecules. Ideally, the tissue 

must be left in a condition following fixation, to allow subsequent processing. The aim 

of tissue processing is to progressively dehydrate the tissue of fixative and tissue water 

and then embed the tissue in a solid medium, firm enough to support the tissue, yet soft 

enough to allow a knife to cut sections without damaging the tissue. It is essential that 

the embedding medium thoroughly penetrates the tissue in its liquid form and that it 

solidifies with as little damage to the tissue. At the Royal Hallamshire Hospital, neutral 

buffered formaldehyde is used for fixation, which consists of formalin (which is a 

solution containing 35-40% gas by weight of formaldehyde), sodium dihydrogen 

phosphate monohydrate and disodium hydrogen phosphate anhydrous, with paraffin 

wax being used as the embedding medium. Tissue samples are left in this solution for 

between 4-6 hours generally before being processed. However, if specimens are large, as 

in the case of colon cancer resections, the tissue may be left in the solution overnight to 

allow penetration of the fixative into the tissue. occasionally this time period may 

extend to 48 hours if a cancer is resected over the weekend. 

Fixatives form cross-links between proteins thereby producing a gel in which 

molecules are fixed relative to each other. In the case of formaldehyde these cross-links 

are formed between the lysine residues on the exterior surface of protein molecules, thus 

denaturing the proteins in the process (Baker, 1960). Fixation of tissues also brings 

about changes in the chemical and physical state of RNA and DNA. Although in their 
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native states, RNA and DNA do not react to any extent with formaldehyde at room 

temperature, when the temperature is increased to 45-65°C, as during tissue processing, 

then cross-links begin to form between proteins, namely histones and DNA. The length 

of time in formalin prior to being embedded in paraffin wax not only increases the 

extent of these DNA:protein complexes (Xiao et al., 1995), but can also result in the 

loss of up to 30% of the DNA (Diaz-Cano and Brady, 1997). Gomyo et at., (1995) found 

that with increasing durations of formalin fixation, hybridisation efficiencies when 

performing FISH reduced exponentially with results being unobtainable after 5 days of 

fixation and concluding that FISH analysis could easily be performed on formalin-fixed 

paraffin-embedded material, as long as tissue fixation was kept to as short a time as 

possible. Possible changes to the protocol to improve hybridisation include acid pre­

treatment prior to pepsin digestion; heating the slide to 80°C for 10minutes in 1 M 

sodium thiocyanate which dissociates proteins (notably histones) from DNA, and so 

allowing the DNA probes to access the target DNA more efficiently; suspending the 

disaggregated tumour cells in PBS or glycerol solution at 7S-90°C which is thought to 

induce nuclei swelling and chromatin decondensation (Amoldus et at., 1991; Hopman et 

ai., 1991; Hyytinen et ai., 1994) and microwave heating (Henke and Ayhan, 1994). 

Thus, the effect of variable and prolonged fixation of the colorectal cancer 

specimens meant that FISH analysis was extremely difficult and although various pre­

treatment methods could have been utilised, limitations in time precluded further 

investigation. 

3,3,2 CUnical faome.en and FISH Analysis of Uyeal Melanoma 

Sex and Age 

No significant difference was observed in either sex (p=0.732) or age (p=0.889) 

when using the t-test and Chi-Square test respectively, which is in concordance with 

other published series (McClean et ai., 1982; Coleman et ai., 1993). 

Tumour Cell Type 

No significant difference was observed in tumour cell type (p=0.73) when using 

Fisher's Exact test, which is in contrast to the studies by McClean et ai. (1982) and 

Coleman et al. (1993) who found that tumours with a mixed or epithelioid cell type had 
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a poorer prognosis as compared to those with a spindle cell type. In our study there were 

a total of 4 tumours (12.1 %) with a pure spindle cell type, of which 3 showed no genetic 

imbalance, whilst one tumour (Mel 68) did and in which the majority of the cells were 

observed to have monosomy 3, although the cause of death in this patient was unknown. 

There were a total of23 tumours (69.7%) with a mixed cell type with almost equal 

numbers in each group (11 with no evidence of genetic imbalance and 12 with genetic 

imbalance). Of the tumours with an epithelioid cell type (15.2%), two tumours showed 

no genetic imbalance (Mel 7 and Mel 28) and three tumours showed genetic imbalance 

(Mel 36, Mel 46 and Mel 51), all with monosomy 3 and all of these patients dying as a 

result of liver metastases. There was one tumour in which the histological cell type was 

not recorded in the clinical notes. 

Location 

Uveal melanomas with a ciliary body location appear to be correlated with reduced 

survival (McClean et aI., 1982; Prescher et al., 1996). However, in this study no 

significant association was shown between a specific location and a reduced survival, 

when using Fisher's Exact test (p=0.498), which concurs with other studies (Gordon et 

aI., 1994; Parrella et aI., 1999). Only two tumours (6%), Mel 5 and Mel 51 were situated 

entirely within the ciliary body, where Mel 5 showed no evidence of genetic imbalance, 

whilst Mel 51 showed monosomy 3, with the patient dying as a result of liver 

metastases. Eighteen tumours (54.5%) were situated entirely within the choroid, 11 of 

which showed no evidence of any genetic imbalance. Of the choroid tumours with 

genetic imbalance the majority had monosomy 3 and three tumours (Mel 14, Mel 15 and 

Mel 40) also had additional copies of chromosome 8. In a third group of tumours 

(33.3%), a definite site of origin could not be determined, as the tumours tended to be 

large and were thus classified as ciliary body/choroid. In this group there were near 

equal numbers of tumours with genetic imbalance (n=6) and showing no genetic 

imbalance (n=5). Of the two tumours situated in the conjunctiva (6%), Mel 36 and Mel 

68, both showed evidence of genetic imbalance, both having monosomy 3. The patient, 

Mel 36, died as a result of liver metastases and patient Mel 68, the cause of death was 

unknown. However, patient Mel 68 did have a large tumour (mean tumour diameter of 

30mm) and survived for only 19 months post-operatively. 
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Size 

There was no significant difference shown between mean tumour diameter and the 

presence or absence of genetic imbalance, when using the t-test (p=0.574). The mean 

tumour diameter of those with no genetic imbalance was 13.82rnm and in those with 

evidence of genetic imbalance was 14.82mm. There were two tumours in which the 

mean tumour diameter could not be ascertained from the clinical notes. 

Tumours with and without Genetic Imbalance 

Of the 33 tumours analysed16 tumours showed genetic imbalance, imbalance was 

due to monosomy 3 in 15 of these cases, with concurrent gains of chromosome 8 present 

in 5 tumours only (Mel 14, Mel 15, Mel 37, Mel 40 and Mel 53). Of these tumours, 4 

patients had died by the end of the study, one where the cause was unknown and the rest 

having died as a result of liver metastases. The other patient (Mel 40), with a choroidal 

tumour is still alive 5 years post-operatively. Only one tumour had a gain of 

chromosome 8 (two extra copies) not associated with monosomy 3 (Mel 50). This 

tumour (Mel 50) was of a mixed cell type and located in the ciliary body/choroid with a 

mean tumour diameter of 10.35rnm, with the patient dying as a result of liver 

metastases, surviving only 52 months post-operatively (table 2). 

In several tumours the results obtained using FISH were in accord with previous 

cytogenetic analysis (Sisley et aI., 1990, 1997), thus confirming the reliability of the 

technique in the assessment of abnormalities of chromosomes 3 and 8. 

Survival Analyses 

As stated previously, survival analyses were performed using the log rank test and 

represented by Kaplan-Meier survival curves. Two patients were lost to follow up, one 

from each group, and were excluded from survival analyses. 

If only those deaths due to liver metastases were considered, the difference in 

duration of survival between those tumours with genetic imbalances and those with no 

evidence of genetic imbalance, was statistically significant (p<O.OOOl), suggesting that 

patients with tumours that had genetic imbalances were more likely to die sooner than 

patients in whom the tumours appeared to show no evidence of genetic imbalance 

(figure 3.8). Ifhowever, even ifit was assumed that all patients who died may have had 
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occult liver metastases then the difference between the two groups was still statistically 

significant (p<O.OOOI), (figure 3.9). 

A third analysis considered all tumours with monosomy 3 (irrespective of whether 

there was an associated gain of chromosome 8 and again assuming that all patients who 

died may have had liver metastases), and whether there was any difference in survival 

between tumours with monosomy 3 and those with a nonnal complement of 

chromosome 3 (figure 3.10). This analysis was also statistically significant (p<O.OOOI), 

thus confinning that patients with tumours having monosomy 3 have a worse prognosis 

than those patients in whom the tumours have a nonnal complement of chromosome 3. 

If the analysis is repeated, considering only those patients who died as a result of liver 

metastases again comparing tumours with and without monosomy 3, the difference is 

still statistically significant (p<O.OOOI) (figure 3.11). Note the step in the upper survival 

curve, which represents the patients with tumours having a nonnal complement of 

chromosome 3, this is due to the death of patient Mel 50, who had a tumour with two 

extra copies of chromosome 8 but without monosomy 3. 

The final survival analysis considered all patients with tumours showing additional 

copies of chromosome 8 (irrespective of the presence of mono so my 3) and compared 

them with all those patients with tumours having a nonnal complement of chromosome 

8. There appeared to be no difference in survival between the two groups (p=0.133), 

even though the survival curve for the patients with tumours showing additional copies 

of chromosome 8 is steeper than the survival curve for patients with a nonnal 

complement of chromosome 8 (figure 3.12). A survival analysis comparing tumours 

with additional copies of chromosome 8 and tumours with a nonnal complement of 

chromosome 3 could not be perfonned, as there was only one tumour (Mel 50), which 

would fit this criterion. These findings would at first appear to be in contrast to those of 

Horsman et aI., (1990) and Sisley et aI., (1997), who found a dose related correlation 

between additional copies of 8q and reduced survival. However, as only six tumours 

appeared to have additional copies of chromosome 8 and only one tumour with gains of 

chromosome 8 not associated with monosomy 3, the numbers were too small to reach 

statistical significance. These findings also concur with previous studies, which 

suggested that the gain of chromosome 8 (especially i8q) is a late event and tends to 

occur after either monosomy 3 or alterations of 6p (White et aI., 1998; Parrella et aI., 

1999). 
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3.3.3 Monosomy 3 and Gain of Chromosome 8 as Prognostic Indicators of Liver 

Metastasis and Poor Survival in Uveal Melanoma 

Several retrospective studies relating the presence of monosomy 3 and gains of 8q to 

a reduced survival and hence a poor prognosis have been undertaken previously 

(Prescher et aI., 1996; Sisley et aI., 1997; White et aI., 1998). However, all of these 

studies were performed using the conventional cytogenetic analysis, which requires the 

short-term culture of tumours followed by the production of good quality metaphase 

spreads. The possibility also exists for missing genetic changes due to small number of 

cells studied. The development of fluorescence in situ hybridisation (FISH) allows the 

interphase cytogenetic analysis of a large number of cells accurately. 

Prescher et ai. (1996) examined uveal melanomas from 54 patients, either by 

karyotype analysis or comparative genomic hybridisation, in relation to clinical status, 

having been followed-up for a median of 40 months. Of the 54 tumours examined 30 

had monosomy 3, of which 17 (54%) of these patients had relapsed with metastatic 

disease. In contrast, of the 24 patients in whom the tumours retained both copies of 

chromosome 3, none had developed metastatic disease. Thus concluding that monosomy 

3 was the most significant predictor of poor prognosis, followed by ciliary body 

involvement and a tumour diameter greater than 10mm. Interestingly, histopathological 

subtype and the presence of extra-scleral growth had no additional predictive value in 

their study. 

McNamara et al. (1997) assessed chromosome 3 copy numbers using fluorescent in 

situ hybridisation (FISH) on fresh touch preparations. Of the 17 uveal melanomas that 

they studied (all of which were located in the choroid) only two revealed monosomy 3, 

although the clinical significance of this was not stated. 

Sisley et al. (1997) examined 42 patients using a combination of karyotypic analysis 

and FISH to confirm cytogenetic abnormalities. Twenty-three tumours (54%) had one or 

more additional copies of the long arm of chromosome 8, either as a result of 

translocation or in the form of an isochromosome i(8q) and of these 14 had two or more 

copies. Monosomy of chromosome 3 was found in 21 (50%) of the tumours examined. 

Other abnormalities detected, included deletion of chromosome 1 p in 12 patients (29%), 

deletion of 6q in 13 patients (31 %) and trisomy 6p in 8 patients (19%). FISH was used 
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to confirm cytogenetic abnormalities and was performed using chromosome paints for 

chromosomes 3 and 8 on prepared short-term cultures. Statistical analysis confirmed a 

significant association between chromosome 3 and 8 abnormalities with a ciliary body 

location and a reduced survival. The results also showed a significant correlation 

between increasing copies of chromosome 8q and a reduced survival. 

Interestingly, White et al. (1998), performed cytogenetic analysis on 54 patients who 

underwent enucleation for uveal melanoma and divided the patients into two groups; 

those that had liver metastases (either alive or dead) and those who had no evidence of 

metastatic disease (again, alive or dead). Patients were followed-up for a median of38 

months and they found that abnormalities of chromosomes 3 and 8 (in the form of 

monosomy 3 and additional copies of chromosome 8q) were associated with a poor 

prognosis (presence of metastatic disease) but only when the two abnormalities were 

present together. When a chromosome 3 or 8 abnormality occurred alone, which was 

infrequent, the risk of a poor outcome was the same as if neither abnormality was 

present. However, they also found that additional copies of chromosome 6p correlated 

with a good prognosis even in the presence of chromosome 3 and 8 abnormalities. It 

appeared that gain of chromosome 6p material, either in the form of an isochromosome 

6p or deletion of 6q was protective. And patients with the best outcomes were those 

with a lone abnormality of chromosome 6. Extra-scleral extension was also predictive of 

a poor outcome although there appeared to be no association between tumour location, 

size or histological cell type with clinical outcome. Although they concurred with the 

findings of Sisley et al. (1997), that abnormalities of chromosomes 3 and 8 were 

associated with tumours in a ciliary body location. 

There have been a number of studies utilizing comparative genomic hybridisation 

(CGH) to assess genome wide changes in uveal melanoma (Speicher et aI., 1994; 

Gordon et aI., 1994; Ghazvini et aI., 1996; Becher et aI., 1997; Aalto et aI., 2001; Naus 

et aI., 2001), where the most common genetic changes were loss of chromosome 3, over 

representation of6p, loss of6q and additional copies of8q. CGH allows analysis of the 

entire genome, highlighting regions of chromosomal gains and losses (Kallioniemi et 

aI., 1992). Speicher et al. (1994), repeatedly observed the loss of chromosome arm 9p 

concluding that 9p loss may not entirely be restricted to the development of cutaneous 

melanomas. A similar conclusion was also drawn by Gordon et al. (1994), who also 

observed recurrent abnormalities with gains of chromosomes 7q and 13q. However, 
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both studies conceded small numbers within the study. Naus et at. (2001), used a 

combination of FISH, CGH and spectral karyotyping (SKY), to complement each 

technique to allow a more intensive exploration of chromosomal abnormalities in uveal 

melanomas. Examining two uveal melanoma cell lines and five primary uveal 

melanomas, they revealed a new abnormality using SKY, a der( 17)t(7; 17)(?;q?), that 

had not previously been recognised by conventional cytogenetics. CGH proved 

particularly useful in assigning abnormalities identified by SKY to specific 

chromosomal regions, in particular a small deletion of chromosome region 3q 13-21. 

However, they did not observe monosomy 3 in any of their cases, which is not entirely 

unexpected as the incidence of mono so my 3 in our study was 45% (15/33) and 

clinicopathological data was unavailable for comparison in their study. Aalto et al. 

(2001), examined 14 non-metastasising uveal melanomas with 15 metastasising uveal 

melanomas and 6 of their metastases. They reported significantly more abnormalities in 

the metastases and metastasising uveal melanomas compared to the non-metastasising 

group, commenting that loss of chromosome 1 p was only evident in the metastases and 

metastasising group suggesting a site of a putative tumour suppressor gene. They also 

reported that the frequency of chromosome 6p gains was higher in the non-metastasising 

group, although this was not statistically significant. However, loss of chromosome 6q 

in the metastases and metastasising group was statistically and clinically significant with 

all patients with 6q loss, dying from their disease. 

There are thought to be several putative tumour suppressor genes on chromosome 3 

and oncogenes on chromosome 8, which may be involved in uveal melanoma 

tumourigenesis and metastasis (Kok et aI., 1997; Singh et aI., 1996). A possible 

candidate tumour suppressor gene on chromosome 3 is the fragile histidine triad (FHIT) 

gene lying at 3p 14.2, which is targeted by tobacco smoke carcinogens and where allelic 

deletions has been linked to cancers of the lung, breast, colon, pancreas and head and 

neck (Burke et aI., 1998). The other areas of deletions on chromosome 3p associated 

with cancers is at 3p 21.2-21.3 and at 3p 25-26, which contains the von Hippel-Lindau 

(VHL) syndrome tumour suppressor gene. Von Hippel-Lindau syndrome is a dominantly 

inherited familial cancer syndrome predisposing to a variety of malignant and benign 

neoplasms, most frequently retinal, cerebellar and spinal haemangioblastoma, renal cell 

carcinoma, phaeochromocytoma and pancreatic tumours. The gene is thought to 

function as a cellular gatekeeper, regulating cell cycle exit into the GO phase, with loss 
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of function (as a result of mutation or deletion of both alleles) resulting in cells 

continuing to proliferate (Pause et aI., 1998). Clifford et al. (1998) reported that 

hypermethylation could also lead to the silencing of the VHL tumour suppressor gene in 

renal cell carcinomas from patients with VHL disease. Another putative tumour 

suppressor gene located on chromosome 3p is the thyroid hormone receptor B (THRB) 

gene, which is also found to be deleted in uveal melanomas, predominantly those 

located in the ciliary body, although the significance of this finding is as yet unknown 

(Sisley et aI., 1993). 

In the case of chromosome 8 there not only appears to be a proto-oncogene on 8q but 

also a tumour suppressor gene on 8p. Studies using CGH indicate that a region from 8q 

12 to 8qter are present at an increased relative copy number in a broad range of solid 

tumours (F ejzo et aI., 1998). A region from 8p 22-p21.3 is commonly deleted in 

hepatocellular, colorectal and non-small cell lung cancers (Emi et aI, 1992; Chinen et 

aI., 1996). A region lying between 8p II-p21 is also thought to be a region for one or 

more tumour suppressor genes involved in breast cancer (Adelaide et al., 1998). The c­

myc oncogene (c-myc being the human homologue of an oncogene carried by an acutely 

transforming retrovirus known as Avian myelocytomatosis virus), which has been 

mapped to 8q 24 plays an important role in a variety of malignancies. However, in uveal 

melanomas there is contradictory evidence that over-expression of c-myc may be 

associated with a better prognosis (Chana et aI., 1999). A number of genes also exist on 

chromosome 6p, including WAF J /C1P J, which encodes for a cyclin-dependant kinase 

inhibitor (p21) which is thought to bind to p53 to control cellular progression through 

the cell cycle (EI-Deiry et aI., 1993; Waldman et aI., 1995). The genes encoding MHC 

class 1 molecules are also located on 6p, expressions of which have been found to be 

altered in uveal melanoma using immunohistochemistry (810m et aI., 1997). 

3.3.4 Summary 

The results of this study are in accordance with previously published studies 

analysing uveal melanoma, correlating monosomy 3 with a poor prognosis (Prescher et 

aI., 1992; Sisley et aI., 1997; White et aI., 1998). But this study also shows that 

analysing both chromosome 3 and 8 imbalances is a better prognostic indicator of liver 

metastasis and poor survival than analysing either one alone. Limitations of this study 
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include the small number of tumours analysed and the fact that centromeric probes were 

used, which only allow for the analysis of copy numbers of either chromosome. 

Therefore, subtle sequence changes such as base substitutions; deletions or insertions 

would be missed, as would chromosome translocations (Kallioniemi et aI., 1996). Also 

the significance of chromosome 6 and 1 p changes were not analysed, which in future 

studies could be addressed by the use of a hydroxycoumarin (blue) labelled probes. With 

the emergence of specific oncogenes and tumour suppressor genes in the tumourigenesis 

of uveal melanoma, these genes could also be specifically targeted using FISH. 

This study has shown that FISH analysis for chromosome 3 and 8 is a reliable and 

efficient technique in the analysis of fresh-frozen tumour specimens and is valuable in 

the prediction of prognosis in individuals with uveal melanomas. 
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CHAPTER 4 

4.1 INTRODUCTION 

The progression of colorectal adenoma to carcinoma is accompanied by the 

sequential accumulation of many genetic changes either as a result of chromosomal 

instability or micro satellite instability, with or without the influence of methylation 

(Fearon and Vogelstein, 1990; Frayling, 1999; Robertson and Wolffe, 2000). 

Nanashima et al. (1997) conducted the FISH analysis of 18 paired samples of fresh­

frozen primary colorectal cancers with their liver metastases using alpha satellite DNA 

probes for chromosomes 8, 18, 14/22 (combined) and 20. The authors reported that the 

gain of chromosome 20 was a frequently observed aberration in primary and liver 

metastatic tumours compared to 15 primary tumours which had not known to have 

metastasised. They concluded that the observation of a gain of chromosome 20 in the 

primary tumour could be used to predict liver metastasis. 

One of the limitations of FISH is that it only provides information on one or a few 

loci at a time. This maybe adequate for single genetic abnormality disorders, such as 

Down's syndrome (trisomy 21) or Edward's syndrome (trisomy 13), but many 

malignancies have multiple genetic defects. So a technique that can examine the entire 

genome is more appropriate. One such technique is comparative genomic hybridisation 

(Kallioniemi et al., 1992; du Manoir et al., 1993; Kallioniemi et al., 1994). 

The aim of this study was to look for any gross genomic changes in paired primary 

colorectal cancers and their liver metastases using comparative genomic hybridisation 

(CGH), in an attempt to delineate common regions ofloss or gain, which may be 

prognostic for the development of liver metastases. 

4.1.1 Comparatjye Gepomic Oyhridisatjop (CGO) 

Comparative genomic hybridisation relies on the competitive hybridisation between 

fluorescently labelled tumour DNA and normal reference DNA onto a normal 

chromosome metaphase spread. Regions of gain or loss of DNA sequences, such as 

amplifications or deletions, are seen as changes in the differential ratio between the two 
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fluorochromes along the chromosomes. The analysis is undertaken using a charge 

coupled device camera and a digital image analysis system. 

The simplest method ofCGH relies on hybridisation of the labelled tumour DNA 

onto a normal metaphase spreads to elucidate areas of amplification, however this is not 

sensitive enough to detect low-level amplification or losses of DNA sequences 

(Kallioniemi et aI., 1992; Joos et aI., 1993). The inclusion of normal reference DNA, 

labelled in a different colour allows for compensation for differences in hybridisation 

efficiency found in one chromosomal region to another (Kallioniemi et aI., 1996). 

It is essential that DNA from tumour specimens contain at least 60% of the malignant 

cells under investigation (Kallioniemi et aI., 1994). DNA extracted from fresh and 

frozen tissue and cell cultures are the most suitable, but recent developments in DNA 

extraction from formalin-fixed archival material have allowed this valuable source of 

DNA to be utilised (Speicher et aI., 1993; Isola et aI., 1994). The incorporation of 

directly labelled nucleotides FITC-dUTP (for tumour DNA) and Texas Red-dUTP (for 

reference DNA) has now replaced the previously used indirect labelling methods 

(Kallioniemi et aI., 1992; Visakorpi et aI., 1995), although directly labelled DNA tend to 

appear dimmer on visualisation, and so the use of digital image analysis is essential if 

low-level amplification and losses are to be detected (Piper et al., 1995), (figure 4.1). 

The red-green ratios from several metaphase spreads are combined to account for any 

hybridisation inefficiencies to produce a mean profile with standard deviations for each 

chromosome (Kallioniemi et al., 1996). The degree of this variation is the best measure 

of the consistency and reliability of the CGH results (Kallioniemi et al., 1996). 

However, caution should be taken when interpreting ratio changes at the centromeres, 

heterochromatic regions and telomeres, and also at chromosome 1 p32-pter and 

chromosomes 19,22 and Y (Kallioniemi et aI., 1994). It should also be noted that the 

differential intensities of the two fluorochromes do not always correlate with the level of 

copy numbers of each area of amplification, with another shortfall being that balanced 

trans locations and ploidy shifts are undetectable (Persson et al., 1999). Small genetic 

changes, such as intragenic rearrangements and point mutations can also be missed and 

genetic changes affecting pericentromeric and heterochromatic regions are inconclusive 

(Kallioniemi et al., 1996). 
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Figure 4.1 A diagrammatic representation of comparative genomic hybridisation 

adapted from Houldsworth and Chaganti, (1994). 
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As CGH analyses the DNA from a population of cells, it cannot provide information 

on genetic changes present in a small subpopulation of cells or individual cells, 

important features of clonal heterogeneity (Kallioniemi et aI., 1996). The development 

of spectral karyotyping and multicolour-FISH, allows the simultaneous visualisation of 

all chromosomes in specific colours (Schrock et aI., 1996; Speicher et aI., 1996). Thus, 

allowing the identification of subtle metaphase chromosomal aberrations, such as 

trans locations and for the identification of small chromosomal structures, such as 

double-minutes, which may reflect oncogene amplification (Sawyer et aI., 1998). 

Comparative genomic hybridisation as a technique has been validated using 

independent methods, such as Southern blotting, loss of heterozygosity (LOH) analyses 

and fluorescence in situ hybridisation (FISH) (Kallioniemi et aI., 1994). The results of 

CGH have also shown good correlation with classical cytogenetic analyses (Speicher et 

aI., 1995). However, CGH tends to pick up more imbalances as compared to karyotype 

analyses, which require the growth of tumour cells in short-term cultures. A possible 

explanation for this could be that tumour cells with simple chromosomal abnormalities 

have a growth advantage over the complex/aneuploid tumour cells in vitro (Persson et 

aI., 1999). 

Conventional CGH analyses use normal metaphase chromosomes as targets for the 

mapping of gains and losses. However, this limits mapping of such imbalances to the 

resolution limit of the metaphase chromosomes (i.e. -5-1 OMb). A further development, 

is replacing the chromosomal target by cloned DNA, immobilised onto glass slides. The 

resolution then being dependant on the size of the immobilised DNA fragments. The 

technique is known as "matrix-CGH" (Solinas-Toldo et aI., 1997; Pinkel et aI., 1998). 

4.1.2 Aims of tbis Study 

The aim of the study was to investigate genomic changes in paired samples of 

primary colorectal cancers and their liver metastases, using CGH, to delineate potential 

chromosomal regions suggestive of putative oncogenes or tumour suppressor genes, 

which may be involved in the metastatic process. 
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4.2 RESULTS 

A series of25 paired tumour samples were obtained for the study. However, as an 

extensive amount of time and reagents had been utilised in optimising the CGH for 

formalin-fixed paraffin-embedded tissue, only two paired samples pCRCS/pLMS and 

pCRC IS/pLM IS were adequately hybridised and processed; although only partial 

results were obtained for these samples. 

For each sample 10 to 15 target metaphase spreads were analysed, chromosomes 

being identified by DAPI banding. 

4.2.1 Optimisation of DNA Extraction and Purification from Formalin-Fixed 

Paraffin-Embedded Tumour Samples 

A number of DNA extraction protocols were attempted in order to obtain the 

optimum quantity and quality of DNA for use in CGH. DNA of poor quality (as a result 

of contamination from RNA or protein) would result in non-specific hybridisation and 

hence increased background fluorescence, whilst a poor yield of DNA would result in 

dim fluorescent signals. 

Tissue for DNA extraction was obtained from microdissected formalin-fixed 

paraffin-embedded tissue material. Several different DNA extraction protocols were 

attempted in order to achieve the most efficient method of DNA extraction which would 

yield DNA of sufficient quantity and quality for use in CGH. 

Tissue samples were de-waxed and digested with proteinase K as outlined in the 

Materials and Methods section 2.2.5.1 DNA Extraction using Phenol:Chloroform for 

Formalin-Fixed Paraffin-Embedded Tissue for use in CGH. DNA purification was 

initially performed using both cold (-20°C) chloroform and ethanol at both room 

temperature and in the cold room (-4°C) to assess whether extraction at 4°C would 

improve the yield of DNA. DNA yield was improved at 4°C, although only slightly 

when assessed quantitatively using the spectrophotometer and qualitatively by 

electrophoresis on an ethidium bromide stained 1 % agarose gel. The DNA was not of 

sufficient quantity or quality for use in CGH, and as the amount of tissue available for 

extraction was limited, a more effective technique was required. A number of organic 

solvents were utilised in combination to improve both the quality and yield of DNA 

- 12S-



cxtracted (table 4.1 ). gain th' ic\d of D was ass 'S'- 'd qualitati ' Ion un cthidium 

bromide stained 1 % agaro. e gel (figure 4.2 ). Meth d B 1 pro ed t) ha e ield 'd th . 

largest quantity of 0 and anal)' is u5ing the . pc trophotometer sho\'. 'd no dincrcn " 

in the quality between mcth ds Bland ' I. Meth d 1 pr du cd the leasl }ield and 

quality of c. tracted 0 A. 

Table 4.1 ombinatioD. of th variou. org ni 01 nl. u, d in D purifi ntion. 

( II procedures wcre performed in pol proP) lene test tub's. with th • ugu' us In 'r 

b 'ing tran ' ferred into fresh test tub's bct\\e 'n wa. h's . \I \vushcs \Ver' pcrf< n11ed t 

room tcmp'rature) . 

Organic olvent Meth d th d 81 thod 

11 wa 'h Phenol Ph 'n 11 : 'hI )rof( ml Ph 'n 11: ' hl( r 1fon11 

2" wa 'h Phenol : 'hlorol(ml1 'hlorol(lml Ph 'nol : 'hIm r1rm 

3r wa h Is prpanol Hhanol 'hi rof1ml 

41 wa h I·than )1 

igure 4.2 ' aptur d imag of 1 % garo. g I . howing th r . ult of th v riou , 

D purification m thod. utili. d. (In Inn' I is a I kb ludd 'r und in lanes R nd 16 I 

sample oro e tra ted from a whole bl( d s mple, ""ith th ' () sl11curs produ . 'd 

using method A I in lane 4, method B 1 in lane 7 and mcth( d ' I in Ian' 11). 

- 129 -



In a further attempt to improve the yield of DNA extracted a variety of methods were 

used to de-wax the tissue more effectively. The various methods used to de-wax the 

paraffin-embedded tissue are outlined in table 4.2. 

Table 4.2 The various organic solvents used in the de-waxing of formalin-fixed 

paraffin-embedded tissue. (In all the methods the microdissected tissue samples were 

transferred to a polypropylene test tube before undergoing de-waxing with the various 

organic solvents. Between each wash, the samples were centrifuged at 15000rpm for 2 

minutes and the supernatant carefully removed). 

Organic solvent MethodA2 Method B2 MethodC2 

Il1t wash 3ml xylene for I Om ins 3ml xylene for 10mins Slides warmed to 60°C 

at room temperature at 70°C (water bath in before microdissection. 

fume cupboard) Then 3ml xylene for 3 

mins at room 

temperature 

2nd wash 3ml xylene for 10 mins 3ml xylene for 30 mins 3ml xylene for I Om ins 

at room temperature at 70°C (water bath in at room temperature 

fume cupboard) 

3rd wash 3ml 100% ethanol for 3ml xylene for 30 mins 3ml 100% ethanol for 3 

10 mins at room at 70°C (water bath in mins at room 

temperature fume cupboard) temperature 

4th wash 3ml 95% ethanol for 10 3ml 100% ethanol for 3ml 100% ethanol for 3 

mins at room 30 mins at room minsat room 

temperature temperature temperature 

5th wash 3ml 70% ethanol for 10 3ml 100% ethanol for 3ml 95% ethanol for 10 

mins at room 30 mins at room mins at room 

temperature temperature temperature 

6th wash 3ml 50% ethanol for to - 3ml 50% ethanol for 3 

mins at room mins at room 

temperature temperature 

7th wash 3ml distilled water for - 3ml distilled water for 

10 mins at room 3 mins at room 

temperature temperature 

Digestion After the final wash the sample, centrifuge at 1000rpm for 10 minutes 

followed by the addition of20J.11 proteinase K and 400J.11 digestion butTer and 

place in rotator at 55°C for 24 hours 
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The de-waxed and digested tissue samples then underwent DNA extraction as per 

method 8 I, outlined previously and extracted DNA was assessed both qualitatively and 

quantitatively (figure 4.3a). 

Figure 4.3 Two captured images of a 1 % agarose gel showing the various DNA 

extraction methods used. Figure 4.3a shows a I kb ladder in lanes 1 and a sample of 

whole blood DNA in lane 8, with the DNA smears produced using method A2 in lane 5, 

method 82 in lane 6 and method C2 in lane 7. Figure 4.3b shows a I kb ladder in lane I 

and DNA smears of two samples of extracted tumour DNA using the Qiagen QIAamp® 

DNA Mini kit in lanes 2 and 5, and the DNA smears of two samples of extracted 

tumour DNA using the method C2 protocol in lanes 3 and 4. 

4.3a 4.3b 

Although method C2 produced the greatest yield of DNA the ratio suggested 

contamination, most probably by protein. A relatively pure DNA sample would be 

essential for CGH, in order to minimise background fluorescence. Our DNA de-waxing 

protocols were compared to a commercially available DNA extraction kit (QIAamp.J(l 

DNA Mini kit purchased from Qiagen Ltd) . Tissue de-waxing and extraction was easier 

and cleaner using the kit, and the extracted DNA was of a slightly greater yield and 

purity. Thus, it was decided to use the QIAamp® DNA Mini kit for subsequent DNA 

extractions (figure 4.3b). 
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4.2.2 Optimisation of CGH Analysis of Formalin-Fixed Paraffin-Embedded 

Tumour Samples 

DNA was extracted from 25 pairs of formalin-fixed paraffin-embedded primary 

colorectal cancers and their corresponding liver metastases, using the Qiagen QIAamp® 

DNA Mini kit. 

CGH was performed as outlined in the Materials and Methods section 2.2.7 

Comparative Genomic Hybridisation. Initially, nick translation was used to label the 

tumour DNA samples with Spectrum Green dUTP. The optimum time required to nick 

translate the DNA was assessed by taking Sill aliquots from the SOIlI reaction mix at I 

hour, 112 hours, 2 hours and 212 hours. The aliquots were run on a 1% agarose gel 

(figure 4.4). On inspection, there appeared to be little difference in the smears seen 

between the various times. However with longer durations of reaction, there appeared to 

be a greater intensity of smaller fragments of DNA visible on the gel, which would 

result in a more granular CGH result. In order to conserve the larger fragments, aliquots 

from the reaction mix were taken after 1 hour and run on a 1 % agarose mini-gel , before 

the reaction was stopped. 

Figure 4.4 Captured image of a 1 % agarose gel showing DNA smears of aliquots of 

a nick translated DNA sample. In lane 1 is a 1 kb ladder and in lane 6 a sample of 

whole blood DNA. A DNA smear of the original extracted DNA sample using the 

QIAamp® DNA Mini kit is seen in lane 2,with aliquots of the nick translated DNA 

samples taken out at 112 hours (lane 3),2 hours (lane 4) and 2Y2 hours (lane 5). 
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CGH results using extracted DNA nick translated with Spectrum Green dUTP, were 

poor, with very low intensities of labelled DNA. The metaphase images also appeared to 

be very granular, in keeping with very small, labelled DNA fragments. In order to 

determine whether tumour labelling with Spectrum Green dUTP was affecting the 

quality of hybridisations, tumour DNA was labelled with Spectrum Red dUTP. 

However, even labelling with Spectrum Red did not improve the intensity of the 

hybridised tumour DNA. 

As both these fluorescent labels fluoresced in ultra-violet light, it was possible to 

visualise the intensity of labelling on a 1 % agarose gel before the gel was stained with 

ethidium bromide to assess the DNA smear. Figure 4.Sa shows that unlabelled Spectrum 

Red runs at a slower rate than Spectrum Green. One can also see that these fluorescent 

labels are associated with a smear of labelled DNA, which is stained more intensely 

with ethidium bromide (figure 4.Sb). 

Figure 4.5 Captured images of Spectrum Red and Spectrum Green labelled DNA 

run on a 1 % agarose gel viewed under UV light without (figure 4.5a) and with 

(figure 4.5b) ethidium bromide staining. In lane 1 is a lkb ladder and in lane 4a 

sample of whole blood DNA. Nick translated DNA smears using Spectrum Red 

labelling and Spectrum Green labelling are seen in lanes 2 and 3 respectively. 

4.5a 4.5b 
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At this stage a different method of labelling the extracted DNA was utilised. As the 

process of nick translation digests DNA into smaller fragments, a labelling system that 

avoids degradation would have a distinct advantage. The Ulysis ULS (Universal 

Linkage System) method labels DNA directly with a fluorescent label and thus does not 

degrade DNA. Both the Ulysis and nick translation techniques were compared side-by­

side. Again images were taken of a 1 % agarose gel before and after staining with 

ethidium bromide. Both showed similar levels of intensity, however as expected the 

DNA smear of DNA labelled using the Ulysis system was longer than using the nick 

translation method, as the larger fragments of DNA were not digested. Interestingly, a 

sample nick translated first and then having undergone the Ulysis method of labelling 

produced the greatest intensity of labelling (figure 4.6a). 

Figure 4.6 Captured images of the various DNA labelling techniques used, run on 

the same 1 % agarose gel viewed under UV light without (figure 4.6a) and with 

(figure 4.6b) ethidium bromide staining. In lane 1 is a 1 kb ladder, with a sample of 

whole blood DNA in lane 7 and an aliquot of extracted DNA sample which has been 

used for all experiments in lane 6. Together with nick translated labelled DNA smears 

using Spectrum Green (lane 2 and 4), a dGreen Ulysis labelled DNA smear (lane 5) and 

a combined nick translated Spectrum Green and Ulysis dGreen labelled DNA (lane 3). 

4.6a 4.6b 

CGH was initially attempted using extracted DNA labelled with dGreen using the 

Ulysis system and hybridised against normal female nick translated DNA labelled with 

Spectrum Red. Images taken using the Ulysis dGreen labelling system, showed a 'halo-
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effect' around each of the metaphase spreads (figure 4.7a). Although the software could 

analyse these images, it was possible that this 'halo-effect' could affect analysis. 

CGH was repeated using extracted tumour DNA labelled with rhodamine using the 

Ulysis system, together with normal female nick translated DNA labelled with 

Spectrum Green. A 'halo-effect' around each metaphase was again observed. Therefore, 

CGH experiments were repeated using normal total genomic female blood DNA, which 

was digested with DNAse to produce fragmented DNA. The DNA was then labelled 

with rhodamine using the Ulysis system and hybridised against normal female nick 

translated DNA labelled with Spectrum Green. On this occasion, no 'halo-effect' could 

be seen, suggesting that this effect may be as a result of formalin-fixation or paraffin­

embedding (figure 4.7b). 

Figure 4.7 Captured images showing the green 'halo-effect' around a metaphase 

spread when CGH was performed using Ulysis dGreen labelled tumour DNA 

(figure 4.7a) and no 'halo-effect' when CGH was performed using Ulysis 

rhodamine labelled fragmented normal female blood DNA (figure 4.7b). 

4.7a 4.7b 

The hybridised metaphases were analysed to test the validity of this labelling method 

and all CGH profiles were found to be within the normal range, as would be expected 

for a normal sample. To test the hypothesis that formalin-fixation or paraffin-embedding 

produced this 'halo-effect', a sample of normal formalin-fixed paraffin-embedded colon 

tissue was taken and its DNA extracted and labelled using Ulysis dGreen and hybridised 

against a normal female nick translated DNA labelled with Spectrum Red. The CGH 

image confirmed that the ' halo-effect' was most likely due to the effects of formalin­

fixation or paraffin-embedding. The CGH results also showed that this ' halo-effect' did 
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not influence the analysis performed by the computer software, as the results showed 

normal CGH profiles (figures 4.8a-d). 

Figure 4.8. A typical captured image of a Ulysis dGreen labelled DNA from 

formalin-fIxed paraffIn-embedded normal colon tissue (fIgure 4.8a), with its DAPI 

stained image (fIgure 4.8b). Figure 4.8c shows the Ulysis dGreen fIltered image 

whilst fIgure 4.8d shows the Ulysis rhodamine fIltered image. 

4.8b 

The' halo-effect' may also have resulted from non-specific hybridisation of very 

small, labelled fragments of DNA to the edges of chromosomes. We contacted 

Kreatech, who suggested we use Qiagen Clean-Up columns, to remove the very small 

fragments of labelled DNA and any unincorporated fluorochromes. Two kits are 

available from Qiagen for this task, a nucleotide removal kit (which removes 

nucleotides and oligonucleotides less than 40 bp long), and a PCR clean-up kit (which 

removes 01 igonucleotides less than 100 bp long). Initially the nucleotide removal kit was 

used as Qiagen recommended this kit. However, there still appeared to be the 'halo­

effect'. Secondly, the PCR clean-up kit was used. The CGH images were better, with no 
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evidence of the 'halo-effect'. However, the intensity of the images was too low for 

analysis by the computer. 

The amount ofUlysis labelled DNA (which had been 'cleaned' using the PCR clean­

up kit) was increased in each hybridisation, proving to be extremely successful. CGH 

was repeated using DNA extracted from normal paraffin-embedded colonic tissue and 

labelled with the Ulysis system and cleaned using the PCR clean-up kit. This also 

proved to be successful and was used as a control in subsequent CGH hybridisations to 

set the image intensity level for correct analysis. MPE600 fragmented with DNAse was 

also labelled with the Ulysis system and used as a positive control in subsequent CGH 

hybridisations. Results confirmed that the method was suitable for detecting the known 

aberrations of the MPE600 DNA. However, due to the limited resources, Ulysis labelled 

MPE600 was not available for the final set of CGH experiments. 

Consultation with Kreatech confirmed that similar problems had also been 

experienced by other researchers. They confirmed that the 'halo-effect' was as a result 

of very small, labelled fragments of DNA hybridising non-specifically to any RNA or 

cytoplasmic debris on the slides and suggested that the DNA be cleaned twice using the 

Qiagen columns and titrating the amount of Ulysis labelled DNA used in CGH 

hybridisations. 

CGH was also performed using extracted DNA labelled with a combination of nick 

translation and Ulysis labelling. However, there appeared to be a lot of background 

signals as a result of non-specific hybridisations between the very small, labelled 

fragments of DNA and residual cytoplasm/debris on the slides. It was felt that this 

avenue of labelling would not be cost effective in either time or reagents. Therefore, it 

was decided that the Ulysis labelling system offered the best possibility of a successful 

hybridisation for analysis. 

A further setback was encountered, with extensive background fluorescence as a 

result of non-specific hybridisation to cytoplasmic debris on the normal metaphase 

target slides, which had been purchased from Vysis. This became a consistent problem 

with variability in the quality of slides not only existing between differing batches but 

also within individual batches. This problem had also been encountered by other 

researchers, both within the department and other institutes. Therefore, in an attempt to 

reduce the background debris (which was most likely to be cytoplasmic remnants), 

Vysis slides were pre-treated with pepsin digestion using the same protocol as for FISH 
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(see Methods and Materials section 2.2.4 Fluorescent In Situ Hybridisation - pepsin 

digestion steps 1-3, with the exclusion of the final PBS-MgCh wash). The slides were 

then dehydrated through an ethanol series and allowed to air-dry at room temperature. 

Pepsin digestion was performed for 5, 10 and 15 minutes, with CGH being performed as 

per protocol thereafter, together with a control slide, which had not been pre-treated. 

Nick translation labelled 46XX and Ulysis labelled colorectal cancer were used for all 

slides. The results of pre-treatment are shown in table 4.3. 

Table 4.3 The results of pepsin digestion pre-treatment for various durations. 

Duration of Pepsin Digestion Pre-treatment 

Slide 1 Slide 2 Slide 3 Slide 4 

Omins 5mins 10 mins 15 mins 

(control) 

Level of 

Background ++++ +++ +++ + 

fluorescence 

Appearance of Normal Metaphases Increasing over Very pale 

target appearance over-digested digestion metaphases. 

metaphases with good appeanng Unable to 

DAPI staining 'moth eaten' distinguish 

chromosomes 

Intensity and Good coverage Poor coverage Poor coverage Extremely poor 

quality of but unable to for both red for both coverage for 

hybridisations analyse because and green fluorochromes. both 

of high fluorochromes. Computer able fluorochromes. 

background No analysis to analyse No analysis 

fluorescence. possible. hybridisations, possible. 

but reliability 

of results 

questionable. 
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As each batch ofVysis slides would be produced slightly differently as a result of 

variances in humidity and temperature during the manufacturing process, pre-treatment 

with pepsin digestion would have to be standardised for each batch, thus resulting in the 

expenditure of more time, reagents and tumour material. 

As a final attempt to obtain usable target metaphase slides, target slides were 

manufactured in-house using PHA stimulated lymphocytes from healthy male 

volunteers. Lymphocytes were cultured and harvested by the Department of Genetics, 

Children's Hospital, Sheffield. The target metaphase slides were prepared as outlined in 

Materials and Methods section 2.2.1.5 Preparation of Metaphase Chromosome Spreads -

steps 12 and 13. The slides underwent pre-treatment with pepsin digestion and fixation 

as outlined in Materials and Methods section 2.2.4 Fluorescent In Situ Hybridisation. 

The resulting slides were then used to perform CGH using formalin-fixed paraffin­

embedded paired tumour samples pCRCI8/pLM18 and pCRC8/pLM8 and also fresh­

frozen paired tumour samples fCRCI and fLMI (see chapter 6.3). CGH was performed 

in all cases with nick translation labelled 46XX controls. CGH was finally partially 

successful for these paired tumour samples, although further experiments to refine the 

technique could not be performed due to time restriction. 

4.2.3 Results of CGH Analysis of Tumour Samples pCRC18. pLM18. pCRC8 and 

pLM8 

No chromosomal abnormality was found for the primary colorectal cancer pCRC 18, 

and was thus deemed not to have been successful. Whilst for its paired liver metastasis 

(pLM 18), the abnormalities detected included gains of chromosomes 2 and 3 and 

chromosome arms 8q and 13q and loss of chromosome arms 8p and 9q. 

For tumour sample pCRC8 again no significant chromosomal abnormality was 

detected, whilst for pLM8, analysis of the hybridisation was not possible due to high 

background fluorescence. 

Figure 4.9 shows a typical two-colour image of CGH for pLM 18 with figure 4.10 

showing the DAPI stained image of the same metaphase spread. ULS red was used to 

label the test tumour DNA and Spectrum Green the normal 46XX reference DNA. The 

ratio of ULS red and spectrum green fluorescence was plotted along each chromosome 

ideogram, where chromosomal imbalances were detected on the basis of deviation of the 
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ratio profile from the balance value CULS red:Spectrum Green = 1: 1). Values of 1.25 

and 0.75 were used as respective diagnostic cut-offlevels to represent amplification and 

deletion respectively. Figure 4.11 shows the average ratio profile for pLM18. Figure 

4.12 shows the average profile from the analysis of several chromosome spreads, where 

vertical lines to the left of the chromosome ideogram indicates deletion whilst to the 

right indicates amplification. 

Figure 4.9 A typical two-colour image of pLM18 (tumour DNA labelled Ulysis 

rhodamine and normal reference DNA labelled Spectrum Green). 

Figure 4.10 The DAPI stained image of the target metaphase spread as seen in 

figure 4.9, for pLMI8. 

• 

• 

• 
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Figure 4.11 The average ratio profile of several metaphase spreads for pLMI8. 

n- IO 14 18 n-5 

~~~ 
19 n- 12 20 n- 8 21 n-6 22 n- 4 

Figure 4.12 The average ratio profile ideogram for pLM18, where vertical lines to 

the left of the chromosome ideogram indicate deletion whilst to the right indicate 

amplification. 
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4.3 DISCUSSION 

4.3.1 Optimisation of DNA Extraction and Purification from Formalin-Fixed 

Paraffin-Embedded Tumour Samples for use in CGH 

The foremost problem with extracting DNA from paraffin-embedded tissue material, 

is that the DNA is rarely well preserved and is usually degraded, resulting in the loss of 

long fragment DNA (1000-2000 bp) which is essential for COHo if a uniform 

hybridisation is to be achieved (Ohazvini et aI., 1996). In this study several protocols 

were utilised with modifications in an attempt to obtain high quality DNA suitable for 

COHo Attempts to improve extraction and purification were greeted with limited 

success, with the optimal protocol utilising the Qiagen QIAamp DNA Mini Kit, which 

proved to be the most efficient method of DNA extraction and purification. 

Improvements to the original standard DNA extraction protocol could have included the 

use of microwave irradiation in order to de-wax the paraffin-embedded tissue material, 

thus obviating the need for organic solvents and potentially reducing the loss of DNA, 

although protein contamination would still have been a problem (Banerjee et aI., 1995; 

Diaz-Cano and Brady, 1997; Sato et aI., 2001). 

4.3.2 Optimisation of CGH on Formalin-Fixed Paraffin-Embedded Tumour 

Samples 

There are several reasons for why more gains or losses were not observed in the 

tumour specimens, when compare to other studies (Kom et aI., 1999; AI-Mullah et aI., 

1999; Aragane et aI., 2001; Nakao et aI., 2001). These include: 

1. Operator error. 

2. Poor image analysis as a result of computer hardware or software deficiencies. 

3. Excessive contamination of the extracted tumour DNA samples by normal tissue 

DNA. 

4. Specific gains or losses were so small that the resolution of COH was unable to 

visualise such differences. 
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5. Extremely heterogeneous tumour samples which resulted in any large gains or losses 

cancelling out. 

6. Prolonged tissue fixation resulting in excessively degraded tumour DNA. 

Operator error could be discounted because normal 46XX control samples hybridised 

well and showed normal profiles when analysed. Although, a positive control such as 

MPE600 was not available for the latter experiments, in the earlier experiments the 

expected imbalances were observed. With the latter experiments the intensity of the 

Ulysis rhodamine labelled tumour DNA was not as bright as that of the Spectrum Green 

labelled normal reference DNA and so initially the captured images were un-analysable 

by the computer. In an attempt to rectify this, the duration of exposure using each filter 

during the image capturing process was determined empirically, until an image was 

obtained which the computer could analyse. This could mean that hybridisation intensity 

levels along the chromosomes could have been artificially compromised, thus masking 

regions of gains or losses, the result being an apparently normal tumour DNA analysis. 

The incorrect pairing of chromosomes due to inadequate DAPI staining could have 

accounted for the low observance of imbalances, as any significant differences may have 

been negated when several chromosome ideograms are combined to produce an average 

profile. Although this was not thought to be a major problem as chromosome pairing 

was verified by an experienced cytogeneticist (Dr K. Sisley). 

Excessive contamination by normal tissue DNA could largely be excluded as tumour 

tissue was microdissected from slides which were confirmed to contain viable tumour 

tissue as oppose to necrotic tissue by two independent histopathologists (Dr M. 

Muzaffer and Dr S. Cross). 

An extremely heterogeneous tumour sample could have resulted in non-significant 

net gain or loss of chromosome material, although this is unlikely as other studies all 

showed extensive gains and losses of chromosome material (Korn et aI., 1999; AI­

Mullah et aI., 1999; Aragane et aI., 2001; Nakao et aI., 2001). Conversely, the 

microdissected tumour sample may have contained material from a specific subclone of 

cells which only showed minor abnormalities, again this is thought to be unlikely as 

tumour material was microdissected from several slides from a single paraffin­

embedded tissue block. Another possibility, is that the structural changes were so small 

« 1 Omb) that the resolution of CGH was unable to visualise such differences. 
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A final possibility, is that prolonged tissue fixation in an unknown fixative lead to 

excessive degradation during tumour DNA extraction, resulting in a propensity of short 

length fragments of DNA (-300-600 bp) which hybridised non-specifically to the target 

metaphase spread in preference to the longer fragments of DNA (-1000-2000 bp), 

which in turn would have prevented any significant changes from being visualised 

(Ghazvini et aI., 1996). Long length DNA fragments were confirmed to have been 

produced as all extracted tumour DNA samples showed a 'smear' when electrophoresed 

on ethidium bromide stained agarose gels and the use of the Ulysis labelling technique 

would have prevented DNA fragmentation which is a consequence of the nick 

translation labelling technique. The use of fresh tumour material would have hopefully 

eliminated many of these problems. 

Thus, a variety of problems could have been responsible for the low numbers of 

chromosomal aberrations detected, not least the problem with the quality of target 

metaphase slides, which was in part rectified by the manufacture of in-house target 

metaphase slides. With additional study successful analysis could have been performed, 

should time have permitted. 

4.3.3 CGH Analysis of Paired Primary and Liver Metastatic Coloredal Cancer 

The progression from colorectal adenoma to cancer has been associated with specific 

chromosomal changes with gains in chromosome arms 13q, 8q and 20q and losses in 

chromosome arm 18q occurring more frequently in cancers than in adenomas (Meijer et 

aI., 1998). With nearly 90% of all colorectal cancers showing chromosomal 

abnormalities only a minority exhibit a normal karyotype (Muleris et aI., 1990; Bardi et 

aI., 1995). The most common numerical abnormalities are loss of chromosome 18 

(26%) and gain of chromosome 7 (25%). Other common abnormalities include losses of 

chromosomes Y (15%), 17 (13%), 14 (12%) and 22 (12%), and common gains include 

those of chromosomes 20 (14%) and 13 (12%). Less frequent findings include loss of Ip 

and gain of 1 q, loss of 8p and gain of 8q, loss of 13p and gain of 13q and loss of 17p 

and gain of 17q (Bardi et aI., 1997). More recently, allelic imbalance with loss of 

chromosome arms 8p (Halling et aI., 1999) and 18q (Martinez-Lopez et aI., 1998) have 

been reported to be significantly associated with reduced survival in patients with Dukes 

B and C staged cancers. 
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Due to the problems encountered using the COH technique, significant results were 

only obtained for pLM 18, showing gain of chromosomes 2 and 3, and chromosome 

arms 8q and 13q, and loss of chromosome arms 8p and 9q. These findings are similar to 

the results obtained by Kom et al. (1999), who found significant gains of chromosome 

arms Sq and 13q and loss of Sp amongst others, on examining 26 paired tumour samples 

using COHo AI-Mullah et al. (1999), on examining 7 paired samples with COH, also 

found gains of chromosome arms 8q and 13q with loss of chromosome Sp. Similarly, 

Aragane et al. (2001) also found a gain of 8q, in particular Sq23-24, and also associated 

gain of 8q with a significantly reduced disease-free survival period. Nakao et at., (2001) 

examined 35 primary tumours, 16 of which had liver metastases and assessed whether 

there were specific genetic changes associated with either the presence or absence of 

liver metastases. Although they did not specifically examine the liver metastases for 

chromosomal abnonnalities, they found significant gains in chromosome arms 8q and 

13q in primary tumours with liver metastases, whereas they found no changes in 6q or 

7q in those primary tumours without evidence of liver metastases. Although only one 

tumour sample appeared to have successfully hybridised in our study, the results did 

concur with these other studies. 

Of the other abnonnalities found by Kom et al. (1999), gain of chromosome arm 20q 

and loss of chromosome 18 and chromosome 1 p were also significant; suggesting that 

chromosome arm 20q may harbour a candidate oncogene responsible for metastasis. AI­

Mullah et al. (1999) also came to a similar conclusion, associating gains of 20q with 

advanced colorectal cancers and liver metastasis. They also found a significant 

association between loss of 17p and gains of6p and 17q with liver metastasis, and 

postulated that these regions may also harbour genes involved in liver metastasis. 

Aragane et al. (2001) also found frequent gains of7p, 7q13-36, 15q21-26, 19p and 20q 

and loss of ISq 1-23 and 5q21. As well as gains of 8q, they associated gains of 20q and 

loss of ISq with a significantly reduced disease free period. Nakao et al. (2001) found a 

significant difference in the frequency of chromosomal abnormalities in 6q, 7 q, 8q, 13q 

and 20q, when comparing primary colorectal cancers with and without liver metastases, 

stating that loss of 17p and 18q and gain of 7q, 8q, 13q and in particular 20q, may 

influence the occurrence of liver metastases. 

Of the studies already mentioned investigating chromosomal abnormalities in 

primary and liver metastatic colorectal cancer (Kom et aI., 1999; AI-Mullah et aI., 1999; 
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Aragane et aI., 2001), only AI-Mullah et ai. (1999), used formalin-fixed paraffin­

embedded tissue, analysing seven paired samples, whereas the other studies were able to 

analyse fresh-frozen tumour specimens. AI-Mullah et aI. (1999) used a phenol­

chloroform DNA extraction technique and a random-primed labelling technique with 

indirect detection when performing COH. This would have enabled repeat detection 

washes to enhance the intensity of any hybridisation signals. Although, COH has been 

successfully performed on a variety of formalin-fixed paraffin-embedded tumour tissues 

such as breast (Nishizaki et aI., 1997), oesophageal cancer (Van Dekken et aI., 1999), 

uveal melanoma (Aalto et aI., 2001) and malignant gliomas (Paunu et aI., 2000) to name 

a few, using a variety of DNA labelling techniques; nick translation (Nishizaki et aI., 

1997; Aalto et aI., 2001; Paunu et aI., 2000), and ULS (Alers et aI., 1999; Van Dekken 

et aI., 1999; Naus et aI., 2001), COH is still dependant on good quality extracted DNA 

and target metaphase slides. A technique which may have improved analysis of paraffin­

embedded material is DOP-PCR (degenerated oligonucleotide primer-PCR), which 

universally amplifies extracted DNA. The amplified DNA can then subsequently be 

labelled using either nick translation or ULS methods (Zitselsberger et aI., 2001). 

However, meticulous laboratory technique and negative controls are essential to ensure 

that DNA contamination has not taken place (Lichter et aI., 1995), and the fluorescent 

ratios along the chromosomes can be more variable (Speicher et aI., 1993). Time and 

resources permitting, the DOP-PCR (universal DNA amplification) method would have 

been the next avenue to be explored in amplifying the extracted DNA from the paired 

tumour specimens followed by labelling by either technique. Again however, COH 

would only be successful if good quality target metaphase slides were available. 

4.3.4 Summary 

The technique of COH was developed to analyse the genomic changes in primary 

colorectal cancers and their liver metastases. Several hurdles were overcome in the 

development of this technique, including the poor quality of DNA obtained from the 

formalin-fixed paraffin-embedded tissue samples and the highly variable quality of the 

purchased target metaphase slides. Time permitting a more extensive analysis of the 

paired samples would have been undertaken. Though, from the limited data obtained, 
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which was comparable with other reports, gain of chromosome arms 8q and 13q may be 

involved in the development of liver metastases. 
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CHAPTER 5 

5.1 INTRODUCTION 

As mentioned previously, there appears to be two major mechanisms involved in the 

tumourigenesis of colorectal cancer, chromosomal instability and microsatellite 

instability (Vogel stein et al., 1988; Fearon and Vogel stein, 1990; Aaltonen et aI., 1993; 

Peltomrud et aI., 1993; Ionov et aI., 1993; Thibodeau et aI., 1993). Although 

microsatellite instability was initially described in association with hereditary non­

polyposis colorectal cancer, up to 20% of sporadic colorectal cancers are also thOUght to 

exhibit MSI (Thibodeau et aI., 1993; Aaltonen et aI., 1993; Kim et aI., 1994; Riischoff et 

aI., 1995). Colorectal cancers with MSI express a distinct phenotype characterised by 

mucinous growth, location to the right side of the colon, poor histological differentiation 

and paradoxically a more favourable prognosis (Kim et aI., 1994). The presence ofMSI 

has been further categorised to MSI-H (MSI at >30% of micro satellites examined) and 

MSI-L «30% of microsatellites examined) (Boland et aI., 1998). Whereas MSI-H 

tumours tend to be associated with inactivation of DNA mismatch repair genes, MSI-L 

tumours appear to behave similarly to tumours with CIN, with some reports suggesting 

that most colorectal cancers will exhibit some degree of MSI depending on the selection 

and number of loci examined (Halford et al., 2002; Laiho et aI., 2002). There is also 

continuing debate as to whether MSI-L tumours really represent a distinct 

clinicopathological entity (Gonzalez-Garcia et al., 2000; Tomlinson et aI., 2002). 

Several studies have associated the presence of MSI colorectal tumours in patients 

with a more favourable prognosis compared to patients with microsatellite stable (MSS) 

tumours (Thibodeau et aI., 1993; Lothe et al., 1993; Gafa et aI., 2000; Gryfe et aI., 2000; 

Hemminki et aI., 2000). While other studies have stated that any survival advantage is 

not independent from the stage of the disease i.e. the TNM classification remained the 

best indicator for prognosis (Messerini et aI., 1999; Salahshor et aI., 1999; Johannsdottir 

et aI., 1999; Feeley et aI., 1999; Curran et aI., 2000; Gervaz et aI., 2002). Recently, a 

number of studies have also implicated that individuals with MSI-H tumours are at 

greater risk of developing metachronous tumours (Sengupta et aI., 1997; Masubuchi et 

aI., 1999; Shitoh et aI., 2002). Moreover, some studies only selected certain categories 

of patients «50 years of age), and few studies assessed the prognostic significance of 
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MSI in the presence of LOH of 17p and 18q, which are thought to adversely affect 

prognosis (Jen et aI., 1994; Choi et aI., 2002). The incidence of MSI in sporadic 

colorectal cancer has also been found to be related to disease staging, with the incidence 

increasing proportionately with stage, the incidence having been reported to be 12% for 

Dukes A cancers and between 20-34% for Dukes Band C cancers (Aaltonen et aI., 

1994; Bubb et aI., 1996; Chen et aI., 1997). 

The relevance of staging classifications is not limited to prognosis, such systems 

also detennine the administration of any adjuvant therapy. Currently, adjuvant 

chemotherapy with 5-fluorouracil and levimasole has been limited to patients with 

Dukes C (TNM stage III) cancers as no survival benefit has been proven for patients 

with Dukes B (TNM stage II) cancers (Moertel et aI., 1990; NIH Consensus Conference, 

1990). However, Dukes B staged cancers represent approximately 50% of all colorectal 

cancers and have a 5-year survival rate of 60-75% with surgery alone, which would 

suggest that 15-20% of all patients with colorectal cancer, will eventually die of 

metastatic disease without even being considered for adjuvant therapy (Moertensen et 

aI., 1992). However, identifying this subgroup of patients with genetic techniques has 

proven to be extremely difficult (Chung, 1998; Rosty et aI., 2001). 

Liver metastases when present at the time of diagnosis are associated with 

significant morbidity and mortality, with the median survival time being about 10-15 

months (Ballantyne and Quin, 1993). Although surgical resection of the liver metastases 

improves overall survival, surgery is only indicated in localised metastases which 

account for only 20-25% of all cases, thus chemotherapy plays an important role in these 

patients (Geoghegan and Scheele, 1999). Previous studies have indicated that p53 

mutations alter the response to chemotherapeutic agents, conferring resistance to certain 

agents (Weller, 1998). The presence ofMSI has also been implicated in resistance to 

chemotherapeutic agents (Kinzler and Vogel stein, 1996; Wright et aI., 2000). 

5.1.1 Aim of this Study 

The aim of the study was to assess the presence or absence of MSI in primary 

colorectal cancer and it's paired liver metastasis (whether present synchronously or 

metachronously) and compare it to overall survival, specifically to assess whether the 
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presence of MSI in either the primary or metastatic tumour is associated with a better 

prognosIs. 
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5.2 RESULTS 

A series of 31 paired tumour samples (of both the primary colorectal cancer and its 

liver metastasis) from 31 patients undergoing liver resection for liver metastases, 

between January 1997 and December 1999 were analysed for MSI using the PCR 

technique. Of the 31 patients, 18 were male and 13 were female, the median age was 63 

years with an age range Of 41-82 years. Of the primary tumours analysed, 29 showed 

moderate histological differentiation, the other two being well differentiated. Five 

primary tumours were situated in the right colon, 3 in the left colon, 12 in the sigmoid 

colon and 11 in the rectum. Eighteen had synchronous liver metastases and were thus 

staged Dukes 0 (TNM stage IV). Of those which had metachronous liver metastases, 

the median time between diagnosis of the primary tumour and diagnosis of the liver 

metastasis was 16.9 months (range 6.3-102.9 months), all being diagnosed by routine 

ultrasound surveillance. Of the primary tumours with metachronous metastases, 7 were 

initially staged as Dukes B (TNM stage II) and 7 as Dukes Cl (TNM stage III). Ten 

patients with tumours staged as either Dukes C or Dukes D received adjuvant 

chemotherapy and lor radiotherapy, one patient with a Dukes B staged tumour received 

adjuvant chemotherapy. None of the patients had received neo-adjuvant 

chemo/radiotherapy. There were no mortalities within 30 days of the liver resection 

surgery. The median duration of follow-up after resection of the primary tumour was 92 

months (range 13 -186 months), with 17 patients having died by the end of the study as a 

result of recurrent disease and one from a myocardial infarction (table 5.1). 

The presence of a family history of colorectal cancer could not be assessed as 

this data was incomplete. 

A reference panel of microsatellite primers recommended for the detection of MSI 

in colorectal cancer were used (Dietmaier et aI., 1997; Boland et aI., 1998). These 

included three mononucleotide repeats (BAT25, BAT26 and BAT40) and five 

dinucleotide repeats (D2S 123, APC (D5S346), Mfd 15 (D 17S250), D lOS 197, D 18S58 

and 0 18S69) and one tetranucleotide repeat (MYCL 1) located to loci on chromosome 

2p, 4q12, Ip13.1, 2p16, 5q21122, 17ql1.2-qI2, 10qter, 18q22.3, 18q21 and Ip32 

respectively. (Unfortunately, primers BAT26, D2S123 and MYCLI failed to amplify, 

this will be discussed in section 5.3.1 Optimising Conditions for PCR for use on 

Formalin-Fixed Paraffin-Embedded Tumour Specimens). 
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MSI-H was defined as instability at 2 or more loci. 

Statistical Analysis 

Independent samples t-test, Fisher's exact test and the Wilcoxon Mann Whitney U 

test were performed to determine any significant differences in clinicopathological 

variables between tumours (primary and/or metastatic) with MSI-H and those without 

MSI (microsatellite instability stable - MSS). The log-rank test was performed to 

compare survival, which was represented by Kaplan-Meier survival curves. Logistic 

regression analysis was performed to predict whether MSI-H tumours (either primary or 

metastases) were significantly associated with specific clinicopathological variables 

(age, sex, primary tumour location, stage of the primary tumour, the presence of solitary 

or multiple metastases, the presence of synchronous or metachronous metastases, the 

administration of adjuvant chemotherapy or radiotherapy and pre-operative (liver 

resection) CEA levels). Statistical analysis was performed using SPSS statistical 

software package on a PC computer, with a p value for significance set at <0.05, but for 

logistic regression analysis a p value for significance was set at <0.008 using the 

Bonferroni correction, due to the small sample size. 

5.2.1 Optimising Conditions for peR for use on Formalin-Fixed Paramn­

Embedded Tumour Specimens 

Initially 1 % agarose gels were used in order to detect any microsatellite instability, 

however, the resolution obtained was extremely poor (figure 5.1). In order to improve 

the resolution and to produce tightly defined bands, a 2% agarose gel was used, however 

even this failed to improve the resolution. As a shift of 1 base pair was needed to be 

detected in order to define microsatellite instability, it was felt that agarose gels would 

not provide the necessary resolution. It was therefore decided to run the PCR products 

on polyacrylamide gels and then to use silver staining to detect the products. These gels 

did provide a vast improvement on agarose gels, however even using a variety of gels at 

various concentrations (6%,8% and 10%) failed to provide the resolution of 1 base pair 

required (figure 5.2). 
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Figure 5.1 PCR products electrophoresis on a 1 % agarose gel, using primers 

D18S58, BAT40, APC, BAT25 and D2S123 on samples from case pCRC14. 

T=primary tumour; N= normal colonic tissue; M= liver metastasis. A 1 kb marker has 

been run in the far left hand lane. 

Figure 5.2 PCR products electrophoresis on 8% polyacrylamide gel using the 

MYCL1 primer on samples from cases pCRC2, pCRC12, pCRC14 and pCRC15. 

T=primary tumour; N= normal colonic tissue; M= liver metastasis. A 1 kb marker has 

been run in the far left hand lane. 
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At this point the department purchased a LiCor 4200 LongReadIR automated 

sequencer which used primers labelled with either IRD 700 or IRD 800 with 

electrophoresis performed on 25cm LongRanger gels. The resolution produced was to a 

single base, sufficient to detect any microsatellite instability. Seven paired samples, 

consisting of the primary colorectal cancer and its paired liver metastases and a normal 

tissue control microdissected from either normal colonic mucosa or liver parenchyma, 

were used as test samples (figure 5.3). 

Figure 5.3 PCR products electrophoresis on a 25cm LongRanger gel using primers 

MYCLl and APC with samples pCRC2, pCRCl2, pCRCl4, pCRC15, pCRC17, 

pCRCl8 and pCRC25. T=primary turnour; N= normal colonic tissue; M= liver 

metastasis. 

MYCLl 
,r '1 po(' 11 RC l4 

T "r T T 1 

A C 
pi: '1 pCR< 11 ",' It( l4 pc: (' l~ pell t 1 pC ] ' I pCR< ~ 

MT MT MT . :\I 

Once the PCR reactions had been optimised for use on the LiCor automated 

sequencer, the rest of the tissue samples were microdissected and digested according to 
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the protocol. However, these samples failed to amplify even after increasing the number 

of cycles to 35. Subsequently, the volume of DNA added to the peR reaction was 

increased from 1 III to 21l1, this produced a very slight improvement with the number of 

cycles set at 30. So the volume of DNA was increased further to Sill, however this had 

the opposite effect and no amplified products were visualised at all. As a final measure, 

the ph of the original and the recently digested tumour samples were assessed using ph 

strips. The original samples had a ph of 8.5 whereas the recently digested samples had a 

ph of 11, which was confirmed using a new ph meter. The ph of the digested samples 

were corrected, and the peR reactions repeated. These samples were divided into three 

groups, one without correcting the ph, a second group using I III of the corrected ph and 

a third group of samples using 21ll of the corrected ph. These were then assessed against 

the original test samples acting as positive controls. All samples amplified except for the 

fist group of samples, which had not been ph corrected, thus confirming that the high ph 

was the reason for the peR reactions failing to amplify. Both the 1 III and 21-11 DNA 

volumes produced amplified products however, the use of the larger volume of DNA 

produced an increase in non-specific products, thus 11-11 was sufficient for most reactions 

(figure 5.4). 

Figure 5.4 Results of the pH correction experiment performed on the second batch 

of microdissected formalin-fixed paraffin-embedded tumour samples. peR reaction 

performed using the APe primer with electrophoresis on 25cm LongRanger gels, with 

the original samples as controls in the far left hand lanes. 

Original samples - 1111 of 
DNA used for each reaction 

Second batch samples 
without pH correction 

Second batch samples + 
22111 3M Tris HCI - 1111 
of DNA used for each 
reaction 
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Having successfully produced amplified products using the IRD labelled primers 

with LongRanger gel electrophoresis, three of the primers subsequently failed to amplify 

these were BAT26, D2S123 and MYCLI. The other primers continued to amplify 

suggesting that the problem possibly existed with primers. Since they had previously 

amplified a possible explanation was that continual freeze-thawing of the primers 

(during retrieval from storage at -20°C), had somehow cleaved the fluorescent IRD label 

off the primers, another explanation being gradual degradation of the tumour DNA 

samples, as they had been stored at 4°C. A further batch of labelled BAT26 was 

purchased as some studies have suggested that BA T26 is the perhaps the most sensitive 

marker for MSI assessment in colorectal cancers (Dietmaier et aI., 1997; Cravo et aI., 

1999), however, even this new batch failed to amplify with our DNA, suggesting indeed 

that the DNA had started to degrade. Due to limited resources and time, further tumour 

samples could not be microdissected or labelled primers be purchased. Thus, only seven 

micro satellite markers were successfully analysed (BAT25, BAT40, APC (D5S346), 

Mfd15 (D17S250), DIOS197, D18S58 and D18S69). 

5.2.2 Results of Microsatellite Analysis of Primary Colorectal Cancers and their 

Liver Metastases 

Of the 31 primary tumours analysed 3 tumours (9.7%) exhibited microsatellite 

instability at two or more loci, thus were considered as MSI-H, six tumours (19.4%) 

exhibited MSI at one locus and were considered to be MSI-L (table 5.2). When 

considering MSI-H and MSS primary colorectal cancers, there was no significant 

statistical difference in age (p=O.72 1), sex (p=>O.95), pre-operative CEA levels 

(p=O.749), Dukes stage (p=O.349), TNM stage (p=O.598), histological differentiation 

(p=O.875), the site of the primary tumour (p=O.122), the presence of either synchronous 

(p=>O.95) or metachronous liver metastases (p=>O.95), presence or absence of 

recurrence (p=O.IOI) or in survival (p=O.3702). However, there was a significant 

difference in the presence of either solitary or multiple liver metastases and MSI-H 

tumours, where the presence of MSI-H in primary tumours was significantly associated 

with solitary liver metastasis (p=O.049), (table 5.3). 

Of the 31 liver metastases analysed 4 tumours (12.9%) were considered as MSI-H, 

whereas 11 tumours (35.5%) were considered as MSI-L (table 5.2). When considering 
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MSI-H and MSS colorectal cancer liver metastases, there was no significant difference 

in age (p=O.523), sex (p=>O.95), pre-operative CEA levels (p=O.635), the presence or 

absence of recurrence (p=O.333) or in survival (p=O.3972). However, there was also a 

significant difference in the presence of either solitary or multiple liver metastases and 

MSI-H tumours, where again the presence of MSI-H in liver metastases was 

significantly associated with solitary liver metastasis (p=O.016), (table 5.3). 

Three primary tumours exhibited MSI-H (CRCI7, CRC89 and CRC94) of these the 

paired liver metastases of CRC 17 and CRC89 also exhibited MSI-H with MSI present at 

the same loci in both the primary and metastasis, whilst the paired liver metastasis of 

CRC94 exhibited MSI-L with MSI present at one locus similar to that of the primary 

tumour (figure 5.5). CRC17 was a Dukes D staged tumour located in the left colon with 

a solitary liver metastasis. The patient did not receive any adjuvant therapy and survived 

for 96 months after the original colonic surgery before succumbing to recurrent liver 

disease. CRC89 was a Dukes C 1 staged caecal tumour with a solitary metachronous 

liver metastasis diagnosed 41.2 months after the primary tumour had been resected. The 

patient did receive adjuvant chemotherapy after the original surgery and is currently 

alive and well. While CRC94 was staged as a Dukes D sigmoid tumour with a solitary 

liver metastasis, the patient did not receive any adjuvant therapy and is currently alive 

and well. The liver metastases from CRC15 and CRC34 also exhibited MSI-H, where 

the primary tumours were staged as Dukes C 1 and Dukes B, and situated in the left 

colon and rectum respectively. Primary tumour CRC15 exhibited MSI-L, whereas 

CRC34 was MSS. Both liver metastases were solitary, diagnosed 2.5 months and 22.9 

months after the original colorectal surgery, with patient CRC34 receiving adjuvant 

chemotherapy after the original rectal surgery and is currently alive and well. However, 

patient CRCl5 died 67 months after the original colonic surgery, succumbing to 

peritoneal recurrence. 

There appeared to be a trend for improved survival in patients with primary tumours 

exhibiting MSI-H compared to those without MSI (MSS), although this was not 

statistically significant (p=O.3702), (figure 5.6), nor was there any significant difference 

in survival between metastatic tumours exhibiting MSI-H and those without MSI 

(MSS), (p=O.3972), (figure 5.7). When considering the initial stage of the disease for all 

the primary colorectal cancers, there also appeared to be a trend for improved survival in 

patients with Dukes B staged primary tumours, although as expected, since all patients 
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at some point developed metastases, this was not statistically significant (p=O.3454), 

(figure 5.8). 

Logistic regression analysis of the relationship between the presence of MSI-H in 

either the primary or metastatic tumour and possible risk factors such as age, sex, 

primary tumour location, stage of the primary tumour, the presence of solitary or 

multiple metastases, the presence of synchronous or metachronous metastases, the 

administration of adjuvant chemotherapy or radiotherapy and pre-operative CEA levels 

showed that MSI-H tumours were significantly associated with the presence of solitary 

metastases (p=O.007), (table 5.4). 
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Table 5.1 Results of MS} status and dinicopathological characteristics. 

Case Su Age Primary Dukes TNM stage Pre-op Differentia Adjuvant Adjuvant Syncbronous! Time to Number of Recurrence - Status Duration Primary Metastasis 
(pCRC) site stage CEA -tion cbemo- radio- metacbronou5 metacbronous metastases: site (Deadl of (MSSI (MSSI 

levels therapy Therapy liver metastases solitaryl Alive) survival MSI-LI MSI-LI 
(mglml) metastases (months) multiple (montbs) MSI-H) MSI-H) 

(number of 
tumoun) 

2 F 53 Siwnoid D T3NOMI 0.9 Moderate No No Synchronous N/A Multiple (2) Yes -lung Dead 119 MSS MSS 
9 F 62 Rectum B T3NOMO 25.0 Moderate No No Metachronous 16.9 Solitary Yes - liver Dead 170 MSS MSS 
11 M 74 Rectum C T4N2MO 2350.0 Moderate Yes Yes Metachronous 15.1 Multiple (3) Yes - liver Dead 66 MSS MSS 
Il M 70 Sigmoid D T3NIMI 7.7 Well Yes Yes Synchronous N/A Multiple (4) Yes - abdo Dead 49 MSS MSS 
14 M 54 Rectum D T3N2MI 500.0 Moderate Yes No Synchronous N/A Multiple (5) Yes - pelvis Dead 44 MSS MSS 
15 F 79 Left C T4NIMO 17.4 Moderate No No Metachronous 2.5 Solitary Yes - abdo Dead 67 MSI-L MSI-H 
17 F 74 Left D T3NIMO 742.0 Moderate No No Synchronous N/A Solitary No Dead 96 MSI-H MSI-H 
18 M 57 Rectum D T3NIMI 31.0 Moderate No Yes Synchronous N/A Solitary No Alive 140 MSS MSS 
19 M 82 Rectum D T3NOMI 385.0 Moderate No No Synchronous N/A Multiple (3) Yes - abdo Dead 46 MSS MSS 
25 M 66 Rectum B T3NOMO 6140.0 Moderate No No Metachronous 15.7 Multiple (2) Yes -lung Dead 150 MSS MSI-L 
27 F 69 Sigmoid C T4NIMO 6.0 Moderate Yes No Metachronous 5.3 Multiple (3) No Dead 36 MSS MSS 
30 F 61 Sigmoid D T3N2MI 20.0 Moderate No No Synchronous N/A Multiple (2) Yes - liver Dead 52 MSS MSS 
32 M 67 Siwnoid D T3NIMI 6.0 Moderate Yes No Synchronous N/A Multiple (2) Yes -liver Dead 88 MSS MSS 
34 M 65 Rectum B T2NOMO 4.0 Well Yes No Metachronous 22.9 Solitary No Alive 181 MSS MSI-H 
35 M 49 Rectum D T2NIMI 47.8 Moderate Yes No S}1lchronous N/A Solitary No Alive 170 MSS MSS 
38 F 68 Sigmoid D T3NOMI 6.9 Moderate No No Synchronous N/A Multiple (3) No Dead 13 MSS MSI-L 
43 M 55 Rectum D T4N2MI 60.2 Moderate No No Synchronous N/A Multiple (5) Yes -Iun~ Dead 71 MSI-L MSI-L 
46 F 76 Ri~t D T3NOMI 2.9 Moderate No No Synchronous N/A Solitary No Alive 129 MSS MSI-L 
47 F 47 Rectum C T4NIMO 2842.0 Moderate No Yes Metachronous 3.7 Multiple (3) Yes -liver Dead 66 MSI-L MSI-L 
48 F 51 Rectum B T2NOMO 7.6 Moderate No Yes Metachronous 21.5 Multiple (2) No Alive 158 MSS MSI-L 
49 M 72 Right D T3NIMI 87.9 Moderate No No futnchronous N/A Multiple (3) Yes -liver Dead 57 MSS MSI-L 
58 F 47 Sigmoid D T3NIMI 3.2 Moderate No No Synchronous N/A Multiple (2) Yes -liver Dead 38 MSS MSS 
59 M 52 Ri~t D T3NOMI 54.0 Moderate No No Synchronous N/A Solitary Yes -liver Alive 89 MSS MSS 
62 F 63 Sigmoid B T3NOMO 16.1 Moderate No No Metachronous 14.4 Multiple (2) Yes-lung Dead 115 MSS MSS 
70 M 70 Sigmoid C T3NIMO 82.3 Moderate Yes No Metachronous 18.7 Multiple (2) No Alive 103 MSS MSS 
74 M 64 Sigmoid D T2NOMI 1.0 Moderate No No Synchronous N/A Multiple (2) No Alive 97 MSS MSS 

i 77 M 45 Sigmoid D T3NOMI 1.9 Moderate No No Synchronous N/A Multiple (2) No Alive 92 MSI-L MSI-L 
89 M 41 Ri~ht C T2NlMO 0.8 Moderate Yes No Metachronous 41.2 Solitary No Alive 186 MSI-H MSI-H 
94 M 63 Sigmoid D T3NlMI 5.6 Moderate No No ~chronous N/A Solitary No Alive 80 MSI-H MSI-L 
95 M 58 Left C T3NlMO 276.0 Moderate Yes Yes Metachronous 35.4 Solitary No Alive 171 MSI-L MSI-L 
96 F 52 Right B T3NOMO 929.1 Moderate No No Metachronous 25.0 Solitary No Alive 142 MSI-L MSI-L 
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Table 5.2 Results of the microsatellite marker analysis showing the number and loci affected for each case (+ = MSI; - = MSS). 

Case Primary Metastasis Primary Metastasis Primary Metastasis Primary Metastasis Primary Metastasis Primary Metastasis Primary Metastasis 
Primary Primary Metastasis Metastasis 

(pCRC) BATl5 BAT 25 BAT40 BAT 40 APC APC Mfdl5 Mfd15 010S197 010S197 018S58 018S58 018869 D18869 
MSI-L MSI-H MSI-L MSI-H 

(no. loci) (no. loci) (no. loci) (no. loci) 

2 - - - - - - - - - - - - - - - - - -
9 - - - - - - - - - - - - - - - - - -
11 - - - - - - - - - - - - - - - - - -
12 - - - - - - - - - - - - - - - - - -
14 - - - - - - - - - - - - - - - - - -
15 - - - - - - - + - - + + - - +(117) - - +(2/7) 

17 - - - - - - + + - - + + - - - +(2/7) - +(217) 
18 - - - - - - - - - - - - - - - - - -
19 - - - - - - - - - - - - - - - - - -
25 - - - - - - - - - - - + - - - - +(117) -
27 - - - - - - - - - - - - - - - - - -
30 - - - - - - - - - - - - - - - - - -
32 - - - - - - - - - - - - - - - - - -
34 - + - + - - - - - - - - - - - - - +(2/7) 

35 - - - - - - - - - - - - - - - - - -
38 - - - + - - - - - - - - - - - - +(117) -
43 - - - - + + - - - - - - - - +(117) - +(117) -
46 - - - - - + - - - - - - - - - - +(1/7) -
47 - - - - - + - - - - - - + - +(117) - +(117) -
48 - - - - - - - + - - - - - - - - +(1/7) -
49 - - - - - + - - - - - - - - - - + -
58 - - - - - - - - - - - - - - - - - -
59 - - - - - - - - - - - - - - - - - -
62 - - - - - - - - - - - - - - - - - -
70 - - - - - - - - - - - - - - - - - -
74 - - - - - - - - - - - - - - - - - -
77 - - + + - - - - - - - - - - +(117) - +(1/7) -
89 + + + + + + - - - - + + - - - +(4m - +(2/7) 

94 - - - - + - - - + + - - - - - +(4/7) +(117) -
95 - - - - + + - - - - - - - - +(117) - +(1/7) -
96 - - - - + + - - - - - - - - +(1/7) - +(117) -
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Figure 5.5 PCR products electrophoresis for cases pCRCI5, pCRCI7, pCRC34, pCRC89 and 

pCRC94 on a 25cm LongRanger gel. Shifts in bands suggesting MS! are exhibited in the 

metastasis at locus Mfd 15 and in both the primary and metastasis at locus D 18S58 in case pCRC 15, 

whilst case pCRC 17 exhibits MSI in both the primary and metastasis. Case pCRC34 exhibits MSI 

in the metastasis only at loci BA T25 and BAT40, whilst pCRC89 exhibits MSI in both the primary 

and metastasis at loci BAT25, BAT40, APC and D18S58. Case pCRC94 exhibits MSI in the 

primary only at locus APC but in both the primary and metastasis at locus D lOS 197. T=primary 

tumour; N= normal colonic tissue; M= liver metastasis. 
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Table 5.3 Results of univariate statistical analysis. 

All Primary tumour Liver metastasis 
cases MSS MSI- MSI- P value for MSS MSI- MSI- P value for 

L H significance L H significance 
Total No. 31 22 6 3 16 11 4 

(71%) (19%) (10%) (52%) (35%) (13%) 

Mean age (SD) 61.5 63.3 56 59.3 0.721 62.1 59.4 64.8 0.523 
(l0.7) (9.4) (12.3) (16.8) (9.7) (10.4) (16.9) 

Gender 
Male 18 13 3 2 >0.95 10 6 2 >0.95 
Female 13 9 3 1 6 5 2 

Primary site 

} 0.122 

Right 5 3 1 1 

Left 3 0 2 1 

Sigmoid 12 10 1 1 N/A N/A N/A N/A 
Rectum 11 9 2 0 

ProximallDistal l 5/26 3/19 115 1/2 0.422 

Dukes Stage 
B 6 5 1 0 

} 0.349 C 7 3 3 1 N/A N/A N/A N/A 
D 18 14 2 2 

Mean Pre-op 
472.9 444.8 687.7 249.5 221.0 941.8 191.1 

CEA levels 0.749 0.635 

(mg/ml), (SO) 
(1242) (1367) (1112) (426.6) (586.2) (1922) (367.4) 

Differentiation 
Well 2 2 0 0 0.875 N/A N/A N/A N/A 
Moderate 29 20 6 3 

Synchronous 
metastases 18 14 2 2 } Metachronous >0.95 N/A N/A N/A N/A 
Metastases 13 8 4 1 

Solitary 

} 0.049 } 0.016 
metastases 12 6 3 3 4 4 4 

Multiple 
metastases 19 16 3 0 12 7 0 

Recurrence 
Absent 15 9 3 3 0.101 13 8 4 0.333 
Present 16 13 3 0 3 3 0 

Status 
Alive 13 8 3 2 0.558 5 6 2 >0.95 
Dead 18 14 3 1 11 5 2 

I Proximal colon is defined as sites proximal to the splenic flexure. 
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Table 5.4. Results of logistic regression analysis of the clinicopathological 

variables. 

MSI-H Primary tumour MSI-H Liver metastasis 

Variable Roa's pvalue for Roa's p value for 

score significance score significance 

statistic statistic 

Age 0.138 0.710 0.442 0.506 

Sex 0.101 0.751 0.123 0.726 

Primary site (right sided 0.727 0.394 0.267 0.605 

tumours) 

Dukes'Stage 0.839 0.360 N/A N/A 

TNM Stage 0.416 0.519 N/A N/A 

Pre-operative CEA levels 0.111 0.739 0.244 0.621 

Histological differentiation 0.229 0.632 N/A N/A 

SynchronouslMetachronous 0.101 0.751 2.062 0.151 

metastases 

SolitarylMultiple metastases 5.259 0.022 7.272 0.007 

Figure 5.6 Kaplan-Meier survival curves for all deaths in patients with primary 

colorectal cancers exhibiting MSI-H and primary colorectal cancers classified as 

MSS or MSI-L. 
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Figure 5.7 Kaplan-Meier survival curves for all deaths in patients with primary 

coloredal cancers exhibiting MSI-H and primary coloredal cancers classified as 

MSS or MSI-L. 
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Figure 5.8 Kaplan-Meier survival curves for all deaths in patients with originally 

staged Dukes B, C and D primary colorectal cancers. 
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5.3 DISCUSSION 

The incidence of MSI-H in this study was 9.7% (3/31) for primary tumours and 

12.9% (4/31) for liver metastases. The only significant association in this study being 

the presence of MSI-H in the primary tumour and the development of solitary liver 

metastasis; however, this did not translate into an improved prognosis. 

Several studies have already been undertaken exploring the presence of 

microsatellite instability in primary and metastatic colorectal cancer (Ishimaru et aI., 

1995; Chen et aI., 1997; Kochhar et al., 1997; Schneider et aI., 2000). 

Ishimaru et ai. (1995), examined 80 primary fresh-frozen primary tumours and 36 

fresh-frozen liver metastases, in 14 cases the primary tumour and liver metastases were 

obtained from the same patient. The incidence of MSI was examined using 8 

radio labelled microsatellite markers; one mononucleotide repeat (RB intron 21), five 

dinucleotide repeats (03S1284, 014S65, 014S78, LPL and 08S167), one 

tetranucleotide repeat (RB intron 20) and one pentanucleotide repeat (p53 intron 1). MSI 

was detected in 20.1 % (17/80) primary tumours including five which showed MSI at 

two or more loci, while the incidence in liver metastases was 22.2% (8/36), however, 

there was only one case where MSI was present at more than one locus in the liver 

metastases group. Of the 14 paired primary and metastatic tumours, three pairs showed 

evidence ofMSI in both the primary and metastatic tumour, but only at one locus, where 

MSI was present at the same locus in both the primary and metastasis. There were no 

cases where MSI was present in the metastasis but not in the primary tumour. The 

authors concluded that MSI occurred early in colorectal cancer tumourigenesis and that 

clones of cells with instability at different loci metastasized and grew preferentially at 

different sites, whether this is in the colon or liver. They found no significant 

relationship between the presence or absence of MSI and clinicopathological variables. 

Although when comparing the MSI-L (12 primary and 1 metastasis) and MSI-H (5 

primary and 1 metastasis) groups, significant associations were found between MSI-H 

and right sided tumour location and allelic retention (Le. no LOH) on chromosomes 17p 

and 18q. However, they concede that the number of tumours in these subgroups were 

small. 
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Chen et al. (1997), examined 30 patients with Dukes D staged primary tumours and 

their paired liver metastases, extracting DNA from paraffin-embedded tissue and 

examining MSI at 4 loci; Mfd-27, Mfd-26, TPS3 and D2S123 representing sites on the 

APe, Dee and p53 genes and on chromosome 2 respectively. They detected MSI in 

30% (9/30) primary tumours and in 43.3% (13/30) of the liver metastases. Although 

there appeared to be a trend for better survival in Dukes D staged patients with MSI 

compared to those without MSI, this was not statistically significant. In 8 patients, MSI 

was found at the same loci in both the primary and metastatic tumour, but more 

interestingly they also found MSI present only in the liver metastasis in four cases. They 

noted that MSI was detected at the TPS3 and D2S123 loci in these four cases, which 

tend to be involved in the later stages of colorectal cancer tumour progression. At first 

glance the results of Chen et al. (1997) are contradictory to those of Ishimaru et al. 

(199S), where Chen et al. (1997) found a higher incidence ofMSI in the metastatic 

tumours (a similar finding in our study), but this may partly be attributed to sample size 

or the number and selection of micro satellite loci. Chen et al. (1997) concluded that MSI 

was associated with progression in disease staging and in the metastatic process in 

sporadic colorectal cancer as a consequence of either increased genetic instability with 

tumour progression, or clonal selection by the metastatic process, which has been 

demonstrated in gastric cancer (Chong et al., 1994) and small cell lung cancer (Merlo et 

aI., 1994). 

The incidence of MSI in liver metastases was reported to be 2.S% in a study by 

Kochhar et al. (1997), after examining 141 liver metastases and examining MSI with 

markers located to chromosomes Sq, 8p, 10q, lSq, 17p, 18p and 18q. Concluding that 

this extremely low frequency may have been as a result of selection of patients with 

Dukes D primary tumours who had potentially curative resection for metastatic 

colorectal cancer and who represent a small fraction (20-2S%) of all patients with 

metastatic disease. However, one would assume that in the studies by Ishimaru et al. 

(199S) and Chen et al. (1997) those patients had also undergone potentially curative 

liver resection. They also reported that allelic imbalance (LOH) was present with at least 

one marker in 87% of all tumours analysed and that allelic imbalance on 17p was 

significantly associated with extra-hepatic disease an extra-hepatic lymph node 

involvement, thus resulting in reduced survival. Allelic imbalance in primary colorectal 

cancer and liver metastases has also been investigated by Thorstensen et aI. (1996), who 
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examined the presence of allelic imbalance in 12 primary tumours, 15 local recurrences 

and 22 distant metastases (20 liver metastases and 2 lung metastases), assessing 

allelotypes at 43 microsatellite loci throughout the genome. Two of the twelve primary 

tumours (16.7%) showed evidence of allelic imbalance, whereas more than 20% of the 

distant metastases exhibited allelic imbalance, with the greatest incidence of allelic 

imbalance in these metastases being on chromosome arms 14q, 17p, 18p and 18q. 

However, the authors stated that the frequency of allelic imbalance was influenced by 

the percentage of normal cells present in the biopsy from which the DNA had been 

extracted, where the proportions of normal cells was indirectly related to the frequency 

of allelic imbalance seen, which may have accounted for the low frequency seen in 

primary tumours, where the percentage of tumour cells was less than fifty percent. 

Allelic imbalance could not be reliably assessed in our study as the concentration of 

DNA in each sample of primary tumour, normal colonic and metastatic tumour tissue 

was variable. 

A more recent study by Schneider et al. (2000), found the incidence of MS! in 

primary tumours to be 15% (6/39). However, no MSI was detected in 29 liver 

metastases examined, when using a panel of 25 micro satellite markers. However, the 

authors stated that a major shortcoming of the study was that primary and metastatic 

tumours were not from the same patient and tumours had been resected in different 

centres in different countries. 

It is not immediately apparent why patients with tumours exhibiting microsatellite 

instability should develop fewer metastases, as compared to patients with MSS tumours, 

a possible reason is statistical error due to the small number of tumours analysed. 

Interestingly, Boeker et al. (1996), reported a significantly lower proliferative capacity 

in microsatellite unstable sporadic colorectal cancers as oppose to MSS tumours, 

speCUlating that the genetic instability initiated by defective DNA mismatch repair, leads 

not only to tumour formation but also affects genes involved in tumour progression and 

possibly leads to early cell death as a result of lethal mutations. Defective mismatch 

repair could result in the production of dysfunctional cell-cycle proteins or novel cell­

associated neoantigens, thus activating an immune response (Nicholl and Dunlop, 

1999). Concordant with this suggestion is the marked lymphocytic infiltration seen in 

colorectal cancers exhibiting MSI. which has been indicated as a positive prognostic 

indicator, similarly gastric cancers with MSI are also associated with lymphocytic 
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infiltration and also appear to be associated with an improved prognosis (Seruca et aI.. 

1995). Thus. a possible explanation for the significant association between the presence 

of MSI and solitary liver metastases is that MSI not only acts to contribute to tumour 

initiation it also paradoxically restraints tumour progression and if it is assumed that 

liver metastases can themselves metastasize (Fidler, 1990). the presence ofMSI in 

tumours could possibly diminish the occurrence of metastases from the initial liver 

metastasis. thus accounting for solitary metastatic tumours. 

5.3.1 Summary 

The incidence of MSI-H in primary tumours (9.7%) and liver metastases (12.9%) in 

this study were slightly less than those reported in other studies (lshimaru et aI.. 1995; 

Chen et aI.. 1997), however. this may have been reflected in the number and selection of 

markers used. The finding that the incidence of MSI in metastases being higher than in 

primary tumours is in agreement with Chen et ai. (1997). This study also found a 

significant association between MSI-H status and the likelihood of solitary metastases. 

although this did not translate into a statistically significant survival advantage. Of the 

five patients with MSI-H tumours (one primary tumour MSI-H, three primary and liver 

metastases MSI-H and one liver metastasis MSI-H) two patients had died, both from 

recurrent disease. Shortcomings of this study include the small sample size, which may 

have concealed a clinically important difference. and possibly the small number of 

microsatellite markers used. Ideally, the amplification of all ten primers, especially 

BA T26, would have assured that no tumour had been classified as MSS when instability 

was in fact present (Cravo et aI., 1999). The administration of adjuvant chemotherapy to 

patients CRC34 and CRC89 may have selected for clones with MSI-H, thus tending to 

corroborate the conclusions drawn by Fink et al. (1996) and Carethers et al. (1999). both 

observing that the presence of defective DNA mismatch repair in both in vitro and 

animal studies was associated with 5-fluorouracil and platinum chemotherapeutic drug 

resistance. However. both these patients continue to be alive and well and so it is 

unclear whether this possibility of drug resistance. really does have any clinically 

detrimental affect. Whether, MSI-H liver metastases behave differently to MSS tumours 

and lead to differing prognoses, will only be borne out by larger prospective studies. 
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CHAPTER 6 

During the course of the study ethical approval was sought and obtained to 

commence the prospective collection, storage and analysis of fresh tumour samples of 

primary colorectal cancers with synchronous liver metastases. But as a consequence of a 

subsequent change in policy within the North Trent region, surgeons were advised not to 

sample liver metastases as the possibility for curative resection of liver metastases could 

be compromised. Thus, only one fresh-frozen sample of a primary colorectal cancer 

with its liver metastasis was available for analysis. Nevertheless, analysis of this one 

paired sample allowed us to assess the full potential of the various techniques already 

discussed for any future prospective studies. The following is a discussion of the results 

obtained for fresh-frozen tumour sample fCRC 1 and tLM 1. 

The tumour specimens were obtained intra-operatively and stored at -80°C. 

Clinicopathological data 

The patient was a male aged 51 years old with a rectal carcinoma associated with 

synchronous multiple (> 10) liver metastases localised to the right lobe of the liver. The 

patient underwent a palliative anterior resection, the primary tumour being staged as T4, 

N2, Ml (Dukes D) with moderate histological differentiation. The patient had not 

received any neo-adjuvant therapy but did receive adjuvant chemotherapy (S-FU/folinic 

acid). The patient survived 8 months before succumbing to metastatic disease. 

6.1 CELL CULTURE AND KARYOTYPIC ANALYSIS OF rcRCI AND fl..Ml 

Both the primary colorectal cancer and its synchronous liver metastasis were 

amenable to cell culture as outlined in Materials and Methods section 2.2.1.1-2.2.1.6. 

However, obtaining analysable metaphase spreads from short-term cultures proved to be 

a more difficult problem to solve. Initially, using a protocol which had been previously 

established for uveal melanomas within the Department of Ophthalmology and 

Orthoptics, University of Sheffield, very few metaphase spreads were obtained, and if 

any spreads were visualised, the chromosomes were extremely condensed. precluding 

any practical analysis. A number of changes were made to the protocol including 
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changes to the concentration of colcemid and the time of harvesting. The most 

efficacious solution was to add 101lg/ml colcemid to a T25 cell culture flask and leave 

for 24hr before harvesting. Even with these changes only fCRC 1 produced metaphase 

spreads which were amenable to analysis. The result of one typical analysis is shown in 

figure 6.1, namely loss at chromosome 13, a 13p translocation t(13; 17)(Pll;q 11) and a 

loss of chromosome 15 and a derivative chromosome 20 add(20q). These findings will 

be discussed later in this chapter. 

Figure 6.1 A typical karyotype for fCRCI, showing a loss at chromosome 13q, a 

ISp:17p translocation and a gain at chromosome 20q (~=abnonnality). 
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6.2 FLUORESCENT IN SITU HYBRIDISATION OF (CRCI AND fLMt 

Using the protocol standardised for the FISH analysis of fresh-frozen uveal 

melanoma samples, FISH analysis of fCRC 1 and fLM I proceeded without 
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complications. In order to assess the effect of cell culture on tumour samples, FISH 

analysis was perfonned on both fresh-frozen and cell cultured samples at passage seven. 

For each sample, 300 cells were counted. Cells were excluded if they were clumped 

together or if they appeared to have been cut. The results of the FISH analysis are shown 

in table 6.1. 

Table 6.1 Results of the FISH analysis. 

fCRCl fCRClwlp7 fl....Ml fl....Mlwlp7 

Results 2:2=175 58.3% 2:2=239 79.6% 2:2=162 54% 2:2=263 87.7% 

(Chromosome 3 1:3=40 13.3% 1:2=19 6.3% 2:3=46 15.3% 1:2=10 3.3% 

hybridisation 1:2=38 12.6% 4:4=13 4.3% 1:3=44 14.6% 2:4=10 3.3% 

signals: 2:3=22 7.3% 2:3=8 2.6% 1:2=24 8% 2:1=4 1.3% 

Chromosome 8 3:3=12 4% 3:3=6 2% 2:4=10 3.3% 2:3=4 1.3% 

hybridisation 2:4=6 2% 1:3=5 1.6% 3:3=9 3% 4:4=4 1.3% 

signals) 3:2=4 1.3% 2:1=5 1.6% 2:1=2 0.6% 

1:4=3 1% 3:2=1 0.3% 3:2=2 0.6% 

4:3=1 0.3% 1:4=1 0.3% 

Analysing the FISH results of fCRC 1 and tLM 1, the majority of cells show nonnal 

constitutional target hybridisation signals for both chromosomes 3 and 8 (58.3% and 

54% respectively) and at first glance there appears to be no similarity to uveal 

melanomas (where gross abnonnalities of chromosomes 3 and 8 are associated with 

metastasis to the liver). However, both fCRCI and tLMI show a variety of other 

abnonnalities in the number of hybridisation signals for chromosomes 3 and 8, where 

gains of chromosome 8 appear to be the second commonest finding when all the 

abnonnalities are grouped together. Monosomy 3 is also a frequent finding within both 

fCRC 1 and tLM I. This would all tend to support the original hypothesis that an 

abnonnality of chromosomes 3 and 8 are related to liver metastasis. 

Comparing the FISH analysis results between the fresh-frozen tumour samples 

(fCRei and tLMI) to the cell cultured sample fCRClwlp7 and tLMlwlp7 (which 
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represented a single wash of the original tumour sample at passage 7), there appears to 

be a larger proportion of cells with normal constitutional number of hybridisation 

signals in the cell cultured sample as compared to the fresh-frozen sample. This is not 

entirely surprising as cell culture characteristically leads to the selection of clones suited 

to an in vitro environment and thus not necessarily representing the clones present in 

vivo, where a number of clones will co-exist together. This clearly demonstrates one of 

the limitations of genetic studies using cultured cells. 

6.3 COMPARATIVE GENOMIC HYBRIDISATION OF fCRCl AND ft..Ml 

DNA was extracted from each tumour sample using the Qiagen QiaAmp protocol for 

fresh-frozen tissue as outlined in Materials and Methods section 2.2.5.3. The DNA was 

labelled using the nick translation technique as outlined in Materials and Methods 

section 2.2.6.1. Tumour DNA was labelled red and was co-hybridised with Spectrum 

Green labelled reference 46XX DNA onto metaphase target slides which had either been 

purchased from Vysis or produced in-house. 

No results were obtained for either tumour sample when using the Vysis slides, 

whereas using slides made in-house, CGH was partially successful with results being 

obtained for fCRCI (figures 6.2 and 6.3). The hybridisation for fLMI could not be 

analysed as a result of high background fluorescence, most likely due to non-specific 

hybridisation to cytoplasmic remnants on the slide. However, the analysis of fCRC 1 

showed gains of chromosome arms 20q with loss of chromosome arms 13q (figure 6.4). 

Although not present in all the metaphases analysed there were also potential gains of 

chromosome arms 4p and 17p and loss of chromosome arms 4q and 2q. The results 

using CGH were comparable to the karyotype analysis, where there was evidence of loss 

of chromosome arm 13q and gains at 20q. Interestingly, changes in chromosome arms 

4p and 4q were not evident using conventional cytogenetic analysis, but not entirely 

surprising as CGH analysis not only allows a greater degree of resolution but also 

amalgamates variations from a population of tumour cells. However, a shortfall of CGH 

is that trans locations cannot be observed, as is evident by the 13p: 17q translocation seen 

with karyotypic analysis but missed by CGH. This translocation could possibly have 

resulted in either the inactivation of a tumour suppressor gene or the activation of an 

oncogene (Sheer, 1997). 
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Figure 6.2 A typical two-colour image of feRel (tumour DNA labelled Ulysis 

rhodamine and normal reference DNA labelled Spectrum Green). 

Figure 6.3 A DAPI stained image of the target metaphase spread as seen in figure 

2, for feRel. 

I 
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Figure 6.4 An average ratio profile of several metaphase spreads for fCRCl. 
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Several studies have implicated the possibility of a tumour suppressor gene on 

chromosome 4q, although as yet none has been identified (Niketeghad et aI., 2001; 

Zitselsberger et al., 2001). The gain of chromosome arm 20q has previously been 

reported to be associated with the development of liver metastases (Korn et ai., 1999; 

AI-Mullah et al., 1999; Hidaka et al., 2000; Aragane et ai., 2001), with a region 

localised to 20q 13.2 as a possible site of an oncogene involved in metastasis (Korn et 

aI., 1999; Hidaka et al., 2000). Nanashima et al (1997) performed cytogenetic analyses 

using FISH on primary colorectal cancers and their hepatic metastases. The study found 

gains of chromosome 20 as a frequent aberration in both the primary and metastatic 

regions in patients with liver metastases from colorectal cancers. Several genes are 

known to exist on chromosome 20 and which include E2F, BCLX (Stokke et ai., 1995), 

SRC (Asimakopoulos et at., 1994), and proliferating cell nuclear antigen (PCNA) (Ku et 

aI., 1989). Of the genes mentioned only an increased expression of SRC and PCNA has 

been associated with liver metastases of colorectal cancer (Teixeira et aI., 1994, 

Nakamura et al., 1996; Irby et aI., 1999). Analysis of breast cancers using CGH, 
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suggests that chromosome 20q 13 was the locus for another as yet unknown gene 

associated with metastases in these cancers (Tanner et aI., 1995). 

It is reassuring that there is a concordance of results between karyotypic analysis and 

CGH analysis of fCRC 1, although unfortunately results could not be obtained for the 

paired liver metastasis tLMI. The comparison between CGH and karyotypic analysis 

demonstrates the advantages and shortfalls of CGH. 

6.4 MICROSATELLITE ANALYSIS OF {CRCl AND fl...Ml 

Using the protocol described in Materials and Methods section 2.2.8.2 PCR using the 

Abgene Thermo-Fast 96 low profile plate and the Primus 96 Plus thermo cycler for use 

on LongRanger sequencing gels microsatellite analysis offCRCI and tLMI was 

performed using IRD labelled primers with electrophoresis on a LongRanger gel, using 

the LiCor 4200 ONA sequencer with analysis using the LiCor Base ImagIR software. 

All PCR reactions were performed with positive and negative controls and were 

successful. All ten primers were used; BAT26, BAT40, Mfdl5, 02S123, APC, Bat25, 

0108197,018858,018869 and MYCLI. No micro satellite instability was detected 

with any of the primers for either fCRCl or tLM1, using DNA extracted from normal 

colon mucosa as the normal control. This is not entirely surprising as the incidence of 

MSI in sporadic colorectal cancers is up to 20% (Thibodeau et aI., 1993; Aaltonen et aI., 

1993) and in our study (Chapter 5) the incidence of MSI-H was 9.7% in primary 

colorectal cancers and 12.9% in the liver metastases. The primary colorectal cancer in 

this study was a rectal cancer, and as stated in other studies MSI tends to be associated 

with right sided colonic tumours (Thibodeau et aI., 1993; Lothe et aI., 1993; Kim et aI., 

1994). 

6.5 SUMMARY 

All the fore mentioned techniques were successfully applied to the analysis of a 

single paired sample of fresh-frozen primary colorectal cancer and its liver metastasis, 

albeit partial success using CGH analysis. 
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CHAPTER 7 

7.1 GNERAL DISCUSSION 

The majority of patients with cancer die as a consequence of metastatic disease rather 

than the effect of the primary tumour, more so in the cases of colorectal cancer and 

uveal melanoma. Thus, metastases pose a significant cause of morbidity and mortality in 

these patients (Ballantyne and Quin, 1993). 

A number of genetic changes will take place in the development and metastasis of the 

primary tumour to a distant site (Schirmacher, 1985; Klein and Klein, 1985), with only 

those cells with the necessary genetic or phenotypic adaptations being able to survive 

and progress at this distant site (Fidler and Kripke, 1977; Fidler, 1990; Gregoire et aI., 

1993; Radinsky, 1995; Singh et aI., 1997; Nicolson and Moustafa, 1998). 

The aim of the research was to elucidate novel genetic abnormalities, which would 

be predictive for the development of liver metastases in patients with colorectal cancer. 

The information could then be used to institute adjuvant therapies or, enhance the 

surveillance for liver metastases, with the view to offer potentially curative liver 

resection. 

Patients with uveal melanoma are also known to develop a high frequency of liver 

metastases and thus the study was designed to compare the two malignancies, and to 

establish whether colorectal cancers capable of metastasising to the liver shared 

common genetic abnormalities with posterior uveal melanoma. It has already been 

established by cytogenetic analysis that monosomy 3 and gain of chromosome 8q has 

been particularly associated with reduced survival and the development of liver 

metastases in patients with uveal melanoma (Prescher et al., 1996; Sisley et aI., 1997; 

White et aI., 1998). Thus, the analysis of uveal melanoma tumour specimens provided a 

starting point from which to conduct this study. The prospective collection of uveal 

melanoma tumours had already been established in the Department of Ophthalmology 

and Orthoptics, University of Sheffield, while no protocol existed for the collection, 

storage and analysis of colorectal cancers and their liver metastases and so initial 

investigations were dependant on the analysis of formalin-fixed paraffin-embedded 

tumour specimens, while ethical approval was sought. 
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The initial part of this investigation involved the fluorescent in situ hybridisation 

examination of uveal melanoma specimens using alpha centromeric probes for 

chromosomes 3 and 8, where long term follow-up data was available. FISH examination 

using the same probes were also used to investigate paired samples of colorectal cancers 

and their liver metastases, but due to the variability in length of formalin-fixation of 

both the primary and secondary colorectal cancer specimens, FISH analysis of the 

archival paraffin-embedded tissue samples was unsuccessful. In contrast, FISH 

examination of the fresh-frozen uveal melanoma tissue samples proved more successful 

with results showing a statistically significant association between the presence of 

abnormalities in copy numbers of chromosomes 3 and 8, with reduced survival and the 

development of liver metastases. The results concurred with previous studies, 

suggesting the possibility of a putative oncogene on chromosome 8 and a tumour 

suppressor gene on chromosome 3 (Prescher et al., 1996; Sisley et al., 1997; White et 

aI., 1998). The unavailability of liver metastatic tissue from patients with uveal 

melanoma meant that FISH analysis for genetic imbalance could not be assessed. 

FISH analysis for chromosomes 3 and 8, proved to be a reliable and efficient 

technique in the analysis of fresh-frozen tumour specimens and valuable in the 

prediction of prognosis in patients with uveal melanoma. Further large scale prospective 

studies will be required to define the sensitivity and specificity of this technique in 

clinical practice. 

In an attempt to examine the archival primary colorectal and liver metastatic tissue 

specimens, comparative genomic hybridisation was utilised, to allow a genome-wide 

search for regions of amplification and deletion. The technique was optimised for the 

analysis of formalin-fixed paraffin-embedded tissue samples, by improving DNA 

extraction methodology as well as labelling techniques. Problems in the variable quality 

of target metaphase slides were overcome by the production of target metaphase slides 

in-house. Unfortunately, only partial results were obtained from the analysis of a single 

liver metastatic tissue sample, showing gain of chromosomes 2,3, 7 and of chromosome 

arms 8q and 13q, with loss of chromosome arm 8p. These findings concurred with other 

studies Kom et aI., 1999; AI-Mullah et aI., 1999; Aragane et al., 2001; Nakao et al., 

2001). Further refinements and development of the technique could have allowed the 
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complete analysis of all the samples, but limitations in time prevented this and until 

more extensive studies have been undertaken, only limited conclusions can be drawn. 

Microsatellite instability in primary colorectal cancers has been linked to improved 

patient survival (Thibodeau et aI., 1993; Lothe et aI., 1993; Gafa et aI., 2000; Gryfe et 

aI., 2000; Hemminki et al., 2000), although not all studies have confirmed this 

(Messerini et aI., 1999; Salahshor et aI., 1999; 10hannsdottir et aI., 1999; Feeley et aI., 

1999; Curran et aI., 2000; Gervaz et aI., 2002). The presence of micro satellite instability 

in the paired samples of primary and liver metastatic colorectal cancer tissue was 

assessed using polymerase chain reactions, using a reference panel of micro satellite 

markers. The analysis of 31 paired samples showed an incidence of high level MSI 

(MSI-H), in 9.7% of primary tumours and 12.9% ofliver metastases, which is in 

accordance with other reports (Ishimaru et al., 1995; Chen et aI., 1997). A significant 

association was found with the presence of MSI in either primary or secondary tumours 

with the likelihood of solitary liver metastases, although this did not translate into a 

significantly improved prognosis. 

In an analogous study by a colleague (Mr Neil Cross), MSI was essentially found to 

be absent in the primary uveal melanomas studied (unpublished data), and as no liver 

metastases from uveal melanoma patients was available to study, it was not possible to 

assess whether MSI existed in the liver metastases, as was found in colorectal cancer 

liver metastases. Certainly, the primary uveal melanomas examined did not exhibit MSI 

and in this respect appear to differ from colorectal cancers. 

In the final part of the study a fresh paired sample of a primary colorectal cancer and 

its synchronous liver metastasis was obtained. FISH analysis was particularly 

interesting, where both the primary and liver metastasis showed evidence of genetic 

imbalance for chromosomes 3 and 8, in a manner consistent with the findings for uveal 

melanomas. Although, more variability was seen compared with most uveal melanomas, 

abnormalities of chromosomes 3 and 8 were present, in particular gain of chromosome 8 

and monOsomy 3 being a frequent finding. If confirmed, this finding would suggest that 

colorectal cancers metastasising to the liver do share some common genetic changes 

with uveal melanomas, possible implying the involvement of similar genes, however, it 

is too early to draw such conclusions on the basis of one paired sample. CGH analysis of 
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the primary colorectal cancer corroborated karyotype findings with evidence of gain of 

20q and loss of 13q, which were in agreement with other studies (Nanashima et aI., 

1997; Kom et aI., 1999; AI-Mullah et aI., 1999; Hidaka et aI., 2000; Aragane et aI., 

2001). Further paired samples were not available for study, due to a change in policy in 

the Trent Region, where sampling liver metastases was discouraged, as future liver 

resection surgery could be compromised. Nonetheless, the analysis of this single paired 

sample demonstrated that the techniques could be applied successfully in the genetic 

analysis of cancer specimens. 

7.2 FUTURE RESEARCH 

Recent developments in the fields of genomics and molecular biology have unleashed 

an array of new techniques to explore the development and treatment of cancer. The 

human genome will shortly be sequenced, with the promise of increasing the 

understanding of how genes and the environment interact to give rise to the cellular 

mechanisms that underlie the biological process and the genetic variations between 

individuals, providing scope for new therapeutic developments such as 

pharmacogenomics and gene therapy, with the potential to eventually provide 

opportunities for disease prevention. 

Genetic screening for familial diseases, may allow for the identification of 

susceptible individuals, thus allowing diagnostic interventions or removal of the target 

organ to be offered. Stratification with reference to pharmacogenetic consideration will 

allow more appropriate, effective and safer drug treatments to be offered (Sadee, 1999). 

Choi et al. (2002) and Rosty et aI. (2001) have already tried to stratify patients into 

groups according to LOH and MSI status and relate this to response to chemotherapeutic 

agents. The development of cDNA microarray technology allows for the assessment of 

numerous polymorphisms on a single glass plate or 'gene chip'. Thus, genome-wide 

screening for polymorphisms could identify important polymorphisms associated with a 

particular clinical response or adverse reaction, thus enabling chemotherapy to be either 

directed to a specific group of patients, who would positively respond or be avoided in 

those in whom severe toxicity could result. Microarray analysis could also be used to 

predict survival in those patients with particular polymorphisms, in response to 

chemotherapy (Wei et aI., 2002). Further large scale studies will expand on these 
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preliminary results and incorporate novel colorectal cancer pathway molecules. 

However, within the genome little is known of the non-coding DNA sequences, of the 

mechanisms responsible for replication, RNA splicing, the control of cell cycle and gene 

expression or of the roles of centro meres and telomeres. The complexity of genetic 

analysis is compounded further because of ethnic and racial variations. Moreover, 

variable expressivity and incomplete penetrance are already seen in relatively simple 

monogenic disorders such as retinoblastoma and furthermore, the expression of similar 

phenotypes can arise from genetic heterogeneity, whether in the form of allelic 

heterogeneity (different mutations at the same allele) or locus heterogeneity (different 

mutations at the same locus). Similarly, different mutations in the same gene can result 

in differing clinical manifestations, such as in the RET oncogene, where activating 

mutations can result in multiple endocrine neoplasia type II (identified by familial 

phaeochromocytomas, parathyroid and medullary thyroid cancers), whilst inactivating 

mutations are associated with Hirschsprung's disease (Mulligan et aI., 1993; Romeo et 

aI., 1994; Edery et aI., 1994). Thus, the identification of mutations is not necessarily the 

be all and end all. 

The initial speculation that gene therapy would revolutionise medicine has been over­

optimistic. A number of problems still need to be overcome before gene therapy can be 

widely used in routine clinical practise. Despite these difficulties a number of trials are 

already underway assessing the use of gene therapy in treating cancer (Harris and 

Sikora, 1996). Another expanding field has been in stem cell technology. 

Haematopoietic stem cells have already been used in the treatment of various 

haematological conditions. The difficulty with using solid tissue stem cells has been in 

reproducing the three-dimensional arrangements and cell-cell and cell-extracellular 

matrix that exists in solid tissues. The existence of hepatic stem cells could 

revolutionise liver resection surgery for the treatment of both primary liver and 

metastatic cancers, allowing more extensive resections to be performed followed by 

tissue regeneration (Allain et aI., 2002; Danet et al., 2002). 
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7.3 CONCLUSION 

The research undertaken in this study has utilised a number of techniques in the 

investigation of the genetic changes involved in liver metastasis. Fluorescent in situ 

hybridisation allowed for the targeting of specific DNA sequences, while CGH allowed 

for a genome-wide search of regions of chromosomal amplification or loss. Possible 

chromosomal rearrangements were visualised with karyotypic analysis, whereas, PCR 

allowed for the analysis of micro satellite instability. It has been shown that all the 

techniques used have had their advantages and disadvantages, but by using several 

techniques complementing each other genetic analysis could be successfully performed. 

The prospective collection of fresh-frozen tissue will allow for genetic analysis to be 

correlated to clinical outcome and other clinicopathological variables. The short-term 

culture of primary colorectal cancers and liver metastases will allow for the correlation 

of genetic analysis to phenotypic expression, from assessing the production and function 

of proteins to cell-cell or cell-extracellular matrix interactions. The development of new 

techniques such as the DNA microarray technology could be applied to assess the 

relevance of genetic polymorphisms and the effects of various chemotherapeutic agents 

to cultured cells, with the aim of providing each patient with a tailor-made therapeutic 

regimen, thus maximising efficacy and minimising side-effects. The development of 

gene-therapy to either halt the progression of cancer cells or augment their response to 

therapeutic agents is also an area that could be developed from the genotype-phenotype 

analysis. 

This study has shown the ways in which emerging technologies can be applied to the 

investigation of both uveal melanomas and colorectal cancers. Continued investigations 

may subsequently lead to the identification of specific genetic changes related to the 

development of liver metastases, the aim of which would be to allow clinicians to 

determine prognosis for their patients, augment current surveillance protocols for 

recurrence or metastasis, instigate adjuvant treatment, or to specifically target these 

genetic abnormalities with novel therapies. 
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Appendix I: Summary of treatment options for colorectal cancer. 

Stage Treatment Options 

0 1. Local excision of polyps or colon resection for larger tumours 

I (Dukes A) 1. Wide surgical resection and anastomosis 

II (Dukes B) 1. Wide surgical resection and anastomosis 

2. ? Adjuvant chemotherapy 

III (Dukes C) 1. Wide surgical resection and anastomosis with adjuvant 

chemotherapy of either 

5-FU/levamisole for 12 months or 

5-FU/leucovorin for 6 months 

2. ? Adjuvant radiotherapy 

IV (Dukes D) 1. Surgical resection and anastomosis or by-pass surgery for selected 

patients with obstructing cancers 

2. Surgical resection of isolated metastases (liver/lung) 

3. Chemotherapy 

4. Radiotherapy 

5. Clinical trials evaluating new drugs and biologic therapy 
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Appendix II: The various staging classifications used for coloredal cancer. 

Dukes Staging 

A - Tumour confined to the bowel wall 

B­

C­

(0-

Aster-Coller 

A­

Rt-

R2-

Ct­

C2-

0-

Tumour grows beyond the bowel wall 

Lymph node metastases present 

Distant metastases present - added by Turnbull) 

Tumour limited to mucosa - carcinoma in situ 

Tumour extends through the muscularis mucosae but not beyond 

the muscularis propria 

Tumour extends beyond muscularis propria 

B I with regional lymph node metastases 

B2 with regional lymph node metastases 

Distant metastases 

- 245-

TNM Classification 

T assesses the tumour stage 

TX - Primary tumour cannot be assessed 

TO - No evidence of primary tumour 

Tis - Carcinoma in situ - limited to mucosa 

Tt - Tumour invades submucosa but does not extend beyond 

muscularis propria 

T2 -

T3 -

T4-

Tumour invades muscularis propria but not beyond 

Tumour extends beyond muscularis propria but not T4 

Tumour perforates visceral peritoneum or invades adjacent organs or 

structures (including loops of bowel) 

N assesses regional lymph node stage 

NO - No regional lymph node metastases 

Nt - 1-3 regional lymph node metastases 

N2 - 4 or more regional lymph node metastases 

N3 - Regional lymph node metastases along named vascular trunks 

M assesses distant metastases 

MX - Distant metastases cannot be assessed 

MO - No distant metastases 

Ml - Distant metastases present 



Appendix III: Primer sequences, annealing temperatures and chromosomal location. 

DNA Primer Primer Sequence 5'--3' Repeat Motif Annealing Temp. Size (bp) Chromosomal location 

BAT-25 TCG CCT CCA AGA ATG T AA GT mononucleotide 58°C -90 4q12 
TCT GCA TIT T AA CTA TGG CTC TTTT .TTTT.(T),.A(Tb 

BAT-26 TGA CTA CIT ITG ACT TCA GCC mononucleotide 58°C -80-100 2p 
AAC CAT TCA ACA TIT ITA ACC C (T)s. .... (Ah6 

BAT-40 A IT AAC ITC CTA CAC CAC AAC mononucleotide 58°C -80-100 1p13.1 
GT A GAG CAA GAC CAC CIT G TTTT.TT .. (Th .............. TTTT.(T)40 

APC ACT CAC TCT AGT GAT AAA TCG CA dinucleotide 55°C 96-122 5q21/22 
AGC AGA T AA GAC AGT A IT ACT AGT T (CA)26 

Mfd15CA GGA AGA ATC AAA TAG ACA AT CA dinucleotide 52°C -150 17ql1.2-12 
GCT GGe CAT ATA TAT ATf TAA ACC (TAlL... .. .......(CA)24 

DlOSl97 ACC ACT GCA CIT CAG GTG AC CA dinucleotide 65°C 161-173 10qter 
GTG AT A eTG TCC TCA GGT CTC C CACCAGA(CA)7.A.A(CA)uCAGAAA)2 

Dl8S69 CTC TIT CTC TGA eTC TGA CC CA dinucleotide 60°C -110 18q21 
GAC ITT CTA AGT TCT TGC CAG (CA)~(CA)14(T)6 

D2Sl23 AAA CAG GAT GeC TGC CIT TA eA dinucleotide 60°C 197-227 2p16 
GGA CIT TCC ACC TAT GGG AC (CA)I3TA(CAhs(T/G Ah 

Dl8S58 GeT CCC GGC TGG TIT T eA dinucleotide 53°C 144-160 18q22.3 
GCA GGA AA T CGC AGG AAC IT (GC)sGA(CA)17 

MYeLl TGG CGA GAC TeC ATC AAA G tetranucleotide 53°C 140-209 Ip32 
CIT ITT AAG CTG CAA CAA GAAAA(GAAAA)2 T AAAA(AlG) lOGAAAGA(GAAA)14 

- 246-



Appendix IV: Publications and Abstracts. 

Publications: 

Prediction of prognosis in patients with uveal melanoma using fluorescence in situ 

hybridisation. 

Patel KA, Edmondson ND, Talbot F, Parsons MA, Rennie IG, Sisley K. 

British Journal of Ophthalmology. 85: 1440-1444,2001. 

Abstracts: 

Prediction of liver metastases in patients with uveal melanoma using FISH. 

Patel KA, Edmondson N, Talbot F, Sisley K, Parsons A, Rennie IG. 

Clinical and Experimental Metastasis. 17(9): 753, 2000. 

- 247-


