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SlliI1mary 

The study of' the stress concentrations which exist 

at notches and cracks is of considerable importance in the 

understanding of the fracture of metals. The way in which 

these concentrations of stress are relieved by ~lastic 

deformation is not readily understood in terms of the classical 

theory of the elastic plastic solid since analytical solutions 

are obtained only in the simplest situations. 

In this wor~ a simple model of the relaxation process 

is considered, in which the craCK and yielded regions are 

re~resented in terms of linear dislocation arrays. Alternatively 

the medium may be considered everywhere elastic and the cracks 

and yielded regions represented by arcs across which the stress 

is grescribed and relative displacements are permitted • ..-
First the relaxation from a sharp isolated crack in an 

inf'ini te medillil1 is treated for conditions 01" plane strain and 

antiplane strain. In antiplane strain this provides a model 

of' the relaxation round a surface notch in a semi infinite 

medium. Simple expressions are obtained for the relation 

between the yield stress, the applied stress, the relative 

disJ?lacement in the crack tips and the extent of' the plastic 

zones. 

The ef'fect of' f'ree surfaces or of neighbouring cracks 

is considered by expanding the analysis to consider an 

infinite periodic coplanar array of identical cracks. It is 



shown that the rree surrace causes plastic zones to spread 

more rapidly with increasing stress. The displacements 

for a given length of plastic zone are then reduced. If 

a cri tical displace Ire nt cri teri on is adopted i'or the ini tia tion 

of fracture at a notch, then neglecting the effect of the free 

surface is shown to err on the safe side. 

The effect of workhardening is also considered. An 

integral equa tion is obtained for the displacemen ts and this 

is inverted numerically.,) 

Finally a model 01' a tensile crack is treated in which the 

plastic zones from a single tip are represented by two linear 

arrays of dislocations inclined symmetrically to the plane 

of the crack. The applied tension is normal to the crack. 

Again this problem is treated numerically and preliminary 

calculations have been carried out to obtain the important 

relationship •• 



CHAPTER 

CHAPTER 

I 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

II 

CONTENTS 

PAGE 

Introduction 

Modes of' Frac ture 

Theoretical Strength 

Extension of' Completely 
Brittle Crack 

Formation of Cracks 

1 

3 

5 

7 

The Propogation of' Microcracks 12 

Objects of' the 'Nork 

Selected ',Nork on Related 
Problems 

16 

19 

2.2 The Hult and McClintock Theory 
of a Notch 20 

2.3 Dugdale Model of a Crack 24 

2.4 The Equilibrium of' a Continuous 

2.5 

Distribution of'Dislocations 25 

Inversion of' the Singular 
Integral Equation 30 

Preliminary Formulae 31 

Ref'ormulating the Problem 33 

The General Solution 36 

Conditions for Bounded Stress38 



CfLt\PTER III The Isolated Crack 42 

3.2 Inversion Procedure 44 

3.3 Analysis for the Single 
Crack 47 

3.4 The Displacement Function 51 

3.5 Potential Energy 54 

3.6 Plastic Tork 57 
II 

3.7 The Elastic Energy 8 61 

3.8 The Energy Propagation 
Criterion 64 

CHAPTER IV 

4.2 

Periodic Array of Cracks 69 

The equations for the Periodic 
Array 70 

4.3 The General Solution 75 

4.4 General Yield 78 

4.5 Comparison with Other Models 
at General Yield 80 

4.6 Displacemen t in the Tip 83 

CHAPTER V An Isolated Crack in an 
Infinite Workhardening 

Material 86 

5.2 The Derivation of the 
Integral Equation 87 

5.3 Reduction to Matrix Form 91 

5.4 Constant Gauge ~.¥idth 95 

5.5 Parabolic Gauge "Nidth 97 



CHAP'l~H VI 

6.2 

6.3 

6.4 

6.5 

6.6 

CHAPTER VII 

7.2 

7.3 

7.4 

ACKNOWLiIDGHENTS 

NOTATION 

REFERENCES 

Generalisations of the 
Model 100 

The equivalence of Dual Integral 
and Singular Integral Equations 101 

A Disloca tion Model of a Tensile 
Crack. 104 

Non-collinear Dislocation Arrays 106 

Numerical Analysis of the 
Tensile Crack. 107 

Some Numerical Relationships 
for the Tensile Crack 113 

Discussion 116 

\lllorkhardening 117 

Non-coplanar Relaxation 117 

Fu ture 1~1 or k 118 

LIST OF DIAGRAMS 

120 

121 

122 

128 

130 

132 

TABLES 

DIAGRA.~S 

APPENDIX I 

APPENDIX II 

APPENDIX III -

Evaluation of Sums and Integrals 152 

The Half Space Problem in Plane Strain 
178 

Hult and McClintock Theory of a Relaxed 

Notch 
183 

PROGRAMMES 197 



1 

Chapter I 

Introduction 

1.1 Modes 01' Fracture 

It is well known that a metal subjected to high stresses 

will break across some sur.Cace passing thr ough the rna terial. 

Examination of these fracture surfaces reveals that fracture 

occurs in one of several modes which are not mutually exclusive. 

Fracture may accur as the metal breaks along planes of low 

energy in the crystalline grains, revealing bright facets 

in the surface. These planes are the cleavage planes of the 

crystal and we refer to this mode as cleavage fracture. 

Cleavage fracture is normally accompanied by only small amounts 

of plastiC deformation and does not require high energies for 

its operation. 

However a ductile material may fracture only after 

extensive 9lastic deformation which extends over some surface. 

The metal slides apart over this surface and the fracture has 

a dull, mat, or fibrous a9pearance. In this mode, ductile 

fracture, a considerable amount of energy is absorbed. 

There arc: a number of mechanisms by which ductile fracture 

may propogate. A single crystal may slide apart over a 

slip plane. In a polycrystal, pulled in tension, necking 

will occur and one or more holes will open in the middle. 

The stresses become concentrated on planes inclined at 45° 

to the tensile axis and the metal will fail by plastic sliding 
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over these planes giving the familiar cup and cone fracture. 

The fracture grocess in the centre is a kind of internal 

necking starting from ~re-existing holes, or inclusions around 
1 2 

which holes may i"orm. These holes join up and often 

the frac ture suri'ace has a dimpled appearance where necking 
3 

is initiated at many such inclusions. 

In a third mode the fracture surface may follow the 

grain boundaries. This is called intergranular fracture, 

and it can arise when there are metallurgical weaknesses in, 

the boundary. Such weaknesses may, for example, be due to 

the presence of Drecipitates in or near the grain boundaries, 

or to the migration of vacancies or foreign atoms • 

Failure may also occur by a process known as fatigue. 

This process does not easily classify into one of the above 

groupings. Fracture occurs after prolonged application 

of low cyclic stresses. The measurable plastic deformation 

is normally small but many reversals of plastic strain occur 

and the absolute sum of the strain increments will be large. 

Failure is by cracking, one or more cracks being 

initiated in the specimen, and initially the crack growth 

is slow. 

Cleavage fractures normally move rapidly through the 
5 

structure but slow moving cleavage cracks are observed • 

Cleavage fracture is frequently referred to as brittle fracture 

but this term should only be used when such fractures absorb 

little energy and move rapidly with small plastic deformation. 
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It is usual, but not general, for a cleavage fracture to be 

brittle in this sense. On the other hand ductile fracture 

is normally slow moving but here again catastrophic ductile 

failure is not Wlknown. 

The problems of fracture have been extensively investigated 
6 

and accounts of the work are given by Parker (1959), Biggs 
7 

(1960) 

1.2 Theoretical Strength 

Early workers assumed that cleavage fracture would occur 

when the tensile stress exceeded some critical value. This 

critical stress has been calculated 

considering the energy equations. 
4 

Orowan (1949) • A rough estimate 

for the ideal lattice by 

(po}'anyl(1921 )8 , 

of the fracture strength 

may be obtained by the following simple argument. 

Suppose that the material obeys Hooke's Law up to the 

fractur.e strength ~m. 

volume of material is 

2 
~m /2E 

where E 

Then the strain energy per unit 

is Youngs Modulus 1.2.1 

The energy per unit area contained betWeen two neighbouring 

planes of atoms a distance , a' apart is then 

1.2.2 
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These planes will separate if this energy is equal to 

the energy of the free surfaces created. This will then 

give as the fracture stress 

.J5!.y/aJ 1.2.3 

where y is the energy per unit area of free surf'ace. 

The relation 1.2.3 predicts a fracture stress which exceeds 

the observed strength by a .p':lctor ranging from 20 - 1,000. 

Detailed calculations have been carried out and stresses of 

the same high order as those given by relation 1.2.3 are 
9 10 

predicted • This calculated value is generally known 

as the theoretical strength. Faced with this discrepancy 

between observed and calculated values of the f'racture stress, 

two possibilities presented themselves. Either the 

calculations were wrong, or there is, in a real material, 

some mechanism which produces concentrations of stress of the 

order of the theoretical strength. Weaknesses such as micro-

cracks will produce such internal stress)and cracks had been 
1 1 

considered by Grif'fith (1920) 

problem. 

working on a related 

Similar calculations of the shear stress by Frenkel 
12 

(1926) also predicted a strength in excess of the observed 
13 

value. Further it was shcr#n by Taylor et al (1925) 

that the energy expended in deforming a metal plastically 
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does not all reappear as heat and the metal work hardens. 

These observations could not be explained retaining the 

assumption that metals are per~ect crystals. Consequently 
14 

Taylor (1928) suggested that the disloca tion was a 

suitable mechanism to raise the stress and elastic energy 

and to propogate slip. The dislocation concept had been 
15 16 1718 1S 20 

suggested earlier and has since be en developed 21 

A detailed account or the theory may be found in one of 
23 

several books on the subject • 

1.3 Extension of a Completely Brittle Crack 

1 1 

Griffith (1920) pointed out that micro cracks or 

surface scratches may be 'points of' weakness in a material 

which cause dangerous concentrations of stress even when the 

applied stresses are within the elastic range. He was led 

to this conclusion by the f'act that the incidence of rupture by 

fatigue can be reduced by polishing the surface of the specimen. 

Further, some theoretical work suggested that surface 

grooves could increase the stresses and strains by a factor 

ranging from two to six and that this factor was not dependent 
24 

upon the absolute size of the grooves. The calculations 

were verified by experiments with wires containing spiral 

scratches. Applying these results to the existing fracture 

criteria however did not produce phYSically sensible conclusions. 
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Thus Griffith was prom~ted to investigate the behaviour of 

cracks and to formulate a new fracture criterion. A 

cracle was considered as the limi ting case of an elliptical 
25 

hole and using the stresses derived by Inglis (1913) an 

energy condition for the extension of the crack was obtained. 

For the plane strain problem Griffith gave as the 

fracture stress : 

CT = 2';'1 )..LY/1TVcl 

and for plane strain 

() = v12Ey/nvc 1 1.3.2 

where )..L is the modulus of shear 

v poissons ratio 

2c the crack length 

In a note to this paper Grif1"ith draws attention 

to an error in the calculation. The correct result for plane 

strain should be 

The Griff'i th relationship has long been fundamental in the 

theory of fracture and has been derived subsequently by 
k ~ •. 

many workers. Sa~ (1946) has made a similar calculation 



7 
for a pelli~Y shaped crack and finds that this leads to the 

relation 

2 
() ~ {1TEy/2c (l-V )} 

Considering directly the stress at the crack tip, and setting 

this equal to the theoretical rracture stress over a region or 
4 

atomic dimensions, Orowan (1949) round the general agreement 

wi th the ab ove re 1 a ti ons • 

Al though the Grirfi th theory appears to expla in the 

behaviour of glass with some success, its application to metals 

is limited. The theory predicts that cracks several rom. 

in length would be stable and. it is difficult to see how such 

cracks could escage detection in specimens which have exhibited 

brittle behaviour. Before cleavage fracture can occur in 

a metal it is therefore necessary to nucleate a crack or a 

suitable size. 'l'his being so it is possible that the 

rracture strength of the material is related to the stresses 

required to nucleate a crack. These stresses will depend 

upon the mechanism of nucle~tion and several mechanisms have 

been proposed. 

1.4 Formation of Cracks 
27 

Zener (1948) suggested that a crack may form under 

the stress concentrated at the front of a row of dislocations 
26 29 

piled up at a precigitate and Stroh (1954) (1955) has 

considered in detail a number of similar models. 

In the first -gaper he considers the number of disloca tions 
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in a pile UQ required to :9roduce, over some plane, a tensile 

stress sufficient to cause fracture. In the second he 

considers the number of dislocations required to force the leading 

dislocations together and form a wedge. 

According to Stroh, the plane most favourably oriented 

for fracture is inclined at about 70 0 to the active sl ip plane 

and the potential energy of the medium will be reduced as this 

:Q.iane separates provided that the shear stress in the slip 

plane exceeds ~s where 

2 
~s = 3 ~y~ /8(1-V)L 

In this equation L is the length of the pile up. This 

relationship does not contain the crack length and therefore 

the crack will grow at least over that length for which the 

approximations are valid. Now the number of dislocations in 
30 

a pile up is given by 

L = ~bn /~( I-v)y 1.4.2 

In this b is the Burgers vector of a dislocation 

and is of the order of the atomic distance. It then follows 

that the number of dislocations reqQired to initiate a crack 

is given by 

2 

ro-s b = 3/8 ~ y 
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In the second model Stroh considers the alternative condition 

for fracture that the distance between the two leading 

dislocations should be less than the atomic spacing.' This 

will be EO if the applied stress exceeds a-s where 

= 3.67 ~/4 u n (1 - v) 

and this agrees with equation 1.4.3 if we make use of the 

empirical relation 

Gb/y - 8 

A crack nucleated by these mechanisms in a specimen subjected 

to an applied simple tension will propogate through the 
31, 

specimen since it is shown by Stroh (1957) that under these 

conditions the number of dislocations required to initiate 

a crack exceeds the number of' dislocations required for its 

propogation. The calculation assumes however that the 

energy per uni t area of free surl'ace is the same in both 

processes and this need not be the case as we shall see later. 

Another important mechanism was postulated by Cottrell 

(1958) 
32 

in which a wedge crack forms on a (001) cleavage 

plane as certain dislocations on intersecting (101) (101) 

plane meet and coalesce. It is shown that this interaction 

reduces the elastic energy and it is supposed that this craCK 

will grow as more dislocations move into the wedge. In 
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10 

principle this growth is not dependent upon the applied 

stress and will continue until the crack length is of the same 

order as the length of' the sl ip lines. The crack will then 

propogate only if the applied stresses are suitable and this 

will not always be the case. 
33 

Burr and Thompson (1962) have suggested a similar 

mechanism for zinc involving dislocations on the pyramidal and 
34 

basal planes. Bell and Cahn (1948) have observed cracks in 

zinc specimens pulled in tension but believe these cracks 

to have been formed by intersecting twins. However, it is 

suggested by Burr and Thompson that their dislocation mechanism 

and not twinning was the more probable mechanism of cracking 

in these experiments. 

There is, nevertheless, considerable experimental 
35-..39 

evidence to suggest that cracks do f'orm at intersecting twins 
38 

Edmundson (1961) working with iron single crystals below 

-145°C reports that no major cracks were detected which 

were not associated with a crack forming twin intersection. 

Other mechanisms of crack formation are also discussed, 
40 

Stroh (1958) shows that in zinc the relative displacement 

of two parts of a twin boundary may lead to cracking in the 
41 

basal plane. Further, Fisher (1955) pOints out that 

vacancies are created when an edge dislocation cuts a screw 

which intersects in the slip DIane. It is suggested that 

a crack may form if there are several such intersections. 

All these mechanisms require at least localised plastic 

flow for their operation and Low has confirmed that yield 
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normally preceeds fracture. He showed that the yield stress 

in compression coincides numerically with the fracture stress 

in tension over a wide range of te~peratureand other variables. 

To this extent all these models of crack initiation are satisfact-

ory. 

However, the Cottrell mechanism shows that the microcracks 

may be initiated rather eaoily during plastic deformation 

and it is supposed that they will only pro90gate if the applied 

stresses are suitable. If this is so one would expect to 

find stationary cracks in a yielded material and such observations 

have been made. Stationary cracks have been observed at the 
43 

Luders front and non propogating cracks in yielded regions 

but not in elastic regions which have been similarly stressed 

These observations are not consistent with a fracture theory 

in which crack nucleation is more dif1'icult than crack 

propagation and this is an obstacle to theories based on the 

dislocation pile up mechanisms for crack initiation. 

Another factor which operates against the pile up 

44 

I 

theory is that the macroscopic fracture criterion in such a theory; 

depends upon the shear stress required to make dislocations coal-

esce. This implies that the fracture stress is independent 

of the hydrostatic stress, however, there is evidence to 
45 

suggest that hydrostatic stresses have a pronounced effect 

on ductile brittle behaviour and a theory which does not 

predict this cannot be entirely satisfactory. 
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1.5 The Propagation of' jf!icrocracks 

I t thus appears more reasonable to SUI.ll)OSe tha't cracks 

are initiated easily during plastic def'ormation by a Cottrell 

type mechanism, twinning or some other ~rocess. Consequently 

the governing factor in brittle f'racture will be the propagation 

of craCKS and it is to be expected that hydrostatic stresses 

eff'ect this process. The theory of' crack propogation has 

been investigated by sev~ral workers and various modif'ications 
31 32 47 .. 50 32 

have been proposed Cottrell (1958) 

considers the gropaga tion of the wedge crack formed by 1is 

mechanism. He assumes the crack is subjected to normal 

tensile stresses and ado:9ts a procedure similar to that used 
31 

earlier by Stroh (1957) • The potential energy of the 

system is written in the f'orm 

2 

[Ct 
!:ill. !L 

- 2cJ 
h 

N = 2"{ tn c + c - 2C2 C2 
1.5.1 

where 

2 2 

C1 @b C2 = 
8uy 

= 
81T(1-V)"{ 1T(l-v)p 

p being the applied normal tension and R the effective radius 

of' the stress f'ield. 

The equilibrium condi tion f'or the crack length is given by 

dw/dc = 0 and this is satisf'ied by the roots of' the equation 
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If P = 0 then c = C1 • The quanti ty c 1 is therefore the 

length ot' the crack produced purely by disloca tion interactions. 

Alternatively if p > 0 and n = 0, then the crack is a Griffith 

crack and c is equal either to or to zero. The 

qucmti ty C2 is therefore the unstable Griffith size. 

Further equation 1.5.3 has either no real roots or it has 

two real roots in which case the smaller gives the size of 

the stable crack and the larger the size of an unstable crack. 

By the usual analysis it follows that there will be no roots 

if 

1/4 1.5.4 

that is if 

9 n b > 2y 1.5.5 

If this relationship is satisfied, there is no equilibrium 

length for the crack and it will spread catastrophically through 

the specimen. Otherwise the crack will grow until it reaches 

the stable size. Since cracks form at the yield stress a 

criterion for brittle behaviour will be obtained if the stress 

in relation 1.5.5 is set equal to the yield stress. The 

lower yield stress in mild steel is given by the well known 

relation 

= + Kd 1/2 1.5.6 
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in which ~. is a stress opposing dislocatior. movement 
~ 

in the slip plane (friction stress), 2d is the grain diameter 

and K is a constant. To obtain nb in terms of the 

stresses the usual assumption is made 

where a1 - 1 is a constant. At the yield stress ~ = ~ y 

and from equation 1.5.6 it follows that 
1/2 

nb = a1 Kd III 1.5.7 

The resolved shear stress may be obtained ~rom the tensile 

stress using the general relation 

~ = a2 p/2 1.5.8 

In the case of a simple tension U2 = 1 but in the 

presence of hydrostatic stresses this would not be the case. 

As before at the yield stress equation 1.5.6 gives 
-1/2 

p = 2 (;- i + Kd ) / CX2 1.5.9 

Writing ~ = CX2/U1 it then follows ~rom 1.5.5, 1.5.8 

and 1.5.9 that the condition for brittle failure of a material 

is : 1/2 
Kd > f3 Il Y 1.5.10 

+ K) K > f3 IJ. Y 1.5.11 

I~ this condition is not satisfied cracks will ~orm at the 

yield stress but will not propagate and the failure will be 

ductile. Thus there is a transition from ductile to 
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brittle behaviour at the point where relations 1.5.10 

or 1.5.11 are taken as equalities. The hydrostatic stresses 

enter this relation through the factor f3 • Increases in 

() i ' d and K will tend to mat(e the ITa terial bri ttle 

while increases in and y will tend to make 

the material ductile. 

The factor for uniaxial tension is of the order 
50 

unity but at the root of a notch the plastic constraint factor 

causes a change so that f3 ,., 3. Therefore 

has to be reduced to preserve ductile behaviour. 

cry K 

Estimates 

of the effective surface energy can be made from relations 

1.5.10 and 1.5.11 by finding the parameters at which 

the material just becomes brittle. Using typical values for 

iron, Cottrell shows that the equations require a value or 

y about 10 times the real surface energy. This high effective 

surface energy is interpreted as plastic work associated with 

the formation of the surface, ror example tearing at river 
51 52 

lines and grain boundaries • This idea that y 

in the fracture criterion should take account of plastic work 

had been considered earlier by Orowan 
54 53 

(19;50) Irwin (1949) 

who give the fracture stress to be 

where p 

1/2 
CT ,.. (Epic) 

1/2 
() ,., (E pic) 1.5.12 

is the plastic Nork associated with the formation 

of the f'racture surf'aces rather than the true surface energy 
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which is assumed negligible. 

In all these theories the mathematical analysis contains 

no ex~licit discussion of the plastic relaxation which one 

would expect to find at the ti,9 or a crack in a ductile material. 
54 55 

There is evidence that high stresses are relieved in this way 

This plastic deformation may not af'f'ect these equa tions in 

only a simple way and the problem should be considered in 
56 

more detail. Goodier and .J:i'ield have estimated the plastic 

work in these relaxed regions ahead of the crack and used this 

in relation 1.5.12. This procedure is suspect since 

the potential energy is derived assuming no such relaxation. 

1.6 Objects or the Work 

It is apparent that a rull understanding of fracture 

requires some knowledge of the plastic deformation occuring near 

cracks and other similar inhomogeneities which act as sources 

of internal stress in metals. The analysis may be carried 

out using the classical macrOSCOI)ic theory or the elastic plastic 

solid, but, except in very special cases extensive numerical 

work is required to exhibit the relations between the essential 

physical parameters involved. 

An al terllative apgroach is to simplify the model of a 

relaxing crack so that some important relations between these 

parameters may be determined analytically. Professor Cottrell 

has suggested a suitable model in which the plastic regions and 

the crack itself are represented by linear dislocation arrays. 
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'fhi 3 and roe la ted mode Is of cracl;;:s and notche s are tre ated 

in this work. In the analysi 3 01' these models, quanti ties 

will be re~erred to axes ta~en so that the crack lies in the 

plane X2 = 0 with the crac~ tips ~arallel to the X3 axis. 

These axes will be called standard axes. '1'he material will be 

regarded as 8. 1ler·t'ectly elastic medium, relative displacements 

being permitted only across certain arcs in the Xi , X2 

plane. These arcs, which will be called dis.91ucement arcs, 

will be used to reQresent the cracks and .9lastic regions. 

Yielded regions will be represented by arcs along which the stress 

is set equcll to the yield stress and the crac.i:(S will be 

represented by arcs which are stress rree. These arcs wi 11 be 

called the plastic arc and ~ree arc, resyectively. The 

elastic equa tions wi 11 then be solved subjec t to the condition 

that there are no singularities. 'l'he relative displacements 

may be reJ.Jresented by a continuous distribution 01' dislocations 

along the disvlacement arcs which may then be thought of' as 

sIll) lines. Thus models may be tre&tt:d as bOillldary value 

uroblems in an elastic medium or as dislocation Droblems. 
~ 4 

The analysi L; will normally be carried out f'or plaue 

strain shear and antiplane strain. By "Plane Strain Shear ll 

it is to be understood that, ref'erred to standard axes, the 

applied stress P at inl'inity and the stress 0""1 in the 

plastic ar'c are constant 0""12 stresses, the dis[;)lacements 

having the form U1 (Xi ,X:a) U2 (Xi , x:a). Similarly 

by "Antiplane Strain" it is to be understood tha t the a';'J.Qlied 

stress P at in~inity and the stress 0""1 in the plastic arc 
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are u23 stresses, the only disQlacement being U3 (X1 , X2). 

Initially there is a discusion of the single crack in 

an infinite medium. The case of an infinite collinear 

sequence of cracks is discussed aIld in the antiplane strain 

case there are certain lines of symmetry perpendicular to the 

plane of the cracks which are stress free. The material may 

thus be divided along these lines to give models of a notched 

bar or a crack in the centre of a bar. 

The Discussion considers, initially, only the non work­

hardening material but in the final chapters the extension to 

include work hardening is considered for the single crack in 

an infinite medium. 

Also a model is considered in which relaxation takes 

place along arcs not collinear with the crack. This is 

discussed only in the case of a single crack in an infinite 

material subjected to applied tensile stresses normal to the 

crack. 

Finally some indication is given as to the manner in 

which these results may be ap-plied to discuss theories of 

fracture. 



Chapter II. 19 

Selected Nork Related to the Relaxation Problem 

In this chapter a discussion is given of some other 

theories 01' the ,kllastic crack and of certain mathematical 

techniques which are to be used. However, the classical 

macroscopic theory of the elastic plastic solid is not used 

in this work and no attempt is made here to develop the theory. 

For an account of the classical theory reference may be made 
S'l [;7 st 

to Prager and Hodge (1951), Hill (1956), Thomas (1961), or 
G I , -

Johnson and Mellor (1962). Further there exists an extensive 
(,0 

bibliography compiled by Hodge (1958). The only work 

involving the macroscopic theory to be included is a treatment 

of a long notch under conditions of antiplane strain. This 
0. 

treatment , which is due to Hul t and McClintock (1957) 

adequately demonstrates the complexity of classical methods 

applied to these problems. However, certain results correspond 

closely to the predictions based on simplified models. 
H 

Dugdale (1960) considers a model of' a crack based on a 

treatment of eDlptical holes in an 8lastic medium developed by 
'7 

Muskhelishvili (1949)'. This is a model of the type suggested 

in the previous section and as might be expected leads to 

conclusions similar to the results obtained from the Cottrell 

dislocation model. 

Further consideration is given to the work of Leibfried 
6. 

(1951) on the equilibrium of linear dislocation arrays, the 

dislocation density being derived in terms of an integral 
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equation. This problem has also been considered by Head 
;5" 

and Louat (1955) who invert the integral equation using a 

" 6 general 1'ormula developed by liluskhelishvili (1946). The 

derivation of this formula is given in the final section, 

the treatment being essentially that given by liluskhelishvili 
6b , 7 

(1946) (1949)' but including some simplification due to the 

writer. It will be seen later that this integral equation 

arises in other related theories and the method of inversion is 

fundamental to the work. 

2.2 The Hult and McClintock Theory of a Notch 

,'2. 

Hult and McClintock (1957) have considered the plastic 

relaxation at the tip of' a long sharp notch of' angle e 

and depth c in a semi ini'ini te solid, f'ig (1). 

Standard axes are taken so that the material lies in the half' 

space o and the notch runs parallel to the Is. 

axis. The system is symmetrical about the plane 

'rhe analysis is carried out for the case of' antiplane strain. 

Let the stress components be cr ij , the strain 

components E ij and the displacements ui , where 

ij = 1, 2, 3. p is the ap:91ied stress at ir~'ini ty 

which in this case is a unii'orm shear ()23 • Their 

analysis treates the problem as the limiting case of a 

longditudinal notch in a large cylinder subjected to torsion and 

f'ollows the treatment of' Prager and Hodge (1951)':-Q 



The general displacements throughout the medium are assumed 

to have the form 

U1 = U2 = 0 

J 2.2.1 

where W(Xi,X2) is a warping function. The only stresses 

are ~23 and ~13 and therefore the only equation of 

equilibrium to be satisfied may be satisfied identically 

if the stresses are derived from a stress potential ~ such 

that: 

o 1>/ X1 = ~23 
o f/J/ X2 = - ~ 13 

2 
'\l ¢ = 0 

2.2.2 

2.2.3 

2.2.4 

This is valid both in the elastic and the plastic regions. 

The cri terion for yiel d is taken to be a maximum shear stress 

criterion 
2 2 2 

~13 + ~23 = k 2.2.5 

that is 

I grad f/J I = K 2.2.6 

Now f/J, being a function of the two variables Xi and 

X2 , may be represented by a three dimensional surface. 

The yield criterion 2.2.6 implies that this surL'ace 
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will be a surface oi' constant slope in the yielded region. 

Then the stress at any point, on the ~lane Xa = O,in 

the plastic region is normal to the direction of maximum 

slope of the ~ surface. 

Prager and Hodge show that ¢ is in general 

constant over any stress free surface, in which case the 

direction of maximum slope is perpendicular to that surface. 

In the case when the free surface bounding a plastic region 

is an arc of a circle, then the directions of maximum slope 

of the ¢ surface are radial lines. In the limit at a 

sharp corner the directions of maximum slope are straight lines 

radiating from that corner. 

In polar co-ordinates (r, a) - with the origin 

at the notch tip and a = ° along the X1 axis - the radius 

of the elastic Illastic boundary is a i'unction of a denoted 

by R(a). It is shown that in the elastic region 

-. R(a) k/r~ 2.2.7 

The equation giving R(a) does not have a simple form 

even for the special case of ~ = 0. However the special 

value R(O) may be expressed i~ terms of an integral and 

for the special case ~ = 0 it is easily shown that this 

reduces to an expression involving the complete elliptic 

integral of the second kind E [U/2, Z] • 
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Setting A = F/K then 

2 2 2 
R(O) + c = [2c(1 + A )/~(l- A )]E[~/2, 2A/(1 + A ) ] 

2.2.8 

The procedure by which R(O) is obtained involves an 

elaborate conformal mapping which is not given in the pager 

by Hult and McClintock. These mappings have been investigated 

by the author and the complete analysis is given in Appendix III 

to this work. 

In the case of small A a simple relationship is 

obtained, namely 

2 

R(a) = CA cos a 2.2.9 

which is a circle of diameter 
2 

CA • From this theory which 

analyses only the most simple form of stress field it is 

apparent that only in the case of small applied stress does 

the elastic plastic boundary assume a simple form. Conditions 

of small applied stress are not the most useful for constructing 

a fracture theory. 

Anything more complex than this involves the use of 
,0 

numerical techniques. Koski nan (1961) has extended the 

above method to finite bodies and his results which are 

presented graphically will be compared with some results of 

this work in a later section. 



2.3 The Dugdale Model or a Crack 
6.l 
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Dugdale (1960) proposed a model in which a relaxed 

crack is considered as the limiting case or an elliptical hole 

in an infinite elastic medium. Parts of the surface of the 

hole are stress free and collapse to form the crack. The 

remainder of the surface is subjected to a normal tensile stress 

Y, equal to the yield stress, and collapses to rorm the 

yielded region. The crack is of length 2c and the plastic 

regions are each of the length s. The stress field around 

elliptical holes,dying away at inrinity is considered by 
67 

Muskhelishvili (1949). 

This stress field is superimposed upon the stress field 

due to a crack of length 2(c + s) in an elastic medium 

subjected to a uniform tensile stress at infinity, the tensile 

axis being normal to the crack. Thi s pro bIen may al so be 

considered as the limi t of an ellipse and again the elliptical 

hole is treated by Muskhelishvili. The condition necessary 

to eliminate the stress singularity at the extremities of the 

ellipse is then derived. The following quantities are 

derined: 

X1 = a cosh a 
] 2:3 ., 

-t = a cos j3 

Stresses are found·in terms of a series about the point 

X1 = a, that is a = o. For the case of the loaded elliptical 

hole the leading term in the series for the ~22 stress is : 

-2Yj3/ 1T a 
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For the case of the unloaded slit in a medium under an 

applied tensile stress P the corresponding expression is 

p/ct 

The condi tion i'or i'ini te stress is derived f'rom the condi tion 

that the coef'f'icient of' l/ct in the resulting series f'or ~22 

should be zero. Tha t is P - (2Y~/rr) = o. This 

expression reduces to the f'orm 

cia = cos (rrp/2 Y) 

Dugdale has conducted some exgeriments f'or internal and 

edge slits in tensile s~ecimens and obtains substantial 

agreement with these predictions. These re suI ts are almost 

identical to those obtained by the present author using a 

dislocation model f'or the single crack and were published 

af'ter the work using the dislocation model had begun. 

2.4. The Eguilib~ium of' a Continuous Distribution 

o~ Dislocations 

Dalcula tions using discrete disloca tions are complicated 

and frequently a simplified theory is used. The actual 

distribution of dislocations each of Burgers vector b 

is replaced by a mathamatical distribution of elementary 

dislocations each of' Burgers vector 8b. This mathematical 

distribution is chosen to give the same relative displacement 

over any su:f'ficiently large region. The number of such 
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dislocations is assumed to tend to infinity and the Burgers 

vector 8b is assumed to tend to zero. Then any small 

region 01' the sl ip DIane 8X1 containing .::<':1 encloses N(X1) 8X1 

elementary dislocations. The relative displacement over 

X1 is given by 

N(X1) is the density of elementary dislocations at X1. 

Writing: 

2.4.2 

the relative displacement over 8X1 is given by 

Thus D(X1) may be considered as the density, at X1, 

of dislocations having Burgers vector b. 

Take axes with their origin at the dislocation itsel~, and, 

in the case o~ edge dislocations set X1 parallel to the 

Burgers vector. Then the stresses due to an edge dislocation 

are : 

2 2 4 

~11 = -Ax2(3X 1 + X2 ) r 
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2 4 

X:a )/r 

2.4.6 

where 

A = ~b/ 2u (1 - v) 2.4.7 

The stresses due to a screw dislocation, with resgect to 

polar coordinates (r,a), are 

= A/r 

A = ~b/21T 2.4.10 

In these relations is the shear modulus and v 

Poissons ratio. 

dislocation at 

The stress due to a similarly oriented 

Xi = Ii' is thus given by 
./ 

2.4.11 

where 

~ is a ~23 stress, 

~ is a ~12 stress, 

A = ~b/21T ror screws 

A = ~b/2u(l-v) ror edges] 
2.4.12 



28 

The stress contribution due to a distribution 

or dislocations in the small region 8x' is similarly 

The stress due to a distribution over any large finite 

region L of the X1 axis is 

~(X1) = J [AD(X1')/(X1 - x1')]dX1' 

L 

2.4.13 

2.4.14 

Now let the resultant stress applied to the dislocation array 

be P(X1 ). This f'unction gives the appropriate stress 

component and is positive if it moves a positive dislocation 

in the positive direction. Further P(X1) includes any 

resistance stress or friction. In order that the dislocations 

be in equilibrium under the applied stress P(X1) it is 

necessary that p(X1) + ~(X1) = 0 on L; that is the stress 

at any point of the dislocation is zero. The dislocations 

must adjust their positions so that 

A! [D(X1' )/(X1' - X1 )]~ = P(X1) 

L 
6~ 

2.4.15 

Leibfried (1951) assumes that all the dislocations are 

of the same sign. Then for n dislocations, L = [-a,a] 

and uniform stress p(X) = P applied to the dislocations. 

The dislocation density is shown to be 

2.4.16 
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In general D(x) will be infinite at x = !a but 

solutions with D(x) vanishing at one o~ these points 

may be obtained by suitable choice of n and a formula 

i'or a dislocation pile up at a rigid barrier is obtained. 

The distribution in two regions symmetrically placed about 

the origin (-a,-b) and (+b, +a) is then considered. If 

the dislocations in the ~irst region are o~ opposite sign 

to the dislocations in the second, and the density is zero 

+ = - b , then se tting b = 0 a ~ormula is obtained 

for a single region enclosing dislocations of both signs. 

The formula 2.4.16 is thus shown to apply in general. 

The dislocation density for a distribution of period t/2 

of such pairs is obtained by interchanging the order of 

integration and summation and evaluating the i~inite sum in the 

integrand. The relati on is 

a 
~ 

p(X1) = (w/t) j [AD(X1') sin ( X1'/t)/{cos( WX1'/t) 

b 

2.4.17 
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2.5 Inversion of the Singular Integral Equation. 

It has been shown that in an array of dislocations, 

distributed continuously over a single slip line, the 

condition for zero stress at each pOint of the array is 

given by equation 2.4.15. In the case of' a periodic array 

the condition is given by equation 2.4.17. These relations 

can all be reduced to the general form : 

(l/11i) J 
L 

{G(t)/t-t }dt = ¢(t ) 
o 0 

where the integral is taken over L, 

2.5.1 

L being any set of 

non intersecting arcs in the complex plane. On L, G( t) 

is an unknown complex function of a complex variable and 

¢(t) is a given complex function. 

Singular integral equations of this type have been 
{6 

studied in detail by Muskhelishvili (1946) and a method 

for finding a suitable G(t) is given. 
67 

is summarise~Muskhelishvi1i (1949). 

Part of the proof' 

In order to gain an understanding of the phySical 

implications of the method, the underlying concepts of the 

analysis have been assembled here in a concise form. 

n 
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For this purpose a simple procedure has been devised by 

which equations 2.5.4 and 2.5.8 are obtained from 

2.5.1 and 2.5.2. This procedure is not strictly 

rigorous and is not that given by Muskhelishvili. 

While the general treatment considers arbitrary arcs 

we shall assume such arcs to be segments of the real axis. 

Preliminary formulae 

Let F(z) be any complex function sectionally holomorphic 

in the complex plane outside L and let 

be the limiting values of F(z) as z ~ t from the positive 

and negative sides of L respectively. The positive side of 

L lies to the left as one moves along the arc in the positive 

direction. Now consider the problem or finding F(z) 

satisfying, on L, the relation : 

2.5.2 

where G(t ) is assumed to be known. A holomorphic F(z) 
o 

may be found using the Cauchy theorem. 

a rectangle containing L, then for 

F(Z) =-(1!21Ti) ! {F(,)!,-zjd' 

r 

If r is taken to be 

z outside r : 
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In the limi ting case as r closes round L equations 

2.5.3 and 2.5.2 give 

F(z) = (1/217i) J {G(t)/ t-Z}dt 2.5.4 

L 

This ~ction will be holomorphic outside L since 

Cauchy's theorem applies only for holomorphic functions. If 

F(z) is required wi th poles of orders m1, m2 , •••• me , m 

at the points Z1, Z2, .•.• ze' 

the function : 

i 

R(z) L 
j=O 

00 not belonging to L then 

m 

2.5.5 

may ~ added to the R.H.S. of 2.5.4 and 2.5.2 will still 

hold since R(Z) will be continuous over L and its 

posi tive and negative boundary values will be equal. Then 

the most general function satisfying 2.5.2 is : 

F(z) = (1/217i) I {G(t)/t-z}dt + R(z) 2.5.6 

L 

where R(Z) is a runction continuous over L and having 

a finite number of poles. This is a most important general 

result which will be required later. 
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Reformulating the Problem 

Now suppose that G(t ) is unknown and is a solution 
o 

of 2.5.1. [Then G(t ) is directly related to the boundary 
o 

value or the derivative o1~ the stresses due to the dislocations 

and it follows that F(z) will also be related to the derivative 

of the stresses throughout the material. If the stress is 

to have no singulari ties outside L then this condi tion must 

be imposed on F(z) 1. F(Z) is taken to be sectionally 

holomorphic and zero at infinity. It is given by equation 

Taking the limiting case of F(t + is) + F(t -is) 
o 0 

as 8 ~ 0 gives the relation 

F+(t
o

) + F (to) = (l/Ui) J IG(t)/t-t
o
}dt 

L 

2.5.1 

and substituting from 2.5.1 the relation 2.5.7 becomes 

+ 
F (t ) + F (t) = ~(t) 

o 0 0 

The problem can now be reformulated as the problem 

of trying to find a holomorphic function satisfying 2.5.8. 

To do this a function is introduced holomorphic in the finite 

plane outside L 

functions f = F/X 

2.5.8 then becomes 

and with the property X+/X- = -1. Further, 
+ 

and g = ~/X are defined. Relation 
+ 

f - f = g which is in the form 2.5.2 
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and thus has a solution in the ~orm 2.5.6 since g is 

known. 

Following Muskhelishvili equation 2.5.8 is now written 

in the i'orm 

and the 1-'ollowing definition is made 

n (z-ak)-Y (Z-bk)Y-l Pp(Z) 
k=l 

are the end. pOints o~ the 

2.5.9 

2.5.10 

kth arc Here ak 

comprising is a polynomial o~ degree p 

with zeros on L. This polynomial is introduced in order 

to remove certain stress singularities on L and the ~orm 

o~ pp(Z) will be considered later. 

Let 

radius 

As Z 

Z 

r, 

be any point on a circle centre ~ and 

then 

Z - ~ 
i8 = re 

moves around 

2.5.11 

~rom the negative to the 

posi ti ve side or L it ~ollows that 



Similarly it can be shown that 

y-l + 21fi 
[ (t - b k ) ] = e 

and it then follows that 

+ 
x, (t) 

p 

21riy 
= e X, 

p 
( t) 

. . 
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2.5.12 

2.5.13 

2.5.14 

Now x'(z) is holomorphic outside L except perhaps at 

infinity and also has the property 

s 2.5.15 

provided that 

y = log s/2:tT 

The equation 2.5.10 therefore gives a X, of the required 
(z) 

type. 

Now define the following new functions 

fez) = F(z) / Xp (z) 2.5.17 

g(to ) = 
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The general solution 

The equation 2.5.9 then becomes 

+ 
f (t) - f (t) - g(t) 
000 

2.5.20 

in which g(t) is a known function. 
o 

The general solution 

to 2.5.20 is given by 2.5.6. 

Now Xp(Z) will be constructed with the property that 

in the finite plane, all zeros of Xp(Z) belong to L. 

Further F(z) is required holomorphic everywhere outside L. 

Thus it follows from relation 2.5.17 that fez) is holomorphic 

outside L except perhaps at inrinity. This then implies 

that in the solution of 2.5.20 far fez) the function R(z) in 

the general form 2.5~ may be no more than a polynomial sa~ 

of degree m. 

From 2.5.17 and 2.5.20 it then follows that 

F(z) = Ix (Z)/2Uil!{~(t)/X+(t)(t-z)ldt + X (z)Q (z) ppm 
L 

To obtain 2.5.8 from 2.5.9 it is necessary to set 

$ = -1 and then from 2.5.16 it follows that 

y = 1/2 

2.5.21 

2.5.22 
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Now F(z) is not in general bounded at the end points 

of L but a solution bounded at a given set of ends 

C1 •••• cp may be obtained taking the polynomial Pp(Z) 

in equation 2.5.10 to be : 

p 
= 1f (z - Ok) 

k=l 

It is now convenient to define 

2n 
Ra = 1f 

j=p+l 

where 01 ••••• cp are the end points of 

2.5.23 

L at which 

F(Z) is required bounded, F(z) being unbounded at the 

remaining end points. 

Setting y = 1/2 it then follows from 2.5.24 and 

2.5.23 that 

= 2.5.25 

and from 2.5.15 it follows that 

2.5.26 
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Then from equations 2.5.2, 2.5.21, 2.5.25 and 

it follows that 

G (t ) 
o 

Qm (t ) 2.5.27 
o 

is the general solution to 2.5.1 where Qm(z) is an arbitrary 

polynomial of degree m and R1 , R2 are given by equation 

Condition for finite stress 

It remains only to examine F(z) at infini~ and find 

the conditions for there to be no poles, since all unwanted 

poles have already been removed from the finite plane. 

Expanding the integral in 2.5.21 in powers of t/z gives the 

relation • . 
00 

F(Z) = Xp(z) [ L lyzkJ + Q",(Z)] 

k=l 

2.5.28 



where 

Ak = (1/21T1)/ [_t
k

-
l 

¢(t)/X; (t) J dt 

L 

4 0 

Now let O( r) denote a function wh1ch at inf'ini ty has 

the form : 

O(r) 

1=-00 

Now from 2.5.10 it can be seen that 

= O(p-n) 

and substituting into 2.5.28 it follows that 

F(z) 

00 

= \' O(p-n-k) 
L 
k=l 

+ O(p-n+m) 

2.5.29 

2.5.31 

2.5.32 

If F(z) is to be holomorphic at infinity it follows 

:from 2.5.32 that 

p-n-k < 
2.5.33 

p-n+m < 
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These conditions may be stated as follows 

If n is the number of segments of L and p 

is the number of end points at which F(z) is required 

to be bounded then 

for p ~ n, 
and for p<n, 

~(z) = 0, 

m < n-p 
~ = 0 for k = 1, 2, •••• p-n J 

Summary 

Thus the solution to 2.5.1 bouilded at p of' the 2n 

end points of L is given by 2.5.27 in which R1 

Ra are defined by is an arbitrary 

polynomial of degree m, provided that the conditions 

2.5.34 

2.5.29 

are satisfied in which is defined by 



42 
Chap ter III 

The Isolated Crack 

At the suggestion of Professor Cottrell the following 

model of the plastic relaxation round the tip of a sharp 

crack has been examined. Both the crack itself and the 

plastic regions are represented by linear dislocation 

arrays. The crack, or free arc, corresponds to a region 

of the slip plane in which there is no resistance to 

dislocation movement) and the plastic arc corresponds to 

a region in which the movement of dislocations will be 

opposed by a stress whose maximum value is equal to the 

yield stress. Provided that the applied stress increases 

mona tonically and the dislocations move outward f'rom t1..e 

crack tips the resistance stress in the plastic arcs will 

oppose the applied stress and in fact be equal to the 

yield stress at each point. 

The equilibrium of dislocation arrays has been discussed 

in Chapter 2, section 4. It is clear that one maw discuss 

simultaneously the cases of screws and edges having their 

Burgers vector in the X1 direction. These cases 

correspond to anti-~lane strain and plane strain shear 

respectively. 

With respect to standard axes having their origin at the 

centre of' the crack, the crack lies in the region IX1 I < c, 

and the plastic arcs lie in the region c < IX11 < a. 
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The magnitude of the applied stress will be P and 

the magni tude of the resistance stress will be (/1. 

These stresses will be taken positive i~ they tend to move 

positive dislocations in the positive X1 direction and the 

negative i~ they move positive dislocations in the negative 

Xi direction. For edge dislocations p and 

are (/12 stresses and 

A = ~b/2~ (1 - v) 3.1.1 

while ~or screw dislocations P and fTi are 

stresses and 

A = ~b/2u 

In these relations is the shear modulus, v Poisson's 

ratio and b the Burgers vector. The condi ti on :tor 

equilibrium is then given by equation 2.4.15 in which 

= [ ~ < 
> 

c 
3.1.3 

c 

That is the dislocation density D(X1) is given by 

P(X1) + A I [D(X1 )/(X1 - x4 )]dx' = 0 

L 
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Now if' the f'ollONing correspondence is set up 

'f (Xi) = P(Xi) 

G(X1) = A UiD(Xi) J 
then the integral equation:)3.l.4 and 2.5.1 are identical. 

However before proceeding to the solution given in 2.5 

it is necessary to consider the validity of' the procedure 

in this case since ~ is a step fUnctiono 

3.2 Inversion Procedure 

In Chapter II, section 5, no attention is given to 

considerations o~ validity o~ the method. This is however 

considered by Muskhelishvili (1946). It is necessary, only, 

that the Cauchy principal valves of the integrals exist at 

each stage and a su~f'icient condition for this to be so 

is that the given f'unction ~ should satis~y the 

condi tion of' the form 

3.2.1 

where K, ~ are positive constants. 

It is clear that the step !'unction ~(X) de~ined by 

3.1.3 does not satis~this condition. It is therefore 

necessary to justi~y l.he use o~ these formulae when dealing 

with step functions. A brie~ argument is put l'orward here 

to show how step functions may be included. First 
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approximate to the step runction in the form 

p(X1), Ix±cl :> 8 
= 

p - (~/2) - (Ixl - c) ~/28, Ix-cl~ 

3.2.2 

see fig. (7). 

This function will satisfy 3.2.1 for any finite 8 

and the required step fUnction is the limiting value of a 

sequence of these functions as 8 ~ O. The required 

solution to the integral equations is then the limit of 

the sequence of solutions as S ~. o. Now suppose L 

is the single segment of the Xi 

from 3.1.4, 2.5.27 and 2.5.29 

axis IX1 I ~ a, then 

it is clear that in general 

the solution and its existance condition will include terms 

of the form 

S' = J K (x,x') pi (x,) dr' 

L 

3.2.3 

where K(X,x') is some function d~pending upon the 

conditions of the problem which may have only one singulari~ 

of the form (l/{x- x, 1). 

Suppose now that the dislocation density is required 

at X then choose 8 < 80 where 80 is chosen so that 
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Ix - c I > 200 >28 

where c is the crack tip nearest to x. 

Then for 

I x' - c I < 8 

it follows that 

Ix - x' I > Ix -c I - lx' - cl > 00 3.2.6 

Let the range of integration L be divided into subranges 

Ix - cl < 

Ix - cl > 

8 

o ] 3.2.7 

Denote by L - e the union of the three ranges where both or 

Ix ! cl > S then: 

S' = J K(x,x' )p' (x' )d.r + J K(x,x' )p'(x')d.r 

e L-t 3. 2 .8 

Now e is the union of the subranges where one or 

Ix ! cl < 8 and in this range the integrand is bounded 

since the singularity has been removed to a sufficient 

distance by suitahle choice of 80. It follows thererore 

tha t the firs.'" integral in 3.2.8 tends to zero as 

8 -.. 0 so that 



S' = Lim 
8 ..... 0 

jK(X x' )p' (Xl )d.r 

L- .e 

Now S is defined by 

S = J K(X X') P (x')d.r' 

L 
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3.2.9 

3.2.10 

From 3.2.2 it may be seen that p'(x) = p(x) for 

x €L-~ and substituting this relation into 3.2.9 S' 

is by definition equal to 3.2.10. This result is in 

fact equivalent to inverting the step function directly 

using relations 2.2.27 and 2.2.29. In this thesis 

this limiting process is implicit and will not be referred 

to directly. Analysis will be carried out as though the 

arguments of section 2.5 were valid for the step functions 

themselves. 

3.3 Analysis for the single crack 

In considering the solution to equation 3.1.4 

it is first necessary to investigate the conditions for that 

solution to be bounded at the appropriate point. The 

dislocation density must be bounded at both the points 

X1 = +a and X1 = -a, thus there is one crack and two 

bounded ends. In this case p = 2 and n = 1 so that 

the problem falls within the compass of the first of the 
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conditions 2.5.34. There is one condition for a 

solution corresponding to A1 = o. Now from 

2.5.24 it is clear that 

2 2 2 
R 1 (Xi) = a - Xi 

] 

and so the condition for a bounded solution becomes 
a 

I 2 2 

[P(X1) 11'/(a - X ) 11 dri = 0 

-a 

It is convenient to make the following definitions 

222 2 
R (I , y) = 1,/ [ ( a - I ) 1 ( a - y ») 1 {l/ X - y 1 

-1 2 2 
H(a,x,y) = cosh ll[(a - I )/a(x - y)]+[x/a)l} 

3.3.4 

The latter holding for all x,y contained in the interval 

[-a, a] 

is then 

of the Xi axis. 

• . 
The solution from 2.5.27 

a 

D(Xi) = (1/tr
2

A)! p(y) 

-8 



49 

substituting ~or p (x 1) ~rom e qua ti on 3.1.3 the e qua ti on 

3.3.2 gives rise to a relation for the extent o~ the 

plastic arcs 

-1 
cia = sin (w/2)(1- P/~1) = cos (w/2)(P/U1) 

3.3.6 

This equation derives directly ~rom the condition 

that the stresses are bounded at infinity and gives the 

relationship between the crack length and the length of the 

plastic zones. In the analysis of section it is 

stated at the outset that solutions vanishing at infinity 

are required. To avoid poles at the ends o~ the arcs a 

multiplying factor is introduced which effectively removes 

the poles to infinity. To this extent the conditions 

3.3.~ is equivalent to the condition that the stress shall 

be bounded at the ends of the plastic region, which is 

used by some other workers. 
iJ 

Dugdale, 1960). 

(Smith, private communication, 

As expected for larze values of U1 or small applied 

stress P, cia is of the order unity, that is there is 

only a smal~ relaxation. Again in the case when 

p - u1 then cia - 0 which implies that 'a' is 

large the plastic zones spreading great distances from the 

crack tip. 
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This relationship (3.3.6) for the spread of 

glasticity is com~ared numerically with ,the similar 

relationship obtained by McClintock and agreement is within 

50:: 
/-' (fig. 9 ) In the case of small applied stress 

McClintock obtains a simpler equation for the elastic 

plastic boundary in the form 

2 
to = c(PIa-) cos a 

ex. 

from whic hit follows that 

ale = (ro + c)/c 3.3.8 

Using the sm811 angle approximation in 3.3.6 the current 

theory gives 

2 2 
al c = 1 + 1T I 8 ( pia- 1 ) 

The expression for the dislocation density 3.3.5 

may be evaluated easily in terms of the integrals I(a,~) 

defined in Aypendix I by relation Al.l.3 and evaluated 

in Al.4. The solution is 

2 = {a-1/fT A}{H(a,c,x) - H(a, -e, x)l 

where the 1'unction H is defined by 3.3.4 and its 

properties are considered in Al.2 and Al.3. The di sloc ation 
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density is shown on ~ig (8) ~or the case when (a/c) = 2. 

3.4 The Displacement Function 

Now let be the relative displacement o~ 

the crack or plastic region. Then will be 

~ound by integrating the dislocation density ~rom X1 

to the tip o~ the crack, and multiplying by the Burgers 

vector. This involves the integral 10 (a,f\ ) de~ined 

in Appendix I by Al.l.4 and evaluated in Al.6. 1<'rom 

Al.6.4 it :follows that the relative displacement is 

2 

~(r1) = (b<r 1 /1T A)[(X1 + c)H(a,-c,x,) - (X1-c)H(a,c,x,)] 

3.4.1 

Finally ~or the displacement at c the second term 

vanishes by relation Al.5.3 so that 

2 

~(c) = (2CbT1/1T A) H(a,c,-c) 3.4.2 

The dis.vlacement ~( c ) is shown in ~ig (1.5), (16). 

It is of interest to examine the limiting v~lue o:f 

this disQlacement as becomes large. This limit 

is eX.Qected to be the displacement :function ~or an 
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unrelaxed crack which may be obtained from the results 

of Leibfried in 2.4. Taking standard axes with 

origin at the crack centre the dislocation del1sity representing 

a crack of length 2c deduced from section 2.4 is 

and the corresponding displacement func tion is 

2 2 
(Pb/TrA) J(c - X1 ) 

Now in considering the limit of ~(X) given by 

it is to be noted that for large , a -. c 

so that the functions H -. o. Thus is 

the product of a large and a small function. It is 

• . 

necessary to express as the quotient of two small 

functions so that the required limit follows as the limit 

of the quotient of the derivatives as 

Thus we write . . 

in which the negative sign in 

has been transferred from 

Al.3.2. Now the numerator 

2 

[1r A/o-1 b1 
the first H 

c to x 

is a function of 

3.4.5 
func tion 

using 



53 

r = (cia) = cos l(~/2)(p/~1)1 3.4.6 

ruld the derivative of the H func tion wi til respect 

to r is given in AQpendix I by Al.3.l1. 

It now follows after some algebraic manipulation that 

Lim !l>(r) = 
() 1 --+ 00 

Lim [ (up/ar,o) sin (uP/a>,)] [_2aJl(a
2
_ r2)/(a

2
_c

2)1] / 

NoW it follows from that 

2 

J(a 

and substituting this into gives as the 

limit 

2 2 
(Pb/1TA)J(c - x ) 

This is the result expected and thus it may be concluded 

that the displacement function is to this extent well 

behaved. 
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3.5 Potential Energy 

The energy stored in the material surrounding a 

plastically relaxed crack will now be determined using 

the results of the previous section. Let r 

be some surface drawn in the material enclosing the crack 

and plastic zones. 

where > -a • 

Make a cut along that part of X2 = 0 

Let the two surfaces of this cut 

be denoted by s for a and 

let the two surl'aces joining s and r 

be denoted by y. It is assumed throughout that 

the material behaves as though continuous across y, 

that is tha t equal and opposi te tractions are applle(l" to the 

two faces to prevent relative displacement of the surr"aces. 
I I I 

Denote by cr ij , u l and «I 

the uni:form elastic field and energy produced by a unif'orm 

positive applied stress of magnitude p together 

with the constant positive tractions of' magnitude P 
II II 

on the surface s. Also denote by ~j , u i 
II 

and the elastic field and energy obtained when 

tractions - p(x) are applied along s only; 

p(r) is given by 3.1.3. 

If' r is a circle with its centre at the origin 
II II 

then both U i and cr ij will be vanishingly small 

on this surl'ace for sufficiently large r o 

The superposition of the elastic systems I and II 

l 
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when r -+ 00 is equivalent to a relaxed crack 

in an infinite medium with an applied stress at inrini~ 

of magnitude p and a yield stress () 1 • In this 

system the elastic rield and energy will be denoted by 

, and • 

Now the total energy or the complete 

sys tem is given by 

I II 
+ J 

II I J 8 = 8 + 8 U"ijU j dS j 
"") 

r+s+y J 

J 
3.5.1 

I II ,. I II 
= 8 + 8 + j ()ij u j dS j "') 

\ 

r+s+y J 
In this relation the integrals over the two surraces or 

yare equal and opposite since the relative displacements 

over y are zero identically. These integrals 

thus cancel and will be ignored. 

As the perturbation (System II) is introduced 

into system I the work done by the external forces is 

~ II I 
= j (/ij u j dS j -

r +s S 

This follows by equating the integrals in 3.5.1. 



Now define a quantity 

w = - / ~ijUj dS j 

s 

w 
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by 

Now since this system of stress and displacement is 

obtained by superimposing system I and II and since there 

are no relative displacements over s in system I 

it follOws that 

s s 

It will be shown later that w is related to the plastic 

wor'k of the syst em. 

Now as the crack extends a distance 8c 

the increment of energy released Bv is the work 

done by the external forces reduced by the increase in 

the total elastic energy. This increment of energy 

supplies any plastic work or surface energy accompanying 

the extension. From 3.5.1 and 3.5.2 this is 

8v = 8~0(F - 8) oc] 

{

- I II 
= 8 -0/oc(8 + 8 + 

s 
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I 

Now 8 is independent or c so that 

substituting W from 3.5.4 into 3.5.5 

it follows that 

II 
Bv = Bc. a/ac (8 + w) 3.5.6 

3.6 Plastic Work 

In this model plastic work is to be interpreted as the 

work done against the stress in the plastic arc as the material 

on one side is displaced with respect to the material on the 

other. The amount of energy which has been lost as plastic 

work will not be a unique function of the state of the system 

but will depend on the path taken through the stress variables 

and the length c of the crack. The increment 

of plastic work is the quantity of physical interest and 

this will be determined using the results of section 3.4. 

This increment is not the derivative 01' any unique 

function and must be determined directly. Physically, 

this is because the plastic work done in a particular region 

cannot subsequently be transferred to some other region. 

Now, suppose that before the crack extends a known 

equilibrium state of stress and strain exists within the 

material. It is assumed that as the crack extends 

the bonds break in the tip after which the displacements 
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adjust themselves to a new state of equilibrium. 

If there are di splacemen ts as the bonds break, 

that is as the bonding stresses reduce to zero, the work 

done as these dis~lacements take place against the stresses 

is work expended in the :t'ormation of new surf'ace. Therefore, 

the assumption does not introduce any error since the surface 

energy is to be treated separa te ly. 

There are certain important relationships concerning the 

nature of' the incremental plastic work as the crack extends. 

In deriving these it is convenient to introduce the notation 
!3 0 !3 0 

K,j Y (x)dr + K.jY(X)dr {K' J + K.JJ Y (X)dr 
3.6.1 

a y a y 

where a !3 y 0 are arbitrary limits and K1 , K2 are arbitrary 

functions constant with respect to x • Now define 

a quantity W(c) by the relationship 

-c 8 

W(c) = [ ! +! ] ~1 ~ (x) dI 3.6.2 

-8 C 

in which ~ (x) is the even function giving the 

relative displacement of the single crack and is evaluated 

at This quantity is the quantity w of the 

previous section and may be interpreted as the plastic work 

done as an elastic medium containing a crack of length c 

is gradually loaded at infinity to a stress of magnitude P 

while the crack length c remains constant. This 
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plastic wor~ is naturally a fUnction or c. 

Now let 8W be the increment or plastic work done 

as the crack extends a small distance 8c rrom 

c to c' • Let ~(x) and a be the 

displacement and the length of the plastic zones for the crack 

of length c, and let <1>' (x) and a' 

be the corresponding quanti ties for a crack of length c I • 

Then 

-e' a' 

8W = [/ + J ] ~1 (~'(x) - ~(x) ) dX 

-a' c' 

in which it is assume d tha t 

~(x) = 0 when 

Now it is easily shown that 
-e' e 

Ixl > a 

8W = Wee') - w(c) - [/ + / ] ~1 ~(x) dx 

-e c' 
and in the case where Se is small, 

3.6.3 

3.6.4 

using the fae t 

that ~(e) = ~(-e) , this relationship may 

be reduced to 

8W = [ [" \.; ( c) /" cJ + ~(c)] 8 e 
3.6.5 
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Al though this resul t ha s beeil demons tra ted only for the case 

when is an even function symmetrical about the 

crack centre it holds in other cases. 

In general the increment of' plastic work lost as a 

crack extends is the product oi' the displacement in the tip 

the resistance stress 0""1 and the increment or extension. 

By increment lost it is understood to refer to that quanti~ 

in excess or oW/Dc • 

In the particular case under consideration the quantity 

may be found by substituting ~ (c) from 

into the definition and in teg ra ti on 

using the relation Al.7.4 

substituting into 3.6.5 it follcws that 

222 
SW = Sc(2bT 1/w A) [uP~ - c 1- 2T 1 cH(a,c,-c)] 3.6.7 

Now in the limit for large a; it is permissible to 

approximate to the natural logarithm and to the cosine by 

using the first term in the series expansions. Thus rrom 
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H(a,c,-c) = tn (a/c) 
2 2 

= (1T / 8)(p / (J1) 3.6.8 

Similarly it 1'01100 s that 

I 2 2 
..j(a - c ) = 3.6.9 

Substituting these two ap~roximations into 3.6.6 and 

3.6.7 it follows that 

Lim W (c) = 0 3.6.10 

Lim 8W = Bc 
2 

(bP c/2A ) 3.6.11 

The implications of these relationships will be considered 

in section 8. 

"j.7 The Elastic Energy 
II 

8 

The only term remaining in the relation 

for the potential energy is the term 

term being related to the ~lastic work. 

The general expression for 

II 
8 

II 
8 

• 

is 

The second 



/ = (1/2) / 

s + r 

II 
O""ij 

6 2 

3.7.1 

Now along the surface s the non zero components 

of and are given by 

II 
O""ij = -P, IX1 I. < c 

J 3.7.2 
= 0"'1 - P, c < IX1 I < a 

II 

Further on r both and are 

vanishingly small for sufficiently large thus, 

taking into account the symmetry of wi thin the 

ranges of integration, it fbllows from 3.7.1, 3.7.2, 

and that 

n 
8 = 

a c 
(00- 1 / 1[2 A) [(0""1 - p) / -(rfl'] (c-x )H( a, c ,x)d.r 

-a -c 

Now the relationship involve s integrals of the type 

defined by Al.l.4 and evaluated in 

Using the relationship 3.3.6 for 



it follows that 

n 
8 

2 2 2 
= (bT1 Iw A)2c H(a,c,-c) 
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Now it is aDparent from that 

~ (c) 3.7.6 

and substituting this relation into the expression for 
n 

8 it follows that 

n 
8 = 0""1 C ~ (c) 

Further differentiating and substituting for 

~ (c) it is clear that 

n 
o 8 loc = 20-1 ~ (c) 3.7.8 

This latter result is equivalent to the second term in the 

expression 3.6.5 for 8W and this equivalence has some 

fundamental consequences which will be discussed in the next 

section. 

Although the expression for 8W may be generalised 

the author has found no way of proving relation 3.7.8 



as a general result. 

Consider now the limiting value of 

large 0""1 • 

n 
IS 

From relation 3.6.8 

2 2 

= b P c /4A 
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n 
8 for 

it follCltVs that 

n 
One would expect this to be the elastic energy 8 

of the unrelaxed crack. The displacement ~ction for 

the unrelaxed case is given by and substituting 

this relationship into it follows at once that 

c 
n 

8 = 1/2 (bP 
2 

/ ~ A) I J(c
2 

- X12) dx 

-c 

3.7.10 

2 2 
= bP c /4A 

Comparing with it is clear that this component 

of elastic energy conforms to the expected behaviour. 

3.8 The Energy Propagation Criterion 

In general a physical process is prevented from 

taking place if the process requires an increase of energy in 

excess of that available. Thus some energy condition often 

forms a necessary condition for a physical process but this 
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need not be a suf~icient condition. In the previous 

sections the incremental changes 01' energy associated with the 

crack extension ha ve been evaluated and thus the ere rgy 

condi tion for the crack extension may be examined. 

If s is the energy per unit area of the crack 

sur~ace then for the crack to extend it is nece ssary that 

sw + 48 Bc < BV 3.8.1 

that is the plastic work and energy 01.' new surface should 

be less than the potential energy released. Now the 
n 

expression ~or 08 /oc is given at 3.7.8 

and substituting this into the expression 3.5.6 ~or 

BY i t ~ollows that 

BY = Bc [20- 1 ~(c) + oW/dc] 3.8.2 

Now this is equivalent to the expression ~or 8W 

given at 3.6.5 • The relation 3.8.1 for the 

crack to extend then become B 

4S 8 c < o 3.8.3 

and this is clearly a statement that all crack lengths are 

stable. It is stated in section 3.6. that the ~orm 

of the relation for 8W 1s general and does 
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not de.Jend uyon the particular ~on1'iguration of cracks or 

di splacemen ts. On the other hand the most general relation 

f'or BV is given at 3.5.6 and the expression 
II 

f'or 8 which gives BV = BW depends upon 

the substi tution or a particular form of' • From 

section it is cl ear that til is for m of' 
II 

8 

which leads to relation 3.8.2 f'ollows as a direct 

consequence of the relation 3.3.6 which gives the ratio 

cia in terms of the ratio of the applied stress and the 

yield s tre ss. That is BW = BV f'ollows as a direct 

consequence of the state of equilibrium. This result is not 

However, it is pointed out in 
II 

altogether unexpected. 

3.7 that the expression 3.7.8 f'or 08 lac is not 

easily generalised, ani it is not clear that this l'crm holds 

for any other equilibrium state. 

Since the completely brittle crack may be regarded 

as the limi tine. case 01' the relaxing crack as 00 

the question. is raised as to why an energy cri terion for f'rac ture 

has ever been obtained if no such criterion exists in the 

general .Qroblem. 

Now it is clear from 3.6.10 that in the limit 

W(c) is identically zero and then the relation 3.,.6 

for BV in the bri t tle case, obtained by substituting 
II :! :1- r, 

for 8 • from 3'.6:9 is 
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'OV 
:2 

= b P c/2A .. ~c. 3.8.4 

Thus it is apparent that SV conforms to the expected 

behaviour. To obtain the Griffith theory SV 

must now be set equal to the energy of' new surface. There 

is no plastic work in this problem although the quantity 

'OW does not in f'act tend to zero but has the limit 

2 ~(c) 0""11'. This 'Ow clearly does not exist in the 

brittle case and the fact that the limit of 8W is 

finite is due to a reversal of' the limiting processes. 

For the brittle crack any finite 8c does not extend 

into a region which has been plastically deformed and theref'ore 

this is true in the limit. That is, the density of' plastic 

work lost over 8c is zero as 8c ~ o. 
However, f'or f'inite ~ a sufriciently small Sc will 

be contained entirely within plastic regions so that the 

density of plastic work lost in the region contained by Se 

tends to cr 1 ~ (c). This is true 1'or all () 1 and 

theref'ore it is true in the limit as 0-1 ~ 00. The 

extension of a crack in a completely britt~e material may not 

be considered as the limiting case of a crack in a ductile 

material as -+ 

In a physical system the increment by which a crack 

extends may not tend to zero but must be some small f'inite 

quantity. These limiting processes may then be interpreted 

as follows. If is so large that the increment 
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01' extension is greater than the plastic zones, then this 

is equivalent to letting V1 -+ 00 before di:fferentiating 

and a brittle crac~ theory is a:.JP!'oljriate. If the increment 

of extension is small compared wi th the plas tic zones 

then this is equivalent to differentiating be:fore letting 

0-1 -+ 00 and a relaxing theory is ap9ropriate. 



Chapter IV 

Periodic Array of Cracks 

In practical ,:roblt;ffis '!Ie often have to deal 'fIi th a 

crac:;:: or notch which is not emaIl in comua!'ison wi th the 

dimensi on~) Oi' the body. In ~)lane f;tra in the extensi on of 

the previous analysi::; to a fini te body requires extens ive 

numerical work. In the case of Rntiplane strain a model 

of a notch in a semi infini te body may be obtained by cutting 

the infini te body containing a crack along the ~)lane of 

symmetry ~erp~ndicular to the crack. However, this model 

still cannot explain the behaviour as the flasticity meets 

other defects or extends larse distances across a finite 

specimen. 

In order to understand these rroblems it is necessary 

to consider a system of several cracks explicitly. The 

most simple case is an infini te array of equally spaced identical 

coplanar cracks, since the use ot ~ourier series provides a 

convenient method of solution. In this case there are two 

difl'erent class,;s of pl<mes of symmetry, namely the planes 

through the crac~ centres and the planes between the cracks. 

Both or these .91anes are s tress free in the case of antiplane 

s train and so the inf'ini te body may be cut in several ways 

to give a bar wi th one or two notched S'lrl.'uces o:r' a bar with 

one or more cracks along the cross section. 
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4.2 The Egu8.tions for a Periodic Array 01' Cracks 

Consider an array 01' equally spaced cracks of length 

2c. Let the distance between the crack centres be 2t and let 

2a be the total length of the displacement arcs. The length 

of the :91a s tic arcs is then a-c. If standard axes are 

ta.,{en with their origin at the centre of the crack,(fig. (10)), 

then along X2 = 0 the dislocation density js an odd 

function of X1 

are even functions 

and the required stres s and displacements 

of X1. Initially, however, this 
t 

nroblem will not be tre~ted in terms of the dislocation theory. 

Let there be a ~ositive uniform a9Dlied stress at infinity 

of magnitude P and let there be a prescribed positive 

stress in the plastic arc of magnitude U1. These stresses 

will be ~12 stresses ror plane strain shear, ~11 

stresses for :plane strain tension and u23 stresses 

for anti~lane strain. 

Now Ap~endix II contains a discussion of certain 

elastic problems in the half space In these 

t Smith has treated this ~)roblem using dislocRtion theory 

(Bilby, Cottrell, Smith and Swinden to be 

published Proc. Roy. Soc.) 
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problelils the state 01' stress allQ disQlucement is specified 

on = o anu. die s away as 00. 

The 1]roblems ar'~ set UI; in terms of' two general func tions 

= 

= 

where and 

For v1ane strain shear 

0-12 

. . 

J 4.2.1 

are components 01' stress and 

displacement on the boundary = o. 

For 'plane strain tension 

= 0-1 1 

J 4.2.2 

where and are the.; com.l!onents 01' stress 811.d 

displacement on = o. 

For anti'plane strain 

= 

= 
J 4.2.3 

where and u:3 &.re the com;?onents of' stress and 

diGy lacemeut on X2 = o. 



Define a lUnction of q such tha t 

'rhat is q 

q = -p 

arc. 

= 

( -Po 2nt-c < x < 2nt + c 

[ 0-1 _ p,[2nt-a < x < 2nt - c 
2nt+c < x < 2n..e. + a 

n = ~ ...... -1,0,1,2 ....... 00 

is defined on the displs.cement arcs such that 

in the cracK and on the plas tic 

Now consider the hal!' s.!?ace elastic systems in which 

4.2.5 

2nt + c < X1 < 2(n+l) t - c 

4.2.6 

'rhe required models of a systems of cracks may be obtained 

by superimposi. ng the ab ove syst ern on to the aI!.i)ro.Jriate uniformly 

stressed hall' s.i:!o.ce in which the mae;;nitude of the stress is P. 

Since the bOWldary stresses are even and .Qer·iudic, a sui table 

gelleral forifl is e?;iven by equations A2.6.12 and A2.6.13 

setting o. n > o. Thus thE' 



str~sses bre given by a Pourier cosine series. The boundary 

condition need th~;l be: stu.ted only over the region (-e ,-t). 

0 = lrx/-t I 
a = '1/ a/-t ~ 4.2.7 

y = l/C/-t J 
u' e) ::: u(x) 4.2.8 

';"hen from 4.2.5, 4.2.6, A2.G.12 and A2.6.l3 the :!roblem may 

be l'urmula ted by the following e qua ti ons 

00 

u(x) = 
~ 

En cos (nO) ::: 0, c < Ixl < -t 

n=o 

00 

(-t/11) u(x) = ~ nOn cos (nO) 
L.J 

= q(tJ), Ixl < -t 

n=o 

De1'ine 

v( fJ ) = - U' (0) = 

00 

~ 

n=l 

sin (nO) 

4.2.10 

4.2.11 

Using tIle l·'ouric::r inversion theol'em it follows from ~q:J.a ti on 

L+.2.1l that 

11 

nEn = (l/ff) ! V(fJ) sin (nfJ)d~ 
-'iT 

4.2.12 
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bD(x) = -d/dr ~(x) = +(b/eA) V(8) 4.2.16 

:B'rom 4.2.7, , = ffX/e and from 4.2.4 it follows 

that the stress a)plied to the dislocations is o 
o. 

p(x) = -q(x) ff/e 4.2.17 

Substituting relations 402.16 and 4.2.17 into 

the relation 2.4.17 , given by Leibfried, 

follows at once. It should be noted however that using the 

dislocation theory to set uJ the :)rob1em only the cases of 

plane strain shear and antiQlane strain are encompassed in a 

na tural way. Regarding the crack in terms O.r the half s9ace 

elastic ;>roblem, plane strain tension is also included. 

However it is Qossible to rej,!resent a crack under tension 

by a distribution 01' liislocations which adjust their .9ositions 

by a formal climbing process. 

regarding the inter.Qretation of 

be considered in Chapte r V. 

~.3 The general solution 

Making the substitutions 

y = cos 8 

y' = cos t;; 

One must, however, be care ful 

This problem will 

J 4.3.1 
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The boundary condition 4.2.9 may now b<.; used to 

restrict the ran~e of inteb"ration from [-'If,'IT] to [-a,a 1. 

substituting this eX.l!l'ession for nEn into the relatiol~ 

4.2.10 it follows that 

00 ex 

l..J 
(l/n) ! l<'(~) sin (nZ;.) d~ cos (nO) = q(O) 

n=o -0: 
4.2.13 

Inverting the order of integration and summation and using the 

rela tion Al.9.9 f'or the evaluation of' the series it follows 

that 

ex 

1/21T ! [{V(~) sin ~}/{cos 0 - cos ~lJ d' = +q (0) 

-a 4.2.14 

Leibfried (1951) has obtained a si~ilar relation 

in terms at' the dislocati on densi ty D(X) which is given 

at 2.4.17. Taking note or" the; :rac t that the disp l:ctc cmen t 
. 

in the half' s;?ace is halr" the relative displacement, it 

follows that the relative displaGement is given by 

where 

2.4.12. 

v( 0) 

~(X) = U (x) b/ wA 4.2.15 

A is a function 01" the elastic constants def'ined at 

The following relation between D(x) and 

is obtained from 4.2.11 



the e qua ti on 

M = 
N = 

¢ (y) = 
G(Y') = 

'7 r 
,0 

COS a 

J cos y 

q (0) 

- iV(~) 

4.2.14 reduces to the gene ral farm 

4.3.2 

2.5.1 

wi th the range oi' integra ti on L = (1 , lVl). Using 

equation 4.2.~ f'or q(O) the conciition for a solution 

(2.5.34) becomes 

N M -1/2 
[ (- pe/rr) J + ({~1 - pI e/rr) J ] ({Y'- MIll - y'}) dy' = 0 

1 N 

that is cos Crrl~1 - P}/~1 ) = (2N - 1 - M)/(l - M) which 

reduc es af'ter some manipulation to 

cos (rr pi 2 ~1) = sin (y/2) I sin (a/2) 

4.3.6 

!<'or small a/ t one may take the first term in the serie s 

eXl?ansion of sine as be ing equal to the sine itself and it is 

at once clear that the relation 4.3.6 reduce s to the 

corresponding relation 3.3.6 , for the case of a 

crack in an infinite medium. 
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The form of the fill1ction G(y) 

¢ 

is given by relation 

2.5.27 

4.3.4, 

substitute f'or l' rom 4. 3 • 3 , then, from 

v(y) is 

1 

J 
-1 

iG(y) = (l/iJ)J(l-y)(y-m) [q(cos ;Y)/(Y'-Y)'/{(1-y/)(t'.3~~1]dY' 

H 

These integrals ar, evaluated in the Agpendix I and using 

equation Al.8.8, 4.3.7 reduces to 

2 -1 
= (v 1.e/IT ) cosh [t({M + 1 - 2Nl-2{M-Nl{1-Nl/{y -Nl)/(M-l)l] 

4.3.8 

From the definitions 4.2.6, 4.2.7 and 4.3.1, it is at 

once apparent that 

1JX/.e 

u(X) = -/ 
rra/.e 

iG(cos l;) dl',; 

..:ill analytical eXI}ression for u(x) is not easily determined 

and recourse to numerical techniques is necessary. Cal cuI a ti ons 

of u(c) have -been made using the Mercury Computer, the 

Jrogramme being written in the Manchester Autocode, Brucker 
77 

et al (1961). rrhe s]eci1'ication 01' this programme is given 
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4.4 General yield 

By general yh: Id i t\~ill be understood that a = t ; 

that is the !,)!ci8 tic zones from ne ighbouring cracks just meet. 

Bven in this svecial case it is difficult tc evaluate the 

f'unction u(x), given at 4.3.9, by analytical methods. 

IrO"NeVer in this case the stress is known at all points of the 

bOWldary and the function u(c) at general yield may be 

determined directly from equation 4.2.10. 

The following simrle argument leads to the relation for 

the a;rplied s tres s. Over any strip bOWlded by the sur:l'aces 

X1 = nt the net force aj).Jlied to the surl'ace X2 = 0 

is zero since the medium is in equilibrium. 

intersecting the crack is of length c 

.i'{ow the region 

and subjected to 

a stress -P and so the force per uni t thickness of the 

material, applied over this region is -Pc. Similarly 

the force applied over the remainder of the surlace X2 = 0 

is (0-1 - p)(.e. - c), since, in the case 01' ~eneral yield, all 

thh; surface is an intersection with the ~jlastic arc. 

the equation of equilibrium is 

(0-1 - p)(t - c) - Pc = 0 

which reduces to 

P/U1 = (t - c)/t 

Thus 

4.4.1 
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Now to be; consistent this must coincide wi th the limi ting 

value or the relation 4.3.6. Setting ex :: IT in that 

relation this correspondence follo'Ns at once. The 

displacements may be obtained directly from the form of the 

functions u(X) ana (i-(x) gi ven at 4.2.4 and 4.2.5. 

Again the quantities (j, (X, Y defined at 4.2.6 - 4.2.8 

are used in the analysi2. 

From 4.2.10 at beneral yield the quantity 

may be obtained using the Fourier inversion theorem 

IT 

nBn :: (2/1T) J 
o 

q(O) cos (n 0) dO 

substituting these quantities into the expression 

for u(X) 

u(X) = 

then 

1T 
(2/n1T)Jq(~)COS(~)d~COS n() 

1 0 

nBn 

Inverting the order of' integration and summation a sum is 

obtained which is evaluated in the Appendix I, section 10. 

}'rom this it follows tha t 

1T 
i 

u(x) :: Bo + (l/1T)j q(~)tn[sin ({~ + ()}/2)] d ~ 

- IT 4.4.5 



-0 

The term is chosen so that the dis.Qlacement at 

x = (, i s zero. In tel'ms at' the Loba tchefsKY fune tion 

o 
L(e) = J -tn ( cos ~ ) d~ 4.4.6 

o 

The expression for u(x) is 

:2 

u(x) = -(2~1{,/U ){L([U/2] - y) + 2L(y/2) - L(~/2)} 

4.4.7 

The Leba tchei'sky func ti on has be en tabula ted by 'romon toaya, 
7/ 

(RysheK and Gradstein, 1957). 

4.5 Comparison wiL~ other models at general yield 

The uisplacement is obtained from u(x) from the 

set of relations 4.2.1 - 4.2.3, To facilitate comparison 

wi th the isolated crack the displacemerlt is expressed in terms of 

t_he cons tanto A defined at 2.4.12 (that is A = ;J,b/2u 

for an tip1ane s train and A = )..l.b/21f (1 - 1) for plane strain). 

The relation for the relative displacement is thus 

~ (x) = u(X)b /rr A 4.5.1 
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It should be nott:d that the; relative displacel'Ilent is twice 

the d.isplacement on the boundary of the half space. Val ues 

of <1> (c) I.e are given in Table I f'or conditions of 

general yield for the isolated crack theory (col i), the 

periodic array theory col (iii) and a double crack theory 

col (ii), due to Smith (to be published). 

By general y~eld in the case of the isolated crack 

it is to be understood that the plastic zones have spread to 

a prescribed distance h from the centre of the crack. 

The double crack theory due to Smith is an analysis of two 

identical coplanar cracks the centres of which are seDarated by 

a di stance 2.e. Condi tions or' general yield in til is ca se 

will mean that vlasticity has just spread between the two 

c!'acks and <1>(c) will denote the relative displacement 

at an inner tip. 

It can be seen from Table I that the theory for an 

infini te array of' c!'acks and the theory for two cracks predict 

essentially the same tip dis;!lacernents; the dif'ference being 

of the order of one per cent. The isolated crack theory, 

as one might expect, leads to greater differences of the order 

ten hler cent. The diSIJlacements from the isolated crack 

are larger tha~ those from multiple crack theories. This 

is because in the latter, dislocations in neighbo~ring cracks 

exert forces of attraction, whereas the only interaction forces 

on the dislocations in the plastic arc near a single crack 
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are those due to the dislocations re~resenting the isolated 

crack itself. Thus higher dellsi tie s are to be expec ted. 

The ext~nt of the .plastic zones for condi tions other than 

general yield are given in Table II. Values are given for 

the isolated crack, row (i), the array of cracks, row (ii), 

and f'o!' a classical model 01' a notched bar of finite thickness, 

row (iii). The latter results are calculated numerically 

by Koskjnen (196lr'using an extension of the analysis given 
62.. 

by Hult and McClintock (1957) for the semi infinite medium. 

The calculations have been carried out varying the stress, the 

notch angle and the notch depth. The values in Table II 

are those for a zero notch angle. It is clear from these 

diagrams that the thickness of these plastic zones is dependent 

U90n the notch angle but the extent of the zones does not appear 

to have such a de~endence. 

As is to be expected these lengths agree closely 

with the lengths calculated from equation 4.3.6 while the 

length 01' the zones from an isolated crack are shorter. :b'or 

conditions of general yield (i.e. when a = t) com?arisons 

are made graphically in fig(l~. Shown here are the results 

for an isolated crack, those for a double crack and those f'or 

the array of cracks. Variations of curve 1 show the 

effect of workhardening lA and relaxation along 2 slio 

system lB. 
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4.6 Dis'Jlace:rren ts in the tip 

For the periodic problem the dis.placemen ts in the tip 

have been calculated tor a mesh of values of' a/t 

a/t 

ani 

cll and the variation of c/t with is 

shown in fig. (13) f'or fixed disIJ 1 acemen t in the tip. These 

contours are determined by linear interpolation between the points 

of the mesh. r:::'he values on = 1 agree with the 
7 

equation 4.4.8' as expected. A similar contour graph 

has been constructed i'or a number of' constant values of' Pier, 

fig. (12) A contour graph of' some importance is fig. (14) 

which shcms the variation 01' displace:;rnent wi th stress l'or a 

number of fixed values of cia. These curves extend to the 

point of general yield and then terminate. The envelope vi' 

these curves will be called the yield envelope. 

In what follows the term "Dangerous Crack" will mean 

a crack which will spread catastrophically under appro.9riate 

load and a "Safe Crack" will mean a crack for which no load 

will cause a catastrophic spread. It ha s be eu sugge s ted, 

cot trell ( 1960 )7~ that a s,-<i table cri terion for tre ca tas trophic 

spread 01' a crack in this model is that the dis.f!lacement in the 

tiy should exceed some critical value. Thml a craCK will 

be dangerous only if' this dis:;lacement may be accoIruDodated 

by the plastic zones before they spreCi.d com.;,Jletely through 

the rra terial. 

Now in f'i5' (14) a line may be constructed hlarallel to 
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the stress axis corresr;ondint; to this critical displacement. 

For a given structure cit the point at which the contour 

intersects this c~itical displacement line gives the stress 

which catastrophic failure occurs. Fig (15) ShONS 

the dis21acement at general yield plotted against the structure 

size c/~. Here again a horizontal critical displacement 

line may be constructed. The points of the curves which lie 

above this line are points at which catastrophic frac ture may 

occur. The range of c/~ which are dangerous in the 

sense that the crack may soread ca tas trophically form a 

neighbourhood 01' a point c/~"" 1/3. For smaller values 

of cit the d isplacemen ts are small being QroQortional to c 

since the behaviour a:cJ0roximates to the isolated crack while for 

larger cia the plastic zones are comparatively short and 

ca~~ot accommodate a large displacement. That is, the 

material yields before the displacements have become large. 

Also shown in fig. (15) are displacemen ts i'or fixed stresses 

in the ~eriodic ~roblem and for the isolated crack (broken line). 

In the latter case these contours are straight lines since 

the displacement is ~ro90rtional to 

are terminated at the 90int where 

c and these contours 

a = t. ~he contours 

for th'~ geriodic :.;roblem are not straibl t and at the origin 

their tangents lie along the corres~onding contours for the 

single c!'uck. This is because the behaviour' :for a vanishing 

crack length apllroximates to the behaviour of the isolated 

crack. 



A further curve, fig. (16) again shows the displacements 

for a range of cit. 'Xhereas fig. (15) measures 

disDlucements in llilits of t, fig. (16) gives displacements 

in llilits of c. Again some stress contours are shown. For 

small cit these contours are straight lines parallel to 

the axis cit. That is to say the displacement is 

.Jroportional to c for small cit ; again a line 

may be drawn corresQonding to a critical displacement. A 

similar diagram was originally constructed by Smith and he 

suggests the following interpretation. The value of cit 

at which the critical di~Dlacement line intersects the curve 

is a transition ~oint. 

safe while for smaller 

For larger cit the structure is 

cit the structure is unsafe. 

The essential difference between figs. (15) and (16~ 

is that from fig. (15) one may determine the dangerous 

crack size in a given size of sQecimen while from fig. (16) 

one may determine the size of the dangerous sl)ecimen given the 

crack size. 
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Chapter y. 

An Isolated Crac~ in an Infinite Workhardening Material 

It is well known that as a real material deforms 

plastically the stress necessary to 9roduce further deformation 

increases. So far the analysis has taken no account of 

this workhardening effect. In order to obtain a more realistic 

picture a model is considered in this chapter in which the 

resistance to dislocation motion along the plastic arc 

is varied in proportion to the relative displacemc!nt. This 

proportionality may be varied along the plastic arc. The 

resistance is then given in the form 

5.1.1 

NoW suppose that there is an isolated crack of length c 

in an infini te medi urn. Let the applied stress be P 

and the length of the plastic zones a-c. Repre sen ting the 

system by a linear array of dislocations, 

the stress on the dislocations is 

as in Chap ter 3, 

P, I X1 < C 

P - crt ' c < IX1 I < c I 5.1.2 

The method is as follows. Following the procedure of 

chapter 3 the singular integral equation for the dislocation 

density may be inverted. After some manipulation an 
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in tegral equa ti on is ob tai ned in vWl ic 11 the di sp lac erne n t 

occurs inside and outside the integral sign. 

In th is eqUE! tion the kernel is singular and there is 

no obvious analytical solution. Further this singularity 

must be removed before numerical techniques may be applied. 

This may be done by evaluating the integral through the 

singularity by a modirication of' the trapezium rule. The 

problem is then reduced to a simple matrix equation. 

5.2 The derivation of the Integral Egua tion 

In this chap ter no refel'ence will be made to points 

off the X1 axis and the suff'ix will be dro};rped from the 

coordinates. It is understood that all distances are measured 

Cilong the axis. 

Let DCx) be the dislocation density, ~(x) the 

relative displacement, R(x,y) the quantity defined by 

the quantity defined by Al.l.2. Al.l.l and H(a,x,y) 

That is 

R(X,y) 
2 = {.;[(a 

2 2 2 

x )/(a - y )]} II/ex - y)} 

-1 2 2 

H(a,x,y) = cosh {I[(a - x )/a(x - y)]+[x/a]l} 

The equations will be set up in terms of a function sex) 

related to the relative displacement by : 

~(x) 
2 = sex) (~1 b/U A) 5.2.1 
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where A and b have their usual meanings. A 

quantity p(r) is defined in terms of the applied stress 

P and the initial resistance stress. 

p(x) 
p Ixl < c 5.2.2 

c < Ixl < a 

If t.. (r) is defined such that 

h(X) = 0 Ixl < c 5.2.3 

then from 5.1.1 and 5.1.2 it follows that the stress 

on the dislocations is given by 

p' (x) = p(x) - K (r) ~( r) 

The analysi s follows exac tly the analysis of chap te r 3 

replacing by 0' (x) the p(x) of that chapter. The 

equation 3.3.0 for the dislocation density is then 

a 

D(X') = (l/U'A) [ f R(x\y) {plY) -K(Y) ~(Y)ldyJ 
-a 

Now the relative displacement may be written 

( ~1b /u' A) S(x) = J(x) = fa bD(x') dr' 

x 

5.2.6 
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and D(x') may be substituted into 5.2.6 ~rom 5.2.5. 

This substi tution gives rise to an integral of the form : 

a a ! R(X',y) 9 (y) dy 5.2.7 
. 

So(x) = J dr' 

x -a 

2 

This So(x) is analogous to (11" Alb) <b(x) in cha9ter 3 

and it follows from 3.4.1 that 

So(x) = ( c-x) H (a,c,x) + ( c + x) H( a,-c,x) 5.2.8 

Substituting into 5.2.6 from 5.2.5 and 5.2.7 and then 

making use of 5.2.3 and the symme try of R(x,y) to 

simplify the relation, it follows that 

2 

~(x) = (~1 b/1T A) So (x) 

a a 

/ {bK(y)<b(y)/ 11"2Al dy f {R(X' ,y) + R(x' J -y)} dr' 

c x 5.2.9 

The quantity hex) may be thought of as the hardening at a 

point x o~ the plastic arc ~or unit relative displacement 

across the arc. However, the quantity o~ physical interest is 

w the hardening per unit plastic strain and it is there~ore 

necessary to determine a relationshiQ between these quantities. 

That is, a relation between a relative displacement and a 

strain. To obtain such a relation it is necessary 
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to introduce a gaue-;t:: width and this we allow to vary along 

the plastic arc. SU~-'l!ose tlleref'ore that the gauge width 

is given by af(x) where 

some numerical function. 

a is same thickness and f(x) 

rl.'hen it f'ollcws tha t 

~ (x) = waf (x) 5.2.10 

1';ow one may substi tute into 5.2.9 for :;~(x) and ~(x) 

using 5.2.10 and 5.2.1 respectively. It is then convenient 

to ma~e the definition 

K(a,x,y) 
, 2 2 2 2 

= [H(a,x,y) + H(a,x,-y) - 2~{(a - x )/(a - y )}] 

5.2.11 

Thus it follows that 

a 

S(x) = So(X)-(Wb/W
2

Aa) J ~(a,x,Y)[S(y)/f(y)]dy 5.2.12 

c 

This integral equation for Sex) has a singularity in the 

kernel due to the H function when x = y and due to 
2 2 

1/" (a - y ) at y = a. However the integral of both of these 

functions exists and is f'inite. The integral may be split 

U~j into a number of small regions wi thin which S(y )/f(y) 

may be reoresented to a s~li table degree of accuracy by some 

l)olynomial. The coefficients of the ~olynomial will involve 

the values of' the Ullknown function s(y) at the ends of each 

interval and th'lS a s<::t of simul taneous equations is obtained 

for these values 0 f S(y) • This set 



91 

of simultaneous equations involves integrals of K(a,x,y) 

and Nill be lineF.l.r if and only if the polynomial is a straight lire. 

The straight line through the values of [S(y)/ f (y)] 

at the ends of the intervals has been used in this work since 

this is more accurate than a line parallel to the axis having 

some mean value. 

5.3 Reduction to Matr1x Form 

Let the range of integration be divided into m 

equal intervals and make the following definitions 

h = (a-c)/ rn 

Xj = c + jh Yi = c + ih 

Sj = S(X j ) S1 = S(Y1) 5.3.4 

s' j = So (x j) 5.3.5 

2 

X = 1,/A = Wb/1T A a 5.3.6 

The equation 5.2.12 may then be written in the form 

m Yi 
\"""I ~ 

A Sex) ASo (x) \ 

J K(a,y,x) {S(y) / fey) } dy = 
D 

1 = 1 Yi-1 5.3.7 



NOH it is required to f'ind a simple a:!.1proximation to the 

f'unction lS(y) / f' (y)l. To this end it is convenient to 

def'ine the quantities 

and then one may write 

S(y) / f' (y) 

In 5.3.10 the R.H.S. is a straight line and is equal to the 

L.H.S. for y = y. 1 1-
and f'or y = Yi • The integrals 

on the R.H.S. of 5.3.7 may then be evaluated approximately 

in terms of' the integrals 

.y i 

V ji = j :r<:(a,y,x)dy 5.3.11 

y. 1 1-

Yi 

Uji = J yK(a,y,r) dy 5.3.12 

y. 1 1-
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;:.:ubstitutin~ these .l.'t;~clt. ,,~12 ::'~~to equation 5.3.7 the 

followinc:: se t 01' simul taaeo'-ls equa tions is obtained : 

The 

A Sj 

a. , ~, 
1 1 

,.. 

m 
\\ 

L 
-,.\ 

AS I • V ji Bi U ji 
; a i - J J ~ 

i=l 

are gi \' en in terms of 

5.3.13 

and 5.3.9. '::.'hen one may collect the terms Si on the 

R.E.S. of 5.j.13 ruld by setting : 

V, 1 J ,n+ = Uj,n+l = U. 
J ,0 

= 0 

the 6enersl coefricif;D t of 8 i in. the equa tion f'or S j 

is Aji wld is given by the relation 

finally one obtains the following matrix relation 

-1 
= A [A Sji +Aji] S'j 

in which i and j run from o to m. 

5.3.14 

5.3.15 

5.3.16 

These equntions have been solved using the Yercury Digital 

com[)uter. The indexing sy~tem used here hus been chosen 

so that the quantities U '. are calculated into Jl 
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the locations in the com~uting store. This 

racilitates translation or the mathematics into the language 

of the Auto Code. The indexing system is thus dictated 

by the computer 9rogram~e. 

Nothing has been said about the i'orm of the f'unction 

fey). In Dreparing the Droblem for the comyuter the form of' 

l' (y) must be wTitten into the ~rogramme and a separate 

tape is required for each variation or f'(y). Only one 

version of the IJrogramme is given in the Appendix, name ly 

f'or f'(y) in the ['orm of' a parabola. 

The method, essentially based on the trapezium rule, 

neglects terms or order 
2 

h For the case m = 14 

this should give an error of' the order one half' of' one per cent. 

Comparing with a calculation at cia = 3/8, M = 28 

shows the error to be better th~n 5%. The rollowing 

table shows values of the tip dis~lacements using root strain, 

mean strain and parabolic strain methods (these methods to be 

def'ined later). 

M = 14 

5486 

7306 

6476 

M = 18 

5602 

7297 

6728 

difrerence 

0.13 ~~ 

4.20 % 
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5.4 Constant Gauge ':adth 

Initially numerical calculations were carried out 

assuming fey) = 1 in which case v.(x) is a constant 

given by 

!\. = w/a 

K is the hardening ~or a unit displacement at any point 

on the i-Jlastic arc and ex is the width of the plastic 

region. In choosin~ a value for ex two ~actors 

are to be considered. 

If it is to be sU~'pos~d that fracture occurs when a 

given strain is reached in the plastic region then the 

maximum strain is of importance. This mrucimurn will occur 

in the root. Thus one may suppose that the most suitable 

choice of' width for the glastic region will be the diameter 

of the root of' the notch. If one assume s a notch 

89ijroximately one inch long wi th a radius of 0.01 inches 

in the root the ratio (diameter/crack length) will be 

0.02 and thus ite mus t take 

ex = 0.02 c 

The solutions ll.sinc; this value of 

strain solutions. 

5.4.2 

ex will be called root 

Alterllativelj one may argue that since the el&:c)ticj)lastic 
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bOWldary meets the surf'&ces 01' the crack at right angles 
CL 

(Hul t and EcCl intock 1957) then the c1 istance over vvhich 

large strains exist is small and a value of a chosen to give 

a correct root strain would over-emphasise the amount of 

hardening. Thus it might appear more reasonable to take 

a value of' a giving some me an thickness of' the pla stic region. 

However a simple relationship 01' this kind is dif'ficul t to 

obtain theoretically since one must appeal to classical 

elastic plastic theories f'or the most simple treatment. 
3 2 

Calculations are carried out with 10 wb/rr A having 

values 0.4, 2 and 10. 

The displac~ments in the root are presented graphically 

in f'ig (18) for the root strain method. The mean strain 

calculation shows little signif'icant variation from the nor, 

workhardening case and over most of the range it is not 

possible to se~arate these curves on a graph. 

Throughout the range of c/a negative displacements 

are calculated at points distant f'rom the crack tip using 

the root strain method with w = 10-2 
11"2 A/b. This arises 

since the model assumes that there is always a forward stress 

on the dislocations greater than or equal to u1 • However 

if the hardening rate is high the forward stress on the 

dislocations distant f'rom the crack tip may fall as the crack 

tiy hard. ns. In the physical situation the resistance would 
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adjust itselr to balance the forward stress but in the model 

such an adjustment is not permitted. The resistance is 

always assumed to have its maximum value ~1' and this gives 

rise to a back stress. These negative displacements have 

appeared also when the plastic zones are large (a ,.. 80 c) 

again using the root strain method of calculation. 

It has been pointed out that a root strain method would 

tend to over-emphasise the work hardening and it is not 

surprising that such a model should be unsatisractory. However 

the mean strain method clearly under-estimates the er.fect or work 

hardening and this probably arises since the description of 

conditions at the tip is inadequate. 

2. 5 Parabolic Gauge Width 

In order to resolve these difficulties the gauge widtn 

has been varied along the plastic arc. Hult and McClintock 
v'-

(1957) have shown that the elastic plastic boundary meets the 

craclc surface at right angles. Thus a gauge width is 

proposed which is small at the tip and increases rapidly to some 

mean value. 

Preliminary calcula tions have been carried out assuming the 

gauge width to increase in the form of a parabola. The apex 

of the parabola is just inside the crack tip so tha t there 

is a finite width 0.02 c at the crack tip itself and at a 

distance c from the crack tip the width is 0.6 c. This 

gives a strain at the crack tip of the required magnitude 

and at points removed from the tip a gauge width of the order 
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suggested by " . , 
hOS,.l nen s gra.:...-hs. 

The Qarabola underestimates the workhardening at the 

end of the plastic arc removed from the crack tip. Since 

the displ&cements here are small the workhardening will be 

small ruld thus it is unlikely that underestimating this quantity 

will cause large errors. 
3 2 

Again values of 10 wb/u A equal to 0.4, 2 and 10 

have been used and the results of the calculations are shown 

graphically. The displacements are given in fig. (19) and 

the strain in the crack tip in fig. (20). No negative 

displacements have appeared in these calculations. 

The ratio of the stresses is plotted as a function of 

c/a in fig. (11) (curve lA) and may be compared with the 

other theories. For high stresses the length of the plastic 

zones is reduced by a factor ranging from 2 to 3. 
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Chat? ter VI 

G e~1eral isa tion of th e ;1:odel 

In the l:receedin:.- -;:(ir,-= the relaxcC c!'~ c'r 1'-

represented by a s,,;t of arcs and the; r01ative displacements 

across these arcs are determinedr In cha~ter 3 the 

di s )l'Oicemen ts o.re re')resen ted f::Jrmally by a continuous 

distribution ot u.isloc~~t;_ons the density of' which is round 

in terms of a singular integral eq1.ID tion. In chap ter 4 

the material is divided along a surface intersecting the arcs 

and the )roblem con.sidered ill terms of an elastic half space 

wi th certain boundar.:,: condi tions. 

In this latter e.~pr·oach it h; shown that at least the 

Ijeriodic ca~:e may be reduced to the solution of the same 

singular integr'3.1 equ:J.tion. Suitable general forms of stress 

and disIJl ~jcer:len t ar'e obtained in A?.pendix II for plane s tra in, 

normal tens ion and shear, and for an ti-")lane strain. These 

general relations for all three cases may be represented as 

Fourier series (equations A2.6.12, A2.6.13) ond as Fourier 

integrals (e~lations A2.6.14, A2.6.15). The integral rom 

is 3180 obtained by Sneddon (1951). ~he boundary conditions 

thus reduce to a ~)air of dual integral e qua tions or a £lair of 

trigonometric series. Sneddon reduces the integral equations 

'" to a general i'orm which i:~ considered by BUSbride;e (1938). 

Since the stresses due to a dislocation (equations 

2 4 4 - 2.4.10 are derived using the classical linear elastic 
• • 
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theory one would exgect the dual integral equations and the 

sinf:!,'Ular integral equation to be essentially the same. 

6.2 The l:;quivalence of' Dual Integral and ~:ingular 

Integral Equations. 

'l'he equivalence of' these two methods has been demonstrated 

by Smith (private communication) f'or even dis:glacements 

f'unctions. The f'ollowing is a more general analysis. The 

form of' the stress and displacements on the boundary of' the 

X2 = 0 of' the elastic half space reduce to 

general forms given by A2.6.l4, A2.6.15 and A2.6.l. 

rrhese ::ire : 

00 

u(x) = 2/1f !l {B(~) cos (~) - c(~) sin(~) l/~]d~ 
00 6.2.1 

00 

vex) = 2/1f) [B(I:;;;) cos (~) - c(l:;;;) sin «(.r) ]dl:;;; 

00 6.2.2 

The relative disrlacement, being twice the d~splacement 

in the hal; space, is given by relation 4.~.1 to be 

~(X) = u(X)b/1f A. The dislocation density then follows 

from the relation 

b D(x) = -d/dx ~(x) = - u'(X)b / 1fA 6.2.3 

where u' (x) denotes the derivative of u(x). 
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Now assume that the stress and displacements are in fact 

given by the equations 6.2.1 and 6.2.2 

consider the integral 

I = J AD(X')/(X - x') dx' 

L 

Since the dislocation density is zero outside 

and then 

6.2.4 

L this 

integral may be extended over the whole of the real axis 

and substituting from 6.2.3 it follOW's that 

00 

1=- (l/ff) / [u'(x')/(x - X')]dX' 6.2.5 

Di1'ferentiate 6.2.1 to obtain u'(X) and substitutd 

this into 6.2.5. to obtain 

00 00 

I = (2/u
2

) J dx'/(X-X') J [B(~) sin(~) + c(~) cos(~)]~ 
00 -00 

6.2.6 

Now 

00 

i~' i~ 
/ [e /(X-X')]dx' = iue 6.2.7 

-00 
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So that inverting the order of integration in 6.2.6 

the inner integral may be evaluated using two formu18e 

obtained by takine:; the real and imaginary parts of' 6.2.7. 

Thus 

00 

I = (2/U) J [B(~) cos (~) - c(~) sin(Sx)]d~ 6.2.8 

00 

But this is the expression for ~(x), the stress due to the 

diS9lacements given by equation 6.2.2 Therefore, from 

6.2.8 , 6.2.2 , and 6.2.4 it follows that 

J A[D(X')/(x-x')]dx' = 
L 

o-(X) 6.2.9 

It is thus shown that given the forms 6.2.1, 6.2.2 for 

stress and displacement the stress and dislocation density 

satisfy 6.2.9. The converse result is also true and a 

minor modification of the preceding analysis will demonstrate 

this. 

Suppose that the relation 6.2.9 between the dislocation 

density and stress is given, then assume that u(.::c) may be 

given in the form 6.2.1. It remains to show that the stress 

is then given by 6.2.2. Now define I by 6.2.4 

and note that from 6.2.9 

~(X) = I 6.2.10 
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Relation 6.2.8 may be derived using exactly the 

same analysis and substituting for I from 6.2.10 

the required relation 6.2.2 follows. It is therefore 

shown that the dual integral equations and the singular 

integral equation are equivalent methods of analysis. 

6.3 A Dislocation Model of the Tensile Crack 

It is ayparent from the previous section that the 

tensile problem which hitherto has been set uQ only in terms 

of the hali' space 9roblem, may always be solved in terms 

of a singular integral equation. This being so, what is 

the nature of the quantity D(X) in this case. 

It has been suggested, Friedel (1959)n that a crac~ 

may be represented 1'ormally by a distribution of "climbing" 

dislocations. In this case the Burgers vector is normal 

to the displacement arcs representing the relaxed crack, so 

that it is necessary to know the tensile stress exerted by an edge 

dislocation at points along a line normal to the Burgers vector. 

Takin~ axes at the dislocation with the X1 direction 

parallel to the Burgers vector it follows from 2.L+.5 that 

6.3.1 

where A = ~b/2~(1- v) is the quantity defined at 2.4.12 

for edge dislocations. Now wi th respect to standard axes 
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the tensile stress at a '9oint I dUe to a 

dislocation at is 

Ci1 1 = 

It then ~ollows that if is the distribution of 

tensile stress over the surface due to a 

continuous distribution D(I) of such edge dislocations 

in the region L of X2 = 0, then 

cr(X1) = A! [D(X1' )/(X1 - X1') dr1' 

L 

6.3.2 

Relation 6.3.2. may be regarded as giving the state 

of stress on I2 = 0 due to a set of displacements specifieo 

on This state of stress dies away for large 

Ia. Now let the body be subjected to a unit'onn positive 

tensile stress p at in~inity. The resultant stress on 

L is then given by P + tT (X1). If the yield stress in 

tension is equal to V1 it is required that the resultant 

stress shall be Ci1 in the plastic arc and zero along the 

crack. 

Define a quantity P(I1) by : 

= [ 
plastic arc 

6.3.3 
p free arc 

then the requirement is The quantity 
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P(Xi) so defined is analogous to the stress on a dislocation 

in cases of shear. In terms of' the quantity 

requirement is 

A f [D(Xi) I(x - x')] dr' + p(x) = 0 

L 

This equation is identiaal to 2.4.15 or 3.1.5. 

D(X1) the 

An interpretation 

of in terms 01' resistance to dislocation motion is not 

possible in this case. Instead is interDreted directly 

as a tensile yield stress. The representation of the plastic 

arc by a se t of "climbing" dis loca tions in this way is thus 

purely formal. 

It follows that the tensile crack may be treated by any 

analysis suitable to the shear cases. Further, any two 

treatements based on linear elasticity should lead to the same 
,,'3 

conclusions. For these reasons Dugdale (1960) obtains 

relations for an isolated tensile crack Which are analogous 

to those obtained here for the shear case. 

The solution for a tensile crack in an elastic material 

may also be obtained assuming no 2 las tic zones and unbounded 

dislocation densities at the crack tips. 

be used to determine Griffith relations. 

6.4 Non-Collinear Disl oca tion Arrays 

Such an analysis may 

I t is clear that a model of' a crack under tension which 

allows dislocations in the plastic zones to move under shear 
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stresses requires that relaxation take place along arcs 

other th9.Il the axis. As a next step a model is 

considered in which relaxation ~rom each tip takes place 

along two S11anes symmetrically placed about the axis. 

Such Et system of relaxation would resemble more closely certain 
7'+-

other theoretical models, Southwell and Allen (1949) 
:< 

Green (195j), and also some eXL1erimen tal observa tions, Green 
7, 7~ 

and Bundy (1956): ~(.nott and Cottrell (1963). 

It is shown that relaxation ta~es place along curved 

arcs extending symmetrically from the root of the notch. 

Thus the crac~ will be represented by a distribution o~ 

climbing dislocations along a straight arc. The plastic 

zones extending from a single tir will be represented by a 

distribution dislocations gliding along two straight arcs 

inclined at angles + ex to the plane of the crack 

fig. (21). The medium is subjected to an a~Dlied tensile 

stress p and the resistance in the slip lines representing 

the plastiC zones is (N.B. ~i is used in this section 

for the resistance to dislocation motion not ~1' since this 

quantity may not now be considered as the tensile yield stress) 

The equations for the equilibrium of such a distribution 

of dislocations are exceedingly complicated and have no 

obvious analytical solution. 

6.5 Numerical Analysis o~ the Tensile Crack 

By "Axes Taken at the Dislocation" it will be understood 
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that the dislocation is an edge dislocation, the origin is 

at the dislocation and the Burgers vector lies in the X1 

direction. These axes a~e rotated from the standard axes 

through an angle 8 say. 

The analysis 1'0[' t ___ > tensile crack is based on the set 

of equa tions giving the stresses due to an 

edge dislocation witrl res}ect to axes taken at the dislocation. 

2 4 

I2 ) /r 

2 4 

X2 )/ r 

2 4 

X2 )/r 

2 

+ X2 

6.5.1 

6.5.2 

6.5.3 

6.5.4 

It will be necessary to rotate the stress matrix to and from 

the standard axes and the general formulae are 

2 2 

() 1 1 
, = () 1 1 cos {} +<T22 sin {} + 2U12 cos {} sin {} 6.5.5 

2 2 

0-2 2 
, = 0-"1 1 sin {} + ()22 cos (j - 2()12 cos (j sin 8 6.5.6 

2 2, 
(j) 0- 12 

, = () 12 (cos {} - sin + (cr22 - 0- 1 1) cos 8sin {j 

6.5.7 
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The model is clearly symmetrical about the Xi and 

axes; th1JS for 8Ily dislocation on the plastic arc in the first 

quadrant, at say, there will be dislocations 

These four sets 

will be denoted by A, B, C and D respectively. If the 

Burgers vector in the first quadrant lies along the plastic 

arc directed away from the crack tip then this is true in the 

third quadrant while in the second and fourth quadrant the 

Burgers vector lies along the plastic arc directed towards the 

crack tip. 

crack itself'. 

Consider now the dislocations representing the 

A dislocation at (Xi, 0) say with Xi > 0 

has its Burgers vector lying in the positive Xlii) direction. 

For every such dislocation there is a disloca tion at (-Xi, 0) 

with its Burgers vector in the negative X2 direction. These 

sets will be called E and F resnectively. 

If the plastic arcs subtend an angle 2a at the crack 

tip the rotations to axes at the dislocation will be (fig. 20) :. 

A 
0 = +a l B I 

0 -ex 
) 

= 
C 

0 = a -1T ""'1 
I 6.5.8 D ) 

0 = 1T - ex J 
E 

0 = rr/2 ") 

F J 0 = -rr/2 

A programme has been written to determine the dislocation 

equilibriwn; again using the Ma"lchester Mercury Autocode. 
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This program:ne is buil t round a routine which will evaluate 

the stress matrix at any yoint due to an edge dislocation 

at any other point. The coordinates of these points and 

tht;; angle {j between the Burbers vector 01' the dislocation 

and the standard axis X1 must be syecified as ~rogramme 

parameters. The stress matrix is calculated with respect 

to the axes taken at the dislocation and rotated to standard 

axes; equations 6.5.1 - 6.5.7 are used ~or these calculations. 

Now the dislocations may be grouped in twos or ~ours 

~or dislocations in the crack or ~lastic zones respectively. 

The above arithmetical routine is there~ore built into a 

logical routine which groups the dislocations. Given a 

the inclination to the axis X1 o~ the plastic arc in the 

first quadrant, this routine will evaluate the stress matrix 

at any point due to a dislocation in the ~irst quadrant and 

all its symmetrical images. Again the matrix is given with 

resgect to standard axes. This routine may be modii'ied 

so that the stresses due to the dislocation in the ~irst 

quadrant are omitted i1' the pOint at which the stresses are 

required coincides with that dislocation. 

Now from the symmetry it is clear that if the dislocations 

in the ~irst quadrant are in equilibrium then so are 

dislocations in the other quadrants. Thus the generating 

routine need only ask ~or stress in the ~irst ~uadrant and 

need only specify the posi tions 01' the disloca tions in the first 

quadrant. The general ~roblem then is to determine the 



111 

distribution of dislocations which will give specified stresses 

at specified points. 

It is assumea that the dislocation density over a small 

region may be represented by a mean dislocation strength, 

concentrated at some point in that region. These concentrations 

will be denoted by Points on the plastic arcs are 

icientified by the suffix i • 

The programme generates a matrix A .. 
~J 

with 

elements If' i is a point in the crack 

then the element is the normal tensile stress 

at the point i due to the dislocation concentration 

and its image s. If i is a point of the plastic 

arc then is the shear stress along the arc at the 

point i due to the disloca tion concentration 

and its images. It is understood that if the dislocations 

are at the point i then is the stress 

due to image dislocations only. 

Now a t points i in the crack the dislocation 

distribution must balance the applied tensile stress p and 

at points i alone!, the plastic arc the disloca tions must 

balance the resistance and the resolved shear stress 

k P • Thus 

a ij Dj = -p point i in the crack J 
a .. Dj = O""i -kP !:,oint i in the pIa s tic arc J 1J 

6.4.9 
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The programme tht:;n solves this set of' simultaneous equations. 

A descril}tiolJ. 01' th~ JrograIIllne has be en given here since 

the method 01' solvine:; tile .Qroblt;m is entirely contained in 

the numer'ical analysis. The ~rogramme is not simply a 

method 01' evaluatines a 1'or:nula. A 1'lo'{V diagram is also 

~iven at fig (17) • 

Now in the analytical )rocedures th8re is a unique rati 0 

P/er which gives a bounded stress at the edge of the .J:Ilastic 

zone and one would expect this to be the case in the present 

Qroblem. Since a bounded stress must imply that the 

dislocation density at the tip is zero this af'fords a method of 

evaluating l?/o- • l<'irst the problem is solved for 

P = 0 (J i = 1 and t hen for P = 1, er i = 0, then 

the solutions are added in that ratio which removes the 

dislocation density at the tip. 

It now remains to decide the yositions of' the dislocation 

concentrations and the 1>oiuts at which the stresses are to be 

balanced. Let the intervals over which the disloca tions 

are concentrated be such tha t the ir' J:!rojec tions onto the 

axis are equal. The d i sl oca ti on coneen tra ti ons 

and the points at which the stresses are balanced may then 

be placed at either end of the interval or at the centre (i.e. 

some intermediate point). 

']'0 place concentrations at the left of the intervals 

would lead to a zero det~rminant since the first dislocation 

would be anihilated by its image. To balance stresses 

at the right hand ~~ide ot' the intervals would s)ecit'y the stress 
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at the edge of the plastic zone, but effectively the removal 

of this stress is used to determine P/~1 and therefore 

it should remain unspecified. These two possibilities are 

therefore rejected. 

To place the dislocation concentrations at the right of 

the interval erfectively sets a zero concentration at the 

origin since there are no dislocations at the origin this 

increases the int'orma ti on in the e qua tions. 

Balancing the stress at the left hand side of the interval 

balances the stress at the origin which effectively reduces the 

number of points at Which the stress is specified. This 

follows from the symmetry since specifying a stress in the 

half space effectively specifies a stress 

at the image pOint, in the hall' space X1 < O. The 

origin being its own im8ge would be included twice. The 

dislocation concentrations are th~refore placed at the right 

hand side of the intervals and the stresses are balanced at the 

centres oi' the intervals. This procedure tends to maximise 

the infor'mation contained in the equa tions and stable solutions 

have been obtained. Preliminary calculations using other 

orocedures reveal some instability. 

6.6 Some i;umerical Relationshins for the Tensile Crack 

In the analysis it is assumed that the plastic arcs are 

s traigh t and sub tend an angle 2a at the cra ck tip. This 



114 
is an idealisation since the 91astic zones at a real crack 

are curved. The mod~l will he19 to show qualitatively the 

e~fect of relaxation on several slip systems. Calculations 

have been carried out assuming = 11/2. 

Let a be the distance between the crack centre 

and the ~rojection onto the axis o~ the ti? o~ the 

J)lastic arc. The .programme re qu ire s as da ta the number p 

o~ intervals in the distance a and the numbe r q 

o~ those intervals in the distance c • The ~ollowing 

results are based on p = 32 and c raising 

in stegs o~ 4 from 4 to 28. A comJ)arison is made 

for p = 16, c = 6 and ~or p = 32, c = 12. The differences 

are found to be 01' the order 5~; • 

The results are shown graphically in ~ig. (11) and 

fig. (22). In ~ig. (11) the relation between cia and 

the stress ratio is shown ~or a variety of 9roblems. 

Now since the plastic arcs ~orm an angle 45° with the 

tensile axes the yield stress 0""1 is obtained from the 

resistance to dislocation motion by setting 0""1 = 2~ 

Making this substitution the ratio cia is shown in ~ig. (11) 

curve lE as a function of The curve 1 i es ve ry 

close to curve 1 itself and coincides ~or small cia. 

The single plane theory theref'ore gives a good estimate o~ 

the projection of the plastic zones onto the plane of the crack. 

In ~ig. (22) curve B the di sp lacemen ts ~(c) are 

given in terms o~ Here ~(c) is the relative shear 
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displacement over a single plastic arc at the crack tip. 

In order to obtain the relative normal displacement U2 

at the crack tip it is necessary to add 4>(c) over both 

arcs. That is to multiply ~(c) by ./2. In order 
2 

to obtain this displace;!k:nt in terms of 11' A/CT1 b it is 

necessary to ma~e a further correction to the curve and 

divide by 2. Curve A shows the relative tip displacement 

as calculated by the single plane method and here CT i = CT1 

and the curve remains fixed. 

Curve A in fig (22) shows also the shear displacement 

at the tip of a crack in shear relaxing along one plane. 

This may be compared directly with the shear displacement 

over a plas tic arc at the tip of a tensi le crack. For 

large plastic zones these are comparable but greater differences 

are observed for smaller plastic zones. 

In:.'i8: (2~;A) the curves I18ve beer, 8u;justed 8ccordirJ:! 

to trle 8b"we :H'oceec1lre end direct co,periSOtle E.8Y be :::80e 

betweer tLe relative u, dis]lece:;;ents in the Cr8C1( tip. 

~redicted by t~e two the0ries 
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Chapter VII 

Discussion 

7.1 Introduction 

The 'Nor'\.. of this thesis has been carried out in order 

to obtain simple theoretical quantitative relationships 

describing some aspects of the plastic behaviour of notches 

and cracks. Owing to the drastic simplifications, the models 

do not give certoin physical quantities which are normally 

measured. In ~articular there is no plastic strain in 

these models, there is only 91astic displacerrent. 
71-

However Cottrell (1960) has suggested that a brittle 

fracture may be ini tia ted when the displacerrellt in the roo~ 

or tip exceeds some critical value. This is the criterion 

adopted here to relate this work to the theory of fracture of 

macroscopic stro1Joctures: sections 4.5 and 4.6. 

for 

It has been shown that the theoretical relationships 

cia and the disp lac emen t in the crack tip, which 
t 

have been derived in this work for the isolated crack are 

in reasonable agreement with experimental observations: Knott 
7'6 7'1 

and Cottrell (1963) and Tetelman (1963). Nhen p/CJ1 > 0.95 

ex]erimental values of alc are lower than those predicted 

by the theories of Chapters III and IV. 

t These results have been 9ublished, Bilby, Cottrell 

Swinden (1963) Proc.~oy. Soc. A272 304 
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This)robabl;;,r arises since these theories do not ta1ce ac count 

of hardening effects. 

7.2 ~ork Hardening 

A model has been considered in which the hardening is 

directly related to the relative displacement. Here it is 

necessary to introduce a gauge width in order to determine the 

work hardening law i'rom the experimental values which give the 

hardening in terms of the plastic strain, not the relative 

displocemen t. Two slightly dirt' erent 'procedure s ha. ve be en 

adoyted in order to relate the hardening to the relative 

disp lacemc:nt. 30th of these shaN the behaviour expected. 

The displacements are reduced and for high stresses the length 

of the plastic zones are also reduced. In the ~hysical 

system, it is possible that the forward stress on a dislocation 

may fall below the maximum resistance stress 

effect is not considered. 

U1 and again this 

Furthermore Professor Cottrell has pointed out (private 

communication) that one effect of wor~c hardening is to spread 

the sli~ onto other systems. 

ex?licitly in this model. 

This effect is not considered 

A mode 1 which takes account of these factors would be 

more reliable ~articularly at high stresses. 

7.3 Non-Coplanar Relaxation 

.t'reliminary .'/orL{ ha~; been carried out on a model of a 
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tensile crecK in which the ~)lastic dei'ormation takes place 

along !)l3Iles which are inclined to the ~lan" of the crack. 

The dis~12cement in the crack ti9 is shown to be less than in 

that predicted by the single plRne model. 

The extent of the rlastic zones is determined in terms 

of' the length a of their projec tion on to the plane of the! 

cracK, for a given stress ratio the ratio cia is almost 

identical to the ratio cia from the single plane model. 

This might have been exgected since figs. (10) and (11) 

suggest that this relation is not very sensitive to the method 

of analysis. 

7.4 Future York 

It is Dointed out in chapter 6 that the analYGis in +he 

non-co!)lana!' model has a tendency to become unstab le. 'l'his 

obviously requires investigation in order to determine the 

causes and the extent to which the model may give reliable 

Qredictions. Then extension of the technique should be 90ssible, 

to obtain a more realistic picture of work hardening and also 

to investigate the effect of curved glastic zones. 

The single plane model of the crack in a wort( hardening 

material may be modified to relate the hardening to the dislocatin 

density rather than to the strain. 

A fundamental resitriction imposed u,?on most theoretical 

work is that the sha~e oi' the boundary remains fixed. 'rhis 

causes difficulties in the inter.9retation of effects at sharD 



notches, i'or exam]le, since such notches cannot remain 

shar.;:) during ::':Jlastic deI'orma tion. The non-coplanar model 

does in ~)rinci9le allow such movement but it would be fruitful 

to comgare Ulis with a classical theory. 
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Notation 

The f'ollOYV ing symbols throughout the work have the 

~meanings given here. Other symbols have the meaning 

given in the 9articular sections in which they occur. 

c crack half length or notch depth. 

s length of plastic zone. 

a c + s I 

-t distance between the centre of two adjacent cracks. (N.B. 

() .. 
lJ 

€ .. 
lJ 

u. 
1 

Not Sec t i on 3. 2 ) . 

coordinates, 

stress. 

strain, 

displacement .' 

U(X1) stress fUnction giving general stress on X2 = O. 

stress function giving Ilrescribed stress 

on X2 = O. 

disIJlacement function giving displacement 

on X2 :: o. 

~(X1) relative displacement. 

P magnitude of the aT!:plied stress. 

(11 magnitude of' yield stress and resistance to dislocation 

motion if the yield stress in shear is inferred. 

E Young's modulus. 

~ shear modulus. 

v Poissons ratio. 



b Burgers vector, 

D(X.) disloca tion denf3i ty • 
l. 

jJ.b/2'1T screws or antiplane strain 

2b/~(1-V) edges or plane strain, 

222 2 
R(X,y) :: [.fIa - x )/(a - y )}]/[l/(X - y)] 

-1 2 
{ I [ (a 

2 
- x )/a(x - y)] + [x/a]l} H(a,x,y) = cosh 

122 



123 

References 

1. Ti~per, C.F., (19~~9), l:etal1urgica 22, 133. 

2. Crussard, C., Plateau, .T., '7"amhankar, R., Henry, G. and 

Lajeunesse; D., (1959), Swampscott Conf. on Fracture, 

(;<;d B.L. Averbach et al), ~).524. New York: Wiley. 

3. Gurl:nd, .T. and Plateau, J., (1963) Trans. A.S.l.:., .22., 442. 

4. (ro .. an, 3., (1948-9), HeIl. Progr. Phys., 12, 214. 

5. Clarke, B' •• J.~. and Sambell, R.A..t..T., (1960), Phil. \~ag. 2,697. 

Clarke, l<'.,T.P., Sambell, rt.A.,J. and Tattersall, H.G., (1961), 

Phil. Mag. 1, 393. 

6. Parker, E.R., (1957) Brittle Behaviour of ~ngineering 

Structures, New York: riley. 

7. Biggs, 'I.D., (1960), The 3rittle i<'racture of Steel, 

McDonald and Evans. 

8. ~.~ 
-' .. , (1921), z. Phys., 1, 323. 

9. Zwicky, F., (1923), l. Phys. ~, 131. 

10. Bern, M. and Furth, H., (1940), Proc. Camb. Phil. Soc., 2Q 

454. 

11. Griffith, A.A., (1920), Phil. Trans. ~oy. Soc. A221, 163. 

12. Frenkel, ,T., (1926), 2. Phys., 21., 572. 

13. Taylor, G.I., Farren, '!,'.S. and Q.uinney, H., (1925), Proc. 

Hoy. Soc., A107, 422. 

14. Taylor, G.I., (1928), Tr'ans. Faraday ::~oc., ~, 121. 
, 

15. Massing, G. and pol'Xanjtt, M., (1923) Ergeb. exact. Naturw. 2, 

177. 



124 

16. Prandtl1' L., (1928), z •. Angew. ;,lath. r,lech. 8, 85. 

17. ':' ay lor, G • 1., (1 934) , Proe. Roy. Soc., ~, 362. 

18. Orowan, ~., ('.93L1-) , Z. Phys., 22,634. 

19. FOl~an'y~ I:., :1334), 2. Phys., .§2, 660. 

20. Bursers, .T.;,:., (1939), ?roc. :.on. T~ed. Akad. Vet., .!±,g, 

293, 378. 

21. Frank, l".C. and Head, .;'.':2., (1950), Phys. rtev., n, 722. 

22. Read,!.'}'., (1953), Dislocations in Crystal~, TlleGraw-Hill. 

23. Cottrell, A.H., (1953), Disloca tions GJ1C: Plastic }'low in 

Crystals, 0xford. 

24. Ta,ylor, G. I. and Criff i th, (1917), Froc. Inst. Mech. 

~ng., p. 755. 

25. Inglis, C.~., Trans. lnst. }:av. Arch. Lond., 22" 219. 

; 26. Sack., R.A., (191.j.6), ?roc. :t-'hys. Soc. Lon. !ill, 720. 

27. Zener, C., (1::148), }'racturi.n.e; of :,:etals, A.:2.;,I., v.3. 

28. Stroh, 

29. Stroh, 

A.H. , (1954), Proc. rt0Y. soc.,~, 404. 

(1955), Proc. Roy. Soc.,A232, 548. 

30. Eshelby, J.D., Frank, F.C., Fabarro, P.R.N., Phil. I\lag. !±.£, 

351. 

131. Stroh, A.N., (1~57), Phil. ¥tag. Sup. 6, i.lt. 24,418. 

32. Cottrell, A.H., (1958)" Trans. Amer. lnst. ;,Jin. O~eta1.) 

3ngrs, 212, 192. 

33. Burr, D.J. and r;lhOm~iSon, r., (1962), Phil. ~,:ag. 1,1773. 

3lt. Bell, rt. L. and Cahn, it."'., (191.td), Proc. Roy. Soc. ~, 494. 

35. CahIl, 2."/., (1955), J. lnst. :',et., .§l" 493. 

36. :3ig-.:.s, ·,tv.D. and Pratt, P.L., (195\), ~'\'.cta ;fet., 2" 694. 



37. 

f 38. 
\ y 

T1 1Jl1, D., (1960), Acta. :\~et., 8, 11. 

3dmondson, B., (1961), ?roc. Roy. Soc., A264, 176. 

125 

39. ~n8es',\Ty"c,:\. ".T. and Helle, ,T.T., (1963), Acta ',!et., 11, 187. 

4'"'. 3troh, A.I'T., (1958), Phil. Vag., 2, 597. 

41. Fisher, J.G., (1955), Acta. ~et., 2, le9. 

42. Lmv, ,JoK., (1956), Deformation and Flow of' Solids, 

(Ed R.. Grammel) :!!. 60, S:Jringer-Verlag. 

43. Owen, ''foS., Averbach, B.L. and Cohen, ~~., (1957), Trans, 

A.S.M., ~, 41. 

44. Hahn, G. T., Averbach, B.L., OV/en,.'!. S., and Cohen, M., 

\ 45. 

46. 

(1959), Swampscott Con. on Fracture., (Ed B.L. Averbach et 

al) p.91., Kew York: '·Tiley. 

Bridgman, P.·.~l., (1948), Fracturing of rtetals, A.S.M. p.246. 

Petch, N.J., (1956), Phil. Mag. 1, -856 (1958), Phil. Mag. -z" 
- 3 i I 4. 

1089. 

47. Heslop, J. and Petch, ~.J., (1958), Phil. Mag. 2, 1128. 

48. Garofalo, F., Chou, Y.T. and Ambegaokar, V., (1960), 

49. 

50. 

Acta. Met. 8, 504. 

Bilby, B.A. and Hewitt, J., (1962), Acta. Met., 10, 587. 
~ -

Orowan, E., (194~), Trans. Inst. Engrs. Shipbuilders Scot., 

Up 165. 

51. Tipper, C.F. and Hall, E.O., (1953), ·T. Iron Steel Inst. 

52. Gilman, J. T. and Johnson, "N.G., (1956), Dislocations and 

Mechanical Properties 01' Crystals (Ed. Fisher et al ) 1?116 

New York : Wiley. 



126 

53. Irwin, G., (1948), Fracturing of Metals, A.S.M., 147. 

54. Orowan, E., (1950), Fatigue and Fracture of' Metals; M.l.T., 

~. 139, New York :Niley. 

55. Tetelman, A.S., and Robertson, 'N.D., (1963), Acta Met., 11, 

415. 

56. Goodier, and Field, (1962), Off. of Naval Res., Contr. 

No. 225 (29), with Stamf. Univ. 

57. Hill, R., (1950), Mathematical Theory of Plasticity, Oxford. 

58. Thom.s, T.Y., (1961), Plastic Flow and Fracture in Solids, 

Academic Press, Lond. 

59. Prager, W. and Hodge, P.G., (1951), Theory of' Perfectly 

Plastic Solids, New York. 

60. Goodier, J.N. and Hodge, P.G., (1958), Elasticity and 

Pl as tic i ty, New York: 'iV'iley. 

61. Johnson, W. and Mellor, P.B., (1962) Plast. for Mech. ~~ng., 

Van Nostrand. 

62. Hult, J.A.H. and McClintock, F.A., (1957), 9th. Int. Congr. 

63. 

64. 

65. 

66. 

Appl. Mech., 8, 51. 

Dugdale, D.S., (1960), J. Mech. Phys. Solids, 8, 100. 
t b 

Leifried, G., (1951), Z. Phys. 130, 214. 
,\. 

Head, A.K. and Louat, N., (1955), Aust. J. Phys. 8, 1. 

Muskhelishvili, N.I., (1946), Singular Integral Equations. 

(Trans. J.M. Radok, 1953), Noordhoff:Groningen, Holland. 

67. Muskhelishvili, N.l., (1949), l'!.ath. '!.'~eory of ElastiCity, 

(Trans. J.M. Radok, 1953), Noordhoff,Groningen, Holland. 

68. Sneddon, l.N., (1951), Fourie r 'l'ransforrns, ;,lcGraw-Hill. 



127 

69. Busbride;-e, I":!., (1938), Proc. Lond. Math. Soc. 2, hli, 115. 

70. Koskinen, M.F., (1961), A.S.D. Tech. rep. 61-63, Contr. No. 

/'lF18(600) 957, Proj.No. 7351. 

71. Ryshik, I.M. and Gradstein, I.S. (1957), Tables of Sums, 

Products and Integras, 1).412, Deutsche Verlag der 

'.~.'i s s ens chaften. 

72. Cottrell, A.H., (1960), Steels for Reactor Pressure Circui ts, 

~). 281, Iron Steel Inst. 

73. Friedel, J. (1959), Swam9scott Conf. on Fracture, (Ed 

B.L. Averbach et a1),Pa:per 18., New York: "li1ey. 

74. Allen, D.l;;. de G. and Southwell, R., (1949), Phil. Trans. 

Roy. Soc. A242, 379. 

75. Greell., A.P. (1953), Quart. J.Mech. and App. Math. 2" 223. 

76. Green, A.P. and Hundy, B.B., (1956), .T. Mech. Phys. 

Solids, bi" 128. 

77. Brucker, R.A., Richards, B., Berg, E. and Kerr, R.H., 

(1961), Mercury Autocode ~.1anua1 2nd Ed., Ferranti 

List CS 2Lt 2A. 

78. ~nott, J.F. and Cottrell, A.H. (1963) J. Iron ~nd Steel 

Inst. 201, 249. 

79. Tetelman, A.S., (1963) ,Sc. Lab. Ford l/;otor Co., Dearborn, 

Michigan. 

80. Kober, H., (1957), Dictionary of Conf'orma1 Represen ta tj. ons, 

New York: Dover. 



128 

List 01' Diagrams 

iig. (l) ?lastically deforming notch in antiplane strain. 

Figs.(2)-(S) Conformal maQ.Qings in the Hult and ?vlcClintock analysis. 

1<'ig. (6) 

Fig. (7) 

Fig. (8) 

l"ig. (9) 

1<'ig. (10) 

Fig. (11) 

Fig. (12) 

Fig. (13) 

Fig. (14) 

F'ig. (15) 

CracJ( subjected to a normal tension relaxing 

plastically at the tips. 

A member of the seq,lence of' s tres s func tions 

having limit 

Dislocation model of a .Qlastically relaxing shear 

cracic. 

The extent 01' the 1l1astic zones at an isolated craCK: 

as a filllc tion of' the ag111ied shear s tre ss. 

An infinite period array of coplanar cracks 

relaxing flastically under an aQplied stress. 

The stress at general yield according to the various 

theories. 

Extent of' plastic zones from a crack of length c 

in a unit'orm array of l?eriod 2t. 

The relative clis'Qlucement at the tip or a crack 

in a uniform 'periodic array shovm as a func tion 

of cle and alt. 

Relation between stress and relative uisplacement 

at the tip of a crack of length 2c in a uniform 

array of 'period 2t. 

Relative displacement (~(c)/t) at the ti~) of a 

crack at general yield, (and foY' certain stresses) 
~ , 

according to the isolated crack theory and the 

infinite array theory. 



Pig. (16) 

iig. (18) 

iig. (19) 

Fig. (20) 

~'ig. (21) 

Fig. (22) 

129 

~elative di~Dl~cement (~(c)/c) at the tip of 
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Infinite Array 
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Figure 1 

A Plastically Deforming Notch in Antiplane Strain 

(following Hult and McClintock) 
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Conrormal Mappings in the Hult and McClintock 

Analysis. 

Fig. (2) 

Fig. (3) 

Fig. (4) 

Fig. (5) 

Stress Space ( ~ plane) 

, plane 

T/ plane 

T plane 



FIG 2 

/ 

F:G 3 l ~===r.=!==~----4D 
C B 

----~ / '~ 
! \ 
I 

i 

! 
I 

FIG4 

\ 
\ 

I 
i 
I 

I 
;' 

/ 



134 



Figure 6 

Crack Subjected to a Normal Tension Relaxing 

Plastically at the Tips. (Following Dugdale). 

crack length 2c 

extent of relaxation s 

yield stress y 
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Figure 7 

A Member of the Sequence of Stress Functions 

Having Limit P(Xi). 
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Figure 8 

Dislocation Model o~ a Plastically Relaxing 

Shear Crack. 

showing the distribution of' disloca tions along 

a sheared slit IX1 I < c and its associated 

yield zones c < IX1 I < a. 
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Figure 9 

'l'he Extent of' Plastic Zones at an Isolated Crack 

as a Function of Applied Shear Stress. 

Curve A 

Curve B 

according to the Dislocation model. 

according to the Hult McClintock model. 
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Figure 10 

An rnrinite Periodic Array of Coplanar Cracks 

Relaxing Plastically Under an Applied Stress 

crack length 2c 

extent of relaxation a-c 

period 2.t 
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Figure 11 

The Stress at General Yield According to the 

Various Theories. 

p applied stress 

~1 yield stress 

2c crack length 

a-c length of plastic zone 

curve 

curve 

curve 

(at general yield a = ~ where 2~ is the distanc 

between the centres of the cracks or, in isolated 

crack theories, a has some prescribed value 

1 isolated crack theory 

lA variation caused by workhardening 

lB variation in tensile case when relaxation 

is along 2 inclined planes. 

2 double crack theory of Smith 

3 periodic array theory. 

I 
i 

I. 
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Figure 12 

Extent or Plastic Zones From a Crack of Length 

2c in a Uniform Array of Period 2t 

showing the relationship between alt and cit 

for contours of fixed p/~1 
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Figure 13 

The Relative Displacement at the Tip of a Crack 

in a Uniform Periodic Array Shown as a Function 

of a/e, and c/e, 

showing the relation between alt and cit for 
1T~A !i.£l 

contours of fixed 
Cl'1 b .(, 
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Figure 14 

Relation between Stress and Relative Displace 

at the Tip of a Crack of Length 2c in a Uniform 

Array of Period 2t. 

showing the stress p/~1 to produce a di~lacement 

for contours of fixed cit. 

The contours terminate on the yield envelope A. 
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Figure 15 

Relative Displacement (~(c)/eat the Tip or a Crack 

at General Yield, (and i'or certain stresses), 

according to the Isola ted Crack 1'heory and the 

Periodic Array Theory. 

2 
(u A/~1b) ~(c)/t as a function or cit 

curve A - isolated crack theory 

curve B - infinite array theory 

2 
(u A/~1b) ~(c)/t as a rUllction or cle for three 

values of' the applied stress p/~ 1 equal to 0.7, 0.5, O.j 

Broken line - isolated crack theory 

Full line - infinite array theory. 
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Figure 16. 

Relative Displacement (~(c)/c) at the Tip of a 

Crack at General Yield, (and for certain stresses), 

according to the Isolated Crack Theory and the 

Periodic Array Theory. 

2 
(u A/~1b) ~(c)/t as a function of cit 

curve A - isolated crack theory 

curve B - infinite array theory 

(N.B. This section of the figure follows a 

suggestion of E. Smith. Bilby, Cottrell, 

Smith and Swinden 1964). 

2 
(u A/~1b) ~(c)/t as a fUnction of cit for three 

values of P/~1 equal to 0.7, 0.5 and 0.3. 

Broken line - isolated crack theory 

Full line - infinite array theory 
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Flow diagrall1 for the numerical analysis of a tensile crack 
relaxing along inclined [llanes. 

Let the total number of intervals be 9, the intervals of the 
crack q and the wiuth of the intervals h. 

Form the 9 x 2 stress matrix S 
Col.l 2esistance stresses, Col. 2 Applied stresses 

Set cycle i 1 < i ~ p ~------------------------ -~ ( 

}'orm X=(1-O.5)h y=~ (x-c)tenO ---i>q 
0 ---i<q . 

Set cycle j 1 < j ~ p 

Let the coordinates of the jkth dislocation by X Y 
and ~ the angle between the Bur~ers vector and the 

X1 axis. Clear .911, f12' and P22. 

x 1= :!:jh,j~q ( I 7 j>q'~:~(~-C)h 
Evaluate stresses~ S~ x,y,~ for 
at (X,Y) due to dislocation ja 
a dislocation at on plastic arc A 
(x,y) w.r.t. axes I 1st. 
at disloca tion -r time 

Set x,y,~ for 
dislocation je 
on plastic arc E with X1' direction Set x,y,~ forb 

yarallel to b dislocation j 
1st 
time 1 
Set x,y,O forf dislocation j 
on .;;lastic arc F 

1 
Rotate stresses 
to standard axes 
through an angle 

of -t3 

1 
Add into P 1 1 

II 1 :2 and P22 

2nd. 4 tho 
tlme tlme 

-

on plastic arc B 
~ __ I 2nd. 

J time 
Set x,y,(j for 
dislocation jC 
on plastic arc C 

I 3rd. 
J-- ~ time 

Set x,y,O ford 
disloca tion j 
on nlastic arc D 

,----,I ~ 

e ij=P22, i~q ~---~----...), i> (1 ~~otate streGses 
I through angle O. 

Set 

~b-----------------------~ake e ij=p'12 
L.--___ Repeat (j) 

J-I ---------___ ~) He pea t (i) -------..1 
j, 

print oytionally • -1 ( Form D = E S where E = e ij ) and 

.l:o'orm stress ratio, dislocation density and dis)lacement at c. 
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Figure 18 

Relative Displacements at the Tip of a Crack 

in an Infinite Workhardening Material Based on 

the Root Strain Method. 

iii -3 
curve A - X = Wb/1T A = 0.4 x 10 

-3 
curve B - = 2.0 x 10 

-3 
curve C - = 10.0 x 10 

Broken line indicates negative displacements 

arise at points on the plastic arc removed from 

the crack tip. 
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Figure 19 

Relative Displacements at the Tip of a Crack 

in an Inf'inite Workhardening Material, Based 

on the Parabolic Method. 

2 -3 
curve A X = wb/1f A = 0.4 x 10 

-3 
curve B = 2.0 x 10 

-3 
curve C = 10.0 x 10 
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Figure 20 

Strain at the Tip of a Crack in an Infinite 

Workhardening Material Based on the Parabolic 

Method. 
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Figure 21 

Orientation o~ Dislocations Representing an 

Isolated Crack Relaxing Along Inclined Planes. 

intermediate axes taken at the dislocation 

are shown with the arrow pointing in the 

positive X1' direction, that being the direction 

o~ the Burgers vector b. 

crack length 2c 

Projection o~ the plastic arcs on to the plane 

o~ the crack a-c 

Plastic arcs meet in an angle 2a equal to one 

right angle in the analysis used. 
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Figure 22 

DisDlacement at the Tip or an Isolated Crack 

Relaxing Along Inclined Planes. 

curve A 

curve B 

Displacements ror single plane model 

in terms or ~i the yield stress in the 

plastic zones. Shear and tensile case 

gives displacements of the same magnitude. 

Shear displacement at the crack tip 

across a single plastic are, in terms 

or the resistance to dislocation motion. 
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Figure 22A 

Displacemen t at the Tip o~ an Isola ted Crack 

Relaxing Along Inclined Planes. 

curve 1 

curve 2 

The relative normal displacements in 

terms of ~i where 2Ti = ~1 = yield 

stress in tension. 

The relative normal displacem;nt at 

the crack tip in terms o~ ~ i the 

resistance to disl oca ti on motion. 
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Appendix I 

Evaluation of Integrals and Sums 

Al.l Pre 1 iminary de l' ini ti ons • 

In this ';vor~~ it has been found necessary to 

define the following functions for y within the 

range (-a,a) of the real axi s 

( 2 2 2 2 ~r J 
R(I,y) = LJ[ (a - I )/(a - y )] Jll/(:r - y) Al.l.l 

-~ 2 2 J H(a,x,y) = cosh L'[(a - x )/a(I - y)]+[x/a]I Al.l.2 

Further defined are the integrals 

/ R(ry)dy Al.l.3 

ex /13 j 

= (x-c) H(a,c,x)dI Al.l.4 
ex 

Here again ex < 13 are both conthined in the range 

(-a,a) of the real axis. The detailed steps in the 

evaluation of the Cauchy :grinciple values of these 

integrals are given in this appe: .. dix rather than in the 

main text. 

It is first necessary to consider the meaning to be given 

to the inverse hyperbolic cosine '"111c.:n the argumeIl t is 

negative. Since these functions arise from integrals 

a suitable working definitions is 



h 

cosh-1 (h) = ! "/(V
2

_1) dv 

1 
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Al.l.5 

This is extended to include nee;ative values as follows 

-1 
cosh (-h) 

-h 
2 

(v -1) dv Al.l.6 

The integrand in the second term is imaginary and must 

be divided by (i). Thffil writing u = -v in the rirst 

term gives 

-1 
cosh (-h) 

h -1 
= - J~(U2 -1) du -i !"/(1_V

2
) dv 

1 

-1 
= - cosh (+h) + ~i A1.1.7 
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~A~1~.~2~ __ =D~erinition and pro~erties o£-1he-tunction h(a,x,y) 

In these integrals h is in general a function of 

three variables .vhich has the form : 

h(a,x,y) 
2 2 

= [(a - x )/a(x - y)] + [x/a] Al.2.1 

where a>O, x and y being unrestricted. This runction has 

some useful symmetry in the variables x and y. It follows 

from the relation 

2 2 2 

(a - xy)/a(x-y) = [ (a - x )/a(x - y) ] + [x/a] 

2 2 
= -[ (a - y )/a(y - x) ] - [ y fa] Al.2.2 

that 

h(a,x,y) = -h(a,y,x) = h(a,-y, -x) Al.2.3 

Since the I'unction H ;:;;: COSh-l(h) is required, it is necessary 

to consider the ranges 01' x and y f'or which I hi > 1. 

Supposing x fixed and y variable, it is seen at 

once that : 

h(a, x, -a) = +1 

h(a, x, +a) = -1 

Al.2.4 

Al.2.5 
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Differentiation with respect to y gives 

%y[h(a,x,y) ] 
2 2 2 

= (a - x )/a(x - y) Al.2.6 

h is therefore a monotonic function of y which is 

increasing for Ixl<a, decreasing for Ixl>a and a constant 

h :. 1 for x = a. It follows therefore that n changes 

sign through all points where h is either zero or inSinite. 

These points are 

y=x h=oo 
2 

Y = a /x h - 0 
] Al.2.7 

:B'urther it can be seen from Al.2.1 that 

h -+ x/a as I y I -+ OJ Al.2.8 

In view of relation Al.2.6 it is necessary to consider 

two se!}arate cases Ixl < a and Ixl > a. 

In the first case h is monotonic increasing wi th y 

and changes sign through infinity in the range Iyl < a 

at the goint y = x. 

and Al.2.8 give: 

y < -a, 
-a < y < x, 

x < y < a, 

a < y, 

Therefore relations Al.2.4, Al.2.5 

x/a < h < 1 

1 < h 

h < -1 

-1 < h < x/a 

Al.2.9 
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In the second case h is monotonic decreasing with 

y and changes sign through zero in the range I yl ~ a 
2 

at the 90int y = a/x. Similarly it can be sho\v.n that 

for x < -a : 

y < x , 
x < y < 

-a < y < 

a < y , 
and for x > a 

y < -a , 
-a < y < 

a < y < 

x < y 

-a 

a 

a , 
x , 
, 

, 
, 

h < x/a < -1 

h > 1 

-1 < h < 1 

1 < h 

x/a> h > 1 

-1 < h < 1 

1 < h 

1 < x/a < h 

Finally it follows from A1.2.9, A1.2.10 and 

A1.2.~O 

Al.2.11 

Al.2.1l that for Ihl > 1 it is necessary and sufficient 

that x and y both belong to the same closed set of points 

, of the real axis, where the sets are ~ i lal and ~ > lal • 

~A=1~.~3 __ ~pefinition and derivatives of the runction R(a,x,y) 

Now the follow! ng defini tion is made 

H(a,x,y) cosh -1 (I hi ) Al.3.1 

where Ixl < a, and Iyl ~ a and h is defined by 

A1.2.1 • The conclusion 01' the previous section shows 
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that H so defined is a real runction. 

From Al.2.3 it follows that: 

H(a,x,y) = H(a,y,x) = H(a,-y,-x) Al.j.2 

To evaluate the derivative of H with respect to y it is 

necessary to consider two cases, nrunely h positive and 

h negative. 

(x-y) ~ O. 

Now h > 0, Al.2.9 implies y < x, that is 

In this case : 

oloy [H(a,I,y)] = oloy [COSh-l {h(a,x,y)ll 

2 -1/2 
= [{h (a,I,y) -l} 1 [oloy{h(a,x,y)ll 

Substituting in this relation from Al.2.1, Al.2.2 and 

Al.2.6 gives 

oloy [H(a,I,y)] = 
, Ii! 2 ~ -1/2 2 Ii! ,& - xy)-:x-y) a] [(a -x )/(:r-y)] 

Al.3.4 

In this last step it Should be noted that x - y is positive 

and taking this factor into the square root does not imply 

a change of sign. 

Similarly for h < 0 relation Al.2.9 implies that 

y > I or (x - y) ~ o. 



In this case 

d/dy [H(a,x,y)] = d/dy[cosh -ll-h(a,x,y)}] 

-1/2 
= [{h(a,x,y)-l} ][-d/dy{h(a,x,y)}] 

substituting as be~ore ~rom Al.2.1, Al.2.2 and Al.2.6 

gives . . 
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2 2 -1/2 2 :2 2 

d/dy[H(a,x,y)] = -[lea - xy)/a(x-y)} -1] [(a -x )/a(x-y) ] 

2 2 2 2 -1/2 2 2 = +[(a -xy) -a (x - y) ] [Ca - x )/(x-y)] Al.3.6 

Again in this last ste.Q it should be noted that 

x - y is negative and taking this factor into the square 

root does require a correction o~ sign. 

Thus both cases give rise to the same equation 

A1.3.4 and Al.3.6. Rearranging the expression inside 

the square root these relations reduce to the general 

formula: 

2 2 2 2 -1/2 :2 2 
d/dy[H(a,x,y)] = [Ca -x )(a - y )] l(a - x )/(x - y)] 

2 2 2 2 1/2 
= l(a - x )/(a -y)] / (x - y) Al.3.7 
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The x derivative follows from Al.3.7 and Al.2.3 or 

it may be calculated directly as above. 

In the problems discussed in this work the ratio 

cia is normally fixed by the ratio of the stresses and thus 

a derivative with resvect to stress will first require 

a derivative with respect to this ratio. To evaluate this 

derivative it is convenient to define: 

r = cia Al.3.8 

and then Lhe quantity h defined by Al.2.l may be written 

in the form : 

Al.3.9 

Now H is defi~d by Al.j.l and from this it 1'ollows that 

a/ar H(a,c,x)={I-l-(1/r)2 -l]/[1-(x/c)~/(h2 -1) Al.3.l0 

Substituting for h from Al.2.l and for r from Al.3.8 it 

can be shOwn, after some algebraic manipulation, that 

a/or H(a,c,x) 
2 .:Ii:li 2 lit = -(a/c)(a + cXYJ[(a - c )(a - x )] 

Al.).ll 
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Al.4 To evaluate the integral l(~) 

Now from Al.l.l and Al.l.3 

2 2 1/2/ ~ 2 2 -1/2 -1 
I ( a!3) - (a - x ) ( a - y ) (x - Y') ely 

a 

Consider first the indefinite integral 

2 2 1/2 / 2 2 -1/2 -1 
I = (a - x ) (a - y) (x - y) ely Al.4.2 

and make the substitution 

-1 
u = (y - x) 

Then it follows that: 

2 2 1/2[ 2 2 2 -1/2 
I = (a - x ) sgn(u)[u a - (1 +xu) 1 du Al.4.4 

where sgn (u) 1s equal to (+1) or (-1) according as u is 

positive or negative. Multiplying numerator and 
2 2 1/2 

denominator by (a - x ) gives : 



2 2" r- 2 2 2 

I = (a - x )jSgn (u) L(u[a - x ] -x) -

Substituting from Al.2.1, Al.4.5 becomes 

I = sgn (y - xo) cosh -l[_h (a,x,y)] 

2 I -1/2 
a J 
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Al.4.5 

Al.4.6 

In considering the definite integral it is necessary 

to divide the range of integration into subranges such 

that 'u' does not change sign in any subrange. The integral 

Al.4.1 must therefore be considered in three separate cases. 

Case 1 in which ~ - r < O. This condition implies that 

y - x < 0 throughout the range of integration and no sub­

division is necessary. Therefore it follows from Al.4.6 that 
-1 -1 

I(a,~) = - cosh [-h(a,x,~)] + cosh [-h(a,r a)] Al.4.7 

Using equations Al.2.3 and Al.l.7 this becomes 

-1 -1 
I(a,~) = + cosh [-h(a,~,x)] - cosh [-h(a,a,x)] Al.4.8 

In this relation the argwnents are positive. This follows 

from Al.2.9 which shows that h(a,y,x)<O when y - x < O. 

Case 2 in which a - x > O. This condition implies 
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that y - x > 0 throughout the range of integration 

and again no subdivision is necessary. It follows from 

Al.4.6 that 

-1 
I(a,B) = + cosh [-h(a,x,~)] - cosh 

Using relation Al.2.3 this becomes 

-1 -1 

-1 
[-h(a,x,I3)] 

+ cosh [a,l3,x)] - cosh [h(a,a,x)] 

Again in this relation the arguments are positive. 

Al.4.9 

Al.4.10 

This follows, as before, from Al.2.9 which shows that 

h(a,y,x) > 0 when y - x > O. 

Case 3 in which a - x < 0 and ~ - x > O. This implies 

that y - x changes sign from negative to positive within 

the range of integration and the range must be divided 

so that 

r(a,~) = Lim [(a,x - 8) + r(x + 8,~)] 
8 -+ 0 

Using the results Al.4.8 and Al.4.10 this becomes 

-1 1 
+ cosh [h(a,~,x)] - COSh- [h(a,x+8,x)]] 

Al.4.11 

Al.4.12 
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Now writing 

Al.4.13 

and using relations Al.2.3 and Al.2.1 it follows that: 

r-

L
, 1 2 2 1 2 2 ] 

L = Lim cosh- [lea -x )/as}+{x/a}]-cosh- [{(a -x )/a8-{x/all 
o~ 

Al.4.14 

2 2 
Expanding in a Taylor series about the point [(a - x )/a8] 

it can be demonstrated that L = o. It then follows from 

Al.4.12 that : 

I(a,~) = +cosh[h(a,~,x)] - COSh-l[-h(a,a,x)] Al.4.l5 

The arguments in this relation are positive since it has 

been derived from results obtained earlier in which the 

arguments were arranged to be positive. 

Finally relations Al.4.8, Al.4.l0 and Al.4.l5 

may be summarised in the single relation : 

I(a,~) = H(a,~,x) - H(a,a,x) Al.4.l6 

where H is defined by relation Al.3.1 



Al.5 To evaluate the limit L = Lim(c-x) H(a,c,x) 

This can be written in the form 

-1 
L = Lim H(a,c,x)/(c - x) 

x~c 

The numerator and denominator both tend to infinity 

and it follows that the limit is equal to the limit 

of the first derivatives. Thus from Al.3.7 

L = Lim [(a 
2 2 2 2 1/2 

- c )/(a - x )] (c - x) 

From which it follows at once that 

L = 0 
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Al.5.1 

Al.5.3 



Al.6 To evaluate the integral I g (a,S1-

Now f3 
Io(a,S) - / H(a,c,x) dX 

a 

Let 10 be the indefinite integral: 

10 =! H(a,c,x)dx 
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Al.6.l 

Al.6.2 

Using Al.3.7 and integrating by parts Al.6.2 becomes 

J 
2 2 2 2 1/2 

10 = (x-c)H(a,c,x) + [(a -c )/(a - x)] dr 

2 2 1/2 -1 
= (x-c) H(a,c,x) + (a - c) sin (x/a) 

Suppose now that (c-x) does not change sign but is 

always either positive or negative throughout the 

range of integration, then from Al.6.3 

Al.6.3 

L
-- 2 2 1/2 -1 J~ 

Io(a,S) = (x-c)H(~~) + (a - c ) sin (x/a) 

Al.6.4 

In the cast:: where (c - x) changes sign, that is where 

c is contained within the range of integration it is 

necessary to write : 
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Al.6.5 

Then using the relations Al.6.4 and Al.5.) to 

evaluate Alo6.5 it is shown that Al.6.4 applies also 

in this case. Thus Al.6.4 is the completely general 

relation. 

Al.l To evaluate the integral I, (a , @) 

f3 
Now 1,(a,~) = ! (x - c) H (a,c,x)dx Al.l.l 

a 

Using Al.6.3 and integrating by parts Al.l.l becomes: 

~ ( 2 2 1/2 -1 )~t 
1 , (a,f3) = L(x-c) (x-c)H(a,c,x) + (a - c) sin (x/a) J 

a 

/

f3,__ 2 2 1/2 ] 
- L(x-c)H(a,~,x) +(a - c) sin (x/a) dr Al.l.2 

a 

f3 -1 
Now / sin (x/a)dx 

-1 f3!~ 2 2 -1/2 = [x sin (x/a) l - xC a - x ) dr 

a a 
2 2 1/2 f3 = [xsin(x/a) + Ca - x ) 1 Al.7.3 

a 
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It therl follows from Al.7.1, Al.7.2 and Al.7.3 that 

r 2 2 2 1/2 -1 
2I(a,~) = L(X-c) H(a,c,x)-c(a -c) sin (x/a) 

I _f' 
2 2 1/2 2 2 1 2 l 

-( a -x) (a -c) J Al.7.4 

a 

Al.8 To evaluate the nonsymmetric integral 

Def'ine : 

Al.8.1 

where a < ~ belong to the interval [a,b] and x also belongs 

to this interval. Using the method of' completion 

of squares this becomes : 

~ L~ 2 2Jl/2J~ [1;1 2Jl /2 Ia = (b-a) 14 -(x-{b+aj/2) reb-a) /4-(y-(b+a)/2) 

-1 
(y-x) dy 

a 

Al.8.2 



Now writing 

(b+a)/2 

(b-a)/2 

y-6 

x-e 

J 

= r 

= s j 

relati on Al. 8.2 can be wri tten in a symmetric form 

as follows : 

~ 2 2 1/2!~-6 2 2 -1/2 -1 
I = [¢ - s 1 [~ -~ 1 (r-s) dr 
a 

a-6 

where (~ - e)«~-6) belong to the interval [-¢,¢1 
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Al.8.} 

Al.8.4 

Al.8.5 

and s also belongs to this interval. Equation Al.2.5 

is now in the general form of Al.4.1 and the general 

solution Al.4.l6 may be applied. 

~ 
I = H(¢,~-6,s) - H(¢,a-e,s) 

ex 

Thus 

substituting for B ~ and s from Al.8.3 and Al.8.4 

and then using Al.3.1 and Al.2.l gives : 

Al.8.6 
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H(¢,r3-0,S) = H({b-aj/2,r3-1b+aj/2,x-tb+a)/2 ) 

=COSh-1(1[(2r3-b-a)/(b-a)]-[2(r3-a)(P-b)/(P-X)(b-a)]I) 8 AI •• 7 

H(¢,a-O,s) is found similarly and the value of 
P 

I is found by substitution in AI.8.6. 
a 

AI.9 To evaluate the sum 8 1 

Now 

sin (nO) cos (n¢) 

exp(in¢) = cos(n¢) + i sin (n¢) 

exp (i~) = cos(nO) + i sin (nO) J 

AI.9.1 

AI.9.2 

~hus it 1'0110ws that 8 1 is the imaginary part of' some 

complex ~ction 8 1 where : 

- 1/2~ exp(inp)[exp(in;) + exp(-i~;)] 
n=o 
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This may be written 

co 

\' C n n i 
8 1 = 1/2 ~Lexp (i[O + ¢]) + exp (i[O - ¢])J Al.9.4 

n=o 

Using the relation 
(Xl 

\' -1 
zn = (1 z) A1.9.5 

L....J 

n=o 

A1.9.4 reduces to 

r -1 
= 1/2: {I - exp i (8 + ¢) 1 + {I - exp 

L 
i (8 - 9'>)} -1 ] 

A1.9.6 

Introducing a common denominator and dividing numerator 

and denominator by exp(i ~, it ~ollows that 

8 1 = 1/2 L2 exp(-i8) - exp(-i¢) - eXP(i¢)] / 

[exP (-i8) - exp(i¢) - exp(-i,) + exp (it}) ] A1.9.7 
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Now since exp(iO) = cos 0 + i sin 0 this becomes 

61 = 1/2 [cos 0 - i sin 0 - cos ¢]/[cos 0 - cos ¢] 

Al.9.8 

Then taking the imaginary part it follows from Al.9.2 

that 

S = -[sin ~2 [cos 0 - cos ¢] 

Al.lO To evaluate the sum 8 2 

00 
-:-." 

8 2 = (l/n) cos (n¢) cos (nO) - L; 
n=l 

Adopting the 9rocedure or the previous section) 8 2 

is the real part of a complex function 

00 
\' 

Al.lO.l 

8 2 :. 1/2; (lin) exp( in¢) [exp( inO) + exp (-lnO)] 
~ Al.lO.2 
n=l 
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This may be wri tten 

00 

S2 = 1/2 ~[(l/n) expn(i[¢+8]) +(l/n) expn(i[¢-8]j Al.lO.3 

n:::l 

Usin6 the relation 
00 

z% :::.en (l-z) 
L.; 

n=o 

in which tn is the natural logarithm it follows that: 

S2 ::: 1/2 [tn(l- exp{i[8+¢1})+ tn (1 - exp {i[8-¢)})] 

This may be written: 

Al.10.4 

Al.10.5 

Al.10.6 
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Now t~ing the real part it follows that: 

Al.lO.7 
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ApDendix II 

A2.1 The half' space problem in plane strain 

Choose standard axis (X1,Ia) and consider displacements 

X2 > o. 
These displacements are required to satis~y the simultaneous 

dir~erential equations : 

2 
(A + ~) 06/0X i + ~~ u i 

i = 1,2 

where 

= o A2.1.1 

A2.l.2 

is the dilatation and A,~ are Lame's elastic constanta. 

The strains are : 

A2.1.3 

The relations between the stresses and strains give 

2 

EOU1/0I1 = (l-V )~1 -Vel + v) ~22 A2.l.4 

2 

EOU2 /OI2 = (l-V )~22 -vel + v) ~11 A2.1.5 

'Nhere v is poisson' a ratio and E is YOWlg's modulus 
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It follows that the stresses are given by 

A2.1.6 

A2.1.7 

A2.2 Displacements for which the ~'2 stress is zero 

Suitable displacements satisfying the equations 

A2.1.1 and dying away as Ia ~ 00 are given by the relations 

U~U1' = [~2-(1-2V)]exp(~a)[B(')sin(~1 )+C(')COS(~1)] 

A2.2.1 

U~U2' = [~a+2(1-v)]exp(~2)[B(')cos(~1 )-C(')si~1] 
A2.2.2 

, is any constant and these relations represent different 

systems for each distinct value of ,. From equations 

A2.1.6 and A2.1.7 these displacements give rise to stresses 

U~22 = -2(~2 + 1) exp(-~2)[B(')cOS(~1)-C(')sin(~1)] 

A2.2.3 
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U~11 = 2(~2-2) exp(-~2)[B(~)cOS(~1) - C(~)sin(~1)] 

A2.2.4 

and from the relation: 

A2.2.5 

it follows that 

A2.2.6 

On the boundary of the half space X2 ~ 0, that is 

on X2 = 0, relation A2.2.6 shows that the shear stress 

vanishes and so the equations represent a system on which 

only normal tensile stresses are applied to the boundary 

A2.3 Displacements for which the ~22 stress is zero 

Adopting the procesure of the previous section 

U~U1' = [~2 - 2(1-v)]exp(~2)[B(~)coB (~1 )-C(~)sin(~1)] 

A2.3.1 

U~U2~ = [~2 + 1-2v] exp(~2)[-B(~)sin(~1 )+C(')COS(~1)] 

A2.3.2 
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are suitable disDlacements giving rise to stresses 

• 

U~11 = -2(~2-2) exp (~2)[B(~)sin(~1) +C(')COS(~1)] 

A2.3.4 

A2.3.5 

Here equation A2.3.3 shows that the normal stress on 

X2 = 0 is zero and so the equations represent a system 

in which only shear stresses are applied to the boundary. 

A2.4 The stress runction 

In the theory of plane strain it is known that the 

stresses may be derived from a function X satisfying the 

byharmonic equation 

4 

'V X = 

using the relations 

. . 

o 

2 2 
d x/OX2 = ~11 

A2.4.1 

= ~22 
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A suitable function giving rise to the stresses 

A2.2.3, A2.2.4 and A2.2.6 is 

A2.4.5 

and a stress fUnction giving rise to the stresses 

A2.3.3, A2.3.4 and A2.3.5 is : 

2 

~~ X = -2~2 exp(-~2)[B(~)sin(~1) + C(~) cos ( ~~] 

A2.5 Antiplane Strain 

In this system, referred to standard axes, 

the only displace men t is of the form U3 (X1 ,xa) 

A2.4.6 

and is normal to the X1,Xa plane. From the relations 

for cOIDpatibili ty 01' displacements it is required 

that 

sa 
'\1 u = 0 A2.5.1 



The relations 

give rise to the stresses . . 

~11 = ~22 = ~33 = ~12 = o 

A suitable displacement satisfying A~.5.1 and dying 

away as Xa -. 00 is 
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A2.5.2 

A2.5.4 

A2.5.5 

u~ ~ Us = 2 exp(-~2)[B(~) cos (~1) - c(~) sin (~1)] 

A2.5.6 

and from A2.5.3, A2.5.4 the stresses are 

U~23 = -2 exp(- ~)[B(') cos (~1) - C(') sin (~1)] 

A2.5.7 

U~13 = +2 exp(-~a)[B(') sin (~1) + C(~) cos (~1)] 

A2.5.8 
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A2.6 Generalised Equations 

In each case superimposing the stress systems 

obtained for various values of ~ it is possible to 

obtain a stress field satisfying certain conditions 

of stress and displacement on the boundary and dying away 

as Superimposition may be carried out 

by means of Fourier sums or integrals and simultaneous 

equations are obtained involving one stress and one 

disnlacement comnonent. - ~ 
It will now be shown that these 

equations take the same form in each of the three systems 

discussed. 

Make the following definitions 

A2.6.1 

u A2.6.2 

A2.6.3 

For a system in which ~12 is zero on the boundary 

Xa = 0 set 

~a2 = -0 A2.6.4 

= u( 1-1.1 )/~ A2.6.5 



Then on X2 = ° equations A2.2.2 and A2.2.3 reduce 

to equations A2.6.2 and A2.6.3 respectively. 

Similarly fbr a system in which (J22 is zero on 

X2 = ° Set 

Then on X2 = 0 equations A2.3.l and A2.3.5 r~duce to 

relations A2.6.2 and A2.6.3. 

Again in the case of antiplane strain set . . 
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A2.6.6 

A2.6.7 

A2.6.8 

A2.6.9 

Then equations A2.5.6 and A2.5.7 reduce to A2.6.2 and 

A2.6.3. 

To obtain a Fourier series let B(~) C(') be defined only ror: 

and set 

B(~) 

C(~) 

2 

= nN2 Bn/2l J 
= n:IT Bn/2l 

A2.6.10 

n = 0,1,2, etc. A2.6.11 
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where and are constants. Then 

f'rom A2.6.2 and A2.6.3 

00 

~ 
u = ;..[ Bn cos( 1TIlr1 /t) A2.6.12 

n=o 

Integration with respect to ~ to obtain Fourier integrals 

gives 

00 

u = (2/U) ! [ A(~,X1 )/~ ]d ~ A2.6 •. 14 

00 

(J = (2/u) J 
-00 

These latter equations also follow directly f'rom the 
l1)" 

theory of Fourier Transforms (Sneddon 1951). 

A2.6.15 
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Appendix III 

Hult McClintock Theory or a Relaxed Notch 

(,:... 

Hult and McClintock (1957) have discussed the plastic 

relaxation at the root of' a sharp notch or depth c and angle (} 

under condi tions 01' anti plane strain. The analysis used 

to determine the extent of the plastic zones is not given 

in detail in their paper although the general procedure is 

indicated. 

Following this procedure the complete analysis has been 

developed here and in principle the equation or the elastic 

plastic boundary may be determined. Analytic solutions 

for the boundary would be unduly complex and recourse to 

numerical techniques is necessary, except in a rew special 

cases. 

Now W(X1,X2) is a working fUnction, ¢(X1,X2) a stress 

potential and P the applied ~2a stress at inrini~. The 

equations of stress (2.2.2, 2.2.3 and 2.2.4 of the main text) 

may be wri t ten in the form : 

A3.1.l 

A3.l.2 
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A complex stress vector is defined by 

and q = R exp (ia) is an arbitrary point of the elastic 

plastic boundary. In the elastic region ¢ satisfies the 

Laplace equation, but this domain is unknown so that solutions 

for ¢ are not easily available. The equations in the 

elastic region are therefore transrormed into equations 

in stress space. 

A3.2 Transformation to stress space 

Make the following definitions 

A3.2.l 

A3.2.2 

A3.2.3 

From the first part of equation A3.l.1 and the second 

part of A3.1.2 it then i'ollows that 

A3.2.4 
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The second parts of equations A3.1.1 and A3.1.2 are 

Cauchy Riemann equations in (pw) and (~ + PX1). It 

follows that these are conjugate harmonic runctions and 

consequently W is an analytic function of Z. Therefore 

A3.2.4 may be written 

-;:, = oW/oZ A3.2.5 

Also Z must be an analytic function of~' and therefore 

the derivative of some other analytic functicn ~ (~,) 

defined for values of' stress in the elastic region : 

Z = oA' (0=' )/00=' A3.2.6 

Moving the origin of the ~ space to the point (O,+P) 

~ =~, - iP = ~13 - i~23 A3.2.7 

equation A3.2.6 becomes 

z - oA(O=)/i£- A3.2.8 

A3.2.7 shows that ~ is the conjugate of the complex stress 

vector defined by A3.1.3. 



Letting ~ be the imaginary ~art or A 

I1 = O~/Ocr23 
I:a = - O~/CXr13 

2 

'V ~ = 0 
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A3.2.9 

A3.2.l0 

A3.2.l1 

These equations in ~ are of' the same 1'orm as the stress 

equations in ¢ (2.2.2, 2.2.3 and 2.2.4 or the main text.) 

Now ~ is a runction of stress derined for stresses in the 

elastic regions and in what follows ~ will be seen to have a 

rather simple set of boundary values which is not the case 

for tile real ~art or A. 

In the elastic region the only points at Which Icrl = k 

are on the elastic plastic boundary of the Z s~ace (fig I). 

Using polar co-ordinates with the origin at the notch tip, 

the Radius R of the point q = (R,a) of the boundary is given by 

2 Ii a 
R = [I1 + I:a l lcrl = k A3.2.l2 

From A3.2.9 and A3.2.l0 it is clear that 

R = l 1 grad (~) I ] 
IPI = k A3.2.l3 

This equation in cr space is again similar to an equation of 

the Z space, namely the yield criterion 

k = [ Igrad (¢)I ]IZI = R A3.2.14 
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A3.3 Method of solution 

Consider the map of the elastic region of z space into 

the stress space (fig I, fig 2). Along a free surface the 

traction is zero. In the stress space this implies that, 

with the relative orientations of the diagrams, the complex 

streffivector in ~ space must lie parallel to the free Durface 

of the z space, since the ratio of the stress components 

is fixed. 

Now in the yielded region the complex stress vector 

has a constant magnitude k and, again with the relative 

orientations of the diagram, a direction in ~ space perpendicular 

to the radius vector in z space. The continuity conditions 

then imply that this relation holds on the elastic plastic 

boundary, so that the map of the point q = (R,a), on the 

edge of the elastic region in z space, is the point q = 
(k,{U/2] + a }) of ~ space. The elastic region of fig (1) 

maps onto the enclosed region of fig (2), since outside this 

region the magnitude of the complex stress vector may exceed k. 

Furthermore, since the complex stress vector is perpendicular 

to the radius in the plastic region, the stress increment 

between two neighbouring pOints will lie parallel to this 

vector. Therefore, continuity also implies that in the 



neighbourhood of the el&stic plastic boundary, in the 

elastic region, as in the plastic region, the stress 

increment lies parallel to the radius vector. 
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The boundary values o~ ~ are obtained by integrating 

Now the continuous arc BCDEF in ~ig (2) corresponds either 

to ~ree sur.l."ace or to plastic boundary in ~ig (1) ani in 

both cases the stress increments in ~ space have been shown 

to be parallel to the radius vector in z space. There~ore 

~ is constant over this arc since X1/X2 = ruJ23/&r13. 

Setting ~= 0 over BCDEF it is at once apparant that over 

AB and FG : 

1/1 = - CO""23 

since &r13 = 0 and ~rom fig (1), X1 has the constant 

value c over these arcs. 

Denoting the real part of ~ ~y R~, then in stress space 

the boundary values o~ 1/1 take the form 

t = i~ 
1/1 = 0 

R~ = 0 J 
~ ~ 0 
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Now it is required to find grad (~) at the elastic plastic 

boundary. To this end suppose that the elastic region 

of ~ space is mapped on to a semi-circle in T space say, 

with polar co-ordinates 

(t,y) where 0 ~ t ~ 1 

-11'/2 i. Y i. 'U/2 

and in such a way that a selected point q on the elastic 

plastic boundary maps on to the origin. Then a t satisfying 

the Laplace equation in T space is : 

t(t,y) = 
L.J 
v=l 

cos (vy) + vr~ sin (vy) ] tV 

Using the Fourier Theorem 

'U/2 

t~ = (2/1T) ! 
..Jff/2 

~(l,y) cos (vy)dy 

A3.3.5 

A3.3.6 

Since ~ is constant on the boundary near q it is constant 

in the neighbourhood of the origin in T space in the 

direction y = u/2. Therefore grad (t) in T space is equal 

to (o~/ot)y = 0 and from A3.3.5 



grad (l/I) = (o~/ot) 

Thus 

T y = 0 
t = 0 
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11=1 

grad (l/I) 
t=O 

1T/2 

= (2/1T) I ~(l,y) cos y dy A3.3.8 

-41"/2 

To determine grad (~) in T space it is necessary to know 

l/I(l,y) on the boundary and this requires knowledge of th2 

mayging function. 

A3.4 The Conformal transformations 

The following series of conformal mappings are 
110 

compiled from a dictionary (Kober 1952). Initially 

the ~ space is mapped on to a circle in t s~ace split 

along the X1 axis where X1 ~ O. To do this ~ space 

is rotated through an angle -11"/2 and the arms EF, Be are 

then rotated to lie along the X1 axis. Finally a bilinear 

transform shifts the coincident points GA to the origin. 
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Define = p/k 

a = ~ 1(1T - ~) 

then the transformation from ~ sDace to ~ space is 

a a a 
~ = [(-i~/k) - ~ ] I [1 - (-i~/k) 1 

the derivative is 

and the inverse is 

The divided circle is opened into a semicircle and 

then transformed into a complete circle in TJ space. The 

transformation from' space to TJ space is : 

the derivative is : 
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and the inverse is 

2 2 2 

~ = [ry + 1 - J{2(ry + 1)} 1 1 [ry - 1] 

The ry space is then rotated through an angle p so that the 

point q lies at (+1,0) and the circle is transformed back 

into a semicircle. Setting : 

ry' = ry exp (-i p) A3.4.9 

These transformations are expressed by : 

A3.4.10 

the derivative is 

A3.4.11 

and the inverse is 

2 2 
ry = exp(-ip) [r - 1 + 2r11 [7 - 1 - 2r1 A3.4.12 

In general the ro tati on p is not easily de termined. 

It is first necessary to fim the map of the point q in 

w space on to the ry space. This is found by setting 
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~ = -ik exp(ia) and combining equations A3.4.3 and A 3.4.6. 

The argument or the point so round is minus the rotation p. 

However ir q is taken at the special point D then it rollows 

at once that 

p = 'IT 

A3.5 To Determine R(o) 

In order to determine grad (t) at the origin or 

T space from equation A3.3.8 it is necessary to know 

1jr( l,y) for : 

A3.4.13 

A3.5.1 

Now 1jr is known in terms of ~ from relation A3.3.3 and so 

using the transformations 01' the previous section the 

values of ~ corresponding to the points T in relation A3.5.1 must 

be found. From A3.4.12, A3.4.8 and A3.5.1 the relation 

between' and y for p = 'IT is : 

r- ( J ' = L l - 4 exp (iy) + ./14[exp(2iy)-l]2 + 16 exp 2iy} / 

-, 2 
-2{exp (2iy) -llJ 
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= -(-cosy)/(l + cosy) 

This particularly simple form is only obtained for p = 1T. 

Substituting into A3.4.5 gives: 

1/a 

~ = ~[~(l+ cos y) -(l-cos y)J;[ (1 + cos y) - Xa(l-COS y)J] 

By A3.3.3 t is zero at points where ~ is not purely 

imaginary, that is at points where the expression in square 

brackets in relation A3.4.5 is not real and positive. 

These are the points at which 

a a 
Icos yl >( 1 - X )/(A + 1) 

that is 

I "( I -1 > sin b 

a/.. a 
where b = (2A /A + 1) 

A3.5.6 

The range of the integral in A3.3.8 may thus be restricted 
-1 -1 

from (-1T/2, +1T/2) to (-sin b, + sin b). 

Then from relations A3.3.3, A3.3.8, A3.5.4 and A3.5.6 

it follows that: 
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sin-1b 

grad(t)=(2Ck/W)j [{Aa_l+(Aa+l)COS y}/11-A+(A
a

+1)COB y}lcosydy 
t=o -1 

-sin b 

A3.5.8 

Using the substitution: 

xb = sin 'Y A3.5.9 

and se t ting : 

J a 2 a2 aX a 2 a 2 ~ g(Ax)1-J1 (A +1) -4A x l-l+A J{(A +1) -4A x 1-1+A J 

A3.5.10 

it follows that: 

a/2 a 1 l/a 
gr~~~t) = (i8ck/U)(A /A +1)/ [i(Ax)] dx A3.5.11 

o 

The gradient of t in ~ space is then obtained by multiplying 

by the factor 

(d'T/dtr) =(01'/01]) (01]/0,) (o2;;/w) 
(0,1) (-1,0) (1,0) (0,1) 

A3.5.12 
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Now from A3.4.11 differentiating numerator and denominator 

(ow/o~) = 1/4 
(-1,0) 

from A3.4.7 : 

(o~/o~) = -1 
(1,0) 

A3.5.l4 

and from A3.4.4 

a a 
(o~Or) = ia[l+A ]/k[l-A ] 

(0,1) 
A3.5.l5 

so that the radius of the pOint D in Z space is 

a/2 a 1 l/a 
R = (ca/u)(2A /l-A)[ [g(Ax)] dr A3.5.16 

o 

\Vhich is equivalent to the formula given by Hult and 

McClintock. 
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Appendix IV. 

Programmes 

This a:9:gendix contains the s.!}eci:fication and transcript 

of the programmes used :for certain of the numerical calculations 

in this work. All 9rogrammes are written in the Manchester 
71 

Mercury Autocode (Brucker 1961) and have been run only on the 

Mercury computer at Sheffield. 

4.1 Periodic Array 01' Cracks 

The programme calculates stresses or displacements 

for a triangular mesh of values o:f clL and aiL 

where 2c is the crack length, a-c the length 

01' the plastic zones and 2L the fleriod 01' the array. 

The points of the me sh are segara ted by a di stance h = L/t 

where is an integer. The range o:f integration is 

divided into 4i intervals, where i is an integer 

and the integration is carried out using Simpson's rule. 

Order o:f Operation 

(i) Read two unsigned integers :from a data tape 

in the order 

1 

(ii) Set values of elL ranging from 
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L - 2h to h in ster)S of (-h) • 

(iii) Set values of aiL ranging from (L-h) to 

(c/L + h) in steys of (-h) • 

(iv) Halt. 
2 

(c)/L (v) Calcula te disp lac em en ts (rr A/erih) ~ 

at all c and a if hnndkeys are 

equal to 3 
or 

Calcula te stress ratio Pier at all 

c and a i:f handkeys are equal to 4. 

(vi) Return to (iv) 

N.B. Output is in the form of a table in which :fixed 

clL :form the rows and fixed aiL the columns. The 

:gage is 5 numbers wide and thus the rows occupy several lines 

of pr in ting. Separate rows are separated by double spacing. 

The values of clL and aiL for which calculations 

are made are printed down the side and across the bottom 

re spec ti vely. 

Pormulae 

The integration uses Simpson's rule. Over sufficiently 

small regions this approximates to the integrand by means of a 

parabola. Such an approximation may not be used over any 

region containing clL since the integrand is singular. 

However the singularity is known to be logarithmic and it is 

possible to use the followi ng a:gproxirna ti on to the integrant 
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over the intervals [ c, c + 2hl 

where F1 am F2 are the known values of the integrand 

at c + h and c + 2h respectively. The integral 

over this region is then 

+ 

A4.2 Displacements from a Thin Crack in a Work Hardening 

Material· 

The behav iour of the programme is governed by a system of' 

labels in Chapter 3. These labels may be fed into the 

machine ei ther on tape (label (2) ) or via the hand keys 

( label (0) ) . Entry to the programme is at label (12) 

of Chapter 3. The general sequence of' behaviour at each 

label is given below. The f'ollowing number s may be read 

f'rom a data tape 

P unsigned integer ; label number 

M unsigned even integer the number of intervals 

c 

x 

in the integration process, 

unsigned rational number 

unsigned Ire. ti onal number 

ratio cIa 

work hardening constant 
2 

Wb/1T A 
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Order or Operation 

Labels in Chapter 3 

1) (i) Read M and C and print 2, M am C 

preceded by 2 inches of blank tape. 

(ii) Evaluate the (M + 1) x (M + 1) matrix Aji for 

cia = C 

(iii) 

(iv) 

(v) 

Print the elements aO
i J I 

Store the elements aO i J • 
Print preceded and followed by blai.k 

tape, (N.B. The output from this stage is suitable 

for re-input as data), 

(Vi) Go to label 10) with M, C and Aji set. 

2) (i) Read M, C and the (M + 1) x (M + 1) matrix Aji• 

6) 

(N.B. That is the tape produced in the previous 

routine) , 

(ii) Pass control to label 6) with M, C, and A j i set. 

(i) The constants M, C, and must be set 

when control reaches label 

(ii) Print the title and the programme constants M, 

C preceded by captions. 

(iii) Calculate, store and print the (M + 1) vector 

S' ° [displacements ror non workhardening easel I 

J 

(iv) Read and print X , 
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(v) Evaluate, print and store the (M + 1) 

vector Sj [The disQlacements in the form 
2 

(ff A/~1 b)(~ (x)/a)] corresponding to the 

work hardening constant X. 

(Vi) Calculate the stress ratio and print 

preceded by 3 intermediate numbers. 

[N.B. is destroyed M, C 

are preserved ]. 

(Vii) Halt. Read handkeys. 

(Viii) If hanQ~eys are equal to 16 repeat from (iv) 

otherwise go to label 10) wi th M, C and 

10) (i) 

(ii) 

11) (i) 

(ii) 

12) (i) 

Aji set. 

Hal t. Read handkeys. 

Jump to label set on handkeys. 

Read M and C • 

Go to label 10) • 

N.B. This may be used on a data tape 

following re entry 

when the matrix 

is then passed 

c and 

Read p. 

A .. 
lJ 

to 

by H.S. 9 and 

Aij is set. 

label 10) with 

set. 

(ii) Pass control to label P. 

Formulae used 

1 I.T.B. 

Control 

M, 

In calculating the Matrix it is necessary to 
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evaluate the integrals and (5.3.11 

and 5.3.12 respectively). These calculations are based on 

the follmvi ne; re 1a t ions 

2/ yH( 1 ,y ,x )dy=(/ -x 
2 

)H( 1 ,y ,x )+J( 1-x 
2 

Hx sin -1 y-J( 1-y 
2

) 1 

-1 
!H(l,y,X)dY= (y-X)H(1,y,x)+J(1-X

2

) sin y 

These follow simply, integrating by parts and using 

Al.3.7 for the derivative of H. 

A Tyuical Operating Procedure. 

SUflPose the data tape is shown in the t'orm 

If denotes manual operations the procedure is then 

Read 1, M, C: calculate and print Halt, 

Se t han<li\.eys to 6 pass Hal t. 

Calculate S' . 
J 

Read 

Hal t I 

* Set handkeys to 16 : pass Hal t , 

Read X2 : calculate Sj and p/o- 1 Halt, 

* Set handKeys to 16 : pass Halt. 

Read X3 : Calcula te Sj and p/o-1 Halt, 

* Set handkeys to 12 : pass Halt, 

Halt. 



203 

Set handKeys to 12 : pass Halt, 

Read 1, M, C calculate and print Hal t ~ 

etc. 

Alternatively one might have data of the form 

2,M, C, Aji' X1 , X2 , Xa , 2, M, C, Aji' etc. 

The procedure would be as above. However, after the first 

label one may omit all subsequent labels and set these via 

the handswitches in the final operation of the cycle, instead 

of label 12) • Further any combination of these two 

forms may be used. 

A4.3 Thin Crack Relaxing along Two Planes. 

X1 = a is the projection of' the tip of the plastic arc 

onto the axis. The half length of' the crack 

is unity. The range 

intervals and the range 

[0, a] 

[0, 1] 

is divided into 

is divided into Q 

intervals. The plastic arcs are inclined at an angle 

ex radians to the pl ane of the crack. 

P, Q are integers, ex a real number. 

Order of Operation 

(i) Print Title, 

(ii) Read data in the order P Q ex . 
t 

P 

(iii) Calculate the dislocation concentrations under stresses 

p = 1, (J = 0 and P = 0, (J = 1. 
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(iv) If, and only if, handkeys are set equal to 16 

print the dislocation concentrations calculated in 

(iii). 

(v) Print cia, stress ratio and the dislmcation 

column vector. (The density in the form (.~~1b)D(x)] 

(v) Print the relative displacement at c across 

a single plastic arc. [Displacements in the form 

( vi) 

(vi) 

Halt I 

Pass hal t re turn to (i) I 

Formulae. 

The programme uses only standard formulae for the stress 

due to a dislocation and the rotation of the stress matrix. 

Footnote 

t Owing to a programme error the stresses are set 

negative and all dislocations have the wrong sign. 

There is a programme error in this section of the 

calcula tion. These quanti ties have been 

determined using a desk calculating machine. 
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A4.4 Transcript 

Periodic 8.rray of cracks. 



TITLE 
"" .... ,. r" .... ,..~' ~,.., (" f""' r:' ,--,0';0 " ' . . 1/.:. ••• / 1.1. ,..e". /,' '1-

C!!APTEr:1 
:-"'100 

1)P = r~ (-1 h 
C = p~ 
:rACE 
pr; C!T ( r: ) 0 , 1 

T = 5 
-- P+ 1 

1'"\ = L(-d~: 
" n = IV' 

:-1 = A-e 
C'= r: 
, = 4 T U 

II = P I I 
II ./ U 

II = An v 
l' = en . 

= Hn 
~ = {fe''):,(n) n. 

I ' 

C = I"""(')t'" (,,) 
'/ ~'" ", .. , I 

V 

" "" A-1 
Y = C-1 

" LJ = X-2Y 
" = Dlx L.i 

r. = y_v 
" r. 

L. = 2EY/~ 
I~ = 1 (1) J I. 

V = ",r('\(" ("I~+V , .. , '\')" J \ I J 

V = X-(,; 
" v = n-E/X i\. 

Y = XX-1 
J1WP 3 ,0>Y 
Y = I/SI')r.T(Y) 
3)'1" = X+Y 
Y = t:Jr~OD(Y) 
Y = I/L0~(Y) 
Fr< = ('moD ( Y) . ' 
r:CPEAT 
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l!:! f'! ~ 
. ~j, .j 

y ~ 0 

~ = .! ( -" ) 'f 
v = r:-(V-"'+,r.'''-1·'+~'' ,\ , ,. ~ I'}' ,'- J _.' 

y = y+~X 
nEPEAi 
~~ = F1-Fz 
~"= Xr+r2 
y = Y+2HX 
"'"'t"i(Y~ ~ ro. ! .• #0, j 

C = r: 
i ~ T-1 
,Jfrrp 'b i~o 
;J:HJ .. rr:E 
1" ",. o{lho 
~PACF: 
r:fPF!.T 
"'!' 1: 5 
.j.) PfPt. A"!" 
r:r::Ht T f"E 
t!::' Tt J r':E 
~P!':AT 
f..cp.o~~7/6 
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. "'rPI Y"1"'" ... J .• ~ J ~ t (-

r:r::~ ; L H ~F: 
; :r.' .'L T;:f': 
C/~P-r Tn:: 

::r:~JL T~~E 
: ![\ lI" J! ,:F: 
C!.PiYor: 
-rl~~t.r ~ J'/ I!:':' 
x -, 1-0. 5/~; 
f:nn. }iT 

\I f T: ," 

]1!' ' 
p M( . , 

j ) 

r· ,... . , 
"'M\~ 

Y"""~~T'.r)Oll 
..... ::: o. '5T:C 

t'J~T""~1 ,.. 
"" l .' ' .... 

\. e ""+1 
T "" r: . .J 

" "'" r ' -. , .. ~ ~. - ) . 
'~ ... n. 5~TI~ c, 

!" .... T .. '·' " "" r. .' .:. • ~ .. /1. / 

~ ::: elf, 
y "" l-XY 
Y _. l~J~"?i ~y) 
v ei' - " 'v , .. '~ ,-., ,~r r;r i \: ~ .• ~ , ': : 

v e !" ,- . ' 
rrT'''''(X;o,3 
"!' ::: i-1 
" t'~'" "\" .... ,-,t J .,' ·l, . ".. () 

~·f:'·~L , ~~~ 
"!' "" 0(1)10 

~rJJ'':f: 
;: ':" E A''!' 
T ~ 5 
(~ ) :- p-f'F-r~ i 
~:E~'LH~E 
~~E1.rri J ~~r: 
~EPP-J,i 
j~Cf'. (';~ ",7/0 

(.'"".'r ., 



208 



~). , -' 

-~ ~ ~r"'rr . "" .. f. ".. (I 
---1CC' 

"r- __ '0""" f"'\ ,,.. .~, 1, -- 1/ .')1 

i ,.,. 1/':-
_'Mr~""! ' ~ ) •. _ J '1.' \ .) 

:-.r:Af) ( T) 
,.. '- IlL 
L "" L-l 
~~ = L-1 
L" 'r~r (") 
~)p "'" c~dr 
~ :C' :1 .. J ~ ~E 
:-.rrr:t..,. 
p - 0 ~'f' ~ 
~.-f:' 
, : i, 1_ 

~r:.~f.' .~~ 

::""''T t~·~ 
,'!.-:'''',''.'r Cf" ,...~,~~!':~. r:' 1~f}r",\('q1n;T~~ fl." "W' yr": 

!11 f 

. 'I 

rI,C :0 
,'~L' G V 

; :~' It 1 ;;!! 
;:~':t..T::~ 
::l=:' °L T"~ 
;:r:' ,"1 .. T '~r: 
!.r:.r,S~l /1 
7'T "" O(dl0 
:r,~,.'"'!: 

:-:EPF.:f.i .,. - ~ 

:: = {( -1 )~. 
v _ ,"''' 
~M -,Hi:' ,'v 'C 1 
• .. :. \." ~ j , 

SPArE 
... ,., ~. ,.. t:' 
..... ,j :-'\\'", .. 

T = "'!"-1 
Jtn~p 5 ,T;'!o 
;:E~:I_ J ::r:: 
T '" .. ,(d!o 
Sf' '~(7E 
:-CPf::AT 
T ,.,. S 
5 ) I'" r:rr::1, T 
~)'r,',tT 
nf .. ·:n;~EY~("; ) 
Of) _ " 
l - oj I 
.f 'u'" , ~ , ) ,-,,)1'."- " •. 

4'A~r"~~1/7. 

,.., ~t:"e' 
..• ' /" I· ~ 

, l' ..... 

'. '" t'_ . 
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Trcmscript 

:;::.isplecer:ient s frOlI' f' t bin crack in a workbardenine material 



TITLE 
e080 S\.JJ;:J')E~:. D'm.A.A/! 

TITLE 
DJSPLACf:r1Er:T~ rrOf1 A TJrn~ Cr.AC1(' HI A t~ORJ<HAr.DENn=~ r~ATERtAt 

u .. 111 
V ... 111 
W ... 111 
G .. 111 
fa' .. 30 

d~ == ,/H 
J==o(1)f1 
U ~ C+JH 
V == 1-UtJ 
JU~1P.2 .0)V 
V == o/SQRT{V) 
.2 ) lJ =;: 'VAR eTA N ( U , v , 
J == o{t)M 
VI = 0 

VI == 0 
y = C+JH 
no == l-YY 
JUMP 3,0)110 
Trt = 'jISQRT(lTo) 
3)Tr2 == t;IARCTAN(111;r) 
X = -U 
T == I-J 
.)X = -X 
lT4 = Y-Y-
113 = 0 
JUMP S!, T==o 
Tt3 = 110/rri4-+Y 
SJTtS == 113Tl'3-1 

T :: 1 

JUMP6,o>Tl'S 
TT,s = qlSQRT{TtS) 
6}n3 :: o/MCD(TT3+ TT S) 
113 = \jILOG(lT 3) 
tt3 :: ,MOD(n 3) 
TrS == YY-XX 
ut :: o.STrSTf 3+VJ 
VI :: lT4TT3+VI 
JtJMP4. X>o 
VI = VlTl+Ut 
REPEAT 
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I :II H{-I)! 
U I :II U I-U ( I - I ) 
VI :II VI-V{I-I) 
REPEAT 
Uo - 0 
Vo = 0 
V{H+I) = 0 
U{H+I) = 0 
I = o(I)H 
Y =- I-I 
Y :II C+HY 
X :II Y+H+H 
VI - XV{I+J)-U(I+I)+UI-yVI 
VI III (1VI 
Y =- IH 
Y =- 899y/c+I 
y :II 'l'SQRT(Y) 
VI III VI/y 
NEWLINE 
PRJNT(VI)0,6 
REPEAT 
NEWLINE 
N =- H+I 
A' .. NN 
X ., IN 
Z ,. IN+A' 
'117{Z)Vo,N 
1f17(X)Vo,N 
REPEAT 
J - o(r)~o 
PUNCH(o) 
REPEAT 
PUNCH (:ao) 
J • 0(1)6 
PUNCH(3 I ) 
REPEAT 
I = 0(r)6 
PUNCH(o) 
REPEAT 
NEWLINE 
NEWLINE 
ACROSSro/3 

'fISQRT 
'l'LO(1 
'fIARCTAN 
CLOSE 
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CHAPTER2 
VARIABLESI 

3)NEWLINE 
CAPTION 
C = 
PRINT(C)o,S 
CAPTION 
M = 
PRINT(M)3,O 
NEWLINE 
I = o(I)H 
X = C+IH 
Y = I-CC 
U == C-X 
V :II C+X 
~MPI, J·o 
Z l1li y/U+C 
A == ZZ-I 
JUMP5,o>A 
A =- IIISQRT(A) 
5)Z • Z+A 
Z =- 'fIMOo(Z) 
Z == 'LO(1(Z) 
Z • 'HOo(Z) 
,)fiI • UZ 
Z l1li Y/V+C 
A • ZZ-I 
JUHP6,o>A 
A :II IpSQRT{A) 
6)Z • Z+A 
Z == IIIHOO(Z) 
Z l1li 'fILO(1(Z) 
Z • 'l'HOO(Z) 
fil • fiI+VZ 
VI - fiI 
NEWLINE 
PRINT{fil)o,5 
REPEAT 

N • H+I 
A Of N 
B Of AA 
C' '" as 
a)REAo{X) 
NEWLINE 
NEWLINE 
NEWLINE 
CAPTION 
YAR. X -
PRINT{X)o,5 
NEWLINE 
X == z/X 
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1f7(C' )vo,r: 
D :: tV 1 9 ( 0, X, A) 
C' :: t:J 2 R ([) , t:, 1 ) 

\f6(C' )uo,r; 
, J = 0 ( 1 )r1 
t~Et1t.. ,NE 
VI = XU, 
P~ T NT (f'J I ) 0 , 5 
Y :: IH 
Y == 899y/C+l 
Y :: !P~QRT( y) 
Uf = tJJ/Y 
REPEAT 
i!EloTL J NE 

TT,3":: 0 
J :: H( -2)2 
P :: J 
TT2 = PH+C 
TT.1 = TT2-H 
nO ~. TTl-H 
TTl :: TTO+TTI 
TT 4 :: ra +~;. 
TIS :: TTg+TTo 
TT6 = 2HH 
TT7 = l1(p-:d-2n(p-.1')+UP 
TT7 :: TT7j-;r6 
r,P, :: tJ(p-2)TT4-2IJ (P-l) TI S+t:PTT3 
ro8 :: roB/nC 
TT9 :: tr(P-2)~lTT2-2fJ(r-.1);:or.!::+trPTIOr.l 
i!9 == TT~/n6 

n3 :: l-TrI')TIO 
TT 4 :: 1 -TI 2 ~ 2 

TT 3 :: \?~QriT ( ro 3) 
Jlmp 4, o>r. 4 
TI4:: IVSQPT(::4) 

§) (TrIO,TT.1l) :: 'VLOG(TT3,TTO) 
C Tr t 2, Tr 13) :: '?LO~, (r. "', TT 2 I 

TT14 :: TToTT3-n2Tr4+r.13-TTll 
TT3 0 :: nJO+TT7TT14/2-TT~TI~+TTaTT~+r.9n13-TT~rrll 

f:EPFAi 
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: :F:lJL n:r. 
pr r ~!i ( T: .)0 ) 0, 5 
: :r':L T ~!F. 
1':20 !=: l-cr 
1.20 = r}SOf'T("":?o) 
r _ ,~,~"::;("'''''A''''~'' ,...., ti20 - '/r\!\' ! r •.. ' •..• 0,\,./ 

PC: t ~:T (T;:2 0) 0 , : 
::[l.'LPT 
~20 = -TI3o/~+"":2a 
pr p:r ( TT 2, 0 ) 0 , 5 
~ !ET 'L I ~~F. 
Y : o_S'!"7 
~20 := Y-T.~O 

~20 := 1.20/V 

PW"Y"i("''''o' r-I., I, ,"" 10,.) 

i!['1L PJE 
;:[I!L J r:[ 
::::"L r ':F. 
JiALi 
r;A~:~!,[Y:'( J) 
J'Jr1 P 2 , J := 1 f 
~,..n"'t"'t'" I ~ rl.': \J·,·,10 .) 

~(~t')ri 
•. .f (,r-
'(L, .'., 

..... " ",,:,. r'T' A~' 

.... " 11., • 1 J \j I 
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CHAPTER 3 
VARIABLESI 

II )READ(,." 
REAO(C) 
H • I-C 
H • HIM 
JUMPIO 
la)READ(P) 
N) - p) 
JUMP(N) 
I)REAO(M) 
REAO(C) 
H 8 I-C 
H = HIM 
P • a 
I • 0(1)50 
PUNCH(O) 
REPEAT 
PRINT(P)I.o 
PRINTC,.)I,O 
PRINT(C)o.5 
ACROSSI/I 
a)REAO(H) 
REAO(C) 
H • I-C 
H • HIM 
U • H+I 
U • UU 
'l'IO(O.U) 
6)CAPTION 
DISPLACEMENTS FROM A THIN CRACK IN A WORKHAROENIN~ MATERIAL 
ACROSS3/a 

lo)HALT 
HANDKEYS(J) 
N) • J) 
JUHP(N) 

CLOSE 

%!!!!!!!% 

CHAPTERo 
VARIABLESI 
ACROSSla/3 
CLOSE 
.. %!!%!%!!!%!%!%! 
I 
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A4.6 Transcript 

Thin cr8ck relaxins along two p18nes 



T,TlF. 
eo f!!0f!'1 J·'1')n~. ,.r~!. ['. r--/:: 

~ !"Pi!:: P1 
j~."'~oo 

:"30 

'" I, '=" t) 

E e< rvr 
v -. r~r . 
J :: ddT' , 

,,;; e 21 
.t e ~ f-1 

}I.L :: C 

AJ :::: 1 

.;;'!Jt.:r p, , Q ~ I 
M .. == -1 

lW ~ /tc 
;:)re.prft.; 
\"7( ,,, ,. 
i ,0/"1,,. 
~C' '~: 1,/:1 
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L"'" ::Y-1 
• 'r'''? ,!. 't:-
... 1 _ ~ _, 1 ..... .-- .... ,·',.r J:" - -.I •• ~ • ' • " ~V i \1, ..; 

f"'~ T •• .,., ~ r ,. A 

j •. , •• , ••• ,;0,.-

;'::P~AT 
:Jt~ = -/.(::-1 )/t.1: 
~ ~rT~t y ~ 't:: 
'1=:"t T~:F. 
2J!.PTJr~: 
p -'." --

~:~"t T r:F­
!;E~rt T '!f. 
C IJ'''Y ('~: 
~(r) :: 
?!" Y-:" (y) c. ,j 
r!E"t T '~r:: 
~~~'!t t ':C 
n"'~ T 
... "Wr1 
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.. ) Z1 = 0 
,,1 '!!!' 1 

22 :: 0 

, ~j : ~) 
v'UMf' 7 
e)7.o = -X 
21 = 0 

~t : ;) 
JUMP 7 

7)7.11 :: Z4-20 
210 = 25-:: 1 
79 E 2107.3+211:2 

210 = Zl022-:11Z3 
Z11 III 7.10210 
Z12'= 29.29+211 

Z12 = 11z12 
Z11 = -2Z11:1 2 Z1£+!1 2 

:,,2 = 2Z19+211 

Zg - 7.~Z11 
'lUI I: -ZSOZ12 
Z1''l'' e Z107.11 
Z13 := 2222 
Zt 4--: Z3ZS 
z • .s =' ZaZ3 
,Z10 .. tI:I! .Z1 S 
lit _ Z1.:.1IZ1!}+ZJ.IZt .... -:10z9+t,rl 
zj ~ ZlAZI~+Z!lZ13+Z10Z9+Z~ 
Z~J'= 213-Z1 4 
Z'to e 212 -ZI1. 
y" • Z~13+Z10Z1S+y· 
JVMP(N, . 
8'AiJ -. Z·A-
JUMP 1 O.,,}). t 
U .··A~~B 
V ." AS 
Z' 'lilt Zt-W' 
AJ • tPI*+ZV 
1o)Rfl'£AT 
X elf···· rp.p 
"(X)~i.P 
R£P£AT 
o. '1'.8(£.P • .2) 
,6(eJAi.K 
UP 

ct.OSE . 

CHAPTERo 
ACROSS.!!! 
CLOSE 


