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Summary

The study of the stress concentrations which exist
at notches and cracxks is Qf considerable importance in the
understanding of the fracture of metals. The way in which
these concentrations of stress are relieved by plastic
deformation is not readily understood in terms of the classical
theory of the elastic plastic solid since analytical solutions
are obtained only in the simplest situations.

In this worx a simple model of the relaxation process
is considered, in which the crack and yielded regions are
represented in terms of linear dislocation arrays. Alternatively
the medium may be considered everywhere elastic and the cracks |
and yielded regions represented by arcs across which the stress
is prescribed and relative displacements are permitted.

First the relaxation from a sharp isolate&nz;ack in an
infinite medium is treated for conditions oi plane strain and
antiplane strain. In antiplane strain this provides a model
of' the relaxation round a surface notch in a semi infinite
medium, Simple expressions are obtained for the relation
between the yield stress, the applied stress, the relative
displacement in the crack tips and the extent of the plastic
zones,

The effect of free surlaces or of neighbouring cracks

is considered by expanding the analysis to consider an

infinite periodic coplanar array of identical cracks. It is



shown that the free surface causes plastic zones to spread

more rapidly with increasing stress, The displacements

for a given length of plastic zone are then reduced. irf

a critical displacement criterion is adopted for the initiation
of fracture at a notch, then neglecting the effect of the free
surface is shown to err on the safe side,

The effect of workhardening is also considered. An
integral equation is obtained for the displacements and this
is inverted numericallyﬁ)

Finally a model of a tensile crack is treated in which the
plastic zones from a single tip are represented by two linear
arrays of dislocations inclined symmetrically to the plane
of the crack. The applied tension is normal to the crack.
Again this problem 1is treated numerically and preliminary
calculations have been carried out to obtain the important

relationships.
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Chapter I

Introduction

1,1 Modes of Fracture

It is well known that a metal subjected to high stresses
will break across some suriace passing through the material.
Examination of these fracture surfaces reveals that fracture
occurs in one of several modes which are not mutually exclusive.
Fracture may accur as the metal breaks along planes of low
energy in the crystalline grains, revealing bright facets
in the surface. These planes are the cleavage planes of the
crystal and we refer to this mode as cleavage fracture.
Cleavage fracture is normally accompanied by only small amounts
of plastic deformation and does not require high energies for
its operation.

However a ductile material may fracture only after
extensive vlastic deformation which extends over some surface.
The me tal slides apart over this surface and the fracture has
a dull, mat, or fibrous appearance, In this mode, ductile
fracture, a considerable amount of energy is absorbed.

There arc a number of mechanisms by which ductile fracture
may propogate. A single crystal may slide apart over a
glip plane. In a polycrystal, pulled in tension, necking
will occur and one or more holes will open in the middle.
The stresses become concentrated on planes inclined at 45°

to the tensile axis and the metal will fail by plastic sliding



over these vplanes giving the familiar cup and cone fracture.
The fracture process in the centre is a kind of internal
necking starting from pre-existing holes, or inclusions around
which holes may form.1 ? These holes Jjoin up and often
the fracture suriace has a dimpled appearance where necking
is initiated at many such inclusions.a

In a third mode the fracture surface may follow the T
grain boundaries. This is called intergranular fracture,
and it can arise when there are metallurgical weaknesses in.
the boundary. Such weaknesses may, for example, be due to
the presence of precipitates in or near the grain boundaries,
or to the migration of vacancies or foreign atoms t

Failure may also occur by a process known as fatigue.
This process does not easily classify into one of the above
groupings. Frac ture occurs after prolonged application
of low cyclic stresses, The measurable plastic deformation
is normally small but many reversals of plastic strain occur
and the absolute sum of the strain increments will be large.

Failure is by cracking, one or more cracks being
initiated in the specimen, and initially the crack growth
is slow.

Cleavage fractures normally move rapidly through the
structure but slow moving cleavage cracks are observed 5.
Cleavage fracture 1s frequently referred to as brittle fracture

put this term should only be used when such frac tures absorbd

1ittle energy and move rapidly with small plastic deformation,
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It is usual, but not general, lor a cleavage fracture to be
brittle in this sense. On the other hand ductile fracture
is normally slow moving but here again catastrophic ductile
failure is not unknown.

The problems of fracture have been extensively investigated
and accounts of the work are given by Parker (1959)6, Biggs
(1960)7
1,2 Theoretical Strength

Early workers assumed that cleavage fracture would occur
when the tensile stress exceeded some critical value. This
critical stress has been calculated for the ideal lattice by
considering the energy equations. (Pol any2(1921)e R
Orowan (19&9)4 . A rough estimate of the fracture strength
may be obtained by the following simple argument.

Suppose that the material obeys Hooke's Law up to the

fracture strength O Then the strain energy per unit

volume of material is

2
o /2E

where E is Youngs Modulus l1.2.1

The energy per unit area contained between two neighbouring

planes of atoms a distance 'a' apart is then

2
a o /2E l.2.2
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These planes will separate if this energy is equal to
the energy of the free surfaces created, This will then

give as the fracture stress

o ~ ,AEy/a} l1.2.3

where v is the energy per unit area of free surface.
The relation l.2.3 predicts a fracture stress which exceeds
the observed strength by a factor ranging from 20 - 1,000.
Detailed calculations have been carried out and stresses of
the same high order as those given by relation 1l.2.3 are
predictea .10 This calculated value is generally known
as the theoretical strength. Faced with this discrepancy
between observed and calculated values aof the fracture stress,
two possibilities presented themselves, Either the
calculations were wrong, or there is, in a real material,
gome mechanism which produces concentrations of stress of the
order of the theoretical strength. Weaknesses such as miecro-
cracks will produce such internsal stress)and cracks had been
considered by Griffith (1920)11 working on a related
problem.

Similar calculations of the shear stress by Frenkel
(1926)12 also predicted a strength in excess of the observed

13
value. Further it was shown by Taylor et al (1925)

that the energy expended in deforming a metal plastically
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/

o

does not all reappear as heat and the metal work hardens.
These observations could not be explained retaining the
assumption that metals are perfect crystals, Coﬁsequently
Taylor (1928)14 suggested that the dislocation was a

suitable mechanism to raise the stress and elastic energy

and to propogate slip. The dislocation concept had been
. 15 16 . 17 18 18 20
suggested earlier and has since been developed 21,

A detailed account o1 the theory may be found in one of
o2 23
several books on the subject .

1.3 Extension of a Completely Brittle Crack

11
Griffith (1920) pointed out that micro cracks or

surface scratches may be points of weakness in a material

which cause dangerous concentrations of stress even when the

applied stresses are within the elastic range. He was led

to this conclusion by the flact that the incidence of rupture by

fatigue can be reduced by polishing the surface of the specimen.
Further, some theoretical work suggested that surface

grooves could increase the stresses and strains by a factor

ranging from two to six and that this factor was not dependent

upon the absolute size of the grooves. 2 The calculations

were verified by experiments with wires containing spiral

scratches, Applying these results to the existing frac ture

criteria however did not produce physically sensible conclusions,



Thus Griffith was prompted to investigate the behaviour of

cracks and to rormulate a new fracture criterion. A

crack was considered as the limiting case of an elliptical

hole and using the stresses derived by Inglis (1913)25 an

energy condition for the extension of the crack was obtained.
For the plane strain problem Griffith gave as the

fracture stress @

o = 2/{uy/mvc] 1.3.1

and for plane strain :
o = JREy/mve ]} 1.3.2

where p 1is the modulus of shear
v poissons ratio
2c the crack length
In a note to this paper Grifiith draws attention
to an error in the calculation. The correct result for plane

strain should be

o = 2/{yu/m(1-v)c} 1.3.3

The Griff'ith relationship has long been fundamental in the

theory of fracture and has been derived subsequently by

k 26
many workers. sach (1946) has made a similar calculation
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for a penny shaped crack and finds that this leads to the

relation ¢
. k
o =/{mEy/2c (1-v )} 1.3.4

Considering directly the stress at the crack tip, and setting
this equal to the thcoretical fracture stress over a region of
atomic dimensions, Orowan (19)49)4 found the general agreement
with the a@bove relations.

Although the Griffith theory appears to explain the
behaviour of glass with some success, its application to metals
is limited. The theory predicts that cracks several mm,
in length would be stable and it is difficult to see how such
cracks could escape detection in specimens which have exhibited
brittle behaviour. Before cleavage fracture can occur in
a metal it is therefore necessary to nucleate a crack of a
suitable size. This being so it is possible that the
frac ture strength of the material is related to the stresses
required to nucleate a crack. These stresses will depend
upon the mechanism of nucleation and several mechanisms have

been proposed.

1.4 Formation of Cracks

27
Zener (1948)  suggested that a crack may form under
the stress concentrated at the front of a row of dislocations
28 29
piled up at a precipitate and Stroh (1954) (1955) has

considered in detail a number of similar models.

In the tirst paper he considers the number of dislocationsg



8

in a vile up required to produce, over some plane, a tensile
stress sufficient to cause fracture, In the second he
considers the number of dislocations required to foree the leading
dislocations together and form a wedge.

According to Stroh, the plane most favourably oriented
for fracture is inclined at about 70° to the active slip plane
and the potential energy of the medium will be reduced as this
piane separates provided that the shear stress in the slip

plane exceeds Ty where
2 .
o, =3 myw /8(1-v)L l.4.1

In this equation L is the length of the pile up. This
relationship does not contain the crack length and therefore
the crack will grow at least over that length for which the
approximations sare valid. Now the number of dislocations in

30
a pile up is given by

L = ubn /7(1l-v)y 1.4.2
In this b is the Burgers vector of a dislocation
and is of the order of the atomic distance. It then follows

that the number of dislocations required to initiate a crack

is given by

2
w_ b = 38w v 1.4.3
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In the second model Stroh considers the alternative condition
for fracture that the distance between the two leading
dislocations should be less than the atomic spacing. This

will be so if the applied stress exceeds Ty where

c = 3.67 }J./Ll. T n (l - 'U) l.4.4

and this agrees with equation l.4.3 1if we make use of the

empirical relation :
Gb/y ~ 8 1.4.5

A crack nucleated by these mechanisms in a specimen subjected
to an applied simple tension will propogate through the
specimen since it is shown by Stroh (l957)3t that under these
conditions the number of dislocations required to initiate
a crack exceeds the number oI dislocations required for its
propogation. The calculation assumes however that the
energy per unit area of free suriace is the same in both
processes and this need not be the case as we shall see later.
Another important mechanism was postulated by Cottrell
(1958) ** in which a wedge crack forms on a (00l1) cleavage
plane as certain dislocations on intersecting (101) (101 )
plane meet and coalesce. It is shown that this interaction
reduces the elastic energy and it is supposed that this crack

will grow as more dislocations move into the wedge. In
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principle this growth is not dependent upon the applied

stress and will continue until the crack length is of the same
order as the length of the slip lines. The crack will then
propogate only if the applied stresses are suitable and this
will not always be the case.

Burr and Thompson (1962)3a have suggested a similar
mechanism for zinc involving dislocations on the pyramidal and
basal planes. Bell and Cahn (19u8)3‘ have observed cracks in
zinc specimens pulled in tension but believe these cracks
to have been feormed by intersecting twins, However, it is
suggested by Burr and Thompson that their dislocation mechanism
and not twinning was the more probable mechanism of cracking
in these experiments.

There is, nevertheless, considerable experimental

35—39
evidence to suggest that cracks do form at intersecting twins

Edmundson (1961)aa working with iron single crystals below
-145°C reports that no major cracks were detected which
were not associated with a crack forming twin intersection.
Other mechanisms of crack formation are also discussed,

Stroh (1958)40 shows that in zinc the relative displacement
of two parts of a twin boundary may lead to cracking in the
basal plane, Further, Fisher (1955)41 points out that
vacancies are created when an edge dislocation cuts a screw
which intersects in the slip plane, It is suggested that

a crack may form if there are several such intersections.

All these mechanisms require at least localised plastic

42
flow for their operation and Low has confirmed that yield
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normally preceeds fracture. He showed that the yield stress
in compression coincides numerically with the fracture stress
in tension over a wide range of tehmperaturéand other varisbles.
To this extent all these models of crack iﬂitiation are satisfact-
ory.
However, the Cottrell mechanism shows that the microcracks
may be initiated rather easily during plastic deformation
and it is supposed that they will only provogate if the applied
stresses are suitable, If this is s0 one would expect to
find stationary cracks in a yielded material and such observations
have been made. Stationary cracks have been observed at the
Luders front 2 and non propogating cracks in yielded regions
put not in elastic regions which have been similarly stressed .
These observations are nct consistent with a fracture theory
in which crack nucleation is more difficult than crack
propagation and this is an obstacle to theories based on the
dislocation pile up mechanisms for crack initiation. ;
Another factor which operates against the pile up %
theory is that the macroscopic fracture criterion in such a theory%
depends upon the shear stress required to make dislocations coal-:
esce. This implies that the fracture stress is independent
of the hydrostatic stress, however, there is evidence to
suggest ** that hydrostatic stresses have a pronounced effect

on ductile brittle behaviour and a theory which does not

predict this cannot be entirely satisfactory.
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1.5 The Propagation of iWicrocracks

It thus appears more reasonable to sunvose that cracks
are initiated easily during plastic deformation by a Cottrell
tyve mechanism, twinning or some other process., Consequently
.the governing factor in brittie fracture will be the propagation
of cracks and it is to be expected that hydrostatic stresses
eff'ect this process. The theory of crack propogation has
been investigated by several workers and various modifications

31 32 47«50 32
have been proposed . Cottrell (1958)
considers the oropagation of the wedge crack formed by 1is
mechanism. He assumes the crack is subjected to normal

tensile stresses and adoots a procedure similar to that used

31
earlier by Stroh (1957) . The potential energy of the

system is written in the form :

4R c_ [}
W=2ylesgenc +c=- - 2¢y ] 1.5.1
Cz Cz
where
2b2 8
cq = pn o cy = opyY 1.5.2
gw(1=v)y 7(1-v)p

p being the applied normal tension and R the effective radius
o’ the stress field.
The equilibrium condition for the crack length is given by

Ow/d¢ = O and this is satisfied by the roots of the equation
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2
c - [1-2 (%*) ] ¢ ea + cqca =0 1.5.3
2

If p =0 then ¢c = ¢4 . The quantity c4 1is thereforé the
length of the crack produced purely by dislocation interactions.
Alternatively if p > O and n = O, then the crack is a Griffith
crack and ¢ is equal either to Co or to zero. The

quantity cz 1is therefore the unstable Griffith size.

Further equation 1l.5.3 has either no real roots or it has

two real roots in which case the smaller gives the size of

the stable crack and the larger the size of an unstaeble crack.

By the usual analysis it follows that there will be no roots

irf
Jea/cz) > 1/4 1.5.4

that is if 3

opnbdb> 2y 1.5.5

If this relationship is satisfied, there is no equilibrium
length for the crack and it will spread catastrophically through
the specimen, Otherwise the crack will grow until it reaches
the stable size, Since cracks form at the yield stress a
eriterion for brittle behaviour will be obtained if the stress
in relation 1.5.5 is set equal to the yield stress. The

lower yield stress in mild steel is given by the well known

relation -

1.5.6
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in which o3 is a stress opposing dislocatior movement
in the slip plane (friction stress), 24 is the grain diameter
and X is a constant. To obtain nb in terms of the

stresses the usual assumption is made @

nb = as(0c - 0;) d/u 1.5.6
where oy ~ 1 is a constant. At the yield stress o = Ty
and from equation 1.5.6 it follows that

1/2
nb = a; Xa /i 1.5.7

The resolved shear stress may be obtained from the tensile

stress using the general relation :

o = ag p/2 105.8
In the case of a simple tension a; = 1 but in the
presence of hydrostatic stresses this would not be the case,

As before at the yisld stress equation 1,5.6 gives :
-1/2

p = 26:—1 + Kd ) /az 105-9
Wwriting B8 = az/a; it then follows from 1.5.5, 1.5.8
and 1.5.9 that the condition for brittle failure of a material
is 1/2

Ty Kd >Buy 1.5.10

V2 LK)YK>Buy 1.5.11

or (Ui a
If this condition is not satisfied cracks will form at the
yield stress but will not propagate and the failure will be

ductile. Thus there is a transition from ductile to
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brittle behaviour at fhe point where relations 1.5.10

or 1.5.11 are taken as equalities, The hydrostatic stresses
enter this relation through the factor B . Increases in
oy s d and X will tend to maxe the material brittle

while increases in B, K and Y will tend to make

the material ductile.

The factor B for uniaxial tension is of the order
unity but at the root of a notch the plastic constraint factor50
causes a change so that B =~ 3. Therefore vy K
has to be reduced to preserve ductile behaviour, Estimates
of the effective surface energy can be made from relations
1.5.10 and 1.5.11 by finding the parameters at which
the material Jjust becomes brittle. Using typical values for
iron, Cottrell shows that the equations require a value of
vy about 10 times the real surface energy. This high effective
surface energy is interpreted as plastic work associated with
the formation of the surface, for example tearing at river
lines and grain boundaries > 52. This idea that Y
in the fracture criterion should take account of plastic work

] S4 58
had besn considered earlier by Orowan (1950) Irwin (1949)

who give the fracture stress to be

1/2 1/2
o ~ (Ep/c) o~ (E p/c) 1.5.12

where P is the plastic #ork associated with the formation

of the fracture surfaces rather than the true surface energy
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which is assumed negligible.
In all these theories the mathematical analysis contains
no explicit discussion of the plastic relaxation which one

would expect to find at the tip of a crack in a ductile material.
54 55

There is evidence that high stresses are relieved in this way
This plastic deformation may not affect these equations in
only a simple way and the problem should be considered in

more detail. Goodier and field 56have estimated the plastic
work in these relaxed regions ahead 0f the crack and used this
in relation 1.5.12. This procedure is suspect since

the potential energy is derived assuming no such relaxation.

1.6 Objects of the Work

It is apparent that a full understanding of fracture
requires some knowledge of the plastic deformation occuring near
cracks and other similar inhomogeneities which act as sources
of internal stress in metals., The analysis may be carried
out using the classical macroscopic theory of the elastic plastic
solid, but, except in very special cases extensive numerical
work is required to exhibit the relations between the essential
physical parameters involved.

An alternative approach is to simplify the model of =
relaxing crack so that some important relations between these
parameters may be determined analytically. Professor Cottrell
has suggested a suitable model in which the plastic regions and

the crack itself are represented by linear dislocation arrays,
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This and related models of cracks and notches are treated
in this work. In the analysis oi' these models, quantities
will be referred to axes tacen so that the crack lies in the
plane Xz = O with the cracx tios varallel to the Xa axis.
These axes will be called standard axes., The material will be
regarded as a perfectly elastic medium, relative displacements
being permitted only across certuin arcs in the x¢y , X2
plane, These arcs, which will be called displacement arcs,
will be used to represent the cracks and plastic regions.
Yielded regions will be represented by arcs along which the stress
is set equal to the yield stress and the cracks will be
represented by arcs which are stress free. These arcs will be
called the plastic arc and free arc, respectively. The
elastic egquations will then be solved subject to the condition
that there are no singularities. The relative displacements
may be represented by a continuous distribution of dislocations
along the displacement arcs which may then be thought of as
sliy lines. Thus models may be treated as boundary value
problems in an elastic medium or as dislocation problems,

The analysis will normally be carried out for plane
strain shear and antiplane strain, By "Plane Strain Shear"
it is to be understood that, referred to standard axes, the
applied stress P at infinity and the stress o, in the
plastic arc are constant o042 Stresses, the displacements
having the form uy (x4 ,Z2) up (xy Tz2). Similarly

by "Antiplane Strain" it is to be understood that the applied

stress P at infinity and the stress ¢4, in the plastic arc
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are (Ug3 sStresses, the only displacement being us (x4 , x2).

Initially there is a discusion of the single crack in
an infinite medium, The case of an infinite collinear
sequence of cracks is discussed and in the antiplane strain
case there are certain lines of symmetry pervendicular to the
plane of the cracks which are stress free. The material may
thus be divided along these lines to give models of a notched
bar or a crack in the centre of a bar,

The Discussion considers, initially, only the non work-
hardening material but in the final chapters the extension to
include work hardening is considered for the single crack in
an infinite medium,

Also a model is considered in which relaxation tekes
place along arcs not collinear with the crack. This is
discussed only in the case of a single crack in an infinite
material subjected to applied tensile stresses normal to the
crack.

Finally some indication is given as to the manner in
which these results may be apvlied to discuss theories of

frac ture.



Chapter II. 15

Selected Work Related to the Relaxation Problem

In this chapter a discussion is given of some ofher
theories oi the plasticcrack and of certain mathematical
techniques which are to be used. However, the classical
macroscopic theory of' the elastic plastic solid is not used
in this work and no attempt is made here to develop the theory.
For an account of the classical theory reference may be made
to Prager and Hodge (l951f? Hill (1956;7 Thomas (1961)igor
Johnson and Mellor (1962)f| 'Fﬁrther there exists an extensive
bibliography compiled by Hodge (1958)f0 The only work
involving the macroscoplic theory to be included is a treatment
of a long notch under conditions of antiplane strain., This
treatment , which is due to Hult and McClintock (1957)“
adequately demonstrates the complexity of classical methods
applied to these problems. However, certain results correspond
closely to the predictions based on simplified models.

Dugdale (1960;;considers a model of a crack based on a
treatment of elliptical holes in an ¢lastic medium developed by
Muskhelishvili (19u9)€’ This is a model of the type suggested
in the previous section and as might be expected leads to
conclusions similar to the results obtained from the Cottrell
dislocation model.

Further consideration is given to the work of Leibfried
(1951)6%n the equilibrium of' linear dislocation arrays, the

dislocation density being derived in terms of an integral
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equation. This problem has also been considered by Head

and Louat (1955)ﬂ;ho invert the integral equation using a -
general tormula developed by Muskhelishvili (19u6)fé The -
derivation of this formula is given in the final section,

the treatment being essentially that given by lluskhelishvili.
(1946) " (1949) but including some simplification dus to the
writer., It will be seen later that this integral equation
arises in other related theories and the method of inversion is
fundamental to the work,

2.2 The Hult and McClintoek Theory of a Notch

Hult and McClintock (1957)¢%ave considered the plastic
relaxation at the tip of a long sharp notch of angle e
and depth c in a semi int'inite solid, fig (1).
Standard axes are taeken so that the material lies in the half
space xy 2 0 and the notech runs parallel to the x3
axis. The system is symmetrical about the plane Xz = U
The analysis is carried out for the case of antiplane strain.

Let the stress components be Wij ’ the strain
components eij and the displacements Uy, where
ij = 1, 2, 3. P is the apvlied stress st irtinity
which in this case is a uniform shear Ooa The ir
analysis treates the problem as the limiting case of a
longditudinal notch in a large cylinder subjected to torsion ard

follows the treatment of Prager and Hodge (195l)f4



re1

The general displacements throughout the medium are assumed

to have the form @

uy; = uz =0
} 2.2.1

= (P/u)xz + w(xy,x2)

]
(<]
|

where (xy,rz) 1is a warping function. The only stresses
are o0z3 &and o043 and therefore the only equation of
equilibrium to be satisfied may be satisfied identically

if the stresses are derived from a stress potential ¢ such

that :
0 ¢/ x4 = 025 2.2,2
0 ¢/ x2 = = 043 2.2.3
V2 =0 2.2.4

This is valid both in the elastic and the plastic regions.
The criterion for yield is taken to be a maximum shear stress

criterion ¢

2 2 2
013 + O0Ogzsa = k 2.2.5

that is

| grad ¢ | K 2.2.6
Now ¢ , being a function of the two varisbles x4 and
r2 , may be represented by a three dimensional surface.

The yield criterion 2.2.6 implies that this suriace
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will be a surface of constant slope in the yielded region.
Then the stress at any point, on the plane xg = 0, in
the plastic region is normal to the direction of maximum
slope of the ¢ surface,

Prager and Hodge show that ¢ 1is in general
constant over any stress free surface, 1n which case the
direction of maximum slope is pervendicular to that surface.
In the case when the free surface bounding a plastic region
is an arc of a circle, then the directions of maximum slope
of the ¢ surface are radial lines., In the 1limit at a
sharp corner the directions of maximum slope are straight lines
radiating from that corner.

In polar co-ordinates (r, a) - with the origin
at the notch tip and a = O along the x4 axis - the radius
of the elastic plastic boundary is a function of a denoted

by R(a). It is shown that in the elastic region :
€, 3 =- R(a) k/ru 2.2.7

The equation giving R(a) does not have a simple form
even for the special case of 6 = O. However the special
value R(O) may be expressed ir terms of an integral and
for the speciasl case @ = 0O 1it 1is easily shown that this
reduces to an expression involving the complete elliptic

integral of the second kind E (m/2, 2] .
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Setting A = P/K  then :

R(O) + ¢ = [2¢(1 + N )/m(1= A )IBlw/2, 20/(1 + A°) ]

2.2.8

The procedure by which R(0) is obtained involves an
elaborate conformal mapping which is not given in the pavper
by Hult and McClintock. These mappings have been investigated
by the author and the complete analysis is given in Appendix IIT
to this work.

In the case of small A a simple relationship is

obtained, namely :

R(a) = chz cos a 2.2.9
2

which is a circle of diameter ch . From this theory which
analyses only the most simple form of stress field it is
apparent that only in the case of small applied stress does
the elastic plastic boundary assume a simple form, Conditions
of small applied stress are not the most useful for constructing
a fracture theory.

Anything more complex than this involves the use of
numerical techniques. Koskinen (1961f0has extended the
above method to finite bodies and his results which are
presented graphically will be compared with some results of

this work in a later section.
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2.3 The Dugdale Model of a Crack

Dugdale (1960)“pr0903ed a model in which a relaxed
crack is considered as the limiting case of an elliptical hole
in an infinite elastic medium. Parts of the surface of the
hole are stress free and collapse to form the crack.‘ The
remainder of the surface is subjected to a normal tensile stress
Y, equal to the yield stress, and collapses to form the
yielded region. The crack is of length 2c and the plastic
regions are each of the length 8. The stress field around
elliptical holes, dying away at infinity is considered by
Muskhelishvili (1949) f7

This stress field is superimposed upon the stress field
due to a crack of length 2(c + s) in an elastic medium
subjected to a uniform tensile stress at infinity, the tensile
axis being normal to the crack. This problem may also be
considered as the limit of an ellipse and again the elliptical
hole is treated by Muskhelishvili. The condition necessary
to eliminate the stress singularity at the extremities of the
ellipse is then derived. The following quantities are
defined.

ry = & cosh a } 2341

£ = & cos €]

Stresses are found-in terms of a series about the point
ry = a, that is a = O. For the case of the loaded elliptical

hole the leading term in the series for the o,, stress is :

-2YR/ 7 «
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For the case of the unloaded slit in a medium under an

applied tensile stress P the corresponding expression is :

P/a
The condition tor finite stress is derived from the condition
that the coefficient of 1/a in the resulting series for o,
should be zero. That is P - (2YB/m) = O. This

expression reduces to the form :

c/a = cos (wP/2 Y) 2.3.2

Dugdale has conducted some experiments for internal and

edge slits in tensile specimens and obtains substantial
agreement with these predictions. These results are slmost
identical to those obtained by the present author using a
dislocation model for the single crack and were published

after the work using the dislocation model had begun,

2.4, The Equilibrium of a Continuous Distribution

of Dislocations

Calculations using discrete dislocations are complicated
and frequently a simplified theory is used. The actual
distribution of dislocations each of Burgers vector b
is replaced by a mathematical distribution of elementary
dislocations each of Burgers vector 8b. This mathematical
distribution is chosen to give the same relative displacement

over any sufficiently large region. The number of such
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dislocations is assumed to tend to infinity and the Burgers
vector &b 1is assumed to tend to zero, Then any small
region of the slip plane J8xy containing x4 encloses N(r1) 8x4
elementary dislocations, The relative displacement over

x4 is given by

N(xy) is the density of elementary dislocations at x4.

Writing :
D(x1) = N(l1) Sb/b 2.)-}.2

the relative displacement over §8xy is given by

D(x4)b 8x4 2.4.3
Thus D(xry) may be considered as the density, at xy,
of dislocations having Burgers vector b.
Take axes with their origin at the dislocation itself, ang,
in the case of edge dislocations set x4y parallel to the
Burgers vector, Then the stresses due to an edge dislocation

are .

2 2 4
0yq = =Are(3x4y + X2 ) r 2.4l
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2 2 4

0g2 = A x2(xy - x3 )/r 2.4.5
2 2 4

012 = A xy(xy - x22 W 2.4.6

where
A=up/ 2 (1 - v) 2.4.7
2 2 2
r = Xy + Xg 2.4.8

The stresses due to a screw dislocation, with respect to

polar coordinates (r,a), are :

o = A/r 2.4.9
s
In these relations M is the shear modulus and v
Poissons ratio. The stress due to a similarly oriented
dislocation at xry = x4! 1s thus given by
N
o(x1) =Aa/(xe = x4') 2.4.11

where

o is a 023 stress, A = pb/27 for screws

} 2.4.12

o is a 07y2 stress, A ub/2w(1—v) for edges
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The stress contribution due to a distribution D(xy')

of dislocations in the small region 3x! is similarly :
8o-(x1) = AD(xq4') 8x¢y' /(xy = 24') 2.4.13

The stress due to a distribution over any large finite

region L of the Xy axis is
o(z) = [ D)/ (0 - =)z 2.1, 1Y
L

Now let the resultant stress applied to the dislocation array

be p(xy). This function gives the appropriate stress
component and is positive if it moves a positive dislocation

in the positive direction. Further p(xy) includes any
resistance stress or friction. In order that the dislocations
be in equilibrium under the applied stress p(xy) it is
necessary that p(xy) + o(x4) = 0 on L} that is the stress

at any point of the dislocation is zero. The dislocations

must adjust their positions so that

A /. [D(xe?)/(x1" = x24)]ax] = p(ay) 2.4.15
L
Leibfried (1951)“-assumes that all the dislocations are
of the same sign. Then for n dislocations, L = [-a,a]
and uniform stress p(x) = P applied to the dislocations,

The dislocation density is shown to be :

D(zy) = (n = Pxy/A)/m J(a® - z,%) 2.14.16
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In general D(x) will be infinite at x = +a but
solutions with D(x) vanishing at one of these points
may be obtained by suitable choice of n and a fofmula
f'or a dislocation pile up at a rigid barrier is obtained.
The distribution in two regions symmetrically placed about
the origin (-a,-b) and (+b, +a) is then considered. If
the dislocations in the first region are of opposite sign
to the dislocations in the second, and the density is zero
at x4 = f ’ then setting b = 0 a formula is obtained
for a single region enclosing dislocations of both signs.
The formula 2.4.16 is thus shown to apply in general.
The dislocation density for a distribution  of period <¢/2
of such pairs is obtained by interchanging the order of
integration and summation and evaluating the infinite sum in the
integrand. The relation is :
a

p(x1) = (u/¢) [ [AD(x4?) sin ( xy'/¢)/lcos( mxy? /¢)

b

- cos( wxy/€)} 1 a x4’ 2.4.17
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2.5 Inversion of the Singular Integral Eguation,

It has been shown that in an array of dislocations,
distributed continuously over a single slip line, the
condition for zero stress at each point of the array is
given by equation 2.4.15. In the case of a periodic array
the condition is given by equation 2.4.17. These relations

can all be reduced to the general form :

(/) [ le(e)/e-t Jat = 9(t ) 2.5.1
L

where the integral is taken over L, L being any set of n
non intersecting arcs in the complex plane., On L, G(t)
is an unknown complex function of a complex variable and
#(t) is a given complex function.
Singular integral equations of this type have been
studied in detail by Muskhelishvili (19u6fﬂénd a method
for finding a suitable G(t) is given., Part of the proof
is summarised, Muskhelishvili (19)4.9)6.7
In order to gain an understanding of the physical
implications of the method, the underlying concepts of the

analysis have been assembled here 1in a concise form.



For this purpose a simple procedure has been devised by
which equations 2.5.4 and 2.5.8 are obtained from
2.5.1 and 2.5.2. This procedure is not strictly
rigorous and is not that given by Muskhelishvili.

While the general treatment considers arbitrary arcs
we shall assume such arcs to be segments of the real axis.

Preliminary formulae

Let F(z) be any complex function sectionally holomorphic
in the complex plane outside L and let F'(t) and F(t)
be the limiting values of F(z) as z - t from the positive
and negative sides of L respectively. The positive side of
L 1lies to the left as one moves along the arc in the positive
direction. Now consider the problem of finding F(z)

satisfying, on L, the relation :

Fr(t) - F (s ) =a(t)) 2.5.2

where G(to) is assumed to be known. A holomorphic F(z)
may be found using the Cauchy theorem, If T is teken to be

a rectangle containing L, then for 2z outside T :

F(z) =-(1/2wi) /{F(Z,)/Z;-z}dé 2.5.3

r
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In the limiting case as T closes round L equations

2.5.3 and 2.5.2 give

F(z) = (1/2m1) [ {G(t)/ t-z}at 2.5.4
L

This function will be holomorphic outside L since

Cauchy's theorem applies only for holomorphic functions. If
F(z) is required with poles of orders my, mz, ....m,, m

at the points 24, 23, .... X o not belonging to L then

the function :

2.5.5
may be added to the R.H.S. of 2.5.4 and 2.5.2 will still

hold since R(z) will be continuous over L and its
poéitive and negative boundary values will be equal. Then

the most general function satisfying 2.5.2 is :

F(z) = (1/2wi) / fg(t)/t-zldt + R(z) 2.5.6
L
where R(z) is a function continuous over L and having
a finite number of poles. This is a most important general

result which will be required later.
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Reformulating the Problem

Now suppose that G(to) is unknown and is a solution

of 2,5.1. [Then G(t_) is directly related to the boundary
value o1 the derivative of the stresses due to the dislocations
and it follows that F(z) will also be related to the derivative
of the stresses throughout the material, If the stress is

to have no singularities outside L then this condition must
be imposed on F(z) ]. F(z) is taken to be sectionally
holomorphic and zero at infinity. It is given by equation
2.5.4, Taking the limiting case of F(t° + i8) + F(t° ~-18)

as & - 0 gives the relation :

F+(t°) + F-(to) = (1/mi) / iG(t)/t-tO}dt 2.5.7
L

and substituting from 2.5.1 the relation 2.5.7 becomes :
+ -
F(t)+F (t) = ¢(t) 2.5.8
[+] [<} [+]

The problem can now be reformulated as the problem
of trying to find a holomorphic function satisfying 2.5.8.
To do this a function is introduced holomorphic in the finite
plane outside L and with the property x*/x~ = -1. Further,
functions £ = F/X and g = ¢/X+ are defined. Relation

<+
2.5.8 then becomes f - f = g which is in the form 2.5.2
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and thus has a solution in the form 2.5.6 since g is
known.,
Following Muskhelishvili equation 2.5.8 is now written

in the f'orm
Fr(t,) - sF “(to) = ¢(t ) 2.5.9

and the following definition is made

x,(2) = 3 (z-8)7Y (z-b )Yt P (2) 2.5.10
k=1

Here 8y bk are the end points of the kth arc
comprising L and Pp(z) is a polynomial of degree p
with zeros on L. This polynomial is introduced in order
to remove certain stress singularities on L and the form

of Pp(z) will be considered later,

Let Z be any point on a circle centre I and
radius r, then
_ ié

As 2z moves around &, from the negative to the

positive side of L it follows that
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-Y + =2ni - -
[(t-a) 1 =e  [(t-ay) '] 2.5.12

Similarly it can be shown that :

v-1 + i -]l -
[ (t-2) 1 =e [(t-bk)Y ] 2.5.13

and it then follows that

+ eriy
x (t) =-¢e X (t) 2.5.14
p o

Now x(z) is holomorphic outside L except perhaps at

infinity and also has the property
+ -
t = S
X, (t) /x; (t) 2.5.15
provided that
y = log s/ow 2,5.16

The equation 2.5.10 therefore gives a X( ) of the required
z

type .

Now define the following new functions :

£(z) = ¥(z) / Xp (z) 2.5,17

to = v
g(to) ‘ #(to) / x, (t) 2.5.18
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The senerel solution

The equation 2.5.9 then becomes :

£ () -2 ()« gt) 2.5.20

in which g(to) is a known function. The general solution
to 2.5.20 is given by 2.5.6.

Now xp(z) will be constructed with the property that
in the finite plane, all zeros of xp(z) belong to L.
Further F(z) is required holomorphic everywhere outside L.
Thus it follows from relation 2.5.17 that £(z) is holomorphic
outside L except perhaps at infinity. This then implies
that in the solution of 2.5.20 far f£(z) the function R(z) in
the general form 2 .5,6 may be no more than a polynomial say
Qm(z) of degree m.,

From 2.5.17 and 2.5.20 1t then follows that :

F(z) = {xp(z)/zwi}[i¢(t)/x+<t)(t-z)ldt + xp(z)Qm(z)

L
2.5.21

To obtain 2.5.8 from 2.5.9 it is necessary to set
s = -1 and then from 2.5.16 it follows that

y = 1/2 2.5.,22



Now F(z) is not in general bounded at the end points
of L but a solution bounded at a given set of ends
Cy +vv. C may be obtained taking the polynomial Pp(z)

in equation 2.5.10 to be :

p
P(z) =7 (z2~--c¢.) 2.5.2

It is now convenient to define :

D 2n
Ry = 7 (z-cy) Ry = 7 (z—cj) 2.5.24
j=o0 J=p+1
where c4 .....cP are the end points of L at which

F(z) is required bounded, F(2z) being unbounded at the

remaining end points.

Setting ¥ = 1/2 it then follows from 2.5.24 and
2.5.23 that

xp(Z) =  R,(2)/R; (2) 2.5.25

and from 2.5.15 it follows that :

+ -
Xp (2) = x, (t)) =/ R(t )/Ro(t ) 2.5.26



Then from equations 2.5.2, 2.5.21, 2.5.25 and

2.5.26 it follows that

6(t) = zx ( Ry(t ) / Rz(t) ¢(t)dt

i
Rz(t ) (t) t=t_
. (21(t ) )"2 am (%) 2.5,27
aft )

is the general solution to 2.5.1 where Qm(z) is an arbitrary

polynomial of degree m and Ry, Rz are given by equation

2.5.24.

Condition for finite stress

It remains only to examine F(2z) at infinity and find
the conditions for there to be no poles, since gll unwanted

poles have already been removed from the finite plene.

Expanding the integral in 2.5.21 in powers of t/z gives the

relation ¢

F(z) = XP(Z) [ Z [Ak/zk} + Qm(z):l 2.5.28

k=1



where

A = (1/21ri)f {-tk'l ¢(t)/x; (t) } dt 2.5.29
L

Now let O(r) denote a runction which at int'inity has

the form :
r
o(r) = ZBiz1 2.5.30
i=—o0

Now from 2.5.1C it can be seen that :

xp(z) = O(p-n) 2.5.31
and substituting into 2.5.28 it follows that :

F(z) = ) O(p-n-k) + O(p-n+m) 2.5.32
=

If F(z) is to be holomorphic at infinity it follows
from 2,5.3%2 that :

p-n-k < 0
} 2.5.35

p-n+m < 0
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These conditions may be stated as follows ¢

If n is the number of segments of L and P

is the number of end points at which F(z) 1s required

to be bounded then :

for p l n’ Qm<z) = O’ A’k = o for k = 1, 2’oooop-n
and for p<n, m < n-p

2.5.3‘4

Summary

Thus the solution to 2.5.1 Dbounded at p of the 2n

end points of L is given by 2.5.27 1in which R4

Rgz are defined by 2.5.24 and QU is an arbitrary
polynomial of degree m, provided that the conditions
2.5.34 are satisfied in which Ak is defined by

205-29



L2
Chapter III

The Isolated Crack

At the suggestion of Professor Cottrell the following
model of the plastic relaxation round the tip of a sharp
crack has been examined. Both the crack itself and the
plastic regions are represented by linear dislocation
arrays. The crack, or free arc, corresponds to a region
of the slip plane in which there is no resistance to
dislocation movement, and the plastic arc corresponds to
a region in which the movement of dislocations will be
opposed by a stress whose maximum value is equal to the
yield stress. Provided that the applied stress increases
monatonically and the dislocations move outward from thez
erack tips the resistance stress in the plastic arcs will
oppose the applied stress and in fact be equal to the
yield stress at each point.

The equilibrium of dislocation arrays has been discussed
in Chapter 2, section L. It is clear that one mgy discuss
simultaneously the cases of screws and edges hav ing their
Burgers vector in the xy direction. These cases
correspond to anti-plane strain and plane strain shear
respectively,

With respect to standard axes having their origin at the
centre of the crack, the crack lies in the region Ixyl < e,

and the plastic arcs lie in the region ¢c < lxyl < a,
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The magnitude of the applied stress will be P ard
the magnitude of the resistance stress will be 01 o
These stresses will be taken positive if they tend to move
positive dislocations in the positive xry direction and the
negative if they move positive dislocations in the negative

x4 direction. For edge dislocations P and o4

are 042 stresses and

A = pb/2mr (1 - v) 3.1.1

while for screw dislocations P and 04 are

stresses and
A = ub/omw 3.1.2

In these relations u  is the shear modulus, v Poisson's
ratio and b the Burgers vector. The condition for

equilibrium is then given by equation 2.4.15 in which

P lxy 1 <
p(x1) = { ! ¢ 3.1.3
P-0cy Ix4yl > ¢

That is the dislocation density D(xy) is given by

p(xy) + A/ [D(x4)/(xs - xf Ylax' = 0© 3.1.0
L
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Now if the following correspondence is set up

P(xy)
A IiD(xq) }

¢(x1)

3.,1.5
G(xq)

then the integral equations3.l.4 and 2.5.1 are identical.
However before proceeding to the solution given in 2.5
it is necessary to consider the validity of the procedure

in this case since ¢ 1is a step function.

342 Inversion Procedure

In Chapter II, section 5, no attention is given to
considerations of validity of the method. This is however
considered by Muskhelishvili (1946). It is necessary, only,
that the Cauchy principal valves of the integrals exist at
each stage and a sufficient condition for this to be so
is that the given function ¢ should satisfy the

condition of the form @

lo(xy) = ¢p(xqy?) 1 & X | x - z” 3.,2.1

where K, u are positive constants.

It is clear that the step function oc(x) defined by
3,1.3 does not satisfy this condition. It is therefore
necessary to justify the use of these formulae when dealing

with step functions. A brief argument is put rorward here

to show how step functions may be included. First
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approximate to the step function in the fom

p(xy), lx¥el 2> 8
" p - (o/2) - (lxl = ¢) o/28, lx=clc & J

3.2.2

p' (x1)

see fig. (7).

This function will satisfy 3.2.1 for any finite 3§

and the required step function is the limiting value of a
sequence of these functions as § » O. The required
solution to the integral equations is then the limit of

the sequence of solutions as & - O, Now suppose L

is the single segment of the x4y axis |Ix4yl ¢ a, then
from 3.1.4, 2.5.27 and 2.5.29 it is clear that in general
the solution and its existance condition will include terms

off the form @

St = /K (z,x') P' (x') ax? 3.2.3
L

where K(x,x') 4is some function depending upon the
conditions of the problem which may have only one singularity

of the form (1/{x-x'}).

Suppose now that the dislocation density is required

at x then choose 8§ < 8y where 8 1is chosen so that
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lx = cl > 28 >28 3.2
where ¢ is the crack tip nearest to x.
Then for
lx! - cl < 8 3.2.5

it follows that

lx = x'l > lxz =¢ | = Ix' =~ cl > §, 3.2.6

Let the range of integration L be divided into subranges

lx - cl <« 3
} 3.2.7

lx = cl > 8

Denote by L - £ the union of the three ranges where both of

lx £ el > 8 then
s = [ K(z,x!)p' (' )ax +[K<r,x'>p'<r'>dx
"
¢ L 3.2.8
Now £ 1s the union of the subranges where one of
ir X el < § and in this range the integrand is bounded

since the singularity has been removed to a sufficient
distance by suitable choice of 8o, It follows therefore
that the FfirsP integral in 3.2.8 tends to zero as

§ = 0 so that :
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.

S' = Lim /K(x xt)p’ (! ar 3.2.9
5
)

Now S 1is defined by

S = / K(x x') p (x*)ax’ 3.2.10
L

From 3.2.2 it may be seen that p‘’(x) = p(x) for

x €lL-¢ and substituting this relation into 3.2.9 s’

is by definition equal to 3.2.10. This result is in

fact equivalent to inverting the step function directly

using relations 2.2.27 and 2.2.29. In this thesis

this limiting process is implicit and will not be referred

to directly. Analysis will be carried out as though the
arguments of section 2.5 were valid for the step functions

themselves,

3,3 Analysis for the single crack

In considering the solution to equation 3.1.4
it is first necessary to investigate the conditions for that
solution to be bounded at the appropriate point. The
dislocation density must be bounded at both the points
Xy = +a and ry = -8, thus there is one crack and two
bounded ends. In this case P = 2 andn = 1 so that

the oroblem falls within the compass of the first of the
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conditions 2.5.34. There is one condition for a
solution corresponding to Ay = 0. Now from

2.5.24 it is clear that

} 303.1
2

and so the condition for a bounded solution becomes :
a

f[pm) /(8" =z ) 1] ax, =0 3.3.2

-8

It is convenient to make the following definitions
) 2 2 2 2
R(x,y) = {Vl(a -=x)/(a -y )i} {1/ x-y} 3.3.3

-1 2
H(a,r,y) = cosh [I[(a - =) /a(x - y)l+lx/all}

3.3.4

The latter holding for all x,y contained in the interval
[-a,a] of the xi axis. The solution from 2.5.27
is then :

a

D(zy) = (1/m A) [ o(y)  R(z1,y) dy 3.3.5

-8
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Substituting for p(xy) from equation 3.1.3 the equation
3,%3,2 gives rise to a relation for the extent of the

plastic arcs @

¢/a = sin -l(w/2)(l- P/oy) = cos (w/2)(P/cy)
3.3.6

This equation derives directly from the condition
that the stresses are bounded at infinity and gives the
relationship between the crack length and the length of the
plastic zones. In the analysis of section 2.5 it is
stated at the outset that solutions vanishing at infinity
are required. To avoid poles at the ends of the arcs a
multiplying factor is introduced which effectively removes
the poles to infinity. To this extent the conditions
3.,3,2 1is equivalent to the condition that the stress shall
be bounded at the ends of the plastic region, which is
used by some other workers., (Smith, private communication,
Dugdale, 1968).

As expected for large values of o, or small applied
stress P, ¢/a 1is of the order unity, that is there is
only a smal. relaxation. Again in the case when
P ~ o4 then ¢/a ~ O which implies that 'a' is
large the plastic zones spreading great distances from the

crack tip,
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This relationship (3.3.6) for the spread of
plasticity is compared numerically with the similar
relationship obtained by McClintock and asgreement is within

59 (fig. 9 ) In the case of small applied stress
MeClintock obtains a simpler equation for the elastic

plastic boundary in the form :

r = c(P/O‘)2 cos a 3.3.7
[0 4

from which it follows that :

a/c = (ro + c)/c =1+ (P/f1)2 3.3.8

Using the small angle spproximation in 3.3.6 the current

theory gives :
2 2
a/c =1 +w/ 8 (Ploy) 3.3.9

The expression for the dislocation density 3.3.5
may be evaluated easily in terms o the integrals I(a,ﬂ)
defined in Appendix I by relation Al,l.3 and evaluated

in Al.4. The solution is :
2
D(xz1) = {oy/m A}{H(a,c,x) - H(a, -c, x)} 3.3.10

where the tunction H 1is defined by 3.3.4 and its

properties are considered in Al.2 and Al,3. The dislocation
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density is shown on fig (8) for the case when (a/c) = 2.

3.4 The Displacement Function

Now let ®(xy) Dbe the relative displacement of
the crack or plastic region. Then ®(xy) will be
found by integrating the dislocation density from x4

to the tip of the crack, and multiplying by the Burgers
vector. This involves the integral Io(a,f) defined
in Appendix I by Al.l.4 and evaluated in Al.,6. trom

Al1.6.4 it follows that the relative displacement is

3(z1) = (boa/m A) (x4 + ¢)H(a,=c,x) - (x1-c)H(a,c,2)]

3.4.1
Finally for the displacement at c the second term
vanishes by relation Al.5.3 so that :
2
®(c) = (2cboy/m A) H(a,c,-c) 3.4.2
The displacement ®(c ) is shown in fig @5), (16).

It is of interest to cxamine the limiting vaulue of
this displscement as 0 4 becomes large, This limit

is expected to be the displacement function for an
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unrelaxed crack which may be obtained from the results
of Leibfried in 2.h4. Taking standard axes with
origin at the crack centre the dislocation density representing

a crack of length 2c¢ deduced from section 2.4 is :

2

(Pzy fmA) A (c” = 24 )

3he3
and the corresponding displacement function is :
2 2

(Po/mA) /(e = x4 ) 3.4k
Now in considering the limit of o(x) given by
3.4.1 it is to be noted that for large 01 , a - ¢
so that the functions H - 0. Thus i is
the product of a large and a small function, It 1s
necessary to express o as the quotient of two small

functions so that the required limit follows as the limit
of the gquotient of the derivatives as oy - 0.

Thus we write @

o (x)= [(x1+c)H(a,+c,-xy)~(x4~-c)H(a,c,x)] /

[sz/(r,b] 3.4a5

in which the negative sign in the first H func tion
has been transferred from c to x using

Al.3.2. Now the numerator is a function of :
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r = (c/a) = cos [(w/2)(P/oy)] 3.4.6

and the derivative of the H function with respect
to r  is given in Appendix I Dy Al.3.11.

It now foliows after some algebraic manipulation that :

Lim o(x) =
0q > ®©
2 2 2
Lin [ (wp/20,") sin <m>/zo—.)] [:-zama -2 )/(a );] /
(;‘1 =00
2 2
E% A/, é]
3.4.7

Now it follows from 3.3.6 that

J(a° - ) =asin (7B/20,) 3.4.8
and substituting this into 3447 gives as the
limit :

= 2
(Po/mA)Y (e - x ) 3.4.9

This is the result expected and thus it may be concluded

that the displacement function is to this extent well

behaved.,
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3.5 Potential Energy

The energy stored in the material surrounding a
plastically relaxed crack will now be determined using
the results of the previous section. Let T

be some surface drawn in the material enclosing the crack

and plastic zones. Meke a cut along that part of Xz =0
where I > =-a . Let the two surfaces of this cut
be denoted by 8 for lxq 1 < a and

let the two surraces joining s and T

be denoted by Y. It is assumed throughout that

the material behaves as though continuous across Y,

that is that equal and opposite tractions are applied to the

two faces to prevent relative displacement of the surraces.

Denote by aﬁj ’ ui and é

the uniform elastic field and energy produced by a uniform
positive applied stress of magnitude P together
with the constant positive tractions of magnitude P

II II
on the surface 8. Also denote by 45 s Uy

11
and 8 the elastic f'ield and energy obtained when
tractions - p(x) are applied along 8 only;

p(x) is given by 3.1.3.

If T is a circle with its centre at the origin
11 IT
then both uy and Uij will be vanishingly small
on this suri'ace for sufficiently large T o

The superposition of the elastic systems I and II
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when T -+ @ is equivalent to a relaxed crack
in an infinite medium with an applied stress at infinity
of magnitude P and a yield stress 0. In this
system the clastic field and energy will be denoted by
T3 ’ uy and § .
Now é the total energy of the complete

system is given by :
I II I1 I
§ =8 + 8 + / 0. . ds

3.5.1
I II P I II
= 8 . .
& + + j flJ uJ d.s.j

o}

+

w

+

=2
Y | U i W | WSS

T+s+y
In this relation the integrals over the two surfaces of

Y are equal and opposite since the relative displacements
over Y are zero identically. These integrals
thus cancel and will be ignored.

As the perturbation (System II) 1is introduced

into system I the work done by the external forces is :

50502

This follows by equating the integrsals in 3.5.1.
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Now define a quantity W by ¢

W= - [ Gijuj dsj

S

3.5.3

Now since this system of stress and displacement is
obtained by superimposing system I and II end since there
are no relative displacements over s in system I

it follows that

I II II II I 1II
W = —/{vij + Tij } uj dsj= —28-—/&13 uij dsj 3.5.1

8 s

It will be shown later that W is related to the plastic

work of the system,

Now as the crack extends a distance 3¢
the increment of energy released &v is the work
done by the external forces reduced by the increase in
the total elastic energy. This increment of energy

supplies any plastic work or surface energy accompanying

the extension. From 3.5.1 and 3.5.2 this is
§v = S{O(F - &) ac:]
T I 11 I 11 3.5.5
= 3¢ ~0/0c(8 8 + . .
q -o/oc(d" + [ousuy asy)]

8
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I
Now é is independent of o] so that

substituting W from 3.56.4 into 3.5.5

it follows that

II
Sv = 8c. 9/dc (& + W) 3.5.6

3,6 Plastic Work

In this model plastic work is to be interpreted as the
work done against the stress in the plastic arc as the material
on one side is displaced with respect to the material on the
other. The amount of energy which has been lost as plastic
work will not be a unique function of the state of the systen
but will depend on the path taken through the stress variables
and the length ¢ of the crack. The increment
of plastic work is the gquantity of physical interest and
this will be determined using the results of section 3.4,

This increment is not the derivative of any unique
function and must be determined directly. Physically,
this is because the plastic work done in a particular region
cannot subsequently be transferred to some other region.

Now, suppose that before the crack extends a known
equilibrium state of stress and strain exists within the
material. It is assumed that as the crack extends

the bonds break in the tip af'ter which the displacements
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adjust themselves to a new state or equilibrium.

If there are displacements as the bonds break,
that is as the bonding stresses reduce to zero, the work
done as these disolacements take place against the stresses
is work expended in the formation of new surface. Therefore,
the assumption does not introduce any error since the surface
energy is to be treated separately.

There are certain important relationships concerning the
nature of the incremental plastic work as the crack extends.

In deriving these it is convenient to introduce the notation :

; 5 B 5 |
K,/'Y (z)ax + Kz/Y(I)dr X, f + Kz/:] Y (x)ax 3.6.1

a Y @ Y

where a B y 8 are arbitrary limits and Ky, K, are arbitrary

functions constant with respect to x . Now define
a quantity W(e) by the relationship :
-c a
wer [ [ ] a 5.6.2
-a c '
in which @ (x) is the even function giving the

relative displacement of the single crack and is evaluated
at 3.4.1. This quantity 1s the quantity W of the
previous section and may be interpreted as the plastic work
done as an elastic medium containing a crack of length c
is gradually loaded at infinity to a stress of magnitude P

while the crack length c remains constant. This
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plastic work is naturally a function of c.

Now let SW be the increment of plastic work done
as the crack extends a small distance dc from

c to c'. Let @(x) and a be the

displacement and the length of the plastic zones for the crack
of length c, and let ' (x) and a’
be the corresponding quantities for a crack of length ct.,

Then :

-c'! a'
5w =[/ . [ ]cr, (8’ (z) - o(x) ) ax 5.6.3
»

-g!

in which it is assumed that

o(x) =0 when Izl > a

Now it is easily shown that :

=c! ¢
W = W(e’) - w(e) -L/+/ :]0‘1 ®(x) ax 5.6.4

-C c!
and in the case where dc is small, using the fact
that &(¢) =  ®(-c) , this relationship may

be reduced to :

SW = {‘;6xn(c) /aé] + 204 ®(c) } de 3.6.5
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Although this result has bee.. demonstrated only for the case
when ¢ is an even function symmetrical about the
crack centre it holds in other cases,

In general the increment of plastic work lost as a
crack extends is the product of the displacement in the tip
the resistance stress 04 and the increment of extension.
By increment lost it is understood to refer to that quantity
in excess of W/oe .

In the particular case under consideration the quantity

vi(e) may be found by substituting 2 (e) from
3401 into the definition 3.5.3 and integration
using the relation Al.7.4

w(e) = (b¢1/ﬂ2A) 7 Pe Jla - czl-hw102H(a,0,—ciJ 3,6.6

Substituting into 3.6.5 it follows that

SW = 8c(2bo~,/1r2 A) [ﬂPﬁaz - czl- 20,cH(a,c,-c)] 3.6.7

Now in the 1limit for large q it is permissible to
approximate to the natural logarithm and to the cosine by

using the first term in the series expansions, Thus from

3.3.6 :
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H(a,c,~c) = ¢n (a/c) = (@ / 8)(P / os)" 3.6.8
Similarly it follows that
2 2
J(a -c¢ ) = a(w/2)(P/oy) 3.6.9

Substituting these two apuroximations into 3,6.6 and

3.6.7 it follows that

Lim W (c) = 0 3.6.10
0—1 -
and
2
Lim 8W = 8c  (bP c/2A ) 3.6.11
0Oy = @

The implications of these relationships will be considered

in section 8.

IT
3.7 The Elastic rmnergy 8
The only term remaining in the relation 3.5.6
II
for the potential energy is the term é . The second
term being related to the plastic work,
II

The general expression for é is
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I I I
& = (1/2)/ 5wl as, 3.7.1
S +7T
Now along the surface S the non zero components
of Vij and uy are given by :
I
Tij = -P, Ixgl, < c
} 3.7.2
= oy =P, ¢ < lxygl! < a
I
u, o= 2 (z4) /2 3.7.3
Further on T both uiII and crin are
vanishingly small for sufficiently large r, thus,
taking into account the symmetry of ¢ within the
ranges of integration, it follows from 3.7.1, 3.7.2,
and 3.763 that :
II 2 a ‘ﬂc
8 = (boy /mA) [(cy - P) /;Oy](C-I)H(a,c,x)dx
-a =C
3070)4

Now the relationship involves integrals of the type

I, (a,B) defined by Al.1l.4 and evaluated in
Al.7. Using the relationship 3.3.6 for sin'l(a/c)



it follows that :

H 2 2 2

§ = (bory /m A)2c H(a,c,-c) 3.7.5
Now it is apparent from 3.4.1 that :

¢ (¢) = (2bory/m A)ec H(a,¢50) 3.7.6

and substituting this reliation into the expression for
I

8 it follows that

1
&8 =o04,c¢? (c) 3.7.7

Further differentiating 3.7.5 and substituting for
® (¢) it is clear that

I
a8 /Joc = 2y @ (c) 3.7.8

This latter result is equivalent to the second term in the
expression 3.6.5 for &W and this equivalence has some
fundamental consequences which will be discussed in the next
section.

Although the expression for W may be generalised

the author has found no way of proving relation 3478
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as a general result.

I
Consider now the limiting value of é for

large 01 . From relation 3.6.8 it follows that :

I 2 2

é = b P c /LLA 30709

I

One would expect this to be the elastic energy 8
of the unrelaxed crack, The displacement function for
the unrelaxed case is given by 3.4.8 and substituting

this relationship into 3.7.1 it follows at once that

c

I 2 2 2
&8 =1/2 (vP / m A) /J(c - xy ) dr 3.7.10
~-c
2 2
= bP ¢ /LLA
Comparing with 3.749 it is clear that this component

of elastic energy conforms to the expected behaviour.

3,8 The Energy Propagation Criterion

In general a physical process is prevented from
taking place if the process requires =am increase of energy in
excess of that available. Thus some energy condition often

forms a necessary condition for a physical process but this
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need not be a sufficient condition. In the previous
sections the incremental changes o1 energy associated with the
crack extension have been evaluated and thus the energy
condition for the crack extension may be examined.
ir S is the energy per unit area of the crack

surface then for the crack to extend it is necessary that :

8w + LS 8c < 3V 3.8.1

that is the plastic wark and energy of new surface should

be less than the potential energy released. Now the
o
expression for 38 /dc is given at 3.7.8
and substituting this into the expression 3.5.6 for

8V it follows that

5V = 8¢ [20y ®(c) + ow/oc] 3.8.2
Now this is equivalent to the expression for oW
given at 3.6.5 . The relation 3.8.1 for the

crack to extend then becomes

LS § ¢ < 0 3.8.3

and this is clearly a statement that all crack lengths are

stable. It is stated in section 3.6. that the form

of the relation 3.6.5 for 8W is general and does



66
not depend upon the particular cont'iguration of cracks or

displacements., On the other hand the most general relation

for sV is given at 345.6 and the expression

3.7.7 for 8H which gives V. = W  depends ﬁpon
the substitution of a particular form of uiII . I From
section 3.7 it is clear that this form of é

which leads to relation 3.8.2 follows as a direct

consequence of the relation 3.3.6 which gives the ratio
c/a in terms of the ratio of the applied stress and the
yield stress. That 1is W = 3V follows as a direct
consequence of the state of equilibrium. This result is not
altogether unexpected. However, it is pointed out in
3,7 that the expression 3.7.8 for d&n/dc is not
easily generalised, amd it is not clear that this farm holds
for any other equilibrium state,

Since the completely brittle crack may be regarded
as the limiting case of the relaxing crack as oy — ®©
the question is raised as to why an energy criterion for frac ture
has ever been obtained if no such criterion exists in the
general problem.

Now it is clear from 3.6.10 that in the limit
N(c) is identically zero and then the relation 3.5.6
for &V in the brittle case, obtained by substituting

1 N
for § , from 3.6.9 is



2
SV =DbP c/24 -2¢ 3.8.4
Thus it is apparent that 3\ conforms to the expected
behaviour. To obtain the Griffith theory 8V
must now be set equal to the energy of new surface. There

is no plastic work in this problem although the gquantity
§W does not in fact tend to zero but has the limit
2 o(c) oy~ This 8W clearly does not exist in the
brittle case and the fact that the limit of SW is
finite is due to a reversal of the limiting processes,
For the brittle crack any finite 3¢ does not extend

into a region which has becn plastically deformed and therefore

this is true in the limit. That is, the density of plastic
work lost over dc is zero as Sc - 0.
However, for finite 01 a sufficiently small ¢ will

be contained entirely within plastic regions so that the

density of plastic work lost in the region contained by 3¢
tends to oy @ (c). This is true for all oy and
therefore it is true in the limit as 0 - 0, The

extension of a crack in a completely britt.e material may not
be considered as the limiting case of a crack in a ductile
material as 04 - 0,

In a physical system the increment by which a crack
extends may not tend to zero but must be some small finite
quantity. These limiting processes may then be interpreted

as follows, If 04 is so large that the increment
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of’ extension is greater than the plastic zones, then this

is equivalent to letting 04y - o before differentiating
and a brittle cracx theory is auvprooriate. If the increment
of extension is small compared with the plastic zones

then this is equivalent to differentiating before letting

oy —» o and a relaxing theory is appropriate.
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Chavter IV

Periodic Array of Cracks

In practical u.roblems we of'ten have to deal with =
cracxz or notch which is not esmall in comuvarison with the
dimensicns ©i° the body. In nlane strain the extension of
the previous analysis to a finite body requires extensive
numerical work, In the case of antiplane strain a model
of a notch in a semi infinite body may be obtained by cutting
the infinite body containing a crack along the vnlane of
symme try pervendicular to tne crack, However, this model
still cannot exnlain the behaviour as the prlasticity meets
other defects or extends large distances across a finite
specimen,

In order to understand these problems it is necessary
to consider a system of several cracks explicitly, The
most simple case is an infinite array of equally spaced identical
coplanar cracks, since the use of Fourier series provides a
convenient method of solution, In this case there are two
difrerent classcs of planes of symmetry, namely the planes
through the crack centres and the planes between the cracks.
Both of these planes are stress free in the case of antiplane
strain and so the infinite body may be cut in several ways
to give a bar with one or two notched siriuces or a bar with

one or more crackxs along the cross section,



b,2 The Equuations for a Periodic Array or Cracks

Consider an array ot equaliy spaced cracks of length
2¢C. Let the distance between the crack centres be 2¢ and let
2a be the total length of the displacement arcs., The length
of the plastic arcs is then a=C. If standard axes are
tacen with their origin at the centre of the crack,(fig. (10)),
then along Xz = 0 the dislocation density is an odd
function of x4y and the required stress and displacements
are even functions of x4, Initially, however, this
oroblem will not be trea%ed in terms of the dislocation theory.*
Let there be a positive uniform apclied stress at infinity
of magnitude P and let there be a prescribed positive
stress in the plastic arc of magnitude 0y These stresses
will be 012 stresses 1'or plane strain shear, 049
stresses for vlane strain tension and Uag stresses

for antinlane strain.

Now Appendix II contains a discussion of certain

elastic problems in the hall space xz2 2 O, In these
+ Smith has treated this uroblem using dislocation theory
(Bilby, Cottrell, Smith and Swinden : to be

published Proc. Roy. Soc.)
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oroblems the state of stress and displacement is specified
on X2 = C ana dies away as Xz - .

The vroblems arc set up in terms of two general functions

o{xy) and ulxy). Ror vlane strain shear
(x4 ) = 012
4.2,1
u(zy) = wouy / (1-v) j
where 012 and Uy are components of' stress and
displacement on the boundary X2 = O.
For plane strain tension :
o(xy) = 011
L,2,2
u(xy) = puz / (1-v) }
where U149 and 4 arc the components of stress and
displacement on Xa = 0.
For antiplane strain @
(x4) = O23
} )4.2.3
u( ) = K Uga
where Taga and ug are the components of stress and

displacement on T2 = 0.
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Define a ftunction of q such that :

2nf-c < r < 2nf + ¢

-P,
a(wxy fe)uw/e = g

{ {&w-a<.r< °oné - ¢
¢y - P’
2né+c < xr < 2nt + a

NN = =0 seeese —1’0,1,2 ee s e 0

h.2.4
That is q is def'ined on the displacement arcs such that
q = -P in the crack and q= 04 -P on the plastic

arce.

Now consider the hali space elastic systems in whieh

.

o(x1) q (mxe/e)W/L, 2né - ¢c < x < 2nd + ¢

4.2.5

2né + ¢ < x94 < 2(n+l) ¢ - ¢

i
o

u(xy )
4.2.6
The required modelis of a systems oI cracks may be obtained
by superimposing the above system on to the appropriate uniformly
stressed hall space in which the masnitude of the stress is P.
since the boundary stresses are even and periodic, a suitable
geueral form is given by equations  AZ2.6,12 and A2.6.13

setting c, = 0. n > O. Thus the



stresses wre given by a Fourier ccsine series, The boundary
condition need then be stated only over tne region (=€ ,2).

Tiow let

6 = nx/¢ 8
o = 1na/é 4 L.2.7
y = we/t J

U'6) = ulx) L.2.8

“hen from 4.2.,5, 4.2.6, A2.6.12 and A2.6.13 the uroblem may

be tormulated by the tollowing equations

(e o]
T
u(x) = ZJ B cos (nf) =0, c<lxl < ¢ 4.2.9
n=o
[00]
<
(&/m) o(x) = - n3_ cos (n6) = q(o), 1x! < ¢ 4.2.10
n=o
Det'ine
(o]
\'—\
V(6) = -U'(6) = n B, sin (noe) h.2.11
iy
n=1

Using the rouricr inversion theorem it follows frrom equ tion
h.2.11 that

m
nB = (1/m) / V(6) sin (né)ae be.2,12

—r
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bD(x) = -d/dx @(x) = +(b/eA) v(6) b.2.16

From L.2.7, % = wx/¢ and from 4.2.4 it follows
that thes stress applied to the dislocations is :

p(x) = -q(x) 7/¢ b4.2,17

Substituting relations L.2.16 and 4.2.17 into

L.2.1k the relation 2elbol7 given by Leibfried,
follows at once. It should be noted however that using the
dislocation theory to set up the oroblem only the cases of
planc strain shear and antiplane strain are encompassed in a
natural way. Regarding the crack in terms oi the half space
elastic problem, plane strain tension is also included,
However it 1s possible to represent a crack under tension

by a distribution ot dislocations which adjust their positions
by a formal climbing process. One must, however, be careful
regarding the interpretation cof Tg This problem will

be considered in Chapter V.

h.3 The general solution

Making the substitutions :

y = cos 6
} u.}.l

cos &

%\
li
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The boundary condition 4.2.9 may now bz used to
restrict the range of intexration rrom [-w,7] to [~axxl.
Substituting this expression ior an into the relatiown

4.2.10 it follows that

@\ [04
) / () sin (n%) aZ cos (n) = q(6)
=0 - 4.2.13

Inverting the order oi integration and summaticn and using the
relation Al.9.9 for the evaluation of' the series it follows

that

a

1/2m /'[iv(g) sin g}/{cos 6 - cos g{] ar = +q (6)
- h.2.1y4

Leibfried (1951) has obtained a similar relation
in terms of the dislocation density D(x) which is given
at 2.4.17., Taking note or the fact that the displuccment
in the half space is halr the relative disélacement, it

follows that thc relative displacement is given by

¢(x) =u (x) b/ 7A 4.2.15
where A is a Tfunction ot the elastic constants defined at
2.4.12, The following relation between D(x) and

V(o) is obtained from 4.2.11
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M = cos a

] 5.2
N = cos Y
¢ (y) = q (0) L.3.3
G(y') = = iv(g) 4.3.4

the equation L.2.1Yy reduces to the general foarm 2.5.1
with the range ol integration L =(X, ™). Using
equation L.2.4 for q(f) the condition ror a solution

(2.5.34) becomes

- -1/2

N
[(- pe/m) [ + ey - plem [ (y-mi -y ey =0
~ 1

RO

LL-B.S

that is cos (w{oy - P}/oy ) = (20 - 1 - M)/(1 - M) which

reduces after some manipulation to

cos (w P/ 2 vy) = sin (v/2) / sin (a/2)

bh.3.6

For small a/¢ one may take the r'irst term in the series
expansion of sine as being equal to the sine itself and it is
at once clear that the relation L.3.6 reduces to the
corresponding relation 3.3.6 s, for the case of a

crack in an infinite medium,
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The torm of the function  G(y) is given by relation

2.5.27 ; substitute for ¢ from 4.3.3, then, from

LL._S.LL’ V<y) is

1

-1
iG(y) = (1/m)J(1-y)(y-m) f [a(cos y)/(y'—y)v’i(l-y’)(K'BM%ildy‘
M

These integrals ar. <¢valuated in the Appendix I and using

equation Al.8.8, U4.3.7 reduces to

2 -1
iG(y) = (o4€¢/w ) cosn [1({M + 1 - 2Nj-2{M-N}{1-N}/{y -N})/(M-1)1]

4.35.8
From the definitions 4L.2.6, 4.2.7 and 4.3.1, it is at
once apparent that
wx/L
u(x) = i/ iG(cos Z) dZ 4.3.9
Ta/e

An analytical expression for u(x) is not easily determined

and recourse to numerical techniques is necessary. Calculations
of u(c) have been made using the Mercury Computer, the
programme being written in the Manchester Autocode, Brucker

et al (1961)17 The specit'ication oi' this programme is given

in Avpendix IV,
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ol Gencral yield

By general yield it will be understood that a=4% ;
that is the vlastic zones from neighbouring cracks Jjust meet,
Even in this swvecial case it is diflficult tc evaluate the
function u(x), given at 4.3.9, by analytical methods.
Ilovever in this case the stress is known at all points of the
boundary and the function u(e) at general yield may Dbe
determined directly from equation 4.2.10.

The following simple argument leads to the relation for
the applied stress, Cver any strip bounded by the suriaces
x4y = né the net force applied to the suriace xe =0
is zero since the medium is in equilibrium. iNow the region
intersecting the crack is of length c and subjected to
a stress ~P and so the force per unit thickness of the
material, applied over this region is =Pc. Similarly
the force applied over the remainder of the suriace Xz =0
is (ocq = P)(€ - ¢), since, in the case of general yield, all
this surflace is an intersection with the plastic arc. Thus

the equation of equilibrium is

(0y = P)(£ -¢c) =Pc =0 L.y,

which reduces to :

P/ry = (£ - c)/e b.h.2
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Now to be consistent this must coincide witn the limiting
value of the relation 43,6, Setting « = # in that
relation this correspondence foliows at once, The
displacements may be obtained directly from the form of the
func tions ux) and o(x) given at 4.2.4 and h.2.5.
Again the quantities G, ay Y defined at L4.2.6 - 4.2.8

are used in the analysics,

From 4.,2.10 at ceneral yield the quantity an
may be obtained using the Fourier inversion theorem :
T
n_ = (2/1:)[ a(0) cos (n 6) do T
o

Substituting these guantities into the expression (4.2.9)

for u(x) then

o] o
ulz) = B + . (2/nﬁ)/q(é)cos(n2;)décos ng

Ly

et bl
Inverting the order of integration and summation a sum is
obtained which is evaluated in the Appendix I, section 10.
From this it follows that

T

alx) = By + (1/m) [ a(@)enlsin (15 + 61/2)] a &
-7 h.bh.5
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The term BO is chosen so that the displacement at
xr =4 1is zero. In terms of the Lebatchefsky function
]
L(6) =/ en ( cos 2 ) ax bbb
o)
The expression for u(x) is

w(z) = ~(246/m ) L((m/2] - v) + 2L(y/2) - L(w/2)}

h.h.7

The Lebatchefsky function has been tabulated by Tomontoaya,

e
(Ryshek and Gradstein, 1957).

L5 Comparison with other models at general yield
The displacement is obtained from u(x) from the
set of relations L.2.1 - 4.2.3, To facilitate comparison

with the isolated crack the displacement is expressed in terms of
the constant . A defined at 2.4.12 (that is A = ub/ow

for antiplane strain and A = ub/2w (1 - v) for plane strain).

The relation for the relative disvlacement is thus

¢ (zx) = u(x)d /7 A 4.5.1
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It should be noted that the relative displacement is twice
the displacement on the boundary of the half space. Values
of ¢ (c) /e are given 1in Table I for conditions of
general yield for the isolated crack theory (col i), the
periodic array theory col (iii) and a double crack theory
col (ii), due to Smith (to be published).

By general yield in the case of the isolated crack
it is to be understocd that the plastic zones have spread to
a prescribed distance h from the centre of the crack.
The double crack theory due to Smith is an analysis of two
identical coplanar cracxs the centres of which are separated by
a distance 2¢. Conditions orf general yield in this case
will mean that plasticity has Jjust spread between the two
cracks and d(c) will denote the relative displacement
at an inner tip.

It can be seen from Table I that the theory for an
infinite array of cracks and the theory for two cracks predict
essentially the same tip displacements; the difference being
of the order of one per cent. The isolated crack theory,
as one might expect, leads to greater differences of the order
ten per cent. The displacements from the isoluted crack
are larger than those from multiple crack theories. This
is because in the latter, dislocations in neighbouring cracks
exert forces of attraction, whereas the only interaction forces

on the dislocations in the plastic arc near a single crack



are those due to the dislocations representing the isolated
crack itself. Thus higher densities are to be expected.
The ext=nt of the uvlastic 2zones for conditions other than
general yield are given in Table II. Values are given for
the isolated crack, row (i), the array of cracks, vrow (ii),
and for a classical model o1 a notched bar of finite thickness,
TOW (iii), The latter results are calculated numerically
by Koskinen (1961f3using an extension of the analysis given
by Hult and MeClintock (1957f1for the semi infinite medium.
The calculations have been carried out varying the stress, the
notch angle and the notch depth, The values in Table II
are those for a zero notch angle. It is clear from these
diagrams that the thickness of these plastic zones is dependent
upon the notch angle but the extent of the zones does not appear
to have such a deosendence.

As is to be expected these lengths agree closely
with the lengths calculated from equation 4.3.6 while the
length of the zones from an isolated crack are shorter, For
conditions of general yield (i.e. when a = &) comparisons
are made graphically in fig(11). shown here are the results
for an isolated crack, those for a double crack and those for
the array of cracks, Variations of curve 1 show the
erfect of workhardening 1A and relaxation along 2 slio

system 1B.
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L.6 Disvlacements in the tip

For the periodic problem the displacements in the tip
have been calculated tor a mesh of values of a/€ ard
c/¢ and the variation of c/% with a/¢ is
shown in fig. (13) tor fixed displacement in the tip. These
contours are determined by linear interpolation between the points
of the mesh,. The values on a/¢ =1 agree with the
equation u.u.az as expected, A similar contour graph
has been constructed for a number of constant values of P/o,
fig. (12) A contour graph of some importance is fig. (14)
which shows the variation ot displacement with stress for a
number of fixed values of c/a. These curves extermd to the
point of general yield and then terminate. The envelope f
these curves will be called the yield envelope.

In what follows the term "Dangerous Crack'" will mean
a crack which will spread catastrophically under approoriate
load and a "Safe Crack" will mean a crack for which no load
will cause a catastrophic spread. It has been suggested,
Cottrell (1960)7f that a suitable criterion ror the catastrophic
spread ot a crack in this model is that the displacement in the
tip should exceed some critical value. Then a crack will
be dangerous only if this disvlacement may be accommnodated
by the plastic zones berore they spread completely through

the ma terial.

Now in rig.(1k)a line may be constructed varallel to
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the stress axis corresctonding to this critical displacement.
For a given structure c/¢ the point at which the contour
intersects this critical displacement line gives the stress
which catastrophic failure occurs. Fig (15) shows

the displacement at general yield plotted against the structure
size c/L. Here again a horizontal critical displacement
line may be constructed. The points of the curves which 1lie
above this line are points at which catastrophic frac ture may
occur., The range of c/¢ which are dangerous in the
sense that the crack may soread catastrophically form a
neighbourhood of a point c¢/¢ ~ 1/3. For smaller values

of c¢/¢ the displacements are small being provortional to ¢
since the behaviour ahoroximates to the isolated crack while for
larger c/a the plastic zones are comparatively short and
cannot accommodate a large displacement. That 1is, the
material yields before the displacements have become large,
Also shown in fig, (15) are displacements for fixed stresses

in the veriodic problem and for the isolated crack (broken line).
In the latter case these contours are straight lines since

the disvlacement is nroportional to ¢ and these contours
are terminated at the coint where a = ¢, The contours
for ths pneriodic =roblem are not straigit and at the origin
their tangents lie along the corresvonding contours for the
single cruck. This is because the behaviour for a vanishing
crack length approximates to the behaviour of the isolated

crack.
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A further curve, fig. (16) again shows the displacements

tor a range of ¢/¢. “hereas fig. (15) measures

displacements in units of <, fig. (16) gives displacements
in units of c. Again some stress contours are shown, For

small c/¢ these contours are straight lines parallel to

the axis c/t. That is to say the displacement is
proportional to c for small c/e ; again a line
may be drawn corresponding to a critical displacement. A

similar diagram was originally constructed by Smith and he
suggests the following interpretation. The vsalue of c/e
at which the critical disvlacement line intersects the curve
is a transition noint. For larger c/€ the structure is
safe while for smaller c/€ the structure is unsafe.

The essential difference between figs. (15) and (16’
is that from fig. (15) one may determine the dangerous
crack size in a given size of specimen while from fig. (16)

one may determine the size of the dangerous svecimen given the

crack size,



Chapter V.

An Isolated Crack in an Infinite Workhardening Material

It is well known that as a real material deforms
plastically the stress necessary to produce further deformation
inecreases, So far the analysis has taken no account of
this workhardening effect, In order to obtain a more realistic
picture a model is considered in this chapter in which the
resistance to dislocation motion along the plastic arc
is varied in proportion to the relative displacemcnt. This
vroportionality may be varied along the plastic arc., The

resistance is then given in the form
a"i’ = O‘i + K (1’1) ¢ (I1) 5.1.1

Now suppose that there is an isolated crack of length ¢

in an infinite medium. Let the applied stress be P

and the length of the plastic zones a-c, Representing the
system by a linear array of dislocations, as in Chapter 3,

the stress on the dislocations is

P,|I1|<c

¢, ¢ < lzyl <l 5.1.2

The method is as follows. Following the procedure of

chapter 3 the singular integral equation for the dislocation

density may be inverted. After some manipulation an
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integral equation is obtained in which the displacement
occurs inside and outside the integral sign.

In this equation the kernel is singular and there is
no obvious analytical solution. Further this singularity
must be removed before numerical techniques may be applied.
This may be done by evaluating the integral through the
singularity by a moditication of the trapezium rule. The

problem is then reduced to a simple matrix equation.

5e2 The derivation of the Integral Equation

In this chupter no reference will be made to points
off the x4 axis and the suff'ix will be dropped from the

coordinates. It is understood that all distances are measured

along the X4 axis.
Let D(x) be the dislocation density, ®(x) the
relative displacement, R(x,y) the quantity defined by

Al.1.1 and H(a,x,y) the quantity defined by Al.1.2.

That is :
R(z,y) = lwi(a” -z )/(a" =y (1/(z - y)}
—l 2 <
H(a,x,y) = cosh {il(a - x )/a(x - y)]+lx/all]

The equations will be set up in terms of a function s(x)

related to the relative displacement by :

o(x) = s(x) (o b/ﬂa A) =
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where A and b have their usual meanings., A
quantity p(x) 1is defined in terms of the applied stress
P and the initial resistance stress.
C
o(x) =i * 1zl < e 5.2.2
L P -0y c < Ilxl ¢ a
If ¥ (x) 1is defined such that
K{z) =0 lxl < c 5.2.3

then from 5.1.1 and 5.1.2 it follows that the stress

on the dislocations is given by :
p'(x) = p(x) - K (x) ¢( x) 5.2.4

The analysis follows exactly the analysis of chapter 3
replecing by o' (x) the p(x) of that chapter. The

equation 3.3.. for the dislocation density is then :

D(z') = (1/m A) [ [R(r',y) {p(y) - K(y) ¢(y>zay]

5.2.5

Now the relative displacement may be written
a

( o /m A) 8(z) = 8(x) =[ D(x!) az’ 5.2.6

X
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and D(x') may be substituted into 5.2.6 from 5.2.5,

This substitution gives rise to an integral of the form :

a a

- [

o so(r)=j ax! j R(z',y) v (y) ay 5.2.7

X -8

2
This So(x) is analogous to (m A/b) ®(x) in chapter 3
and it follows from 3.4.1 that

So(x) = ( c=x) H (a,c,x) + ( ¢ + x) H( a,-c,x) 5.2.8

Substituting into 5.2.6 from 5.2.5 and 5.2.7 and then
meking use of 5.2.3 and the symmetry of R(x,y) to

simplify the relation, it follows that

3(x) = (o1 b/m A) So (x)
a a

- / (v2(y)e(y)/ 7 A} dy [ [R(x',y) + R(x!, -y)} ax’
[

< 5.2.9

The quantity K(x) may be thought of as the hardening at a
point x of the plastic arc for unit relative displacement
across the arc. However, the quantity of physical interest is
w the hardening per unit plastic strain and it is therefore
necessary to determine a relationship between these quantities.
That is, & relation between a relative displacement and a

strain. To obtain such a relation it is necessary
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to introduce a gauxe width and this we allow to vary along

the plastic arc. Sunpyose tiuerefore that the gauge width
is given by af(x) where o is some thickness and f(x)

some numerical function. Then 1t follows that

X (x) =w of (x) 5.2.10
ow one may substitute into 5.2.9 for Z(x) and &(x)
using 5.2.10 and 5.2.1 respectively. It is then convenient

to maxe the definition

, 2 < 2 2
¥(a,x,y) = [H(a,x,y) + H(a,z,-y) - 2/{(a - x )/(a -y )}]
5.2.11
Thus it follows that

a

$(2) = so(x)-(wo/m x) [ 5(a,2,3)(8(x)/2(5) Jay 5.2.12
c

This integral equation for S(x) has a singularity in the

kernel due to the H function when x = y and due to

l/w(az_ yz) at y = a. However the integral of both of these

functions exists and is f'inite. The integral may be split

uy into a number of small regions within which S(y)/f(y)

may be reoresented to a suitable degree of accuracy by some

polynomial. The ccoefficients of the polynomial will involve

the values of the unknown function  S(y) at the ends of each

interval and this a sct of simultaneous equations is obtained

for these values of s(y). This set
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of simultaneous equations involves integrals of K(a,x,y)
and will be linear if and only if the polynomial is a straight lire
The straight line through the values of [ S(y)/f (y)]
at the ends of the intervals has been used in this work since

this is more accurate than a line parallel to the axis having

some mean value,

Del Reduction to Matrix Form

Let the range of integration be divided into m

equal intervals and make the following definitions :

h = (a=¢c)/ m 5.3.1

Ij = c + Jh y; = ¢+ ih 5.3.2

fi = f(yi) 5.3.3

8y = S(ra.) 5; = 8(yy) 5.3.4

S'J = SO(Ij) 5-3-5
2

X =1/ = wb/T A a 5.3.6

The equation 5.2.12 may then be written in the form
Vi

~

m
A 8(x) = ASo(x) - Z j K(a,y,x) {s(y) / £(y) } ay

i =1 y
i-1 5.3.7
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Now it is required to find a simple apnproximation to the

function {s(y) / £ (y)}. To this end it is convenient to

define the quantities :

ai+1 = Si /fi + yi (Si/fi - Si +1/ fi+l )/h 5.3.8

Bi+l = (Si /fi - Si+l /fi+1)/h 5.3.9

and then one may write

s(v) / £(y) =~a; =By fory; ;< ¥V < yy

5.3.10

In 5.3.10 the R.H.S. is a straight line and is equal to the
L.H.S. for y = Yi-1 and for y = Yy o The integrals
on the R.H.S. of 5.3.7 may then be evaluated approximately

in terms of the integrals :

J

Vji = / K(a,y,x)dy 5.3.,11
Yi-1
Vi

Uji = / yK(a,y, x) dy 5.3.12

Yi-1
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substituting these roint a8 1ate eguation 5.3.7 the

following set ot simultaneous equations is obtained :

.

The a; , B; are given in terms of S; by 5.3.8

and 5.%.9. Then one may collect the terms Si on the

ReFeS, 0f 5.5.13 and by setting :

Vio= Vimsl T VYine1 V5,0 O 5.3.1k4

the general coefficient of Si in the equation for Sj

is Aji 2nd 1s given by the relation

.
fi 450 % [Vy,140 Yie1 ~ 5,040 " Vgs Vs yi+l}/h

5.3.15
finally one obtuins the following matrix relation
-1
Sg = MIMdyy +Ay ] 8y 5.3.16
in which i and J run from o) to m,

These equations have been solved using the Mercury Digital
computer, The indexing system used here hus been chosen

so that the qgquantities Vji Uﬁi are calculated into
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the locations Vj Uj in the computing store. This
facilitates translation o' the mathematics into the language
of the Auto Code. The indexing system is thus dictated
by the computer ovrogramne,

Nothing has been said about the form of the function
(y). In preparing the oroblem for the computer the form of

o (y) must be written into the programme and a separate

tape is required for each variation of f(y). Only one
version of the programms is given in the Appendix, namely
for £(y) in the form of & parabols.

The method, essentially based on the trapezium rule,
neglects terms of order h2 . For the case m = 14
this should give an error of the order one half of one per cent.
Comparing with a calculation at ¢/a = 3/8, M = 28
shows the error to be better than 5%, The following
table shows values of the tip displacements using root strain,
mean strain and parabolic strain methods (these methods to be

defined later).

M = 14 M =18 difference
5186 5602 2.32 %
7306 7297 0.13 %

6L76 6728 4.20 %
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5.4 Constant Gauge Width

Initially numerical calculations were carried out

assuming fy) =1 in which case ¥(x) is a constant

given by
£ = w/a 5.4.1

K 1s the hardening for a unit displacement at any point
on the vlastic arc and o4 is the width of the plastic
region. In choosing a value for x two factors
are to be considered.

If it is to be supposed that fracture occurs when a
given strain is reached in the plastic region then the
maximum strain is of imvortance. This maximum will occur
in the root. Thus one may suppose that the most suitable
choice of width ror the vlastic region will be the diameter
of the root of the notch. If one assumes a notch
approximately one inch long with a radius of 0,01 inches
in the rcot the ratio (diameter/crack length) will be

0,02 and thus we must take

a = 0.02 ¢ 5.4.2

The solutions using this value of a will be called root

strain solutions.

Alteruatively one may argue that since the elastic plastic
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boundary meets the surfaces of' the crack at right angles

(Hult and lecClintoek 1957)“ then the distance over which

large strains exist is small and a value of a chosen to give
a correct root strain would over-emphasise the amount of
hardening. Thus it might appear more reasonable to take

a value of a giving some mean thickness of the plastic region.
However a simple relationship of this kind is difficult to
obtain theoretically since one must appeal to classical

elastic plastic theories for the most simple treatment,
Calculations are carried out with 10:3 wb/ﬂzA having
values O.4, 2 and 10.

The displaccments in the root are presented graphically
in fig (18) for the root strain method. The mean strain
calculation shows 1little signifiicant variation from the non
workhardening case and over most of the range it is not
possible to separate these curves on a graph.

Throughout the renge of c/a negative displacements
are calculated at points distant from the crack tip using

-2

2
the root strain method with w = 10 “ 7 A/b. This arises

since the model assumes that there is always a forward stress
on the dislocations greater than or equal to o, . However
if the hardening rate is high the forward stress on the

dislocations distant from the crack tip may fall as the crack

tip hard: ns. In the physical situation the resistance would
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adjust itself to balance the forward stress but in the model
such an adjustment is not permitted. The resistance is
always assumed to have its maximum value o4’ and this gives
rise to a back stress. These negative displacements have
appeared also when the plastic zones are large (a ~ 80 ¢)
again using the root strain method of calculation.

It has been pointed out that a root strain method would
tend to over-emphasise the work hardening and it is not
surprising that such a model should be unsatisfactory. However
the mean strain method clearly under-estimates the effect of work
hardening and this probably arises since the description of

conditions at the tip is inadequate.

5.5 Parabolic Gauge Width

In order to resolve these difficulties the gauge widthn
has been varied along the plastic arc. Hult and MeClintock
(1957)w'have shown that the elastic plastic boundary meets the
crack surface at right angles. Thus a gauge width is
proposed which is small at the tip and increases rapidly to some
mean value.

Preliminary calculations have been carried out assuming the
gauge width to increase in the form of a parabols. The apex
of the parabola is just inside the crack tip so that there
is a finite width 0.02 ¢ at the crack tip itself and at a
distance ¢  from the crack tip the width is 0.6 c¢. This
gives a strain at the crack tip of the required magnitude

and at points removed from the tip a gauge width of the order
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7¢
suggested by hos..inen 's gravhs,

The varabola underestimates the workhardening at the
end of the plastic arc removed from the crack tip. Since
the displacements here are small the workhardening will be
small and thus it is unlikely that underestimating this quantity
will cause large errors,

Again values of lO3 wb/1T2 A equal to 0.4, 2 and 10
have been used and the results of the calculations are shown
graphically. The displacements are given in fig, (19) and
the strain in the crack tip in fig. (20). ©No negative
displacements have appeared in these calculations.

The ratio of the stresses is plotted as a function of
¢/a in fig. (11) (curve 1lA) s&and may be compared with the
other theories, For high stresses the length of the plastiec

zones is reduced by a factor ranging from 2 to 3.
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Chavter VI

Generalisation of the Nodel

In the ureceecding wor: the relaxed cr-e'r is
represented by a s=t of arcs and the relative disnlacements
across these arcs are determined. In chanter 3 the
dis»l=acements are revresented formally by a continuous
distribution oi dislocztions the density of which is found
in terms of a singular integral equation. In chapter 4
the material is divided along a surface intersecting the arcs
and the sroblem considered in terms of an elastic half space
with certain boundary cocnditions.

In this latter approach it is shown that at least the
pseriodic cace may be reduced to the solution of the same
singular integral equution. _Suitable general forms of stress
and displacement are obtained in Avnpendix II for plane strain,
normal tension and shear, and for anti-plane strain, These
general relations for all three cases may be reopresented as
Fourier series (eagnations A2.6,12, A2.6,13) and as Fourier
integrals (eauations A2.6.1L, A2.6.15). The integral fom
is also obtained by Sneddon (1951), The boundary conditions
thus reduce to a vair of dual integral equations or a pair of
trigonometric series. Sneddon reduces the integral equations
to a general form which is considered by Busbridze (1958)17

Since the stresses due to a dislocation (equations

o.L.4 - 2.4.1C are derived using the classical linear elastic
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theory one would exgect the dual integral equations and the

singular integral equation to be essentially the same.

6.2 The tgquivalence of Dual Integral and ¢ ingular

Integral Equations,

The equivalence of these two methods has been demonstrated
by Smith (private communication) for even disvlacements
functions. The following is a more general analysis, The
form of the stress and displacements on the boundary of the
half sgpace Xz = 0 of the elastic half space reduce to
general forms given by A2.6.14, A2.6.15 and A2.6.1.

These are

hd

u(x) = 2/m jusm cos (Zx) - ¢(%) sin(z) }/4)az
oo 6.2.1
o(x) = 2/m j" [B(Z) cos (4x) - o(&) sin (&r) Jaz

© 6.2.2

The relative displacement, being twice the displacement
in the hal space, is given by relation L4.5.1 to be
o(x) = u(x)b/7m A. The dislocation density then follows

from the relation :
b D(x) = -d/dx ¥(x) = - u'(x)b / ®mA 6.2.3

where u’ (x) denotes the derivative of u(x).
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Now assume that the stress and displacements are in fact

given by the equations 6.2.1 and 6.2.2 and then
consider the integral :
I - / ap(zt)/(x - z') ax* 6.2.4
L
Since the dislocation density is zero outside L this

integral may be extended over the whole of the real axis

and substituting from 6.2.3 it follows that :

[00]
1= - (1/7) [ [u (z*)/(x - x'))ax* 6.2.5
-0
Ditferentiate 6.2.1 to obtain u’(x) and substitute
this into 6.2.5. to obtain s

1= (2/7) / axt /(z-x') / [B(2) sin(zx) + (%) cos(zr)laz

o0

6.2.6

Now

o0}
¢

i 4x
/[e J(x-z')]ax’ = ime

-0

1gx
6.2.7



103
So that inverting the order of integration in 6.2.6
the inner integral may be evaluated using two formulez

obtained by taking the real and imaginary parts of 6.2.7.

Thus
(o]
1= (2/m) [ (5(2) cos (£x) - o(2) sin(ex)lax 6.2.8
00
But this is the expression Tor o(x), the stress due to the
disnlacements given by equation 6.2.2 . Therefore, from

6.2.8 , 6.2,2 , and 6.2.4 it follows that

/AlD(r')/(r—r')ldr' =  o(x) 6.2.9
L

It is thus shown that given the forms 6.2.1 , 6.2.2 for
stress and displacement the stress and dislocation density
satisfy 6.2.9. The converse result is also true and a
minor modification of' the preceding analysis will demonstrate
this.,

Suppose that the relation 6.2.9 Dbetween the dislocation
density and stress is given, then assume that u(x) may be
given in the form 6,2.1., It remains to show that the stress
is then given by 6.2.2. Now define I by 6.2.4

and note that from 6.2.9

o(x) = I 6.2.10
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Relation 6.2.8 may be derived using exactly the
same analysis and substituting for I from 6,2.10
the required relation 6.2.2 follows, It is therefore

shown that the dual integral equations and the singular

integral equation are equivalent methods of snalysis.

6.3 A Dislocation Model of the Tensile Crack

It is apparent from the previous section that the
tensile problem which hitherto has been set up only in terms
of the halif space groblem, may always be solved in terms
or a singular integral equation. This being so, what is
the nature of the guantity D(x) in this case.
It has been suggested, Friedel (1959)” that a cracs
may be represented formally by a distribution of "climbing"
dislocations, In this case the Burgers vector is normal
to the displacement arcs representing the relaxed crack, so
that it is necessary to know the tensile stress exerted by an edge
dislocation at points along a line normal to the Burgers vector.
Taking axes at the dislocation with the x4y direction

parallel to the Burgers vector it follows trom 2.4.5 that

U2z = A/Xsg 6.3.1

where A = pb/2m(1l- v) is the quantity defined at 2.4.12

f'or edge dislocations. Now with respect to standard axes
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the tensile stress N at a point x due to a
dislocation at xq! is
014 = A/(x - x')

It then follows that if o(xy) is the distribution of
tensile stress over the surrlace X2 = 0, due to a
continuous distribution D(x) of such edge dislocations
in the region L of x2 = 0, then :

(z1) = A/ [D(z1) /(x4 = x1') azy" 6.5.2

L

Relation 6.3,2. may be regarded as giving the state

of stress on Xz = O due to a set of displacements specified

on x2 = 0, This state of stress dies away for large
Xg. Now let the body be subjected to a unif'orm positive
tensile stress P at infinity. The resultant stress on

L is then given by P + ¢ (x4). If the yield stress in
tension is equal to ¢ 1t is required that the resultant
stress shall be 0"y in the plastic arc and zero along the
crack.,

Det'ine a quantity P(xy) by :

6.3.3

P -0y plastic arc
9(11) = {

P free arc

then the requirement is  p(xy) + o(xy) = O. The quantity
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o(xy) so defined is analogous to the stress on a dislocation
in cases of shear. In terms of the quantity D(xy) the

requirement is

A/ (D(z1) /(x - 2')] ax' + o(z) =0 6.3.1
L

This equation is identieal to 2.4.15 or 3.1l.5. An interpretation

of 0 4 in terms of resistance to dislocation motion is not
possible in this case, Instead 04 is interpreted directly
as a tensile yield stress, The representation of the plastic

arc by a set of "climbing" dislocations in this way is thus
purely formal,

It follows that the tensile crack may be treated by any
analysis suitable to the shear cases, Further, any two
treatements based on linear elasticity should lead to the same
conclusions. For these reasons Dugdale (1960)“obtains
relations for an isolated tensile crack which are analogous
to those obtained here for the shear case.

The solution ror a tensile crack in an elastic material
may also be obtained assuming no plastic zones and unbounded
dislocation densities at the crack tivs, Such an analysis may

be used to determine Griffith relations.

ST Non-Collinear Dislocation Arrays

It is clear that a model of a crack under tension which

allows dislocations in the plastic zones to move under shear
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stresses requires that relaxation take place along arcs
other than the X4 axis. As a next step a model is
considered in which relaxation from each tip takes place
along two olanes symmetrically nlaced about the X4 axis.
Such & system of rclaxation would resemble more closely certain
other thcoretical models, Southwell and Allen (19&9)7#
Green (l95jf: and also some experimental observations, Green
and Hundy (1956)7“ nott and Cottrell (1963)'7.5
It is shown that relaxation takes place along curved
arcs extending symmetrically from the root of the notch,
Thus the crack will be represented by a distribution of
climbing dislocations along a straight arc. The plastic
zones extending from a single tip will be represented by a
distribution dislocations gliding along two straight arcs
inclined at angles ¥ a to the plane of the crack
fig., (21). The medium is subjected to an anplied tensile
stress P and the resistance in the slip lines representing
the plastic zones is o (N.B. oy is used in this section
for the resistance to dislocation motion not o4, since this
quantity may not now be considered as the tensile yield stress )
The equations for the equilibrium of such a distribution
of dislocations are exceedingly complicated and have no

obvious analytical solution.

6.5 Numerical Analysis of the Tensile Crack

By '"Axes Taken at the Dislocation" it will be understood
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that the dislocation is an edge dislocation, the origin is
at the dislocation and the Burgers vector lies in the Xy
direction. These axes are rotated from the standard axes
through an angle 6 say.

The analysis for t.- tensile crack is based on the set
of equations €.5.1 - 6.0.4 giving the stresses due to an

edge dislocation with res.ect to axes taken at the dislocation.

2 2 4
P,y = — Axa(3xy + xz2 ) /r 6.5.1
2 2 4 60502
Pz = A Iz(I1 - X2 )/I‘
2 2 4
Pia = A xy(x4 - x2 )/r 6.5.3
2 2 2
r = X4 + X2 6.5.4

It will be necessary to rotate the stress matrix to and from

the standard axes and the gemeral formulae are :
2 2
014! =044 CO8 0 47z sin 0 + 20,5 cos 6 sin 6 6.5.5
0] 2 2
0a2' =044 8in 0 + 05 cos 6 - 20r,, cos 6 sin 6 6.5.6

2 2.
=04, (cos 6 - sin 0) + (05, - 06,4) cos Osin 6

q
]
-~
|

6.5.7



The model is clearly symmetrical about the x4 and xg
axes; thus for any dislocation on the plastic arc in the first
quadrant , at (xy . x2) say, there will be dislocations
at (-x1, x2) (-x1, -x3) and (+x1, =-x3). These four sets
will be denoted by A, B, C and D respectively. If the
Burgers vector in the first quadrant lies along the plastic
arc directed away from the crack tip then this is true in the
third quadrant while in the second and fourth quadrant the
Burgers vector lies along the plastic arc directed towards the
crack tip. Consider now the dislocations revresenting the
crack itself, A dislocation at (x4, 0) say with xy > o
has its Burgers vector lying in the positive Xg direction.
For every such dislocation there is a dislocation at (-xy, o)
with its Burgers vector in the negative xz direction. These
sets will be called E and P resnectively.

If the plastic arcs subtend an angle 20 at the crack

tip the rotations to axes at the dislocation will be (fig. 20) :°

OA
= +0

. }
0 = -t
OC

= - T 9
D * j 6.5.8
6 = T -«
eE

= 77/2 p]
F J
6 = —77'/2

A programme has been written to determine the dislocation

equilibrium; again using the Manchester Mercury Autocode.
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This programme is built round a routine which will evaluate
the stress matrix at any point due to an edge dislocation
at any other point. The coordinates of these points and
the angle 0 between the Burgers vector of the dislocation
and the standard axis x4 must be specified as programme
parameters. The stress matrix is calculated with respect
to the axes taken at the dislocation and rotated to standard
axes; equations 6.5.1 - 6.5.7 are used for these calculations.

Now the dislocations may be grouped in twos or fours
for dislocations in the crack or plastic zones respectively.

The above arithmetical routine is therefore built into a
logical routine which groups the dislocations. Given aq

the inclination to the axis X4 of the plastic arc in the
first quadrant, this routine will evaluate the stress matrix
at any point due to a dislocation in the first guadrant and
all its symmetrical images. Again the matrix is given with
resvect to standard axes. This routine may be moditfied

so that the stresses due to the dislocation in the f'irst
guadrant are omitted it the point at which the stresses are
required coincides with that dislocation.

Now from the symmetry it is clear that if the dislocations
in the first quadrant are in equilibrium then so are
dislocations in the other quadrants. Thus the generating
routine need only ask for stress in the first guadrant and
need only specify the positions or' the dislocations in the first

gquadrant. The general problem then is to determine the
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distribution ot dislocations which will give specified stresses
at specified points.
It is assumed that the dislocation density over a small

region may be represented by a mean dislocation strength,

concentrated at some point in that region. These concentrations
will be denoted by Dj . Points on the plastic arcs are
icdentified by the sufrix i.

The programme generates a matrix Aij with
elements aij . It i is a point in the crack
then the element aij is the normal tensile stress
at the point i due to the dislocation concentration
Dj and its images. It i is a point of the plastic
arc then aij is the shear stress along the arc at the
point i due to the dislocation concentration Dj
and its images. It is understood that if the dislocations
Dj are at the point i then aij is the stress
due to image dislocations only.

Now at points i in the crack the dislocation
distribution must balance the applied tensile stress P and
at points i along the plastic arc the dislocations must
balance the resistance Ty and the resolved shear stress
k P . Thus :
aij Dj = -P point i in the crack }
aij Dj = 0y - kP point i in the plastic arc }

6.4.9
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The programme then solves this set of simultaneous equations.
A descrivtion or the programme has been given here since

the method or solving tne problem is entirely contained in
the nymerical analysis, The orogramme is not simply a
method of evaluating a foraula. A flow diagram is also
given at fig (17).

Now in the analytical orocedures there is a unique ratio
P/ which gives a bounded stress at the edge of the plastic
zone and one would expect this to be the case in the present
oroblem. Since a bounded stress must imply that the
disleocation density at the tip is zero this afrords a method of
evaluating v/o . First the problem is solved for
P=0 0‘i=l ard then for P =1, oy = 0, then
the solutions ar¢ added in that ratio which removes the
dislocation density at the tip.

It now remains to decide the positions of the dislocation
concentrations and the poiuts at which the stresses are to be
balanced. Let the intervals over which the dislocations
are concentrated be such that their projections onto the
bl axis are equal. The dislocation concentrations
and the points at which the stresses are balanced may then
be vlaced at either end of the interval or at the centre (i.e.
some intermediate point).

To place concentrations at the left of the intervals

would lead to a zero detzrminant since the first dislocation

would be anihilated by its image. To balance stresses

at the right hand cide ot tine intervals would specitfy the stress
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at the edge of the plastic zone, but effectively the removal
of this stress is used to determine P/o, and therefore

it should remain unspecified. These two possibilities are
therefore rejected.

To place the dislocation concentrations at the right of
the interval effectively sets a zero concentration at the
origin since there are no dislocations at the origin this
increases the inf'ormation in the equations.

Balancing the stress at the left hand side of the interval
balances the stress at the origin which effectively reduces the
number of points at which the stress is specified. This
follows from the symmetry since specifiying a stress in the
half space xy 2 O effectively specifies a stress
at the image point, in the hali’ space xy < O, The
origin being its own image would be included twice. The
dislocation concentrations are therefore placed at the right
hand side of the intervals and the stresses are balanced at the
centres of the intervals. This procedure tends to maximise
the information contained in the equations and stable solutions
have been obtained. Preliminary calculations using other

orocedures reveal some instability.

6.6 Some lvumerical Relationshivs for the Tensile Crack

In the analysis it is assumed that the plastic arcs are

straight and subtend an angle 2a at the crack tip. This
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is an idealisation since the plastic zones at a real crack

are curved., The model will help to show qualitatively the
effect of relaxation on several slip systens. Calculaﬁions
have been carried out assuming o = w/2,

Let a be the distance between the crack centre
and the projection onto the x4 axis of the tip of the
plastic arc. The programme requires as data the number P
of intervals in the distance a and the number q
of those intervals in the distance c . The following
results are based on P = 32 and c raising
in steps of L from L to 28. A comparison is made

for p=16, ¢ =6 and for p = 32, ¢ = 12, The differences
are found to be or the order 5% .

The results are shown graphically in fig. (11) and
rig. (22). In fig. (11) the relation between c¢/a and
the stress ratio is shown for a variety of problems.

Now since the plastic arcs form an angle L45° with the
tensile axes the yield stress 0"y 1is obtained from the

resistance to dislocation motion by setting o4 = 20§

Making this substitution the ratio c¢/a is shown in fig., (11)

curve 1B as a function of P/oy. The curve lies very

close to curve 1 itself and coincides for snall c/a.

The single plane theory therefore gives a good estimate of

the projection of the plastic zones onto the plane of the crack.
In fig. (22) curve B  the displacements ®(c) are

given in terms of o7y . Here ®(c) 1is the relative shear
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displacement over a single plastic arc at the crack tip.
In order to obtain the relative normal displacement up
at the crack tip it is necessary to add @®(c) over both
arcs., That is to multiply  @(c) by J2. In order
to obtain this displacement in terms of ﬂzA/b,b it is
necessary to maxe a further correction to the curve and
divide by 2. Curve A shows the relative tip displacement
as calculated by the single plane method and here Ty =04
and the curve remains fixed.
Curve A in fig (22) shows also the shear displacement
at the tip of a crack in shear relaxing along one plane,
This may be compared directly with the shear displacement
over a plastic arc at the tip of a tensile crack, For
large plastic zones these are comparable but greater differences

are observed for smaller plastic zones.

In 1

€9

(224) tne curves have bee:r acdlusled wccordine
to tne ahnove nroceedure end direct co:.psrisons may be rede
vetwee: ihe relative u. displaceuents in the creck tip.

nredicted by tre two theories
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Chapter VII

Discussion

7ol Introduction

The wor< of this thesis has been carried ocut in order
to obtain simple theoretical guantitative relationships
describing some aspects of the plastic behaviour of notches
and cracks. Owing to the drastic simplifications, the models
do not give certain physical quantities which are normally
measured. In particular there is no vlastic strain in
these models, there is only plastic displacement.,

However Cottrell (1960)uhas suggested that a brittle
fracture may be initiated when the displacement in the roo*
or tiv exceeds some critical value. This is the criterion
adopted here to relate this work to the theory of fracture of
macroscopic structures: sections U4.5 and 4.6,

It hes been shown that the theoretical relationships
for c/a and the displacement in the crack tip, which
have been derived in this work for the isolated crack are
in reasonable agreement with experimental observations: Xnott
and Cottrell (1963)7” and Tetelman (1963)7.q Vhen P/oy > 0.95
exyerimental values of &/c are lower than those predicted

by the theories of Chapters III and IV.

T These results have been published, Bilby, Cottrell

swinden (1963) Proc.xoy. 3oc, A272 304
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This orobably arises since these theories do not take account

of hardening effects.

{2 Jork Hardening

A model has been considered in which the hardening is
directly related to the relative displacement. Here it is
necessary to introduce a gauge width in order to determine the
work hardening law from the experimental values which give the
hardening in terms of the plastic strain, not the relative
displucement, Two slightly different procedures have been
adopted in order to relate the hardening to the relative
displacemunit, Both of these show the behaviour expected.

The displacements are reduced and for high stresses the length
of the plastic zones are also reduced. In the vhysical
system, 1t 1s possible that the forward stress on a dislocation
may fall below the maximum resistance stress 0y and again this
gffect is not considered.

Furthermore Professor Cottrell has pointed out (orivate
communication) that one effect of work hardening is to spread
the slip onto other systems ., This effect is not considered
explicitly in this model.

A model which takes account of these factors would be

more reliable particularly at high stresses,

7.3 Non-Coplanar Relaxation

freliminary vor< has been carried out on a model of a
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tensile creck in which the pnlastic deformation takes place
along vlanes which are inqlined to the »lan: of the crack,
The displacement in the crack tip is shown to be less than in
that predicted by the single plane model,

The extent of the plastic zones is determined in terms

b

of the length a of their projection onto the plane of the§
crack, for a given stress ratio the ratio c/a is almost §
identical to the ratio c/a from the single plane model. |

This might have been expected since figs. (10) anda (11)
suggest that this relation is not very sensitive to the method

of analysis.

7.4  Future Jork

It is nointed out in chapter 6 that the analysis in the
non-conlanar model has a tendency to become unstable, This
obviously requires investigation in order to determine the
causes and the extent to which the model may give reliable
oredictions. Then extension of the technique should be possible,
to obtain a more realistic picture of work hardening and also
to investigate the effect of curved vlastic zones.

The single plane model of the crack in a work hardening
material may be modified to relate the hardening to the dislocatimn
density rather than to the strain,

A fundamental resitriction imposed upon most theoretical
work is that the shape of the boundary remains rixed. This

cauces difrficulties in the interoretation of effects at sharn



4
0

notches, for example, since such notches cannot remain

sharp during »lastic derormation. The non-coplanar model

does in urinciple allow such movement but it would be fruitful

to compare this with a classical theory,
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Notation

The following symbols throughout the work have the

“meanings given here. Other symbols have the meaning

T given

X,
1

0.
1J
€. .
1J

u.
1

G'(I1)

o(x1),

in the particular sections in which they occur.

crack half length or notch depth.
length of plastic zone,
cC + 85,

distance between the centre of two adjacent cracks. (N.B,

Wot Section 3.2),

coordinates.

stress.

strain.

displacement .

stress function giving general stress on xz = 0.
q(wxq/¢) stress function giving prescribed stress

on xg = 0.

U(wzi/€), u(x) displacement function giving displacement

Q(1‘1 )
P

04

on xrz = 0.
relative displacement,
magnitude of the apnplied stress,
magnitude of yield stress and resistance to dislocation
motion if the yield stress in shear is inferred.
Young's modulus .
shear modulus.

Poissons ratio.
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b Burgers vector,

D(xi) dislocation density .

{ wb/2ir screws or antiplane strain
2b/2w(1-v) edges or plane strain,

R(x,y) = [ila -z )/(a" =y )/1/(x - ¥)]

-1 o
H(a,z,y) = cosh  [I1[(a" -2 )/a(x - y)] + [z/al1}
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List o1 Diagrams

Fig. (1) Plastically deforming notch in antiplane strain.

Figs.(2)-{5) Conformal mappings in the Hult and McClintock analysis.

rig. (6) Crack subjected to a normal tension relaxing
plastically at the tips.

rFig. (7) A member of the secguience of' stress functions

having limit  o(xy).

Fig. (3) Dislocation model of a plastically relaxing shear
crack.,
Fig. (9) The extent ol the plastic zones at an isolated crack

as a function ot the applied shear stress,
Fig. (10) An infinite period array of coplanar cracks
relaxing glastically under an applied stress,
Fig. (11) The stress at general yield according to the various
theories,
Fig. (12) Extent of plastic zones from a crack of length ¢
in a uniform array of period 2¢.,
Pig. (13) The relative displzcement at the tip of a crack
in a uniform periodic array shown as a function
of ¢/¢ and a/i.
Fig. (14) Relation between stress and relative displacement
at the tip of a crack of length 2¢ in a uniform
array of period 2¢.

Fig. (15) Relative displacement (Q(c)/@) at the tiy of a

crack at general yield, (and ror certain strcsses)
according to the isolated crack theory and the
infinite array theory.
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xelative disvlzcement (@(c)/c) at the tip of

a crack at general yield (and for certain stfesses)
according to the isolated crack theory and the
periodic array theory.

Flow diagram 1'or the numerical analysis of a
tensile crack relaxing along inclined »nlanes.
Relative disnlacements at the tin of a crack

in an infinite workhardening material, based

on the root strain method.

Relative displacements at the tis of a crack

in an infinite workhardening material, based on the
narabolic method.

Strain at the tir of a crack in an infinite
workhardening material based on the parabolic
method.

Orientation of dislocations representing an
isolated crack relaxing along inclined nlanes.
Tisplacement at the tiv of an isolated crack

relaxing along inclined planes.



®lo

0.2
0.33
0.5
0.6
0.714
0.818
0.905

Table I

Displacements at the Crack Tip

l=c/a
l+c/a

2/3
1/2
1/3
/i
1/6
1/10
1/20

(nzA/01b)

Isolated Crack Double Crack

3.22
2,20
1.39
1.02
0.67
C.40
0.20

(8(ec)/c)

2.91
1.91
1.15
0.82
0.52
G.30
0.14
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Infinite Array

2.9

1,84
1.17
0.83
0.53
0.30
0.1y



o

4
3

Model

Isolated
Infinite
Koskinen

Isolated
Infinite
roskinen

Isolated
Infinite
<oskinen

Crack

Array

Crack
Array

Crack
Array

oc/c¢(1 - c/h)

0.97 0.91 0.83 0.78 0.61 0.57 0.38 0.36

3.26 - 1.81 - 1.33 - 1.10 =
2.46 - 1.92 - 1.36 - 1.12 =
2.98 - 1.89 - 1.35 - 1,10 -

- 1.34 - 1,22 - 1.11 - 1.04
- l.b2 - 1.28 -~ 1.15 - 1.05
- 1.54 - 1,28 - 1.15 - 1.C4
1.08 - 1,05 - 1.05 - 1l.01 -
1.25 - l.12 -~ 1.06 - 1.03 -
l1.25 - 1.153 - 1.06 - 1.03 -

o FUsIXy

S2UO0y, Ol3SEela

sTqed

IT

T¢T
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A Plastically Deforming Notch in Antiplane Strain

(following Hult and McClintock)



I . N . T O S ™

R(0)

N 2
’4h
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Conformal Mappings in the Hult and McClintock

Analysis.,

Fig. (2) Stress Space ( o plane)

Fig. (3) Z plahe

Fig. (4) n plane

rig. (5) T plane



FIG 2
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Figure 6

Crack Subjected to a Normal Tension Relaxing

Plastically at the Tips. (Following Dugdale).

crack length 2c
extent of relaxation s

yield stress y
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A Member of the Sequence of Stress Functions

Having Limit p(xy).









Figure 8

Dislocation Model of a Plastically Relaxing

Shear Crack.

showing the distribution of dislocations along
a sheared slit lxqy|l < ¢ and its associated

yield zones c < lxyl < a.



FIG 8

— an s men g,
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The Extent of Plastic Zones at an Isolated Crack

as a Function of Applied Shear Stress,

Curve A according to the Dislocation model.

Curve B according to the Hult McClintock model,



FIG O

0.8

Q.6

[.O

Q.4
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Figure 10

An Infinite Periodic Array of Coplanar Cracks

Relaxing Plastically Under an Applied Stress

crack length 2c

extent of relaxation a-c

period 2¢



Ol 914
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Figure 11

The Stress at General Yield According to the

Vvarious Theories.

P applied stress
04 yield stress |
2c crack length

|

a-c length of plastic zone

(at general yield a = ¢ where 2¢ is the distanc4

between the centres of the cracks or, in isolated

crack theories, a has some prescribed value
curve 1 isolated crack theory 3
1A variation caused by workhardening “

1B variation in tensile case when relaxation

is along 2 inclined planes.

curve 2 double crack theory of Smith

curve 3 periodic array theory.
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Figure 12

Extent of Plastic Zones From a Crack of Length

2c in a Uniform Array of Period 2¢

showing the relationship between a/¢ and c/¢

for contcours of fixed P/o,



4 @O
: 0

{30
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Figure 13

The Relative Displacement at the Tip of a Crack

in a Uniform Periodic Array Shown as a Function

of a/¢ and c/¢

showing the relation between a/¢ and c/¢ for

72A o(c)

0"1b £

contours of fixed



0.6
104
02
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Relation between Stress and Relative Displace

at the Tip of a Crack of Length 2c¢ in a Uniform

Array of Period 2¢.

showing the stress P/oy to produce a displacement
2
(m A/o,b)®(c)/¢ for contours of fixed c¢/¢.

The contours terminate on the yield envelope A.



. \P/0,
O /O,
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Figure 15

Relative Displacement (&(c)/€at the Tip of a Crack
at General Yield, (and t'or certain stresses),
according to the Isolated Crack Theory and the

Periodic Array Theory.

2
(w A/o4b) ®(c)/€ as a function of c¢/¢

curve A - isolated crack theory

curve B - infinite array theory

2
(w A/o,b) ®(c)/¢ as a function of c¢/¢ for three

1

values of the applied stress P/oy equal to 0.7, 0.5, 0.]

Broken line - isolated crack theory

Full line - infinite array theory.
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Figure 16,

Relative Displacement (®(e¢)/c) at the Tip of a
Crack at General Yield, (and for certain stresses),

according to the Isolated Crack Theory and the

Periodic Array Theory.

2
(m A/ocib) @(c)/¢ as a function of c¢/¢

curve A - isolated crack theory

curve B - infinite array theory

(N.B. This section of the figure follows a
suggestion of E., Smith, Bilby, Cottrell,

Smith and Swinden 1964).
2
(m A/o1d) ®(c)/t as a function of ¢/¢ for three
values of P/oy equal to 0.7, 0.5 and 0.3.

Broken line - isolated crack theory

Full line - infinite array theory
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Plow diagram for the numerical analysis of a tensile crack
relaxing along inclined olanes.

Let the total number of intervals be o, the intervals of the
crack q and the width of the intervals h,

Form the »p x 2 stress matrix S
Col.l Resistance stresses, Col. 2 Apnlied stresses

Set cycle 1 1l <1< pc¢

) _ _( (x-c)tené ---i>q
Form X=(1-C.5)h Y-é 0 -—=i<gqg

: —»5et cycle §j 1< J<op

Let the coordinates of the jkth dislocation by X Y
and ¢ the angle between the Burgers vector and the
X4 axis. Clear pi1y L1z, and Dgg.

+ . . . +
x = =Jh,Jgq ¢ l y J>%yX=<jh
~ 7 i&gx-c)h
P kvaluate stressesej Set x,y,0 for
at (X,Y) due to dislocation 32
a dislocation at on plastic arc A
Set x,y,0 for, (x,y) w.r.t. axes | | lst.
dislocation J at dislocation time
on plastic arc E | with x,' direction Set x,y,0 forb
parallel to b dislocation J
1st ! l on plastic arc B
time 1 | 2nd.
Rotate stresses J time
Set Xx,y,9 for to standard axes Set x,y,0 forc
dislocation J through an angle dislocation }J
on vlastic arc F of =0 on vplastic arc C
L-ﬁ____—_ l | 3rd.
4 time
Add into p;y Set x,y,0 ford
——D12 and pag -——7 dislocation J
on plastic arc D
2nd, Lth, )
- - .
time time
Set eij=922, i<g ¢ 3 i>0 Rotate strecses

I tnrough angle 0.
Take e, .=p',5
ij =

: N~
L Repeat (J)
|

Form D = g ls (where E = eij) and vrint ovtionally.

sRepeat (i)

Form stress ratio, dislocation density and disnlacement at c.
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Figure 18

Relative Displacements at the Tip of a Crack
in an Infinite Workhardening Material Based on

the Root Strain Method.

2 =3
curve A - X = wb/m A = 0.4 x 10
-3
curve B - =2,0 x 10
-3
curve C - = 10,0 x 10

Broken line indicates negative displacements

arise at points on the plastic arc removed from

the crack tip.



-
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Relative Displacements at the Tip of a Crack
in an Infinite Workhardening Material, Based

on the Psarabolic Method.

2 -3
curve A X = wh/m A =0.4 x10
-3
curve B = 2,0 x 10
-3
curve C = 10.0 x 10



\c/a
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Figure 20

Strain at the Tip of a Crack in an Infinite
Workhardening Materlal Based on the Parabolic

Method.



% STRAIN

c/a

05
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Figure 21

Orientation of Dislocations Representing an

Isolated Crack Relaxing Along Inclined Planes,

intermediate axes taken at the dislocation
are shown with the arrow pointing in the

positive x4' direction, that being the direction

of the Burgers vector b.

crack length 2c¢

Projection of the plastic arcs on to the plane

of the crack a-c

Plastic arcs meet in an angle 2a equal to one

right angle in the analysis used.



a
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Figure 22

Displacement at the Tip of an Isolated Crack

Relaxing Along Inclined Planes.

curve A Displacements for single plane model
in terms of oy the yield stress in the
plastic zones. Shear and tensile case

gives displacements of the same magnitude,

curve B Shear displacement at the crack tip
across a single plastic arc, in terms

of the resistance to dislocation motion,
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Figure 224

Displacement at the Tip of an Isolated Crack

Relaxing Along Inclined Planes.

curve 1 The relative normal displacements jp
terms of oy where 20‘1 =04 = ylelg

stress in tension.

curve 2 The relative normal displacement gt
the crack tip in terms of oy the

resistance to dislocation motion,
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Appendix I

Bvaiuation of Integrals and Sums

Al.1l Preliminary def'initions.

In this work it has been found necessary to

define the following functions for y within the
range (-a,a) of the real axis :
e 2 2 2 2.
k(z,y) = Yl =2 )/(a = y)1| 1/ -y>} AL.1.1
-1 2 2
K(a,2,y) = cosh | I[(a -z )/a(x - y>1+tx/a1|} Al.1.2
Further defined are the integrals
B
I(a,B) = / R(xy)dy Al.1.3
a B
/ 3
Ij(a,B) = (x=c) H(a,c,r)dx Al.l.4
a

Here again a < B are both cont:zined in the range
(-a,a) of the real axis, The detailed steps in the
evaluation of' the Cauchy principle values of these
integrals are given in this appendix rather than in the
main text,

It is first necessary to consider the meaning to be given
to the inverse hyperbolic cosine when the argument is
negative. Since these functions arise from integrals

a suitable working definitions is .
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h
cosh—l(h) = / J(vz-l) dv Al.1.5

1

This is extended to include neygative values as follows @

-h
-1

cosh (-h) = /4’ (v2 -1) av Al,1.6

q

The integrand in the second term is imaginary and must

be divided by (i). Then writing u = =y in the first

term gives :

-1 h 2 -1 2
cosh (=h) = - /Q(u ~1) du -i /J(l-v ) Qv

1

-1

= - cosh (+h) + wi Al.1.7
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Al.2 Derinition and properties of the function h(a,x,y)

In these integrals h is in general a function of

three variables which has the form :

n(a,z,y) = [(a -2 )/alx - y)] + [2/a] Al.2.1

where a>0, x and y being unrestricted. This function has
some useful symmetry in the variables x and y. It follows

from the relation

[ (a - rz)/a(r -y) 1 + [z/a]

(az- xy)/a(x-y)

(e -y )aly —z) ] - [ y/al Al.2.2

that

h(a,x,y) = ‘h(a’yyr) = h(a"y’ ‘I) Al.2.3

Since the runction H = cosh_l(h) is required, it is necessary

to consider the ranges of xr and y for which {hl > 1.

Supposing x fixed and y variable, it is seen at
once that

h(a, x, -a)

+1 Al.2.4

]
|
[

h(a, x, +a) Al.2.5
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Differentiation with respect to y gives

9/dylh(a,x,y)] = (a2 - 12)/a(x - y)2 Al.2.6

h is therefore a monotonic function of y which is
increasing for lxl<a, decreasing for |lxl>a and a constant
h=1Tfor x = a. It follows therefore that n changes

sign through all points where h is either zero or infinite.

These points are :

y=x h =ow
2 } A10207
y=a/x h=0
Further it can be seen from Al,2.1 that :
h - x/a as Iyl - o Al.2.8

In view of relation Al,2.6 it is necessary to consider
two separate cases lxl < a and ixl > a,

In the first case h is monotonic increasing with y
and changes sign through infinity in the range Iyl < a
at the point y = x. Theretore relations Al.2.4, Al.2.5
and Al.2.8 give:

y < -a, x/a < h<l
X<y« a, h < -1
a < Y,

-1l < h ¢ x/a
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In the second case h is monotonic decreasing with
y and changes sign through zero in the range iyl > a

2
at the point y = a / x. Similarly it can be shown that

for x < -a :

y<Ix, h < x/a < -1

T <y < -a, h>1

-8 <y < a, -1<h«<1 Al.2.10
ac<y, l<h

and for x > a :

y < -a, x/a > h > 1
-a < ¥y < a, -1 < hc1l1 Al.2.11
a<y<uzx, l<h

T <Y l<x/a<h

Finally it follows from Al.2.9, Al.2.10 and
Al.2.11 that for lh! > 1 it is necessary and sufficient
that r and y both belong to the same closcd set of points

% of the real axis, where the sets are £ < lal and £ > lal

Al.3 Definition snd derivatives of the function H{a,r,y)

Now the following definition is made :

H(avx’y)

cosh ~1 (iInl) Al1.3.1

where lxl < a, and lyl < a and h is defined by

Al.2.1 . The conclusion of the previous section shows
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that H so defined is a real function.

From Al.2.3% it follows that :

H(a,x,y) = H(a,y,x) = H(a,-y,-x) Al,3,2
To evaluate the derivative of H with respect to y it is
necessary to consider two cases, namely h positive and
h negative, Now h > O, Al.2.9 implies y < x, that is

(x-=y) 2 0. In this case :
3/0y [H(a,z,y)] = 3/0y [cosh™{n(a,z,y)}]
2 -1/2
= [{h (a:x:y) -1} » ] [a/aY{h(a’I,Y);] Al.3.3

Substituting in this relation from Al.2.1, Al.2.2 and
Al.,2,6 gives :
1/2 a2 o
[(a =z )/(x-y)]
Al.3.4

5/0y [H(a,z,5)] = [ {8 - zy)—lz-y) "a> 1

In this last step it should be noted that x - y is positive
and taking this factor into the square root does not imply
a change of sign.

Similarly for h < O relation Al.2.9 implies that

y>xor (x-y) & O.
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In this case @

3/0y [H(a,z,y)] = 0/0ylcosh 'li-h(a,x,y)}]

1/

-1/2
= [{n(a,x,y)-1} 1[-0/0y{n(a,x,y)}] Al.3.5

Substituting as before from Al.2.1, Al.2.2 and Al.2.6

gives :

2 2 -1/2 2 2 2
8/0y[H(a,x,y)] = =[{(a - xy)/a(x-y)} -1] [(a -x )/a(x-y) ]

2 2 2 2 _1/2 2 2
= +[(a -xy) -a (z - y) ] [(a -z )/(x-y)] Al.3.6

Again in this last step it should be noted that
r - y is negative and taking this factor into the square
root does require a correction of sign.

Thus both cases give rise to the same equation
Al.3.4 and Al.3.6. Rearranging the expression inside
the square root these relations reduce to the general

formula:

2 2 2 2. _—-1/2 2 2
o/3y[H(a,x,y)] = [(a =x )(a - ¥y )] ((a -z )/(x -¥)]

2 1/2
= (e )=y )]/ (x - y) AL.3.7
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The x derivative follows from Al,5.7 and Al.2.3 or
it may be calculated directly as gbove,
In the problems discussed in this work the ratio
c/a is normally fixed by the ratio of the stresses and thus
a derivative with respect to stress will first require
a derivative with respect to this ratio, To evaluate this

derivative it is convenient to def'ine :

r = ¢c/a Al.3.8

and then the quantity h def'ined by Al.2.1 may be written

in the form :

n(a,e,x) = {l(l/r) —r]/[l-(x/cn}- fr} AL.3.9

Now H is defined by Al.3.1 and from this it tollows that

o/0r H(a,c,x)=fi~(-(1/r)"-1)/[1-(x/c) /(0" -1) Al.3.10

Substituting ror h from Al.2.1 and for r from Al.3.8 it

can be shown, after some algebraic manipulation, that

8/or H(a,c,x) = —(a/c)(a2 + cx)V[(az- cz)(a2 - xa)]

Al.>.11
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Al.l To evaluate the integral I(qgB)
Now from Al.l.l and Al.1.3
2 8. 1/2 P 2 2. -1/2 -1
I(aB) = (a = x ) / (a -y) (x -y) ay Al

(04

Consider first the indefinite integral

1= (a - xz)l/z / (a - yg)—l/z(r - y)-ldy Al.h.2
and make the substitution :
u=(y - x) ) Al.4.53
Then it follows that :
I = (az- xz) / / sgn(u)[uza2 - (1 +ru)2]-1/2du Al.L.4

where sgn (u) is equal to (+1) or (-1) according as u is

positive or negative, Multiplying numerator and

2 2 1/2
denominator by (a - x ) gives
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2 — -1/2

2 |

I=(a- rz)fsgn (u) [(u[az- 12] -1)2- a |

= sgn (y - x) cosh '1<[(a2- x )/aly-z)] - [r/a]> ALL.S

Substituting from Al.2.1, Al.4L.5 becomes :

I = sgn (y - x0) cosh -l[-h (a,x,y)] Al.4.6

In considering the definite integral it is necessary
to divide the range of integration into subranges such
that 'u' does not change sign in any subrange. The integral
Al.4.1 must therefore be considered in three separate cases.
Case 1 in which B8 - x < O. This condition implies that
y - X < O throughout the range of integration and no sub-
division is necessary. Therefore it follows from Al.4.6 that :

=1 _1
I(a,B) = - cosh [-h(a,x,B)] + cosh [~h(a,r a)] Al.4.7

Using equations Al.2.3 and Al.l.7 this becomes :

1

- -1
I(a,B) = + cosh [-h(a,B,x)] - cosh [-h(a,a,x)] Al.L.8

In this relation the arguments are positive, This follows

from Al.2.9 which shows that h(a,y,r)<O wheny - r < O.

Case 2 in which a - x > 0. This condition implies
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that y = x > O throughout the range of integration
and again no subdivision is necessary. It follows from

Al.4.6 that

I(ayB) = + cosh  [-h(a,xz,B)] - cosh [-h(a,x,B)] Al.4.9

Using relation Al.2.3 this becomes :

1

- -1
I(a,B) = + cosh [a,B8,x)] - cosh [h(a,a,x)] Al.L.10

Again in this relation the arguments are positive,
This follows, as before, from Al.2.9 which shows that

h(a,y,x) > O wheny - = > 0.

Case 3 in whicha - x < O and B - x > O. This implies
that y - x changes sign from negative to positive within
the range of integration and the range must be divided

so that

I(a,B) =8Limo[(asr -8) + I(x + 5,8)] Al.L.11

Using the results Al.4.8 and Al.4.10 this becomes

: -1 -1
I(a,B) = Lim£.+cosh [-h(a,z=8,z)] - cosh [-h(a,x,x)]

1

- -1
+ cosh [h(a,B,x)] - cosh [h(a,x+8,I)]]

Al.,L.12
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Now writing :

r - - -
L = Lim | cosh l[-h(a,x—S,x)] - cosh l[h(a,r+8,:r)] 1 Al.h.13
-0 L N

and using relations Al.2.3 and Al.2.1 it follows that :

!

L = Lim Lcosh'l[{(az—xa)/a81+{z/al]—cosh_l[i(az-xz)/as-ix/a}]]
5-0

Al.h.1y

2 2
Expanding in a Taylor series about the point {(a = x )/a$]
it can be demonstrated that L = O. It then follows from
Al.4.12 that :

I(x,B) = +cosh{n(a,B,x)] - cosh™‘[-h(a,a,x)] Al.L.15

The arguments in this relation are positive since it has
been derived from results obtained earlier in which the
argunents were arranged to be positive,

Finally relations Al.4.8, Al.4.10 and Al.4.15

may be summarised in the single relation :
I(G;B) = H(a;B:I) - H(a’aax) Al.L.16

where H is defined by relation Al.3.1
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Al.5 To evaluate the limit L = Lim(c-x) H(a,c,x)

This can be written in the form

1

L = Lim H(a,c,x)/(c - x) Al.5.1
x-c

The numerator and denominator both tend to infinity
and it follows that the limit is equal to the limit
of the first derivatives. Thus from Al.3.7

2

2 2 2 2 1/
L =Limn [(a =-¢ )/(a - x)] (¢ - x) Al.5.2

From which it follows at once that

L=20 Al.5.3
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Al.6 To evaluate the integral Io(a,B)

Now : 8

»

Io(a,B) = j H(a,c,xr) dx Al,.6.1

x

Let Io be the indefinite integral:

Io = / H(a’c’x)dx Al.6.2
Using Al.3.7 and integrating by parts Al.6.2 becomes

Io

(z-o)8(ae,m) + [1(a-e")/Ca" - 17 %0

1/2 -1

2 2
-c¢ ) sin (x/a) Al.6.3

(x=c) H(a,c,x) + (a

Suppose now that (c-r) does not change sign but is
always either positive or negative throughout the
range of integration, then from Al.6.3 :

- 2 2 1/2
Io(a,B) = L(I-C)H(%c.r) + (a=-c) /

1 B

sin (x/a) ]
a
Al.6'u

In the casc where (¢ - x) changes sign, that 1is where
¢ is contained within the range of integration it is

necessary to write :
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Io(a,B) = Io(a,B) + Io(a,B) Al.6.5

Then using the relations Al.6.4 and Al.5.3 to
evaluate Al.6.5 it is shown that Al.6.4 applies also

in this case. Thus Al.6.4 is the completely general

relation.

Al.7 To _evaluate the integral I,(a,B)

B
Now I(a,8) = [ (x - ¢) H (a,c,r)dr Al.7.1

x

Using Al.6.3 and integrating by parts Al.7.1 becomes :

— 2 2 - B
I,(a,B) = ‘L<x-c>(<x-c>n<a.c,x> v (2= ) %sin 1<z/a>)]

x

Q“ 2 2 1/2
- [ L(x-c)H(a,c,x) +(a-c ) sin (x/ai] dr Al.7.2
a
Now /Bsin-l(x/a)dx = [x sin_l(x/a)z - /Bx(az- xa)-l/zdx
a a
= [xsin(x/a) + (a2 - 12)1/2 ]B Al.7.3

04
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It then follows from Al.7.1l, Al.7.2 and Al.7.5 that

r 2 2 2 1/2 =1
2I(a,B) = LFI-C) H(a,c,x)=-c(a -c ) sin (x/a)

2 2 /2 2 21/2"2|3
~-(a -x ) / (a -c ) ‘J Al.7.4

a

Al.8 _To_evaluate the nonsymmetric integral

Define :

B
B —1/2 r -1/2 -1
Ia = L(b-r)(r-a)_l /L(b-y)(y-a)] (y=x) day Al.8.1
(e 4

where a < B belong to the interval [a,b] and x also belongs
to this interval. Using the method of completion

of squares this becomes :

Iz = [(b-a)z/u "(1'~{17-#»8.}/2)2:]1/2/}‘3 [[ (b_a)z/u_(y_(b+a)/2)z]"l/2
x

)‘l
(y=%) ay Al.8.2
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Now writing @

(b+a)/2 = 6
} Al.8.3
(b-a)/2 = ¢
y-0 = r
j Al.8.4
x-0 = 8
relation Al.8.2 can be written in a symmetric form
as follows :
B 2 2 1/2 p-0 2 a2 -1/2 -1
I =1(¢ -5 /. (¢ -% ] (r-s8) ar A1.8.5
a v
o-0
where (a - 8)<(B-6) belong to the interval [-p,¢]
and s also belongs to this interval. Equation Al.2.5

is now in the general form of Al.4.1l and the general

solution Al.4.16 may be applied, Thus

B

I = H(¢,p-6,8) - H(¢,a~8,s) A1.8.6
a

Substituting for 6 ¢ and s from Al.8.3 and Al.8.4

and then using Al.3,1 and Al.2.1 gives :



H(¢,B8-6,s) = H({b-a}/2,B-{v+a}/2,z-fb+a})/2 )

=cosh‘l<|[(2e-b-a)/(b-a)]-[2(6-a)(B-b)/(B-x)(b-a)]I)

H(¢,a=-6,8) is found similarly and the value of
B

I is found by substitution in Al.8.6.
a
Al.9 To evaluate the sum S,
[~ <]
N
Sy = - sin (né) cos (ng)
n=o0
Now :
exp(ing) = cos(ng) + i sin (ng)
exp (in8) = cos(nd) + i sin (né) j
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A108.7

Al.9.1

Al.9.2

Taus it follows that Sy 1s the imaginary part of some

complex function §, where :

o0

5, =

1/22; exp(ind)[exp(ing) + exp(-irg)]
n=o0o

Al.9.3
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This may be written :

[>]

Sy = w2 | exe™(5l0 + 91) + ex™(1lo - 91) AL.9.4
[ J

n=o

Using the relation :
0]

. 1

i
n=o0

Al.9.4 reduces to :

o 1

g, =1/2L{1-exp i(0+¢)l- + {1 - exp 1 (0-¢)I-1]

A10906

Introducing a common denominator and dividing numerator

and denominator by exp(i &, it follows that

S, =1/2 2 exp(-if) - exp(-ig) - exp(w)] /

L

[exp(-i@) - exp(ip) - exp(-i#) + exp (16) :] Al.9.7
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Now since exp(if) = cos 6 + i sin 6 this becomes

8y = 1/2 [cos 6 - 1 sin 0 - cos ¢)/[cos 6 - cos ¢]

Al.9.8

Then taking the imaginary part it follows rfrom Al.9.2

that @
S = -[sin 6/2 [cos 0 - cos ¢] Al.9.9
Al.10 To _evaluate the sum S;
el
Sz = (1/n) cos (ng) cos (nd) Al,10.1
Ly
n=1

Adopting the procedure of the previous section, Sj

is the real part of a complex function :

S. = 1/2 (1/n) exp(ing)[exp(ind) + exp (=ind)]

Al.10.2
1

B0 s
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This may be written :

S = 1/2 Eizt(l/n) exp™(1[¢+0]) +(1/n) expn(i[¢-3lg A1.10.3

n=1

Using the relation

(o]

Z; M = ¢n (1-2z) Al.10.4

n=0
in which én is the natural logarithm it follows that:

S, = 1/2 E?n(l- exp{i[0+p]})+ ¢n (1 - exp ii[0-¢13)]

Al,10.5

This may be written :

S; = 1/%;6n<exp[i(0+¢)/2]><exp[—i. (6+¢)/2] - exp[+i(0+¢)/2]>

+cn<exp[1(6-¢)/2]><exp[-1(0-¢)/2] - GXP[+1(0-¢)/2])]

- 2 [10 + 2ea(n) ¢n(sin l(e+¢)/21)+cn(sm((e-¢)/21>:]

Al.10,6
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Now taking the real part it follows that :

Sg = 1/{6n(sin[i€+¢}/2]) +&n(sin[(e-¢)/2])] Al.10.7
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Appendix II

A2.1 The hall space problem in plane strain

Choose standard axis (x1,xz) and consider displacements
u(xy ,xz) and uz(xy,xrz) in the half space x3 > O.
These displacements are required to satisfy the simultaneous

differential equations :

2
(M + ) OA/ari + wWu = O A2,1.1
i=1,2
where @
A = ou4/0xy + Ouy/0xa A2.1,2

is the dilatation and A,u are Lame's elastic constants.

The strains are

Yn= Ouy/0xy, Yaz = duz/0x,, Yig = (au1/512 + du2/611)/2

A.201.3
The relations between the stresses and strains give :
2
Eau,/@.‘m = (l-v )0?1 -V(l + v) Oagp A2.l.)4
2
Edug,/oxg = (1-v )og, —w(1 + v) o, A2.1.5

Yhere vV is Poisson 's ratio and E is Young's modulus
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It follows that the stresses are given by :

(l+v>(1~2v>0—11 = E(l-‘U)GU1/aI1 + E‘Uauz/al‘z A2.106
(14v)(1=2v )0z, = E(1=-v)ouy/ox, + Evouy/0xy A2,1.7
A2.2 Displacements for which the o3, stress is zero

Suitable displacements satisfying the equations

A2.1.1 and dying away as Xz - o are given by the relations

wuus g = [Zxa-(1-2v)]exp(—%x2)[B(Z)sin(%xy )+C(&)cos(Zxy )]
A2.2.1

[Zxa+2(1-v)]exp(—Zxz ) [B(Z)cos(&xy )-C(%)singxy ]

(TR PR A

A2.2.2

Z is any constant and these relations represent different
systems for each distinct value of Z. From equations

A2.1.6 and A2,1.7 these displacements give rise to stresses

Mg, = =2(%xs + 1) exp(-Zxz)[B(%)cos(%xy)-C(%)sin(%xy)]
A2.2.5
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oy, = 2(%x2-2) exp(=Zxz2)[B(Z)cos(%xry) - C(&)sin(Zxy)]

A2.2.u
and from the relation :
012 = w(ou,/0xg + ouz/oxy) A2.2.5
it follows that
Moy, = ~24Tzexp(=%x2)[B(Z)sin(Zxy )+C(Z)cos(Zxy)] A2.2.6

On the boundary of the half space xz 2 O, that is
on xz = O, relation A2.2.6 shows that the shear stress
vanishes and so the equations represent a system on which

only normal tensile stresses are applied to the boundary

x2=oo

A2.3 Displacements for which the o, stress is zero

Adopting the procesure of the previous section :

wpus g = [&xs = 2(1-v)]exp(=Zxz2)[B(Z)cos (%xy)-C(%)sin(%xy)]
A2.3.1
mpugs = [%xs + 1-2v] exp(-%xz )[-B(&)sin(&xy )+C(&)cos(&xy)]

A2.3.2
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are suitable displacements giving rise to stresses :

Toas = +2%xz exp(-Cxg )[B(Z)sin(Zxy) + C(Z) cos (Zxy)]
A2.3.3

oy, = =2(%x2-2) exp (=%xa)[B(Z)sin(Zxy) +C(%)cos(zxy)]
A2.3.4

Moy = 2(1=Zxrz) exp(—Lxz)[B(Z)cos(&xy)~C(%)sin(%xy)]
A2.3.5

Here equation A2.3.3 shows that the normal stress on
xz2 = 0 is zero and so the equations represent a system

in which only shear stresses are applied to the boundary.

A2.L4 The stress function

In the theory of plane strain it is known that the
stresses may be derived from a function X satisfying the

byharmonic equation @

4
v X = 0 A2.4h4.1
A 2 3
using the relations 0 X/0x, = 0gg A2.4.2
2 2
0 X/OIQ =044 A20u03

O* % oT10T2 = 04q A2.4.4
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A suitable function giving rise to the stresses

A2.2.3, A2.2.4 and A2.,2.6 is

7L x = 2(14%xg Yexp(~Zx2 ) [B(Z) cos(Zzy)=0(%)sin(Zxs)]

and a stress function giving rise to the stresses

A2.3.3, A2.3.4 and A2.3.5 1is :

wgzx = -2%xz exp(-%x2)[B(Z)sin(Zxy) + C(Z) cos ( Zryl

A2.L4.6

A2.5 Antiplane Strain

In this system, referred to standard axes,
the only displacement is of the form  uz(xy,xz)
and is normal to the x4,xrz plane. From the relations

for compatibility ot displacements it is required

that :

Vu =0 A2.5.1



179

The relations :
oyy = u(c‘:ui/d.r:j + auj/dxi) A2.5.2

give rise to the stresses

013 = HOuz/0xy A2.5.3
023 = U-aua/arz A-205.)4
0C49 = 0Ogg = 0Uag = 02 = o A2.5.5

A suitable displacement satisfying Az.5.1 and dying

away as Xz — o is

G pus = 2 exp(=Lxz)[B(Z) cos (%r1) - C(%) sin (Zxy)]

A20506

and from A2.5.3, A2.5.4 the stresses are

Moy = =2 exp(- &%)[B(Z) cos (&xy) = C(Z) sin (%x4)]
A2.5.7
s = +2 exp(=Zxs)[B(Z) sin (Zxy) + C(Z) cos (Zx4)]

A2.508
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A2.,6 Generalised Equations

In each case superimposing the stress systems

obtained for various values of & it is possible to
obtain a stress field satisfying certain conditions

of stress and displacement on the boundary and dying away
as Xg - oo, Superimposition may be carried out

by means of Fourier sums or integrals and simultaneous
equations are obtained involving one stress and one
displacement component. It will now be shown that these
equations take the same form in each of the three systems
discussed.

Make the following definitions :

A(Z,x1) = [B(Z) cos (&x1) = C(Z) sin (Zxy)] A2.6.1

c
1]

(2/m) A(Z,74)/% A2.6.2

o = (2/m) A(Zxy) A2.6.3

For a system in which o4z 1s zero on the boundary

x2 =0 set :

0_22 = "O A2.6.u
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Then on xz = O equations A2,2,2 and A2.2.3 reduce
to equations A2.6.2 and A2.6.3 respectively.
Similarly for a system in which 0z 1s zero on

Xz = 0O Set

01 = =0 A2,6,6

£
]

+u(1l-v)/u A2.6.7

Then on rz = 0 equations A2,.3.1 and A2.3.5 reduce to

relations A2.6.,2 and A2.6.3.

Again in the case of antiplane strain set :

us = wW/u A2.,6,8

Og3 = =0 A2.6.9

Then equations A2.5.6 and A2.5.7 reduce to A2,6.2 and
A2.6.3.

To obtain a Fourier series let B(Z) C(%) be derined only for:

Lz = mn/e A2.6,10
and set
2
B(%) = nm By/2¢ } n=0,1,2, etc. A2.6,11
c(g) = nm B, /2¢
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where Bn and Cn are constants. Then

from A2.6.2 and A2.6.3 :

=
u = ;;}Bn cos( mmxy/¢) - C, sin( mnx,/¢)] A2.6.12
n=o
o= ( w/¢) E: n [Bncos( m™mxy /L) - Cnsin( mnxy/¢)]
n=o0

A2.6.13

Integration with respect to & to obtain Fourier integrals

gives
u = (2/m) / [ A(%,x4)/% 1a & A2,6.14
o = (2/m) / A(Z,x4)d & A2.6,15

These latter equations also follow directly from the

(%
theory of Fourier Transforms (Sneddon 1951).
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Appendix IIX

Hult MeClintock Theory of a Relaxed Notch

Hult and icClintock (l957f;have discussed the plastic
relaxation at the root of a sharp notch of depth ¢ and angle 6
under conditions of anti plane strain. The analysls used
to determine the extent of the plastic zones is not given
in detail in their paper although the general procedure is
indicated.

Following this procedure the complete analysis has been
developed here and in principle the equation of the elastic
plastic boundary may be determined. Analytic soclutions
for the boundary would be unduly complex and recourse to

numerical techniques is necessary, except in a few special

cases,

Now (x1,x2) is a working function, ¢(xy,x2) a stress
potential and P the applied oz3 stress at infinity. The

equations of stress (2.2.2, 2.2.3 and 2.2.4 of the main text)
may be written in the form :

043 = udw/d:n = d(¢ + Px4 )/61‘3 A3.1.1

0gs - P = pow/0xg = -d(¢+ Pxy )/61'1 A3.1.2
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A complex stress vector is defined by

0 =043 + 1023 A3.1.5

and ¢ = R exp (ia) is an arbitrary point of the elastic
plastic boundary. In the elastic region ¢ satisfies the
Laplace equation, but this domain is unknown so that solutions
for ¢ are not easily available. The equations in the

elastic region are therefore transformed into equations

in stress space.

Aj.2 Transformation to stress space

Make the following definitions

o= oy = 1 (02a - P) A3.2.2
W= w+ 1(¢p + Pxy) A3,2.3

From the first part of equation A3.1.1 and the second

part of A3.1.2 it then follows that

o' = oW oxy A3.2.4



185

The second parts of equations A3.1.1 and A3.1.2 are
Cauchy Riemann equations in (Mw) and (¢ + Pxy)., It
follows that these are conjugate harmonic functions and

consequently W is an analytic function of Z. Therefore

A3.,2.4 may be written
o' = owW/oZ A3.2.5

Also Z must be an analytic function of ;' and therefore

the derivative of some other analytic functicn A (')

defined for values of stress in the elastic region :
2 = oA’ (o )/o0 A3,2,6

Moving the origin of the o space to the point (0,+P)
o =0' - 1P = 045 - 1023 A3.2.7
equation A3.2.6 becomes

7 = OA(d)/o0 A3.2.8

A3,2,7 shows that o is the conjugate of the complex stress

vector defined by A3.1.3.
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Letting ¥ be the imaginary part of A :

Xy = a#’./ao-ga A30209

Xz = - OY/00 43 A3.2.10
2

V ¥ =0 A3.2.11

These equations in ¥ are of the same form as the stress
equations in ¢ (2.2.2, 2.2.3 and 2.2.4 of the main text.)

Now ¥ is a function of stress defined for stresses in the
elastic regions and in what follows ¥ will be seen to have a
rather simple set of boundary values which is not the case

for the real part of A.

In the elastic region the only points at which lol k

are on the elastic plastic boundary of the Z space (fig I).

Using polar co-ordinates with the origin at the natch tip,
the Radius R of the point q = (R,a) of the boundary is given by

2 8 2
R = [I1 + 12 ]IO-I = k A302012

From A3.2.9 and A3,2.,10 it is clear that

R=1[1grad (y) | ]
iPl = k A3,2.13

This equation in o space is again similar to an equation of
the Z space, namely the yield criterion

k =1[ lgrad (¢)1 1, _ g A3.2.14
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A3,3 Method of solution

Consider the map of the elastic region of z space into
the stress space (fig I, fig 2). Along a free surface the
traction is zero, In the stress space this implies that,
with the relative orientations of the diagrams, the complex
stresvector in o space must lie parallel to the free surface

of the z space, since the ratio of the stress components

is fixed.

Now in the yielded region the complex stress vector
has a constant magnitude k and, again with the relative
orientations of the diagram, a direction in o space perpendicular
to the radius vector in z space,. The continuity conditions
then imply that this relation holds on the c¢lastic plastic
boundary, so that the map of the point q = (R,a), on the
edge of the elastic region in z space, is the point q =
(k,{m/2] + a }) of o space. The elastic region of fig (1)
maps onto the enclosed region of fig (2), since outside this

region the magnitude of the complex stress vector may exceed k.

Furthermore, since the complex stress vector is perpendicular
to the radius in the plastic region, the stress increment
between two neighbouring points will lie parallel to this

vector, Therefore, continuity also implies that in the
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neighbourhood of the elastic plastic boundary, in the
elastic region, as in the plastic region, the stress

increment lies parallel to the radius vector,

The boundary values of ¥ are obtained by integrating :

ay

[oy/d01gldoys + [0¥/00z5]d025

= Xx2d093 + T1d023 A3.,3.1

Now the continuous arc BCDEF in fig (2) corresponds either
to free surisace or to plastic boundary in fig (1) and in

both cases the stress increments in o space have been shown
to be parallel to the radius vector in z space., Therefore

¥ is constant over this arc since x1/xe = drza/do 4.

Setting ¥= O over BCDSEF it is at once appareant that over
AB and FG :

w = = CO0gz3 A3.302

since do4s = O and from fig (1), x4y has the constant

value ¢ over these arcs,

Denoting the real part of o by R, then in stress space

the boundary values of ¥ take the form

W = io Roe =0
w =0 ?"-#O} A3,3.3



189

Now it is required to find grad (¥) at the elastic plastic
boundary. To this end suppose that the elastic region

of o space is mapped on to a semi-circle in 7 space say,

with polar co-ordinates

(tyy) where 0 < t < 1
/2 < ¥ & W2 A3.3.4

and in such a way that a selected point q on the elastic
plastic boundary maps on to the origin. Then a ¥ satisfying

the Laplace equation in 7 space 1s :

¥(t,y) = Z:: [?L cos (vy) + ¥3, sin (VY).] t” A3.3.5

v=1

Using the Fourier Theoren :
w/2

v, = (2/7) / ¥(1l,y) cos (vy)ay A3. 3.6
-/2

Since ¥ 1s constant on the boundary near q it is constant

in the neighbourhood of the origin in 7 space in the

direction ¥
to (oy/ot)y

/2. Therefore grad (¥) in 7 space is equal
o and from A3.3.5
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v-1
d (1/’) = (a'l’/dt = ; R =
e T )Y =0 <Z W’v >t-0 v
t =0 v=1 -
A3.3.7
Thus
w/2
grad (y) = (2/m) / v(1l,y) cos vy dy A3.3.8
t=0
-/2

To determine grad (¥) in 7 space it is necessary to know
¥(1,y) on the boundary and this requires knowledge of the
mapping function,

A3,4 The Conformal transformations

The following series of conformal mappings are
y0
compiled from a dictionary (Kober 1952). Initially

the o space is mapped on to a circle in & space split

along the x4y axis where x4y < O, To do this o space

is rotated through an angle -#/2 and the arms EF, BC are

then rotated to lie along the x4 axis. Finally a bpilinear

transform shif ts the coincident points GA to the origin.
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Define : A

P/k A}Ohol
em /(m - 6) A3.4.2

[
il

then the transformation from o space to & space is

2= [(-10/K) =% 1 /(1= (~tho/i) ] A3.5.3
the derivative is
oz/or = - [1al1- A28]]/[k{1-(1re/k)%}"] A3.L.L
and the inverse is
o = 1k[{A* + Z]/{2% + 1lll/a A3.4.5

The divided circle is opened into a semicircle and
then transformed into a complete circle in 7 space. The

transformation from 4 space to m space is :

n = [% -1+ 2/&)1/[8 - 1 - 2/%] A3.4.6

the derivative is :

on/oy = =2(% + 1) / oz = 1 = 242" A3.L.7
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and the inverse is :
2 2 2
Z=I[n+1-yien + 1)1 1 /In -1] A3.4.8

The 1 space is then rotated through an angle p so that the

point q lies at (+1,0) and the circle is transformed back

into a semicircle. Setting :

n' =n exp (=i p) A3.4.9
These transformations are expressed by :

T = [7' + 1 - J[z(n'2+ 1)]:] / L7' - 1:] A3.4.10

the derivative is :

ar/dn = exp(—ip)<[2(n' + 1)/J[2(n‘2 1)1} -2/(n*-1)"

A3.4.11

and the inverse is @

2
n = exp(-ip) [ -1 + 27}/ [72- 1 - 27] A3.4.12

In general the rotation p is not easily determined.
It is first necessary to find the map of the point q in

o space on to the 7 space. This is found by setting
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o = -ik exp(ia) and combining equations A3.4.3 and A 3.4.6.

The argument of the point so found is minus the rotation p.

However if q is taken at the special point D then it follows

at once that :

o= A3.4.13

A3.5 To Determine R(o)

In order to determine grad (¥) at the origin of

T space from equation A3.3.8 it is necessary to know

¥(Ly) for :

T = eiY -w/2 < v g W2 A3.,5.1

Now ¥ is known in terms of o from relation A3.3.3 and so

using the transformations ot the previous section the

values of o corresponding to the points 7 in relation A3.5.1 must

be found. From A3.4.12, A3.4.8 and A3.5.1 the relation

between £ and y for p =7 is :

&= r{_{ - 4 exp (iy) + J{ulexp(2iy)-1]" + 16 exp 2iy} }/

-2{exp (2iy) -1}] ° A3.5.2



194

= =(-cosy)/(1 + cosy) A3.5.3

This particularly simple form is only obtained for p = w.

Substituting into A3.L.5 gives :

1/8.

o o= ikﬂ%a(h cos y) =(1l-cos Y)]/{(l + cos ) - A (1-cos T)D

A3-5.’4

By A3.3.3 ¥ is zero at points where o is not purely
imaginary, that is at points where the expression in square
brackets in relation A3.4.5 is not real and positive.

These are the points at which :

a a
lcos v >( 1 -n)/(A +1) A3.5.5
that is :
Iyl > sin "t A3.5.6
a/a a
where b = (2» /A + 1) A3.5.7

The range of the integral in A3.3.8 may thus be restricted
-y _1
from (-w/2, +m/2) to (=-sin b, + sin ©b).

Then from relations A3.3.3, A3.3,8, A3.5.4 and A3.5.6
it follows that :
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1

sin b

grid(W)z(zck/ﬂ) [{ka-l+(la+l)cos T}/il—h+(ha+l)cos v} lcosydy
=0 1

-sin” b
A3.,5.8
Using the substitution @
b = sin vy A3.5.9

and setting :

g<xx>{;¢i<xa+1>2-uxax2;-1+xf}{;/z<xa+1>2-uxax2;-1+xf]

A3,5.10
it follows that :
a/2 a 1 1/a
graaly) = (18ek/m(x " /n +1>/ (g(rx)]  ax A3.5.11
=0

o)

The gradient of ¥ in o space is then obtained by multiplying
by the factor

do =(0 0 0o o}
(ar/ %O’l) (o1/ nz_l’o)( n/ z)(l’o)(%/écr)(o’l)

A3.5.12
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Now from A3.4.11 differentiating numerator and denominator

(aw/an)(_l’o) = 1/4

from A3.4.7 ¢

on/o = -
(on/ é)(l,o) 1

and from A3.L.4 :

(0%/00) - 1a[1en 1/k[1-A ]
(0,1)

s0 that the radius of the point D in Z space is :

a/2 a 1 1/a
R = (ca/m)(2n /1A >/ [g(Ax)] ax

o

Which is equivalent to the formula given by Hult and
McClintock.

A3.5.13

A305.1’4

A3.5.15

A3.5.16



197

Appendix IV.

Programmes

This appendix contains the specification and transcript
of the programmes used for certain of the numerical calculations
in this work. All programmes are written in the Manchester
Mercury Autocode (Brucker 1961)7%nd have been run only on the

Mercury computer at Shef'field.

4ol Periodic Array of Cracks

The programme calculates stresses or displacements

for a triangular mesh of values of ¢/L and a/L

where 2¢ is the crack length, a-c the length

of the plastic zones and 2L the period of the array.

The points of the mesh are separated by a distance h = L/¢
where 2/ is an integer. The range of integration is
divided into Li intervals, where i is en integer

and the integration is carried out using Simpson's rule.

Order of Operation

(i) Read two unsigned integers from a data tape

in the order
¥
i

(ii) Set values of c/L ranging from
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L -2h to h in steps of (-=h).

(iii) Set values of a/L ranging from (L-h) to
(¢/L + h) in steps of (-h).
(iv) Halt.

(v) Calculate displacements (WQA/&ih) & (ec)/L
at all c and a if handkeys are
equal to 3
or
Calculate stress ratio P/o at all
c and a if handkeys are cqual to L.

(vi) Returmn to  (iv)

N.B. Output is in the form of a table in which fixed
c/L form the rows and fixed a/L the columns, The
page is 5 numbers wide and thus the rows occupy several lines

of printing. Separate rows are separated by double spacing.

The values of c/L and a/L for which calculations

are made are printed down the side and across the bottom

respectively.

Formulae

The integration uses Simpson's rule. Over sufficiently

small regions this approximates to the integrand by means of a
parabola. Such an approximation may not be used over any

region containing ¢/L since the integrand is singular,

However the singularity is known to be logarithmic and it is

possible to use the following approximation to the integrant
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over the intervals (e, ¢ + 2h]

[F + (Fy - Fz) log h/log 2] + [(F; - F4)/log 2] log (x - ¢)
where F, am Pz, are the known values of the integrand

at ¢ +h and c + 2h respectively. The integral

over this region is then

Fy + (Fy - F3)/ 1log 2

A.2  Displacements from a Thin Crack in a Work Hardening

Material’

The behaviour of the programme is governed by a system of
labels in Chapter 3. These lgbels may be fed into the
machine either on tape (label (2) ) or via the hand keys
(1abel (0) ). Entry to the programme is at label (12)
of Chapter 3. The general sequence of behaviour at each

label is given below. The following numbers may be read

from a data tape :

P unsigned integer ; label number

M unsigned even integer : the number of intervals
in the integration process,

C unsigned rational number : ratio c¢/a

X unsigned retional number ¢ work hardening constant
wb/wz A
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Order of Operation

1)

6)

Labels in Chapter 3

(i) Read M and C and print 2, M and C

preceded by 2 inches of blank tape.

(ii) Evaluate the (M + 1) x (M + 1) matrix Aji for
c/a = C .
(1ii) Print the elements 84y .
(iv) Store the elements 845 . f
(v) Print - ¥ ¥ %x ¥ ¥ ¥ preceded and followed by blan{

tape . (N.B., The output from this stage is suitable

for re-input as data),

(vi) Go to lebel 10) with M, C and Aji set.

(i) Read M, C and the (M + 1) x (M + 1) matrix Aji

(N.B. That is the tape produced in the previous

routine),

(ii) Pass control to label 6) with M, C, and AJi set,

(i) The constants M, C, and Aji must be set
when control reaches label 6).

(ii) Print the title and the programme constants M,
C preceded by captions.

(iii) Calculate, store and print the (M + 1) vector

S'j [displacements for non workhardening case].

(iv) Read and print X,



10)

11)

12)

Formulae

(v)

(vi)
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Evaluate, print and store the (M + 1)

vector Sj [The displacements in the form
2

(m Afoy B)(® (x)/a )] corresponding to the

work hardening constant X.

Calculate the stress ratio and print
preceded by 3 intermediate numbers.

[N.B. Sj is destroyed M, C and A

are preserved J.

Ji

(vii) Halt. Read handkeys.

(viii) If handkeys are equal to 16 repeat from (iv)

(1)
(11)
(1)
(i1)

(1)
(ii)

used

In calculating the Matrix A

otherwise go to label 10) with M, C and
Aji set,

Halt. Read handkeys.

Jump to label set on handkeys.
Read M and Cc.
Go to label 10) ,

N.B. This may be used on a data tape

following re entry by H.S. 9 and 1 I.T.B.

when the matrix Aij is set. Control

is then passed to label 10) with M,
C and Aij set.
Resad P

Pass control to label P,

i1 it is necessary to
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evaluate the integrals v and (5.3.11

ji
and 5.3.12 respectively). These calculations are based on

the following relations

r 2 2 2 -l 2
Z/yH(l,y,r)dy=(y - )H(1,y,x)+/(1-x ){x sin y-/(1-y )}

. -1
/H(l.y,r)dy= (y-x)H(1,y,x)+/(1-x ) sin y

These follow simply, integrating by parts and using

Al.3.7 for the derivative of H,

A Tyovical Operating Procedure.

Supvose the data tape is shown in the form :

i, M, C, X4, X2, X3y, 1, M, Cy X4, X2, X3, etc,
It * denotes manual operations the procedure is then :
Read 1, M, C: calculate and print Aji : Halt,
®¥ Set handkeys to 6 : pass Halt.
Calculate S'j : Read X4 : calculate Sj and P/o*i :

Halt .
# Set handkeys to 16 : pass Halt .

Read X, @ calculate Sj and P/o, : Halt ,
® Set handkeys to 16 : pass Halt.

Read Xs : Calculate Sj and P/oy : Halt .
* Set handkeys to 12 : pass Halt,

Halt,
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* Set handkeys to 12 : pass Halt,
Read 1, M, C : calculate and print A, ¢ Halt:
ete.
Alternatively one might have duta of the form :
2,M, C, Aji’ X4, X2, Xa, 2, M, C, Aji’ etc.
The procedure would be as above, However, after the first
label one may omit all subsequent labels and set these via

the handswitches in the final operation of the cycle, instead

of label 12). Further any combination of these two

forms may be used,

Alp .3 Thin Crack Relaxing along Two Planes.

Xy = a is the projection of the tip of the plastic arc

onto the X4 axis., The half length of the crack

is unity. The range [0, al is divided into P

intervals and the range [0, 1] is divided into @

intervals. The plastic arcs are inclined at an angle

a radians to the plane of the crack.

P, Q@ are integers, a a real number.

Order of Operation

(1) Print Title.

(ii) Read data in the order P Q a .

(1i1i) calculate the dislocation concentrations under stresses

P=1, o0 =0 and P =0, 0 = 1.
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(iv) If, and only if, handkeys are set equal to 16
print the dislocation concentrations calculated in
(1i1).

(v) Print c/a, stress ratio and the dislocation
column vector. [The density in the form (4/04b)D(x)]

(v) Print the relative displacement at c across
a single plastic arc. [Displacements in the form
(A/yp)(2(c)/a) |

(vi) Halt .,

(vi) Pass halt return to (i),

Formulae.

The programme uses only standard formulae for the stress

due to a dislocation and the rotation of the stress matrix.

Footnote :
+ Owing to a programme error the stresses are set
negative and all dislocations have the wrong sign.
*

There is a programme error in this section of the
calculation. These quantities have been

determined using a desk calculating machine.
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A4.4 Transcript

Periodic array of cracks.
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o= L(=1)
A= 07
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o = 4l

= H/Jd

U = An

v cn

o= HU

A = uycns(u)
cC = ‘;;’COC(‘;)
Vo= A-3

Y = C~1

D= X=2Y

D = n/X

£ o= y-X

T = 2FEY/Y
vo=4101)J
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Y= X=C

X = D-E/X

Y = XX~
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Ad. 5 Transcript

Lisplacenents from & thin crack in a workhardening meterial



TITLE
8080 SWINDEN, DUM.ALA/1

TITLE

SISPLACEMENTS FROM A THIN CRACK 1M A RXHANDEMING MATERIAL
CHAATER 1
U = 111
V * 11
W = 111
G * 1114
T -+ 30
1)6 = 1/H
J=ofs)M
U = €+JH
y = 14U
JUMPz2 ,02V
v = ySQRT(V)
2)W = YARCTAN(U,V)
1 = o{alM
vl = o
Ul = o
Y = C+lH
To = 1=YY
JUMP 3,02>Tl0

Ts = WSORT(no)
3)nz = HAPPTAh(nz,Y)
X =«
T = 1-J
$)X = =X
g = Y -X
i3 = o .
JUMPs5Z%,T=0
= no/V4+Y
5§n5 = M3T3-1

JUMP6 021§

g = wSQRT(ﬂs)

iﬂs = yMoD(T3+1s)
13 = yLOG(m3)
w3 = WMOD(Wz)
my = YY=XX
Ul = 0. §nsT3+UL
V1 = mgn3tvl
JUMP 4,X>0

ul = vna+ul
REPEAT
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I = M(~1)1
ul = ul=u(1-z)
vi = VI-V(1-1)
REPEAT
Uo = o
Yo = 0O
V(M+1) = o
u{M+1) = o

1 = o(1)M

Yy = I-1

Y = CH+HY

X = Y+H+H

vi = xV(I+1)-u(1+1)+Ul-YVI
VY1 = GVI

Y = IH

Y = 899Y/C+1

Y = ySQRT(Y)

vl = VI/Y

NEWL INE

PRINT(VI)o,6

REPEAT

NEWLINE

N = M+:1

A' =« NN

X = JN

7 = JN+A'

W7(Z)V0.N

y7(x)Vo,N

REPEAT

| = o(x)a0

PUNCH (o)

REPEAT

PUNCH (30)

] = o(1)6

PUNCH(31)

REPEAT

1 = o(1)6

pPUNCH(o)

REPEAT

NEWL INE

NEWL INE

ACROSS10/3

YSQRT
yLOG
YARCTAN
CLOSE
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CHAPTER3
VARIABLESI

3)NEWLINE
CAPTION

C_
PRINT(C)o,5
CAPTION

M =
PRINT(M)3,0
NEWLINE
= o(1)M
C+IH
1-CC
C~X
C+X
PI,]=0
Y/u+C
Z2Z-1
P5s02A
YSQRT(A)
= Z+A
yMOD(Z)
vLOG(Z)
= yMOD(Z)
)0 = Uz
Z = Y/V+C
A= 22-1
JUHP600>A
A = YSQRT(A)
6)Z = Z+A
Z = yMOD(Z)
Z = YLOG(Z)
Z = yMoD(Z)
nr = Ni+VZ
Vi = n:
NEWLINE
PRINT(NI)o,S
REPEAT

&<C-<><°—

# HNBX U U 0NN

U

NNNW > >N
S

N = M+1
A=N

B = AA

c! = aB

2 )READ(X)
NEWL INE
NEWL INE
NEWL INE
CAPT ION
VAR. X =
PRINT(X)o,5
NEWL INE
x = 1/X
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mi3a,

70’ )vo,
B = W19(°:X,A)
c' = v28(0,MN,1)
w6 (C' )Uo, M
1 = ola)M
NEWL INE
ur = XUt
PRINT(U1)o0,5

= IH
Y = 899Y/C+1
Y = ySQRT(Y)
yr = ut/y
REPEAT
NEVL ITNE
n3n= o
J = H(—z)z
p=1J
2z = PHC
gy = TNa2-H
Mo =, Mi=H
n3 = TMo+mMs
T4 = TMatT2
g = netlo
n6 = aHH
17 = U(P-3)=2U(P=1)+UP
ny = ny/né
nf = y(P=2)M4=21{P=1)T3HPT]
8 = ng/né
g = U(P-z)ﬁiﬂz—zU(P—i)ﬁon9+upnon1
Tg = ﬂg/ﬂé
n3 = 1-ToTo
ng = 1—N2T2
m3 = wSORT(n3)
JUMP4,02T 4
w4 = ySQRT(74)

) (m10,m11) = wLOG(T3,T0)

m13) = wLOG(T4,T2)

N4 = NoM3=Tanytm13-711

r3zo =

T+ 771 Jo=menntnlnytngne3~ToTed
3 4 gtnigna13=—Ty

REPEAT
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VEULINE
PrINTIT50)0,5
NEULINE

Tae = 1~CC
T20 = U“Q"‘"" T20)

2o = ,.r,p.q-nnl-,\o’

Py T("zo)o,v
”E”l Iy\j'
Hao = —T' JO/"+PT::O
P IMT( M20)0,5
verL I NE

Y = Oe 5'.‘.

20 = Y-Tro
naO = 720 ,
mTi{r2o ) '35

HCULYNE
NENLINE
neULINE
HALT
HANDUEYS(C )
JUMP2,J = 1f

ArDaeS, /
FaAUR S VRS

e

yonrT

P

\", .
{1 l"f"r,‘\”

~LOTE

r)
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CHAPTER3
VARIABLES1

11 )READ{(M)
READ(C)
H=1-C

H = H/M
JUMP10

13 )READ(P)
N) = P)
JUMP (N)

1 )READ(M)
READ(C)

H 8 1-C

H = H/M

P =3
o(1)s0
PUNCH (o)
REPEAT
PRINT%P)!.O
PRINT(M)1,0
PRINT(C)e,5
ACROSS:1/1
z)READgﬂ)
READ(C
H=1-C

H = H/M
U-H'l-x

U = uu
yro(o,U)

6 )CAPTION '
DISPLACEMENTS FROM A THIN CRACK IN A WORKHARDENING MATERIAL

ACROSS 3/3

10 JHALT
HANDKEYS(J)
N) = J)
JUMP (N)

CLOSE
b323 290024

CHAPTERo
YARIABLES:
ACROSS12/3

CLOSE
~$ITLTLTLTLXTLLL

1
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Thin creck relaxing along two plenes
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JUMP 7
7)711 = Z4~To
Zio = Z§5—1

Zg = Z1073+721173

710 = 21073-71173
Z1gs = Za0l10
Z1a = ZgZgtisa
Zya = 1/712
Zi1 = -2731732712+712
Zi3 = 2Z1atla1 -
Zg = ZgZ11a
Zia = ~2310Z12
224 = Z102121
Z13 = ZaZa
23 4= Z3Z3
Zay = ZaZ3
210 -= 3213
ZyHyd

V' = z4271%3+Z432247210
z* "Z;BZ:a+Z!:Z:3+21029+Z‘
213°= Z13~21 4

Zeo = Z43-2114

Yt = 2 "13+210215+Y‘

P (NS

2)AS = T AY

JUMP 10,021

U = AA-B

v = AR

z =2ty

AJ = UY#+ZV

10 )REPEAY

X o [P4P

g7 (X)A1,P

REPEAT

o= z@(t,P,z)

P R

CLOSE |

CHAPTERo

ACROSS1/1
CLNSE



