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ABSTRACT 

Acoustic Emission (AE) is a technique for performing Non-Destructive Evaluation 

(NDE) of structures, whereby ultrasonic transducers are placed upon the surface 

of the structure in order to detect ultrasound resulting from damage-related events 

within the structure. Unlike many other NDE techniques, AE is an entirely passive 

process: the transducers operate in receive mode only. 

Advances in the sophistication of AE equipment and computer hardware in general 

mean that it is now possible to perform AE tests involving many sensors over a 

large structure whilst recording and storing every waveform received at every sensor. 

There is much interest in using this data to perform detailed analysis of structural 

integrity, particularly because AE testing is entirely non-invasive and can be largely 

automated. 

There are many hurdles to be overcome before AE can be routinely used in such a 

situation: the quantity of data is huge, and it is of a format which is unusual to most 

engineers - AE signals comprise short, transient, 'burst' like signals. A significant 

portion of this thesis is given to considering what to do with all the data, and how 

it may be understood. 

The t.hesis focusses on the development of a data processing method, and it.s appli­

cat.ion to landing gear certification tests. The methodology is designed to be generic, 

ill that. it could find application in the on-line monitoring of a variety of engineering 

structures in the aerospace, automotive and civil-engineering sectors. 
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Chapter 1 

INTRODUCTION 

The technique of Acoustic Emission (AE) holds much potential as a non-destructive 

technique. It has been proven to be a useful method in several areas such as the mon­

itoring of pressure vessels [1], but is still not considered a reliable technique capable 

of competing with established technologies such as ultrasonic scanning, eddy-current 

inspection or magnetic particle inspection. This is due in part to the huge amount 

of incomprehensible data acquired during testing, which is infathomable to all but 

the most experienced AE user. This thesis sets out to provide a series of tools, 

techniques and recommendations in order to make sense of the data. Whilst the fo­

cus lies on detecting fractures in landing gear components, the techniques discussed 

should be applicable to many engineering structures. 

This chapter begins with a short introduction to the field of acoustic emission in 

order to give the reader some insight into the technological status of the field at 

the beginning of the project, and to introduce the reader to some key concepts. 

Next, a project focus section sets out some clear goals for the project, and describes 

the intended application of the technology developed. The chapter closes with an 

overview of the coming chapters. 

1.1 What is Acoustic Emission? 

Variolls physical events which occur in structures result in sudden redistributions of 

st.ress: this stress results in an elastic wave which propagates through the structure, 
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and can be detected by surface-mounted transducers. These bursts of energy are 

called acoustic emissions, and the technique of detecting and recording them is 

called Acoustic Emission (AE). 

One eloquent AE researcher has informally referred to AE as "little earthquakes in 

structures ": the comparison is quite accurate. In an earthquake, friction and slipping 

of tectonic plates in the earth's crust give rise to vibrations, which travel as sound 

waves through the earth and shake structures at the surface. Acoustic emission is 

very similar, though the frequencies of the vibrations involved is much higher, and 

the aim is to detect and interpret the vibration of surface mounted objects (usually 

some form of piezo-electric transducer) in order to assess the cause of the emission, 

and potentially asses the damage-state of the structure. 

The causes of acoustic emissions are numerous. In composite structures, some causes 

include fibre breakage, matrix cracking and fibre-pullout [2]. Analysis of these acous­

tic emissions can lead to the identification of the different source types; this is the 

subject of extensive research (see for example Giordano et al. [3]). In metals, many 

acoustic emission sources are application specific, for example fragment breakage in 

wire rope [4, 5], or tribological mechanisms in bearings [6, 7]. This project is con­

cerned with the detection of fatigue fractures using the acoustic emission technique. 

1.1.1 Some History 

The beginning of acoustic emission research can be attributed to Kaiser [8], whose 

PhD thesis on acoustic emission in tensile testing gave rise to the first research into 

the engineering applications of AE. Early research into acoustic emission was limited 

by the hardware available; it was not possible to record waveform data due to lack 

of high speed acquisition systems and storage requirements. Much research relied 

on AE 'count rate', a simple count of the number of times that the voltage crosses 

some threshold. 

With advances in acquisition hardware, computing power and digital storage re­

quirements, it is now possible to capture and analyse waveform data from acoustic 

emission tests. AE hardware records waveforms at 40MHz, and is capable of storing 

many waves across many channels in quick succession. This presents the opportunity 

to analyse the received signals in greater detail. 
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For many years, acoustic emission researchers lacked sufficient computing power 

to analyse their data. Now that such computing power is cheaply available, the 

question remains as to which algorithms and techniques to use in order to make use 

of it. 

1.2 Landing Gear 

Landing gear is the structure that supports the aircraft on the ground, allowing it 

to taxi, as well as playing a critical role in the safe landing of aircraft. This mixed 

usage of the component places significant demands on the engineering designers -

the landing gear lust be able to support bending and torsional loads during taxi and 

take-off, as well as massive impact load during landing [9]. In addition, the engineer 

is constrained to minimise weight, leading to structures with little or no structural 

redundancy. 

The arrangement of landing gear are generally twofold [9]: the conventional or 

taildmgger gear consist of two wheels at the front of the aircraft and a smaller wheel 

(or occasionally, for light aircraft, a skid) at the rear. The tricycle undercarriage 

consists of two wheels (or sets of wheels) under the wings and a support wheel at the 

front. Additionally, some aircraft have a small wheel at the rear to avoid tail strikes 

during take off. As aircraft increase in size, they require more wheels to cope with 

the increasing weight: modern passenger aircraft have sets of wheels arranged on a 

bogie, usually four or six wheels arranged to adjust to the aircraft's orientation. 

1.2.1 Landing Gear Monitoring 

Landing gear is subject to extensive structural health monitoring, due in part to 

the "safe-life" design method. In contrast to the rest of an aircraft structure, the 

landing gear is damage intolerant, and a monitoring system is vital. Modern aircraft 

Hy with syst.ems inst.alled t.o monit.or t.ire pressure and brake t.emperature [10]. 

Tire monitoring systems are used to eliminate the need for periodic manual inspec­

tion, and to avoid incidents due to un pressurised tires, whilst brake temperature 

sensors report the current brake temperature to the pilot in the cockpit. Monitoring 

of brake temperature can be used to determine remaining brake life [10]. 
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The monitoring of the shock-strut (main tube fitting) of the gear is an area of ongoing 

research. Of particular interest is the measurement of nitrogen gas-pressure within 

the strut. Current procedures are either inaccurate due to the complicated nature of 

the system; or else unweildly, time consuming and expensive, often including taking 

the aircraft out of service. ultrasonic approaches have been suggested to alleviate 

these problems [11, 12]. 

Monitoring the fatigue condition of landing gear is an important yet difficult prob­

lem. Some magnetic techniques have been developed for the determining of fatigue 

state of steels, but these are not yet suitable for commercial use [10]. An alternative 

approach is known as Loads Monitoring, where the loads into the landing gear are 

measured throughout it's service life (either directly or by inference from the air­

crafts state), and compared to either a model of the fatigue life or the measurements 

from the fatigue testing of a similar component. 

1.2.2 Landing Gear Research 

Research in the area of landing gear is ongoing, as engineers strive to design safer, 

lighter, more cost-efficient landing gear. With the modern foci of environmental 

impact and noise reduction, the optimal solution is a moving target. The modern 

design phase of landing gear includes extensive modelling and simulation, particu­

larly at the concept stage [13], in order to evaluate new design concepts. 

Landing gear is a contributor to aircraft noise - particularly as they are deployed 

during the take off and landing phase of flight, where aircraft noise has the most 

impact. Previously, attempts have been made to reduce the aero-acoustical noise 

by the addition of fairings [13], though current work involves using noise reduction 

as a design driver, in order to produce landing gear that are low-noise without the 

addition of extra components. 

Materials research is key to the future of landing gear. Traditionally, ultra high 

tensile strength (UHTS) steel such as 300M [13] has been used, which is extremely 

strong but lacks ductility (and hence the need to detect even the smallest fatigue 

fracture). Future directions include the use of composite components where appro­

priate (the Boeing B787 will feature organic matrix composite braces) as well as 

titanium components and titanium matrix composites. 
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1.3 About this Project 

This thesis forms part of a larger project, with the aim of developing a system 

to monitor landing gear structures during fatigue testing. The project involves 

various researchers at Cardiff uuiversity, as well as work at Sheffield. The project 

is jointly funded by Messier Dowty Ltd. and the Engineering and Physical Sciences 

Research Council (EPSRC). The project receives input from advisors at the National 

Physical Laboratory (NPL) and Physical Acoustics Corporation UK. This side of 

the project aims to develop the signal processing portion of the project, by use of 

various techniques including wavelet transforms and supervised and unsupervised 

forms of machine learning. 

1.3.1 Project Focus 

The objective of the project is to detect crack growth during fatigue testing of 

lallliing gear. This testing is perforllled as part of the certification process for the 

structure: the gear is tested in a large facility in a loading cycle designed to represent 

its service life. A series of hydraulic actuators apply loads to the structure to simulate 

taxiing, take-off and landing; various cycles are used to simulate different working 

conditions. 

A typical test lasts two years. During this time, the structure will be periodically 

removed from the rig and inspected for damage using dye-penetrant and magnetic 

particle inspection. This is a time consuming and costly procedure. If parts of the 

struct ure have been found to fail, they must be replaced and the test re-started. 

This project aims to develop an early warning system using AE. A series of AE 

sensors are to be attached to the structure during testing. Upon detection of a 

fatigue fracture, the system can be dismantled and the diagnosis confirmed using 

current methods. Further, location of the detected fracture will allow easier analysis. 

Figure 1.1 shows a schematic diagram of the main section of an Airbus A320 landing 

gear, which is one of the structures in question. It is a large structure, with many 

d.iffering sectiolls: t.his will require a large array of AE sensors for monitoring, which 

in turn will produce a huge amount of data. 

The complicated loading cycle to which the structure is submitted necessitates a 
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Figure 1.1: Schematic of the Landing Gear from an Airbus A320, show­
ing the main tube and various lugs 
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large number of moving parts. These will cause acoustic emissions which will be 

detected by the AE monitoring system. Such mechanisms include fretting, rubbing, 

bearing noise and load-train noise. These acoustic emissions will be large in number, 

far outweighing the number from a potential fracture. One of the main objectives of 

this project will therefore be to discriminate between AE relating to crack growth, 

and unwanted or 'noise' AE. 

Examining Figure 1.1, it is clear that wave propagation will not be simple in the 

structure due to the complicated geometry. The simple location algorithms employed 

routinely in AE testing are unlikely to be sufficient here: another objective of this 

project will be to properly locate acoustic emissions in complex structures. 

Unlike other methods such as ultrasonic inspection, AE tests are not repeatable. AE 

events occur due to some physical mechanism in the structure, resulting in perma­

nent change: the AE engineer gets only one chance to record the data. An important 

issue therefore is reproducibility of the AE equipment: how much impact changes 

in the AE equipment affect recorded result.s. and whether observed differences in 

the data can be attributed to changes in the equipment or in the AE mechanisms 

present. 

Before undertaking to develop algorithms and techniques to deal with AE data, it 

is necessary to develop a good understanding of the AE process. This will enable 
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comprehension of received waveforms, and should give insights into what kind of 

model is appropriate to meet the objectives. This is the subject of Chapter 2. 

The rest of this thesis is organised as follows. Chapter 2 discusses the physics of 

AE, with an emphasis on wave propagation. Chapter 3 outlines the proposed model 

for detecting fatigue fractures. Chapter 4 deals with the issue of performing feature 

extraction on captured AE waveforms, whilst Chapter 5 is entitled visualisation, 

and discusses methods for visually examining AE data. Chapter 6 tackles the source 

location problem. Chapter 7 contains examples of the methodologies developed in 

this thesis applied to several real AE tests, and discusses the future direction of this 

work. 

1.3.2 Aims and Objectives 

1. Study wave propagation in complex structures. 

Wave propagation should be studied in order to gain an understanding of the 

nature of AE signals, how they vary, and what kind of signal processing may 

be required. 

2. Overcome problems with location AE in complex structures. 

Location is a potential strength of AE: the ability to do so on a complicated 

structure would be immensely useful. 

3. Devise a system capable of handling large quantities of AE data. 

Any methodologies developed should be simple enough to run in real time, and 

the quantities of data acquired during an AE test must be considered. 

4. Employ novel signal processing techniques and pattern recognition to distin­

guish between background 'noise' AE signals and those from fractures. 

There is significant potential for using machine learning tools to solve some of 

the problems encountered in AE - this potential should be investigated 

5. Devise methodology of presenting AE data to the user in a simple form. 

This will involve using dimension reduction techniques for visualisation of 

data. 



Chapter 2 

THE PHYSICS OF AE 

This chapter examines the AE process, starting with an overview of the AE forward 

model. This can be broken into three sections: the source; wave propagation and 

det.ection. Difl"erent. t.ypes of AE sources are examined, including fractures, frictional 

and artificial sources. An overview is given of wave propagation mathematics, re­

sulting in discussion of t.he use of dispersion curves. The effects of t.he difl"erent parts 

of the AE forward model on detected AE waveforms is discussed, and methodolo­

gies for approaching the source identification problem are addressed. The careful 

consideration of the AE process presented in this chapter leads to decisions about 

methodology in several following chapters. 

2.1 The AE Forward Model 

The AE process will now be presented as a forward model, with reference to the 

work of Wilcox et al. [14]. The aim of examining the AE process in this way is to 

examine how difl"erent aspects of the model influence the signal measured at the AE 

equipment.. Underst.anding of t.he AE process and the ident.ification of uncertainties 

therein is used to build the data-driven method (Chapter 3) and is considered in the 

proposed source location algorithm (Chapter 6). 

The forward model as described by Wilcox et al. [14] has three main stages as 

illustrated in Figure 2.1: the source, wave propagation and detection. The following 

text describes each of these stages and details the factors which contribute to each. 
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Source Wave Propagarion Detection 

Figure 2.1: A forward model for acoustic emission 

The Source The source part of the forward model is related directly to the cause 

of the event. Perfect knowledge of the source would make acoustic emission 

an infallible non-destructive technique: unfortunately information about the 

source is usually obscured by the effects of wave propagation and detection. 

In the AE forward model, the source is characterised by the following: 

Position Detection of the position of the source is the greatest strength of AE; 

using multiple transducers, one can estimate the position of the source 

from the time differellces of the signals received (See Chapter 6). The 

precise position of the soun.:e has a significant effect on the received signals 

due to the nature of the wave propagation (see next section). Chetwynd 

et al. [15] considered the effect of uncertainty with respect to the source 

positioll, and found significant variation of the received signals from small 

changes in the source-sensor distance. 

Depth The source depth is the vertical distance from the surface of the struc­

ture to the point of the AE event. In the common situation where AE 

is used to monitor a plate-like structure, the depth of the source has a 

significant impact on the received signals. This is due to the ability of 

sources of different depths to excite different modes of the wave propaga­

tion equation. This was discussed by Hamstad et al. [16] and Dunegan 

[17], who show that source depth can contribute to different modal am­

plitude ratios (see Section 2.4). 

Orientation and beam pattern The orientation of the source is important 

ill a similar way to the depth: different source orientations can excite 

different wave Illodes [18, HI]. For example, it can be demonstrated that 

for plate-like structures, in-plane sources produce largely symmetric wave 

modes, whilst out-of-plane sources produce largely antisymmetric wave 

modes. This results in the envelope of the received waveform being highly 

dependent on the orientation of the source. 
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Time signature Consider the force exerted by some AE source on the sur­

rounding material; one is concerned with the function of the magnitude 

of the force over time. Of particular interest is the rise-time of the source, 

since this defines the bandwidth of the signal and hence influences the 

detectability. Due to the nature of the wave propagation in most in­

teresting structures, the time signature of the source can be an elusive 

part of the forward model, and one is forced to make assumptions given 

the type of source (we postulate on the nature of fracture sources later). 

Spencer et al [20] shows a promising method of numerically calculating 

the source time signature from experimental data using a finite difference 

approximation to the wave equation. 

Frequency content Clearly the frequency content of the source is related to 

the time signature; however the frequency content of recorded signals is 

often dominated by the response of the transducer. 

Wave propagation The energy release of an AE event generates a stress wave 

throughout the structure: information about the source of the AE event is 

transmitted through the structure in the form of ultrasound. There follows a 

concise description of wave propagation, categorised into bulk, Lamb, Rayleigh 

and Stonely waves. A more mathematical description and discussion of Lamb 

waves follows in Section 2.3. 

Material properties The speed of sound propagation in a structure is de­

pendent of the material properties of that structure: the material prop­

erties E (Young's modulus) and v (Poisson's ratio) can be related to 

wave-speeds via the Lame constants: See appendix A.1. 

Reflections and mode conversions Waveforms recorded by AE equipment 

are likely to contain reflections from structure boundaries in all but the 

simplest of cases. This is the first of three ways in which the geometry of 

a structure influences the observed acoustic emission. 

Attenuation The further the distance an acoustic wave has to travel before 

reaching a receptor, the smaller the amount of energy transmitted to the 

receptor. this is due to the 'spreading' of the energy (over the surface of 

a sphere for 3D cases, over the circumference of a circle for 2D cases) and 

also due to some of the energy being dissipated as heat as the particles in 

the medium are displaced. Good knowledge of the attenuative properties 
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of a material are important for deciding upon sensor-spacing for an AE 

test. 

Wave type The type of wave that propagates in a structure is highly depen­

dent 011 the geometry of that structure, not only in terms of reflections 

and attenuation, but also in terms of the type of wave which can propa­

gate. 

• Bulk waves 
Bulk waves, as the name implies, occur in structures where the di­

mensions of the propagation medium are (much) larger than the 

wavelength of the wave. This means that the structure's geome­

try only interferes with the wave propagation at boundaries, in the 

form of reflections. Bulk waves are nOIl-dispersive, meaning that all 

parts of the wave travel at the same speed: cp for longitudinal waves 

and Ct for shear waves (these are directly related to the material con­

stants, see appendix A.l.). Bulk waves are familiar to the reader: 

speech consists of longitudinal bulk waves, and ultrasonic bulk waves 

are commonly used in medical imaging. The nature of interesting 

engineering structures means that bulk waves are rarely encountered 

in an acoustic emission context. 

• Lamb waves 

Lamb waves occur in plates where the thickness of the plate ap­

proaches the wavelength of the wave. Lamb waves are useful in a 

NDT context because they propagate long distances (the energy is 

spread over the circumference of a circle, not the surface of a sphere, 

and so attenuation is lower). Lamb waves are dispersive, meaning 

that different parts of the wave travel at different speeds; dispersion 

contributes to the uncertainty in the model, effectively 'amplifying' 

uncertainty associated with source position [15]. 

• Rayleigh waves 

Rayleigh waves travel across the surfaces of bulk materials: they are 

similar to lamb waves in that the structure directly interferes with 

the wave propagation. 

• Stoneley waves 

Stoneley waves occur where two different material::; meet: they com­

monly occur along welds and other such features. With welds being a 

prime defect site in many structures, Messier Dowty landing gear are 
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manufactured by machining from a solid piece. Whilst Stonely-like 

waves may interfere with the waves received during an AE test, they 

are not the primary from of wave propagation during an AE test on 

landing gear, and the reader is referred to Rose [21]. 

Detection Once the energy emitted at the source has propagated to the sensor, the 

detection section of the AE forward model converts tiny surface displacements 

to a voltage, and eventually a ~erie~ of floating point number~ on a computer. 

Acoustic couplant An acoustic couplant is used to maximise energy transfer 

from the structure to the transducer. It does this by filling the small air 

gap between the structure and the transducer, allowing vibrations in 

the structure to be transferred in to the transducer. A good acoustic 

couplant should match the acoustic impedance of the structure and the 

sensor: water based gels ('Sonagel') of the type used in medical imaging 

are commonly used, but some oil-based couplants are also suitable for 

engineering purposes. 

Spatial transducer aperture The transducer agglomerates surface displace­

ments over its sensitive area into a single voltage. Wilcox et al. [14] gives 

a mathematical model for the aperture effect. 

Transducer frequency response The frequency response of a transducer 

depends on the physical dimensions of the active element, any physical 

damping used and any analogue circuitry in the transducer. To achieve 

broad-band responses, manufacturers often use multiple active elements 

with complementary bandwidths: the sensitive range of a transducer is 

provided as a data sheet by the manufacturer. 

In-plane and out-of-plane sensitivity Both in-plane and out-of-plane sur­

face motions are coupled into the transducer by the acoustic couplant. 

Theobald and Dar [22] discuss a methodology for characterising the in­

plane and out-of-plane sensitivity of a transducer. 

2.2 Sources of AE 

This section describes differeut AE sources in the coutext of the preceding section. It 

was stated in Chapter 1 that one challenge in this project was to be in distinguishing 
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between different sources of AE: some of these are described here, with discussion 

of how their characteristics might give rise to differences in detected signals. 

Fatigue fracture sources are discussed first, followed by frictional AE sources. The 

section concludes with artificial sources, of which good use is made throughout the 

remainder of this thesis. 

2.2.1 Fatigue Fractures as AE Sources 

It has already been stated that energy releases at growing cracks in structures create 

acoustic emissions which are detectable. This section considers the mechanisms by 

which energy is released, and how it might influence detected AE waveforms. 

Stress Release Mechanisms 

Stress is released by a fatigue fracture in three main ways: 

• Crack extension As the crack grows, stress is released at the growing tip 

• Plastic region extension The plastic region around a crack tip grows with 

the crack. The extension of this region correlates to a release of stress 

• Crack Face Rubbing On closing of the crack, the crack faces rub together, 

causing AE. 

The literature provides no definitive answer as to which stress release mechanism 

(if any) dominates the generation of AE waves. Ramel et al. [23] gives careful 

consideration to potential stress release mechanisms for crack tips, and concludes 

that experimental data can only be explained by the presence of several mechanisms. 

The presence of crack extension mechanisms and crack face rubbing (or 'grinding') 

are discussed by Berkovits and Fang [24], who also postulate that the mechanisms 

should be discriminable using the captured waveforms. 

Despite a variety of mechanisms for stress release mechanisms, note that all the 

mechanisms are localised, since they all in the immediate vicinity of a growing crack. 



2.2. SOURCES OF AE 14 

Opening Modes 

Fatigue fractures are classified into three types [25]: tensile opening (mode i); shear 

sliding (mode ii) and shear tearing (mode iii), as shown in Figure 2.2. There are 

(i) (ii) (iii) 

Figure 2.2: Crack opening modes: (i)Tensile, (ii)Shear sliding and (iii) 
Shear tearing 

several things of note here: diH"erellt opening modes will lead to different prevailing 

stress release mechanisms: a mode ii or iii crack will be more prone to crack face 

rubbing than a mode i crack. Also, without changes to the loading regime, the 

opening mode will remain constant, meaning that this element of uncertainty will 

remain constant for the duration of any simple test: i.e. whichever mechanism of 

stress release dominates, this will be constant for the duration of a test. 

Paris'Law 

The relationship between crack growth rate and stress intensity at a crack tip is 

given by the Paris law [26]. The Paris law states: 

(2.1) 

Where: a is the crack length, N is the number of cycles, (j.l\ is the stress intensity 

range and A and Q are material constants. 

Berkovits and Fang [24] discusses the relationship between the acoustic emission 

count rate and the Paris law. Various AE researchers including Hamel et al. [23] 

and Lindley et al. [27] propose the following relationship: 

(2.2) 
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where IJ is the AE count and Band (3 are constants. Substituting equation 2.1 and 

2.2 for t::.K, 

(2.3) 

where C = :, and 'Y = ~. The implication of this is that the AE count rate is 

proportional to crack growth. Whilst this has no effect on individual waveforms 

per se, it implies that a series of waveforms relating to a growing crack will have 

ever increasing count rate. This is an important phenomenum, and is utilised is the 

methodology Chapter to detect crack-like activity (though the parameter measured 

is the cumulative energy rate). 

Crack Orientation 

The orientation of a crack plays an important role in determining the structure 

of emitted AE waves, as discussed by Pullin et al. [19]. For plates (or plate-like 

structures), the ratio of the amplitudes of the Ao and 8 0 modes is determined by 

the orientation of the source (see Section 2.4 for a description of wave modes). 

Sources which are in-plane generate mostly 80 waves; out-of-plane sources generate 

mostly Ao waves. An experiment devised by Gorman and Prosser [18] can be used to 

demonstrate this, whereby a plate with an AE transducer affixed to the top surface 

has on edge machined to a fixed angle. Sources are generated 011 this edge, and 

the edge is re-machined to a new angle. The changes in modal amplitude ratios are 

observed to correlate with the angle of the plate edge. 

Finite Element Models 

Several authors have attempted to model fatigue fractures (and the resulting AE 

wave propagation) using finite clement modelling. Hamstad [28] thus considers the 

diH·erellces betweeu monopole and dipole sources, and warns researchers to be aware 

of the differeuces: A pencilleaJ fracture is a monopole source, whereas growth of a 

fatigue fracture is a dipole source (see Section 2.2.3). Lee et al. [29] modelled crack 

growth by the release of Finite Element nodes under stress at the crack surface. 

This technique was used to study the relationship between crack depth and the Ao, 

80 ratio. Whilst fiuite element modelling is a useful tool in uuderstanding the wave 
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propagation resulting from crack extension, modelling of all the uncertain aspects 

discussed here would be impossible. 

2.2.2 Frictional AE Sources 

Frictional sources of AE have not received a great deal of attention in the literature. 

Boness et al. [30] studied the relationship between AE energy and wear mechanisms 

for a sliding contact. Fault detection of bearings [31, 32, 33] has proved successful, 

but no attempt is made at determining or understanding the underlying frictional 

mechanisms. 

A glance through the tribology literature reveals the following tribological mecha­

nisms which may give rise to acoustic emissions [34, 35]: 

• Adhesion. At the junction between two contacting surfaces, bonding occurs 

between surface asperities. Relative motion of the surfaces causes the bonds 

to break, and new bonds to form. 

• Impact wear. If the impact energy between two surfaces is high, energy 

is absorbed through elastic and plastic deformation, leading to subsurface 

cracking and debris formation. 

• Erosion. Errosive wear is caused by the impingement of particles of a 

surface. It is often a problem in transport of powders and slurries. 

• Abrasive wear. The motion of wear debris or hard asperities relative to a 

surface causes abrasive wear. 

• Oxidative wear. If a material is capable of fast oxidation, then oxide layers 

can be removed by friction of a contacting body, causing further oxidation of 

the revealed surface. 

Comparing this to the list of stress releases from a fatigue fracture above, it is clear 

t.hat there are lIlatly more differetlt mechatlistlHl uy which a frictional AE source can 

release energy. Also, the frictional source is not localised: acoustic emissions can 

be generated anywhere along the contact. The nature of the position of the source 

exhibits a high degree of uncertainty. 
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Further, the nature of tribological contact is that the dominant mechanism for wear 

(and therefore the dominant source of acoustic emissions) can change with time, due 

to differing lubrication conditions, material hardening, the presence of third bodies 

and degradation of surface treatments. The mechanisms compete and interact, 

meaning that the very nature of the source (in terms if frequency content and time 

signature) is uncertain. 

2.2.3 Artificial Sources of AE 

Art.ificial acoust.ic emissions can be generat.ed by various means, and are extremely 

useful for studying the behaviour of ultrasonic waves in the controlled conditions 

of the laboratory. There follows a description of each of four types of artificial AE 

used in this project. 

The Hsu-Nielsen source 

The Hsu-Nielsen pencil lead break is used extensively by AE researchers for sensor 

sensit.ivity checks, and as a means of quickly generating AE data. 

A special propelling pencil (see Figure 2.3) is gently levered against the surface of 

the structure of interest until the pencil lead fractures. This generates a monopole, 

point, step source, with orientation perpendicular to the surface. 

Figure 2.3: Schematic showing a pencil used for generating a Hsu-Nielsen 
source. The pencil is levered against the surface until the lead fractures, 
releasing strain energy into the surface 

The Him-Nielsen source (so called because it was devised separately by Hsu [36] and 

Nielsen [37]) is often used to ensure that AE transducers are correctly attached and 
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working (as per ASTM standard E97694 [38]) prior to a test; this is some times 

incorrectly referred to as 'transducer calibration'. The source is particularly useful 

as it is cheap and portable, despite poor reproducibility. 

A Pulsed Transducer 

Using an AE sensor to transmit ultrasound is a simple method of generating ar­

tificial acoustic emission, giving rise to a highly repeatable source. The technique 

provides an out-of-plane monopole source, similar to the Hsu-Nielsen technique, but 

with a finite aperture (the Hsu-Nielsen technique approaches a point source). The 

bandwidth of the transmitted signal is obviously limited to the bandwidth of the 

transducer being used, but the effects of this will not be noticed if this matches or 

exceeds the bandwidth of the transducer being used as a receiver. This technique 

was utilised in Section 7.1 to generate fracture like sources in a test environment. 

Thermoelastic Expansion by Laser 

Artificial acoustic emission can also be generated by means of a pulsed unfocused 

laser. The laser pulse momentarily heats the surface of the plate (pulse durations are 

typically ~ IOns) which then cools quickly creating a stress wave in the structure. 

Wu et al. [39] discussed the application of laser generated ultrasound in plates. 

This met.hod of generat.ing art.ificial AE events was utilised in Section 6.3 to collect 

training data for a machine-learning location algorithm. Thermoelastic expansion 

is an extremely repeatable source. 

Focused laser 

Focussing the laser beam onto the plate gives a point source of high intensity. This 

gives rise tu a high amplitude artificial AE event, but unfortunately damages the 

surface of the material by ablation. 
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2.3 Wave Propagation 

The aim of t.his project is t.o be able to dist.inguish bet.ween different sources of AE. 

As has been shown above, the signal recorded at the AE equipment is a combi­

nation of the source properties, wave propagation and properties of the detection 

equipment. The engineer has some control and (presumably) a good understand­

ing of the detection side through sensor-selection etc., yet the nature of the source 

remains obfuscated by the nature in which the acoustic waves propagate. A good 

understanding of the wave equation will hopefully shed some light on this part of 

the AE process. 

This section begins with the derivation of the vibration of a taut string as given 

by Rose [21], and by extension the standard wave equation. Vibrations are then 

constrained to some geomet.ric boundary, specifically to the plate conditions, which 

gives rise to Lamb waves and the dispersion curves. 

This chapter then closes with a consideration of how to deal with the problem of 

identifying AE sources in the light of the material presented. 

2.3.1 The Wave Equation 

Consider a small element ds of a taut string, subject to some force q(x, t) as shown in 

Figure 2.4. A relationship between the displacement u and the applied forces along 

the length of the string can be obtained by resolving the forces in the u direction, 

ao d2u 
-TsinO + Tsin(e + -;-) dx) + qds = pds-

2 ( :r: dt 
(2.4) 

For sJllall deflections, ds ~ d:r:, sin H ~ Hand H ~ ~ 

d d'l/. d?u 
-TO + T(O + dx dx dx) + qdx = pdx dt2 (2.5) 

dividing through by dx and gathering like terms leaves 

(2.6) 
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u 

q(x, t) 

dx x 

Figure 2.4: A taut string under tension T, subjected to a force q. Re­
produced from [21] 

Without a forcing term, this becomes 

20 

(2.7) 

where Uu is the second derivative of the displacement, u in the x direction, and u 
is the second derivative of u with respect to time. Co = JT / p is the velocity of 

the wave. Generalising this to three dimensions, we arrive at the Standard Wave 

Equation (SWE), which can be written as 

(2.8) 

where A and J1 are the Lame constant.s for the material (scc appendix A.1). A full 

derivation of the SWE is given in Rose [21]. Notice how equations 2.8 and 2.7 take 

the same form: the second derivative with respect to space, plus some forcing term, 

is proportional to the second derivative with respect to time. 

The SWE is the basis for the LISA simulation software [40], where it is discretised 
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upon a grid in time and space, and the derivatives approximated by local differences 

in the grid (hence LISA is known as a finite difference method). 

2.3.2 Bulk Waves 

Without any boundary conditions, equation 2.7 (and by extension, equation 2.8) 

represents a freely propagating, or bulk wave, with solutions such as: 

u = (AI sin(kx) + A2 cos(kx)) (A3 sin(keot) + A4 cos(kcot)) (2.9) 

which can be quickly shown to obey equation 2.7. This is the type of wave which is 

most likely to be familiar to the reader: it constitutes speech, music and earthquakes, 

and is used extensively in medical imaging. 

2.3.3 Mode Conversion 

In a bulk structure, where the material in free to vibrate in three dimensions, there 

are two possible types of wave: longitudinal waves, where the direction of particle 

displacement is the same as the direction of wave travel, and shear (a.k.a. trans­

verse) waves, where the direction of motion is perpendicular to the direction of wave 

propagation. Shear waves are often sub-categorised into horizontal- and vertical­

shear. 

Where OBe of these waves meets a boundary, it can be reflected as either the same 

or other type of wave. In fact, this is true of the various modes of guided waves 

discussed below. The type of wave reflected and the direction in which it travels 

can be determined by Snell's Law: 

sin((;II) III 

sin( O2 ) V2 
(2.10) 

where {h and {)2 are the angles between the normal (line perpendicular to the bound­

ary) amI t.he inci<ieut. and reflected waves respectively; '/11 and '/12 are the velocities 

of the waves. 

j\lo<ie conversion can occur at the boundary of a structure - the interface between 

steel and air, or at joints in the structure where acoustic coupling between the 
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Figure 2.5: Schematic showing the boundary conditions for Lamb waves 

sections is not absolute. In some structures, mode conversion can occur at welds. 

In general, the phenomenum of mode conversion makes interpreting AE signals more 

difficult, and in t.his thesis, all analysis is performed 011 the early-arrival part of any 

signal. so as t.o avoid dealing with reflected signals as far as possible. 

2.3.4 Guided Waves 

If one is to constrain the propagation of a wave to some finit.e geometry (Le. add 

boundary conditions to equation 2.8), one obtains a guided wave. When the bound­

ary conditions comprise a plate, the resulting waves are known as Lamb waves after 

Sir Horace Lamb who solved the problem as early as 1917 [41]. Guided waves also 

include waves in rods, tubes, beams and meshes, as well as waves at the surface of 

a bulk medium. Since many interesting engineering structures are plate-like, Lamb 

waves are considered here in more detail. 

Lamb waves 

l\latters are simplified by considering only the plane-strain condition, such that 

motion in the z direction is ignored. In order to constrain the vibration to a plate, 

the following boundary conditions are applied (2.11) 

<7yy = <7yx = Oaty = ±h (2.11) 

This is illWitrated in Figure 2.5. A full derivation is omitted here for brevity, and 
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the reader is referred to the original text [41], and detailed explanations in more 

modern texts such as [21] and [42]. Viktorov [43] gives an excellent practical and 

mathematical guide to applications of Lamb waves. Extensive manipulation of (2.11) 

and (2.8) yields: 

which is the dispersion relation for symmetric modes, and: 

tan(qh) 

tan(ph) 
= 

(2.12) 

(2.13) 

which is the dispersion relation equation for antisymmetric modes, where p2 = 

w2 / et - k2 , q2 = w2 / c} - k2 , and 2h is the thickness of the plate. Numerical 

solution of these equations leads to the dispersion curves as shown in Figure 2.6. 

The dispersion curves plot both phase- and group-velocity against the frequency­

thickness product. This is possible because high frequency waves in a thin plate 

behave in the same way as lower frequency waves in a thick plate, hence only the 

frequency-thickness product is required. Dispersion curves can be used to interpret 

t he non-stationary multi-modal nature of AE waves. 

The dispersion curves are well covered in the AE literature as a means for inter­

preting AE waveforms. Pullin et al. [44] demonstrated the application of dispersion 

curves to AE waves in plates experimentally; Hamstad [45] showed that the distance 

to source can be calculated from an understanding of waveform structure and the 

dispersion curves. Prosser et al. [46] showed that the dispersion curves can be utilised 

wit h a time-frequency analysis of the signal. The next section discusses the use of 

dispersioll curves. aud delllollst.rates the effed of dispersioll 011 AE measurement. 

2.4 Dispersion and AE Measurement 

III order to illustrate t.he eUeds of dispersion 011 t.he received AE waveforms, consider 

t he four signals shown in Figures 2.7 to 2.10 in conjunction with the dispersion curves 

in Figure '2.G. The figures show the time-t.race of each signal (Voltage against time, 

top) CL" w('ll as the time-frequency content. of the signal (bottom). The continuous 

wavdt'l transform was used to calculate the lower plots (see Section 4.2.1). 
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Figure 2.6: Dispersion Curves for an Aluminium Plate 



0.3,------------:--- ---- ---, 

:> 0 .2 

E 0.1 

-g, 0.0 i---- ""'""'/N'NJ 

'" ~ -0.1 

> -0.2 

·0 .3'--------------.:....------

Figure 2.7: Pencil lead fracture on the surface of an aluminium plate at 
150mm 

O. I S.--------------------~ 

~ 0.10 
> 
E 0.05 

-g, o . ool-----~-_____MVIMIIf\lIl JIJl\ 
~ -005 o . 

> -0. 10 

_O. I SL------------------l 

0::;­
x 
>. 
u 

6 
ID 

C S 
~ 10 
0" 

E 
tL. 

F igure 2. Pencil lead fracture on the surface of an aluminium plate at 

300mm 

25 

Figure 2.7 and 2.8 were generated by activating the Hsu-Nielsen source on the up­

per surface of the plaLe (out-of-plane) at 150mm and 300mm from the transd ucer 

position r sp Livel , whil t Figures 2.9 and 2.10 involved the activation of the Hsu-

i Is n ource on the idc of t. he plate (in-plane) at the same d istances. 

T he depLh of t he aluminium plaLe was 1.2mm, and the bandwidth of Lhe transducer 
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used (A Physical Acoustics UT1000) was 100kHz - IMHz, giving a MHzmm band­

width of 0.12 - 1.2 MHzmm. Inspe ting the dispersion curves, it is clear t hat only 

two modes can propagate in this region , the Ao and So. Also, the speed of the So 

mode is much higher than that of the Ao mode, with group velocit ies of ~ 5mmjJ.5- 1 

and ~ 3mml1s- 1 respectively. It is simple to identify the arrival t imes of each com­

pOlleut of the waves for each figure: t he So mode should arrive at 30115 and 60115 
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for the 150mm and 300mm propagations, whilst the Ao mode should arrive at 50ps 

and lOOps. These timings are particularly dear in figure 2.8, a low-amplitude wave 

arrives (slightly later than expected) at around 60ps (this is the So mode) and a 

large amplitude wave arrives at lOOps (this is the Ao mode). 

The difference between the figures generated by in-plane and out-of-plane sources are 

large. The out-of-plane source generates a small So mode, which can be distinguished 

before the arrival of the larger Ao mode. The roles are reversed for the in-plane 

source, where the So mode is large and obscures the arrival of the Ao mode. 

There are also differences within the sallle source type: the two waves recorded at 

different distances differ ill more than a simple time-lag. Consider figures 2.7 and 

2.8: the gap between the So arival and the Ao arrival increases with distance from the 

source: this is to be expected because of the speed of the two wave packets. However 

the wave packets themselves appear rlifferent. hecause of t.he effect of dispersion. 

These dl'ed.s also give rise to marked differences het.ween figures 2.9 and 2.10, though 

the two-mode structure is not as clear. 

\Vhilst t his demonstration of the eH'eets of dispersion on AE waveforms leads to 

some understanding of waves generated in plates, it does not account for the com­

plex structures which are the target of this project. Examining such a structure 

(illustrated in Figure 1.1), it is clear that the main part of the structure is tubular. 

This would not pose a huge problem (dispersion curves can be calculated for simple 

tubes [21]) were it not for the thickness changes, holes, lugs and other geometrical 

intricacies which are apparent. 

Having seen that the wave propagation section of the AE forward model is extremely 

complex, the next section discusses approaches that one might take in distinguishing 

between sources of AE. 

2.5 Approaching the Source Characterisation Prob­

lem 

An icleal way to approach the problem of identifying fracture-related AE sources 

would be to find to tind a unique property of the source (such as the frequency 

('onl pnt. or I ime signature) which distinguished fractures from other sources. This 
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is an unfeasible approach since the information about the source is obscured by the 

nature of the AE forward model. Further, it is difficult to say with any confidence 

that there are any unique features of the source which are useful in this manner, 

since positively identifying the source condition is extremely difficult in all but the 

simplest of conditions. 

Spencer et al [20] proposed a method for source characterisation whereby the wave 

propagation was modelled by finite difference simulation (known as a Local Inter­

action Simulation Approach, LlSA), built on the work of Lee [40]. The method 

involves solving the difficult inverse-problem using an evolutionary approach, and 

has been shown to successfully identify sources in plate structures using a laser 

vibrometer, which is a small-point, contact-less measurement device. 

A second approach might be to use a neural network classifier (or similar machine 

learning tool) to distinguish between fractures and other sounds. One would need 

to collect a database of AB waveforms relating to different types of source (i.e. 

fracture, fretting, rubbing) and t.rain a classifier t.o distinguish between them. In 

this approach the wave propagation section of the forward model must be accounted 

for by the neural network. This approach is severely limited since a trained classifier 

would only be useful for the particular geometries used in the training set. To train a 

classifier to generalise across various geometrical conditions would require collecting 

data for every conceivable permutation of source condition and wave propagation 

path - clearly a rambunctious proposition. 

The approach taken in this work is to create a data driven approach to identifying 

fractures in AE data, which takes into account our understanding of the physical 

phenomena. Rather than attempt to classify each individual waveform, a method 

is proposed whereby an analysis of patterns, trends and clusters in sequential wave­

forms leads to the identification of crack like behaviour. The method utilises the 

understanding of the AE model as described in this chapter, particularly with ref­

erence to the amplification of source uncertainties by the wave propagation, and 

the time dependent nature of different AE source mechanisms. The next chapter 

outlines this proposed method. 
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2.6 Chapter Summary 

For AE tests of structures on the scale of landing gear, it is clear that modelling 

of the AE process is not a viable option as there are too many unknown factors 

- source nature, propagation type, location uncertainties, mode conversions etc -

which make the modelliug difficult. This is a major motivatiou for the methods 

outlined in the remainder of this thesis. 

Furthermore, identifying fractures on a signal-by-signal basis is also an unappealing 

direction - the amount of uncertainty associated with each signal is high due to 

dispersion, unknown source origins etc. the next chapter discusses possible ways in 

which to identify fractures based on a sequence of AE signals. 



Chapter 3 

A DATA-DRIVEN METHOD FOR AE 

In the previous chapter, the physical aspects of AE were discussed, and the argument 

was put forward that in order to classify acoustic emission signals, one would need 

some extensive (physical or neural) model of the AE process, which is impracticable. 

In this chapter a data-driven method for detecting fractures in large (and small) scale 

AE tests is presented. We first. present an outline of the method, and in subsequent 

sections present details of how each component in the algorithm works, together 

with some background. 

3.1 Method Outline 

The first stage of the proposed methodology involves organising the AE data into 

clusters as shown in Figure 3.1. Additionally, feature extraction is performed on the 

data so that it can be easily stored and compared at a later stage. 

The basic element of acoustic emission data is known as a hit. When the voltage 

at any sensor is above some user-determined threshold, the AE system records the 

volt.age at that. s(msor for a fixed amount. of tillle. A memory buffer is used to record 

data prior to the threshold crossing. The resulting recorded signal is oft referred to 

as a wavefonn. The time (T in figure 3.1) of the t.hreshold crossing is recorded, as 

is the channel number (Ch) to which the sensor is attached. 

Timing parameters are defined in order to group hits into events. An event is a 
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Figure 3.1: Flow diagram showing the organisation of AE data, including 
the feature extraction, location and clustering stages 
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group of hits recorded 011 different chaunels, which were detected sufficiently dose 

together that they can be assumed to originate from the same source. Occasionally 

hits are recorded which do not fall into events: these must be discarded. 

Feature extractioIl is explaiIled in Chapter 4. Here, it is sufficient to say that the 

waveforms in the event are reduced to a low-dimensional set of numbers in such a 
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way that the numbers describe the 'nature' of the waveform. This is a necessary 

and important step not only because of data storage requirements; it also allows 

comparisons to be easily made beteen waveforms which is crucial in later stages of the 

methodology including visualisation and analysis of the feature space distribution. 

The next stage is to assign a location to the event. The location algorithm is 

explained fully in Chapter 6. This is an important process because 1) it is necessary 

to group the events together according to their spatial location, and 2) it is necessary 

to correlate the AE data with the real world (i.e. so that the engineer knows which 

component to change, or where to perform further analysis) 

Once the data is organised into events, the events need to be grouped together into 

clusters. Clusters are the lowest level in our hierarchy of data: it is the clusters 

that will be assessed in order to determine whether or not a fracture is present. 

The remaining stages in the methodology involve assigning labels to clusters based 

on rate of energy, feature space distribution and novelty, combining these labels 

or 'clues' in some way (data fusion) and visualising the data. Visualisation is the 

topic of Chapter 5, and we continue this chapter with a discussion of the clustering 

algorithm. 

3.2 Spatial Clustering 

Clustering is the division of a data set into a series of subsets, based on some notion of 

similarity of the data. In our case, the similarity is going to be a distance, measured 

across the surface of the structure being monitored, in meters. Since each event has 

been assigned a location in the previous stage, it becomes possible to group together 

eYellts bused Ull their lucatiolls. There are lllCtllY differeut clustering algorithms, the 

read('r may consult any number of appropriate texts for more information, [47] is a 

good example. There follows a brief review of some clustering algorithms, and an 

('xplanat ion and discussion of the ORACAL algorithm which has been developed for 

this application. 
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3.2.1 Grid Allocation 

A simple method of partitioning data is currently employed by the commercial AE 

software. The space of interest is divided into a n x m grid. Data is allocated to 

the box in the grid into which it falls; boxes can then be ranked according to the 

number of data points in them. This simple method is somewhat inflexible (one 

must pre-define the grid) and does not allow for segments of the data which may 

span grid boundaries. 

3.2.2 K-Means Clustering 

K-Means clustering is simple clustering algorithm, involving the division of the data 

into k groups, according to the data's proximity to k centres; one must define k 

before running the algorithm. Despite its simplicity, k-means clustering is often 

a very useful tool. Bishop [48] describes the k-means algorithm and discusses its 

importance as a simplified form of the powerful Expectat.ion Maximisation (EM) 

algorithm. 

Theory 

The k-means algorithm proceeds as follows: 

1. Define k centres, points of the same dimension as the data, allocated at random 

positions within the data space. 

2. Associate each datum with thc nearest centre. 

3. Move each centre to the mean of the data associated with it. 

4. Repeat steps 2 and 3 until convergence (i.e. the centres remain stationary in 

step 3 and no data change association in step 2) 

A Illore detailed descript.ion of k-l1lcans clustering is given in [47] and [49]. 
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Discussion 

Selection of the number of centres k is somewhat arbitrary, unless the engineer has 

some prior knowledge of the number of expected groups in the data. Some methods 

do exist for selecting the number of clusters (e.g. running the algorithm for in­

crea..<;ing k, and selecting the solution where a further increase in k introduces little 

improvement in the average distance to centre). Such methods are computation­

ally eXI>en~ive aml require the u~e of another user-defined ~ettillg. These problems 

make k-means clustering (and related algorithms) unsuitable for our application: 

the number of clusters is unknown, and will increase as the amount of data collected 

increases. 

3.2.3 Radius Clustering Algorithms (RACAL) 

There are several radius-based clustering algorithms available, such as Self Organ­

ising Oscillator Networks (SOON) [50] and Quality Threshold (QT) clustering [51]. 

RACAL algorithms are suited to the task of clustering spatial AE data because they 

do not require the specification of k, the number of clusters: the number of clusters 

arises naturally from the data. RACAL algorithms do require the specification of 

the cluster diameter, D. This is a natural quantity to encode in the algorithm in our 

case: the distance relates to the expected size of the cluster upon the structure. One 

can define D with knowledge of the structure, the sensor spacing, and understanding 

of the location algorithm. 

The next section describes the Quality Threshold (QT) clustering algorithm, origi­

nally developed by Heyer et al. [51] in order to cluster genome data. 

QT Clustering Theory 

The QT Clustering algorithm consists of two stages: the candidate cluster stage and 

the candidate selection stage. 

Candidate Cluster Stage 

1. Define a maximuIll cluster diameter, based 011 knowledge of the problem 

at hand. 
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2. Create a candidate cluster: starting with the first data point, add its 

nearest neighbour. Continue adding the nearest datum (i.e. the one 

which increases the diameter of the cluster the smallest amount) until 

the pre-defined diameter limit is reached. 

3. Repeat step 2, starting with the second, third, etc datum until there are 

N candidate clusters. Note that at each point the data from the previous 

cluster are not removed, so that the N candidate clusters have significant 

overlap. 

Candidate Cluster Selection The candidate cluster with the most data is se­

lected ft.'" a duster. and t.he first. st.age is run again wit.h the remaining data. 

The process iterates until all the data is divided into clusters. 

Discussion 

The nature of the QT clustering algorithm is such that massive numbers of can­

didate clusters are created repeatedly. This is clearly wasteful of computational 

resources and does not suit an online application. In the next section, the online 

RACAL (ORACAL) algorithm is proposed, which utilises the distance parameter in 

a way similar to the QT algorithm, but does not involve the re-calculation of many 

candidate clusters and is suited to on line applications. 

3.2.4 Online Radius Algorithm (ORACAL) 

The ORACAL method described here extends the RACAL algorithms above to 

our application by realising that the data is sequential. Further, the algorithm is 

designed to be computationally efficient and work 'on-line'. This is in contrast t.o 

the QT method of repeatedly generating candidate clusters described above, which 

can be very computationally demanding. 

Theory 

1. Defilw a maximum cluster diameter, based Oil some knowledge of the problem. 

2. At. the arri\·al of the first datum, allocate one cluster centred on that datum. 
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3. For subsequent data: 

• If a datum fa lls within the diameter of the nearest cluster, it is added to 

that cluster. T he cluster centre is re-calculated as the mean of all t he 

data within it . 

• If a datum is not near enough to any of the existing clusters, a new cluster 

is created, centred on the datum. 

4. Clusters can merge: if the re-calculation of a cluster's centre leads to that 

centre lJeil lg withi ll the specified distance of allother duster centre, then the 

two clusters become one larger cluster. 

0 8 8 c:® 
8 0 

iI hi Iv 

@ • • 

8 0 
v vi v ii v iii 

Figure 3.2: Illustration of ORACAL, showing the addit ion of seven data 
(small dots), resulting in three clusters (centres represented by small 
crosses, loci represented by solid lines) 

Figure 3.2 show the ORACAL algorithm at work on a small data set. The different 

stages can be described as fo llows: 

J. T he first uatulfl always creates a new duster (red) 

ii . Further data which fall within this cluster are added to the cluster; the centre 

of the cluster is updated to reAect this. 

Ill. Further data which do not fall within a cluster create a new cluster (blue). 

IV. furth er datum falls just outside the red cluster, creating a new (green) 

cl uster. The loci of the clusters are allowed to overlap. 
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v. A fur ther datum falls within the region shared by the red and green clusters, 

and is as ociated with the nearest (red) cluster. 

VI. A fur ther datum fall ' with in the region shared by the red and green clusters, 

and i associated with the nearest (green) cluster. 

VII. Another data point is associated with the red cluster , and now the update to 

the centre of the cluster means that the centre of the green cluster is contained 

by the red clu ter, therefore: 

VII I. The red and green lusters merge to become one (red) cluster. 

Discussion 

The ORACAL algorithm retai lls the benefits of the RACAL methods described 

above, but has the added advantage that the cluster structure need not be re­

cal ulated with the add ition of every data point. Outlying data will not affect t he 

cluster structure, sin e the arrival of an ouLlier generates a new distinct cluster; this 

was not t he case for the k-llIeans algorithm, where the effect of an outlier was to 

move the centre of the nearest cluster toward that outlier. 

The ORACAL algorithm does rely on the seemingly arbitrary setting of a cluster 

radius. However, in experience with real data (see Chapter 7) t his did not cause any 

problems; for t hes te ·ts, the cluster radius was set to 15mm. The cluster radius 

mu t clearly be able to account for any measurement error in the location algori thm, 

and is thu dependent on the method used: using a imple t rigonometric system, the 

errors ill location arc amplified depending on t.he sellsor arrangement (see Chapter 

6) , whereas u ing 'ome other methods as proposed later should minimise the location 

error. 

Onc the data has been clu tered with the ORACAL algorithm, the clusters are 

xallli ncd for 'cl u s' which identify them a potent ially represent ing fra.ctures. The 

II xt thr ctions describe some of t hese clues. 
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3.3 Feature Space Distribution 

When examining the fatigue fr acture as a source of Acoustic Emission in section 

2.2. 1, some uncertainties were iuclltified , i11cludillg crack ktlgth , depth , opellillg 

mode a nd whether t he AE was generated by crack face rubbing, extension etc. In 

ection 2.2.2 , uncerta inties associated wi th fri ctional sources were idelltified. The 

first 'cl ue' by which t he clusters are to be ra 11ked depends OIl the following hypothesis : 

The nature of the unceTtainties in the extracted f eatures fOT fra cture 

sources and frictional (unwanted) SOUTces is such that the fri ctional sources 

produce a wider range of AE signals i . e. the f eatuTe-space variance as­

sociated with lhe fmcture events is lower. 

If t his hypothesis hold , t hen clusters which p ertain to a fracture source (including 

fretting, rack face rubbing a nd crack extension) will contain signals which are very 

simila r , whilst t hose pertaining to a fri ctional source will contain signals which are 

less imila r. 

The hypothesis i · backed up by observational evidence. A visua lisation of AE da ta 

in Pullin et a l. [52] as well as several small scale fa tigue t est investigations showed 

that events which could be attribu ted to fracture activi ty (usually via spa tial filter­

ing) were much more t ightly grouped together than those a ttributed to other AE 

mechanisms. 

In order to quantify t his behaviour , the va riance of the feature da ta in t he cluster 

(XC) is ompared with the va riance of the whole data set (x) t hus: 

(3.1) 

Since :1;c E ;I; , t he varia nce of t he cluster .?;c will a lways b e less t han the va riance of the 

whole data set, and 0 7J(fmcl.v:rel l eal·l/.Tes) is a lways a va lue between 0 and 1. This 

is t he motivation for identify ing t he measure as a conditional probabili ty in equa tion 

3. 1; olle should be aware tha t t his iuell t ificat ioll is uy 110 lllcallS rigorous. Using this 

equation blind ly is fraught wi th danger ; if t.he number of events in a cluster (N C) 

is 1, t hen t he va riance of t hat cluster is 0, a nd pU TG. chlTel f ealuTes) = 1. Clearly 

t. here has to ue a s ig11ificall t. llull1ber of evell ts ill the cluster ill order to ge t a sensible 
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result. Further, for sensible data sets , p can never reach 1, since both the variance 

of the whole set of data alld that of t he cluster must be fi nite. 

A fur ther caveat is that equation 3.1 must only be applied to signals from the same 

channel. To do otherwise wou ld be to compare the uncertainty not only of the 

source, but also in the wave propagat ion paths, which is nonsensical. 

Clearly the clue is sensitive to the variabili ty of signals in other clusters during the 

test: in order to get a consistent result, there needs to be a large number of non­

crack related signals in order to properly estimate the variance of all signals in the 

Lest. This is usually not a problem! 

3.3 .1 Ex amples 

Two example' of observational evidence for the feature-space-distribution criterion 

arc prelSeut.eci ; t.he first. is from t.he fat.igue testi ng of a COlllpact Test (eT) specimen, 

and Lhe second is from the fatigue testing of a small landing gear component , the 

lever link. 

eT Specimen 

Part of t his project included the fat igue testing of several CT specimens, and sub­

sequent analysis of the recorded AE data. T he results of just one typical test are 

summarised here for brevity. Figure 3.3 shows a PCA projection (see section 5.2) 

of features from AE signals r corded during a CT test . Two sensors were used , 

one on either side of t he crack, and events relating to crack activ ity were idelltified 

by tillle-of-flight differences aud have becll highlighted ill red. T he crack related 

ignals appear much closer together than the other signals; since PCA retains as 

much variance as possible during the projection, this is a sensible way to asses the 

variance of sub-sets of the data. Analysing the data be/ore projection according to 

equaLion 3. 1 (Onfinw; Lhi:s wiLh a pUTactu'l'el f ea lu'/'es) value of 0.903, :significantly 

higher than LhaL of the next highest value, 0.638, associated with a cluster of points 

loca l cl near a loading pin. 
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Figure 3.3: Principal Component plot of the data from the fatigue test­
ing of a eT specimen. Data from the crack region (identified by t ime 
of fl ight) is coloured green. Note that the axis scales are irrelevant and 
have been omi t ted . 

Leve r Link 
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During a CT test as above, t here are few sources of extraneous AE activ ity: only 

t he rubbing of the loading pins cont ributes to act ivity hiding the crack act ivity. A 

small component from a landing gear , a lever link was tested in a similar fashion , as 

described ill [52], where there were significantly more fri ct ional sources due to the 

loading nature of the component . Figure 3.4 shows a PCA projection of recorded 

signal , with colour representing posit ion on the component (foulld by t ime-of-fli ght 

locatioll ). Crack related signa ls were identified by positioll (post- test analysis re­

vealed severa l ini t iated cracks) and were all fou nd to appear in the small group 

(dark blue) ill the upper left com er of the fi gure. Clearly, the variance of t he plot is 

dominated by non-crack activity. More details can be found in [52]. 

It is clea r from the plot that the fracture related signa ls appear to be fa r more com­

pact than those fr Olll other sources . T hi ti is refl ected l>y the v(fTachLTel f eat'uTcs) 

values for the area;; where t he fracture was ident ified , beillg 0.862 . T here was one 

cl ust.er in t he test !lot idell t ified as a fracture which also had a high value (0.849), 

a potelltial fa lse posit ive. All otber clusters (of significant size, i.e. over 50 events) 

had a value of no more t han 0.578. This demonstrates tha t the proposed feature 
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based clue is potentially powerful in detecting fracture related clusters, though it 

may need to be combined wi th further information. 
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Figure 3.4: Principal Component plot of the data from the fatigue test­
ing of a lever link component. The colour scale denotes posit ions along 
the component (in mill imetres) . Data from the crack regions (around 
10mm) appears in the d81'k blue patch in the top left of the plot. 

D isc ussion 

It is clear that there is insufficient statist ical evidence in this sec tion to fully support 

t he sole use of th is clue for finding fractures . Nonetheless, it has proved to be a 

useful ind icator in t he presented tests as well as t he more t horough test on landing 

gear structures in Chapter 7. A full statistical analysis of p(fracturesl l eatures is 

proposed for further work. 

Furthermore, this 'clue' is clearly dependent on the particular type of features ex­

tracted from t he signals. In the cases presented here, the traditional features were 

used (sce Chapter 4). In the work in Chapter 7, a quick study revealed that the 

particular type of feature useu made little uiHen': llce to t he results. For t he tasks 

in hap(.er 4 (where the feat m e types were compareu O il a classification typ'e task) 

t it 're seemed to be llO significant difIerence between t he feature types. 
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3.4 Energy Trends 

The next 'clue' in determining whether or not a cluster represents a fracture is de­

termined by the energy rate of that fracture. Recall section 2.2.1 , where it was 

determined that the rate of acoustic emissions is proportional to crack growth. Thi ' 

is reflecteu ill t IJe li terature, where rates of ellergy recorded by an AE system have 

been related to crack growth [53], and can be used to predict a component 's remain­

ing fatigue life [54]. 

The energy rate of a cluster therefore gives some indication of the type of AE source 

associated with that cluster. One would expect t he energy from a non-fracture 

related mechanism, present throughout t he test, under un hanging conditions of 

loading, to accumulate at a constant rate. The evidence for a crack source suggests 

otherwise; the count rate for crack propagation is known to increase with crack 

lellgth. This meallS that allY significallt deviatioll of linear accumulation of energy 

[or a given spat ial cluster constitutes another indicator of the presence of a crack. 

3.4.1 Quantification 

In order to quantify the deviation from a linear energy accumulation , it is possible 

to fi t a simple mouel to the time-energy data relatiIlg to each cluster. The model 

parameter relating to each cluster can then be objectively compared . Let t be the 

time of each event in the cluster , and E be the energy of t hose events, cumulatively. 

Wc propose a model of the form: 

E = a + bt + ct2 (3.2) 

Figure 3.5 show ' nergy data from three spatial clusters, with approximations to the 

data as per l he Illodel ill equat ioll 3.2 . III figure 3.5(i) the coeflicient c is near zero. 

In 3.5(ii) c i po it ive and in 3.5(iii ), c is negative. According to our hypothe i , 

3.5( ii ) is mosL lik I to indicate a growing fatigue crack. 
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Figure 3.5: Plots of the energy from three different clusters of AE signals, 
showing zero (i) rising(i i) and fa lling trends (iii ). Parameterised models 
of t he data are shown . 

Least-squares model fitting 
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There follows a deri vat ion of the least squares formula, in which the data is pre­

proces ed accord ing to t he model in 3.2. 

III order to fit the model ill equation 3.2 to t he data, it is written in the form 

E = Xw + c (3.3) 

whe, e w ~ [ ~ ] is a veetoe of the pan"nete,-s m wetghts of the model, and X ~ 
[1 t t2] is a matrix containing a column of ones, the time data, and the time 

data squared. An error term € is introduced. The values of a , b, and c are found by 

minimising the mean squared error 3.4. The derivation of this simple linear model 

is well known [55], but is included here for completeness. 

The sum of the mean-squa red errors is: 

(3.4) 

ubstiLuting 3.3 into 3.4 , we obtain: 
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We desire the value of w such that J is minimum, which we shall denote w.: 

8J T T 
DwT=O=-X E+X Xw. (3.6) 

rearranging: 

(3.7) 

By solving equation 3.7, one obtains a value of c for each clusters. The values of c 

can be transformed to a probabilistic interpretation by outlier analysis: since most of 

the cluster present in a test will not represent a fracture, one can perform an outlier 

analysis [56], which is simple since c is a univariate variable. The discordancy of c 

is given by: 
( _ Ccluster - C 
"duster -

0' 
(3.8) 

where Cduster is the value of c for the cluster of interest, c is the mean value of c for 

all clusters, and 0' is the standard deviation of the same. 

If one is to make the assumption that the distribution of c across clusters is Gaussian, 

then the discordancy of a cluster can be easily transformed into the probability of 

a fracture by: 
1 2 

p(Jracturelc) = 1 - In'::. exp( -O.5(c/uster) 
v 27r0' 

This is convenient when performing data fusion, see section 3.6. 

3.5 Novelty 

(3.9) 

The nature of the landing gear certification test toward which this project is orien­

tated means that novelty detection is likely to be an excellent method for detecting 

damage. The tests are of a long duration (typically six months) during which it is 

possible to collect a plethora of AE data. Novelty detection involves collecting this 

data, and deciding upon some safe limit based on the data. Further observations 

which fall outside this limit are classed as novel, and can be acted upon accordingly. 

The novelty uetection approach was first useu by Tarasscllko et a1. [57], to detect 

mrusses in mammograms. Subsequent work with novelty detection has seen it become 

a useful tool ill fields such as vibration of structures [58], classification of image 
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regions, [59] and biomedical data-processing [60]. 

Novelty detection requires the collection of a set of data which is labelled as safe 

or normal. This data is then used to train some (statistical or neural) model which 

describes the nature of the system. Subsequent data is then compared to this model, 

and determined either (a) to fall within the bounds of the model, i.e. the data does 

not deviate from the safe data and is considered not representative of damage; or 

(b) to fall outside the bounds of the model, and represent a damaged state. 

The uncertain nature of acoustic emission makes it difficult to build a model based 

upon signal subspaces (i.e. feature extraction, see Chapter 4). Instead, we present 

here a method for applying novelty detection to the spatial distribution of signals. 

This approach is obviously highly dependant on the reliability of the location algo­

rithm (see Chapter 6). 

The method proceeds as follows: 

1. The data designated as 'normal' is divided into overlapping time windows. 

2. The spatial distribution of the data is modelled using a Gaussian Mixture 

Model (GMM, see Bishop [55]). 

3. Subsequent (test) data is also divided into windows (of the same length as 

that for the training data) and modelled using a GMM. 

4. The parameters of the mixture models are compared using a statistical analysis 

such as outlier analysis [56]. 

5. The mixture models can give a degree of novelty for any point, easily assigning 

a novelty index to each cluster. 

As crack events are likely to emerge as novel features in the spatial distribution of 

recorded events, novelty detect.ion offers the possibilit.y of another clue or indicator 

to the emergence of a fracture. The mean position of a cluster can be related the 

the current spatial density model and a degree of novelty obtained. 

Novelty detection in general is proposed as a seam of future work, see section 8.2.1. 
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3.5.1 Other Possible Indicators 

The framework is capable of including more indicators of fracture activity as un­

derstanding of the AE process brings more indicators to light. For example, one 

possibility might be load cycle correlation - do the signals in this cluster all come at 

the same point in the load cycle? or arc they scattered across the cycle? 

3.6 Decision Making 

After carefully sectioning the data into clusters, and finding clues with which to 

describe the clusters, it is nece sary to decide which (if any) of the clusters represents 

a fracture. A probabilistic framework is ideal for this, as it allows us to make 

statements about each of the clues such as: 

"Based on the novelty clue, there is a 95% chance that the cluster at 

position (x, y) relates to a fracture' 

Further, the use of probability gives a good mechanism for combining clues via 

data fusion. Thi section describes the application of data fusion to the problem of 

identifying clusters related to crack growth. 

3.6.1 Data Fusion 

Hall and Llinas [61] de cribe two separate application of data fusion , one for de­

termining locations and one for performing identification. The problem at hand is 

one of identification (we wish to specify whether or Hot a cluster relates to crack 

growth), and the data which we wish to fu e consists of clues (c.L sensors in the 

data fusion literature) . Further, Hall describes three sub-types of identity fusion, as 

shown in Figure 3.6 

(i) Data level fusion. The raw data regarding each clue are combined and 

feature extraction is performed on the fu ed data. Some transformation from 

the feature data is made to an identity class, perhaps by a mechanism such as 

all artificial neural network. 
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(ii) Feature level fusion. Feature extraction is performed independently upon 

each clue, and the feature vector from each is concatenated together before an 

identification is made. 

(iii) Decision level fusion. Feature extraction and identification are performed 

separately for each clue, and a combined decision is made by use of weighted 

decision methods, Bayesian inference or the Dempster-Schafer method. 

One of the challenges regarding data fusion is correlation, or association: ensuring 

that data being fused corresponds to a single target. This is a problem specifically 

regarding ident.ification of aeroplanes (via fusion of e.g. radar and infra-red infor­

mation) and applies equally to many data-fusion applications. For our application, 

correlation is trivial since each clue refers to a unique cluster, and has been omitted 

froIll figure 3.G. 

The natural fusion method for the application at hand is decision level fusion. Each 

clue involves essentially a different feature extraction1 (see sections 3.3, 3.4 and 

3.5), and so raw data fusion is impossible. Further, each feature set {for example 

equation 3.1} provides a way to produce independent identifications, and so decision 

level fusion is a natural choice. 

The identity problem in this instance of data-fusion is a binary classification problem: 

a cluster either represents a crack or it does not. Each clue which has been described 

in this chapter presents a method for determining whether or not a particular cluster 

represents a fracture: the feature-space clue provides a number between 0 and 1 

which we treat as a probability; under a Gaussian assumption the energy-trend clue 

provides a direct probability; the novelty clue can provide a probability in a Bayesian 

setting. 

The simplest method of combining the clues is via a simple majority vote: if more 

than half of the clues have a probability of fracture of more than a given threshold 

for a particular cluster, then the combined identity of the cluster is a fracture. More 

sophisticated methods of data fusion include Bayesian data fusion (see e.g. Friedrich 

et al. [62]) and Dempster-Shafer theory data fusion (see e.g. Word en and Staszewski 

[63]). Since all of the clues are probabilistic, it is natural to use a Bayesian setting 

for data fusion. 

lnote that the features here correspond to the description of the clues as presented, not to the 
feature extraction method in Chapter 4 
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The actual implementation of data fusion is included in plans for future work see 

section 8.2.2. 



Chapter 4 

FEATURE EXTRACTION 

Feature extraction is the process of representing the object of interest (i.e. our 

acoustic emission waveform) by some short list of numbers (a vector). In other 

applications, feature extraction might involve extracting numbers from images (e.g. 

in face recognition), web pages (in search engine algorithms such as Google) or 

sounds (as in voice recognition). 

In an acoustic emission context, the process of feature extraction has two important 

roles: 1) To compress the information due to storage requirements, and perhaps 

more importantly 2) as a basis for comparing signals for visualisation, classification 

etcetera. It is the features of the waveforms that are compared to form one of the 

indicators for the data-driven method in section 3.3. 

Despite the current availability of large digital storage devices, storage of the com­

plete waveform is still impracticable. A signal consisting of 216 samples, at a sample 

rate of 5MHz represents an acoustic signal of just over 3ms, and (assuming a fidelity 

of 16 bits) requires 131 kilobytes. Since large AE tests may have signals arriving 

on over 120 channels, at a rate of several waves per second, over a period of several 

months, the data storage requirements for the complete waveform would be colos­

sal. For example, a test during this work using only six sensors and lasting only 

ten hours produced 4GB of data - scaling this up to 120 channels and a 3 year test 

gives over 210 Terrabytes of data - this may be feasible for huge operation such as 

Google, but is massively inconvenient for laboratory use, especially since there is 

(as will be demonstrated) huge redundancy in the data. Some kind of compression 
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is therefore required if one is to keep a permanent record of an AE test. 

The ability to compare signals is important for any algorithm which attempts to 

discriminate between them. Treating each signal as a long vector and finding the 

Euclidean distance in this very high-dimensional space is unlikely to work well in 

practise because of phase differences between the signals; it is also very computa­

tionally expensive. Further, reducing the number of dimensions of the data to two 

or three allows for visualisation of the data. 

4.1 The Traditional Way 

The technique of acoustic emission has been around for some time, and pre-dates 

the modern computer with gigabytes of memory. In order to store information 

from an AE event therefore, researchers and practitioners made use of a feature 

extraction technique as outlined in Figure 4.1. The motivation was reduced memory 

footprint - instead of storing several thousand floating point numbers in order to 

describe the samples of a waveform, only a few numbers were needed to be stored. 

Most notable amongst these were amplitude, rise time, duration, count and energy. 

Furt.her paramet.ers were lat.er added as t.he field of AE evolved and matured. These 

include: 

• Initialisation frequency The frequency of the section of the waveform lead­

ing up to the peak 

• Counts to peak Threshold crossing before the peak (clearly linked to initial­

isation frequency above) 

• Peak Frequency The centre of mass of a Fourier transform of the waveform 

A number of the features outlined above (particularly those known to be more 

useful, such as t.he rise-time) are dependent on t.he user-defined threshold. This is 

undesirable, since two identical waveforms recorded with different thresholds will 

give risc to different feature sets. 

This threshold-dependent method of extracting features from waveforms is still in use 

by AE practitioners today. Two feature extraction algorithms are proposed based 
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on wavelet t ransforms, wi th the aim of extracting features which better describe the 

nature of the signal, and are threshold-independent. 

4 .2 Gaussian Mixture Modelling of the CWT 

Consider a typical AE waveform as shown in Figure 4.2(i). The signal is composed 

of several bursts of energy; some of these are related to Lamb wave modes, some are 

cfl:"ccts of the t ransducer, and some arc reflections from features of the geometry of 

the specimen under examination . An ideal feature extraction algorithm will encode 

this information in some manner. 

Consider 4. 2(ii). This is a spectrum of the waveform shown above 1 . The power 

spectrum shows the frequency content of the signal, but contains no information 

about t iming. Conversely, examination of t he waveform as in Figure 4.2(i) will give 

t iming information, but no information a bout frequency. In order to create a feature 

set which takes in to account the multi-modal nature of AE waves, it is necessary to 

examine the time-frequency content. 

The short-time Fourier transform (STFFT, [65]) is one way to examine the time­

frequency content of a signal. This involves windowing the data (in t ime), and taking 

I Speetrum generated by the Welch method , see Welch [64J 
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a Fourier t rallsfollll of the wiudowed da.ta. The wimlow relllaill:::> fixed, however, for 

all frequencies - for a full discussion of this see Addison [66]. The author prefers the 

wavelet transform, where the window and frequency are changed together, appro­

priately. 

4.2.1 The Continuous Wavelet Transform 

The wavelet t ransform has been used extensively in recent AE research [67]. It has 

been used to examine the source characteristics of the signal [68], and the location 

of signals based on modal structure [69]. Most of this work has been focused on the 

application of the Continuous Wavelet Transform (CWT) which provides a map of 

time-frequenci content of the signal, as demonstrated in Figure 4.4. 

The Fourier t ransform breaks a signa l clown into a series of (complex) sinusoids, 

2Technically, the wavelet transform provides a decomposit ion into time-scale. pace, but scale 
can easily be converted to frequency by the formu la f = fofsa - 1

, where f a is the 'centroid ' frquency 
of the wavelet family, Is is t he sampling frequency, and a is the scale. 
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as shown in equation 4.1, where x(t) is the signal, and e- jwt forms a basis for the 

signal. In the Continuous Wavelet 'Il'ansform (equation 4.2) the basis for the signal 

is 'Ij;*: 

X(w) = I: x(t)e-jwtdt 

T(a, b) = I: x(t)'lj{b(t)dt 

( 4.1) 

(4 .2) 

where 'lj;a,b(t) = )a'lj; C~b), and * denotes the complex conjugate . 'lj;(t) is the wavelet 

function (often referred to as the mother wavelet in its untransformed state). 

The wavelet function is usually oscillatory but short in t ime [66J. The choice of a 

wavelet function (of which there are many) is somewhat arbitrary, and throughout 

this section a Morlet wavelet is used, see Figure 4.3. This is convenient for our 

application: the Morlet wavelet has real and imaginary parts, and by use of the 

magnitude of the t ransform it is possible to disregard the phase information , leaving 

a smooth function of scale and t ime: t his gives an elegant visual representation of 

the data, see Figure 4.4 . 

The equation for the Morlet wavelet (named after Jean Morlet [70]) is 

(4.3) 

which (ignoring the constant parts) is a complex sinusoid (eia l
) multiplied by a 

window ( e-~ t2 ). Typically, (and throughout this work) a = 5. Cleal'ly, changing 

the scale of the wavelet will a.ffect both t.he sinusoida.l and windowing sect.ion of the 
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Figure 4.4 shows a wavelet transform of the waveform shown in Figure 4.2. The 

lIlultiple lllode:--, arriving at diH'ercIlt times anu frequencies are clearly visible. In per­

forming feature extraction from the waveform, it is desirable to capture this modal 

structure. In t hr next sec! ion, a [rat ure cxtraction method is proposed whereb.y the 

C\\'T cia! Cl is modelled by a serirs of Gaussian functions, with the intention that 

each fllBct ion "'ill represcnt onc import ant pClrt of the clat a. 

4.2.2 A Gaussian Mixture Model 

In orcler to estimate the C\\,T surface using a mixture of Gallssians, a model IS 

propo:-;('d of t he form: 

l' 
l."(o, b) - L .'1,.[(fabl- c")~n([obl cn)T (4.4) 

n ,0 
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where An and e n represent the magnitude and cent re of the nth basis function 

respectively. L:n is a 2 x 2 diagonal matrix , the elements of which represent the 

widths of the directions of a and b (i. e. across scale and time). The coeffi cients An, 

e n and L:n are found by optimising the cost function 

Z = L L (1jJ (a , b) - 1jJ'(a , b))2 (4.5) 
a b 

Since Z is likely to have multiple local minima, some stochas tic search algori thm 

is appropriate: the work here was performed by par ticle swarm optimisation [71], 

t hough many other search algorithms are appropriate such as differential evolution 

[72J or simulated annealing [73J. An explanation of the particle swarm algorithm is 

given in appendix A.2. 

Once Z has been optimised , the values of An, en and L:n which occur a t the optimal 

solution are used as a set of features. 

Increasing the number of parts in the mixture 

Increasing N, the number of basis funct ions in the mixture, has the ad vantage of 

increasing the accuracy of the representa tion of the CWT, with the t rade-off of 

increasing the dimensionality of the feature data set . Figure 4.5 shows the CWT 

of a signal (top) and representations of that signal made using increasing N. For 

low N, t he structure of the signal is well represented, but the finer detail is missing. 

As N increases, t he fi ner detail is lllodelled. III order to apply this method for 

feature extraction, one must select N such that signals are well represented , without 

increasing the dimensionality of the feature space too far. 

The described method of feature extraction is applied to some real AE data, and 

compared to the traditional features in section 4.5 

Gaussian mixture modelling of the CWT is a method of feature extraction which 

gives a set of features containing information about t he time-frequency nature of 

AE signals. This gives a potentially more powerful measure by which to compare 

signals, as was demonstrated in [75J. The method does have some drawbacks: it can 

take a long time for the optimisation routine to converge, making this a potentially 

slow technique; it also requires the engineer to select N, the number of parts in 

the mixture, which controls t he complexity of the representation. The next section 
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presents a feature extraction method based on the discrete wavelet transform which 

whilst still requiring the selection of the complexity of the representation, results in 

an extremely quick feature extraction method. 

4.3 Discrete Wavelet Coefficients 

The continuous wavelet transform results in an abundance of redundant data: in 

the above section, this data was 'compressed' by approximating the transform with 

a Gaussian mixture model. This section describes the Discrete Wavelet Transform 

(DWT), which enables examination of the time-frequency nature of signals without 

introducing any redundant data, and without any data loss (i.e. the transformed 

data contains exactly the same number of points as the original signal, and the 

signal can be perfectly reconstructed from the transformed data) 

Dyadic Grids 

The DWT is so called because the transform is only taken at discrete points in a 

and b, such that the translations in time are proportional to the scale of the wavelet: 

.1 () _ -m/2. I,( t - nboaO') 
If-'mn t - ao 'f/ , aD (4.6) 

Usually, ao and bo are taken to be 2 and 1 respectively, which means that the 

subscripts m and n define a series of points in the time-frequency space which form 

a dyadic grid: for successive discrete scales, the size of the translations doubles. 

A dyadic grid across scale (a) and translation (b) is illustrated in Figure 4.6 for 

logarithmic spacings of a. 

When examiuing a signal of finite lellgth, the scale of the first wavelet (m = 1) 

is chosen such that there are half as many translations as there are points in the 

signal. Thus the second scale is chosen such that there are half as many points 

again, etcetera. It is therefore helpful to have a signal of length 2n ,n E Il, else some 

technique such as zero padding is required. 
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Figure 4.6: A dyadic grid across translation (b) and log scale (a) 

Frames 

If the original signal is to be recovered from the wavelet coefficients, it is natural 

that the total energy in each is matched. This is referred to as the formation of a 

tight frame (see Addison [66]), which means they must conform to 

Orthogonality 

In order to achieve orthogonality, the wavelets must satisfy 

if m = n 

if m =I n 

(4.7) 

(4.8) 

A wavelet function 'l/Jm,n(t) which fulfils (4.8) ami (4.7) 011 a dyadic grid (4.6) is 

known as a orlhonormal dyadic discrete wavelet. Many such wavelets exist, and 

the choice is a somewhat arbitrary one for the engineer: throughout this work, the 

Daubechies 10 wavelet is used. 
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Decomposition 

The equation describing the DWT is similar to that for the CWT (equation 4.2): 

(4.9) 

however the complexity of orthonormal dyadic discrete wavelets means that the 

solution is rather involved, and the reader is directed else where (e.g [66]) for more 

information. The solution turns out to be a series of recursive filters, such that 

each successive filtering splits its input into two equally sized parts: approximation 

coefficients and the detail coefficients. The approximation coefficients are passed 

again through t.he filter to obtain the next level of representation, or decomposition. 

Decomposition of an AE signal 

Figure 4.7 shows the detail coefficients for a full decomposition of an AE signal. 

Subsequent plots show coefficients T m,n for increasing decom posi tion levels m (cor­

responding to decreasing frequency). The horizontal axis represents the translation 

parameter n. It is worth noting that each subsequent plot contains half as many 

data points as the one above it. The counterpart to Figure 4.7 is Figure 4.8, which 

shows reconstructed signals, using only the coefficients at each level. The number 

of points in each sub-plot here is always 4096, which is the length of the original 

signal. The term 'coefficients' is sometimes confused in the literature: some authors 

refer to the values in Figure 4.7 as the coefficients. Some authors make extensive 

use of the decomposition shown in Figure 4.8, see e.g. [76] for further information. 

The signal was generated on a Imm aluminium plate using a Hsu-Nielsen source at 

a distance of 200mm. The transducer used was a Physical Acoustics UT1000, which 

is sensitive between 100kHz and 1MHz; the sampling frequency was 40 MHz. The 

Daubechies 10 wavelet was used. Inspecting the dispersion curves for an aluminium 

plate (Figure 2.6), only two wave modes should be present below the frequency­

thickness of 1MHz mm: the fast travelling So mode, and the slower Ao mode. 

The first two levels of the decomposition, m = 1 ... 2 represent frequencies which 

are outside the bandwidth of the transducer. Nonetheless, some high-order Lamb 

wave activity is visible. The magnitude of this information is small, and has little 

impact on the construction of the signal. 
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The next two levels (m = 3 ... 4) show the components of the signal representing 

the 80 mode, and the high frequency components of the Ao mode (which looking at 

the dispersion curves, will travel the fastest and therefore arrive first). 

Decomposition levels 5 ... 8 show the rest of the Aa mode, with lower frequency 

components arriving later in accordance with our understanding of the dispersion 

curves. The remaining levels (m = 9 ... 11) simply show the very low frequency 

components of the signal, which have little bearing on its construction. 

Notice the edge artefacts caused by the wrap-around boundary condition (partic­

ularly observable in Figure 4.8), similar to the effect on the continuous transform 

(Figure 4.4). 

Once the signal has been decomposed, one can use one of the levels of detail coef­

fici(mt.s as a set of feat.ures t.o describe t.he waveform. Analogously to the problem 

faced in the previous section, it is necessary to select a level of decomposition, i.e. 

select the complexity of the representation. In the next section, some example AE 

data is collected and t.he effectiveness of each of the levels of decomposition is com­

pared in describing the data. 

4.4 Decomposition level comparison 

In order to examine the usefulness of each level of decomposition as a feature set, 

three sets of experimental data were used. The sets of data were devised such that 

separability would he easy to achieve with the first, harder with the second, and 

hardest with the third. the separability of the data is compared for each level, and 

against the traditional features. This work was also presented in [77]. 

4.4.1 Experimental Procedure 

Each experiment involved a series of Hsu-Nielsen pencil lead fractures on a composite 

plate. The Hsu-Nielsen source is often used in Acoustic Emission techniques in order 

to simulate AE source (see section 2.2.3). The composite plate was 3.5mm thick 

aud consisted of 12 plies laid in a O-YO-O configuration. The plate was of sufficient 

si~e that reflected waves (from plate edges) would not interfere with the recorded 

signal. A single AE sensor (Physical Acoustics Corp. UT1000) was used to monitor 
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the plate, attached to a Physical Acoustics PCI-2 system. 

Eight positions on the plate were chosen, denoted AI, A2, A 3, A4, B, C, D and E; 

the transducer position is denoted T. Points Al to A4 are co-linear along the weave 

of the composite, with TAl = 1501l1m, T A2 = 200111111, T A3 = 250111111. Distance 

T A4 = TB = TC = T D = T E = 300rn1l1. T A4 and T E are perpendicular, along 

the weave of the composite. Points A4 , B, C, D and E are evenly spaced, such 

that the angles LA4T B = LBTC = LeT D = LDT E = 7r /8. Figure 4.9 shows the 

setup of the experiments. Three separate sets of data were recorded: 

(i) A 0.5mm 2H pencil was broken at points AI, A 2, A3 and A4. 50 measurements 

were made at each point. 

(ii) A O.5mm 2H pencil was broken at points A4 , B, C, D and E. Again, 50 

measurements were taken at each point. 

(iii) Fifty of each 4H, 2H, HB and 2B pencils were broken at point A4 . 

4.4.2 Data Analysis 

In order to examine the suitability of each of the sets of features, one can measure 

how well the sets of features fit the labels assigned them, i.e. examine whether a 

set. of features allows one to distinguish between different sources of AE. This was 

done via t.wo methods: first, the data was visualised using a dimension reduction 

technique, second, a K-Nearest-Neighbour (KNN) algorithm was run in order to 

quantify the separability of the data. 

Dimension Reduction 

III order to provide a subjective llleasure of the effectiveness of the each set of 

features, the data was visualised using the PCA technique described in section 5.2. 

PCA has been used by several AE researchers to investigate data strucure (usually 

using traditional features) such as Pullin et a1. [52], Rippengill et a1. [78] and Manson 

et a1. [79]. 
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K-Nearest-Neighbour 

Low-dimensional visualisation is not enough to allow an assessment of the utility 

of given features. For example, the PCA reduction may well superimpose classes 

when the data is projected into two dimensions where the data is actually perfectly 

separable in the higher-dimensional feature space. In order to quantify the utility 

of the features one needs to assess the separability of the classes in the higher­

dimensional space. In order to do this, one can apply a standard classification 

algorithm and then look at the probability of correct classification possible with 

each feature set. 

The choice of which classification algorithm to use requires a balance between the 

effectiveness of the classifier itself and the computational cost of applying it. The k­

Nearest-Neighbours (kXN) algorithm is a simple supervised classification algorithm 

[80] which provides such a balance. In order to classify an unknown point, one ex­

amines the class membership of the k ncarest neighbours of that point, and takes a 

majority vote as to the label. For example, taking an unknown point from experi­

ment C, whose three nearest neighbours are labelled as HB, HB and 2H, results in a 

label for that point of HB. In this work, k was always set at 3. The neighbours of a 

point are defined as those which has the smallest Euclidean distance from the point. 

While better classifiers are available, the kNN classifier is quick to apply and has 

the nice property that it's error rate is never worse than twice the optimum (Bayes) 

error rate [81]. 

In order to quantify the separability of the data given at each wavelet level, leave­

one-out validation was performed, and a score was allocated to each data set corre­

sponding to t.he pcrcent.age of correct. classifications using t.his method. 

4.4.3 Results 

Experiment A results 

Fi!!;ure 4.10 compares t.he different. levels of decomposition with the features collected 

by traditional parameters. 

In experiment A, the AE waveforms were recorded from pencil breaks at different 

distances from the seIlSOr. The signals will therefore differ because the propagation 
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of the waves (as Lamb waves) in a plate is dispersive and the waveforms will spread 

out as t hey travel further. Figure 4.10 compares the different levels of decomposition 

with the features collected by traditional methods. The optimum feature set is that 

corresponding to the eleventh level of DWT decomposition and is based on a set 

of four features. The classification rate of 97% (for the eleventh decomposition, 

with 4 parameters) is slightly better than that of 96% for the traditional feature set 

which has 6 parameters3 . The classification rates are uniformly high, reflecting the 

separability of the data. A poor performance is only really obtained for the third 

decomposition level which is probably mainly constituted by high-frequency noise. 

Figure 4.11 shows a visualisation of the data using PCA. The top left plot shows 

the data using traditional feature extraction, and subsequent plots show the data 

using the DWT method described here. The four-class structure is visible in all the 

plots, particularly for m = 10, which corresponds to the best performance in the 

KNN test. 

Experiment B results 

Figure 4.12 compares the different levels of decomposition with the features collected 

by traditional parameters. 

This experiment involves distinguishing between pencil lead fractures situated ra­

dially around the sensor, the main physical reason for the signal differences here 

will be the variation in speed of wave propagation in the different directions. Figure 

4.12 compares the different levels of decomposition with the features collected by the 

traditional approach. The wavelet features outperform the traditional features at 

every level apart from the third, with the best level being the eighth decomposition 

( of length 32). The poor performance at third level is again due to the fact that this 

level will be dominated by high-frequency noise. The best classification rate is 92% 

compared with 84% for the traditional parameters. 

Examination of the PCA plots of the data (Figure 4.13), shows that five class struc­

ture is visible, particularly for rn = 10. The linear PCA projection has failed to 

some extent to capture the separability of the data, but it is clear that some clusters 

are present. 

3The parameters used were amplitude, risc-time, count, duration, absolute energy and initiation 

frequency 
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Since the points A and E are equidistant from the sensor and are aligned along the 

weave of the axis, one might expect the corresponding data to be inseparable: this 

is not the case. The separability of these data is due to the aperture effect of the 

transducer: since the signals are travelling 'under' the transducer from different di­

rections, and the top layer of the composite weave is interacting with the transducer, 

the recorded signals are different, as can be seen visually in Figure 4.13 and also 

recorded numerically in Figure 4.12. 

Experiment C results 

Figure 4.14 compares the different. levels of decomposit.ion with the features collected 

by t.ra<iit,ional paramet.ers. This set of dat.a represents different hardnesses of 

pCllcil leads alld is intended here t.o simulat.e t.he different source types associated 

with different damage and non-damage sources. It proves to be the most difficult 

to separate using either the wavelet or traditional features. Figure 4.14 compares 

the diH'ercut levels of decomposition with the features collected by the traditional 

approach. The traditional parameters resulted ill a 62% classification rate. Some 

wavelet levels such as the eighth and tenth were higher, whilst the third and fourth 

levels performed poorly. An improvement is thus obtained by using a DWT feature 

set with 8 dimensions. (The best results are obtained using a 32-dimensional feature 

set; however on the basis of preferring lower dimensions, the 8-dimensional set would 

probably be selected here.) 

Again, the data is plotted using PCA in Figure 4.15. The data is arranged according 

to the class label, though some other structure appears in the data. The classes do 

not appear to be obviously separable, perhaps due to the linearity of the PCA pro­

jection. Visualisation of this data is used to demonstrate some non-linear dimension 

reduction algorithms in the next chapter. 

4.4.4 Discussion 

This section has demonstrated the applicability of DWT to feature extraction of 

AE waveforms for a simple classification problem. Principal Component Analysis 

was used to examine the data, and leave-oue-out k-nearest-neighbour was used to 

generate an objective measure of the data's separability. 
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The technique does raise the question of which level of decomposition to use for 

feature extraction. In the simple studies shown, it was not clear that any particular 

level is better than another, other than the first few levels (which are of high dimen­

sion, and consist of very high frequency content) and the last level (of dimension 2) 

which perhaps is not capable of fully describing the data due to its small dimension. 

It may initially appear desirable to choose the decomposition level which maximises 

the compression (i.e. has the smallest number of coefficients) whilst allowing for 

successful separation of the data. There is a danger, however, that this procedure 

will remove information that will become useful in future. A compromise is needed, 

though I hesitate to make concrete recommendations without further investigation 

of real data. 

Furthermore, this Chapter has focussed on the separation of signals for a set of 

simple laboratory tests: of real interest to the engineer is to test the procedures on 

crack-related signals on a real structure. Whilst this work does demonstrate that 

the use of the presented techniques is viable, it may be unwise to make detailed 

decisions (such as which level of decomposition to choose for a feature set) based on 

the data presented here. Nonetheless, the presented practise gives a framework for 

this work to be done in future. 

4.5 Feature Extraction Comparison 

In the preceding sections, two feature extraction methods were presented based on 

wavelet transforms of AE waves. In section 4.3, the features based on the fast 

wavelet transform (DWT features) were compared to the traditional features for 

some laboratory data. In this section, all three feature extraction methods (Tradi­

tional features, Gaussian Mixture Model features and DWT features) are applied to 

a data set from a fatigue test. 

The data Ilsed hcre was first prescnted in Rippengill et al. [78]. It consists of a series 

of waveforms recorded during the fatigue testing of a box girder bridge component. 

All three feature extraction methods presented in this chapter were performed on 

the data. In order to visualise the data, a PCA projection (see 5.2) was performed 

on each data set. K-means clustering was also performed for each feature set, with 
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k set to 6, as per the original analysis in [78]. The purpose of Figure 4.16 is to 

examine any correlation between the feature extraction methods; nine sub-plots are 

shown, with each column showing a PCA projection of a different data set. The 

rows of sub-plots feature the data coloured according to the labels acquired on the 

separate feature sets. Thus, for example, the third plot in the first column shows a 

PCA projection of the traditional feature set, but with the points coloured according 

to the DWT features. 

In this work, the number of centres in the GMM feature set was fixed at three, 

whilst for the DWT features the fifth decomposition layer was used. That signal 

sampling rate was 2MHz, and there were 2048 samples in each signal. 

Note that there is overlap of the claEses, even on the diagonal where the PCA 

projection and the colours of the markers are from the same feature set. This is 

because the k-means clustering took place in the original (high dimensional) feature 

space, and the PCA projection naturally cannot preserve in 2D the full structure 

of the data in this space; nonetheless, it is a useful guide. Note also that it is not 

necessary for the feature sets to be of the same dimension, since they are being 

compared only by their 2D representations. 

Consider first the sub-plots on the diagonal. III accordance with the original analysis, 

the traditional features separate reasonably into three groups. Using the GMM 

features, the structure in the PCA projection does not match the colours so well, 

indicating that much structure was lost in the projection. In the bottom right 

(DWT) plot, the structure of the projection matches reasonably with that of the 

clustering. Colours are not preserved across these plots. 

It is now possible to subjectively compare the three feature projections using a single 

row or column: we proceed by considering the first column. The cluster of signals in 

the bottom right of the projection (purple in the top left sub-plot) matches well with 

clusters from the other feature sets, although the DWT features have divided this 

set into two (red and cyan). This is significant because these signals were identified 

as crack activity during the original analysis. 

Two further groups show good correlation between the feature sets: the cluster 

coloured red in the top plot matches with that coloured cyan in the second, and 

a set coloured blue in the top (traditional features) plot matches with a cluster 

coloured magenta in the bottom plot. 
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Whilst the above analysis is somewhat subjective, it is gratifying to know that there 

is some agreement between feature sets. Since the data is unlabelled, it is impossible 

to perform a rigorous examination of the feature extraction methods, though further 

work later in this thesis hopefully gives credibility to the use of the DWT feature 

extraction method. Whilst the GMM method is intuitive and easily understood, it 

is somewhat impracticable due to the optimisation routine required for each of the 

signals. 
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Chapter 5 

VISUALISATION 

T his chapter is concerned with presenting AE data to t he user. This is perhaps one 

of the most important aspects of AE analysis because AE equipment is extremely 

sensitive, generating vast quantit ies of data very quickly. Other chapters in this 

thesis attempt to deal with this quantity of data, rationalising, sort ing and classi­

fying it. Here, the emphasis is on how to convey the data to the end user in a way 

which can be quickly understood . In order to present the data to t he engineer , it 

must be plotted upon either paper or screen, and must therefore consist of only two 

(or occasionally three for some software impementations) dimensions. The software 

supplied with AE equipment contains an array of graphing options, however the 

red uction of the data to 2D in order to uti lise these is limited to the simplest of 

algori thms (PCA, see section 5.2) . T his Chapter explores a wealth of dimension 

red uction techniques, applying them to two example data sets. 

5.1 Dimension Reduction 

T he human brain is a formidable tool in recognising patterns and relationships in 

data. Unfortunately we live in a 3D world, and have difficulty perceiving data 

of dimension a high as t hat required in AE analysis. T he subject of dimension 

reduction encompasses a series of tools which can be used to map high dimensional 

data to a 2 or 3D space, so that it can be interpreted easily. 

Typically, the data considered here corresponds to AE signals, from which features 
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have been extracted in some way (as described in Chapter 4) . The purpose of 

visualising the data might be to see whether the data falls into specific groups , or 

to asses whether a new set of data corresponds to an old set . Visualisation is also a 

useful tool in detecting outlying clusters, or seeing whether spatial patterns in the 

data align with patterns in the feature space. 

In this chapter , the running example of pencil lead fracture data (example 2) will 

illustrate how visualisation can be used to distinguish between different source types 

of AE - in effect., unsupervised source characterisation. 

5.2 Principal Component Analysis 

Principal Component Analysis (PCA) is perhaps the simplest form of dimension 

reduction , but nonetheless often proves to be extremely useful. PCA can be derived 

through lllany different mathematical interpretat ions: Nabney [49] shows P CA to 

be a re-arranging of the basis of the data, Roweis and Ghahramani [82] discusses 

PCA as part of a review of linear Gaussian models, whilst Baldi and Hornik [83] 

shows that P CA can be performed by a neural network. 

PCA is a popular tool because it reduces to an eigenvalue problem, and is there­

fore (for small data sets) very fast to compute. There follows a simple, practical 

introduction to P CA. 

5.2.1 Theory 

Consider an observation x (e.g . waveform features from a single AE hi t as explained 

in Chapter 4) in a D dimensional space 

x = [Xl , ... ,xDJ (5 .1 ) 

It is required to map the point x to a corresponding point z in d dimensional space 

where d < D, see Figure 5. 1 

Let X = [Xl, X2, . . . , XnV be an N x D matrix containing N observat ions, where each 

column of X has zero-mean l
, and Z be a N x d matrix containing the corresponding 

IThis is not 1tslla Jly the case for ob~er ved oa1'.n, b1lt. it ~imp li fies the notat.ion here and is t ri via l 
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Figure 5.l: Dimension reduction involves mapping observations x from 
a D dimensional space to corresponding points z in a d dimensional 
space. Here, D = 3 and d = 2. The map f is parameterised by a set of 
weights W . 
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points in the ' la tent' lower dimensional space. The covariance matrix :E of X is 

computed as: 

(5.2) 

Since :E is a square(D x D) positive sel1li-definite matrix, it has a full set of D 

non-negative eigenvectors. 

(5.3) 

The map in PCA consists of a linear proj ection of the da ta x by the eigenvectors Ai 

which have the larg st corresponding eigenvalues Ci, thus zi' = x n Ai or: 

Z =XA (5.4) 

where A is a D x d matrix containing d eigenvectors of :E . This matrix represents 

the weights of the map (W)in Figure 5.1; in PCA, the map f is a linear map. 

5.2.2 Simple Example 

There follows a complete example, mapping a 2D data set to ID. Whilst this might 

seem like a pointless exercise, it is important to remember that if the data w re 

Lo il1lpl lllCII L 
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to begin ill a higher dimension, it would be difficult to observe the eHect of the 

PCA. The method is far more useful in circumstances where the data starts in a 

much higher dimension , and is projected to 2D for visualisation. The data is shown 

in table 5.1, and plotted in Figure 5.2. Note that the data is arranged into two 

clusters, coloured red and blue; it is this structure in the data which we wish to 

preserve during dimension reduction. 

1.5 

1.0 

0 .5 

0 .0 

• 

Xl X2 

0.08 0.27 
0.03 0.04 
0.06 -0.06 
-0.32 0.31 
-0.37 -0.21 
0.87 1.18 
0.97 1.07 
0.89 1.24 
1.09 0.89 
0.97 0.87 

Table 5.1: Data set for simple example 
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Figure 5.2: A simple example of Principal Component Analysis. (i) the 
original data and directions of the principal components, (ii) projection 
of the data along the first principal component and (iii) projection on 
the data along the second principal component. 
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The covariance matrix of the data is 

:E = [4.86 4.97] 
4.97 5.83 
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which has eigenvectors [- 0.74 - 0.67] and [- 0.67 - 0.74] with corresponding eigen­

values 10.33 and 0.35: the eigenvectors are orthogonal. The directions of the eigen­

vectors are shown in Figure 5.2(i). 

T he project. ioIl of t. he data aloIlg t.he fir~t eigeuvcct.or i~ ShOWIl in Figure 5.2(ii). 

lote how the structure of the data (the groups coloured red and blue) is preserved . 

For completeness, we show the projection along the second eigenvector in 5.2(iii) , 

in which it is clear that the data structure is not preserved. The preserva tion of the 

data is mirrored in the eigenvalues relating to the two projections, t he first beillg 

thir ty t imes as large as the second. 

5.2 .3 Example 1 

Throughout this chapter , two running examples will be used. For the first. , data will 

be generat d in a high dimensional space ]RD, uniformly distributed with variance 

(/ about the points of a D - 1 simplex. A simplex is a n dimensional analog of a 

triangle; a t riangle (which is a 2-simplex) can be generated in ]R3 about the points 

[1, 0, 0]' [0, 1, 0] and [0 , 0, 1]. Similarly, a tet rahedron can be generated in ]R4 as 

[1 , 0, 0, 0],[0 , 1, 0, 0],[0, 0, 1, 0] and [0 , 0, 0, 1]. 

To generate the data used in these examples, a 6 simplex was used. Fifty data points 

were distributed about each of the points of the simplex, using a normal distribution 

with variance (/ = 0.1. 

It is hoped that generat ing the data thus will provide a reasonable challenge for 

the dimension reduction schemes presented, and allow the reader to reproduce the 

resul ts easily. 

A P CA visualisation of the simplex data is shown in Figure 5.3. The points are 

coloured according to the corner of the simplex from which they were generated ; 

these shall be referred to as classes. The P CA algorithm has done a poor job of 

providing visual separation of the classes: only one class (blue) is separa te from the 

rest. Points from the same class do lie close together , bu t the classes would remain 
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indistinguishable were the class labels (colours) not known. Since PCA is a linear 

map, it is unsurprising that the distribution of the points in any class remains (or 

appears to remain) Gaussian. 
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FigurE 5.3: Visualisation of the artificial simplex da ta using PCA 

5.2.4 Example 2 

In this second example, AE data was generated in the laboratory using a Hsu­

Nielsen source on a composite plate. A broad band transducer was used to capture 

the sigllals , which were g nerated using four different hardnesses of pencil: 2B, HB , 

2H and 4H. This data was previously used in the feature extract ion section, and the 

reader is guided there for a fuller explanation of the experimental procedure (see 

4.4. 1, experiment C). 

Figure 5.4 shows a P CA visualisation of the data. The data are coloured according 

to the hardness of the I ad used to create the source - it can be seen t hat there 

is some separat ion of the sources. The harder leads (2H and 4H) are more or less 

cparable from the softer (2B, HB) leads. Whilst the plot is informative, th is is not 

an ent irely sat isfactory visualisation of the data. 
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Figure 5.4: Visualisation of the data for example 2 using PCA. 

5.3 Latent Variable Models 
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p eA has been presented as a projection of data along the axis of highest variance 

in a data set . It can also be considered a latent variable model, where the model 

is a simple plane (in the case of d = 2) or hyper-plane (for d > 2). The concept is 

illustrated in Figure 5.5 where a set of 3D data (x) is transformed to a latent space 

z by P CA; P CA effectively embeds a plane in the higher dirnensiollal space. 

It can be argued that AE data is best visualised by a latent model, since the com­

ponents of the feature vectors are not independent. This is easiest to illustra te 

using t radi tional AE features, but applies equally to wavelet derived signal features. 

Suppose we are to examine a group of signals from any AE test by their ampli tude 

and energy characteristic; signals wi th large energy are more likely to have high 

ampli tude, because of the physical nature of these measurements. Equally, high fre­

quency signals will have a higher number of threshold crossings. These rela tionships 

between the features which are used to describe the signal lead to the feature data 

lying on some kind of manifold; the da ta exhibi ts a structure in high dimensional 

space. 

T he concepL of latent variable models involves approximating the underlying struc­

Lure of the daLa with some mod I, and t hen arranging the data on a lower dimen­

sional pace in such that it represents t he data with respect to the model in the 
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data space. 

x, 

z, 

• 
• • • 

• • • 
L..-______ • Z, 

Figure 5.5: Embedding a plane z in a set of data x in order to provide 
a map to a lower dimensional space 

85 

T hc latent model need not be restricted to a plane; indeed this might not be a 

sufficiently malleable lllodel in order to represent the ullderlying structure of the 

data. Various techniques employ more general latent models: Genera tive topo­

graphic mapping u es a manifold represented by a RBF neural network; the Self 

orga nising Map [ 4] uses a eries of discrete points in the data space associated with 

a series of points in a lower dimen ional latent space, as does Fast Multi Dimen­

sional Scaling (secLion 5.6). A recent development in latent variable models is the 

Gau ian Process Latent Variable Model (GPLVM) by Lawrence [85]. 

T he next section overs one of the more elegant latent variable models, the Gener­

ali ve Topographic Map (GTM). 

5 .4 Generative Topographic M aps 

In this ecLion ome theory behind GTM is presented, with an illustrat d example; 

the technique is th n applied Lo the two running examples. 

T he Gellerative Topographic Map was first presented by Bishop et al. [86], and later 

cxt nded in [ 7]. Applications of the GTM include voice morphing [88], document 

classificat.ion [ 9] nllci. genernl data exploration [90]. 
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5.4.1 Theory 

The formulae in this explanation of GTM follow the notation of [49]. 

Consider a map y(z; W ), y : z --+ x which maps from a latent (2D) space to a 2D 

manifold S embedded in a higher dimensional 'data' space. The map y is parame­

terised by W as shown in Figure 5.6. We define a probability density p(z) on the 

latent space, inducing an equivalent probabili ty density p(yIW) in the data space. 

p(yIW ) is zero away from 5 , which is unreasonable since the data x are unlikely to 

lie precisely on any sensible manifold ; we t herefore introduce a noise model for x : 

( I W ) - 1 _ ( 1Iy(zIW) - x I12) p x z , , Cl - D exp 2 
(271'Cl 2 ) '2 2Cl 

the density p(x IW , Cl) is obtained by integrating out the latent variables z 

X, 

Z2 
y(z; W) 

Figure 5.6: A map y(z; W ) from a latent space z to a manifold in a 
higher dimensional 'data' space x 

p(xIW , Cl) = J p(xlz, W , Cl)p( z )dz 

(5.5) 

(5.6) 

if y( z; W) is a linear function, the method is called Probabilistic Principal Compo­

nent Analysi (PP CA), as described by Tipping and Bishop [91] . Bishop et al. [86] 

extended t he idea for a more general fun ction as described by an Artificial Neural 

Network; this is called Generative Topographic Mapping (GTM). 

If !J(z ; VII) is not a linear function, t hen 5.6 is analytically intractable. The solution 

is to a llow the p(z ) to con ist of a serie of delta functions cent red of a series of 
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points zm ,rn = 1, ... 111, so: 

1 M 
p(z ) = 111 L c5(z - Zm) (5.7) 

m=l 

and equation 5.5 becomes: 

(5.8) 

which is a Gaussian mixture model centred on y(zm), where each element in the 

mixture has the same (spherical) variance a. 

T he dimension red uced data zn can be calculated from the model by examining the 

mean of p(znlxn, W) : 
!vI 

zn = L zmp(xnlxm) (5.9) 
m = l 

5 .4 .2 Simple Ex ample 

T he objective of this example is to illustrate to the reader the principles described 

above. Consider the 2D data presented in Figure 5.7, which consists of two clusters 

lying on the fun ction y = cos(7rx), with some add itional random noise. T he objective 

is to remove this underlying structure, and map the data to ID whilst pr serving 

the separation of the data into two clusters. 

Consider 20 points zm, m. = 1, .. . ,20 evenly spaced across the interval [0,1]; th is 

i our latent pace. The function y(z; W ) is represented by a radial basis function 

neural network the weights of which are given by the matrix W . The manifold 

§ = y(z, IV) is shown in Figure 5.8 as a black line. The points xm = y(zm; W ) are 

represented by black circles. A Gaussian mixture model probabili ty density function 

(centred on x m) i hown by the contours. The manifold does pass through some 

space which i far from the data: here p(x) = O. 

learly the manifold has depicted some structure upon which the data lies - in this 

ase it is n t the same tructure as one might have expected , but it will suffi ce 

non thcless. The Gau sian Mixture Model elegantly depicts the lie of the data. The 



5.4. GENERATIVE TOPOGRAPHIC MAPS 

2 

1 

o 

-1 .5 

• 
~ 

I 
• • 

• 

-1.0 -0.5 0.0 

I.· · data type II 
• data tVDe 21 

0 .5 

• 

1 .0 

• • 
• • • 

1 .5 

Figure 5.7: Two clusters of data lying on a manifold in ~2 
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dimen ion red uced data can now be constructed in jR1, according to equation 5.9; 

t his is shown in F igure 5.9 

2 

-1.5 -1.0 -0 .5 0.0 0.5 

• data type 2 
• data type 1 
• (enters 
- manifold 

1 .0 1.5 

Figure 5. : The GTM model converged on the data from Figure 5.7. The 
centre corresponding to a latent space (black dots) lie upon a manifold 
(black line) which is approximated by a RBF neural network. The prob­
ability di ·tribution (a Gaussian mixture model) is shown, centred on the 
black dots. 
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Figure 5.9: The data from Figure 5.7 mapped to ~l by the model in 
Figure 5. 

5.4.3 Example 1 
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Figure 5.10 shows the simplex data described in 5.2.3 reduced to two dimensions by a 

generative topographic map. The RBF neural network in the map has eight hidden 

units. The separation of the classes in this figure is the best of all the methods 

represented in this chapter. The mapping has distorted the structure of the data, 

however; the classes no longer appear to fall under a Gaussian distribution . 
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Figure 5.10: The simplex data described in sect ion 5.2.3 reduced to two 
dimensions via a Generative Topographic Map 

5.4.4 Example 2 

Figure 5. ll how the data de cribed in 5.2.4 reduced to two dimensions via a GTM. 

omc s par'aLion of the clas es is apparent, however the structure of the data on 
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the page is not consistent with a technical understanding of the experiment: it 

could rea onably be expected that data from the harder pencil leads (2H and 4H) 

would be distant from the softer ones (2B and HB). This is in part the case, but a 

fur ther structure has been imposed upon the visualisation, whereby there is a large 

separation within classes. 

T his additional structure is due to the mapping of t he neural network in the GTM. 

If the map becomes too complicated , it will over-fit the data, and exert its own 

structure on the dimension reduced data. This is an issue of generalisation; it is a 

hard issue to solve since there are no target values for a GTM , and hence no means 

of measuring the accuracy on a 'validation' set, as is normal when using neural 

networks for regressioll or classificatioll (see Chapter 6). 
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Figure 5. 11 : A GT i[ dimension reduction of the art jficial AE data gener­
ated by pencil lead fractures on a composite plate as described in section 
5.2.4 

5.5 Multi-dimensional Scaling 

Multi-d imensional Scaling (MDS) takes a difi'erent approach to dimension reduction 

Lo Lhe meLhods de cribed previously. It is often referred to as a 'distance preserva­

tioll ' algorithm. T he concept is simple. one defin es a stress term c which is minimised 

ill order La keep distances in the data space ]RD similar to distances in the latent or 
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projection space (usually ]R2) . An example of a stress term (the Sammon stress [92] 

in this cas ) is: 
N N 

c: = L L IXi - x jl - Izi - zj l (5 .10) 
i= l j=l 

where X i ,j are data points in ]RD, and Zi,j are corresponding points in ]R2. The 

algori thm is usually ini tiated by selecting a random set of z , and optimising c: with 

respect to z. The optimisation can be perform d using anyone of a number of 

methods, uch as particle swarms [71] or differenti al evolution [73]. 

5.5.1 Disadvantages 

The main di advantage of the MDS method for dimension reduction is its compu­

La Lional ineffici ency. III order to valuate the stress function, N (N - 1) /2 distances 

must be calculated. When considering the optimisation algori thm, the dimension of 

Lhe problem is N x d (i.e. d coordinates must be calculated for each point) . This 

means that th amount of computation required for MDS is unreasonably high for 

large data sets. 

5.5.2 Example 1 

T hi section continues with the running example of the simplex data described in 

ection 5.2.3. Figure 5. 12 show data scattered about the points of a 6 simplex in ]R7, 

reduced to two dimen ions using MDS. The algorithm used for optimisation was a 

part icle swarm , with 20 particles running for 600 iterations. 

F igure 5. 12 shows the data grouped into clear classes, though there is much overlap 

between the clas es. In all likelihood, the algori thm would produce a better resul t 

if it was left to run for longer , though the computational expense of the method 

make this undesirable for any real AE application. 

5.5.3 Example 2 

imi larly, Figure 5. 13 how a MDS representation of the data described in section 

.2.4. Again , th algori thm used for optimisation was a particle swarm, with 20 
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Figure 5. 12: Mul tidimensional Scaling applied to data spread about the 
point of a 6 simplex . The different symbols represent data associated 
with different points of the simplex. The optimisation algorithm used 
was a Particle Swarm. 
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particles running [or 600 iterations . There is a some separation of the classes in to 

Lh harder (2H, 4H) and softer (2B , HB) signals, though the separation is not 

perfect. Once more, t he representation could perhaps be improved by running the 

simulation for longer, but the computational expense of doing so outweighs any 

potell tial bellefi t. 

5.6 Fast MDS 

T he computational expens of the MDS algorithm makes it prohibitive for tasks 

wit h la rge data. T his motivated Lowe and Tipping [93] to devise the euroscale 

algorithm, where a neural network is tra ined to map points in a high dimensional 

pace Lo a lowcr onc, using the Sammon stress between the two spaces as an error 

function. 

Ind PClI dCllLiy T h author devised the Fast MDS algori thm, which shares some 
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F igure 5.13: Mult idimensional Scaling applied to signals collected from 
the experiment described in section 5.2.4 

trai ts wi th N euroscale (the reference points x m here are analogous to the centres of 

the neural network in Neuroscale). The motivation for Fast MDS was to produce an 

algori thm which was distance preserving like MDS, but without the computational 

expense. T he algori thm is outlined below. 

5.6 .1 Theory 

In 1Iul t idimensional Scaling, in order to calculate the Sammon stress of one individ­

ual pair of points (zn, x n), one must calculate the relationship between that point 

and all other points , as in equation 5. 10. This means that for a dataset with N 

poin ts , V ( rv - 1) distances must be calculated. Since the distances in the high 

d imen ional set x n ed only be computed once, this leaves N(~- l ) dist ances . How­

ever, most of these distances are of li ttle consequence: it simply is not necessary to 

descri be the relat ion hip of one point in a data set by it's precise rela tionship wi th 

every other bi t of data. 

Fas t ID in t roduces a eries of reference points x m
, m 1, . .. , M into the high 
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dimensional space. The simplest way to assign these is to place them at t he centres 

of M k-means clusters (see section 3.2.2). These points are associated with M 

points in the latent, lower dimensional space: zm, m = 1, ... , J\![. The points zm are 

arranged such that t he Sammon stress between the sets xm and zm is minimum, a 
la Multidimensional scaling. Providing t hat M is small , this is a trivial operation. 

Having e tab li hed a set of pairs of points (xm, zm), m = 1, ... , M, the optimal 

posit ion of zn given x n is given by minimising equation 5.11: 

M 

En = L Ixn - xml - Izn - zml (5. 11) 
m = l 

T he optimi ation of En must be performed for each data point x n in order to generate 

corresponding data points zn. For a set of N data points which are desired to be 

vi ualised in ]R2, we now have N small (2D) optimisation problems, where evaluating 

the co t at any stage requires calculating ltJ distances. Compare this with the 

optimi aLion problem in MDS , where there is one large optimisation problem, of 

dimension 2 x N, where the number of distances required to calculate the cost at 

any point is V( ~ - 1)/2. 

5.6.2 Similarity to a SOM 

T he Self Organi ing Map (SOM) [84] is a dimension reduction algori thm similar to 

t he Fast Multi-d imen ional Scaling described here. The SOM algorithm takes a set 

of points in the latent space, and pairs them with a set of points in the data space 

(zln, x ln). T he points x n are then pre ented with the data, and move towards the 

data in the data space; the update algori thm ensur s that points z which are close in 

the lalent pace are al 0 close in t he data space. Dimension reduction is performed 

by repre enting the data x n in the latent space at the point zm such that x m is the 

clo est refer nee point to xn. Typically, the SOM requires more reference points , 

since th latent pace i discrete. 

5.6 .3 Example 1 

Fast iD was appli ed to the sim plex data as described in section 5.2.3: Figure 5.14 

show th result. even pair of points were cho en to reference the data in the high 
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and low dimensional space (M = 7) . T he method manages to give perfect visual 

eparation of the classes, whilst retaining the individual class distributions (i.e. the 

spread of points in each class appears spherical-Gaussian). 
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Figure 5.14: Fast MDS applied to simplex data . Classes appear com­
pletely separable and class distribu tions appear uniform 

5 .6.4 Example 2 

Figure 5.1 5 shows the data as described in section 5.2 .4, dimension reduced using 

fast MDS. T his is the most sati factory visualisation of t his da ta from a pract ical 

point of view: ignals which one would expect to be similar lie reasonably close 

together (i.e. signals from HB pencils lead fractures lie together). T here is some 

overlap of the data - the groups are not entirely separable; however the underlying 

structur of the data is in accordance with our expectation of the experiment: T he 

hardest lead (4H) lies fur thest from t he softest (2B). 

5 .7 Kernel peA 

Kernel PCA (KPCA) was proposed by Scholkopf t al. [94], and an optimised version 

was lat r presented by Weinberger et al. [95]. In KPCA, the data is first projected 

in to a higher dimell iOllal space u 'ing the kernel t r ick, and P CA is performed in thi 



5.7. KERNEL PCA 

h 

.. 
.. t t .. .... .. .. .. 

"' ... " .. .. .. 
.. 

.. .. 

A. ... : , .... 
.. .. r ~ 1. .& 

.. ... AA.. .. 
... .. .. ... 

.. .. .. 

Firs t Latent Dimension 
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space. KPeA therefore requires no nonlin ar programming, and is computation ally 

simple like the original P CA. In fact, the original peA algori thm is recover d if the 

kernel is linear , such that k(x, x' ) = X.r- '. 

5.7.1 Theory 

Consider a map 1; from our data space to a feature space :F 

1; : ]RN -+ :F (5. 12) 

T he covari ance matrix in :F is given by 

(5 .13) 

Performing p eA ill this space requires the eigenvalues A and eigenvectors V such 

that 
AV = CV . (5.14) 

ince the solu tion V lie in the span of 1;(Xl )' ... 1;(xm), one can con ider 

(5. 15) 
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Since the dimensionali ty of:F is very high (possibly infinite) we recognise that there 

lIlUSt exist coefficients cri such that 

(5.16) 

Recall the kernel t rick used in support vector machines [96] : 

(5. 17) 

substituting 5. 16 and 5.17 into 5. 15, 

(5.18) 

T he KPCA algori thm was applied to the running examples in this chapter. The 

resul t of t he im plex data is shown in Figure 5. 16, and the resul t of the pencil lead 

break data is shown in Figure 5.17. 

F igure 5. 16 how that the algori thm is capable of separating the classes for this 

simple ca c. T he nonlineari ty of the transform means that the Gaussian structure 

of the clas es is lost and that the distances between the classes are not at all uniform , 

but the algori thm has succeeded. In Figure 5.17 however, there is no clear distinction 

between the fo ur groups. There is some clustering of the 2H and 4H data in the top 

left comer, but ill general it is difficul t to distillguish between the groups. 

5.8 Manifold D etection 

Several algorithm approach the problem of dimension reduction by considering the 

local structure of t he data. T hese include Locally Linear Embedding (LLE)[97] and 

Isomap [9 ]. LLE works by treating the relationship between any point and its k 

neighbours as linear. One solves mul t iple lea t-squares problems ill order to fi nd a 

set of weight such that each point can be linearly reconstructed from its neighbours. 

III t he low-dimellsioll al 'pace LLF solves the problem of fin ding a set of data such 

that t h s tu ighl are recon tructed . 

lsolll ap also work n 10 al information, by calculating the connectivi ty of the data; 
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conn ctivity i calculated by either some radius or k neighbours. Projection into 

a lower dimensional space is done in the same manner as for mult i-dimensional 

scaling, but the distances in the high-dimensional space are taken to be thro'ugh the 

connected 'manifold' of points. 

An advantage of the I omap algori thm is that if some sections of data in the high 

dimensional space are distinct from the others, this will be represented in the con­

nectivity. When applying Isomap to the simplex data which is a theme of this 

chapter, the algori thm instantly detects the 7 distinct clusters. An individual low­

dimensional representation can then be made of each distinct group (since each 

group of the simplex data is a rather boring normal distribution, this is omitted 

here). 

Isomap wa applied to the econd set of example data in this chapter , and the resul t 

is displayed in Figure 5. 18. Like many of the previous algori thms, t he harder pencil 

lead ignal are distillct from the softer ones, but the two hard data sets (2H and 

4H) are indis riminab le, as are the ofter ones (2B and HB). 
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5.9 Dimension Reduction For AE 

The dimension reduction algorithms presented provide a range of options for visu­

alising AE data. This, combined with suitable location data (see Chapter 7) should 

provide an excellent starting point for AE data exploration. Indeed, the visualisation 

technique has lead to successful results for a test of a small landing gear component 

as part of this project [52]. 

When considering the choice of dimension reduction technique, there is some trade­

ofl" to be made between the power of the technique and its computational cost. This 

section has presented a series of techniques which are suitable for acoustic emission, 

and the results of the considered techniques have been presented on two data sets. 

This should give the reader some insight into the computational limitations of the 

algorithms. When considering speed, one should consider how each algorithm scales 

with the number of data to be dimensionally reduced - clearly the more data present, 

the more computations are necessary. 

The selection of dimensionality reduction technique is also dependent on the nature 

of the test: where the user requires to apply the technique on-the-fty, it may be best 

to run the simple peA algorithm. Where the user requires only batch processing, 

say for daily inspection, it may be convenient to employ a range of techniques and 

make them all available to the user. 

Whilst the use of toy data is useful in the context of this text in order to illustrate 

the nature, uses and pitfalls of the various techniques, when selecting a technique 

for the monitoring of a specific AE application, it may be more useful to compare 

the methods on a set of well understood, relevant AE data. 



Chapter 6 

SOURCE LOCATION 

The ability to calculate the source position from the time-differences between the 

arrival of an AE wave at a series of sensors is a great strength of the AE method. 

In Chapter 3, the proposed method for detecting fractures using AE began with 

location of the source. 

Whilst the problem may at first appear simple, for most real engineering structures 

it is not, as shall be seen in this chapter. The first section in this chapter examines 

the simplest method for locating AE which is built-in to current AE software. The 

second section introduces some experimental data in order to illustrate the benefits 

of onset picking; the data will be used again in order to demonstrate a machine 

learning algorithm for AE source location, which is the topic of the third section. 

The chapter finishes by making comparisons all the methods using data collected 

on a main-tube landing gear component. 

6.1 A Trigonometric System 

The purpose of an AE location system is to find the location of the event, E, 

given the position of the sensors and the timing information for the event. The 

mathematics is non-trivial, largely due to the unknown quantity to, the time of the 

event. A brief explanation is given in [99], but this section aims to explore the 

mathematics further. 
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6.1.1 Location Mathematics 

Consider three AE transducers on a uniform homogeneous plate at positions Si = 

(Xi, yd, i = 1,2,3. An AE event occurs at position E = (XE, YE) at time t = to, and 

the subsequent sound field arrives at the sensors at times t = t l, t2, t3. It is the nature 

of an acoustic emission test that to is unknown, and the only information available 

is t2 - t 1, l3 - t1 and t3 - t2 which shall be denoted Llt2,l, Llt3,l, Llt3,2 respectively. 

Under the homogeneous plate assumptions, it is possible to define a speed of sound 

c which is independent of position or angle. This is quite a limiting assumption: 

it will not hold either for composite plates, where the speed of each wave mode is 

dependent on the fibre angle, or for plate-like structures with thickness changes, 

holes, curvature etcetera. Further, modal wave theory is ignored here, and only 

the speed of the fastest wave mode is considered. The simple relationship between 

speed, distance and time gives: 

Lldl ,2 = c X Llt l ,2 

Lldl,3 = C x Llt l ,3 

Lld2,3 = C x Llt2 ,3 

The quantity Lld is a distance, which defines: 

IESl l-IES2 1 = Lldl,2 

lESt! - IES3 1 = Lld1,3 

IES2 1 - IES31 = Lld2,3 

(6.1 ) 

(6.2) 

The source position R therefore lies on the intersection of the three hyperbolae 

defined by equation 6.2. 

A hyperbola is a locus, defined such that the difference between the distances to two 

foci is constant. In this application, the foci are the positions of the sensors, Si and 

the constant is Lld. The derivation of the equation describing a hyperbola is given 

in appendix 4, and results in the same equation as for an ellipse: 

(6.3) 

where: a = Lld/2, b2 = (ISi;i' 1)2 - a2
, and the foci Si lie on the x axis, centred about 
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the origin. In order to describe the hyperbola for a general pair of sensors (which 

do not necessarily lie on the x-axis, as in Figure 6.1), one must rotate and translate 

the axes x, Y into the coordinate system of the sensors, using a rotation matrix. 

6.1.2 Solving the Hyperbolae 

In order to solve equation 6.3 for the position (XE' YE) of the event, one must substi­

tute the hyperbolae for every pair of used sensors and solve. This yields an equation 

which is analytically intractable, it is therefore preferred to use a minimisation pro­

cedure to find the position of the event (XE' YE). The function to be minimised 

is: 

Z = L NpairslDoTmeasured,i - DoTmodel,il 

i=O 

(6.4) 

"T. IE8Ii-IE8.1 d" rr . th d I I· I where U model,i = c ,an Ul measured IS e measure va ue. t IS C ear 

from (6.4 that the purpose of the optimisation is to match the measured DoT values 

against those of the model. The motivation for writing the equation in this man­

ner is that the model may be replaced later by some better understanding of the 

wave propagation, for example from collected data as in section 6.6.1. There are 

many different options available for solving equation 6.4 including the Nelder-Mead 

simplex routine [100]. 

6.2 Sensitivity to Noise 

During a real AE test there are potential errors in both time information, sensor po­

sition information, and the estimated speed of sound. This section will demonstrate 

that the system is fairly insensitive to errors for events located inside the array, but 

is more sensitive for those events outside the array. 

Figure 6.1(a) shows a hypothetical array of three sensors and a source of acoustic 

emission located within the array. The hyperbolae in solid lines intersect at the 

point of the event, denoted &. The dashed lines show the hyperbolae calculated 

when there is a 5% error in the DoT information. In this case, the small errors will 

give riHe to only a small error in the location of the source. Figure 6.1 (b) shows the 
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Figure 6.1: Source location by solution of hyperbolae for events inside 
an array of sensors (a) and outside the array (b) 

same array of sensors and the hyperbolae for locating an event outside of the array. 

The solid lines (representing the solution with zero error in the measurements) have 

an intersect at the true location of the source, but the dashed lines now show a 

magnification of the error in terms of position of the solution. 

It is apparent from Figure 6.1 that the magnification of the errors is due to the 

fact that as one move the true location outside the array, the hyperbolae which 

must intersect at the solution become closer and closer to being parallel. In order to 

reduce the uncertainty, one would have to add another sensor such that the resulting 

additional hyperbola ran perpendicular to the existing ones. It is trivial to show 

that to do so requires adding a sensor which encompasses the true location! 

For small errors in fj.T, it is clear that inside the array the errors in location will 

be small. However for the same errors in fj.T for points outside the array, the errors 

can be much larger. 

6.2.1 Simulated Sensitivity Analysis 

It is possible to evaluate the sensitivity to noise of the system described above for 

a series of points around the array of sensors. Given the location of a hypothetical 

set. of sensors, one can easily calculat.e the fj.T information for any given point. 
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Corrupting t his f::J.T with some small error and feeding it back into the location 

algori thm gives a new location, with some error. The distance between the known 

(init ial) point posit ion and the one calculated by the algori thm from the corrupted 

data gives an indication as to the sensitivity of the system to errors in the f::J.T 

information for the given point. Performing this procedure on a mesh of points 

surround ing the sensors, we obtain a contour plot as shown in Figure 6.2. The 

sellsor positions are marked by green circles; the t::..T information was corrupted by 

a 1% error. 

10 15 

x posit ion I mm 

1.2 

0.6 
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- 3.0 

Figure 6.2: A contour plot showing the sensitivity of a location system 
to 5% discrepancy in the f::J.T information. The area inside the array 
of sensors (denoted by gr en dots) shows low sensit ivi ty, whilst areas 
outside the array show a higher sensit ivity 

Examining Figure 6.2, it is clear that the areas inside the array are less sensitive 

to the corruption of the t::..T information than those outside the array. T his is in 

ac or'dance with Lhe example shown above in section 6.2 , and with the experience 

of AE pracLiLioners (for example Holford et al. [101]). 
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6.3 Experimental Methodology 

The following two sections (6.5 and 6.6) make use of a data set collected as part of 

this project. This section describes the acquisition of the data set. 

Four specimens (denoted Plate A ... D) were made from 3mm mild steel sheet, 

dimensions 200 x 370mm. The specimens were designed to replicate the challenge of 

locating Acoustic Emissions in complicated engineering structures: a series of holes 

at the centre of the plate provide geometric obstacles to the wave propagation path, 

inducing reflections and scattering. Since future work involves fatigue testing of the 

plates and location of the test acoustic emissions, a further series of holes at the 

ends of the plates provide a mechanism for the fatigue rig - this further complicates 

the wave propagation path. Eight Sonox P5 discs measuring 8mm diameter, 0.2mm 

thickness fitted with wrap-around electrodes were bonded to each the plate using 

cyanoacrylate. The positions of these sensors are depicted in Figure 6.3. The sensors 

have a thickness resonance of approximately 3MHz, though they are utilised here 

somewhat outside their resonant band in the region 100kHz - IMHz. 

An eight-channel Physical Acoustics DISP AE system was utilised to record all 

waveforms. The recording mode was set to record synchronous waveforms across 

all channels - known as TRA mode in the software. The sampling frequency was 

lOMHz. the anti-aliasing filter had bandwidth 100Hz - 3MHz and a pre-amplifier 

was used with gain 40dB. 

Thermoelastic expansion was used to generate artificial AE in the plate by means of 

a high-power laser pulse. A Brilliant laser was positioned above the plate and fired 

in synchronism with the AE equipment. 

In order to generate artificial AE sources across a grid on the plate, a positioning 

rig was built. The tolerance in the rig's absolute position was 5J.Lm. The positioner, 

with a plate specimen attached is shown in Figure 6.4. 

6.4 Onset Picking 

One cause of noise in the measurement of arrivals of signals (and hence noise in the 

6.T information) i~ thp way in which the on~et of a ~ignal is defined. The most 
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Figure 6.3: Schematic of the plate specimen used. Transducers are 
represented by numbered solid circles; hollow circles represent holes in 
the plate. 

107 



6.5. ONSET PICKING IMPLEMENTATION 

Figure 6.4: Photograph showing the X-Y positioner system holding a 
plate specimen underneath the laser. The plate is mounted sensor-side 
down, and paper shields protect cabling from the laser. The AE pre­
amplifiers are also hown to the left of the rig. 
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common way to select the onset of a signal is to choose the time at which the signal 

first crosses SOIlle user defined threshold . Not only is this somewhat arbitrary, it is 

prone to significant errors due to the modal nature of Acoustic Emission waves. 

In a situation where a small wave packet arrives before a larger one (which is often 

the case in acoustic emissioll, see section 2.4), if a user defines a threshold which is 

approxilllately the same voltage as the peak of the first packet, then uncertainty in 

the voltage of the waveform will cause the recorded onset time to bifurcate. Two 

silllilar waves, with only slightly different voltages, will be recorded at very diHerent 

onset t imes. 

Kurz et al. [102] devised a method whereby the onset of a signal was picked not 

by a user defin ed threshold , but by examination of the waveform statistically. This 

shows improvement over the threshold crossing when compared to ons ts picked by 

the human eye. 

6.5 Onset Picking Implementation 

Initi al inspection of the data revealed some interesting patterns due to the geometry 

or the plate, albeit with some anomalies in the data. An onset picking algori thm 

based on the work of [102] was used to detect reliable onsets of the signals, resul ting 

in the correction of many of these observed anomalies. 
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Figure 6.5 is an illustration of some of the data collected during the experiment, it 

shows the 6.T information for the sensors pair (4,6), which shall be denoted 6..T46 . 

The laser was used to generate ultrasound at a series of points arranged in a uniform 

grid (avoiding t he specimen holes) across t he entire surface of the plate; each point 

is represented by a small solid circle in Figure 6.5, which is coloured according to 

6..T46 A threshold crossing point was used to determine the arrival times. 

The areas close to both sensors show a smooth transition of 6..T46 with space: over 

most of the lower part of the plate the 6..T46 function changes slowly and smoothly. 

In the upper left quadrant of the plate, where the path to either of the sensors 

(particularly sensor 6) is blocked by a series of holes, 6.T46 can be seen to change 

more abruptly and chaotically. Much of this is due to the threshold method used to 

calculate the onset t imes of the waveforms, as shall be seen. 

F igure 6.6 shows eight waveforms, received on channels 1-8 after a laser excitation 

of the plate at position (70, 270) . The horizontal red lines show the threshold used 

to detect the waveforms, and thereby determine their onset t imes. The effect of 

dispersion [21] is evident here: waves which have travelled a long distance show the 

emergence of a lower ampli tude, fast travelling mode from the main wave. This 

is particularly evident in waveforms from sensors 6, 7 and 8: these were t he most 

distant sensors from the laser source position. This resul ts in the t hreshold crossing 

occurring some t ime after the perceptible arrival of the wave (threshold crossings 

are marked with vertical red lines). 

In order to detect the earlier onset of the wave, one could lower the threshold , 

enabling the system to detect the lower voltage part of the waveforms. This would 

increase the risk of a false trigger, however. The problem of onset picking was 

addressed by [102]' who presented a range of methods of picking the onset of a signal 

without a 11:;er defined thre:;hold . In t.his work, we lltili:;e the Akaike Information 

Criterion picker (AIC), given by: 

AIC(t) = t loglO (var(x [l ; t])) + (T - t - 1) IOglO (var(x [t; T])) (6 .5) 

where var(:r) is the variance of x, i.e. :Li(Xi - X)2 / N, and x [l ; t] represents the section 

of x from 1 to t . AIC(t) is repr sented in Figure 6.6 by a green line; the minimum 

of AI C gives the onset of the signal (vertical green line) . The distance between 

the vertical red and green lines gives the 'correction' made by the onset picking 

algori thm. It is clear that the more dispersive waveforms are heavily corrected by 
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Figure 6.5: Scatter diagram showing ~T46, the difference between ar­
rival times at sensors 4 and 6, for each point measured on plate A, as 
calculated by the time of threshold crossing. Each small circle repre­
sents one activation of the laser , and is coloured according to ~T46. The 
posit ion of sensors 4 and 6 are marked by solid black circles. 
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the onset picking (channels 5- 8 in Figure 6.6) whilst those nearer to the source 

(channels 1- 4) are corrected by a smaller amount . 

Examining equation 6.5 in more detail: for every t ime t, the signal x( t) is broken 

into two parts; that leading up to t (x [l ; t]) and that after t, (x [t; T]). Ale describes 

the similari ty in entropy between the two parts of the signal- when t is aligned with 

the onset of the signal, Al C(t) is minimum. 

This statistical onset-picking has a particularly important role when using machine 

learning for the task of locating acoustic emission. It enables reliable onset picking 

of the waveform regardless of the amplit1Lde of the wave. Hence when attempting to 

locate acoustic emissions in a test situation, the amplitude of the test signals need 

not be the same as those used to train the learning algori thm. 

Figure 6.7 is comparable with Figure 6.5, but with the onset t imes calculated by 

equation 6.5. It is clear that many of the onset times in the upper left quadrant have 

been corrected, whilst the pattern in the lower part of the plate remains the same. 

Some anomalies remain, particularly in the 'hard to reach ' corner of the plate, and 

in the area around (45, 220) which lies in the 'shadow ' of several holes . 

6.5.1 Summary 

It is clear from the data presented here that the onset picking algorithm is extremely 

useful. The barrier to implementing this is relatively low, since the application 

of equation 6.5 r quires only a small number of calculations: in the experiments 

present d here, the computat ional cost is trivial. 

6.6 Machine Learning for Location 

In the section 6.1 , the general process for locating AE sources and problems therein 

was described. The major fl aw in using this system is the assumption that the speed 

of sound c is constant across the medium. 

T his problem has been addressed for composite structures by Coverley and Staszewski 

[103], who devised an algori thm whereby Acoustic Emissions from impact in compos­

ite sheets could be located. The algori thm described took account of the changing 
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Figure 6.7: Scatter diagram showing 6.T46 , the difference between ar­
rival times at sensors 4 and 6, for each point measured on plate A, as 
calculated by use of the AIC picker defined by Kurz. Each small circle 
repres nts one activation of the laser, and is coloured acconliug to 6.T46 . 

The position of sensors 4 and 6 are marked by solid black circles. 
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wave velocity with direction relative to t he fibre. Schubert [104] also addresses the 

problem by means of Acoustic Emission tomography. 

Whilst these methods are capable of dealing with anisotropic materials, they do not 

account for the biggest problem in location of AE, that of geometry. When locating 

AE in structures such as landing gear, the propagation path includes holes, lugs, 

changes in thickness and possibly changes in material properties . AE wave propaga­

tion is highly sensitive to the propagation path (see section 2). This was motivation 

for Baxter et al. [105] to devise a method for location where the information about 

the different wave-speeds is held ill a series of 6.T -maps. 

This section describes some improved methods for calculating the 6.T, and then go 

on to describe a method whereby the maps are bypassed altogether, using a kernel 

method to represent a function which gives accurate locations. 

6.6.1 The ~T Interpolation Method 

Baxter et al. [105] proposed a method for learning the relationship between position 

and the time difference (6.T) between a pair of sensors. Using these learned 6.T 

maps, accurate source location of acoustic emissions can be achieved. 

The method works by constructing a grid of points across the structure to be in­

vestigated , and breaking ten pencil leads (the Hsu Nielsen technique) a t each point. 

The 6.T for each pair of sensors is measured for each pencil lead. Results are mean­

averaged across the ten pencil leads. Linear interpolation is used to create maps of 

the 6.T information which can then be used to replace the model section in equation 

6.4. 

This technique is shown in Figure 6.8: two sensors were placed on a main landing 

gear fit.t.in g at po~i t i o !ls x = 0 and x = 40, and leads were broken at grid points be­

tween them 1. Note that the data is one-dimensional in this case, as there is only one 

sensor-pair. In order to locate AE in a planar fashion , the functions approximated 

must be surfaces, and one surface is required for each sensor pairing. 

Once the 6.T maps have been obtained, the position of an AE event can be derived 

1 this is a sub et of the main landing gear data used in section 7.2 
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Figure 6.8: The 6.T interpolation method applied to some linear data. 
The data is shown by black crosses, and the interpolation technique is 
shown as a green line. A simple RBF neural network is also shown in 
blue. 

using equation 6.6: 

Z = L 6.T m easu.red,i - 6.Tmodel ,i 

i= O 
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(6 .6) 

which is the same as equation 6.4, except that the model 6.T is derived from our 

interpolation method. 

6.6.2 Gaussian Processes Regression 

Neural networks have long been used as regression tools [55]. More recently, the 

framework of Bayesian statistics has been applied to the field iu order to provide a 

probabilistic viewpoint. Neal [1 06] provides a comprehensive Bayesian t reatment of 

Neural Networks, and shows that ill the limit of an infinite number of hidden uni ts, a 

Bayesian Neural network becomes a Gaussian Process (GP) , see also MacKay [107] 
for a discussion. More recently, work by Rasmussen and Williams [108] has provided 

an excellent framework for using GPs for machine learning tasks. There follows a 

brief introduction to the ideas of Gaussian Processes in a regression context . 

Consider a series of observations X = {Xi }! l with corresponding noisy target values 

Y = {yd!l ' Yi = !(Xi ) + (In' Assuming that! is a smooth function which maps 

Xi -) I (Xi), we wish to infer new target values f( x*) given unlabelled points X*. 

Using the Gaussian Process framework, a Gaussian prior is placed jointly across 
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Consider momentarily only two points Xl X2 EX, corresponding to the target values 

!(Xl), !(X2) E Y. Writing 

places a prior Gaussian distribution across the values of 1(XI) and !(X2) , centred 

around 0 , with covariance L:. The element8 of L: are given by the co variance function 

k; only the squared exponential function is considered as a covariance function here 

(others are discussed by [108]) : 

(6.8) 

Where 61,2 is the Dimc function. The diagonal elements of L: are 1 + CTn , and the 

other elements specify that the dependence of !(XI) on !(X2) is given by the distance 

between Xl and X2. This is illustrated by the top row in Figure 6.9: on the left is 

the probability distribution across !(XI) and ! (X2) when the variables Xl and X2 are 

far apart, i. e. k(X1, X2) = 0; in the middle column, Xl and X2 are closer together 

(k(Xl, X2) = 0.5), and in the right column Xl ~ X2, hence k(Xl, X2 ) ---7 1. 

Suppose now that one wishes to infer the value of 1(X2 ) given that the value of !(xd 

has been observed; this is simply condi t ional probability of !(X2) given !(Xl) , which 

has a standard resul t which can be found in many textbooks, e.g. [109], see also 

[108] for the result in the context of GPs. The result is: 

p(J(x2) 1!(Xl)) = N (k(X2, xl)k(Xl , Xd!(X l) , k(X2, X2) - k(X2, xl)k(Xl, Xl )- lk(Xl , X2) ) 

(6.9) 

This is again illustrated in Figure 6.9 , the vertical lines on the middle row showing 

the observed values of I(xl) (set arbitrarily here to 1.2) , and the bottom rows 

showing the probability distribution p(f(x2)II(xl)). In the left most column, the 

observation of I( :Ed has no effect OIl t.he predicted value of 1(:1:2): the prediction 

is centred around zero wi th a wide variance. For the middle column, the predicted 

value of !(:T:2) moves slightly toward the observed value of 1(.7:d, and in the right 

column, it is moved even fur ther. 

Extending the number of unobserved variables to cover the whole of X results in a 
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distribution across functions, known as a Gaussian Process. Whilst th is distribution 

is infinite-dimensional, in practise only the values of a limited number of points f(X.) 

are of interest . The prior and posterior distributions of the variables can be written 

in a more general form to encompass a large number of observed and test points: 

([ f]) N( [ K(X, X) K(X,X.) ]) 
P f . = 0, I\(X , X.)T K(X. , X.) 

(6.10) 

where K(X, X) is a matrix where the i,jth element is given by k(Xi,Xj). The star 

nota tion (following [108]) denotes test points. 

The limit ing factor on the performance of a GP is the computational expense of 

inverting the matrix K(X , X) , which is a n x n matrix, where n is the number of 

observed data. Much recell t work ill the field of GPs has considered methods for 

sparsification of the result , see e.g. [110], [111]. 

6 .6.3 Learning Methodology 

It is desired to use a GP to lllap a vector of 6.T for each pair of sensors to (x, y) , 

a position on the structure. In some (most) real world cases, an AE event will only 

activate a small number of sensors, whilst in the controlled conditions of the lab­

oratory (where the training data was collected) all sensors were activated . This is 

due to the higher thresholds required during real tests (due to higher levels of back­

groulld lloise) and system saturatioll. The vector of 6.T information will therefore 

be incomplete for many of the test cases . 

One approach could be to treat the prediction of a position using only a limited 

amount of 6.T information as a missing data problem (see Smola et a1. [112] for 

discussion of how to treat missing da ta in machine learning) . In this implementation 

however, it was decided to create a GP for every conceivable group of ensors. This 

is preferred [or two reasons: 1) we are not concerned with t he values of the missing 

data, and 2) for large tests the data is not so much missing as simply not present. 

For large tests with many sensors, acoustic emissions will occur a large distance 

from some o[ the sell ors, such as to be undetectable, and so attempting to use 
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these distant sensors to perform a location makes no sense. 

We defille therefore a series of groups (or 'arrays' ) of sellsors. In the case of the 

small geometry of the plate described above, this was every set of three or more 

sensors; one Gaussian Process is then created for each group. Upon the arrival of a 

new vector of 6.T information , there may be one or more GPs which can be used 

to make a prediction for (x , y). 

Combining Predictions 

The posterior distribut ion of each of the Gaussian Processes is a Gaussian with 

centre p, alld vari ance L:. In lllallY circulllstances, t here will be many arrays which 

are capable of locating an event , and hence there will be multiple predictive distri­

butions. In order to create a single distribution from these distributions we take a 

Product of Experts approach [113], whereby the distributions are multiplied together 

and re-normalised. 

Since each of the distributions is Gaussian, the product of them is also Gaussian , 

with mean: 

(6.12) 

Since the product of many Gaussians is not normalised (i.e does not integrate to 1) , 

a simple method for creating a sensible covariance for the combined distribution is 

to take the mean of the variance for every individual distributions: 

(6.13) 

Hyperparameter selection 

In t raining the series of GPs, one must select some hyperparameters. These are the 

noise model (In and kernel length-scale l in equat ion 6.8. 

The Bayesian setting in which Gaussian Processes are formed provides a natural 

way of selecting the hyperparameters through marginal likelihood [48]. In the case 

of a eries of GPs however, it is unclear as to how one might implement this: should 

onc ma.ximise the avemge marginal likelihood for all the GPs? What about differ-
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entiat ing between those acting 011 differellt dilllensional data (i.e arrays of 3 sensors 

vs arrays of 6 or 7)7 

Con idering these int ricacies and the abundance of data, it was decided that cross 

validation procedures would suffice for the selectioll of hyperparameters. For sim­

plicity, all aITays of the same size were considered to have the same hyperparameters. 

A grid-search across the range of sui table values was performed in order to select 

hyperparameter values . 

6.7 R esults 

T he data was spli t into t raining, validation and test ing sets. The hyperparameters 

which minimised t he mean-squared-error (MSE) on the validat ion set were selected 

to train a fiu al set of GPs to use 0 11 the test set. The resul t of this is shown in Figure 

6. 10; red cro ses represent the known posit ions of the sources, and solid circles show 

the posiLions estimated by the algorithm. The colours of the solid circles indicate 

the average variance of each array. The MSE of the tes t set was 3.63mm. 

III order to emphasise the benefits of the machine learning approach, as opposed to 

t he t rigonometric approach, Figure 6.11 shows the location of 100 randomly selected 

test ing events located using the latter. Many of the test cases were located far from 

the plate (for reasons already discu sed), and these are marked wi th arrows point ing 

towards this solu t ion. Figure 6.11 can be compared directly to Figure 6.10, although 

the amples are not idelltical (due to a differellt random number seed). 

6 .8 Cross-Plate generalisation 

T he comparatively high cost of producing a GP locator (in generating training data 

and actual t raining) has been justified on the basis that the locator will be able to 

generali e to nominally identical structures without fur ther t raining. It t her fore 

remains to establish how well the algori thm does in fact perform when t rained 

on data from one plate, and is required to locate a source on another (nominally 

identical) plate. T his is possible here as several plates were investigated, differing 

only in respect to manufacturing tolerances. A complete matrix of results was 

produ cd (table 6. 1) by training a GP with data from one plate and tesLing wi th each 
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Figure 6.10: Results for the 100 selected testing events. Red crosses show 
t he known position of the events, whilst solid dots show the positions 
as estimated by th algori t hm. The colour of the dots represents t he 
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o o 

Figure 6.11: Results for 100 selected testing events using the trigonomet­
ric approach. Red crosses show the known positions of the events , whilst 
solid dots how the positions as estimated by the algorithm. Events 
which located a long way from the plate are represented by arrows point­
ing in the appropriate dir ction . 
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6.9. LANDI IG GEAR DATA 

Table 6.1: Table showing the Root Mean Squared Error for the GP 
location algorithm trained and tested on combinations of plates. 

Training Plate 
Plate A Plate B Plate C Plate D 

A 3.63 6.77 8.50 5.37 
Testing Plate B 7.42 5.60 7.44 5.45 

C 6.03 6.17 4.56 5.71 
D 7.04 6.48 8.09 5.40 
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of the others. The resul ts were uniformly excellent with the highest generalisation 

error being 8.5mm. The diagonals of Table 6.1 show the location errors when the 

GPs were tested on their training plates, and these have a maximum of 5.6mm. 

6 .9 Landing Gear D ata 

The machine learning location technique was employed during testing of a main 

landing gear, as detailed in section 7.2. Figure 6.12 compares t he performance of 

the GP location method (with array selection) with the simple location method 

described in ection 6.1. The test specimen is the main landing gear fittin g of all 

Airbus A320 , and is cylindrical, with step t hickness changes, lugs, arms and other 

irregularities. In Figure 6.12 the horizontal axis is along the length of the fittillg , 

and the vertical axis is circumferenti ally aroulld the fitting. 

A GP was trained for each possible array of the six used sensors, using data collected 

on a 50mm spaced grid using Hsu-Nielsen sources. The GP did not require all the 

data, in fact, for computat ional reasons, only 1000 pieces of data were used for each 

array, randomly selected from the pool. 

The GP method and the t rigonometri c method were compared on fifty data ran­

domly selected from the pool before GP training. The GP method shows a clear 

advantage over the t rigonometri c method , having a smaller error in all cases, with 

a RMS E of 19111111 , compared to the RMSE of 113mm for the trigonometric case. 



6.10. SUMMARY 

6.10 

E 
~ 
QJ 
u 
c: 
2 
.~ 
o 

• Actual Position 

• PAC Position 
20 

• GP POSition 

..... ,. 
- I 

- 2 

. • 

I 

; ~ 
• 

• 

..~ 

-'L-~-~20----~-~10----~----~I O'----+'20----~JO-----4~0----'5~O----<6~0 

Axial Dista nce tcm 

Figure 6.12: Performance of GP location algorithm, showing 15 typical 
results from the 50 test data used. 

Summary 
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T his chapter has discussed a GP methodology for locating Acoustic Emissions in 

complex structures. Extensive comparisons have been made with trigonometric 

methods, and the GP process has been shown to perform well . T he GP process is 

also uperior to other proposed machine learning schemes for AE source location, 

requi ring les data to t rain , and producing a probabilist ic output. This chapter 

completes the jigsaw of pieces required to implement the methodology proposed in 

Chapter 3. T he next chapter demon t rate t he successfu l implementation of the 

ideas proposed herein . 



Chapter 7 

TEST CASES 

T his Chapter describe the application of many of the methods described in this 

thesis to real AE data. Two tests are described: in the first : an artifi cial source 

is used to repr sent a fatigue fracture during the testing of a major landing gear 

component; in the second , the main tube of a landing gear was tested to partial 

destruction, and an AE system was employed to monitor the event. 

The first test is of particular significance because the landing g ar was under load at 

t he Messier-Dowty test facili t ies in Glouc stershire, where it was undergoing routine 

long-term test ing. The positive results of the test demonstrate the applicability of 

the AE system to this test . 

T he second test was performed in the laboratories at Cardiff University. Measures 

were taken in order to reproduce th long-term test environment as experienced 

ill the first test , whilst selectively fatiguillg part of the gear to destruction . The 

success of the AE sy tern here clearly demonstrates the usefulness of an AE system 

in detect ing a real growing fracture in a landing gear component . 

7.1 Artificial AE in Bogie Beam Test 

Thi te t ca c i provided in order to demonstrate the applicability of the method­

ology propo cd in this t hesi to a full scale fat igue environment . An artifi cial source 

was applied to t h bogie beam section of an A340 landing gear during full scale 
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testing as described in section 1.3.1. 

7 .1.1 Methodology 

T he methodology for t he AE idellt ificatioll strategy evaluated here is carried-out in 

three main phases, and so this section of t he chapter is divided into t hree parts : 

T he first part deta ils t he methods used to ensure that the artificial AE source was 

representative of a fatigue fracture, this is followed by details of the fatigue test 

machinery and AE recording equipment and t he third section describes the signal 

processing techniques used to deal wi th the data. 

Design of the Input Signal 

T he detection of an artificial AE source amongst 'everyday' AE activity would be 

relatively straightforward if the artificial source were not in some way representative 

of a fracture. If the artificial source was at a llluch higher amplitude than t he other 

sources, or was exited in a different frequency band, the task of identifying it would 

be tr ivial. In order to make the task of identifying the ar tificial source non- t rivial 

and representative of reali ty, the signal input to the t ransmi tting t ransducer was 

carefully selected to faithfully represent a fat igue fracture. 

T he t ransmitting transducer chosen was a Physical Acoustic Pico, with a resonant 

frequency of 500kHz, and operating frequency range of 200-750kHz. This t ransducer 

was selected due largely to its convenient small size - the t ransducer was to be placed 

in awkward posit ions on the landing gear. T he transducer was attached to a PAL 

ARB- 1410 Arbitrary Waveform Generator board , which periodically excited the 

Pica trallsducer with a pre-defined signal, generating artifi cial acoustic emissions 

within the structure. 

To ensure that identification task was non- t rivial and t hat it faithfully represented 

th detection of a fat igue fracture event, preliminary tests were carried out on a 

small compact tension (CT) coupon of the ame material as t he landing gear. One 

CT coupon was fatigue tested to failure, and a typical waveform relating to crack 

growth was identifi ed. T he selected transmi tti ng transducer was placed on a second 

eT coupon, and the settings of the signal generator were adjusted until the fatigue 

fract ure signal was sui tably simulated. Several signal types were tried including 
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Fracture Fracture Artif1cial Artif1cial 
Channel 1 Channel 2 Channel 1 Channel 2 

Ampli tude (dBAE ) 71 70 67 67 
Rise time (J.Ls) 270 290 240 202 
Energy (aJ) 3.ge6 3.1e6 3.5e6 7.1e6 

Duration (J.Ls) 1000 1900 1990 1880 
Init. Freq. (kH z) 31 42 230 181 

Table 7.1: Comparison of signals identified during fatigue testing and 
stimulation of an artificia l AE source. 
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sine, square and saw-tooth waves; the frequencies, ampli tudes and burst-count were 

adjusted by trial and error until the received signals were a reasonable match to those 

captured during crack growth. Table 7.1 shows the characteristics of the signals 

which were matched , including the features from a typical fracture waveform , and 

those from the designed inpu t. 

The signal selected to excite the transducer was a two-cycle square wave, ampli tude 

0.5V, period 2.5J.Ls 

Test D etails 

The component designated [or inspection was the bogie beam section of the landing 

gear from an Airbus A340. This section of the gear attaches the main t ube to the 

wheels; it is approximately 2.4m long and 0.3m in diameter. The full gear was 

under test, designed to simulate the working conditions of the gear during take­

off aud lauding. This involved the actuatioll of 16 hydraulic devices, activated in 

cycles so as to represent taxiing, take-of, flight and the landing stages of an aircraft' s 

workillg life. Olle cycle (representing one fli ght) is completed in approximately 180 

seconds, and contains a series o[ 'transit ions' of frequency 0.3-2 Hz. The bogie beam, 

with AE sensors attached is shown in the photographs in Figure 7.1. 

A Physical Acoustics DISP 20 channel system was used to record AE activity during 

the test. The sensors were distribu ted according to Figure 7.2. The sensors used 

were Physical Acoustics resonant Nano 30 AE sensors, which have a bandwidth of 

125 - 750 kHz, and a resonance frequency of 300 kHz. Each sensor was connected to 

an in-Iiue pre-arnplifier of gain 40dB , which also contained ant i-aliasing filters. The 

sample raLe llsed Lo record Lhe AE signals was 40MHz. 
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A total of three tests were performed over a period of three days; the duration of 

each test ranged from 1.5 to 3.5 hours, corresponding to approximately 30-70 load 

cycles . At the beginning of each test, the ar t ificial AE source was moved to a new 

posit ion by 1essier-Dowty technical staff These three tests are hencefor th denoted 

Experiment A, B and C. The technicians did not reveal the positions of the sources 

unt il the analysis had been carried out. 

For t he duration of each test, the :burst rate' of the artificial AE source was gradually 

increased. This is in line with the behaviour of a true fa tigue fracture source (see 

section 3.4). The rate of acoustic emissions can be related to the crack length by an 

equation similar to the standard Paris law for crack propagation (7.1), 

(7.1 ) 

where '11 is the acoustic emission count rate, N is the number of load cycles, a is the 

crack length , and A and et are constants whose exact values are not important here. 

In order to properly correspond to the behaviour of a growing fat igue crack, the rate 

of input of the act uation signals was gradually increased over the duration of the 

test. This information was not used ill the det ection or identification of the source, 

but was used later to verify resul ts and in par t icular , to explain an anomaly which 

occurred. 

Signal Processing 

T he methodology described in Chapter 3 was implemented using t he Python scrip t­

ing lallguage and scientific python modules SciPy [114] . T he AE capture software 

'AE Win' was used to perform basic feature extract ion and location of the data . 

The recorded AE events were located using the simple assumption of a plate as de­

scribed in section 6. 1, and then clustered using the ORACAL algori t hm described in 

scction 3.2.4. The clusters were then ranked according to the feature space criterion 

a described in section 3.3. 

Since the energy rate of t he artifi cial source was controlled by the operators, the 

related energy-rate criterion (sect ion 3.4) was not used in detecting t he source, The 

cllergy raLe of the clu tcr was compared Lo the energy rate of the input simply to 
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cOllfirm the correct identification of the source. 

7.1.2 Results 

T hree experiments were performed, each one starting with the removal and replace­

lllent of the t ransmitting device to a different positioll on t he structure. The goal 

of each experiment was to positively identify the position of the source amongst the 

AE data. 

For each test the cluster diameter required by the ORACAL algorit hm was set to 

10mm. This generated hundreds of clusters for each test, nonetheless the t ightness 

parameter (see equation 3. 1) proved to be a strong factor in selecting the cluster 

relating to the artificial source. 

Experiment A 

Figure 7.3 shows the positions of all of the significant clusters (those with more 

than 50 events) detected during the first test. The different symbols represent t he 

difl"erent rankings of the clusters - those with the highest ranking (containing the 

mo t similar signals) are shown as circles . T he highest ranked cluster is shown with 

a vertical cross, at posi tion (1.48,0.62). The true position of t he source is marked 

with a diagonal cross at (1.2,0.54), some 300 millimetres away. 

In order to determine whether this discrepancy was due to the top ranking being 

obtained by the correct cluster (but with an error in the location) or whether it was 

due to ident ification of t he incorrect cluster (i.e. t he top ranking cluster pertains 

to some other event which is not the ar tificial source), the rate of the event in this 

cluster was plotted against the known rate of injection of the artificial signals (Figure 

7.4). 

Since Figure 7.4 clearly shows that the rate of acoustic emission events detected 

in the top-ran ked cluster does not correspond with the rate of events input at the 

art ificial AE source , it was assumed that the top-ranked cluster in this case does not 

represent t he artifi cial source. This discrepancy is furth er investigated in section 

7.1.2. 



7.1. ARTIFICIAL AE IN BOGIE BEAM TEST 

0 . 81--~--~----r--;======~ 

<1J 
U 
c: 

0.7 

0.6 

.~ 0.5 
"0 

~ 0.4 ~D 
c: 
~ 
~ 
E 0.3 
::> 
~ 
U 0.2 

0 .1 

o 

+ 
<ID D 

~" 0 

o 0.2 < t < 0.8 
" 0.8 < t < 1.4 
o 1.4 < t < 1.99 
o 1.99 < t < 2.59 

" 

o .8l::.0,...----;;:0-;:.5,---------A-""O"] -;:.0,...---~1'-;:.5,-------;;2'-;:.0----"J2.5 

Axial distance 

Figure 7.3 : Scatter plot of the clusters detected during experiment A; the 
symbols show the rela tive ' tightness' of each cluster. The tightest cluster 
is ·hown at position (1.48,0.62) by a vertical cross, and the true position 
of the ar ti fi cial source is show a t position (1.2 ,0.54) by a diagonal cross 

200 

...... .. Detected Events 

- - Inputted Events 
~ 150 .., 
> 

'D 

'" :; 
E 
;:J 100 
~ 
~ 
c 
Q) 

> 
Ul 

50 

0 
0.0 0 .5 1.0 1.5 2.0 

Time (Hours) 

Figure 7.4: Event rate for experiment A, showing the ra te of events 
detected for t he most prominent (i .e. 'tightest') cluster. Also shown is 
the inj cted event rate: The two do not correla te well at all - it would 
seem t hat t h cluster does not represent the input source. 

131 



7.1. ARTIFICIAL AE IN BOGIE BEAM TEST 

0.8 
0 0.04 < t < 0.7 

0 " 0.7 < t < 1.36 
0.7 0 1.36 < t < 2.01 

11 l. 
2.01 < t < 2.67 0 

0 
0.6 e 

v "':> 11 l! 
U 

1b c:: 

.~ 0.5 

" 
] 0.4 if 

L O 

c:: 0 j ~ v .... 0 

~ 
E 0.3 0 

\) 

;::l m 
~ '" U 0.2 

Il 

~~ " 0 0 

0.1 
11 -¥ 

Il 

" 0 

O·~ .O 0.5 1.0 1.5 2.0 2.5 
Axial dista nce 

Figure 7.5: Scatter plot of the clusters detected during experiment B; 
the symbols show the relative 'tightness' of each cluster. The tightest 
cluster is shown at position (0 .93,0.087), and the true position of the 
artificial source is shown at position (0 .95 ,0.09) 

Experiment B 

132 

Figure 7.5 shows a catter plot of the significant clusters found during the second 

test. T he primary cluster is marked with a vertical cross at (0.93,0.087); the t rue 

positioll (di agollal cross) of the art ificial AE source was recorded to be (0.95,0.09), 

30mm away. It can be noted that the top ranked cluster had a tightness score of 0 .04 

_ this is an order of magni tude smaller than the top ranked cluster in experiment A, 

which did 1l0t represent the art ificial source . This small value alld the verificatioll of 

the POSitiOll of t he source gives some degr e of cOllfidence that the detected cluster 

was the orrect one. 

In ord r to verify this, the event rate for t he cluster was plotted against the in­

put signal rate in Figure 7.6. There is a clear correspondence between the two 

rates, though the d tected rate is slightly lower than the known input rate. This 

is likely due to the small cluster diameter used - using a broader cluster diameter 

would ensnar Signals from a slight ly wider area, and would likely correct this minor 

d i crepancy. However, expanding the luster size would open up the possibility of 

engulfin g eveJlts in the cluster which did llOt rela te to t he art ifi cial source (making 

t he det cted event rate higher than the true onc). 
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Figure 7.6: Event rate plot for experiment B, showing the input event 
rate and the event rate seen in the tightes t cluster. The two rates show 
good correlation, indicating that this cluster does represent data from 
the artificial source . 
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The good correla tion of the event rates along with the very small tightness value 

and correct identification of the position are good indicators that the artificial source 

was correctly idellt ified in this test. 

Experiment C 

T ile artificial source was moved agaill alld a third set of data were recorded. The 

t ightest, top-ranked cluster was loca ted at (l.97 ,0.34) , which is 30mm from the 

known posit ion of the source at (1.95,0.34). Again , the tightness score for the top 

cluster is relatively small - 0.16 , giving a high degree of confidellce that the artificial 

source is represented . Verificatioll comes from Figure 7.8, where the rate of input 

arti fi cial AE events is compared to the rate of detected evellts; an almost perfect 

correla tion is observed. 

T he near-perfect correlation shown in Figure 7.8 gives a high degree of confidence 

that the artificia l source was detected. Further , it would seem that these signals 

were detected wi th only small loss (96% of t ransmi tted events were detected), and 

with no onfusion wi th other signal . 
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Revisiting the data from Experiment A 

Figures 7.6 and 7.8 give a high level of confidence that t.he artificial source was 

correctly detected in two of the three experiments conducted; in these cases the 

error in location (i. e. the distance between the known location and the one obtained 

from the algorithm) was small. Experiment A, on the other hand , seems to have 

failed; the error in location was larger (300mm) and Figure 7.4 does not show the 

expected correlation between the input and detected event rates. Further work was 

therefore conducted to investigate the cause of this. 

The first consideration was that t he ranking system was not effective for experiment 

A. However, a manual investigation of the clusters which were ranked lower than 

the top one did not reveal any clusters with event rates corresponding to the known 

input rate. 

Since the known position (1.2, 0.54) was in the proximity of sensors 10,11 and 12 

(see Figure 7.2) all the data arriving at these sensors was located linearly, around the 

circumference of the gear. A two dimensional plot was produced (Figure 7.9) showing 

this linear location plotted against ampli tude. The number of events around at any 

discreti ed point is indicated by colour. By matching absolute times of the events, 

the data corre ponding to the top-ranked cluster in experiment A was identified 

(illdicated 0 11 figure 7.9 as 'detected cluster'). A nearby cluster, of lower amplitude 

was also evident (labelled 'potential cluster'). Plotting the event rate of this latter 

data against the known input event rate gave a very good correlation and this is 

shown in F igure 7.10. 

It can be concluded then that the input signals were of lower than expected ampli­

tude. They were therefore not detected by the minimum of three transducers, and 

were di carded in the initial analysis before the clustering stage. The likely cause of 

this lower amplitude is incorrect mounting of the transmit ting transducer. 

Further invest igation of the data is necessary: should the ampli tude of the inputted 

source have been sufficiently high to have been d tected by three sensors (and there­

fore located and lu tered in the original analysis), would the resul ting cluster have 

had a high ranking? Alternat ively: do the signals detected on channels 10 and 11 

fu lfil the hypothesis that signals from the artifi cial source will be imilar more so 

than surrounding ignal ? To an wer this qu stion, graphical methods were used. 
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Figure 7.11: (a) peA plot of the signal features detected on channels 
10 and 11. Each dot corresponds to one signal - highlighted signals 
how the 'potential cluster '. (b) Kernel density estimation of the signals 

highlighted in (a) 

Principal Component Analysis (PCA) is a useful tool for visualising high-dimensional 

data, see section 5.2. Figure 7.11(a) shows a PCA plot of all the feature data from 

the signals detected on channels 10 and 1l. Each dot corresponds to (the features 

from) one signal. The signals identified in the secondary analysis as being a potential 

resul t (due to the match of the rates plot) are highlighted as white circles . Figure 

7.11 (b) show the spatial densi ty of these signals (on the same axes) as estimated 

by kernel probability density estimation [115] . Clearly most of the signals in this 

group are concentrated around one point , and it can be said with some certainty 

that these signals, if included in the original analysis, would have formed a tight , 

high-ranking cluster. 

7.1.3 Discussion and Conclusions 

T his work shows clearly that the developed methodology allows fracture-like signals 

to be detected in the extremely noisy environment of a structural fatigue test . This 

is potent ially very u eful in the ense that it will allow su pension of the test in order 

to carry out an DE inspection of the structure in order to evaluate the damage in 

situ befor complete failure. The location information provided by the methodology 

m an that the DE inspection can be immediately directed to the area of interest. 
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The methodology differs in one important respect from previous developed ap­

proaches. The method does not attempt to recognise the individual burst wave­

forms characteristic of a crack-propagation event. Rather, the method exploits the 

fact that crack-related events (propagation at least - not crack-face rubbing) will 

be very similar to each other and this similarity can be detected by assessing the 

tightness of the event data when considered in the feature space. The major advan­

tage of this approach is that it is expected to transfer between different materials 

without difficulty. In contrast, a system that has been carefully trained to recognise 

crack propagation in Aluminium, will probably not transfer successfully between 

Aluminium alloys, let alone between diflerellt metals. 

7.2 Fatigue Testing of Main Landing Gear Com­

ponent 

A test was devised in order to fur ther evaluate the algorithms presented in this thesis, 

in particular the methodology outlined in Chapter 3. An Airbus A340 main landing 

genr t.ll be was placed in a fat.igue rig with t.wo act.uators . The first actuator moved 

the sliding tube in and out of the main gear at a rate of 0.5 Hz, whilst the second 

applied a bending moment to a lug at a rate of 2Hz. The sliding tube presented no 

resist.allce and wa~ effectively zero load, whilst the lug was loaded incrementally up 

to 1l.lkN. The intention was to simulate the failure of the gear during certification 

testing, where a large number of signals are generated throughout the gear due to 

the various applied loads. and the challenge is to 'filter ' these signals and identify 

the ones relat ing to fat igue activity. Due to hardware constraints, the data was 

recorded and post-processed off-liue, though the software produced is capable of 

running faster than real-time. 

The following section describe the set-up of t he test, the software implementation 

and the results of the testing. 

7.2.1 Test setup 

T he test involved applying a large bending load to a lug on the landing gear, whilst 

imulating test condition by applying a mall load to the main tube. Thi proce-
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dure was designed to create multiple sources of 'background AE', which need to be 

separated from the true fracture AE. The sliding tube was moved back and forth at 

a rate of 0. 5 Hz, 40mm stroke, wi th very little load. The friction between the tube 

and the main gear structure created enormous quantities of background AE events 

(evident by the huge number of cluster shown in e.g. Figure 7.1 2). Simultaneously, 

a lug was loaded at a rate of 2Hz, initially with load 1kN. Load was gradually 

increased to 11.1 kN in order to grow a fatigue crack in a reasonable time-frame. 

Failure occurred at 630000 cycles. 

7.2.2 Software Methodology 

T he methods described in this thesis, as outlined in Chapter 3 were implemented in 

software and used to post-process the collected data. 

A grid was constructed across the surface of the gear, and Hsu-Nielsen sources were 

used to generate training data for a GP location algori thm (Chapter 6). This data 

was used to compare the performance of the algorithm to traditional methods on 

section 6.9. The GP location method was then used to locate AE events on the 

structure. 

T he ORACAL clustering method described in section 3.2.4 was used to cluster 

located events into clusters. The cluster diameter was set to 10mm. 

The feature-space-distribu tion clue and the energy-rates clue were implemented and 

used to rank the clusters, and this information was presented to the user for detailed 

analysis via a software interface. 

7.2.3 Software Interface 

A software implementation of the algori thms presented in this thesis was produced 

in the python programming language wi th the use of some open source libraries 

including pyGTK, numpy, scipy and matplotlib [114]. A typical screen-shot from 

the program is shown in Figure 7.1 2. 

T he u r interface to the softwar is divided into two parts . On the left hand side, 

a scatter plot hows the positions of detected clusters. In a commercially realised 

versiOIl of the software, clusters would ideally be shown against the background of a 
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chematic drawing of the component in question. In this prototype, the structure is 

repr sented by ix of the sensors used in the test, marked by large coloured circles. 

Each detected cluster i marked with a coloured triangle. 

T he colour of the triangle is used to represent the level of a clue: the clues can 

be ycled between u ing the button in the bottom left corner (marked 'colour by 

variance' in Figure 7.12). Clues with high values are marked as red, clues with lower 

val u s are mar ked as green. 

In this implementation of the software, the 'feature space distribution ' and 'energy 

rate' clue were implemented. Novelty detection was left as a goal for further work, 

see section 8.2 .1. A commercially realised version of the software would also include 

data fusion as discussed in ection 3.6.1. This has al 0 been assigned as fu ture work, 

ee section .2 .2. 

Cli cking on a coloured triangle 'selects' the associated cluster of data. The selected 

clust r is marked with a vertical cross and its relevant information (position, number 

of events, lev I of clue ) i di played at the top of the graph. The selected cluster 

can al 0 be explored in more detail in the two plots of the right-hand side of the 

user-in terfac . 
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The plot in the top-right of the user-interface shows the activity rates for the selected 

cluster. This allows manual confirmation of the energy-rates clue as indicated by 

the colour of the selected cluster on the left-hand plot. In Figure 7.12, the graph is 

showing the cumulative energy rate for the selected cluster. The rates for individual 

sensors are coloured red , blue, green, yellow, cyan and magenta, whilst the overall 

energy rate is shown by a dashed black line. The model of the energy rate (see 

ection 3.4) is shown as a dotted blue line. In this instance, the trend of the cluster 

i almost linear, slightly downward: this indicates strongly that the selected cluster 

does not represent a fracture. 

The bottom right-hand plot in the user interface allows the user to visualise the 

feature space for the test, and in particular for the selected cluster. Feature spaces 

from each channel in the test are investigated separately, using the channel selector 

at the bottom of the plot. 

In this implementation , the simple PCA algori thm (see section 5.2) was used to 

Cl' ate a 2D rep re entation of the feature space, though in a commercial realisation 

of the project a more powerful algori thm (or selection of algorithms) from Chapter 

5 could be u ed. 

All signal detect d during the test on the selected channel are represented by black 

dots. Tho e wh ich are addi t ionally within the selected cluster are highlighted. This 

allows the user to identify whether the selected cluster contains typical signals (near 

the centre of the plot) or unusual signals (near the edges of the plot) and whether 

the ignals in the elected clu ter are similar (close together on the plot) or widely 

difl'ering (spread across the range of the data on the plot). 

Dlle t.o t. he amount. of dat.a gat.hered in a t.ypical AE test, i t is diffi cul t to asses the 

pread of the signal using the highlighted dots (as in Figure 7.12) , and so a density 

e timation tool is included, which shows the user the density of the highlighted 

signals in the reduced feature space. This is demonstrated in Figure 7.13, where 

the bottom-right-hand plot is showing a density estimate of the signals highlighted 

in F igure 7.12. The Kernel Probability Den ity Estimation procedure was used to 

generate the plot. 

This procedure a ll ow ' t llC user to visually confirm the presellce of the feature space 

di tribution clue, a indicated by the colour of the cluster on the c1u ter on the 

left- hand ide of th u erint rface. 
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Figure 7.13: A typical screen-shot from the AE analysis software, show­
ing the Kernel Probabili ty Density Estimate of the reduced feature 
space. 

7.2 .4 R esults 

Figure 7.14 show the AE analysis software at the point where fracture was detected. 

The clusters have been coloured according to the feature-space clue, and three clus­

ters are par ticularly prominent (shown in red). In pection of the energy rate for two 

of the e clu ters (near the top and bottom of the screen) showed that they were un­

intere Ling: the energy rose linearly. Inspecting the energy trend for the remaining 

cluster showed that it did indeed represent a fracture under the 'energy trend' clue; 

in [a t when colouring all of the clu ters according to this clue, the selected cluster 

remains prominent (i.e. it has one of the strongest rising energy trends). 

Although the features - based clue is not suffi cient in this case to identify a fracture 

by it elf it is learIy a very strong indicator and with the use of the additional 

energy-rate clue, the era t ure was detected. This kind of 'manual' data fusion 

(wher the ellgineer uses hi judgement and common sense) would not be requir d 

with the 1I e of data fusion, which will be implemented in fu ture work (see section 

.2.2) . 
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Figure 7.14: A Screenshot of the AE analysis program, with suspected 
fracture highlighted 

L rPOf' 

The po iLion of the detected du ter was (0.2, 0.04) , which is a mere 140mm from 

the true failure po ition at approximately (0.3 -0.03). Whilst this is larger than ex­

perienc d during the training of the GP location algorithm, it is still very acceptable 

given that the structure i 2m long! 

The fract ure was idelltified 3.:J bolUS into the testing. The component failed 4.5 

hours later, after a total of hour. This demonstrates that the AE procedure can 

ind ed provid early warning of a potential fatigu crack failure. 



Chapter 8 

CONCLUSIONS AND FUTURE 

DIRECTIO.NS 

8 .1 C onel u s ions 

This thesi has presented a novel technique for detecting fatigue fractures in land­

ing gear te ts , which could be extended to other fat igue environments . Along with 

the is ues discussed herein , there are a multitude of practical considerations regard­

ing sen or placement, sen or selection , equipment setup etcetera. These issues are 

add ressed in the methodology document produced during this project [116J. 

8.1.1 A im s and O bjectives Revisited 

Iu Chapter 1, SOllle objectives were identified. T hey are listed again here with 

comments as to the extent to which they were achieved. 

(i) Study wave propagation in complex structures 

Wave propagation was studied in Chapter 2. The AE process was considered 

in the form of a ' forward model'. from source to sensor. Different. types of 

AE 'ource were considered , different wave propagation modes were de cribed . 

In part icul ar t Il e effect of di spersion on AE measurement was studi d. The 

on lusions arriving from thi chapter were that wave propagation is very 
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difficult to model. Indeed, the author considered only Lamb waves arriving 

directly at a transducer in a simple plate, and did not consider boundary 

reflections or mode conversions which would complicate the understanding of 

AE signals further. 

It was concluded that distinguishing fracture sources on a signal-to-signal basis 

would be extremely difficul t, and two potential mechanisms were identified 

as potentially useful for understanding or identifying fatigue fractures: the 

variabi li ty of the source and the energy trend of the source. 

(ii) Overcome problems with AE location in complex structures 

In Chapter 6, a methodology for locating AE in complex structures was pre­

sented. This involved an onset-picking algorithm due to Kurz [102]' which was 

t udied, implemented and shown to be useful; as well as a Gaussian Process re­

gre sion technique, using modern machine learning methods. The system was 

developed and extensively tested on a small but complicated component, and 

was shown to scale well to a large landing gear component. It was also demon­

strated that the system was capable of generalising across nominally similar 

structures, i. e. training data collected in the lab could be used successfully in 

the fi eld. 

(iii) Devise a system capable of handling large quantities of AE data 

The feature extraction methodologies presented in Chapter 4 were imple­

mented for two reasons: firstly to allow comparison of signals in a vector 

space; and secondly in order to compress the data. Two feature extraction 

methodologies were presented, using continuous and fast wavelet transforms. 

It was concluded that the continuous transform based approach, whilst elegant, 

was of li ttle practical use due to the amount of computational effort required. 

The fast wavelet transform was compared to the traditional signal features 

[or a controlled laboratory test, where it was demonstrated that many differ­

ent decomposition levels can adequately act as features. The method showed 

consistent but minor improvements over the trad itional features. 

In order to select a decomposition level to act as a sui table feature set for 

fractu1'e-related data, one must strike a compromise between the amount of 

compression an the potential [or information loss . In order to make a reli­

able decision in this regard , add itional work is needed to extend the methods 

pre cnted in Lhis thesis Lo tests involving real fractures. This is planned (see 

.2.3). 
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(iv) Employ novel signal processing techniques and pattern recognition 

In Chapter 6, the modern machine learning technique of Gaussian processes 

were successfully implemented to solve a problem pertaining to the location 

of AE signals. Wavelet transforms were used extensively in Chapter 4, and 

various signal processing and machine learning techniques appear throughout 

this work , included the k-nearest-neighbour algorithm and the particle swarm 

optimisation algorithm. A simple clustering algorithm was devised (after con­

sul ting the li terature) in Chapter 3. This work makes successful use of a wide 

variety of signal processing and machine learning methodologies. 

(v) Devise a methodology of presenting AE data to the user in a simple 

form 

Chapter 5 reviewed various dimension reduction techniques. These varied in 

computational cost but all had the same goal: to find a latent 2D represen­

tation of AE data. The techniques were applied to a toy data set and to a a 

laboratory experiment. The PCA algorithm was applied to the identification 

of a real fracture in Chapter 7. 

8.1.2 A Methodology for the Identification of Fractures 

The ul timate goal of this proj ect was to ident ify and develop method for distin­

guishing between fracture-related signals and non-fracture related signals during 

the fatigue testing of a landing gear component. Very early on in the thesis, it was 

realised that training a traditional classifier (such as a neural network) to identify 

such signals would be difficul t for two main reasons: 

(i) Collecting t.raining data for sHch a classifier would be almost impossible: the 

'soulld' of a fracture in one component will appear different to that in another: 

ill deed the sound of (the same) fracture will differ from sellsor to sensor , de­

pending on the sensor's placement. 

(ii ) Modelling the AE propagation (to account for signal differences due to sensor 

placement) is a challenging prospect, especially when one considers the mod­

elling of mode conversion , reRection and un certainty due to sensor coupling 

eLc. 
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This, along with an understanding gained from studying the AE process and evi­

dence obtained from AE tests, led to the development of the method presented in 

Chapter 3, where fractures are identified on the basis of clusters of signals. Three 

'clues' which might help identify a fracture were identified. These clues are: 

(i) Feature space distribution - fracture signals seem to be 'more similar' to each 

other than non-fracture signals are to each other 

(ii) Energy trend - from the Paris law, we surmise that a cluster of fracture related 

signals will have a rising energy trend 

(iii) Novelty - fracture related signals will only occur in the presence of a crack, 

other signals should remain constant 

T llC effectiveness of t.11C fil":->t t.wo clues were assessed t.o a minor extent in Chapter 3, 

where some visual and numerical evidence was presented. During t he test ing phase 

in Chapt.er 7, it. became clear that. t.he most effective process wa,s t.o fir:->t identify 

clusters with a strong p(IraclurelIealllTes ), and then examine the energy rates for 

potential candidates. Indeed, the features based clue alone was suffi.ciellt to uet.ect. 

all artificial t:iigllal in a real ellviromnent. 

T he dfcctivClless of the clues (allu hence illformation necessary for data fusion) 

should be rigorously tested in a controlled study, using fat igue data from various 

landing gear fatigue tests . This is beyond the resources of this proj ect. Further, the 

fram ework is capable of accepting addit ional clues should they become available in 

future. 

In order to make use of all three clues, a data fusion scheme was proposed, though 

the implementation of this remains an objectiv~ for the future (see 8.2.2). 

8 .2 Fut ure Directions 

8 .2 .1 Novelty detection 

Section 3.5 proposed a spatial novelty as a clue in the data driven method. Time 

constrains have meant that this avenue of research has not been thoroughly explored, 

and it i left as an area of future work. 
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Part of the extended work being funded by Messier-Dowty includes thorough inves­

tigation of a spatial novelty detection clue. This will approached by fatigue testing 

small specimens (CT and four-point-bend tests) where active AE locations on the 

specimen can easily be attributed to either crack growth or the loading device. 

One challenge in this approach is to test the specimens for a long period without 

fracture, in order to collect sufficient data to build a model of the 'normal' AE 

behaviour of the system. Ensuring that the specimen does eventually fracture under 

the same conditions involves selecting exactly the right loading rate and load. 

Another challenge in this approach is to benchmark the method. It is impossible 

to asses the effectiveness of the novelty detection without knowing the 'true' point 

of onset of the crack. Inevitably, one is thrown the impossible task of finding a 

technique to benchmark the AE novelty against. Suggested methods have involved 

foil gauges attached to the side of the specimen and regular microscopic visual 

inspection. 

SATSCAN 

One area of research that has already developed some technologies regarding spatial 

novelties is epidemic detection. The SATSCAN project [117] has developed algo­

rithms based on detecting novelty in spatial activities in order to detect the onset of 

disease outbreaks. The parallels with acoustic emission are uncanny. The methods 

can be surmised as follows: 

Every time a packet of paracetamol is sold in the UK, the event is recorded along 

with its time and position. The rate at which paracetamol is sold obviously varies 

spatially, i.e. more packets are sold in more densely populated areas. The SATSCAN 

method works by clustering (spatially and temporally) abnormal sales of paraceta­

mol. which identify outbreaks of influenza amongst the population. 

The method has been extended to detecting various other diseases based on other 

spatial statistics, such as detecting West Nile disease by clustering the occurrences 

of dead birds [11~]. It has also reached other fields including criminology [119]. 

Despite its clear parallels to acoustic emission monitoring, the method has not been 

applied to this field, awl the author fp('ls it would he wpll worth future investigation. 
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8.2.2 Data Fusion 

Section 3.6.1 discussed briefly the idea of data fusion, and laid the groundwork for 

the fusion of the clues described in Chapter 3. In Chapter 7, when applying the 

methods in this thesis to real test situations, data fusion was not implemented. This 

is partly due to time constraints, and partly due to a lack of suitable data. 

Fusing the clues onto one single value essentially involves collecting large amounts of 

test data and correlating the occurrences of clues with the occurances of fractures, 

in order to identify the 'trustworthiness' of each clue. One must be meticulous in 

labelling data as 'fracture' and 'non-fracture' in order to accomplish this. 

The collection of such data is planned as part of the future work (see section 8.2.3), 

where data fusion will be attempted. 

8.2.3 Further Fatigue Testing 

A further phase of testing at Cardiff University has been agreed with Messier Dowty. 

The objectives of the testing are threefold: 

(i) To develop the use if spatial novelty detection as a 'clue'. 

(ii) To collect suitable data in order to learn parameters for fusing clues. 

(iii) To demonstrate further the capabilities of the system on a series of fatigue 

tests. 

The further development of novelty detection and data fusion have been discussed 

above. It is clear that thorough demonstration of the success of the system IS 

necessary for further development and commercialisation. 

The tests will take the form of a series of CT specimen tests and some four point bend 

tests in order to gather data for use in the development of the novelty detection clue 

and the data fusion. The tests will continue with a 'pseudo landing gear' structure, 

designed to replicate the challenge of locating fractures on a landing gear at a cost 

which allows the test to be repeated several times. Finally, further tests on will take 

place' on [('a I landing gear specimens. 
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8.2.4 Commercial Exploitation 

The commercial exploitation of this work depends on the cooperation of various 

companies including Physical Acoustics, Messier-Dowty and of course The Univer­

sity of Sheffield. Negotiations have been underway for some time, and currently 

preparations are being made for funding the realisation of the work in this thesis in 

conjunction with work at Cardiff University into a product which can be exploited 

by Messier-Dowty. 

Work is also underway to apply for a patent for some of the ideas described in this 

work. incorporated into a larger vision with work from Cardiff University. 

Communications have begun between the author and software engineers at Phys­

ical Acoustics. This took the form of a two day meeting in June 2008. Further 

communications are planned. 

Other Domains 

This thesis has been focussed toward the application of AE monitoring to landing 

gear, however the work herein is applicable in a much wider context. The framework 

for detecting fatigue fractures is not domain-specific, and one could envisage a similar 

system being employed in other parts of the aerospace industry, as well as parts of 

the automotive, offshore and construction industries. 

This extensibility stems from the way that fatigue fractures were defined in Chapter 

3, which is completely independent of the structure. This is in contrast to other 

successful AE applications such as the BALRUE project [120J which rely on learning 

the 'sound' of a fatigue crack in a particular metal, under particular loading and 

propagating through a particular geometry. Such a system can then identify fatigue 

cracks on a hit-by-hit basis, but the work cannot be extended to other materials or 

structures. 



ApPENDIX 

A.I Elastic Constants 

The l\laterial constants E (Young's Modulus) and v (Poisson's Ratio) along with 

p (d{'fl~ity) are ~ufficient information to calculate wave-speeds for a material. The 

Lame con~tant~ u~cd in the wave equations are also related. Lame's first constant 

is given by 
A= Ev 

(1 + v)(l - 2v) 

The second Lame constant is also known as the shear modulus and is given by 

E 

The longitudinal wave (a.k.a. p-wave) speed is related to the Lame constants by 

The transverse wave (s-wave) speed is given by: 

et = rE Vp 



A.2 Particle Swarm Optimisation 

The particle swarm is a stochastic search algorithm, not dissimilar to genetic algorithms[I2I]. 

The algorithm is based on the idea of a swarm of creatures such as fish or bees, which 

cOIllmunicate in a simple way in order to perform an effective search [71]. 

The advantage of the algorithm is that there are very few parameters which control 

the performance of the optimisation. These are 

• N, the number of particles in the swarm. 

• Cl, the tendency of the swarm toward local optima. 

• C2 , the tendency of the swarm toward global optima. 

• LF, (loss factor), a measure of the momentum of each particle. 

Theory 

The algorithm proceeds as follows. Each member of the swarm is initialised with a 

random starting position, as well as a random velocity. 

The objective function is then evaluated at the position of each particle. The algo­

rithm stores the best position achieved by each particle (the local best, Plb), as well 

as the best position achieved by any particle (the global best, Pgb). 

The velocity of each particle is then updated according to equation A.I 

(A.I) 

where R represents a random number in the range (0, 1), and P is the current position 

of the particle. 

The position of each particle is updated according to equation A.2 

Pnew = Pold + V new (A.2) 

This procedure then iterates until either some convergence criterion is reached, or a 

pn'-dptiTH~d maximulTl ntulliwr of iterations is met., 



Example 

Figure A.I shows a particle swarm optimisation of a 'camel back' function with six 

local minima. Each sub-figure shows the position of the particles after zero, five, 

ten, fifteen, twenty and twenty-five iterations (reading across the page): particles 

are depicted as red dots. The camel-back function used is: 

(A.3) 

where z is the quantity to be minimised and x and y are the free variables. The 

particles are initialised at random across the area of interest (top left sub-plot), 

initially investigating the problem on a large scale. Towards the end of the optimi­

sat ion (bottom right plot) the particles have condensed on a local solution and can 

be considered to be performing a 'local' search. 

A.3 Hyperbolae 

A hyperbola is a locus of two points such that t.he difference bet.ween the distance 

to two points (the foci) is constant - it can be thought of as an inside-out ellipse. 

Consider figure A.2: t.he foci are shown at. posit.ions A = (XA' YA), B = (XB' VB). In 
the acoustic emission application, these foci represent the positions of the sensors, 

and the locus represents possible locations of an acoustic emission. Since the differ­

ence between the distances from P = (.r, V), a point of the hyperbola to the foci is 

constant, we can write: 

PA - PR = 2c (AA) 

Examining figure A.2 and noting the two right-angle triangles with hypotenuses AP, 

BP, we can write the following two equations: 

2 2 -2 
(:r+J) +y =PA 

(.r - f)2 + y2 = P 8
2 

Where the foci A and B lie at - f and + f. Substituting for (A.4), 

1 1 

((:r - fY + l) '2 - ((x + fi + y2) 2 = 2c 

(A.5) 

(A.6) 

(A.7) 
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Figure A.l: Particle swarm optimisation of a 'camel back' fun ction with 
six local minima. Each uccessive sub-figure shows the position of the 
particles (red clots) after 5 further iterations. ote that the contours are 
logari thmically spaced. 
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Figure A.2: A Hyperbola about two foci A and B on the x axis. 

Re-arranging and completing the square gives 

(A.S) 

dividing through by the right hand side leaves 

(A.9) 
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