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Abstract

A novel mechanism for the optimal scheduling and the control of the hot-rolling of ‘
steel is presented in this work. Such a mechanism provides optimal rolling parameters
to set-up an experimental laboratory-scale hot-rolling mill and thus produce metals with
the desired microstructural and mechanical characteristics. The proposed methodology
combines physically-based models and those associated with ‘intelligence’ such as Neural
Networks, Fuzzy Systems, and Genetic Algorithms, to systematically calculate the optimal
rolling schedule so as to achieve a right-first-time production of steel alloys, a challenge
for academia in general. Unlike current design methods, the scheduling problem is here
treated as an optimisation problem which aims at satisfying multiple process objectives and
a set of user-defined requirements. Such objectives are expressed in terms of the quanti-
tative elements of the steel microstructure and its mechanical properties such as strength
and toughness. Three main aspects are considered ‘to define and approach the optimisa-
tion problem: (1) THE PROCESS MODEL, which includes integrated knowledge of the stock
microstructure, the mechanical properties, and the processing route; (2) THE PHYSICAL
CONSTRAINTS associated with the metal due to its chemical composition, as well as the mill
operating limitations; and (3) a set of OPTIMALITY CRITERIA which is used as a performance
index to evaluate the quality and feasibility of each solution.

In order to show the efficacy of this methodology, extensive experimental studies, met-
allographic analyses, and laboratory mechanical tesﬁs, are presented using the commercial
type C-Mn Steel alloy (Bright Mild Steel) grade 080A15. The results from such experimen-
tal studies showed that the final product was in good agreement with the desired design
in terms of the microstructure and the mechanical properties. The experiment results also
demonstrated the advantages of the proposed methodology over current methods which are
generally ad hoc and lack adequate capabilities for finding the optimal process parameters.
The software SISSCOR is also introduced as a friendly graphical user interface for a fast
experiment design and analysis of the dynamic performance associated with the rolling mill.

This work will also review the application of a modified model-based approach in the
form of the Generalised Predictive Control to reflect a Fuzzy Model of the mill. Such
a hybrid strategy was implemented in order to provide robustness and flexibility to the
overall control system, and to guarantee an optimal control performance during hot-rolling

experiments.
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Chapter 1

Introduction

1.1 MOTIVATION

Hot-rolling of steel alloys is one of the oldest metal-working processes used to produce
metals with high strength, good ductility and toughness for innumerable applications.
During decades, significant research has been undertaken by metallurgists and engi-
neers to describe not only the underlying phenomena taking place in the metal during
the rolling process, but also to establish the processing routes that lead to a faster
and safer production. However, the steel industry is currently facing more challenges
than ever before. Such challenges are mainly associated with environmental concerns,
as well as the energy and raw materials availability. In the case of steel-making com-
panies, very high standards of surface quality and tighter specifications on hot-rolled
products are constantly being set, which result in stringent demands being imposed
on the specified metallurgical properties. To cope with the increasing demand of
advanced metéls, steel companies are now being forced to promote a wider imple-
mentation of the latest technologies, as well as to invest in the development of new
processing methods (see Figure 1.1). For instance, it is known that, only in the au-
tomotive industry, 60% of the steel grades used today were invented in the last 5
years.

In essence, the steel-making process represents a natural multi-disciplinary envi-
ronment which renders its maintaining be very time-consuming and expensive. The
continuous improvement of the production line requires understanding of the quanti-
tative aspects of the process, the metal being processed, the rolling mills, the temper-
ature profiles, and, of course, the way such aspects are all combined to satisfy the user
requirements. This challenge may concern (not exclusively) metallurgists, mechanical

engineers, as well as systems engineers whose inputs will contribute to the idea of the
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Figure 1.1: Advanced metal designs for specific applications demand for new and
more reliable processing strategies

‘optimal” processing route. On the other hand, the need for improvement also implies
that the control of the process should be enhanced as well. As a result. the main
engineering aspects involved in the process can no longer be treated separately, but
an integrated knowledge based on solid research should be considered.

Although significant achievements have been accomplished in this area, the de-
velopment of optimal design and control methods for steel-making processes is still
needed for improving metal designs, reducing production costs, and producing speci-
fied quality on a repeatable basis. Existing design methods usually respond to specific
situations without including wider aspects in the metal design and process develop-
ment. This scenario presents major challenges to control engineers who are faced with
higher requirements and superior quality standards. Therefore, the new methodolo-
gies for process design and control should be based upon scientific principles, which
sufficiently consider the workpiece behaviour and the mechanics of the manufacturing
process.

The motivation behind the research work described in this document

is to redress the dichotomy between the approach of the metallurgist who
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tries to ﬁnderstand and optimise the process, and the mill technologist
who may only be interested in control problems. This has shaped the idea of
the knowledge integration where metallurgy principles, sophisticated control strate-
gies, and evolutionary optimisation algorithms are used to achieve a right-first-time
production of metal designs with specific microstructures and mechanical properties.

This research project seeks to improve the search performance toward the optimal
rolling profile and scheduling to improve the designing process and production of steel
alloys. It is worth noting that this objective includes two main parts: (1) it seeks
improvement in the methodology to (2) find the optimal scheduling. This makes the
main difference between the approach proposed here and the currer;t methods used
by industry, where the metallurgist decisions to optimise the process are judged by
his/her own empirical experience (trial and error), and it is not clear what criteria
he/she uses to decide on whether his/her decision is the best one. On the other hand,
this work provides a set of optimality criteria which include the microstructural and
control aspects of the process in order to meet the final product requirements. Such
criteria are based on mathematical models with solid theoretical and experimental
development.

In the same direction, this work attempts to improve the speed control system of
the rolling mill to guarantee optimal performance under a wider range of operating
conditions. Although conventional Proportional-Integral-Derivative (PID) controllers
are still the most popular option to solve the majority of industrial control problems
due to their simplicity, Model-based Predictive Control (MPC) has developed consid-
erably both within the research control community and industry. MPC was found to
be quite a robust type of control in most reported applications. This research work
attempts to contribute to filling the gap between real-time industrial pr_qblems and
the powerful but sometimes abstractly formulated techniques developed by control re-
searchers. Part of this thesis focuses on the real-time implementation of the adaptive
MPC in the speed loop of an experimental rolling mill.

This project aims at carrying-out extensive experimental research directed towards
basic science and improved understanding to provide comprehensive frameworks for

the development of simplified mechanisms when designing the rolling experiments.
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1.2 IMMPETUS

This research work has been undertaken under the umbrella of the Institute for
Microstructural and Mechanical Process Engineering: The University of Sheffield
(IMMPETUS). IMMPETUS is a multi-disciplinary research centre established in
May 1996 to study thermomechanical processing of metals by developing models de-
scribing their microstructural and nanostructural processes, and also by improving the
control systems of the related industrial processes. IMMPETUS is based within three
host departments at Sheffield University: the Department of Engineering Materials,
the Department of Mechanical Engineering, and the Department of Automatic Con-
trol and Systems Engineering. During the last 10 years, the institute has proved to be
an international leading research group with an excellent track record in technology
transfer.

Among its “world-class” facilities, one can cite an experimental laboratory-scale
hot-rolling mill, known as the “Hille-mill”, which is located in the Department of En-
gineering Materials, at The University of Sheffield (UK). The mill has been the subject
of a major refurbishment operation which allows for full investigation of the hot-rolling
process on an experimental scale. As a result, the Hille-mill has provided improved
knowledge about the microstructural changes taking place during processing, lead-
ing to the development of reliable thermomechanical models, new characterisation

methodologies, and metal design.

1.3 ABOUT THE PROJECT

This project relates to the optimal scheduling and control of the hot-rolling process
using an experimental laboratory-scale hot-rolling mill. The main aim is fo design a
new integrated mechanism to optimise the rblling schedule according to a set of user-
defined requirements in terms of the desired mechanical properties of the metal. The
proposed approach combines information of the steel microstructure and the Hille-mill
Working conditions to compute and synthesise the optimal rolling parameters. There
are two main aspects considered in such an integrated system: (1) OPTIMISATION —
Genetic Algorithms (GA) are used to search for the appropriate deformation profiles
and rolling schedules; and (2) CONTROL - Fuzzy Inference System (FIS)-based mod-
elling and Generalised Predictive Control (GPC) are used to improve the dyﬁarhic

performance of the Hille-mill during the rolling experiments.
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Figure 1.2: Block diagram of the main stages involved in the development of the
proposed scheduling methodology

The knowledge integration and the right-first-time production of steel alloys en-
tirely depend on the mathematical models of the metal behaviour during the rolling
process. In metallurgical design, it is necessary not only to obtain the required final
microstructure, but also to ensure that throughout the whole manufacturing process
the structure at any given stage is optimal for processing at the next stage. Therefore,
the role of the structure-property relationship is important to establish the correlation
between the desired properties of the alloy, its microstructural parameters, and its
processing.

The development of the scheduling strategy proposed in this work followed the
steps shown in the block diagram of Figure 1.2. Usually, a set of user-defined re-
quirements are used to specify the mechanical properties needed for a particular
application; therefore, the fist step consists of identifying such properties, which are
mainly related fo the strength, toughness, and ductility of the steel alloy. The next
step focuses on establishing the mathematical relationships that correlate the metal
properties with its microstructure and processing. Such mathematical relationships
are described by physically-based models, empirical representations, and intelligent
systems-based models.

The definition of a set of optimality criteria to determine the design procedures
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is the next stage. These criteria also have a mathematical description so that it can
be used as a performance index to evaluate the different design solutions. After the
optimisation problem is formulated, a GA is used to search for the solution that
best meet the user-defined requirements within practical limits for metal processing.

The overall outcome of the above procedure is referred to as Sheffield Integrated
System for SCheduling and Optimisation in Rolling (SISSCOR), which is a MATLAB®-
based software designed to achieve a right-first-time production of metals by calcu-
lating optimal rolling schedules. SISSCOR facilitates a friendly interaction between
the user and the design process by providing a visual interface to design rolling ex-
periments using the Hille-mill. )

Finally, to guarantee an optimal performance of the Hille-mill during hot-rolling,
the improvement in the control system of the mill was deemed to be necessary. To
~accomplish this, sophisticated control strategies, including MPC, were implemented
in order to provide the control system with adaptive capabilities and robustness.

Extensive experimental validation of the proposed scheduling mechanism was
carried-out by performing real-time hot-rolling experiments using the Hille-mill, as
well as microstructural analysis and laboratory testing of the rolled product.
These experiments should prove useful in the assessment of the overall performance

and the reliability of the scheduling mechanism.

1.8.1 Why are Optimisation and Adaptive Control needed in the Hille-mill?

Currently, experimental data are used for finding relationships to correlate the mi-
crostructure and the mechanical properties of the steel alloy considering a wide range
of processing scenarios. Such a correlation forms the basis for developing metals by
design, which allows for tailoring the microstructure of an alloy to meet specific design
criteria. However, understanding this correlation and optimising the microstructure
is not a trivial exercise because of the complex nature of the variables involved in the
process. Grain size, grain boundaries, grain morphology, alloying element properties,
and parent-alloying element interactions are usually considered in studies dealing with
the microstructure of alloys. The limitations of current practices are mostly felt while
solving the design problems where multiple objectives need to be satisfied within the
constraints of the metal del_'ived from its chemical components.

Previously, no scheduling strategy had ever been implemented in the Hille-mill,
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and no optimisation procedures for metal design and processing were the subject
of research within the Department of Automatic Control and Systems Engineering.
Indeed, the novelty of this research work lies on the development of a
new perspective in metal design and optimal scheduling of the hot-rolling
process. This should provide new directions towards the use of Intelligent
Systems to systematically define such optimal processing routes.

With respect to the mill control, it is well-known that the rolling speed is one
of the most important parameters within the rolling schedule. It has been observed
that the use of conventional PID controllers in the Hille-mill produces a very active
control signal and shaft chattering when working above the rated spe;}d. This affects
the deformation profile applied to the stock in terms of the amount of strain and
the strain rate; as a result, a mismatch between the final product and the original
design may be produced. Hence, to improve the overall control performance, the use

of adaptive control algorithms is also investigated.

1.8.2  Research Objectives

The following research objectives are pursued in this work:

1. The design of effective methodologies to set-up the optimal rolling schedule in
the Hille-mill by integrating knowledge of the stock to be rolled using physically-
based models and intelligent systems-based paradigms for the control of the

metal microstructure and the mechanical properties.

2. The design of integrated strategies for knowledge elicitation of the microstruc-
tural behaviour and mill control supported by the development of a Graphical

User Interface (GUI) for experiment design and computer simulation.

3. Conduct a series of real-time experiments on the Hille-mill using the C-Mn
steel alloy and laboratory analyses of the microstructure and the mechanical

properties for result validation and model refinement.

4. The study and analyses of the open- and closed-loop modelling aspects which
relate to the Hille-mill by conducting a series of simulation and experimental

studies of the mill operations.
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5. The study of feedback and feedforward loops in order to develop model-based

techniques for real-time control of the mill rolling speed.

1.4 RELATED PUBLICATIONS AND COLLOQUIA
The research work presented in this thesis has been published in the following papers:

1. M. A. Gama and M. Mahfouf. Optimal scheduling and control of an experi-
mental laboratory-scale hot-rolling mill for ‘right-first-time’ production of steels.

Colloquium of the Institute for Microstructural and Mechanical Process Engi-
neering: The University of Sheffield (IMMPETUS). Sheffield, UK. May 2008.

2. M. Mahfouf, M. A. Gama and G. Panoutsos. Right-First-Time Production of
Materials: A Reality or a Myth? Plenary presentation for the International
Conference on Neural Network and Genetic Algorithm in Materials Science and

Engineering. Shibpur, India. January 2008.

3. M. A. Gama and M. Mahfouf. Model-based optimisation and control of the hot-
rolling process for the design of steel microstructure. Symposium on Automation
in Mining, Mineral and Metal Processing. IFAC. Quebec city, Canada. August
2007.

4. M. A. Gama and M. Mahfouf. Rolling schedule optimisation for microstruc-
ture design and control using intelligent systems-based paradigms. Colloquium
of the Institute for Microstructural and Mechanical Process Engineering: The
University of Sheffield (IMMPETUS). Sheffield, UK. April 2007.

5. M. A. Gama and M. Mahfouf. Speed control of an experimental hot-rolling mill
using generalised predictive control. International Conference Control 2006.
Glasgow, Scotland. August - September 2006.

| 6. D. Theilliol, M. Mahfouf, D. Sauter and M. A. Gama. Actuator fault detection
isolation method and state estimator design for hot-rolling mill monitoring.
Symposium on Fault Detection Supervision and Safety for Technical Processes.
SAFEPROCESS. IFAC. Beijing, China. August - September 2006.
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7. M. A. Gama and M. Mahfouf. On the development of a model-based predictive
speed control system for an experimental hot-rolling mill. Colloquium of the In-
stitute for Microstructural and Mechanical Process Engineering: The University
of Sheffield (IMMPETUS). Sheffield, UK. April 2006. .

8. M. Mahfouf, Y. Yang, M. A. Gama and D. A. Linkens. Roll speed and roll
gap control with neural network compensation. Iron & Steel Institute of Japan
(IS1J) International, Vol. 45, No. 6, pp. 841-850. 2005.

9. M. A. Gama and M. Mahfouf, D. A. Linkens,“ Y. Yang and M. F, Abbod. Mod-
elling and simulation of an experimental ac induction motor drive and rolling
mill system. Colloquium of the Institute for Microstructural and Mechanical
Process Engineering: The University of Sheflield (IMMPETUS). Sheffield, UK.
March 2005. -

Additionally, two journal papers have been prepared to be submitted for review.

1.5 THESIS OUTLINE

Figure 1.3 depicts a graphical outline of the thesis contents. As shown in this figure,
all chapters are distributed within three main categories: (1) THEORY — sets the theo-
retical background and provides a brief description of the project; (2) DEVELOPMENT
— shows detailed explanations of the design methodology proposed in this work as
well as the associated simulation studies; and (3) EXPERIMENTATION AND RESULTS
— presents the experimental procedures, the real-time implementations, and the met-
allographic/laboratory results. ‘

Chapter 2 introduces the important role of hot-rolling as a part of the thermo-
mechanical processing of steel alloys. It provides a brief description of the processing
route along with a quick overview of the theory behind hot-rolling and its general
concepts.

} Chapter 3 presents the physically-based model of the C-Mn steel alloy which
describes the evolution of its microstructure during hot-rolling. A special attention
is paid to the role of the grain size in the characterisation of the microstructure and
the final properties.

Chapter 4 shows the dévelopment of the proposed GA-based optimisation of the

steel microstructure. It presents the optimality criterion used to calculate optimal
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Experimentation

Theory Development and Rosits

Ch. 2 — The Hot-Rolling
Process of Steel Alloys

Ch. 3 — Microstructure
Evolution during Hot-
Rolling

Ch. 4 — Material Design
and Microstructure
Optimisation using
Genetic Algorithms

Ch. 5 — Optimisation of
the Hille-mill Rolling
Schedule using a
Systematic Approach

Ch. 6 — Mathematical
Modelling and
Simulations associated
with the Hille-mill

Ch. 7 — Optimal Rolling Speed
Performance using Adaptive Fuzzy
Model-based Predictive Control

Ch. 8 — Real-Time
Evaluation of SISSCOR via
Hot-Rolling Experiments
and Laboratory Testing

Figure 1.3: Graphic outline of contents

microstructural parameters in order to meet the user-defined requirements in terms
of the mechanical properties of the metal.
Chapter 5 provides the details which describe the second part of the proposed

scheduling mechanism. It explains how to synthesise the rolling schedule by using the
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metal design and its microstructural requirements.

Chapter 6 focuses on the mathematical modelling associated with the Hille-mill.
Here, the aim is to describe the theoretical background and the simulation frame-
work of the mechanical model with its critical parameters. Computer simulations are
presented to gain insight into the mill dynamical performance.

Chapter 7 discusses the implementation of the Fuzzy Model-based Predictive
Control in the Hille-mill. The evaluation of the performance and robustness of the
control algorithm are presented by computer simulations, real-time hot-rolling exper-
iments, and comparisons with a conventional PID controller under different operating
conditions. “

Chapter 8 presents the procedures carried-out to perform hot-rolling experiments
using the Hille-mill, including the metallographic analyses and laboratory testing on
the rolled metal.

Finally, concluding remarks, final conclusions, new perspectives, and future direc-

tions are given in Chapter 9.



Chapter 2

The Hot-Rolling Process of Steel Alloys

2.1 INTRODUCTION

This chapter describes the hot-rolling process as a part of the thermomechanical
processing route of steel alloys. First, a brief description of the processing route is
given, in addition to a general overview of the hot-rolling process. Next, the physical
concepts of the main variables involved in hot-rolling such as the stress, the strain,
and the strain rate are presented. This chapter also establishes the importance of
the predictive capabilities of the design methodology to estimate the metallurgical
phenomena such as the rolling force and torque. The main aim of this chapter is to
introduce some important aspects relating to the hot-rolling process in order to set

the background for metal design and process optimisation.

2.2 CURRENT RESEARCH ON ROLLING MILLS AUTOMATION

Control systems have been applied to complex hot-rolling processes and currently
control covers the whole production line. The ongoing research in the steel-making
industry includes the design of control systems to improve the reheating process using
furnace combustion, the scheduling of tandem mills [18], the development of new
| optimisation algorithms for dimensional control of steel bars [3], the design of on-line
temperature control systems [48],[51], etc.

" Further developments of advanced control strategies in this field have indeed been
addressing the increasing demand for improving quality of the rolled products, such as
the dimension accuracy, the mechanical and surface properties, as well as the rolling
mill performance [29],[63],[65],[79]. For instance, Fuzzy Systems have been proposed

for the control and the diagnosis of the roll eccentricity compensation [23],[45]. Fur-

12
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thermore, innovations have been actively promoted by developing reliable mathemat-
ical models and implementing new control technologies such as Robust Multivariable
Control [39], Nonlinear Control [46], Sequence and Supervisory Control [36],[87], Ro-
bust Control [16], Fuzzy Control [28], Neural Control [67], Iterative Learning Control
(24], and Model-based Predictive Control [13],[21]. Hybrid Control Systems combin-
ing conventional controllers and Fuzzy Logic have also been proposed [19]; for instance
a conventional linear controller was designed to use a Neural Network-based system
to counteract the mill spring and to improve flatness control [56].

Process optimisation has also been an important aspect for metallurgists and
control engineers. In this regard, Intelligent Systems-based paradiéms have been
proposed and applied to cope with the uncertainties involved in the process. Further-
more, the optimisation of the microstructure is crucial in obtaining the mechanical
properties required by the customer. For example, Expert Systems have been pro-
posed for the optimisation of the steel composition and the process route [58]. Also,
Genetic Algorithms (GA) have been proposed to determine optimal microstructural
parameters in aluminium alloys [47].

Current research is also focused on improving the model predictive capabilities
when designing new metals. More reliable hybrid models are being developed to
determine the main processing conditions in order to predict the mechanical proper-
ties and the microstructural events that affect the dynamic deformation of the met-
als. Different modelling methodologies have been proposed such as Neural Networks
[50],(86],[74], Neural-Fuzzy Systems [11], Finite Element, and Fuzzy Logic [18].

For the purpose of quality control, physically-based and hybrid models that esti-
mate the mechanical properties of hot-rolled strip, including the grain size, the yield
strength, the tensile strength, and the elongation to fracture have been developed
[68],[74]. These models are based on physical-metallurgical models describing the
rolling process and the related microstructural changes. Some components of the
model are based on an Adaptive Network-based Fuzzy Inference System (ANFIS)
which predicts the metal properties for different deformation conditions, along with
GA for parameter optimisation. Also, hybrid models have been developed to predict
the evolution of state variables such as the dislocation density, sub-grain size, and

misorientation between the sub-grains and subsequent recrystallisation behaviour [1].
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2.3 THERMOMECHANICAL PROCESSING OF STEEL ALLOYS

Thermomechanical Processing (TMP) is the exploitation of both the ease of shaping
and the opportunity to modify the microstructure to the benefit of the final product
properties. To do this in a control manner requires advanced control of the industrial
operation as well as the understanding of the metallurgical events taking place during
the processing. TMP does not start with a blank state, but works with the as-cast
microstructure. However, the as-cast microstructure is normally undesired, hence
‘TMP is used as a means to refine it in order to increase the strength of the product
and improve the metal structure and texture. Also, TMP produces the starting
microstructure for the remainder of the metal processing, such as cold-working and
annealing. Because the aim of TMP is to achieve the desired product properties for
a certain application, it is necessary to track the metal through the whole process
and consider the relationships between the metal processing and its impact on the
microstructure and on the final mechanical properties, the latter being what the
- customer usually requires. Figure 2.1 is a graphical representation of the three main
aspects to be considered in the thermomechanical processing of steel products. As
shown in this figure, TMP can be considered as a coupled system with different
process operations which modify the microstructure and the mechanical properties of
the steel alloy. The aim is to select an effective processing route in such a way that
the final product reflects a good match when compared to the desired design, with
an acceptable cost, performance, and feasibility.

The most important mechanical properties found in steel alloys are shown in
Table 2.1; however, metal design involves more than meeting the minimum property
requirements [9]. There are numerous options for product designs and metal selection
that sometimes cannot be quantified. For instance, the design must be producible
which means that a robust and safe process must be ensured. This precludes the
use of mathematical optimisation routines that allow for specifying the criteria to
equilibrate the quality of the product, costs, and process feasibility.

‘It is worth stressing the strong correlation between the metal properties, its mi-
crostructure, and processing. Evidently, the chemical composition and heat treatment
also play a very important role in the final product [25]. As will be shown later, the
performance of steels depends on the properties associated with their microstructures,

that is, on the arrahgements, volume fractions, sizes, and morphologies of the var-
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Figure 2.1: Relationships among the main stages of the thermomechanical processing
and production of steel alloys

Table 2.1: Main mechanical properties of steel

MECHANICAL PROPERTIES

Strength: Tensile Strength, Yield Strength. Compressive Strength
Hardness

Toughness: Notch Toughness, Fracture Toughness

Ductility: Total Elongation, Reduction in Area

Fatigue resistance

OTHER PROPERTIES OR CHARACTERISTICS

Formability: Drawability, Stretchability, Bendability

Wear resistance: Abrasion Resistance, Galling Resistance, Sliding Wear Resistance
Machinability

Weldability

ious phases constituting a macroscopic section of steel with a given composition in
a given processed condition. Each type of microstructure and product is developed
to characterise the property ranges via specific processing routes that control and
exploit microstructural changes. Thus, processing technologies not only depend on

microstructure but are also used to tailor the final properties [44].
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2.4 THE HoT-ROLLING PROCESS

The process of plastically deforming metal by passing it between rolls is known as
rolling [17]. The concept of the process is simple and well-known. Strips or plates
are passed through two rolls rotating in opposite directions. During the pass the
thickness of the workpiece is reduced, its length is increased while its width remains
largely unchanged. The usual practice is to roll at high temperatures (800 - 1300°C).
Figure 2.2 shows a general overview of the steel-making process including continuous
casting and the role of hot-rolling in forming the final product. First, the billets are
prepared by the continuous casting process. Next, they are reheated in the soaking
pits and are hot-rolled in hot strip mills. The layers of scale are removed by pickling
and further reductions are obtained by cold-rolling. This is the most widely used
metalworking process because it lends itself to a high production and a close control
of the final product.

Continuous
casting

Roughing mill

Hot rolling

Finishing
mill

Blooming mull

Soaking pit

Colls of

hot rolled Ingots

Water cooling

Guide rollers

Figure 2.2: Hot-rolling of steel and continuous casting

A good perspective of industrial and experimental hot-rolling is shown in Figure
2.3. In deforming the metal between rolls, the workpiece is not only subjected to high
compressive stresses from the squeezing action of the rolls, but also to surface shear
stresses as a result of the friction between the rolls and the metal. The frictional
forces are also responsible for drawing the metal into the rolls. Usually, the initial

breakdown of ingots into blooms and billets is generally done by hot-rolling.
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Figure 2.3: Industrial and experimental hot-rolling
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Although primarily thought as a shaping process, hot-rolling has become more
sophisticated because of the possibility of improving the mechanical properties of the
final product by changing its microstructure. Thus, the hot-rolling process can be
classified according to where the deformation occurs relative to the changes in the

microstructure. Such a classification can be described as follows:

Conventional hot-rolling: during conventional hot-rolling, the rolling of steel is
conducted continuously and is usually finished above the upper cooling transfor-
mation temperature. Therefore, the deformation occurs in the so-called austen-

ite phase!.

Controlled rolling: in controlled rolling, the rolling of steel is interrupted by one
or two delays, which allows the steel to be deformed in the austenite phase in
a wider range of temperatures, but always above the Az temperature, which

marks the onset of the ferrite-austenite phase.

It is clear that knowledge of the microstructure evolution during rolling should be
obtained with the objective of achieving the desired properties. Figure 2.4 represents
the evolution of the microstructure as the metal is deformed. As shown in this fig-
ure, the granular structure changes in each pass going through different phases that
eventually define the metal properties. The deformation profile applied per rolling
pass is the determining aspect in the process optimisation, and from such a profile,
the rolling schedule can be synthesised.

However, the setting-up of the rolling schedule is not an easy task due to the
number of variables involved in it. Figure 2.5 schematically shows an example of the
interactions of the process parameters to be considered when designing an adequate
rolling schedule. As shown in this figure, the knowledge integration of all variables is
a difficult challenge. For this reason, current methodologies tend to be ad hoc, and

are usually ineffective for calculating optimal process parameters [84].

2.5 (CONFIGURATION OF AN EXPERIMENTAL LABORATORY-SCALE HOT-ROLLING
MILL

This section briefly describes the configuration of a typical laboratory-scale hot-rolling

mill. A mill for rolling of flat products includes one or a number of mill stands. A

'See Chapter 3 for a detailed description of the different phases of the steel microstructure.
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Figure 2.4: Evolution of the steel microstructure during a typical hot-rolling schedule
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Figure 2.5: Interdependence of parameters during hot-rolling

stand consists basically of rolls, bearings, a housing for containing these parts, and a
drive for applying power to the rolls and controlling their speed. Due to the forces
involved in rolling, a very rigid construction is needed, and very large motors are
required to provide the necessary power. The stands are usually arranged in line to
produce a sequential reduction in thickness of the rolled product. Although a variety
of the mill stand designs are known, it is possible to identify their common components
from a functional viewpoint. Figure 2.6 illustrates schematically a laboratory-scale
hot-rolling mill.

The main functional components of a hot-rolling mill are the following:

Work Rolls: work tools which directly contact the rolled product;
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Figure 2.6: A schematic illustration of an experimental laboratory-scale rolling mill

Backup and intermediate rolls: support the work rolls to reduce their deflection

under rolling load;

Mill Housing: designed to contain the mill stand components and to withstand the

rolling load;

Main drive train: provides rotation of the rolls with the desired speed and rolling

torque;
Roll gap actuators: provide the required gap between rolls;

Pass line adjustment mechanism: provides adjustment of elevation of the pass

line;

Strip profile and flatness actuators: provide the displacement and/or deflection

of the rolls to achieve the desired strip profile and flatness.

Rolling mills can be conveniently classified with respect to the number and ar-
rangement of the rolls. The simplest and most common type of rolling mill is the
two-high mill (Figure 2.7a). Rolls of equal size are rotated only in one direction. The
stock is returned to the entrance, or rear, of the rolls for further reduction by hand
carrying or by means of a platform which can be raised to pass the work above the

rolls. An obvious improvement in speed results from the use of a two-high reversing
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(a) (b)

Figure 2.7: A typical arrangement of rolls for experimental rolling mills; (a) Two-high,
pullover; (b) two-high, reversing

mill, in which the stock can be passed back and forth through the rolls by reversing

their direction of rotation (Figure 2.7b).

2.6 A THEORETICAL DESCRIPTION OF METAL ROLLING

The main purpose of the rolling theory is to determine the pressure distribution at the
interfaces between the work roll and the rolled metal. Because hot-rolling is a process
in which the workpiece is plastically deformed, before establishing the main concepts
of the rolling theory, it is convenient at this point to look at some main element of
the theory of plasticity. The theory of plasticity deals with the behaviour of metals
at strains where Hooke’s law is no longer valid because the shape and structure of
the metals do not recover after deformation; in other words, plastic deformation by
rolling is not a reversible process [17]. To describe the behaviour of a metal in terms
of its elastic-plastic characteristics, the stress-strain curve is used, as shown in Figure
2.8.

The determination of the state of stress is necessary for the analysis of plastic
deformation in metals. The state of the stress at a point may be determined by
calculating the stresses acting on three mutually perpendicular oriented planes passing
through the point. Consider the workpiece under a Plane-Strain Compression (PSC)
test shown in Figure 2.9. The stress system at any point can be represented by three
principal stresses which control the yielding behaviour of the metal and which give

rise to the associated principal strains.
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Figure 2.8: Typical elastic-plastic behaviour of metals

In the PSC test of Figure 2.9, 03 and e3 are the thickness stress and strain respec-
tively, o5 and &, are the width stress and strain respectively, oy and &, are the length
stress and strain respectively. It is worth noting that in an ideal test (no spreading)

£y equals zero. Here the equivalent strain (£ ) is given by the following expression:

E= ? [(51 —52)2+ (62—83)2“'(53—51)2]1!2- (2.1)

[f the equivalent tensile strain in the workpiece deformation is calculated assuming
ideal plane strain conditions, i.e. £, = —¢3 , and &5 = 0, then Equation (2.1) becomes:
/2 2 2 hy

V2 =

F= Y2 42442 P = Z gy = —In-2, :
g 3[J+sd+4ed} 75 \/glnhf‘ (2.2)

where hy and hy are the initial and final thickness of the workpiece respectively.

In hot-rolling, the flow stress is a function of both temperature and the rate of
change of thickness or strain rate, which is related to the speed of the rolls. The mean
strain rate (&) for hot-rolling with sticking friction is given by the following equation:

where v, is the peripheral speed of the rolls, R, is the roll radius, and r represents

the amount of reduction in thickness.
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Figure 2.9: A schematic illustration of stresses and strain axes relative to PSC work-
piece

NOTE: From this point of the thesis onwards, unless otherwise specified, the
equivalent strain will be referred to as strain, and the mean strain rate as strain

rate. Also, the notations e and ¢ will refer to strain and strain rate respectively.

As shown in Figure 2.10, when the work rolls are rotating with a peripheral speed
Ur, at some point N in the roll gap, the peripheral velocities of the rolls and the
workpiece are equal. This point is known as the neutral point. To the left of this
point, the surface velocity of the metal v, is lower than the roll peripheral velocity v,
and this difference in speed produces a friction between the metal and the rolls which
tend to draw the metal into the roll gap. To the right of N, the metal velocity v, is
greater than the roll peripheral velocity v,, so the friction tends to retain the metal in
the roll gap. Because of this roll-metal velocity relationship, the pressure distribution
at the interfaces between the work rolls and the roll metal will be uneven forming the
so-called friction hill [25].

In Figure 2.10, L is the roll contact length, iy and hy are the initial and final
thickness respectively, and « is the roll bite angle. According to this figure, the

following assumptions are made:
e The workpiece does not spread laterally;

¢ Roll flattening does not occur in the arc of contact;
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Figure 2.10: A schematic presentation of the deformation in hot-rolling

e The peripheral velocity of the rolls is constant;

e Compression rates from the point along the arc of contact does not have any

effects on the magnitude of the compression strength; and
e The vertical component of the frictional force is negligible.

Figure 2.11 illustrates a number of important relationships between the geometry
of the rolls and the forces involved in deforming a metal by rolling. At any point
along the surface of contact, such as point A, two forces act on the metal. These are
a radial force (P) and a tangential force (F). Between the entrance plane and the
neutral point the metal is moving slower than the roll surface, and the frictional force
acts in the direction shown in Figure 2.11 so as to draw the metal into the rolls. On
the exit side of the neutral point the workpiece moves faster than the roll surface. The
direction of the frictional force is then reversed so that it acts to oppose the delivery
of the metal from the rolls.

The vertical component of P is known as the rolling load or the rolling force
because it is the force with which the rolls press against the metal and is also equal
to the force exerted by the metal in trying to force the rolls apart. As mentioned
before, the angle o between the entrance plane and the centreline of the rolls is
called the angle of contact, or angle of bite. Referring to Figure 2.11, the horizontal
component of the normal force is P sin «v, and the horizontal component of the friction
force is F'cos . For the workpiece to enter into the throat of the roll the horizontal

component of the friction force, which acts toward the roll gap, must be equal to

7 et
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Figure 2.11: Acting forces during rolling

or greater than the horizontal component of the normal force, which acts away from
the roll gap. The limiting condition for unaided entry of a slab into the rolls can be
expressed mathematically via the following relationships:

Fceosa= Psina

F sina __

5 === -=tanw
s @
p= tanao

The workpiece cannot be drawn into the rolls if the tangent of the contact angle
exceeds the coefficient of friction. If p = 0, rolling cannot occur, but as p increases
progressively larger slabs will be drawn in the roll throat. The high forces generated
in rolling are transmitted to the workpiece through the rolls, under these loading
conditions there are two major types of elastic distortion. First, the rolls tend to
bend along their length because the workpiece tends to separate them while they are
restrained at their ends. Second, the rolls flatten in the region where they contact
the workpiece, so that the radius curvature is increased.

Over time, various metallurgists and researchers have proposed mathematical rela-
tionships to calculate the rolling force and torque developed by the workpiece [61],(72].
However, a simplified analysis proposed in [17] shows that the main parameters to
calculate the rolling force are the roll diameter, the deformation resistance, the fric-

tion between the rolls and the workpiece, and the presence of front tension and/or
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back tension in the plane of the sheet. In this case the mean deformation pressure is

given by the following equation:

1
P = 09— (exp? —1), - (2.5)
Q
where o is the yield stress and @ = uL/h. Since L ~ \/R.(ho — h f), the rolling

force can be calculated using the following equation:

P=—o0 | 5 (exp® 1) by Rl — ). (2.6)

The factor —\%— arises because flat rolling is a plane-strain situation, so that the
flow stress should be the flow stressing plane stress (see Equation (2.2)). Equation
(2.6) shows that the rolling force and the length of contact are indirectly proportional
to the roll diameter. Therefore, with small-diameter rolls, it is possible to produce a
greater reduction before roll flattening becomes significant and no further reduction
in thickness is possible. On the other hand, the rolling torque (T 04p) is equal to the
total rolling force multiplied by the effective moment arm, and since there are two

work rolls, the torque is given by the following equation:
Troap = 2Pay, (2.7)

where a,, = mm is the moment arm, m being the moment arm coefficient.

The rolling force and torque prediction plays a critical role in modern rolling
schedule control and optimisation. It is known that, for a given steel grade, the
rolling force and torque can be determined by the stock temperature, mill reduction,
rolling speed, friction, heat transfer, etc. They affect the mill schedule, the thickness of
the rolled product, and the final product profile. Modern roll gap set-up and profile
control demand accurate predictions of the rolling force and torque under various
rolling conditions.

As shown above, there exist several methods which allow to predict rolling forces
and torques, most of them being based on traditional models such as Equations (2.6)
and (2.7). Nevertheless, the use of the Finite Element (FE) technique to predict
the rolling forces and the torques has proved popular, and many commercial FE
software packages have now become available [59],[10]. Also, Neural Networks (NN)
have also become a popular modelling tool, thanks to their powerful modelling and

flexible self-learning capability. The use of NN for intelligent data analysis has been
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attracting a wider audience. Indeed, the main applications of NN in the steel-making
industry includes the estimation of some adaptive parameters of a physically-based or

empirical model with the help of available experimental data (see the work described
in [50],[73]). |

2.7 CONCLUDING REMARKS

The basic concepts of hot-rolling and its important role within the thermomechanical
processing of steel alloys were introduced in this chapter. The understanding of
such concepts, along with the phenomena taking place during hot-rolling, allows one
to approach the problem by establishing a general view about the real hot-rolling
conditions in the Hille-mill. This information is useful when developing optimisation
strategies to make the process faster and safer, as well as being able to produce better
rolled products.

It is clear that the mechanical properties of the alloy being design are directly
related to the metal microstructure and its processing; therefore, special attention to
establish the mathematical models that describe such relationships should be consid-
ered when establishing criteria for the mill scheduling. The next chapter will intro-
duce some of the models used to describe the evolution of the stéel microstructure
during hot-rolling, and how such microstructural changes affect the final mechanical

properties of a steel alloy.



Chapter 3

Microstructure Evolution during
Hot-Rolling

3.1 INTRODUCTION

This chapter introduces the physically-based models associated with the C-Mn steel
alloy, with a special focus on the role of grain size in the characterisation of the
microstructure and the final properties. Such models should provide an understanding
of the microstructure evolution during the rolling process, and provide an insight
on how to exploit or reconfigure the thermomechanical processing of steels. They
also provide an invaluable feedback in terms of a quantified guidance to design new
methods of control and optimisation. A brief description of the main concepts is
given, along with some theoretical bases relating to the steel microstructure and its
composition, as well as the evolution of the microstructure through the various stages
of the processing. The content of this chapter is of particular importance because
the physically-based model of the stock is the base of the experiment design and the

optimisation mechanism proposed in this research work.

3.2 THE STEEL MICROSTRUCTURES AND PHASES

The performance of steels depends on the properties associated with their microstruc-
tures, that is, on the arrangements, volume fractions, sizes, and morphologies of the
various phases constituting a macroscopic section of steel with a given composition
in a given processed condition. Steel microstructures are made up of various crys-
tals, sometimes as many as three or four different types, which are physically blended

by solidification, phase changes, hot-deformation, and heat treatment. Each type of

28



3.2 The Steel Microstructures and Phases 29

f.c.c.

Figure 3.1: Principal types of crystal lattices

microstructure and product is developed to characteristic-property ranges by specific
processing routes that control and exploit microstructural changes. Thus, processing
technologies not only depend on microstructure but are also used to tailor the final
properties [43].

The crystallisation of metals occurs during solidification, when the atoms of a
liquid metal assemble themselves in an orderly arrangement and form a definite space
pattern known as a space lattice. There are several types of lattices in which metallic
atoms can arrange themselves upon solidification. The three most common crystal

lattices are shown in Figure 3.1, and are known as:
e Body-centred cubic (b.c.c.);
e Face-centred cubic (f.c.c.); and

e Hexagonal closed-packed (h.c.p.).

A b.c.c. structure has an atom at each corner of an imaginary cube and an atom
in the centre of this cube and generally produces strong metals which are reasonably
ductile. An f.c.c. structure has an atom at each corner of a cube and an atom at the
centre of each face of the cube. Metals with f.c.c. structures tend to be soft and ductile
over a wide range of temperatures. Hexagonally closed-packed (h.c.p.) structures have
an atom at the corners of an imaginary hexagonal prism and an atom at the centre of
each hexagonal face and three atoms in the centre forming a prism. These metals are
relatively brittle. When a metal undergoes a transformation from one crystal pattern

to another, it is known as an allotropic change. The allotropic forms of iron, which is



3.2 The Steel Microstructures and Phases 30

Oc ‘,‘
AN b.c.c.
1539 -
1400
f.c.c
910
£
E b.c.c.
2
&
=
-273

Figure 3.2: Allotropic changes of iron

the main component of steels, are temperature dependent as illustrated in Figure 3.2.
When there is an allotropic change from a b.c.c. to an f.c.c. lattice, it is accompanied
by a marked quantitative change in the characteristics and properties of the metal
involved; therefore, the term microstructure in this context is used to describe a set
of characteristic elements that can be identified in the arrangement of these crystals
[49].

As shown in Figure 3.2, pure iron can exist in three separate crystalline forms
which are designated by letters of the Greek alphabet: ‘alpha’ («), ‘gamma’ (y), and
‘delta’ (). a-iron, which has a b.c.c. structure and exists at normal temperatures,
changes to v-iron, which is a f.c.c. structure, when heated to 910°C. At 1400°C the
f.c.c. structure reverts to b.c.c.. that is é-iron. The essential difference between a-iron
and d-iron, therefore, is only in the temperature range over which each exists [30].

Due to the crystalline structure of steel, it is clear that the objective of the met-
allurgical process is to manipulate the size, shape, and distribution of the crystalline
grains and second-phase particles to create alloys with specific desired characteristics.

Sometimes, even the orientations of the grains are controlled to provide texture. Most
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Figure 3.3: Distributed grains of different size in a C-Mn steel alloy

alloys are polycrystalline materials, and so grain structure is a key feature that can
be examined and evaluated by metallographic analyses [2]. In metallurgy a grain is
any of the small distributed crystals of varying sizes that compose a solid metal. The
grains enter into contact with each other at surfaces called grain boundaries.

Figure 3.3 shows an example of the arrangements of grains and their boundaries
of a C-Mn steel alloy. The structure and size of the grains determine the important
physical properties of the solid metal. Fine grains and finely divided phase sections
are typically the preferred microstructure (at least for good strength and ductility in
room temperature structural applications), because the grain boundaries are stronger
than individual grains in a properly processed metal [34]. The grain boundaries repre-
sent disruptions between the crystal lattice of individual grains, and such disruptions
can provide a source of strengthening (at low creep temperatures) by pinning the
movement of dislocations. Thus, a finer-grained alloy imparts more grain-boundary
regions for improved strength [64],[2].

The size, distribution, and growth of grains and second-phase particles are affected
by many factors which result in a particular microstructure. Due to the fact that steel
is heat-treated to produce a great variety of microstructures and properties, desired
results can be accomplished by heating within temperature ranges where a phase or
a combination of phases are stable and also by producing changes in the microstruc-

ture (grain growth), and/or heating or cooling between temperature ranges in which
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Figure 3.4: Iron-Carbon (Fe-C) phase diagram [34]

temperature phases are stable [43]. The changes in such phases and the resulting
microstructures are described by a phase diagram which is a graphical representation
of the temperature, pressure, and composition limits of the phase fields in an alloy
system as they exist under conditions of complete equilibrium [25]. Figure 3.4 shows
the iron-carbon (Fe-C) phase diagram, which defines the temperature-composition
regions where the various phases in steel are stable, as well as the equilibrium bound-
aries between phase fields; temperature is plotted vertically while the composition
(percentage of carbon content) is plotted horizontally. The upper curve on the phase
diagram represents the liquidus temperature, above which the alloy is in the liquid
phase. The liquid begins to solidify when the temperature cools to the liquidus tem-
perature. On solidification, the amorphous liquid phase changes into a crystalline
solid, and grains nucleate and grow. The solid phase just formed is called austen-
ite (y-phase). On further cooling to the A3 temperature, the first ferrite (a-phase)
grains appear and the steel reaches the two-phase region. As the temperature drops
again, the transformation stops and the steel becomes fully ferritic. This tempera-

ture is identified as the A;. Depending on the carbon content and cooling rates, other
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phases such as pearlite or bainite may appear as well [43],[52].

Another interesting feature of the Fe-C phase diagram is that it shows the influ-
ence of the carbon content on the different phases. Steels are alloys of iron, carbon,
and other elements that contain less than 2% cafbon - most fréquently 1% or less.
Therefore, the portion of the diagram below the 2% carbon is of primary interest for
steel designs. On the other hand, alloys containing more than 2% carbon are classi-
fied as cast irons. The addition of carbon to iron produces several important changes
in the phases and phase equilibrium of the alloy. Differences in the ability of ferrite
and austenite to accommodate carbon result not only in important characteristics of
the Fe-C diagram but also in the formation of Fe3C. The crystal structures of the
b.c.c. ferrite and f.c.c. austenite are modified by introducing carbon atoms into the
interstices or interstitial sites between iron atoms.

Carbon is as well an element that stabilises austenite and thereby increases the
range of austenite formation. Figure 3.4 also shows that, with the addition of carbon,
the austenite field greatly expands from 912 to 1394°C - the range in pure iron - to a
wide range of temperatures and compositions. The maximum solubility of carbon in
austenite reaches 2.11% at 1130°C. Ferrite has a much lower ability to dissolve carbon
than that of austenite: the solubility decreases continuously from a maximum of only
0.02% at 723°C. When the solubility limit for carbon in austenite is exceeded, a new
phase - iron carbide or cementite - forms in iron-carbon alloys and steels. Cementite
assumes many shapes, arrangements, and sizes that together with ferrite contribute
to the great variety of microstructures found in steels [43].

Apart from iron and carbon, steels contain various alloying elements that are added
to obtain specific properties. Such alloying elements and impurities are incorporated
into austenite, ferrite, and cementite. Depending on their effect on the formation and ’
stabilisation of phases in steel, the alloying elements are usually considered as the
following [25]:

Austenite formers: Carbon (C), Cobalt (Co), Copper (Cu), Manganese (Mn), Nickel
(Ni), and Nitrogen (Ni);

Ferrite formers: Aluminium (Al), Chromium (Cr), Niobium (Nb), Molybdenum
(Mo), Phosphorus (P), Silicon (Si), Titanium (Ti), Tin (Sn), Tungsten (W),
and Vanadium (V);
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Carbide formers: Elements such as chromium, tungsten, vanadium, molybdenum,
titanium, and niobium form very stable carbides. Other elements, such as man-
ganese, are not strong carbide formers; however, they do contribute to the

stability of the other carbides that are present.

Since the primary objective of this work is to design optimal rolling schedules,
the knowledge and understanding of critical temperatures are essential, as these af-
fect the hardening and softening processes that take place during and after rolling.
These processes include precipitation, hardening, recrystallisation, and recovery, each
of which may be static or dynamic, depending on whether loads are applied, and
whether work hardening results from deformation below the recrystallisation stop
temperature. The study of these processes leads to complex equations describing the
overall microstructure evolution of the rolled product. The next section will describe
this study.

3.3 MICROSTRUCTURAL CHANGES OF STEEL DURING HOT-ROLLING

The basis for the current understanding of the physical metallurgy of hot-working
was developed in the 1960’s and is still continuing. Models of various complexities
and performance levels have been developed with the aim of achieving the accurate
prediction of the metal flow stress and temperature fields. These models have demon-
strated the high degree of sensitivity of microstructure to the operating conditions.
The determining variables are normally characterised by the temperature (T'), the
strain (¢), and the strain rate (¢), with flow stress (o) beiﬁg the measurable response
of the microstructure to these conditions [7]. In this regard, the correlation between
the parameters of hot-deformation and the development of the resulting microstruc-
ture has been extensively investigated and a number of papers have been published
in the literature. Among them, the works presented in [69], [66], [32], and [85] should
be mentioned. In these, various closed form of equations are presented, describing
the processes of recrystallisation and grain growth. The focus of this section is to
review particularly the equations proposed by Sellars in [68] for the prediction of the
microstructure evolution for C-Mn steels.

Figure 3.5 shows that, prior to the start of hot-rolling, the steel microstructure con-
sists of coarse grains of austenite type. When passed through the rolls, the austenite

grains are flattened and elongated on average, while each austenite grain undergoes
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Figure 3.5: Microstructural changes during hot-rolling

a dimensional change that corresponds to that of the workpiece as a whole. The

following three types of restoration processes are associated with hot-rolling:

1. Dynamic restoration processes which start and are complete during defor-

mation;

2. Metadynamic restoration processes which start during deformation and

are complete after deformation; and
3. Static restoration processes which start and are complete after deformation.

When steel is deformed in the austenitic state at high temperatures, the flow stress
rises due to work hardening because the metal accumulates dislocations during the
deformation, making further deformation more difficult. After an initial rapid work
hardening, the stress goes through a maximum associated with the occurrence of
dynamic recrystallisation. Figure 3.6 shows the dynamic characteristics represented
by the stress-strain curve. The appearance of initially unworked crystals produces
a drop in the stress-strain curve, but it soon levels off as repeated cycles of work
hardening and dynamic recrystallisation become established.

The level of the stress-strain curve is sensitive to both strain rate and temperature
because dynamic recovery is a thermally-activated process and hence it leads to a
more effective softening at low strains and/or high temperatures. The effects of

the strain rate and the temperature on the stress and the microstructure can be
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Figure 3.6: Stress-strain curve of the C-Mn steel alloy

conveniently combined in terms of the Zener-Hollomon parameter (Z) by using the

following relationship:

Z = éexp (%ﬁ‘) (3.1)

where Qqes is the activation energy for deformation (312x10% J/mol for C-Mn steel
alloys), R is the gas constant (8.31 J/Kmol), and T is the absolute deformation

temperature.
The stress-strain behaviour of the C-Mn steel alloy shown in Figure 3.6 can be

represented by the following system of equations [7]:

o =0 =1.155{0o + (0. — 00) [1 — exp (—=C")]*°} (e < 0.7¢,) .
14 , (3.2
0 =0 —1.155 (0, — 04) {1 —exp {—0.49 (—“L) ] } (€ > 0.7¢,)

where o1
oo = 103.84sinh ™ | (;ozi55w) J

0. = 103.41 sinh™ (1.—77%)0.217] ’ 53
0ss = 106.72sinh™* [(mflw)o.ms]

In the above formulations, o represents the flow stress in N/mm? at strain €, oo

is the stress at a plastic strain of zero, 0. and o, are the steady-state flow stress and
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actual steady-state flow stress respectively achieved at larger strains; C” is a variable
dependant on the deformation conditions, and ¢, is the strain for the peak in the flow

stress which can be calculated by the following equation:
£p = 4.9 x 1074d)°Z°15 (3.4)

where dj is the grain size in micrometers (um) prior to deformation. The role of
dynamic recrystallisation of austenite in the actual rolling of C-Mn steels is small,
due to the fact that the critical strain required for achieving the steady-state of the
flow stress is very large even at high temperatures. The grain refinement-of these

steels is usually achieved by static recrystallisation.

3.3.1 The Dynamic Restoration Process

Dynamic microstructural changes take place during deformation, but for thermome-
chanical processing the most important phenomena are work hardening, dynamic
recovery, and dynamic recrystallisation [7]. Dynamic recovery is a reduction of the
work hardening effects without the motion of large grain boundaries and occurs in a
range of strain that is less than that for the peak stress. It involves the rearrangement
of dislocations, but it has only an indirect influence on modelling the microstructure
evolution by controlling the onset of dynamic recrystallisation.

Dynamic recrystallisation takes place in the range of strain that corresponds to
the steady-state of flow stress. When modelling thermomechanical processing, it is
assumed that, when the dislocation density reaches its critical value, dynamic re-
crystallisation starts and becomes the dominant softening phenomenon. This critical
value of the density corresponds to the critical strain (e.), which is a function of the
strain rate, the temperature, and the austenite grain size prior to deformation, and

can be expressed as follows:

e = 3.92 x 1074433 2%, (3.5)

3.8.2 The Static Restoration Process

Microstructures developed by dynamic restoration are not stable and, at elevated
temperatures, are modified by the metadynamic and static restoration processes. The
latter processes can include static recovery, static recrystallisation, and metadynamic

recrystallisation. In hot-rolling, static recrystallisation can start spontaneously. The
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nuclei of recrystallisation occurs preferentially at the elongated grain boundaries and
the interfaces of the deformation bands. Softening by static recrystallisation occurs
at rates that depend on prior deformation conditions and holding temperatures. In
C-Mn steels, the recystallisation curves generally follow an Avrémi equation of the

following form: )

X =1—exp |—0.639 (ﬁ) ] (€ < &) | .

X =1—exp |—0.639 (ﬁ)] (€ > &)
where X is the volume fraction recrystallised after time ¢, whereas t5y is the time
in seconds for half fraction recrystallised, and changes by orders of magnitude over
the range of conditions encountered during rolling. The recrystallisation rate and
size of the recrystallised grains are controlled by three major factors: the austenite
grain size prior to deformation, the temperature of recrystallisation, and the amount
of deformation prior to any recrystallisation [71].

Since the nucleation sites for recrystallisation are located predominantly at the
grain boundaries, both recrystallisation time and recrystallised grain size are affected
by the initial grain size. In [68], it was found that 50% of the recrystallisation time
for C-Mn steels depends on the strain and can be described by the following system

of equations:

tso = 2.5 x 107193 %exp (29512 (e < <)

; (3.7)
tso = 1.06 x 107°Z%exp (303{%03) (e > &)

where Z is the Zener-Hollomon parameter, R is the gas constant, and T is the recrys-
tallisation temperature. The conditional range implies that dynamic recrystallisation
had not occurred in the previous deformation [7]. The grain size produced by com-
plete recrystallisation without previous dynamic recrystallisation (d,.) is described
by the following system of equations:

(3.8)

)

drez = 0.5d3 8710 (e < &)
Areg = 1.8 x 10327015 (¢ > &%)

where £* = 2.8 x 107%d357 2915, As recrystallisation takes place, the original, unre-
crystallised grains are consumed by new grains. The resulting mean grain size is given

by the following equation:

d=X*des + (1 = X)*dp. (3.9)
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It is worth noting that depending on the amount of deformation, the static restora-

tion process can proceed in the following three forms:

1. Recovery occurs when the metal is rolled with a reduction that is less than the
critical value for partial recrystallisation. In this case, grain coalescence instead
of grain refinement occurs due to the strain-induced grain boundary migration,

and produces much larger grains than the initial ones;

2. Partial recrystallisation occurs when the rolling reduction is sufficient to ini-
tiate partial recrystallisation, therefore a mixed microstructure of recrystallised

grains and recovery grains is produced; and

3. Complete recrystallisation occurs when a uniformly distributed recrystallised

microstructure is produced.

When recrystallisation is éomplete, further grain growth may take place even in
the relatively short time available between passes. The time dependence of grain
growth (d,y) may be represented by the following equation:

(3.10)

rexr

_ 3
dl% = d'9, +1.19 x 10t exp (M> .

RT

In the case of calculations of microstructure for further rolling passes being needed,
the final microstructure provided by the above models can be used as the initial
microstructure for the next pass.

Figure 3.7 illustrates the evolution of microstructural parameters between passes.
In this figure, do; represents the initial austenite grain given by either reheating or
a previous rolling pass. As mentioned earlier, during and after deformation, several
dynamic and static microstructural changes take place which are functions of the tem-
perature (T'), and the deformation profile of the pass, i.e. the strain (¢) and the strain
rate (¢). The amount of deformation applied to the stock affects the static restoration
process occurring during the inter-pass time, whether it is recovery, partial recrys-
tallisation, or complete recrystallisation (X = 1). When recrystallisation is complete,
the recystallised grain size (d,;) grows at a rate depending on the temperature and
the holding-time prior to the next rolling pass. The final grain size (dg2) is taken as

the initial microstructure for the next rolling pass.
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3.4 MECHANICAL PROPERTIES OF STEEL AT ROOM TEMPERATURE

The objective of modern steel-making industry is to produce high strength products.
Modelling the correlation between the thermomechanical history and the mechan-
ical properties of the final product, especially after experimental substantiation of
the predictions, is very useful during the development process. Although modelling
thermomechanical processing in hot-rolling is reasonably advanced, progress in the
prediction of transformed microstructures, and the resulting mechanical properties,
taking into account the transformation, is still limited [52]. The next sections will
show some of the models published in recent literature which are used to describe the

phase transformation process and the mechanical properties at room temperature.

3.4.1 Structural Changes during Cooling

As steel continues to cool after hot-rolling, its microstructure transforms from austen-
ite to lower temperature phases. In the predominantly ferritic microstructures, the

transformation to ferrite and pearlite takes place. Here the main parameter of
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interest is the ferrite grain size, since it is considered to be the underlying fac-
tor when defining mechanical properties such as the yield strength and the ultimate
tensile strength. _

The factors that mainly affect the ferrite grain size are the final austenite grain
size and the retained strain, both of which relate to the deformation history, the
composition and the cooling rate, which are external influences. The final austenite
grain size is the last fully recrystallised grain size, increased by grain growth between
the last pass and the beginning of the transformation. The transformation from

austenite to ferrite can be expressed by the following formula [64]:

dy = {a +b (%) > + ¢l —exp (—0.015(17)]} (1-0.45V%), (3.11)

where d,, and d, are the grain size in the ferrite and austenite phase respectively, dT/dt
is the cooling rate during the phase transformation, € is the accumulated strain in
the austenite; furthermore a, b, and ¢ are metal constants for the C-Mn steel alloy

calculated as follows:
a=-04+64C,

b=242-59C, , (3.12)
c=22
where C.; = C + Mn/6, and represents the equivalent carbon content. Although the

model of Equation (3.11) was determined on the basis of very few data, it has proven

to be robust and forms the basis of many such models that have since been developed.

3.4.2  Yield Strength

The mechanical properties of a steel alloy are usually associated with the Yield
Strength (YS), indicating the beginning of plastic deformation or the end of pure
elastic behaviour of the loaded metal. The yield strength and the lower yield stress
definitions are taken to be identical [52].

The effects of the various microstructural and composition parameters on the
mechanical properties of steels with ferrite-pearlite microstructures have been sta-
tistically analysed by multiple linear regression analysis [64],[35]. The resulting
empirical equations are limited to steels with less than 0.25% carbon and

therefore to microstructures that are largely ferritic. The model used in [32]
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for the prediction of YS can be expressed by the following formula:
YS = K + 26 Mn + 60 Si+ 759 P + 3286 N + 19.7 d~/2, (3.13)

where K is 88 MPa for air-cooled steel and 62 MPa for furnace-cooled steel [26],[43];
N is the free nitrogen dissolved in the ferrite lattice and d is the mean linear intercept
ferrite grain size in millimeters. The beneficial effect of the ferrite grain size on YS
is apparent from the above equation. The effect of both manganese and silicon is to

increase YS by the solid solution strengthening of the ferrite.

3.4.8 Ultimate Tensile Strength

The ultimate Tensile Strength (TS) is the maximum resistance to fracture. It is
equivalent to the maximum load that can be carried by one square inch of cross-
sectional area when the load is applied as a simple tension. In a stress-strain curve,
TS appears as the stress coordinate value of the highest point on the curve. The

model used in [32] for the prediction of TS is expressed by the following formula:

TS = 165+ 54 Mn + 100 Si+ 652 P + 476 Ni+

3.14
635 C + 3339 N + 11 d~1/2, (3.14)

The above equation has been used for plate, rod, bar, and structural mills for low
carbon steels and some microalloyed grades. It is worth noting that such relationships
seem to be adequately explained by a linear function of their arguments. Additionally,
the linear nature of the mechanical properties as a function of the ferrite grain size
is very well understood by the Hall-Petch relationship where the yield stress may
be related linearly to the reciprocal of the square root of the grain size, [26]. The
Hall-Petch relationship describes the effect of the ferrite grain size in the yield stress

(oy) as follows:
0y =0y + kyd*l/2, (315)

where og and k, are constants. This type of relationship holds for a wide variety of
steels [64].
8.4.4 Toughness

In addition to the mechanical properties that characterise the strength and ductility

of steels, toughness, or the energy absorbed during fracture, is also of considerable
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engineering importance. Ferritic steels are unique in that they show a transition from
ductile to brittle fracture when broken at successively lower temperatures. Generally,
the transition for a given steel and microstructure is determined by breaking a series
of V-notched bars by impact loading at temperatures above and below room tempera-
ture. The Impact Transition Temperature (ITT) is a measure of the metal toughness
and marks the transition between the ductile and the brittle fracture. Low-carbon
steels have sub-zero ITT and as a result, they are quite tough at room temperature
[34]. To predict ITT in degrees Celcius (°C) using the composition and the ferrite

grain size, the following model can be used [43]:
ITT = —194+44 Si+ 700 N - 11.5 d"Y2 + 2.2 V. (3.16)

As shown in the above expression, ITT is also favourably affected by the ferrite
grain size (d) and the volume fraction of pearlite (V). The above models show that,
in practical terms, the finer the grain size, the better the resulting YS, TS, and ITT;
as a result, in modern steel-working much attention is paid to the final ferrite grain
size [34]. For instance, while a coarse grain size of 250 ym leads to a YS in mild
steels of around 100 MPa, the grain refinement to 2.5 um raises the yield stress to
over 500 MPa. Also, the unique feature of the grain size strengthening is that it
is the only strengthening mechanism which also increases toughness. Refining the
grain size of steel alloys which show a ductile-brittle transition results in a decrease
in ITT. Furthermore, refining the ferrite grain size also increases the flow stress at
any given strain during plastic deformation and also the v_vork—hardening rate of the
ferrite-pearlite structures. In addition, the fracture stress is raised and the total strain
at fracture is increased by refining the ferrite grain size [64].

The grain size of the steel can also affect many other properties; for example,-the
austenite grain size affects the transformation characteristics and thereby the hard-
enability, whilst increasing the grain size improves the creep strength but decreases
the creep of rupture ductility [44]. Because of the importance of the ferrite grain
size as a strengthening mechanism, but more especially because a fine grain size is so
beneficial to toughness and ductility, this research work is focused on the development
of a mechanism to promote the refinement of the ferrite grain and thus improving the

ensuing mechanical properties too.
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3.5 CONCLUDING REMARKS

This survey of the effects of the process variables on the microstructural changes
that take place during hot-rolling of C-Mn steels showed that there is good quan-
titative knowledge and consistency of observations that have led to the formulation
of physically-based models to predict the metal behaviour. The combination of such
models enables the microstructure prediction during complex rolling operations. This
allows for designing reliable mechanisms which can integrate metallurgical knowledge
and process optimisation methods.

The equations described in this chapter can be divided into two groups:”

1. The property models which predict the metal strength and toughness; and

2. The microstructural models whose determining variables are normally charac-

terised by the temperature, the strain, and the strain rate.

It is apparent that the key factor which enables to improve the mechanical proper-
ties is the ferrite grain size, which can be refined by a series of recrystallisation cycles
during the austenite phase. It was observed that, by selecting effective deformation
profiles, one can control the microstructural changes of the metal so as to achieve the
desired mechanical properties. How to choose the optimal values for such deformation
profiles is directly related to the mill scheduling. This is the main topic of the next
chapter.



Chapter 4

Metal Design and Microstructure

Optimisation using Genetic Algorithms

(GA)

4.1 INTRODUCTION

This chapter outlines the methodology which will allow one to tailor the microstruc-
ture of steel alloys for developing metals by design and achieving a right-first-time
production. The property models already described in Chapter 3 are combined with
Neural-Fuzzy models to map the final mechanical properties of the steel with its
microstructure and chemical composition. An optimality criterion is also defined in
order to minimise the error between a user-defined metal design and the one described
by its property-structure characteristics after processing. A GA is used to carry-out
an optimal search for the best microstructural parameters such as the ferrite grain
size and the volume fraction of pearlite that satisfy the mechanical property require-
ments. The efficacy of this approach is evaluated by analysing a series of proposed

metal designs using the C-Mn steel alloy.

4.2 DEFINITION OF THE MULTI-OBJECTIVE OPTIMISATION PROBLEM

The scheduling problem of the Hille-mill requires the definition of different optimality
criteria which may include multiple objectives. Such criteria can be represented by
‘objective’ functions to be minimised. The problem also has a number of constraints

which any feasible solution (including the optimal solution) must satisfy. In a general

45
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form, the multi-objective optimisation problem can be defined as follows:

Minimise:  F,(z), m=12,...,M.
Subject to: G,(z) > 0, i=1,2,...,J; (4.1)
H(z)=0, k=12,... K, '
zF<z; <2V, i=1,2,...,n
A solution z is a vector of n decision variables where z = [z;, zo,. .. ,xn]T. The

last set of constraints in Equation (4.1) are called variable bounds, restricting each
decision variable (z;) to take a value within a lower (z}) and an upper (z¥) bound;
these bounds constitute the decision variable space. Associated with the problem,
are the J inequality and K equality constraints. In the above formulation, the terms
G,(z) and Hy(z) are called constraints’ functions. A solution x that does not satisfy
all of the (J + K) constraints and all the 2n variable bounds stated above is called
an infeasible solution. On the other hand, if any solution z satisfies all constraints
and variable bounds, it is known as a feasible solution. Therefore, in the presence
of constraints, the entire decision variable space need not be feasible. The set of all
feasible solutions is called the feastble region. Also, there are M objectives that have
to be minimised. In multi-objective optimisation the objective functions constitute
a multi-dimensional space called the objective space. In the application described in
this chapter, the optimality criteria are defined in order to meet the metal design
requirements by means of finding feasible solutions in terms of the microstructure
and the processing conditions. Such criteria include the physical-related constraints
of the metal as well as the mill processing limitations.

Figure 4.1 represents a graphical interpretation of the multi-objective optimisation
problem associated with the Hille-mill. As shown in this figure, the aim is to_find
correlating points or solutions among the diﬂ’erentv spaces. For instance, the coordi-
nates of the solution p, represent the user-defined values for the desired mechanical
properties Pi, Ps,...,Ppp. As already explained in Chapter 3, for certain deformation
conditions, there exists a solution m within the microstructure space that represents
the critical microstructural parameters M;, Ms,...,M,.,, which define those proper-
ties. Similarly, for each solution m in the microstructure space, there exists a solution
r in the processing space, whose components may be described by a set of rolling
parameters Ry, Ra,...,R,,. It is worth noting that the optimal solution for the mi- |

crostructure and the processing should be within the feasible regions of each space in
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Figure 4.1: A graphical representation of the optimisation problem of the Hille-mill

order to guarantee repeatability of the rolling process.
The graphical representation of Figure 4.1 can also be expressed using the following
equation which relates (1) the metal mechanical properties with its microstructure,

and (2) the microstructure via a set of rolling parameters:

f(p) = = [ﬂ'fl' ﬁ"fiz-r Zledy M-um]T

(4.2
g(m) =7 =Ry, Ra....., Rur]” )

where f(-) is a function that defines the metal properties and whose arguments are
the quantitative elements of the metal microstructure, such as the ferrite grain size
and the volume fraction, whereas g(-) is a function representing the microstructure
described in terms of the deformation parameters, such as the temperature, the strain,
and the strain rate applied to the stock. In other words, given the desired mechanical
properties (p), one can optimise f(p) to find the best microstructural parameters,
which are also the components of m; then, the rolling parameters can be found by

using m and g(m) along with an optimality criterion.
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Having defined the multi-objective optimisation problem, the following section
will discuss the first part of the proposed scheduling methodology, which will link the
desired metal design to its microstructure and mechanical properties (MODULE 1).
Chapter 5 will discuss how the rolling schedule can be synthesised using the metal
microstructure (MODULE 2).

4.3 QOPTIMISATION OF THE MICROSTRUCTURAL PARAMETERS

Figure 4.2 shows the block diagram of the proposed approach. First, the designer
has to specify the desired mechanical properties which may involve one or more of
the following: TS, YS, and ITT, the latter being a measure of the metal toughness.
Once the critical properties have been identified, the next task consists of finding the
quantitative microstructural parameters that will yield the above properties. These
steps have been traditionally accomplished by trial-and-error and depend considerably
on the designer’s intuition and experience. For this reason, developing new metals
has always represented a time-consuming and expensive exercise. To overcome these
problems and to introduce a systematic design procedure, a model-based mechanism
was developed which is included in MODULE 1.

Three basic elements for defining and approaching the problem ére considered in

MobDULE 1:

1. The Stock Model which relates the mechanical properties with the critical

microstructural parameters;

2. The Optimality Criterion which is related to achieving the desired mechan-
ical properties of the steel alloy in terms of the quantitative elements of its

microstructure; and

3. The Physical Constraints which include the limitations of the forming process
and the hot-workability of the metal.

The characteristics of these three components for the optimisation will be discussed
in the following sections. ‘

Figure 4.2 also shows that further information on the metal characteristics should
be provided to carry-out the optimisation. For instance, the content of each chemical

element, as well as the phase diagram profile of the alloy, are important to set the
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Figure 4.2: Block diagram of the proposed mechanism for microstructure optimisation

physical constraints that will form the boundaries of the feasible region within the so-
lution space. Furthermore, these metal characteristics will prove useful in determining

the expected microstructures and the dynamics of the phase transformations.

4.4 MODULE 1 - FROM THE DESIRED PROPERTIES TO THE REQUIRED MI-
CROSTRUCTURE

This section describes the components of MODULE 1 of Figure 4.2. In this case the
optimal search is focused on finding the best microstructural parameters required to
achieve the desired mechanical properties. As mentioned in Chapter 3, the ferrite
grain size affects many properties, including those considered in this study, i.e. Y8,
TS, and ITT. Equations (3.13) to (3.16) in Chapter 3 described the corresponding
relationships of the above properties as functions of the ferrite grain size in millimeters

(d = da/1000)), the volume fraction of pearlite (V,), and the chemical composition,
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which for convenience are recalled here:

YS = 88+ 26 Mn+60 Si+ 759 P+ 3286 N + 19.7 d'/2, (4.3)
165+ 54 Mn + 100 Si + 652 P + 476 Ni+
TS = + n-+ 1+ + 1+ (4.4)
635 C + 3339 N + 11 d-1/2,
ITT = -19+44Si+700 N—-11.5d"Y24+22V,. (4.5)

It is worth noting that the above relationships seem to be adequately explained
by a linear function of their arguments. As mentioned in the previous chapter, these
equations were the result of applying a simple linear regression method to fit experi-
mental observations. Additionally, the linear nature of the mechanical properties as
function of the ferrite grain size is very well known by the Hall-Petch relationship by
which the yield stress may be related linearly to the reciprocal of the square root of
the grain size [26].

The conventional models shown above have been exploited for off-line designs of
steel grades. However, as new data emerge, new paradigms such as those associated
with ‘intelligence’ (flexible, self-learning and self-organising) can be used to com-
plement the current knowledge and trends. In this case, Intelligent Systems-based
paradigms are proposed to improve the predictive capabilities of the overall optimi-

sation approach.

4.4.1 Neural-Fuzzy Modelling of the Tensile Strength

Because this is a model-based strategy, a model should be at the centre of the opti-
misation process, from anaiysis and design to implementation and testing. Therefore,
the more accurate the model is, the more reliable the solutions will be. Although the
models linking properties and microstructures presented above are widely used both
in academia and industry, a new model is proposed in this work to enhance the user’s
predictive capabilities when dealing with TS. For this purpose, a set of industrial
data was used in order to capture the relationship between the chemical composi-
tion, the ferrite grain size, and TS of the C-Mn steel alloy. To extract knowledge
from such data, Intelligent Systems-based paradigms are used because they provide
a flexible methodology to create models that combine the human-like reasoning and
interpretability of Fuzzy Inference System (FIS) with the learning and generalising’
abilities of Neural Networks (NN).
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Consider the Adaptive Network-based Fuzzy Inference System (ANFIS) proposed
in [37]. Such a Neural-Fuzzy paradigm allows for developing a data-driven nonlinear
model. Five-hundred and sixty-three data points were used from which 60% was
taken for training and 40% for testing. The model inputs included the content of four
chemical elements such as carbon (C), silicon (Si), manganese (Mn), and nitrogen (N),
and the ferrite grain size (expressed as d = d,/1000); the metal TS was considered as
the model output.

The Neural-Fuzzy model development was carried-out as follows. First, the num-
ber of rules and the antecedent membership functions were obtained by .using the
subtracting clustering method proposed in [12]; the least squares algorithm was then
used to find each rule’s consequent function. The resulting fuzzy rules corresponded
to a Takagi-Sugeno-Kang (TSK)-type model whose fuzzy rules can be expressed as
follows:

IF 2 is B and --- and z, is B, THEN y; = ¢ +cizy + -+ ¢\ 2y, (46)

' i=1,...,p,

where z = (z,. .. ,xn)T ‘and y are the input and output linguistic variables respec-
tively, BE are the linguistic values characterised by membership functions, and ¢;
are real-valued parameters, p being the number of clusters or partitions. Figure 4.3
shows the graphical interpretation of the Neural-Fuzzy model. Observe that, after the
training process, the model captured the linear relationship of the grain size and the
carbon content with the strength of the metal in good agreement with the Hall-Petch
relationship. It is worth noting that, the model describes the nonlinear nature of
the effect that other chemical elements have over TS. Figure 4.4 shows the obtained
input membership functions after training using a centre range of influence of. 0.55
for the data clustering method. The model is comprised of 5 inputs With 4 Gaussian
membership functions per input, 4 fuzzy rules, and 1 output. The resulting fuzzy

rules are the following:
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Figure 4.3: Neural-Fuzzy model for predicting the tensile strength of C-Mn steels

Ry: Ir Cis Low and Si is High and Mn is Very High and N is High and d /2 is Very High,
THEN TS = 302.32 + 577.66 C + 446.94 Si — 13.35 Mn — 1838.50 N + 9.00 d~'/?;

Ry : Ir Cis High and Si is Medium and Mn is Medium and N is Medium and d~'/? is Medium,
THEN TS = 139.89 + 915.79 C + 218.69 Si + 125.54 Mn — 10341 N + 7.06 d~'/2;

Ry : 1¥ Cis Very High and Si is Very High and Mn is High and N is Low and d~'/? is High,
THEN TS = —55.37 + 713.68 C + 202.34 Si + 4758.5 Mn + 4758.5 N + 5.61 d~1/3;

Ry : I Cis Medium and Siis Low and Mn is Low and N is Very High and d~ /% is Low,
THEN TS = 78.898 + 647.44 C + 652.58 Si + 151.05 Mn + 2149.7 N 4 19.48 d~'/2,

Figure 4.5 presents a comparison between the measured and the predicted TS
using the above Neural-Fuzzy model. As shown in this figure, all predictions were

reasonably accurate as marked by the £10% confidence band represented by the
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Figure 4.5: Measured and predicted tensile strength using the Neural-Fuzzy model

discontinuous lines. A quantitative analysis between the Neural-Fuzzy model and
the linear model of Equation (4.4) revealed a reduction of the Root Mean Square
Error (RMSE) in the predictions given by the intelligent model which was 32.46 MPa
for the training data and 24.96 MPa for the testing data; whereas using the linear
model, the RMSE for the training data was 47.98 MPa and 38.17 MPa for the testing

data.
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In summary, the model used by MODULE 1 is comprised of Equation (4.3) for YS,
Equation (4.5) for ITT, and the above Neural-Fuzzy model for the TS prediction.

4.4.2  The Optimality Criterion

Since in this study it was assumed that the chemical composition of the steel alloy
is fixed, the determining variables are the ferrite grain size and the volume fraction
of pearlite, which are the outputs of MopULE 1. It is worth noting that other
microstructural parameters may be included in the optimisation in order to achieve
other properties. In such a case, a mathematical description of these parameters
should be given.

To define the optimisation problem of MODULE 1, it is necessary to establish an
optimality criterion. This criterion is represented by an objective function as described
in Equation (4.1). The cost (Jjr) of the objective function can be calculated using
the following equation:

N
Minimise:  Jy = Z{:L-‘L—IL p= 12 N
i=1

P:{fi'v:nr'r‘d}
Subject t0: (i) damin < da < domas; (4.7)

(”') Vp S ‘mea.x;

where F; is the property considered in the optimisation problem, f3; is a weight factor
for each property, and N is the number of properties contributing to the cost; d,
represents the ferrite grain size and V), is the volume fraction of the pearlite colony in
the final microstructure. As shown in Equation (4.7), the decision variables are only
constrained by the lower and/or the upper bounds. In the study associated with this
chapter, the number of properties considered is N = 3, so that expanding the above
formulation yields the following objective function:
TS YS

TS (desired) Y S(desired)

ITT

Jm = Prs T aasead

= 1’. (4.8)

— 1‘ + Bys

= 1‘ + Brrr

Each term in Equation (4.8) represents an objective in the optimisation and ac-
counts for deviations in the mechanical properties from their desired value. There-
fore, the strategy in Equation (4.8) scales a set of objectives into a single one by pre-
multiplying each objective with a user-supplied weight vector 3 = [ Brs Bys Prrr ]
which is also used to express priorities among the selected properties of the overall

criterion. These weights are called the priority factors. Thus, the weighted sum
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Figure 4.6: Objective space of MODULE 1

converts the multi-objective optimisation problem of minimising each designed ob-
jective into a scalar one. This simple strategy is considered here as the optimality
criterion of MODULE 1. Figure 4.6 shows the objective space considering only two
objectives. Note that the optimal (minimum) value of Jy; is only reached when the
mechanical properties of the proposed design are equal to the desired values. There-
fore, the optimal solution is found when the cost of the optimality criterion equals
zero (i.e. Jy =0).

Here, the GA-based optimisation procedure involves working with a population
of microstructures represented by a two-dimensional vector in binary code known as
chromosome or individual. Each individual is a possible solution to the optimisation
problem. In this case, an individual consists of one value for the ferrite grain size, and
another value for the volume fraction of pearlite. Using genetic operators involving re-
production, crossover, and mutation, generations of new individuals are created from
the initial population. This generational cycle continues until a desired termination
criterion is reached. Figure 4.7 shows the searching procedure of MODULE 1 using

the principle of GA with its main elements and operations.
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Figure 4.7: Microstructure optimisation development

GA begins its search with a random set of solutions containing the values for the
ferrite grain size (d,) and the volume fraction of pearlite (V). When a population of
solutions is created, each solution is evaluated in the context of the optimality criteria
and a fitness value is assigned to each solution according to Equation (4.8). The
evaluation of a solution is equivalent to calculating the objective function value and
constraints violations. A termination condition is then checked. If the termination
criterion is not satisfied, the population of the solutions is modified by the 3 operators
and a new (and better) population is created. The generation counter (gen) is then
incremented to indicate the number of generations used [27].

The primary objective of the REPRODUCTION operator is to make duplicates

of good solutions and eliminate bad solutions in a population, while keeping the
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population size constant. This is achieved by performing the following tasks:

1. Identify good (usually above average) solutions in a population.
2. Make multiple copies of good solutions.

3. Eliminate bad solutions from the population so that the multiple copies of good

solutions can be placed in the population.

It is worth mentioning that the reproduction operator does not create any new
solutions in the populations, but simply makes copies of good solutions. For this
reason the CROSSOVER operator is applied next, where two previous solutions are
selected (called parent solutions) from the new population created after reproduction
and some portion of the solutions are exchanged between them to create two new
solutions. The crossover operator may not create better solutions, however even in the
case that it created bad solutions, they would be eliminated in the next reproduction
operation. But if they represent good solutions, they are likely to survive the next
reproduction and even lead to more copies, and it is also likely to achieve a crossover
with other good solutions in subsequent generations. }

The MUTATION operator is used to keep diversity in the population. It alters a
solution locally to create a better solution. Once again if the solution created were
a bad solution, then it would not survive reproduction, but if it is a good solution,
then it will survive and contribute to create new good solutions.

Because there is more than one solution being processed simultaneously and used
to update every solution in the population, it is likely that the expected GA solution
may have been a global solution. Another advantage is that GA does not require any
auxiliary information of the problem (e.g. gradient information) except the obj'éctive
function values [40].

To evaluate the efficacy of the above approach, the next sections will present a

series of proposed metal designs using the C-Mn steel alloy.

4.5 SISSCOR - AN INTEGRATED GRAPHICAL USER INTERFACE FOR METAL
DEsiGN

A MATLAB®-based software was developed to work as a friendly Graphical User

Interface (GUI) to facilitate the implementation of the microstructure optimisation
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Figure 4.8: SISSCOR  Sheffield Integrated System for SCheduling and Optimisation
in Rolling

mechanism discussed in the previous section, as well as the computation of the rolling
schedule’. This GUI has been named SISSCOR, which stands for Sheffield Integrated

System for SCheduling and Optimisation in Rolling. It provides a computing platform

to handle information, plot graphics, and log data which can be easily used in the
laboratory. As shown in Figure 4.8, SISSCOR includes different sections that guide
the user to develop his/her own metal design and obtain the optimal microstructural
and rolling parameters.

The first step consists of selecting the steel alloy to be designed. SISSCOR sup-
ports three different steel alloys: (1) the C-Mn steel alloy, which is also known as
Mild Steel; (2) the 316L Stainless Steel; and (3) the 304 Stainless Steel. It is worth
mentioning though that only the C-Mn steel alloy was considered in this thesis and
was also the only material used experimentally.

The next step relates to the design of the steel in terms of the desired mechanical
properties. Figure 4.9 shows a simple design in which one has to set the chemical

composition of the metal and enter the value for the desired mechanical properties.

'The systematic computation of the rolling schedule will be discussed in Chapter 5
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Figure 4.9: Metal design and chemical composition

The chemical elements considered for the C-Mn steel alloy are: carbon, silicon, man-
ganese, nitrogen, sulphur, and phosphorus. The ranges of the element contents shown
in Figure 4.9 are based on typical chemical compositions for this alloy in particular.
The default specification corresponds to the composition found in the alloy used ex-
perimentally in this research work; this information was provided by the material’s
manufacturer. Every time the user sets the chemical composition or amends it, an in-
ternal subroutine is called to estimate the property ranges based on the metal physical
constraints.

Once the chemical composition has been defined, the desired values for the me-
chanical properties should be specified by either entering numeric characters to the
text windows or by moving the sliders forward or backward. Depending on the type
of optimisation selected, one may set the desired microstructure instead of the me-
chanical properties, but not both.

The next step relates to the set-up of the GA parameters. These may include the
type of population (i.e. double vector or bit string), the probability of crossover and
mutation, the stopping criteria, etc. Figure 4.10 shows the GA parameters that can
be varied to add flexibility to the optimisation mechanism. Observe that the user
has to set-up the priority factors (i.e. weighting factors; the #’s in Equation (4.8))

to establish the design priorities among the mechanical properties when searching
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for the best microstructure. With this information, the microstructure optimisation

procedure can be initiated. Asshown in Figure 4.11, the GA development is visualised

before delivering the best suitable microstructure for the proposed design.
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4.6 MICROSTRUCTURE OPTIMISATION RESULTS

SISSCOR was used to illustrate how the microstructure optimisation in MODULE 1
works. Consider the C-Mn steel alloy containing 0.16% carbon, 0.19% silicon, 0.73%
manganese, 0.006% nitrogen, and 0.021% sulphur. The physical constraints of the
microstructural parameters were 8 um < d, < 30 um, and Vo < 25%. As mentioned
earlier, such constraints are established bearing in mind the physical limitations of
the metal due to the chemical composition and the effect of air cooling in the fi-
nal microstructure [52],[70]. Table 4.1 shows the results obtained for various design
criteria. "

The GA parameters were set as follows: a random initial population with uniform
distribution was used with 20 individuals; each individual received a fitness score
which was scaled in order to rank the population, so that the rank of the most fit
individual was 1, the next most fit was 2, and so on. This removed the effect of the
spread of the raw scores.

The individuals for a new generation were created as follows:

e 1-2: best two individuals from the previous generation;

Table 4.1: Optimal microstructure for different design criteria

CasE
1 2 3 4 5 6 7 8
Priority Factors 1,00 1,10 1010 1,100 1,1,1 10,1,1 1,10,1 1,1,10
Desired TS (MPa) 450 450 450 450 450 450 450 450
Calculated TS (MPa) 450 443 450 443 444 450 443 - 442
Desired YS (MPa) — 310 310 310 310 310 310 310
Calculated YS (MPa) — 309 322 309 312 321 310 307
Desired ITT (°C) — — — — -70 -70 -70 -70
Calculated ITT (°C) — — — — -73 -69 -69 -70

OPTIMAL MICROSTRUCTURE

Ferrite Grain Size (um) 12.7 14.6 12.7 147 143 127 14.6 15
Pearlite Fraction (%) 7.01 620 990 7.57 14.9 174 4.3 13.7
Cost value, Jps B ¢ 0.015 0.037 0.014 0.022 0.038 0.0152 0.023
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e 3 - 17: generated by crossover;

e 18 - 20: generated by mutation.

The stochastic universal sampling method was used to select individuals for mat-
ing. The mutation operator randomly generated directions that were adaptive with
respect to the last successful or unsuccessful generation. Because the feasible region
was bounded by the upper and lower constraints, a step length was chosen along each
direction so that the bounds were satisfied. Finally, the stopping criteria were defined
in such a way that the process completed 50 generations or the cost function value
was below 1078,

In Case 1, the user-defined requirement specified a TS of 450 MPa. The require-
ment was met with dy, = 12.7 um, and V, = 7.01%. Figure 4.12(a), which was
obtained by calculating TS using the best microstructure of each generation, shows
the change in T'S as the solution evolved with successive ’generations. The values of
the microstructural parameters corresponding to the best solutions per generation are
shown in Figure 4.12(b). This figure shows the real evolution of GA as the decision
space was explored for the best solution starting from the 1st generation to the 50th
generation. As GA evolved, the fitness value was decreasing until the optimal mi-
crostructure was found, that is when the desired value for TS was achieved. Clearly,
the final solution was not intuitively obvious. The final microstructure was inside
the search space specified by the limits on the decision variables rather than on the
boundary. .

In addition to a TS of 450 MPa, Cases 2-4 required a YS of 310 MPa. The
optimal microstructure was sought by considering different priority factors for the
two properties. In Case 2, both properties were equally weighted. ConverS’er, a
higher factor was placed on meeting TS and YS in Cases 3 and 4 respectively. Figure
4.13 shows the changes in both properties, as well as the exploration of the decision
space with successive generations for Case 2. Similar microstructures were found for
Cases 1 and 3, and for Cases 2 and 4. This occurred as a result of the selected priority
factors which gave more importance to TS and YS respectively.

The optimisation problems considered in Cases 5-10 were more challenging since
the design criteria involved meeting the requirements of 3 properties: TS, YS, and
ITT. For this reason the stopping criterion regarding the number of generations was

extended to 100 generations using a population of 30 individuals. Figure 4.14 shows
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the results for Case 5. The parameter exploration of the decision space is also de-

picted in this figure, which shows the conflicting requirements in meeting the desired

criteria. This is reflected in the wider search space used by the GA to find the op-

timal solution. Interestingly, the objective concerning ITT was first met and very

quickly, just in 5 generations, whereas the strength-related objectives were met after
the 90th generation. This occurred due to the fact that the optimisation of ITT
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used two degrees of freedom, so that any small change in microstructure resulted in
a faster evolution. On the other hand, both TS and YS were only affected by the
grain size and consequently less sensitive to the microstructure changes. The obtained
microstructures for Cases 6 - 8 were similar to the ones already presented and the
results were in good agreement with the priority factors selected.

The general trend of the results presented in Table 4.1 suggests that the property
with the highest priority factor was better achieved. It can be seen that the ferrite
grain size was the most important factor affecting the three properties by increasing
the strength and improving the toughness. Also, it was observed that the role of
the pearlite fraction was not that important since the presence of pearlite was small
assuming that the rolled metal would be air-cooled after deformation. v

The results shown in Table 4.1 for each case are typical ones. Since GA relies
on random operations, dispersion of the results were expected when the algorithm
worked with a different initial population. Howevef, a careful study revealed that a
similar grain size was found despite using different initial populations; but for the
pearlite fraction a different value was obtained in some cases indicating the existence
of local minima. Having said this, GA was still effective to find the microstructure

that was close to the optimal solution. Table 4.2 shows the results of this study.

4.7 CONCLUDING REMARKS

This chapter described the development and the application of Neural-Fuzzy mod-
elling and GA in the design procedure to find optimal microstructural parameters.
The correlation between the mechanical properties of a steel alloy and its microstruc-
ture was used to optimise the microstructure within practical limits in order to §atisfy’
the user-specified design criteria. Although a specific alloy and only 3 mechanical
properties were considered in this chapter, no special assumptions are made to pre-
clude the use of this methodology for other alloys or properties. However, in such a
case, additional objectives have to be included in the cost function, which will strongly
depend on the mathematical models.

The next chapter will discuss the second part of the proposed scheduling mecha-
nism associated with the Hille-mill, which includes the description of the systematic

approach used to compute the optimal rolling schedule(s).
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Table 4.2: Dispersion of microstructural parameters for different initial populations

TRIAL FERRITE PEARLITE COST VALUE
Case NUMBER SIZE (um) FRACTION (%) IMm
1 12.74 5.13 2.80x10~7
2 12.74 13.84 2.26x1076
1 3 12.74 9.51 7.92x107°
4 12.74 5.92 ~ 2.44x1076
5 12.74 14.13 3.97x10-7
1 14.64 8.62 0.01455
2 14.64 5.63 0.01456
2 3 14.64 12.39 0.01454
4 14.64 7.06 0.01455
5 14.64 8.53 0.01454
1 14.67 14.21 0.0167
2 14.7 14.23 0.0215
5 3 13.83 15.55 0.0239
4 14.11 15.11 0.2072
5 14.5 14.5 0.0160




Chapter 5

Optimisation of the Hille-Mill Rolling
Schedule using a Systematic Approach

5.1 INTRODUCTION

This chapter describes the model-based approach designed to find the optimal pro-
cessing parameters that synthesise the rolling schedule. The main aim is to use the
knowledge about the desired metal characteristics, including its microstructural fea-
tures, to systematically calculate rolling parameters per pass such as the rolling speed,
the percentage of reduction, the deformation temperature, etc. The physically-based
models introduced in Chapter 3, combined with an optimality criterion, are used to
calculate the effective process parameters that lead to the control of the microstruc-
ture events taking place in the stock during rolling; hence a right-first-time production
of the desired properties can be achieved. To evaluate the efficacy of the developed
mechanism, a few experimental scenarios are presented, which complement the mi-

crostructure optimisation results presented in Chapter 4.

5.2 KNOWLEDGE INTEGRATION OF THE STEEL ALLOY AND THE HILLE-MILL

The selection of the mill set-up is a demanding task that requires not only the un-
derstanding of the behaviour of the rolled material, but also information from the
performance of the mill during the rolling process. As already discussed in Chapter 4,
one can achieve the desired mechanical properties by correlating different microstruc-
ture profiles that satisfy an optimality criterion. The same principle can be applied
when finding optimal process parameters; the scheduling problem can also be solved

by using the quantitati{re information included in the microstructure to search for the

68
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optimal deformation profiles.

Although the microstructure optimisation mechanism described in Chapter 4 was
relatively simple, the search for the optimal rolling schedule requires further informa-
tion on the process, such as the initial deformation conditions (i.e. heat treatment,
microstructure prior to deformation), the cooling rates after processing, the influence
of the mill spring on the material thickness, etc. [36].

In this work, the setting-up of the rolling schedule is also treated as an optimisation
problem which includes the integration of two main aspects: (1) the microstructural
changes taking place before, during, and after rolling; and (2) the Hille-mill working
conditions. Figure 5.1 shows the block diagram of the proposed scheduling mecha-
nism associated with the Hille-mill. In fact, this diagram complements the one shown
in Figure 4.2. As shown in this figure, once MODULE 1 has provided the required mi-
crostructure to accomplish the metal design, MODULE 2 should be able to process this
information in order to compute the most suitable rolling schedule and to synthesise
the optimal route for processing. The overarching aim is to integrate knowledge of
both the stock and the rolling mill to create a systematic mechanism that allows one
to control the microstructural events taking place during hot-deformation. According
to the definition of the optimisation problem in Section 4.2, it is assumed that, a
right-first-time production of metals is achieved by performing the rolling schedule
calculated in this manner.

In Chapter 3, it was shown that by applying effective rolling parameters, one
can control the refinement of the austenite grain size by recrystallisation cycles so as
to produce small ferrite grains, hence improving the metal strength and toughness.
However, in order to find realistic solutions, the integration of other important aspects

has to be carefully considered. For instance, consider the following:

Before rolling: Heat treatment and the initial microstructure;

During Rolling: Rolling force and torque, the mill processing limitations; temper-

ature gradients, and the inter-pass times;

After rolling: Phase transformation temperature, and the cooling rate.

Figure 5.1 shows how this important information is integrated and processed in

MobDULE 2. The design approach requires three basic components: (1) the stock
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Figure 5.1: Block diagram of the proposed optimisation mechanism for the Hille-mill
scheduling

model, (2) the process constraints present in the mill, and (3) an optimality criterion
for scheduling. The stock model describes the microstructure evolution of the material
during hot-rolling. Constraints include the limitations of the mill to carry-out the
deformation process. The optimality criterion is related to achieving the required
microstructure given by MODULE 1, while ensuring that the material is rolled within
feasible and safe processing conditions.

The overall outcome of the proposed approach is given in the form of the rolling
schedule, which can be set-up in the Hille-mill either manually or automatically by
means of a user interface implemented on a PC. It is therefore assumed that, by
performing the obtained schedule, the final product will have the specified proper-
ties so as to achieve correctly the desired product at the first attempt. The rolling

parameters considered here are the following:
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e Number of passes;

Rolling speed per pass;
e Percentage of reduction per pass;

Gap position per pass (with mill spring compensation);

Deformation temperature per pass; and

Inter-pass time.

Also, additional information relating to the microstructure evolution during and

after the process is given, including the following parameters:

e Strain and strain rate per pass;

e Peripheral velocity of the rolls per pass;

o Predicted rolling force and torque per pass;
o Exit thickness per pass;

e State of the recrystallisation after the holding-time (i.e. partial or full recrys-

tallisation) per pass;
o Recrystallised graiﬁ size per pass;
o Austenite grain size after the holding-time per pass;
o Cooling rate during austenite-ferrite transformation (considering air cooling);
e Final ferrite grain size and volume fraction of pearlite; and

Predicted properties at room temperature.

A detailed description of the optimisation procedure of MODULE 2 will be dis- .

cussed in the next section.
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5.3 MODULE 2 - FROM THE REQUIRED MICROSTRUCTURE TO THE OPTIMAL
ROLLING SCHEDULE

In the thermomechanical processing of steel alloys, the determining variables normally
include the temperature (T'), the strain (¢), and the strain rate (£), with the flow
stress (o) being the measurable response of the microstructure to these conditions
[7]. In metal design, the aim is to achieve fine ferrite grains to add strength and
toughness to the material. This is accomplished by passing the stock through the
rolls so that each austenite grain undergoes a dimensional change following dynamic
and static restoration processes. Such microstructural processes are well described
by the physically-based equations introduced in Chapter 3, which for convenience are
summarised in Table 5.1.

To predict the rolling force and torque of the stock, two Neural Networks (NN)-
based models are used; such models are based on a previous Finite Element (FE)
model of the rolling process which was used to generate the training data. The re-

sulting models were simple in structure and gave good predictions across the whole

Table 5.1: Equations of the microstructure model for C-Mn steels [71],(32]

DESCRIPTION EqQuaTIiON
Zener-Hollomon Parame- Z =éexp (QT”TL)
ter

50

2
X =1-exp|-0639 (L ] e<e
Fraction Recrystallised (t ) ( c)

0

X =1—exp|—0.639 (#)} (€ > )

ts0 = 2.5 x 10792 4exp (%) (€ < &)

Time to 50% Recrystalli-
{ tso = 1.06 x 1073 Z%exp (3"32#) (e > &)

sation

dreg = 0.549-67¢—1.0 < e*
Recrystallised Grain Size { ez 0 € (e )

drez = 1.8 x 10327015 (¢ > ¢*)

Grain Growth dl0 = d9, + 1.19 x 10 exp (—56};;103)

Ferrite Grain Size do = {a +b (%}t—")—o'5 +c[l —exp (—0.015d7)]} (1-0.45\%)
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rolling range as verified by experiments conducted under various processing condi-
tions. Further details about such models can be found in [86]. The rolling force (P)

and torque (Troap) estimations can be expressed as follows:
P = f(T’E:)éakHakF)) (51)
Troap = g(T,e,€ ky,kr), (5.2)

where f(-) and g(-) are nonlinear functions described by the NN’s, and kz and k are
the heat coeflicient and the friction coefficient of the work rolls respectively.
MODULE 2 uses an empirical temperature model to determine the temperature

gradients during the whole process. Such a model is accurate enough to predict the
stock temperatures up to 5 rolling passes. It can be expressed as a function of the
stock thickness, the material heat transfer coefficients, and the ambient temperature,
using the following differential equation:

dr

- 0-T(

where T is the average stock temperature and T);,. is the ambient temperature; the

-2 Hair) , (53)

hxoxp

heat loss in air cooling (Hyir), the specific heat (o), and density (p) are given by the

following equations respectively:

Hyr = BHTC x (T - Tyi,) + EHTC x 5.67e™ 1 x (T +273)*,  (5.4)
o = 622+0.0677 x (T — 500), (5.5)
p = 7800—0.5 x (T —500), (5.6)

where, in the case of the C-Mn steel alloy, BHTC = 0.0lé5 is the convection coefficient,
whereas EHTC = 0.84 represents the material emissivity.

The rolling parameters per pass can be calculated using the strain and the strain
rate applied to the material along with the mill characteristics. Therefore, the process

model is comprised of the following equations:

e Rolling Speed:

Up = X ’ (57)

Wy =

e Percentage of Reduction:

%or = [1 — exp (f—\é/——g>] x 100; (5.8)
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o Exit Thickness:

hy = ho x [1 — 0.01(%)]; (5.9)
e Gap Position:
6—h,— L. (5.10)
MILL

where v, is the peripheral roll speed, R, represents the roll radius, hg is the initial
thickness, P is the rolling force!, and Kj7.y is the mill structural stiffness [36].

In summary, the assembly of the physically-based models, the NN-based rolling
force and torque models, the temperature model, and the process model, represents

the overall model used by MODULE 2.

5.8.1 The Optimality Criterion for Scheduling

To find the most appropriate design solution, the optimality criterion of MODULE 2
was formulated as a series of objective functions to be minimised in order to accom-
plish the required microstructure [84]. A set of N objective functions can be lumped

together into a single scalar optimality criterion (Jg) in the following form:
Js=Jf +JF+---+ JE, (5.11)

where
JE = (2 - targer)’ i=1,2,...N, | (5.12)

2

where the superscript F refers to the requirements on the desired final states of the
microstructure. In this case, a quadratic cost-function is used when it is desirable
that a microstructure feature z achieves a value Ttarget @t the termination of the
deformation process. Using this criterion, the optimisation problem was defined as

follows:

( , n12
Minimise: JS=[‘1—“r<—)‘i—L(—)] FI-XEOP i=1,2...,n

d'y max
Subject to:

o,

(Z) Wimin < w(l) < Wiax, (513)
(Z ) %Tmin < %T(l) S %Tmaxa
(

1
L 122) TLOAD(i) S TLOADmax,

where d,, is the austenite grain size, dy,,4e: represents the austenite grain size target

of the rolling pass, w is the rolling speed, %r represents the percentage of reduction,

1See Section 2.6 for a description of the physical meaning of the rolling force.
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Figure 5.2: Objective space of MODULE 2

and Tpoap is the rolling torque, n being the total number of rolling passes. The
first term of Equation (5.13) minimises the variance between the desired austenite
recrystallised grain size and the one required after each rolling pass. The second
objective establishes that full recrystallisation has to be achieved before the next pass
begins. Also, the above formulation defines the Hille-mill limitations in the form of
constraints in order to create the feasible region for the optimal search. Figure 5.2
shows the objective space of MODULE 2.

Note that the decision variables of Equation (5.13) do not include either the ferrite
grain size or the volume fraction of pearlite. This is due to the fact that hot-rolling
takes place when the stock microstructure is in its austenite phase, and it is until the
temperature drops down when the ferrite grains start to form. It is also worth noting
that the microstructure optimisation of MODULE 1 restricts the pearlite content of
the C-Mn alloy to less than 25%, so that it does not contribute to the strength of the
material.

The optimisation can be now focused on the controlled refinement of the austenite

grain size so as to lead the material microstructure to the required state at the end



5.3 MODULE 2 - From the Required Microstructure to the Optimal Rolling Schedule 76

of the processing. As shown in Figure 5.2, there is only one global minimum which
is reached when the austenite recrystallised grain size equals a grain size target and
complete recrystallisation has occurred prior to either the next pass or the phase
transformation. Therefore, because the optimisation is carried-out per pass,
the proposed systematic procedure is based on achieving grain size targets
per pass as well.

Figures 5.3 and 5.4 show the block diagram describing the main operations of
MODULE 2. The procedure starts by setting the required ferrite grain size (af)y,
which is the output of MODULE 12. A FIS-based model is then used to estimate the
corresponding austenite grain size (df: ) required prior to the phase transformation.
Such a model will be discussed later®. As shown in Figure 5.3, the initial assumption
is that the optimal microstructure can be achieved only in one pass; therefore, the
grain size target (digrget) for the first pass is set equal to df; . However, for most
experiments this is not the case. For instance, for certain deformation conditions
the smallest grain size achievable in one pass may be much larger than the final
requirement. In this case, although GA has minimised ‘Jg, the resulting deformation
profile will not lead to the required microstructure, so that a new pass target must
be provided by multiplying the previous target by a scaling factor \N).

The scaling operation automatically leads to the search and optimisation of the
subsequent passes, whose parameters are optimised until the final requirement is
achieved (i.e. d, is approximately d§ ). The pass counter will indicate the number of
passes needed to achieve the requirement. Next, the austenite-ferrite transformation is
considered by calculating the cooling rate and the transformation temperature of the
material. It is assumed that no accumulated strain prior to transformation is present.
Using the phase diagram shown in Chapter 3, the transformation temperature.(T,_q)

of steels with carbon content up to 0.8% can be calculated as follows:
T, o =—-231.25 C +912. (5.14)

The ferrite grain size (do) is calculated using Equation (3.11) and is compared to
its required value (df). As the proposed mechanism uses only feedforward informa-
tion of the state of the microstructure at each rolling pass, it is expected that the

final microstructure will lead to a small discrepancy (off-set) between the calculated

2See Chapter 4.
3See Section 5.5.2.
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microstructure and the required one. This discrepancy is mainly due to the austenite
grain growth after the last rolling pass, which is not compensated by the mechanism.
For this reason, a grain-growth compensation function based on the ferrite grain size
error is used in order to set a more realistic target at the beginning of the process. In

such a case, the new required austenite grain size (di:") will be calculated as follows:

M

d,‘:‘(uew) = d.f(old) — & (error) . (5.15)

In this study, it was found that for most experiments, a maximum discrepancy of
3 pm was obtained, which was refined after one or two additional runs.

A GA is used to search the optimal deformation profile for each pass by using
a series of random values for the strain (¢) and the strain rate (¢); each solition is
evaluated using the stock model, the NN-based torque and force model, as well as
the process model. The cost of the solution is calculated and a fitness value is then
assigned to each profile. This process is carried-out until the value of Jg is less or
equal to 10~* or 300 generations are completed.

In summary, the main objectives of MODULE 2 are:
1. Find feasible rolling parameters per pass;

2. Ensure that the deformation profile leads to full recrystallisation for the grain

size refinement;
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3. Minimise discrepancies between the optimal microstructure and its final state

at room temperature;
4. Synthesise the rolling schedule; and

5. Guarantee repeatability of the overall process.

Finally, once the optimal schedule is found, it can be set-up in the Hille-mill in
order to carry-out the process. To illustrate how MODULE 2 works, the next section

presents a series of simulation studies considering various experimental scenarios.

5.3.2  Obtaining the Optimal Rolling Schedule

As described in Chapter 4, SISSCOR allows for a friendly interaction between the
designer and the scheduling mechanism. Once the material design has been specified,
the microstructure optimisation of MODULE 1 will take place as described in Chapter
4. The required microstructure is then set-up to enable MODULE 2 to compute
the rolling schedule. Figures 5.5 and 5.6 show the development of the scheduling
optimisation as well as its final state using SISSCOR. The “GA Development” section
allows the user to graphically interpret the results of the optimisation, and by using
the pop-up menu provided, it is possible to visualise up to 13 different variables,
including the strain and the strain rate per pass, the rolling force and torque per
pass, the chemical composition used, etc. Also, in the “Status” section, one can scan
through the optimisation history to review the different targets used and see which
deformation profiles were unsuccessful.

The “Final Microstructure” section provides the predicted values of important
variables, such as the final austenite grain size, the percentage of recrystalliééd ma-
terial, the estimated cooling rate during transformation, and the final ferrite grain
size. Also, the calculated values for the mechanical properties are shown. Finally,
the headline called “See also” in the bottom right hand corner of Figure 5.6 provides
further information about rolling experiments, related publications, the IMMPETUS

web-site, and other related material.
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5.4 ROLLING SCHEDULE OPTIMISATION RESULTS

SISSCOR was used to evaluate MODULE 2 for different study cases. The aim of the
optimisation is to find the best rolling schedule that will yield the required microstruc-
ture. Let us first take the output of MopuLE 1 for Case 1 of Table 4.1, in which a
ferrite grain size of 13 pm?* was required in order to achieve a TS of 450 MPa. To
begin the scheduling process, let us assume that after heating, the austenite grain size
was 260 pm, and that the initial temperature for rolling was 1100°C. Additionally,

the initial dimensions of the stock were the following: 150 mm long, 50 mm wide, and

“The target values were rounded-off.
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Figure 5.6: A screen shot of Test/Data displayed during optimisation. (a) Optimisa-
tion history; (b) final rolling schedule

25.4 mm thick. For this particular experiment, an inter-pass time of 15 seconds was
set for the operator to have enough time to hold the stock and be ready for the next
rolling pass.

With respect to the Hille-mill limitations, it is assumed that, in order to perform
a ‘safe’ processing, the rolling speed per pass should be between 10 rpm and 40 rpm,
and the reduction in thickness should be between 15% and 40%, hence producing a
rolling torque no higher that 3000 kNmm per pass. The GA parameters were set as
follows: a random initial population with a uniform distribution was used with 20
individuals. Each individual received a fitness score which was scaled in order to rank
the population, leading to the rank of the most fit individual to be 1, the next most
fit being 2, and so on. This is done in order to remove the effect of the spread of the
raw scores. GA would stop its search when either the value of Equation (5.13) was
less or equal to 107* or 300 generations were complete.

Referring to the block diagram of Figure 5.3, the scheduling mechanism started
with a required ferrite grain size of 13 um. This value was transformed into a required
austenite grain size, which for this example was estimated at 24 pm®. This value
represented the initial target of the process (i.e. dyarger). Next, assuming that the

target could be achieved in only one pass, GA started its search considering the

5This value was estimated using the fuzzy inverse transformation model of Section 5.5.2.
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above initial conditions and the selected constraints. Each solution was evaluated
and a fitness value was assigned. After 300 generations, no solution accomplished the
grain size of 24 um, so that this target had to be scaled to 73 um®, and the GA search
resumed. Using this new target value, GA found a deformation profile that led to a
full recrystallised austenite grain size of 73.03 um by applying 21.80% of reduction
in thickness, at 10 rpm of rolling speed, and at 1100°C of temperature; therefore the
first rolling pass was successfully accomplished.

However, since the initial target of 24 um was scaled, it had to be re-set as the
target for the second pass. The initial conditions for the second pass were calculated,
which included the grain growth during the holding time, initial stock thickness,
and the temperature gradients. With this new information, GA performed the same
procedure as in the first pass, until the initial target was eventually achieved. Table
5.2 shows the resulting rolling schedule for this example. It is worth noting that 4
rolling passes were needed to achieve the desired microstructure with a final ferrite
grain size of 12.46 um, which is very close to the requirement.

The results shown in Table 5.2 reveal that no constraints violation was encountered
in any of the rolling passes in terms of the rolling speed, the percentage of reduction, or
the rolling torque. Furthermore, full recrystallisation was achieved after each rolling
pass leading to a homogenous austenite microstructure prior to transformation.

Figure 5.7 shows a computer simulation of the microstructure evolution using the
above rolling parameters. The simulation was carried-out using the Sheflield-Leicester
Integrated Model for Microstructure Evolution in Rolling (SLIMMER), which is a
computing platform based on a finite difference temberature model that allows for
calculating the microstructural changes at different sections of the stock, including
the centre and the surface [7].

As shown in Figure 5.7, the amount of deformation applied to the stock affected
the static restoration process that occurred during the inter-pass time, leading to a
complete recrystallisation after each pass. Notice that, when recrystallisation was
completed, the recrystallised grains grew at a rate depending on the temperature
and the holding-time prior to the next rolling pass. The effective deformation profile

obtained by the scheduling mechanism was accurate enough to control the microstruc-

ture events during the whole process.

6See Section 5.5.1 The Scaling Factor (A).
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Table 5.2: Rolling schedule and microstructure parameters for Case 1

RoLLING Pass No.

1 2 3. . 4
Temperature (°C) 1100 1045 983 920
Strain 0.284 0.422 0.294 0.400
Strain Rate (s™!) 1.05 4.62 5.84 2.51
Rolling Speed (rpm) 10.00 30.84 40.00 12.67
Reduction (%) 21.80 30.61 . 2248 29.30
Gap Position (mm) 19.61 13.44 10.39 7.10
Exit Thickness (mm) 19.86 13.77 10.68 7.55
Torque (kNmm) 1122 1716 1445 2750
Force (kN) 129 169 147 230
Grain Target (um) 73 21 22 14
Recrystallised Grain (um)  73.03 21.17 122,12 13.99
Austenite Grain (um) 73.93 46.05 34.63 24.56
Fraction Recrystallised (%) 100 100 100 100
PREDICTED MICROSTRUCTURE AND PROPERTIES AT ROOM TEMPERATURE
Ferrite Grain Size (um) 12.46
Pearlite Fraction (%) 5
Tensile Strength (MPa) 451.07

As the final austenite grain size of 24.56 um started to transform into ferrite grains,
the air cooling rate was estimated using the temperature model. The estimated air
cooling rate was 3.10°K/s and led to a ferrite grain size of 12.46 um. Using this value
to calculate TS yields 451.07 MPa’, which is in good agreement with the”desired
design.

As discussed in Chapter 3, when the deformation is finished in the austenite re-
gion (as in this case), the dislocation density in the ferrite structure is relatively low.
When the deformation is extended to the austenite-ferrite or the ferrite region, the
dislocation strengthening becomes much more significant. The dislocation contribu-
tion to strengthening is very complex, and usually is an effect of the interactions

among forest, mobile dislocations, and the substructure. When the last rolling pass

"This value was calculated using the Neural-Fuzzy model developed in Chapter 4.
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Figure 5.7: Computer simulation of the microstructure evolution for Case 1 using
SLIMMER '

is in the ferrite region, it is difficult to distinguish between the contributions due to
precipitation and dislocation hardening leading to inaccurate pfedictions of TS and
YS. Therefore, it is necessary to have full recrystallisation of the austenite grains
with no accumulated strain, and ensure that the last rolling pass is carried-out be-
fore the stock temperature reaches its transformation temperature. In this case, the
austenite-ferrite transformation temperature was 870°C. ‘
To observe the sensitivity of the optimisation process when small changes in the

material microstructure are required, the next simulation study focused on Case 5
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and 8 of Table 4.1, where a ferrite grain size of 14 ym and 15 pm were required
respectively. Both microstructures were optimised to produce a C-Mn steel alloy
with the following characteristics: 450 MPa of TS, 310 MPa, of YS, and -70°C for
ITT. In this study, the same initial conditions used in Case 1 were assumed. Tables
0.3 and 5.4 show the resulting rolling schedules. It is worth noting that only 3 rolling
passes were needed to achieve the requirements.

Figure 5.8 shows the microstructure evolution of the rolled material using the ob-
tained rolling schedules. It can be seen that the static recovery after the first pass was
almost identical for both cases due to similar ﬁrst-péss reductions (Case 5: 32.92%;
Case 8: 31.22%). However, the differences in the temperature gradients led to dif-

ferent deformation profiles for the subsequent passes. Prior to phase transformation,

Table 5.3: Rolling schedule and microstructure parameters for Case 5

RoLLING Pass No.

1 2 ' 3
Temperature (°C) 1100 1037 959
Strain 0.461 0.588 0.410
Strain Rate (s7!) 5.48 3.88 4.26
Rolling Speed (rpm) 39.27 19.62 20.72
Reduction (%) 32.92 39.94 29.90
Gap Position (mm) 16.77 9.80 6.74
Exit Thickness (mm) 17.03 10.23 - 7.17
Torque (kNmm) 1270 2915 2478
Force (kN) 133 221 219
Grain Target (um) 45 20 15
Recrystallised Grain (um)  44.9 20.0 14.9
Austenite Grain (um) 58.18 41.36 27.97
Fraction Recrystallised (%) 100 100 100
PREDICTED MICROSTRUCTURE AND PROPERTIES AT ROOM TEMPERATURE
Ferrite Grain Size (um) 14.02
Tensile Strength (MPa) 448.94
Yield Strength (MPa) 319.82

Imp. Trans. Temp. (°C) -63.20
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Table 5.4: Rolling schedule and microstructure parameters for Case 8

RoLLING Pass No.

1 2 3.
Temperature (°C) 1100 1040 975
Strain 0.432 0.319 0.335
Strain Rate (s71) 1.34 5.44 1.61
Rolling Speed (rpm) 10.00 40.00 10.03
Reduction (%) 31.22 24.17. 25.22
Gap Position (mm) 17.18 12.99 9.55
Exit Thickness (mm) 17.46 13.24 9.90
Torque (kNmm) 1733 1294 2007
Force (kN) 147 126 180
Grain Target (um) 48 24 19
Recrystallised Grain (um)  47.99 24.00 18.9
Austenite Grain (um) 59 44.60 32.98
Fraction Recrystallised (%) 100 100 100

PREDICTED MICROSTRUCTURE AND PROPERTIES AT ROOM TEMPERATURE

Ferrite Grain Size (um) : 14.7
Tensile Strength (MPa) 443.29
Yield Strength (MPa) 309.71
Imp. Trans. Temp. (°C) -57.30

each rolling schedule led to a successful refinement of the austenite gain size to finally
accomplish the requirements.

As shown in Figure 5.8, the different temperature gradients and deformatioh profile
led to a different final austenite grain size, which was 27.97 pm for Case 5, whereas
for Case 8 it was 32.98 um. As the temperature dropped, the final ferrite grain
size was 14.02 um and 14.7 um for Case 5 and 8 respectively, which in terms of
the mechanical properties, the final material deemed to be very close to the desired
design. Furthermore, the predictions of temperature and microstructural development
provided by the proposed mechanism were in good agreement with the simulation
results observed using SLIMMER.

Clearly, the task of setting-up the rolling schedule was not intuitively obvious, con-

sidering that small differences in the processing led to different microstructures and

-
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Figure 5.8: Computer simulation of the microstructure evolution for Case 5 and Case
8 using SLIMMER

mechanical properties. Although the rolling schedules shown in this section worked
well under the given deformation conditions, the proposed approach uses other ad-
vanced parameters that add flexibility to the mechanism and may lead to a different

rolling route. This is discussed in the next section.
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5.5 ADVANCED OPTIMISATION PARAMETERS

The results from the above simulation studies demonstrated the high sensitivity of
the optimisation process when small changes in the material design are made. Such
sensitivity is mainly caused by the gradients of temperature affecting the rate of
recrystallisation and grain growth. These differences are accumulated after each pass
making the search for solutions not intuitively obvious.

However, although the rolling schedules were appropriate under the specified con-
ditions, they can only be considered as optimal solutions because an ob jective function
was minimised, but it is not necessarily the unique solution that can leéd to the de-
sired design. Indeed, there are some advance parameters that directly affect the final

result. These are the following:

1. The scaling factor (\); and

2. The fuzzy inverse transformation model.

These advanced parameters are explained in the next sections.

5.5.1 The Scaling Factor

One of the key parameters of the proposed methodology is the scaling factor. It con-
~trols the grain size target of each rolling pass and it is directly responsible for the
recommending of new passes. The scaling factor also adds flexibility to the optimi-
sation by providing a systematic target adaptation mechanism. As shown in Figure
5.3, when a pass target cannot be achieved by any solution, it means that it is not
physically possible to refine the austenite grain size down to the selected target value
under the current operating conditions. Therefore, a new pass target is set by scaling
the unsuccessful target. Depending on the deformation conditions, the pass target
may be scaled several times until GA is able to find a feasible solution. However, the
pass will be declared infeasible should the pass target value not be accomplished after
several unsuccessful trials.

The scaling factor ()) is a varying parameter defined as the ratio between the new

pass target and the unsuccessful one. It can be expressed by the following equation:

) . dtargct (7' + ]-) .
_ Gargert T 1) =1,2,...,n, 5.16
A7) Grerger @) 1 =1, T (5.16)
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where
Gtarget (i + 1) = dF + n(ny x Ad), (5.17)

and Ad = dy — df; » do being the initial grain size for the pass; n; is the number of
trials and 7 is a weighting factor used to modulate the scaling. This study showed
that values of 1 between 0.1 and 0.5 led to satisfactory and consistent results. It is
clear that the new grain size target cannot be bigger than or equal to the initial grain
size of the pass.

To illustrate the influence of the scaling factor, let us consider a rolling schedule
in which the initial grain size for the first pass is 260 um and the initial pass target is
set to 24 pum. It is expected that the GA will not find a deformation profile with the
suflicient strain to refine the grain size to this target and, at the same time, satisfy the
selected constraints for the rolling torque and the percentage of reduction. Therefore,
using Equation (5.17) with n = 0.12, a new target of 52 um will be set, and GA
resumed. For this new target, the GA may find a solution which will refine the grain
size down to approximately 52 pum. This will automatically create the need for new
rolling passes. However, let us assume that even with this new pass target, GA is
not able to find a solution; in such a case 52 um will be scaled to 80 pm, and then
109 pm, and so on until 222 um before declaring the pass infeasible.

The dynamics of the scaling factor is shown in Figure 5.9 for different modulating
values. As shown in this figure, by varying 7 one can provide the GA with different
targets values so that the search becomes more flexible when finding a solution. This
was demonstrated by the rolling schedules obtained for Case 1, which required a final
ferrite grain size of 13 um. Tables 5.5 and 5.6 show the rolling schedules obtained for
n = 0.05 and 7 = 0.3 respectively (see Table 5.2 for n = 0.12). It is worth noting
that both rolling schedules led to the desired microstructure even though the rolling
parameters were significantly different. This emphasises the fact that the optimal
solution is by no means intuitively obvious but rather an exhaustive search process
that needs accurate knowledge of both the material and the mill.

Figure 5.10 shows the microstructure development of the rolled material during
the process using different 7’s for Case 1. Note that the main differences in the
refinement of the austenite grain size are due to the amount of strain applied to the
stock per pass and the resulting cooling rates (5.5°K/s with n = 0.05; 4.3°K/s with
n = 0.3). While thelfour-pass rolling schedule used a light deformation per pass,

the three-pass schedule required more strain to achieve the targets. However, care
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should be taken when using a high modulating factor (e.g. > 0.5) because of the
fact that the optimality criterion will be limited to find small amounts of reductions
per pass (i.e. less than 15%), which may result in grain coalescence instead of grain
refinement. At the end of the process, both schedules delivered similar results in
terms of the ferrite grain size (13.03 um with 7 = 0.05; 13.68 pm with 7 = 0.3), and
mechanical properties (448.89 MPa with 1 = 0.05: 446.58 MPa with n = 0.3), which

are very close to the desired design (13 um and 450 MPa).

5.5.2  Fuzzy Inverse Transformation Model

Another important aspect of the proposed mechanism is the estimation of the initial
austenite grain size target, which is calculated using the required ferrite grain size.
As shown in Figure 5.3, a FIS-based model is used to make a static mapping between
the grain size before and after the austenite-ferrite transformation.

As already mentioned, although the ferrite grain size is one of the major structural
parameters affecting the properties of most steels, there is still little quantitative in-
formation to accurately represent the ferrite grain size as a function of the austenite
grain size. Experimental results published in the literature show that the ferrite grain
size increases with the austenite grain size [68],(52],(32]. Such results also emphasise

the importance of the retained strain in the austenite grains at the time of transfor-
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Table 5.5: Rolling schedule and microstructure parameters for Case 1,n=0.05

RoLLING Pass No.

1 2 3
Temperature (°C) 1100 1035 956
Strain 0.517 0.546 0.376
Strain Rate (s~1) 1.50 1.93 5.99
Rolling Speed (rpm) 10.41 10.00 30.50
Reduction (%) 36.09 37.72 27.81
Gap Position (mm) 15.91 9.71 6.88
Exit Thickness (mm) 16.23 10.10 7.29
Torque (kNmm) 2071 2650 2025
Force (kN) 164 203 209
Grain Target (um) 40 22 16
Recrystallised Grain (um)  40.13 22.00 15.94
Austenite Grain (um) 57.26 40.84 30.86
Fraction Recrystallised (%) 100 100 100
PREDICTED MICROSTRUCTURE AND PROPERTIES AT ROOM TEMPERATURE
Ferrite Grain Size (um) : 13.03
Tensile Strength (MPa) 448.89

mation. In addition to these variables, the cooling rate through the transformation
is important in determining accurately the ferrite grain size. At this stage it is worth
noting that Equation (3.11) is an empirical description of how the phase transforma-
tion takes place, but more research has to be done to include other phenomena such as
the differences in residual element contents or the appearance of the Widmanstatten
ferrite at large austenite grain sizes [52].

A FIS-based model is used here to invert the phase transformation and estimate
the austenite grain size from the ferrite grain size given the conditions present in
the Hille-mill. To develop such a model, it was necessary to state some important
assumptions. Firstly, because of the fact that no temperature control is available in
the Hille-mill, only air-cooling can be considered for all experiments; furthermore, it
is known that for slabs of 20-60 mm in thickness, the cooling rate has little influence

on the ferrite grain size [71]. Secondly, if full static recrystallisation of the austenitic
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Table 5.6: Rolling Schedule and Microstructure development for Case 1,7=0.3

RoLLING Pass No.

1 2 3 4
Temperature (°C) 1100 1047 994 939
Strain 0.233 0.273 0.269 0.390
Strain Rate (s™!) 3.78 1.14 5.04 5.98
Rolling Speed (rpm) 39.87 10.00 39.49 34.26
Reduction (%) 18.28 21.10 20.78 28.05
Gap Position (mm) 20.58 16.10 12.71 8.89 °
Exit Thickness (mm) 20.75 16.37 12.96 9.33
Torque (kNmm) 861 1333 1310 2072
Force (kN) 88 137 133 223
Grain Target (um) 89 37 25 15
Recrystallised Grain (um)  88.96 36.99 25.04 14.93
Austenite Grain (um) 89.13 4853  37.82 26.14
Fraction Recrystallised (%) 100 100 100 100

PREDICTED MICROSTRUCTURE AND PROPERTIES AT ROOM TEMPERATURE

Ferrite Grain Size (um)
Tensile Strength (MPa)

13.68

446.58

microstructure has taken place before transformation, then it can be assumed that

there is no accumulated strain that can affect the ferrite grain size. This leads to the

estimation of the ferrite grain size on the basis of the austenite grain size solely.
Data generated using Equation (3.11) and experimental observations found in the

current literature were used to generate a Mamdami-type fuzzy model, which con-

tains fuzzy sets both in the premise and the consequent part of the fuzzy rules. The

fuzzy model was developed following the guidelines proposed in [88], which led to the

following fuzzy rules:

Ry:
Ry
Rs:
Ry
Ry :

IF Ferrite Grain Size is Very Small, THEN Austenite Grain Size is Very Small;

IF Ferrite Grain Size is Small, THEN Austenite Grain Size is Small;

IF Ferrite Grain Size is Medium, THEN Austenite Grain Size is Medium;

IF Ferrite Grain Size is Large, THEN Austenite Grain Size is Large;

IF Ferrite Grain Size is Very Large, THEN Austenite Grain Size is Very Large.
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Figure 5.10: Microstructure development for Case 1 under different n's

It is important to mention that the definition of the fuzzy labels are not the same
from the austenite to ferrite grain size as shown in Figure 5.11, which is a plot of
the membership functions. Note that the universes of discourse are all normalised.
Figure 5.12 presents the input-output correlation described by the developed FIS,
as well as the data used. As will be demonstrated by hot-rolling experiments and

metallographic analysis, the developed fuzzy model has an acceptable accuracy.

5.6 CONCLUDING REMARKS

This chapter proposed a systematic approach for solving the scheduling problem of

the Hille-mill. This mechanism provided effective rolling schedules based on the mi-
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crostructure information of the desired material profile and the mill working condi-
tions. This methodology was used to control the development of the microstructure
during the process so as to achieve the desired mechanical properties. As shown by
the simulation studies, the proposed mechanism allows to achieve a right-first-time
production of steel alloys with sufficient accuracy under safe and feasible deformation
conditions.

Unlike current methods, the proposed approach is based on reliable models of the
process and a series of optimality criteria represented by cost functions, which are used
as performance indexes to evaluate each solution. It was shown that, although there
exists not unique solution, yet the rolling schedules can be considered as “optimal”
since an optimality criterion was satisfied.

As will be shown in Chapter 8, SISSCOR was used to evaluate the proposed
methodology via hot-rolling experiments using the Hille-mill. However, further work
was first carried-out concerning the control aspects of the process. In this regard,
sophisticated control algorithms are used to add robustness and flexibility to the
control system of the Hille-mill in order to guarantee optimal performance during the

rolling experiments. This will be discussed in the next two chapters.



Chapter 6

Mathematical Modelling and Simulations
Associated with the Hille-mill

6.1 INTRODUCTION

This chapter focuses on the mathematical modelling of the hot-rolling Hille-mill. The
aim is to describe the theoretical background and the main framework of the me-
chanical model with its critical system parameters such as the inertia of the different
rotational parts, friction coefficients, and stiffness. Additionally, computer simula-
tions are presented in order to gain a real insight into the mill dynamical performance
and define the important aspects to consider when solving the rolling speed control
problem. Hence, the main objective of such a model development is to analyse the
system dynamics so that advanced control strategies and decision-making procedures

for the mill operation can be investigated and implemented.

6.2 A GENERAL OVERVIEW OF THE HILLE-MILL

Figure 6.1 shows the hot-rolling Hille-mill located in the Laboratory of the Sheffield
Department of Engineering Materials. The mill is currently used by IMMPETUS
for research on steel and aluminium microstructures through rolling experiments.
Because of the importance of the steel-making processes in modern industry, this
experimental laboratory-scale mill has been the object of several investigations in
different engineering areas at The University of Shefield, including the Department
of Automatic Control and Systems Engineering.

During the last three years the mill has been modernised and fully instrumented to

conduct complex rolliilg schedules which may include up to 10 rolling passes at various
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Figure 6.1: The hot-rolling Hille-mill located at the Engineering Materials Laboratory

speeds, deformation profiles, and temperatures. The main aim is to investigate the
evolution of steel and aluminium microstructures during hot-rolling and thus provide
knowledge for the development of physically-based models, structure characterisation,
and metal design. This “world-class” IMMPETUS facility has materialised because of
the integration of the three main disciplines of Mechanical Engineering, Engineering
Materials, and Automatic Control and Systems Engineering, whose research on the
Hille-mill can be seen in the large number of publications produced during the last
few years.

The Hille-mill is a one-stand 50-tons hot-rolling mill with a maximum torque of
3467 Nm available in two main work rolls which have direct contact with the rolled
product, hence producing a sequential reduction in thickness. Figure 6.2 illustrates
schematically the main configuration of the Hille-mill. The rolls, whose individual

diameter measures 139 mm, are within the mill housing which is designed to contain
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Figure 6.2: A schematic illustration of the Hille-mill

the mill stand components and to withstand the rolling load. As shown in Figure
6.2, the main electric drive (i.e. power converter and main motor) provides rolling
in both directions with adjustable speed (from 1 to 60 rpm) and rolling torque. The
drive also includes a roll gap actuator to adjust the required gap between the work
rolls. The gearbox is as well used both as a means of coupling the motor shaft with
the Hille-mill, and to reduce the speed and increment the available torque in the work
rolls.

As already mentioned, the purpose of the Hille-mill is to produce a plate from a
preheated slab with a specific thickness and with the required microstructure. This
is very important in thermomechanical processing because, as discussed in the pre-
vious chapters, one can define a correlation between the material properties and its
microstructure with the deformation profile applied during rolling. It has also been
discussed that the design of microstructure is related not only to the alloy composi-
tion and the heat treatment, but also to the hot-deformation process which leads to
improved strength, ductility, and toughness of the worked product [6]. Therefore, pre-
cise knowledge of the process critical variables such as the rolling speed, the amount
of deformation, the rolling force and torque, among others, is needed for the optimal
development of the microstructure and eventually the desired characteristics of the
final product.

The accurate understanding of the dynamics involved in Hille-mill can be only
obtained by means of mathematical analysis and study of the different working con-

ditions that take place during rolling experiments. Acquiring such a knowledge leads
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to the development of suitable control methodologies that can guarantee an optimal
performance of the mill. Consequently, a set of computer simulations of the Hille-mill
were carried-out to analyse its performance under different operating conditions. The

following sections will discuss the theoretical aspects about this particular topic.

6.3 THE HILLE-MILL 3-MASS-MODEL

The aim of this section is to describe the mathematical model of the Hill-mill. The
main framework is based on the classical Newton motion equations, with the critical
model parameters, such as the inertia of different rotational parts, the friction coef-
ficients, and the stiffness. For modelling purposes, the mechanical elements (shafts
and gears) were treated as flexible links to obtain a more detailed representation, so
that the effects of torsional spring rates are present in the shafts and affect the rolling
speed.

Figure 6.3 shows an equivalent diagram of the Hille-mill rotating system based on
the real configuration. As shown in this figure, the main critical parameters considered
for modelling are: the inertia (J) of the shafts, the friction (B) in the couplings, and
the stiffness (K); w represents the shaft speed. The subscripts r, g, and m represent
the variables associated to the roll shaft, gear shaft, and motor shaft respectively; R,
is the gearbox ratio. It is also assumed that in the roll shaft, the dry friction (Bpgy)
is also present and it is much bigger that the viscous friction, hence, a nonlinear
effect is present in the system which produces torque in the same direction of the
rolling speed. The electromagnetic torque (Tga) is considered to be the system
input, whereas the rolling speed (w,) represents the system output. Disturbances
are present in the form of load torque applied to the roll shaft, that is when a stock
is being rolled producing the rolling torque! (TLpap) which can be estimated using
different approaches [17],[25].

Using Figure 6.3 a set of differential equations was obtained to describe the dy-

namical behaviour of the rotating system through time [57]. Based on the classical

1See Chapter 2 for a description of the rolling torque developed by the stock during rolling.
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Figure 6.3: Equivalent diagram of the Hille-mill rotating system

Newton motion laws, such equations can be expressed as follows:

1

Wm = T (Tem — T — Bmwim) (6.1)
) 1 T,

- d ()]
. 1

Wy = A [Tr = Troap — (Br = Bpry) - wi], (673)

T = Kn(wm—w), ' (6.4)
P Yo _

T, = K, (Rg w,) . (6.5)

Equations (6.1) to (6.5) represent the 3-Mass-Model (3MM) that describe the
dynamics of the Hille-mill. When the mill operates in the steady-state (i.e. constant
speed), speed in each shaft is basically affected by their friction, which in the case of
the roll shaft, it is a combination of both viscous and dry. Under these conditions
there is no torsional spring rate in any shaft, so that the torques produced at the
couplings are constant. However, in the transient state (i. e. when a slab_' is being
rolled or during a sudden change of speed), all shafts are subjected to fluctuating
loads and torsion with various degrees of stress concentration. This effect produces
torque changes across the shafts and, as a consequence, speed is affected not only
by friction but also by their inertia. The physical meaning of the time-constant of
each shaft can be understood as the ratio between the shaft inertia and the friction
coefficient, so that the more inertia is in the shaft, the slower its dynamic response
will be [22]. Table 6.1 shows all system parameters which have been determined by
different approaches. ranging from analytical to experimental estimations as well as
know-how [57]. '
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Table 6.1: Critical parameters of the Hille-mill

PARAMETER VALUE UNITS

B, 2 Nm
B, 0.03 Nm
B,, 0.04 Nm
Bpry 50 Nm
Jr 0.5 Kg-m?
Jyg 0.077 Kg-m?
Jm 0.147 Kg-m?
K, 6.43 x 105 Nm/rad
K 1.96 x 10° Nm/rad

As mentioned earlier, a nonlinear component in the form of dry friction is assumed
to be present only in the rolls; its effect produces torque in the same direction of the
rolling speed. Therefore, in Equation (6.3) the sign of Bpgry depends on whether the
rolling speed is positive (forward direction) or negative (backward direction). The
rolling torque is considered as a transient disturbance to the system because of the

fact that it is present only when a slab is being rolled.

6.4 THE ELECTRIC DRIVE MODEL

The main upgrading operation carried-out on the Hille-mill consisted of providing
an electric drive which offers an easy way to regulate both the frequency and the
magnitude of the voltage applied to the motor. This was necessary in order to control
the electromagnetic torque applied to the mill, and consequently its speéd. As a
result, a much higher efficiency and a better performance are achieved and various
types of hot-rolling experiments can now be carried-out including those associated
with complex multi-pass schedules.

The main electric drive is comprised of a balanced 3-phase ac voltage source, a
power converter, and an 18.5 kW, 400 V, 1500 rpm, 50 Hz induction motor. The
drive has the capability of reaching twice the motor rated speed by means of applying
a Pulse Width Modulated (PWM) voltage to the stator terminals. In the Hille-mill,
the electric drive uses the well known Field-Oriented Control (FOC) technique to
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control the electromagnetic torque and magnetic flux, so that the drive can act as
a torqué transducer wherein the electromagnetic torque can nearly instantaneously
be made equal to a torque command [83]. Under this scheme the speed control is
dramatically simplified because all the electrical dynamics of the motor drive have
now become irrelevant to the speed control problem [42],[81]. Appendix A shows a
computer simulation of the electric drive associated with the Hille-mill.

However, the electric dynamics of the power inverter can often cause undesirable
effects mainly on the electromagnetic torque (the input variable of the Hille-mill),
that is a high-frequency noise due to the switchingﬂof the electronic elements of the
power converter. To observe to what extent this phenomenon can affect the mill’s
performance, a detailed study of the motor dynamics was carried-out. This study
included the analysis of the induction motor model in terms of its voltage equations
given by the well known arbitrary reference frame [60]. From this analysis, it was
concluded that, although such noise should not pose a significant effect on the rolling
speed, it has an undesirable effect in the control effort, especially if the controller has
no low-pass filters. | ‘

Because of the complexity of the electric dynamics included in the drive, the
complete motor model was not suitable for computer simulations of the Hille-mill and
hence a simplified model was used, which includes only the motor torque response

[20],[57]. Such a model is described by the following relationships:

1
Ty=——T 6.6
0 ToaS +1 REF, ( )

i { TO) if TO g Tmax(wm)
Tgy =

, (6.7)
Tmax (wm)'; lf TO > Tmax (wm) :

where Tg)y is the electromagnetic torque produced by the motor, Trer is the torque
command, T, is the motor time constant, Tax(wn,) is the maximal torque available
at the speed wy,, with s being the Laplace operator. The effect of the power inverter is
considered by adding a zero-mean white noise sequence to the electromagnetic torque

signal.

6.5 THE RoLLING GAP MECHANISM MODEL

In rolling practice, one is more concerned with the thickness of the rolled product

rather than the roll gap. The difference between the roll gap (free load) and the exit
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thickness is caused by the spring effect of the mill structure. Indeed, the principal
causes of gauge variation in flat rolling may be analysed from the following well-known

expression which is often referred to as the gaugometer equation [25]:

P
PO K (6.8)

where Ay is the exit thickness of the rolled product, Cj is the no-load gap position, P
is the rolling force developed by the stock during deformation?, and K1 represents
the mill structural stiffness.

The ratio P/ K1 is known as the mill spring. Thus, to obtain the desired exit
rolled product thickness, the no-load roll gap must be less than the exit rolled product
thickness by the amount that is equal to the mill spring. In [36], the author determined
experimentally the value of the spring effect in the Hille-mill by performing a series
of experiments using different rolling parameters. He found that a value between 475
and 539 kN/mm for K)srz; can be considered when calculating the correct set-point
for the gap position control system in order to counteract the mill spring effect and
obtain the desired exit thickness of the rolled product.

In this case, the Hille-mill uses a worm-wheel screw-down mechanism to adjust
the roll gap. For simulation purposes only, a mathematical ﬁlodel was developed
considering the dynamics of the gap motor shaft. A PID controller was designed to
control the position of the gap. Figure 6.4 depicts the block diagram of the gap control
system where fgrgr and Ogap are the desired and current gap position respectively,
Tgap is the gap motor torque, and wgap is the shaft speed; K, T;, and T; are the
controller parameters, whereas 7; and 7, are the time constants of the actuator and
the shaft respectively.

From the mathematical models shown above, it is clear that accurate pre'diction of
the rolling force and torque should be carried-out to perform realistic computer sim-
ulation of the hot-rolling experiments. As shown previously in Chapter 2, there exist
different approaches to calculate these variables such as empirical models, FE models,
and intelligent systems-based models. In this work, the NN-based models developed
in [86] are used because they have proved to be more accurate than conventional

models.

2See Chapter 2 for a detailed description of the rolling force.
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Figure 6.4: Block diagram of the gap control system in the Hille-mill

6.6 COMPUTER SIMULATIONS USING THE HILLE-MILL MODEL

Using the Hille-mill 3MM, the electric drive model, and the above gap mechanism
control system, along with the NN-based rolling force and torque models, a simulation
platform was developed in MATLAB® /SIMULINK®, which is a high-level language
and interactive environment that enables one to perform computationally intensive
tasks with the aid of graphical interfaces. The Hille-mill simulation platform can be
used together with SISSCOR in order to have a comprehensive analysis of both the
metal design and the Hille-mill control performance. Figures 6.5 and 6.6 show the
SISSCOR  Hille-mill GUI and the SIMULINK® model respectively with the different
blocks containing the mathematical description of the system.

A closer look at the SIMULINK® “Hille-mill 3MM” block reveals a detailed view of
the simulation process and provides a good understanding about the energy transfers
taking place in the real system. Figure 6.7 illustrates the block diagram for dynamic
simulation of the rotating system represented by Equations (6.1) to (6.5). Observe
that the block diagram consists of ideal summations or subtractors, constant multipli-
ers, and integrators. Any n-th order constant-coefficient differential equation can be
simulated by means of these components. Each integration block represents a state

variable and its output is the integral of its input at the current time step. It is worth
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Figure 6.7: A block diagram for the computer simulation of the Hille-mill 3MM

noting that the block “sign(w,)” in Figure 6.7 performs the following function:

+1,  ifw. >0
sign (w,) = 0, Lwp=0 ; (6.9)
= Hur<d

where a positive sign means a forward direction whereas a negative sign means a
backward direction.

Typical simulation results of the step and disturbance responses are shown in Fig-
ure 6.8. Notice that the step response of the rolling speed behaved similarly to a
typical first-order unit and the disturbance dynamics also showed a scaled counter-
action to the driving force (the electromagnetic torque). The effects of the electronic
elements of the power converter are clearly seen in the electromagnetic torque sig-
nal in the form of high-frequency zero-mean-noise; the amplitude of the oscillation
increased with the voltage applied to the motor terminals, and the PWM technique
used. However, as already mentioned, such noise should not pose a significant effect

on the rolling speed control.
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Figure 6.8: Open-loop response of the Hille-mill during a step input and a transient
disturbance

The increasing demand on the accuracy of the rolling speed leads to consider other
important aspects relating the dynamic performance and the control system of the
Hille-mill. Additionally, such a control system should be flexible and robust enough
to cope with the plant nonlinearities, time-varying parameters, uncontrolled distur-
bances, noise, etc. The application of model-based control algorithms has become
popular in recent years because of their simplicity and capability of controlling com-
plex systems. Next chapter will review the application of the Generalised Predictive

Control in the Hille-mill.
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6.7 CONCLUDING REMARKS

In this chapter the mathematical model of the Hille-mill was presented. The model
was based on basic physical principles governing the rotational movement of the shafts
and their energy transactions using real system parameters. For the analysis and
study of the Hille-mill dynamics, a typical computer simulation was carried-out show-
ing the mill response under a step input and disturbance. The developed simulation
platform for the 3MM is useful not only for mathematical analysis, but also for the
fact that it can become a significant tool for the design of advanced control strategies
for the mill operation. Even more importantly, it will help to determine the feasibility
of implementing such control designs for real-time operations. The next chapter will

discuss such control implementations in detail.



Chapter 7

Optimal Rolling Speed Pefformance using
Adaptive Fuzzy Model-based Predictive

Control

7.1 INTRODUCTION

In Chapter 5, the proposed optimisation mechanism aimed at setting-up the rolling
schedule was presented, and it was shown how the mill constraints can be included to
ensure safe and feasible processing conditions for hot-deformation. However, although
the optimal rolling schedule is found in this manner, one needs to ensure that the mill
will apply this schedule in an optimal way. In fact, the rolling speed regulation
is paramount when deforming the stock, for this reason one also needs to identify
further improvements on the control system of the Hille-mill. This chapter will review
the developmenf and application of a modified model-based approach in the form of
Generalised Predictive Control (GPC) to reflect a Takagi-Sugeno-Kang (TSK) Fuzzy
model of the Hille-mill. Such an hybrid strategy provides robustness and -’ﬂexibility
against model uncertainties and disturbances to the overall control system, and also
provides the possibility of obtaining a more accurate control performance without the
need for a complex model of the process.

The main framework is based on the real-time implementation of the adaptive
GPC to calculate the optimal control actions so as to cope with the nonlinear phe-
nomena and the time-varying process parameters involved. A simulation platform
will first be developed to set the controller design parameters and study the control
system under different operating regimes. Finally, the performance and robustness of

- the control algorithm will be evaluated by real-time hot-rolling experiments.
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7.2 THE TSK Fuzzy SYSTEM-BASED PROCESS MODEL

An alternative to classical system identification is to use a Fuzzy Inference System
(FIS) to provide a computing paradigm for modelling the nonlinear process dynamics
when a sufficiently accurate model of the process is unavailable [54]. A method for
expressing fuzzy rules was proposed in [76], and it is usually referred as the TSK
Fuzzy inference system, which includes fuzzy sets only in the premise part of the
fuzzy rules and a regression model (which can be either linear or nonlinear) as the

consequence, i.e.
IF z; is B' and - -+ and z,, is B, THEN y = ¢g + CiZy+ -+ Ty, (7.1)

where z = (z1,... ,xn)T and y are the input and output linguistic variables respec-
tively, B are linguistic values characterised using membership functions, and ¢; are
real-valued parameters. Using the above formulation, a complex high-dimensional
nonlinear modelling problem can be decomposed into a set of simpler linear models
valid within certain operating regions defined by fuzzy boundaries. Fuzzy inference
is then used to interpolate the output of the local models in a smooth fashion to lead
to an overall process model. This modelling approach has shown good accuracy and
is free of the problems arising from model incompleteness [75],[53).

Consider a Single-Input Single-Output (SISO) system to be modelled using a TSK
Fuzzy system. Assuming that the input space is partitioned using p fuzzy partitions
and that the system can be represented by fuzzy 1mphcat10ns (one in each sub-space),

each sub-model can be written as follows:

L;: Try(t)is B', THEN Ayl (t+1) = —aiAy(t) — - — aiAyt —j+ 1)+
BiAu(t) + - - + biAu(t — k + 1), - (7.2
i=1...,p7=1,...,na; k=1,...,nb,

where y(t) and u(t) are the process and controller output respectively at time ¢;
Ym(t +1) is the one-step ahead model prediction; B! is the fuzzy set representing the
fuzzy sub-space in which implication L; can be applied for reasoning; and A = 1—271,
with 27! being the backward shift operator.

In the consequent part of such a model representation is a Control Autoregressive
Integrated Moving Average (CARIMA) structure which is known for being effective
against offsets that éan be present in the data [82]. Figure 7.1 presents a block diagram
of the main components of the TSK Fuzzy model used in this work. In this figure,
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Figure 7.1: The TSK Fuzzy System-based process model

pi represents the grade of membership of y(t) in B', as described by the Gaussian
membership function expressed by the following equation:
2
1 |y(t) —c ,
i = exp {—* {‘L()——] } t=1...,p, (7.3)

2 T;
where ¢; and r; are the centre and width of the Gaussian function. In addition, /3; is
the ratio of the i-th implication’s firing strength to the sum of all implications’ firing

strengths, which can be calculated according to the following formula:
g 8 g

i = -1 i=1,...p (7.4)
> b
i=1

P 2
The implications’ firing strengths are now normalised, such that > Bi=1. Addi-

tionally, 3; may be referred as the weight assigned to each of the ;; implications at

each sampling instant in the following form:

Bilbyn(t+1) = Bi[-aidy(t) — - — aiAy(t — j + 1)+
Vi Au(t) + -« - + by Au(t — k + 1)], (7.5)
t=1 0000 =10 nds B =0 pnbs

The overall fuzzy model output (in incremental form) can be written as follows:

P
Aym(t ne 1) = ZﬁiAy:n (ﬂ 7 1) = ﬁ 10 (I)(t)- (76)

i=1
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where
ﬁ = _ﬂl : ﬁp]) (77)
[ al .. al, B bk;
6 = , (7.8)
| af .- aB, B - B,
[ —Ay(t)
—-Ay(t — 1
o) = | “AYE-matl) (7.9)
Auft)
Au(t —nb+1)

The above modelling technique forms the basis for the development of the long-

range predictive control strategy which is discussed in the next section.

7.3 THE GENERALISED PREDICTIVE CONTROL ALGORITHM

GPC is a model-based algorithm which predicts the output of the plant over a time
horizon based on the assumption about future controller output sequences. An appro-
priate sequence of the control signals is then calculated to reduce the tracking error by
minimising a quadratic cost function, after which only the first element of the control
signals is applied to the system. This process is repeated for every sample interval
while new information is also updated. It is widely aﬁcepted that, GPC leads to good
rejection properties against modelling errors and disturbances [14]. Furthermore, it
can be extended to include system constraints to add consistency to the eoncept of
the “optimal” control solution [55]. The algorithm formulation is briefly described

next. Consider the following input-output linear discrete-time system:
A(z"HAy(t) = B(z™HAu(t) + C(z71)¢ (1), (7.10)
where
A(z™) = 1+az +age 24+ apa2 ™, (
B(z™') = 27F(by+bazr Tt 4 bzt e 4 by Y, (7.12
C(zil) = cot+ciz M ez 4+ epez™, (
| (

A = 1-—271
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y(t) and u(t) are the measurable output and input of the plant respectively, and
¢(t) denotes a vector of uncorrelated sequences of random variables with zero-mean
and covariance 0. Any tiine—delay (k) can be absorbed in the structure of the B(z~1)
polynomial. The controller computes the control action using optimisation of the

following cost function:

Joro = 3 [Pt +5) ~w(t+ ) + 3o DG)dute+5 - VF, (715

where

N; minimum costing (output) horizon;
N, maximum costing horizon;

Ny control horizon;

w future set-point;

A(j) control weighting sequence; and

P(z7') inverse model in the model-following context with P(1)=1.

Usually, the polynorhial C(z7') is not estimated but replaced by a fixed polynomial
T(271), also known as the observer polynomial. Its parameters are chosen so that the
whole system has better disturbance rejection properties, and it can compensate for
any unmodelled dynainics for the predictions P(z~!)y(¢+5) [15]. The minimisation of
the cost function described in Equation (7.15) leads to the following projected control

increment:
Au(t) =g (w—A), " A=[A{t+DN),...,Alt+]N)], (7.16)

where g7 is the first row of the matrix (GIG4 + MI)™'Gy, and G, is the dynamic

(step-response) matrix of the form:
go g1 - g(N2—1)
0 go -+ g(N2-2)

G = (7.17)

0O 0 --- g(N2—-Nu)J
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where g; are the step-response coefficients, and A is a vector of future output responses
weighted by P(z71).

The synergy between the GPC algorithm and Fuzzy Logic takes place when the
TSK Fuzzy model is used by the predictive controller to calculate the control sequence
of Equation (7.16). Even though the fuzzy model shown in Figure 7.1 consists of a
number of linear sub-models, the overall model output is nonlinear. However, to
facilitate the implementation of the fuzzy model into the GPC algorithm, a simple
method of linearising the fuzzy model about the current operating point by weighting
the fuzzy model parameters at each sampling instant was used. In such a case, the

overall fuzzy model output becomes:
Aym(t+1) =0 - d(t), (7.18)

where ©' represents a vector of B;-weighted parameters of © such that:

O = [a oy B oo, (7.19)
»

a; = Z,Bi-ay) j=1...,na, (7.20)
i=1
p .

b o= > Bt  k=1,..,nb (7.21)
=1

A comparison of the effectiveness of this method of linearisation with the tradi-
tional method of linearisation of nonlinear models based on determining the gradient
is provided in [41]. Better linearised modelling accuracy by weighting the fuzzy model
parameters can be achieved by increasing the number of fuzzy partitions. Therefore,
the improvement in model accuracy achieved by using more fuzzy partitions should
be reflected in better performance by the controller using the linearised model. In
practice, it was found that the controller performance tends to converge as the num-
ber of partitions was increased, and there was a little benefit to be gained by using
too many fuzzy partitions. In this research work it was generally not necessary to go
beyond 5 fuzzy partitions.

Figure 7.2 depicts the block diagram representing the main components of the
Fuzzy Model-based GPC implemented in the Hille-mill. System identification is
carried-out on-line ﬁsing a TSK Fuzzy model where only the consequent part of the

fuzzy rules is updated at every sampling instant. Once that inference takes place, an
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Figure 7.2: Block diagram of the Fuzzy model-based GPC

overall linearised model is computed for GPC to predict the output of the plant over
a time horizon. Note that before control is applied, the model order, number of fuzzy
partitions, and other design parameters such as the minimum and maximum horizons,
as well as the control horizon and the control weighting sequence should be defined
by the user. As stated earlier, the speed set-point is provided by the GA-based rolling
schedule optimisation mechanism presented in Chapter 5.

In summary, the following advantages can be obtained by implementing GPC

within the Hille-mill real-time operation:

e The process model is built upon a TSK Fuzzy model with a CARIMA struc-
ture which not only solves the offset problem inherently, but also provides a

qualitative dimension to the control problem:;

e Its ease of implementation and great flexibility by allowing for various tuning

factors to tailor it to a particular application: and

e Its inclusion of key control objectives by means of a cost function that encom-

passes the variance of the output as well as the control effort.
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7.4 ON-LINE ADAPTATION MECHANISM

Standard identification techniques such as the method of least squares can be easily
applied for determining the parameters of the fuzzy model [38],[62]. For this purpose

Equation (7.6) is reformulated as follows:
Aym(t+1) = 6(t) - (t), (7.22)

where ¢(t) is the regression vector which is determined from Ay(t), Au(t), and A(t);

this vector can be written as follows:

BrAy (t)

olt) = : . (7.23)
BpAy (t)

| BpAu(t—nb+1)
On the other hand, §(t) is the parameter vector determined from ©, and is given
by the following equation:

H(t)z[a% e al b% e b7]’.Lb’ s azl) T 4

na’ na?

B ] (129)

In most circumstances, the standard Recursive Least Squares (RLS) algorithm in
its UD-factorisation form was used in this work to estimate the values of the model
parameters [8]. As mentioned before, once the fuzzy model parameters are estimated,
an overall linearised model is calculated. i

Finally, it is worth observing another interesting aspect of GPC as follows; refor-

mulating Equation (7.10) yields the following equation:

' _1y Ay() _ _1y Au(t)
Az )T(z—l) = B(z )T(z_l)—i-((t). (7.25)

From the above expression it is clear that the input-output data is “band-pass”
filtered by the T-polynomial, which affects only the disturbance rejection properties
of the system [15]. - V
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7.5 THE ROLLING SPEED CONTROL SYSTEM

The adaptive control algorithm presented in the previous sections was used to control
the rolling speed of the Hille-mill. From Chapter 6, it is clear that all electric dynamics
can be neglected when there is an inner loop controlling the electromechanical torque
(Tem) of the induction motor. Therefore, by providing a torque command, the motor
will drive the Hille-mill to the desired speed; hence, for this particular application,
the controller output represents the torque reference! (Trgr), whereas the controller
inputs are the current rolling speed (feedback signal) and the set-point.

In order to analyse the feasibility of the real-time implementatioﬂ, as well as to
set-up the design parameters for the controller, a series of computer simulations were
carried-out under different working conditions. To this effect, the following sections

present 5 different study-cases:

1. Reference tracking;

[S]

. Speed regulation;

3. Control under time-varying process parameters;

S

. Control within a noise-contaminated environment; and finally
5. Control with pre-specified set-points.

Furthermore, in order to carry-out the dynamic analysis of the system, a com-
prehensive simulation platform using MATLAB® /SIMULINK® was developed. Figure
7.3 shows the simulation model which includes the dynamic model of the Hille-mill,
the roll gap control system, and the electric -drive model as discussed in Chapter 6.
The simulation model also uses blocks for the rolling force and torque prediction, as
well as the load force compensation [86],[56]. The block “Speed Control” includes
the developed C++ code of the model identification mechanism and the GPC algo-
rithm. The C++ code was embedded into an S-function block to make it suitable for
simulation within the SIMULINK® environment.

The rolling parameters such as the number of passes, the rolling speed, the gap

position, the stock dimension, the deformation temperature, the holding time, etc.,

1See Equation(6.6).
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Figure 7.3: Hille-mill simulation model with speed and gap control systems

are set-up in the block “Rolling Parameters”. For the plant model identification.
a TSK Fuzzy model with 5 partitions was used to create 5 second-order CARIMA
sub-models with 2 a’s and 2 b’s per fuzzy partition with a sampling time of 8 ms.
On the other hand, the selection of the GPC tuning factors such as N;, N and
Ny was conducted under the following criteria: N, is directly related to the process
time-delay, but it was usnally set to 1 with no loss of generality; N, was chosen to
exceed the degree of the polynomial A(z7!') , so that the value of this factor can be
formulated as Ny =~ 2n — 1 (n = order of A(z~!) + 1). It is known that when Ny
equals 1, it usually leads to satisfactory results, while greater values lead to a more
activated control signal [14]. Further, A was set to 0, and for the polynomials 7'(z7!)
and P(z7'), they were selected to be of the following form: T(z~') = (1 — 0.9z71)?
(for both control and identification) and P(z~') = (1 — 0.827')/0.2. For parameter
estimation the UD-factorisation method was used on incremental data with initial
covariance of 107 - I (I being the identity matrix) and a forgetting factor of 0.99.

The initial conditions for the fuzzy model were set to 0 for all a’s and 1 for all b’s.
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7.5.1 Case 1: Reference Tracking

Figure 7.4 shows the performance relating the rolling speed during step-changes of
the speed command. In these series of experiments, the control signal was clipped
to at the maximum value of 145 Nm. As shown in this figure, offset-free control was
achieved and both the rolling speed and the controller output responded very well
despite the fact that the mill was required to work in both rolling directions, and at
up to twice the rated speed (60 rpm). On the other hand, Figure 7.5 presents the
model parameter estimates during this experiment. Due to the fact that at the centre
of this control design is the linearised model of the plant which is estimated on-line
and updated every sampling instant, the controller has a means to obtain information
of the state of the plant and makes it capable to adapt its parameters to cope with
complex dynamics and nonlinearities.

A typical multi-pass schedule is shown in Figure 7.6, in which the speed command

remained constant but the rolling direction was changed continuously forward and

20{ 5
0

Rolling Speed (rpm)

0 5 10 15 20 25 30

Torque Reference (Nm)
o

-50 L
-100 |
-150
'} 1 I} I I} 1
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Figure 7.4: Control performance during step-changes in the speed command
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Figure 7.5: Model parameter estimates during step-changes in speed command

backward. Despite the fact that the Hille-mill developed high inertial forces during
the change of rolling direction, no overshoot was observed. Also, it is worth noting
that the controller led to a very smooth control signal during the transient state.
In addition, the model parameter estimates varied on-line so as to provide optimal
performance.

At this stage, it is worth drawing a comparison between the performance of GPC
and the one achieved by a conventional fixed PID controller. Notice in Figure 7.7 the
highly-active PID controller output compared to the GPC’s. In this system, where
electronic devices are used to control the power converter, most signals, including the
electromagnetic torque and motor speed, are not noise-free. Although this fact did
not affect the overall control performance, the PID controller output was more active
because the feedback signal had unfiltered noise components. On the other hand.,
one advantage of GPC is the use of the T-polynomial which first filters the feedback
signal, and then uses it to compute the optimal control action.

For this simulation study, the PID controller was first tuned using the Ziegler-
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Figure 7.6: Forward and backward control at rated rolling speed

Nichols method with a step-reference at the rated speed. Then, its control perfor-
mance was refined by trial and error. A quantitative comparison between both control
performances can be obtained in terms of the RMSE, which resulted in 10.803 rpm
for GPC and 11.143 rpm for the PID controller.

7.5.2  Case 2: Speed Regulation

Figure 7.8 presents the results of a single-pass hot-rolling. As shown in this figure,
good speed regulation was achieved during this test where the controller compensated
for the transitory disturbance by requiring the motor to generate the electromagnetic
torque to counteract the rolling torque (T0ap). By maintaining such a good speed
regulation, the controller allowed the Hille-mill to apply a constant strain rate when
deforming the material. With respect to the model parameter estimates during the
test, Figure 7.9 shows how the model parameters were detuned as the stock was

dragged into the rolls, but they quickly converged towards new values.
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Figure 7.7: GPC vs. PID during a step-change in the speed command

7.5.3 Case 3: Time-Varying Process Parameters

Figure 7.10 shows the performance of the system under time-varying process parame-
ters. Initially, the Hille-mill was operating in steady-state at 30 rpm. After 3 seconds,
the friction coefficient of the work rolls was increased to up to 600% its rated value.
As expected, the controller identified this new operating condition and adapted its
parameters in such a way that the rolling speed was maintained constant. Then, after
7 seconds, the motor inertia was also incremented to up to 800%. The effect of this
change was only seen in the transient state when at 10 seconds the speed reference
was decreased to 30 rpm. Despite the fact that the plant rising time was increased,
no overshoot in the rolling speed was observed. Figure 7.11 shows the dynamics of

the model parameter estimates during this test.
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7.5.4 Case 4: Noise-Contaminated Environments

7.6

The next case focused on the system when it operated within a noise-contaminated

environment. Figure 7.12 shows the rolling speed and the controller output using

both GPC and PID control. For this simulation, zero-mean white-noise was added to

the feedback signal to simulate extra noise which may be produced either by external

signal disturbances or bad calibration of the speed sensors. As seen in this figure, the

overall performance remained acceptable showing a good degree of robustness and

adequate noise rejection properties both in the control signal and the rolling speed
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Figure 7.9: Model parameter estimates during a single-pass hot-rolling experiment

response. On the contrary, the PID controller output became highly-active leading
to a more contaminated speed signal. The use of the observer polynomial T'(z7!) in
GPC led to a much better performance.

The RMSE values for the speed performance resulted in 5.64 rpm for GPC and
5.47 rpm for the PID controller. Because the system worked in a highly noisy environ-
ment, another performance index can be used to quantitatively compare the control
effort of both controllers. Such an index is related to the average power the controller
demands to the motor in order to carry-out the test. The average mechanical power

(Pavg) is defined by the following formula:

1 N
Pavy = ; 7(k) - w(k), (7.26)

where 7 is the torque and w represents the angular speed; N being the total number
of k samples. In this experiment, the average power demanded by GPC was 1.20 kW,
whereas for the PID controller it was 1.22 kW.
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Figure 7.10: Performance under varying system parameters

7.5.5 Case 5: Pre-Specified Set-Points

Another advantage of predictive controllers in general, and GPC in particular, is the

exploitation of the idea of pre-programmed set-points [55]. Unlike other linear con-

trollers, GPC allows for changes in the set-point profile, if known, to be communicated

to the algorithm some samples ahead, thus giving the opportunity to the controller to

adjust itself before the changes take place. This interesting feature has proven very

popular in areas of industry where the knowledge of these changes is possible.

Let us recall the result of the minimisation of the cost function described by
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Equation (7.15) as given by Equation (7.16):
Au(t) = g"'(w — A), A=[A{t+Ny),...,A(t + Ny)),

where ¢~7 is the first row of the matrix (GEG4+ MI)7'Gy, and G, is the dynamic
(step-response) matrix of the form shown in Equation (7.17) [14].

In order to introduce the pre-specified set-points into the calculation of GPC, the
future set-point trajectory (w) is used to calculate the future set-point errors. This
feature consists of minimising the difference between the range of future predictions
and the trajectory of future set-points instead of a constant set-point w(t) = w for
t=1,2,...,N,. Thus, at time ¢ the control calculation procedure may be forced to
take into account set-point changes occurring N, samples in the future. One can take
advantage of this feature when controlling the rolling mill due to the fact that the
speed set-point (i.e. the rolling schedule) is known well in advance.

For this simulation study, let us consider the following speed profile:

e Pass 1: Start the mill with a forward pass at 50 rpm for 15 seconds;
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Figure 7.12: GPC vs. PID within a noise-contaminated environment

e Pass 2: Backward pass at 40 rpm for 15 seconds:
e Pass 3: Forward pass at 30 rpm for 15 seconds;
e Pass 4: Backward pass at 20 rpm for 15 seconds, and then stop.

Also, a disturbance in the rolling speed of 5 seconds was applied during pass 3. For
this experiment, the maximum costing horizon was chosen to be large to observe even
better the pre-specified set-point feature. The GPC parameters used were N; = 1,
Ny =20, Ny =1, A=0,T(z7!) =1, and P(z!) = 1.

The set-points were known to the algorithm N, samples in advance. It is worth
noting that only for this experiment noise due to the electric dynamics was neglected.
For the plant model identification, a TSK Fuzzy model with 3 partitions was used to
create 3 second-order CARIMA sub-models with 2 a’s and 2 b’s per fuzzy partition
with a sampling time of 8 ms. The UD-factorisation method was used on incremental
data with initial covariance of 1073 . I and a forgetting factor of 0.99. The output
tracked the set-point adequately without any overshoot and a reasonable control
activity. The overall performance of the system was very smooth both during speed

changes and disturbances. Figure 7.13 shows the speed response of the rolling speed
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during the set-point changes. It can be observed that due to the fact that the set-
point was pre-programmed to GPC, the controller predictive capabilities acted before
the speed command. Notice also that the rolling speed response was N, samples in
advance (i.e. 0.16 seconds) so that the future speed was reached earlier. Also, a good

speed regulation was observed during pass 3.
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Figure 7.13: Performance using GPC with the pre-specified set-points feature

It is worth mentioning that when the prediction horizon has to be chdsen to be
large, smoother control actions are to be expected and if tighter control is required,
the control horizon Ny should be chosen larger than 1, which may compromise the
control effort; this is due to the fact that the controller needs more degrees of freedom
to choose the appropriate control sequence [55).

So far, a comprehensive study of the Fuzzy model-based GPC applied to the Hille-
mill has been discussed through computer simulations. Five different study cases
were presented showing the robustness and versatility of the control strategy and the
modelling technique, as well as the useful features it offers to applications where the

set-point profile is known in advance. The next section will describe further aspects



7.6 Real-Time Implementation 129

of GPC and the control performance during real-time hot-rolling experiments.

7.6 REAL-TIME IMPLEMENTATION

The inclusion of a powerful ac induction motor drive in the Hille-mill made it capable
of performing more complex and sophisticated multi-pass hot-rolling experiments.
The speed of the induction motor is controlled by a UNIDRIVE® SP drive which
provides accurate and fast speed as well as torque control using the FOC technique.
A high-speed network called CT-NET is used to provide communication between
the main drive, the gap actuator, and the data acquisition instruments, as well as
the main user interface module which is also connected to a PC. Previously, a data
acquisition (DAQ) system based on LAB-VIEW® was successfully implemented so
that full monitoring of the main variables such as the rolling speed, the roll torque
and load, the stock temperature, etc., is available. Figure 7.14 shows the system
configuration.

The Hille-mill can be operated in any of the following modes:

e Manual mode

e Local mode

Gap tor Gap position
sensor
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Figure 7.14: Hille-mill instrumentation and communication environment
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e Remote mode

In the manual mode, the mill is started and stopped using push buttons and the
speed is increased or decreased with up and down buttons on the operator panel.
The current speed is displayed on the main screen of the user interface module called
CTIU operator screen. Likewise, the rolls gap can also be changed by using the gap
up and down buttons. In the local mode, the user operates the mill from the CTIU
by means of programming up to 10 rolling passes which are automatically processed.
Finally, in the remote mode, the system is operated from a remote PC where the user
can schedule the rolling experiment and monitor the main variables on the PC screen.
Figure 7.15 shows some pictures from the main features of the system.

The UNIDRIVE® SP offers a multitude of in-built features for the motor speed
and torque control. However, for the task of implementing the GPC algorithm, it was
necessary to use an additional module called SM-Applications module (see Figure
7.15(b)). This module includes an additional processor for the drive and allows one

to utilise existing, or write new application software. It also offers more powerful

%= SYPT Pro - [GPCcontrol - Hardware Architecture]

Figure 7.15: Hill-mill control and monitoring system; (a) CTIU and remote PC; (b)
UNIDRIVE® SP and SM-Application module; (¢) hardware communication; (d) main
user screen
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networking capabilities to enable the gap drive (and other equipment) to be connected
together in order to communicate process-wide information of the hot-rolling process.

The main characteristics of the SM-Application module can be listed as follows:
e High-speed dedicated microprocessor;
e 384 kb Flash memory for user program;
e 80 kb user program memory;

e EIA-RS485 port offering ANSI, Modbus-RTU slave and master and Modbus-

ASCII slave and master protocols;
e CT-NET high-speed network connection offering up to 5 Mbit /s data rate;
e Two 24 V digital inputs;
e Two 24 V digital outputs

e Dual-port RAM interface for communicating with the UNIDRIVE® SP and other

option modules;

e Task based programming system allowing for real-time control of drive and

process.

The SM-Applications module should be programmed using its own programming
structures and syntax, therefore the GPC algorithm, previously coded in C+4+ , was
re-coded and modified to make it compatible with the microprocessor programming
language. Figure 7.16 shows how the code was embedded into the SM-Application
module software. In this figure, the GPC algorithm along with the adaptation mech-
anism are embedded within the sub-routine called “Pos()”, which runs synchronously
to a multiple of the drive control loops (range from 250 ps to 8 ms). “Pos0” was used
here to control the drive speed loop.

Despite several attempts to observe the Fuzzy model-based GPC in real-time
operation, it was clear that the computational effort required by the model estimation
mechanism and the control algorithm was too large for the microprocessor to complete

all the mathematical operations within the selected sampling time (8 ms). A careful
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Figure 7.16: Workspace of the SM-Application module. The GPC algorithm and the
adaptation mechanism were embedded within the “Pos0” routine. The number of
fuzzy partitions was set to 1 (linear model case)

examination of GPC from a computational viewpoint revealed that, for the operating
conditions concerning the Hille-mill, the time required for the derivation of the fuzzy
rules and the control law was excessive for the sampling time required by the process
and the number of loops implemented. It was then decided to operate the controller
using two fuzzy partitions with fixed parameters. Furthermore, even when using a
fuzzy model with two partitions and no adaptation mechanism, it was difficult to
test GPC using large output horizons or higher model orders than those used in
simulations. On the other hand, a slower sampling rate would affect the stability
of the system and, as a result, a complete failure of the communication network.
Therefore, it was decided not to do further modifications to the GPC algorithm but
using only a linear model with adaptive parameters instead. Bearing in mind the
computational limitations of the microprocessor, it was clear through the computer

simulations that an acceptable performance should be expected even by using a linear
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process model.

To monitor the real-time performance of the control system, a GUI was developed
using the CTSCOPE® software which is a Microsoft Windows® PC Tool designed to
trace the values of parameters on the SM-Application module as well as the motor
drive. Two similar graphical interfaces were designed; the first one used three chan-
nels to monitor (1) the set-point, (2) the rolling speed, and (3) the controller output.
The second one was designed for the on-line monitoring of the model parameter es-
timates. Additionally, a “quick-look” on-line monitoring was developed to be shown
in the main user module which allows him/her to make set-point changes, read the
current rolling speed, current control action, as well as to evalnate the model param-
eter estimates. Also, a user-controlled function was provided to switch the system
identification mechanism ON and OFF by pressing the F5 button on the main user
panel.

Using the above tools, a series of real-time experiments were carried-out to evalu-
ate the performance of GPC. The obtained results were compared to those given by
a conventional PID controller which had been previously tuned by the drive manu-

facturer [78]. The real-time tests conducted in the Hille-mill were:
1. Speed control during changes in the set-point; and
2. Speed regulation during the hot-rolling of steel alloys.

Bearing in mind the computational limitations of the Hille-mill, the GPC de-
sign parameters were selected to be as follows: Ny =1, Ny =5, Ny = 1, A = 0,
T(z7')=(1-092z")? and P(z7') = (1 - 0.827')/0.2. Further, an adaptive linear
discrete-time CARIMA model was used with 2 a’s and 2 b’s with a sampling time of

8 ms. The resulting linear model can be expressed as follows:
Aym(t + 1) = —ai Ay(t) — asAy(t — 1) + bjAu(t) + byAu(t — 1). (7.27)

Unlike the simulation studies, for these real-time experiments GPC was allowed to
run with some initial parameter estimates, which were obtained at the end of a trial
run at the rated rolling speed of 30 rpm. Also, it is worth noting that the adaptation
mechanism was made to be operational. The next sections will present and discuss

the results obtained from such real-time experiments.
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7.6.1 Experiment 1: Speed Control

Figure 7.17 shows the first test when the rolling speed was required to follow a ref-
erence signal both in forward and backward direction, and at up to twice the rated
speed. As shown in this figure, the speed response was offset-free and the dynamic
response did not show either an overshoot or oscillations. For comparison purposes,
the same figure shows the real-time performance for the same test conditions using a
PID controller.

GPC provided a less active control signal leading to a smoother torque reference for
the electric drive. Notice that when the system changed from 30 rpm to 60 rpm, the
maximum torque required in the transient state was 94% of the motor rated torque;
on the other hand, the PID controller demanded 135%. It can be also observed that
when using a PID controller at 60 rpm, the roll shaft presented torsional oscillations
commonly known as chattering; however, when using GPC this effect was eliminated.
Figure 7.18 shows the system identification process during this real-time experiment.
The RMSE performance index for this experiment resulted in 7.26 rpm for GPC and
9.70 rpm for the PID controller. On the other hand, the average power used by
the motor when using GPC was 1.268 kW, whereas for the PID controller it was
2.831 kW.

The next experiment consisted on switching ON and OFF the model estimates
during a multi-pass schedule. Initially, GPC started with a fixed model previously
set, which was obtained as a result of a 20 second test at rated speed. After 26
seconds the identification mechanism was allowed to be operational for 20 seconds
only. Figure 7.19 shows the results of this test. As shown in this figure, there is a
clear difference of performance observed in the controller output before and after the
system identification mechanism started up. Note that the initial fixed model led to a
more active control signal in transient state, but when there was on-line identification
the signal ripples disappeared even when the mechanism was switch OFF again. The

model parameter estimates during this test are shown in Figure 7.20.

7.6.2  Experiment 2: Speed Regulation during Hot-Rolling Experiments

A series of real-time hot-rolling experiment were carried-out to evaluate the GPC
performance in terms of the rolling speed regulation. In this experiment, a stock of

the aluminium AA5182 alloy with an initial thickness of the of 25.5 mm was used.
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Figure 7.17: GPC vs. PID real-time speed control

The stock was heated and prepared for rolling at 300°C. The experiment was designed
to be a 4 rpm single-pass and 60% reduction in thickness. As shown in Figure 7.21
the speed regulation was acceptable for this test, showing good disturbance rejection
properties when the stock was fed into and came out of the rolls. This figure also
shows the GPC performance compared to the one given by the PID controller under
the same rolling conditions. It can be seen that although the time-response of GPC
was slower, it was much smoother both in the rolling speed and torque, leading
to a more effective energy-consumption during the stock deformation. The RMSE
values for this experiment resulted in 0.139 rpm for GPC and 0.123 rpm for the PID
controller. Finally, the average power used by the motor was 0.312 kW for GPC and
0.322 kW for the PID controller.
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7.7 RESULTS FROM TYPICAL ROLLING SCHEDULES PERFORMED IN THE HILLE-
MILL

Finally, this section shows experimental results from typical rolling schedules designed
by IMMPETUS members to be performed in the Hille-mill under real conditions of
deformation and temperature. GPC was used both in its adaptive and fixed forms.
However, only selected (typical) experiments are presented here to show that the
development and real-time implementation of GPC in the Hille-mill is one of the
major contributions of this research work. The first experiment was designed to be
a two-pass hot-rolling of a stainless steel stock with initial thickness of 50 mm. The
operating mode of the Hille-mill was set to “manual”. The sample was pre-heated at
1100°C and was subjected to 20% reduction per pass. The rolling schedule for this

experiment is shown in Table 7.1.



7.7 Results from Typical Rolling Schedules Performed in the Hille-Mill 137

Rolling Speed (rpm)

10 20 30 40 50 60

-50 | =

-100 + E
RLS OFF ——)-F— RLS ON 4>¥-<— RLS OFF —

= 1 50 1 i 1 1
0 10 20 30 40 50 60

Time (s)

Torque Reference (%)
(=]
I

Figure 7.19: Real-time performance of GPC with ON/OFF-line system identification

Figure 7.22 shows the results of this test. GPC was allowed to run with some initial
parameter estimates, which were obtained at the end of a trial run at the rated rolling
speed. The identification system was also allowed to be on-line during the whole test.
Initially the system followed a speed command of 20 rpm in forward direction followed
by the first rolling pass with a reduction in thickness of 20%, typical of this kind of
experiment. As soon as the stock came out of the rolls, the motor was stopped to allow

the operator to adjust the gap position down to 32 mm. The second pass was then

Table 7.1: Rolling schedule for experiment 1

RoLLING SPEED REDUCTION GAP
Pass No.

(rpm) (%) (mm)
1 20 20 40

2 20 20 32
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Figure 7.20: Model parameter estimates when RLS was switched ON/OFF

carried-out at 20 rpm in backward direction. As shown in Figure 7.22, GPC did not
demonstrate any unstable modes but there were large control excursions especially
during the disturbance phases. Notice that when the system was stopped and re-
started for the second pass, the response seems to be slow at tracking the set-point
change resulting in large control effort, this being due to the fact that the parameter
estimates were detuned. However, once enough excitation had been provided, the
parameter estimates led to a better set-point tracking with a good speed regulation.

The rolling schedule for the second rolling experiment is shown in Table 7.2. In
this case, a four-pass forward-reverse hot-rolling experiment was performed using the
C-Mn steel alloy which had been heated at 1100°C. The initial thickness was 25.4 mm.
After 8 seconds, the parameter estimation mechanism was switched-off. Figure 7.23
shows the results of this experiment, where an acceptable set-point tracking was
observed with a good speed regulation despite the fact that the systems was required
to operate at twice the rated speed. Although there was no system identification {rom

t = 8 s onwards, the control effort was kept low even at the finishing rolling pass when



7.8 Concluding Remarks 139

GPC PID

5 5
E 3

£45 845
'8 =)
1]

2 4 24
w w
o o

c = 35

= 35 £ 3.
=]} [=]
© (4

3 3

10 15 20 10 15 20

100 100
9 9

S g < 80
[ (]
o o
= =

o 60 @ 60
i) &2
Q @

o a0 o 40
)] [
g_ =3

g 2 g 2
(= [

0 0

5 10 15 20 10 15 20
Time (s) Time (s)

Figure 7.21: GPC vs. PID real-time performance during a speed regulation test

the system worked in a different operating point.

Table 7.2: Rolling schedule for experiment 2

ROLLING SPEED REDUCTION TAP

Pass No.
(rpm) (%) (mm)
1 60 20 20.32
2 60 20 16.25
3 60 20 13.00
4 30 20 10.4

7.8 CONCLUDING REMARKS

The control performance shown by GPC in the Hille-mill represents an important

achievement for the accurate control and regulation of the rolling speed and it is
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Figure 7.22: Real-time performance of GPC during the hot-rolling of steel

one of the major contributions of this research work. The use of conventional PID
controllers in this particular application produced a very active control signal and
shaft chattering when working above the rated speed. This varies the amount of
strain or strain rate applied to the stock when rolled and, as a result, a possible
mismatch between the final product and the original design may be produced.
Examining GPC from a computational viewpoint revealed that the computational
burden of the control algorithm was big compared to the one in conventional con-

trollers. This was inevitably due to the series of calculations that take place at ev-
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Figure 7.23: Real-time performance of GPC during the hot-rolling of steel at the

maximum speed

ery sampling instant such as parameter estimation, output prediction, optimisation,

etc. This became more evident during the real-time operations. Due to the time-

consuming nature of this strategy, it was decided to use an adaptive linear model

which led to acceptable results and yet optimal performances when rolling experi-

ments in the Hille-mill were performed. The real-time implementation of GPC in the

Hille-mill allowed for obtaining optimal control of the rolling speed, so that effective

application of deformation profiles could be expected.
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The results from experiments using the Hille-mill show the efficacy of the control
algorithm in real-time operations. The next chapter will present the results of hot-
rolling experiments and laboratory tests using both SISSCOR for the rolling schedule

optimisation and Fuzzy-GPC for the mill control.



Chapter 8

Real-Time Evaluation of SISSCOR via
Hot-Rolling Experiments and Laboratory
Testing

8.1 INTRODUCTION

This chapter presents the experimental and laboratory procedures to carry-out hot-
rolling experiments using the Hille-mill, from stock preparation to microstructure
analyses and mechanical testing. SISSCOR is used to calculate the optimal rolling
schedule according to a set of pre-defined requirements so as to achieve a right-first-
time production. The optimisation procedures already described in Chapters 4 and 5
are implemented within the SISSCOR computing platform to facilitate the metal de-
sign and the process development. Up to 23 hot-rolling experiments were carried-out
under different working conditions and design criteria. After each rolling experiment,
the samples were cut, polished, and etched to reveal the quantitative features of the
microstructure; then, selected specimens were machined to be subjected to mechani-
cal testing. The results from such laboratory tests were then compared to the desired
metal design in order to evaluate the accuracy and reliability of the proposed opti-
misation mechanism. Further details relating to the methodology which enables to
carry-out these laboratory tests can be found in Appendix B.

The adaptive Generalised Predictive Control developed in Chapter 7 was also used
during the rolling experiments in order to guarantee the optimal control performance
of the Hille-mill.

143
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8.2 STOCK PREPARATION

The experimental material was the commercial type C-Mn Steel alloy (Bright Mild
Steel) grade 080A15, of composition 0.16% carbon, 0.19% silicon, 0.73% manganese,
0.021% sulphur, and 0.012% phosphorus according to the manufacturer specifications.
The material was received in the form of hot-rolled bars with a 50x25.4 mm cross
section and were all 3 m long. For hot-rolling experiments using the Hille-mill, small
slabs of 150 mm long were cut to facilitate reheating using a laboratory furnace.

A 20 mm long hole was drilled at the centre of each sample to insert a K-type
thermocouple, which is made of a nickel-chromium /nickel-aluminium junction. This
thermocouple is widely used in these types of applications since it is suitable for tem-
peratures within the range of 95°C to 1260°C with a reasonable accuracy, having a
sensitivity of 41 uV/°C approximately. The fact that the thermocouple was embed-
ded in the metal allowed for good temperature readings during the whole process,
including reheating, rolling, and cooling, as well as allowing for real-time recording of
the temperature gradients. Figure 8.1 shows such an arrangement. As shown in this
figure, a metallic hook was also embedded into the metal to hold the thermocouple
wire and prevent a possible rupture or crack, as a result of the high temperature
on the metal surface and excessive strain or twist in the wire when the stock was
being deformed or handled by the operator. The thermocouple was connected to
the high-speed network and interfaced to the PC, so that the stock temperature was
continuously monitored and recorded automatically using the LABVIEW-based DAQ

system.

C-Mn Slab

Thermocouple

Figure 8.1: Arrangement of the stock to be rolled with an embedded K-type thermo-
couple
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8.3 THE HOT-ROLLING PROCEDURE USING THE HILLE-MILL

The procedure associated with the hot-rolling experiment using the Hille-mill can be

divided in three main stages:

1. Reheating;
2. Hot-rolling; and

3. Cooling.

It is worth noting that important microstructural events take place during each
stage. As already described in Chapter 3, during reheating grains grow and the mi-
crostructure itself consists of coarse grains of austenite. When passed through the
rolls, the austenite grains are flattened and elongated on average, while each austenite
grain undergoes a dimensional change that corresponds to that of the workpiece as
a whole. Finally, after deformation and when the metal temperature is sufficiently
low, phase transformation takes place leading to a predominantly ferrite-pearlite mi-
crostructure. As already discussed in Chapter 5, the above metallurgical phenomena
are considered in SISSCOR; however, important information has to be first obtained
in order to calculate the rolling parameters, such as the initial microstructure prior

to hot-rolling (after reheating).

8.3.1 Reheating and the Initial Microstructure before Rolling

In order to obtain the initial microstructure for hot-rolling, two samples were placed
in the interior of an electric furnace for reheating either at 1180°C or 1100°C during
45 minutes; after that, they were taken out of the furnace and quenched in water at
room temperature. The resulting austenite grain size was measured using the mean
intercept method leading to 260 pm and 220 pm for each temperature respectively.
Figure 8.2 shows a photomicrograph of the coarse austenite microstructure of the
stock just before hot-rolling. To guarantee repeatability, all samples were reheated in

the same manner.

8.3.2 The Hol-Rolling Experiment

To illustrate the procedure of a typical hot-rolling experiment using the Hille-mill,

consider Figure 8.3, which illustrates the sequence of a two-pass hot-rolling schedule.
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Figure 8.2: Austenite microstructure prior to hot-rolling

The sequence shown in this figure can be described as follows:

1.

After heat treatment, the operator takes the stock out of the furnace.

The Hille-mill is started-up and the DAQ system is made to be operational.
The stock temperature, the rolling speed, and the gap position are verified in
order to initiate the experiment. The operator waits for the green light which

will mark the beginning of the first pass.

. The first pass takes place using the pre-defined rolling parameters. The rolling

force and torque are measured along with the stock temperature. During this
time, the metal microstructure goes through dynamic changes such as work

hardening and the dynamic restoration processes.

The stock comes out of the rolls; its thickness has been reduced, its length
increased, while its width remains largely unchanged. The steel microstructure

begins its static changes such as recrystallisation and grain growth.

The operator holds the stock during the inter-pass time. During this time,
the mill rolling direction and speed are changed, and the gap position adjusted

according to the rolling schedule for the second pass.
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6. After the holding-time, the operator introduces the stock back to the rolls to
begin the second pass. Careful monitoring of the stock temperature is essential

to accomplish the rolling schedule appropriately.

7. The second pass is carried-out. Further microstructural changes take place as
a result of the additional strain applied to the metal leading to a refinement of

the austenite grain size.

8. The operator holds the rolled metal. The mill is stopped, and the DAQ system
remains operational until the stock temperature drops down to the transforma-
tion temperature. The stock is labelled, and put away for microstructural and

mechanical analyses.

Although the sequence presented in Figure 8.3 represents a two-pass rolling ex-
periment, further passes may be carried-out exactly in the same manner. As will be

shown later, the experiments conducted in this work consist of up to 5 rolling passes.

8.3.3 Cooling

Due to the fact that there was no available automatic mechanism to control the
stock temperature, only air-cooling was considered in this work. Therefore, the type
of microstructure expected for all experiments is comprised mainly of ferrite and
pearlite fractions. Due to the carbon content of the metal used in these experiments,
the austenite phase starts to change to the ferrite phase at approximately 875°C. After
the last pass, the operator simply grips the metal until its temperature drops down
to 723°C when there is no longer austenite phase, and the microstructure becomes
predominantly a mixture of ferrite and pearlite fractions. After this, the rolled metal
is put away and given an identification number in order to be machined and prepared

for metallographic analysis and mechanical testing.
P ) 2

8.4 METALLOGRAPHIC ANALYSES

The metallographic analysis consisted of preparing the metal surface for examination
by polishing and etching in order to reveal the microstructural constituents. After
preparation, the sample was analysed using optical microscopy. In this case, the aim

was to measure the final ferrite grain size of the rolled metal as well as the volume
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Figure 8.3: A sequence of a typical hot-rolling experiment using the Hille-mill
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fraction of pearlite. As already mentioned, this work focused on duplex ferrite-pearlite
microstructures produced as a result of air-cooling of the low carbon steel used in hot-
rolling experiments. In such a structure, the pearlite colony and the ferrite grain size
are the main microstructural features, the latter being the determining aspect that
defines the mechanical properties.

To carry-out such an analysis, two small specimens were cut from each rolled
stock. Figure 8.4 shows examples of specimens used for metallographic analysis and
the ‘Polyvar’ optical microscope. The two specimens were polished and etched with
5% Nital in such a way that one showed the longitudinal surface of the rolled metal
and the other one the transversal surface. In this regard, although it is obvious that
the grains and colonies are 3-dimensional features of the metallurgical structure, it
is conventional to report sizes measured on the planar sections, with no attempt to
convert them to sizes of the 3-dimensional grains [31].

Once the microstructure was revealed, the method of measurement was based on
counting numbers of boundaries per unit length or number of grains or colonies per
unit area. This method is covered by international standards such as the standard
ASTM E112 entitled “Standard Test Methods for Determining Average Grain Size”,
published by the American Standard for Testing and Materials 4].

Figure 8.5 shows an example of the ferrite-pearlite structure in one of the hot-

rolling experiments carried-out using the Hille-mill. On a photomicrograph, a com-

(a) (b)

Figure 8.4: (a) Polyvar optical microscope in the Digital Laboratory located in the
Engineering Materials Department; (b) etched specimens for microstructure analysis
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Figure 8.5: Method of point counting using a grid of points to determine pearlite
colonies

W

plete grid of points was drawn as illustrated in Figure 8.5. The grid step size was
chosen so as to allow the space of traverses to be sufficiently large for no two adja-
cent points to fall in the same pearlite colony. Points were registered as ‘in pearlite’
(counts 1), ‘in ferrite’ (counts 0), and ‘at boundary’ (counts 1) to obtain the number
of points in pearlite on each traverse.

Next, the same micrograph was used to count the number of boundaries per unit
length along the same traverse lines used for counting pearlite colonies. Figure 8.6
shows the method of counting the number of ferrite and pearlite boundaries. As shown
in this figure, the method required separate counts of the number of ferrite/pearlite
boundaries and the number of ferrite/ferrite boundaries to be made along each of the
traverses. Usually, a total of 100 testing lines (traverses) were used on photomicro-
graphs taken from different areas of the specimen surface. A typical example of the
procedure used to measure the ferrite grain size and the volume fraction of pearlite

is shown in Appendix B.

8.5 MECHANICAL TESTS

Several groups have developed standard methods for conducting the tension test. In
the United States, standards published by the American Standards for Testing and
Materials (ASTM) are commonly used to define tension test procedures and param-

eters. Indeed, the most common methods for tension testing of metallic materials is
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Figure 8.6: Method of counting ferrite/pearlite (+) and ferrite/ferrite (x) boundaries

the ASTM E8 “Standard Test Methods for Tension Testing of Metallic Materials”
[5]. Standard methods for conducting the tension test are also available from other
organisations, such as the Japanese Industrial Standards (JIS), the Deutche Institut
fur Normung (DIN), and the International Organisation for Standardisation (ISO),
but in general these are based on the ASTM ES8 standard. The procedure for a typical

tension test is shown in Appendix B.

8.5.1 The Test Specimen

The test specimen is a small portion of the rolled metal, with dimensions specified by
standard, and machined for submission to the tension test. The test specimen geon-
etry is also standardised to allow for setting general specifications and nomenclatures

for all tests'. Figure 8.7 shows the standard round tension test specimens used in this
work [33].

Figure 8.7: Test specimens for tensile tests

!See Table B-3 of Appendix B for the specimen nomenclature, geometry, and dimensions.
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8.5.2 Test Sel-up

The set-up of a tensile test involves the installation of the test specimen in the load
frame of the testing machine. Other aspects of the test set-up include proper grip-
ping and alignment of the test specimen, and the installation of an extensometer for
measuring yield behaviour. The extensometer is attached to the test specimen so as
to sense any small strain and magnify it into a meaningful signal for data processing.
Figure 8.8 shows the tension test set-up of one experiment carried-out in the Thermo-
mechanical Processing Laboratory of the Materials Engineering Department, at the

University of Sheffield.

Figure 8.8: Tension test set-up

After the test specimen is adequately measured and prepared, and the test set-up
established, conducting the test is fairly routine. The test specimen is installed in
the grips, the extensometer fastened for measurement and data recording. The DAQ
system has to be checked also. The test parameters used to set-up the testing machine
are shown in Table B.2 of Appendix B. After the test, the DAQ system saves the
datafile containing the amount of elongation and the load applied during the time of

the experiment.

8.5.8  Variability of Tensile Properties

Variability due to of the nonhomogenous nature of metallic materials is always present

even when the test is performed successfully. Other material factors may be due to
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specimen preparations such as the surface finish, the dimensional accuracy, the fillets
at the ends of the reduction area, the taper in the gage length, the thread quality,
etc. Additionally, the instrumental factors that can affect the test results are: the
stiffness, the damping capacity, the natural frequency, and the mass of the moving
parts of the testing machine; the accuracy of the force indication and the use of
forces within the verified range of the machine; the rate of the force application, the
alignment of the test specimen with the applied force, the verticality of the grips, the
grip pressure, the nature of the force control used, the appropriateness and calibration

of the extensometers, the heat dissipation, etc. [5].

8.6 EXPERIMENTAL RESULTS

This section presents typical results from hot-rolling experiments carried-out using
the Hille-mill. The aim was to evaluate experimentally the rolling schedules given
by SISSCOR when considering different deformation conditions, and to compare the
mechanical properties of the rolled metal with the desired design in order to conclude
whether a right-first-time production was achieved. Also, it is worth remembering
that during the experiments, the adaptive Fuzzy Model-based Predictive Control
scheme was used to guarantee the optimal control performance during the experi-

ments2.

8.6.1 Rolling Experiment 1

The first metal design consisted in calculating the obtimal rolling schedule to achieve
a C-Mn steel alloy with the following mechanical properties: 460 MPa and 300 MPa
of TS and YS respectively, with an ITT of -95°C. For this experiment, all-properties
received the same degree of importance in the optimality criterion; therefore, each
priority factor was set to one (ie. #=[1 1 1]). The initial conditions included
an initial deformation temperature of 1050°C, and an initial austenite grain size of
220 pym. As mentioned earlier, the stock initial dimensions were 150 mm long, 50 mm
wide, and 25.4 mm thick. The inter-pass time was set to 55 seconds.

As far as the stock physical constraints were concerned, these were established

bearing in mind the limitations of the metal due to its chemical composition and

2See Chapter 7.
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the effect of air cooling on the final microstructure. In this case, the solution given
by MODULE 1 should include a ferrite grain size between 8 um and 30 pm, with a
pearlite fraction no largér that 25%. On the other hand, although the Hille-mill can
be operated within a wide range of working regimes, the mill constraints were set
assuming different scenarios for ‘safe’ working conditions. For this experiment, the
assumed scenario required a rolling speed between 10 rpm and 40 IPIM, an amount
of deformation per pass between 15% and 35%, and producing a rolling torque no
higher than 3000 kNmm. A

For MODULE 1, a random initial population with a uniform distribution was used
with 20 individuals. The GA stopping criteria were defined in such a way that the
process completed 50 generations or the cost function value was below 10-%. In
the case of MODULE 2, the GA-based sequence was allowed to use a random initial
population with a uniform distribution with 50 individuals representing values for the
~ strain and the strain rate; each individual received a fitness score which was scaled in
order to rank the population, so that the rank of the most fit individual was 1, the
next most fit was 2, and so on in order to remove the effect of the spread of the raw
scores. The GA should stop its search when either the fitness value was less or equal
to 1073, or 300 generations were completed. The scaling factor modulation® was set
to n = 0.12, and the fuzzy inverse model was designed to consider air cooling during
transformation. | .

With this initial information, SISSCOR, gave the rolling schedule shown in Table
8.1. It is worth noting that the output of MoODULE 1 included a required ferrite
grain size of 13 um with a pearlite fraction of 5.17%. Based upon this, MODULE 2
computed the best rolling parameters leading to a two-pass rolling schedule where the
critical parameters were within the feasible range defined by the selected constraints.

As shown in Table 8.1, the predicted microstructure and properties of the rolled
metal revealed that after phase transformation, the microstructure included ferrite
grains with an average size of 13.86 um and with a 6% of pearlite fraction, which was
very close to the requirements. Using the property models, the predicted TS, YS, and
ITT were 448.65 MPa, 319.31 MPa, and -94.96°C respectively.

Figure 8.9 shows a simulation of the evolution of the microstructure as well as

the stock temperature through time when using the obtained rolling schedule. In

3See Equation (5.17).
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Table 8.1: Rolling schedule and microstructure parameters for sample 1

REsuLTs oF MoDULE 1

Optimal Ferrite Grain Size (um)
Optimal Pearlite Fraction (%)

13
5.17

RESULTS OF MODULE 2

Temperature (°C)

Strain

Strain Rate (s7!)

Rolling Speed (rpm)
Reduction (%)

Gap Position (mm)

Exit Thickness (mm)
Torque (kNmm)

Force (kN)

Grain Target (um)
Recrystallised Grain (um)
Austenite Grain (um)
Fraction Recrystallised (%)

Rolling Pass No.

1
1050
0.399
5.12
40.00
29.3
17.69
17.96
2350
85
52
51.90
52.03
100

2

901
0.305
5.07
38.00
23.3
13.36
13.78
1836
123
23
23.10
23.48
100

PREDICTED MICROSTRUCTURE AND PROPERTIES AT ROOM TEMPERATURE

Ferrite Grain Size (um)
Pearlite Fraction (%)
Tensile Strength (MPa)
Yield Strength (MPa)
Imp. Trans. Temp. (°C)
Air Cooling Rate (°K/s)

13.86
6
448.65
319.31
-94.96
1.63

this figure, it can be seen that the parameters given by SISSCOR led to an adequate

control of the microstructure events at each rolling pass. For instance, the amount of

strain applied in the first pass was enough to refine the initial austenite grain size from

220 pm to a recrystallised grain size of 51.90 um, which eventually rose to 52.03 pm.
For the second pass, the deformation profile achieved the desired target which led

to a final austenite grain size of 23.48 um. The temperature differences across the
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Figure 8.9: Simulation of the microstructure evolution during experiment 1

metal made the microstructure include some but negligible variations. Prior to phase
transformation, no accumulated strain was found as a result of the full recrystallisation
achieved during rolling.

Figure 8.10 depicts the main variables recorded by the DAQ system during this
real-time experiment. Following the rolling schedule, the first pass was carried-out
when the stock temperature was 1051°C, with a rolling speed of 40 rpm (forward
direction), and a gap between work rolls of 17.69 mm. It is worth noting that this is
not the exit thickness of the stock. According to Table 8.1, the exit thickness after

the first pass was 17.96 mm, this means that a compensation of 0.27 mm due to the
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Figure 8.10: Main variables during the rolling experiment 1

mill spring was taken into account.

A metallographic analysis of the rolled metal revealed that, by using the obtained
rolling schedule, the required microstructural parameters were achieved successfully.
Figure 8.11 shows photomicrographs of the final state of the microstructure at room
temperature. As shown in this figure, the duplex microstructure was comprised pre-
dominantly of ferrite grains and pearlite fractions (dark areas). By using the method-
ology for quantifying the microstructure described in Appendix B, a mean ferrite
grain size of 12.67 pum with a pearlite fraction of 20.13% was achieved.

Although there is a large mismatch between the required percentage of pearlite



8.6 Experimental Results 158

(a) (b)

Figure 8.11: Photomicrographs of the final microstructure of sample 1: (a) longitudi-
nal and (b) transversal sections

fractions and the one obtained experimentally, it is worth noting that the desired de-
sign establishes that the pearlite fraction should be less that 25% so that the property
models and physical limitations are applicable. With this in mind, it can be concluded
that the obtained rolling schedule was accurate enough to control the microstructure
events so as to achieve successfully the optimisation objectives.

In terms of mechanical properties, tensile tests were carried-out using three spec-
imens which were cut from the rolled metal (see Figure 8.7) and machined according
to the dimensions (size 2) shown in Table B.3 of Appendix B. Each specimen was
subjected to a tensile stress test in order to observe its yield behaviour and evaluate
its mechanical properties. Figure 8.12 shows the results from such a test. The plots
show a linear elastic behaviour of the metal at the beginning of the test until a point
in which the stress is too high that the metal started to deform. That point, as given
by the 0.2% proof stress, is the lower yield stress, or the yield strength. In this case,
the mean YS was 312.33 MPa.

Once in the plastic range, the load change rate became much slower than the
elongation change rate producing a very slow stress increment. When the applied
strain reached 0.023, the extensometer was removed and further load was applied to
the specimen at a faster speed until fracture. The maximum stress developed in the
specimen just before fracture was taken as the tensile strength. In this case, the mean
TS was 474 MPa.

Table 8.2 summarises the results of this experiment. As already discussed, in
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Figure 8.12: Engineering stress-strain curve for sample 1

terms of the microstructure, the desired parameters were successfully achieved. On
the other hand, in terms of the mechanical properties, it is worth mentioning that
only the tensile and yield strengths were tested. Bearing in mind that an error of as
much as £10% is usually accepted in metal design, the results of the tensile tests can

be also considered as acceptable.

Table 8.2: Final microstructure and mechanical properties of sample 1

FINAL
DESIRED -
Predicted Experiment
Ferrite Grain Size (um) 13 13.86 12.67
Pearlite Fraction (%) < 25 6 20.13
Tensile Strength (MPa) 460 448.65 474
Yield Strength (MPa) 300 319.31 312

Imp. Trans. Temp. (°C) -95 -94.96 —




8.6 Experimental Results - 160

8.6.2 Rolling Experiment 2

The second design was defined so as to calculate the optimal rolling parameters to
produce a C-Mn steel alloy with 420 MPa of TS, 286 MPa of YS, and -60°C for ITT.
As shown by the desired value of the properties, one may conclude that, because the
strength was decreased in comparison to the design presented in the last section, the
required ferrite grain size should be larger, which means less strain will be applied to
the stock and, as a result, a lesser number of passes should be needed. Although this
is technically correct, the optimal solution needs more than empirical assumptions.
In fact, the solution becomes even less evident when the initial conditions have small
differences or the mill working conditions are somewhat different. Table 8.3 presents
the results obtained after running the scheduling mechanism. All priority factors were
also set to 1.

As expected, MODULE 1 provided a larger requirement for the ferrite grain size, i.e.
15 pm, with 20% pearlite fraction. However, in order to achieve such a microstructure,
MODULE 2 gave a completely different schedule for the experiment, which consisted
of three rolling passes at a high speed but with smaller reductions per pass. The
initial conditions for the experiment were the same as in the previous design, with an
initial temperature of 1050°C, and an austenite grain size of 220 ym. Therefore, the
differences in the rolling schedule are mainly due to the mill working conditions. In
this experiment the Hille-mill working range was set in such a way that the electric
motor worked above the rated speed, which is between 30 rpm and 60 rpm. For this
reason, the capability of the motor to deliver electromagnetic torque was diminished,
so that the constraints for the amount of reduction and rolling torque per pass had
to be narrowed, the percentage of reduction per pass being between 15%' and 30%,
hence producing a rolling torque of as much ‘as 2500 kNmm. -

The simulation results shown in Figure 8.13 show the evolution of the microstruc-
ture when applying the optimised rolling schedule. Note that, because of the selected
constraints, the process required small reductions per pass, but more rolling passes in
order to achieve the grain targets. This can be clearly seen in the first pass, where the
deformation profile led to a recrystallised austenite grain size of 103 um, which is two
times bigger than that in the previous design for the first pass. Another important
aspect was that, although the time for full recrystallisation for the first time was slow,

the parameters given by the scheduling mechanism eventually led to a proper control
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Table 8.3: Rolling schedule and microstructure parameters for sample 2

REsSuULTS OF MODULE 1

Optimal Ferrite Grain Size (um) - 15
Optimal Pearlite Fraction (%) 20
RESULTS OF MODULE 2

Rolling Pass No.

1 2 3
Temperature (°C) 1050 - 982 917
Strain 0.199 0.270 0.280
Strain Rate (s™1) 5.215 5.64 5.97
Rolling Speed (rpm) 60.00 50.00 46.00
Reduction (%) 15.8 20.85 21.69
Gap Position (mm) 21.34 16.68 12.87
Exit Thickness (mm) 21.37 16.91 13.24
Torque (kNmm) 1270 2186 1709
Force (kN) ' 14 97 89
Grain Target (pum) 103 42 21
Recrystallised Grain (um) 103 41.6 - 218
Austenite Grain (um) 61.1 42.45 26.3
Fraction Recrystallised (%) 100 100 100
PREDICTED MICROSTRUCTURE AND PROPERTIES AT ROOM TEMPERATURE
Ferrite Grain Size (um) 14.29
Pearlite Fraction (%) : 20
Tensile Strength (MPa) 421.11
Yield Strength (MPa) 286.14
Imp. Trans. Temp. (°C) ‘ " .59
Air Cooling Rate (°K/s) 1.75

of the microstructural changes.

Prior to phase transformation, the mean austenite grain size was 26.3 pm with no
accumulated strain. When the austenite transformed to ferrite and then to a ferrite-
pearlite structure, the predicted microstructure was comprised of ferrite grains.with
an average size of -14.29 um and 20% of pearlite fraction, which was very close to

the requirement. However, it is worth mentioning that, although the rolling sched-
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Figure 8.13: Simulation of the microstructure evolution during experiment 2

ule for this experiment worked adequately, it was observed that if reductions smaller
than 15% are used, there will not be enough energy in the metal to reach full re-
crystallisation, so that instead of refining the austenite grain, it may result in grain
coalescence. This knowledge is implicitly embedded in the optimality criterion of
MODULE 2, which states that, in order for the deformation profile to be optimal,
the metal has to complete full recrystallisation before the next pass (ie. X =~ 1 in
Equation (5.13)). The fact that the rolling parameters for the first pass are near the
constraint boundaries shows that the decision variables were close to the unfeasibility

region, making the solution less obvious.
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Figure 8.14: Main variables during the rolling experiment 2

80

100

Figure 8.14 shows the Hille-mill performance for this experiment. It can be seen

that no constraint violation occurred during all passes. In terms of the control per-

formance, both the speed control and regulation were acceptable despite the fact that

the system was operated above the rated speed. No overshoot was observed in any

case, and a very fast transient response was observed.

Figures 8.15 and 8.16 show the final microstructure and the results from the me-

chanical tests. After quantification of the metal surface using 10 different micrographs,

the final ferrite grain size was 14.72 pm, whereas the pearlite fraction was 19.22%,
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(a) (b)

Figure 8.15: Photomicrographs of the final microstructure of sample 2; (a) longitudi-
nal and (b) transversal sections
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Figure 8.16: Engineering stress-strain curve for sample 2

which is considered to be very close to the optimal microstructure. On the other
hand, the yield behaviour of the metal showed that the average starting point of de-
formation was 303.33 MPa. Similarly, the mean stress of fracture was 431.49 MPa
that is only 11.49 MPa more than the set point. Table 8.4 summarises the results of

this rolling experiment.
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Table 8.4: Final microstructure and mechanical properties of sample 2

FIiNAL
DESIRED
Predicted - Experiment
Ferrite Grain Size (um) 15 14.29 14.72
Pearlite Fraction (%) <25 20 19.22
Tensile Strength (MPa) 420 421.11 431.49
Yield Strength (MPa) 286 268.14 303.33
Imp. Trans. Temp. (°C) -60 - -59.6 —

8.6.3 Rolling FExperiment 3

The main aim of the next design was to achieve a very small ferrite grain size in order
to produce a steel alloy with the maximum strength and toughness within the range of
interest. As already mentioned, the chemical composition of a steel alloy defines also
the physical limitations and the mechanical properties. Furthermore, the difficulty of
achieving a ferrite grain size smaller than 10 pm in C-Mn steels is a well publicised
fact [70]. Obviously, because more strain is needed to achieve such a small grain,
several rolling passes should be performed in the austenitic phase. Furthermore, a
quick transition between passes also had to be set in order to be able to roll the
metal before the phase transformation. The desired mechanical properties included
463 MPa of TS, 344 MPa of YS, with -100°C for ITT. Table 8.5 shows the rolling
schedule for this experiment. As expected, MODULE 1 confirmed that the optimal
microstructure to achieve the above design consisted of a very fine ferrite grain. Note
that four passes were required to achieve such targets.

The initial conditions for this experiment were different to the previous ones.
In this case the starting rolling temperature was 1150°C, which produced an initial
austenite grain size of 260 um. The mill working conditions were set in such a way
that the rolling speed was between 10 rpm and 30 rpm, a percentage of reduction per
pass between 10% and 40% producing a load no higher than 3000 kNmm. The inter-
pass time was 15 seconds. The refinement of the austenite grain using the obtained
schedule can be seen in Figure 8.17. The evolution of the microstructure was very
similar to the ones already described. However, the amount of deformation applied

to the metal during rolling led to a faster cooling rate which resulted in a smaller
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Table 8.5: Rolling schedule and microstructure parameters for sample 3

RESULTS OF MODULE 1

Optimal Ferrite Grain Size (um)
Optimal Pearlite Fraction (%)

10
19

RESULTS OF MODULE 2

Rolling Pass No.

1

Temperature (°C) 1150
Strain 0.399
Strain Rate (s71) 2.239
Rolling Speed (rpm) 17.45
Reduction (%) 29.21
Gap Position (mm) 17.74
Exit Thickness (mm) 17.97
Torque (kNmm) 1497
Force (kN) 22
Grain Target (um) 52
Recrystallised Grain (um) 52
Austenite Grain (um) 65.57
Fraction Recrystallised (%) 100

2
1060
0.314
1.840
13.83
23.82
13.41
13.69
1545
42

26
26.23
45.85
100

975
0.352
4.868
29.93
26.28
9.72
10.09
1808
95

18
18.42
31.18
100

4
893

" 0.433

5.154
24.11
31.32
6.38
6.93
2773
181
12
11.54
21.81
100

PREDICTED MICROSTRUCTURE AND PROPERTIES AT ROOM TEMPERATURE

Ferrite Grain Size (um)
Pearlite Fraction (%)
Tensile Strength (MPa)
Yield Strength (MPa)
Imp. Trans. Temp. (°C)
Air Cooling Rate (°K/s)

11.17
19.81
462.5

344.1

-99
3.1799

ferrite grain size of 11.17 um after the phase transformation, which is very close to

the optimal microstructure.

An interesting aspect of this particular experiment was related to the good accu-

racy of the developed scheduling mechanism. Because of the fact that hot-rolling is a

thermally-activated process, in order to ensure the success of the rolling experiment,

careful monitoring of the stock temperature was of sum importance. However, the
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noisy nature of the measurements was a constant problem that did not allow for more

accurate readings of the temperature so that an error range of £10°C was allowed to

mark the beginning of each rolling pass. Yet, in some experiments this was not the

worst scenario because, as shown in Figure 8.18, the thermocouple broke as a result of

various reasons, such as excessive twist of the wire when the stock was being handled

by the operator, the friction between the stock surface and the wire, or even defects

in the wire.

Temperature monitoring is especially important in industry even when sophisti-
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Figure 8.18: Main variables during the rolling experiment 3

cated mechanisms of real-time measurement are used, which include state-of-the-art
pyrometers. Nevertheless, one of the main advantages of the model-based designs
is that the whole process becomes more fault-tolerant because one can predict the
system’s behaviour. In this case, since the inter-pass time was known beforehand, the
stock temperature can be estimated. Therefore, the rolling experiment can be suc-
cessful even with no temperature readings by monitoring the holding times between
each rolling pass instead.

Figure 8.18, also shows the real-time performance of the rolling mill during this
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experiment. Note that just after the second pass, the thermocouple wire broke, leaving
the operator with no temperature measurements. The experiment continued with the
third and fourth pass by monitoring the inter-pass time only. Although this was not an
ideal case, accurate enough results can be expected according to the proposed model-
based system. Microstructural analysis carried-out after the experiment revealed that
this was the case, because the final ferrite grain size was 11.02 pm which is very close
to the desired value.

No constraints violation was encountered in any rolling pass, and the control
performance using the self-tuning algorithm showed good robustness against distur-
bances and excellent speed regulation when the stock was being passed forwards and
backwards through the rolls. Additionally, in terms of the microstructure develop-
ment, no accumulated strain was found prior to the phase transformation due to the
fact that the scheduling mechanism ensured full recrystallisation shortly after each
rolling pass. Figure 8.19 shows the associated micrographs of the longitudinal and
transversal sections relating to the metal under study.

The outcome of this experiment also revealed another interesting aspect about
the proposed approach. Note that in Table 8.5, the final thickness of the stock was
6.93 mm, which meant that the original thickness was reduced by 72.7%. From a met-
allurgical viewpoint, this amount of deformation was necessary in order to achieve the
requirements of the microstructure and the mechanical properties. However, although

such requirements were successfully accomplished, the shape or the dimensions of the

Figure 8.19: Photomicrographs of the final microstructure of sample 3; (a) longitudi-
nal and (b) transversal sections
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final product may not be suitable for a particular application. This fact arose as a
result of the often impossible task of machining specimens from the rolled metal in
order to test its yield and tensile properties. Notice that the standard dimensions
for the specimens subjected to tensile tests * require a minimum thickness of 9.5 mm
for the grip sections. This inspired the idea of extending the optimality criteria of
MODULE 2 by including a ‘shape objective’ apart from the microstructure objec-
tives considered. Although this new objective will expand the scheduling capabilities
of the proposed approach, the trade-off between obtaining the desired microstructure
- and the final shape implies a decision to be made by the designer with a full appreci-
ation of both the advantages and disadvantages of a particular application. Further
directions relating to this aspect are included in Chapter 9.

Hitherto, only three rolling experiments have been presented showing the general
trend in the results of this research work considering different scenarios of metal design
and working conditions. However, up to 23 different rolling experiments are reported

in this thesis. The next section presents a brief summary of all experiments.

8.6.4 A Summary of Results

Figure 8.20 shows a comparison between the optimal and the final microstructure
(i.e. ferrite grain size) obtained after microstructural analysis carried-out on the 23
rolled samples. The optimal values were calculated by SISSCOR. Note that there is a
good match between the optimal design and the final product as shown by the £10%
confidence band described by the discontinuous lines. The RMSE of the resulting
data was calculated in order to have a quantitative measure of the variations of the
experimental data with respect to the optimal value, which resulted in 0.767 pm.
Similarly, the results from the mechanical test carried-out using 10 rolled samples
showed an acceptable accuracy of the developed approach. Figures 8.21 and 8.22 show
the results of TS and YS respectively, comparing the user-defined requirements against
the characteristics of the final product. Here, it is worth recalling the important role
of the priority factors which are used to establish priorities among the properties
in the overall criterion. This means that the property with a higher priority factor
should be better achieved. For instance, in Figure 8.21, although all data points are

within the bands, the one which is further away from the set-point corresponds to the

4See Table B.3 in Appendix B.
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Figure 8.20: Desired vs. Final ferrite grain size

experiment number 15 (see Table 8.6) where the priority factor for TS was set to 2,
whereas for YS it was 10. The same can be said in the case of experiment 14, where
the priority factor for the TS and YS were set to 10 and 2 respectively. The plots
for this example can be seen in Figure 8.22 where one predicted value is out of the
band. The RMSE for TS was 12.5 MPa for the predicted data and 15.81 MPa for
the experimental data. Similar values for YS were calculated, being 13.23 MPa and
10.40 MPa. for the predicted and experimental data respectively.

Figure 8.23 shows the results of the final ITT against the user requirement. Un-
like the previous results, no testing procedure was performed to evaluate the impact
transition temperature in any rolled sample. As shown in the figure, there are two
data points outside the acceptable range. These points correspond to experiments 1
and 21 where the priority factor established ITT as the property with the least degree
of importance in the overall design. The RMSE for the predicted values was 3.9°C.

Finally, Tables 8.6 to 8.8 show a summary of the metal designs, the microstructure
characteristics, and the rolling schedules for all the experiments carried-out in this

research work.
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8.7 CONCLUDING REMARKS

This chapter showed the results from 23 hot-rolling experiments aimed at evaluating
the efficacy of SISSCOR. The objective of the proposed approach was to achieve a
right-first-time production of the user-defined design. It was seen that modelling the
correlation between thermomechanical history and the mechanical properties of the
final product, especially after experimental confirmation of the predictions, was very
important during the designing process. Although the design range of this particular
alloy was fairly limited due to the metal physical constraints, the experimental re-
sults showed an acceptable degree of accuracy for most experiments. The study also
demonstrated the important role of the priority factors and their impact on the final
product.

The number of experiments carried-out in this research allows one to evaluate the
acceptable efficiency of the proposed scheduling approach, which aims at providing
a systematic mechanism to produce metals with higher requirements and superior

quality standards.
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Table 8.6: Summary of the metal designs and the mechanical properties results

ExP. PRIORITY FACTORS TS (MPa) YS (MPa) ITT (°C)

No. [Brs Bvys Birr] Des. Pred. Exp. Des. Pred. Exp." Des. Pred.
1 [1051] 429 42891 — 300 300.12 — -68  -51.63
2 [3101] 429  432.83 — 311 307.14 — -61  -59.84
3 [111] 436  434.19 444.83 315 308.58 316.07 -51 -50.98
4 [111] 406  402.04 — 252 252.26 — -63  -63.00
5 [1011] 463 428.64 475.33 289 283.48 292.00 -20 -20.00
6 [1101] 443  423.81 — 291  290.99 — -62  -61.99
7 [111] 443 44233 2 — 324  324.15 — -82  -82.08
8 [11 1] 421  422.88 429.18 286 289.32 311.00 -40 -42.78
9 [111] 460 449.05 473.59 320 320.02 323.73 -60 -59.99
10 [111] 435 426.92 439.65 305 293.56. 305.97 -43 -44.74
11 [111] 463 436.24 470.33 320 297.07 313.00 -28 -28.00
12 [111] 420 421.11 43149 286 286.14 303.33 -60 -59.90
13 [111] 410 413.24 — 290 272.06 — .33 -30.51
14 [1020] 451  450.99 — 284  323.49 — — —
15 [2100] 439 44345 473.33 310 310.00 313.67 — —
16 [1000] 426  426.00 — — — — — —
17 [111 ] 460 448.65 47400 300 319.31 312.33 -95 -94.96
18 [110] 443  423.81 —_ 291  290.98 — — —
19 [111] 409  409.04 — 286  264.53 — -31  -30.59
20 [111] 439 438.76 — 319 317.75 — 78 -77.56
21 [110.1] 421 420.56 441.93 286 285.17 294.33 -59 -50.99
22 [111] 431 407.14 — 286  261.13 — -23  -22.89
23 [111} 401 403.84 — 256  255.22 — -41  -40.98
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Table 8.7: Summary of the microstructure results

EXPERIMENT
NUMBER

FERRITE GRAIN SIZE (um)

Required Predicted Experiment

—_

© 00 3 & O A W N

[T N T N B & B L ot T e s T T S VO S S Y
W N ~ O O 00Ut RW N = O

13
12
12
25
20
15
10
16
13
14
17
15
18
12
15
14
13
15
20
11
16
22
24

14.00
13.00
13.00
26.30
19.80
14.00
11.50
16.82
13.71
14.96
17.77
14.29
18.60
12.80
15.88

14.77

13.86
14.47
20.99
10.99
16.14
22.91
24.69

13.88
12.31
11.92
24.36
21.37
15.89
11.02
15.35
12.23
13.36
14.37
14.72
16.82
11.48
14.71
14.35
12.67
13.44
21.02
11.20
16.13
22.50
25.10
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Table 8.8: Summary of the rolling schedules

EXPERIMENT INTER-P.ASS MIiLL CONSTRAINTS ROLLING SCHEDULE
NUMBER TIME Speed  Red. Torque Pass Temp. Speed Red. Gap
(s) (pm) (%) (kNmm) No. (°C) (rpm) (%) (mm)
1 1000 30 29 17.98
1 35 10,30 10,40 5000
2 911 30 19 14.61
2 55 10,30 10,40 5000 ! 1000 30 29 1798
2 873 30 25 13.48
1 980 10 29 17.99
3 45 10,30 10,40 5000
2 884 20 21 14.36
— 10,30 10,40 5000 -1 1100 30 15 21.31
— 10,30 10,40 5000 1 1100 30 T 27 18.34
1 1100 30 29 17.73
6 20 10,30 10,40 5000
2 992 20 24 13.35
1 1150 17 29 17.74
2 1060 14 24 13.41
7 15 10,30 10,40 5000
3 975 30 26 9.72
4 893 24 31 6.38
1 1100 40 29 17.70
8 20 10,40 15,40 3000
2 1023 40 22 13.71
. 1 1100 32 29 17.72
9 20 10,40 10,40 3000 2 1023 32 25 13.28
3 984 35 28 9.37
1 1050 60 16 21.34
10 35 30,60 15,25 3000 2 995 54 21 16.72
3 939 48 21 13.14
11 — 10,60 10,40 5000 1 1050 22 36 15.81
1 1050 60 16 21.35
12 20 30,60 10,30 3000 2 982 50 21 16.69
3 917 46 22 12.88
1 1050 34 16 21.15
13 20 30,60 10,40 1500
-2 995 36 19 17.04
1 1050 40 16 21.18
14 20 10,40 15,40 3000 2 995 36 37 12.94
' 3 926 30 35 819
1 1050 40 29 7 17.69
15 20 10,40 10,30 3000 5 985 40 25 13.19
1 1050 10 29 17.66
16 30 10,40 10,40 3000 9 958 40 05 13.08
1 1050 40 29 17.69
17 55 10,40 10,40 3000 9 902 39 93 13.36
1 1050 39 29 17.68
18 12 10,40 10,40 3000 2 1009 40 25 13.14
3 963 34 29 9.06
1 1100 53 16 21.32
19 15 10,60 10,40 1000 2 1049 24 14 18.13
1 1150 20 29 17.74
B ] 2 1093 46 23 13.62
20 12 10,60 10,40 3000 3 1033 11 25 9.99
4 969 23 27 7.13
- 5 903 18 31 4.72
1 1150 10 29 17.75
21 12 10,60 10,40 3000 2 1093 39 23 13.57
3 1033 17 28 9.62
22 — 10,30 © 15,40 3000 1 1100 10 20 20.07
23 —_ 20,40 15,40 3000 1 1100 20 17 21.01




Chapter 9

Conclusions and Further Work

9.1 FINAL CONCLUSIONS AND FUTURE WORK

The need for model-based approaches is entirely justified in order to accomplish the
concept of right-first-time production of steel alloys. The approach proposed in this
work showed that by employing systematic design procedures of modelling and opti-
misation, metals can be designed efficiently, producing mechanical properties with a
good degree of accuracy. In particular, the approach associated with this work has
focused on the integration of systems engineering paradigms for hybrid modelling and
optimisation of the mechanical properties and microstructures of steels without any
loss of generality. The aim is to integrate knowledge of the alloy being processed and
the rolling mill by combining physically-based models and those models derived from
data and knowledge such as Neural-Fuzzy systems, to calculate the optimal rolling
schedules. ) 4

Unlike current methods, this work showed how one can use searching mechanisms
to find the optimal rolling schedule for a faster design of steel alloys while ensuring
feasibility (in the pragmatic sense) and repeatability of the solutions. T he success
of the proposed scheduling mechanism is due to the knowledge integration of the
different processing stages (i.e. heat treatment, hot-rolling, and cooling) together
with the rolling mill characteristics (e.g. structural stiffness, constraints) within a
comprehensive hybrid model. Such a hybrid structure was then exploited within a
systematic GA-based multi-objective optimisation designed to ‘reverse-engineer’ the
model and to find the ‘optimal’ process parameters.

The scheduling mechanism is comprised of two main modules or searching engines:

e MODULE 1: the optimal search is focused on finding the best microstructural
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parameters required to achieve the desired mechanical properties including TS,

~ YS, and ITT, the latter being a measure of the metal toughness.

e MODULE 2: by using information relating to the optimal microstructural pa-
rameters, this module calculates feasible rolling parameters per pass in order to

synthesise the rolling schedule.

Each module uses three basic elements for defining and approaching the optimi-

sation problem:

1. The Process Model which relates the mechanical properties, with the critical

microstructural and the processing parameters;

2. The Optimality Criteria which are related to achieving a set of property and

microstructural objectives; and

3. The Process Constraints which include the limitations of the forming process

and the hot-workability of the stock, as well as the rolling mill constraints.

The developed mechanism was evaluated by conducting a series of up to 23 hot- -
rolling experiments using a laboratory-scale hot-rolling mill, known as the“Hille-mill”,
which is located at the Sheffield University. Additionally, comprehensive metallo-
graphic analyses and laboratory tests were carried-out using the rolled metal. It is
worth mentioning that, the procedures used to perform such analyses and tests were in
accordance with international standards such as the ASTM E8 “Standard Test Meth-
ods for Tension Testing of Metallic Materials”, and the ASTM E112 “Standard Test
Methods for Determining Average Grain Size”, published by the American Standard
for Testing and Materials.

The results obtained from the hot-rolling experiments showed that, when there
is sufficient information from the material being processed (in the form of data),
intelligent systems-based paradigms can be effectively used to synthesise and optimise
the metal microstructure and its processing route within practical limits in order to
satisfy the desired requirements. As demonstrated by the metallographic analyses
and mechanical tests, a right-first-time production was achieved (considering a £10%
error) for all expériments in terms of the requirements associated with the ferrite

grain size, the volume fraction of pearlite, the TS, and YS. It is worth mentioning
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that no experimental validation of ITT was carried-out. The presented results not
only provide a proof-of-concept for the proposed GA-based optimisation mechanism,
but more importantly, this research work should provide the motivation to extend the
use of intelligent systems to solve multi-objective metallurgical problems.

Although the C-Mn steel alloy with only 3 mechanical properties was considered in
this study, no special assumptions were made to preclude the use of this methodology
for other alloys or properties. Results in such a case, however, will strongly depend on
the mathematical models used to correlate the microstructure with such properties,
as well as the metal processing. "

The developed MATLAB®-based software ShefRield Integrated System for SChedul-
ing and Optimisation in Rolling (SISSCOR), which implements the systematic method-
ology to calculate the optimal rolling parameters, provides a framework to integrate
knowledge of the Hille-mill and the microstructural changes taking place in the stock
during deformation. Such methodology, which was described in Chapters 4 and 5,
showed a strong dependence on the quantitative knowledge and consistency of the
physically-based models to predict the metal behaviour.

SISSCOR is used as a computational tool to help in the design of steel alloys and
observe the mill performance via simulations. SISSCOR allows the user for interacting
with the whole process by means of a comprehensive simulation and optimisation
platform. In fact, all real-time experiments reported in this thesis were designed using
this GUI. As a result, the time spent designing the experiments were considerably
reduced and with a very easy control and storage of the processed information, which
was subsequently used in the laboratory. '

The models described in this study are still the subject of continuous developments
and improvements. Indeed, existing models can be enhanced by adding knowledge
extracted from incremental data. It was shown that, as new data emerge, new dis-
coveries and methodologies can be used to complement the current knowledge and
trends. This work showed that Intelligent Systems-based paradigms can be used as
an ‘updating’ mechahism so as to cope with issues of long term maintenance relating
to the conventional models. In addition, these models proved to be easily incorpo-
rated within current control schemes for scheduling and optimisation. For instance,
the developed Neural-Fuzzy model was capable of identifying the sources of deviation
in TS of the C-Mn steel alloy. The model predictions were more accurate than those

given by conventional models found in the current literature. The results not only
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indicate that some chemical elements such as silicon and manganese add nonlinear
characteristics to the model, but also confirm the well known Hall-Petch equation,
which establishes the linear nature of TS with respect to the ferrite grain size and the
carbon content. ’

The successful implementation of the TS Neural-Fuzzy model within the opti-
misation mechanism proVides the framework to develop similar models to estimate
YS and ITT in order to improve the accuracy of the solutions. Furthermore, other
important metal properties such as ductility, hardness, and fatigue resistance, may
be included to expand the user capabilities in thé design. However, the development
and validation of such models may be constrained by the lack of reliable experimental
data from which the knowledge is extracted.

Further work relating to the Fuzzy Inverse Transformation Model presented in
Section 5.5.2 is also required in order to eliminate the need for refinement of the
rolling schedule. Because of the fact that the scheduling mechanism of MODULE 2
does not compensate for the austenite grain growth in the last rolling pass, the final
ferrite grain size usually has an error of £3 um. As a result, a refinement of the
overall solution is required. For some metal requirements, this renders the scheduling
mechanism too sequential, because one or two additional runs have to be performed
before obtaining the optimal solution. One can solve the above problem by extending
the Fuzzy Inverse Transformation Model so as to include the growth of the austenitic
grain, hence a more accurate initial austenite grain target can be set for the first run.

In the light of the above considerations, the formulation of the microstructure
and schedule optimisation problem required the cénsideration of multiple objectives
which are often competing. It was shown that, although the weighted sum approach
described in Chapter 4 produced solutions that worked well in experiments, the so-
lutions provided may not describe as well the concept of an optimal microstructure
since some important assumptions (e.g. the priority factors in MODULE 1) needed to
be decided a priori. When multiple competing objectives exist, the optimal solution
is not a single pointv but an entire set of non-dominated points, which is commonly
referred to as the Pareto set. The designer must then resort to tradeoffs between the
objectives to determine the best solution. It is worth noting at this stage that, the
tradeoffs may become more problematic as the number of objectives increases. For
instance, the need for a more sophisticated strategy to solve the multi-objective op-

timisation problem becomes more relevant if the cost function described by Equation
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(5.13) is extended to include a ‘shape objective’. As described in Chapter 8, this is
necessary to ensure that the final product will satisfy not only the specified properties,
but also the shape and the dimensions required for a certain application.

Future work in this direction includes the use of evolutionary algorithms for multi-
objective optimisation problems such as the Strength Pareto Evolutionary Algorithm
(SPEA) or the Nondominated Sorting Genetic Algorithm II (NSGA-II). As far as
the latter is concerned, for each solution one has to determine how many solutions
dominate it and the set of solutions which it dominates. The NSGA-II estimates the
density of solutions surrounding a particular solution in the population by computing
the average distance of two points on either side of this point using all the objectives
of the problem.

Although the parameters selected by the algorithm! to minimise the cost functions
led to acceptable results, choosing the optimal GA parameters for a specific metal
design may require a parametric study to see the effect of changing the value of each
parameter on the final design. Additionally, a statistical analysis of the results should
be carried-out to examine the effect that the initial assumptions (e.g. inter-pass times,
initial temperature, and initial microstructure) have on the final rolling schedule. This
will be very useful because the results from such an analysis can be used to obtain a
suitable set of relevant descriptive optimal schedules. In particular, it would be very
interesting to compare current results with the statistical results obtained from other
methodologies. This will provide a good perspective on the similarities or differences
in order to extend the proposed methodology to cover other experimental scenarios
such as the temperature-controlled rolling or the use of multi-stand hot-rolling mills.

Chapter 7 described the real-time implementation of GPC in the Hille-mill, which
led to an improvement in the rolling speed control and regulation. In real-time op-
eration, GPC worked better that the PID controller in terms of the control effort
required for the same tasks. Also, improvements in the overall speed response were
observed as indicated by the RMSE when the mill was operated under different work-
ing conditions. The results clearly demonstrated that the additional features that
GPC provides to the Hille-mill, such as the on-line system parameter identification,
the observer polynomial, and the pre-defined set-point feature, allow for increasing

the robustness and flexibility to the control system.

1See steps outlined in Section 4.4.2.
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“Intelligence” was added to the control system when a synergy between the GPC
algorithm and Fuzzy Logic took place via a TSK Fuzzy process model to calculate
the control sequence. Even though the fuzzy model consisted of a number of linear
sub-models, the overall input-output mapping was nonlinear. However, to facilitate
the implementation of the fuzzy model into the GPC algorithm, a simple method of
linearising the fuzzy model about the current operating point by weighting the fuzzy |
model parameters at each sampling instant was used leading to an excellent control
performance in simulations. )

However, examining GPC from a computational viewpoint revealed that the com-
putational burden of the control algorithm was big compared to the one showed by
conventional controllers. This was inevitably due to the series of matrices manipula-
tions that take place at every sampling instant in addition to the parameter estimation
algorithm. Due to the time-consuming nature of this strategy, it was decided to use an
adaptive linear model which led to acceptable results and yet optimal performances
when rolling experiments were performed. Further work should be carried-out in
this regard in order to facilitate the inclusion of the mill constraints within the cost
function optimisation for real-time operations.

Future work using the Hille-mill can be also focused on the development of an
active fault-tolerant control system. Such a system will consider faults associated
with the sensors and/or the actuators used by the mill during real-time operations.
An active fault-tolerant control system is comprised of a set of filter-observers which
are capable of estimating and isolating faults while preserving the system integrity in

terms of performance. Further information about this topic can be found in (80].

9.2 MAIN CONTRIBUTIONS OF THIS RESEARCH PROJECT
The main achievements of this project can be summarised as follows:

1. Development of a novel GA-based mechanism for the optimisation of the hot-
rolling of steel alloys using the Hille-mill. The aim of the optimisation problem
was to develop a set-up mechanism to provide optimal rolling schedules (i.e.
number of passes, rolling speeds, reductions and deformation temperatures,
etc.) by integrating knowledge of both the rolled stock and the rolling mill.
The proposéd scheduling platform uses hybrid modelling, combining physically-
based equations and Neural-Fuzzy models that describe the structure-property
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relationships of the rolled metal. This methodology is based on the evolution-
ary optimisation of a set of cost functions to allow the setting-up of multiple
optimisation objectives in order to achieve a right-first-time production of steel

alloys.

2. Modelling of the mechanical properties for the C-Mn steel alloy using Neural-
Fuzzy Systems-based paradigms. The proposed intelligent model was developed
using industrial data that included values for different chemical compositions,
microstructures, and mechanical properties such as TS. The predictive capabil-
ities of such a model were compared with traditional linea] models taken from
the current literature. The results showed that a better match with the indus-
trial data was achieved by the Neural-Fuzzy model which was later used for the

estimation of the microstructure and the properties of the rolled products.

3. Laboratory validation of the approach described in 1 and 2 by carrying-out up to
23 real-time hot-rolling experiments, quantitative and metallographic analyses
of microstructure, and mechanical tests on the rolled metal. The results showed
that the final product was in a good agreement with the desired design in terms
of the microstructure, TS, and YS. This validation exercise also demonstrated
the advantages of the proposed methodology over current methods which are
generally ad hoc and lack adequate capabilities for finding the optimal process

parameters.

4. Development of SISSCOR (Sheffield Integrated System for SCheduling and Op-
timisation in Rolling) which is a MATLAB®-based graphical user interface to be
used as a computing tool for experiment design, system integration, and process
simulation. SISSCOR was implemented in the Hille-mill computer interface in

order to set-up the optimal rolling schedule and carry-out the process.

5. Development of a realistic simulation platform for the study and analyses of
the dynamics of the Hille-mill, using real critical system parameters such as the
inertia of the different rotational parts, the friction coefficients, and the stiffness;
this included the modelling of the mill, the electric drive, the gap mechanism,
and the speed control system. The simulation results showed a good match with

experimental data both in open- and closed-loop demonstrating the reliability
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of the developed model simulation platform, and as a result, the integrity of the

control designs.

6. Impleméntation of an adaptive Model-based Predictive Controller in the speed
control system of the Hille-mill, which substituted the original fixed PID con-
troller. The performance of this self-adaptive controller was evaluated via sim-
ulations and real-time experiments under different working regimes. From such
experiments the model-based controller proved to perform better than the con-
ventional one by showing good robustness and disturbance rejection in a wider
range of operating conditions. It was also observed that by using this predictive
controller, a better control and regulation of the rolling speed were achieved,

while reducing the control effort and the noise interference.
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Appendix A

The Torque Control System of the
Hille-mill

A.1 THE INDUCTION MOTOR MODEL

The main electric drive comprises a balanced three-phase voltage source, a rectifier
bridge, a voltage source inverter and an 18.5 kW, 400 V, 50 Hz induction motor. The
drive has the capability to reach twice the motor rated speed by means of control-
ling the angular frequency. Figure A.1 presents the electric diagram of the internal
connections of the motor.

The motor model was first introduced by R. H. Park when he formulated an
approach in which all variables (voltages, currents, and flux linkages) were associated -
to fictitious axes rotating at the rotor angular velocity. In other words, he transformed
or referred the stator variables to a fictitious frame of reference using trigonometric
operations. The Park’s transformation has the unique property of eliminating all
tiine—varying inductances from the voltage equations [42]. Therefore, it can be shown
that the voltage equations of the induction {nachine in the fictitious ¢d-reference frame

can be expressed using the following equations:

Vi = iy S (A1)
0 = it (= ) 7+ S (A.2)
where
vie = [ud -], - (A3)
win = [t —w ] (A4)
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Rotating
circuits

‘*

Stationary
circuits

Figure A.1: Electrical connections of the 3-phase induction motor

In the above formulation, v, i and 1 are the voltage, the electric current, and
the flux linkages respectively in vector form containing their gd-components; r is a
diagonal matrix representing the winding resistance. In the above equations the sub-
scripts s and r denote variables associated to stator and rotor windings respectively;
w represents the angular velocity of the gd-reference frame, whereas w,, is the motor

angular speed.
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The voltage equations in expanded form can be written as follows:

v = rgl+wyl+ —C—i—w‘j, : (A.5)
d _ _ q

vg reit — wp? 4+ — 7 (A.6)
0 = ral+ (w—wn) Y+ c(lit (A7) -
0 = 70y — (W —wm) P + —w:f- (A-8)

Equations (A.5) to (A.8) represent the complete model of the 1nduct10n motor in a
fictitious reference frame which can rotate at any arbitrary speed or remain stationary.
The most usual velocities set for the reference frame are when (1 (1) w =0, in which case
it is called stationary reference frame; (2) w = w,y,, reference frame fixed in the rotor;
and (3) w = we, synchronously rotating reference frame, where w, is the electrical

angular velocity established by stator currents of fundamental frequency [60].

A.2 EQUATION FOR THE ELECTROMAGNETIC TORQUE

The electromagnetic torque can be defined as the energy transferred to the motor shaft
as a result of the magnetic interactions between the stator and rotor flux linkages.
These transactions of energy take place in the air gap and produce a tangential
force in the motor shaft to compensate for any mechanical force. There are different
expressions for the electromagnetic torque; however, because of the fact that some of
the motor inductances are time-varying, the electromagnetic torque equation has also
to be transformed in terms of the gd-components of the fictitious reference frame [81].

In this work, the electromagnetic torque is determined by the following equation:

Tows = (3) (5) (i - usit), © a9

where P is the number of poles. As mentioned in Chapter 6, the electromagnetic
torque is the input to the mechanical system of the Hille-mill.
Table A.1 shows the critical parameter of the induction motor associated with the

Hille-mill as provided by the motor’s manufacturer.

A.3 Fi1ELD ORIENTED CONTROL

The aim of this section is to describe the torque control system used by the Hille-

mill. According to the drive manufacturer, there are two main control methodologies
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Table A.1: Critical parameters of the induction motor

PARAMETER VALUE UNITS
Stator resistance, r, 0.1625 Y
Rotor resistance, 7, 0.1536

Q
Stator inductance, L;, 1.30 x 10—3 H
Rotor inductance, L;, 2.41 x 1073 H
Mutual inductance, Ly, 64.19 x 10~3 H
Num. of poles, P -4

that can be used by the induction motor to improve its performance under different
applications [78][77]:

e Scalar (Volts/Hertz) control; and

e Vector control.

Vector control provides the motor with linear voltage charactéristics from 0 Hz
to the motor rated frequency, and then constant voltage above the motor rated fre-
quency. Further, this methodology leads to a very good performance at low and high
speeds [83]. In the current drive, the well known FOC was implemented to carry-out
the torque control. In essence, the objective of FOC is to provide the motor with

adjustable torque. The principles of field orientation can be summarised as follows:

1. Given the references values, Trer and [Yr|rEF, Of the developed torque and
rotor flux, the corresponding reference components, 9% and i%*, of the stator

current vector in the rotor reference frame are found.

2. The angular position of the rotor flux 8, is determined and used by the Park’s
transformation to obtain the reference stator currents, i%%, % and i*, for the

current-controlled inverter feeding the motor.

By this way, the rotor flux and the electromagnetic torque can be separately controlled
using the d-axis stator current and g-axis current respectively. The stator g-axis
current reference is calculated from the torque reference Tgrrr with the following

2= (3) (3) (0%) e (810

equation: -
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and the estimated rotor flux linkage |¥0r|est is determined by:

Lyid
147,

lelest = (A-H)

where 7,5 is the rotor time constant. The rotor flux position 6. required for the
variable transformation is generated from the motor speed w,, and the slip frequency .
Wgl:

6 = / (wr + wa) dt, (A.12)

where the slip frequency is calculated from the stator reference current 2% and the

motor parameters using the following expression:

o= (w0) ()
T |¢T|est Ll"'

The stator d-axis current reference %« is obtained from the rotor flux reference
8

R (A.13)

input |¢,|rer by the following expression:

ity = el | (A.14)
Ly

Figure A.2 shows the control scheme associated with FOC. As shown in this figure,
the 42 and 42 current references are transformed into abe-current references %%, 10x
and i5x, for the current regulators. Such regulators process the measured and the
reference currents to produce the inverter gating signals for the gélectronic devices to
produce balanced PWM voltages to be applied to the stator motor.

The start-up performance of the induction motor using FOC is depicted in Figure
A.3. The torque command is initially set at 200 Nm and then stepped to -200 Nm.
No rolling torque (load) was applied in this simulation. It can be seen the nearly
instantaneous torque response characteristics of the drive which leads to faster control
of the frequency to solve the speed control problem. However, this good performance
is compromised due to the high harmonic content of the electric current which results
in a noise-contaminated torque signal.

The use of FOC is special useful in this application because it is desirable to make
the drive act as a torque transducer wherein the electromagnetic torque can nearly
instantaneously be made equal to a torque command. Therefore, the speed control

problem is dramatically simplified because the electrical dynamics of the drive become

irrelevant.
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Figure A.2: A block diagram of FOC used for simulations
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Appendix B

Methodology for Metallographic Analysis
and Mechanical Testing

B.1 MEASUREMENT OF THE FERRITE GRAIN SIZE AND VOLUME FRACTION OF
PEARLITE

Figure B.1 shows an example of the ferrite-pearlite structure in one of the hot-rolling
experiments carried-out using the Hille-mill. On a photomicrograph a complete grid of
points is drawn. The grid step size is chosen so as to allow the space of traverses to be
sufficiently large for no two adjacent points to fall in the same pearlite colony. Points
are registered as ‘in pearlite’ (counts 1), ‘in ferrite’ (counts 0), and ‘at boundary’
(counts §) to obtain the number of points in pearlite on each traverse. An example

is shown in Figure B.1.

R AR T T
P

®

Figure B.1: Method of point counting using a grid of points to determine pearlite
colonies

200
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Figure B.2: Method of counting ferrite/pearlite (+) and ferrite/ferrite (x) boundaries

Next, the same micrograph is used to count the number of boundaries per unit
length along the same traverse lines used for counting pearlite colonies. Figure B.2
shows the method of counting the number of ferrite and pearlite boundaries. As shown
in this figure, the method requires separate counts of the number of ferrite/pearlite
boundaries and the number of ferrite/ferrite boundaries to be made along each of
the traverses. Each pearlite colony has two boundaries, so the number of colonies on
each traverse is half the number of boundaries. The pearlite point fraction (F,;)) of
each traverse is obtained by dividing the number of points in pearlite (P,eqri)) by the
number of total points of the traverse. Hence the number of pearlite colonies per unit

length on each traverse is calculated by the following formula:

Ny
Ny = =29 B.1

where n,.;) is the number of ferrite/pearlite boundaries, L is the length of each
traverse considering the magnification of the micrograph. As an example, consider
the micrograph shown in Figure B.1. Using 10 traverses of 0.255 mm long with 11
points each, the counting procedure described above led to the results shown in Table
B.1. Taking the mean of P, , calculated from the total in Column 3 and the total
of Column 4, one can calculate the mean of pearlite colonies per unit length (N,)
similarly as in Equation (B.1), as follows:
N T _ 98
" 2P,LM  2x0.1318 x 0.255 x 10

= 145.77mm™, (B.2)

where M is the total number of traverses. Thus the mean pearlite colony size (Ly) is

obtained using the following formula:

L, N,, = 577 = (.00686 mm = 6.86 pm. (B.3)
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Table B.1: Results of point counting and counting boundaries

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7
Traverse  No. of points Point No. of pearlite No. per No. of ferrite No. per
number in pearlite fraction boundaries length, mm™1 boundaries - length, mm™!
(®) Poear(s) Poi) () 0] U0 Nagiy
1 1.5 0.136 9 1294 10 65.8
2 0.5 0.045 13 690.2 7 61.6
3 1.0 0.091 7 151.0 6 41.0
4 1.0 0.091 11 ’ 237.3 6 49.6
5 1.5 0.136 13 186.9 9 70.4
6 4.0 0.364 13 70.1 9 95.5
7 2.5 0.227 11 94.9 9 73.6
8 1.5 0.136 7 100.7 8 52.2
9 0.5 0.045 7 302.0 ’ 10 55.5
10 0.5 0.045 4 172.5 9 45.2
Total 14.5 1.318 98 2134.9 83 610.41

Similarly, the ferrite grain size is obtained from the number of ferrite grain bound-
aries and the number of pearlite colony boundaries on each traverse, and the line

fraction occupied by ferrite, i.e. 1 — Py, as follows:

1
(Pag) + 370 '
Na(i) = 1 PZ PL), (B4)
( - p(i))
where ng(;) is the number of ferrite/ferrite boundaries. Taking the mean value of 13,,
and the totals from Column 4 and 6 of Table B.1, the mean of ferrite grains per unit

length (V) is calculated as follows:

- (na + %np) _ (83 + %,§)
* (1-B)LM ~ (1-0.1318) x 0.255 x 10

= 59.62mm™". (B.5)

Thus the mean ferrite grain size (L) is calculated by the following expression:

- 1 1
.= — = = 0.01 = 16. ) B.6
L M. = 5962 0.01677 mm 6.77 um (B.6)

The procedure shown above was used to measure the mean ferrite grain size of
all hot-rolling experiments reported in this thesis. Usually a total of 100 testing lines
(traverses) were used on photomicrographs taken from different areas of the polished

and etched specimen surface.
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B.2 GENERAL TEST METHOD FOR TENSION TESTING OF METALLIC MATERIALS

A flow diagram of the steps involved in the tension tests conducted in accordance with
ASTM ES8 is shown in Figure B.3. In general, the test consisted of three distinct parts,
(1) Test-specimen preparation, geometry, and material condition; (2) Test set-up and
equipment; and (3) Test [33].

Table B.2 shows the test parameters used in this work to set-up the testing ma-

chine,
) Test

Machine e e e ;
TS S S e e e e e o e | | !
| | | o | Install the specimen in |
' ¥ | [ S i machine |
es |
: Is the machine : ; |
| calibrated? | I [
I | I
| ll | Is the Yield No |
| | | behaviour to be |
| : | | determined? |
i ‘m | | |
| | |
| Are the proper No ]' 1 |
1 grips installed? ! | I
- . ' :

I | I
| | I !
| | I |
I i I |
{ I No |
| Yes ! : + s the ext |
| Are the grips in gooc | v ¥ | calibrated? i
| condition? | | |
N | Report to | |
| | Supervisor | |
I | I I
| ! ) [ | |
I —b-l Zero test machine I I ! :

I | |
] | ] |
————————————————————————— | |
- l 1
Specimen : :
I'_'_____"___'__'____‘"___“_1 | Record data and calculate I
| | I yield behaviour, tensile I
: ' | i |
| : || reduction of area :
| | ] I
| | | I
| I
| "Ate thie dimenss No : : LRud calculated values l |
: within tolerance? T I ]I

| |
| | | I
| |
| || | No Was the test |
1 | | satisfactory? |
] Mark gage length | | ]
| | ] I
i I | |
e e Py, | |
| Report results 1
| I

Figure B.3: A general flow chart of a standard tension test
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Table B.2: Main parameters for the tensile testing machine

PARAMETER  VALUE

Speed of testing for the yield behaviour 0.5 mm/min
Speed of testing for the tensile strength  10.0 mm/min

Diameter of the test specimen See Table B.3
Gage length See Table B.3
Load range 50 kN
Extension range ' 1 mm
Temperature 22°C
Preload 10N

B.3 STANDARD SPECIMEN DIMENSIONS FOR THE TENSION TESTS

Figure B.4 shows the standard round tension test specimens used in this work, as
well as the nomenclature to define the specimen geometry and its dimensions. The
gage lengths and the standard dimensions for the machined test specimens specified
in ASTM E8 are shown in Table B.3. Observe that the gage length is proportionally
5 to 1 times the diameter of the test specimen. The gage marks can be made with
a centre punch, or in some cases with lines scribed using a sharp or a pointed tool.
Care should be taken to ensure that the gage marks were not deep enough to become

stress raisers, which could have caused the fracture to occur through them.

A = Length of the reduced section
B = Length of the grip section

C = Diameter of the grip section

D = Diameter

G = Gage length

R = Radius of fillet

Figure B.4: Standard round tension test specimen
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Table B.3: Standard dimensions for the round tension test specimen used in this work

NOMENCLATURE  SIZE 1 Size 2
DESCRIPTION - )

(see Figure B.4) mm (in) mm (in)
Length of the reduced section A 54 (2.126) 36 (1.4173)

Length of the grip section B 12 (0.472) 12 (0.472)
Diameter of the grip section C 12.7 (0.5) 9.5 (0.375)
Diameter D 9 (0.354) 6 (0.236)
Gage length G-

R

Radius of fillet

45 (1.968) 30 (1.378)
8 (0.314) 6 (0.236)

The general trend for the tensile test specimen used in this work was the following:

1.

The reduced section had a gradual taper from the ends toward the centre, with

the ends no more than 1% larger in diameter than the centre.

. The length of the reduced section was long enough to accommodate an exten-

someter. Reference marks for the measurement of elongation were spaced at the

indicated gage length.

. The gage length was 5 times the diameter of the specimen.

- The ends were in form to fit the holders of the testing machine in such a way

that the load was axial; in this case, threaded ends were used to fit the testing

machine.

o

The reduced section of the speciméh was free of cold work, notches, chatter
marks, grooves, gouges, burrs, rough surfaces or edges, overheating, or any other

condition which may have deleteriously affected the properties to be measured.



