
ISSUES, OPPORTUNITIES AND
CONCEPTS IN THE TEACHING OF

PROGRAMMING TO NOVICE
PROGRAMMERS AT THE UNIVERSITY OF

LINCOLN: THREE APPROACHES

Amanda Jane Bird

A thesis submitted in partial fulfilment of the
requirements for the degree of PhD

School of Education, University of Sheffield

December 2004

For Darren, Charlotte, Megan and Amelia
and

Annalie Moreton

Summary

This thesis describes three small-scale, computer-based approaches developed and

used by the author in her teaching of programming concepts to novice programmers,

using Pascal as a first language, within a higher education context.

The first approach was the development of a piece of tutorial CAL, the second was

the development of an on-line help system and the third the development of a pattern

language. For the first two, the author created the product. For the pattern language,

she designed the template. These three approaches are described and the results

obtained outlined. The work also looks at the kind of research methodologies and

tools available to the author and present a rationale for her choices of method and

tools.

This work also briefly reviews some learning theories that could be used to underpin

the design, use and evaluation of CAL. The thesis looks at a range of topics associated

with the teaching of programming and the use of CAL. It looks at issues around the

psychology and human aspects of learning to program, such as confirmatory bias and

vision. It looks at other research efforts aimed at developing software to support

inexperienced programmers, including new programming languages specifically

designed to teach programming concepts and sophisticated programming support

environments.

The work briefly reviews various types of CAL and their uses. It also examines some

key projects in CAL development from the 1960s onwards, with particular emphasis

on UK projects from the early 1970s to the late 1990s. It looks at what conclusions

can be drawn from examining some of the many CAL projects in the past.

Finally, the work reviews the various strands of the author's research efforts and

presents a brief overview and some initial suggestions for the teaching of

programming to novice programmers.

The teaching ofprogramming to novice programmers: three approaches

Table of contents

Contents ... i

Introduction to Chapter 1 .. 1

Studying the teaching of programming ... 1

The author ... 7

Structure of thesis ... 14

Chapter 1: Conclusion ... 16

Introduction to Chapter 2 .. 17

Goals of the research effort ... 17

Educational research methodologies ... 20

Action research ... 21

Stages in action research ... 26

Educational research tools and methods ... 27

Qualitative and quantitative research .. 28

Little q and big Q .. 30

Survey methods ... 33

Semi-structured interviews ... 35

Participant observation .. 36

Diaries ... 38

Focus groups ... 38

Sampling strategies ... 39

Internal and external validity .. 42

The value of educational research ... 47

The concept of reflexivity ... 50

Outline of the author's research .. 55

The concept of patterns and pattern languages ... 58

Patterns, software development and teaching ... 61

Chapter 2: Conclusion : .. 64

Introduction to Chapter 3 .. 65

Learning to program versus programming to learn .. 65

Computing and programming curricula .. 66

A programming syllabus ... 68

Elements of structured programming .. 70

Edsger Dijkstra's article on goto ... 71

The teaching of programming to 1lovice programmers: three approaches

Table of contents

TIle algorithnlic toolkit ... 73

Constnlcts .. , .. 73

Algori thms .. 74

Variables ... 75

Modularity and parameters ... 75

Some comments on programming .. 77

Which language should be the first programming language? ... 79

At what' age should students learn to program? .. 86

Pascal .. 90

The teaching of programming ... 92

Hunlan aspects of learning to prograln ... 96

The psychology ofprogramnling .. 96

Personality and aptitude tests .. 99

Personality tests .. 100

Aptitude tests .. 102

Mental models .. 103

Visual cognition .. 109

Change and inattention blindness ... 110

Confirmatory bias ... 114

Metapll0r and analogy ... 115

Learning styles .. 117

The work of Howard Gardner ... 118

The work of Kolb .. 119

The work of Gregorc ... 119

Chapter 3: Conclusion ... 121

Introduction to Chapter 4 .. 123

Issues in debugging ... 123

The affective aspect of debugging .. 127

Debugging and large scale programming ... 130

Approaches to teaching prograInnling using software .. 131

Editors ... 132

Intelligent Tutoring Systems ... 134

Designing new prograInming languages ~~ .. 135

11

The teaching ofprogramming to novice programmers: three approaches

Table of contents

Software and program visualisation .. 137

Algorithm animation ... 141

Code layout ... 142

Software visualisation and teaching programming ... 146

Programming Environments ... 148

Other approaches .. 151

Programming by Demonstration ... 151

Extreme programming .. 153

Chapter 4: Conclusion ... 154

Introduction to Chapter 5 .. 156

Roots of learning theories ... 156

Behaviourism .. 157

The work of Thorndike ... 157

The work of Pavlov ... 159

The work of Hull, Mowrer and Tolman .. 161

The work of B F Skinner .. 162

Cognitive psychology ... 166

The work ofVygotsky .. 167

The work of Bruner ... 169

Constructivism .. 171

Constructionism .. 175

Chapter 5: Conclusion ... 177

Introduction to Chapter 6 .. 178

A note on terminology .. 178

Classifying types of CAL .. 178

Drill and practice CAL .. 185

Simulations, modelling and games : ... 187

Tutorial CAL ...•... 189
-

Intelligent CAL ... 190

Microworlds .. 193

CAL for collaborative and on-line learning .. 196

Background to the tutorial CAL development.. .. 201

Gathering feedback on CAL use within the Department.. .. 213

III

The teaching of programming to novice programmers: three approaches

Table of contents

T11e author's own CAL ... 218

Other research on novice progratnI?ers .. 221

The author's own Pascal Help system .. 223

Use oftl1e help system .. 225

The academic year 2000 - 2001 .. 227

Overview of work up to 2001 ... 235

Chapter 6: Conclusion ... 240

Introduction to Chapter 7 .. 242

T11e concept of patterns ... 242

The author's research design .. 247

The author's data gathering approaches .. 249

Questionnaires ... 250

Focus groups ... 252

Observation ... 253

The institutional context for the author's research ... 256

Evaluating student programs - an overview ... 259

Programlner profiles ... 259

Software metrics ... 260

Criterion referencil1g ... 261

Automated grading of student programs ... 263

The author's results ... 269

The initial questionnaire ... 269

Focus groups ... 275

Observation ... 276

Exit questionnaire ... 277

Unit results .. 279

Chapter 7: Conclusion ... 280

Introduction to Cl1apter 8 .. 282

A note 011 viewpoint and voice ... 282

The research: an overview .. 282

The next stage: the help system .. 297

A pattern language for novice programn1ers .. 299

What of ethnography and the TLTP? :: ... 300

IV

The teaching a/programming to novice programmers: three approaches

Table of contents

Chapter 8: Conclusion ... 301

Introduction to Chapter 9 .. 302

Suggestions for the teaching of programming .. 302

A view of the author ... 302

Conclusion to Chapter 9 .. 306

Conclusion to this work .. 306

Appendix A ... 308

Introduction to Appendix B .. 308

Positivism .. 308

Hermeneutics .. 309

Phenomenology and phenomenography ... 310

Ethnography and ethnomethodology .. 311

Appendix B: Conclusion ... 313

Appendix C ... 314

Introduction to Appendix D .. 315

Review of selected Pascal texts .. 315

Appendix D: Conclusion ... 321

Introduction to Appendix E .. 322

Experts versus novices .. 322

Appendix E: Conclusion ... 330

Introduction to Appendix F ... 331

The Stanford Arithmetic project ... 331

TICCIT and PLATO ... 337

Appendix F: Conclusion ... 341

Introduction to Appendix G .. 342

The NCET 1967 - 1973 .. 342

The work of the NCET up to 1969 , ... 342

The work of the NCET 1969 - 1973 ... 346
-

The work ofNDPCAL .. , ... 347

MEP (Microelectronics Project) ... 353

CTI .. 358

The TL TP .. 360

The ILT (Institute for Learning and Teaching) ... 366

v

The teaching ofprogramming to novice progranzrners: three approaches

Table of contents

Appendix G: Conclusion ... 367

Appendix H ... 369

Appendix I ... ~ .. 423

Appendix J .. 425

Appendix K ... 426

Appendix L ... 430

Introduction to Appendix M ... 432

Appendix M: Conclusion .. 446

Appendix N ... 447

Bibliography ... 458

Index ... 512

List of figures

Figure 1: The logon screen

Figure 2: The time domain

Figure 3: A sample CAL screen

Figure 4: Sample multiple choice questions screen

Figure 5: Resource rankings

Figure 6: Correct lecture notes should be given for reference

Figure 7: Practical work helps the learning process

Figure 8: In order to learn the student must work as well

Figure 9: Learning is more effective through practical examples

Figure 10: Responses to statements about learning

Figure 11: Resource rankings

Figure 12: Ages of student respondents

Figure 13: Some of the post 16 qualification noted by respondents

205

207

208

211

227

229

230

230

231

232

234

270

270

VI

Volume 1

The teaching of programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

Introduction to Chapter 1

This chapter outlines the impetus and context for the author's research in the teaching

of programming. Firstly, it advances arguments for the study ofteaching

programming to novice programmers, looking at some of the issues around software

development. It then describes the author's experience of learning to program and

focuses on the reasons for her interest in issues around this topic. It places the author's

research in an institutional and sector context, briefly outlining some key issues in

these two areas. Finally, it outlines the material covered in subsequent chapters.

Studying the teaching of programming

"There are only two commodities that will still count in the 1990s. One is oil and the

other is software. And there are alternatives to oil." (Bond, in Norris and Rigby 1992

p 1) It is a well-rehearsed truism to say that software is a crucial part of the life of

industrialised societies in the twenty-first century. To review all the areas in which

software plays a central or critical role would be rather cliched but it is obvious that

software, of many different types, is economically and culturally entrenched in many

societies across the globe, forming the basis of activities in finance, economics, health

care, recreation and communications.

The author does not have figures on total spending on software across all sectors,

either in the UK or globally but one example of a growing software market is that of

spending on software licenses to support e-commerce. In 2003, US companies from

small (under 100 staff) to large (over 500 staff) spent a total of 14,544 billion dollars

on those licenses, compared to 3,140 billion dollars in 1999.

(http://faculty.insead.fr/adner/projects/E-procurement%202.pdf 1311112003) As

another example, in the UK, in 2002, more than 2 billion pounds was spent on

computer games, more than on renting videos or going to the cinema.

(http://www4.thny.bbc.co.uk 1311112003)

A J Bird 1

The teaching of programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

Campbell-Kelly (1995) notes

"The 1980s saw dramatic gr.owth in the software industry of 20 percent a year or
more, so that the annual revenues of u.s firms had grown to $10 billion by 1982 and
to $25 billion by 1985 ... "(Campbell-Kelly 1995 p 74)

2002 saw a downturn in software revenues worldwide but the top three software

companies, Microsoft, IBM and Oracle, had revenues of25.9, 13.1 and 6.9 billion

dollars respectively. The global software market declined by 5% in 2002 but was still

. worth $152 billion. (http://www.ovum.com/go/content/c.36416 19111/2003)

Given that individual programmers and teams of programmers must write all the

software developed and sold, the question is then, how good are those prograll1mers?

Programmers must surely be as fallible as any other human being and as variable.

There must be good prograll1111ers and indifferent, or even bad, programmers. For

every programmer passionate about the creation of software there must be several, or

many, for whom it is just a job or a route to financially rewarding stock options.

Finding and training skilled programmers is not a trivial consideration for any

company that needs to develop software. The arguments about the software crisis of

the 1970s are generally familiar. As computing power became more widely available

in the 1960 and 1970s, software could not be developed quickly enough to meet the

demands of increasingly computerised businesses.

"Larger and more complex new software programs had to be developedfor an
increasing number of tasks. Literally, the "art of computer programming" became
something in high demand and a whole new profession of computer programmers had
to be created. [] Software programming at that time was widely considered an
extremely complex task. The reSUlting low-quality products were exceedingly
expensive, difficult to handle and hard to maintain." (http://www.eduard-rhein
stiftung.de/html/T2002 _ e.html 20/1/2003)

The development of structured programming techniques and the idea of software

engineering were at least partly responses to the perceived problems of developing

software of appropriate quality within reasonable time scales and budgets.

(www.cse.unsw.edu.au/~cs3111/Lectures/ 2003S2SAlnewlntro.pdf20111/2003)

Any review or discussion of software developll1ent methods will almost certainly

describe at least some of notable failures of software production: faulty software that

A J Bird 2

The teaching o/programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

has life-threatening potential such as Therac-25

(http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_l.html 07/0112004) or fly by

wire systems (http://seeri.etsu.edu/SECodeCases/ethicsClDeathByWire.htm

07/0112004). (For discussion of software failures see also Norris and Rigby 1992 pp 1

-9)

There are also software failures directly attributable to elementary human mistakes,

such as the crash landing of the Mars Climate Orbiter, popularly supposed to be due

to the mixing of metric and imperial measurement by two teams working on the

software. A more considered view of the failure suggests that a lack of adherence to

NASA software development and project procedures was the root cause of the

problem. (http://www.space.comlnews/mco_report-b_991110.html 0710112004)

It is not just that software projects deliver faulty or poor quality software - in some

cases the projects overrun on time scales and budgets by staggering amounts. Almost

any UK Government information technology project seems to end up costing much

more than originally estimated and may never actually do the work it was originally

required to do, or at best, do it very badly. A report, published in January 2000 by the

Public Accounts Committee, drew

"lessons from more than 25 cases from the 1990s where the implementation of IT
systems has resulted in delay, confusion and inconvenience to the citizen and, in
many cases, poor value for money to the taxpayer." (http://www.parliamentthe
stationery-office. co. uk/pal cm 199900/ cmse1ectl cmpubacc/65/65 03 .htm
07/01/2004)

The responses to the problem of building good quality, reliable software that can be

delivered on time and to budget have been myriad. Hall et al. (1998) note,

"The history of software development is, in large part, a history of salvationary
devices that have come full of a high prom-ise of deliverance and redemption, and
then gone again. At various times, salvation has been sought through structured
programming, relational databases, logic programming, knowledge based systems,
CASE technology, formal methods, object oriented technology, ... These salvationary
devices have been the subject of grand passions and have attracted financial support
from national and transnational structures." (http://mcs.open.ac.uk/mcs-tech
reports/96-07. pdf 07/01/2004)

A J Bird 3

The teaching of programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

Pressman (1992) describes the early days of software developnlent: "Most software

was developed and ultimately used by the same person. You wrote it, you got it

running, and if it failed, you fixed it." (Pressman 1992 p 5) This largely

undocumented, personal style of software developnlent obviously could not continue

in the face of rising demand for increasingly sophisticated software products.

(Pressman 1992 pp 5 - 6)

In the late 1960s the move towards the idea of software engineering began:

" .. . the difficulties of building big software loomed so large that in the autumn of
1968 the NATO Science Committee convened some 50 top programmers, computer
scientists and captains of industry to plot a course Ollt of what had come to be known
as the software crisis. Although the experts could not contrive a road map to guide
the industry toward firmer ground, they did coin a name for that distant goal:
software engineering []. A quarter of a century later software engineering remains a
term of aspiration. The vast majority of computer code is still handcrafted from raw
programming languages by artisans using techniques they neither measure nor are
able to repeat consistently." (Gibbs 1994 p 86)

Software engineering is a broad term that encompasses various approaches, from

structured programming, docmnentation requirements and software life cycle models

to review strategies, such as structured walkthroughs of code. There is not enough

room here to discuss these elements individually. Pressman (1992) defines software
. . .

englneenng as encompassIng

"a set of three key elements - methods, tools, and procedures - that enable the
manager to control the process of software development and provide the practitioner
with afoundationfor building high-quality software in a productive manner."
(Pressman 1992 p 24)

Despite developments in progranlming practice, in particular the emergence of the

view of coding as one element of the discipline of software engineering, as opposed to

the craft of programming, the issues around having a sufficiently skilled workforce

who can produce reliable software fit for purpose have not gone away.

In a sense, the software crisis is a pennanent one but not a crippling one. "~Ve used to

talk of a software crisis. It's been going on so long now that we must now speak of a

software malaise. " (http://www.jdI.co.ukltraining/4-siders/softwEng_4s.html

201112003)

A J Bird 4

The teaching of programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

If there are still problems with the development of large-scale software systems (as

there obviously are), then one response has been to focus on quality issues, to look for

the application ofTQM (Total Quality Management) techniques, first used in

manufacturing, to the software production process and to emphasise the use of SQA

(Software Quality Assurance) methods and tools. There is insufficient room here to

review, even briefly, the large body of theoretical work done on quality issues within

software development. Galin's (2004) book on quality, Software Quality Assurance, is

a comprehensive overview of the key issues, as well as giving an historical

perspective. Given that TQM is well established in the manufacturing industry, why

has its use in software development not led to the same gains as its use in, say, the car

industry or the manufacture of consumer electronics?

Writers conclude that producing software is fundamentally different from building

cars or manufacturing chairs. Galin (2004) notes that "No developer will declare that

its software is free of defects ... This refusal actually reflects the essential elemental

differences between software and other industrial products ... " (Galin 2004 p 4) Galin

(2004) summarises those essential differences as being product complexity, product

visibility and the product development process. (Galin 2004 pp 4 - 5)

Software of any magnitude presents a challenge in ensuring all the possible paths

(which may run to several million combinations) through the software work

appropriately, as well as each individual line of code. Software is also a product

where faults may lie hidden or dormant for years, before a unique set of conditions

triggers a fault that generates a software failure. Detecting problems with the software

is limited largely to the product development phase or the software lifecycle. Once the

software is written, making copies of it presents a very limited opportunity for

correcting problems. (Galin 2004 p 5)

The software development industry therefore requires specialist QA (Quality

Assurance) methodologies and standards, such as IS09000-3. (Galin 2004 p 6) Even

given the development of such methodologies, the writing of software continues to be

a problematic human activity. As noted earlier, any brief review of non-trivial

A J Bird 5

The teaching of programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

software projects will reveal a catalogue of missed deadlines, budget problen1s, poor

quality product and, in many cases, no usable product at all.

(http://www.scit.wlv.ac.ukJ~cn11995/cbr/library.html 26/11/2003)

Given this background, it seems obvious that one strategy is to focus on how

programmers are taught to be programmers. All the QA in the world cannot militate

against a programmer with a flawed understanding of the basic concepts of structured

programming. "The education of software engineers has been a matter of substantial

debate and discussion in the UKfor some time." (McGettrick 1998 p 1)

Pressman (1992) notes "Each individual approaches the task of "writing programs"

with experience derived from past efforts." (Pressn1an 1992 p 19) With this in mind,

the author, when she began to teach programming, imagined that there would be large

body of work examining the particular difficulties of teaching novice programmers.

However, the research available seemed to focus on the minutiae of programming

constructs (Green 1990 b) or the development of programming languages or

environments. (Barr et al. 1976, Merrienboer et al. 1992, Mukherjea and Stasko 1994,

Martin 1996, Hauswirth et al. 1998, McIver 2000) Other projects looked at activities

such as the automated assessment of students' code (Benford et al. 1993)

In contrast, there is a wealth of material on how people learn, from the very earliest

theories about teaching and learning to the work of Bruner, Vygotsky and Gardner, to

name but a few. Theories about learning and teaching abound, from those centred in

schools of psychological thought such as behaviourism to those that are learner

centred, such as Kolb's active learning cycle.

In the author's view, there seems to be a clear divide between those who research

issues around programming and those who research learning in general. Those who

undertake research in the learning of programming generally seem to focus on

pragmatic, technology-based approaches, such as writing new progran1ming

languages (GRAIL, Euphoria and Turing), new programming environments or

A J Bird 6

The teaching ofprogramming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

software development tools (MPE, BIP, SDE, DynaLab, BALSA, KEOPS, APSE and

DISCOVER).

Those who are interested in learning may examine the teaching of broad programming

constructs, but focus on the power of learning to program as a way of fostering

thinking or problem solving skills: the obvious example here is the work of Seymour

Papert with LOGO. (Papert 1980) What seems to be lacking, in the author's view, is

an examination of the issues in teaching programming that focuses on the learning of

programming as a prelude to professional work in that area and that also

acknowledges at least some of the wide range of theories and ideas about how people

learn.

In this thesis, the author attempts to articulate some of the key issues around the

teaching of programming to novice programmers, to review potentially fruitful

theories about learning and clarify how a particular theory might underpin an

approach to the teaching of programming. The author is aware that this is ambitious

but feels her work and background enable her to attempt to create an approach that

bridges the divide described above, between technology-centred research in

programming and the rich variety of theories about learning. The next section

describes the author's academic background and the initial impetus for her interest in

researching of programming.

The author

The author's first degree is in English literature. After completing a PGCE in English

and drama, she taught English in a secondary school for five years. In the academic

year 1989 - 1988 it became obvious that progression and promotion to what was then

called Scale 2 would be difficult or even i!llpossible during to the shortage of funding

for Scale 2 posts. The author made the decision in early 1988 to undertake a

conversion MSc in computing, at what was then Sheffield City Polytechnic.

A large element of the introductory material, in the first four weeks of the course, was

programming in Pascal. It was a mandatory requirement and the assignment had to be

A J Bird 7

The teaching of programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

cOlnpleted successfully. The author found the learning of programming concepts a

frustrating and difficult process and the memories of these early attempts at writing

pseudo-code have remained vivid. It seemed to the author that n1any of the concepts

embodied in progran1ming were doomed to remain at least partially incomprehensible

to her. Concepts such as parameter passing remained opaque and difficult for years, as

she freely admits.

The author did pass the Pascal assignment and went on to complete the MSc. The

course required work in a range of programming languages including Occam and

Prolog. She wrote a range of teaching materials for Prolog and submitted a

dissertation on the teaching of Prolog to novice programmers in logic programming.

The author traces her interest in the teaching ofprogratnming [ron1 her own,

sometimes miserable, often frustrating, experiences as a novice programmer.

After graduating the author worked in industry for two years, as a technical writer for

large-scale software projects. In January 1992, she started work as a lecturer at

Humberside Polytechnic, as it was then called, in the Department of Engineering.

Because of her background in education and technical authoring she was chosen as

second supervisor for a student project that looked at choosing a CAL (Computer

Aided Learning) authoring language and developing initial CAL materials for the

teaching of network concepts (such as networks in aviation e.g. CAN - Controlled

Area Networks).

This project, undertaken in the academic year 1992 - 1993, proved to be the starting

point for significant work within the Department. The Department itself underwent

several large-scale changes, including moving to a different campus, a new head of

department and several re-organisations but the CAL development work continued to

flourish.

It is useful to outline the broader background to the CAL effort within the

Department. The changes in higher education during the 1980s and 1990s are well

summarised by Maier et al. (1998) in t~e first chapter of Using Technology in

A J Bird 8

The teaching of programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

Teaching and Learning. Student numbers have more than doubled since the early

1980s and that expansion has not been matched by increases in staff or teaching

support resources. Also, the student profile has, for many universities, changed

noticeably, although some universities still place emphasis on the traditional points

requirement at A Level for potential students. More students are looking to take up

part-time study and even full-time students need to work to supplement their income.

There are also subtle and not-so-subtle changes in student expectations of higher

education:

"Increasing questioning of students of 'what they are gettingfor their money '- raising
the importance of taking on board student feedback about courses and addressing
student concerns." (Maier et al. 1998 p 5)

Students are also concerned about employability and many now look to higher

education for the acquisition of skills that will make them employable upon

graduation, rather than relying solely on the status of a degree, any degree.

These pressures are not going to go away: indeed, with the UK Higher Education

Funding Councils' drive for quality assessment within university departments, these

pressures are likely to be increasingly formalised and measured. Part of the pressure

on academic staff as well as the answer to the problems of increased student numbers

and widely differing academic profiles among students is the development of

computer technology. Students may come to a course already computer-literate and

have no difficulty using the Internet, on-line CD-ROMs and electronic mail or

conferencing as part of their study pattern. The issue ofthe academic use of these

resources is a broad one and beyond the remit of this chapter but there can be few

academic disciplines that have not felt the impact of this technology in one form or

another.

The Department chose to focus its effort on CAL, developing packages of several

hundred screens each to deliver material on a wide range of SUbjects. The final list

included Propagation, Satellites, Radar, Engineering Materials, Health and Safety,

Introduction to Programming Ideas, and Resistance: a small selection of the final total

of 48 packages, each one consisting of several hundred screens of material.

A J Bird 9

The teaching o/programming to novice programm,ers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

The then Dean of the Faculty of Engineering and IT (Information Technology), as it

became, Roland Stokes, had a personal and organisational stake in the work. The

initial student project was his idea and the management of the subsequent teams was

his particular and personal brief. The CAL developed was, at first, for use with the

Faculty, but a company, Feedback Holdings PLC expressed interest in selling the

packages through their well-established sales network. By late 1997, the CAL

package styles and docunlentation standards and progranl templates were well

established. More than twenty packages were delivered and work continued on

developing, Inaintaining and upgrading CAL packages.

The project team gre\v from students undertaking final year dissertation work to

initially two placement students, then later, four and then, six students on one year

placements from Nottinghan1 and Sheffield Hallam universities. A full time team

Inen1ber was employed for graphics creation in 1996. At the end of 1998, the project

was moved out of faculty control, to become a private commercial company. By then,

the team had grown to 11 members, with a mix of full time staff and placement

students.

Throughout the project, the author was involved in the creation of the packages,

undertaking several roles. As a lecturer, she provided material and ideas for several

packages including number bases, and introduction to conlputers: these topics

reflected her general teaching requirements. A key part of her work was the teaching

of introductory programming, mainly in Pascal, at year one or foundation level. (The

foundation year was for students without A-level points and provided a general entry

route to the computing degrees offered by the Faculty, which included by then both

engineering and computing). Here two areas of interest to the author could be joined:

the teaching of introductory programming and the development of CAL.

Another of the author's roles with regard to CAL was as editor of the storyboards. On

this capacity, she sawall of the material being turned into CAL and found that she had

some concerns about the ad-hoc style of development and the lack of any stringent

pedagogical theory for the CAL stnlctl~~e, style and content. Some basic principles of

A J Bird 10

The teaching ofprogramming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

HCI (Human Computer Interaction) had been applied, such as consistency of button

design and placement but an educationally sound rationale for the design and use of

the CAL material was wholly absent.

The CAL development project was, towards the end of its life, a well-funded,

commercial enterprise, with full-time team members, as well as placement students

and lecturer support. However, at the start of the project, the development efforts were

small scale and easily comprehensible by one person.

The lack of a theoretical basis for the CAL being developed concerned the author

sufficiently for her to begin an investigation of the nature and history of CAL. She felt

that some theoretical perspective should form part of the work of the project. Her

research convinced her that a purely pragmatic approach to CAL development was

not appropriate and that further work needed to be done on constructing a cogent and

theory-based argument around the design, development and use of CAL.

The author felt that an introduction to programming concepts was a challenging topic

for CAL development and she worked with the team on two versions of the CAL,

over about two and a half years. This material proved as difficult to convey coherently

and meaningfully in CAL as it did in lectures or seminars. After trialling the original

and later versions, the author felt that this avenue had been thoroughly explored and

that the results were disappointing. The author came to feel that programming is a

deeply constructivist activity and requires students to build their own knowledge is a

reflective way. The author concluded CAL was not the whole answer, at least not in

the format available to the team: a standard tutorial page-turning CAL, with end of

section questions.

The author's work with CAL is described-later in this thesis, in Chapter 6. Her

experiences with simple tutorial style CAL have led her to reject that approach and to

seek, over a number of years, other ways to foster understanding of programming

concepts in novice programmers. The author's work on developing on-line help is

A J Bird 11

The teaching o/programming to novice programm.ers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

described and finally, her initial work on the fostering of a pattern con1n1unity among

novice programmers.

The author's early exploration of CAL as a way of supporting the teaching of

progran1ming led the author to question how others had approached this topic, without

the use of CAL. As noted earlier, her initial thought was that there must be a wealth of

material on how to teach topics such as the algorithn1ic toolkit, paran1eter passing and

modularity. She was surprised to discover that, on the whole the teaching of

programming seen1ed to lack any clearly articulated, genuinely pedagogical

foundation. The author's initial work on types and uses of CAL (drill and practice,

simulation and modelling and so on) led her to explore theories of learning. If one

reads about drill and practice for instance, as in the Stanford project of the 1960s, one

will inevitably meet references to behaviourisn1. From there, the vast range of theories

and ideas about how people learn requires at least son1e exploration.

The author then thought that perhaps research was being conducted in ways to teach

programn1ing more effectively (however one defines the adverb 'effectively'). The

author found that Inost research focused on the technical tools available to novice

programmers such as languages, compilers, and environments, as described earlier.

There was very little pedagogical material available.

The author found that researchers in programming languages concentrated, not

surprisingly, on delnonstrating the superiority of the programming language they had

devised. Researchers in the developments of programming environments focused on

the success of their product in a similar way. Few seem to acknowledge any

pedagogical element to their work. That lack of theoretical underpinning appeared to

be a notable omission to the author.

Where the human aspects of learning to program did seem to be considered was in

work around which paradigIns, languages or features of languages were easiest to

learn. Even here, though, suggested teaching strategies based on ideas of the ways in

hun1ans lean1, seelned to be missing. Finally, texts and websites that appear to aim to

A J Bird 12

The teaching o/programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

teach a language or introductory concepts seem to contain mainly example-based

materials on 'how to' in a particular language or discursive material on programming

concepts. The design of the materials on these topics does not, in the author's view,

either acknowledge or yield a coherent educational model for the delivery of such

material.

It seems to the author as if those who research in the topics of introductory

programming focus on one aspect of the topic and rarely (or never) acknowledge all

the other elements that must form part of the activity oflearning to program or

teaching others to program. As noted earlier, this thesis aims to go some way to

articulating these sharp divisions. The author has made a conscious decision to range

widely over a number of areas that, to the author, seem relevant to the central

question: how can we teach programming to novice programmers more effectively?

The questions of interest to the author can be articulated as follows:

• \\That are the key issues in learning to program?

• How significant is the choice of first programming language?

• Is there a meaningful distinction between learning a programming language

and learning programming skills?

• \\That theories of teaching and learning can be most usefully employed to

support the teaching of novice programmers?

• \\That theories drawn from various areas of psychology are of relevance to the

teaching of programming?

• \\That aspects of CAL can be used to support the learning and teaching of a

programming language?

• How can the author's work on the teac4ing of programming be embedded in

an appropriate academic research framework?
-

• Having used a particular approach to the teaching of programming, what ways

are there of gathering and collating meaningful evidence about that approach?

• Having gathered the evidence, what conclusions can be drawn from the

author's work?

A J Bird 13

The teachillg of programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

These questions do not have a specific ordering - all are relevant and all come first, in

a sense! For clarity, each chapter's description has noted in following brackets the

question or questions above that the chapter addresses. There is sonle overlap, with

some questions being referred to in more than one chapter.

Structure of thesis

This chapter, Chapter 1, offers the context of the author's research and clarifies why

she has chosen this area of study.

Chapter 2 outlines previous approaches to the teaching ofprogranlming explored by

the author, including the writing of a CAL package, as noted above. It describes

briefly her work on on-line help. It then moves on to exanline in more depth the

author's work on beginning to foster a pattern conlmunity among novice

programmers: an approach that the author feels begins to address some of the

pedagogical issues around the teaching ofprogranlming, rather than simply using

technology for its own sake. [What aspects of CAL can be used to support the

learning and teaching of a programming language?]

Chapter 2 also looks at the research methodologies that seem, to the author,

appropriate for this work. It touches on the difference between the scientific method

and educational research. It focuses on the methodology within educational research

that seems most fruitful and identifies tools and approaches within it, that appear both

appropriate and useful. [How can the author's work on the teaching of programming

be embedded in an appropriate academic research framework?]

Chapter 2 then describes the key concept of a patterns and a pattern community and

describes the author's initial approaches to developing a pattern community with a

group of first year students at the University of Lincoln.

Chapter 3 examines some of the key issues in teaching programming generally. It

looks at what constitutes an appropriate programming syllabus for novice

A J Bird 14

The teaching of programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

programmers and describes some of the debate around the choice of first

programming language. [What are the key issues in learning to program?

and How significant is the choice of first programming language? and Is there a

meaningful distinction between learning a programming language and learning

programming skills?]

Chapter 4 looks at other research efforts in the teaching of programming. It describes

areas of research effort such as the development of programming environments,

debugging aids and programming languages designed to be used by novice

programmers. It also looks at research that supports, or impacts on, human aspects of

learning to program, such as the work on confirmatory bias and inattention blindness.

[What theories drawn from various areas of psychology are of relevance to the

teaching of programming? and What aspects of CAL can be used to support the

learning and teaching of a programming language?]

Chapter 5 presents a brief overview of learning theories. The main focus is on

learning theories that seem promising for the teaching of programming, with

particular emphasis on constructivism. [What theories of teaching and learning can be

most usefully employed to support the teaching of novice programmers?]

Chapter 6 looks briefly at whether CAL can be used to support the teaching of

programming. It reviews some types of CAL and looks at the Stanford Project of the

mid 1960s. It also describes the author's experience of developing CAL to support

novice programmers. [What aspects of CAL can be used to support the learning and

teaching of a programming language?]

Chapter 7 describes in more detail the work outlined in Chapter 2. It describes the

creation of the pattern template and the outcomes of the use of various methods within

the author's research. It presents some initial results from the author's work with

novice programmers and clarifies some of the difficulties in undertaking this type of

research. [Having used a particular approach to the teaching of programming, what

ways are there of gathering and collating meaningful evidence about that approach?]

A J Bird 15

The teaching of programming to novice programmers: three approaches

Chapter 1 Teaching and learning programming: introduction and background

Chapter 8 presents a more personal overview of the thesis and briefly reviews the

whole research cycle and the author describes the ways in which the research was, or

was not, fruitful. Chapter 9 presents some initial outline conclusions, based on the

author's work. [Having gathered the evidence, what conclusions can be drawn from

the author's work?]

Chapter 1: Conclusion

This chapter has described the initial impetus and context for the work described in

this thesis. The roots of the author's interest in the teaching of programming lie in her

own experiences as a novice programmer. Later, her role as a teacher of programming

led her to question further why those who meet programming concepts for the first

time generally find it so difficult (as she did) and why there are no good, well-tested,

pedagogically sound strategies for making the initiallean1ing of concepts (and the use

of then1) less problelnatic.

The author argues that, since the selling of software is such a hugely lucrative

enterprise (on the whole) and the industry is worth billions of pounds each year, then

the issue of writing good quality software is always going to be a critical one. There

have been many strategies suggested and tried for improving the quality of software:

too many to review in detail in this thesis, but the teaching of novice programmers

does not seem to be the burning issue the author believed it would be.

This chapter touches upon some of the issues around the teaching of programming

such as the lack of clearly articulated pedagogical theories as foundations for this area

and the apparently largely unacknowledged divide between those who research

programming concepts and those who research learning.

Finally, this chapter outlines the structure of the thesis and briefly notes the contents

of each subsequent chapter.

A J Bird 16

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

Introduction to Chapter 2

Firstly, this chapter describes what the author is hoping to achieve with her work on

teaching and learning programming. The chapter also describes the methodological

context for this work. It outlines some of the key aspects of educational research and

looks at some ofthe methodologies available to educational researchers. Choice of a

methodology implies a choice within a sub set of research tools and this chapter

presents a discussion around the tools chosen by the author in her research.

This chapter also describes the focus of the author's later research, around the concept

of a patterns and a pattern community. It briefly describes previous work by the

author in using CAL and the reasons for her decision to move on from tutorial CAL,

to using a more constructivist approach. It describes how the idea of a pattern

community could be fostered through the use of software made available to those

learning to program. It describes the goals and aims of the author's research and

identifies some of the main issues around this effort.

Goals of the research effort

As described in Chapter 1, the impetus for the author's interest in the teaching and

learning of programming came from her own experiences oflearning to program in

her late twenties, having previously been a teacher of English for five years. The

sense of completely lacking any understanding of the material she was studying (how

to write pseudocode) and, more significantly, having no coherent strategy for

developing that understanding, is an abiding memory for the author. She considers

herself to be moderately intelligent but the first time she was required to write a non

trivial program in Pascal for an assignment, alI-confidence fled!

The author wrote her dissertation for her MSc on the teaching of Prolog and

developed a workbook for the language, teaching it from simplest concepts (facts and

rules) to more complex ideas (green cut), with examples. At the time, the answer

seemed clear: good teaching material with a plethora of examples preferably

A J Bird 17

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

developed by the teacher him or herself, is all a teacher of a programming language

needs.

The author worked for two years in industry, as a technical author, writing user

manuals for large-scale software projects. In 1992, she joined the Hun1berside College

of Higher Education, which became Humberside Polytechnic shortly after. The

Department of Engineering had started a BSc course in Business and Technology in

1992 and one of the routes was Software Development. Students on the BSc tended,

at least initially, to be those who had hoped to undertake business studies but whose A

level results had not gained them a place on their chosen course. The joint degree was

an option for those students that gave them a strong business studies element but with

a technology aspect, such as manufacturing or software.

The author then encountered a whole range of problen1s in teaching a first

programming language to these students and her belief that good worksheets were all

that students needed was severely tested. Examples on work sheets were not enough:

the students battled to understand the concepts that underpinned the first

programming language that they learnt. How can someone program a loop

appropriately in any language ifhe or she does not understand the concept of different

types of repetition? The difference between REPEAT ... UNTIL and WHILE ... DO is

a critical one, for the execution of the code.

Surely, then the lectures, which looked in detail at the concepts such as the

algorithmic toolkit, addressed the understanding of these ideas? The author found that

the lectures did not seem to help all the students: some still struggled. So, the author

felt that perhaps CAL would prove to be a fruitful way of delivering this material,

moving away from the mass lecture model. Over the next three years the CAL was

rewritten and used with several cohorts. It was not notably successful.

The author then focused on the idea of on-line help and developed a help system that

would grow as the student entered queries. Again, this was not particularly successful.

(These previous efforts will be described in more detail in Chapter 6) The author then

A J Bird 18

The teaching o/programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

read about the work of Christopher Alexander and the concepts of patterns, pattern

languages and pattern communities. Considerable work has been done in developing

pedagogical patterns and patterns for software development: it seemed to the author

that the developing of patterns by and for novice programmers was potentially very

promIsmg.

This is the focus of the work done by the author over the academic year 2003 - 2004.

The author emphasises that this work is very much in its early stages and that this

thesis represents a summation of key ideas, a report on previous work and an initial

view of a longer term project, the development of a pattern community among novice

programmers, in the first year of their computing degree.

The goal of this ongoing work is to foster an approach to the learning of programming

that is much more openly constructivist, where the collaborative nature of learning to

program is acknowledged by the institution and department at a very early stage and

is made explicit in one of the resources offered to the students by the department. That

is not to say that traditional lectures and workshops are not needed: the idea of a

pattern community represents an addition to these activities rather than a replacement

for them.

The question then must be, having attempted to develop a pattern community, what

impact does it have on the students' perceptions ofthe process oflearning to program

and what affect (if any) does it have upon the success of their programming practice?

These are questions easily posed but it is, in the author's opinion, extremely difficult

to formulate definitive answers. The author's own reading of research around the

teaching of programming languages leads her to believe that many researchers do shy

away from defining exactly how they measure the success of their work, in terms of

student learning. The question of how we may meaningfully measure the impact of

pedagogical strategies and the conclusions we can legitimately draw from such

measurements is returned to later in this thesis. There are two key issues with the idea

of evaluation and assessment.

A J Bird 19

The teaching of programming to novice progranll~lers: three approaches

Chapter 2 The research - framework and focus

The first is the assessment of the students' learning, as el11bodied most obviously in

the code they produce. How do we assess their programs? What n1akes a piece of

code good or bad? This view assumes a priori that a student who produces good code

has learnt the concepts successfully and applied them appropriately. In the author's

experience, a student who submits good code may simply be adept at borrowing code

chunks rather than understanding and applying programming concepts. Programs are

rarely written under eXaIl1ination conditions and there are many sources for useful

snippets (or sizeable chunks) of code. We could argue that it is the programmer's role

to re-use code, rather than write everything from first principles, and that a student

who borrows successfully is a good programmer. This is not an issue that can be

settled easily or resolved cleanly.

Secondly, there is the question of how we evaluate the research itself. What can be

usefully said about the choice ofn1ethodology and tools? What are the limitations of

the research? What value does it have in a wider arena? There are many complex

issues around evaluating research.

The author makes no claim to have clear answers to any of the questions touched on

above but believes there is value in at least attempting to clarify some of the issues

and in investigating some of the ways these questions might be addressed. It is in this

spirit that the author's work is undertaken.

Educational research methodologies

It seems obvious from the discussion above that the author's work must sit firmly in

the area of educational research. The scientific method, with its emphasis on the

certainties of the physical world, is not an appropriate framework. (For a discussion of

positivism and hern1eneutics, see Appendix B.) Bernard (1994) notes, "The split

between the positivistic approach and the interpretive-phenomenological approach

pervades the human sciences." (Bernard 1994 p 15) Bernard (1994) stresses that the

scientific approach should not be confused with quantification. Dealing with

aggregates rather than individuals adds.a quantification element to interpretive work,

A J Bird 20

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

such as that of ethnography, but as Bernard (1994) notes" .. . all quantification is not

science, and all science is not quantification." (Bernard 1994 p 16)

The work done by the author focuses on the human activities oflearning and learning

to program and, as such, is human-centred, much as research in social sciences is.

Verma and Mallick (1999) acknowledge that research in the social sciences is "not

perceived as having the same 'scientific' status as the natural sciences ... " (Verma and

Mallick 1999 p 8)

Given that we cannot draw conclusions about human behaviour in the same way as

we might about the chemical reactions or the physical behaviours of objects, there is

still value in exploring the rich and diverse elements that make up human activities.

Having placed the author's work in the arena of educational research, is there

anything else that needs to be said? Educational research is not a monolithic activity:

it has variety. Verma and Mallick (1999) describe three types of research that have

received much attention in the field of educational research: evaluative research,

consumer-oriented research and action research. (Verma and Mallick 1999 p 46)

Evaluative research is the collection of data about the effectiveness of an educational

experience and is often used to support decision making in areas such as "course

improvement, decisions about individuals and administrative regulation." (Verma and

Mallick 1999 p 46) Consumer-oriented research is aimed at producing data of direct

value to teachers (who, of course, constitute a varied group of consumers of

educational research data).

Action research

Cohen and Manion (1994) define action research as "small-scale intervention in the

functioning of the real world and a close examination of the effects of such

intervention." (Cohen and Manion 1994 p 186) Cohen and Manion (1994) make a

useful distinction between action research and applied research. Cohen and Manion

(1994) note that both use the scientific method but that applied research is "concerned

A J Bird 21

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

mainly with establishing relationships and testing theories, [and] it is quite rigorous

in its application of the conditions of this method." (Cohen and Manion 1994 p 187)

Action research adheres less closely to the scientific method because it focuses on a

"specific problem in a specific setting." (Cohen and Manion 1994 p 187)

Cohen and Manion (1994) describe the purposes of action research as falling into one

of five broad categories. The first category we have already noted: that of a specific

problem in a particular setting. The second category is that of in-service training:

action research as a way of "equipping teachers with new skills and methods" (Cohen

and Manion 1994 p 189). Thirdly, action research can be a vehicle for introducing

change into an educational setting, where change might otherwise be resisted.

Fourthly, action research may facilitate better communication between those who

teach and those who research. Finally, it is "a means of providing a preferable

alternative to the more subjective, impressionistic approach to problem-solving in the

classroom." (Cohen and Manion 1994 p 189)

We can see that these categories may well blur together within some action research

activities. To solve a problem might require the introduction of notable changes in

classroom practice, and the work might lead other teachers to adopt a new approach:

to take up the research results, in effect.

The author sees her work as being clearly situated in the field of action research,

mainly within the first category noted above, given that the overall aim of this work is

to make more effective her own teaching of programming.

Action research is a methodology that has caught the imagination of many researchers

in education and the social sciences:

"Apart from phenomenography, action research is perhaps the most influential and
almost certainly the fastest-growing orientation towards educational and staff
development at present." (Webb 1996 p139)

A J Bird 22

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

What implications does this have for the author's work? As noted, the focus of action

research is upon the specific problem or issue in a specific situation, with less

emphasis on developing a theory:

"[Action research] is about the nature of the learning process, about the link
between practice and reflection, about the process of attempting to have new thoughts
about familiar experiences, and about the relationship between particular
experiences and general ideas." (Winter 1996 p14)

Verma and Mallick (1999) describe action research as being more concerned "with

the immediate application rather than the development of theory." (Verma and

Mallick 1999 p 12)

Kurt Lewin coined the phrase action research in the 1940s. Bryant (1998) describes

how the concept of action research (a concept only fifty years old) has its roots in a

positivist view, in the work of Lewin (1948). In Lewin's model of action research,

"the distinction [between researched and researchers] was preserved." (Bryant 1998

pl07)

Later developments in action research were to move away from this view, towards a

more reflexive stance. Reflexivity implies that the researcher is more than just self

aware, that he or she has an understanding of how his or her practice and experience is

both part of self and created by the self. Such an understanding is based in the social

context of that practice and research. Winter (1996) writes of the researcher's need to

understand fully the nature ofhislher interest in the research problem: this nature is

itself a complex resource, involving emotion, memory and "half-glimpsed insights."

(Winter 1996 p 15)

In a sense, reflexivity argues that all research is' ultimately saying something about the

researcher and the researcher, in undertaking research, is saying something about him

or herself. Reflexivity is discussed in more detail later in this chapter.

A J Bird 23

The teaching of programming to novice progran~mers: three approaches

Chapter 2 The research - framework and focus

Action research can take a variety of fOnTIs, but it is possible to identify key elements

that mark this methodological framework:

"Action research can be described as afamily of res ea rcll 11lethodologies which
pursue action (or change) and research (or understanding) at the same time. [] It is
thus an emerge"t process which takes shape as understanding increases; it is an
iterative process which converges towards a better understanding of what happens. "

(http://www.scu.edu.au/schools/ gcm/ar/whatisar.htn11 29101/2004)

"Action research is deliberate, solution-oriented investigation that is group or
personally owned and conducted. It is characterized by spiraling cycles of problem
identification, systematic data collection, reflection, analysis, data-driven action
taken, and, finally, problem redefinition."
(http://www.ericfacility.net/ericdigests/ed355205.htmI2910112004)

We can, therefore, summarise action research as being iterative, in which a problem

or issue is addressed a number oftin1es, seeking a closer understanding (but perhaps

not a definitive solution) within a particular educational context and environment.

This seems to neatly sun1 up the crux of the author's work, where she has worked with

the issues of teaching novice programmers over several cycles of reflection and

action!

We can say that action research is the practical tool of the involved, aware

pro f essi onal:

"Action research is simply aform of self-reflective enquiry undertaken by
participants in social situations in order to improve the rationality andjustice of their
own practices, their understanding of these practices, and the situations in which the
practices are carried out." (Carr and Kemmis 1994 p 162)

In action research, even if the researcher does not adopt a reflexive stance, it is

important to note that is not possible for a researcher to treat the educational practices

he or she studies (his or her own) as independent phenomena, separate entities, subject

to "universal laws" (Carr and Kemmis 1994 p 180). Action research is criticised for a

lack of scientific rigour and its inability to produce generally applicable conclusions

or results.

A J Bird 24

The teaching a/programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

Cohen and Manion (1994) note

"That the method should be lacking in scientific rigour, however, is not surprising
since the very factors which make it distinctively what it is - and therefore of value in
certain contexts - are the antithesis of true experimental research." (Cohen and
Manion 1994p 193)

Winter (1996) identifies four practical problems for action research: the problem of

collecting data as a practitioner (with other demands on time and energy), the

difficulty of identifying a research topic that is not "too minimal to be valid, or too

elaborate to be feasible ... " (Winter 1996 p 17), the problem of methods, and the ways

in which these methods can "contribute a genuine improvement of understanding and

skill . .. " (Winter 1996 p 17)

Cohen and Manion (1994) summarise the criticisms made about action research.

Action research is specific to a situation, rather than general and its sample is usually

"restricted and unrepresentative" (Cohen and Manion 1994 p193). Independent

variables are poorly controlled (or not controlled at all) and the conclusions drawn

from such work are not widely applicable. (Cohen and Manion 1994 p 193)

Given the criticisms above, why would the author place her work within such a

framework? She has already stated that she wishes to draw some more generally

applicable conclusions about the teaching of programming to novice programmers:

why select a methodological framework that seems to militate against that aim? The

answer lies in the shortcomings of the methodology: the problem may be general but

the author's opportunities to study it are local, specific and shifting, from year to year.

The scientific method requires a rigour that is not available within the author's

situation. Also, the question of how to teach novice programmers is a one that

requires a number of caveats.

To talk about 'novice programmers' implies uniformity among all new programmers,

which is patently not the case. To talk only of 'teaching' novice programmers implies

a behaviourist view that the author is uncomfortable with. There are also ethical issues

around more rigorous control of independent variables, as well as the dependent

variable. It is tempting to try to adopt the scientific approach and hope to hide the

A J Bird 25

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

n1essy non-scientific aspects of such work but the author feels her commitment to her

chosen methodology represents her best professional and personal efforts to engage

with a significant issue. Overall, in the author's view, action research (or some flavour

of it) is the n10st suitable framework for her research.

Zuber-Skerritt (1996) defines a type of action research, emancipatory action research,

and defines such activity as having a cyclical set of stages: strategic planning,

implementing the plan, evaluation and reflection. (Zuber-Skerritt 1996 p 3)

The teacher in this paradigm does not take sole responsibility for the interactions in

the classroom. This research model embodies the view of research as a joint

undertaking, exploring educational practices, the whole educational situation in which

those practices are undertaken, and educational theories:

"The form of action research which best embodies the values of a critical education
science is emancipatory action research. In emancipatory action research, the
practitioner group takes joint responsibility for the development of practice,
understandings and situations, and sees these as socially-constructed in the
interactive processes of educational life." (Carr and Kemmis 1994 p 203)

This flavour of action research seemed to best to describe the approach the author

wished to take, in contrast to her almost positivist stance when writing and using CAL

in her teaching. In her earlier research, the students were required to work through the

CAL package developed by the author, Introduction to Programming, without

exception. There was no sense in which the students had any real say in the design or

use of CAL, except in opting out altogether, in the same way as they might miss

lectures or workshops.

Stages in action research

Cohen and Manion (1994) describe eight stages that a programme in action research

may go through. It should be noted that these stages are potential, not mandatory. The

first stage is the "identification, evaluation and formulation of the problem." (Cohen

and Manion 1994 p 198) The second may involve negotiation among involved and

interested parties: "teachers, researchers, advisers ... " (Cohen and Manion 1994 p

198) The third stage may be a literature review. The fourth stage may "involve a

A J Bird 26

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

modification or redefinition of the initial statement of the problem" (Cohen and

Manion 1994 p 199).

The fifth stage may be concerned with the selection of research procedures such as

use and allocation of resources and materials and sampling strategies. The sixth stage

may look at the way the project is to be evaluated. The seventh stage "embraces the

implementation of the project itself (over varying periods of time)." (Cohen and

Manion 1994 p 199) The final stage involves the overall evaluation ofthe project and

analysis and evaluation of the data gathered during the project.

Having placed the research effort in a methodological context, the next question is,

what tools or methods are available within that framework? For example, if a

researcher places his or her work firmly in the area of scientific method, we can argue

that he or she is likely to generate a theory or measure a hypothesis, using quantitative

data, in ways that are largely repeatable by others in the same field. This argues the

use of certain approaches based on quantitative data. Since the author has noted that

she places her work firmly within the action research framework, what tools are

appropriate and manageable for the research effort? In the next section, the author

examines the concepts of qualitative and quantitative, within the context of research

methods.

Educational research tools and methods

Research tools can also be divided along the qualitative/quantitative axis, in the same

way as the positivist approach can be seen as scientific and quantitative and the

hermeneutic framework can be seen as qualitative. Strategies such as experimental,

correlational and ex post facto are generally seen as quantitative. Methods such as

structured interviews and questionnaires are seen as quantitative while other methods

such as unstructured interviews, diary keeping and participant observation have been

seen as qualitative. (http://trochim.human.comell.edulkb/qualdata.htm 07/0112004)

Work has been done by researchers such as Rist (1977), Smith and Meshusius (1986)

Bryman (1988) and Hammersley (1992), as cited by Scott (1998 a), to challenge the

qualitative/quantitative divide.

A J Bird 27

The teaching ofprogramming to 1lovice progra/~lmers: three approaches

Chapter 2 The research - framework and focus

Qualitative and quantitative research

Allied with the classification of research tools is the broader qualitative versus

quantitative question: Hammersley (1992) notes, "In one form or another the debate

about quantitative versus qualitative research has been taking place since at least the

mid-nineteenth century." (Hammersley 1992 p 159) Do these two approaches

genuinely represent two opposing epistemological positions?

Cohen and Manion (1994) describe these two views of research (in social sciences) as

if they shade into each other. To view the social world as ifit possessed a defined and

quantifiable external reality, which can be agreed upon, is to adopt a quantitative

approach. To acknowledge that the individual situates him or herself within the social

world and to seek to understand that subjective, particular and personal view is to

adopt a qualitative approach. (Cohen and Manion 1994 pp 7 - 8) Giarelli and

Chambliss (1988) define the aims or concerns of qualitative thinking as clarity,

context and consciousness.

Verma and Mallick (1999) say, "Strictly speaking neither 'quantitative' nor

'qualitative'is a discrete perspective on research." (Verma and Mallick 1999 p 26)

The authors do go on to note that choice of an approach can influence the type of data

gathering and the ways that data is used. Verma and Mallick (1999) define

quantitative as "any approach to data collection where the aim is to gather data that

can be quantified; that is to say it can be counted or measured in some form or

another." (Verma and Mallick 1999 p 26) Qualitative data gathering concentrates on

evidence that reflect the "experiences, feelings or judgments of individuals. "(Verma

and Mallick 1999 p 27)

It is the qualitative focus that seems most appropriate for the author's work but there

are difficulties with this approach. It could be argued that a purely qualitative

approach generates no broadly applicable ideas. As we have seen, action research

focuses on a particular situation but work that is applicable only to the people who

participated in it could not be useful in any wider sense. There surely must be a drive

A J Bird 28

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

(even if it is not explicitly stated) to generate some broader conclusions, that may

inform or illuminate the practice of others.

This is a tension not easily resolved. As the author has noted, her methodological

framework argues for largely qualitative approach, a harvesting of the student

experience but her wish to draw more general conclusions argues for the use of some

quantitative tools. One area where the quantitative approach could be appropriate

might be in the assessment of students' work.

If using a CAL package (for example) does improve student learning of programming

concepts how do we measure that improvement? Are we measuring the improvement

on marks for programming assignments against last year's cohort (with all the

vagueness that implies) or are we using some other method? What if we claimed that

the improvement could be seen perhaps only when students learn their next

programming language or take up their first programming post? How do we measure

that improvement over a course of two or three years? The question of assessing

programming effort is returned to later in this thesis.

In the author's case, she wishes to reflect upon her own strategies for teaching

programming and to bring to the teaching effort elements that seem to have been

missing from the material in this area, such as ideas about learning in general. The

author has already said that the work is ongoing. It is also small scale and specific.

However, the author hopes, from her qualitative stance, to draw useful conclusions

that may form the basis for further work.

This is not to say that there is no room for quantitative approaches in educational

research.

"Note that, while these two approaches to research are often presented as if they
were in binary opposition to one another, they can also be used to complement one
another. Furthermore, some methods [] actually fuse elements from both
approaches." (http://hc.les.dmu.ac.uklmichae1/qual_aims.htmI3/0112004)

A J Bird 29

The teaching 0/ programming to novice progranuJlers: three approaches

The research - framework and focus
Chapter 2

LaRose, Gregg and Eastin ~1998) present a small-scale study that uses a quantitative

approach to explore
" I tl er a minimalist audiographic approach could still be as educationally

... w Ie I
effective as classroom instruction and whether it }vould appeal to learne,:s sufficiently
to sustain attendance to online instruction." (LaRose, Gregg and EastIn 1998
found at http://www.ascusc.org/jcmc/vo14/issue2Ilarose.htn11 13/01/2004)

Willig (2001) notes,
"Qualitative researchers tend, ... to be concerned with the quality and texture of
experience, rather than with the identification of cause-effect relationships. They do
not tend to work with 'variables' that are defined by the researcher before the
research process begins. [] Using preconceived 'variables' would lead to the
imposition of the researcher's meanings and it would preclllde the identification of
respondents' own ways of making sense of the phenomenonllnder investigation."

(Willig 2001 p 9)

Having placed her work 111ainly in the qualitative arena, within educational research,

what are the implications for the author's research activities? The author's reading

around the design of the research activities quickly presented her with a number of

problems.

Little q and big Q

Willig (2001) cites the work of Kidder and Fine (1987) in distinguishing between two

types of qualitative research, tem1ed little q and big Q. Willig (2001) notes that little q

"methods of data collection and analysis do not seek to engage with the data to gain
new insights into the ways in which participants constnlct meaning andlor experience.
their world; instead, they start lvith a hypothesis and researcher-defined categories
against which the qualitative data are then checked." (Willig 2001 p 11)

Big Q places the emphasis firmly on the participants' construction of meanings

around their own experiences. It is only big Q that Willig (2001) believes to be

genuinely qualitative. Willig's (2001) definition of little q and big Q seem to go some

way towards constructing a defence against those who criticise qualitative research as

being unscientific: Willig (2001) believes that truly qualitative research has no need

for the control of variables: the relevance and value of the work is to be found in II the

exploration o/meanings ... " (Willig 2001 P 11) The question is, is the author's work

A J Bird 30

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

big Q or little q? In retrospect, the author finds she has moved between the two, with

her final effort being much more big Q. In contrast, we can examine some of the little

q approaches. Scott (1998 a) says that the experimental researcher seeks to discover

causal relationships between phenomena.

A key aspect of this type of research is the control of all the variables. For the

experimental model, Scott (1998 a) defines three approaches. The simplest version of

this is the pre-test and post-test design, with a small or single group. Pre- and post

tests are designed to highlight the effect of the intervention. A control group can be

added to this experimental model to offer a basis for comparison between the groups,

which should be similar in composition. The third approach is to concentrate on a

range of different groups, "each of which has different characteristics, and each of

which subjected to different types of interventions. " (Scott 1998 (a) p 53) This

experimental research model is deductive, involving the testing of hypotheses.

Immediately, we can see problems with trying to use this model within the author's

qualitative, educational research oriented framework. What tests could the author

meaningfully administer to novice programmers before they learned to program? How

can the myriad of variables involved be controlled? In the author's view, there is no

valid way to control the factors that impact on a student's experience oflearning to

program over weeks and months. It could be argued that perhaps the intervention

(CAL, on- line help or pattern community) should be offered to only a random sample

of the students. This raises practical and ethical issues.

If the intervention is designed to make more effective the students' learning it is

unacceptable to offer it to only some students, even if it were possible to stop the non

selected students using or learning about the element being employed or offered to the

other students! Given the very short time scales of semesters it is not possible to

design an experiment that allows for a control group: in a ten week teaching period for

a single unit, it is not feasible to have a control group that would have to catch up with

the material in some way while starting a new semester's worth of study units.

A J Bird 31

The teaching of programming to novice progral?zmers: three approaches

Chapter 2 The research - framework and focus

So, there are a number of problems with the experin1ental method in areas of research

that focus on people. People are difficult to control in the sense of managing both the

independent and dependent variables. Scott (1998 a) argues that there are four areas of

difficulty. First, effects being looked for may be very subtle and difficult to test for.

Secondly, the situation being studied may be partly or wholly artificial, so that

experiments are ecologically invalid. (Scott 1998 (a) p 54) Thirdly, the experimental

approach n1ay sit poorly with an ethnographic approach. Finally, the expcrin1ental

method may involve the researchers in "complicated ethical dilemmas" (Scott 1998

(a) p 54) that do not admit of easy solutions, as the author notes above.

In the case of researching students learning to programlning, the first and second

points are extremely relevant. What exactly is the author looking for when she studies

an independent variable? Is the desired effect to make students feel more positive

about learning to program or is it to improve their ability to select appropriate

constructs? There are shades of effect between those two poles, also. If an

intervention makes students feel better about their programming efforts, they may be

prepared to put more time and energy into programming, perhaps creating better

(however that is defined) code.

If, as a researcher, the author forces students to work as much in isolation as possible

(by setting a formal programming test, for example), there are two key objections. In

the real world, programming is not a usually a solitary activity. To make a novice

programmer program by hin1 or herself in a test situation gives rise to the unreality

that Scott (1998 a) refers to. Such unnaturalness could be said to negate any

conclusions that can be drawn.

Scott (1998 a) notes that an experimental approach may not blend well with a more

humanistic view such as ethnography. This seen1S to argue that the researcher needs to

declare an allegiance to one or the other: either a researcher is a positivist or he or she

is an ethnographer! The author feels that this is a point that could be debated over at

length. She felt initially that there is room for some quantitative measurements (some

little q) within a broadly humanist approach, although the data needs to be treated

A J Bird 32

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

with some care and its limitations clearly noted by the researcher. Later, the author's

view shifted somewhat and she felt that big Q offered more meaningful engagement

with the research issues.

In summary, the author's reading persuaded her that for the purposes of this research,

a purely positivist, scientific approach was neither appropriate nor ethical.

The author must then focus on other methods that will answer the needs of the

research. Given that the core of this work is the student experience oflearning to

program, the author feels that she must use methods that enable her to garner that

experience, in appropriate and meaningful ways.

Survey methods

This stance argues for the use of survey methods. Survey methods can be said to have

two main approaches: correlational research and ex post facto research. Verma and

Mallick (1999) note, "The survey has come to be one of the most widely employed

tools in educational research." (Verma and Mallick 1999 p 115)

Correlational research uses statistical devices to identify relationships within data

"and a determinant of the probability of those relationships holding firm in other

settings adduced." (Scott 1998 (a) p 55) We can see that this is a very strong little q

approach that may use "incorporation of non-numerical data collection techniques

into hypothetico-deductive research designs." (Willig 2001 P 11) ,

In ex post facto research, the researcher attempts to re-construct what happened and

find the causal relationships from that reconstruction. Cohen and Manion (1994) notes

that is a way of "teasing out possible anteceden~s of events that have happened and

cannot, therefore, be engineered or manipulated by the investigator." (Cohen and

Manion 1994 p 146)

This method typically involves structured interviews, questionnaires and attitude

inventories.

A J Bird 33

The teaching o/programming to novice progra/~lmers: three approaches

Chapter 2 The research - framework and focus

Venna and Mallick (1999) note:

" .. . the questionnaire is often a vital tool in the collection of data. If it is well
constructed, it can provide data economically and in a for1l1 that lends itself pelfectly
to the purposes of the study." (Vernla and Mallick 1999 p 117)

Which of these seems most useful in the context of this research? Correlational

research might be useful to establish, for instance, a relationship between a student's

grades at A level and the final grade for the study unit Introduction to Progranlming.

The author could undertake SOlne very fine-grained work around looking at A level

subjects taken, grades achieved and success in the student's first programming efforts.

For example, does a student with an A level in philosophy have any advantage in

learning to program? Do grades D or E in A level computing generate a positive effect

on student achievement in that unit? These are interesting questions, but limited. What

is of interest to the author is the student's experience of learning to program, not his or

her subject choices at 16.

However, the research the author undertook cannot be said to be ex post facto

research, since the author uses independent variables, at various points, rather than

seeking to reconstruct the factors that generated student success in programming.

Some of the tools of ex post facto research did seem appropriate to the author and

questionnaires (in several versions) have been written and used by the author.

Willig (2001) notes four main tools in straightforward qualitative research: semi

structured interviewing, participant observation, diaries and focus groups. The author

has used three of those tools, with varying success. Her uses of semi-structured

interviewing, focus groups and participant observation were perhaps more tentative

than was ideal and the results were mixed.

This section will look at some of the tools that may be appropriate to qualitative

research effort, such as semi-structured interviews, participant observation, diaries

and focus groups. Willig (2001) notes "Qualitative data collection techniques need to

be participant-led, or bottom-up, in the sense that they allow participant-generated

meanings to be heard." (Willig 2001 P 15)

A J Bird 34

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

This raises different issues for researchers who engage in qualitative research from

those who adopt a quantitative approach. Willig (2001) notes that the type of data

collected for a qualitative study must be naturalistic, that is, "the data must not be

coded, summarized, categorized or otherwise 'reduced' at the point of collection."

(Willig 2001 P 16) Obviously, at some point, researchers need to work with the (often

voluminous) data they have collected but the shaping and interpretation of data is an

extremely critical stage of the qualitative research process.

Willig (2001) notes that good qualitative research questions are process oriented. A

qualitative researcher asks a How question rather than a What question. Interestingly,

Willig (2001) says "qualitative research is open to the possibility that the research

question may have to change during the research process." (Willig 2001 p 19) This is

true of the author's own work, where the question has changed quite significantly

during her research effort.

Willig (2001) notes that there are a wide range of qualitative data collection

techniques, some of which preclude particular types of data analysis. The example

given is that of note taking in a semi-structured interview: the notes cannot be the

subject of conversation analysis. It behoves the qualitative researcher to match

methodes) of data collection with the appropriate data analysis technique(s). (Willig

2001 P 21)

Semi-structured interviews

Willig (2001) notes that the semi -structured interview ''provides an opportunity for

the researcher to hear the participant talk about a particular aspect of their life or

experience. " (Willig 2001 p 22)

Also,

"Semi-structured interviewing is useful in situations where broad issues may be
understood, but the range of respondents' reactions to these issues is not known or
suspected to be incomplete. "
(http://www.ucc.ie/hfrglprojects/respect/unnethods/interviews.htm
03/02/2004)

A J Bird 35

The teaching of programming to novice progra/~lI11ers: three approaches

Chapter 2 The research - framework and focus

The key to gathering data successfully through semi-structured interviews is to

prepare thoroughly. The researcher should reflect on how to find and recruit

participants, how best to record the interview(s) and how to elicit fronl participants a

full and meaningful response. Willig (200 1) says "A good way to obtain detailed and

comprehensive accounts from interviewees is to express ignorance." (Willig 2001 P

22)

The interview may flow in ways not predicted by the researcher (part of the challenge

of the qualitative effort!) but the researcher will need to keep in nlind a general

interview agenda, if all sight of the original purpose of the interview is not to be lost.

It may also be useful to classify the questions to be posed according to Spradley's

(1979) classification (Spradley 1979 in Willig 2001 p 24). Questions can be classified

as descriptive, structural, contrast or evaluative. Descriptive questions ask for general

accounts from the interviewee, such as, 'What were you doing on the day war was

declared?' Structural questions ask interviewees about the ways in which they

perceive the world and make sense of it. Contrast question pose comparisons and

evaluative questions focus on the feelings of interviewees.

Interviews will need to be recorded in some way. Note taking can be distracting for

both interviewer and interviewee(s) and cannot hope to match the richness of a video

or audiotape record. However, it is important that the interviewee(s) are comfortable

with both the process of recording the interview and the later use of the transcribed

interview material. Finally, Willig (2001) notes, "An interview transcript can never be

the mirror image of the interview." Willig (2001 P 25)

Participant observation

Participant observation requires the researcher to be sufficiently involved with the

activities around him or her to grasp what is going on but at the same time, to be in

some sense apart from the activity so that s/he nlay observe what is happening, and

also, ideally, observe his or her role in the activity also.

A J Bird 36

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

For example, when the author sat in on a colleague's programming lab session, she

was introduced to the group at first and found it hard later not to become involved in

the teaching by responding to the lecturer's questions! The author also found it hard

not to admonish a student for writing emails during the teaching session.

"Participant observation has a quite distinct history from that of the positivist
approach to research. Positivist researchers employing questionnaires and surveys
assume that they already know what is important. In contrast, participant observation
makes no firm assumptions about what is important. This method encourages
researchers to immerse themselves in the day-to-day activities of the people whom
they are attempting to understand. In contrast to testing ideas (deductive), they may
be developed from observations (inductive). "
(http://ukgeocities.comlbalihar_sanghera/qrmparticipantobservation.html
02/02/2004)

We can identify three key strands in participant observation. Firstly, we can consider

that the complex set of interactions that we identify as the social aspect of being

human, is constantly changing and is also shaped by the environment. Therefore, to

understand what is happening, a researcher must be in that environment, subject to

those same constraints as those he or she is seeking to understand.

" .. . researchers must become part of that environment for only then can they
understand the actions of people who occupy and produce cultures. This technique is
least likely to lead researchers imposing their own reality on the social world they
seek to understand."
(http://ukgeocities.comlbalihar _ sanghera/ qrmparticipantobservation.html
02/0212004)

This is pragmatism. Secondly, there is formalism, which

"argues that while social relationships may differ from each other, they take forms
that display similarities. In this way, researchers explore the typicality of relations
and events."
(http://ukgeocities.comlbalihar_sanghera/qrmparticipantobservation.html
02/02/2004)

Finally, there is naturalism, which ''proposes that, as far as possible, the social world

should be studied in its 'natural state' undistributed by the researcher."

(http://ukgeocities.comlbalihar _ sanghera/ qrmparticipantobservation.html

02/0212004)

A J Bird 37

The teaching of programming to novice progra/~llJlers: three approaches

Chapter 2 The research - framework and focus

In this view, participant observation stresses the participation aspect. A researcher

who joins a group of football fans, for instance, needs to feel the thrill of triumph and

the disappointment of defeat, just as the other fans do.

Willig (2001) notes that there are different types of notes that the researcher needs to

be making: substantive, methodological and analytical. Substantive note are

concerned with the descriptions of conversations and events. Methodological notes

describe the challenges and events of the observation process. Analytical notes are the

beginnings of theory, of seeing patterns and thenles emerge fronl the observation.

Diaries

Getting participants in a research project is not an easy task. Keeping a diary requires

commitment and effort from the diary writer, nl0re perhaps than can be asked of most

participants. There may be cases where diaries constitute a truly meaningful way to

gather qualitative data. This diary approach has been used by the author for

assessment purposes, where keeping a reflective log of work done on the assignment

formed part of the assessment. The author has used this at undergraduate and

postgraduate level, with varying degrees of success.

Focus groups

These provide an alternative to the use of semi-structured interviews. "The focus

group is really a group interview that uses the interaction among participants as a

source of data." (Willig 2001 P 29) What makes a focus group different frOlTI a semi

structured interview is the opportunity it affords participants to conlment upon, and

respond to, others' contributions. Willig (2001) notes that focus groups should ideally

consist of no more than six people. Such groups may be homogenous, heterogeneous

and pre-existing or new. (Willig 2001 pp 29 - 30) The caveat with a focus group

setting is that participants may be less willing to be open and honest, where their

comments are for general consumption by the group.

In summary, these four data collection methods are not the only ones available but

they represent tried and tested ways to gather qualitative data. A researcher may

choose to combine two or more methods in order to view the same problem or issue

A J Bird 38

The teaching o/programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

from different perspectives. "This constitutes a/orm o/triangulation." (Willig 2001 p

30)

If we are to gather the student experience in some way, we then need to ask, which

students and why? As noted above, questionnaires can be used to gather data from as

many of the students involved with the unit as possible. For methods like interviews,

it would not be possible to interview every student on a unit, even for a small student

intake. The next question would then be, how do select which students to talk with?

Whose experience should be gathered and whose left unarticulated? The question is

one that brings us back to a much more numerical approach, in defining sampling

strategies.

Sampling strategies

There are two general sampling modes: probability and non-probability sampling. A

simple, random sample is the commonest type of probability sample. One method is

to list all the members of the target population according to a criterion which is

independent of the research e.g. by last name.

Researchers can then select every fifth or fifth person. This is known as a systematic

sample, and is a very easy means of selecting a random sample, but lists can

sometimes contain trends which are difficult to identify, and which create a non

random sample.

A variant of random sampling can be used in which the target population consists of a

number of clearly defined groups, which are of interest to the researcher. For

example, consider a study in which ethnicity is ope ofthe important factors. If a

simple random sample is taken of a mixed-ethnic popUlation, then some of the ethnic

groups may not be represented in the final sample. This kind of situation happens by

chance in random sampling, and in this case may be counterproductive to the

research.

A J Bird 39

The teaching of programming to novice progranU?lers: three approaches

Chapter 2 The research - framework and focus

The problem can be avoided by considering each ethnic subgroup of the population as

being a separate entity, and drawing a simple random sample from each subgroup.

Each subgroup can be considered as a section or stratum of the overall population, and

hence this sampling procedure is termed a stratified random sample. In the case of the

author's research, in larger cohorts, it may be useful to distinguish between student

with some previous programming experience and those with none and to gather data

from those two groups separately.

In practice, this has proved to be difficult to do, for a number of reasons. Students

may claim to have previous programming experience but when asked, in fact place

them selves firmly in the beginner or novice category and the reverse is also true.

Students who claim to be novices have backgrounds or experiences that help them to

grasp programming concepts with apparent ease. It is an interesting question: why do

people claim more or less competence than they may have? How realistic a student's

claims of proficiency or understanding may be is a vexed one and not one that admits

of an easy solution.

Non-probability sampling includes convenience or accidental sampling, which is

building up a collection of the nearest individuals until a sample size is reached. There

are also purposive samples where individual are handpicked. A commonly used type

of purposive sampling is key-informant sampling. A key informant is someone who

has a specialist, insider knowledge of the research issue.

In practice, the author has had to rely on students volunteering to take part in

interviews. The author has found that students who are prepared to discuss their

experiences ofleaming to program, whether by email, in a face-to-face interview or in

a focus group are those who are articulate, motivated and generally academically very

able. They are a self-selecting sample and those who are less successful or struggling

with the material do not come forward. This is a difficulty that the author has not yet

been able to overcome! This problem of a self-selecting sample also means that very

small numbers respond to requests to further information. Out of a cohort of nearly

A J Bird 40

The teaching o/programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

150 students just three agreed to take part in a discussion about learning to program in

December 2003.

The question is what methods are most appropriate to the research being undertaken

by the author? The author has used a mix of approaches, with varying success. These

will be described both here and in Chapter 6, when the author reviews her work with

CAL.

Given that the author is examining the progress of students' understanding of

programming and their programming proficiency, is there a case for a longer-term

study of a sample group? There are three main types of descriptive or developmental

research: longitudinal, cross-sectional and trend or prediction studies:

"Because education is primarily concerned with the individual's physical, social,
intellectual and emotional growth, developmental studies continue to occupy a
central place in the methodologies used by educational researchers." (Cohen and
Manion p 68)

Longitudinal studies are conducted over a period of time, either weeks or years.

Sampling the same people over the time period is a follow up, cohort or panel study.

Sampling different people constitutes a cross sectional study. Studying a few selected

factors continuously is a trend study.

Cohort and trend studies are longitudinal methods. Retrospective longitudinal studies

focus upon people who have reached a particular point or end state e.g. those who

have failed GCSE English. In the case of the author's work, one approach might be

work with students who do not pass the assignments in the relevant programming

unit. However, there are significant ethical issues involved in this approach.

Conversely, the author might work with stu4ents who are notably successful in

learning to program, in terms of passing the required assessments. This might be

easier to do but may not give any insight into why other students do less well. Also, it

is a truism that good attendance strongly correlated with good overall results. Students

who are less successful in their programming efforts may be so because of lack of

A J Bird 41

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

attendance (or other factors not within the control of the tutor) rather than because of

any element within the delivery of the n1aterial.

Given the practical constraints of the acaden1ic cycle, the author has largely engaged

in small sample studies with one cohort over one semester. This would present

significant problems if the author were taking a purely quantitative approach, as

student groups even of 180 (which would be very large for a first year student intake

on the computing BSc routes at the University of Lincoln) do not constitute a large

enough sample size to be statistically significant. Given that the focus is qualitative,

the sample size is perhaps less important than the data gathering methods. The

question does still need to be asked: how do we measure the validity of the research

effort?

Internal and external validity

The scientific method puts emphasis on validity (and repeatability) of experiment, if

they are to form foundations for the testing of hypotheses and the formulating of

theory. Willig (2001) defines validity as "the extent to which our research describes,

meaSllres or explains what it aims to describe. " (Willig 2001 p 16)

We need to examine validity criteria, which fall into two categories: internal and

external. External validity is where the results obtained would "apply in the real

world ... " (Tuckman 1978 p 4) and can therefore be generalised to populations outside

those of the experiment. Internal validity questions whether the "experimental

treatments ... make a difference in the specific experiments under scrutiny?" (Cohen

and Manion 1994 p 170)

Cohen and Manion (1994) argue that threats to validity (both internal and external)

are of greater significance in educational research than they are to scientific

experiments. (Cohen and Manion 1994 p 170) In contrast, Willig (2001) argues that

"As a result of their flexibility and open-endedness, qualitative research methods

provide the space for validity issues to be addressed." (Willig 2001 P 16) The

A J Bird 42

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

perceived weakness of the non-scientific approach to research can also be perceived

as a strength.

Cohen and Manion (1994) define six threats to external validity. The first is the failure

to describe independent variables clearly. The second is the lack of representativeness

of the populations studied. Thirdly, there is the Hawthorne effect: participating in

research may be enough to make substantial difference to those being researched,

whose behaviour is noticeably affected by participation in itself. Fourthly, there is

"inadequate operationalizing of dependent variables" (Cohen and Manion 1994 p

171) There are the changes brought about in subjects by the use of pre-tests, which

effectively sensitise subjects to the factors being tested. Finally, there is the general

category of interaction effects, where there are "interactions of various clouding

factors with treatments." (Cohen and Manion 1994 p 172)

We can see that since the author has clearly stated that she wishes to draw general

conclusions about the teaching of programming that may be applicable to other

learners of programming, then she cannot ignore these elements and must address the

relevant issues outlined above.

For the two main research efforts that the author has undertaken, the independent

variable (the use of a CAL package or some form of on-line resource) is clearly

identified. What is more difficult is the dependent variable to be studied. The author

has looked at various dependent variables including assessment success, student

satisfaction with the teaching module, student estimates of resource usefulness and

test results. All of these have proved either difficult to measure meaningfully or have

provoked disappointingly few responses from the students involved.

The second point that Cohen and Manion (1994) raise is that of representativeness.

How far do the students studied by the author represent the general population of

novice programmers? This is an extremely difficult question to answer. Probably

there are as many types of novice programmers as there are novice programmers!

What can be said is that the intake of students onto BSc courses in Business and

A J Bird 43

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

Technology (at what was then Humberside Polytechnic) were mainly recruited

through clearing. They would generally have had a lower A level points total than

students going to what was then the university sector. For BSc computing, students

have been recruited with perhaps an E and D at A level. We can say that the students

studied by the author may be less academically successful at age 18, as measured by

their A level results, than their counterparts going to study at Durham, Sheffield or

UMIST.

Does this make any conclusions drawn by the author invalid for students with higher

A level points? The author would argue that a good strategy for teaching

programn1ing is of use to almost everyone learning to program, depending perhaps on

his or her preferred learning style. The author has encountered very able students who

were happy to help fellow students and conversely, students who went out of their

way to avoid helping anyone else. If a resource is made available, such as pattern

community, some will contribute and others will not. A pattern community cannot be

a compulsorily created artefact.

The Hawthorne effect is also an issue that must be considered significant in

educational research. If a tutor is focusing on a group of students, to the extent of

creating and using new approaches to the teaching of material, how far does that

affect the students' perception of that learning experience? The author would argue

some contamination is unavoidable; especially where the tutor is presenting the

students with an artefact that is not being used in any other teaching situation. The

author's approach to this has been to be open with the students about the fact that she

is doing research with and through this artefact.

Cohen and Manion (1994) also point out that the dependent variables examined in a

piece of research must have validity outside the experiment. (Cohen and Manion 1994

p 171) As noted earlier, the dependent variables have proved to be extremely difficult

to focus upon. What seems most promising is an exploration of student attitudes to

their experience of learning to program. However, the difficulty with this is that a

positive experience does not necessarily mean that the student has learnt what was

A J Bird 44

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

hoped for or required! Perhaps some quantifiable dependent variable is needed such

as a test of student understanding of programming concepts. This idea throws up

problems of its own, however, as discussed earlier. Programmers do not program in

isolation in test conditions and an understanding of concepts does not necessarily

mean that the person is a good programmer (however we wish to define 'good'). A

student may be able to parrot the structure of the constructs available but not be able

to make a sensible choice of type ofloop within a piece of code.

Sensitisation to "experimental conditions" (Cohen and Manion 1994 p 172) is also an

issue. The author has used versions of an entry questionnaire a number of times, to

gamer information about the students and their previous programming experiences.

This in itself may have sensitised the students, alerting them to 'something different'

about the teaching module. The author cannot see any way around this problem! With

human subjects, all data gathering is an opportunity for sensitisation of the SUbjects.

Only entirely covert observation would be an answer but not one that is either ethical

or suitable.

Finally, Cohen and Manion identify the problem of extraneous factors in effectively

blurring the results of the work. The author feels that this is one of the most

significant elements in educational research, on a macro and a micro level. The

context in which the unit on introductory programming was delivered changed every

year. There would be staff changes, changes to the physical plant (labs were sub

divided or opened up), the network interface was changed or the Department changed

its name and organisation!

Some changes were obviously minor, others more significant. The author had no

control over these changes. At the start of the first-semester there would often be

severe timetabling problems: students frequently complained about a very ragged start

to the semester which for first year students meant a difficult beginning to their

academic life at the University. The network, which provided students with access to

the software required for their work was, in some years, unreliable. This generated

problems with maintaining progress through the planned work and was frustrating for

A J Bird 45

The teaching o/programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

the students. These organisational problems are just the beginning. As a tutor, the

author dealt with a range of personal issues raised by the students, from bereavement

and illness to drug use and family disputes.

The author feels it is important to remember this personal dimension when thinking

about educational research. As a researcher, it is very easy to be caught up in the

vision of what the research may achieve. Ultimately, those taking part in the work are

complicated human beings, with secrets and problems that the researcher may never

know about. Their problems may have an impact on the student learning experience in

ways that the researcher can neither predict nor mitigate. How well can a student learn

to program ifhe or she has personal problems that drain his or her energy? It behoves

a sensitive researcher to be aware of those he or she works with as unique individuals,

not just 'research subjects' or 'students'.

For internal validity, we can accept the results based on the aspects tested or explored

in the study. The threats to internal validity are, as defined by Cohen and Manion

(1994), history, maturation, statistical regression, testing, instrumentation, selection

and experimental mortality. These factors are worth briefly examining. It should be

noted that Cohen and Manion (1994) are assuming a scientific approach for the

research.

For the first factor, the timescale of the experiment may mean that other factors

intervene and post~test changes are attributable to other events, not those managed by

the researcher. For longitudinal studies, maturation is undoubtedly a factor that will

affect results considerably. At certain points in a person's educational life, a month or

six months will make a considerable difference to their abilities. This is a significant

point to bear in mind when discussing the author's work: first year students aged 18 or

so are generally adapting to a very different lifestyle, both personally and

academically. The first semester or term nlight be the most difficult for sonle students.

Many academic staffhave stories of first year students who spend their entire loan in

the first few weeks or fail to turn up to any classes for months. In teaching students, it

A J Bird 46

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

is sometimes easy for staff to forget that the students may not be feeling settled,

confident and motivated to learn.

Statistical regression means that in "in pretest-post-test situations, there is regression

to the mean." (Cohen and Manion 1994 p 170) Such regression can be mistaken for

experimental effects. Testing presents problems of its own in that it may sensitise

subjects to the "true purposes of the experiment ... " (Cohen and Manion 1994 p 171)

Sensitisation has been briefly discussed above.

For instrumentation, poorly designed tests and inconsistent observation can skew

results. Bias can be introduced inadvertently when subjects and control groups are

selected. Bias introduced through choice of groups might also interact with the other

previously mentioned factors. Experimental mortality refers to the drop out from a

long-running experiment. An initially randomly selected sample may be self-selected

at the end of the experiment. A qualitative, big Q approach may not encounter all the

type of problems encountered by the hypothetico-deductive approach (such as

statistical regression) but there are still issues that may be relevant (such as

experimental mortality).

This section offers a very brief discussion and overview of a complex area: there are

many detailed qualitative and quantitative tools available to the researcher. The key

question is, which seems most appropriate to the task of researching the teaching of

programming? The author has placed her work firmly in the realm of educational

research. What value can educational research have?

The value of educational research

At its simplest, there are two views about ed~cational research. Sax (1979) claims

"Reliable knowledge about education can be derived from the application of various

research methods: analytic, descriptive and experimental." (Sax 1979 p 17) In

contrast, Burroughs (1971) said, "Education [] does not go far in supplying conditions

in which the scientific method can operate very powerfully." (Burroughs 1971 p 1)

A J Bird 47

The teaching ofprogramming to novice program/~lers: three approaches

Chapter 2 The research - framework and focus

For some, the scientific method is the only one that generates meaningful results. If

educational research is not scientific then its work and conclusions are invalid and

irrelevant. Such a view seen1S to regards educational research as a monolithic activity.

In fact, there are many different approaches to educational research and many

different methods and tools that can be employed within those approaches.

Verma and Mallick (1999) discuss the various definitions of educational research

offered by authors from the 1950s onwards and conclude that a single, all-en1bracing

definition of what properly constitutes educational research is not possible.

Definitions change with prevailing fashions in research, education and the social

sciences, (because there is an inevitable overlap with the field of social science).

Verma and Mallick (1999) do identify a common element in the widely varying

definitions they survey: the idea of "the application of systematic methods to the study

of educational problems." (Verma and Mallick 1999 p 33) Interestingly, Verma and

Mallick add, "It should be emphasized that there is no universal recipe for conducting

educational research. "(Verma and Mallick 1999 p 33)

Educational research can be seen as a matter purely of policy: a way to establish

optimum strategies within a permanently embattled public sector: "Educational policy

is usually a matter of establishing the most efficient use to be made of scarce

resources - time, building, intelligence, teaching skills and so on." (O'Connor 1957 p

76)

In contrast, "In the late nineteenth and early twentieth centuries, a movement

developed based on the conviction that education itself was to be studied as a

science." (Giarelli and Chambliss 1988 p 30) How legitimate was that belief?

Chambers (1992) has some harsh words for those who would elevate education and

social science research to the status of the positivist natural sciences.

A J Bird 48

The teaching o/programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

Chambers (1992) identifies empirical research with:

"observational, experimental and quasi-research of all kinds, statistical and
correlational research, triangulation, cluster analysis, factor analysis,
questionnaires ... " (Chambers 1992 pI)

Chambers (1992) rejects the idea that empirical research is scientific: educational

empirical research "uses exceedingly sophisticated statistical methods, but that

sophistication is not enough to make it scientific." (Chambers 1992 p 5)

So, a quantitative, statistical approach is not enough to rescue educational research

from its exile, outside the scientific paradigm. It does not matter how many

questionnaires a researcher in education collates: the data is meaningless. This seems

to be a dead end for all educational research: it simply is not worth doing! What

distinguishes educational research from say, particle physics, is its emphasis on the

human aspect. Ultimately, educational researchers are studying a human activity,

within a social context. It is this idea ofthe significance of the social aspects of what

is being studied and the importance of context that sets educational research (along

with social science research) largely outside the scientific method but endows it with a

different type of validity and meaning.

The scientific method is also distinguished by its emphasis on the neutrality of the

researcher, within the research. In chemistry, it does not matter, who is doing the

researching or where: the results are the same all over the world, given the same

initial experimental conditions. In fact, this is not entirely true: there are many stories

in what might be termed pure scientific research of extended and bitter debate among

researchers about what it is they have observed. For one example of this, that of work

on tumour-causing agents, see Kevles (1997).

What is different about educational research and social science research is that there is

a philosophical stance that acknowledges the presence and wholeness of the

researcher. This is the concept of reflexivity, discussed in the section below.

A J Bird 49

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

The concept of reflexivity

The notion of scientific truth does not embrace reflexivity (the researcher is not only

wholly neutral, he or she is not really part of the research in a personal sense) whereas

educational research paradigms generally need to engage with the notion of

reflexivity. As Carr and Kemmis (1994) note:

"Social life is reflexive; that is, it has the capacity to change as our knowledge and
thinking changes, thus creating new forms of social life which can, in their turn, be
reconstructed. Social and educational theories must cope with this reflexivity: the
'truths' they tell must be seen as located in particular historical circumstances and
social contexts, and as answers to particular questions asked in the intellectual
context of a particular time." (Carr and Kemmis 1994 p 43)

What is reflexivity? One definition centres on the idea that how we see the world and

how the world sees us are indivisible. The metaphor of seeing is appropriate and

illuminating. Ifwe wear coloured lenses, our view of external reality is coloured by

these lenses and others' views of us include those coloured lenses.

(http://www.neoscience.org/reflexiv.htmI3/01l2004) "The observer and the observed

are inextricably tied together in a reflection."

(http://www.neoscience.org/reflexiv.htmI3/01/2004)

The concept of reflexivity is a complex and many layered one. Woolgar (1988)

identifies the rise of reflexivity with the emergence of relativism in social sciences,

while noting that the relationship of relativism to reflexivity remains "confused"

(Woolgar 1988 p 18). Relativism is a philosophical stance that questions whether it is

''possible to translate the meanings and reason of one culture into another ... "

(Woolgar 1988 p 17) Woolgar notes that the relativistic argument "implies that human

actions or beliefs are less reliable (valid, true) because they are specific to particular

circumstances ... " (Woolgar 1988 p 18)

Willig (2001) notes,

" .. . it is now generally accepted that observation and description are necessarily
selective, and that our perception and understanding of the world is therefore partial
at best []. What people disagree about is the extent to which our understanding of the
world can approach objective knowledge, or even some kind of truth, about the
world. The different responses to this question range from naive realism, which is

A J Bird 50

The teaching oJprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

akin to positivism, to extreme relativism, which rejects concepts such as 'truth' or
'knowledge' altogether." (Willig 2001 P 9)

Woolgar (1988) identifies what the schema within which reflexivity operates. There

must be both a distinction between what the reality of the object of research and its

representation and there must be a similarity between those two things. The

description or representation must be faithful but not so faithful "as to be

indistinguishable Jrom it." (Woolgar 1988 p 20)

A faithful representation must also therefore embody distinctiveness from the object

of research. It is this tension between similarity and distinctiveness that generates a

dilemma for researchers. "!f ... the means oj study and the object oj study are not

distinct, their interdependence suggests that our research process assumes (at least

part oj) the answer it sets out to find." (Woolgar 1988 p 21)

Willig (2001) describes reflexivity:

"Reflexivity requires an awareness of the researcher's contribution to the
construction of meanings throughout the research process, and an acknowledgement
of the impossibility of remaining 'outside of' one's subject matter while conducting
research." (Willig 2001 p 10)

Woolgar (1988) identifies a spectrum of types of reflexivity. Woolgar (1988) places

radical constitutive reflexivity at one end and benign introspection at the other.

(Woolgar 1998 p 21)

Constitutive reflexivity is a "denial oj distinction and an affirmation oj similarity."

(Woolgar 1988 p 22) Woolgar identifies this type of reflexivity as springing from the

Garfinkel's 1967 work on the documentary method. (Woolgar 1988 p 21)

Benign introspection can be identified as the 'scie~tific' form of reflexivity. Science

emphasises the differences between the researched object and its representation: they

are seen as "essentially different kinds oj entity." (Woolgar 1988 p 22)

The kind of reflexivity that does not question this distinction is more about reflection

on, or analysis of, the research process by the researcher than it is about a deep

A J Bird 51

The teaching of programming to novice programme~s: three approaches

Chapter 2 The research - framework and focus

reflexivity. "Far from raising any fundamental problem, this kind of reflexivity

sustains and enhances the Scientific axiom of the research effort." (Woolgar 1988 p

22)

This is not to say that introspection and constitutive reflexivity are n1utually exclusive.

Introspection may reveal elements that are deeply reflexive, within the work.

However, deep or radical reflexivity seems to have no place in research in the natural

sciences. To argue otherwise would require a belief that physical aspects of the world,

such as electrons had "belief systems, their own theories of interaction and so on."

(Woolgar 1988 p 23)

We can also identify the notion of a disengaged reflexivity that "defers the application

of the research to the researcher."

(http://www.psy.dmu.ac.uklmichaellreflexivity.htm17/01l2004) This is a post hoc

reflexivity, in which the researcher leaves reflexivity as the task to be done after the

research, rather than during it.

Social science research, in Woolgar's (1988) view, sits in the middle of opposing ends

of the reflexivity spectrum. Social science research (like educational research) has a

clear liking for, and varying adherence to, a scientific approach while still

acknowledging the potential for similarities between the research object and its

representation. Social science and educational research both can be said to blur the

boundary between research methods and research object, in some cases.

Willig (2001) notes that there are two types of reflexivity: personal and

epistemological. Personal reflexivity requires researchers to think about how their

own belief systems, assumptions and prejudices have affected and/or moulded the

research effort. It is a two way process: the act of researching must, by implication,

change the researcher, perhaps in subtle ways that require more than benign

introspection.

A J Bird 52

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

Epistemological reflexivity requires the researcher to contemplate questions about the

research effort. Willig (2001) gives examples of such questions:

"How has the research question defined and limited what can be 'found'? How has
the design of the study and the method of analysis 'constructed' the data and the
findings? How could the research question have been investigated differently? To
what extent would this have given rise to a different understanding of the
phenomenon under investigation?" (Willig 2001 p 10)

It seems to the author that researchers in education must engage with both and

epistemological reflexivity, even if only to acknowledge some of the key issues,

rather than making the whole research text a reflexive artefact.

Reflexivity can be seen as springing most strongly from ethnography and

anthropology. Woolgar (1988) notes that, in anthropology, there is a tension between

the culture being studied and the perceived validity ofthe anthropologist's report.

Woolgar (1988) notes that if the culture being studied can be regarded as exotically

other, the observer is then seen as privileged in terms of analytical distance. The

anthropologist has access to epistemological tools not available to the observed and

the greater the distance between the two elements, the more certain or valid the

observer's report.

To perceive a culture as exotically other is to push reflexivity further from the

research process. By extension, therefore, the more like the researcher the subject of

the research is, the less privileged is the researcher's viewpoint. Woolgar notes that

exoticism "and the minimization of uncertainty are crucial to a wide range of

representational practices." (Woolgar 1988 p 28) These stances inform the

relationship between those who study and those they study.

We could ask, what elements of ethnography inform educational research, even at a

remove? The idea of exoticism is one that denies reflexivity and places emphasis on

the cool neutrality of the text describing the research. Reflexivity is not a feature of

the text, and the potential or actual complexities of the text are neither acknowledged

nor elucidated. Without articulating beliefs about the relationship between those

A J Bird 53

The teaching of programming to novice program m e!"s: three approaches

Chapter 2 The research - framework and focus

studied and the researcher(s) and the role of the text as an artefact of that research,

some crucial elements of the research endeavour are, in the author's opinion, missing.

The author perceives a distinct tension here between her 'scientific' stance in trying to

formulate the various stages of her research and her description of those stages in the

text and her centrality to the research. In describing the inlpetus for the research, the

author identifies herself as a one-time novice programmer. A strongly reflexive view

might follow: that what this research is doing is trying to articulate how the author

herselflearnt to program. The researched and the researched are ultimately so alike as

to make any idea of difference unworkable, in the sense of a scientific method.

The idea of the role of language is central to reflexivity. Willig (2001) describes this

as "Critica//anguage awareness" (Willig 2001 P 10). We can identify a range of

views about the potential transparency and neutrality of research writing, from those

who claim it is possible to describe an agreed upon reality, that it is possible to say

'what really happened. At the other end are those who see the use of language as

being of critical concern to researchers.

In this view

"language plays a central role in the construction of meaning and that it is the task of
researchers to study the ways in which such constructions are produced, how they
change across cultures and history, and how they shape people's experiences."
(Willig 2001 P 11)

What this text is doing could be seen as sleight of hand - the author describes her

experiences of novice programmers' experiences and accounts of their experiences,

which give a realist illusion, while actually unfolding and delineating the author's

own struggles with programming concepts. The layering of possible interpretation of

this material becomes potentially dizzying.

The author feels it incumbent upon her to articulate a clear position with in the axes of

exoticism/uncertainty and constitutive reflexivity/benign introspection. The question

of the ways in which language is used to describe both the research effort and author's

A J Bird 54

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

experiences (personal and within the research context) cannot be ignored. The text

must be held up for inspection as a research object itself.

This presents problems for the author and her work. Her stance, within her chosen

methodological framework of action research, is that of benign introspection rather

than any more 'pure' mode of reflexivity. The author cannot exempt herself from

scrutiny, in the way a physicist might: what the author believes about teaching and the

teaching of programming, what she feels and thinks about the students she works

with, all have a bearing, covert or otherwise, subtle or gross, upon the research

process. Indeed, those elements are inextricably part of the results. What the author

sees in her work may not be what another observer might see. What she concludes

from (and about) her endeavours is intensely personal, however coolly presented.

Outline of the author's research

With such uncertainty is there anything to be gained from such research? Placing her

work in an action research context means that the author is making clear an allegiance

to a way of perceiving and thinking about her chosen area of interest. Her focus is the

tension between what she believes or hopes to be the appropriate teaching of

introductory programming concepts and the students' repeated problems with those

concepts. "Teachers' action research questions emerge from areas they consider

problematic,jrom discrepancies between what is intended and what actually occurs."

(http://www.ericfacility.netiericdigests/ed355205.htmI29/0112004)

As noted earlier, the impetus for this work comes from the author's own experiences

of firstly, learning to program and secondly, teaching programming to novice

programmers. Her earliest work focused on using CAL to support the learning of

programming concepts and this work is descri~ed in more detail in Chapter 6. The

iterative cycle of carrying out some change and reflecting upon that activity, has led

the author a long way from the tutorial CAL approach. This work is, in some sense, a

description of that shift, from a positivist stance to one that attempts to take account of

a range of factors, from the author herself to issues of individual learning. This thesis

is an account of the ways in which the author has sought to engage with the problems

A J Bird 55

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

of teaching programming to novice programmers, seeking ways to support the

students' learning, addressing the problem in" a number of ways.

This account, overall, constitutes one centred on benign introspection rather than the

more dramatic constitutive reflexivity. The account also perhaps gives a retrospective

'shape' to the research effort. At the time, it seemed to the author that each effort

ended in failure but in hindsight, this is a harsh judgment. If the author accepts the

premises of action research, than each cycle of doing and reflecting represents a

development of the author's understanding, a moving closer to what is most

promising. The sense of frustration often felt by the author can either be regarded as a

natural result of her engagement with the research or as proof of the intractability of

the problem. In action research, the first view is surely the most appropriate.

The earliest research effort involved the writing of a piece of tutorial CAL, called

Introduction to Programming or Introduction to Programming Concepts. (The CAL

went by both titles during its life!) This covered progran1ming concepts, in the style of

the CAL being written by the CAL development team. In fact, the package was

completely rewritten and extended so two quite different versions were created. The

CAL was trialled with foundation level students and some feedback gathered on their

perceptions of the package.

The author then felt that the possibilities of this type of CAL for supporting novice

programmers were fairly limited. Her work in teaching Pascal as a first programming

language lead her to believe that the Pascal help system was a significant stumbling

block for new programmers and she decided to develop a more focused and specific

approach to providing a help system. This help system used a key word input to

trigger very basic help text, written by the author.

The author hoped that students would use the help system and that as they developed

their programming practice. She envisaged the help system growing, as the program

stored queries that had no results. If a student entered a completely new query, the

author envisaged adding the help text within a very s~9rt time so that at the end of the

A J Bird 56

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

first semester's use of it, a fairly broad set of query results had been created. Again,

students were asked to rate the use of this resource. In fact, no student used it.

These first two efforts are described in more detail in Chapter 6. Having tried these

two approaches with some little q data gathering, the author felt it was time to take

stock of her approaches. Her stated aim was to carry out action research using a

constructivist theory of educational practice. Her first CAL effort had been anything

but constructivist. Her help system was a closer approximation to the spirit of

constructivist effort but no matter how good the fit between artefact and theory, if

students do not like or employ the system, it is of no use, either to students or to the

researcher.

In summary, the first two major stages of her research proved to be dead ends.

Tutorial CAL did not address the key issues in any way that the author could perceive

as meaningfuL The on-line help strategy moved closer to a constructivist approach bit

did not model a truly emancipatory style of action research, because the filling in of

the help text would be done by the author rather then the students/participants.

This caused the author to review both her approach to research generally and the kind

of intervention she was attempting. It seemed to the author that the tensions between

the teaching and learning strategies she had undertaken and the goal of a constructivist

approach required her to re-think what she was doing. There is no disgrace in this:

action research requires action and reflection upon that action but a more definite

change of strategy was required.

With the discovery of the idea of patterns and pattern communities, the author felt that

she had found a genuinely promising approach. Here was a structure that was

coherent but flexible, and an approach that had been used in related areas, such as

software development by experienced programmers and in general pedagogical way.

The author also did not find any examples of a pattern community being fostered

among novice programmers, to support the learning of a first programming language.

A J Bird 57

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

That is not to say that such work has not or is not being done but that the best efforts

of the author did not find any published material around this specific area.

For the latest iteration of her research on teaching novice programmers, the author

decide to use the concept of patterns with a new cohort of first year students. The

author commissioned a small software structure that would hold simple patterns and

be updatable and searchable by the students. These students were taking the

Introduction to Programming unit but for the first time in a number of years the author

would not be teaching the unit. This presented a number of problems, discussed later

in this thesis. The overall aim of presenting students with the opportunity to develop

patterns of their own to be shared with their programmer community was to make

more overt the knowledge sharing, to nlake more explicit the constructivist aspects of

learning to program. The author's work around the use of patterns with these students

is described in Chapter 7.

The next section introduces and describes the concepts of patterns and pattern

communities and their history and outlines some of the work done on using patterns in

software development and in pedagogical practice.

The concept of patterns and pattern languages

Patterns come from the work of Christopher Alexander, an architect who created the

concept of patterns and pattern languages and described patterns for creating buildings

and living spaces.

"Alexander extracted patterns from building and town structures of numerous
cultures. He believed that by documenting these patterns, he could help people shape
the buildings of their community to support life to itsfullest." (Coplien 2000 p 3)

Alexander describes patterns as having three parts, which together describe the

relationship between a problem, its context and a solution. This is the Alexanderian

(or Alexandrian) pattern: other pattern styles have evolved as other disciplines have

taken up the idea of patterns and pattern languages.

A J Bird 58

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

Pattern languages are collections of patterns that address asset of related issues.

Alexander (1979) describes pattern languages as being like ordinary languages. Both

are "finite combinatory systems which allows us to create an infinite variety of unique

combinations, appropriate to different circumstances, at will." (Alexander 1979 p

187)

It is important to note that Alexander's (1979) concept of patterns is much more than

a problem-solving approach or clever packaging of a mental trick. Central to the idea

of patterns are the concepts of the quality, the gate and the way. The quality is as

Alexander notes, hard to define but not vague, difficult to describe but instantly

recognisable, in more than just places or buildings: "There is a central quality which

is the root criterion of life and spirit in a man, a town, a building or a wilderness."

(Alexander 1979 pix) It is the quality that is the focus and the driving force in

patterns.

The gate is the generating of that quality through a vital, shared pattern language. The

gate must be created to give access to what Alexander terms the "timeless way"

(Alexander 1979 p xii) He defines the timeless way as "a process which brings order

out of nothing but ourselves; it cannot be attained, but will happen of its own accord,

ifwe will only let it." (Alexander 1979 p 2)

As we can see, Alexander's concept of patterns is much more than a framework for

solving problems. There is insufficient room to discuss in detail Alexander's work:

see The Timeless Way of Building (1979) for a readable and interesting exposition of

his own ideas by Alexander. Alexander (1979) notes that pattern languages are

universal:

"For the use of pattern languages is not merely something that happens in traditional
societies. It is a fundamental fact about our human nature, as fundamental as the fact
of speech." (Alexander 1979 p 198)

Both software development and pedagogy practitioners have adopted the idea of

patterns, pattern languages and pattern communities with enthusiasm. It would be fair,

in the author's opinion, to say that proponents ofpattem languages in those arenas

A J Bird 59

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

have adopted the structural, mechanical aspects of patten1s without necessarily

subscribing to the more philosophical, eyen n1ystical, elements of the idea. At its

simplest we can say that a pattern language is the set of ideas that SOlneone has in

their head about how to do something, whether than thing is to build a bam or write

software. Alexander notes that an "act of design, whether humble, or gigantically

complex, is governed entirely by the patterns [the person] has in his mind at that

moment, and his ability to combine these patterns to form a new design." (Alexander

1979 P 203)

It is these patterns that enable and release, not constrict, a person's creativity. It is the

pattern language for a particular endeavour that ensures that meaningless or

unproductive approaches are rejected. Alexander uses the example of the rules of

English: it is the pattern language for sentences in English that save the speaker or

writer from stnlggling with incoherence.

For Alexander (1979) the fact that patterns can be expressed very simply does not rob

them of their power. For Alexander, the ordinary and sin1ple are what creates the most

ineffable beauty: the example he gives is of old Turkish prayer rugs. (Alexander 1979

p 220) He sounds a note of caution: the fact that the rules are in themselves simple

does not mean that "they are easy to observe, or easy to invent." (Alexander 1979 p

222)

For Alexander, the critical test of a pattern's rightness, its quality is the way it makes

someone feel. A pattern generated by intellect alone is likely to be dead.

Alexander (1979) cites the example of a student's pattern about balconies in mental

hospitals. This pattern, he says, is laughable, even though it confoffi1s to the pattern

structure. (Alexander 1979 p 283)

Patterns must pass the test of feeling. Patterns that possess the quality without a nmne

"make llS feel good, because they help to make llS whole, and we feel more at one with

ourselves in their presellce: but it is still the quality itself which matters most ... "

(Alexander 1979 p 297)

A J Bird 60

The teaching ofprogramming to novice programmers: three approaches

Chapter 2 The research - framework and focus

A pattern language is not a static thing: it evolves, of its own accord. Good patterns

flourish, by being widely shared and bad patterns die out. Each pattern stands alone so

can develop or be rejected without affecting the stability and validity of the pattern

language overall. Alexander says it is this fact that "guarantees the evolution of

pattern languages will be cumulative." (Alexander 1979 p 345)

Others have sought to define patterns and pattern languages. For example, Bergin

defines a pattern language as a "set of patterns that work together to generate complex

behaviour and complex artifacts, while each patterns is itself simple."

(http://csis.pace.eduJ-bergin/patterns/fewpedpats.html 09/03/2003) Bergin also states

"A pattern is supposed to capture best practice in some domain."

(http://csis.pace.eduJ-bergin/patterns/fewpedpats.html 09/03/2003)

What distinguishes a pattern from a technique? Patterns seek to identify the essence of

a problem and to produce an answer that captures the solution to a problem that may

occur in many different guises and contexts. "The essence of a pattern is that the

situation to which it applies recurs in different circumstances." (Eckstein and Voelter

2001 P 2)

Coplien (2000) says "The pattern foreshadows the product: it is the rule for making

the thing, but it is also, in many respects, the thing itself." (Coplien 2000 p 3)

The specific structure and elements of a pattern vary, depending on the problems they

address. Patterns created by educators (pedagogical patterns) seem to have a simpler

form that those for say, software development.

Patterns, software development and teaching .

The arrival of patterns in software development (particularly the object-oriented

approach) can be attributed to the work of two people, Ward Cunningham and Kent

Beck, who worked on five simple patterns for object-oriented design in Smalltalk in

1987.

A J Bird 61

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

Cunninghanl and Beck found that Snlalltalk users produced a usable interface design,

employing the five patterns to solve design problems. Cunningham and Beck

presented their findings at OOPSLA 87 in Orlando, America. Although there was

enthusiasm for the idea of patterns in software development, there was not much

practical development until 1991 when Richard Helm and Erich Gamnla worked on a

set of pattenls, which they presented at conference in 1991.

During 1991 and subsequently, a group of software developers with an interest in

patterns worked in close collaboration. These were known as the Gang of Four, co

authors of the book Design Patterns but by 1993 there was widespread interest in

patterns and many others in industry and academia were developing, researching and

publishing patterns. In 1994, the first PloP (Pattern Languages in Progranlming)

conference was held. For a detailed history see http://c2.COln/Cgi

binlwiki?HistoryOfPatterns.

Patterns have also moved out into pedagogy. There is strong interest in patterns to

teach the object oriented approach but more general patterns are emerging such as

patterns for teaching seminars, delivering lectures and testing students. See Bergin's

work on pedagogical patterns at

http://csis.pace.edu/~berginlpatterns/fewpedpats.html. For a pattern language on the

effective teaching of seminars see the work of Fricke and Voelter (2000).

Eckstein and Voelter (2001) note that,

"Pedagogical patterns attempt to capture the knowledge of experienced teachers in a
way that can be applied by novice teachers. Patterns can also capture expert
knowledge of teaching techniques in a certain domain. This expert knowledge can be
valuable to experienced teachers who are unfamiliar with a specific domain that they
have to teach." (Eckstein and Voelter 2001 p 2)

Bergin describes the Design Pattern community (those involved in PloP in its various

fonns) and those working with pedagogical patterns as "two movements, with different

goals" (http://csis.pace.edu/~berginipapers/SimpleDesignPatterns.html. 07/08/2003).

A J Bird 62

The teaching o/programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

Bergin describes the Design Pattern community as looking at patterns for what should

be taught and the Pedagogical Patterns community works on patterns for how to

teach. (http://csis.pace.edu/~bergin/papers/SimpleDesignPatterns.htm1. 07/0812003)

Bergin has also worked on patterns for beginners in Java. He has written some of his

own and pulled others into the collection at

http://csis.pace.edul~bergin/patterns/codingpatterns.htm1. Bergin notes that the

collection contains different patterns that address different areas of coding difficulties

or requirements such as readability and maintainability.

(http://csis.pace.edu/~bergin/patterns/codingpatterns.html 09/0312003)

Pattern syntax varies from pattern language to pattern language. Some pedagogical

patterns are very simple: a pattern name, a short problem statement and the solution

flagged with a bold face Therefore to introduce the solution. Bergin's patterns have a

confidence level asterisk attached ranging from 0 for no confidence in the pattern (it

could be substantially improved) to 2 asterisks for a pattern that contains what seems

to be a fundamental answer. Bergin identifies sixteen elements of a pattern that make

up the pattern syntax: Name, Author, Intent, Other Names, Problem, Motivation,

Context, Example, Required Elements, Structure, Variations, Applicability,

Consequences, Known Uses, Related Patterns and References. It should be noted that

Alexander et a1. (1977) in A Pattern Language do not have this rigid structure for

pattern.

The pattern elements (Alexander et a1. 1977) encompass discursion, description,

anecdote, sketches, photographs and statistics. The patterns have sense of meaningful

fluidity about them. Each pattern conveys complex meaning in the way that seems

most appropriate to that pattern. Perhaps as the idea of patterns has moved out into

other subjects, the richness of the idea has been somewhat lost. Ironically, in widening

the application of pattern languages, the sense of the essence of patterns - the quality

seems to have been sacrificed for syntax and a fixed structure.

A J Bird 63

The teaching of programming to novice programmers: three approaches

Chapter 2 The research - framework and focus

Interestingly, Bergin offers examples of patterns that address programming design

issues such as outputting columns of values, dealing with nested IF statements and

handling linked lists. (http://csis.pace.edu/~bergin/papers/SimpleDesignPatterns.html

07/08/2003)

In sumlnary, the idea of patterns as it was first put forward by Alexander et al. (1977)

has a richness and a quality of elegance that seems missing from its later incarnations.

Perhaps there is a case for developing a much richer collection of patterns to support

novice programmers: patterns that incorporate commentary, video and images. Before

attempting this, the author felt it appropriate to 'start small' with a more limited but

manageable pattern structure. See Appendix C for the pattern input screen. The

research done by the author around the students' responses to this artefact are

described in Chapter 7.

Chapter 2: Conclusion

This chapter has placed the author's research in a methodological context. Firstly, the

author identifies her work as being within the humanistic rather than positivist arena.

Within that, she notes her work as being within the remit of educational research, and

her preferred methodology is that of action research. From a choice of methodology

come further implications, for the type of data gathering/analysis methods and tools

that are appropriate. The author noted that her approach was qualitative rather than

purely quantitative. The chapter described a small sub set of qualitative data gathering

methods and went on to discuss the concepts of internal and external validity, in the

context of educational research. The author also presented a brief discussion of the

value of educational research.

The chapter also described a key concept in research that adopts a non-positivist

stance, that of reflexivity, from benign introspection to constitutive reflexivity.

Finally, the chapter outlined very briefly the author's earlier research efforts and

focused on the idea of developing a pattern community among novice programmers,

concluding with an outline of some key ideas in patterns and the use of patterns.

A J Bird 64

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Introduction to Chapter 3

This chapter discusses a range of issues associated with the teaching of programming

to novice programmers. It outlines some of the key issues in teaching structured

programming concepts to non-specialist or novice programmers at a higher education

level. An initial distinction is made between learning to program as a goal-directed

activity (learning to become a programmer) and learning to program as a

developmental activity (learning to think algorithmically and/or develop problem

solving skills). The chapter concentrates on the first category but the work ofPapert,

which falls into the second category, is also described in this chapter.

The main elements of structured programming, as embodied in languages such as

Pascal, are outlined. It should be noted that newer programming paradigms such as

object-oriented design (and languages such as Java) are mainly excluded from the

discussion. Given an agreed subset of concepts to be conveyed to novice

programmers, other issues then arise, such as the choice of first programming

language, which is discussed in this chapter.

Finally, the chapter examines some of the human aspects ofleaming to program, such

as mental models, confirmatory bias and attention blindness.

Learning to program versus programming to learn

A distinction needs to be made at this early stage between two desired outcomes in

teaching programming. Teaching programming, at various levels, can be seen as a

way of fostering and developing transferable skills, including the leamer's meta

cognitive skills. One goal of educational practice may be to develop the leamer's

ability to reflect upon his or her learning strategies, in order to enable himlher employ

such strategies more effectively and in a more discriminating manner. The task of

making the leamer's thinking available to them for examination and analysis is

complex.

A J Bird 65

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

SOlne authors see programming as one way to foster such meta-cognitive skills. As

Mendelsohn et al. (1990) note, "Perhaps -there really is such a mental exercise, and it

is just possible programming is it." (Mendelsohn et al. 1990 p 194) We could describe

this as the strong 'programming to learn' position. Guzdial (1994) notes

" ... we are even more interested in having students learn through programming

because we recognize that programming is a good lever for understanding many

domains." (Guzdial 1994 p 1)

The other outcome is the result of teaching students to program successfully, in a

specific language, so that they become, ideally, skilled programmers who can

continue to develop their programming skills, and apply their higher-level

understanding to almost any programming language. Along with the syntactical and

sen1antic features of the language, students usually learn programming concepts such

as the algorithmic toolkit, good program design (however that is defined!) and aspects

of the software lifecyc1e.

Another way to express this is to talk about the cognitive effects of learning to

program and the cognitive demands of programming. In the second case, students

learn to use the programming language appropriately in a range of (ideally) non-trivial

tasks. It is on this second role of programming that this chapter concentrates but the

first view is also discussed when examining certain languages such as LOGO.

Having said that it is learning to program that is the focus of this chapter, we could

then ask, what aspects of computing and programming do we need to teach to a

novice programmer? Should programmers learn computing rather than just

programming in a particular language?

Computing and programming curricula

It is worth noting that there has been debate about what properly constitutes a study of

computing. Computing is more than learning to program, although programming (or

at least an appreciation of programming concepts) is a central aspect of computing.

Denning et al. (1989) describe as strong the view that con1puter science is mainly

A J Bird 66

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

about programming but their report for the ACM makes it clear that the field of

computer science has "intellectual substance" (Denning et al. 1989 p 9) that

encompasses far more than programming.

For Denning et al. (1989) the phrase 'discipline of computing' covers both computer

science and computer engineering. Programming is seen as part of the core curriculum

and competence in programming is a key goal of any curriculum. Introductory courses

in computing would introduce ''programming, algorithms and data structures (and)

materials from all the other sub disciplines as well." (Denning et al. 1989 p 13)

For programming languages, Denning et al. (1989) place under the heading oftheory

elements such as formal languages, Turing machines and formal semantics. Under the

heading of abstraction are: classification of languages (by syntax and application),

methods for compiling and abstract implementation models. Under design, Denning et

al. (1989) list procedural functional and object oriented languages, programming

environments run-time models computers and software debugging and tracing.

(Denning et al. 1989 p 18) A programming curriculum for the novice will probably

encompass only a small subset of the broader collection defined by Denning et al.

(1989).

The balance between theoretical, abstract and design elements, is, as we shall see, a

difficult one to achieve. There are questions of what subject areas are most

appropriate to beginners in programming and issues around the order and emphasis of

those subject areas. It could be argued that students need a broad view of the subject

before they begin to program in any language or conversely, that students should be

familiar with a small collection of programming ideas before approaching concepts

such as Turing machines or formal semantics. As DePasquale notes, "Novice

programmers generally are introduced to simple, stand-alone concepts that can be

easily digested and understood."

(http://people.cs.vt.edu/~edwardsIRESOLVE2002/proceedings/DePasquale.html

04/02/2003)

A J Bird 67

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

A course that taught both programming concepts and wider software development

concepts (such as software lifecycle models) might be termed a software engineering

course. The tenn 'software engineering' implies a coherent, clearly defined, well

understood set of rules that can be rigorously applied: programming as a science

rather than a craft.

Shaw (1990) describes how the phrase 'software engineering', coined in 1968, has

stood more as a goal than a definitive description. Shaw (1990) defines how an

engineering discipline evolves, from a haphazard enterprise through a craft-based

approach to a professional theory-based set of practices and guidelines. The idea of

software engineering is a response to the software crisis of the 1960s that was briefly

discussed in Chapter 1.

Shaw (1990) identifies a critical lack of models and theories that directly inform and

support practice in the teaching of computing generally: "Computer science has a Jew

models and theories that are ready to support practice, but the packaging oJthese resultsJor

operational use is lacking." (Shaw 1990 p 21)

In summary, then, deciding what to teach novice programmers is not necessarily clear

cut or beyond debate. What needs articulating is a position on what might constitute a

useful and relevant syllabus for teaching programming to novice programmers.

A programming syllabus

Teaching programming is about more than teaching the syntax and semantics of a

specific language, although a progranlming language is generally regarded as an

essential element. The vexed (and often debated) question of which programming

language to teach first is discussed later in this chapter. Allied to the use of a language

must be a set ofprogranlming concepts. It is possible to identify a small set of

concepts that most teachers of programming would regard as indispensable. These

concepts could be summed up as the core of the structured programming approach

and these are outlined in more detail in the next section.

A J Bird 68

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Around these concepts might be wrapped a wide variety of related materials, from the

history of programming to a detailed examination of the software lifecycle.

Sample introductory programming syllabuses may make reference to the practical

elements oflanguage use as well as concepts such as constructs (control structures)

and data types. (http://www2.sis.pitt.edu/~peterb/00 12-031/syllabus.html 1310212003,

and www.bc.edulbc_org/avp/eve/02-03mt3500lfall.pdf 13/02/2003) Others seem to

emphasise more relaxed, creative aspects of introductory programming.

(http://www .cs.iastate.edul~leavens/ComS227 .html#Overview 13/0212003)

Others focus on language-independent, structured programming concepts.

(http://pizza.cs.ucl.ac.uklteachinglhtmllProgramming-Lxml.html 13/0212003)

There are different flavours of approach that can be distinguished. One is to teach

novice programmers about the machinery of computing, both physical (storage and

buses) and logical (X OR, AND) and embed the programming elements within a

(hopefully) broader understanding of how a program relates to the device upon which

it runs. Another is to teach the detailed mechanics of a language and embody general

principles in both extensive use of examples and student practice.

The converse approach is to teach structured programming principles that just happen

to find expression in a specific language but with much less emphasis on learning fine

or low-level details ofthe language. An example of this is error handling: Pascal does

not have the sophisticated in-built error handling of Java. Students who want to trap

input errors can do so by building the appropriate constructs or using some of Pascal's

features but the time and effort spent on developing detailed error handling code can

be better spent understanding the concepts of error handling, rather than seeking to

implement a fine-grained solution.

Which approach a novice programmer encounters will depend on a wide variety of

factors. Institutions do model, either explicitly or implicitly, their beliefs about what

computing or programming is, within that institution, in their syllabuses. Some

introductory programming syllabuses will embody a department's or faculty's belief

A J Bird 69

The teaching of programming to novice programmers: three. approaches

Chapter 3 Some key issues in the teaching of programming

in the broader approach, because computing machinery (what could be called

computer science) is the focus of the departtnent' s interest or research. Other

syllabuses will focus on the principles of structured programming as a basis for

exposure to other languages. Others may take this more general approach, because of

what they perceive as the initial levels of interest, skill and ability of the students.

Within this diverse collection, questions about the order in which concepts are

introduced arise. What do you teach first? Next? After that? Allied to this, would

always be the issue of how those ideas are introduced and how the students'

acquisition of those concepts is supported and developed. Finally, there is the question

of assessing the learning that has taken place, which usually means grading student

programming effort.

Having said that there are many ways to structure and present a programming

syllabus, the author believes that there is a core set of concepts which must be

covered, whatever the emphasis of the curriculum. In summary, most programming

students need to know about the algorithmic toolkit and this is outlined below. All

imperative languages rely upon the concepts of the algorithmic toolkit: languages

such as Prolog (which is a declarative language) do not. Imperative languages require

the programmer to define clearly every instruction and the associated flow of control

within a program.

Elements of structured programming

It is worth noting that programming has not always been structured! There is

insufficient room here to review the history of coding and programming languages but

the earliest coding efforts of the second half of the twentieth century owed more to

individual, even idiosyncratic, decisions than to a codified set of guidelines or clearly

articulated practices.

The impetus to move programming towards a much more formalised activity came

from what is usually termed the software crisis. !Jf the 1960s, as noted in Chapter One.

The response to the range of issues and challenges presented by the crisis was to

A J Bird 70

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

examine the ways in which programmers developed code. Structured programming

represented the first steps at formalising the stages and activities of programming.

One of the critical starting points for the debate about structured programming is

generally held to be Edsger Dijkstra's article Go to statement considered harmful

which was first published in the Communications of the ACM Volume 11 November

3 March 1968.

Edsger Dijkstra's article on go to

Dijkstra opened his article on the use of go to with the statement:

"For a number of years I have been familiar with the observation that the quality of
programmes is a decreasing function of the density of go to statements in the
programmes they produce." (http://www.acm.org/classics/oct9S/ 2011 012000)

Dijkstra marshals his arguments against the use of go to in code. Goto is a construct

that allows a programmer to specify ajump to another part of the program, depending

on a condition. Pascal supports goto and labels. The programmer can label a section

of code and then write code to jump to that label.

For example

ifreply = 'y' goto posreply

posreply writeln(,You entered y');

The use of goto, Dijkstra says, effectively han~s over the control ofthe process

created by the program to the machine. This delegation is not appropriate: the

programmer should have control of the process through the correct and predictable

execution ofthe code.

A J Bird 71

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Secondly, human beings are poor at grasping processes changing over a period of

tinle. The program code (static, relatively easily grasped) should be as close to the

(dynamic) processes it generates as possible. As Dijkstra says, "the correspondence

between the program .. , and the process ... [should be] as trivial as possible"

(http://www.acm.org/classics/oct95 20/1 0/2000)

It should be noted that, even some years after Dijkstra's work, goto could be found in

code presented as an exemplar. Adams' (1973) program example, presented as a

legitimate piece of code for study, contains the dreaded goto, twice!

SUM: = 0;

I: = 1;

LOOP IF I > N THEN GO TO STOP;

SUM: = SUM + x (I);

I: = 1+ 1;

GOTOLOOP;

STOP SUMIN

(Adams 1973 P 5)

The use of the construct goto generally means that monitoring the progress of a

program becomes very difficult for a human being. It is possible to define the

program's progress by specifying the number of statements executed (what Dijkstra

calls a kind of normalized clock) but meaningful description of where the program is

in terms of what it has done is very difficult. Dijkstra describes the go to as ''just too

primitive; it is too much an invitation to make a mess of one's program."

(http:/www.acm.org/classics/oct95/ 20/1 0/2000)

The analogy that is frequently used is that of spaghetti code versus lasagne code:

"A program that is chock-full of unconditional GOTOs is often called spaghetti code,

because tracing through it is like trying to separate strands of interwoven pasta."

(http://www.chisp.net/~dminer/c64/gazette/8801/8801090.html 04/02/2003)

A J Bird 72

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Structured programming aims to produce lasagne code: code with clearly defined,

differentiated layers, that can be taken apart cleanly!

The algorithmic toolkit

Structured programming relies on the algorithmic toolkit, which encapsulates the

elements that allow the specification of the program's algorithm. A program is

sometimes described as being made up of the algorithm and one or more data

structures.

The algorithm is the series of steps or instructions that define what the program has to

do. A data structure is the way in which the data is stored by the program. All

algorithms are made up of a combination of four basic ideas, modelled as one or more

constructs.

Constructs

SEQUENCE

The simplest type of algorithm is one where there is a sequence of steps to be carried

out one after the other. Once the last step is done, the program is finished.

SELECTION

Selection means that one action is carried out rather than another depending on a test

built into the program. The key constructs for selection are:

IF condition THEN

action

and

IF condition THEN

action

ELSE

different action

A J Bird 73

The teaching o/programming to novice programmers: thref! approaches

Chapter 3 Some key issues in the teaching of programming

The other selection construct is CASE. Most structured programlning languages

support some implementation of the CASE statement although the SaIne n1ultiway

branch can be built using nested or separate IFs.

REPETITION

Some programs need to carry out one or more actions several tin1es. Repetition allows

the pr.ogram to loop many times, according to the program instructions. Loop

constructs include WHILE condition DO action and FOR COUNT DO action. In the

WHILE construct, as long as the condition is true, the statement (action) or block of

statements will executed repeatedly until the condition finally evaluates to false.

The FOR loop allows a loop to execute a specified number of times. This is useful

when the number of repetitions is known in advance. Different languages support

slightly different loop constructs. Pascal does not support DO action WHILE

condition but does have a REPEAT action UNTIL condition construct. The condition

is tested AFTER the statement in the loop is carried out. This means that the statement

is executed at least once, whatever the initial value of the condition.

PROCEDURE

Larger programs can be broken down into a collection of smaller chunks of code

called procedures. (Different programming languages have different names for these

chunks of code.) The idea ofmodularisation of code is central concept in structured

programming and requires an understanding of the scope of variables and parameter

passing.

Algorithms

The algorithmic toolkit is used to build algorithms. The essential characteristics of

algorithms are that when each step has been executed, the next step is to be executed

is clear and the algorithm has a clearly defined starting point and one or more clearly

defined stopping points.

A J Bird 74

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

In all instances the algorithm will tenninate after a finite number of steps and the

algorithm is composed of primitive operations whose meaning is clear and

unambiguous to the person or machine executing it.

Algorithmic primitives provide an unambiguous way of expressing instructions that

can be easily described in a specific programming language. Primitives are verbs such

as read and display.

Variables

The scope of variables is an important concept and closely linked to the idea of

parameter passing. Global variables are those declared at the top of a program and are

accessible to all procedures and the main program. This can generate unexpected side

effects as procedures alter in tum the values of the global variables. Local variable are

those declared for the main program and within procedures. One way to avoid global

variables is to use parameters.

Modularity and parameters

No teaching of structured programming would be complete without an introduction to

modularity.

"A modular system is one that consists of a number of small, coherent, chunks (or
modules) each ofwhich is self-contained and has a well-defined interface. []
Modularity helps to reduce complexity. A modular system can be understood in terms
of the individual modules, without having to grasp all the details at once."
(http://www.louisepryor.com/showTopic.do ?topic=6 13102/2003)

Students need to understand the principles of modularity for several reasons. Firstly,

any non-trivial project will require a dividing of the- program's activities into chunks

or modules of code. This may represent a team effort, with modules being written by

different team members or it may still be an individual piece of work that requires the

modules to exhibit appropriate levels of coupling and cohesion. Coupling is a measure

ofthe interactions between modules, which should, ideally be tightly controlled and

kept to a minimum. Cohesion is the grouping oflogically cohesive tasks within a

A J Bird 75

The teaching of programming to novice programmers: three. approaches

Chapter 3 Some key issues in the teaching of programming

module: a module should perform one coherent task or a very few activities which are

logically grouped.

With modularity con1es the issue of moving data between modules and the main

program. It does represent a new level of complexity and challenge for the novice

progratnmer but I do not believe anyone can claim to understand (or undertake)

structured programming without understanding parameter passing.

Parameters are used to pass data between the main program and the procedures.

Formal parameters are specified when the procedure is declared. Actual parameters

are passed to the procedure when it is called. In Pascal the simpler forn1 of paran1eters

are the value parameters which do not affect the values of the variables passed in to

the procedure. Value paramters use copies of the variables passed to them.

Var parameters in Pascal pass back the changes made to the variables inside the

procedure. The difference beween value and var parameters is significant but is not an

easy concept to grasp. Parameters are implemented in slightly different ways in other

imperative languages but the concept remains the same.

It should not be assumed this is an exhaustive or fully explicated list. There would

have to be other material that would support and develop these core ideas. Other

concepts related to structured programming include the modelling of a discrete set of

stages in program development, referred to as the software lifecycIe or the software

development model. As noted earlier, what other elements are taught will depend on

the tutor, the first language chosen and the scope and goals of the course.

This is not to say that the concepts noted above are sufficient only and in themselves.

Students will need, for the purposes of developing good coding habits, exposure to

clearly articulated elements such as appropriate commenting styles and program

layout, writing pseudocode (or some other specification approach) and use of a

programn1ing language editor and con1piler.

A J Bird 76

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Some comments on programming

Programming is both a vast industry (the US government will spend an estimated 63

billion dollars a year on IT by 2007 (http://news.com.coml2100-1017-913223.html

04/03/2003) and the UK government 12.3 billion pounds in 2003

(http://www.kablenet.comlkd.nsf/Frontpagel 03/0212003)) and a possible hobby. A

programmer may be writing one element of a safety-critical system, coded in several

million lines, or a twenty-line program at home on a PC.

There are undeniable qualitative and environmental differences between these

activities but the essence ofthe challenge remains similar: to write stable,

maintainable code that does, reliably and predictably, what it is supposed to! Of

course defining terms such as 'stable' or 'maintainable' is problematic and the

question of specifying program activity presents difficulties and challenges in itself.

There is a huge and diverse population of programmers, from academics, industry

practitioners and those who program for fun: all these groups are represented in

po stings about programming on the Web. An Internet search for material on teaching

and learning programming throws up some serious work around the subject as well as

personal material. "Programming is like riding a bicycle - a few days of grazed knees,

and then puzzlement as to why it looked so difficult."

(http://www.csc.liv.ac.ukl~kenlcpp/progl.html 03/0512000)

Some are less sanguine:

"Unfortunately, experience shows again and again that learning programming in
Higher Education is far from easy. Students continue to struggle, and many
academics will have found themselves faced with final year students who profess a
complete inability to undertake even the simplest programming task. Something is
clearly wrong." (http://www.ics.ltsn.ac.uklpub/conf2000/Papers/jenkins.htm
13/0212003)

We might ask ourselves why programming is so popular? What is it about this

activity, however it is constituted, that it appeals so strongly to some (not all!) people?

A J Bird 77

The teaching of programming to novice programmers: three approaches

Chapter 3 Sonle key issues in the teaching of programming

Blum (1996) says:

"Programming ... has a very large proportion offun. That is why it is a hobby. It
offers the perceptions of creating a product; when the product performs in a
predictable fashion, there also is a sense of having accomplished something useful. "

(Blum 1996 p 249)

Johnston (1985) says, "Learning to program is bit like learning to play football;

anyone can do it badly but doing it well is a lot more difficult. " (Johnston 1985 pix)

Others such as Hawksley (1998) and Rosin (1973) use the musical instrument

analogy: "Teaching someone how to program is similar to teaching him to playa

musical instrument: neither skill can be taught, they must be learned." (Rosin 1973 p

83)

Other writers take a n10re acadelnic view:

"Why is programming hard? Getting a computer to do what we want, programming

it, means building a very special kind of machine - an immateriall71achine."

(Rawlings 1997 P 63)

Shneiderman (1980) says "Programming is neither simple nor unidimensional; there

is a rich and varied texture of tasks which fit under the term programming."

(Shneiderman 1980 p 41)

Rawlings (1997) goes on to say:

" ... programming is much more like writing, sculpting or painting than it is like
building a house ... no other engineers have machines they can turn into helicopters
or toasters on a whim. "(Rawlings 1997 p 67)

Johnston (1985) says, to be a good programmer, "Three factors are involved: natural

ability, coaching and practice." (Johnston 1985 pix) Reynolds (1981) produced a

book called The Craft of Programming.

A J Bird 78

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

This could lead us neatly into the debate about programming as an art or craft versus

programming as engineering. There is no room to review the arguments here. The

author takes the stance that structured programming and its concepts are sufficiently

well established to allow for the treatment of programming as a technical subject,

capable of being taught in an academic context, rather than passed on in some more

diffuse, apprentice-style manner.

What is of interest here is that there does seem to be a view (not always explicitly

acknowledged) of programming as a craft, something that requires both learning and a

modicum, at least, of talent, a feel for programming. It is this view of programming as

an art, the province of the talented few, that needs some elucidation: how far is it

embedded within the mind- sets of novice programmers and what effect does that

view have upon their learning?

Having earlier defined what we would wish to teach as a minimum to novice

programmers, we now need to widen the discussion. One of the critical questions is,

what language should we use to first embody and animate those structured

programming concepts?

Which language should be the first programming language?

Shneiderman notes that in the mid to late 1970s there were about 166 programming

languages in use. The Language List (http://cuiwww.unige.ch/OSG/info/Langlist

0411212000) lists over 2300 published languages. That does include proprietary

versions of languages (such as Pascal and Turbo Pascal) and variations or dialects but

it can be seen that the growth in the number of languages of all types has been

considerable over the last 20 to 25 years.

The proliferation of languages available and the diversity of choice are best summed

up by Bowman:

" .. . there seems to be very little consensus as to the most suitable first programming
language to teach. At a Workshop on the topic organized by the Open University ... at
least 16 different first languages and programming notations were advocated.
Included amongst these were traditional imperative languages, such as Turbo

A J Bird 79

The teaching of programming to novice programmers: thref! approaches

Chapter 3 Some key issues in the teaching of programming

Pascal ... ; more modern imperative languages, such as Modula-2 ... , Modula-3 ... Ada
... and Extended Pascal .. fully fledged object-oriented languages, sllch as Eiffel ... ,
C++ ... Omega ... and Cool ... and more formally oriented languages and notations,
such as ML ... and VDM (http://www.ulst.ac.uk/cticomp/bowman.html
28/1112000)

Cunniff, Taylor and Black (1989) describe the creation and use of FPL (First

Programming Language). The authors describe some of the vital work done to

compare its effectiveness a first language with Pascal. They conclude:

"It would be impossible to make any definitive judgements on whether FPL or Pascal
is a more appropriate language for beginning programmers based on the small
number of programs analysed for this study. However the differences that apparently
exist suggest that there may be some important advantages to the use of FPL. The
avoidance of common syntax-related bugs involving BEGINS and ENDS. " (Cunniff,
Taylor and Black 1989 p 428)

In the 1970s and early 1980s, BASIC was extrelnely popular among home computer

users. Stansifer (1995) notes "BASIC spread widely, aided by the personal computer

revolution. The simplicity of BASIC appeals to the many people who want to use the

computer, but do not wish to learn programming." (Stansifer 1995 p 25) BASIC is

unlikely to be recommended as a first progranlming language but for many computing

enthusiasts, it served its purpose. We could add to the list of the available and popular

languages regularly: in the last few years Java has come strongly to the forefront, for a

variety of reasons. There are also the markup languages such as HTML and more

recently, XML.

Bowman offers a summary of the key issues in the choice of a first programming

language. Is the aim to teach a specific paradigm such as that of structured

programming or to teach an approach such as the object-oriented approach? Bowman

identifies a third approach, which is to teach a semi-fomlal theory of programming.

Within this, Bowman distinguishes three different areas of interest: functional

programming, formal specification and a theory of programming using pre and post

conditions, with an enlphasis on the theory, not a specific language.

The idea of concentrating on higher levels of programming knowledge was one

presented by Shneiderman (1980). He distinguished between a higher level of

A J Bird 80

The teaching oj programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

semantic knowledge and language-specific (i.e. syntactical), lower levels of

knowledge.

Holt (1972) noted that there were only three real programming languages:

FORTRAN, COBOL and PUI. pur had major disadvantages at the time, due to the

huge size of the language and the difficulty of writing a compiler for PUI. Holt

(1972) goes on to say:

"We must teach structured programming. The structured programming approach is
just plain superior to encouraging students to spend their time inventing and glorying
in microtricks to save microseconds. Students must be taught how to break large
programming problems clearly into smaller ones."
(http://plg.uwaterloo.ca/~holt/papers/fatal_ disease.html 19/1012000)

McKeown and Farrell echo Holt's (1972) point:

"Students are seldom taught specific design techniques. Novices possess an
incomplete understanding of program design and are unable to analyze a problem,
dissect it, and create a working program."
(http://homepages.dsu.edulmckeownjlCPCCCSCpaper.html 04/1212000)

This lack of understanding of broader concepts e.g. what an array is or the ways in

which a loop might be used makes the design of a program in a structured language

very difficult.

Novice programmers also need, when learning a programming language for the first

time, to understand the syntactical constraints of that language e.g. what punctuation

is required, the use ofterminators like the semi-colon (in Pascal and Java) and the use

of brackets. Shneiderman (1980) proposes a model of cognition and program

development that rests heavily on the use of high to low levels of programming

knowledge, pressed into service in that order. (Shneiderman 1980 p 51) Once the

general semantic structures have been chosen and collated by the programmer,

Shneiderman suggests, the actual coding is a comparatively trivial task.

A J Bird 81

The teaching o/programming to novice programmers: three. approaches

Chapter 3 Some key issues in the teaching of programming

The debate about programming languages can be traced back several decades.

Sometilnes, authors declared the debate (and the dilemma) to be no longer relevant. In

1984, an article in Creative Computing stated:

"There is very little need for most microcomputer users to learn to program in
traditional computer languages. The main ''programming languages" of today are
spreadsheets, word processing programs and database managers." (Creative
Computing - August 1984 pp 5 - 8)

In fact, programming languages continue to proliferate (as noted above) and continue

to find passionate practitioners and equally passionate critics.

Just six years later, Green (1990 b) could declare:

"We shall all be programmers soon. That, at least, is the impression one receives
from the vast spread of programming possibilities, creating new environments such
as ... knowledge-based and visual systems ... ; new models of programming such as
logic-based and constraint-based programming; and new applications, to science,
learning, and education, to the office world, the domestic world, and the leisure
world. " (Green 1990 (b) p 36)

Organick (1973) notes that the idea of teaching concepts such as data structures and

relating use of various structures to algorithms started in the early to mid 1960s and

that textbooks embodying this approach appeared in the late 1960s. These texts and

improved interfaces made the teaching of storage concepts and algorithms a much

easier proposition. (Organick 1973 p 140)

Mendelsohn et al. (1990) describe the tension between the needs of disparate groups

of learners and the demands of learning a programming language. Languages like

LOGO and Prolog seem to offer teachers a route into programming for new audiences

without some of the cognitive burden associated with structured programming.

The choice of language as a first programming language is a choice not only of a

paradigm but also effectively of a culture. (Mendelsohn et al. 1990 p 177)

A J Bird 82

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

The culture of a language includes the kind of mistakes and misconceptions that are

fostered by the design and structures of that language:

"The unfortunate novice is prey to misconceptions when meeting any programming
language. There have been excellent studies of misconceptions about even so 'small'
a topic as assignment." (Mendelsohn et al. 1990 p 186)

Green (1990 b) offers a solution that seems to cut across the paradigm debate:

"Many problems seem to be peculiarly intractable to any single programming
paradigm. If approached procedurally, it becomes clear that part of the problem is
best approached declaratively, and vice versa. Why not use a mixed paradigm, and
treat each aspect of the problem on its merits?" (Green 1990 (b) p 35)

Another approach, taken by Traxler at the University ofWolverhampton, is to present

students with a range of paradigms and ask them to write a program in each of three

paradigms, tackling the same problem. The three paradigms used were functional

programming, with the students using Miranda, concurrent programming in Modula 2

and object-oriented programming, using what the authors term a 'pure' object

language, SmallTalk. The students were asked to reflect upon their experiences of

each language and paradigm:

"Many of the students have implicitly questioned whether procedural programming is
the best introduction to programming and have suggestedfunctional programming in
Miranda as a viable alternative. Unfortunately, the parts of Miranda they find most
difficult are the parts of Pascal that they find most reassuring. Nevertheless they raise
interesting issues for the choice of the base teaching language and their work shows
how significantly any given base language influences subsequent language
acquisition." (http://www.ulst.ac. uk/cticomp/papers/traxler.html 09/07/1998)

. This last point was also made earlier by Shneiderman (1980) who says that learning a

second programming language is much easier ifthe underlying semantics are the

same as the first language acquired. Learning an entirely new set of semantics is as

hard as learning a first programming language. (Shneiderman 1980)

McKeown and Farrell's discussion ofthe problem of teaching novice programmers

does not mention any specific language. The problems they identify as being at the

heart of programmer education have nothing to do with the choice oflanguage or

even of paradigm. The problems are those of curriculum design at the most detailed

level: students are not taught the abstract thinking strategies and the problem solving

A J Bird 83

The teaching of programming to novice programmers: three. approaches

Chapter 3 Some key issues in the teaching of programming

skills need to be at least moderately successful programn1ers and those who teach

programming lack insight into the relevant pedagogical processes.

(http://homepages.dsu.edu/mckeownjlCPCCCSCpaper.html 04112/2000)

Lewis (1981) notes that two ingredients are missing from the structured progratnming

syllabus: principles of formal logic and an awareness of the psychology of problem

solving. (Lewis 1981 Preface)

It is interesting to note that the kind of debates that focused on the type of language

with which to learn programming (and the most appropriate environment with which

to work) now begins to focus on the requirements around an object-oriented first

language. Kolling, Koch and Rosenberg note, "none of the existing languages is

appropriate for teaching object-oriented principles." (Kolling et al. 1995

http://www.sd.monash.edu.au/blue/papers.html 03/05/2000)

Eisenbach and Sadler (1981) note, "Most of us learned our first language because it

was the one available at the time." (Eisenbach and Sadler 1981 pI) The choice is

much wider now: compilers are available easily over the Internet. JDK (Java

Development Kit). for instance, can be downloaded from its own site.

McIver (2000) notes that a programming language GRAIL (Genuinely Readable and

Intuitive Language) was developed to "minimise unnecessary errors." (McIver 2000 p

181) using the design principles, of maximising readability and minimising

unproductive errors.

However, McIver notes in the article that powerful concepts have been omitted from

GRAIL, in order to make it an easily learned language. For example, GRAIL contains

only one precision number type, static arrays and a small subset of control structures.

McIver (2000) describes the seven rules applied to the new of GRAIL's features. The

first rule is, start where the novice is. Different concepts should be modelled using a

different syntax. The syntax should be readable ~nd consistent in the eyes of the

A J Bird 84

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

novice programmers. The fourth rule: "provide a small number of powerful non

overlappingfeatures." (McIver 2000 p 182) Also, be cautious about fine design of

input/output features. In addition, the language should provide better error diagnosis.

Finally, choose the appropriate level of abstraction.

McIver (2000) describes the experiment using GRAIL comparing two groups of

students, one learning LOGO and one learning GRAIL. McIver (2000) concludes that,

given the small number of students, the difference, in error rates for the two groups is

interesting but not statistically completely valid. The GRAIL students did have fewer

errors in their code but the experiences of the two groups were not identical in terms

of student interest (three students in the GRAIL group did much more than required).

Pane and Myers (2000) observe, "New languages are usually spawned from technical

demands and innovations, and gain their critical mass from adoption by the technical

community." (Pane and Myers 2000 p 194) What language designers mostly seek to

do is embody some technical consideration in a language: The human computer

interaction elements and the constraints suggested by the psychology of programming

are largely ignored. Pane and Myers (2000) note that for the psychology of

programming and human computer interaction a dimension, answering a demand in

one area militates against meeting an objective in another. "Improving a system in one

measure may result in a reduced performance in another." (Pane and Myers 2000 p

195)

Pane and Myers (2000) identify three key problem areas in language for novice

programmers: visibility, closeness of mapping and the jargon used. Visibility refers to

the problems novice programmers have in holding in memory all the elements they

have to deal with successfully with the code they are writing. Pane and Myers (2000)

suggest, "The programming system should make information visible or readily

accessible any time it is relevant." (Pane and Myers 2000 p 195)

Closeness of mapping refers to the translating of a mental plan into code that the

computer can run. This requires the language to provide the operators that will model

A J Bird 85

The teaching of programming to novice programmers: three" approaches

Chapter 3 Some key issues in the teaching of programming

the user's mental plan. Finally, words and symbols in the programn1ing language

should not contradict their use elsewhere". The problem is that n1inimal, easily grasped

languages present problems again when greater flexibility or sophistication is

required.

Mendelsohn et al. (1990) note the difficulties associated with learning a logic

language, in this case, Prolog:

"which originally promised to be easy to learn since it reduces the amount of
program control that the programmer needs to define, but which turned out to be very
prone to serious misconceptions. Recent work suggests that Prolog difficulties may be
caused by an inability to see the program working." (Mendelsohn et al. 1990 p
175)

In summary, we can see that are no easy answers to the question of what language to

teach first. It could be argued that in fact this is a trivial question, given the lack of

theoretical underpinning for the teaching of programming. Perhaps it would be better

to teach programming, at least initially, without recourse to coding: the focus should

be on algorithmic thinking and problem solving (an echo of the syllabus model

discussed earlier). Then the language chosen may embody imperatives other than

purely educational ones: students who understand structured programn1ing and can

think in a modular, algorithmic fashion should be able to tackle any imperative

language, whether it is C, C++, Java or Pascal.

We have so far assumed that the novice programmers under discussion are higher

education students but this is not necessarily the case. Students often have exposure to

at least some programming by the time they reach the first year of university. The

question then has to be asked, is that appropriate or useful? Is previous work in some

programming style beneficial, either as an underpinning for more formal learning or

as a framework for problem-solving skills or algorithmic thinking?

At \vhat age should students learn to program?

Clements (1985) describes three justifications that are generally put forward for

teaching programming before students are 18. Programming is seen as a required

A J Bird 86

The teaching a/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

skill, another form of literacy. Programming is also seen as fostering general

computer literacy and finally, learning to program can develop problem-solving skills.

(A reiteration of the programming to learn view.) Clements notes that the first two

reasons are important but the third reason "is the most powerful and it is in this area

that programming may have the most impact on education." (Clements 1985 p 128)

Clements goes on to describe ways in which children can be prepared for the activity

of programming by undertaking structured problem-solving exercises. Such exercises

might include playing robot or sorting items by various categories.

VanLengen and Maddux (1990) argue:

"The rationale for teaching computer programming is that it aids in the development
of critical thinking, problem solving, and decision making skills. This contention is
not supported by empirical data. An experimental study was conducted to ascertain if
instruction in computer programming improved problem solving ability. The results
of the study did not show support of improved problem solving ability from
instruction in computer programming." (http://www.gise.org/JISENoll-
5IDOESINST .htm 24/0412001)

For children, LOGO is often presented as the appropriate language for their first

programming language. Proponents of LOGO for children often adopt very strong

positions on its worth in the classroom. They argue that children can become

confident in using the computer and can develop problem-solving strategies. Learning

programming can be scaffolded in very definite ways (Clements 1985 pp 148 - 149)

LOGO can be offered to children in various modes: the simplest being where only

single keystrokes are needed to move the turtle. At a higher level children can write

procedures and programs while the turtle carries them out simultaneously. At another

level children are provided with re-usable procedures to develop programs.

Mendelsohn et al. (1990) provide a useful description of LOGO:

"LOGO is the language that is predominantly used in general education in France
and is also widely used in Britain and North America. It has immediate appeal to
children because of its 'turtle graphics', which originally were instructions driving a
small path and had sensors to record obstructions. [] LOGO is a procedural
language with provision for procedures (using parameters called by value),
variables, conditionals, recursion and graphics. Data structures include numbers,
strings and lists. " (Mendelsohn et al. 1990 p 178)

A J Bird 87

The teaching of programming to novice programmers: three. approaches

Chapter 3 Some key issues in the teaching of programming

Authors see Papert as a strongly biased advocate of LOGO:

"Papert [] maintains that other languages such as BASIC cannot provide or
environment that facilitates the kind of epistemological reflections that LOGO can.
Others believe that any language, taught correctly, can enhance logical thinking. "
(Clements 1985 p 170)

There is however, some doubt about the claims of enhanced cognitive ability fostered

by the, use of LOGO. Pea et al. (1987) concluded, " ... results suggest that a school

year of LOGO programming did not have a measurable influence on the planning

abilities of these students." (Pea et al. 1987 p 187) See also Clements (1985) pp 171 -

172

Similarly, there seems to be only a weak link between students reasoning abilities and

their capacity to meet the cognitive demands of programming. Students took a 6-week

LOGO programming course, designed to improve their mathematical understanding

and build their confidence in this subject. The authors conclude:

"Our results indicate that certain reasoning abilities are linked to higher levels of
achievement in learning to program, but that most students opt for a programming
style that negates the need for engaging in high-level thinking or planful, systematic
programming." (Kurland et al. 1987 p 126)

Mendelsohn et al. (1990) note that they used LOGO to research what they termed the

'transfer of competence' idea: "This hypothesis has received limited support in a

detailed sense, but not in its original more grandiose conception of programming as a

'mental gymnasium '." (Mendelsohn et al. 1990 p 175)

The culture of a language can be extremely powerful: LOGO is a good example of a

language that has had expectation heaped high upon its use in the classroom. LOGO is

the language of choice for those who adopt the strong 'programming to learn' view.

Research in the use of LOGO must, to some extent, partake of that culture. Radical

questions can be asked in relation to the use of a language as a first programming

language but this does not happen as often as might be hoped for. Mendelsohn et al.

(1990) go on to say:

"research on LOGO tends to be dominated QY the same set of questions. In such a
way does a culture perpetuate itself. And more: the LOGO culture has always

A J Bird 88

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

emphasized interaction, either with real devices (,turtles,) or else with virtual devices
(,screen turtles '); these crawling and drawing devices add amusement but also
present powerful challenges. LOGO systems without graphics are unthinkable."
(Mendelsohn et al. 1990 p 177)

A variation of LOGO can be found in the work of Dalbey and Linn, published in

1984. As the abstract notes "SpiderWorld is a interactive program designed to help

individuals with no previous computer experience to learn the fundamentals of

programming." (http://www.csa1.co.uklhtbinlids511txtdisp.cgi. 03/0812000)

SpiderWorld encouraged the use of constructs such as REPEAT ... UNTIL,

DEFINE ... END, IF ... GOTO (notice the use of goto!) and the authors studied the

different cognitive effects of using other software/languages such as BASIC. They

concluded that students do appear to have acquired the SpiderWorld templates, which

they do employ in related situations gaining these skills in contrast to students

learning BASIC who appeared to make fewer gains.

(http://www.csa1.co.uklhtbinlids511txtdisp.cgi03/0812000)

In summary, the arguments for teaching programming at younger ages seem to rely on

the strong 'programming to learn' view. There seems to be a lack of research and

evidence about how such work impacts on the teaching of programming in more

formal, assessed and examined way at the ages of 16 and 18. Do students who have

worked with LOGO at the age of 8 or 10 move more easily into a procedural,

imperative language such as Pascal? There is insufficient room here to debate this

question but it would bear further research.

The choice of first programming language has been discussed previously in this

chapter. We can accept that there is no perfect first language and that the choice of

first language may be a matter of personal (tutor) choice, an institutional decision or

an historical fact (what the department or institution has always used). Given that

novice programmers do have to encounter a first language at some point, then Pascal,

a language designed to act as a vehicle for teaching programming concepts, is

probably no worse (and no better) than many other candidate languages. The next

section looks more closely at Pascal.

A J Bird 89

The teaching o/programming to novice programmers: three approaches

Chapter 3
Some key issues in the teaching of programming

Pascal

The language Pascal is closely associated with the idea of structured progran1ming.

Farmer (1984) says:

" ... Pascal first saw the light of day in a preliminary draft in 1968. It followed the
spirit of Algol 60 and had the following goal:

to encourage good programming practices,

to communicate algorithms among people,

.. to be efficiently executable on a variety of existing computers and

to be useful for teaching students programming. "

(Farmer 1984 pI)

For standard Pascal (not the proprietary Turbo Pascal) the language is an end in itself,

designed to teach structured programming concepts, not write applications. Versions

of Pascal like Turbo Pascal remedy application development shortfalls such as file

input/output and string handling. These versions of Pascal can give portability

problems for the application developer but such issues should not affect the novice

programmer, writing short programs that do not attempt any complicated file

handling.

Pascal was designed to insulate novice programmers from machine internals such as

memory registers. This is in contrast to C that has features that allow the programmer

to manipulate individual registers:

"Mistakes are detected at compile-time whenever possible, and further checks are
made at runtime. The syntax was designed to be unambiguous and was defined
precisely by a context-free grammar." (Green 1990 (b) p 22)

Martin (1996) notes:

"Pascal is often used in schools, colleges and universities because it is highly
structured and strongly typed, thus providing a 'safe' programming environment for
a relatively novice programmer. Pascal has however, been criticised for certain
'overheads' which require explicit teaching prior to use. These are the program
header, begin/end pairs and statement separators (;). "

(http://www.holtsoft.com/turing/essay.html 31110/2000)

Green (1990 b) classifies languages as neat or scruffy. Pascal was designed as neat

language: that is a clearly defined language with·iittle or no variation and one that

A J Bird 90

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

creates programs that run predictably. Examining code can be done section by section

without reference to other code sections.

Pascal can be described as a pedagogically-inclined programming language:

"Pascal is a great first-step language to learn that allows you to explore the concepts

common to other programming languages." (http://xrs.net/resources/Pascal/

13/0212003)

Bishop (1993) describes Pascal as a language that is "modern, easy to understand and

has good protection against mistakes." (Bishop 1993 p 10)

Pascal is a strongly typed language: that is, the programmer must make definitive

decisions at the stage of defining variables and their datatypes, about the permitted

range of values for a variable. If the programmer defines a variable as a char it takes

only one character and no more. If a variable is an integer it takes a value in the range

of -32768 to 32767 (signed 16 bit integer). Other integer types include longint and

shortint, allowing the programmer to choose exactly the required datatype for a

variable.

Arblaster (1982) notes "BEGIN and END seem to be a poor choice as scope markers,

since they are so easily mismatched and are hard to pick out in the program."

(Arb laster 1982 p 217) which perhaps militates against the use of Pascal in teaching

novice programmers! On the other hand, Arblaster (1982) says that it is easier to write

structured programs in that the structure provides "cues which help to make the

semantics and underlying logic of the program more obvious ... " (Arb laster 1982 p

220)

Arblaster cites the linguist Whorfs beliefthat natural (human) language shapes the

speakers view of the world and is, in tum, shaped by the external world. This

Whorfian view would lead us to conclude that the choice of first programming

language is critical in creating the language space in which programmers can 'say'

what they understand and embody in code what they wish to 'speak of.

A J Bird 91

The teaching of programming to novice programmers: three,approaches

Chapter 3 Some key issues in the teaching of programming

Green (1990 b) describes the two opposite ends of the neat-scruffy continuum as

Pascal and C. Green classifies Occam, Eiffel and Algol 68 as neat languages while

Lisp, Fortran and Forth are scnlffy languages. Green points out that these categories

are not absolute for the programmer - a programmer n1ay program neatly in a scruffy

language (Green 1990 (b) p 23) and presumably vice-versa.

Pascal has advantages for the novice programmer in its closeness to natural language,

its strong datatyping and its high-level language approach. Its disadvantages could be

summed up as almost the same features. Those who dislike Pascal as a first language

argue for a choice (such as C++) that is a 'real' language i.e. one that is widely used in

industry. There can be no definitive resolution of the argun1ent. Perhaps the most

useful approach to the issue is to identify teaching strategies that focus and rely on

non-language elements. What is critical, perhaps, is not the choice of language, but a

host of other factors and issues, some of which are sometimes made overt, others

which are ignored or discounted.

Appendix D looks at a small selection of programming texts, as novice programmers

are frequently directed to (or seek out for themselves) a definitive book on how to

program in their new language. Given the age of Pascal, there is a vast range of texts

on how to program in various versions of the language. The sample discussed in

Appendix D is a random sample of texts and inclusion does not constitute

endorsement.

The teaching of programming

In reading about learning programming, what the reader most often encounters is

material on programming, not teaching. The teaching ofprogran1ming is son1ehow

regarded as a given or as something not of interest to programmers (which indeed it

may not be). Pedagogical considerations seem to be set aside when looking at the

programming, as if teaching is some kind of monolithic endeavour that does not have

variation, something that is not subject to a wide range of influences. This can be seen

when one asks what models of learning underpin the teaching of a language. The

focus is on the language and its technical demands and not on the pedagogical issues

A J Bird 92

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

around the learning of that language. The assumption often appears to be that being a

skilled programmer is an appropriate pre-requisite for being a good teacher of

programmmg:

"People assume that if the person is good in this programming language, she will be
good at teaching it. But knowing the subject matter is very different than knowing
how to teach it."
(http://csis.pace.edu/-bergin/patterns/ExperientiaILearning.html 09/0312003)

In treating the teaching of programming as an activity that does not require close

scrutiny or analysis, the author feels that those who focus on the programming issues

are ignoring critical areas of debate.

"Excellence in teaching is complex and difficult to achieve. It is about content and
methodological technique, as well as about participants in the educational enterprise
valuing and achieving quality outcomes. Excellent teaching takes a holistic
perspective of the educational enterprise and ensures an integration of process and
outcome." (Andrews et al. 1996 pIOI)

As described in Chapter 2, one approach that may be interest here is the concept of

patterns, and, in the light of the above quotation, pedagogical patterns. "A pattern is

supposed to capture best practice in some domain. Pedagogical patterns try to

capture expert knowledge of the practice of teaching."

(http://csis.pace.edul-berginlpatterns/fewpedpats.html 09/0312003)

Pedagogical patterns are clearly defined strategies that address a particular teaching

problem or issue. Cop lien (2000) says that "there are many things called patterns that

share a small core of techniques, principles, and values ... " (Coplien 2000 p 1) A

pattern language can be defined as a collection of patterns. Patterns rely on what are

termed pattern languages, which can be described as a collection of patterns. Cop lien

(2000) describes a pattern language as building a system: "It is through pattern

languages that patterns achieve their fullest power." (Coplien 2000 p 17)

Pattern languages give each pattern a name, with a clear problem statement followed

by key advice or points to note. There may be variations on this, such as one pattern

language flagging the solution with the word Therefore (as in Bergin's work). Most

pattern languages follow Alexander's convention of noting patterns with one, two or

A J Bird 93

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

no asterisks. One asterisk denotes a pattern that seems appropriate but may admit of

further improven1ent or development. Two asterisks denote a pattern that seems to be

optimal or that states invariants. (Fricke and Volter 2000 p 5)

The idea of patterns comes from the work of Christopher Alexander whose key work

on patterns, in architecture, as published in 1977. Fricke and Volter (2000) note

"patterns provide hints along which lines a proven solution can be found to the

problem." (Fricke and Volter 2000 p 2) Initially, Alexander offered 253 patterns in

architecture and in the 1990s software developers picked up the idea of patterns and

worked on patterns for software development. A group of authors (Gamma, Heln1,

10hnson and Glissades) called the Gang of Four presented a catalogue of23 patterns

for designing software systems. From this, the concept of patterns has moved out into

areas such as group working and the teaching of computing and IT concepts.

Appleton (2000) notes

"The goal of patterns within the software community is to create a body of literature
to help software developers resolve recurring problems encountered throughout all of
software development. Patterns help create a shared language for communicating
insight and experience about these problems and their solutions." (Appleton 2000 p
1)

Bergin offers a range of pedagogical patterns at

http://csis.pace.edu/~berginJpatterns/fewpedpats.html.Mostofthesamplepatterns,as

defined by Bergin (http://csis.pace.edu/~berginJpatterns/fewpedpats.html 09/03/2003)

could be used for almost any academic topic but some are specific to the teaching of

programming such as the pattern called Read Before Write:

"You are teaching an elementary course that has a strong programming or design
component. You want to help them learn to eventually create large and complex
programs. Creating anything is hard work, even for the skilled. Novices, on the other
hand lack these skills. !fowever, as with natural language, students have an ability to
read and understand larger artifacts than they can be expected to create. []

Therefore give your students large programs or designs to read and evaluate before
you ask them to build even small artifacts. These readings can and should be far more
difficult than anything you would expect them to create. The artifacts you give for,
reading must be elegant in design and execution. These will be the exemplars that you
want students to learn from. "

(http://csis.pace.edu/~berginJpatterns/fewpedpats.html 09/03/2003)

A 1 Bird 94

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

For Bergin, textbooks are not an appropriate teaching device. Bergin describes the

kind of approach seen above, in the section on Pascal texts, which is the dividing up

of concepts into a linear structure: always IF statements before loop constructs and so

on. Bergin's answer to this is a pattern he terms Abandon Systems All Ye Who Enter

Here, which abandons the systems approach (rigid, linear, assumes the student knows

nothing) and emphasises a constructivist approach (assumes the student can create and

develop understanding and meaning from his or her own experience):

"Therefore choose materials and methodologies that let students progress on
mUltiple fronts, individually, and which enable new and meaningful problems to be
solved. Do not force them to follow a particular, rigidly defined, path. Instead, set
them to tasks they will find meaningful and provide minimalist aids for solving those
problems and avoiding common difficulties. "

(http://csis.pace.edu/~berginlpatterns/fewpedpats.html 09/03/2003)

Fricke and Volter (2000) offer a pattern language that addresses the effective teaching

of seminars. In what is termed Quick Access table they offer typical problems and

suggest patterns to deal with each problem or issue. For example, "After the seminar,

people say they did not understand the topics." (Fricke and Volter 2000 p 8) patterns

offered for this problem include DIGESTIBLE PACKETS, DIFFERENT

APPROACHES and REVIEW AFTER BREAKS.

There are pattern languages for experiential learning, found at

http://csis.pace.edu/~berginipatterns/ExperientiaILearning.html and initi~l approaches

to a pattern language for computer science course development, found at

http://csis.pace.edu/~berginlPedPatl.3.html.

However, it should be noted that the author's interest lies in the development of a

pattern language by and for novice programmers, rather than the development and use

of pedagogical patterns by the author herself

In general, the material on the teaching of programming tends to concentrate on the

technicalities of the language chosen (or, one stage further back, which language to

choose) or the order in which concepts should be presented. For the author, the

concept of pattern languages for both software development and the teaching of

A J Bird 95

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

software development seem most promising, as noted in Chapter 2. The research the

author undertook to use the idea of pattern"s in teaching novice programmers is

described in Chapter 7.

The next section broaden the discussion about programming, to include n1aterial often

not addressed in material about the teaching and learning of programming: that of the

ways silTIPly being human may affect the experience of programming. This covers

topics such as mental models, confirmatory bias and attention blindness.

Human aspects of learning to program

We can contrast approaches to teaching progran1ming that are based on ideas that

focus on the leamer, with those that emphasise the programming language or

environment. In focusing on the leamer, we are engaging with the subtle nature of

what it means to think and learn. This is not a trivial undertaking. One American

neuroscientist expressed this lack of knowledge about the hun1an brain rather

pungently: " .. . despite zillions of us slaving away the subject, we still know squat

about how the brain works." (Sapolsky 2003 p 71) There is insufficient room in this

chapter and thesis to explore the wide-ranging and complex area of neuroscience but

some elements of thought about how the brain works are touched on in this chapter.

What knowledge we have about learning to program tends to be situated in specific

instances of language use, rather than offering more broadly applicable, language

independent theories. Green (1990 b) says: " ... we know something about the psychology

of learning to program, of understanding programs, etc, but only in a very restricted range of

languages and environments." (Green 1990 (b) p 42)

The psychology of programming

We can then ask what broader cognitive or psychological approaches, which move

away from a particular language or environn1ent, may have to offer. Are there such

theories readily available? Hoc (1983) notes: "It is true that theoretical frameworks of

A J Bird 96

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

cognitive psychology do not permit us to derive very precise models of the

psychological mechanisms underlying programming." (Hoc 1983 p143)

Nevertheless, Hoc (1983) concludes, such models are necessary and better than

unarticulated, general frameworks for experiment and discussion.

Hoc's thinking concurs with that of Green (1980). Green notes that psychology cannot

offer "a general Theory of Thinking" (Green 1980 p 272) and will not be able to for

some time, if ever. Green (1980) does have strong views what psychology, or more

particularly, applied psychology has to offer in the field of programming. Applied

psychology's value lies in offering ideas about how to evaluate expert programmers'

notions about the psychology of programming and in providing general insights into

how people think about specific aspects of programming practice. The example Green

(1980) offers for the second point is the work of Sime, Arblaster and Green (1977) on

the form and use of the IF ... THEN ... ELSE statement.

Shneiderman (1980) described programming as an "intensely human experience

whose esthetics cannot be imitated or appreciated by mere machines." (Shneiderman

1980 p 2) Authors generally agree that programming is not a homogenous activity,

but a collection of sometimes widely differing tasks that place different cognitive

demands on the programmer. For example, Shneiderman (1980) argues that

flowcharts, being a visual representation, are better handled by those who are right

hemisphere dominant whereas coding, a verbal activity in most programming

environments, is more comfortable for those who are left hemisphere dominant.

(Shneiderman 1980 pp 82 - 83)

Ifthere are specific but small scale aspects of psychology that offer some help to

learners and teachers, but no general, overall theory of how novice programmers

learn, is it then fruitful to explore the psychology of expert programmers? It may be

possible to identify skills and behaviours in expert programmers that can be fostered

in novice programmers. Work has been done on the understanding demonstrated by

A J Bird 97

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

experienced programn1ers in learning an entirely new paradigm. Are experienced

programmers given an advantage by virtue of their experience?

Some research suggests not. Rogalski and Samuryay (1993) state that, for novice

programmers or experienced programn1ers learning a new paradigm, there are

persistent errors of understanding or "epistemological obstacles." (Rogalski and

Samuryay 1993 p 15)

If, for both novice and experienced programmers, there is no broad theory about how

to overcome the obstacles to understanding and using a programn1ing language, are

there aspects of programming that are amenable to cognitive research, as described by

Green (1980) above? One such aspect could be the design ofprogramn1ing languages.

Myers (1998) notes:

"There are substantial gaps in the knowledge about how to make programming
languages effective for people, and how to apply this knowledge to the design of new
programming languages."

(http://reports-archive.adm.cs.cmu.edu/anon/usr/anon/home/ftp/1998/CMU
CS-98-1 0 l.html 24/04/2001)

This situation has obtained, says Myers (1998), for decades: money is poured into

developing new languages and compilers but very little is spent on the human aspects

of programming. Myers (1998) goes onto to articulate some of the questions he sees

as being immediately relevant to the teaching of programming to non-programmers,

such as the choice of language, the use of notably difficult constructs, like loops, and

the use of abstract concepts such as variables.

Myers (1998) notes:

"It is somewhat surprising that the designs 0/ new programming languages have
generally not taken advantage o/most o/the hUl1lan-factors results. For example, the
newly popular Java and JavaScript languages use the same mechanisms for looping,
conditionals and assignments that have been shown to cause many errors for both
beginning and expert programmers in the C language."

(http://reports-archive.adm.cs.cmu. edul anon/usrl anon/homel ftp/1998/CMU-CS-98-

101.html 24/04/2001)

A J Bird 98

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Applied psychology can offer useful insights into how people make sense of

text/written material using patterns as clues or guides. Green (1980) offers the

example of learning a nonsense language and assembling a sentence in the language.

Signals embedded in the language enabled subjects to create sentences. As the number

and meaningfulness of the signals was degraded, performance on the test "dropped

dramatically" (Green 1980 p 282).

Another view of how cognitive psychology might offer insight into programming is to

look at two different aspects of programming: programming as problem solving and

program comprehension. Rogalski and Samuryay (1993) phrase this concept slightly

differently: "Cognitive activities involved in design tasks can be analysed along two

dimensions: representation and processing." (Rogalski and Samuryay 1993 p 9)

Ifwe accept that there is no broad, psychologically-based theory of how to teach

programming and no definitive ideas about what makes a language easy to learn and

use, then perhaps the focus needs to be on those learning to program. We can ask, are

there some people more suited to being programmers than others? This immediately

presents difficulties.

Personality and aptitude tests

Weinberg (1971) stated that "the programmer's personality - his individuality and

identity - are far more important factors in his success than is usually recognized."

(Weinberg 1971 p 158)

Shneiderman (1980) echoed this point and noted, "Unfortunately, it is difficult to say

what aspects of a person's background influence competency in programming."

(Shneiderman 1980 p 34) In other words, we can ,!ccept that some people will make

better programmers than others but which people is not easy to define or predict!

Focusing on the whole person does not necessarily generate any more definitive

answers than the debate about which programming language to learn.

A J Bird 99

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Personality tests

One way that we could identify those who are more suited to be programmers

(whatever we decide we mean by more suited) is to gamer psychological profiles of

potential programmers. Of course, the question then arises, what are the psychological

traits of good or expert programmers? Is there an expert programmer type?

If there is an expert progran1n1er type then can a test or tests be developed that will

reliably identify those with the appropriate profile for the tasks? Using such tests

involves assuming that the tests have some genuine merit. We could argue that such

tests are indicative, not definitive, but the author feels that caution is needed here. We

should resist the urge to pigeonhole people on the basis of psychological tests.

Two well-known tests are the Myers-Briggs test and the Keirsey Ten1perament and

Character tests, which are sin1ilar:

"The Keirsey Temperament and Character tests [} can be taken on line and scored
immediately. The temperament and character types are explained. There is also a
short list of careers aligned with the character types. Architect, for example, is
aligned with rational, teacher is aligned with idealist, etc."
(http://www .hcc.hawaii .edu/intranetl commi ttees/F acDevComl guidebklteachtip
Ikeirsey.htm 08/12/2000)

The Myers-Briggs Type Indicator typifies a person according to their placing on the

poles for four opposed styles or archetypes (based on Jung's work.) The four

archetypes are:

Introversion- Extroversion

Thinking - Feeling

Intuition - Sensing

Judging - Perceiving

A Keirsey profile generates a type based on the test taker's place in each of the four

types: NFs, NTs, SJs and SPs. Each type has four subtypes. NFs are Idealists with the

subtypes: healers, teachers, counsellors and champions. For example, the test taker

might be characterised as iNFj, which is described as the Counselor Idealist.

(http://keirsey.con1lpersonality/nfij .html 28/09/2002)

A J Bird 100

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Such insights might prove interesting, as people are always curious about themselves

but it is a considerable leap from such general characterisation to defining those most

suitable (or not) to become programmers.

Other tests based on the MBTI have been created, such as the Personal Style

Inventory devised by R.Craig Hogan and David W. Champagne and the Grasha

Riechmann Student Learning Style Scales developed by Anthony Grasha and Sheryl

Riechmann. The second test looks at social interaction styles in university students,

with regards to tutors and peers, in the learning environment.

For a comparison of several different systems, including Myers Briggs, True Colours

and De Bono Six Thinking hats, see

http://www.insightsvancouver.com/comparisons.htm

Other approaches include CBCA (Cross-Battery Cognitive Assessment) used in by

school psychologists in North America. Watkins et al. (2002) note that "CBCA posits

the existence of around 70 narrow abilities that are hierachically subsumed by 10

broader abilities." (Watkins et al. 2002 p 1) Watkins et al. (2002) express serious

concerns about the design, use and approaches of CBCA and "advise caution"

(Watkins et al. 2002 p 3) until further independent evidence validates CBCA's

benefits and use.

It is hard to define what positive input a personality test might give to the teaching of

novice programmers. Perhaps in very small groups, some discussion of such tests

might be useful but the author has deep reservations about such inventories. Are there

more specific ways of identifying those suited to programming? One approach to

selecting programmers (or potential programmers) for employment or training is to
-

use aptitude tests. These are discussed in the next section.

A J Bird 101

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Aptitude tests

Pea and Kurland (1983) noted that here might be five factors in predicting

programming skill: mathen1atical skills (although there may be no correlation),

memory capacity, analogical reasoning skills, conditional reasoning skills and

procedural thinking skills. They note, "These cognitive abilities are presumed to have

an impact on or mediate computer programming learning in a number of ways." (Pea

and Kurland 1983 p 35) However, general intelligence as shown in intelligence test

also correlated strongly with programming ability. (Pea and Kurland 1983 p 42) We

can conclude that clever people make good programmers!

Green (1990 b) notes:

" ... individual style is still detectable in programming. What do we know about it?
Next to nothing. Aptitude tests, widely investigated as a personnel selection tool, tell
us nothing about programming style, and personality factors seem to have been
unhelpful in investigations. One of the few successful investigations into personality
factors in this area, perhaps even the only one, is the demonstration that risk aversion
plays a part in success with certain types ofprogramming environment ... " (Green
1990 (b) p 24)

So according to Green (1990 b) the only personality factor that seems to be relevant is

cautiousness!

There are many aptitude tests for programmers and those who administer them make

strong claims for them:

" .. . the "Aptitude Assessment Battery: Programming" (AABP) test, [] was designed
in the late 1960s by Dr. Jack Wolfe (a pioneer of early data processing and computer
education) to evaluate computer programming potential. The five hour test is
comprised of five very challenging problems. It has been, and continues to be, a
successful evaluation tool. It not only answers the question, "Should you work as a
programmer?" but also "How proficient will you be?" in a definitive manner."

(http://www.developercareers.comJddj/articlesI1999/9914/9914b/9914b.htm

08112/2000)

Some tests are much shorter:

"The B-SYS is a 24 question multiple-choice test. It measures an examinee's potential
to be trained as a systems programmer. The test ~as designed for candidates who

A J Bird 102

The teaching oj programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

have no significant systems programming experience. The test can be administered in
1 hour. "

(http://psy-test.comlBsys.html 08112/2000)

In reading about the aptitude tests offered by various commercial companies, one

point is very clear. Strong claims are made for the diagnostic capabilities of these tests

and much is made of their long history of use. What is not discussed (for obvious

reasons) is whether those who fail such tests go on to become good programmers in

some other environment and conversely whether those who are working as

programmers would pass such tests.

In summary, it seems that, despite strong claims being made for some ofthese tests,

they do not constitute a truly meaningful approach to assessing potential

programmers.

Are there general concepts in psychology that might have something to offer in the

field ofleaming to program? One of the broader ideas that can be applied to

programming is that of mental models. The next section examines the idea of mental

models and looks at ways they might be used to support the teaching of programming.

Mental models

It is useful define exactly what we mean by mental models. Mental models can be

explored in many contexts, not just computing and programming but we need a

focused definition that takes account of the interplay between the mind of the

programmer/user and the system he or she is working with. "Mental models are the

conceptual and operational representations that humans develop while interacting

with complex systems." (http://www .cica.indiana. edu/ csC19 5/j onassen.html

25/0412001) van der Veer (1992) defines a mental model as "some kind oJinternal

representation that is individually developed by human beings in order to cope with

complexity in the environment." (van der Veer 1992 p 21)

A mental model of programming might be developed as a standard, a representation

that would embody all the understanding required to program. This is not the same

A J Bird 103

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

necessarily as the mental models developed by individual expert progran1mers.

Research seems to have largely concentrated on the second aspect of mental models:

the particular models developed and used by individual programmers. It is in1portant

to distinguish between different types of models such as cognitive models, conceptual

models and mental models.

"Cognitive models are typically developed by cognitive psychologists, using
information processing conceptions of skills and propositions, to describe the
processes that humans use to perform some tasks such as solving problems, using a
computer system, programming computers, etc. "
(http://www.cica.indiana.edu/cscl95/jonassen.htmI25/04/2001)

Conceptual models of a system are created by those who designed or programmed the

system. It is their version of how the system can be perceived by those who use it. A

conceptual model is a tool for the teaching of a physical artefact, such as a computer.

One type of mental model can be described as the users' models of the system with

which they are engaged. Ideally, the conceptual model and a user's mental model

should be coherently and closely related. Nom1an (1983) notes, "All too often

however, this is not the case." (Norman 1983 p 12)

van de Veer (1993) defines a mental model as " some kind of internal representation

that is individually developed by human beings in order to cope with complexity in the

environment." (van de Veer 1993 p 21)

Another definition states that "Mental models are representations of reality that

people use to understand specific phenomena." (http://www

hcs.derby.ac.ukltip/models.html 13/03/2003) Studies of mental models generally

focus on a small and well-defined area of understanding, such as particular construct's

role in a programming language, or a specific concept such as light, electricity or

gravity.

More broadly, lines of research in mental models can be classified falling into one of

two areas: cognitive psychology (which can include philosophy, linguistics and

anthropology) and AI (artificial intelligence). This second line of research, AI, " ... has

A J Bird 104

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

provided powerful formalisms in which to explicitly notate theories of human

knowledge representation and processing." (Gentner and Stevens 1983 (Eds) p 3)

AI has done much to explore how it is human beings think about the world around

them and how they handle ambiguity and complexity but AI has not provided, any

more than cognitive psychology has, a general theory ofthinking. Modelling the ways

self-aware people behave or make decisions while interacting with an unpredictable

and changing environment has presented AI researchers with many decades' worth of

challenges but the artificial brain is perhaps no nearer than it was in the 1960s. As the

AI laboratory at MIT notes in its web page:

"The Artificial Intelligence Laboratory has been an active entity at MIT in one form
or another since at least 1959. Our goal is to understand the nature of intelligence
and to engineer systems that exhibit intelligence. [] Our intellectual goal is to
understand how the human mind works. We believe that vision, robotics, and
language are the keys to understanding intelligence ... " (http://www.ai.mit.edu/
12/03/2003)

What AI has not given us is definitive answers on how people think: there is no easy,

single way to access and embody the ideas that, consciously or unconsciously, inform

or influence people's thinking.

This point is reinforced by Norman (1983), who makes some general observations

about mental models. Norman (1983) characterises the models held by people as

incomplete, not wholly accessible to the person who 'thinks' them, unstable because

" ... peopleforget details of the system they are using ... " (Norman 1983 p 8), lacking

in firm boundaries (models get confused together) and both unscientific and

parsimonious (people seek to avoid elaborate mental models, even if this lack of

sophisticated models ultimately involves greater physical effort).

Interestingly, Norman (1983) notes that verbal protocols (for accessing mental

models) do not give a complete or accurate view of the model. People may say one

thing but do another. Norman (1983) states:

"All the people I observed had particular beliefs about their machines and their own
limitations, and as a result developed behaviour patterns that made them feel more

A J Bird 105

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

secure in their actions, even if they know what they were doing was not ahvays
necessary." (Norman 1983 p 10)

Models, as noted above, are often incomplete (for various reasons). This

inconlpleteness is manifested as simplicity or sparseness of detail. Models are always

simpler than the artefacts or phenomena they represent.

So, if mental models are neither a full representation of the external world (and may

even run counter to it) and may not admit of full articulation by the person who

'owns' them, what use are they? Examining mental models may still offer useful

insights into why people behave as they do. Where the model is lacking in depth or

detail, there may be scope for deliberately re-drawing the model to improve

understanding of the real world system. In programming, one area that seems initially

promising is the comparison of the mental models of experts and novices.

It would seems obvious that if, experts' mental models consistently exhibit some

qualities or features that are absent in novices' models, then offering novices short

cuts to those aspects must improve their understanding of programming. This,

however, is not as simple as it would seem.

Much work has been done on trying to capture the essence of expert programmers'

mental models versus those of novice programmers'. Capturing mental models can be

seen as nomothetic (seeking to capture a general model of internal representation,

valid across different situations and people) or as one that is highly context-bound or

idiographic, where generalisation of the models is not appropriate. In other words, is

one person's mental model of how a computer works likely to be valid for a range of

people? Both views can be taken of research of mental models in programming. (van

de Veer 1993 p 21)

Mental models are often referred in the context of programming to denote users' own

conceptual models of how a computer works. The emphasis is often on enabling users

to develop a semi-realistic model of the computer, the virtual n1achine that is more

transparent in its operation than the physical object.

A J Bird 106

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Blackwell (1996) notes:

"The activity of programming involves planning the behaviour of a virtual machine
that is defined by the programming language. Much of the programming task consists
ofmaintaining a mental model of that machine."
(http://cui. unige.ch/Visual/local/Blackwe1l96c.html 25/0412001)

In describing an instructional theory aimed at teaching non-computing students

computer science at an introductory level, Urban-Lurain (1997) noted:

"The lessons are designed to help students construct mental models of how computers
and software work to enhance retention andfacilitate transfer to learning new
software to solve new problems."
(http://aral.cps.msu.edulCPS10lSS99/CPS101Visitor/InstructionalTheory.htm
25/0412001)

In describing the programming needs of specialist computing students versus non

specialist students, Urban-Lurain (1997) noted that specialist students had some

background in programming, whether in FORTRAN or Pascal.

Non-specialist students lacked that background so any teaching materials had to take

account of those lacunae:

"The goal is for the students to construct mental models or schemata of the
computing systems they are using without learning the minutiae of computer
programming. To accomplish this goal, the course [adopted} a spiral curriculum in
which students [were] presented with increasingly more challenging problems to
solve using a variety of software packages."
(http://aral.cps.msu.edulCPS101SS99/CPSI0IVisitor/InstructionaITheory.htm
25/0412001)

If the goal is to equip the students with accessible, relevant mental models that

underpin their programming practice, then the question must be, when we have given

the students that model, how do we check that the modefthe students now hold in

their heads (potentially at least) is the one we wished to convey to them? van de Veer

(1993) states "Collecting knowledge of men tal models and mental representations is a

problem." (van de Veer 1993 p 24) Green (1980) notes "One of the hardest questions in

cognitive psychology is what we have in our heads when we think about problems." (Green

1980 P 302)

A J Bird 107

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Rogalski and Samun;ay (1993) broaden the concept of a mental model by describing

what they term the KEOPS schema, a representation of the operational knowledge

required by a programmer. KEOPS is an acronym for Knowledge, Experience,

Operative (tools) and Problem Solving. Operative tools include programlning

environments and programming methods. The authors note, "Developing individual

competences in programming is the result of multiple interactions between the

components." (Rogalski and Samun;ay 1993 p 13)

For programming, then, the question is not just that of a mental model of how the

computer works, but models of various elements and an overarching model of how

those models relate to each other and interact. A good exan1ple of this is the activity

of a compiler, when it generates object files and executable files. Novice students

seem to have difficulty with this and, when using Pascal, often overwrite editor files

with system generated files, by using Save As and naming an editor file wrongly.

van de Veer (1993) describes the idea of mental models as a "core concept" (van de

Veer 1993 p 21) in work on designing programming languages and investigating how

people program or work with computers. Given that capturing mental models is

difficult, van de Veer (1993) presents the idea of teach-back tasks, where users are

asked to describe the ways they imagine the internal workings of a system. The

example van de Veer gives is that of using email, including deleting or forwarding

specific messages.

The users are given no constraints on how they structure or present their answer apart

from requiring use of pen and paper. The styles of responses were then interpreted and

scored. van de Veer (1993) identifies four levels of description: task, semantics

(concentrating on functionality), syntax and key stroke. The styles of representation

can be classified as verbal, visual-spatial, based on production rules (a declarative

representation) and progran1 structure. It is perhaps possible to classify closely the pen

and paper representations of tasks but we would have to ask how we might use that

classification. How does it advance our understanding of mental models to identify

the most widely used styles and descriptions?

A J Bird 108

The teaching oJprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

In summary, mental models appears to be an initially promising line of enquiry for

researchers wishing to clarify the differences in mental models that are formed or used

by novice and expert programmers but, in practice, both the nature of mental models

and the difficulties of accessing and meaningfully articulating those models leads to

less than productive conclusions.

The idea of comparing the approaches, habits and mental models used by novice

programmers versus those of expert programmers is one that seems to offer the

possibility of useful insights. The ways in which novice and expert programmers

might be compared and contrasted is discussed in Appendix E.

The next section examines an aspect of human physiology that might not at first, be

obviously related to the idea of teaching and learning programming. However, the

author feels that in her work with novice programming the metaphor of 'seeing the

problem' embodies a literal, physical issue around visual processing of code on screen

or paper.

Visual cognition

Visual cognition is a complex area of psychology and research. This section can give

only a brief outline of some the interesting and possibly relevant topics that can be

grouped under the broad heading of visual cognition. What relevance can vision have

for programming? Programming is, despite its mathematical foundations, a literate

activity: it requires sophisticated reading skills, a function of both eyes and brain.

Reading for comprehension is about more than being able to see. There is the question

of the processing of visual stimuli by the brain and the issue of visual attention. There

are two key topics here, which can be separated to some extent: change blindness and

inattention blindness.

Human beings are creatures of the savannah and our vision system is designed for

that. We are attuned to reacting to movement. If human beings react to movement,

how do we react to perfect stillness of an image? If the image isn't changing or

AJ Bird 109

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

moving and the retina is still, then the in1age on the retina can be said to be perfectly

still and the image disappears.

Glynn (1999) identifies four approaches to the question of 'What is seeing?' The two

historic approaches are psychophysical (a term dating back to 1860) and neurological

(the study of effects on vision of injury or disease). The two newer approaches,

identified by Glynn (1999) are neuropsychological and computational (concen1ed

with the information processing done in the nervous system).

Change and inattention blindness

Austen and Enns (2000) note:

"There has been a recent explosion of interest within the psychophysical community

in the role of attention in perception (e.g., change blindness, inattentional blindness,

repetition blindness, the attentional blink, masking by object substitution, amnesic

visual search). A central theme in this research is that perception of the visual world is

not as rich as our subjective experience gives us to believe." (Austen and Enns 2000

http://psyche.cs.monash.edu.au/v6/psyche-6-11-austen.html 22/02/2001)

Change blindness and inattention blindness are related to the physiological facts of

human vision. Noe et al. (2000) state:

"Theorists have long been impressed by the fact that visual experience is
underdetermined by the input to the visual system. The eye is in nearly constant
motion; the resolving power (spatial and chromatic) of the retina is limited and non
uniform; passage to the retina is blocked by blood vessels and nerve fibers; there is a
large 'blind spot' on the retina where there are no photosensitive receptors; there are
two retinal images each ofwhich is inverted. " (Noe, Pessoa and Thompson 2000
http://www2.ucsc.edu/people/anoe/GrandIllusion.html 22/02/2001)

Together with the physical/physiological restrictions on visual input are the changes

in the input that we cannot avoid.

Henderson notes:

"The image projected onto the retina changes dramatically three to four times per
second due to saccadic eye movements, yet we do not experience the world as a series

A J Bird 110

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

of temporally discrete visual snapshots. "
(http://eyelab . psy .msu. edu/people/hendersonlresearch.html 22/0212001)

Change blindness can be defined as the non-registering of significant changes in a

scene, when the change occurs during saccades (eye movements) or when the scene

change is masked by flicker or the insertion of a blank screen between the changes.

Inattentional blindness is when observers do not report an odd event or unexpected

item in the scene:

" .. . studies of change blindness have shown that striking changes to objects and
scenes can go undetected when they coincide with an eye movement, ajlashed blank
screen, a blink, or an occlusion event. These studies suggest that relatively little
visual information about objects and scenes is combined across views. Despite these
failures of change detection, observers somehow manage to experience a stable,
continuous visual environment."
(http://taylorandfrancis.com/psypress/BKFILES/0863 776124.htm 22/0212001)

An example ofthis is the Harvard Cognition Laboratory's video ofa group of people

throwing basketballs to each other. The observer is asked to count the number of

times the ball is thrown. The video shows the group of people moving rapidly, with

many changes of ball possession. Through this scene strolls a person in a gorilla suit.

Most observers do not see the gorilla!

Rensink (2000) noted:

"Mack and Rock (J 998) showed that IB vanishes once observers suspect they will be
tested on the item that is introduced: this suggest that divided visual attention is
necessary (or at least sufficient) to see a stimulus." (Rensink 2000
http://cogprints. soton.ac. uk! documentsl diskO/200012000/1 0/5 O/index.html
22/0212001)

For Rensink (2000) change blindness and inattentional blindness are related but

separate phenomena. The perception of change requires a sequence of operations. The

image needs to be loaded into visual short-term memory, held across any blank

interval(s), compared to the changed! newly displayed image and the new image

loaded into short-term visual memory.

A J Bird 111

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Inattentional blindness is a first-order phenomena, that does not require the second

order activity of change blindness. Rensink (2000) reports, " .. . all experimental

results to date support the assertion that focused attention is needed to visually

experience change." (Rensink 2000

http://cogprints.soton.ac.ukldocuments/diskO/2000/2000/1 OISO/index.html

22/02/2001)

Noe et al. (2000) state:

"Taken together the change blindness literature suggests the following hypothesis:
subjects notice only changes to features that have been encoded by the visual system.
Thus change blindness suggests that under normal viewing conditions only a minor
part of the environment is encoded in detail. Although the factors that determine
which features of a scene are encoded remain unknown, it seems likely that attention
plays a major role ... " (Noe et al. 2000
http://www2. ucsc.edu/people/anoeIGrandIllusion.html 22/02/2001)

What implications do these aspects of vision processing have for programmers?

Reading is generally regarded as being a process that can become automatic for the

reader:

"Automatization is interesting because it is an important part of daily life. ~Ve
perform a variety of automatized behaviors quickly and effortlessly. In some cases
people report that they do not consciously know how the behavior is performed, they
just will it to happen, and it does happen."
(http://coglab . psych. purdue.edul coglab/Labs/S troopEffect.html 22/02/2001)

One way to examine the automated skill is to place the exercise of that skill under

strain: one example of this is the experiment that demonstrates what has become

known as the Stroop effect:

"Stroop (1935) noted that observers were slower to properly identify the color of ink
when the ink was used to produce color names different from the ink. That is,
observers were slower to identify red ink when it spelled the word blue. This is an
interestingfinding because observers are told to not pay any attention to the word
names and simply report the color of the ink. However, this seems to be a nearly
impossible task, as the name of the word seems to interfere with the observers ability
to report the color of the ink."
(http://coglab.psych.purdue.edu/coglab/Labs/StroopEffect.htmI22/02/2001)

A J Bird 112

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Durgin (2000) says, "The Stroop Effect is one of the easiest and most powerful effects

to demonstrate in a classroom, but not the easiest to explain."

(http://www . swarthmore. edu/SocSci/fdurgin I/pub lications/ReverseStrooplPBRS troop

.html 22/021200 I)

What implications do the concepts of change blindness and inattention blindness have

for programmers? Programming relies heavily on reading code, either on screen or on

paper and seeing where the problem lies, either in terms of the text on screen (missing

semi-colon or misspelled variable name) or in the logic of the program (as in the loop

example below). In the author's experience, seeing where the problem is a visual skill

that requires practice. Perhaps it is more accurate to say that debugging is a cognitive

skill that requires a subtle interplay of vision (seeing the code) and understanding

(knowing what it is you are seeing).

Reading is a skill that perhaps needs further examination for programmers. We can

assume a certain level of literacy but reading code present particular challenges, in

terms of syntax and structure. A missing semi-colon in Pascal generates an error,

which the compiler flags, but it notes the error on the previous line. This requires the

novice programmer to develop reading skills that acknowledge the peculiarities of the

language and the compiler he/she is using. Reading code for meaning also present

particular challenges: the condition at the top of the loop, in a WHILE statement,

affects the statement within the loop that ensures the loop finally terminates. For

example,

WHILE (number> 10) DO

BEGIN

Statement

Statement

Statement

number := number - 1

END

A J Bird 113

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

The decrement statement at the bottom of the loop may be separated frOin the initial

condition by several statement lines. Students need to read at both the level of each

line (a what it does approach) and also at a constnlct level (what the loop does, what

the IF ... THEN does).

This accretion of meaning at a line and construct level can be very demanding.

Perhaps there is scope for making explicit the kind of reading skills needed by a

novice programmer. We could ask whether reading other people's code and re

reading their own code present the SaIne kind of challenges or subtly different ones?

Is it easier or harder to re-read your own code? Anecdotal evidence from the author's

own teaching suggest that student find it hard to re-read their own code, perhaps

because it is their own and they are anxious or worried about it. Is it any good? Is it

right? Have they made a stupid mistake that will mean they have to re-write large

sections of the work? It is less threatening to inspect their code in a cursory fashion

than it is to examine it closely. Here are issues that move into the affective domain:

how people feel about their own code. Linked to this question of re-reading and

evaluating code is the idea of confirmatory bias.

Confirmatory bias

The concept of confirmatory bias has implications for the work of programmers at all

levels: "Confirmatory bias is the tendency to emphasize and believe experiences that

support one's views and to ignore ordiscredit those that do not." (Mahoney 1977 p

161 http://www.mang.canterbury.ac.nz/courseinfo/AcademicWritinglPrejud.htm

25/0412001) Human beings are reluctant to abandon their assumptions and prejudices,

despite of evidence that contradicts what they 'know to be true'.

Blum (1996) describes the work of Wason (1960):

" ... JVasoll introduced a very simple reasoning task in 1960 in which subjects were
asked to discover the rule to which the triple "2 4 6" belonged. The subjects would
produce test triples, and the experimenter would tell them if the test sample
conformed to the rule or not; periodically, the subjects also would offer a tentative
hypothesis, and the experimenter would tell them if it -correct or not. The process

A J Bird 114

The teaching oJprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

continued until the rule (which was "any ascending sequence ") was discovered or the
subject gave up." (Blum 1996 p 162)

Blum (1996) goes on to state that test subjects largely looked for confirmation of their

theories. Only the Protestant minister test subjects used disconfirmation. Psychologist

and physical scientists preferred to look for confirmation of their theories. Scientists,

typically seen as rigorous in their testing, are as prone to confirmatory bias as almost

any other group. Blum says: "There is a high cognitive cost for attempting to disconfirm

what we believe, and we tend to avoid this cost except when confronted by a breakdown."

(Blum 1996 P 164)

We could conclude that novice programmers, unsure of their work, will be even more

likely to adopt this strategy. They will believe, until forced otherwise by

circumstance, that their code is solid, functional and meaningful. 'Circumstance'

might be the compiler flagging errors or it might be a fail grade for an assessed piece

of code. Again, anecdotal evidence leads the author to believe that students focus on

what their code can do and ignore elements that do not work or do not work correctly.

Students often submit code that does not compile or does not begin to offer the

required functionality. What leads them to hope or believe that the work will be

acceptable? The answer seems to be the blind optimism of confirmatory bias! It seems

to the author to be useful to present the idea of confirmatory bias to novice

programmers, to alert them to its possibly deleterious effects.

Metaphor and analogy

Can metaphor and analogy provide any useful tools for the' teaching of programming?

Are there identifiable benefits in describing, say, a computerised database as being

like an electronic filing cabinet (a simile that is often used)? Is explaining the concept

of a bi-state device aided by references to light bulbs? (A bi-state device is like a light

bulb - it can be either off or on. There are no in-between states) Or are metaphors and

analogies confusing to novice programmers? The use of figures of speech and

analogies appears to be a somewhat under-researched aspect of the teaching of

A J Bird 115

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

programming. Blackwell (1996) says, "Metaphor and analogy have always []

provided an important perspective in the study 'of how we acquire mental models of

programming languages." (http://cui.unige.chlVisual/local/Blackwe1l96c.html

25/0412001) In some cases "[o]nly the simile can give the necessary perspective, the

necessary vision, and can communicate the whole idea intended." (Leatherdale 1974 p

94)

Leatherdale (1974) notes that writers such as Buchanan believe that:

"analogy in the sense of resemblance of relations is fundamental to knowledge and
understanding and to the growth of knowledge and understanding, whether this be in
literature or science. It is by way of analogy that we have metaphor, simile, allegory,
proportion, mathematics, poetry and symbolism ... " (Leatherdale 1974 p 127)

It appears to the author that there is a potentially fruitful line of enquiry here. Can the

use of analogies convey some of the abstract computing concepts that are needed for

programming? A good example is the distinction between actual and formal

parameters. This is a difficult concept to explain, even using sample code, and the

author usually falls back on an analogy about mealtimes such as breakfast, lunch and

supper versus the types of food consunled at each meal. The formal parameter is the

mealtime and the actual parameter is the type of food offered at each meal.

The author has done no work on the effectiveness of what are fairly ad hoc analogies,

offered in lectures, but it may be useful to attempt to unpick the effects such analogies

have on the understanding of novice programmers. Until such investigation is done,

the author feels that arguments for and against the use of analogies can be advanced.

Some students fasten on the analogy and ignore the system that is being described.

There are no definitive answers at the moment.

A J Bird 116

The teaching ofprogramming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Learning styles

One focus of research in education and psychology has been the idea oflearning

styles: the notion that people have preferred ways of engaging with the tasks involved

in learning. Taylor (1997) states, "A learning style is a way in which a learner begins

to concentrate on, process, and retain new and difficult information ... " (Taylor 1997

http://www.br.cc.va.us/vcca/i11tayl.html 09/12/2000)

Learning style thinking draws heavily on psychology and other areas of research:

"Learning styles research is drawn out of studies about the psychological, social, and
physiological dimensions of the educational process. It has yet to be precisely (or
singularly) defined. Still, the scholarly literature provides a range of working models
that can help us deal with some of the mysterious terrain between teacher & learner."
(http://www-isu.indstate.edu/ctllstylesllearning.html 08112/2000)

There are many ways to measure or quantify a learning style since a learning style is a

model that attempts to capture a particular approach to learning taken by an

individual. There could be as many models as there are researchers about learning.

"The aim of learning style research is to find clusters of people who use similar

patterns for perceiving and interpreting situations." (http://www-

isu.indstate.edul ctllstyles/learning.html 08/1212000)

Ifwe can quantify, even broadly, the ways that people handle new information then

we can draw some conclusions about how best to support and foster learning for

individual learners. In learning styles, the emphasis is on the individual but also on

placing that individual within a pre-defined point on the spectrum presented by the

learning style model, much as with the personality tests. Personality tests form one of

the learning styles categories discussed below.

A useful classification of various learning style models can be found at http://www

isu.indstate.edulctllstyles/articles.html. This puts work on learning styles into four

categories, according to the type oflearning style model: instructional preferences,

social interaction models, information processing and personality.

A J Bird 117

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Under instructional preferences are cited the work of Canfield, (the Learning Styles

Inventory Manual) and Dunn and Dunn. Under social interaction models are cited the

work of Grasha and Reichmann (mentioned earlier in this chapter), and the works of

three separate authors, Perry, Mann, and Belenky. Under information processing are

listed three of the most well known learning styles models: the work of Gardner, Kolb

and Gregorc. Each of these will be discussed briefly. Under personality are cited the

MBTI and the Keirsey tests. It should be noted that the distinction between

personality tests and learning styles is blurred. Someone's Keirsey type (SP, NF, SJ,

NJ) can be argued as a predictor of how they will approach, evaluate and integrate

new information or skills. (hUp:llwww-isu.indstate.edu/ctl/styles/articles.html

0811212000)

The ,vork of Ho,vard Gardner

In the 1980s Howard Gardner at Harvard developed a model of intelligence that

moved away from the monolithic definition of intelligence, used particularly by

proponents of the intelligence test as embodied in the classic (and somewhat

discredited) IQ tests by Alfred Binet.

Gardner identified seven discrete intelligences (in 1996 he added an eighth). These

are:

• Linguistic

• Logico-mathematical

• Visio-spatial

• Musical

• Bodily - kinaesthetic

• Interpersonal

• Intrapersonal

• Naturalistic

A J Bird 118

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

It should be noted that intelligences are not in themselves learning styles but tend to

influence strongly the preferred or most productive ways of learning for a learner.

Often lecturers and teachers design material that fits in with their own style of

intelligence style and pupils or students with a different intelligence style find the

tasks unproductive or meaningless. Gardner suggested ways in which each

intelligence might best be served in a classroom environment. For example, linguistic

intelligence might draw on storytelling, debate, or creating television advertisements.

Logico-mathematical intelligence might be most productive in creating a time-line or

analysing similarities and differences.

The work of Kolb

Kolb's model was of a four stage, cyclical model oflearning, reflecting the stages the

learner moves through. The model can be entered at almost any point in the cycle but

the stages follow each other. "Kolb refers to these four stages as: concrete experience

(CE), reflective observation (RO), abstract conceptualization (AC) and active

experimentation (AE)." (http://www.chelt.ac.uk/el/philg/gdn/discuss/kolbl.htm

09/12/2000)

A key feature ofKolb's model is that the cycle should be iterative. Learners should

engage in meaningful reflection and preparation and receive appropriate feedback at

relevant stages in the learning task. The model, ideally, loops, giving the learner many

chances to reflect on previous learning as part of preparation and development.

Another critical aspect ofthis model is the founding oflearning upon concrete

experience. This does not mean the learner has to have done something related to the

topic but that there is some experience of the topic to be learned: "The cycle begins

with a concrete experience, (doing) which can be [] the-experience of reading about

someone else's experience." (http://panizzi.she£ac.uk/medtlllrnjrnl.html 09/1212000)

The work of Gregorc

Gregorc created the Mind Styles Model with the four style types: Concrete Sequential

(CS), Abstract Sequential (AS), Abstract Random (AR) and Concrete Random (CR).

A J Bird 119

The teaching of programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

Gregorc's work focuses on two aspects of learning: perception and ordering. Ordering

has two dimensions: sequential and random. Perception has two dimensions:

abstractness and awareness. Other aspects not measured by this learning style

evaluation method are, say, the leamer's preference for inductive or deductive

reasoning or their personality profile as regards extroversion/introversion.

CS learners tend to be direct, practical learners who thrive on order. AR people are

sensitive, intuitive and prefer unstructured leanling environments. AS learners have

excellent reading, writing and verbal abilities. CR people prefer trial-and-error

approaches, they thrive in a competitive environment and are often instigators of

change.

Gregorc is cited as having made strong claims for his Mind Styles (which has an

associated diagnostic tool, the Style Delineator): "Gregorc contends that strong

correlations exist between the individual's disposition, the media, and teaching

strategies ... " (Taylor 1997 http://www.br.cc.va.us/vcca/illtayl.html 09/12/2000)

It should be noted that Gregorc has strong views on the appropriate use of the

Delineator and application of Mind Styles. "My position is that analyzing styles for

children and youth may not only be unproductive, it can be unethical and immoral ... "

(Gregorc 2000 in a personal communication to the author)

In Gregorc's view, to place learning style labels on a young person may harm or

hinder that person's development. He concludes, "That is SERIOUS accountability!"

(Gregorc 2000 in a personal communication to the author) Gregorc has a well

developed philosophy surrounding the use of his work: for more information see the

FAQ section at http://www.gregorc.com/

In conclusion, we can see that the field of aptitude tests, personality tests or profiles

and learning styles all have something to offer the educational process but there are no

definitive answers on the use of such models or tools within the teaching of

programmIng.

A J Bird 120

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

We might feel, as tutors, that some of the models described above are more

immediately accessible or relevant to the teaching of programming. We could then

look for ways to use those models in the teaching of programming, in a transparent

and ethically sound way. For example, we could ask students to take the Keirsey

temperament test and reflect on their type as a basis for their learning experiences.

This approach would contrast with most of the research on novice programmers done

to date. McKeown and Farrell note:

"Much of the research into novice computer programmer pedagogy has focused on
very specific programming constructs and the errors associated with them [] or on
the educational value of teaching programming ... "
(http://homepages.dsu. edu/mckeownjlCPCCCSCpaper.html 04112/2000)

We could model, in an explicit fashion, the learning cycle ofKolb. Any of these

could, with care, form a foundation for a clearly articulated pedagogy within the

teaching of programming. We would have moved away from a language or system

oriented approach and begun to focus on the learner within a specific context. This is

a point the author returns to in a later chapter.

Chapter 3: Conclusion

In summary, then, we can see that the teaching of introductory programming presents

a number of significant issues, including the language chosen, the computing concepts

used to underpin programming, the programming concepts and the ways in which

those concepts are linked to, or embodied in, the programming language. It is hard to

meaningfully separate the technical from the pedagogical. For example, the choice of

first language should be more than a decision about what language is popular or

fashionable, or what the staff are well-versed in: it should be founded on a coherent

educational rationale.

This chapter has also looked at some of the human aspects learning to program. The

question is, What is it about programming and programming languages that people

find so hard? What is it about the way people think and perceive the external world,

which makes programming such a potentially error-filled undertaking?

A J Bird 121

The teaching o/programming to novice programmers: three approaches

Chapter 3 Some key issues in the teaching of programming

This chapter has presented a heterogeneous collection of ideas, perhaps best described

as being linked only by vi11ue of the fact they are not focused on a technology, such as

sophisticated programming environments, intelligent tutoring and software

visualisation approaches but on a human centred approach. Psychology has perhaps

some useful things to say about how people organise ideas inside their heads and how

those ideas are stored and accessed, on the level of mental models (rather than a

neurophysical)evel, which is not discussed in this chapter.) Psychology also has

useful insights into the limits and quirks of human n1emory.

In summary, than, there are no simple answers. Problems, on various scales, can be

identified but definitive, easily-implemented human-centred solutions are not be

found.

The next chapter will examine some of the approaches to, and research in, the

teaching of programming. It will examine concepts such as debugging, software

visualisation, programming environments and industry-based approaches such as

extreme programming.

A J Bird 122

The teaching ofprogramming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

Introduction to Chapter 4

This chapter will look at a diverse set of some of the various aspects of teaching

programming that have been explored by researchers, including debugging, software

visualisation, programming environments and extreme programming. These elements

are linked only by the fact that researchers in the teaching of programming have found

them worthy of attention. What are not addressed here are the pedagogical aspects of

teaching programming: research efforts seem to be largely focused on technical

solutions to perceived teaching and learning issues.

Issues in debugging

The biggest problem for most novice programmers is that their code does not compile.

It is not a question of eliminating errors oflogic and ensuring the elegant design of

code that executes; it is simply to get the program to compile at all. Beginners often

struggle to get programs past the compilation stage: their effort is not directed at

ensuring any sensible functionality but at achieving the magic result of the program

actually compiling!

The key issue for novice programmers is knowing what to look for when a program

does not compile. McKeown and Farrell note "Error detection and correction is

recognized as a central problem among novice programmers."

(http://homepages.dsu.edu/mckeownjlCPCCCSCpaper.html 04/1212000) and

Shneiderman (1980) says, "Debugging is a challenging task ... " (Shneiderman 1980 p

53) Leventhal (1993) says, "Among novice programmers, testing and debugging

appear to be particularly problematic." (Leventha11993 p 94)

It should not be assumed that errors at the compilation and execution stages are a

problem only for novices. Krems (1995) notes:

"One of the most common, time-consuming, and also frustrating tasks in
programming is the identification, location and correction of errors. It is estimated
that half the costs which accrue during software development have to be spent for the
testing and de-bugging of programs. "(Krems 1995 p 241)

A J Bird 123

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

Debugging is more than the correction of syntactical errors. Syntactical errors include

(but are not limited to!) missing or misplaced semi-colons, missing or misplaced

commas and missing single quotation marks around output strings. Programs may

also have errors of logic and semantic (and algorithmic) faults, such as endless loops

or IF .. THENs that generate odd results. Unsurprisingly, Krems (1995) notes that

expert programmers are "superior to novice programmers especially in the

identification of logical or algorithmic bugs." (Krems 1995 p 242) Novice

programmers can learn to identify missing commas, brackets and so on but errors of

logic that generate odd or unexpected results are more difficult to identify and correct.

Eisenstadt (1997) notes:

"Despite the availability of industrial-strength debuggers and integrated program
development environments, professional programmers still have to engage in far
more detective work than they ought to. "
(http://lieber.www.media.mit.edu/people/lieber/LieberaryISoftviz/CACM
Debugging/Hairiest.html 18/04/2001)

A key area of research into learning programming is the examination of the expert

programmer. Putting aside questions about how one decides who is an expert

programmer (is the number of lines of code produced in a programnling lifetime or is

it the ability to produce closely-textured, highly-wrought code, or does it span the

whole spectrum of coding, from coding, commenting to maintenance?) the focus on

how expert programmers do what they do has generated some interesting work on

pro grammers' mental models.

Wiedenbeck and Fix (1993) describe the critical role of the internal mental

representation of the program in code debugging and modification. This internal

representation is the programmers (or readers) understanding of the code. The authors

describe how such representations can be examined for novice and expert

programmers and a clearer grasp of what makes the experts representations different

can be gained. For Wiedenbeck and Fix (1993) the expert's representations are:

" ... hierarchical and multi-layered; [] it contains explicit mappings between the
different layers; [] it is founded 011 the recognition of basic patterns; [] it is well
grounded internally; [] it is a well-grounded in the program text. " (Wiedenbeck and
Fix 1993 p 794)

A J Bird 124

The teaching o/programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

The authors go on to hypothesise that novice programmers' representations will lack

most of the above characteristics. Their method was to give novice and expert

programmers a Pascal program of 135 lines and then ask questions about it. The

questions were designed to elicit information about the representations'

characteristics.

Their conclusions support their initial hypothesis that expert programmers' mental

representations of a program differ qualitatively from those of novice programmers.

The authors' suggestions for improving the internal representations of code by novice

programmers are fairly general in their tone:

" ... good mental representations are likely to be developed as students carry out
programming tasks such as debugging and modifications of numerous programs, and
learn from a distillations of these experiences what characteristics are important to
support programming tasks." (Wiedenbeck and Fix 1993 p 809)

Krems (1995) sums up the activity of debugging as "a goal-guided search through a

program text." (Krems 1995 p 242) Activities involved in this search include the

evaluation of error messages (difficult for new programmers), observation of what the

program actually does (versus what its writer expects it to do) and "mental evaluation

of code segments ... " (Krems 1995 p 242)

Efficient debugging of code, especially long code segments, requires the programmer

to choose a segment for inspection and decide which of the debugging strategies to

employ. Krems (1995) notes that "experts do not generate better initial hypotheses

than novices but are able to modify their error related assumptions in a much more

flexible manner." (Krems 1995 p 243) Experts are better at analysing the program at

an algorithmic level, whereas novices concentrate on surface-features. Experts are also

better at identifying the crucial code segments.

Experts and novices differ in the way they write programs too. Ormerod (1990) says

the suggestion is that "novices work forwards, writing a program line by line,

whereas experts work backwards, breaking the program into modular units."

(Ormerod 1990 p 72)

A J Bird 125

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of progranlming

McKeown and Farrell note:

"Students often invoke one of several strategies wizen debugging a program. These
strategies are hampered by a 'fragile' knowledge of the language ... a 'trial and
error' approach ... and poor problem-solving strategies. "
(http://homepages.dsu.edu/mckeownj/CPCCCSCpaper.html 04112/2000)

Forcing novice progran1mers to write structured code in1proved their programs

(reduced the number of bugs) because they were not using what Green (1983) terms a

"jump-happy" language such as BASIC (Green 1983 p 82) but still debugging

remained a problem. What Green (1983) proposed was a notation that allowed for

what he termed circumstantial information to be displayed. Green (1983) notes, "The

circumstantial information needed for debugging must be also be built ill." (Green

1983 P 83)

Draper (1996) says:

"'Programming' in fact requires a diverse set of skills, reflecting the many
component tasks of the overall activity of "doing programming". The environment
modifies what the tasks and skills are, for instance by relieving the programmer of
some jobs. In a teaching context, this can mean they fail to learn some skills (possibly
the most transferable and important skills}."
(http://wildcat.psy.gla.ac.ukl-steve/PPIG96.html 06/1212000)

One example of this de-skilling is the way in which students do not lean1 or develop

debugging strategies. Draper identifies the gaps in students' knowledge and

understanding. Students work at the lowest level of debugging, that of identifying

syntax errors and fail to look at the possible semantic or logical possibilities. Students

rely on the compiler to spot bugs and do not read their code carefully. Students also

fail to use debugging tools available to them. When code compiles they do not test the

code, even at a basic input/output level. (Draper 1996)

Draper (1996) goes on to say:

"students often seem helpless, and unaware of even basic debugging ideas such as
inserting tracing code to show how far the program gets before failing or what the
values of variables are during a run, or how to go about discovering what an obscure
error message really means." (http://wildcat.psy.gla.ac. ukl -steve/PPI G96 .htn11
06/12/2000)

A J Bird 126

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

Bonar and Soloway (1989) argue that novice programmers generate errors in their

code because they apply natural language-based strategies to their code:

"Our key idea is that many programming bugs can be explained by novices inappropriately

using their knowledge of step-by-step procedural specifications in a natural language. "

(Bonar and Soloway 1989 p 325)

This patching process is used when novice programmers reach what Bonar and

Soloway (1989) call an impasse. The programming knowledge a student has is

insufficient to solve or break the impasse so the student falls back upon what Bonar

and Soloway (1989) refer to as SSK (step-by-step natural language programming

knowledge). Bonar and Soloway (1989) argue that their study shows that, the more a

student uses SSK, the more bug-ridden his or her program will be. (Bonar and

Soloway 1989 p 347)

The affective aspect of debugging

One of the issues around debugging is the question of how people feel about their

code being examined (critically or not) by someone else. Few authors seem to

acknowledge an affective component to programming and to debugging in particular.

There is, the author feels, a strong emotional element to programming: either of pride

or fearfulness, for the novice programmer. A new programmer might be very proud of

his/her initial effort and to have the code severely critiqued is uncomfortable.

Conversely, the student may perceive his or her efforts as poor and fear any feedback

on the material, believing it to be inferior. It can be a relief to the latter type of student

to discover that the code is not too bad after all but any criticism or dissection of any

new programmer's code may lead them to conclude that they are just no good and

programming and never will be.

Cooper (1985) in Teaching Introductory Programming has pragmatic advice that

takes account of the personal reactions of the student to assessment.

A J Bird 127

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

Cooper (1985) says:

"avoid putting the student on the defensive ... every program, no matter how
atrocious it is, has something good about it. You must find a feature worthy of
congratulation." (Cooper 1985 p 113)

Solomon (1986) discusses the role of bugs in learning to program. For Solomon, bugs

are to be welcomed:

"In this culture collecting bugs is an important activity. The essential idea is that we
can classify and talk about bugs; they are not just unpleasant things that are
embarrassing. In this culture, bugs are beneficial; they help us to learn. [} The
message that emerges is that debugging is an enriching experience." (Solon10n
1986p127)

What Solomon (1986) is partially addressing is the affective conlponent of

programming: making bug detection and correction an explicitly supported and

productive activity, rather than an emotion-fraught search for mistakes.

Lean1ing about bugs, correcting them and discussing them may give users a

n1etalanguage, a language for talking about what it is to program. Can the

development of such skills affect other areas of learning? And if it does, how can such

an effect be measured? Solomon (1986) notes that evaluation seems to fall into two

categories: either a project is closely evaluated using instruments such as test scores

on standardized tests or it is evaluated entirely subjectively: what Solomon (1986)

tenns "influence without evaluation ... " (Solomon 1986 p 128) Solomon argues that

the key to evaluating a programn1ing language (such as LOGO) and its impact on

children lies in asking the right questions. Fonnulating the right questions is not a

trivial matter.

In programming, the emphasis should be on a community of users, some of whom

will be expert: usually but not solely the teachers, in a classroom situation. For

example, LOGO is seen by Papert as a culture, where the use of LOGO is a shared

experience, rather than a solitary one:

"Often Piagetian learning a la Papert is interpreted to mean that children do not
need help from experts, that exploring LOGO without human intervention is
sufficient. This was not Papert 's intention. LOGO provides an environment and

A J Bird 128

The teaching o/programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

culture in which expert and novice can jind common ground to discuss their research
and the bugs they encounter." (Solomon 1986 p 131)

This argument shades neatly into the concept of ego-less programming - the move

away from the proprietorial attitude of the programmer to hislher program and

towards an open forum where debugging is a communal enterprise. Whether novice

programmers would be comfortable with such an approach is debatable. The author's

own experience leads her to believe that such an open discussion could only be

carried out where code was submitted anonymously: new programmers often do not

have the confidence to offer their work to colleagues for discussion and analysis.

Allied to the question of the affective component is the question of the individual

learner, which seems to be rarely addressed in research on teaching programming:

many projects seem to assume that the learner audience is homogenous. An exception

to this is the work of Jenkins and Davy (2000). Jenkins and Davy (2000) took a cohort

of undergraduate, first year programming students and divided them into four broad

sub-groups, according to their skills and proficiencies:

"Rocket Scientists - who are already highly projicient programmers, and who would
learn little new from the module.

Strugglers - students who will jind the course challenging, but who would be
expected to pass reasonably well.

Serious Strugglers - students who will jind the course extremely difficult, and who
will not pass without significant additional support and encouragement.

Averages - those who remain; they will pass the module well, and will need only an
occasional word of advice or help with debugging."
(http://www.ics.ltsn.ac.uk/pub/conf2000/Papers/jenkins.htmI3/021200)

The different groups of students had differently structured teaching. For example

strugglers had supervised lab sessions with intensive tutor support (one member of

staff to 10 students). This group received the most tutori(:ll support. Rocket scientists,

in contrast, received less tutorial help but were given the option of undertaking a

programming project that would challenge and engage them. Jenkins and Davy (2000)

concluded,

"The attempt to classify students has been a success. The module results showed
fewer students failing than in previous sessions, and certainly fewer students
appeared during the semester in hopeless situations. It seems that the various routes

AJ Bird 129

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

were effective in helping all the students learn as well as they could."
(http://www.ics.1tsn.ac.uklpub/conf2000/Papers/jenkins.htm13/02/2003)

This is a blend of Solomon's (1986) two evaluation approaches described earlier:

some subjective reporting of 'how the project went' and some more formal, number

based results. It does require some careful unpacking of the results elements: how

many is fewer failing students? Is the cohort larger or smaller that last year's? What is

meant by 'hopeless situations'? vVhat also is not discussed is the question of whether

students were told clearly their group's classification and how students felt about

being classed as average or strugglers.

Debugging and large scale programming

Another question is that of scale. Novice programmers write short programs of 50

lines or less. Writing larger programs is not a n1atter of hacking out more lines in the

san1e way as for a 1 O-line program. McConnell notes:

"Non-professional programmers ... people who do some programming but whose
primary training and expertise lies elsewhere ... can usually muddle along quite well
on small projects. They learn enough about tools along the way to get the job done.
llowever, people who have written a few small programs sometimes think that writing
large, professional programs is the same kind of work ... only on a larger scale. It is
not." (http://www.computer.muni.cz/cse/cs1996/c2062abs.htm 03/05/2000)

Along with the question of scale is the question of programmer productivity.

Rawlings (1997) says:

"Many companies in the software industry expected the average programmer to
generate no more than about twenty blemish-free lines of computer instructions a day
- aroundfive thousand a year - regardless of the computer language being used."
(Rawlings 1997 p 69)

Commercial software has reached staggering levels of complexity:

"Today, even the software for a small telephone exchange would be arollnd two
kilometres long [when printed out}; the space shuttle's on board controller's about
fOllr kilometres; the Hubble space telescope's about eight kilometres ... " (Rawlings
1997 p 78)

It is important to remember the people writing this softwar~, all were once novice

programmers. What is taught when a students is still writing only 10 line programs

A J Bird 130

The teaching oJprogramming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

may have significance when s/he is writing 100 line modules as part of code 100 000

lines long.

One idea that seems to have much promise but that seems to elude researchers is the

automated debugging of code:

"Over the past decade automated debugging has seen major achievements. However,
as debugging is by necessity attached to particular programming paradigms, the
results are scattered."
(http://www.irisa.fr/manifestations/1995/AADEBUG95/welcome.html
12/1112000)

Green (1980) notes that two approaches to the problem of programming are first, to

educate everyone differently ''preJerably starting 20 years ago" (Green 1980 p 272)

or await the arrival of "technical wizardry that's said to be just around the corner,

such as Jones's Automatic Bug Detector." (Green 1980 p 272)

The issue of debugging is not a simple one. In a sense, it underpins all of what it

means to program. The author would argue that it is a vital skill that becomes

increasingly important as the complexity of code increases, even taking into account

all the strategies for handling large scale programming projects. It is also an aspect of

programming that is generally not made explicit in teaching texts.

Approaches to teaching programming using software

One approach to teaching programming is to support the creation and debugging of

programs with software tools. This category, on investigation, proves to encompass a

wide range of tools, ideas and approaches, from fairly simple.to very complex. For

example, a syntax editor (allowing the user to edit the lines and chunks of code) can

be seen as a simple idea, although it may be complex in its implementation. Software

visualisation tools range from graphic design approaches to very complex, dynamic

representations of programs.

A J Bird 131

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

Editors

An early example of a syntax directed editor is Brad Tenlpleton's ALICE, developed

in the nlid 1980s to run on the Atari ST and the IBM PC. A syntax directed editor

works at the construct level rather than the text level. "The units you work with are []

terms, expressions, statements and blocks."

(http://www.templetons.conlfbrad/alice.htnl1 2611 0/2000) The idea of ALICE,

Templeton says, can be seen in the visual, integrated programlning environments

available today such as Microsoft's Visual Basic. One ALICE's key features was

debug nl0de - being able to step through a program sequentially, to track bugs.

The syntax approach can be contrasted with the low-level text editors that can be seen

as working at a line-by-line level. Over and above the syntax editors could be placed

semantics editors. These increasing levels of complexity all present different cognitive

challenges to the novice programmer. Green (1990 b) stated:

"Low level text based environments are still commonest but structure-based editors,
usually built on syntactic structure, are becoming more common. More recently,
editors based on semantics have been investigated." (Green 1990 (b) p 21)

Programming semantics is about the meaning of instructions within a language.

Syntax is about the format of those instructions. Misspelling a command is a syntax

error: typing in a command that exists in the language but is not appropriate in its

current context it is a semantics error.

Hauswirth et al. (1998) note that there are several approaches to the study of

programming semantics. "Existing approaches to semantic description may be

categorized as axiomatic, denotational and operational."

(http://www.infosys.tuwien.ac.at/Staff/pooh/papers/Simplesem/1190-HTML.html

03/05/2000)

A J Bird 132

The teaching ofprogramming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

Axiomatic semantics are

"A set of assertions about properties of a system and how they are effected by
program execution. The axiomatic semantics of a program could include pre- and
post-conditions for operations."

(http://foldoc.doc.ic.ac.uklfoldoc/foldoc.c gi? query=axiomatic+semantics 19/0212003)

Denotational semantics are "A technique for describing the meaning of programs in

terms of mathematical functions on programs and program components."

(http://foldoc.doc.ic.ac.uklfoldoc/foldoc.cgi?query=axiomatic+semantics 19/0212003)

The operational approach to semantics involves examining how the state of a

computing machine changes during program execution. Elements examined include

the stacks and registers.

Hauswirth et al. (1998) describe the environment the authors call SDE, which allows

students a view of the system's operational semantics. Hauswirth et al. (1998)

describe the software that forms a dynamic abstract machine, allowing the user

control of the contents of memory and flow of execution:

"SDE is a graphical java-based environment that allows the student to edit, run and
debug SIMPLESEM programs. SDE animates SIMPLESEM executions by visualizing
the code and data memories of the SIMPLESEM processor."
(http://www.infosys.tuwien.ac.atlStaff/pooh/papers/SimplesernI1190-
HTML.html 03/05/2000)

The SDE supports a graphical view of SIMPLESEM programs, using a tabular

format. The student types in code in the line-oriented editor. Either side of the code

window are breakpoints and data windows. The SDE can be accessed over the

Internet, with no installation needed on the computer the user"is working on. SDE can

also be downloaded. Java's security features handle security. The authors note, "the

basic idea of SDE is to visualize abstract concepts that have no physical

counterparts." (http://www.infosys.tuwien.ac.atlStaff/pooh/papers/Simplesernl1190-

HTML.html 03/0512000) The authors go on to describe how the SDE has been

adopted by a number of programming teachers but offer no formal evaluation.

A J Bird 133

The teaching ofprogramming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

SDE is a system that uses both operational semantics and graphical elements. The

graphical elelnents are an aspect of software visualisation, which is discussed in a

later section.

Intelligent Tutoring Systems

Another approach is to adopt elements of AI (artificial intelligence) and create an ITS

(Intelligent Tutoring System). An example of an ITS was MENO-II which was:

" ... a computer-based tutor intended to help novices learning to program in Pascal.
The BUG-FINDING component attempts tofind non-syntactic bugs in a students
program. It draws on a database of 18 cOllzmon types, represented as templates, and
attempts to match these templates against its analysis of the student's program. The
TUTORing component then attempts to infer the misconception that might underline
the bug and present the student with remedial instruction."
(http://www.csa2.co.uklhtbinlids51/procskel.cgi02/08/2000)

Work on MENO-II was done in the early 1980s and the article about MENO-II by

Soloway et al. was published in 1983.

Stanford's BIP Project used AI to provide a "computer-based programming

laboratory ... " (Barr et al. 1976 p 567) BIP's features included a BASIC interpreter, a

bank of 100 programming problems, a HINT system to give textual and graphical

help to students, a student manual and a mechanism for individualized task selection.

The authors describe the initial use ofBIP as demanding of staff time but "effective"

(Barr et al. 1976 p 567) although the authors identify elements for further

development such as improved task selection.

An intelligent-processing approach is also described by van Merrienboer et al. (1992).

The system the authors created was centred on:

"An instructional strategy for teaching introductory computer programming which
focuses on the completion of increasingly larger parts of well-designed, well
readable but incomplete computer programs." (Merrienboer et al. 1992 p 62)

Merrienboer et al. (1992) wrote a system to automatically generate incomplete

assignments for students to finish. The system CASCO (Completion ASsignment

COnstructor) consisted of three knowledge bases: a n10de1'ofthe knowledge to be

A J Bird 134

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

taught, a student profile consisting of four sets of plans and a database of problems to

be drawn upon. Each assignment offered to the students contained a programming

problem, an example program, task instructions, explanations on new features and

questions about the structure of the program.

The student profile was not a full model of student learning. The sets of plans were a

declarative description, partitioned into four categories. Set N was material not yet

presented, Set P was material presented but not applied (by the student), Set E was

material used by the student but not yet fully learned and Set A was material assumed

to be learned to the point of automatic use by the students. The system chose a subset

of sets N, P and E at each stage, to present to a student.

Merrienboer et al. (1992) sum up their view of the strengths of CASCO:

"CASCO may be argued to fulfil the three requirements {] for the selection and
sequencing of problems and examples in procedural tutors: Manageability, structural
transparency, and individualisation." (Merrienboer et al. 1992 p 74)

Interestingly, the authors also note that their focus is automatic task generation, rather

than teaching programming, and propose other subjects areas to which the system

might be applied, such as circuit design or planning production processes.

Designing new programming languages

Another approach to the teaching of programming is to add to the plethora of

programming languages available by designing a language that addresses some of the

problems identified with older, more widely used (and criticised) languages. The idea

has already been touched upon in Chapter 3, with reference to GRAIL.

As Spooner (1986) noted, the challenge for language designers is to create a language

that is as easy to use as a natural language "and so adaptable that for all one's

dealings with the computer one need never use a different language." (Spooner 1986

p 215) Spooner (1986) describes the creation ofML, the language that combined

precision of meaning (and levels of meaning) with excellent readability. To this end,

A J Bird 135

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

the designers used general constructs and a "small orthogonal set of devices"

(Spooner 1986 p 221). (Orthogonal refers to the mutual independence or separateness

of the language's constructs.) The richness of the language lay in the combination of

its elements. Spooner (1986) concludes that mistakes were made in the early design of

the language and that some definitions were clumsy. Nonetheless, Spooner (1986)

sees ML in a developed form as being "most promising" (Spooner 1986 p 236)

Other languages have been designed with similar goals and their creators make

similar claims:

"Euphoria is a powerful yet simple programming language, developed by Robert
Craig at Rapid Deployment Software in 1993. It is very ea!Jy to use, and it has good
support, which makes it an excellent language for novice programmers. Euphoria is
an interpreted language, just like A WK or QBasic."
(http://www.engin.umd.umich.edu/CIS/course.des/cis400/euphoriaieuphoria.ht
m104/12/2000)

Another programming language developed to teach progran1ming is Turing:

"The Turing language was developed ill 1982 at the Dept of Computer Science at Toronto

University, Canada. [] Fourteen years later, Turing is used in 65% of Ontario lligh Schools

and provides many Computer Science students with their first exposure to computer

programming. In 1993, Turing was adopted by Imperial College, London for use in their

introductory MSc and Undergraduate Computing Courses. "

(http://www.holtsoft.comlturinglessay.html 3111 012000)

Martin (1996) goes on to describe one of the key features of Turing as its detailed

diagnosis of errors, to aid the student in debugging. Martin (1996) concludes:

"Turing students spent less time and needed less assistance with syntax correcting
than Pascal students. TIley were also more likely to resolve syntax errors on the first
attempt and less likely to require assistance in doing so. The Pascal students were
more likely to be misled by syntax errors and to alter the logic of the program in the
syntax correcting process." (http://www.holtsoft.comlturinglessay.html
31110/2000)

Other approaches were more sweeping still:

"This effort intends to improve the state of the art of computer use, not by
introducing, nor even (primarily) through new softwar~" but simply by empowering

A J Bird 136

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

all users to be computer programmers."
(http://www.python.org/doc/essays/cp4e.html 09/03/2003)

The CP4E project (Computer Programming for All) was based on the use of the

Python language, with emphasis on developing aspects of the language for ease of use

and the careful development of teaching materials. The website noted: " .. . we want to

explore the notion that virtually everybody can obtain some level of computer

programming skills in school, just as they can learn to read and write."

(http://www.python.org/doc/essays/cp4e.html 09/03/2003)

In fact, the CP4E project was under funded (according to its participants) and was left

incomplete:

"Unfortunately, the move of the Python development team to another employer []
meant that we didn't get to complete the CP4E project at CNRI. This move was
motivated in a large part by the disappointingly small amount of funding that DARPA
committed to CP4E.The project is now in limbo ... " (http://www.python.org/cp4e/
06/05/2003)

Software and program visualisation

A richly featured and complex area of research has sprung up around the concept of

software visualisation. SV (software visualisation) is a broad field, encompassing any

graphical display of the behaviour and nature of software, from design to program

execution. It is not necessarily a new field of research: " ... the history of SV dates

back to the days of von Neumann in the 1940 's." (Price et al. 1998 p 3)

A distinction needs to be made between software visualisation and visual

programming. Visual programming is the creation of new programs using graphical

programming environment, such as Visual Basic. Visual BaSIC uses graphical items

such as scroll bars, command buttons and text boxes which are dragged and dropped

into a form or forms. Software visualisation is the manipulating of conventional text

based code so that some aspect of the code such as its activities, flow of control or

constructs are graphically represented.

A J Bird 137

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

By 1994, the SV approach had matured sufficiently for two researchers in that field to

claim, "Much of the recent research in software visualization has been polarized

towards two opposite domains. "(Mukherjea and Stasko 1994 p 215) The authors

describe these two areas of research as being at the data structure level: (low-level

views, generated automatically that are useful for debugging) and "algorithm

animation" (Mukherjea and Stasko 1994 p 215)

As Mukherjea and Stasko (1994) note the primary use of algorithm animation was for

teaching programming. The authors go on to note "algorithm animation could offer

key benefits to program de-bugging and testing." (Mukherjea and Stasko 1994 p 217)

The animation of a program's algorithm can be a critical tool for understanding what

the program is doing (or not doing correctly!) Mukherjea and Stasko briefly review

systems such as Incense (which is data structure display system) Movie (which is an

algorithm annotation system) and the Gestural, Dance and Illustration systen1s.

Mukherjea and Stasko (1994) characterise their own graphical system, called Lens, as

being suitable for high level debugging, and one that allows iterative testing and

refinement. The goal of Lens' authors was to create "a system that can provide

application specific animation news for de-bugging purposes." (Mukherjea and

Stasko 1994 p 218)

The Lens system was designed to allow programmers to design their own innovations

"without having to learn a graphics toolkit and write code using it." (MukheIjea and

Stasko 1994 p 218) Other graphical systems include Dynalab and J eliot.

DynaLab was a project at the Montana State University from 1991 to 1994:

"DynaLab, an acronym for DYNAmic LABoratory, is an ambitious software project
conceived as the infrastructure for supporting formal laboratory experiments in the
introductory computer science curriculum. [] In its current incarnation, DynaLab
provides a dynamic,interactive, hands-on software environment for studying virtually
all a~pects of programming, as well as time alld space complexity issues. The current
version of DynaLab supports program animation of Pascal programs, with
unbounded reverse execution for repeated study of puzzling program constructs."
(http://www.cs.n10ntana.edu/~dynalab/descriptionlindex.html 08/12/2000)

A J Bird 138

The teaching ofprogramming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

Jeliot, developed in Finland, concentrates on animating Java programs over the Web:

"The algorithm animation environment Jeliot allows a web user to visualize his own
algorithms, written in Java(tm), over the Internet. Jeliot is based on self-animating
data types: the user selects the visualized data objects of the source code, and Jeliot
produces the animation. "

(http://www.cs.helsinki.fi/research/aaps/J eliot! 08112/2000)

Domingue and Mulholland claim that their software visualisation approach, for

Prolog, supports both synchronous and asynchronous support for student

programmers as students can create live animations of their code, using broadcast

mode, or record the animation for future viewing. The researchers are working on

strategies to allow students to retrieve animations of algorithms similar to the ones on

which they are working, using two different search approaches.

(http://kmi.open.ac.uk/people/paulmlaied/ 0411212000)

The work of Domingue and Mulholland makes it clear that algorithm animation is a

significant area of research:

"Recent work within the Algorithm Animation community has lead to the creation of a
number of systems which allow pre-written animations to be viewed remotely. These
systems primarily concentrate on delivering animations synchronously as part of a
classroom style tutorial." (http://kmi.open.ac.uk/people/paulmlaied/ 0411212000)

It is useful to distinguish between software visualisation and program visualisation.

SV (software visualisation) is the use of a range of features such as typography,

design of graphics and HCI (Human Computer Interaction) principles to enable

people to use/understand software. Program visualisation is the "visualization of

actual program code or data structures in either static or dynamic form." (Price et a1.

1998 P 4)

The static and dynamic distinction is significant. Static visualisation might be a well

formatted program, where a dynamic one might show changes to data as the code

runs.

Baecker (1998) notes that only animation is truly appropriate for drawing the activity

of a program, with its flow of control, use of memory, allocation of values to variable

A J Bird 139

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

sand so on. Static drawings are often less than adequate. He notes "Animation is a

compelling medium for the display of program behaviour." (Baecker 1998 p 369)

Baecker goes on to describe one of the earliest software visualisation projects, a 30-

minute film on "nine different internal sorting methods." (Baecker 1998 p 371)

Baecker clain1s that the film explains the sorting algorithms so effectively that a

student can program some of those algorithms after watching the file. He says, "The

movie has been used successfully with computer science students at various levels."

(Baecker 1998 p 371) His claim is that the film works, "even today, 15 years later."

(Baecker 1998 p 378)

Kimelman et al. (1998) widen the idea of program visualisation. For them programs in

the real world interact with many other elements such as libraries (to handle memory

and input/output) hardware. To understand and debug the systen1, the programmer

must "consider behaviour at numerous layers of a system concurrently. As this

behaviour unfolds over time." (Kimelman et al. 1998 p 293) A system that aims to

reflect this multi-layered complexity is IBM's prototype system PV:

"With PV users watch for trends, anomalies and interesting correlations, in order to
track down pressing problems. Behavioural phenomena, which one might never have
suspected, or thought to pursue, are often dramatically revealed. [] Resolution of the
problems thus discovered often leads to significant improvements in the performance
of one application." (Kimelman et al. 1998 p 294)

Brown and Sedgewick (1998) reinforce the distinction between program animation

and algorithm animation in stating that most program visualizations can be created

automatically whereas most algorithm animations cannot. Brown and Sedgwick say:

"most algorithm animations displays cannot be created automatically because they
are essentially renderings of the algorithm's fundamental operations; an algorithm's
operations cannot be deduced from an arbitrary algorithm automatically but must be
denoted by a person with knowledge of the operations performed by the algorithm."
(Brown and Sedgwick 1998 p 156)

Price et al. (1998) create a taxonomy for SV(software visualisation) systems, which

uses six top-level categories: scope, content, form, method, interaction and

effectiveness. Each of these categories can have sub-categories, which may in tum

A J Bird 140

The teaching ofprogramming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

have sub-sub-categories. Each category can be described using yes/no questions

(Does the SV code handle concurrent code?), a range of functionality (to what degree

does the SV code ... ?) or a set of attributes. See Price et a1. (1998) pp 3 - 27

Price et a1. (1998) conclude:

"over one hundredfifty software visualization prototypes and systems have been built
in the last twenty years, yet very few of these systems were systematically evaluated to
ascertain their effectiveness. [] The most disturbing observation is the lack of proper
empirical evaluation of SV systems, for if the systems are not evaluated and shown to
be effective what is the point of building them?" (Price et a1. 1998 p 27)

Algorithm animation

With the arrival in the 1980s of high resolution, colour monitors the way was open for

the development of graphical views of code:

"The most important and well known system of the new era was BALSA ... ,followed
by BALSA II, which allowed students to interact with high level dynamic
visualizations of Pascal programs." (Baecker and Price 1998 p 34)

BALSA animated algorithms and produced graphical representations ofthe program's

activity:

"An impressive piece of development, it uses both topological and metric conventions
in representing program activity. Many of the outputs of the system are histogram
like in nature, intending to demonstrate the differences in effectiveness between
alternate algorithms. Brown claims the system has helped computer scientists
discover flaws in widely used algorithms."
(http://www.nickerson.to/visprog/ch2/progvis24.htm 20/02/2003)

North (1998) says, "Graphs are suitable models for software. [] graphs are weI/

understood models in many domains for representing relationships between abstract

objects." (North 1998 p 63) For North the crucial element in employing graphs to

describe code and its activities is the readability ofthe graph. There are always

conflicts between optimising readability and the computation or processing required

for effective visualisation (North 1998 p 64)

What emerges, says North (1998), is often in collection of heuristics (general,

practical rules) rather than exact solutions to the graph creation problems. For more

A J Bird 141

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

detail see North (1998) pp 64 - 66. North goes on to, describe the dot system, which

consists of several programs allowing users to create software visualisation systems.

North (1998) reviews several software visualisation systems, including CIAO,

Improvise and VPM.

What need to be noted here that algorithm animation or program animation are

potentially complex solutions to the question of making a program or programming

activity more understandable. The author questions whether adding a layer of

complexity, whatever its purpose, will truly aid the novice programmer, at least in the

earliest stages. Green (1990 b) notes that, at the time of writing:

"Text-based editors remain the favourite choice, despite all subsequent developments.
Present-day editorsfor use in programming environments provide some help with
formatting programs [but} text-based editors have changed little. Their users like
them partly because they are simple to understand and do not add much of an extra
learning load. More importantly, they do not constrain their users in any way at all.
Programs can be built in any order - top down, bottom-up, middle-out; pieces of
code can be moved around the design at will ... " (Green 1990 (b) pp 27 - 28)

Having said that, there is a case for moving beyond text editors and n1aking the code

during execution more transparent to the user, a pared down animation approach ..

Algorithm animation at a high level of complexity is, perhaps, a tool more suited to

expert programmers than to novices. What other graphical features, less technically

demanding and more accessible, might aid the novice programmer? One focus is the

appearance of code, how it looks on screen and on paper.

Code layout

Baecker and Price (1998) review the changes and developments in programming

including structured programming techniques, the creation of more expressive and

clearer languages (the authors cite Modula as an example) and human factors ideas

such as chief progratnmer teams. The authors also mention the impact of better

computing technology and the use of CASE (Computer Aided Software Engineering).

Baecker and Price (1998) conclude that all these developments (they term them

'advances') do not deal with the question of the appearance of code, how it looks on

A J Bird 142

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

the screen. Baecker and Price (1998) also say that the code's appearance does not

"reflect the history of a program" (Baecker and Price 1998 p 31) or make the

structures ofthe code as visible as it could, nor does it "deal ... with the fundamental

problem of software comprehensibility, that of software complexity." (Baecker and

Price 1998 p 31)

Baecker and Price (1998) go on to review the key developments in software

visualisation, beginning with the layout of code on screen and paper. Flow charts were

developed to make the visualisation ofthe program's execution easier. Baecker and

Price (1998) note "the 1970's saw the first of many alternatives to flowcharting the

development of Nassi-Schneiderman diagrams ... to counter the unstructured nature

of standard flowcharts." (Baecker and Price 1998 p 33)

Baecker and Marcus (1998) argue that two under-utilised elements of computer

hardware, in terms of supporting program understanding, are the printer and monitor:

"Programs can now easily be represented using those elements therefore omitted, such as

multiple typefaces; variable weights, slants, point sizes, word spacing, and line spacing; and

rules, gray scale and pictures. " (Baecker and Marcus 1998 p 45)

Baecker and Marcus (1998) go on to give detailed example of what Knuth calls

'literate programming' where the programmer aims to layout code that is human

comprehensible. The literate programmer can be supported by software that automates

much ofthe program presentation.

Baecker and Marcus (1990) claim that principles of program layout and style have

altered little since the most basic of output media were available:

"The impoverished appearance of programs today is an artefact of the technologies
available for composing and printing them in the early-days of computing namely, the
keypunch, the teletype and the line printer." (Baecker and Marcus 1990 p viii)

The C program example offered by Baecker and Marcus uses a number of layout

features and design elements such as highlighting of key words, use of white space

and serif font. (See Baecker and Marcus 1998 pp 45 - 49)

A J Bird 143

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

The authors conclude that their work on "programs .as technical publications"

(Baecker and Marcus 1998 p 60) goes far beyond the pretty printing of code: "fVe

have identified basic graphic design principles for program visualization and

developed aframeworkfor applying them to programming languages." (Baecker and

Marcus 1998 p 60) Their work also involved the development of SEE visual

computer, which automatically enhances C source code. The authors conclude that

their work "helps' to establish programming as a literary form deserving a mature

graphic appearance." (Baecker and Marcus 1998 p 61)

For Baecker and Marcus (1990), the use of graphic design principles is the key to

their argument. The authors do not argue that the principles they derive are the only

ones: others may be equally valid. They do argue that the designs derived for C (the

language they use as an example) could be equally well applied to other languages

such as Pascal. The design principles put forward by Baecker and Marcus (1990)

allow automated visual compiling. The goal of this work is to create an "intelligible,

communicative, and attractive" interface to progranl code. (Baecker and Marcus 1990

pix)

Baecker and Marcus (1990) note: "Teachers of programming may find that improved

appearance of code and documentation helps make the literature and examples more

interesting, compelling and understandable. " (Baecker and Marcus 1990 p xi) What

elements of graphic design are relevant? A basic list includes, but is not limited to,

typefaces, fonts, point sizes, character widths, word and line spacing, colour and tints

and page layout.

For Baecker and Marcus (1990) literate programming is a completion of, and

extension to, the software engineering approach. They describe it as the seventh

software engineering approach, with structured programming being the first, the

development of expressive programming languages (e.g. Modula) being the second,

psychologicalhnanagement based theories such as chief programmer teams being the

third, the fourth, the high performance workstations, the fifth, CASE (Computer

Aided Software Engineering and the sixth, software engineering tools and

environment.

A J Bird 144

The teaching a/programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

Baecker and Marcus (1990) describe the early attempts at improving program

appearance, including a presentation version of the language ALGOL60, and pretty

printing. Baecker and Marcus (1990) note, "the earliest work was done on LISP, so

that program readers would not drown in a sea a/parentheses." (Baecker and Marcus

1990 p18) Other approaches include the Vgrind UNIX utility and Xerox Cedar's

typesetting and formatting screen.

Baecker and Marcus (1990) put forward ten fundamental principles of program

appearance with seven secondary principles, derived from the first ten. The ten

fundamental principles are: legibility, readability, clarity, simplicity, economy,

consistency, relationships, distinctiveness, emphasis and focus and navigability. Most

are self-explanatory. 'Relationships' refers to the use of visual elements to emphasise

elements of the program that have a relevant relationship. By definition, where this

visual emphasis is omitted, there is no relationship to be grasped. Distinctiveness

refers to the use of visual elements to show vital properties of code.

The seven secondary principles are: page characteristics, page composition and

layout, typographic vocabulary, typesetting, symbolism, colour and texture and

metatext. Metatext refers to the supplementing of the original code with text. Baecker

and Marcus (1990) refer to "mechanically generated supplementary text." (Baecker

and Marcus 1990 p 45)

The focus ofliterate programming is making code human readable, an area generally

neglected in coding: "The activity of reading programs has always received far less

attention than that of writing programs. " (Baecker and Marcus 1990 p vii)

Related to this idea of graphic communication is the question of how people read

code:

"The field of reading research illustrates the problem. Most reading research [} deals
only with the readability and comprehensibility of prose. When investigating in the
field study the role offormat they typically consider only simple variations such as
the role of typeface, case, line length and leading ... " (Baecker and Marcus 1990 p
263)

A J Bird 145

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

As touched upon in the previous chapter, we can as~ if psychology can aid the

researcher in supporting and fostering programnling comprehension? Baecker and

Marcus (1990) are not optimistic:

"The service of psych o logy [] especially thefields of perception, cognition, and
memory deals with issues at far too Iowa level to tell liS how programmers read and
understand. Even when developedfrom an engineering-oriented, systems and
information processing perspective, [] psychological theories are still too primitive
for the task of modelling program reading and understanding." (Baecker and
Marcus 1990 p 262)

Sofhvare visualisation and teaching programming

Stasko et al. (1998) note that the "original impetus" (Stasko et al. 1998 p 367) for

research in SV was the idea of supporting novice progratnmers in their exploration

and understanding of algorithms and code.

The authors note that SV began with students seeing animations through the BALSA

system (referred to earlier) in 1983. They note:

"to our knowledge, no conclusive study has ever established the educational value of
software visualization techniques. But the evidence of this value is overwhelming.
Year after year students report, directly and an anonymous questionnaires, that
algorithm animation and program visualization tools help then understand the
concepts they are learning." (Bazik et al. 1998 p 383)

The authors then go on to describe what they see as some of the obstacles to teaching

with software visualisation tools. The list is familiar to anyone who has looked at the

adoption and use of CAL. The authors argue that the use of the SV software must be

integrated with the curriculum and the supporting materials for that curriculum. Any

tool must be "easy to use in order to convince teachers to invest the time to learn its

features and interface and adapt their courses to it." (Bazik et al. 1998 p 387)

The cost and effort involved in developing powerful flexible and easy to use systems

is considerable. Bazik et al. (1998) discuss the developlnent effort required for the

MEADOW systems (an extension ofFIELD, a UNIX-based set of tools for

programming in that environment) the Piper system (graphical display of code

A J Bird 146

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

execution) and Passe "a self-contained Pascal development environment" (Bazik et a1.

1998 p 389).

Bazik et a1. (1998) conclude:

"Integrating software visualization tools into the educational process is difficult for
many reasons, the most crippling in the academic environment being the need for
ongoing software maintenance to keep the tools working and up to date." (Bazik et
a1. 1998 p 397)

As Mulholland and Eisenstadt (1998) note:

"Over the past twenty years, we have undergone a change of perspective in the way
we teach programming. Having begun by worrying in detail about the needs of
novices and trying to understand their problems and misconceptions we developed a
range of environments to help them ... " (Mulholland and Eisenstadt 1998 p 399)

Mulholland and Eisenstadt (1998) pose two questions about SV: how should SV be

used in teaching programming? Can SV be used to develop novice programmers into

expert programmers? They conclude that:

"[the] introduction of rich interactive environments will not guarantee a fruitful
learning experience. Rather, the nature of the environment and the level offree
exploration must be appropriate to the characteristics of the learner." (Mulholland
and Eisenstadt 1998 p 408)

Some reservations have been expressed about the value of algorithm animation by

Stasko and Lawrence (1998). They note that a passive display of an algorithm's

activity has "minimal impact on learning." (Stasko and Lawrence 1998 p 436)

They balance this assertion by adding: "Algorithm animations can serve as valuable

learning aids when used in the proper ways. Fundamentally, it is critical that students

actively interact with the animations." (Stasko and Lawrence 1998 p 437)

Petre et a1. (1998) adopt a more cognition-based approach to assess the nature of SV.

SV projects are undertaken by enthusiasts, who are, by definition, enthusiastic

programmers and designers who relish the challenge of tricky animation coding and

difficult interface creation. The authors step back to ask is SV "the powerful cognitive

tool it is often assumed to be?" (Petre et a1. 1998 p 454)

A J Bird 147

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

Petre et al. (1998) ask, is it appropriate to talk of on~ field for SV when the goals,

purposes, audiences and subject of the visualisation can vary so widely? They cite the

visualisation of large collections of data through to visualisation a virtual machine.

Visualisation is also broad in its relnit: from complex aninlations to highlighted

indented source code.

A great deal of work has been done on algorithm evaluation and visualisation: there is

insufficient space to describe that work here. It is worth noting that while effort is

being put into graphical representation (including 3D) work is also going on in

auralization of code. This is described in Brown and Hershberger (1998) pp137-143.

There will be as many ways to represent what a program is and does as there are

researchers looking to develop ways of presenting the nature and activity of code.

Programming Environments

Another approach to the question of making prograInlning easier to learn and easier to

do, is the idea of a coherent, integrated programming environment where all the

elements such as debugger and editor work together to support not only the

programmer but others associated with the development and creation of the software.

Shneidennan (1985) describes in some detail how such an environment might be

constituted and what it might best do. Shneidennan (1985) notes "No programming

environment can be optimal for all programmers in all programming situations."

(Shneidennan 1985 p 106) His chapter describes an environment to support three

different work styles (individual, team and project) and two "styles of access"

(Shneidennan 1985 p 106): command line based and menu driven.

Shneidennan's MPE (Model Programming Environment) would hold parts for the

work. A part may be a code fragment, a references list or any documentation

associated with software production and software production management.

(Shneidennan presents a list of twelve sample types of part.) These parts can be

combined into what Shneidennan (1985) tenns an assembly, which is larger scale,

perhaps more formal document.

A J Bird 148

The teaching o/programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

Rogalski and Samun;ay (1993) describe a similar concept as part of the KEOPS

schema (Rogalski and Samuryay 1993 p 13) They note that the tools and environment

provided can decrease the cognitive load on programmers and provide structures for

handling tasks and activities. (Rogalski and Samuryay 1993 p 16)

Shneiderman notes:

"The MPE is designed to facilitate large project team coordination and management.
The uniform user inteiface to multiple software tools should reduce learning time,
speed peiformance, reduce error, increase user satisfaction and enhance human
retention of commands over time." (Shneiderman 1985 p 107)

The central feature ofthe MPE is the editor. Shneiderman estimated that programmers

spend 90% of their time using an editor and a more powerful editor should provide all

the standard features of insertion and deletion but also provide "cosmetic

enhancement" (Shneiderman 1985 p 121) such as line compression, highlighting and

selective display, a approach that has echoes of literate programming. Shneiderman

also offers the idea of syntax editing, allowing the programmer to insert a structure

which requires the action condition clauses replaced with code. More dynamic

features would include control structure transformations such as replacing an IF ...

THEN ... ELSE with a CASE statement, or splitting an arithmetic expression into two

assignment statements with a variable to hold a temporary value.

In fact, some of the ideas put forward by Shneiderman had been attempted by a

project to develop a full support environment for Ada programming. Arblaster (1983)

describes the APSE (Ada Programming Support Environment), produced by several

software houses for the Department of Industry and the Ministry of Defense in the

early 1980s.

The minimal APSE elements were the CLI (Command Language Interpreter), the

linker, a database utility, a test and debug utility and an editor. Most people would

argue that theses are the key elements of any programming language environment.

What the UK APSE project considered, in some depth, were human factors

influencing the design of such tools. The project evaluated these tools at the design

A J Bird 149

The teaching o/programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

stage as well as undertaking extensive prototyping. ~rblaster's 1983 article did not

report long-term outcomes from the implemented environment.

Brusilovsky (1993) claims that the following teacher activities can all be supported by

various ITSs (intelligent tutoring systems): instructional planning, task sequencing,

mastery learning, scaffolding, selection of program example, strategic instruction and

intelligent debugging (Brusilovsky 1993 p 115). Brusilovsky (1993) describes what

he calls the intelligent programming environment, which bridges the divide between

ITSs and programming environments. "Intelligent programming environments are

able to offer the flexibility 0/ micro-world like environments accompanied by an

artificial intelligent coach or tutor." (Brusilovsky 1993 p 114)

A programming environment must include tools to enable the student to input code,

use previously developed code, compile, debug, run and test code and should include

a help system. An intelligent tutor should, as a minimum, handle knowledge

sequencing and instructional planning, generate tasks and provide feedback to the

learner. An intelligent programming environment will have tools and capabilities from

both systems. This is a development of the idea of automated or intelligent debugging.

Brusilovsky (1993) describes the ITEM/IP system (Intelligent Tutor, Environment

and Manual for Introductory Programming) for learning and programming in a mini

language, Turingal. Brusilovsky (1993) concludes that one of the key strengths in

ITEMlIP was the help given to students in debugging: "In about four fifths of all cases to

identify the bug it was quite enough for a student to run the wrong program visually with a

test data suggested by the system." (Brusilovsky 1993 p 122)

A slightly different approach is embodied in DISCOVER, an intelligent programming

environment for novices that "synthesizes domain visualisation and microworlds with

automatic, active program diagnosis and tutoring." (Ramadhan and du Boulay 1993 p

125) Students can build any programs they wish in what the authors call the 'free

phase'. During the guide phase, the systen1 sets the problems and monitors the user's

code. DISCOVER's language is a pseudocode style language. The authors conclude

A J Bird 150

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

that the system "appears to help novices in solving programming problems more

accurately and more quickly." (Ramadhan and du Boulay 1993 p 132)

With all these projects, it is sometimes difficult not to feel that the technical

challenges of building the system take precedence in the researchers'/developers'

minds. How far it genuinely supports the programmer is a question that is not directly

addressed. It seems to have been enough, in some cases, to have solved the

programming problems inherent in creating such sophisticated systems.

Other approaches

This section looks at small range of more human-centred approaches to solving the

problem of programming for new programmers: remove most ofthe cognitive load by

using previous examples (programming by demonstration or example) or move the

emphasis from individual programming effort to a shared programming style (pair

programming, part ofthe extreme programming approach).

Programming by Demonstration

Canfield Smith et a1. (2000) state baldly:

"since the late 1960s, program language designers have been trying to develop
approaches to programming computers that succeed with novices. None has gained
widespread acceptance." (Canfield Smith et a1. 2000 p 75)

The authors go on to describe what they see as a powerful paradigm for teaching users

how to get their computers to do just what the users want: PBD (Programming by

Demonstration) and 'visual before-after rules' (Canfield Smith et a1. 2000 p 75) The

authors go on to discuss an application that models PBD, called Creator. Creator

allows users to create simulations of their own and was designed for educational use.

The authors describe how they rejected any idea of a required syntax, feeling that no

programming language was ever easy for a novice to learn. They decided upon the

PBD approach where the software can be modified without the use of a programming

language. Creator uses beginning and end states and a graphical (drag and drop)

A J Bird 151

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

method to define and develop a rule. Canfield Smitl~ et al. (2000) cite games

developed by 11 and 12 year olds. A game where a spaceship beams up cows required

only 13 rules to create. Another, more complex gatne required 57 rules.

Canfield Smith et al. (2000) notes, perhaps rather wearily:

"With all of the bright ell! [Computer Human Interaction] researchers in the world,
it is disappointing to note that the problem of enabling novices to program computers
hasn't been solved. People deserve better." (Canfield Smith 2000 p 92)

Canfield Smith et al. (2000) describe optimistically the potential of progranlming by

example as embodied in Creator. The graphical approach of software such as Creator

appeals, say the authors, to novices. Their argument is that this before-after rule-based

approach can be expanded to any domain that is visual, capable of direct manipUlation

and interactive.

A related idea is that ofPBE (Programming By Exanlple). St Amant et al. (2000) note

that PBE is where "the system records actions performed by the users in the interface

and produces a generalized program that can be used later in analogous examples."

(St Amant et al. 2000 p 107)

Visualisation and PBE would use the visual features or properties of the screen

elements to note user actions or inactions. St Amant et al. (2000) make it clear that

there is no full-blown PBE visualisation system but regard the concept as one well

worth elaborating. St Amant et al. (2000) make clear in discussing aspects of such a

system that building this kind of software is not a trivial task.

Lieberman (2000) notes optimistically "PBE is one of the few technologies with the

potential for breaking down the Berlin Wall that has always separated programmers

from users." (Liebemlan 2000 p74)

A J Bird 152

The teaching ofprogramming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

It is Repenning and Perrone's (2000) description of the arena in which PBE is most

appropriate that sums up the topic:

"End-user programming is emerging as a crucial instrument in the daily information
processing struggle. [] Such programming allows customized personal information
processing. But few end users have the background, motivation or time to use
traditional programming approaches or the means to hire professional programmers
to create programs for them." (Rep enning and Perrone 2000 p 90)

Repenning and Perrone's (2000) work on programming by analogous example has

concentrated mainly on the development of simulations: how far can new simulations

be developed by re-using previous simulations? There are problems, as the authors

note. Just changing superficial features is not enough: any software that creates new

simulations would almost certainly require users to input quite detailed semantics,

which possibly brings users back to more programming language-like requirement.

Extreme programming

Another approach examines a different but relevant and related issue: that of software

production in a commercial environment. The approach, called XP or extreme

programming is built around what Ambler (2000) describes as ''four core values:

communication, simplicity, feedback and courage." (Ambler 2000 p 24)

The abstract defines extreme programming as a: "lightweight software process that is

aimed at small-sized teams operating in an environment of ill-understood and/or

rapidly changing requirements." (Ambler 2000)

Linked to the idea of extreme programming is the idea of pair programming: "Pair

programming is a practice in which two programmers work sirje by side at one

computer, continuously collaborating on the same design, algorithm, code or test."

(Williams and Kessler 2000 p 108)

XP uses pair programming and its proponents claim it can be used with reasonable

benefits by novice and expert programmers alike. Williams and Kessler cite the

payroll system developed using XP. The payroll code has 30,000 methods and 2,000

A J Bird 153

The teaching of programming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

classes (object oriented code) and was delivered al~ost on schedule: a notable

achievement in 1 arge scale software development.

Williams and Kessler (2000) conclude that: "both anecdotal and statistical evidence

indicate the pair programming is a powerful technique for generating high quality

software products." (Williams and Kessler 2000 p 114)

Chapter 4: Conclusion

This review of some of the projects that have looked at the teaching of programming

argues that researchers seem much more likely to look for a technical solution,

whether that lies in elegant animation of algorithms or con1plex tools for developing

and debugging code. Perhaps this should not be surprising: researchers interested in

programlning are quite likely to enjoy programn1ing and the challenge of

programming a system to support programming is not an easy one to resist. The

systems described in this chapter all seeln to have elements in common. They all

appear, at least in the articles and papers that describe them, to be very con1plicated.

Screen shots of the systems, often with multiple windows, do nothing to dispel that

idea. They all seem to be very specific to the institution or team that created them.

There is no indication that these systems would be easy to adopt or use in other

institutions.

Work on evaluating these highly personal systems varies but generally appears to be

largely empirical, with anecdotal evidence about the effectiveness of such systems in

teaching and learning. There is no little or no evidence about how students perceive

such systems. Are student users comfortable with these systems? How much effort did

students users have to put into learning to use the system? On the whole, these

questions are neither posed nor answered by researchers in the teaching of

programming. These are questions that should be addressed before claims of success

are made for languages or environments.

The next chapter looks at an elen1ent frequently not addressed (or even

acknowledged) in discussions around the teaching of programming, that of

A J Bird 154

The teaching ofprogramming to novice programmers: three approaches

Chapter 4 Some research efforts in the teaching of programming

pedagogical theories that mayor may not directly support certain approaches to the

teaching of programming. The author feels most strongly that this is a significant

shortcoming in much of the research around this area: researchers cheerfully engage

with difficult technical problems but rarely review or discuss a pedagogical theory

that could be said to underpin the artefact they have created and employed. Anyone

who is seeking to improve student learning must have some engagement with, and

understanding of, theories of learning. The next chapter reviews, very briefly, what

the author feels to be some key theories.

A J Bird 155

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

Introduction to Chapter 5

The two previous chapters have looked at the teaching of programming, focusing

either on the concepts of structured programming or the technology that supports that

learning (languages and development or debugging environments). In order to

develop a coherent approach to the teaching of programming, we need an overview of

some key ideas in learning.

This chapter will examine some of those theories: the narrow focus of this chapter

needs to be stressed. In the space available, the author can attempt only an outline

review of some of the ideas that seem relevant to the teaching of programming. The

theory of behaviourism, and the work of Thorndike and Skinner, is discussed. The rise

of cognitive psychology will be outlined. Key theories advanced by Vygotsky and

Bruner are also discussed. Finally the chapter will briefly describe the constructivist

and constructionist approaches to learning.

Roots of learning theories

It is useful to define some initial terms. In discussing learning theories we can claim

we are discussing both issues of epistemology and ontology. Epistemology is the

study of knowledge, the asking of questions about how it is we know what it is we

know. Ontology is the study of the external world, which forms the basis, in part at

least, of our knowledge. Human beings usually agree that there is a coherent world

external to ourselves that can be studied and learnt about, although there may be

disagreement about the exact nature of that external world. Philosophy has, from the

first, posited questions about that external world and the ways in which we know what

we know about it: "Philosophers have traditionally asked about the relation between

perception and knowledge." (Bird 1972 p 80)

These questions may at first seem remote from the psychologically-based theories

about individual learning that are debated currently but for millennia, questions about

learning were questions about human knowledge.

A J Bird 156

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

Magee points out that:

"for well over two thousand years, 110 distinction was made between what we now
call philosophy and what we now call science. People were simply tlying to
understand the world - and learning in the process about their process of learning."
(Magee 1997 p 245)

Directly or indirectly, learning theories owe some debt to earlier philosophical

approaches, as can be seen with behaviourism.

Behaviourism

Behaviourism can trace its roots back to Aristotle, with a strong empiricist tradition

providing a platform for the ideas of behaviourism. Empiricism elnphasises the

evidence of the senses. For empiricists, the mind is a blank slate and the nlind's

knowledge can be founded only on direct experience of the world.

Early behaviourist thought can be more properly termed associationism and can be

found, for example, in the work of Locke in the seventeenth century and James Mill in

the nineteenth. It can be argued that the flowering of associationist beliefs needed the

fertile soil of experimental psychology, available for the first time in the latter half of

the nineteenth century. Behaviourism can be regarded as the flowering of

associationist thought, although within behaviourism there are widely or subtly

differing viewpoints.

The \vork of Thorndike

E L Thorndike (1874 - 1949) is regarded as one of the early founders of

behaviourism. His work was deeply influential, as Miller (1991) notes:

"Both ofTllOrndike 's laws are excellent descriptive statements. [] A large part of
scientific psychology in America in the twentieth century has been based on, or
directed at, these two laws." (Miller 1991 p 227)

The question of how human beings perceive and interact with the world was one that

had much occupied philosophy. Different philosophers had arrived at various broad

explanations of why human beings behaved in certain ways or how they perceived the

A J Bird 157

The teaching oj programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

external world and reacted to painful stimuli, for example. Thorndike's work

concentrated on how sense impressions of the external world can become linked to

certain behaviours. Generally, for behaviourists, sense impressions of the external

world generate actions so there is an identifiable, quantifiable connection between

impressions and response. There is no need to invoke the concept of mind or features

of the mind such as personality.

Trial and error learning, argued Thorndike, showed that learning (at least as done by

animals) was not a product of thought but of simple actions that were either successful

or unsuccessful, the successful actions gradually being favoured over the

unsuccessful, producing a learning curve. From his work, Thorndike observed that

animal responses to a situation are strengthened by the quality of response to the

stimulus. An unpleasant response means that the animal is less likely to attempt the

action next time. Thorndike saw a direct correlation between the nature of the

response and the likelihood of the animal attempting the action again.

Thorndike formulated the law of effect, arguing that if all other things are equal, the

response that gains the animal the food (or some other satisfaction) will be favoured

or more closely connected with the situation. This leads to the idea of rewards and

non-rewards for the strengthening or weakening of behaviours.

For Thorndike, human learning and animal learning shared some characteristics:

complex learning behaviours in humans could be separated into simpler learning

mechanisms:

"Although always aware of the greater subtlety and range of human learning, he
showed a strong preference for understanding more complex learning in terms of
simpler learning principles, and for identifying the simpler forms of human learning
with that of animals." (Bower and Hilgard 1981 p 25)

Thorndike's work is called connectionism because of the importance of the idea of

connections, strengthened or weakened in some way.

A J Bird 158

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

Thorndike also examined the concept of motivation:

"Other things being equal, connections grow stronger if they issue in satisfYing states
oj affairs. Learning, whether by use or effect is Jacilitated by the identifiability oj the
situation and by availability oj the response." (Thorndike 1931 p 10 1)

Motivation then could be seen not as mysterious, inten1al given but as a biological

drive. Depriving animals of food increased their drive to eat, a basic biological need.

Their hunger made food a powerful reinforcer. However, this concept of biological

drive cannot explain all animal learning or hmnan learning but nonetheless, Thorndike

rejected fiercely any explanation of learning that required the invocation of mind or

personality.

After 1930, Thorndike revised his central ideas, in the light of extensive experiments

based on the laws of exercise and effect. Notably, experiments showed that the law of

effect had a specific corollary: under some circumstances, reward was a n10re

powerful reinforcer than punishment. Other revisions or developments to

connectionism included the spread of effect, belongingness (where a connection

between two elements is made more easily if they are perceived as belonging

together), associative polarity, stimulus availability and response availability. (Bower

and Hilgard 1981 pp 29 - 37)

In summary, it is important to note that Thorndike was deeply concerned with

educational issues and sought to improve pedagogical theory and practice. Much of

his work was designed to generate empirically founded principles through which

education might improve but Thorndike's emphasis on the law of effect, in its several,

increasingly fine-tuned versions, meant that there was little room for the role of

insight and understanding in education.

The work of Pavlov

Pavlov did not carry out his work on conditioned reflexes until he was in his fifties.

The idea of conditioned reflexes did not originate with Pavlov but he was the first to

study the phenomena in depth and to quantify relationships. precisely.

A J Bird 159

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

The central concept is that of the unconditioned stimulus (US) such as food, which

provokes the unconditioned reflex (UR) of salivation. The food is that combined with

another stimulus such as light or a sound. Eventually the light or sound will be the

conditioned stimulus (CS) provoking salivation as a conditioned reflex or response

(CR).

Pavlov also identified the phenomena of reinforcement, extinction and spontaneous

recovery. Extinction is the gradual falling away of the conditioned response where the

conditioned stimulus is presented without reinforcement. This extinction is reversed

after a period of time by the reappearance of the conditioned response (spontaneous

recovery).

Pavlov went on to look at the production of neuroses in a dog by presenting it with

increasingly difficult discrimination tasks. The creature's performances became

erratic and the animal showed signs of distress. Again, animal experimentation results

were taken to be a pointer to similar states or activities in humans. Pavlov believed

that human beings developed various psychiatric problems in broadly similar ways,

although he invoked neurological elements (cortical cell excitability or inertia) to

support his ideas.

Pavlov also explored second-order conditioning, where the conditioned stimulus is

paired with another stimulus (e.g. a light and a sound) and the conditioned response is

shown, after a number of reinforcements, to the new conditioned stimulus.

Pavlov's contribution to learning theory is immense. His work has passed into popular

culture as well as informing much ofthe work on learning done in the twentieth

century. We need to ask whether the work ofbehaviourists such as Pavlov have
-

anything to offer education in the twenty-first century? More specifically is there

anything of use to teachers of programming? We shall return to this point later.

A J Bird 160

The teaching o/programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

The ,york of Hull, Mowrer and Tolman

Hull (1884 - 1952) was a behaviourist much impressed by Pavlov's work. His

explanation of learning was based on conditioning but elTIphasised intervening

variables. Intervening variables are factors such as previous behaviour or the current

physiological state of the subject (hungry, thirsty and so on) Hull did extensive work

on quantifying intervening variable and their effects on behaviour, presenting his

theory most fully in his 1943 work Principles 0/ Behaviour:

"Hull's system had many points of superiority over other contemporary psychological
systems. It was at once comprehensive and detailed, theoretical yet empirically
quantitative." (Bower and Hilgard 1981 p 130)

Mowrer did extensive work on conditioned anxiety: what happens when a conditioned

response is associated with punishment? Mowrer identified six types of reinforcers

that could follow a response by the subject, in two types: negative and positive.

Positive reinforcers include hope and relief; negative reinforcers include fear and

disappointment.

Edward Tolman studied learning from a behaviourist viewpoint but his

acknowledgelTIent of the cognitive aspects of behaviour set him apart fronl what

might be termed 'pure' behaviourists. His opposition to the strongly expressed tenets

of behaviourism took the form of analysing behaviour with an awareness of ways in

which concepts like volition, knowledge and planning might be part of that behaviour.

Tolman's work forced the advocates of strong behaviourism (particularly Hull) to re

state or develop their theories to reflect the impact of such mentalist constructs as

purpose or inference. Tolman believed "that behavior should be analyzed at the level

0/ actions, not movements; that behavior was goal directed, or purposive ... " (Bower

and Hilgard 1981 p 326)

For detailed discussion of the work of Hull and Mowrer, see Bower and Hilgard 1981

pp 74 - 113. For discussion of schools of thought such as structuralism, functionalism

and associationism see Sternberg 1996 pp 7 - 10 and Richardson 1988 pp 41 - 63.

A J Bird 161

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

The work of B F Skinner

B F Skinner is a central figure in the field of animal conditioning, a behaviourist who

rejects the idea of a mind as the mediator of behaviours. There is no need to invoke

the nebulous or untestable concept of the leamer's mind, in order to understand

behaviour!

Skinner used animal subjects for his work but crisply rejected the notion that his work

was relevant only to animal behaviour:

"It is often pointed out that I have specialized in the behavior of rats and pigeons, and
it is usually implied that as a result my judgment about people has been warped, but
at least sixty per cent of what I have published has been about human behavior."
(Skinner 1978 p 16)

Skinner departed from what could be termed classical conditioning by identifying a

distinction between respondent and operant behaviour. Respondents are behaviours

that occur in response to known stimuli such as pupils reacting to light. Operants are

emitted responses where the stimulus is not present or not recognised. A discriminated

operant is where the behaviour is associated with a stimulus but is not a product of

that stimulus in the same way as a respondent.

Skinner's work on operant conditioning was an attempt to produce laws for a science

of behaviour that could be applied as well to humans as to pigeons:

"We must expect to discover that what a man does is the result of specifiable
conditions and that once these conditions have been discovered, we can anticipate
and to some extent determine his actions." (Skinner 1953 p 6)

Skinner (1953) agreed that humans resist, strenuously, any school of thought that

removes them from what they perceive as pre-eminence or advantage. He cites the

cases of the Copernican theory of the solar system and D~rwin's work: "We have not

wholly abandoned the traditional philosophy of human nature; at the same time we are far

from adopting a scientific point of view without reservation." (Skinner 1953 p 9)

Skinner (1953) examines possible objections to a science of behaviour. It is said that

we can never wholly comprehend ourselves because it is a reflexive act from which

A J Bird 162

The teaching ofprogramming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

we cannot disengage entirely. Skinner refutes this: ~'We have 110 reason to suppose

that the human intellect is incapable of formulating the basic principles of human

behaviour." (Skinner 1953 p 18)

Skinner (1953) also deals with the objection raised by the undeniable existence of

human uniqueness. This argunlent, says Skinner, will be weakened as the laws of

behaviour are developed, first as unique individual illnesses fell under the remit of

general advances in medicine.

Skinner (1953) points out that control of human behaviour is extensive in society and

a science of behaviour can, as it develops, inform such controls and increase their

effectiveness: "Any condition or event which call be shown to have an effect on behaviour

must be taken into account. By discovering and analysing these causes we can predict

behaviour " (Skinner 1953 p 23)

Skinner places his emphasis on the understanding of variables. Once we know the

variables that produce certain behaviour, we can ensure that behaviour is exhibited by

creating those variables. The example Skinner gives, early in his work, is the drinking

of a glass of water. Variables such as giving the subject salty food will increase the

certainty of the subject drinking the water. The external variables that give rise to

behaviour enable the behaviourist to undertake about Skinner calls caused or

functional analysis. The independent variables (or the cause of behaviour) related to

the dependent variable (the behaviour exhibited). The synthesis of these relations

gives the behaviourist an overall view of the subject as a behaving system.

The central concept in Skinner's operant conditioning is reinforcement.

Reinforcement is applied in a shaping procedure. If the subject is a rat, then the rat

receives a pellet of food firstly when it approaches that lever, then when it touches the

lever and finally receives the food only when it presses the lever this procedure may

take only a short time, less than an hour.

Skinner explored the concept of schedules of reinforcemen:t. He discovered that, if the

required behaviour was reinforced only intermittently, the required action was

A J Bird 163

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

performed more frequently. Skinner identifies the process of operant extinction. There

is a measurable orderliness in the rate at which the operant behaviour declines.

Skinner describes two kinds of reinforcers: negative and positive. Negative

reinforcement consists of removing something from a situation. Behaviourist

experimenters may also present a negative reinforcer or remove a positive reinforcer.

For humans, the reinforcing element is not necessarily obvious to the person who is

reinforced. It is not enough to enquire of human subjects what reinforces them.

Humans also can tolerate a long gap between behaviour and a primary reinforcer.

Skinner identifies the presence of conditioned reinforcers as a possible explanation.

Conditioned reinforcers are events that are linked to a reinforcer, such as turning on a

light (CR) when giving food (R) to a hungry pigeon. The use of delay or intervening

acts between an act and the primary reinforcement is a method of control that Skinner

identifies as widely used in institutional situations. Skinner identifies educational

successes as tokens that may be exchanged for a primary reinforcement such as

esteem or status.

People, argues Skinner, behave in certain ways, not because of the consequences that

will follow their actions, but because of the consequences which have occurred in the

past, dependent on that behaviour. "This is, of course, the Law of Effect or operant

conditioning." (Skinner 1953 p 87)

For more on classical and operant conditioning, see Kagan and Havemann (1980) pp

89 - 123, Atkinson, Atkinson and Hilgard (1983) pp 193 - 219.

In Skinner's view people are not to be praised or blamed for their actions: the actions,

and the people, are products of conditioning. Skinner's work gave rise to two main

applications. It was used to create systems of negative and positive reinforcement in

situations where control was required: prisons, schools and other institutions:

"Skinner in 1954 announced and embarked on a series of investigations and
inventions designed to increase the efficiency and of teaching arithmetic, reading,
spelling, and other school subjects, by using a mechanical device expected to do some
things better than the usual teacher can do them, while saving the teacher for tasks
that the teacher can do better." (Bower and Hilgard 1981 p 191)

A J Bird 164

The teaching o/programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

Skinner went on to identify, in a 1958 paper, the principles of programmed

instruction, principles that formed the basis for rapidly expanding educational effort.

Skinner's principles can be briefly summarised as:

• reach a detailed and clear understanding of the knowledge to be learned

• formulate a list of questions and responses

• engages the learner so that he/she is active

• provide feedback

• arrange the question so the right answers are more likely to occur

• let the learner proceed at his/her own pace

• provide reinforcement for the leamer's work

(Bower and Hilgard 1981 pp 191 - 192)

In the 1960s, programlned instruction becaIne one of the areas identified with the

emerging power of computing and the scene was set for the alliance of behaviourism

and computing, an alliance that continues, in various forms, to this day. For more on

programmed instruction, see Atkinson, Atkinson and Hilgard 1983 p 217. See also

Skinner (1962).

For Skinner, behaviourism and the careful application of its tools, techniques and

approaches are appropriate to human learning and behaviour and even required, given

some of society's problems. However, this strongly behaviourist view has not gone

unchallenged, notably the in the field of verbal behaviour, an activity generally

considered uniquely human. As Hayes (1994) says "By the late 1950s and early

1960s, academic psychologists were increasingly coming to view the behaviourist

approach useful but limited." (Hayes 1994 p 8) In the 1950s and 1960s, cognitive

psychology was also on the rise. This approach to understanding people's behaviours

can be neatly (if somewhat superficially) contrasted with behaviourism.

A J Bird 165

The teaching ofprogramming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

Cognitive psychology

In the early decades of the twentieth century, while behaviourism began its rise, the

field of cognitive psychology was also being marked out. As Sewell (1990) notes:

" ... three sets ofinfluences can be seen as relevant to the present context of
educational computing, namely educational philosophies and practice, cognitive and
developmental psychology, and computer sciences." (Sewell 1990 p 3)

Cognitive psychology can be seen as a reaction to the strong behaviourism that held

sway in the first half of the twentieth century:

"Cognitivism was seen as breaking behaviourism's hold on experimental Psychology,
supplanting it as the most productive theoretical orientation. [] More genuinely
revolutionary was the adoption of a new set of theoretical concepts, a new technical
language. Cognitive psychologists were thinking about thinking in quite a novel
way." (Richards 1996 p 67)

Cognitive psychology "deals with how people perceive, learn, remember and think

about information." (Sternberg 1996 p 2) Cognitive psychology is, as Stillings et al.

(1995) point out, a "remarkably diverse" field of research (Stillings et al. 1995 pI)

and includes studies of language acquisition and use, concept formation, mental

imaging, deductive reasoning and problem solving. (Thagard 1996 p 8)

Gross (1985) notes that, in the middle of the twentieth century, psychologists began to

study the information-processing aspects of human behaviour. This shift, along with

developments in linguistic and child development theory gave rise to what Gross

identifies as the American version of cognitive psychology, "an amalgamation of

ideas stemming from experimental psychology, verbal learning and psycholinguistic

research." (Gross, 1985 p 9)

Part ofthe cognitive psychology stream is the information-processing view of

cognition. See also Meadows (1994) pp 212 - 235, Stillings et al. (1995) pp 1 - 11 and

Roth (Editor) (1990) pp 586 - 587.

Other theories about learning sprang from work done with children, notably the work

of Pia get. For researchers such as Piaget, research on the child learning is also the

A J Bird 166

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

study of general rules of n1ental development. For ~ummaries of Piaget's work see

Meadows (1995) pp 33 - 40, Shaffer (1985) pp 57 - 62, Munsinger (1975) pp 16 - 17

and 99 - 117 and Meadows (1994) pp 198 - 212.

Researchers such as Vygotsky studied the ways in which children learn and produced

general theories oflean1ing. The work ofVygotsky is discussed in the next section.

The ,york of Vygotsky

Vygotsky's research is finnly situated in the political, educational and ideological

environment in which Vygotsky worked. As Richardson notes "First and foremost,

Vygotsky traces his ideas to Karl Marx." (Richardson 1988 p 73)

Sacks (1989) says that Vygotsky's work was so ahead of its time in the 1930s that a

contemporary described him as a visitor from the future. The nature and focus of

Vygotsky's research has provided the basis for extensive work on language, learning

and child development and influenced figure such as Jerome Bruner, whose work is

discussed later in this chapter. (Sacks 1989 p 50)

For Vygotsky, there are three ways to view the relationship between development

(particularly child development) and learning. Vygotsky describes as Piagetian the

view that development precedes learning:

"Because this approach is based on the premise that learning trails behind
development, that development always outruns learning, it precludes the notion that
learning may playa role in the course of development or maturation of those
functions activated in the course of learning. Development or maturation is viewed as
a precondition of learning but never the result of it." (Vygotsky 1978 edition p 80)

The second view, says Vygotsky, sees learning as development. Learning drives

development and without learning there is no development.

The third theoretical view of these two aspects is that they must be combined in son1e

way. Vygotsky sees the analysis of these three viewpoints as generating two relevant

questions: " .. .first, the general relation between learning'and development; and

A J Bird 167

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

second, the specific features of this relationship when children reach school age."

(Vygotsky 1978 edition p 84)

Vygotsky fonnulated the important and influential concept ofZPD (Zone of Proximal

Development). This is particularly relevant for fonnal schooling. Vygotsky says that a

child has at least two developmental levels (actual and potential) that must be

examined to detennine the relationship between the developmental process and

learning capabilities. "The first level can be called the actual developmental level .. . "

(Vygotsky 1978 edition p 85) The ZPD is the:

" ... distance between the actual developmental level as determined by independent
problem solving and the level of potential development as determined through
problem solving under adult guidance or in collaboration with more capable peers."
(Vygotsky 1978 edition p 86)

For Vygotsky, this concept was central to a full understanding of a child's

developmental stage. It is not sufficient to examine only what the child can do

unaided: the researcher or teacher must look at what the learner could do with some

competent support.

This theory, for Vygotsky, could be used to define 'good learning' which is learning

that is in advance of development. Learning also creates the ZPD (for example,

interacting with a social group begins the long process of developing an internal sense

of morality, a conscience, through the adapting of external rules of fairness and good

behaviour). For Vygotsky:

" ... properly organized learning results in mental development and sets in motion a
variety of developmental processes that would be impossible apart from learning.
Thus learning is a necessary and universal aspect of the process of developing
culturally organized, specifically human, psychologicalful'{ctions." (Vygotsky 1978
edition p 90)

The concept ofZPD has proved central to thinking about learning and pedagogical

practice. It infonns a number of views about teaching and learning, notably

constructivism, discussed later.

A J Bird 168

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

Another key aspect ofVygotsky's work is its emphasis on the social aspects of

learning development. As Meadows (1994) notes, Vygotsky argues that any feature of

higher mental functioning appears first in a social context and is then internalised,

moving from the interpsychological to the intrapsychological: "This emphasis on the

primacy of the social world in cognitive development is very different from the

emphases of the Piagetian and information-processing approaches." (Meadows 1994

p 237)

This belief that development and lean1ing can be seen as a product of effective social

interaction and partnerships means that the question of what is innate (in tenns of

cognitive structures) is no longer an issue. Vygotsky's view is that children do not

develop sophisticated concepts and understandings by themselves but:

" ... rather the child is helped by the adult in the 'guided reinvention' of accumulation
of knowledge and ways of thinking which preceding generations have constructed.
The skills required of the child are of observation and imitation, and of generalisation
and decontextualisation, but even these fundamental skills develop under the
fostering support of social interaction." (Meadows 1994 p 239)

For Vygotsky, internal mental processes are a product of socialisation and cannot be

divorced from it. The most private thoughts still have, in some essence, a social

nature. This internalisation of the external, social world means that the cultural tools

for cognition are also absorbed and become part of the child's mental repertoire.

Vygotsky work continues to be relevant: the concept of ZPD is one that can be

modelled perhaps quite productively, in the organisation of materials for the teaching

of programming. The work of Bruner is also of interest and is discussed in the next

section.

The ,york of Bruner

Like Piaget, Jerome Bruner, in his initial work in the early 1960s, proposed clear

stages in the development of thought but unlike Piaget, Bruner made language a

central feature of those stages: a Vygotskyian view.

A J Bird 169

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

Bruner described three modes of representation: enactive, iconic and symbolic.

Enactive focuses on actions, like Piaget's sensorimotor period. Iconic is the child's

representation of the world around him or her in fixed images (like the preoperational

stage) and the symbolic stage is that of using language and symbols (as with the

operational stage).

The progression of stages is from enactive to symbolic but a key element of this

progression is the use of what Bruner terms 'cultural amplifiers'. Cultural amplifiers

are elements of society and civilisation that extend human abilities in some way. Such

amplifiers might be of our physical capacities (machinery and tools) or of our thinking

capacity (stories, theories and languages).

Richardson (1988) notes that by the 1970s Bruner had adapted his original ideas and

was no longer "a stage theorist." (Richardson 1988 p 72) In Child's Talk (1985)

Bruner instead talks of cognitive endowments that support the child's language

development:

"These four cognitive "endowments" - means-end readiness, transactionality,
systematicity, and abstractness - provide foundation processes that aid the child's
language acquisition." (Bruner 1985 p 30)

Bruner than goes on to take an explicitly Vygotskyian view of how children continue

to develop language. The LAD (Language Acquisition Device) must, in Bruner's

view be accompanied by a LASS - a Language Acquisition Support System, which

involves adult and child in subtle and continuing interaction, a negotiated interplay of

conversation and responses.

Like Vygotsky, Bruner believed that the expert adult could with thoughtful

intervention foster learning. Bruner and his colleagues called such intervention

'scaffolding'. This concept has strong affiliations with Vygotsky's concept of the

ZPD.

A J Bird 170

The teaching ofprogramming to novice programmers: three approaclies

Chapter 5 Learning theories: an overview

Malim and Birch (1998) sum up the features of sC'.lffolding: recnlitment, reduction of

degrees of freedom, direction maintenance, marking critical features and

demonstration. (Malim and Birch 1998 p 472) Recruitment is the gaining of the

child's interest. Reduction of degrees of freedom refers to the breaking down of tasks

into smaller steps, "reducing the number of constitue1lt acts reqllired to reach

solution." (Wood, Bruner and Ross 1976 p 98)

The adult is also responsible for direction maintenance, the ensuring of motivation in

the child. Marking critical features means that the child needs to know what elements

of his or her efforts are most appropriate to the task in hand. Demonstration is the

adult showing the child a correct or improved solution, giving them a model of

success, to inlprove their subsequent efforts. (Wood, Bruner and Ross 1976)

Work done has shown, say Malim and Birch (1998), that "Peer tutoring and

cooperative group work have been found to be appropriate means of providing

scaffolding behaviour within a classroom." (Malim and Birch 1998 p 485)

The work of Bruner on scaffolding springs out of his work on child development but

has implications for many teaching or learning situations, in a more general from.

Like ZPD, we can use the concept in teaching adults as well as children. flow we use

it is a more complex and demanding question.

In learning theories, we can see a move from the individual's behaviour

(behaviourism in various guises) to the whole individual (cognitive psychology) to the

individual within a social situation. One theory or view that places its main emphasis

on the social nature of learning is constructivism. This is examined in the next section.

Constructivism

Constructivism can be defined, broadly, as the alternative to a positivist view of an

external reality, a reality that can be objectively agreed upon and exanlined. In such a

worldview, there are appropriate truths, which are absolute and can be absolutely

agreed upon and transnlitted fronl teacher to learner.

A J Bird 171

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

In contrast, constructivists argue that "Concepts cannot simply be transferred from

teachers to students - they have to be conceived." (Steffe and Gale (Editors) 1994 p 5)

Constructivists also reject the behaviourist approach:

" ... learning is not a stimulus-response phenomenon. It requires self-regulation and
the building of conceptual structures through reflection and abstraction." (Steffe
and Gale (Editors) 1994 p 14)

Constructivism's hypotheses can be summarised as: (i) Learning (the application of

relevant schemata) is a flexible process that is able to take account ofthe random

variety of the real world. (ii) the development of schemata is more than the simple

listing of attributes or the construction of a direct model of the experience: it is a

distilling of the experience into abstraction. (iii) Behaviour takes account of the

subtleties of the developed schemata, rather than being no more than a response to

stimuli that is as predictable as the stimuli itself.

It would be inaccurate to identify the constructivist approach solely as a late-twentieth

century reaction to the work ofthe behaviourists in earlier decades.

Dewey (1933) states explicitly a constructivist approach:

"The more a teacher is aware of the past experiences of students, of their hopes,
desires, chief interests, the better will he understand the forces at work that need to
be directed and utilisedfor theformation of reflective habits." (Dewey 1933 p 36)

Dewey (1933) also sees the role of the teacher as a constructivist one:

"his province is rather to provide the materials and conditions by which organic
curiosity will be directed into investigations which have an own and that produce
results in the way of increase of knowledge ... " (Dewey 1933 p 40)

The work of Bruner and Vygotysky, spanning the 1930s to the present day, discussed

earlier in this chapter, can also be seen as constructivist in spirit, with the emphasis

being on individual development within a social environment: learning fostered by,

and through, interaction with others.

One key element of constructivism is the initial exploration of what the learner

understands or believes, before some kind of learning is attempted. The idea of

A J Bird 172

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

'starting from where the learner is' is not new. Pr~ctical exploration of the

concepts/understandings already held by a person (before new constructs are required

ofhimlher) has been a feature of much educational research:

"As early as the beginning of this century, Stanley Hall started a program in the
United States to investigate children's ideas of natural phenomenon such as heat,
frost and fire." (Duit 1994 p 272)

Specific examples discussed by Duit (1994) inclu.de studies of students' conceptions

of concepts in physics such as light. If students are asked how can you see the objects

around you? What part does light play in seeing? the range of replies will be

interesting and inventive. Duit looks at samples of responses to these questions and

analyses them. Duit describes the alternative frameworks revealed by such questions.

These frameworks are often entirely unscientific but have a rightness about thenl (for

the person holding framework) that makes them strong structures, not easily

dismantled by the provision of the scientific (or 'correct') explanation.

Constructivism, says Duit (1994), acknowledges the power of such pre-existing

frameworks and works with those structures rather than seeking only to destroy them.

Constructivists argue that educators can adopt an approach that allows the scientific

frameworks to be built on and around the less formal frameworks that serve

adequately in everyday life.

Duit (1994) goes on to discuss the idea of the learner's resistance to constructivist

methods. Learners, in their anxiety to know the right answer and move on (either

away from the topic altogether or onto something more interesting/less threatening)

may not be happy to explore their current concepts as a basis for further

understanding.

What Duit (1994) identifies is a requirement for a repeated exploration and echoing of

the students' ideas as they form and are shaped.

A J Bird 173

The teaching ofprogramming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

For Duit, part of the constructivist approach to learning is a questioning of the process

of learning development: " ... another important aspect [is] the significance of

teachers' and students' conceptions of the learning process." (Duit 1994 p 283)

Wood (1994) argues, "As an emerging epistemology, constructivism not only differs a

different view of cognition in classrooms, but also has strong implications for

pedagogy." (Wood 1994 p 333) The problem with this approach, laudable though it is,

is that the information transfer process (teacher to learner) is not done away with. The

constructivism is apparent not real, as there is no time or resources for the learner to

construct individual understandings from the environment.

For Wood (1994), a genuine constructivism can be identified only when the students

are provided "with an opportunity to individually construct their own ... meanings and

to rely on their own ways o/thinking to make sense of the world." (Wood 1994 p 339)

For Strommen (1992):

"Constructivism emphasizes the careful study of the processes by which children
create and develop their ideas. Its educational applications lie in creating curricula
that match (but also challenge) children's understanding,fosteringfurther growth
and development of the mind."
(http://www.ilt.columbia.edulK12/livetextidocs/construct.htmI30/07/99)

Constructivism as a foundation for educational practice is firmly established,

particularly in America (See particularly

http://www.inform.umd.edu:8080IUMS+StatelUMD

Projects/MCTP/WWW/Essays.html 30/07/99)

Much effort has been concentrated on constructivist practice in teaching those below

the age of 16 but Jonassen et al. (1993) argue that learning environments based on

constructivist principles are not suited to all learning situations and are most

appropriate for a university setting. Perhaps in a university setting, the opportunities

to establish genuinely constructivist ways of learning are both more available and

manageable, for a variety of practical reasons. Such reasons certainly include the ages

A J Bird 174

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

of the learners, class sizes and the structures avail~ble within the university

environment (lab sessions, tutorial help and so on).

Constructionism

There are variations on the theme of constnlctivist learning. Constructionism can be

seen as developp1ent of the constructivist view. Shaw (1996) states:

"Constructionist thinking adds to the constructivist viewpoint. ~Vhere constructivism
casts the subject as an active builder and argues against passive models of learning
and development, constructionism places a critical emphasis on particular
constructions of the subject which are external and shared."
(http://el.www.media.mit.edu/people/acs/chapterl.html 30/07/99)

Gergen (1994) identifies as exogenic the teacher to learner information transfer

approach and contrasts this with the endogenic approach, where the emphasis is on

the rational capacities of the individual. With this, Gergen (1994) identifies three key

problems. Firstly, for a learner to learn frOlll the extenlal world, there must be some

framework for understanding what is happening and why, even at an elementary level.

"To draw conceptual conclusions from observation requires a set of categories to be

in place." (Gergen 1994 p 21)

Secondly, as learners or teachers we can never experience what another person

experiences. We have, at best, an experience of their experience. We cannot,

fundamentally, know someone else's mind. Finally, Gergen describes the problem of

meaning, which, it could be argued, does not reside externally in the text but is

constructed (or de-constructed) in an number of ways by the reader.

For Gergen (1994) these three problems lead to a social constnlctionist orientation to

knowledge. He elaborates his arguments around the concepts of meaning and

language. For Gergen, language has a vital communal function. Meaning in language

is context-dependent. These elements dictate that language is given its validity by a

process of social approval or agreement.

For Gergen (1994), there are no pedagogical inlperatives'that arise as givens from

constructionist theories. Constructionism has implications for beliefs about knowledge

A J Bird 175

The teaching o/programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

but does not dictate educational practice (in sharp contrast to the educational

pronouncements of, say, behaviourism). Knowledge, for Gergen (1994), seems to

reside in the unfolding, through time, of a dialogue: " ... What we count as knowledge

are temporary locations in dialogic space." (Gergen 1994 p 30) For constructionism

the key concept is that of dialogue.

For constructionists, the dialogue about what is truly out there in the external world

for both teacher and learner is meaningful and a relevant educational activity:

"Constructionist approaches to inquiry ... have centred on the idea of worlds being
constructed, or even autonomously invented, by inquirers who are simultaneously
participants in those same worlds." (Steier 1994 p 70)

In a sense, the philosophical wheel has turned full circle, with the certainties about the

external world and the humans in it being replaced by a belief that what is 'out there'

depends on who you are.

Ifwe identify two views, constructionism and constructivism, can we identify

similarities? Both share scepticism about the ability of behavioural sciences to tell

humans how humans learn and why they behave as they do and a questioning attitude

to the empiricist view of what legitimately constitutes knowledge. Constructionism

has a more radical approach to that which is studied: the very stuff of education, the

external world, is no more than the basis of dialogue.

The contrast between constructivism and constructionism lies in the ways in which

the ideas associated with each might be used, within an educational context.

Constructivism has something to offer in terms of creating or designing educational

experiences. Constructionism deliberately moves away from offering guidelines and

focuses on the unfolding of dialogue, which is the learnil}g itself.

A J Bird 176

The teaching of programming to novice programmers: three approaches

Chapter 5 Learning theories: an overview

Chapter 5: Conclusion

We can see that asking questions about what it is to think, to interact with the world

and what that world that we seem to perceive tnlly is, are questions first of philosophy

and then of psychology.

Psychology could be said to date back to the nineteenth century, with behaviourism

being a central aspect of the intersection between psychology and questions of

learning. In the twentieth century, behaviourism becan1e one school of thought among

many, some of which owed a debt to it, others which sought to move away entirely

from its theories.

The work of Pia get, Vygotsky and Bruner saw the lean1er in very different tenns to

that of behaviourism. For Piaget, the learner's mind was present, in its own unfolding

complexity. For Vygotsky, the learner's mind was present, with its complexity

fostered by the social environment around that learner. For Bruner, the learner's mind

is present and its cognition is amplified by the various means made available to that

learner by his/her culture. These are, of course, simplifications of an immense body of

work.

What we can see from this chapter is that there is no definitive, all-encompassing

theory of learning. There is no single theory that will meaningfully and productively

underpin all types of educational software and all possible uses of that software. There

are potentially fruitful approaches to learning that may have resonance for some

models of educational software, such as constructivism for more exploratory CAL

such as simulations or models. What this chapter has identified is some of range of

learning theories available (and the chapter does not pretend to be exhaustive) to those

who teach and use software in their teaching.

The next chapter discusses two main issues: it examines the role and nature of CAL in

general and looks at the two earlier uses of software to support the teaching of

programming, undertaken by the author, including the us.~ of tutorial CAL, written by

the author.

A J Bird 177

The teaching o/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Introduction to Chapter 6

This chapter briefly examines the various forms of CAL (Computer Aided Learning)

software, from the earliest drill and practice approaches to artificial intelligence and

intelligent tutoring systems. This leads onto the work done by the author in writing

tutorial CAL and using it with students.

After using tutorial CAL, the author then moved away from the traditional style of

page turning CAL and developed a small on-line help program. The chapter presents

an overview of these two main approaches and describes some of the reactions of

participants to these different styles of CAL. At the end of the chapter, the author

draws some general conclusions about these two research efforts.

A note on terminology

There are many acronyms available for those wishing to describe the use of software

to support teaching and learning activities. Different acronyms have come into

fashion, only to be succeeded by a newly popular version. CAL is generally held to

stand for Computer Aided Learning or Computer Assisted Learning. Other versions

include CAl (Computer Aided Instruction), CMI (Computer Managed Instruction)

and CBT (Computer Based Training). In some cases the acronym may more

accurately denote the type of software and its pedagogic purpose. The author has

chosen to adopt the acronym CAL and will use it throughout this and other chapters to

denote the general educational software.

Classifying types of CAL

During its life in the second half of the twentieth century,_ CAL has been put to many

educational uses, over a wide range of subject areas for a diverse range of student and

pupil audiences. There is not room here to attempt even a partial review of the rich

collection of CAL that has been produced by Government-funded projects and

educational initiatives, as well as by individuals, schools, colleges and universities, in

America and the UK. For a discussion of some of the key projects in the US, see

A J Bird 178

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Appendix F. For a discussion of the work of the NCET (National Council for

Educational Technology), and other Government initiatives in the UK, such as the

NCET and TLTP, see Appendix G.

Barker (1989) says:

"the phrase 'Computer Assisted Learning' (CAL) has come to be regarded as
something of an umbrella term that is used to describe, collectively, the many
different teaching, training and learning applications of computers." (Barker 1989 p
7)

Watson (1987) says:

"Any attempt to define Computer Assisted Learning (CAL) is fraught with interesting
problems. A perusal of the literature in the seventies finds much confusion between
Computer Aided Instruction (CAl) and Computer Assisted Learning (CAL). []
Computer Managed Learning (CML) is clearly a separate and distinct area, that of
using the computer to manage the learning sequence." (Watson 1987 pp 10-11)

Payne et al. (1980) state "It is possible to group applications under a series of

umbrella headings." (Payne et al. 1980 pI) These umbrella headings identify the

roles of a computer in education as: presenting simulations, acting as a "calculating

aid" (Payne et al. 1980 pI) and as a medium for "instruction, drill and

demonstration ... " (Payne et al. 1980 p 2) They also acknowledge the computer's role

in managing the learning environment and performing administrative tasks.

Bradshaw (1985) says, "The two variables of teaching style and variety of computer

program design make the description and classification of CAL difficult." (Bradshaw

1985 p 13) Bradshaw goes on to identify a n10del of teaching and learning in which

CAL is described by its function within a particular aspect of phase of the model,

rather than classified as a single entity.

O'Shea and Self (1983) classify CAL programs by approach and distinguishing

features. For O'Shea and Self, what they term linear programs represent the

behaviourist model of CAL. Branching programs use "Corrective feedback [and]

tutorial dialogues ... " (O'Shea and Self 1983 p 68) Gen~rative computer-assisted

A J Bird 179

The teaching ofprogramming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

learning is the drill and practice model, using "task difficulty measures [and]

answering student questions ... " (O'Shea and Self 1983 p 68)

O'Shea and Selflist simulation, games and problem solving as examples of CAL but

make more precise distinctions, listing also mathematical models of learning, the

TIC CIT and PLATO projects, emancipatory modes, (where the computer is an

information source and a "labour-saving device" (O'Shea and Self 1983 p 69) and

dialogue systems that use "tutorial strategies [and] natural language ... " (O'Shea and

Self 1983 p 69)

Rushby (1979) defines the terms CAL and CML very closely:

"While CAL concentrates on the student and his learning, CML is concerned with
helping the teacher and the student by relieving them of the some of the routine, time
confirming management processes." (Rushby 1979 p 11)

In terms oflearning, Rushby (1979) describes CAL as the presentation oflearning

materials on the computer whereas in CML: "The computer is used to direct the

student from one part of the course to another and the learning materials themselves

are not kept in the machine." (Rushby 1979 p 15)

A further distinction is made in terms of the material: CAL is concerned with the

presentation of "rapidly changing, highly detailed information" (Rushby 1979 p 17)

where CML "systems operate with less detailed information." (Rushby 1979 p 17)

For Rushby (1979), CAl implies "an application in which the computer is used to

administer drill and practice examples or programmed instruction." (Rushby 1979 p

18)

Rushby also describes CAL as being embedded in a framework of four educational

paradigms: instructional, revelatory, emancipatory and conjectural. The instructional

paradigm, says Rushby (1979), can trace its antecedents to the work of Skinner and

other behaviourists. One example ofthis paradigm in action is instructional dialogue

and Rushby (1979) gives a sample of interactive, instructional dialogue. (Rushby

A J Bird 180

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

1979 P 24) Rushby (1979) describes drill and praGtice as falling within the

instructional paradigm.

The revelatory paradigm includes, for Rushby (1979), the use of simulations and

software that embodies underlying models:

"As the student interacts with the model hidden within the computer he develops a
feeling for its behaviour under various circllmstances and so is led to discover the
rules which govern it." (Rushby 1979 p 28)

The emancipatory paradigm allows that son1e of the work of learning may not be

wholly relevant or contribute meaningfully to the overall experience. The computer

can then be used to free the student fron1 tasks that do not contribute to the learning

process. In the elnancipatory paradigm, what Rushby (1979) terms "serendipity

learning" (Rushby 1979 p 34) is also supported.

The conjectural paradigm is where the computer is used to "assist the student in his

manipulation and testing of ideas and hypotheses ... " (Rushby 1979 p 31) Part of this

actually is what Rushby (1979) calls model building, noting that "There are many

similarities between the process of simulation used in revelatory CAL and the

modellingfound in conjectural CAL." (Rushby 1979 p 32)

Kemmis et al. (1977) discuss in detail the educational paradigms noted above and

examine the "shortfalls in achievement of the potential of CAL ... in relation to each of

the paradigms." (Kemmis et al. 1977 p 23) For each of the paradigms, Kemmis et al.

(1977) describe the key concept, the role of the computer, the assumptions that can be

said to underpin the CAL design and subject and describe an example of specific CAL

closest to that paradigm.

Kemmis et al. (1977) describe the emancipatory paradigm as the one not fully

articulated. This paradigm concerns itself with the reducing of what the authors term

the "inallthellticity of student labour." (Kemmis et al. 1977 p 29) For the full

discussion, see Kemmis et al. 1977 pp 23 - 33.

A J Bird 181

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Straker (1989) classified CAL for primary school children by the activities potentially

linked to the classroom use of software. She noted:

"[Programs] can stimulate a wide variety of tasks: craft activities, scientific
experiments, creative writing, mathematical investigations, historical research,
drama, music or even PE." (Straker 1989 p 12)

Opacic and Roberts (1985) described the results of a survey done on CAL usage in

secondary schools. They discovered that 24% of CAL use was in science subjects and

6.4% in non-science sUbjects. They note that the applications being used were "of the

simplest kind" (Opacic and Roberts 1985 p 67) such as drill and practice in geography

and revision exercises in physics but go on to state:

"More optimistically, the small sample did infact manage to exemplifY all the
paradigms []: instructional- drill and practice; revelatory - simulation; conjectural. -
data processing; and emancipatory - computation offieldwork data." (Opacic and
Roberts 1985 p 67)

Barker and Yeates (1985) distinguished between CAL functions such as management

of learning, testing and dissemination of material, among others, and CAL modes.

They identified seven CAL modes: " ... Problem solving ... Drill & practice ... Inquiry

mode ... Simulation ... Gaming ... Tutorial mode ... Dialogue mode ... " (Barker and

Yeates 1985 p 28) Coburn et al. (1982) note that the general CAL "diet consists of

drill and practice, tutorials and demonstrations." (Coburn et al. 1982 p 21)

Barker (1989) identifies "three important models of CAL (Barker 1989 p 14) He

describes these as informatory, exploratory and instructional. Barker classes the first

type as the simplest, where the CAL presents information. The second model draws

on the concept of the microworld such as that of the LOGO programming language.

Barker notes, "essentially, the methodology involved in this realization of CAL is

based upon the 'microworld' approach advocated by Papert." (Barker 1989 p 16) The

third approach to CAL is to us the computer to deliver courseware.

Barker distinguishes courseware from programmed instruction: courseware is ''far

more sophisticated." (Barker 1989 p 16)

A J Bird 182

The teaching o/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

In fact what Barker goes on to describe is in fact more like an intelligent tutoring

systen1:

"First, the courseware involved must be adaptable ... [] Second, in order to be
adaptable the courseware must attempt to assess how well the student is (a) acquiring
the skills, and (b) assimilating the knowledge that constitute the domain of
instruction." (Barker 1989 p 16)

Barker and Yeates (1985) draw up a list of what they term instructional n10des, giving

a range of broad CAL types: " ... tutorial packages ... drill and practice packages ...

inquiry based systems ... dialogue based packages ... simulation packages ... gaming

packages ... testing, monitoring and reporting packages ... integrated packages."

(Barker and Yeates 1985 pp 75 - 76) They note that this classification n1ay be less

useful than others because one package might cOlTIbine a number of the functions

listed above.

In summary, we can see that are many ways to classify CAL. We can describe CAL

by the subject area it covers. We can describe it in terms of the educational paradiglTI

it embodies (instructional, revelatory, conjectural or emancipatory). We can classify

broadly by the task it accomplishes: does it manage the learning environment, present

material for drill and practice, create and run models or simulations or carry out basic

administrative tasks (keeping track of scores and collating results, for example)?

What the above discussion does not address is the rise of network technology.

Depending on how one views hardware and software developments, the Internet and

all its rich and variable diversity, is 40, 20 or 10 years old.

(http://www .peak.orgl-sechrest/talks/intemet.howto.html 10102/2004) Also, the

ability of institutions to create, manage and use their own network opens up new

possibilities for CAL.

The new possibilities can be seen in the CTI's (Computers in Teaching Initiative)

view of CAL. The CTI identifies CAL as:

"lecture notes and other resource material posted on the Web to help students
prepare for tutorials ... information retrieval exercises llsing online reports, journals
and databases, electronic archives, hypertext and hypermedia
documentsinteractive CAL courseware - developed in-house, bought off the peg,

A J Bird 183

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

or tailored to your own requirements ... []. .. reinforcement of important ideas with
drill and practice packages or self-assessment exercises ... [] ... collaborative projects
with other institutions using email, videoconferencing, a shared Web site or a
metropolitan area network ... [] ... students acquiring a range of IT skills - in email,
word processing, presentations, spreadsheets, databases, and different types of CAL -
as part of their coursework ... [] ... simulation software to model real-world situations
or run experiments which would be impractical in the laboratory ... introducing new
concepts with a computer microworld or problem-solving environment, which allows
students to structure their own learning ... [] "
(http://www.cti.ac.uklinfo/handbook.htmI19/08/1999)

(For more information on the cn and its work see Appendix G.) This broad

definition of CAL is worth quoting at length as it illustrates how the categories of

CAL have expanded. The discrete categories seen in earlier definitions remain, and

some ofthe elements identified previously, such as simulations, still have a place but

the range of technologies that can be seen as CAL has grown and become much more

sophisticated.

The impact of the Internet means that some educational activities can be supported in

ways not previously feasible. Videoconferencing between partner schools in different

countries is one example. As Kent and McNergney (1999) note, "Technologically

speaking, there are increasing numbers of ways for teachers to react to students in

on-line models a/instruction." (Kent and McNergney 1999 p 38)

Classifying CAL is not necessarily an easy task: variations in terminology may

obscure both differences and similarities. The categories become blurred on close

examination but, as stated earlier, the modes proposed by Barker and Yeates (1985)

offer a coherent basis for discussion. A description of each category of CAL is offered

in this chapter but due to lack of space, only the briefest of outlines can be offered.

The next sections review drill and practice CAL, games, simulations and modelling,

tutorial CAL, intelligent CAL, microworlds and CAL and collaborative learning.

A J Bird 184

The teaching ofprogramming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Drill and practice CAL

Drill and practice software is designed to give students the opportunity to work

through examples or problems, to reinforce a concept or concepts taught elsewhere.

The earliest drill and practice was in arithn1etic. (Suppes et al. 1968) This type of

software can be seen as automating the role of the teacher in setting (or presenting)

and marking practice problen1s for students.

Scaife and Wellington (1993) note: "This mode of learning has a long history

associated with words such repetition, rote learning, drill, reinforcement and

programmed learning." (Scaife and Wellington 1993 p 37)

As Coburn et al. (1982) note "Drill and practice programs are probably the most

common, best known and most disparaged educational application of computers."

(Coburn et al. 1982 p 21) Underwood and Underwood (1990) say, "Drill-and-practice

programs abound." (Underwood and Underwood 1990 p 29)

Nash and Ball (1983) describe this type of CAL as CAL "designed to modify a

student's knowledge or behaviour in a manner completely prescribed by the teacher. "

(Nash and Ball 1983 p 99) CAL dating from the 1960s was mainly of the drill and

practice type, although proponents and pioneers of CAL had great ambitions for the

further developments. (Coburn et al. 1982 pp 170 - 171) and Suppes et al. (1968):

" ... we feel that the potentialities and prospects for computer-assisted instruction are
great. The probability that this approach will bring about a major revolution in
education are high." (Suppes et al. 1968 p 7)

Barker and Yeates (1985) stated that "virtually any subject" (Barker and Yeates 1985

p 327) could be taught using CAL, although they did add a caveat: "We do not claim

that CAL can be used to teach all aspects of all subject disciplines." (Barker and

Yeates 1985 p 327)

A J Bird 185

The teaching ofprogramming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

As Coburn et a1. (1982) note, the CAL available in the 1960s: "could not do as much

as had been claimed for it. Mostly, it was used as a way of helping students learn rote

skills by providing reasonably flexible drill and practice." (Coburn et a1. 1982 p 171)

Schuell (1990) notes, "Much of the early instructional software was criticised for

being little more than electronic page turners." (Schuell1990 p 39)

The Stanford Project, while significant, was only part of the boom in CAL during the

early 1960s. Other projects included the Yale University's Talking Typewriter

designed to teach reading and writing to 3 year olds and the Individually Prescribed

Instruction projects, based in a Pittsburgh school. (Coburn et a1. 1982 p 170) Inglis et

a1. (1999) note:

"The PLATO Project at the University of Illinois at Urbana was one of the best
known examples of a computer-assisted instruction system. The success of the PLATO
Project was largely due to its innovative use of technology." (Inglis et a1. 1999 p 8)

PLATO was also an example of CAL that crossed CAL categories. It was a system

which was designed to: "support many instructional strategies such as gaming,

simulations, testing, drill-and-practice, and self-paced programmed instruction."

(Hofstetter 1979 p 123) For further discussion of PLATO, see Appendix F.

Drill and practice CAL has its roots in programmed instruction. In the 1960s,

programmed instruction became one of the areas identified with the emerging power

of computing and the scene was set for the alliance of behaviourism and computing,

an alliance that continues, in various forms, to this day. For more on programmed

instruction, see Atkinson, Atkinson and Hi1gard (1983) p 217. See also Skinner

(1962).

Any review of material on programmed instruction published during the 1960s shows

the huge investment being made, both financially and educationally by governments

(notably the American government) and educational establishments. The drill and

practice CAL had some success but the uptake of CAL lagged behind the enthusiastic

rhetoric of CAL researchers and early adopters, for a number of reasons. For a brief

A J Bird 186

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

discussion of these reasons, based on a survey by .the Educational Testing Service in

1972, see Coburn et al. (1982) pp 170 - 171.

Crook (1994) argues that there are educational justifications for using the drill and

practice software within a teaching context. Such software is popular with teachers

and can be seen as supporting learners in specific ways: presenting worked exanlples,

allowing students to repeat material, in ways that would not be possible for a teacher

who must teach a large class. (Crook 1994 p 14)

In sunlmary, drill and practice software is where CAL began. Such software may have

some relevance to the learning process today but it rapidly became apparent that the

"super teaching machine, the teaching computer." (Calvin 1969 p 15) had much lTIOre

to offer than even the scoring of student achievement on a series of problems or tasks.

Simulations, modelling and games

Games and simulations need not be computer-based, although the processing power

of the conlputer undoubtedly lends itself to the creation and running of complex

simulations that could not be realistically attenlpted in the classroom or lecture

theatre, given time and resource constraints. Taylor and Walford (1978) identify three

aspects of simulation (not necessarily computer-based) that they regard as central to

educational effort:

"simulations are active and informal: simulations are problem-based; simulations
are dynamic, requiring the development of flexibility and responsiveness in
participants." (Taylor and Walford 1978 p 27)

The authors then go on to discuss the advantages of educational simulation. (Taylor

and Walford 1978 pp 29 - 33)

Barker and Yeates (1985) state:

"Although direct experience is usually the best form of instruction, reality in
education must often be sacrificed to factors of time, cost, safety and equipment
available. Simulation programs provide the student with artificial experience of a
dynamic real-world environment." (Barker and Yeates 1985 p 77)

A J Bird 187

The teaching ofprogramming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Scaife and Wellington (1993) distinguish between types of simulations. Some may be

a straightforward replay of laboratory experiments. Others may represent industrial

processes such as "the manufacture of sulphuric acid ... " (Scaife and Wellington 1993

p 45) Some simulations may be of processes that are too slow, dangerous or fast to be

safely undertaken in the real classroom or lecture theatre. Others may be of "non

existent entities, e.g. ideal gases,frictionless surfaces, perfectly elastic objects."

(Scaife and Wellington 1993 p 45) Simulations may also be oftheories, such as the

wave theory of light.

Scaife and Wellington (1993) go on to discuss the advantages of using simulations in

a teaching environment, including cost and time savings, the control of variables in

the simulation in ways not possible in a real situation. There are also advantages in the

management ofthe learning experience: it is easier to re-run a program than it is to set

up and collect equipment in a busy classroom. (Scaife and Wellington 1993 pp 45 -

46)

Scaife and Wellington also go on to list the dangers of using simulations. "The main

dangers of using simulations lie [] in the hidden messages they convey. " (Scaife and

Wellington 1993 p 46) Simulations may give students the idea that all the variables in

a physical experiment can be equally easily manipulated and that all variables have an

equal weighting in an experiment. Simulations are also, in the last analysis, a model of

reality, created by a person or people. Simulations can never be wholly neutral.

Assumptions and sources of data underlie all simulations and users may never know

(or question) what those assumptions are or where the original data carne from.

Simulations are partially idealisations, partly simplifications, gfthe real worlds and

users need to be aware of this

The distinction Tawney (1979 c) makes between models and simulations is as

follows:

"In a simulation, the model is not under suspicion; the student is learning about it by
manipulating it and seeing what happens. In modelling, the model is under suspicion
and a simulation is used to test its adequacy." (Tawney 1979 (c) p 120)

A J Bird 188

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Scaife and Wellington define modelling as "the r.epresentation of systems and

processes by a computer." (Scaife and Wellington 1993 p 51) The difference between

modelling and simulation is that, in modelling, the user provides much more input.

Computer modelling software can be as general purpose as a spreadsheet. A

spreadsheet can be used to model all kinds of data and processes, using the dynamic

power of 'what if?' Other modelling systems might be specific to a subject area.

Modelling systenls are one example of the emancipatory paradigm. A good modelling

systenl will free students from the inauthentic labour of calculation and allow thenl to

concentrate on the activity and response of the system they have modelled.

Games could be seen as overlapping the two types of CAL described above. A nlodel

or a simulation can be presented as a fun activity, perhaps with a specific goal that

makes the first user or team to achieve it the winner.

There is insufficient room here to discuss the phenomenal rise of the games industry

from the 1970s and the first computer game, Pong, but the expectations of CAL users

in education will almost certainly be influenced in some measure by the sophistication

of the interfaces and features available in computer games today.

Tutorial CAL

Barker and Yeates (1985) describe tutorial CAL as

"a linear series oJJactual statements interspersed with pre-determined questions and
responses. Regardless oj ability, performance or prior knowledge, each student is
required to proceed through the same material." (Barker and Yeates 1985 p 76)

There is also no attempt to diagnose the errors made by the student and provide

tailored feedback or additional material, based on the errors generated by that student

in answering questions on the material presented.

This type of essentially simple CAL can be contrasted with the much more ambitious

goals of the intelligent CAL, as set by those who believe that a flexible, responsive

and individualised CAL is achievable. When teachers or'lecturers set out to write

A J Bird 189

The teaching o/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

CAL, tutorial CAL is often the design paradigm they consciously or unconsciously

work within, perhaps because they are turning paper-based materials already written

into CAL. Paper-based materials tend to have the kind of linear organisation that fits

neatly into tutorial CAL. At its most basic it becomes a one-page-per-screen mapping.

Much ofthe work of the NDPCAL (National Development Programme in CAL) and

the TLTP (Teaching and Learning Technology Programme) supported the production

oftutorial CAL, although not exclusively. In the TLTP Phase 1 Catalogue 1995, out

of approximately 117 packages 100 were described as being designed for self-study.

The figures are approximate, as some projects do not specify the use of each

individual package. For a discussion of the work of the NDPCAL and the TLTP in

phases 1 and 2 see Appendix G.

Intelligent CAL

In this area of CAL, acronyms once more abound. CAL is frequently described as

ICAI (Intelligent Computer Assisted Instruction) but other acronyms are used such as

ITS (Intelligent Tutoring Systems). ITS are an attempt to model human knowledge

and expertise in such a way as to make it accessible to the leamer, someone new to

that area or domain of knowledge or new to that particular aspect of the domain. To

develop an ITS is to explore thoroughly that knowledge domain and model it robustly.

In this aspect, then, it has strong links to the concept of an expert system. Ridgway

(1991) notes:

"In the domain of leAl, researchers have offered a rich variety of accounts in these
domains and so no simple description can be offered of the approaches taken within
this energeticfield." (Ridgway 1991 p 124)

The history of AI research is a complex and fascinating one. Early work seemed to

offer much potential but proved to be less substantial as the projects came to fruition.

"The programs (of early AI) lacked the commonsense of a four year old, and no-one
knew how to give them the background knowledge for understanding even the
simplest stories." (Dreyfus 1992 p x)

A J Bird 190

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Dreyfus (1992) argues that an exhaustive formul~tion of comnl0n sense is not

possible. Part of our understanding is situated in our physical present in the world and

our presence in the society or culture in which we live. Our use of analogy also

requires examination. Some AI researches (working in what Dreyfus calls GOFAI,

Good old fashioned AI) such as Lenat claim that all analogies bottom out in the

physical or prinlitives such as pain, up, down, cold, seeing and so on.

In ICAI, the impetus is towards producing software that much nlore closely models

the behaviour of a human teacher: asking questions and adapting tutorial strategy and

material in the light of the student's responses. This is a more sophisticated view of

the conlputer, where the software is acting as a tutor, nl0delling the IRE (Initiation,

Response, Evaluation) to be found in classrooms. The teacher initiates, through a

question or other pronlpting, the student responds and the teacher evaluates. This

model can be represented with varying degrees of sophistication. The software nlight

be designed to tailor questions, within limits, to the particular learner. The feedback or

evaluation may be detailed and flexible.

Romiszowski (1987) declared:

"It should not be long before commercially developed expert systems will be
available in large numbers to assist in all manner of problem solving tasks, including
many of interest and relevance in the schoolroom." (Romiszowski 1987
http://cleo.murdoch.edu.au/gen/aset/ajet/ajet3/wi87p6.html 12/09/2000)

An expert system is software that models an area of human knowledge. It can be used

to train novices in that subject area or to act as additional expertise in areas of

complex decision-making. Expert systems are discussed below. We can see that

Lesgold's and Romiszowski's enthusiasm lead them to be over-optimistic about what

research in ICAI could deliver to the classroonl.

What are the critical differences between CAl-CAL and ICAI? In ICAI the computer

is acting as tutor or teacher to the student but perhaps the key difference is the focus

of interest of the developer. In ICAI it is probably fair to say the interest of the

developer(s) is-are creating software that behaves intelligently: in CAL, the developer

(usually a teacher) is looking to teach a particular topic or subject more effectively or

A J Bird 191

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

efficiently. This is a broad generalisation but one supported by Romiszowski (1987).

He describes the developers ofICAI as being mainly computer scientists whose goals

is to explore the potentials of AI (Romiszowski 1987

http://cleo.murdoch.edu.au/gen/aset/ajet/ajet3/wi87p6.html 12/09/2000)

What is the difference between ICAI and ITS? ITS have their roots in generative CAL

and later in adaptive CAL whose "sophistication lay in ... selection algorithms."

(Sleeman and Brown 1982 pi) Sleeman and Brown (1982) go on to describe four

types of ITS: ''problem-solving monitors ... coaches ... laboratory instructors ... and

consultants." (Sleeman and Brown 1982 p 2) They do note that most examples of

these exist in experimental form.

McCalla (1990) stated that: "Intelligent tutoring systems can be roughly divided into

three categories: discovery learning systems, coaching or helping systems and one

on-one tutoring systems." (McCalla 1990 p 93)

Discovery systems include microworlds like LOGO. Here we see how CAL

definitions and boundaries are fluid and one example of CAL may fit into several

categories, depending on who is doing the categorising!

For Anderson (1988) the modelling of student learning is more than the creation of

simple pedagogical imperatives:

"There are two key places for intelligence in an ITS. One is in the knowledge the
system has of its subject domain. The second is in the principles by which it tutors
and in the methods by which it applies these principles." (Anderson 1988 p 21)

McCalla (1990) concurs: "One of the central features of an intelligent tutoring system

is that it understands its subject domain." (McCalla 1990,p 94) The simplest ITS is

one where the knowledge modelled is complex but well-defined: an example of this

would be an ITS to teach equation solving. Such an ITS need not have no underlying

model of human understanding of how to solve equations: it would be a black box

approach.

A J Bird 192

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

How can the student's understanding be adequat.ely modelled (or modelled at all)

within the software? At its broadest, a raw count of incorrect responses can give some

indication of areas of weakness. A more sophisticated approach is to create a

representation of the student's knowledge held in a data stnlcture.

However, students do not necessarily learn in a neatly incremental fashion and a

mathematicalmodelling of the student's current state of understanding is conceptually

flawed. There is a gap between the student's understanding and understanding as

modelled within the software. What appears to be more productive (both for the

student and as an approach to this problen1) is the comparison of a student's response

with the pre-decided optional response. The difference between the two forms the

basis of tutorial intervention by the software.

Here the modelling is not a representation of the student but an attempt to develop the

student's understanding as compared to a 'best', an ideal. This tutorial intervention

suggestion approach may be much closer to the realities of teaching that the idea of

representing what an individual student knows or appears to know.

Another element identified by O'Shea and Self (1983) is tutorial strategies. How does

the program 'decide' what to do next? This is not a trivial consideration. If there are

multiple branches at each decision point (Should the next problen1 be harder? Easier?

Should the next two problems be omitted?) then the number of possible paths through

the program will be enormous.

Hardware, despite the development of increasingly powerful desktop computers, still

does not seem to provide the appropriate platform for ICAI or ITS or, alternatively,

software that does sit comfortably on these platforms is not truly ICAl or ITS.

Micro,vorlds

Yazdani notes:

"CAL and ITSs are rather effective for the teaching 'of narrow domains but are at a
loss wizen dealing with the teaching of general problem solving skills. An alternative

A J Bird 193

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

to CAL and ITSs is presented in the form of 'learning environments' which provide a
student with powerful computing tools. The student engages in an open-ended
learning-by-discovery process by programming the computer to carry out interesting
tasks. [] Central to this thesis is the notion of a 'powerful idea '. A powerful idea is
one which, when learned in one domain, can be generalised to guide one's actions in
a variety of different domains."
(http://www.media.uwe.ac.uk/masoud/authorlideas.htm 24/081)

An example of this powerful idea is the microworld. The initial concept of the

microworld belongs to Seymour Papert, a committed advocate of the role of the

computer in education. A microworld is a computer-based environment that students

can explore, generating their own understanding of this reality, testing it against what

happens and developing their understanding. Papert makes strong claims for the

impact of micro worlds (such as the use of LOGO and the LOGO turtle) upon

students' learning and their cognitive skills generally.

Dunn and Morgan (1987) say:

"Papert is perhaps the only writer and thinker to have developed a complete theory
about the role of the computer in education, a theory that involves a well-developed
and supported argument about such fundamental issues as epistemology, learning
and thinking." (Dunn and Morgan 1987 p 121)

Papert's enthusiasm for the learner as discoverer in the world of LOGO is well

known. If the student is to discover and to learn through that discovery, what is the

role of the teacher? The identification of the teacher as providing social interaction

does not significantly alter the impetus ofPapert's belief in constructionism (the

learner as explorer and constructor of understanding within microworlds).

Crook (1994) is cautious about the nature ofthe teacher's role:

"However, if teacher intervention within pupils' computer based learning is to be one
way forward we need a greater appreciation of the forms that it must take. [] I doubt
that constructivist environments of computer-based learning can be made more
complex simply by appending human support, as if it were just another resource to
call upon." (Crook 1994 p 62)

A J Bird 194

The teaching o/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

The case for teaching programming as way to iqlprove the leamer's cognitive skills

was taken up with enthusiasm, at least initially, and not just with LOGO. As Solomon

(1986) notes:

"At all levels level education, including college, BASIC and CAl were greeted
warmly. But by the mid-1970s, the educational promise oj BASIC and CAl began to
Jade. "(Solomon 1986 p 6)

One claim that Papert makes for LOGO is its power to equip children with tools for

formal thinking: a way of describing concepts that matches the requirements of those

concepts. Some concepts for skills may never be amenable to formalism, such as pure

motor skills: Papert cites juggling as an example. Yet he goes on to describe two

different types of juggling (showers and cascade) and break the monolithic description

into simpler actions in considerable detail.

Can we argue therefore that all activities can legitimately be mapped onto structured

programming concepts such as step-wise refinement or the use of procedures?

"The Jact that computational procedures enhance learning does not mean that all
repetitive processes can be magically removedJrom learning or that the time needed
to learn juggling can be reduced to almost nothing. It always takes time to trap and
eliminate bugs. It always takes time to learn necessary component skills." (Papert
1980 p 113)

Papert says that even quite young pupils can be given, via microworlds, access to

more advanced concepts and the example he uses is Newton's laws of physics. The

language of Newtonian physics is neither simple nor accessible but the world of the

Turtle can be both. It is possible, argues Papert, to design microworlds that allow

pupils to explore concepts without the intimidating qualities of formal statements,

whether those are equations or difficult sentences. There could be, for example, a

Newtonian microworld, with velocity and acceleration Turtles that could help pupils

to understand the relevant concepts.

In summary, the work ofPapert 100n1s large in the CAL arena. His ideas may not

have been taken up in the wholesale, transforming fashion he hoped for but LOGO

and the concept of the microworld provide a rich strand of debate and development in

the history of CAL.

A J Bird 195

The teaching ofprogramming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

CAL for collaborative and on-line learning

Again, this is a huge area of computer use in education and one that has expanded

very rapidly in the 1990s. Just how far we have come can be gauged by noting that in

Saettler's work of 1968, A History of Educational Technology, there is no index entry

for Computer or Computer Aided Learning. Today, any history would have to

dedicate many pages just to the rise of computer use in education and many also to the

impact of network technologies on teaching and learning activities.

The idea of collaborative learning supported in many different ways by computers has

obviously been given a huge boost by the advent of the Internet and associated

technologies such as video transmission across the network. The history of the

Internet and the ways in which it has changed many areas of human interaction and

activities is a fascinating but complex one. It is not possible here to discuss in detail

the development of the Internet but Chapter 1 ofInglis et al. (1999) covers the rise of

the Internet, discuses hypermedia and other network technologies. (Inglis et al. 1999

pp 1 - 12) See also, for a history of the Internet beginning in the nineteenth century,

http://www.internetvalley.com/intval.htmI14/0912000. All this section can do is give

some idea of the kinds of tools that are available to those wishing to use network and

other computing technologies in teaching and learning.

At the start of the 1990s there was acknowledgement that the technology of networks

was going to change education, perhaps dramatically. Harasim (1990) says:

"Online education introduces unprecedented options for teaching, learning and
knowledge building. Today, access to a microcomputer, modem telephone line and
communication program offers learners and teachers the possibility of transactions
that transcend the boundaries of time and space." (Harasim 1990 p xvii)

A J Bird 196

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

It could be said that the arrival of the Internet and its associated features such as chat

rooms, bulletin boards and e-mail changed education in the way that had always been

envisaged for CAL and CAl over the preceding decades:

"Advances in technology are making an increasing impact on educational curricula,
learning materials and instructional practices. Multimedia allows the exploitation of
multimodal representations of knowledge; Interface designs assist usability and
interactivity; Local and fVide Area Networking release the Internet as a learning
resource with software tools that enable communication through e-mail, bulletin
boards and conferencing systems, whiteboards and chat rooms, and
videoconferencing. "

(http://waltoncollege.uark.edu/disted/effectivej)edagogies_for_managin.htm

14/09/2000)

The idea of computer conferencing may seem very new but it has a history dating

back to the early 1970s. Woolley lists some ''first-generation conferencing systems

that emerged in the early to mid-1970's" such as EMISARI (1971), which is regarded

as the first computer system to facilitate conferencing, PLANET, Confer (1975) and

EIES (1976). (http://thinkofit.com/drwool/dwconf.htm14/09/2000)

What distinctions of terminology need to be made in this area? We can define

collaborative and on-line learning separately, beginning with collaborative learning.

Kaye (1991) notes:

"It is easier to describe what does not count as collaborative learning than it is to
produce a universally acceptable definition. [] It is important to distinguish
collaborationfrom communication. [] ... collaborative learning [is] any learning that
takes place as a result o/people working together ... " (Kaye 1991 p 2)

On-line learning can be defined as the use of the Internet to deliver Web-based

material. On-line learning need not be collaborative, obviously: it may be individual

but computer networks offer ways to augment a student's learning by giving the

individual learner access to a wide range of facilities, not least of which is the sheer

quantity of information available (unmediated and unedited in many cases) on the

Internet.

A J Bird 197

The teaching oj programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Alternatively, a distinction can be made between on-line learning and local delivery of

material. If a tutorial CAL package is available on CD-ROM for a student to take

home, is that on-line learning? What if the CAL is available on a university's or

school's own internal network (an intranet)? There are now many ways to present all

kinds of CAL to students, from zip drives, CD-ROMS and remote access over the

Internet. (The boom in home connections to the Internet through commercial service

providers is a notable phenomenon in the first years ofthe new century).

As Hall notes, the Internet has revolutionised the availability of archive materials,

giving people access to digital archives:

"In some respects the greatest value oj the Internet is the incredible amount of
primary materials now being made available free and online. While proprietary
learning programs and CD-ROMs once dominated teaching technology, the advent of
the Web has inspired a popular revolution. Nothing illustrates this better than
American Memory, the Library of Congress' National Digital Library project."

(http://www.ala.org/aasl/kqweb/28 _5 _ webprofilefulltext.html 14/09/2000)

Computer-based collaborative technologies can be subsumed in the acronym CMC

(Computer Mediated Communication). Mason and Kaye (1990) describe the

implications of using CMC in education: there will be a breaking down of the

distinctions between distance learning and ''place based education ... " (Mason and

Kaye 1990 p 23) There will be changes in staff roles across all aspects of educational

institutions, not just the academic and finally there will be:

"an opportunity, which never existed before, to create a network of scholars, "space"
for collective thinking, and access to peers for socializing and serendipitious
exchange." (Mason and Kaye 1990 p 23)

So, CMC is not CAL but, as Inglis et al. (1999) note, the distin.ctions between the

technologies of the Internet, CMC and interactive multimedia are increasingly

blurred: " ... to speak oj these as if they represent separate domains is to maintain a

distinction that is becoming increasingly Jalse." (Inglis et al. 1999 p 11)

Asynchronous computer conferencing is where participants are separated by time: an

example of this might be a message board where a group of people post general

messages, requests for information or points for discussion. Synchronous

A J Bird 198

The teaching o/programming to novice programmers: three approa'ches

Chapter 6 Supporting learning to program using CAL

conferencing is where participants are interacting at the same tin1e: almost a real-time

conversation discussion. Video-conferencing is obviously synchronous and email can

be either.

Helm (1997) concludes that videoconferencing has much to offer but that staff and

students need to be much more conversant with the use of the technology and what it

can most effectively deliver.

This point is echoed by Hall in Teaching with Electronic Technology:

"In the best of classrooms, technology (electronic or otherwise) should support the
curriculum, not determine it. This seems obvious, but the new technologies are
seductive, and it 's easy to be caught up in all the talk about "revolutions" without
considering meaningful classroom objectives or purposes."
(http://www .ala.org/aasllkqweb/28 _ 5 _ webprofilefulltext.html 14/09/2000)

McConnell (2000) notes that con1puter systems designed to support group work and

co-operative learning can be classified according to varying criteria. One approach

that McConnell cites is a classification based on the fOffi1 of interaction between

students-tutors and the geographical location of the systeln's users. These two aspects

then give a matrix of four dimensions. (McConnell 2000 pp 28 - 29) McConnell also

considers the difference between what he teffi1S structured and unstructured

groupware.

Welsh (1999) identifies another use ofCMC in what he calls distributed learning,

where cause events may be separated in time and space and electronic media

"supplement/ace-to-face interaction in real world settings."(Welsh 1999 p 41)

The question of setting and assessing work using the various technologies available is

a complex one. For material on computer assisted assessment see the CTI website at

http://www.cti.ac.uk 14-09-2000. As Nelson states:

"Student assessment is a huge issue in Internet delivery of classes. College instructors
are worried about how to assess student learning in traditional classes, and the
problem appears bigger in on-line classes."
(http://wind.cc.whecn.edul-·gnelsonipaper/TCC-98.html 14/09/2000)

A J Bird 199

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

For an interesting glossary oftenns on assessment see

http://spicy.atd.depaul.edu/j umpstartl assess/ gloss/ glossary.html 14/0912000.

Wilson (1999) identifies three key paradigms for" Thinking about support for

learning and performance ... " (Wilson 1999 p 32) These are: instructional design,

perfonnance support and network systems. Network systems, says Wilson, are an

emerging technology whose tools include the Internet, Web browsers, search engines,

filtering technologies (push-pull technologies), e-mail and multimedia presentation

technologies. Wilson concludes that network technologies are the wave of the future.

(Wilson 1999 p 35)

It is also true to say that these network technologies available to teachers and lecturers

widen dramatically not just the possibilities of access but also the ways in which tasks

and activities can be undertaken. As Dennen (2000) notes:

"Problem based learning (PBL), collaborative learning, and online learning tools are
all popular topics in education today. Each holds the possibility of promoting active,
authentic learning situations." (Dennen 2000 p 329)

There is also the question of what pedagogical view underpins the employment of

CMC and associated tools. Is the role of the network just to provide a new forum for

delivering material in what is essentially a traditional way, one that focuses on the

teacher as expert and source of knowledge? Or is the process of communication the

focus of the group and individual activity? There is a third view, one that sees the use

of CMC as a way of focusing on the group and individual creation of knowledge. The

third view would throw into sharp relief the role of the tutor. Is the tutor a facilitator

of online, collaborative learning or does the tutor's expertise have a place in the

knowledge building approach?

Owen (2000) notes:

"Thinking that a high quality computer mediated conference-collaborative learning
system is sufficient to generate good collaborative dialogue is clearly an inadequate
model." (Owen 2000 p 188)

A J Bird 200

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

There is clearly a need for pedagogical strategies to underpin the use of CMC and

associated technologies in a wide range of subject areas. Some concerns will be

common across subject area: increasing the confidence of participants could be one

common theme but others will be peculiar to a discipline or even an area of a

discipline.

In summary, even the basic terminology requires dedicated effort to untangle and the

history of CAL development, with its rich diversity of projects, approaches, ideas,

aims and theories is a complex one. Each decade has brought new enthusiasms to the

field: in the 1960s it was drill and practice software, in the 1970s it was new hardware

(more memory, better displays) and in the 1980s it was the rise of the CD-ROM. In

the 1990s it was CMC. Almost every new development in conlputing has either

sparked new life into existing ideas or generated new ideas. However, the durability

of much of the software (and the ideas behind it) has proved disappointing. Many

millions of pounds and dollars have been spent on equipping schools with computers

and the software to teach or manage the learning process: almost all of it no longer in

use. Books, papers, reports and articles about the new revolutionary CAL or ICAI lie

unread on library shelves.

The second part of this chapter looks at the work done by the author around firstly, a

piece of tutorial CAL, called Introduction to Programming and secondly, what could

be termed a piece of emancipatory CAL, a small scale on-line help system for Pascal.

Background to the tutorial CAL development

CAL development began in the School of Engineering at Humberside University in

the academic year 1992-1993. There were a number ofre-organisations of

departments and schools within the University, in the 1990s, including a name change

for the University itself, when the Lincoln campus was opened in the late 1990s. The

University became the University of Lincolnshire and Hunlberside. The School

became the Departnlent of Engineering in the Faculty of Arts and Technology in

1998. The last two years of CAL development were undertaken commercially in a

A J Bird 201

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

joint venture company, called TekniCAL, founded with an electronics company called

Feedback Instruments PLC.

The evolutionary process of adopting CAL within the School of Engineering began

with an acknowledgement that changes in teaching methods were inevitable, due to a

number of factors:

"Four Jactors combined to provide the impetus and necessity Jor change. A reduction
in staff-student contact hours ... Increased lecturing hours ... Planned new courses and
student numbers ... Staffing and money constraints." (Stokes 1994 p 5)

The work of investigating CAL and developing CAL materials within the Department

was the result of one person's enthusiasm and commitment to this area of teaching

and learning: Roland Stokes. His energy and belief in the value of CAL drove the

development and use of CAL within Engineering for almost the whole decade.

Without him, the author does not believe that the work done would have even been

contemplated, much less successfully carried out.

One response to the changes in student profile and numbers was an investigation into

the use of commercially produced CAL materials, in the academic year 1991-1992.

Initially, eleven packages for the teaching of telecommunications were purchased and

trialled with over one hundred students. These students were studying the dual subject

degree of Business and Technology. The technology elements of the course presented

some difficulty to these students who often would have chosen 'pure' business

courses were it not for the A level points required for such courses at the University.

Telecommunications, with its mathematical and formulaic elements (the loss of signal

in fibre optic cable, for example) often caused students difficulty. The packages were

purchased to support the teaching of basic and more advanced "telecommunications

material.

Of the eleven packages purchased, it is interesting to note that only one package was

developed in the UK. The cost of these packages represented considerable capital

investment. As with any capital purchase, the life ofthe asset is an important factor.

Other considerations were practical: some packages restricted the use ofthe floppy

A J Bird 202

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

disk containing the material to specific computers. The fact that the material was on

disk meant that disks had to be signed in and out by a member of staff, severely

limiting student access to the CAL.

One of the key advantages of CAL, allowing students to manage their study time, was

largely lost due to these restrictions. It was felt that the packages should be available

anywhere on the network and not require staff time or presence to enable students to

access the material.

The material purchased was used over two years, in a number of courses. The CAL

replaced lectures or seminars or formed the basis of assignment work. Student

response (gathered via a questionnaire) was analysed. A number of factors emerged:

students generally liked the idea of CAL but found it irritating to use a range of

packages that had different interfaces and navigation paths.

There was also a mismatch between lecturer and syllabus requirements and the

material in the package. Much of the material could not be tailored except by missing

specific sections. As the packages were used extensively, technical or design flaws

became apparent: one package required fifty keystrokes to return to the top-level

menu. The CAL generally lacked supporting documentation, forcing the students to

transcribe from the screen if they were less confident and wanted a copy of the

material. The interfaces on the packages tended to be rather DOS-looking (limited

number of colours, large text and very basic graphics) and lack a sense of design.

These flaws generated much student comment and formed the basis of a requirements

list.

The next step in the use of CAL was to design and produce in-house materials,

bearing in mind the requirements generated by the experience of using bought-in

CAL. It was decided to give a final year group of students the remit of developing

sample CAL and, equally importantly, a robust and well-documented method of

producing CAL. The team consisted of four final year students who were industry

sponsored part-time students. One of the team had worked in the computer-based

A J Bird 203

The teaching o/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

training department at British Aerospace. The team had a range of skills, including

one student with considerable software skills. The project was to be undertaken in the

academic year 1992 - 1993.

The students investigated various authoring languages available at the time (the

summer of 1992) and chose IconAuthor, a flowchart-based language that allows the

programmer to builds a package by combining icons into a flow of control. Constructs

such as loops and IF ... THEN are pre-designed. The flow of control describes the

order in which pages appear and each page has a screen oftext and-or graphics

associated with it. Another advantage of this language was that once a package

template has been set up, the template could be re-used by changing the page files.

Because package templates were re-usable it was appropriate to spend considerable

time developing a standard navigation pattern (toolbar at the foot ofthe screen and

standard buttons on the toolbar) as this part of the template would be used for every

package, whatever the topic covered.

The group were also asked to consider the issue of monitoring student use ofthe

package. A simple student-time-in-package measure was considered sufficient but it

was decided to build in multiple-choice questions foe every section, with the results

stored in a database that could be accessed by the tutor but not by the student. There

was, therefore, a record of the time a student had spent working through a package

and the number of correct/incorrect answers. Students were required to logon to the

package and were set up as users only at the request of an academic member of staff.

This meant that students could not browse or work through packages before they were

required to complete them as part of their coursework.

A J Bird 204

The teaching of programming to novice programmers: three approa'ches

Chapter 6 Supporting learning to program using CAL

Figure 1: The logon screen

The project also aimed to produce a CAL life cycle that would cut the production time

of CAL to fifty developer hours per inean learner hour. The effort rate for CAL

development is a difficult concept that has worried CAL researchers and developers

since the 1960s. Figures quoted vary wildly, up to 1000 hours of developer time to 1

hour time of CAL usage time. A consensus appears to have arisen around the figure of

200 developer hours per learner hour. Reducing this was not a trivial consideration.

This developer effort (however it is measured!) is what makes most CAL packages so

expensive. If the developer effort could be reduced, it would be feasible to produce

CAL in-house.

This initial project, lasting an academic year (1992-1993) developed a full CAL

package (on Controlled Area Networks, an aspect of avionics), re-usable program

A J Bird 205

The teaching ofprogramming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

templates and a carefully-controlled CAL methodology. At the end ofthe project, the

team had delivered a package and associated project documentation as required in the

initial brief. The School of Engineering had a good basis for further CAL production.

"With the successful completion of the design project imminent, it was decided to bid

for additional staff to produce [CAL] materials." (Stokes 1994 p 8)

Part of the funding for the next stage came from BP (British Petroleum) and in August

1993 a team was set up to produce 80 learner hours of CAL. The team consisted of

four students on their placement year together with two members of academic staff

who took on the roles of part time team supervisor and editor. Lecturing staff whose

material was to be turned into CAL were given some remission so that they could

liaise with the team. At the same time a research assistant, Robert Carter, was

appointed to look at ways CAL could be broadened, so that students could undertake

investigative work, using CAL.

The CAL package focused on Fourier transforms. It was designed to allow the student

to investigate relationship between time and frequency. The analysis program

represented waveforms graphically in both the time and frequency domain. It was

designed to be easy to use, thereby allowing the student to learn important concepts of

time and frequency analysis, unhindered by complex mathematics.

A J Bird 206

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Figure 2: The time domain

The Fourier package demonstrated how the CAL could be developed to include skill

based learning. This avenue was promising but the programming requiren1ents of such

work were considerable. Most of the code for the dynamic display was written in C

and integrated into the IconAuthor program: a non-trivial task.

The template-based, tutorial or page-turning approach was decided upon for other

sUbjects. The initial technology subject chosen was propagation. After the CAL was

written, it was trialled with 50 students for 3 weeks. The CAL replaced the lectures

normally scheduled. The students had one seminar class a week, to allow the tutor to

monitor their progress.

A questionnaire was sent out to the 50 students at the end of the trial period. The

response rate was 70%. The percentages below are based on the sample that returned

the questionnaire. 960/0 of the sample enjoyed using the package, 94% of the sample

felt it was at the correct academic level and 75% of the sample felt it could replace

the lecture.

A J Bird 207

The teaching ofprogramming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

This positive response gave further impetus to the development of CAL within the

School. At the end of the year, the team had produced packages on propagation,

computers, satellites, fibre optics and electronic principles for communications. Other

packages were in development. The use of templates, the clear delineation of

production responsibi li ties and the carefully managed involvement of academics all

proved to be key elements on the efficient production of required packages. The team

had demonstrated that it was possible to produce one learner hour offinished CAL for

approximately fifty developer hours of effort .

. ': University of Lincolnshire" Humberside CAL RIi!IEI
Nea Introduction Progress·9 /12

II
I'

I'

Although the list of advantages is impressive the use of optical
fibres does have some trade oo-s:

~ JI: bare fibres are very fragile

~
if electronic repeaters are used they require
independent power supplies

[i] the small size of the cables creates problems with
splicing and fonning connectors

.

".

~u.. Ifl __ BO_O_K_M_A_RK __ .. IJIIr G_L_OS_S_AR_Y -11 MAIN MENUIij REPLAY I (jj='

Figure 3: A sample CAL screen

What was not adequately explored were the deeper implications of the tutorial, page

turning CAL approach that was adopted. Little effort was made to justify, in

pedagogical terms, the adoption of linear, text-based CAL. The behaviourist model

A J Bird 208

The teaching o/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

undoubtedly underpinned the idea of the end of ~ection n1ultiple-choice questions.

Students were given some feedback (a cross or a tick beside their answer) but not the

con-ect answer. However, the broader context of the CAL could be seen as more

constructivist and possibly more useful in terms of genuine student learning.

The author witnessed a package on introductory electronics being used by a colleague,

with a small group, in a very flexible and sensitive fashion. Students were encouraged

to confer, to ask questions of each other and the tutor and the tutor frequently brought

the group together to elaborate or explain a particular point or concept. Here we can

identify a key element of CAL use: the tutor's personal approach to the material. A

good tutor could balance out the weaknesses of the CAL (linear and static) with

sensitive and creative use of the group's time with the package. Conversely, therefore,

an unenthusiastic or pedestrian use of the package could make the material less

effective than a well-delivered lecture or well-designed paper only resources.

Academics were encouraged to integrate the packages into their teaching. As

packages were used with students and their responses gathered, the package would be

amended or extended as required. The changing of packages proved to be

straightforward, perhaps too easy and it became obvious that some packages would be

in a constant state of flux if the decision was not made to move on to another package.

At this point, decisions were made about the differing requirements for change from

essential to minor and the changes scheduled accordingly.

In the next academic year, 1994 - 1995, placement students were once again

employed to develop CAL. With a month overlap of the outgoing placement students

with the new, the incoming students were trained in the use of IconAuthor and the

templates. Student projects in IconAuthor were also set up, to investigate particular

aspects of CAL. One project looked at the integration of video into a package on

materials technology. The package was successfully completed and trialled with

n1etallurgy students but at the time, the network at the University did not have the

bandwidth to carry video.

A J Bird 209

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

The use of moving images could be seen as a key element in effective CAL but

instead of video clips, the packages incorporated animations done by a full-time

graphics specialist. Again, this specialisation proved effective: requirements for a

graphic were outlined to the team member and produced to order. This also avoided

any copyright problems with images. The animations tended to be broadly illustrative

of the material rather than fully informative. In some cases, the illustrations were

humorous and not truly relevant to the material in the text. For sample pages with

graphics, from the Introduction to Programming CAL, see Appendix H.

In the academic year 1995-1996 another team of placement students were recruited

and continued to develop packages for in-house use. The number of packages was

now growing rapidly and by the summer of 1996, over 20 packages were completed,

each with student and tutor workbooks. Some of the packages were substantial, with

about 400 screens and workbooks of over a hundred pages. The team had also begun

to tackle year 2 material for subjects such as material engineering. Some packages

were now being used for a third time and were proving fairly robust. Student interest

in CAL showed itself in a number of final year dissertations on CAL and related

topics. Two projects had been undertaken on CAL for a junior school on planets and a

package on geography for sixth formers. With every new project, fresh ideas were

suggested and explored and the CAL templates and package design continued to

develop.

New features were added such as a bookmark to allow students to return to the place

in the package at which they quit. Refinements were made to the format of the

database and the printing of results. Work was undertaken on broadening the activities

on screen, for a package that used equations extensively. Input boxes appeared on the

screen for students to enter the number answer for a calculation. Tolerance was built

in: answers of3.45 and 3.4 and 3.41 would be acceptable. Students were allowed two

attempts at an answer before the correct answer was displayed and the next screen or

question displayed.

A J Bird 210

The teaching of programming to novice programmers: three approa'ches

Chapter 6 Supporting learning to program using CAL

Extensive work also went on in looking at the end of section questions: the team

explored the problem of free-text input, a goal much sought after by CAL developers.

After much experimentation, it was decided to keep the multiple-choice format of

questions but to return to the idea of different question formats in the future. New

versions of IconAuthor have broadened the test options: version 7 supported drag and

drop questions and answers. However, most of the packages continued to have the

standard end-of-section questions in multiple-choice format. (See Figure 4)

Figure 4: Sample multiple choice question screen

The teanl also kept in touch with developnlents in TLTP and spent time looking at the

Phase 1 material. Looking at the packages described in the TL TP Catalogue (Phase 1 -

Spring 1995) there are just over 380 packages listed. (Sonle projects did not give a

detailed list of individual elements or packages so the figure is approximate). A

survey of the science, mathematics and computing packages shows that the bulk of

A J Bird 211

The teaching a/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

the packages are described as being designed for students to use at their own pace, as

self-study or independent learning materials (the phraseology varies). Other packages

were designed to act as support environments or to be called from within other

packages.

Out of approximately 117 packages 100 were described as being designed for self

study. The figures are approximate as some projects do not list the pedagogical

approach of each individual package. This contrasted strongly with the School's focus

on tightly managed, week-by-week monitoring of student use of CAL packages.

The academic years 1996 - 1997 and 1997 - 1998 saw new placement students join a

now permanent and full time CAL Production Team Leader and a graphics specialist.

The number of packages grew to over 50, including Introduction to Programming

Ideas, Introductory Maths, First Aid, Thermofluids and Oscilloscopes. Student

projects looked at the teaching of skills, such as using CAL to introduce students to

key concepts before they move on to work with the full UNIX environment.

The academic year 1998 - 1999 meant major changes to the production of CAL. The

CAL production team grew to 11 full-time staff (some on placement, some

permanently employed) and the formation of a joint venture company called

TekniCAL, in conjunction with Feedback Instruments Limited. Feedback Instruments

Limited provided the sales and publicity infrastructure, selling the CAL through their

existing Feedback staff, across the world. This proved successful and in the summer

of 1999, the team moved out of University premises, into commercial office space.

Effectively, CAL development moved out of what was by now the Department of

Engineering entirely. Copyright of the material stayed with TekniCAL, although the

Department of Computing and Communications and the D~partment of Engineering

could use the packages, developed from 1992 to 1999, within the University.

In fact, use of the CAL packages ceased entirely within a year. Without a team to

maintain and support the packages, staff no longer used them. All the effort that went

into the packages was not entirely wasted but the long-term benefits envisaged when

A J Bird 212

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

the project first began never nlaterialised. There.was no large-scale replacement of

lectures with CAL and the CAL certainly did not nlean that fewer lecturers were

needed. Economies in staffing were generally found by increasing seminar group

sizes and by increasing staff teaching hours to the maximum allowed. If the

development of CAL did not benefit the institution as hoped, did the students benefit

from its introduction and use across their subjects? The next section looks at the ways

student responses to CAL were gathered and the general tone of those responses.

Gathering feedback on CAL usc within the Department

As noted earlier, work began on the use of what was then temled CBT (Conlputer

Based Training) in the academic year 1993-1994. Questionnaires were distributed to

students who used the initial CBT bought in to support mainly the teaching of

telecommunications material. What kind of conlments were students making on the

commercially produced, communication principles and telecommunications CBT? It

should be noted that there was never any coherent, long-term design for the gathering

of student feedback. Questionnaires were produced and employed but there was no

review of the methodological considerations involved in such data gathering.

The earliest questionnaires were administered in February 1994 to students using a

commercial CBT package on propagation. There were 30 replies: 28 out of30

enjoyed using the package. 28 out of 30 felt it to be at the right academic level. 29 out

of 30 felt it could replace the lecture. Feedback from students tended to focus on

problems with the package:

"The questions sections are not correct. "

"The amount of annotation in the package could be increased. "

"There aren't enough figures and diagrams to illustrate points. "

"I think larger page numbers in the top right hand corner would make this clearer
and less confusing. "

(Student questionnaire replies 24-02-1994)

There were some comments about the leanling required:

"Bit parrot fashion, not really made to think. "

A J Bird 213

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

"The copying of paragraphs straightfrom the screen to the sheet became repetitive,
perhaps more interaction between user and package?"

(Student questionnaires 24-02-1994)

At the end of the use of the package, the questionnaires were administered again on

the 1 oth March 1994. We could ask, did this filling in of questionnaires become

wearying for the students? Statistics were gathered on the length of time students used

the package and the number of correctly answered questions. The average time of use

of the package was 6 hours. Total percentage of correct answers varied from 0% to

93%. One comment on using the package was: "1 prefer using CBT because 1 can

work at my own pace and go back if 1 don't understand. 1 find that after half an hour

of a lecture 1 tend to start fidgeting ... " (Student questionnaire replies 1 0-3-1994)

This kind of questionnaire and feedback is generally common among CAL trials. The

generally positive tone of the responses was taken as a strong vote by the students for

more use of CAL as a teaching vehicle.

In April ofthe same academic year (1993 - 1994), a general questionnaire about what

was then called CBT was administered to second year students on the BSc Business

and Technology course.

Question 2 asked, "How do you prefer to learn a new topic or subject? Lectures,

tutorials, private reading, discussion with friends, through assignments, seminar or lab

work, through CBT? Try to describe how you tackle a completely new subject."

Student comments included:

"1 personally prefer learning a new topic through an introductory lecture and then
finding out more for myself. [] I do not mind using CBT but prolonged periods tend to
lead to severe boredom."

"I think lectures to introduce a totally new topic are gooa to outline the basic ideas. A
discussion in class also helps, especially if you can relate it to every day life. With
CBT it is easy to totally mis-read something and therefore your first impression of a
new topic could be totally wrong so I don't think CBT in this instance is a good idea."

(Student questionnaire replies April 1994)

A J Bird 214

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

The students were generally in favour of a tradit~onallecture approach, and a few

were strongly against the extensive use ofCBT.

Question 3 asked, "How do you feel about the CBT you have done up to now? If you

could identify clear advantages and-or disadvantages, what would they be?" Replies

included:

"{{we miss something, we can take it whenever we want to."

"You can work on CBT at your own pace. Problems may arise if you do not
understand a topic but 1110st] have done are straightforward and easy to
understand. "

"] have mixedfeelings about the recent CBTs. How] accept them depends on my
mood at the time. If the subject is completely new then] tend to be more interested
than if] have had a lecture on it or have come across it before."

"I don't like working with CBT, especially not for 2 hour long seminars. It's easy to
Jorget work, and takes along time to write notes 011 everything. The only advantage oj
CBT is it allows you to work through it at your own pace."

(Student questionnaire replies April 1994)

Students were very clear about the advantages and disadvantages of using CBT. They

were able to argue both for and against its use and to identify situations where they

felt it to be effective. The key point that seems to emerge from this is the need for

flexibility in employing CAL. Students, even early in their degree, were able to

articulate the need for varied approaches in delivering material. The kind of blanket

consensus implied by some who report on student feedback for this kind of project

was not evident: students displayed a more discriminating response to the software.

Question 4 asked, "How do you see CBT fitting into the learning environment for

your course-subject? Should there be more or less CBT? Is CBT better than any other

method?" Replies to this question included:

"] think CBT is a good, efficient idea and programme but it should not dominate
classes as it will cut off class interaction and communication."

" .. .1 do not think it should take over lectures seminars as these are normally more
beneficial and raise questions.] would prefer to read a book than work on a CBT
package. May be 1 hr per subject on CBT a week could be done in addition to the 12
hrs already allocated."

"] think there should be less CBT and more group discussions in seminar. At the
moment were doing loads of CBT and in the end it jus't gets boring - so you don't
read it all and miss loads out."

A J Bird 215

The teaching o/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

"I find CBr is the best method of being introduced to a new topic-subject and makes
the learning process easier than using traditional teaching methods such as lectures."

(Student questionnaire replies April 1994)

Again we can see the fine-grained response of the students. The emphasis is definitely

on interactivity, either with peers or with the software (which would, of course, be a

very different type of interactivity!)

Question 5 asked, "What could be added to CBT to improve its effectiveness? Any

ideas welcome!" Student responses included:

"More interactivity

Less writing

More practical examples

Things explained better."

"It could be made more interactive, like more mUltiple choice questions to break up
the text. I think it should have less writing on a screen as it just overwhelms YOU. It
would be good if you could ask the computer questions about things you're not sure
about."

(Student questionnaire replies April 1994)

Students again identify some key weaknesses of a blanket approach to teaching a

subject through CAL: it becomes tedious quickly and the lack of interaction

frustrating. Also the copying of information from screens is time-consuming and

presents the same sort of problem as extensive note taking in lectures the students are

so busy writing they are not really paying attention to the material in any meaningful

way.

To question 6 "Should CBT replace the bulk of mass lectures? Does CBT even need

scheduled classes?" replies included:

"No lectures should continue, CBr should not dominate- classes any more than it
already does."

"No. Human to human interaction is usually more interesting, although at times not
necessarily as informative."

"NO It should have separate scheduled classes but with 1 lecture and 1 seminar per
subject."

A J Bird 216

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

"~ definitely not. A well presented lecture .at a reasonable speed, will always be
better than a CBT] think it may be better if CBT did have scheduled classes, as well
as a formal group seminar to support the work on the CBT."

"] don't think CBT should replace the bulk of mass lectures.] think you need
lecturers as often they can explain things better then a computer."

"] think it would be worth while having more CBT. Even though it entails more work,
YOlt definitely have to pltt in the time = reap the benefit i.e. concise notes which you
have had to understand in order to complete the tests."

(Student questionnaire replies April 1994)

The overall tone of the student responses was thoughtful and their replies displayed a

genuine willingness to engage in a discussion about CAL. It seems to the author that

there were key issues raised by the students (such as interactivity and the importance

of peer and lecturer interaction) that were not addressed in any fashion by further

project developments. The general willingness of the students to use CAL, with SOlne

reservations, was seized upon and made much of, without a concomitant willingness

to make much more flexible and subtle the academic structures in which the use of

CAL was embedded.

In November 1994,63 BSc Business and Technology students used a package on

electronic principles. A questionnaire was distributed and 49 replies were received.

Average age of the student was 18.8 years.

Comments included:

"The idea of working independently, without lectures works for me, as there are no
limitations on the speed] wish to work."

"] feel] have learned and more importantly understood all the sections in the CBT
programme more so than] would in a lecture."

(Student questionnaire replies 18-11-1994)

In January 1995, with 73 HND students using the package in electronic principles, 45

questionnaire replies were received. Interestingly, all of the respondents preferred the

CBT to lectures.

It is also interesting to compare the BSc and HND students over 1994 and 1995. The

pass rate in the package for the degree students was 46.3% and for the HND students,

A J Bird 217

The teaching a/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

74%. This variation could have a number of causes. The student cohorts must have

been different, by virtue of the fact that they were degree and HND students. The

academic backgrounds between the two groups must vary. Students in the HND

cohort being vocationally oriented rather than traditionally academic could account

for the variation. Some of the HND students may already have worked in or studied

electronics. The BSc students were generally post A level entry with no requirement

for a maths or science A level.

At this point, the Head of School, Roland Stokes, felt that the case for using and

developing CBT or CAL in-house was largely proved. The focus of effort moved to

development rather than exploring student attitudes to CBT or CAL. This created

what the author felt to be a serious weakness in the project. Little or no effort was

made to critically evaluate the impact of the use of CAL on learning outcomes. The

assumption, generally unquestioned, was the use of in-house CAL was academically

sound in its conception and application. The author felt that a full study of all the CAL

packages developed, which was nearly 60 large packages by the spring of 1996, was

too great a task for one research project. The author decided to focus on the teaching

of programming and the potential support for this offered by CAL.

The author's own CAL

A first version of CAL on the basic concepts of structured programming was created

in 1995 but the author felt it to be unsatisfactory and it was put aside. It was revisited

in the academic year 1996-1997. It was completely re-written and extended

considerably, to become the version shown in the sample pages from the student and

tutor workbooks in Appendix H, called Introduction to Programming Ideas.

-
The CAL covered basic elements of hardware, including memory, and software. It

looked at the history of programming languages and introduced concepts of structured

program design, including arguments against GOTO and the use of the algorithmic

toolkit. It then explored key aspects of the software lifecycle, covering problem

solving, specification, top-down design, modularisation, implementation and

debugging. The CAL also surveyed briefly some programming languages from

A J Bird 218

The teaching ofprogramming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

FORTRAN to Java. Finally, it offered some sample programs in Pascal, C++ and

Visual Basic.

From this description, it can be seen that the CAL written by the author attempted to

cover a great deal of material. It was useful, perhaps, from that point of view, but as

page turning, tutorial CAL, it lacked interactivity (apart from the questions at the end

of each section) and made no pretence of being able to support a student's individual

programn1ing effort.

Developing the material to the right level of detail was also challenging: too much

depth and the CAL would be (and feel) much too large. Not enough depth and critical

aspects of a topic or topics might be omitted. The final CAL represented a number of

compromises in the scope and technical complexity of the material covered. One

might question, how useful can just two sample programs be, in any progran1ming

language? Is it truly meaningful to present such small examples?

The author taught introductory programming at year 1 of the BSc computing degree

and also at Foundation level. The Foundation year was designed for students who had

not achieved any post-18 qualifications. Passing the Foundation year gave student

access to year 1 of the computing degree but also to other degree first years, with the

agreement of the course leader. Some students took the Foundation year with the

intention of switching degree subjects: others intended to study computing or media

technology, which was also underpinned by the Foundation year.

In January 2000, a questionnaire was administered to Foundation students. These

students had used the author's own Introduction to Programming CAL in the

December of 1999. Twenty questionnaires were given out. Eleven responded.

A J Bird 219

The teaching a/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Comments about the learning of programming included:

"Very difficult if you have never used it before. Programming is easy if tutors go
through it with us first, step by step."

"I have limited experience of Pascal but the bit I have done has been fairly
enjoyable. Not all the help files are helpful."

"If you have never used Pascal before it is not easy to use the first time. Once you get
the hang of it Pascal is no harder to use than any other package."

(Student questionnaire replies January 2000)

At the same time, the author examined the Foundation students' work on the CAL

workbooks. Students, in using the workbooks appear happy to fill in the blanks and

attempt the more demanding activities. Out of 18 workbooks examined, 11 had

attempted some of the activities. The remaining 7 had not attempted any of the

activities. This may be for a number of reasons. The activities were purposely

designed to require the students to use sources other than CAL. Students who wanted

just to finish could give themselves a sense of progress by skipping all the questions

that needed research and reformulation of material, away from the CAL. Student

responses where the activities were attempted varied. Some were very detailed while

others were more perfunctory but still relevant. The question would be, what

contribution did the undertaking ofthe activities make to the students understanding?

Did the students who ignored the activities lose out in terms of material covered?

It seems to the author that no definitive conclusions could be drawn from this small

sample of qualitative responses. The students, new to programming, had found it hard,

but that was expected. The CAL did not appear to address any of the problems

presented by the students and the background to structured programming material

contained in the CAL did not seems to connect with the use of a structured

programming language. The use of tutorial CAL to support the learning of

programming seemed to be a dead-end. There was nothing-in the (admittedly small

range of) student responses to argue that they had seen the CAL as relevant to their

learning of, and coding in, Pascal.

One problem the author did identify was the reluctance of students to work on their

code outside scheduled tutor contact times in the lab. There were comments about the

A J Bird 220

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

help files contained in the Borland Pascal cOlnp~ler. Students found the help text

provided by the compiler generally confusing and unclear. Was the lack of focused

feedback, couched in simple terms, hindering the students? Students undoubtedly

need help in debugging programs and generally they relied heavily on tutor

intervention to deal with fairly simple debugging problems ..

Other research on novice programmers

Perkins et al. (1989) identify two types of novice progran1n1ers, what they tern1

'stoppers' and 'movers'. Stoppers stop dead when they encounter a problem and have

no idea of how to progress and no idea of generating new approaches. Movers try new

approaches but often abandon potential solutions because the fix does not work first

time and often they re-try failed and unpromising approaches just for something to do.

(Perkins et al. 1989 p 266) Movers do not appear to learn from previous attempts at

problem solving.

Perkins et al. (1989) note that the affective elen1ent is very important in novice

programmers "Computer work can be a challenging and stimulating experience, but it

can also become a threat to self-esteem and one's standing with peers and teachers."

(Perkins et al. 1989 p 267) Linked to this affective component is the question of

making mistakes. Students can either tackle mistakes they make without too much

frustration, seeing it as part of the learning process, or they can see every mistake as

reflecting badly on their knowledge and self-worth. Perkins et al. (1989) go on to

state, "Such attitudes almost inevitably breed stoppers. Naturally, some stoppers

become so disengaged that they learn very little." (Perkins et al. 1989 p267) In such

cases, tutor intervention is needed at critical junctures to move the students on.

Interestingly, the example Perkins et al. (1989) give is that of a student who ignored

an error message ("Subscript out of range") because he did not understand it, until the

tutor posed a number of helpful questions.

These points echo the author's own experiences of teaching programming. Students

tend to regards their programs as direct reflections ofth~ir own worth and a program

that does not compile or does not function as expected, directly devalues them as

A J Bird 221

The teaching o/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

learners, in their own view. Students struggle with compiler error messages and on

line help, which adds to their sense of frustration. Some refuse to engage with the task

of programming unless forced to via marked assignments and then only in a last

minute hurry where lack of achievement can be blamed on lack of time rather than

lack of knowledge or understanding.

Another area in which students learning programming often struggle is that of

tracking their code so they can identify and solve problems in the software. This,

again, says Perkins et al. (1989) can be traced to a confidence issue: students may not

be confident they understand their code or the elements of the code and not at all

confident that they can fix it. Close reading of code is like proofreading, say Perkins

et al. (1989) and would therefore, in this author's opinion, subject to all the cognitive

and issues problems proofreading presents. Perkins et al. (1989) identify strategies

that movers use to solve code problems, such as tinkering: amending or developing

one or two lines at a time.

Tinkering can be positive and effective but it can also be just 'busy work' that will

never solve the problem. The difference is in the close attention to code required for

effective tinkering. Again this chimes with the author's own experiences as a

programmer (writing a program revisited a year later and having no idea what the

uncommented code is supposed to do!) and as a teacher of programming. One year, a

student had written code with about twenty levels of nesting: it was beyond her ability

to debug to that level and there were serious errors in the code that could not be fixed.

The student would not or could not explain how he had managed to write code that

was effectively un-debuggable!

The author wondered if the most productive area to concen,trate on was help with

compiler error messages. It seemed to be an area that offered scope for supporting the

students outside the scheduled laboratory times. By this point, the author had

concluded that the Introduction to Programming Ideas CAL did not address the

practical problems of teaching programming. As background material it had some

value but it did not do what the author had originally hoped. It did not serve as a

A J Bird 222

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

platform for the development of confident, competent programmers and with the

benefit of hindsight the author acknowledges that it was never very likely so to do!

Spohrer and Soloway (1989) argue that novice programmer misconceptions about

constructs are not "as widespread and troublesome as is generally believed." (Spohrer

and Soloway 1989 p 401) The problem lies with the putting together of constructs and

instructions iii. a program. Spohrer and Soloway (1989) explored the types of bugs and

frequencies of those types found in novice progranlmers. They concluded that for

three programming problems set for students, 20 percent of bug types account for 55

percent of bug instances. To support their assertion that construct misunderstanding is

not a large factor in flawed code, Spohrer and Soloway (1989) cite figures fronl their

study showing that more than half of the bugs identified "had plausible accounts that

were definitely not construct based. Less than 10 percent of the bugs had plausible

accounts that were definitely construct based." (Spohrer and Soloway 1989 pp 409-

410) Spohrer and Soloway (1989) conclude that the performance of programming

novices may be improved by teaching them about the most common bugs and by

teaching them strategies to piece together code effectively.

The author's o\vn Pascal Help system

When the compiler generates error messages, those are not context-sensitive and are

often difficult for the new programmer to understand. Sample error messages for

Borland Pascal include (the original numbering has been preserved):

Error # Error Message

2 Identifier expected

3 Unknown identifier

4 Duplicate identifier

5 Syntax error
8 String constant exceeds line

10 Unexpected end of file

12 Type identifier expected

20 Variable identifier expected

21 Error in type

A J Bird 223

The teaching ofprogramming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

25 Invalid string length

26 Type mismatch

29 Ordinal type expected

30 Integer constant expected

31 Constant expected

32 Integer or real constant expected

36 BEGIN expected

37 END expected

38 Integer expression expected

39 Ordinal expression expected

40 Boolean expression expected

41 Operand types do not match operator

42 Error in expression

43 Illegal assignment

44 Field identifier expected

50 DO expected

54 OF expected

58 TO or DOWNTO expected

66 String variable expected

67 String expression expected"

(Borland Pascal 7.0 Help files 12-08-99)

[The original list goes up to 170]

Choosing an error message e.g. number 3 gives

"Compiler error 3: Unknown identifier

This identifier has not been declared, or it may not be visible within the current
scope." (Borland Pascal 7.0 12-08-99)

Some of the error messages may never be generated by students working with small

programs. Others are very likely to be invoked by missing variable declarations,

missing semi-colons, misspelt variable names, missing BEGINs or ENDs or a missing

full stop. What the author found was that students did not or could not use the error

messages to make sense of the problem.

A J Bird 224

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

It seemed to the author that this was a major pro~lem for the students and that this is

where an appropriately written set of help notes might be most useful, rather that the

tutorial CAL approach. In August 1999, the author used the software developed by the

Departnlent's Linux technician, to develop a small version of on-line help for Pascal.

The author chose a subset of error that she encountered in student's early work and

wrote short but hopefully more readable help for those common errors. For example,

for the error generated by a missing semi-colon the author wrote the following

feedback/help message:

Pascal lines are finished by a semi-colon which looks like this;

There are rules about the placing of semi-colons but for this error, check the end of

the program lines and make sure they have semi-colons. Each missing semi-colon

generates an error.

The software was then made available to students using Pascal. For a listing of the

software see Appendix 1.

Use of the help system

The question was, was the on-line help developed by the author likely to be any more

used than the Pascal compiler help? For the Foundation students, for the questionnaire

administered at the end of the unit on software development (taught using Pascal) 17

replies were returned, out of a possible 24. Students were asked to rank the usefulness

of resources available to them, from the list given in Figure 5. If a student felt that

books were the most significant resource in their learning of Pascal, they were asked

to give it 1 and the second most important resource a 2 and so on. Respondents were

advised to leave blank any resources not used.

The author noted the ranking given to a resource and the number of students who

allocated it a ranking. Ifseven students gave a resource a ranking of3, 5, 7, 3,2,3,

and 4, the total for the rankings would be 27 and the average ranking would be 3.85.

If a resource ranked highly and gained all 1 sand 2s (1, 2, 1, 2, 1, 2, 2) the average

ranking would be 1.57. The lower the average, the high~~ the ranking of the resource.

As a foray into quantitative data, the author acknowledges that this is weak but it can

A J Bird 225

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

be seen as giving some indication of what these students perceived as most relevant to

them at that time, in terms of resources for learning programming.

The most highly ranked resource was lecture notes. Second were sample programs,

closely followed by students on the same course. Individual programming practice

and lab sheets (provided by the tutor) were ranked at 4.3 and 4.5 respectively.

Interestingly, the CAL (Introduction to Programming Ideas) and the Pascal help

system received low rankings of7.6 and 6.1.

This confirmed the author's impression of the value of her CAL to students learning

to program: it was oflittle practical help. The low rating of the help system provided

by the compiler also matched the author's general impression of students' responses

to error and help messages. Generally, these messages served only to frustrate and

baffle the students, rather than illuminate the problems they were encountering.

A J Bird 226

The teaching of programming to novice prograrnmers: three approaches

Chapter 6 Supporting learning to program using CAL

Average

Ranking

Language's Help System 6.1

Books from library 4.5

Inten1et sources 4

Myton house help desk 7.3

Friends-colleagues not at the University 6.7

Lecture notes 2.5

CAL 7.6

Individual progratnming practice 4.3

Sample programs 3.7

Online help set up by the University 6.7

Students on the same course 3.8

Magazines 12

Lab sheets (provided by tutor) 4.5

Figure 5: Resource rankings

The academic year 2000 - 2001

In the following academic year, 2000-2001 the author taught first year computing

students on an introductory programming module, lasting one semester. At the start of

the semester, the author distributed a questionnaire that profiled the students and

attempted some exploration of each student's attitudes to learning. Questionnaires

were administered in September 2000 to the incoming group of first year students.

88 questionnaires were filled in by students, out of a cohort of approximately 164.

Seven students were female. 72 were male. The remainder did not indicate their

gender.

Four students had five GCSEs, nineteen had nine GCSEs. Two students had 11

GCSE's and two 6 GCSEs. Ten students had ten GCSEs but the largest number had

A J Bird 227

The teaching o/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

eight GCSEs. Nine did not note their GCSE results. Two students declared their

education at 16 to be 'junior high". 21 students had either GCSE computing or GCSE

IT. For education after age 16, there was a fairly broad mix. 21 students had three A

levels and 13 students 2 A levels. 12 students had a GNVQ in IT. Students also had

NVQs and GNVQs in tourism, electrical installation, art and design, construction and

business. A total of 6 stunts had BTEC qualifications in IT or software engineering.

From this brief summary, it can be seen that this cohort of novice programmers

presented a wide variety of experiences and academic backgrounds, as did most

intakes onto first year computing and the foundation year.

The questionnaire also asked students to specify their programming knowledge,

especially the languages they knew. Students listed more than one language so the

totals do not add up to the number of students. Programming languages previously

studied by the respondents broke down as follows:

Pascal 32

Basic 19 (Including Atari Basic 8 bit)

Visual Basic 27

Unix - Linux 2

HTML 12

CNC Work 2
C-C++ 16

Machine code 1

Assembler 1

Cobol 5

ASM 1

A86 1

Delphi 5

Clipper 1

Q Basic 6

SQL 2

J avalJ avascript 3/1

Prolog 1

Smalltalk 1

A J Bird 228

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

25 students declared that they had no programm~ng experience or knowledge.

Students were also asked to respond, in the san1e questioID1aire, to a series of

statements about learning e.g. ' Learning is easier in small groups', 'I find it difficult

to grasp a new topic when I cannot relate to it', 'Correct lecture notes should be given

for reference' and 'Learning is a process of being told what to do and then going away

to practise it.'

They were asked to rate their response to each statement on a scale of 1 to 5 for

Strongly Disagree to Strongly Agree (Likert Scale). Below are some of the responses

shown graphically.

Correct lecture notes should be given for reference

45

en 40 r-- r--
Cl)
en 35 s:::: 0·

t--

~ 30
.,

I--

~ 25
'-

t--

.... 20 0 I r--
'-
Cl) 15 .0
E 10
::J

- r--<
r--

- - - -
Z 5

,

e---- --, -

0 rJ

2 3 4 5

Strongly disagree - Strongly agree

Figure 6: Correct lecture notes should be given for reference

A J Bird 229

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Practical work helps the learning process

70
I/)
Q) 60 I/)
I: &. 50 l-

:g 40 ... I--30 0 ,: I-...
Q)

20 .0
-
~ I-

E
:::J 10 z

0

~ l-
i:.: :, :!

2 3 4 5

Strongly disagree - Strongly agree

Figure 7: Practical work helps the learning process

In order to learn the student must work as well

60 ~------------~----------.

:g 50 +-----~--------------~-;_~~~
I/)
I:

&. 40 +-----~-~-~-----------__1
I/)
Q)

~30 +------------------I
o ...
,g20 +---:----'--------------I
E
~10+---------------'----I

o +-----r----~-====L-_.~-~-,-~-~~
1 2 3 4 5

Strongly disagree - Strongly agree

Figure 8: In order to learn the student must work as well

A J Bird 230

The teaching of programming to novice programmers: three approaches

Chapter 6

60

~ 50
en
c::
~ 40
en
Q)

;: 30
o
'-
~ 20
E
~ 10

o

A J Bird

-

Supporting learning to program using CAL

Learning is more effective through practical examples

-
-

, :---- -
- r--

I-

.....-----. II "

2 3 4 5

Strongly disagree - Strongly agree

Figure 9: Learning is more effective through practical examples

231

The teaching o/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

~tatement (1 Strongly disagree 5 strongly agree) 1 2 3 4 5

!Learning is easier in small groups. 0 0 17 28 29

find it difficult to grasp a new topic when I cannot relate to it. 2 14 25 27 9

Correct lecture notes should be given for reference. 0 3 13 20 41

fLearning is a process of being told what to do and then going away to practise it. 4 21 23 30 8

I find working in groups difficult because people learn differently. 7 30 30 13 8

fLearning from a booklet of printed lecture notes is difficult. 1 23 34 19 10

IPractical work helps the learning process. 0 0 1 24 61

fLectures are not that easy to follow all the time. 1 13 23 40 11

Learning is easy when you have enthusiastic lecturers. 1 7 13 36 29

Lectures provide the necessary framework to understanding topics. 0 2 20 49 16

~ like to learn in my own time away from the university. 0 10 30 33 14

trhere is some useful material to learn from on the Internet. 0 1 14 45 27

n order to learn the student must work as well. 0 0 1 36 51

find it easier to learn and absorb information in silence 5 17 31 24 10

Computer-based learning can be tedious. 8 27 31 18 4

Seminars are sometimes a waste of time as you come out feeling no different. 12 29 28 14 4

Learning is easier in lectures as information needed is just handed to you. 11 29 37 8 2

Assignments that are long don't help you learn a topic any more easily. 5 14 38 23 7

lone of the best ways to learn is to discuss the problems with friends. 0 4 14 46 24

1Y0u should learn by using the library. 0 5 26 39 18

Learning should be backed up with more face to face work with tutors. 0 4 19 43 18

fLearning takes concentration. 0 3 6 42 37

ILearning takes a lot of hard work and can't be done solely from lectures. 0 2 9 30 46

lLearning is more effective through practical examples. 0 1 6 32 48

t is important to attend both lectures and seminars to fully understand things. 0 0 7 30 49

proup work is a more active and interesting way oflearning. 2 6 27 30 22

~t is easier to remember facts if you actually write about them as well as read. them. 0 1 22 32 31

Figure 10: Responses to statements about learning

The cohort's responses to the questionnaire showed them to be strongly practical in

their approach to learning, at least in theory. Their responses seemed to argue that

they saw learning as ajoint undertaking, rather than as a passive activity. The author's

experience in teaching this cohort threw up a distinct dichotomy between the student's

A J Bird 232

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

stated views on the learning process and their attitudes towards undertaking self

directed learning, spending time coding without tutor help and sourcing ideas for

themselves. Their preferences were for a much more passive style of learning, with

reliance on tutor generated materials, as can be seen from their responses to resources

in the January 2001 questionnaire.

At the end of the unit, in January 2001, the return of twenty questionnaires, when the

author marked 158 assignments for a year 1 cohort of 164 was disappointing but not

entirely unexpected. The questionnaire was kept to a single side of A4 for the ease of

answering but an open section was left at the bottom for general comment.

The first question asked what were the hardest and easiest aspects of the progranlming

language studied in the unit. The hardest elements to grasp were variously listed as:

"passing- sharing the variables between procedures- modules,

learning the syntax, using array of records,

understanding whether or not variables should be local or global,

the whole concept of algorithmic thinking and maths,

procedures,

relating arrays,

Pascal syntax, arrays and records."

(Student questionnaire replies January 2001)

Eight responses mentioned parameter passing and four responses mentioned

procedures only.

The easiest elements of programming were listed as:

"mathematic calculations within the program,

debugging,

'hello world' program,

constructing useable pseudo codes,

workfor the first assignment,

Syntax Stuff

Basic data structures

Setting up variables and calling them variables and procedures."

(Student questionnaire replies January 2001)

A J Bird 233

The teaching o/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Interestingly, one student did not fill in the easiest element response but noted under

suggestions, "Do the easiest stufffirst be sympathetic to struggling students." It would

have been useful to know what s/he considered to be the easiest stuff!

As before, students were asked to rank the usefulness of resources available to them.

The author noted the ranking given to a resource and the number of students who

allocated it a ranking. One questionnaire was spoiled (all responses were 1 's) and one

unreadable. The students had access to the help system written by the author using a

code framework developed by the Department's Linux technician, later the System

Administrator. For this questionnaire, the help system provided by the author was

added to the list of resources to be ranked.

Resource Responses Average

Ranking

Language's Help System 8 8.1

Books from library 12 19.6

Internet sources 12 6.8

Myton house help desk 6 8.3

Friends-colleagues not at the University 9 8.1

Lecture notes 18 3.3

CAL 8 7.5

Individual programming practice 11 2.5

Sample programs 18 2.4

Online help set up by the University 7 9

Students on the same course 15 4.26

Magazines - 5 11.6

Lab sheets (provided by tutor) 18 3.3

Figure 11: Resource ran kings

A J Bird 234

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

The most highly ranked resources were sample programs (2.4), individual

programming practice (2.5) and, equally ranked at 3.3, lecture notes and lab sheets.

The results are very similar to the previous results that used the resource rankings

approach. The addition of a new approach, the tutor developed on-line help seemed to

have little impact on the students' practice or learning and was ranked low by them

(9).

Students seem to prefer tutor-generated materials, which are a combination of paper

and electronic resources. The students were given programs to run: they did not have

to retype code. Lecture notes were given out on paper at the start of the lecture and

posted on the author's web page.

What can we conclude from this? That, despite all efforts by the tutor to move the

style of learning to a more constructivist approach, students continue to rely heavily

on tutor-generated materials. They do, in some senses, see each other as resources but

anecdotal evidence suggests that a sn1all selection of students are perceived by their

peers as knowledgeable about a particular subject and it is a select few who are asked

for help and input. Another factor cutting across the social context aspect of learning

programming is the question of plagiarism. Students are warned about it in a number

of situations, from formal student regulations to informal discussions of the

acceptable boundaries of acceptable boundaries during presentation of assignment

briefs.

Overvie,v of work up to 2001

The use of the author's own help system was disappointing. Few students used it and

few submitted serious queries. Part of the problem was almost certainly the lack of

time available to update and develop the system so that it covered more error

messages. Part of the problem was also the requirement to have another window open

on the desktop and to type in a query nun1ber, key word or syntax iten1 such as semi

colon.

A J Bird 235

The teaching ofprogramming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

Despite the poor response to the help written by the author, she still felt it to be a more

promising avenue of exploration than the tutorial CAL originally developed by the

author. The tutorial CAL has major problems, in that it addresses a very limited aspect

of programming, that of concepts rather than practice. There is certainly room for

supporting material on concepts and terminology but the real need is for a flexible

CAL approach that is closer to the programming environments described in some

research without the complexity of very sophisticated pieces of software. Anything

that purports to help the naIve or beginning programmer must not impose too much

extra learning upon them: an environment that is too complicated or detailed will

begin to present the same kind of cognitive demands as the programming language

itselfl

The role of the tutor, and how she is perceived by the students, does not appear as a

formally separated out factor in the work described above, but at an anecdotal level,

teachers know that the perceptions of the relationship between teacher, learners and

subject is a large element of the learning process.

Alexander and Bond (2001) note:

"A teacher's personal enthusiasm/or subject can be transmitted through non-verbal
behaviours such as eye contact with students, voice projection, body language and
storytelling. Students can be stimulated by seeing and hearing a person talking about
what excites him or her ... " (Alexander and Bond 2001 p 6)

The author would add to this the students' perceptions of the teacher's competence in

that subject colour their responses to the presentation of the subject.

Other researchers have noted the student emphasis on tutor-generated materials. Linn

and Dalbey (1989) discuss the results of studies undertaken for the ACCCEL Project

(Assessing the Cognitive Consequences of Computer Environments for Learning)

funded by the National Institute of Education. The studies looked at a number of

schools (in the U.S.) where programming was taught, for at least 12 weeks, with

sufficient classroom resources (8 computers) and experienced teachers. The studies

looked at student ability, previous interest in computers and programming, gender, out

of school access to computers and the quality of instruction at the school. Schools that

A J Bird 236

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

explicitly taught design skills in their programming classes were flagged as

exemplary.

Linn and Dalbey (1989) note that the untangling of various factors that affect a

student's final measured performance in programming is not an easy task. They note,

"The major finding of this investigation is the influence of explicit instruction in the

design of computer programs or the ultimate success of student." (Linn and Dalbey

1989 p 74) Interestingly, students were usually taught BASIC and the authors do note

the drawbacks interest in the use of this language.

What is needed, Linn and Dalbey (1989) conclude is good curriculum materials,

presumably for a n10re appropriate language their BASIC and experienced teachers of

programmIng.

Are there models of teaching programming that might usefully inform a cOlnputer

based approach to teaching programn1ing, one that is more than the use of the

compiler? Can an appropriate model transfonn the pedestrian approach of

Introduction to Programn1ing Ideas?

The author felt that she has explored two approaches well enough to be able to

articulate their shortcomings, if not to detail them exhaustively. The next stage was to

review the pedagogical model underpinning the approach to teaching programming.

One possible model was suggested by Linn and Dalbey (1989). Linn and Dalbey

(1989) note, "Because programming does involve solving problems, such instruction,

[in programming] at least superficially, teaches about problem-solving." (Linn and

Dalbey 1989 p 58)

Linn and Dalbey describe what they term an "ideal chain of cognitive

accomplishments". (Linn and Dalbey 1989 p 58) They state, "The chain has three

main links: (a) single language features, (b) design skills, and (c) general problem

solving skills." (Linn and Dalbey 1989 pp 58 - 59)

A J Bird 237

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

The first item in the list is the comprehension of particular language features such as

loops. Students can be asked to develop or change programs to assess their

understanding of the features used in those programs. Linn and Dalbey (1989) state:

"Students need to learn language features. However, such knowledge is of little
general use or benefit. Students with an understanding of language features cannot
compose programs that feature groups of commands working in concert." (Linn and
Dalbey 1989 p 59)

In other words, students can alter, say, the number of loop iterations but would not

know when or how to use appropriately that particular construct. This leads Linn and

Dalbey (1989) to the next link of the chain, design skills. These skills enable students

to put together a working program to solve a problem. "Such skills are essential in

order for students to write computer programs of any complexity." (Linn and Dalbey

1989 p 59)

Part of the set of design skills is the use of templates, sample programs that use more

than one language feature: "When students have a set of templates, they have a set of

flexible and powerful techniques that allow them to solve many problems without

inventing new code." (Linn and Dalbey 1989 p 60)

Linn and Dalbey (1989) also identify procedural skills, which include planning,

testing and refonnulating. Linn and Dalbey (1989) note, "Planning is an important

component of the behaviour of expert programmers." (Linn and Dalbey 1989 p 60)

Students or novice programmers need an awareness of the importance of planning

even if the tasks set do not require detailed planning. The same is true of testing.

Expert programmers are generally skilled at testing and have well-developed

debugging strategies (as well as strategies for trying to ensure bugs do not appear in

the first place!).

In contrast, as the author can testify, novice programmers often do not test their code

or test it only in the most obvious ways. Refonnulating or rewriting code is another

area in which the behaviour of novice and expert programmers can be contrasted.

Linn and Dalbey (1989) note that novice programmers look for localized fixes for

A J Bird 238

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

problems whereas expert programmers consider l.arge changes to their code if

appropriate.

This three level approach seemed promising but very difficult to model in simple

CAL: it seemed to demand an intelligent tutoring approach. Since the author had

wanted to keep the interventions as simple as possible, the idea of developing

intelligent CAL was rejected.

Perhaps another, entirely different area that could be addressed by CAL is the idea of

a concrete model of the conlputer. The Introduction to Programming Ideas does touch

upon the operations of the computer but not in the way that would be most effective

for students attempting to understand the relationship between their code and the

machine upon which it runs or is supposed to run! Mayer (1989) explores how

programming concepts can be integrated into existing knowledge, after being

presented to the learner and held in short term memory. It is the integration of

existing and new knowledge that is critical. Mayer (1989) suggests two approaches:

" .. . providing afamiliar concrete model of the computer ... " and secondly,

"encouraging learners to put technical information into their own words ... " (Mayer

1989 p 131)

The use of concrete models may include the use of concrete objects such as bundles of

sticks, used as manipulatives in mathematical operations. Mayer (1989) notes that

related techniques such as the use of titles, short introductions (also called advance

organizers) and concrete analogies (Ohm's Law described in terms of water flowing

through a pipe). Mayer (1989) notes "To date, advance organizers have been most

effectively used in mathematics and science topics." (Mayer 1989 p135)

For progranlming a concrete model of the computer is effectively a 'glass box'

approach: the programnler-user needs to understand what is going on inside the

computer at a transaction level (not the circuit level!) Mayer (1989) describes work

done on presenting concrete model to learners of BASIC. In later developlnent of this

study, Mayer (1989) concluded, " .. . subjects given the model before learning showed

A J Bird 239

The teaching a/programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

evidence of more integrated and conceptual learning of technical information."

(Mayer 1989 p 143) Mayer (1989) is also supportive ofthe positive effects of idea

elaboration. Students who put technical ideas into their own words learn better.

Perhaps the tutorial CAL could be rewritten using Mayer's (1989) ideas about

concrete models and advance organizers. This still seems a potentially useful way of

revitalising some very basic CAL. However, the author decided not to revisit the CAL

product any further. She still felt that the on-help approach should have been more

successful and that it represented an approach that was genuinely responsive to the

students' needs. What was lacking was a conceptual framework that would support

and develop what the author felt to be a move towards a more constructivist way of

supporting student learning.

Chapter 6: Conclusion

What can we say about what it means to teach novice programmers? That perhaps

teaching is not a wholly appropriate view of complicated, even messy, process.

Programming is more than learning syntax, more than knowing where the semi-colons

go. It is easy to say this but less easy to identify what is most effective in giving a

novice programmer a genuine understanding of the dynamic process of programming.

Research has concentrated on various aspects of teaching programming from

languages designed for new programmers to subtle, rich programming environments.

What does creep into such technically-oriented research is the affective component

but how students feel about programming is rarely explored.

Perhaps a rich return awaits the researcher who can begin to untangle the affective

component of good programming practice. This issue is not likely to be addressed by

standard CAL approaches: perhaps intelligent programming software might act as

both source of programming understanding for a new programmer and as a source of

yositive encouragement!

What relevance does CAL have for the teaching of programming? The author believes

it has shown itself to be, in a standard tutorial form, oflimited use. Paradoxically,

A J Bird 240

The teaching of programming to novice programmers: three approaches

Chapter 6 Supporting learning to program using CAL

more traditional, paper-based materials appear to. be extremely popular alTIOng

beginning programmers, and that popularity seems to be unaffected by whether these

are distributed by the tutor or n1ade permanently available over the Department's

server. It seems almost perverse to conclude, after investigating ways in which the

teaching of programming can be supported by computer, that the best approach seen1S

to be a blend of well-established resources (such as sample programs) and tutor help,

week by week Nevertheless, that is the author's deeply held conviction: there is no

programming environment, textbook or CAL that can wholly replace, for the novice

programn1er, the knowledgeable tutor's focused and timely help during the creation

and debugging of code.

However, it is not sufficient for those who engage with these issues to simply throw

up their hands and declare that traditional methods are the favourite of students and

therefore tutors need do no more than produce large numbers of lab sheets and sample

programs. The onus is on professional practitioners to seek to embody in their

teaching practice fresh ideas. With this in mind, the next chapter looks at the

development of a pattern community among novice programmers, in the academic

year 2003 - 2004, under the guidance of the author.

A J Bird 241

The teaching ofprogramming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Introduction to Chapter 7

This chapter describes the work done by the author around using the idea of patterns

in the teaching of programming to novice programmers. The concept of patterns and

pattern communities is reviewed and the author's design and use of a pattern format is

described. The research design is described for this latest phase. This chapter also

examines some of the issues around the evaluation or grading of student code. The

chapter also looks at the results obtained by the author, examining the ways in which

the artefact was used, or not, by students. The chapter presents some initial

evaluations ofthe qualitative methods used by the author, and describes the problems

encountered by the author. A review of the whole set of research cycles is presented

in the concluding chapter.

The concept of patterns

The idea of patterns has been described earlier in this work in more detail in Chapter

2) but it is useful to review the key points, to explain why the author chose the idea of

patterns rather than a different approach for another cycle of her work on the teaching

of programming.

The concept of patterns spring from the work of Christopher Alexander, an architect.

Alexander (1979) identified and described what he felt were critical aspects of the art

of creating living and working environments. One of the key aspects is the idea ofthe

nameless, yet instantly known and responded to, quality. This concept of the nameless

quality is central to Alexander's work: it is what causes a deep and life-affirming

response in those who see it, whether it is in a building, a garden or a village. Patterns

are a way of making an approach to embodying that nameles.s quality. Alexander

offers patterns to be found in practical aspects oflife such as the building ofbams.

Alexander's vision of patterns is the capturing of an essential rightness in the doing of

,some real world task, such as laying out a town or planning a garden. Patterns are the

opposite of mechanical, dead frameworks.

A J Bird 242

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

The idea of patterns was taken up by software practitioners, those who had an interest

in theories of software development as well as experience in coding. Ward and Kent

are generally credited with being responsible for introducing patterns to software

practice and development:

"In the software community, Ward Cunningham has a reputationfor being afont of

ideas. [] He invented the world's first wiki, a web-based collaborative writing tool, to
facilitate the discovery and documentation of software patterns. Most recently,
Cunningham is credited with being the primary inspiration behind many of the

techniques of Extreme Programming." (http://www.artima.com/intv/simplest.html

3010312004)

Kent describes his discovery of patterns:

"I first discovered patterns as an undergraduate at the University of Oregon. Many of
the students in my freshman dorm [] were in the School of Architecture. Since I had
been drawing goofy house plans since I was six or seven, they pointed me in the
direction of Christopher Alexander. I read all of The Timeless Way of Building
standing up in the university bookstore over the course of several months."
(http://c2 .com/pprl about! author/kent.html 30103/2004)

Ward and Kent applied the idea of a pattern language to a problem they were having

designing a user interface with a group:

"In 1987, [Ward and Kent] were consulting with Tektronix's [Semiconductor Test
Systems Group] that was having troubles finishing a design. They decided to try out
the pattern stuff they'd been studying. [] Ward came up with a five pattern "language"
that helped the novice designers take advantage of Smalltalk's strengths and avoid its
weaknesses: [] ~Vard and Kent were amazed at the (admittedly spartan) elegance of
the interface their users designed. They reported the results of this experiment at
OOPSLA 87 in Orlando." (http://c2.com/cgi-binlwiki?HistoryOfPatterns
13/0812003)

From this fairly small-scale beginning, the idea of patterns was adopted by more

experienced software developers. The first PLoP (Pattern Languages in Programming)

gathering was held in 1994.

(http://pages.cpsc.ucalgary.ca/~kremer/patterns/history.html 30103/2004)

"The first major compendium of patterns between two covers, "Design Patterns:
Elements of Reusable Object-Oriented Software" made it out in time for OOPSLA '94.
It sold 750 copies at the conference--more than seven times the highest number of any
technical book Addison-Wesley had ever sold at a conference."
(http://c2.com/cgi/wiki?HistoryOfPatterns 3010312004)

A J Bird 243

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Patterns for experienced software developers tend to be more complex and

specialised, such as Memento. For the Memento pattern, the diagram below is

generally offered as an introduction.

(http://unicoi.kennesaw.edu/~jbamford/csis4650/uml/GoF_Patterns/memento.htm

30/0312004, http://www.tml.hut.fi/~pnr/Tik -76.2781 gof/htmllMemento.html

3010312004 and http://www.dofactory.com/patterns/PattemMemento.aspx

3010312004):

r--
I
I
I
I
I
I

-

«stereotype»
Originator

~state

·SetMementoO
·CreateMementoO

I

I Creat eMeme ntoO{
_ _ return new Memento(state);

}

t--

«stereotype»
Memento

~state memento «stereotype»
/ Caretaker ,? --..

·MementoO
·GetStateO
·SetStateO

(http://unicoi.kennesaw.edu/~jbamford/csis4650/uml/GoF_Patterns/memento.htm

30/04/2004)

This is a detailed and meaningful pattern format to a knowledgeable object-oriented

programmer but for a novice programmer, it is obviously neither helpful nor

appropriate. It is not just the complexity of the ideas embodied in the pattern: it is the

format of the pattern also. The idea of the simplicity that is the essence of a pattern

seems to be buried under the complexity ofthe concept to be con~eyed.

In the author's view, patterns at this level and in this style are-obviously appropriate

for experienced programmers familiar with the concept of patterns but they do not

embody what she felt to be the essence of Alexander's vision for patterns, their use

and purpose. The patterns were impressive but did they strive to embody the nameless

quality?

A J Bird 244

The teaching o/programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Patterns are increasingly to be found in general texts. In April 2004, Wiley published

another volume in the Pattern-Oriented Software Architecture series, a book that

focuses on the use of design patterns for techniques in implementing system resource

management. Other texts examine patterns for object-oriented modelling and patterns

for concurrent and networked objects.

Patterns can be light hearted: Pizza Inversion - A Pattern for Efficient Resource

Consumption (http:///www.cmcrossroads.comibradapp/docs/pizza-inv .html

18/03/2004) describes a pattern for the eating of a too-hot slice of pizza!

Whether the more complex patterns and patterns languages could be considered truly

Alexanderian or not, these kinds of patterns were too complex for novice

programmers. Pedagogical patterns such as those proposed by Bergin

(http://csis.pace.edu/~bergin/papers/SimpleDesignPatterns.html. 07/08/2003) tended

to be simpler in their structure and more imlnediately accessible. It is to these simpler

patterns that the author looked initially.

While searching for material on the teaching of programming, the author found

several websites dedicated to patterns and pattern languages. Some websites were for

pattern languages in software development: others were for patterns in pedagogy. It

seemed obvious to the author that sitting neatly between these two were pattern

languages concerned with the supporting the learning of programming by novice

programmers.

There must be either a pattern language concerned solely with that area of pedagogy,

or pattern languages that supported the learning of a particular language, not for

experienced programmers but for those new to programming. Sophisticated pattern

languages for experienced programmers were easily found but were obviously aimed

at very knowledgeable programmers, such as the Memento pattern, as referred to

above.

(http://unicoi.kennesaw.edu/~jbamford/csis4650/uml/GoF_Patterns/memento.htm

30104/2004)

A J Bird 245

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

The author could not find an example of a pattern language that was simple and aimed

at novice programmers. It is possible that such languages exist but the author has not

managed to find them or they are not yet in a public domain.

Not all pattern language creators skim over the idea of the nameless quality:

"The Hillside Group is founded on the observation that software creation is one of
the most difficult human endeavors, requiring the creation of novelty under pressure,
without the benefits of a long tradition to fall back on. [] The world of software
development is a mixture of concerns rangingfrom correctness and execution
efficiency to the beauty and elegance of the architecture, design, and internal
structure of systems to the overall aesthetics, usability, and humanity of systems and
all the way to the organization of development and the manner of software
production." (http://hillside.net/vision.htmI18/03/2004)

The mission statement of the Hillside group is perhaps somewhat unus:ual in that it

acknowledges an artistic, even humanistic, element in software development.

Other pattern creators not only specifically acknowledge the nameless quality but

make it central to the effort. One website defines how the quality would be made

extant in software:

" ... its modules and abstractions are not too big [] every module, function, class, and
abstraction is small and named so I know what it is without looking at its
implementation [] ... if it was small, it was written by an extraordinary person,
someone I would like as a friend; if it was large, it was not designed by one person,
but over time in a slow,careful, incremental way [] ... it is like afractal, in which
every level of detail is as locally coherent and as well thought-out as any other level. "

(http://www.dreamsongs.com/NewFiles/ AlexanderPresentation.pdf 18/0312004)

The ideas here are interesting because the writer has concentrated on the purpose of

patterns, which is to foster the growth or creation of a genuinely meaningful product

that embody the nameless quality. The writer focuses OJ,) what a piece of software that

possesses that quality would be like, what its properties would be. There are some

potentially fruitful ideas that could come out of this that the author has not had time to

explore, such as introducing the concepts of the nameless quality to novice

programmers and focusing on a top down implementation of the idea: producing

software that embodies that nameless quality, by whatever means seem appropriate.

A J Bird 246

The teaching o/programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

It seemed to the author that there were two choices open to her. She could create a

pattern language based on the students' work; in some way, or she could pass control

of the patterns to the students. Given the choice of writing a pattern language to

support the teaching of programming or setting up a facility to allow students to

develop a pattern language for the learning of Pascal, the author chose the latter.

The author felt it would be a comparatively trivial task (if an enjoyable one) to write,

say, half a dozen patterns, around issues or concepts that regularly appear (in the

author's experience) to be difficult for new programmers like the naming of files,

saving the .obj file, the use of semi colons, or the problem with spaces in program and

variable names. However, the author has already described how she wished to engage

with her teaching in a more constructivist way and presenting students with a set of

patterns seemed to subvert that goal. The author felt that if she wished in a genuinely

constructivist way to engage her students in this work, then she had to present them

with the opportunity to create the pattern language, rather than giving them a finished

product. She therefore chose an 'empty vessel' approach.

The author's research design

Having decided on the development of a small-scale pattern language, the author

chose to develop a minimal structure, as below. The first box was for pattern name,

without a hint or prompt. (It probably would have been better to include a suggestion

for pattern names.) The student was prompted to enter his or her name but could

submit anonymously. The pattern had an associated confidence level. The problem

and solution had separate boxes with an explanatory message in each one. Students

then clicked on the Submit button to add their pattern to the pattern language.

Students could also search previously submitted patterns using a key word to pull up

relevant patterns.

A J Bird 247

The teaching o/programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Search for a pattern?

Pattern Name: I

Author: I Anonyrrous

Confidence level:

..................... 1

Ci No stars - first go at this Ci * - it's a good start C ** - fairly sure this is

the best solution

Problem:

Define the problem here in a few words!

Suggestion:

Make your solution as clear as you can. Include any extra information people need f'"

§ubmit pattern

Search for a pattern?

A J Bird 248

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

(http://staff.dc.lincoln.ac.uk/~ambird/patterns 30103/2004)

In the author's view, novice programmers who would be given access to the structure

would not want to spend time and effort in creating a complex pattern. The idea of

this minimally constituted pattern language was to develop a resource that answered

the needs of those creating it. Having decided on a minimal structure, the author asked·

for help from the Department of Applied Computing's System Administrator who

coded the form in Perl. This task took less than a couple of hours from giving the

initial brief to the System Administrator to uploading the form on to the author's

departmental webpage and making it available to students The first version of the

form had no search facilities but this was added shortly after, at the author's

instigation

The author's data gathering approaches

Having created the pattern template, the next stage was to look at ways to gather

feedback about the usefulness of the pattern template. In Chapter 2, the author has

described her focus in this research as qualitative, rather than quantitative, focusing on

student perceptions of their learning experience. The question was, what instruments

were most suited to gathering the kind of data the author felt was appropriate and

meaningful in this context?

In previous efforts, the author had relied on use of questionnaires, which had proved

less than satisfactory without other forms of data gathering to supplement them. The

author decided to use a short version of the entry questionnaire that asked students to

describe their programming background at the start of the unit, Introduction to

Programming. The questionnaire asked 5 brief questions on a single side of A4. (See

Appendix N) The author also decided to use a very brief exit questionnaire with just

two questions. (See Appendix N) To give a more detailed picture over the life of the

unit (12 weeks), the author decided to use observation (ofa programming class), a

focus group and unstructured interviews. The author hoped that by using various

qualitative methods she would harvest a richer set of data than previously.

A J Bird 249

The teaching a/programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Each of these tools (questionnaires, focus group, observation and unstructured

interviews) has its advantages and disadvantages. The author feels that it is incumbent

upon her, as a researcher, to defend her choices of methods and to acknowledge

alternative ways of approaching the task or tasks.

Questionnaires

Breakwell et a1. (1995) note, "the humble questionnaire is probably the single most

common research tool in the social sciences." (Breakwell et a1. 1995 p 174) Opie (Ed)

(2004) notes the advantages of a questionnaire:

"It is relatively economical, respondents in distant locations can be reached, the
questions are standardised, anonymity can be assured, and questions can be written
for specific purposes. " (Opie (Ed) 2004 p 95)

Questionnaires can be used for all kinds of purposes, from hypothesis generating, test

development, population parameter estimation to hypothesis testing. However, as

Opie (Ed) (2004) notes, designing a good questionnaire is not easy. These two issues,

of purpose and design, have engaged the author a number of times. What is the·

rationale for using a questionnaire? The author would argue that the purpose of the

questionnaire has changed over several incarnations of the instrument. Earlier

versions used a Likert scale of 1 to 5 for statements about learning. For the exit

questionnaire, in previous years, students have been asked to rate the importance of

various resources and to rank them in order of use or significance.

Later versions dropped this in favour of completely open-ended questions about

programming, together with a request for brief, factual information about the student's

programming background and experience. As the questionnaire changed, it became

perhaps less a questionnaire than a simple way of collecting on paper very basic

information about the students and a way of trying to capture some of the students'

attitudes to or thoughts on, learning to program.

In a sense then the questionnaire was not so much designed as grown organically.

This is not, the author hastens to add, perceived by her as a strength! The use of a

questionnaire format needs to be much more carefully thought through. What

A J Bird 250

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

elements would be most usefully explored through the gathering of information in a

questionnaire format? Some of the attitude exploration questions might have been

usefully developed, looking at student attitudes to learning generally and to learning

programming. What would be perhaps revealing over several iterations of the

questionnaire's use would be to use a quantitative tool such as the Kruskal Wallis test,

which is used to compare three or more independently sampled sets of data. Such a

test might reveal whether three different student cohorts all exhibit sinlilar attitudes to

programming and learning. This would be a detailed, long-term undertaking and was

rejected by the author as not manageable in the time available to her. However, for

another cycle of the research, the author feels that some quantitative data should be

more fornlally collected and processed.

The design of the questionnaire questions is also an area that needs some discussion.

The questions in the versions used this cycle cannot be said to have needed designing

as such. However, a more detailed or longer questionnaire, such as one that uses a

Likert scale (or other measurements), does need careful question design. Here the

questionnaire writers need to address issue such as the choice between open ended

and closed ended questions.

The author adopted open-ended question format, due to the nature of the data she

sought to gather. The exit questionnaire for January 2004 asked only two questions,

designed to be as open ended as possible: What has been the hardest/most difficult

aspect of learning to program? and What resource (book, friends, web page ...) or

strategy has been the most useful in learning to program? The author feels that these

questions, in her own view, are written to invite a detailed and personal response. In

practice, most students replied very briefly. (Questionnaire responses are discussed

later in this chapter.)

Closed ended question are generally used wherever possible responses can be listed in

advance. An example of this might be to ask students how often they attended

lectures, with five possible replies ranging from' Attend all lectures' to 'Attend only I

or fewer a week'.

A J Bird 251

The teaching ofprogramming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Breakwell et a1. (1995) note that closed ended questions "reduce the number of coding

errors in the data set." (Breakwell et a1. 1995 p 177) The possibility of

misinterpreting responses to open ended questions is an issue that needs to be

acknowledged when working with qualitative data. However, the author felt that

open-ended questions were most appropriate to the type of data she wished to collect.

As Breakwell et a1. (1995) noted, "The disadvantages of closed-ended formats are of

many sorts but perhaps the most important is that they can create artificial forced

choices and rule out unexpected responses." (Breakwell et a1. 1995 p 178) Since it

was the unexpected or insightful response that the author hoped for, closed-ended

questions were not used!

The author does not rule out using closed-ended questions in future work. Previously,

she has used a Likert scale gather response to statements about learning and a ranking

of resources question. The author feels it may be useful to revisit some of these at a

later date, at the end of the academic year, with the cohorts who filled in the

questionnaires in semester A.

With questionnaires about behaviours, the researcher needs to be aware that people do

not always report accurately. They may under-report what they perceive as

undesirable behaviours. Breakwell et a1. (1995) also note a caveat about reporting of

other behaviours by respondents: " .. . studies suggest that over-reporting biases apply

to socially desirable behaviours too ... " (Breakwell et a1. 1995 p 185) So, if the author

is asking about learning or study behaviours, students may report themselves as more

diligent or knowledgeable than they are. This is a difficult issue to resolve. Ethically,

the author feels uncomfortable about making the questionnaires traceable but to do

that would enable the author to look at the self-reported behaviours of specific

students against their final unit grade and their overall academic profile.

Focus groups

The author decided to use the idea of a focus group. Breakwell et a1. (1995) describe

the focus group as "a discussion-based interview that produces a particular type of

A J Bird 252

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

qualitative data." (Breakwell et al.1995 p 275) Breakwell et al. note that the focus

group is used chiefly in marketing and that much of the work on using focus groups is

centred on marketing issues. Social science and psychology have employed this

approach to gathering qualitative data but Breakwell et al. (1995) sound a note of

warning about the use of focus groups in psychological research: it is a fairly new tool

and needs further work: "It is clear, nonetheless, that the future of focus group

research in psychology will depend on how rigorously it is conducted." (Breakwell et

al. 1995 p 276)

As the name suggests, focus groups are centred on a specific topic. What makes the

focus group different is its social nature: the interplay of the participants. "The

assumptions of focus groups is that people will become more aware of their own

perspective when confronted with active disagreement and be prompted to analyse

their views more intensely ... " (Breakwell et al. 1995 p 277) In using focus groups the

author hoped that the discussion among the students would reveal attitudes to the

learning of programming not previously articulated by the participants. The author

envisaged a chronological sequence of one or more groups. She was hopeful of

gaining a number of volunteers, given the cohort numbers on the first year. The reality

proved to be very different. The focus group that did take place is discussed later in

this chapter.

Observation

The other tool that the author hoped to use was observation of several programming

laboratory sessions. The author felt this was important. However, 'observation' is

rather a broad term and requires some clarification. Breakwell et al. (1995) note that

"the two possibly most influential trends come from very different theoretical

perspectives: experimental psychology and ethology." (Breakwell et al. 1995 p 215)

Systematic observation, as the name suggests, requires the observer to measure

instances of previously categorised behaviours. This usually involves discrete

measurements of time, frequency and occurrence.

A J Bird 253

The teaching ofprogramming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Another approach is that of ethology. "The ethological approach is characterised by

particular method of direct observation which aims to record ... behaviour completely

impartially ... " (Breakwell et al. 1995 p 215) This approach does not attempt to infer

or examine the motives or emotions ofthose observed.

A methodology that employs observation, in a number of ways is ethnography. Using

observation as an ethnographical tool focuses on the describing of a culture.

Breakwell et al. (1995) state, "Ethnographic research often starts with observation

and description, for it is in the process of observing that situation-specific questions

emerge." (Breakwell et al. 1995 p 303)

The observation that the author undertook is closest in spirit to ethology. In observing

the class, the author did not attempt to describe or explore the personal feelings and

motivations of the students in the class. That element seems to properly belong in

focus groups or unstructured interviews, in the author's view.

Opie (ed.) (2004) notes the advantages and disadvantages of observation. For the

author, the two key ideas are "The 'observer', unlike participants can 'see the familiar

as strange '. [] Data collected can be a useful check on, or supplement to that obtained

by other means." (Opie (ed.) 2004 p 122)

In observing laboratory sessions the author hoped to gain some insight into how the

students engaged with programming tasks and activities. The author felt that

observation might help her to understand better the questionnaire responses from that

particular group of students. As a teacher, the author was aware that a great deal goes

on in any classroom situation that even the best teacher ~s not cognisant of, for a

variety of reasons. She felt it would be revealing to be the one 'on the sidelines' rather

than the member of staff conducting the class. The author felt it would be useful to see

how a colleague teaching the same unit approached the laboratory session.

For practical reasons the author decide not to video or record in any way the

laboratory session observed by her. She felt it would be intrusive and undermine the

A J Bird 254

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

purpose of the exercise, which was to observe the students as discreetly as possible.

As Opie (2004) (ed.) notes, "People, consciollsly or unconsciously, may change the

way they behave when being observed." (Opie 2004 (ed) p 122) The author felt that

videoing the session was most likely to affect the way the students behaved and

rejected the idea because of this. Professional courtesy also dictated this choice: it is

one thing to observe a colleague in an informal way, quite another to capture his or

her work on tape.

In setting up an observation, a researcher must decide what stance he or she will take

with regard to participating in the proceedings. (Opie 2004) The author decided to

take a non-participatory approach to the observation.

Opie (2004) (ed.) lists a set of categories for observing classroom activities, including

personal traits, verbal interaction, non-verbal signals, affective elements and cognitive

aspects. (Wragg 1999 in Opie 2004 (ed.) p 125) One approach to structuring the

observation is to note elements under the various categories. The most common

category system is FIAC (Flanders Interaction Analysis Categories) which records the

type of activity every 3 seconds. For example, Teacher praises or Asks questions,

Student responds to teacher, student is silent. Each category has a code number and

the observer records the code number, to give a pattern of classroom activity and

interaction.

The author decided not to use FIAC on her firs observation but to use it subsequently,

in later observations. This proved to be an over optimistic estimate of how much

observing she would be able to do. The author strongly feels this instrument would be

very useful particularly in observing programming students over a period of time. Use

of FIAC might go some way to answering questions about whether novice

programmers become more confident in their questions and responses to in a

laboratory situation. It would also be useful to examine the topics asked about by

students and the type of questions asked, as their progran1ming knowledge (hopefully)

grows. This type of observation work needs to be done over a whole semester, with a

group that begins programming fairly early on.

A J Bird 255

The teaching oj programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Observation of classes encountered the same sort of problems as the focus group and

questionnaires did. These problems are discussed later in this chapter.

The combination of these activities was designed to focus on qualitative data and

enable the author to have some understanding of the various viewpoints that can have

an impact on the teaching and learning of programming. "The combination oj

evidenceJrom the various methodologies should show where [the evidence's]

limitations lie and point to an appropriate revision." (Breakwell1995 pIS)

With the various tools selected, the author could then tum her attention to carrying out

the relevant activities. The environment within which the research was to take place

needs some description.

The institutional context for the author's research

In the summer of2003, the Department of Computing had, along with other all the

other departments on the site, moved out of the Cottingham Road campus, which was

a few miles out of the city centre. The University moved some administrative

functions entirely to Lincoln, leaving only a skeleton service in the Hull city centre.

The University was now entirely located in Hull centre, in several buildings. The main

building was in George Street a 1960s seven-storey tower block. The University hasd

spent a considerable amount of money to refurbish the building and when staff moved

in, in late July, substantial building work was still going on, and was finished only in

late September.

The move was not a particularly popular one among staff and students. First year

students who had been shown round the leafy and spacious Cottingham Road campus

on open days now found themselves in the centre of-Hull, without a separate Students'

Union building, no Union shop and no bar. Second and third year students were vocal

in their dislike of the move.

For the Department of Computing, the strong recruitment to the Games degree in

Lincoln meant that there were now two large cohorts in Lincoln, when all the

A J Bird 256

The teaching o/programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

computing staff were based in Hull. The imbalance in first year numbers was startling.

As of March 2004, there were 139 students registered on the Introduction to

Programming unit at the Lincoln Can1pus, all taking the Games Computing (Software

Development) route. In Hull, there were 22 students registered on other BSc

computing routes, taking the Introduction to Programming unit.

This division of student numbers between the Hull and Lincoln campuses generated

organisational problems, as it has done over the past two years. Most of the

Department's staff at the tin1e of delivery of the unit in (September to January 2003 -

2004) were based in Hull. Staff were then required to split their teaching time between

Hull and Lincoln. In previous years, the author has taught the Introduction to

Programming unit in Hull, with a colleague taking the teaching of the unit in Lincoln.

This has worked reasonably well, with some initial problems about the lack of

resources in Lincoln being resolved (2002 - 2003).

However, in 2003 - 2004, the author was required to teach final year units in software

development, to cover a colleague's absence on maternity leave, and the Introduction

to Programming unit was handed over to another colleague. This raised two key

problems for the author. Firstly, she would have no say over what was taught or in

what order and secondly, she would not be able to build a relationship with those first

year students. The author hoped that these problems would not be too deleterious in

their effect on the latest phase of the research but as can be seen from her results,

these two issues represented considerable handicaps to the success of the project.

Because of the numbers of students taking the unit in Lincoln, other members of staff

took some of the seminar groups. This generates another set of problems in itself.

Tutors can vary widely in how they interpret and deliver the unit co-ordinator's brief.

Different staff may be less knowledgeable than others in the areas being taught.

Students may perceive (with or without a basis in fact) some members of staff as

being less academically credible than others. Something as simple as the time

scheduled for a laboratory session can make a significant difference to the numbers of

students attending.

A J Bird 257

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

All of these factors and others perhaps the author was not aware of make the

collecting of data from these students problematic. An example of this is the initial

information the author sought to collect. The member of staff delivering the lecture

sessions in Lincoln, for introduction to Programming agreed to distribute the

questionnaires but returned only a handful of replies. The students appeared to be very

reluctant to respond. If the author had been delivering the lectures she would have not

allowed the students to take the paper away but would have required them to return

the material at the end other lecture, something the other member of staff did not do.

Each campus had its own problems: in Lincoln, the high student numbers were a

significant issue for the Department, as were the questions of staffing and resources.

In Hull, student numbers were much smaller so resources such as computers were

more than adequate but the building's general facilities were limited. The author took

the view that the George Street building, despite the money spent upon it (several

million pounds) felt like an annexe to the 'real' University in Lincoln, with a bustling

campus, and range of student facilities. After two weeks of the new term, the

Faculty's management called a meeting, in which they announced that all the

Department of Computing staff would be based in Lincoln from the summer of2004.

This created added difficulties for the author who could not transfer to Lincoln nor

commute to teach there, leaving her with no option but to look for another post. The

stress and uncertainty ofthis future move did not help the author in her efforts to

engage with the latest cycle of her research.

In summary then there were a number of problems that the author faced in trying to

gather data on the development of a pattern community. She had no control over, or

influence on, the way the Introduction to Programming ll;nit was taught. She had to

rely on colleagues to administer the initial questionnaire to the Lincoln cohort.

Students in both Hull and Lincoln were notably reluctant to engage with the author,

with the exception of three students in Lincoln (out of student group of over a

hundred!). Nonetheless, the author decided to persevere.

A J Bird 258

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Evaluating student programs - an overvie,v

The final element that needs to be discussed is the question of evaluating students'

programming efforts. This is not a trivial question: it goes right to the heart of the

research. When the author says she is looking for ways to support novice

programmers, the implication is that she is looking for a way or ways to help them be

better programnlers. By extension, better programmers produce better programs. The

issue here is, what do we mean by 'better'? Better than last year's cohort? Better than

the average novice programmer? Better than they might have done without the

intervention offered?

It is obvious very early on that some of the questions are unanswerable or, if an

answer can be formulated, it is not meaningful. To compare cohorts is a very crude

measure. Student intakes can vary across years. The games degree, when it recruited

for the start of the academic year 2003, was so popular that the points count for

applicants was raised, making the first years for 2003 - 2004 potentially very different

in terms of academic profile from the year above them in Lincoln and the two years

above them in Hull.

Programmer profiles

What do we mean by the average novice programmer? How do we define or measure

'average'? We could specify an A level points count or even an IQ score. We could

administer some variety of learning style test or inventory. We could specify perhaps

a typical personality profile for a programmer. Anecdotally, brilliant programmers

tend to be obsessive, focused and poor at social skills. Yourdon (1976) notes

"many of the established superprogrammers are freaks in some sense of the word:
they look funny; they wear funny clothes; they refuse to work regular hours; they
don't get along with normal people; and so forth."
(http://www.yourdon.com/articles/7602Infosystems.html 06/04/2004)

Conversely, this view of a typical programmer is not supported by some research into

personality types: "There is no real evidence to suggest that programming ability is

related to any particular personality trait. [] it is probably impossible to identify

A J Bird 259

The teaching o/programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

programming personalities ... " (http://www.soften.ktu.lt/jep-

06032/city/courses/IFPR402Ihuman.htmI06/0412004)

With regard to the concept of emotional intelligence, one website claims

"those programmers who are in the top IO% of EQ on the following scales;
willingness to collaborate, disinclination to compete, sharing information out
produce the average programmer by 320%. Those few programmers who are 'star
performers' outperform them by I272%." (http://
www.leaminglinks.org/emotional_intelligence.pdf06/0412004)

Such claims seem a little hard to credit but perhaps the evidence really is as

contradictory as it seems. There is no provable link between personality and

competency on programming but there is a link between personality and attitudes and

excellence in programming. This is a very complicated question and one that the

author cannot even begin to wholly define, let alone explore in the space available

here.

Software metrics

The question is also, what kind of product does the average programmer produce?

How good is the code produced by the average programmer? Here we would have to

unpack still further the questions. What do we mean by good? How many lines of

code does the average programmer produce per day, week, month and how many bugs

does that code contain? How is it commented? How is it tested? How well does it

meet the design or specification? How well does it adhere to the standards or

guidelines for that piece of code?

Some of these questions are specific to a particular project, piece of code or language.

Can we agree that there are ways to classify whether a piece of software is 'good',

whatever language it is written in and for whatever purpose?

The earliest measures focused on size of the program but this approach does not

measure program complexity. A twenty-line program could be densely constructed

and much harder to maintain than a hundred line programs of simple statements with

no loops or branches.

A J Bird 260

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

There have been efforts over the past twenty years to develop and refine the broad

Ineasures used since the 1960s, such as LOC (Lines of Code):

"The obviolls drawbacks of using such a crude measure as LOC as a surrogate
measure for such different notions of program size such as effort, functionality, and
complexity, were recognised in the mid-1970's. The needfor more discriminating
measures became especially urgent with the increasing diversity of programming
languages. After all, a LOC in an assembly language is not comparable in effort,
functionality, or complexity to a LOC in a high-level language. "
(http://www.dcs.qmw.ac. uk/~norman/papers/new _directions _ metrics/HelpFile
History_of_software_metrics_as_a.htm 06/04/2004)

McConnell (1993) lists some metrics for consideration. Metrics noted come under

three headings: Size, Productivity and Defect Tracking. Under Size, McConnell

(1993) lists Total lines of code, Total comment lines, Total data declarations and Total

blank lines. Productivity metrics include Work-hours spent on project, Work-hours

spent on each routine, dollars spent per line of code and dollars spent per defect.

Under Defect Tracking, McConnell (1993) includes Severity of each defect, Number

of lines affected by each defect correction, Number of attempts made to correct each

defect and Number of new errors resulting from defect correction. (McConnell 1993 p

545)

Galin (2004) dedicates a whole chapter to software quality metrics and divides

metrics into three classes: software process metrics, software process timetable

metrics and software process productivity metrics. For software process quality

metrics, Galin (2004) list three types: Error density metrics, Error severity metrics and

Error removal effectiveness metrics. For software process timetable metrics, Galin

(2004) lists TTO (Time Table Observance) and ADMC (Average Delay of Milestone

Completion) as potential metrics. (Galin 2004 pp 416 - 421)

Criterion referencing

We can see that measuring software quality is not a trivial or always easy task. So, are

there ways to assess what makes a piece of student code 'good'? We can assume that

we cannot expect to apply complicated metrics to a novice programmer's first

assignment, which might be a fairly basic task. In the past, the author has asked

. students to design first in pseudocode and then code a small program to calculate the

A J Bird 261

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

cost of building a kit house or a swimming pool. The author has marked all the

student efforts so there must be some template or approach for marking the early

efforts of novice programmers, held in the author's head! Marking consistently is an

issue that has been addressed over the last two years in the Department by the

introduction of criterion referencing grids. The Department of Computing adopted

criterion referencing as the only assessment in the curricula it delivered. All year 1

assignments had an associated criterion referencing grid created for them by the

member of staff responsible for the assignment/unit in the academic year 2001 -

2002.

The following year all year 2 units also had criterion referenced assignments and in

the subsequent year, all third year assignments would be criterion referenced. By 203-

2004, all assignments set by staff in the Department would have a criterion reference

grid that would be available to staff, students and external examiners. In fact, the set

oflearning outcomes for each unit was substantially reduced by the start of the

academic year 2003 - 2004, as the University management felt that the five or six

learning outcomes previously used for each unit were making the criterion referencing

system unwieldy. Considerable effort had to go into redesigning the grids for well

established assignments.

The grid written and used by the author for the Introduction to Programming unit in

2002 - 2003 (using six learning outcomes) is included in Appendix L. Use ofthe grid

went some way to making transparent the areas of interest to the author-as-marker, for

students, colleagues and external examiners. Nonetheless, the author found the grid to

be sometimes restricting. Work that met the criteria was felt to be in reality not

worthy of the mark band in which it was placed and vice versa. What this suggests to

the author is that assessing student programs is very much a qualitative activity, with a

sense of 'This is good, solid code' that is reflected in a mark, rather than a ticking of

points on a grid or checklist.

In reviewing the feedback given by the author to students in previous years, some

points do emerge. Students submit code that does not compile. Sometimes this is

A J Bird 262

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

because the program is hopelessly flawed and contains multiple errors: on other

occasions the student has added a last minute comment without a closing parenthesis

which means the progranl will not compile. Students frequently accept inaccurate

output from their code without question: the classic example is calculating VAT.

Students who could work out the VAT on, say, a hundred pounds, at least on paper

will not check their code with simple values. Students struggle with variable names

and the use of data types. The anecdotal list could go on and on. The author adopted

the strategy of giving general feedback to her first year students after she had marked

their initial assignment, a simple one-page summary of key points such as:

• It seems not many people actually tested their program against pen and paper

calculation of their own. Why? It seems an obvious way to test what your program

does.

• Comments also needed work

• Too many variables - re-use variables and overwrite values rather than setting up

variables such as saIl, sal2, sal3, sal4 and so on.

• People are still handing in programs that do not compile. This worries me! If it is

your program why can't you get it to compile? And ifit isn't why are you handing

it in as yours? (Feedback sheet written by the author October 2001)

It should be noted that this seemed to have no effect on the quality of their next piece

of work!

Automated grading of student programs

So, if the author finds marking or grading student work a difficult process to fully

articulate, have others found more accessible strategies? One approach that has been

used fairly thoroughly twice, as far as the author can ascertain is automated marking

of student code. The earliest example that the author found was the Ceilidh (Computer

Environnlent for Interactive learning in Diverse Habitats) system of marking C code.

The Ceilidh system was developed at the University of Nottingham in the mid 1990s.

The author can remember the creators of Ceilidh demonstrating their work at a

conference in the mid 1990s. The authors of Ceilidh had plans to disseminate it

A J Bird 263

The teaching ofprogramming to novice programmers: three approaches

Chapter 7 Developing a pattern community

widely but as with many innovative pieces of software in education it did not seem to

translate well into use by other institutions. The author assumed that the Ceilidh

system had effectively become extinct but interestingly, the approach appears to have

been revived in the last two years.

Ceilidh was developed to mainly assist in the marking of coding assignments. Ceilidh

also offered, according to

http://www.doc.ic.ac. uk/~nd/surprise _95/journal/voI2lhst/article2.html support for the

administration of courses with facilities for monitoring a student's marks and late or

missing submission of work. Ceilidh also provided tutorial material, program

skeletons and an editor/compiler. The core of the system was the automated marking

of code, based on five main categories: dynamic correctness, dynamic efficiency,

typographical analysis, complexity analysis and structural weakness. It should be

noted that analysing program style was not, even in the early 1990s, a new idea:

Redish and Smyth (1986) describe the creation of two style analysis tools for

FORTRAN 77: AUTOMARK and ASSESS. (Redish and Smyth 1986)

In Ceilidh, dynamic correctness was tested by running to previously created test data

with the student code. Dynamic efficiency checked for unused or inefficient code.

Typographical analysis relied on measuring elements such as number of blank lines

and comments. Complexity analysis counted the number of occurrences of assignment

statements, loops, branches and function calls. Structural weakness is measured by

counting instances such as variables declared but not used or value returned by a

module but not used. The article at

http://www.doc.ic.ac.uk/~nd/surprise_95/journal/voI2/hst/article2.html notes that

"The overall mark is calculated as weighted average of the marks under thesefive

headings, the weights being specified by the teacher."

(http://www.doc.ic.ac.uk/~nd/surprise_95/journal/v612lhst/article2.html 31/03/2004)

The authors felt that automated assessment proved to be a fruitful approach. More

specifically, students received immediate feedback and were more accepting of the

software's judgment of their software. Also, the marking process was rule based and

A J Bird 264

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

consistently applied. Ceilidh was revived after son1e years' lapse and it was noted that

some of the elements of Ceilidh such as tutorial material could be more appropriately

disseminated via web pages. (http://www.cs.nott.ac.uki-smx/PGCHE/ceilidh.html

3110312004)

However, elements such as plagiarism tester and the automated test runs were

extracted and put to use. The author of the article found at

http://www.cs.nott.ac.uki-smxIPGCHE/ceilidh.html notes that "Anecdotal evidence

from other courses suggests that students object strongly to having their programs

marked in an entirely automated fashion."

(http://www.cs.nott.ac.uk/-smx/PGCHE/ceilidh.html 31/0312004)

Venables and Haywood 9 2001) describe the submit (the italic style is the creators'

own) program as being "developed so that students can receive instant and automated

feedback to individual programming exercises." (Venables and Haywood 2001 p 1)

submit differs from Ceilidh in that students can upload code as many times as they

wish until a due date. "After the due date passes, a tutor is able to review each

student's final submission and provide further feedback, including a grade and

comments on-line." (Venables and Haywood 2001 pi)

submit analyses the student's program for elements of style such as use of comments

and size of modules. The student's code is then compiled and the compiler output sent

back to the student. Finally, the program is run using the test data provided by the

lecturer (in much the same way as Ceilidh).

Venables and Haywood (2001) draw some general conclusions from their four

separate trials of submit. The marking load for staff was reduced and the turnaround

time for marking reduced from ten to five days. It should be noted that staff marked a

randomly chosen exercise from the several put forward by a student and submit

marked the others. (Venables and Haywood 2001 p 5) Venables and Haywood

conclude that

"There have been a few unexpected benefits. [] Students ... seem more willing to take
responsibility for their learning, in that they will ke'ep improving their program until

AI Bird 265

The teaching ofprogramming to novice programmers: three approaches

Chapter 7 Developing a pattern community

submit accepts it without complaint, whereas previously, they had a tendency to be
sloppy when it came to program style and testing." (Venables and Haywood 2001
p 5)

Other systems for assessing student code are significantly later than the first version

ofCeilidh: ASSYST is described by Jackson and Usher (1997) as a "software

tool ... that is designed to relieve a tutor of much of the burden of assessing [student] ...

programs." (Jackson and Usher 1997 p 335) Similarly, Satratzemi et a1. (2001)

describe Telemachus as software developed to

"test and grade students' programs. [] The aim ofTelemachus is not only to grade
students' programs but more importantly to provide reliable performance data that
could give a reasonable gauge of student knowledge and in this way contribute to
teaching programming skills." (Satratzemi et a1. 2001 P 30)

Satratzemi et a1. (2001) refer to ASSYST and also to another system, called BOSS.

(Satratzemi et a1. 2001 p 31) Satratzemi et a1. (2001) conclude that the

" ... help that Telemachus offers to the tutor is likewise invaluable. Besides the fact the
fact that the system saves the tutor from the laborious task of checking and marking
students' programs manually, it also gives information that a human might have
completely missed ... " (Satratzemi et a1. 2001 p 36)

Ruehr and Orr (2002) offer a very different perspective on grading student code:

" .. . the pressure of class loads and the availability of sophisticated automatic tools
have steered some instructors away from close interaction with students in computer
science." (Ruehr and Orr 2002 p 65)

Ruehr and Orr (2002) see this loss of contact between student and tutor as a weakness.

Ruehr and Orr (2002) argue that interactive demonstration of their own code offers

the student a much richer and more interesting experience than the automated grading .
approach. Ruehr and Orr (2002) list the technical criteria for grading student code. It

should be noted that part of the aim of this grading is to identify students who are

most suited to continue in computer science: this is not a consideration in the author's

own grading.

A J Bird 266

The teaching ofprogramming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Ruehr and Orr (2002) list seven areas of interest for grading: program design, class

inheritance (for object-oriented code) coding style, program performance, program

robustness, documentation and user interface design. (Ruehr and Orr 2002 p 66)

A key element of this approach is the opportunity for the instructor to gain a sense of

the individual student's ability to communicate effectively about his or her code.

Conversely, Ruehr and Orr (2002) feel that students benefit by watching the tutor

work with their code. Overall, Ruehr and Orr (2002) feel that the technical element is

comparatively easily assessed and the author would concur. A program that does not

compile, no matter how elegantly commented, is of no value as software. The more

intangible elements are more difficult: if a program compiles, runs and produces

reasonable output, how do we distinguish the excellent from the simply OK?

Ruehr and Orr (2002) identify what they perceive to be critical elements of a "good

assessment process." (Ruehr and Orr 2002 p 68) Such a process should be

informative, focused, fair, feasible and rewarding for both student and instructor.

(Ruehr and Orr 2002 p 68)

Ruehr and Orr (2002) argue that their approach to student code assessment, which

centres on one to one program demonstration, "offers many advantages over other

common approaches used in the discipline, in that it provides for rich, informative

and satisfying exchanges between student and instructor." (Ruehr and Orr 2002 p 68)

The demonstration of code can be iterative, as Ruehr and Orr (2002) note, depending

on time constraints.

Ruehr and Orr (2002) argue that interactive program demonstration has a key strength

in guarding against the submission of plagiarised material: "if the student wrote the

program, he should of course understand how it works, and should be able to explain

this to the instructor ... " (Ruehr and Orr 2002 p 71) Ruehr and Orr (2002) do conclude

that a mix of assessment strategies will probably work best, given the constraints and

demands of a particular academic environment.

A J Bird 267

The teaching o/programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

A different approach again was offered by Edwards (2003) who described the linking

of automated grading to a testing-driven style of code development. "The core idea

underlying this approach is that students should always practice test-first coding, also

known as test-driven development (TDD) on their programming assignments/rom the

beginning." (Edwards 2003 p 1)

Students are required to submit a test suite with their code and are encouraged to

develop good, 'small iterations' (rather than 'big bang') testing strategies. Edwards

(2003) notes that automated grading of code generally ignores any student testing so

to fully exploit the possibilities ofTDD, the assessment must focus on the students'

testing performance. The Web-CAT (Web-based Center for Automated Testing)

Grader therefore assesses the validity and completeness of student testing and also

does static analysis on the code style. (Edwards 2003)

To sum up, the idea of automated grading of student programs seems to be a recurring

theme among computer science and programming tutors. There are variations on the

theme: the arrival of the Web seems to have given new impetus to the idea, as

students can now submit work over the Internet. There are some who regard it as one,

potentially weaker element in the set of assessment strategies.

Exploring how automated grading of code could support the development of

programming skills, rather than simply providing a pass/fail or percentage mark

feedback would be a rich area to explore but one that is outside the immediate scope

of this author's work. In the case of the student cohort given the opportunity to

develop patterns, the marking was done traditionally, by hand, by the tutors who

taught the unit. However, the author does intend to use t~e data from the SLE

(Specialised Learning Environment) which collates student feedback and results for

each unit taught with in the Department of Computing, to look at the number of

students who passed the unit. This raw measure is discussed later in this chapter.

A J Bird 268

The teaching o/programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

The author's results

The author began by distributing the initial questionnaire to the students on the

Introduction to Programming unit, in both Lincoln and Hull. She was able to

introducer herself to the students in Hull and explain the purpose of the questionnaire.

She was also able to distribute and collect the questionnaires in a short 10-minute

session at the start of a colleague's scheduled lecture, thanks to the co-operation of

that colleague. For the Lincoln students, the author had to rely on a different colleague

who delivered the Introduction to Programming lecture, to deliver and collect the

questionnaire. Despite the large cohort in Lincoln (139 students), the author was able

to collect a total of only 26 replies fron1 both cohorts - a 160/0 response rate. This was

extremely disappointing. It was a salutary experience for the author, who had

previously always taught the unit and had been able to manage data collection fairly

closely.

The initial questionnaire

In collating the questionnaires, no distinction has been made between Hull and

Lincoln students: had the response rate for Lincoln students been greater, it might

have been worth processing the two sets of responses separately, as well as overall.

Out of the 26 replies, 14 students were aged 18. The remainder were aged 19 - 40.

A J Bird 269

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Ages of student respondents

Age 40
Age 29_..--_

Age 18

Figure j 2: Ages of student respondents

Students were asked what qualifications they had at post 16.

Some of the post 16 qualifications noted by respondents

7 ~--~
~ 6 -~--------.-.-----~----~--~--~~~----~~----~

~ 5 +------------i
-g 4 +-----,...-r----i
'lii 3 -/------1 /OSerieS1 /

'0 2 -t---r--.--j

~ 1
O ~~-rJ-Lo-L-L~~-rJ-Lo~-L~~-rJ-~~~.-~-.J-~

1:: « -
OJ c

W

CJ)

E Q)

'6 u: ::J

Ci5

~ CJ)
Q)

Q) '6 c
Q) ::J

(9 'lii

Subject

t:: CJ)
CJ) >.

.~ OJ .c 0 ro CJ)
>. OCl)

~ .c n~ a...
>.
CJ)

a...

Figure 13: Some of the post 16 qualifications noted by respondents

To simplify the graph, the author has omitted subjects that were noted by only one

respondent. These subjects were: Business and Economics, Psychology, Politics,

A J Bird 270

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Design Technology and Biology A levels and Chemistry A/S level. One student also

noted their post 16 qualification as BTEC National Diplon1a IT Practitioners.

What conclusions can we draw from this very sn1all sample? Firstly, very few of the

students had what might be tenned a traditional A level background for a computing

degree: they did not take a Computing or IT A level. There were a number of arts

subjects such as Film Studies, Gennan, Art and English Literature and science

subjects such as Biology and Chemistry.

We can conclude that the Games Computing degree attracts students who are less

interested in what might be seen as traditional computer science degree. These

students are not necessarily interested in pure programming: their focus may well be

gan1e design or character creation for the games industry. These students may have

some programming experience but it is likely to be focused on the production of game

code rather than coding for coding's sake.

In Hull, the degrees recruited to include Computing (Software Development) and

Computing (Internet Systems). These students may be more interested in the general

aspects of computing, although it should be noted that all first years take the

Introduction to Programming unit in semester A. Games computing students go on to

do C++ programming in semester B while other routes study Java in Semester b of

year 1 and Semester A of year 2.

The author also asked the students which programming languages, if any, they had

experience in or knowledge of.

A J Bird 271

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

tl
c:
Q)

"t:I
.a
VI
o ...
Q)
J:l
E
:::l
Z

Programming/scripting languages noted by respondents

l!!o 1= " = = = m = " ~ I = = " " ~ iii ii i I i I Iii I

Language

Figure 14: Programming/scripting languages noted by respondents

Visual Basic was the most frequently noted language (15) closely followed by C++

(11), then C (9). Pascal was also noted (8) and Delphi (3). Other flavours of Basic

included QBasic (2), DarkBasic (2), Blitz Basic (1) and Blitz 3D (1). A small number

of students accounted for many of languages with just one respondent. For example,

one 21 year old student listed Pascal, Delphi, Kylix, C++, C ASP, PHP, Visual Basic

and Perl as the languages with which he was familiar.

The author also asked what work the students had done with and in the languages they

noted in the previous question. The replies varied widely, from those who indicated

they were "self-taught [and] messing about" (Student aged 29), to those who have

produced simple programs such as a database in C++ (Student aged 20) or a fruit

machine program in Visual Basic (Student aged 19), to those who have programmed

professionally and produced larger scale applications such as an Access Report

Generator (Student aged 40).

Even 26 replies give the author and reader some idea of the diversity of the audience

for the Introduction to Programming unit. Some students frankly admitted they had no

programming knowledge or experience, while others claimed some acquaintanceship

with at least one language. What that means exactly for each student is a matter of

conjecture. Do some students over-report their programming knowledge, because they

A J Bird 272

The teaching 0/ programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

do not realise how much they still do not know or have not yet encountered? Do some

under-report their experience, not wishing to be seen as boastful or putting themselves

forward as knowledgeable? It is not in the author's remit to explore these questions

but in future it might be useful to look at the initial reporting of experience against

performance in the unit. This would be fairly intrusive, as it would require tracking

individuals and looking at their assignment work, perhaps their attendance and other

aspects of their work in the unit.

The author asked, "If you do not have programming experience, please outline son1e

of the issues around learning programming that you think might concern you."

Replies included "Boring textbooks" (Student 18), "Mainly the mathematical skills

involved ... " (Student aged 29), "Very big subject -lot to learn!!" (Student aged 25)

and "Learning coding, keeping up with the course outline and others with previous

knowledge o/programming ... " (Student aged 18). Out of the 26 replies only 5 made a

response to this question, arguing that those who skipped this question felt that their

programming knowledge was sufficient to give them an advantage in this unit.

The author also asked, 'What should the Introduction to Programming unit teach?'

The author has asked this question of other groups and it is this question she hopes

might produce clear insights. There does seem to be a paradox here, one that she has

encountered herself, in learning to program: on first attempting to code, it seems so

baffling as to be ungraspable, unfathomable but once one has understood the key

elements it is hard to remember a time when one did not at least have some grasp of

programming. Those who can't program yet don't know what it is they need to know

or how it might be learnt and those who can program seem to have forgotten how they

learned to program!

The idea that cropped up in this batch of answers was 'basic': "A basic step by step

introduction." (Student 29), "Basic principles 0/ programming ... " (Student 20),

"Basics and how to teach ourselves." (Student 18), "The basics. Subroutines,

algorithms, saving, loading and searching." (Student 18), "Basic concepts 0/

A J Bird 273

The teaching ofprogramming to novice programmers: three approaches

Chapter 7 Developing a pattern community

programming." (Student 19) and "The basic principles behind syntaxing and to teach

them how a machine understands it." (Student 19).

Others expanded the idea: "Basic program structure, implementation of various data

types, error handling/trapping." (Student 22) and "How to program! Methods for good

programming that help avoid problems when doing big programs. General knowledge of the

language e.g. syntax. How to do simple things then how to combine them in a big program. "

(Student 18)

Other replies focused on broader questions of technique: "Good practices and

techniques not to be sloppy and lazy coders." (Student 21), "Ways ofprogramming.

Standard industry techniques. The role of programmers etc." (Student 18)

It needs to be noted that the lecture series was based around theoretical problem and

algorithmic thinking. The tutor's first lecture noted that this was not a programming

course and students did not do any Pascal programming until mid-November, 2003.

Even in the first questionnaire, students were raising this approach as one that could

cause problems: "More immediate practical work to familiar[ise] students with hand

on programming." (Student 18).

In the collated comments from the study unit evaluation, collected anonymously via

the SLE (Specialised Learning Environment), one student said "Ifeel it would have

been better to base this unit around the practical side of programming rather than a

more theory-oriented approach." Others noted that starting programming in the last

four weeks of the Christmas term disadvantaged them, as access to resources was

difficult over the holidays. Another student notes

"I felt that we should have actually begun programming a little sooner. " Another
said "We didn't start programming in Pascal until the last couple of weeks of the
unit- I think maybe this semester should be all theory and straight into C++ next
semester or otherwise learn Pascal side by side with the theory in the first semester. "

The feedback via the SLE was both anonymous and voluntary and just 9% of students

on the unit responded (15 students). Looking back over the student involvement with

feedback opportunities, a picture emerges of a cohort where a comparative few are

A J Bird 274

The teaching ofprogramming to novice programmers: three approaches

Chapter 7 Developing a pattern community

willing to engage in those activities, for whatever reason or reasons. The focus groups

initiative suffered from the same lack of student involvement. Focus groups are

discussed in the next section.

Focus groups

The author had planned to run a focus group over the course of the semester with

students in both Hull and Lincoln. She envisaged a group of say 4 or 5 students from

each campus who would meet with her for a short time (no more than 25 minutes)

every three to four weeks. To this end, she emailed students across the unit and noted

that she would be happy to meet with both Hull and Lincoln students. The meeting

with Lincoln students would take a little n10re organising due to the problems of

fitting in the travelling to and from Lincoln but the author felt it was worth making the

time to work with a group of students who were prepared to discuss some of the key

issues with her.

However, there was no response from any of the Hull students, and just a handful of

replies from the Lincoln cohort. Out of those who replied, just three agreed to meet

with the author in Lincoln. The author suggested a meeting in Novelnber but it was

early December before the students were able to meet with her. The idea of the focus

group as an evolving, continuing processes had to be abandoned by the author. Once

again, the reluctance of first year students to engage with the author and her work was

a major problem.

The three students who had volunteered to meet with the author were two mature

students and a post A level entry student. The mature students were not typical in their

entry profile of students on the Games Computing course and do distinguish

themselves from most of their colleagues. The group expressed some disbelief at the

attitudes amongst the cohort towards attendance and resit opportunities. The author

taped her conversation with the students and a transcript of the meeting forms

Appendix M. The students were articulate and able to reflect on their experience of

the unit Introduction to Programming. They presented themselves as committed to the

academic process, despite having other claims upon their time such as part time work.

A J Bird 275

The teaching a/programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

The author asked them if they had any specific suggestions to make about the

teaching of programming to new programmers. They focused on the choice of

programming language, arguing that Pascal was not an optimal choice. The

structuring of the unit also seemed to concern them with regards to moving on to learn

C++ in semester B. The end of unit comments gathered via the SLE also confirmed

this as an issue of concern among the students.

The creation and running of the focus group or groups proved to be intensely

disappointing to the author. Her vision of an unfolding narrative gleaned from the

students' developing knowledge of programming concepts was unrealised. In

previous year, she has been able to observe students working on the programming

exercises that she has set but the author hoped that a focus group or groups would

make more explicit the process of learning to program and would help her to focus on

the key issues as perceived by those students. This was not to be.

Observation

The author was able to observe one class session, with the Hull-based cohort. The

class took place on the 14th November 2003. It was the first session in which the

students were introduced to the Pascal editor and compiler. The author's colleague

introduced the material using the interactive whiteboard. In fact it was hard for all the

students to see the whiteboard comfortably as the desks and pes were arranged in

rows at right angles to the board. The room was also quite small for the number of

machines but not all the machines were in use. There were 12 students in the class.

The author took notes as her colleague introduced the Pascal editor and compiler and

stepped the students through the compilation process with a small two-line program,

projected on the whiteboard. Some of the students w~re able to follow the keystrokes

quite comfortably but others lagged behind. One student arrived half an hour into the

session. One student was typing very busily and in fact turned out to be emailing, not

programming!

A J Bird 276

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

By the end of the hour, the tutor had introduced the idea of output to screen, error

messages, reading in data, commenting and the assignment statement. It was an

intensive hour but the author noted that not all the students followed the step-by-step

activities of the tutor on the whiteboard. Some found it difficult to keep up and others

were obviously ahead.

It was an enlightening experience to watch the kind of teaching that the author has

done many times herself, leading students through their first practical work with a

programming language editor and compiler. What struck the author was the many

ways in which students simply did not follow what was happening, for a number of

reasons. The computer proved to be a distraction in itself, hence the emailing not

programn1ing, and other students tended to ask their imn1ediate neighbour for help

when they were having difficulties, rather than the tutor.

Exit questionnaire

The author gathered feedback from the Hull students on the 25 th of February 2004.

She travelled to Lincoln to meet with some of the first year students who were in

seminars on the following day, 26th February 2004. The author met with three

timetabled groups in Lincoln and gathered a total of 23 responses over the two days.

The exit questionnaire asked only two questions: What has been the hardest/most

difficult aspect of learning to program? and What resource (book, friends, web

page .. .) or strategy has been the most useful in learning to program?

Answers to the second question fell into the following categories: Friends, Books,

Web sites (including message boards), the SLE and 'Practice', as in spending a great

deal of time coding. The total number of replies does not add up to 22 because some

students noted two resources as being equally important. As can be seen from the

following graph, web sites of various kinds, including message boards were most

popular. No student made any reference to the patten1 template created and offered by

the author and no attempts were made by any student to add a pattern! It seems that

students do not favour 'home-grown' resources, preferring the authoritative

appearance of Internet material.

A J Bird 277

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Resources favoured by

II) respondents -t:
Q)

"'C 10 :J

Rl OJ - 8 II)
6 "t-o 4 D '- 2 Q)
0 c=J JJ

E Cf) Cf) CD w 2 :J ~ "0 UJ -Z 0 C +J CI)
Cf) CD "0

0 CD U CD 0'>
co ·c co co co

LLCi)
Cf) 0 a.. .c Cf).c

CD CD

S
Resource

Figure 15: Resources favoured by respondents

Comments in response to the first question were varied. Some were crisp in

expressing their views: " .. finding motivation to do it, since most of the examples are

rather pointless.", "The hardest aspect of programming was being told that an

assignment was due in using Pascal and not actually being taught how to program

whatsoever!", " ... a lack of hands-on practical exercises to demonstrate the concepts

and realities ofprogramming." and "Learning what we need to know from the internet

in 3 weeks. The practical lessons started too late."

Other students focused on the difficulties presented by having previous programming

knowledge: "Learning Pascal, after having used C++ for several years." and "The

beginning. Learning to use different syntax."

Syntax was frequently mentioned as presenting the biggest challenge:

"Probably learning the syntax of the languages or in other words, being able to

convert pseudocode and ideas in my head into actual 'code "', "Learning the syntax

for a program and then remembering it after a break in learning/practicing (sic) Also

A J Bird 278

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

remembering the different rules from rnultiple languages and not getting them

confused." and "Learning how the syntax applies to everything."

Other student identified starting a piece of code as the hardest part. Bridging the gap

between pseudo code and code seemed to be a problem: "Where to begin. Once that

part is over / find it fairly straightforward." and "~Vhere to start on a major project.

Sometimes / know what / want the project to do, but no idea how to begin making it

do it. "

Finally, one student expressed dissatisfaction with the whole unit: "/ feel that the

introduction to programming unit was the hardest unit of all semester A 's units."

A number of issues emerged from this end of unit feedback that were more to do with

the way the material was structured, paced and delivered than the learning of Pascal

by and of itself. Nonetheless, it is possible to identify some key themes, such as the

learning of the syntax of a language, the issues around good code production, the use

of authoritative sources and the availability of meaningful examples of the language

use.

Unit results

The results as presented by the University of Lincoln's own information system: 158

students on the unit overall. 114 pass, 39 fail, 3 no result and 2 decision deferred. No

details are available for the no result and decision deferred students. The fails can be

due to non-submission of work or failing one learning outcome for the unit. The cause

of the fail is not part of the top level of the collated results. This gives a pass rate of

73% and an outright fail rate of24%. But what do these results really mean for the

students who took the unit? What make those statistics meaningful would be explore

the causes for those 39 students failing. Did they all fail for very similar or very

different reasons? There is insufficient time to look at this but it should be borne in

mind that students fail for many reasons, not all them to do with the material being

taught or the way it is taught.

A J Bird 279

The teaching o/programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

Chapter 7: Conclusion

This latest (but not final) cycle of the author's research has suffered from a number of

significant problems. It is one thing to design and plan a number of data gathering

strategies: quite another to implement them. The students have presented, in the

author's opinion a particularly difficult challenge, in terms of gaining their feedback.

Colleagues have been helpful but the fact is, not teaching the unit presented real

problems. The author did not teach the first years at all and this lack of contact made

establishing any sort of rapport with them next to impossible.

What is also disheartening for the author is that no students have even tried to use the

pattern template. This is because they came very late in the semester to the hands-on

programming and once they had begin to use Pascal, all their effort was focused on

gaining enough knowledge to pas the assignment, due in around early January.

However, this does not invalidate the potential of the idea of a pattern community

among novice programmers. The author feels that, had she been teaching the unit, she

would have made the pattern resource a central feature of the unit. In this last iteration

of the unit, students were required to keep a learning log and submit it for reading by

the tutor. This was noted as a waste of time by one student, in the end of unit feedback

via the SLE. Being part of developing the pattern community might have been more

appealing (and less like being at school) for the first year students.

This is not intended as criticism of my colleagues: they conveyed central concepts for

programming skills, which are an essential foundation for years two and three.

However, the students felt encountering practice in Pascal late in the semester, rather

than at the beginning, handicapped them. It is a persistent problem: there is a limit to

what can be taught in any ten or twelve week period and in what order should the

chosen elements be presented?

The author is disappointed that the pattern community she hoped would start in the

first semester has not materialised but it dies not sake her belief that there something

potentially very valuable in this approach, more so than in the two previous

interventions. In the next chapter, the author reviews the three cycles of research she

A J Bird 280

The teaching of programming to novice programmers: three approaches

Chapter 7 Developing a pattern community

has undertaken and draws some general conclusions, rooted in her own experience,

about approaches to the teaching of novice progralnmers.

A J Bird 281

The teaching oj programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

Introduction to Chapter 8

This chapter reviews the three main cycles of research undertaken by the author and

draws some personal conclusions about the work. It identifies what the author sees as

the strengths and weaknesses of the work and presents an overview of the collected

effort of the author to engage with the teaching of programming to novice

programmers.

A note on viewpoint and voice

This chapter, more than the others, is an intensely personal one. Here, benign

reflection perhaps no longer serves the author as well as it may have done in previous

chapters. This chapter makes a narrative of the work done by the author and the

narrative might be better framed in a truly reflexive way. This chapter does maintain

the stance of benign reflection but the author feels it is important to acknowledge that

there are tensions in and around this recounting of her effort and experience. A

narrative also, by definition, makes a coherent story out of what may, in the

experiencing, less than coherent. The unfolding of the story is to some extent done by

the act of telling the story. False starts, dead ends and unproductive strategies may not

be allowed to impede the momentum of the narrative, without any suggestion of

dishonesty or deceit. All ofthese obtain in the author's story and it is worth

acknowledging that here.

The research: an overview

The initial impetus for the work undertaken by the author over a number of years was

one that sprang from her own experiences as a novice programmer.

To recap, the author took her first degree in English literature at Sheffield University

in 1981. She took the PGCE (Post Graduate Certificate in Education) also at Sheffield

University in 1983 and became a probationer (those were the days of a probation year

for new teachers!) at Homsea School in the East Riding in September 1983. She

taught English language to pupils aged 11- 16, for five years, before leaving to take a

A J Bird 282

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

conversion MSc in computing at Sheffield City Polytechnic in 1988 - 1989. Up to

that point, the author's only experience with computers had been the use of a BBC

Inaster and a dot matrix printer to create Banda masters for copying at school. The

author feels it is worth noting the reason for her change of direction.

After a fairly difficult first year, she did pass her probationary period and became

fully qualified teacher in 1984. She gradually took on extra responsibility for the

school libraries and in her last year at the school, re-organised and re-catalogued the

sixth form library as well as staffing the lower school library every lunch hour. When

she approached the school's management team about being moved up onto what was

then a Scale 2, in recognition of her work, she was told that no money was available

but that she should go on doing the work because it would get her good references! At

this point, the author decided enough was enough and looked around for a new job or

a new direction.

The author found the conversion course at Sheffield City Polytechnic, applied and

was accepted. The move to computing was a calculated one: the author realised that

senior positions in teaching English would be hard to get and computing might offer

more opportunities. In a sense, leaving a job to take up the MSc was a gamble but the

author was then only in her late twenties and had no dependents. It was a feeling of

now or never for the author. There was a SERC (Science and Engineering Research

Council) grant associated with the course, which helped to soften the financial

transition from a salary to no salary.

The initial four weeks of the course were an intensive introduction to Pascal

programming. The course may have assumed no prior knowledge (and the cohort was

very mixed in terms of ages and backgrounds) but the pace was demanding and the

tutors made no secret of the fact that at the end of four weeks, passing the Pascal

assignment was a pre-requisite of continuing the course. Everyone did pass and the

author wonders if the 'make or break' stance was a bluff? It hardly matters: it served

its purpose as most of those on the course believed in it entirely (the author did) and

were suitably frightened or motivated, depending on one's point of view.

A J Bird 283

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

The author can remember with absolute clarity (which may be illusory!) the first time

she was required to write pseudocode. None of the lecture on pseudocode made much

sense to the author and the idea that she could create this stuff out of her own head

seemed both laughable and terrifying. The actual programming of Pascal was no

better for the author. None of it had any relation to everything she had studied

previously. In some kind of left-brain - right-brain burst of activity, writing poetry

became easier than ever for the author but writing programs seemed out of the

question. The author relied extensively on the help and support of other students on

the course and a friend who was an amateur programmer, for the first few weeks of

Pascal. She did pass but she is not sure how, in hindsight. None of it made much sense

at all. Other aspects of the course were more enjoyable: logic programming and

databases, for example. Both Prolog and SQL (Structured Query Language) seemed

manageable and even intuitive to the author but was that because she had done those

first weeks of Pascal? A sensitisation issue, perhaps.

For the dissertation, the author chose to write materials to support learning Prolog,

aimed at novice programmers. Interestingly, in looking at the fonnat of the work, the

author can see elements that she re-used, unconsciously, in the first CAL workbooks

that she developed for the Department of Engineering, as it was then. The idea of

white space for students to record their own responses and checkpoint throughout the

text were two key ideas. After gaining the MSc the author taught IT in a sixth fonn

college for a while. Then she decided to move out of education into industry and

gained a job as a junior technical author in a company in Binningham. Life outside a

school or college was very different in many ways but the author enjoyed her work.

She documented large-scale systems for the motor trade.

During this time, she continued to teach, taking a range of adult education courses in

word processing and introductory IT. After a year, she moved jobs, working as a

technical author in Hull, this time writing manuals for legal software. After eight

months in this job, which proved to be a fairly miserable experience, for a variety of

reasons, the author was happy to make the move to what was then the Humberside

college of Higher Education. Teaching in higher education had been the author's long

A J Bird 284

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

tenn goal: her move to industry had been calculated as one that would make the

possibility of getting a teaching job in higher. education more likely.

The author joined the Department of Engineering and was given a range of topics to

teach from assembly language programming for HND year 1 students to basic

spreadsheet concepts for business students. In her second academic year at the

College (1993 - 1994) the author taught introductory programming using Pascal to

BSc students studying business and software developn1ent. The issues around

teaching novice programmers to program canle to the forefront again, with particular

significance. These students were unlikely to be full time, specialist programmers

themselves but they needed enough expertise to work with and perhaps manage

software development teams in a business context.

At the same time, students on BSc engineering degrees studied introductory

programming in Pascal and then moved on to programming in C, as part of the control

engineering element of their degree. Two very different audiences but the difficulties

were similar. The kind of questions that concerned the author can be summed up as

follows: What programming language should novice programmers use as a first

language? What material does a student learning to progran1 for the first time need?

How should that material be structured and conveyed? What order should concepts be

presented in? How should the students' programming effort be assessed? How much

support should a novice programmer expect or get? What are the problems that seem

to crop up repeatedly? What are the common misconceptions?

In a sense it is misleading to fonnulate these questions so neatly. Throughout this

work, some of these questions have seemed clear, even obvious (although the answers

less so) but at other times, it has been hard for the author to remain focused on

attempting to form, let alone answer, those questions in any cogent fashion.

Realistically, all that the author has done over and above creating basic laboratory

sheets and delivering material to students has largely had to be done in her own time.

Workloads have been variable over the years but rarely have they been negligible!

A J Bird 285

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

To continue the chronological narrative: as noted in an earlier chapter, the member of

staff, Roland Stokes, who later became acting Dean and then Dean of the Faculty of

Engineering (which went through several name changes, becoming at one point the

Faculty of Engineering and IT) initiated a project to develop CAL materials for the

Department. The first project focused on selecting an appropriate platform for the

development of CAL packages and using the platform to produce a piece of CAL on

LANs (Local Area Networks) and CANs (Controlled Area Networks) for use within

the Department. As the author had worked as a technical author she was asked to be

involved in the project, as second supervisor and junior editor. The project, by three

part time students who worked at the local British Aerospace site, was deemed a

success. The students chose a flow chart-based programming platform, IconAuthor.

The perceived advantage of IconAuthor was that it had powerful template facilities.

Once a flow of pages and a navigational structure was developed, the content of the

pages could be changed by changing the pointer within the page to the text file stored

elsewhere. In subsequent years, the initial work done by the British aerospace students

was handed on to other final year project students, who used the templates and

associated documentation to create new packages.

One team experimented with using video clips inside the CAL pages, in the academic

year 1994 - 1995. The use of video was very much liked by students who saw the

CAL on engineering materials but the University'S network capacity at that time was

insufficient to deliver appropriately the amount of data such clips required. Further

CAL packages did not use video but only graphics.

One of the students who delivered the CAL on engineering materials noted in her

report of May 1995 that there were in house CAL packages already written on

propagation, computer memory, satellites, electronic principles of communication,

waveguides, history of telecommunications, modulation and receivers, transmission

lines and moments and force. (Cullum 1995 p 5) We can see from this that in about 18

months to two years a collection of packages (each of which would be around two

hundred pages or screens) had been developed with fairly minimal resources: two full

A J Bird 286

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

time placement students in 1994 - 1995 to create the CAL based on materials

submitted by the staffwho taught the subject.

This rapid development of CAL generated problems of its own. The CAL could be

seen as little more than the text of lectures placed on screen with a handful of

navigational buttons and some graphics. The end of section tests might be useful to

students and were could be used by tutors to monitor student progress through the

package. Statistics were collected for each section and sorted by student. A report was

generated detailing the total time spent in the package by a student and the total score

for the user across all the end of section tests. There were all kinds of pedagogical

issues raised by the processes and products in CAL development. What concerned the

author most was the lack of any theoretical model or framework for the design and

use of CAL.

For example, the end of section questions were multiple choice. Questions were

randomly allocated to each student from a bank of questions in the CAL, so two

students working alongside each other, finishing the same section at the same time,

would not se the san1e questions. The order of the answers was also shuffled so the

correct answer to a question, say about line of sight in the package on satellites would

not always be A. These features were much vaunted as cutting down on the possibility

of sharing answers but there was no examination of whether such questions in

themselves were meaningful or supported learning by the students.

In terms of learning theories, there was no model that underpinned the style and

design of the CAL. It was accepted as a truism by those in charge of the project that

CAL was better (and better was not defined!), cheaper in the long run and preferred

by the students. There was no detailed or meaningful argument available to those

using CAL about what models of teaching or learning were being embodied in the

CAL and its delivery.

It needs to be noted that the author enjoyed being involved with the CAL. She took on

responsibility for developing standards for the team including style standards. She

A J Bird 287

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

also took on the role of style editor at the design stage, checking paper storyboards for

the CAL. This close involvement meant that she could see very clearly the lack of

theoretical underpinning for the work on CAL and this concerned her. Her initial idea

was to examine a range oflearning theories and look at the use of CAL within the

Department of Engineering. She hoped her work would generate an appropriate

framework for the design and use of CAL and produce meaningful arguments for the

pedagogy of CAL written for use in the Department.

The author generated material on types of computer memory for a small piece of

CAL. This was extended to become Introduction to Computers, a much bigger

package. The author also felt that material on programming concepts was particularly

difficult for many students new to programming so a first version of Introduction to

Programming was written by the author and turned into CAL by the team. The author

used this package but found it limited in its impact. Due to pressure of work, it was

shelved for over a year and completely rewritten in the next academic year (1996-

1997). It is this second version, with major changes in the order of the material that

the author used for two years.

Given that the author's goal was to read widely around learning theories, that was

certainly achieved. To map those theories on to the design of CAL packages and their

use was quite a different matter. From the author's own reading many writers and

researchers simply did not engage with this problem. Researchers around the use of

CAL in the classroom were happy to quote student responses to the package (usually

positive!) and/or detail how the CAL was written and/or how it was used but very few

addressed the thorny issue of what pedagogical approach was being supported or

embodied in the CAL. It was easy to find material that de~cribed different categories

of CAL and reams of material on CAL projects, particularly with the advent of the

TLTP and its funding of CAL development within consortia in higher education. It

seemed to the author, in the mid 1990s, as if almost everyone in higher education was

writing CAL and using it successfully with their students. It is worth saying that some

packages stood out as partiCUlarly considered and well designed and some projects

had a much more pedagogical approach but not all packages were excellent.

A J Bird 288

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

The number of packages produced within the Faculty of Engineering and IT as it has

then become rose to 20 by mid to late 1996~.most of which were sold commercially

through an arrangenlent with Feedback Instruments Limited. The author's work on

learning theories suggested to her that what was being modeled in this CAL was a

blend of a drill and practice approach (multiple choice questions) and page turning

CAL (sinlple navigational structure). In itself, that was acceptable, ifnot innovative.

The author decided to focus on the Introduction to Programming package and look at

student responses to the material. This proved to be more difficult than she had ever

imagined and now after three phases of her research, it remains a problem.

There are two key issues, in the author's view. First, what kinds of instruments are

suitable for gaining student feedback and secondly, how can anyone (even the

respondent) be certain that the answers truly reflect the learning or teaching that is

happening? The second question arose strongly when the author conducted an

interview with three first year students about the Pascal unit. (See Appendix M for the

full transcript). From her conversation with the students, it was clear that, although

they were very willing to discuss their experiences (and were articulate and apparently

very frank) they had fairly limited insight into how they learnt and what strategies

they could adopt, or be offered, to help improve their learning of programming. The

author hastens to add, this is not a criticism of those students.

In her own experience, trying to offer insight into how one learns is very much like

trying to look at the back of one's head with a very small mirror - one can only get

partial views which may not give a true picture! It is difficult to describe exactly how

one learns a specific skill. For example, the author can remember not understanding

parameter passing at all: it was an utterly baffling concept that was unlikely to ever

make sense. Now the author understand parameter passing and it seems elegant,

intuitive and obvious but just when did the author's understanding go from the first to

the second state? Was it a single moment of insight or a gradual 'coming into focus'

of the ideas? She cannot say herself and this, in her opinion, illustrates part of the

struggle in her work. Once a student grasps a programming concept it is very hard for

him or her to recall that he or she once did not know that concept or misunderstood it.

A J Bird 289

The teaching a/programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

To ask a student how he or she got to that level of understanding generally elicits a

response along the lines of a shrug and "I just did." or "It sort of clicked."

So, to explore what most effectively moves a student (and of course, it is potentially

misleading to talk of 'the student' when discussing teaching - all students are

different and bring different expectations and abilities to the process oflearning to

program) from not understanding to understanding say, the idea of variables versus

constants or the required program structure, is a complex undertaking.

At this stage, the author feels it is worth reiterating the questions that have sprung

from of the experiences briefly noted here, and elsewhere, and presented first in

Chapter 1:

• What are the key issues in learning to program?

• How significant is the choice of first programming language?

• Is there a meaningful distinction between learning a programming language

and learning programming skills?

• What theories ofteaching and learning can be most usefully employed to

support the teaching of novice programmers?

• What theories drawn from various areas of psychology are of relevance to the

teaching of programming?

• What aspects of CAL can be used to support the learning and teaching of a

programming language?

• How can the author's work on the teaching of programming be embedded in

an appropriate academic research framework?

• Having used a particular approach to the teaching of programming, what ways

are there of gathering and collating meaningful evidence about that approach?

• Having gathered the evidence, what conclusions can be drawn from the

author's work?

In a sense, the first question decomposes into all the subsequent questions and many

other questions. There are probably as many issues in learning program as there are

programmers who are learning!

A J Bird 290

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

For the question on choice of programming language, the author considers that the

choice may not be as significant as some aqvocates of some languages would have us

believe. There is a balance to be struck between presenting students with a very

complex first language and one that is too simple. Students, in the author's experience

have been scathing about learning Pascal as first language but when asked for an

alternative, no consensus is forthcoming! What does seem clear is that student needs

to meet programming concepts and genuinely grasp them, so that they can map those

concepts (variables, parameters, assignment) onto other languages. The author

encountered a student recently who had written shell script that used a variable in an

arithmetic expression before he assigned a value to it. He did not see why the script

did not do the required calculations and yet he was taught introductory programming

concepts in the previous year (not by the author!)

The next question about teaching and learning theories is an equally difficult one. The

author has read around the subject of learning theories and learning styles but the gulf

between the idea of learning styles and the practicalities of teaching programnling

seems as wide as ever. Very little work seems to have been undertaken in this area,

and it is potentially very interesting and productive. It would require careful testing of

students to assess their learning styles and the design of multiple approaches to the

delivery of material, a demanding and time-intensive undertaking. However, it could

yield some useful suggestions for the shaping of the teaching and learning of

programmIng.

In exploring some (a very few!) of the ideas to be found in psychology, the author

found one concept very illuminating: that of confirmatory bias. It explained a great

deal of her own early programming problems, in trying to debug her code, and helped

her to understand why novice programmers genuinely do not see why their code is so

poorly structured or bug-ridden! The question that springs out of this insight, is if the

students know about confirmatory bias, does it change their coding and debugging

approaches? On an anecdotal level, it seems not, but again, formal exploration of this

idea would be worth undertaking.

A J Bird 291

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

The question about CAL supporting the teaching of programming is really where the

author's research effort began. Naively, when she began, the author expected to

undertake several iterations ofthe development of the Introduction to Programming

Ideas CAL until it reached a level of polished effectiveness that made undeniable its

positive impact on the learning of programming concepts. This was a vain, iflong

cherished hope. The Programming Ideas CAL underwent two major revisions and

considerable development in term of its quantity of content but the last version

seemed no more helpful or meaningful to the students than the initial version.

As with most CAL there were difficulties in gathering data about how effective the

CAL was in delivering programming concepts. In all her reading, the general tenor of

students' feedback is that they like the CAL, whether it is on diagnosing horse

ailments or translation skills, but we have to ask some hard questions about why

students like the CAL, whatever the package is, and what respondents really mean

when they say they like the CAL.. We cannot discount all kinds of variables that

affect individual and groups responses to new teaching approaches, computer-based

or otherwise. It seemed to the author that page-turning, tutorial CAL had very little

genuine benefit for the students apart from freeing them from the onerous duty of

attending a set lecture time. The next question for the author was then, what other

computer-based approaches might be relevant? The author then moved on to look at

developing a help system that would grow in response to student queries, and finally,

the use of a pattern language to support novice programmers. These three approaches

are discussed further in this chapter.

What the author lacked was a framework for the research itself: an overview of the

approaches, methods and tools that could support the auth?r's investigation of the

issues around the teaching of programming. In the author's opinion, it is a weakness

apparently shared by some ofthe research efforts focused on programming. In

discussing the latest new programming language or the use of an in-house

programming environment, there is little or no acknowledgement ofthe dimensions of

research paradigms, methodologies and methods. Obviously, the author cannot tell if

this is because there is insufficient room to report on the intellectual and academic

A J Bird 292

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

argmnents advanced for the use of particular approach within a specific methodology,

or whether it is because researchers in prog1."anlming see no need to engage with ideas

in human-centred research. The author would argue that an awareness of at least some

of the ideas to be found in, say, educational research, at a bare minimum, is essential

to any researcher working with human programlners!

The author's readings have led her over a number of areas in research methodologies,

with particular emphasis, for obvious reasons, on educational research. Of necessity,

human-centred research is hedged about with caveats and disclaimers and the author's

own work is no different. What perhaps does make it not quite like much of the

research in progranl1ning is that the author has attelnpted to develop at least some of

her work with reference to theories of research that seenl relevant, rather than simply

technical issues. In the author's opinion it is not enough to examine questions of

programming language constructs or graphical environments: there needs to be a

foundation of research design. The author adnlits that her early worked lacked such a

fully articulated design, but feels that her later iterations did have a sense of a

mapping between ideas to be explored and approaches to those explorations.

The next question focused on the tools that might be meaningfully employed to gather

the kind of data needed for real insight into the process of teaching someone to

program. This has proved to be an area of ongoing challenge for the author. Possible

and potential data gathering methods were reviewed in an earlier chapter, Chapter 2.

The author has tried a number of methods, including the ubiquitous questionnaire in a

variety of styles (Likert scale through to open ended questions). The success of these

methods varies but overall, the author is left with a feeling of dissatisfaction. It is not

that students are particularly difficult to survey in themselves (although this last round

of questionnaires in the autumn of 2003 was a particularly frustrating experience) but

that the author wonders if the data she is looking for is really available at all, in any

truly meaningful way.

The idea in educational research seems to be that an educational strategy of some

kind, from open plan classrooms and un streamed classes of the Plowden Report era to

A J Bird 293

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

tests at 7 and 14 and AS levels ofthe 1990s do have a positive impact on the

education of those on the receiving end, or why else bother? The question therefore is

how to measure and quantify the effect of the intervention or approach. On a very

small scale, that has been the author's rationale: those using the CAL, or the help

system or the pattern language are given an advantage. On a small scale, though, is

the effect so subtle that is impossible to quantify? Are there things that a teacher of

programming can do that seem like a good idea (and are well-received by the

learners) but whose use cannot be fully supported by quantitative data? If so, what

value does that strategy or intervention have?

The problem centres on two issues: the inherent variability of groups of learners and

the control group problem. Many factors affect the makeup of a cohort of students

coming into the University, from the demand for places on a course (a popular course

can afford to ask for higher grades at A level) to the pressure on other courses within

the University and at other institutions. The makeup of a seminar or study group can

have noticeable effects on the ways the group members react and behave in the

classroom. Ultimately, every student is unique and everyone can be surprising, either

for good or bad. In the mid 1990s the Faculty ran the foundation year for students who

had failed al their A levels and the clear philosophy was that everyone should have a

chance. Some students flourished, others dropped out. The BSc in Business and

Technology which recruited first in 1991 had a similar ethos: we recruited many

students through Clearing for the first five years and most took the opportunity

offered and did well.

A related problem is that, in examining the use of the three interventions, the

environment in which the students studied changed, eithe: dramatically or subtly, over

the years. The differences might be as small scale as the arrival of one or two new

members of staff or the installation of new computers or as momentous as the move to

a completely different campus, as we did in September 2003. It is not possible to

compare absolutely groups of students, year on year, for the reasons outlined above.

We might be able to identify trends or commonalities but comparing marks, for

example, can be only indicative, not definitive.

A J Bird 294

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

The second problem is that of the control group. Here the question of ethics in this

type of research needs to be considered. If the author believes that the facility she is

offering to students has the potential to be genuinely helpful, than withholding that

opportunity from another group of learners is unethical and indefensible. There can be

no argument for attelnpting to fornlulate control group based experiments over a

semester, where the final assessment is graded or marked. There might be a place for

a single lesson approach, which the author has tried, without any noticeable difference

in test grades. For a single topic in number bases it does not seem to make any

difference whether the material is presented in CAL or in a lecture. The test grades

across the two halves of the groups (randomly assigned) were very similar.

Another question that cannot be set aside really closely concerns this chapter itself as

well as the work as a whole. As Shermer (2004) notes, researchers in all fields of

study are not free from bias. The "cognitive barriers that color clear judgment"

(Shermer 2004 p 27) are as present in the researcher as they are in the subjects

studied.

Scott-Kakures et al. (1993) describe Bacon's doctrine of the Idols: "The Idols are

certain typical ways in which the human mind is apt to go awry." (Scott-Kakures et al.

1993 p 103) There are four Idols but what most concern the author are the Idols of the

cave and the tribe. Idols of the cave are personal and particular biases, habits or

weaknesses. The question would be what are the author's own Idols of the cave? The

question is not a comfortable one but one that needs asking. The Idols of the tribe are

the "inherited foibles of human thought" (Shermer 2004 p 27) that all human beings

are prone to. So, in a sense, in researching programming, the researcher must be very

clear about his or her own Idols of the cave, have an awareness that others have

different Idols of the cave (which they will find perhaps equally tricky to identify!)

and also be aware that everyone is subject to Idols of the tribe.

Another way to talk about this is to compare our belief in love with our belief in

software. People profess some scepticism about both love and software but deep down

they believe that bad things won't happen to them - they won't fall out of love or be

A J Bird 295

The teaching a/programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

dumped in some humiliating scene in their favourite restaurant and the software they

rely every day on won't destroy their vital data or cause some terrible accident. When

it comes to the question of love, attempting to destroy all illusions is probably not a

good strategy. Writing software and being a good programmer is a different matter.

Why is being human not an automatic qualification for being a programmer? One

example, discussed earlier in this work: confirmatory bias. People naturally look for

evidence to support their view or belief. They discount evidence that contradicts what

they know (in their hearts) to be true and seize on anything that confirms that

perceived truth. Since programmers are people too, and people tend to have an

attachment to what they create (it's only human) they will look for proof that their

code is good. What they won't do is assume it is riddled with flaws of logic and errors

of syntax and act accordingly. The author is interested in ways novice programmers

can be persuaded to critically examine their cherished code. That involves teaching

debugging strategies and also persuading people to look close to home for the

mistakes (only human to look for someone else to blame!).

Also, teaching someone to program involves a lot more than handing him or her the

syntax of a language. It requires people to develop ways to handle complex programs

inside their minds. Memory and understanding are required, in a subtle interplay.

More recently, work has been done on using graphics and layout to aid program

comprehension. Such work is about how people perceive the world visually and how

making something clearer on the page (using indenting, fonts and white space) makes

understanding easier.

Memory, vision, self: all aspects of being human that impinge on the creating of code.

All of these are Idols of the tribe and need to be acknowledged and accommodated.

To know how to help people become good programmers, a teacher of programming

needs to have an understanding of human nature and ultimately, the researcher is

human too.

AJ Bird 296

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

The next stage: the help system

Having developed a fairly large piece of tutorial CAL on programming and found it

did not seeln to answer student needs, the author reflected on the elenlents that might

best support student programming effort. The author frequently referred students to

the error messages generated by the Borland Pascal compiler but the messages did not

seem to be particularly meaningful to new programmers. For example, a wrongly

spelt variable name will generate the message 'Unknown Identifier'. This does not tell

the student exactly what the problem is although technically it is accurate. The author

wondered if there was a way to make the error messages from the cOlnpiler nl0re

useful and nleaningful for the users.

With this in nlind, the author developed a help framework that was designed to grow

as it was queried. Students could enter a Borland Pascal compiler error nlessage

nUlnber or a key word and the help would display an explanation written by the

author. Initially the author wrote a handful of explanations for errors that seemed to

occur frequently such as the missing semi colon at the end of the line. The Borland

Pascal compiler places the cursor on the line below that line missing the semi colon so

the help written by the author directed the student to look at the line above! The help

was meant to be simple and practical. The author also envisaged that as students

queried the help, she would add the text for missing errors. To this end, the author

asked the developer to add a file to store the queries entered by the students. Students

accessed this help by opening a window for the software alongside the Pascal editor

window.

The author envisaged harvesting queries on a twice-weekly basis and expanding the

help significantly. However, the students did not use the help. Students entered a few

queries but some of those were nonsense or expletives. The author feels that she

should have approached the use of the help in a much more structured manner. The

students should have been directed to the help in the laboratory session and

encouraged to use it while programming in the University without tutor support. The

author feels she could also have employed a more constructivist approach and used

some of the laboratory time to work on the help text wit~ ,the class. Surveying the

A J Bird 297

The teaching o/programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

preferred resources of the students who had been offered this initial version of the

help system showed very little difference to the responses of the students in a previous

year, who had used the CAL.

Surprisingly, programming students are very traditional in their choice and use of

academic resources. Only in the past year has using web sites for programming

information and guidance become more prominent. Programming students do seem to

like books, up to date ones preferably but even old texts are acknowledged as being

occasionally useful. Novice programmers also like to adopt a constructivist approach,

with various shades of collegiality. Some, as noted by the students the author

interviewed, make meeting to discuss or work on assignments, including

programming, a regular and social activity. Others, of course, prefer to work

individually, seeking help only for very specific problems.

Having worked with CAL and a self-written on line help system, the author felt that

the next stage was a difficult one. In reading round the topic of programming

generally, she came across the work of PloP and the concept of pattern languages. She

read some of the work of Christopher Alexander (1979) and was enthused by the

ideas contained in his book. The author was sure that extensive work must have been

done in using pattern languages to support a constructivist thread in the teaching of

novice programmers. However, her reading lead her to conclude that a great deal of

very technical pattern could be found for experienced developers to draw upon, and

patterns languages were being developed to model pedagogical strategies but there

was no pattern language aimed at novice programmers, at least not that the author

could locate.

The author was keen to employ the concept of pattern languages in the teaching of

novice programmers and asked the Department of Applied Computing's System

Administrator to create a simple pattern template in September 2003.

A J Bird 298

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

A pattern language for novice programmers

A problem immediately emerged with the work on the pattern language: the author

would be teaching final year students only and the control of the Introduction to

Programming unit would pass to two of her colleagues. This presented the author with

a dilemma. Should she abandon all attempts at fostering the use of pattern language or

try to convey to the students the purpose and rationale for the work, despite not

teaching them? As described earlier in this work, she chose to continue with her

research, with some misgivings (which proved to be justified).

With the pattern template available to students at

http://staff.dc.lincoln.ac.uk/~ambird/patterns/ the author gave her colleagues the

introductory sheet on the template and the initial entry questionnaire to distribute. The

unit was delivered on two campuses, in Hull and Lincoln. Visiting the Lincoln

campus required putting aside a whole day so the author relied on colleagues teaching

in Lincoln to give out and collect the questionnaires. The rate of return was extremely

disappointing.

To sum up, no students used the pattern language template, mainly because they

studied concepts in programming first and started programming in Pascal later in the

semester, in late November. This does not constitute a criticism of my colleagues,

only an observation! It does reinforce the notion that there are as many ways to teach

introductory programming, as there are people to teach it. In interviewing the students

on the course in Lincoln, the question of what to teach and in what order and the

question of a first programming language were all touched upon. Again, different

approaches suit different people.

The overall results were very disappointing for this phase of the research. The author

feels that to successfully use the pattern template, it needs to be introduced early on

alongside actual programming exercises. Again, she envisaged adding sample patterns

based on initial student ideas, as a laboratory exercise. There are a number of ways the

template could be employed, perhaps across the whole of the first year not just

semester A.

A J Bird 299

The teaching o/programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

Students go on to program either in C or Java and the pattern templates could be sub

divide into those for each language and perhaps general problem solving ones. The

author intends to continue her interest in the teaching of programming as she moves

into teaching other languages such as PHP, for web programming. The author can

envisage several more cycles of research based on using pattern languages and

developing a pattern language community among new web programmers.

What of ethnography and the TL TP?

The author's reading has ranged fairly widely over topics related to the teaching of

programming, from research methodologies (ethnography as part of the hermeneutic

framework or view) to a broadly historical view of initiatives in CAL development in

the US and the UK such as the Stanford arithmetic project of the 1960s in America

through to the UK Government's funding for CAL in higher education, the TLTP.

Between those two have been forays into psychology, the history of philosophy,

learning theories, child development, language, the workings of the brain and mind

and some material now entirely excised from this version.

In re-reading the material, the question occurs to the author, how does all this fit

together? (If it does.) Is it meant to? How does knowing what Bacon's Idols of the

cave are help the author be a better (contentious word!) teacher of programming?

Does the author really need to know about the work of Skinner or Piaget to use a

piece of CAL in her teaching?

Were the hours the author spent reading reports written in the 1960s and 1970s about

CAL projects, now long gone, wasted? Is it pointless to ~ow how various

committees and projects spent the funding allocated to them over twenty-five years

ago? The questions are disingenuous: the author feels·that her reading around broad

topics was never wasted effort. Knowing the history of a range of CAL projects (and

some smaller scale projects must have passed beyond even dedicated research effort,

with lost reports and long obsolete software) makes any sensible developer or user of

CAL alert to the issues around CAL, such as evaluation of the material and its

structure, its pedagogical foundations (or lack of them), its genuine effectiveness and

A J Bird 300

The teaching of programming to novice programmers: three approaches

Chapter 8 Overview of the author's work

measurement of that effectiveness. The author has long noted that the fashion in

educational computing was poised to change and research is now emerging that is

much generally more sceptical about the benefits of using computers in the classroom.

Knowing some of the philosophical roots of learning theories might be only an

exercise in overview but the author feels that her interest in such antecedents justified

her wider reading. Making a coherent, unseamed whole out of everything she has read

is not possible but she would like to feel that her work is inforn1ed by an awareness of

a range of ideas, issues and debates.

Chapter 8: Conclusion

This chapter has presented no more than an overview of some of the elen1ents of the

author's various approaches to one aspect of her professional practice, the task of

teaching novice programmers. The question about how to teach novice programmers

might be formulated more usefully as, what does not seem to work very well with

those learning to program for the first time? The answer to that appears to be, just

about everything! Human-centred research is unlikely to produce definitive,

unarguably correct answers but it is frustrating to have expended considerable effort

for very little return! However, the author believes that the idea of developing a

pattern community is one that has a potential and one that is worth another research

phase.

A J Bird 301

The teaching oJprogramming to novice programmers: three approaches

Chapter 9 Conclusion

Introduction to Chapter 9

This chapter offers, very briefly, some initial conclusions offered by the author, based

on the three approaches undertaken by her and described in this work.

Suggestions for the teaching of programming

The author felt it was appropriate to summarise the elements of practice that she felt

could be identified from her various efforts around the teaching of programming. She

offers these as a short list, with brief comments.

• Offer a collected set of disparate resources and identify early on strategies for

employing those resources.

o For example, books are still liked and used by novice programmers. It

would be useful to make distinctions between material and code

presented in texts and similar material that can be found on the

Internet, focusing on validity and audience.

• Make explicit the distinction between learning to program in a specific

language and learning to problem solve and write algorithms.

o Students could be asked to identify their area of interest and

guided to the most appropriate resources. In the author's

experience, sample code is easily found but examples of good,

non-trivial pseudocode are less widely available.

• Offer some element or resource that supports a constructivist approach and

make this a non-optional part of the course. T~at usually means making it

part of the assessment or monitoring process, in some way.

A J Bird

o That element may be on-line help that is added to via some regular

update mechanism (an electronic suggestion box?) or a pattern

repository. It might also be the use of an approach such as pair

programmmg.

302

The teaching of programming to novice programmers: three approaches

Chapter 9 Conclusion

• Students do not often get to see or use bad code. The author found that

debugging error-ridden code in laboratory time was very popular with novice

programmers.

o A library of examples of poor coding might be useful. This could form

part of a CAL package that is more than just page tun1ing. It might be

useful to automate the evaluation of the tidied up version offered by

the student. This removes the need to debate the appropriateness of

assessing formative or summative assessments automatically, while

still giving students practice in improving a piece of code.

• Acknowledge the affective domain and make explicit the issues around

identifying very closely with one's own code.

A view of the author

In 1968, Sackman et al. (1968) noted

"There is, in fact, an applied scientific lag in the study of computer programmers and
computer programming - a widening and critical lag that threatens the industry and
the profession with the great waste that inevitably accompanies the absence of
systematic and established methods andfindings and their substitution by anecdotal
opinion, vested interests and provincialism." (Sackman et al. 1969 p 3)

It seems to the author that efforts to remedy that deficit have been problematic, to say

the least. To the author, part of the problem seems to be that researchers in

programming look at the issues that reside in their areas of expertise or interest. To

generalise a little wildly, programmers who research how to support novice

programmers write software for graphical editing of code or tracing of code

execution. Psychologists look at issues of memory or bias. Those who are interested

in the minutiae of coding look at two different types of loop and how their use affects

understanding of code.

Is the author any different? She must have undoubtedly focused on what interests her

(the human aspects of learning to program) to the detrin1ent of some other aspect - her

own particular Idol of the cave! She has tried to make this work address some of the

A J Bird 303

The teaching o/programming to novice programmers: three approaches

Chapter 9 Conclusion

lag described above by taking a wider view, but at the same time has sought to engage

personally, in her own practice, with approaches to teaching programming.

Her interest in supporting novice programmers remains a central focus for the author

but perhaps that does not emerge strongly enough on a personal level, from her work

overall. Therefore the author feels it is worth articulating clearly: her goal in this work

was to find ways to help novice programmers develop confidence in their

programming and to have the ability to choose from and use all the tools and

resources available to them in a considered way.

This last point is a critical one. The author feels that is not enough to present students

with a varied and good (however we define 'good') set of resources: novice

programmers need to be able to distinguish between resources that serve them well at

one point and not at another. The author's work suggest to her that students do have a

sense of what they like best as support, which is largely an individual choice, but that

developing more sophisticated strategies choosing resources for finding solutions and

problem solving in programming is more demanding.

The author chose to focus on the supporting strategies and resources but one area of

interest is still that higher level of resource choices and employment. From the

author's own understanding of her reading around expertise, what makes someone

good at his or her subject is a nose for what seems productive and promising. Expert

programmers focus very quickly on the strategies and resources that most closely

address the issue at hand. In the author's experience, novice programmers take a very

long time to develop that second level of review and choice. They can spend a long

time hammering out a solution based on an erroneous assumption or on faulty

information, never questioning their choice of resource or strategy.

So, the next stage for the author is to look at offering a broad set of resources (that

might once again include some variety or flavour ofeAL?) and to look at ways of

fostering that more reflective choosing of strategies and employing of resources in

novice programmers: making them more expert at being programmers. Perhaps there

is room her for some early examination of learning styles, with a cohort of students.

A J Bird 304

The teaching of programming to novice programmers: three approaches

Chapter 9 Conclusion

Allied with this will be the use of a pattern language to foster what the author hopes to

be a genuinely vibrant, if small-scale, pattern community.

Because this work reflects the author's continuing interest in what it means to teach a

progran1ming effectively, any conclusion is at least partly a convenient artifice. The

work goes on, the author's ideas develop and change and new approaches are always

possible.

Nothing is ever wholly complete: revisions, new ideas and fresh approaches are

always possible and the author welcomes the sense of excitement that these

possibilities generate for her in her teaching. This thesis is about learning: lean1ing by

the author as well as (hopefully!) by her students, past and future.

The work undertaken by the author seems, in review, to have been a process of

winnowing out rather than inclusion. The author rules out tutorial CAL as n1eaningful

support for the teaching of programn1ing and offers rather pessimistic views of

con1puter-based support that requires students to engage in dialogue with the tutor via

the technology, as in the author's Pascal help systen1. The conclusion for the author is

that students can be notably passive in their learning and alarn1ingly rigid in their

expectations. One approach to this might be to make explicit these issues early on the

life of a novice programmer and work on combating the repetitive cycle of

programming code from a lab sheet, without ever truly reflecting on what it is he/she

is doing and what it is the code is supposed to be doing.

The author believes that her work on a pattern community for novice programmers is

one that holds out promise of a more productive, student-centred approach, if not a

complete answer to some of the problems and issues outlined in this work. It is the

thirds and final approach to the teaching of programming that seems, to the author, to

be the n10st potentially fruitful and one that merits further development, of both the

central idea and the research framework around it, from methodology to data

gathering tools.

A J Bird 305

The teaching o/programming to novice programmers: three approaches

Chapter 9 Conclusion

Conclusion to Chapter 9

This chapter has offered a brief summary of the author's suggestions for the teaching

of novice programmers and offered a short general conclusion to this work.

Conclusion to this work

The author began with an apparently relatively straightforward question: what sort of

CAL can be developed and used so that it supports effectively the teaching and

learning of a programming language, for a student new to programming? It seemed to

the author at the outset that an answer to this question must be capable of being

formulated, even if it was hedged with uncertainties. On closer examination, the

question unpacks itself quite dramatically, to encompass theories of learning (how do

people learn?), human physiology and psychology (vision, confirmatory bias and

affect), theories of personality, ideas and concepts around the field of programming

generally (from programming paradigms, environments and languages to individual

constructs) and a range of ideas about using computers to support learning, from drill

and practice CAL to collaborative learning using a network, in some way. All these

elements are a vital part of the question the author began with and part of the answer,

even if the answer is, in some aspects, a negative one.

The author feels that she has identified what does not work so effectively - tutorial

CAL is too static, and on-line help equally unloved by students! The idea of

developing a pattern community is one that seems to the author to hold genuine

promise but one that requires further work and explication by the author.

In summary, the author feels that the focus of her effort has shifted during the life of

the research but that shift represents her continuing engagement with the question:

how best to help novice programmers learn to program? The answer is perhaps not

monolithic but many faceted: using computers as supporting devices is essential (no

programming without them!) but is not the whole story: the human element (the

novice programmers themselves and the tutor) is critical.

A J Bird 306

Volume 2

Appendix A

Getting started .• simple!

To access Turbo Pascal:

* Log on to Network
* Choose Menu system
* Choose More Applications
* Choose Software Development
* Choose Programming Languages and
* Choose Procedural Languages
* Choose Turbo Pascal

To set up a new file, press ALT and F together to bring up the file menu.

Move the highlight to New, using the arrow key and press Enter.

You type in your program into the Edit window.

When it is typed in you compile and run it.

Typing in a program is like typing in any text. The difference comes later.

Type in the following program EXACTLY as below.

program newprog (input, output);

begin

writeln (,Hello world')

end.

To compile the program press ALT and F9 together.

If your program is OK you get a compile successful message. Press any key to continue.

If your program does not compile you need to de-bug it. When your program has compiled you can then run it.

To run the program press CTRL and F9 together.

The screen doesn't seem to change has anything happened?

Press ALT and F5 together.

What you see is the Run window where your program shows the ouput.

You should see

Hello world

in the Run window ..

Press ALT and F5 to go back to the Edit window. You can now re-edit your program so it says something more
complicated or you can type in a new program. To type in a new program, choose New from the File menu.

Each time you edit a program you need to re-compile it.

1

Appendix B

The teaching oJprogramming to novice programmers: three approaches

Appendix B Positivism and hermeneutics

Introduction to Appendix B

This appendix offers an outline definition of positivism and hermeneutics. It also

describes very briefly phenomenology, phenomenography, ethnography and

ethnomethodo logy.

Positivism

Carr and Kemmis (1994) note:

" 'Positivism' is not a systematically elaborated doctrine. Rather, [j, it is the name
usually associated with the general philosophical outlook which emerged as the most
powerful intellectual force in western thought in the second half of the nineteenth
century." (Carr and Kemmis 1994 p 61)

The nature of positivism is summed up by Melrose (1996): "Positivists value concrete

and Jactual bodies oj technical knowledge and generalisations, arrived at by repeated

and confirmatory experimentation and observation." (Melrose 1996 p 50) This

assumes that there is an external world that exists independently ofthose who seek to

know it. If the world exists independently of those who study it, there must be a clear

distinction between the studied world and those doing the stUdying: there is no

blurring of this world/person boundary.

Such clear distinction implies that the subjective views ofthe person doing the

studying do not have any impact on, or relevance to, the world being studied.

Different people, presented with events in this external world, should be able to agree

upon the nature of those (measurable) events and agree conclusions based upon those

measurements.

This is as true for the social sciences as it is for the natural sciences. "The social world

[in this view] is very much like the natural world.".(Usher 1998 (a) p12) We can

immediately question this viewpoint for work in social science and educational

research: in such human-centred situations, the interactions ofthe observer and

observed are both gross and subtle, observable and hidden, in ways that are not true in

a chemistry experiment.

A J Bird 308

The teaching of programming to novice programmers: three approaches

Appendix B Positivism and hermeneutics

The positivist view of cause and effect is not an adequate model for understanding

human activities:

" ... meaningful actions are reduced to patterns of behaviour which, [J, are assumed
to be determined by some external forces so they can be made amenable to
conventional scientific explanations." (Carr and Kemmis 1994 p 89)

The positivist approach emphasises rationality, determinacy, impersonality

(removing/denying the subjective) and prediction: in the real world, events are

repeatable. This model of scientific enquiry has, says Usher (1998 a) come to

dominate research in both the natural and social sciences. Emphasis is placed on

formulating generalisations for both areas of research, perhaps to the detriment of

work in social sciences and education.

Hermeneutics

Positivism can be contrasted with the ideas of a hermeneutic/interpretive approach.

Such an approach "assumes that all human interaction is meaningful and hence has to

be interpreted and understood within the context of social practices." (Usher 1998 (a)

p 18) The question of context or background is crucial. Those doing the research and

those who are being researched are embedded in a rich background of "assumptions

and presuppositions, beliefs and practices . .. " (Usher 1998 (a) p19) From this, then,

must come an understanding of the researcher as part of that background.

Separateness is not possible. (Usher 1998 (a) p 22)

Ifwe accept that we, as researchers, are part of the world we are researching, then we

have gained both a valuable insight and a valuable tool. There are pitfalls: the extreme

position of reflexivity is to argue that all research in a hermeneutic/interpretive

framework is ultimately research about the researcher. All the research activity does is

reflect back the researcher's own goals, ideas and needs.

Part of the answer to this is to make explicit the uses of reflexivity and critically

examine the reflexive elements present in research, while it is being carried out.

A J Bird 309

The teaching o/programming to novice programmers: three approaches

Appendix B Positivism and hermeneutics

Positivism denies reflexivity: the identity of the observer is both irrelevant and

unexplored. In hermeneutics, that identity is both central and should be articulated.

Within the hermeneutic framework, we can identify different approaches, such as

phenomenology, phenomenography, ethnography and ethnomethodology. Each of

these is briefly described below.

Phenomenology and phenomenography

Phenomenology advocates the study of experience taken at face value. In this

paradigm, subjective consciousness is the prime factor. This consciousness is active,

and bestows meaning. A variation of phenomenology is phenomenography:

" ... phenomenography investigates the qualitatively different ways in which people
experience or think about different phenomena. [] Phenomenology is concerned with
the relations that exist between human beings and the world around them." (Marton
1988 p144)

The word phenomenography was coined in 1979 and appeared in print for the first

time in 1981. The key idea is that an idea, concept or principle can be understood in a

number of different ways.

"Phenomenography involves analyzing and categorizing peoples' different ways of
understanding or conceiving of a certain phenomenon, as this manifests itself in
different discourses; although most generally in a conversation between the
phenomenographer and an interview person."
(http://www.ped.gu.se/biorn/phgraph/wildlbriefing.htmI15/021200 1)

The methodology ofphenomenography is unformalised. The idea of conversation as

the basis for research is an attractive one but perhaps lacks rigour.

There are issues with regard to the substance ofphenomenography:

"The interest shown by phenomenographers for,methodological problems and the
meaning of the procedures they carry out when doing their research has been small,
even though examples of the opposite exist, which means that they have, as yet, barely
formulated the theoretical bases of their way of doing research; something which in
its turn makes it difficult to actually pin down what it is that phenomenographers do."
(http://www.ped.gu.se/biorn/phgraph/wildlbriefing.html 15/0212001)

A J Bird 310

The teaching of programming to novice programmers: three approaches

Appendix B Positivism and hermeneutics

Ethnography and ethnomethodology

Ethnography has its origins in anthropology, in such works as Malinowski's study of

Trobriand Islanders. Ethnography can be defined as concentrating on describing the

culture of those being studied rather than seeking to validate or create generalisations.

This is not to imply that ethnography is a monolithic approach with no variations of

methods or disputes and debates about its tools. Hammersley (1992) argues that

ethnography suffers from a "disabling defect []: it is guided by an incoherent

conception of its own goals." (Hammersley 1992 pll)

Nevertheless, we can find clear definitions of the role of the ethnographer:

"the ethnographer wants to understand what one has to know, as a member of a
particular group, to behave competently as a member of that group. A "good"
ethnography describes a cultural reality in such a way that a non-member of the
culture could ''pass as an insider" if he or she had internalized the cllltural features of
the particular setting. To a certain extent ethnographers are interested in
taxonomizing or categorizing the cultural perceptions ill the ethnographic account."
(http://www.phenomenologyonline.com/glossary.cfm?range=e-h 08/05/2003)

Traditional ethnography can be seen to have four key areas: the researcher's role,

natural settings, reflexivity and the relationship of ethnography "to the practice of

education." (Scott 1998 (b) p 144)

In ethnography, the researcher can take the role of participant. This participation can

be classified as complete, participant-as-observer, observer-as-participant and

complete observer. (Scott 1998 (b) pp144 - 145) The question needs to be asked, can a

researcher ever be a full participant? In the second case, the researcher participates in

order to experience at least some elements of the culture/system they are studying.

Researchers using this model are open about their role and have to negotiate their

participation. Complete observer is a model where the researcher adopts "a passive

role and concentrate[s] on minimising their 'contamination' of the setting." (Scott

1998 (b) p145)

Hammersley (1992) argues that ethnography's greatest commitment is to description,

however the description is defined and bounded. (Most ethnographers acknowledge

the idea of multiple views/individual realities present in any social system or event).

A J Bird 311

The teaching ofprogramming to novice programmers: three approaches

Appendix B Positivism and hermeneutics

Hammersley (1992) argues that such a commitment is misleading: it is not possible to

produce neutral descriptions and explanations of those descriptions. The assumptions

and judgements that underpin any description and explanation need to be "made

explicit and justified where necessary." (Hammersley 1992 p28)

What emphasis should be placed on the validity of ethnographic research?

Hammersley (1992) presents a definition of validity: "An account is valid or true ifit

represents accurately those features of the phenomena that it is intended to describe,

explain or theorise." (Hammersley 1992 p 69) This definition does require some

unpacking and Hammersley (1992) offers three areas for consideration: plausibility

and credibility, the relationship of claim and evidence and, finally, the type of claim

made.

More significantly still, the idea of ethnography can be said to embody a telling flaw.

The more deeply ethnography engages with the subjects of study, the less sure it is of

the conclusions or ideas generated by that study, " ... the more deeply it goes the less

complete it is. It is a strange science whose most telling assertions are its most

tremulously based ... " (Geertz 1993 p 9)

Scott (1998 b) characterises the idea of reflexivity as "central to the ethnographic

enterprise." (Scott 1998 9bO p153) The key point is that the ethnographic approach

does not pretend or suggest that the data collected is utterly uncontaminated by the

presence and activities of the researcher:

" ... ethnography demands a level o/introspection both about how the data were
collected and the positioning 0/ the researched account in those social and political
arrangements that constitute society." (Scott 1998 (b) p155)

Ethnomethodology

"studies the "methods" that people employ to accomplish or constitute a sense 0/
objective or social reality. The purpose is to elucidate how taken-for-granted or seen
but-unnoticed "rules" lie at the basis 0/ everyday communications and interactions
among social actors."
(http://www.phenomenologyonline.comlglossary.cfm ?range=e-h 08/0512003)

A J Bird 312

The teaching of programming to novice programmers: three approaches

Appendix B Positivism and hermeneutics

Cohen and Manion (1994) distinguish two types of ethnomethodology: linguistic and

situational. Linguistic ethnomethodology focy.ses on the use of language in everyday

situations, whereas situational ethnomethodology looks at the ways people deal with

the different and varied social contexts in which they exist. (Cohen and Manion 1994

p 32)

Appendix B: Conclusion

The brief outline given here cannot hope to do justice to the rich complexity of these

philosophical issues, whether they are viewed as a set of theories or as a framework

for investigating and interpreting human activities, but this chapter has presented

some initial, elementary definitions.

A J Bird 313

Appendix C

The teaching o/programming to novice programmers: three approaches

Appendix C Pattern Form

Search for a pattern?

Pattern Name: I.

I Anonyrrous
Author:

Confidence level:

C No stars - first go at this n * - it's a good start n ** - fairly sure this is

the best solution

Problem:

Define the problem here in a few words!

Suggestion:

Make your solution as clear as you can. Include any extra information people need 1

~ubmit pattern

Search for a pattern?

A J Bird 314

Appendix D

The teaching o/programming to novice programmers: three approaches

Appendix D Review of a selection of introductory Pascal texts

Introduction to Appendix D

This appendix will outline the first Pascal programs offered in a number of

introductory Pascal texts, chosen at random by the author from those available to her

students in the University library in the academic year 1996 - 1997.

Review of selected Pascal texts

One of the key sources for a programming beginner is a book or books. Books on

programming languages are numerous and varied. A new language or a new paradigm

will inevitably generate a flurry of new titles from 'How to get started with ... ' to

'Expert use of ... '

The Internet also provides a wide range of resources for those working with

programming languages: such resources are reviewed later in this chapter. This

section concentrates on as handful of introductory Pascal texts. Such a review cannot

be exhaustive: the author has chosen a number of introductory texts at random,

without regard for their date of publication.

How should we classify the different ways different authors tackle the question of

writing about Pascal? One measure might be to examine the opening paragraphs of

the first chapter and/or the introduction. Another might be to examine the first piece

of Pascal code presented to the reader. The author proposes to use these (fairly

arbitrary) measures in discussing the selected texts.

Before looking at Pascal books it is worth noting that some educators have

reservations about the pedagogical value of such texts. McKeown and Farrell state:

"Programming texts appear to pay little or no attention"to instructional design
principles. Texts merely present programming concepts in a conceptual order. Simple
principles are first presented and later built upon as more abstract principles are
introduced. There appears to be little attention paid to problem-solving principles or
debugging issues, areas that have consistently proven to be major stumbling blocks
for novice programmers."
(http://homepages.dsu.edu/mckeownj/CPCCCSCpaper.html 04112/2000)

A J Bird 315

The teaching of programming to novice programmers: three approaches

Appendix D Review of a selection of introductory Pascal texts

In Pascal programming: a beginner's guide to computers and programming,

Hawksley (1988) opens the introduction to the book by describing learning to

program as being analogous to learning to play.a musical instrument. He extends this

analogy and describes how a basic knowledge of the physical construction of, say, a

piano, can in1prove the learner's playing of that instrument. So, he says, with

programmers: they should have a basic understanding of the general elements of a

con1puter.

Hawksley (1988) then goes on to describe the pedagogical structure of the book. Key

skills in music can be acquired and improved by practice and programmers need to

learn the ways a language's constructions can be used: "fVith this in mind, the later

chapters of part 1 introduce fundamental constructions of the Pascal programming

language together with short examples to illustrate their use." (Hawksley 1988 p 2)

In Chapter 5, Hawksley (1988) tackles Pascal program construction. The first Pascal

program appears on page 34:

program sayhello (output);

begin

write ('hello ')

end.

(Hawksley 1988 P 34)

In Brown's Pascal from BASIC (1982) the preface states, "This book assumes that you

are a reasonably competent BASIC programmer and that you want to learn Pascal."

(Brown 1982 Preface) The first example program Brown (1982) describes is a BASIC

program to find the average of n numbers.

A J Bird 316

The teaching o/programming to novice programmers: three approaches

Appendix D Review of a selection of introductory Pascal texts

Brown (1982) then shows the Pascal equivalent:

program average (input, output);

{ --- find the average ofN numbers ---}

var

n: integer;

k: integer;

s: real;

x: real;

begin

read (n);

s: = 0;

for u: = 1 to n do

begin

read (x);

s: = s+x;

end;

write In ('Average =', sin);

end.

(Brown 1982 P 2)

Brown then goes to discuss the key differences between the BASIC version of this

activity, with its REM and use ofline numbering and the Pascal version.

In Farmer's The Intensive Pascal Course, (1984) the author opens with the statement:

"This book assumes that the reader already has experience of programming in a
high-level language (e.g. Algol 60, BASIC, FORTRAN, etc) and therefore has a
feeling 'for the structure of a program." (Farmer 1984 p 4)

Farmer then goes on to discuss the notation and characteristics of Pascal and simple

data types. Interestingly, at the end of the first chapter, Farmer has some pragmatic

A J Bird 317

The teaching of programming to novice programmers: three approaches

Appendix D Review of a selection of introductory Pascal texts

advice about learning one text editor under one operating system very thoroughly and

also the use of one Pascal compiler, so that the user becomes familiar with its

diagnostics. (Farmer 1984 pp 10-11)

In Simple Pascal, McGregor and Watt (1981) open their introduction with a short

program and then discuss each line of the program in tum, describing the role of

reserved words such as 'program' and the creation and formatting of output using

quotation marks and expressions. McGregor and Watt (1981) note:

"in order to make it easy for a program to be processed by a machine, the
grammatical rules in PASCAL are very strict. You willfind,for example, that you
mllst put commas and semicolons injust the right places." (McGregor and Watt
1981p3)

In Pascal for Electronic Engineers Attikiouzel (1990) introduces concepts such as

algorithms, different programming languages and software tools before giving a broad

view of Pascal. He begins with an outline of the relationships between data types and

lists Pascal's special sytnbols, much as <> := and *. Also listed are Pascal identifiers

such as false, get, readln and so on (Attikiouzel 1990 p 6)

Attikiouzel (1990) then moves on to describe the structure of a Pascal program and

the role of comments. A complete program is given on pages 10 to 11. This program

converts a decimal number input by the user to binary. The program uses the const

statement as well as declaring three variables, with a REPEAT ... UNTIL loop inside

the ELSE of an IF ... THEN ... ELSE. This is a rather more meaningful, even

challenging, piece of code than the earlier examples reviewed.

In the next chapter, Attikiouzel (1990) introduces the concepts of constants and

variables, output and input from a program and data types such as real and integer.

A J Bird 318

The teaching o/programming to novice programmers: three approaches

Appendix D Review of a selection of introductory Pascal texts

In Eisenbach and Sadler (1981) the first Pascal program is:

PROGRAM EVENINGALL;

BEGIN

WRITE ('HELLO');

WRITE ('.' , 'HELLO HELLO');

WRITE (* MOVES TO A NEW LINE*);

WRITE ('AND WHAT DO WE HAVE HERE?');

WRITE (,HELLO HELLO HELLO')

END.

(Eisenbach and Sadler 1981 p 12)

(Note: the line numbering in the original has been omitted.)

Beaumont (1989) introduces the assignment statement in the first Pascal program:

PROGRAM ADDUP;

V AR first number; second number; result: REAL;

BEGIN

First Number:= 2,3;

Second Number:= 4,1;

Result:= First Number + Second Number

END.

(Beaumont 1989 p 83)

This program appears after the introduction of data types such as integer, real, char,

features such as operators for arithmetic expressions, mod and div and input and

output.

What can we conclude from what is a very brief review of a very small number of

Pascal texts? We can see that the preferred approach is generally to present a very

A J Bird 319

The teaching of programming to novice programmers: three approaches

Appendix D Review of a selection of introductory Pascal texts

short program, usually one that outputs a short Inessage to the screen, and to broaden

the discussion from this point onwards, adding new features and increasing the

complexity of the programs offered. We could term this the 'Hello world' approach,

as the convention is that the output program delivers a message something like Hello

or Hello world:

"Before you start any programs you need to have an idea of what YOlt want to do.
[] ... the HIlello world" program is famous in many way as it's generally a I line
program (or asfew as possible) ... " (http://www.xcalibur.co.uk/training
/programminglstart.htn11 03/05/2000)

The converse approach is to present a fairly complex program that does some non

trivial processing and decompose it in detail, discussing each of the elen1ents in tum.

Wirth notes: "Programming is usually taught by examples. Experience shows that the

success of a programming course critically depends on the choice of these examples."

(http://www/acm.orglclassics/dec95 20/1 0/2000) Wirth argues that these examples

too often are chosen to show what the con1puter can do rather than embodying a more

generally applicable concept.

Another weakness, he notes, is the way in which example code is presented as

finished:

"As a consequence of these teaching methods the student obtains the impression that
programming consists mainly of mastering a language [] and relying on one's
intuition to somehow transform ideas into finished programs."
(http://www.acm.orglclassics/dec95.html 20/1 0/2000)

It should be noted that the original article was published in April 1971 but Wirth's

aside on programming languages is as true as it was thirty years ago.

Wirth goes on to argue that new programmers should be taught design and program

construction and that example programs should demonstrate a development of idea

and code.

Some concepts prove difficult for students across a range of structured languages,

including the idea of parameter passing and the scope of variables. One Internet

A J Bird 320

The teaching o/programming to novice programmers: three approaches

Appendix D Review of a selection of introductory Pascal texts

message describes such concepts being simplified by presenting the concept of global

variables only. (http://www/uni

giessen.deihr2/tex/more.info/info/mailarchiv/litprog.lImsg00507 .html 03/05/2000) It

is probably not an adequate solution, when encountering areas of difficulty, to ignore

those areas entirely!

Appendix D: Conclusion

What can be gleaned from looking at the texts on Pascal is that most authors take a

features-driven approach. They describe constructs and ways of doing a particular

task in the language of choice and note any quirks or peculiarities in the language. It is

hard to discern any pedagogical structure in these texts, although perhaps that is

unfair. These books do not make exaggerated educational claims and, on the whole,

the reader is left to supply his or her own pedagogical framework.

A J Bird 321

Appendix E

The teaching of programming to novice programmers: three approaches

Appendix E Expert and novice programmers

Introduction to Appendix E

This appendix reviews in outline some of the work done in the comparison of expert

and novice programmers, in terms of their approach to implementing algorithms,

solving problems and mental models.

Experts versus novices

One aspect of research in psychology that might initially seem very promising is that

of exploring and comparing the different models and strategies developed and

employed by expert and novice programmers. Ifwe could quantify the ways in which

an expert approaches the coding of a new program or comprehends a program, then

we might identify strategies (or as noted earlier, models) that can be explicitly taught

to a novice.

Learning programming has been described (by Arzarello et al. 1993) as a cognitive

apprenticeship. Arzarello et al. (1993) define such an apprenticeship as a process of:

"building new (cognitive and metacognitive) knowledge and abilities, and [] a
process of revision of already acquired knowledge, and of[] organization of a new
framework in which old and new knowledge must be compared and integrated."
(Arzarello et al. 1993 p 284)

Arzarello et al. (1993) make what they say is an important distinction between the

cognitive and practical apprenticeships. Practical elements of learning to program are

fostered by appropriate teaching strategies, such as scaffolding. The cognitive aspects

are brought into being through the observation of the expert by the novice, where the

expert makes external and knowable hislher cognitive processes.

Part of the role of the expert is to identify areas of cognitive ~onflict for the novice

and help the novice develop ways of meeting these difficulties. The learning of

programming then, is more than learning the syntax and semantics of a language: it is

about adopting ways of thinking about programming problems and recognising the

existence of better, more productive strategies for certain situations or problems and

applying them in a considered way.

A J Bird 322

The teaching of programming to novice programmers: three approaches

Appendix E Expert and novice programmers

Winslow (1996) has a more positive view than some authors of what psychology

might offer:

"Can we turll novices into experts in afour year ll1~dergraduate program? If so, how?
Ifnot, what is the best we can do? ~Vhile every teacher has his/her own opinion on
these questions, psychological studies over the last twenty years have started to
furnish scientific answers." (Winslow 1996 p 17)

Winslow (1996) identifies some of the results that research about novice programmers

turns out repeatedly. Novices understand syntax and sen1antics but cannot move from

the individual elements to whole programs. Even where students do understand a

problem, the act of coding that understanding by translating an algorithm into a

program seems beyond them.

Winslow (1996) sums up the salient points that research seems to n1ake again and

again. Novices lack adequate mental models of programming. Novices do not have a

deep understanding of the subject and often fail to apply the knowledge that they do

have, even when it is relevant. They rely on general (inappropriate?) strategies rather

than generating more specific solutions to a problem. Novices look first to use

constructs and code line-by-line rather than thinking in overall terms.

Davies (1993) makes a central point about novice versus expert programmers. It is

assumed that enabling novices to become good programmers (and by extension,

eventually experts) involves the transmission of programming knowledge. Davies

says that studies suggest, "novice programmers display strategic as opposed to

knowledge-based difficulties." (Davies 1993 p 262)

Winslow (1996) sums up the research on expert programmers:

"On the other hand, similar studies have found that experts:

Have many mental models and [] mix them in an opportunistic way.

Ilave a deep knowledge of their subject which is [] many layered []

Apply everything they know." (Winslow 1996 p 18)

Experts work forward from the problem's givens, are good at spotting problems that

have partial solutions or solutions already in existence, concentrate on data structures

in code and use algorithms rather than focusing on a particular language. Finally,

A J Bird 323

The teaching ofprogramming to novice programmers: three approaches

Appendix E Expert and novice programmers

experts have better tactical skills. It is unrealistic to expect student programmers to

achieve that level of expertise but should teachers should aim to equip students to

adopt some of the strategies demonstrated in expert programming practice. For

Winslow (1996) that involves being able to apply general problem solving approaches

to a specific problem, distinguish between task specific and general rules (and

combine them) and "increase ability by practice."(Winslow 1996 p 19)

Blum (1996) notes, "We know that experts have considerable knowledge." (Blum

1996 p 122) This rather trite and obvious statement can be unpacked quite usefully,

however. Glaser et al. (1988) note the following characteristics of expertise:

"[] Experts perceive large meaningful patterns in their domain ...

Experts are fast; they are faster than novices at performing the skills of their domain,
and they quickly solve problems with little error ... []

Experts see and represent a problem in their domain at a deeper (more principled)
level than novices; novices tend to represent a problem at a superficial level ... []

Experts have strong self-monitoring skills ... " (Glaser et al. 1988 pp xvii - xx)

What is required, argues Winslow (1996), is the learning of problem solving. By

problem solving, what Winslow (1996) appears to mean is the whole sequence of

understanding the problem domain, formulating a solution and translating the solution

into code, which needs to be tested and debugged. Winslow identifies a critical

weakness in this cycle:

"Every teacher has had troubles with students who do not read the problem carefully,
or read it in a superficial manner. Mathematicians consider "word problems" one of
the most difficult things to teach, yet programming is almost all word problems."
(Winslow 1996 p 20)

Once students have understood the problem, the second major difficulty is the

combining of syntactically valid statements into a working program.

A J Bird 324

The teaching o/programming to novice programmers: three approaches

Appendix E Expert and novice programmers

Students know the individual constructs, such as IF ... THEN or loops but do not see

how to meld these constructs into meaningful code:

"The difficulty is knowing where and how to combine statements to generate the
desired result. As noted earlier, experts think in terms of algorithms and not
programs. The actual translation of an algorithm into a working program is a task,
not a problem." (Winslow 1996 p 20)

When the program is written the student must test and debug the code: another point

of di ffi cuI ty:

"Studies have shown that there is very little correspondence between the ability to
write a program and the ability to read one. Both need to be taught along with some
basic test and debugging strategies." (Winslow 1996 p 21)

So, what pedagogical strategies can be identified to address the issues identified here?

Winslow (1996) makes some suggestions based on the work of Linn and Dalbey

(1989, cited in Winslow 1996). Novice progran1mers should learn the syntax and

selnantics of a language one element at a time. The learning of a language's features

needs to be combined with problem solving and program design skills, which need to

be taught explicitly.

Winslow concludes:

"Psychological studies of expertise in general and computer programming expertise
in particular show that turning a novice into an expert is impossible in a four year
program. Competence, however, is possible." (Winslow 1996 p 21)

Davies (1993) argued that expert programmers have undergone a process of

"knowledge restructuring". (Davies 1993 p 238) and from that restructuring comes

the different strategies employed by expert programmers. One of the strategies

identified is that of 'chunking' a program during comprehending the code. Davies

cites the work of Widow ski and Eyforth (1986) who extended the work of Chase and

Simon (1973).

Widowski and Eyforth's (1986) work confirmed that expert programmers'

comprehension worsened when programs were presented randomly to them whereas

novice programmers understanding was "affected little." (Davies 1993 p 246) Davies

reviews extensively the work done by various researchers on expert programmers

A J Bird 325

The teaching of programming to novice programmers: three approaches

Appendix E Expert and novice programmers

strategies but concludes, " .. . no clear picture emerges from this work" (Davies 1993 p

263).

Davies describes a study that recorded the eye fixations of programmers asked to

study a binary search program, work done by Crosby and Stelorsky (1989). The

researchers found no correlation between patterns of fixation and expertise: in other

worlds there is no single, expert way to read and scan a piece of code.

Davies also reviews Rist's model of focal expansion (1986 and onwards) He notes:

"Rist ... has proposed a model of scheme creation in programming that describes the
way in which plan-based knowledge structures are transformed into programs and
accounts for the differences in generation strategy that have been observed to be
associated with differences in expertise." (Davies 1993 p 250)

As the theory name suggests, Rist (1986) proposes that single lines of code, each

containing a central action to be performed, are combined to form a plan. Rist's

(1986) model makes two claims about the effect of knowledge on behaviour. Firstly,

if knowledge does guide program design, then that design will be top-down. Ifno

knowledge applies to the program then the "solution will be created by focal

expansion [or] a bottom-up process." (Davies 1993 p 250)

Davies goes on to discuss extensions of Rist's work by Green, Bellamy and Parker

(1987) Green et al. (1987) proposed:

"a comprehensive model of coding behaviour which highlights those features of the
device, task, interaction medium and user knowledge that contribute to the use and
development of particular forms of programming strategy." (Davies 1993 p 251)

Davies (1993) notes, "Green, Bellamy and Parker introduce the "parsing-gnisrap"

cycle to describe the cyclical alteration between code generation and

recomprehension." (Davies 1993 p 253)

In this model, code is externalised (presumably typed into an editor) when the

programmer can no longer hold in working memory the program structure: this is the

gnisrap element. When the code is externalised, it needs to be parsed or re-understood

at intervals by the programmer. This model, notes Davies (1993), makes different

A J Bird 326

The teaching of programming to novice programmers: three approaches

Appendix E Expert and novice programmers

predictions about the order in which a program is generated, compared to Rest's

model. In the parsing-gnisrap model, programs are accretions of code segments that

are exten1alised (typed in) when the programlner can no longer hold the full code in

his/her mind. Looking at the accretions of code requires the programmer to

reconstruct the original plan of the program.

The medium in which the externalisation takes place affects the programmer's

strategy. An obvious difference is that between the use of pen and paper and text

editor. The language chosen (Pascal, Basic etc) also affects the strategies employed by

the programmer. Some languages support a non-linear approach better than others.

In the parsing-gnisrap model, there may be no differences predicted between expert

and novice programmers. However, it should be noted, "the data llsed to support the

parsing-gnisrap model was collected from expert programmers." (Davies 1993 p 256)

Kahney (1983) summarises the problem solving behaviour of novice programmers as

possibly consisting of method finding (recall of similar problems), evaluation of

possible methods, ways in which the chosen method can be framed in a program,

coding, evaluation of code and testing. Kahney (1983) concludes that is possible to

distinguish between talented novices and the rest. Talented novices are more expert

like in their strategies where the "average novice is quite unlike the expert." (Kahney

1983 p 139)

Petre and Blackwell (1999) investigated the idea that programmers (particularly

expert programmers) visualise or image/imagine the code or program structure and

that visual programming languages must be closer to the human internal

representation of code than textual languages such as Pascal.

Petre and Blackwell (1999) describe two studies in their paper. One study

concentrated on eliciting comments about mental imagery from expert programmers.

The other was a questionnaire-based study of 200 users of a visual language,

LabVIEW.

A J Bird 327

The teaching of programming to novice programmers: three approaches

Appendix E Expert and novice programmers

The programmers surveyed in the first study used a variety of ways to describe what

they were thinking. The imagery might be of symbols, of an internal conversation or

aUditory. Petre and Blackwell (1999) note that visual images appeared in all the

descriptions given. The images were of mind machines or of the flow of data or a

combination of both. Programmers also described idea oflandscapes, with the

solution forming the landscape over which the programmer could 'fly'.

Some common elements emerged, such as the dynamic/static interplay present in the

images. The programmers also were able to focus on elements of their images to

switch their attention to other areas. They could also change the quality of their focus:

look at details or the general image. The programmers' images were flexible and

variable and could take account of areas of the unknown or incomplete. Also, the

images were perceived as being multi-dimensional, and to be mUltiple themselves.

The second study looked at users of LabVIEW, a visual programming language that

emphasises data flow. Petre and Blackwell (1999) seem reluctant to draw strong

conclusions from their study, leaving the question of whether there are broadly

applicable programming strategies that can be inferred from an investigation of expert

programmers' mental imagery.

Another, learner-centred approach is described by Davy and Jenkins (1999). They

describe the background to the project, which focused on applying elements of

research in teaching programming to undergraduate classes. The students started

learning programming through Pascal, then moved on to C++ in year two. Aspects of

the object-oriented paradigm were introduced toward the end of the C++ material:

"This structure proved largely unsuccessful, despite much effort from staff in terms of

delivery and support." (Davy and Jenkins 1999 p 5)

Interestingly, Davy and Jenkins (1999) note, "A consistent model of student learning

appears a fundamental of effective teaching." (Davy and Jenkins 1999 p 6)

Davy and Jenkins (1999) describe the use of a model described by Laurillard, itself a

synthesis of various research approaches. Laurillard's model "emphasises students'

A J Bird 328

The teaching of programming to novice programmers: three approaches

Appendix E Expert and novice programmers

conceptions and can be described by a 'conversational framework' with four

components." (Davy and Jenkins 1999 p 6)

These four components are: discursive, interactive, adaptive and reflective. Davy arid

Jenkins (1990 describe the discursive con1ponent as a:

"dialogue in which learning goals are agreed, the conceptions of both students and
tutor become accessible to each other, and students receive feedback on their
descriptions of their concepts." (Davy and Jenkins 1999 p 6)

In the interactive component students receive both intrinsic and extrinsic feedback,

from the task performance and fron1 tutor evaluation of their work: "Ill the adaptive

component the tutor alters the focus of continuing dialogue and tasks 011 the basis of

reflection 011 the discursive component. " (Davy and Jenkins 1999 p 6)

The reflective component is where students use their learning experiences to develop

both their understanding and their task performance.

To use this model, changes were made to the organisation of teaching programming:

"The largest innovation was the weekly tutorials, in groups of about 15." (Davy and

Jenkins 1999 p 6) These group tutorials were designed to support the discursive

elements of Laurillard's model, with groups streamed by programming experience.

Adaptive feedback was provided in the work on exercises throughout the teaching

period:

"Explicit reflection on the students' own activities was encouraged in the first
assignment [] which required students to evaluate a range of motivations for learning
to program. The exercise was completed after an interactive lecture where students
had substantial opportunity to express their views." (Davy and Jenkins 1999 p 7)

Davy and Jenkins (1999) conclude:

"Rigorous evaluation of these innovations is impossible, as the many simultaneous
changes preclude proper controls. Even where clear evidence of improvement can be
seen, it is hard to establish cause and effect conclusively." (Davy and Jenkins 1999
p 7)

A J Bird 329

The teaching of programming to novice programmers: three approaches

Appendix E Expert and novice programmers

Nevertheless, they present raw marks for the new style programming unit and its

predecessor and state that marks show a "significant upward shift for most students."

(Davy and Jenkins 1999 p 8)

Appendix E: Conclusion

The comparison of expert programmers' strategies with those of novice programmers

does seem initially very promising but it is quickly becomes obvious that modelling

explicitly what it is expert programmers do, that could be conveyed to novices as

'winning strategies' is not a trivial task. It is a potentially useful but not definitive

answer to improving the programming of novices.

A J Bird 330

Appendix F

The teaching o/programming to novice programmers: three approaches

Appendix F The Stanford Project, PLATO and TICCIT

Introduction to Appendix F

This appendix examines the Stanford project of the early 1960s. It could be argued

that CAL, in more theoretical forms, began even earlier but the Stanford project was a

well-funded and well-managed project that foreshadowed many the recurring themes

in CAL research over the next thirty years. It also discusses briefly the two projects set

up in 1971 by the NSF (National Science Foundation of America), PLATO and

TICCIT.

The Stanford Arithmetic project

Computer Assisted Instruction at Stanford began with a program of research in early

1963. In 1964, Stanford won a contract from the US Office of Education to set up a

computer-assisted learning laboratory at a state elementary school. After initial trials

with small groups in 1963 and 1964, the Stanford project's mathematical material was

further developed and used with three schools during the school year 1965-1966. In

the 1966-1967 school year, the numbers of children using/testing the

softwarelhardware had grown from a few groups of four and five to over 100 pupils.

The arithmetic drill-and-practice material being developed alongside the mathematical

logic programs was also more widely trialled during 1966-1967. The program initially

centred on a particular school, with an initial cohort of288 students at the start of the

project, rising as other classes at the school were offered use of the teletype facilities.

For the material ofthe project:

"emphasis was placed on arithmetic skills for two reasons: first, because these skills
continue to represent a large portion of the elementary school mathematics
curriculum; and second, the performance level on these skills of students in
traditional or modern mathematics has not been at a fully satisfactory level."
(Suppes et al. 1968 p 20)

Concepts covered included: addition, subtraction, multiplication, addition with

carrying, money (equivalence) multiplication tables, division and long division. Time

spent on each block of material ranged from 3 days to 12 days.

A J Bird 331

The teaching of programming to novice programmers: three approaches

Appendix F The Stanford Project, PLATO and TICCIT

Within each block (or concept) were five levels of difficulty:

"On the first day of a new block, every member of class was given the same lesson.
This lesson was of average difficulty (level 3): Those students who scored between
60% and 79% were given a third level lesson the following day; those who scored·
above 79% were given a lesson on the next higher level (level 4); those who failed to
score at least 60% were given a simpler lesson on a lower level (level 2). This
procedure was followed throughout a concept block. .. " (Suppes et al. 1968 p 26)

Monitoring of students was a important part of the project and teachers were given

outline reports, sharing student activity within the software (problems attempted at

each level, lessons missed). There were, given the newness of the technology, a

number of support issues: technically competent staff were required to create,

maintain, update and support such leading edge technology.

Some of the log of the runs is worth quoting from:

"One boy should have had a second day drill but got drill 501013. I sent him back
and completed the drill 11lyself. Students before and after him got the correct drills
for the second day. The machine stopped when a boy was working. I sent him back
and as a result he got two time outs when the machine started again. The timing was
also wrong. After lunch, the boy who had got the wrong drill was given the correct
one, but the machine stopped and printed garbage ... " (Suppes et al. 1968 p 49)

The list and catalogue of problems continues, with time outs, problems with printers,

system shut downs and pupil difficulties with the material. Other problems centred on

the teachers' use of the teletypes, either forgetting the routines for use or re-start or not

time-sharing the teletype efficiently, leaving it standing idle (Suppes et al. 1968 pp 58

- 72).

The Stanford team distributed questionnaires to students, parents and teachers. The

questionnaires are described as open-ended, as the respondents had to fill in blanks or

give a free-text answer. For students, the questionnaire was anonymous. It was filled

in by 149 students across a range of ages. Suppes reports that 71 per cent of students

liked the drill and test approach; 72 per cent of the students liked the teletype

machines. The questionnaire also explored children's attitude to school and found that

42 per cent of answers indicated a more positive attitude towards other subjects (not

involving the teletype).

A J Bird 332

The teaching ofprogramming to novice programmers: three approaches

Appendix F The Stanford Project, PLATO and TICCIT

With regard to the operational problems of the system, the teachers were critical and

negative whereas the children "did not resent errors made in their drills and did not

regard operational problems as a major factor in their own evaluation of the

program." (Suppes et al. 1968 p 97)

The questionnaire indicated a need for clearer explanation and communication

between project staff and the schools in which the project ran (Suppes et al. 1968

p100):

"The majority of parents reacted favourably to the teletype project, but their answers
reflected a need for better communication especially concerning the purpose of the
drills and date summaries. When asked how they felt about having their children
work on the teletype . .. 57 of the 101 parents who replied said that they felt it was
"good" or "worthwhile ", and only two parents were strongly displeased with the
project." (Suppes et al. 1968 p 120)

Even at this early stage, parents were expressing concern in two areas: integration of

the teletype drills into the classroom experience and the reduction of class-teacher

contact time. The authors see both these issues raised in comments on the

questionnaires, as products of poor communication about the project and its purpose

and nature.

The drills were designed to rehearse traditionally taught skills but both pupils and

parents seemed hazy about this. The drills also did not replace teacher time but again,

this does not seem to have been clear to parents, examining the general comments

made (Suppes et al. 1968 pp 134-137). The teacher responses to the project tended to

focus on the potential benefits and actual problems of the projects. Suppes et al.

(1968) note:

"The teachers were convinced of the potentiality of complfter-assisted drills as a
supplement to regular classroom instruction. They pointed out at least five areas in
which they felt such a program would be especially beneficial. [They J felt that the
drill program must be improved before it can become a practical and valuable
addition to the curriculum. [They also] questioned the appropriateness of the
computer-based environment for some children ... " (Suppes et al. 1968 p 13 8)

Suppes et al. (1968) discuss in detail research in the teaching of arithmetic and the

performance models for addition, subtraction, multiplication, fractions and division

A J Bird 333

The teaching of programming to novice programmers: three approaches

Appendix F The Stanford Project, PLATO and TICCIT

(Suppes et al. 1968 pp 155-276). "One of the major tasks of the project has been the

coding, inputting, and debugging of the drills themselves." (Suppes et al. 1968 p 325)

What the authors found was that an initially well-tailored language supporting

particular hardware or application development would grow increasingly sophisticated

until its usability was overwhelmed by the added-on features. The authors note that

this happened a number of times, especially where the added features were very

narrow in scope and tended to make the new version much less general purpose. The

answer was to build a general-purpose language, which raised a nun1ber of design

Issues:

"Several fundamental properties emerged as goals in the design of the proposed
programming system. The most basic of these [was] the separation ofinstructional
procedure from lesson material. [] The language should facilitate [] experimental
modifications of the format or timing of problem presentation, or even changes in the
type of terminal used, without the need for time-consuming and costly re-coding ... "
(Suppes et al. 1968 p 301)

The project developed Teacher-Student ALGOL, a language designed with the above

concept in mind that also was accessible to non-programmers: "The aim was to

furnish generalized power for handling complex information structures in an on-line,

real-time environment, while maintaining the procedural framework of ALGOL."

(Suppes et al. 1968 p 303)

For a detailed discussion of the language features see Suppes et al. pp 303-324. It is

interesting to note that features of structured programming such as IF ... THEN ... ELSE

and FOR ... loops were being used, as were procedures, assignment statements and

variables.

In 1968, the Stanford authors took an optimistic view the use of CAL: "There are at

least four major aspects of computer-assisted instruction that seem to offer great

potentiality for education at all levels. " (Suppes et al. 1968 p 3) The four aspects were

identified as: the ability of computerised instruction to deal with students of varying

ability and different levels of knowledge, the individual attention (or a satisfactory

impression of it) that can be given to a student, the management of some of the

A J Bird 334

The teaching ofprogramming to novice programmers: three approaches

Appendix F The Stanford Project, PLATO and TICCIT

learning process, giving human teachers more time away from administrative tasks

and finally, the flow of information about a student's performance, to teachers,

researchers and administrators.

The Stanford authors identified all of these as potentially major advantages of

computerised learning. Yet they also identified problems, springing from their own

experience with the Stanford arithmetic project: the reliability of the computers, the

constraints and demands of curriculum design for a new medium, the question of

capturing and maintaining student interest and the problem of cost. The hardware used

was relatively expensive: certainly schools would not have had access to such

equipment without the research project.

Display devices are one example of the limitations of hardware at that time. Early

display devices for the CAl used microfilm source material. The display device used

more widely was a cathode ray tube device and it is worth quoting the description:

"It can display points of light in an area 10 inches high by 10 inches wide. There are
1024 possible positions on the horizontal and vertical axes. In addition to individual
points, there are 120 prearranged characters which may be displayed in five
different sizes. It is also possible to display vectors by simply identifying the end
points. A typewriter keyboard is attached to the scope and may be used to send
information from the student to the computer. An audio system designed by
Westinghouse Corporation can play pre-recorded messages to the user, through
individual speakers in each student booth. The messages are recorded on magnetic
tape 6 inches wide; two tape transports may be assigned to each of the six student
stations. Each transport has a capacity of about 17 minutes, which can be used in
any combination, from one message of 17 minutes in length to 1020 messages of one
second each. The random-access time to any stored message is approximately one
second. The main memories of the central computer, a PDP-1, designed by Digital
Equipment Corporation, are a 32,000-word core, and a 4,000-word core which can
be interchanged with any of 32 bands of a magnetic drum on files stored on an IBM
1301 disk." (Suppes et al. 1968 p 9)

From the Stanford project it is possible to identify a number of themes that can be

seen in future projects. The first is that of the optimistic tone of the researchers:

obviously, no researcher develops and trials a system with a wholly negative or

disappointing result as a potential goal but in this, as in other projects, the review of

the project is perhaps over-optimistic, tending to gloss over some of the problems and

A J Bird 335

The teaching of programming to novice programmers: three approaches

Appendix F The Stanford Project, PLATO and TICCIT

emphasising the potential benefits. As with other projects in the future, evaluation of

the outcomes is done through questionnaires.

The subjective opinions of participants are quoted in support of the project's success

(with some concession made to problems of comlTIunicating the purpose and goals of

the project). These are not criticisms of the Stanford project in particular, but

observations that can be repeated for many other projects, both large and small, over

the subsequent years.

Pedagogical aspects of CAL use in the classroom is also a theme that features strongly

in future CAL research: again and again, authors seek to develop material that will

most effectively support the learner and improve learning outcomes: again and again,

students, and even teachers/lecturers, seem hazy about the actual measurable benefits

of using that CAL at that time. At its crudest, the question is: does a students who uses

this CAL know more and/or do better on tests and exams than a student who has not

had access to the CAL? Teachers' responses to the arithmetic test and drill routines

devised by the Stanford researchers were to call for improvement in the type of

material, while the researchers felt that improvements in the instructional design were

also required.

The technical problems encountered by the Stanford project are also echoed in future

projects: the unreliability or limitations of hardware and software is one example.

With advances in display technology and the rise of the PC (Personal Computer) some

of the obstacles to interacting with the computer have been removed but no system

can ever be said to work perfectly all the time. Where CAL is installed on a network,

students may have problems logging on or the software might run very slowly, due to

high demand on the network.

The student response to the CAL is another example of a potentially difficult area.

The rise of the PC means that, in Britain, America and Europe, students of almost any

age are likely to have some acquaintance with computers and familiarity with the use

of computers is not an issue, as it might have been for the pupils using the Stanford

A J Bird 336

The teaching oJprogramming to novice programmers: three approaches

Appendix F The Stanford Project, PLATO and TICCIT

teletypes. Since 1995 IT has been part of the National Curriculum in England and

Wales: in the 1995 document on IT within the curriculum, pupils as young as five to

seven years were to be given IT experience, with pupils at eleven being "critical and

largely autonomous users oj IT' (DFE 1995 p 4)

The survey of information technology provision in schools also reveals the extensive

financial investment made in computing facilities in both secondary and junior

schools. In junior schools "The average number oj computers per pupil was 19 in

1995 - 96, compared with 23 in 1993 - 94." (DFEE 1997 P 2) and in secondary

schools, for 1995 - 96, the average number of pupils per computer was 9.

For junior schools, one fifth of schools reported that IT made a substantial

contribution to teaching and learning; for secondary schools it was one third. These

figures will, of course, hide wide variations in the quality of the hardware and

software used and the teaching practices into which these elements are embedded.

Nevertheless, it is true to say that pupils are experiencing IT at all levels throughout

their school career. With such familiarity goes a certain sophistication and students at

all levels are likely to demand a well-designed interface for the CAL they use:

anything less is likely to be heavily criticised or rejected totally.

TICCIT and PLATO

The NSF decided, in view of the waning energies of CAL initiatives at the end of the

1960s in America, to fund two major projects in this area. The Foundation invested

$10 million over five years, from 1971 onwards.

TIC CIT (Time-shared Interactive Computer Controlled Television) was run by the

MITRE company. MITRE was to develop the hardware and software to deliver course

materials, developed by Brigham Young University.

AJ Bird 337

The teaching o/programming to novice programmers: three approaches

Appendix F The Stanford Project, PLATO and TICCIT

The key concept was to develop a complete system of instruction rather than one to

act as a supplement to traditional teaching and one that would reach and be

appropriate for the largest possible audience:

"One of the main characteristics of this approach [was] its factory-like production of
course material. [] ... the TICCIT premise [was] that the effectiveness of a particular
learning strategy [was] independent of subject-matter. "(O'Shea and Self 1983 p
87)

TICCIT was to be used at two community colleges and to offer courses in

mathematics and English composition. TICCIT was controlled by the leamer, who

could use various buttons to look at the objectives for the course segment he or she

was working on. There were a total of nine buttons, allowing the user to look at the

MAP of the segment, and to ask for HARD or EASY material. (For a graphic

representation see O'Shea and Self (1983) p 88) TIC CIT hardware (two

minicomputers) supported up to 128 terminals, each with a keyboard, colour

television set, a loudspeaker and a light pen. The system used colour videotapes.

A report on TICCIT was produced in draft form in 1977. The overall response at the

colleges that used TICCIT appears to have been generally negative, with some

evidence that students failed to complete TICCIT courses in greater numbers than

those taking conventional courses. Staff were also "lukewarm" (O'Shea and Self 1983

p 92) towards the new technology and the report concluded that the potential of CAl

has been demonstrated, rather than definitively confirmed.

The PLATO (Programmed Logic for Automatic Teaching Operation) project was

based at the University of Illinois. O'Shea and Self note:

"The PLATO system has a long history:from 1960 one-terminal PLATO I to the
NSF-funded PLATO IV with about 950 terminals located at about 140 sites and
about 8000 hours of instructional material contributed by over 3000 authors."
(O'Shea and Self 1983 p 93)

Aims of PLATO IV included the development of new materials for the new

computer-based education network and the conclusive demonstration of the

A J Bird 338

The teaching o/programming to novice programmers: three approaches

Appendix F The Stanford Project, PLATO and TICCIT

feasibility, adaptability and educational appropriateness of the system and its

associated materials:

"PLATO is a timesharing system. (It was, in fact, one of the first timesharing
systems to be operated in public.) Both courseware authors and their students use the
same high-resolution graphics display terminals, which are connected to a central
mainframe. A special-purpose programming language called TUTOR is used to write
educational software. Throughout the 1960's, PLATO remained a small system,
supporting only a single classroom of terminals. About 1972, PLATO began a
transition to a new generation of mainframes that would eventually support up to one
thousand users simultaneously." (http://thinkofit.com/plato/dwplato.htm
14/0912000)

The key difference with PLATO was the provision of a courseware authoring

language so that teachers and developers could write materials for PLATO with no

particular restrictions on style or approach. This obviously generates academic

freedom but leads to material of widely varying quality (a feature seen in other large

scale CAL projects)

Programs developed for PLATO in just one subject area, chemical engineering, show

the range of material created. Topics included modelling ofa draining tank, use of

steam tables, steam turbines, compression of a gas, gas-phase chemical equilibrium,

Rankine refrigeration cycle and a utility program for the calculation of chemical

equilibrium constants.

(http://www.che.udel.edulfaculty/fu11/sandler/comp.htmI14/0912000)

In common with other projects, the development of material was more time

consuming than first estimated and the demonstration of PLATO IV began a year late.

Demand for processing power was also more than expected and 1000 terminals were

used rather than the projected 4000 in order to get the system to run at acceptable

levels. Again, questionnaires were key instrument of feedback gathering and student

response top PLATO were generally favourable. Teachers found that TUTOR was too

difficult to use as an authoring language.

A J Bird 339

The teaching o/programming to novice programmers: three approaches

Appendix F The Stanford Project, PLATO and TICCIT

PLATO and TIC CIT demonstrated two different approaches. Both projects, as the

funding dried up, withered on the vine somewhat. However PLATO did generate spin

off software, important in its own right:

"As an educational/multimedia system, PLATO has many ojfipring. Its most
successful direct descendant is Ten CORE, all authoring system for DOS and
~Vindows. Macromedia's Autl1Orware, an authoring system for the Macintosh and
~Vindows, is also firmly rooted in PLATO. [] Many people who experienced the
online PLATO community were inspired to replicate it on other platforms. Lotus
Notes is the best-known example. It was developed by Ray Ozzie, Tim }/alvorsen, and
Len Kawell, all of whom had worked at CERL in the late 1970's. It would be an
exaggeration to call Lotus Notes a clone of PLATO Notes, because Ozzie expanded
the concept to include powerful capabilities that were never contemplated for
PLATO. But many of its basicfeatures were modeled after PLATO Notes."
(http://thinkofit.com/plato/dwplato.htm14/09/2000)

PLATO developers produced software to record interactions, initially about software

bugs. The idea grew increasingly sophisticated and increasingly recognisable as a

conferencing system.

The author David Woolley describes the development process:

"I came up with a design that allowed up to 63 responses per note, and displayed
each response by itself on a separate screen. Responses were chained together in
sequence after a note, so that each note could become the starting point of an
ongoing conversation. This is what John Quarterman calls a star-structured
conferencing system, and PLATO Notes was apparently the first of its kind."
(http://thinkofit.com/plato/dwplato.htm14/09/2000)

Other software was developed that allowed users to talk on-line and the concept of

notes and on-line chat quickly took off:

"The sense of an online community began to emerge on PLATO in 1973-74, as Notes,
Talkomatic, "term-talk", and Personal Notes were introduced in quick succession.
People met and got acquainted in Talkomatic, and carried on romances via "term
talk" and Personal Notes. The release of Group Notes in 1976 gave the community
fertile new ground for growth, but by that time it was already well established. The
community had been building its own additions to the software infrastructure in the
form of multiplayer games and alternative online communications. One such
program was Pad, an online bulletin board where people could post graffiti or
random musings." (http://thinkofit.com/plato/dwplato.htm14/09/2000)

A J Bird 340

The teaching o/programming to novice programmers: three approaches

Appendix F The Stanford Project, PLATO and TIC CIT

Appendix F: Conclusion

The Stanford project was only one of hundreds of projects on CAL, undertaken in

America during the 1960s. It was this concentration of effort and funding that left

educationalists in Britain feeling that, if the Government did not take steps, then

Britain would never develop its own expertise in CAL and would be wholly reliant on

American CAL, with serious implications for both education and the economy:

"American researchers have gone ahead and there are now as many as 50 or 60 CAl
installations in the USA at an estimated cost (in 1967) of $8m whilst the rest of the
world, Britain included, has made very little progress." (Annett 1970 p 63)

This issue so concerned the Government of the UK that successive governments have

spent money on various initiatives around the development, use and evaluation of

CAL, in various educational sectors. Some of these initiatives are reviewed in

Appendix G.

A J Bird 341

Appendix G

The teaching ofprogramming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

Introduction to Appendix G

This appendix describes the work of the NCET (National Council for Educational

Technology) from its inception in the late 1960s to its disbandment. This appendix

also outlines the work of the NDPCAL (National Programme in CAL Development)

and examines the work of the CTI (Computers in Teaching Initiative) from 1989

onwards. It looks at the work done within the TLTP (Teaching and Learning

Technology Programme) up to the start of Phase Three. Various other initiatives in

learning and teaching are also discussed, together with selected reports.

The NCET 1967 - 1973

The first report of the NCET, Towards more Effective Learning, covered the work of

the Council from its inception in early summer 1967 to the end of 1968.

The NCET (National Council for Educational Technology) traced its earliest roots

back to the Brynmor Jones Report on Audio-Visual Aids in Higher Scientific

Education, which appeared in October 1965. This report constituted a "wide ranging

discussion of the current state of developments in educational technology, together

with detailed and practical recommendations for future action." (NCET 1969 (a) p 1)

The NCET sprang out of the Report's recommendation for both a National Centre and

a Council to oversee such a centre. The Government adopted the idea of a Council,

part of whose remit was to consider the setting up of a National Centre.

The work of the NCET up to 1969

Interestingly, the NCET saw educational technology as a potential answer to problems

of mixed ability teaching and the lack of specialist subject teachers. (NCET 1969 (a)

pp 11-12) Issues around resources staff and timetabling were also seen as part of the

NCET's concern, as was educational research based on the use of various

technologies and their effective use.

The NCET saw some key concerns arising from the idea of applying educational

technology such as the fear of teachers that centralised material production would

A J Bird 342

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

infringe pedagogical freedom of choice. The NCET envisaged that, as the cost of

labour remained comparatively high and the cost of technological equipment fell, the

emphasis would be on the use of various technologies within education.

Allied with this area of effort was that of awareness of what was currently available, a

task too large to be undertaken solely by the NCET. The NCET showed itself to be

aware that educational technology was developing rapidly and that the greatest area of

change was likely to be in the field of computing, as evidenced in their early

publication of a working paper on computers in education.

Part of the NCET's work was the dissemination of their findings. The NCET agreed

that a balance must be struck between publication for a specialist audience and

publication for a general audience, both of which needed to reflect the NCET's work.

The NCET also decided to publish 3 times a year the Journal of Educational

Technology.

The NCET realised that the technological advances in computing were inevitably

going to impinge on British educational practices, especially through the pressure to

match the sophistication of American efforts in applying computing to education, in

many guises:

" ... with the rapid advances being made in computer technology, and the growing
efforts being devoted to the educational use of computers in the USA since 1960, it
became clear to the National Council for Educational Technology that some
evaluation of the role of the computer in British education and training was called
for. Accordingly in December 1967 the Working Party [] was set up: one of its tasks
was to look at the prospects for computer-based learning systems." (NCET 1969
(b)pvii)

The Report produced by the Working Party identified investn1ent by American

government agencies and private foundations at approximately $50 million dollars a

year in the mid 1960s. In contrast no coherent, centrally funded initiative was

underway in Britain. The Working Party's role was to investigate the potential role of

computers in education and to outline such a coherent programme in computer based

learning systems, including financial recommendations. Much of their material

A J Bird 343

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

appears to have been drawn either from conferences in the mid 1960s, where

American delegates took centre stage, such as the conference in 1966 in London,

sponsored by the US Office of Naval Research. (See Duke 1970 p 66)

In 1969, the authors were optimistic about the future of computer-based learning

systems:

"There is virtually no limitation to the type of student that can be accommodated by
a computer based learning system. [] likewise there is no limit to the type of subject
that can be presented ... " (NCET 1969 (b) p 21)

For the authors, early work should concentrate on subjects where the student

responses can be evaluated easily and the material logically structured but the driving

force should be educational objectives, not the environment. They saw such systems

in use in schools, colleges, universities and in industry, as well as defence. The Report

also considers the costs of adopting computer-based learning systems, using as their

basis the ''present average costs per student hour and those on the horizon for

computerised systems." (NCET 1969 (b) P 25)

The authors, in the final paragraph, hand over the work to the full-time study team

looking at educational uses of computers, applauding the Council's decision to

establish such a team. The were many areas in education in which computers could

make significant contributions, such as administration and time-tabling but the key

area identified was computer based learning.

The next publication to look at the question of computers in education with reference

to computer-based learning was the slim volume (16 pages) Computer Based

Learning: A Programme for Action. Annett describes this papt'ir as "succinct, general

and optimistic in tone." (Annett 1970 p 63)

The themes that will emerge in later reports and projects summaries over the next

thirty years or so can be identified here again: here is the optimism about what can be

achieved through the application of computers. Although the authors are hampered by

technological limitations, they can foresee the increasing sophistication of hardware

A J Bird 344

The teaching o/programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, l\lEP, CTI, TLTP and the ILT

and software leading to almost boundless opportunities to improve teaching and

learning.

Here too is the problem of quantifying expected benefits and measuring actual

benefits when examining the use of computers to teach. Underlying such a problem

(which is many problems, once closely analysed) is a broader philosophical question

about what is meant by learning. These and other themes are taken up by later work in

computer-based learning, either implicitly or explicitly.

The authors go on to identify the areas of computer-based learning they perceive as

being significant. They discuss simulation, computer assisted instruction, (which they

see as an area of both greatest potential and greatest uncertainty), computer-managed

instruction, (where the computer is a tool for diagnosis and testing) and data storage

and retrieval. Also described is the beginning of the infiltration of computers into

diverse areas of work and education:

"The computer ... [is] likely to play such a major part in our commercial and
industrial life that it is particularly important that those who are likely to go forward
into commerce and industry where the computer can be of direct use, should
thoroughly understand its capabilities." (NCET 1969 (d) P 17)

The role of the computer as a valuable administrative tool is also identified but the

authors envisage schools and colleges using a time-share system, rather than having

their own computing facilities.

For both further and higher education, the authors see a pedagogical role and a

commercial one:

" .. . the computer has an important and far reaching role to play for simulation
purposes and as a computational tool. [For re -training] ... the computer will certainly
have a potential contribution to make both as a computational tool and in CAIICMI."
(NCET 1969 (d) p 29)

Again, less accurately, the authors predicted the possible disappearance of traditional

examining methods, to be replaced by computer-based assessment. The authors

mention in one brief paragraph, the use of computers as a store of information. Their

A J Bird 345

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

vision was of a centralised cataloguing and storage facility with documents on line:

"User interest profiles could be built up and documents located at speed, thus

providing the means of effectively meeting individual requirements." (NCET 1969 (d)

P 42)

We can see that to these authors, as others of the time, the potential of computers

appears almost limitless, with predictions based on current developments and some

wishful thinking about how computers, in some future manifestation, will radically

alter the nature of education. The predictions seem both too optimistic and at the same

time not bold enough.

The work of the NCET 1969 - 1973

The report Educational Technology: Process and Promise was the final one from the

NCET, summarising its work from its inception in April 1967 to its c1osedown in

September 1973 when it was succeeded by the Council for Educational Technology

for the United Kingdom. Some of the initial part of the Report was scene setting,

recapping the creation up of the Committee. (NCET 1973 pp 9 - 18) This section

examines the work of one of the six committees active under the NCET, the Joint

Committee.

The Joint Committee concerned itself with the development of teaching and learning

materials. Two of the large scale projects set in motion by the activities of the

committee (in one or more of its previous incarnations) were the teaching of maths to

non-maths science students at post-A level and the development of computer aided

learning materials (the NDPCAL project).

In Computer Assisted Learning: 1969 - 1975, Annett says:

"These papers [the working papers of 1969j, ultimately digested by DES, resulted in
the funding of a National Development Programme in Computer Aided Learning
(NDPCAL) in January 1973 at a cost over five years of £2 million." (Annett 1976 p
1)

A J Bird 346

The teaching ofprogramming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

In early 1973 the NDPCAL was created under the directorship of Richard Hooper, a

project largely based on the work of the NCET in computer-based learning systems.

The next section looks at the work of the NDPCAL.

The work of NDPCAL

The NDPCAL sprang directly out of the work of the NCET in the late 1960s. In 1972,

Margaret Thatcher, then Secretary of State for Education, approved the setting up of

the programn1e. Richard Hooper took up the post of Director in January 1973. The

original budget was £2 million, increased to £2.5 million over the five-year life of the

Programme, due to inflation.

The breakdown of costs is interesting: the bulk of the spending (£ 1.6 million) was on

staffing. The tertiary sector had the largest project share at £1, 249 000. The Director

estimated that the Programme had attracted approximately £2 million in matched

funding but warned that the figures were not precise. Matched funding included

expenditure on hardware and staff time.

The main aim of the Programme, formulated in its first month was: "to develop and

secure the assimilation of computer assisted and computer managed learning on a

regular institutional basis at a reasonable cost." (Hooper 1977 p 15)

This definition offers some interesting insights into the Programme. What was lacking

is the grander scale of some of the NCET's earlier visions. The emphasis was on the

institution-based uptake of CAL at a reasonable cost. The focus was on developing

CAL that could, and would, be used by institutions after central funding had been

exhausted. Allied to this aim of institutionalisation was the concept of transferability:

this is discussed later in this appendix.

The Programme funded 35 main projects and feasibility studies. By 1977, 27 of the

projects or studies involved 44 institutions. For these 44, in the summer of 1977, it

looked as if 32 would maintain the impetus of the Programme, giving a success rate of

A J Bird 347

The teaching o/programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

70%. Two areas were particularly successful: the furtherlhigher education sector (with

22 out of 27 projects looking healthy) and industrial training (with six out of seven

projects apparently viable in the long tenn).

Clear strategies evolved over the life of the Programme for promoting both

institutionalisation and transferability. Some of the strategies for the fonner included:

matched funding, organisational structure and curriculum integration. Strategies for

transferability included technical policy, existing communication channels and inter

institutional projects.

The Programme produced a number of technical and future study reports, around the

areas of CAL and CML. The Programme's first technical report was published in

October 1973 and looked at problems of implementing CML (Computer Managed

Learning). The report examined a number of issues, including the diagnostic

assessment of learners and the sequencing of learning materials. Once again, Britain is

seen as somewhat lagging behind the US but benefiting from the American

expenence:

"The criticisms of the Open University, PLAN and IPI reflect upon areas where the
problems have not yet been solved and ignore deliberately the great contributions
that each of the three have made towards improving learning." (Hawkridge 1973 p
16)

In March 1973 Richard Hooper gave a paper at the first British conference on

Computers in Higher Education. The paper critically examined some of the claims

made for the role of computers in education. Interestingly, Hooper noted that the role

of computer as a medium for teaching about computers was secure but the place of

computing in the curriculum was not!

Hooper (1973) was sceptical of the claims made for the cost-effectiveness of CAL and

points out that, despite extensive American work, even large-scale projects such as

PLATO have not definitively delivered cost-effective CAL. On the contrary, Hooper

(1973) notes that the introduction of CAL to a subject or institution may well increase

staff costs to that institution as well as the concomitant investment in computer rooms

A J Bird 348

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, l\lEP, CTI, TLTP and the ILT

and equipment.

Hooper (1973) concludes that the claims for cost-effectiveness:

"cannot be taken too seriously at present. [] It is difficult to establish cost []. It is
difficult to establish educational effectiveness. It is difficult to relate one to the
other." (Hooper 1974 (a) p 361)

Hooper concludes that the debate about CAL is not likely to die away in the near

future. He draws general conclusions about how a CAL model might best use the

experiences of the academic community in the States to create what he calls the

adaptive laboratory, a n10del that draws on the idea of computer as tutor and as arena

for simulations and problem solving.

Despite the Director's wariness of formal evaluation, accompanying NDPCAL's

development investment and effort was the evaluation of the educational benefits of

CAL (Other evaluations were financial and technical.) UNCAL stood for

UNderstanding Computer Assisted Learning. UNCAL represented, in 1975, an

estimated 4% of the total NDPCAL spend. The establishment of UNCAL was initially

a one-person job, which grew to a staff of seven, including a part time director. It is

important to note that UNCAL evaluated the projects initially at least on a general

basis rather than carrying out fine-grained analysis of particular projects.

UNCAL's aims can be summarised as follows: to develop a self-critical element

within NDPCAL: to aid the development of projects by offering appropriate

evaluation tools; to help the NDPCAL directorate in the overall management of the

programme; to aid the Programme Committee and finally to display the work of the

NDPCAL to an appropriate audience.

From this summary, it is obvious that UNCAL was not set up to carry out fine-grained

testing of achievable learning outcomes. This fits with the clearly stated belief of the

Programn1e Director that fOTI11al evaluation at this level may hamper rather than help

development. UNCAL's role was broader than that and focused at programme as well

as at project level. From reading the UNCAL companion, it is possible to gather a

A J Bird 349

The teaching ofprogramming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

sense of the turbulence that accompanied the genesis of UNCAL. Significantly, the

authors note that UNCAL was not subject to veto of publications: its work was both

open and independent.

To sum up, the authors' survey of the work of UNCAL gives a clear picture of the

issues that were emerging as early as 1975. The work of the UNCAL team identifies

factors influencing the potential success of projects but does not seek to give

definitive solutions to the problems it describes. The report also describes some of the

positive aspects of the projects examined.

As well as evaluating the educational aspects of projects funded by NDPCAL, there

was a detailed evaluation of the financial aspects of such work. Fielden and Pearson's

(1978) report on the introduction of computers into teaching focused on a detailed cost

benefit of such introductions. The authors were financial experts employed by a large

firm of accountants.

Given the diversity of projects funded by the NDPCAL, the wide range of individual

project objectives and the different institutions in which research took place, it is not

surprising that the auditors found it difficult to develop or apply any firm baselines to

the costs and benefits incurred by or derived from those projects:

"One of the hardest questions for the evaluation to answer has been: what is the
nature of the [educational] change. In some projects there is no simple answer since
CAL material has been used differently according to the teachers' preferences and
teaching style and according to the CAL package or simulation in question."
(Fielden and Pearson 1978 p 62)

Fielden and Pearson (1978) conclude that:

"CAL is now a tried supplement and alternative to conventi~nal teaching. 35,000
student terminal hours were recorded in 1976177 in the projects [J. While we have
shown that it is nearly always more expensive in total cost terms than existing
methods, there are many cases where the particular marginal costs of adopting CAL
in the institution are low. In terms of extra cost, CAL could cost less than extra
teaching staff. The educational evaluation is reporting on the qualitative aspects of
the change. There are many claims for added educational value, enhanced
understanding, immediacy flexibility, etc. which require examination. When answers
are received to these questions, the decision-maker can then face the ultimate value
judgement. In the probable extra cost of CAL worth the extra claimed educational

A J Bird 350

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, l\1EP, CTI, TLTP and the ILT

value? " (Fielden and Pearson 1978 p 79)

Their conclusion very much echoes the view of Richard Hooper who warned at the

beginning of the project, in his paper Making Clain1s for Computers, that hard facts

and figures about the more intangible educational benefits of CAL may be difficult to

gamer successfully.

The CET's annual report for 1977 - 1978 notes that the NDPCAL came to an end in

December 1977, as planned:

"It had spent £2,600,000, an increase of only £600,000 over the original allocation
of £2,000,000 despite the unprecedented inflation rates of recent years. It left
computer-assisted and computer-managed learning established on a sound and
continuing basis in 32 institutions." (CET 1978 p 45)

This report views the NDPCAL as an "unqualified success" (CET 1978 P 46) and is

strongly optin1istic about the value of the initial programme and the after-care

provided for projects. This after-care took the form of "six programme exchange

services, [] an information service on computer-assisted and computer-managed

learning [] conferences and seminars on the subject." (CET 1978 pp 46 - 47) It should

be noted that this optimistic view is presented only n10nths after the end ofNDPCAL

and that, as with other projects, a longer-term view was needed to gauge the true

impact ofNDPCAL.

NDPCAL focused on learning through computers, in various forms, on varieties of

CML and on the concept of tutorial dialogue. There are two interesting points raised

in Tawney's (1979) introduction: at the time of writing (1979) computers were too

expensive to be regarded as a cheaper alternative to lecturers and secondly, NDPCAL

researchers/developers regarded the CAL as an addition to conventional teaching not a

replacement for it: a view taken by Richard Hooper in earlier papers, with his

emphasis on the teacher a valuable, unique medium of communication and the

computer as a separate medium with its own strengths and weaknesses.

A J Bird 351

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

Even at this comparatively early stage of CAL use, Tawney (1979) identified two

approaches to CAL that can be seen wherever CAL is used today: the fitting of CAL

into a pre-existing, largely unchanged course, replacing some lectures/tutorials with

CAL-based actively or re-designing a course around CAL.

What can be concluded from the work undertaken for NDPCAL? A number of points

emerge. The first is that what constitutes CAL varies widely and different institutions

tackled the development and integration of CAL in different ways. Secondly, those

who developed and used the CAL were enthusiasts and the reporting of projects and

their outcomes reflect a generally positive attitude. Thirdly, most projects were

hampered by the display technology available, which limited the types and nature of

output to students.

Some views ofNDPCAL were, in the long term, much harsher:

"The idea that in 1973 there existed a body of knowledge about computer assisted
learning which it was worth developing without further associated research seemed
at the time fanciful, and in retrospect, absurd. The absence of a proper experimental
design resulted in a proliferation of 'case-studies', the significance of successes of
which is virtually impossible to determine. The actual developments embodied in the
projects were marginal in relation to existing knowledge ... Technologically the ...
projects were unadventurous." (O'Shea and Self 1983 p 101 - 102)

This negative view is capped by their verdict: "The report's conclusions on technical

matters have thus been rendered obsolete [by the introduction of microcomputers]

and much of the original development work is now seen to be irrelevant." (O'Shea

and Self 1983 p 103)

The CET continued its work in educational technology but Government support for

large-scale, centrally funded projects was largely missing.

As Marshall (1988) points out:

"It was the Labour Government which promoted the introduction of microtechnology
through the MEP [Microelectronics Education Programme} and £I 2.5 m was the
sum proposed in 1979 ... Sadly, this initial enthusiasm was not maintained and, in
1980, the programme's budget was cut to £8m over a three year period, i. e. 0.02% of
the overall education budget ... " (Marshall 1988 p 272)

A J Bird 352

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, l\IEP, CTI, TLTP and the ILT

MEP (Microelectronics Project)

The emphasis of government intervention in educational technology passes onto the

secondary sector by the end of the 1970s. In March 1980 the Under Secretary of State

at the Department of Education and Science announced a four-year programme in

microelectronics. The MEP was set up in November 1980. The £8 n1illion funding of

the l\1EP (over 1981 - 1984) meant that it could not help schools buy the micro

computers that would enable them to use the material or training offered by the MEP

itself but would concentrate on preparing children in schools "for life in a society in

which devices and systems based on microtechnologies are commonplace and

pervasive." (Fothergill et al. 1983 p 3)

For a detailed discussion of the aims and strategies of the MEP see Fothergill et al.

1983 p 3 - 16. Two key features are worth noting: firstly, part of the work of the MEP

was to set up 14 pilot information centres around the country, serving local education

authorities and secondly, the brief was much wider than anything previously

attempted, covering teaching about computers as well as through computers.

A special project, Micros in Schools was launched by the Department of Industry.

This gave schools the chance to buy one or two brands of microcomputers at 50%

discount. One of the microcomputers offered was the machine developed by the BBC.

One writer made the accurate prediction that the BBC micro would be widely used in

homes and schools. The BBC micro proved to be immensely popular with a wide

variety of users. For schools purchasing a microcomputer, training for at least two

teachers was offered as part of the scheme. A course in microcomputers was

distributed by the MEP.

Under the heading of curriculum development, the MEP looked at the impact of new

technology upon traditional subjects e.g. changes in syllabus content and teaching

methods.

A J Bird 353

The teaching o/programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

It also looked at the area of information studies:

"This is one part of education that will be profoundly affected by the computer, for
access to information and in retrieval will be revolutionised by the technology. [] Far
more important will be the abilities to use the technology to locate information and
to make use of it effectively and efficiently. Thus there is a need to help all children
to undertake information studies and this will be an important development for the
curriculum." (Fothergill 1983 pp 136 - 137)

In the early 1980s the new technology was seen as creating many new needs within

schools, particularly for teachers who understood the need to teach the new

technology and for courses that would give pupils experience of this technology.

Computer Studies in its previous forms as a narrowly focused, mathematically-based

subj ect could no longer fully answer the needs of schools in the early 1980s. The

Alvey Committee reported in 1982 that:

"Action must start in the schools. We support the moves which are now putting
computing on the curriculum. But, it is no good just providing schools with
microcomputers. This will merely produce a generation of poor BASIC
programmers ... The teaching of computer science in schools must be increased
substantially, in quality and in quantity." (Report of the Alvey Committee 1982 p
62)

Here the emphasis was on producing pupils with a thorough grounding in computing,

to improve the quality of A level computing candidates and undergraduates in

computing. The report noted that universities had to give remedial education to

undergraduates with A level computing. It is interesting to note that the

recommendations ofthe Alvey Committee on developing IT skills in Britain are a

direct response to what the Report describes as "a major competitive threat" (Report

of the Alvey Committee 1982 p 5), posed by Japan's Fifth Generation computing

project.

In the early 1980s two main arguments can be identified. Firstly, that all pupils should

have contact with the new technology, from the point of view of information studies.

Secondly, the teaching of computing as a specialist subject needed to be vastly

improved. For secondary schools the arguments about CAL seem to have become

largely irrelevant, given the pressures generated by the rise of the microcomputer, the

A J Bird 354

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, l\lEP, CTI, TLTP and the ILT

introduction of the National Curriculum and the need for British education to once

more rise to a technological and educational challenge in equipping students with

appropriate computing skills. CAL is mentioned as part of the MEP but the emphasis

has undoubtedly shifted to learning about con1puters.

The next significant Governn1ent initiative was the CTI (Computers in Teaching

initiative). This is discussed in the next section.

CTI

In 1982 the Nelson working party (set up by the Computer Board for Universities and

Research Councils) noted serious shortages in the provision of computers for teaching

in higher education. "As a result, the Board set three tranches of £500,000 at half

yearly intervals to fund 23 pilot projects in the use of computers in teaching."

(Gershuny and Slater 1990 p 55) This initial project was followed by the setting up of

the CTI, which was established in 1985 by the Computer Board for the Universities

and Research Councils (later known as the Information Systems Committee).

It initially supported 139 courseware development projects, with at least one project at

each UK university, across most disciplines. "19 CTI Centres were set up in April

1989 with afurther 2following in October 1989." (Darby 1990 p 3) Even in its early

stages, the CTI was evaluating thousands of pieces of hardware and software. Other

bodies were also contributing to CTI Centres. The Institute of Chartered Accountants

gave £35,000 to the Centre for accountancy, for example.

In 1989, Gardner and Slater reported on the work of the first phase of the CTI. By the

middle of 1989, most of the 139 projects had filed reports on their work and the

process of reviewing end products and lessons learned could begin.

The authors were optimistic about the success of the CTl's work from 1985 to 1989

and saw a positive role for the CTI in the 1990s:

"Just as the main phase of the CTI has done much to s~~mulate nationwide activity in

A J Bird 355

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

the eighties, the programme's second phase will, if successful, lead to more
widespread and imaginative uses of computers in teaching in the nineties." (Gardner
and Slater 1989 p 3)

The need for high quality courseware was identified as being a key aspect of higher

education teaching by the early 1990s:

"Following a period of considerable growth in the amount of courseware being
produced in the UK. .. all disciplines represented stated that currently the lack of
high quality courseware was seen as a major blockage to the uptake of CAL in
universities." (Darby 1991 p 13)

Other projects were set up in the early 1990s, notably the ITT! (Information

Technology Training Initiative.) The ITT! received £3 million over three years to

improve training material availability, develop software and training materials and

develop CAL. Grants were made to 20 universities. Nottingham received £124, 790 to

develop CAL standards and "authoring standards, delivery specifications and training

materials as a pilot []for computer-based training and interactive learning "

(Shields 1991 p 59)

Other bodies were also funding research into technology for teaching and learning.

The ESRC (Economic and Social Research Council) set up a co-ordinating centre, a

programme evaluation unit and three research centres, with funding of £1 million for

the years 1989 -1991:

"ESRC has the responsibility of playing a critical role in the evolution of new ways
in which technology may contribute to learning: no other UK agency carries the
brief to undertake and stimulate the necessary basic research. The uncertain
pragmatics of early work on classroom technologies must now give way to more
clearly defined studies." (Lewis 1989 p 2)

This project followed a three-year pilot programme undertaken from 1985 to 1988.

Much effort in the field of teaching and learning technologies was being duplicated,

with diverse initiatives and projects soaking up considerable funding. A plethora of

initiatives does not necessarily guarantee progress in any area of research or

development.

A J Bird 356

The teaching ofprogramming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

This point was made lllost strongly in the 1998 Atkins Report:

"There are now too many different projects and programmes in the lise of lCT,
[information and communication technology]fundedjointly and severally by the
Funding Councils and DENl (and indeed by other central agencies such as the
DjEE). At Funding Council level the situation looks particularly messy, with variable
memberships of different programmes (and stages of programmes), overlaps in remit
and inconsistencies in budgetary mechanisms ... " (Atkins Report 1998 paragraph
17)

The CTI annual report for 1992 - 1993 notes that the year was one in which: "UK

higher education took in many more students than ever before. Universities and

colleges are now bursting at the seams and teaching loads have increased sharply."

(CTIl993 p 5)

It is worth noting that at the time of the report the CTI serviced exclusively the 43

'old' universities. The report notes the work done by the CTI including the production

of 18 resource guides, published on paper and on disk at a net cost of £30, 400, the

production of newsletters and the creation of over 6,000 screens of electronic

information on bulletin boards. Total CTI funding was £1,033,907 received from

Information Systems Con1mittee of the University Funding Council with a

contribution from the Department of Education in Northern Ireland.

The CTI also reported on the running of a wide range of workshops, with an average

attendance of 19 people. Subjects included CAL in tropical medicine and CAL in

language learning. From this we can see that encouraging the use of CAL in higher

education by individual staff and departments was a key aspect of the work of the CTI.

The report concluded, "The discipline-based approach of the CTI has proved both

powerful and resilient enabling a range of resources to be provided in a highly cost

effective manner." (CTI 1993 p 7)

The annual report for 1993-1994 notes that the funding of the CTI was taken over by

the Higher Education Funding Councils for England, Scotland and Wales. A review of

the CTI by the Funding Councils' Review Group led to the renewing of CTI funding

for a further five years. The CTI remit was extended to the all higher education

A J Bird 357

The teaching ofprogramming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

establishments. The cn continued its work in publishing (producing 12 new editions

of resource directories, 54 newsletters and maintaining and establishing electronic

information sources, including, for the first time, W orId Wide Web pages).

The cn also received attention in the Dearing Report. The Report's authors were

convinced of the value of the educational technology, noting:

"we see a growing contribution to learning form the extensive use of computer
assisted learning materials, communication technology and new, enhanced delivery
systems. [] One of the benefits of new technology lies in providing a learning
environment that may succeed improving understanding where other methods have
failed. [] By using computer-based learning material, students can receive immediate
feedback to assist learning complex concepts." (Dearing Report 1997 paragraphs
8.23 - 8.26)

The report goes on to note that the cn has done "valuable work in providing

institutions with subject-specific advice on technology-based educational practice ... "

(Dearing Report 1997 paragraph 8.71) and recommends that the cn centres have a

central role in the Institute for Teaching and Learning. The Institute for Teaching and

Learning is discussed later in this appendix.

In 1997 the four higher education funding bodies established a Review Group to

examine the work of the cn and the TLTSN (Teaching and Learning Support

Network):

"It ran from November 1997 to June 1998. The Review had three aims. The first was
to determine the extent to which the Computers in Teaching Initiative (CTI) and the
Teaching and Learning Technology Support Network (TLTSN) hadfulfilled their
terms of reference. The second aim was to capture some of the lessons learned
during the lifetime of these two initiatives. The third was to gather views and make
recommendations about what should happen to these programmes at the end of their
current period of funding, in context of other programmes and other developments in
higher education ... "(Atkins Report 1998 paragraph 1) .

The Review also looked at the work of the TLTP (Teaching and Learning Technology

Programme), the projects of the Joint Information Systems Committee and took note

of the early work done towards the setting up ofthe ILT (Institute for Learning and

Teaching)

A J Bird 358

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

The Report notes that:

"[the] under-utilisation of CAL and lCT [Information and Communication
Technologies] remained a continuing, major jJroblemfor virtually all higher
education establishments ... Many existing academic staff development programmes
were relatively ineffective in supporting the use of CAL and lCT." (Atkins Report
1998 paragraph 6)

However, the Review Group found that the users of CTI centres were consistently

happy with the service received: "The CTI has fulfilled its terms of reference and in

the eyes of its direct users has provided a good and valued service." (Atkins Report

1998 paragraph 8)

The Report concluded that the CTI centres should remain in place, with some

development of their work:

"There is substantial support across the sector for takingforward a reconceptualised
programme 011 a subject basis. CAL and lCTwould be an important but not exclusive
focus of the new programme which would embrace innovatory and good practice in
learning and teaching in the subject... " (Atkins Report 1998 paragraph 25)

This involved winding up the CTI and TLTSN in their present forms and establishing

subject centres, covering all subjects on a UK-wide basis, setting up a generic

technology unit and creating a single central unit to manage all the programmes. The

subject centres should act as knowledge brokers, advocating and disseminating good

practice (ideally based on up-to-date research), reviewing new materials and hardware

and enabling the sharing of institutional and individual experience. Interestingly, the

Report recommends that the ESRC carry out research on the effectiveness of CAL and

ICT.

The Report concluded that, while CAL was certainly an important element in teaching

and learning strategies in higher education, there was still an under use of CAL in any

coherent fashion. The Report identified a number of barriers to the development and

adoption of CAL, summed up in the Report as "money, materials and mindset."

(Atkins Report 1998 paragraph 90) Within these categories, these factors are very

much as previously identified by other projects and initiatives.

A J Bird 359

The teaching 0/ programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

The Report goes on to identify specific strategies or levers to address the problems of

CAL development and adoption including staff development, institutional strategies

for the development of teaching and learning and consortia for the development of

CAL.

It seems that even where an initiative such as the CTI is felt to be successful, changes

are seen as necessary after a number of years to focus once more upon relevant issues

such as the transferability of material and the effective adoption of technology-based

teaching and learning approaches. The Report appears to stress the dissemination and

sharing of materials, without emphasising the creation of those materials. Creation of

materials is an area of endeavour that presumably will be left to individual staff or

departments, either under a broader project umbrella such as the TLTP or funded by

the institution, although the Report notes "There is no doubt courseware development

will remain a substantive issue/or the/unding bodies ... " (Atkins Report 1998

paragraph 132)

TheTLTP

The TLTP (Teaching and Learning Technology Programme) was launched in

February 1992 by the UFC (Universities Funding Council). The funding for the

initiative was £7.5 million. 160 bids were submitted and a total of 43 projects were

funded. Over three years, the funding totalled £22.5 million. The TLTP distributed

grants totalling £35 million to 76 projects over its first two phases. As the TLTP co

ordinator, Turpin notes:

"two types of project were considered: single institutional projects addressing the
problems of implementation and staff development and consortia projects based
within subject disciplines." (TLTP Science Case Studies Introduction)

The UFC was succeeded by separate bodies for England (HEFCE), Wales (HEFCW),

Scotland (SHEFC) and Northern Ireland (DENI). These four bodies agreed to commit

further funding to the second phase ofTLTP. The second call for proposals generated

367 submissions. "A total 0/£3.75 million was made available to/und a/urther 33

projects under the second phase o/TLTP. (Turpin (Ed.) 1995 p 1) The total funding

A J Bird 360

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, l\IEP, CTI, TLTP and the ILT

fronl the higher education bodies is £33 million. The institutions who have had bids

funded contribute directly and indirectly to the TLTP work, giving "overall funding

for TLTP ... somewhere in the region of £75 million ... " (Turpin (Ed.) 1995 P 1) This

makes the TLTP probably "the largest learning technology initiative ever undertaken

within UK higher education ... " (Turpin (Ed.) 1995 P 1)

The concept of the TLTP can be traced back to CTI activity during the 1980s. As

noted earlier, initial projects were hardware-based (the acquisition of workstations)

but later projects focused on software and enlphasis was placed on the use of

conlputers in non-scientific subject areas. This was an initially unfamiliar concept.

The second phase of CTr was the setting up of subject-based centres, to support the

uptake of new technology-based approaches to teaching and learning.

The TLTP set out to address the problem of lack of subject materials. The project was

to find the development of materials that would underpin the delivery of courses to

increased student numbers. Quality was not a focus of these materials but quality

improvements would, of course, be welcome.

The TL TP also attempted to address a crucial issue in higher education in the 1990s:

that of cost. Universities (both 'old' and 'new') had seen funding per student drop

while student numbers have increased. The question of managing resources effectively

to meet the needs of a diverse student population has lead universities to see the use of

CAL as a sure route to cost savings and teaching efficiencies. "There are several

studies coming out of TLTP pointing in better learning, as yet there are relatively few

that show any direct cost savings."(Slater 1996 p 4) Equipment costs remain relatively

stable (the cost ofPCs stays the same but functionality increases) and support for

undergraduates cannot be done away with entirely.

It is interesting to note that:

"Some of the emerging programme's early advocates attributed to information and
communication technologies a near miraculous capacity to palliate the effects of
rising student numbers, secure efficiency gains and generally provide a magical
panacea to many problems facing our universities as thf?Y struggled to come to terms

A J Bird 361

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

with the new demands of the 1990s." (Gardner 1996 p 6)

Other authors took a more optimistic view:

"There are clear signs from institutional plans and strategies that senior managers
in HEls now largely understand these issues and see their role as encouraging
uptake ofTLTP material. Some interviews have indicated that many overestimate
material available and underestimate the need for update and support, but TLTP
forms an increasing part of the proposed future." (Slater 1996 p 4)

The CTI publication, Active Learning, devoted its July 1996 edition to articles

detailing response to the TLTP and reports from consortium members. The theme was

TLTP: what has been achieved?

Clark (1996) points out a number of worrying elements in what he calls the "fierce

rush for grants" (Clark 1996 p 11) to develop CAL materials. He takes as his basis for

argument the report on a CD-ROM based package that covered 20 hours oflectures on

weed biology (Teaching with Multi-media: a case study in weed biology by Lisewski

and Settle):

"This course was originally composed of ... 20 lectures, 12 hours of practicals, 10
hours of workshops and 48 hours of private study, a total of 90 hours of assigned
time. The students in the raised regime had unlimited access to Macintosh computers
running the programme between 9am and 5pm throughout the duration of the
course ... " (Clark 1996 p 9)

When Clark sought to quantify the cost of the project, he found active figures very

difficult to obtain: not because there was a conspiracy of silence but because the

project had been funded (as many internally funded projects are) by a blend of shifted

resources and re-allocated funds, which represented incredibly complex institutional

accounting.

Clark does, however, put a figure on that package. He estimates its cost at £200,000.

He then goes on to point out that if the 16 hours released by giving students access to

the CD-ROM (rather than requiring them to attend a lecture) is costed at £500, then to

.. recover the £200,000, the CD ROM would have to be used 80 times in a five year

period. He also points out that the lecture component was actually the second cheapest

A J Bird 362

The teaching o/programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

element of the course, private study being the first. The argument is, of course, that

the development cost can be recouped by scaling up the delivery of courses: 300

students not 30 and or selling the package outside the university. Clark examines bot,h

these arguments. He points out that if it costs tens of thousands to create CAL material

to cover say 3 hours of a 400-hour degree, how will the other 397 hours be funded?

For the external sales aspect, he identifies several problems. With reference to TLTP

material, the first phase deliverables were to be made available, without charge to all

institutions. Secondly, materials bought in acquired by an institution are likely to need

tailoring to a particular course and this returns us neatly to the cost of staff hours. It

takes time and resource investment to overcome the 'not invented here' probleln.

What many give such heavy investn1ent its final value is increased quality of student

learning. Here again, figures are difficult to obtain, as gains are hard to quantify:

"This is yet another case in which the aspirations and expectations invested in
computer technology have failed to materialise To say that students really enjoyed
the learning experience is not enough ... " (Clark 1996 p 10)

The problems and costs of producing sufficient hours of CAL (and similar material)

are simply too large to allow a straightforward scaling of production. It costs

thousands to produce an hour of CAL and that cost does not drop if there are 40 hours

to be produced rather than four. Clark identifies the problem of production of

academic materials from a copyright view point: if such materials are produced by a

academic, then the university for whichslhe works undoubtedly has provided subsidy

in terms of time and resources, whether or not this is explicitly understood. In that

case, to whom does the copyright and therefore the revenue belong? It is a complex

legal question that has yet to be fully tested.

Mogey (1996) identifies a weakness in the TLTP, that of dissemination. Some

individual projects clearly identified a strategy for circulating materials and updates:

others had no such strategy. Mogey goes on to say that her university, Heriot-Watt

decided to collect as much TLTP software as possible, for distribution to staff

throughout Scotland. This activity is part of the Learning Technology Dissemination

A J Bird 363

The teaching ofprogramming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

Initiative (LTDI), which is part ofthe detailed implementation support service, funded

by Scottish Higher Education Funding Council (SHEFC).

The goal of TLTP was the dissemination of materials developed under its aegis: the

experience of lecturers may be less positive than that envisaged by the proj ect' s

funding bodies. Part of the issue may well be a practical one (different hardware and

operating environments) and some of it may be the perennial problem of academic

reluctance to use external materials in any great detail or to any great extent.

TLTP has invested resources in the development of a wide subj ect base for the CAL

packages, from general skills (word-processing) to language translation.

Coopers and Lybrand produced an evaluation report for the first two phases ofTLTP:

"The Report commended the programme's let a thousand flowers bloom approach,
which involved many staff across a wide range of departments working together. [} It
recommended continuing the programme to encourage widespread use of ..
materials, and proposed further development in specific areas to build on the
achievements so far. The HEFCE Board agreed that in future the programme should
be underpinned by stronger central arrangements to assist the selection, guidance,
monitoring and co-ordination of projects." (Turpin 1997 pi)

We can hear echoes of the NDPCAL approach, with its centralised control of projects.

Funding of up to £3.5 million annually was made available.

In February 1998, Phase 3 funding of32 projects was announced. Phase 3 focused on

the use oftechnology-based teaching and learning strategies within higher education,

rather than on the development of technology-based materials:

"HEFCE and DENI have commissioned the Tavistock Institute to work with TLTP
over the three years of this phase on the formative evaluation: they will be preparing
an evaluation framework and guidelines that will support individual projects and the
programme as a whole. The main purpose of this work will be to ensure that lessons
and emerging understandingfrom the programme are made available to the higher
education community." (TLTP 1998 P 4)

However, new materials are part of the deliverables from the Phase 3, as well as good

practice guidelines, case studies and workshops. Four new development projects have

A J Bird 364

The teaching ofprogramming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, l\1EP, CTI, TLTP and the ILT

been funded in the subject areas of nursing, art and design, music and medicine. Phase

3 subject areas include archaeology, economics, health sciences, history and music.

Generic projects have also been funded, looking at technology in key skills

development, distance learning and computer based assessment.

Phase 3 ofTLTP coincided with a flurry of Government activity in the field of

teaching and learning. In February 1998, the Government published the Green Paper

The Learning Age: a renaissance for a new Britain. The Planning Group for the

Institute of Learning and Teaching was established, with the aim of establishing the

Institute by the end of 1998. Also announced during 1998 were the University for

Industry and the National Grid for Learning. The TLTP co-ordinator notes "The

planned outcomes of Phase 3 fit well with the education sector's overall focus on

lifelong learning ... " (TLTP 1998 P 2)

This shift in the teaching and learning debate was could probably be traced back some

years but could be clearly seen in the ALT -C conference in September 1997. The

conference was titled Virtual Campus, Real Learning. The focus of debate on

technology for education could be seen as shifting away from the hardware (which

platform, how fast will it run the software) and software (is it PC or Mac, does it

require Windows 95) to the pedagogical issues: how does the technology support

learning?

The call was for the technical aspects of the technology to take second place to

educational imperatives. At ALT -C 98 the themes included learning environments,

virtual reality and, significantly, evaluation, an examination of the use of learning and

teaching technologies. As we have seen, this re-focusing of debate away from the

impact of the technology towards the educational outcomes facilitated by the use of

the technology is a theme that shapes much of the thinking in TLTP Phase 3 and a

variety of publications during 1998.

A J Bird 365

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

The IL T (Institute for Learning and Teaching)

The concept of an Institute for Teaching and Learning was put forward in the Dearing

Report (published in July 1997) in recommendation 14. The report Implementing the

vision, arose from a round of consultations and various projects, culminating in a

residential meeting by the ILT Planning Group in June 1998. The report provides

"recommendations on the proposed key functions of the ILT, its structure and staffing,

governance and funding." (Institute for Learning and Teaching 1998 paragraph 1)

As described in the report on the projected Institute, the purpose of the Institute is "to

provide 'professional standing' for teachers in higher education, comparable to that

in other professions ... " (Institute for Learning and Teaching 1998 paragraph 4) Part of

its role will be to redress the perceived imbalance between teaching and learning in

higher education, with teaching taking second place. The ILT will also seek to

improve the quality of teaching and learning, with particular emphasis on teachers in

higher education meeting the challenges that face them, including staff: student ratios,

the diverse range of students, including mature students and "the enhanced

application of communication and information technologies ... " (Institute for Learning

and Teaching 1998 paragraph 6)

It is important to note that the IL T will not be a funding body but will certainly have a

major role to play in further projects centred on technology for teaching learning.

One of the ILT's key activities is defined as:

"the development and encouragement of generic and subject-based good practice in
teaching and learning, including appropriate and effective application of
communication and information technologies ... " (Institute for Learning and
Teaching 1998 paragraph 17)

In summary, the work of the ILT is likely to impinge upon the funding and nature of

future projects in CAL and associated technologies. The ILT, once established, will

define potentially fruitful and relevant areas of research and prospective researchers

would be foolish to ignore the ILT's identified areas of interest. If the ILT proves able

A J Bird 366

The teaching of programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, l\1EP, CTI, TLTP and the ILT

to provide a respected and powerful professional focus for teachers in higher

education, the ILT may become the major force in shaping the nature of teaching and

learning in higher education over the next decade and beyond.

Appendix G: Conclusion

This appendix has reviewed very briefly a range of Government projects, initiatives,

reports and funding from the late 1960s to the late 1990s. A nun1ber of interesting

points en1erge, from a wealth of material (much of which does not appear here, for

reasons of space) spanning several decades. There are common features that emerge

over a diverse range of projects. Firstly, the participants tend to be (unsurprisingly)

enthusiastic promoters of the development and use of CAL. A cynical view would be

that funding undoubtedly promotes enthusiasm but it also apparent that funding is

given to those who are enthusiastic about CAL in the first instance. It could be argued

that only the enthusiastic will attempt the often complicated and time-consuming task

of securing funding.

Secondly, projects, however well funded, tend to have a very limited life. Original

proponents move on, (often to sit on committees that allocate funding or evaluate later

projects), the hardware and software age badly and the syllabus changes, leaving the

CAL to gather dust. It seems almost impossible to produce CAL that does not have a

built in obsolescence.

Thirdly, the project's outputs (videodisks, floppy disks, CDs or web pages containing

the lovingly crafted CAL) are generally received with limited enthusiasm outside the

department or institution that created them, and other staff or institutions tend to be

critical or even dismissive.

Finally, the evaluation of the use of CAL is notable weakness. Son1e small-scale

projects attempt evaluation of the CAL, usually by asking students' opinions of the

Inaterial. The larger scale efforts of UNCAL discussed earlier in this appendix are a

notable exception. A structured, coherent approach to eval~~ting both the project and

A J Bird 367

The teaching oj programming to novice programmers: three approaches

Appendix G The NCET, NDPCAL, MEP, CTI, TLTP and the ILT

its CAL output are rare. Most researchers appear to content to accept as a basis of

evaluation, a handful of questionnaires filled in by the users of the CAL. That is not to

say that questionnaires are not a valid instrument, but that more rigorous evaluation

would have been useful for many of the CAL projects attempted over the past

decades.

Whether one examines a government funded project that cost hundreds of thousands

of pounds (or even millions of pounds) or a small-scale institutionally funded piece of

work, the results are much the same: in the long term, value for money does not seem

to be a notable feature.

A J Bird 368

Appendix H

Contents

1 INTRODUCTION TO WORKBOOK
1.1 Pre-requisites
1.2 Learning outcomes
1.3 Suggested reading

2 THE COMPUTER ENVIRONMENT
2.1 Hardware
2.2 The microcomputer
2.3 The microprocessor
2.4 Peripherals
2.5 Computer memory
2.6 Software

3 THE HISTORY OF PROGRAMMING LANGUAGES
3.1 Stage 1 of programming language development
3.2 Stage 2 of programming language development
3.3 Stage 3 of programming language development

4 INTRODUCTION TO STRUCTURED PROGRAM DESIGN
4.1 The development of software engineering

4.1.1 Real time embedded systems
4.1.2 The software crisis

4.2 The GOTO statement
4.2.1 Arguments against GOTO
4.2.2 Arguments in favour of GOTO

4.3 The debate about structured programming
4.3.1 Modularization
4.3.2 The algorithmic tool kit

5 THE SOFTWARE DEVELOPMENT LIFE CYCLE
5.1 Introduction
5.2 Requirements analysis

5.2.1 Problem solving
5.2.2 Specification (input / output)

5.3 Program design
5.3.1 Definition of the problem
5.3.2 Expressing algorithms
5.3.3 Algorithms
5.3.4 Top-down design
5.3.5 Modularization
5.3.6 Incorporating top-down design with modularization

5.4 Implementation
5.5 Executing

5.6 Debugging
5.6.1 Detailed problem analysis technique
5.6.2 Desk checking / walkthrough
5.6.3 Syntax or compile-time errors
5.6.4 Run-time errors

5.7 Program verification and testing
5.7.1 Black box and white box testing
5.7.2 Unit testing
5.7.3 Integration testing
5.7.4 Alpha and Beta testing

5.8 Documentation
5.9 Program maintenance

6 PROGRAMMING LANGUAGES
6.1 Logic languages
6.2 Prolog
6.3 Procedural languages
6.4 Examples of procedural languages

6.4.1 FORTRAN
6.4.2 COBOL
6.4.3 BASIC
6.4.4 Pascal
6.4.5 C and C++

6.5 New programming languages
6.5.1 Visual Basic
6.5.2 Java
6.5.3 Java Script

7 SAMPLE PROGRAMS
7.1 Pascal program: 1
7.2 Pascal program: 2
7.3 C++ program: 1
7.4 C++ program: 2
7.5 Visual Basic program: 1
7.6 Visual Basic program: 2

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl,uk

PAGE NUMBERING AS

ORIGINAL

Feedback Instruments Ltd Introduction to Programming Ideas

1 Introduction to student workbook

You use this workbook with the Computer Aided Learning (CAL) material. This book has a

suggested reading list, to help you with wider reading on the subject. It also contains

activities for you to carry out while you work with the CAL. The workbook has gaps for you

to fill in from the text on the screen. It also has activity boxes that ask you to undertake some

wider reading on the subject or to summarise the text on screen.

1.1 Pre-requisites

None.

1.2 Learning outcomes

At the end of this unit the student should be able to:

• understand and explain the basic principles of structured programming

• explain key elements of the software development life cycle

• be able to describe features of different programming languages

• outline how various programming languages were developed and why

• understand the importance of structured programming

Version 2.0 (Student) ACJ&JVR

Feedback Instruments Ltd Introduction to Progr~lInming lde:ls

1.3 Suggested reading

The nun1ber for each book is the ISBN for that book. This nllll1ber uniquely identifies the

book. You can use this nUll1ber to order the book frol11 a library or bookshop.

• Principles of Programming Languages

Bruce J Maclennan

CBS College Publishing

0-03-005163-6

• Foundations of Computer Technology Systems

A J Anderson

Chapn1an & Hall

0-412-59810-8

• Progra111111ing Languages - Structures and rvlodeb

H L Dershell1 & M J Jipping

PWS Publishing Con1pany

0-334-94740-9

• Algorithmics - The Spirit of COlnputers

David Harel

Addison-Wesley

0-201-50401-4

• Software Tools & Techniques for Electronic Engineers

Keith Jobes

rv1cGraw Hill

0-07 -707720-2

Version 2.0 (Student) 2 ACJ & JVR

Feedback Instruments Ltd Introduction to Programming Ideas

2 The conlputer environment

Before anybody really understood the concept of computers, they were feared due to their

supposed capacity of being able to take over positions within the workforce. Now it is

realised that computers do actually need human intervention to initiate their functions. The

truth is a computer is just a piece of machinery that has extensive capabilities, if humans

create the appropriate software structure for them to work.

In a broad context there are two basic aspects of a computer, [] .

Generally it is said that if you can touch part of the system, then it is hardware. To define

hardware you could say it consists of all the physical components that make the computer

system. The hardware and software elements have a wide range of functions, but are

collectively known as the [].

2.1 Hardware

2.1.1 The Microcomputer

l l'"f~'a._'''·_'''

,. .~ "'p~ __ -

I
Computer

Figure 2.1 A microcomputer .

This shows a collective picture of the some of the hardware used in a system. A complete

microcomputer is hardware and software.

Version 2.0 (Student) 3 ACJ & JVR

Feedback Instruments Ltd Introduction to Programming Ideas

2.1.2 The microprocessor

Also known as the CPU [] is often referred to as the brain

of the computer. The CPU is a circuit chip which is actually inside the microprocessor. The

CPU is responsible for the retrieval of any instructions from the computers memory,

deciding their type and splitting each instruction into a series of smaller actions. The speed

at which this can be done depends on the capacity of the chip, which can vary depending on

the actual system.

Figure 2.2 A CPU chip

Activity 1

How 111uch docs a PC cost?

I The answer to that is. it ocpco<,b! You should research the cost of u PentiUl11 PC \vith nn

SVOA 1110111tor lind a CD-ROM drive, How 11111Ch (roughly) would you expect to pay'?

Make clear where YOli got the infornuHion 1'1'0111.

Version 2.0 (Student) 4 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Activity 1 cont'd

2.1.3 The peripherals

Output peripherals Input peripherals

• :Monitor • Keyboard

• Printers • Scanner

• Speakers • .Mouse

• Modem (transmitter) • Joystick

• Modem (receiver)

• Microphone

• Lightpen

Version 2.0 (Student) 5 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

2.1.4 Computer memory

Computer memory has two main categories becau.se most programs are too large to be

stored within the CPU itself. A separate melTIOry is required:

1) Primary memory

This is where thedata is temporarily held during processing. Again, this can be split down

into two different working elements.

i) RAM []. Here the data is held for processing. RAM is

volatile. This means that any information stored when the []

is cut will [], hence the need for backups.

ii) ROM (Read Only Memory). This is only read by the CPU. ROM consists of

programs and instructions which are required for the [] to be

loaded. Usually held here is Basic Input Output System (BIOS) data.

2) Secondary memory

When large amounts of data need to be stored, [secondary memory is used]. This comes in

numerous forms. Although useful, the speed of data transfer onto secondary memory devices

is quite slow. As technology advances the number of devices available for secondary

memory are increasing, along with the speed of transfer and the capacity of the device. A

few examples follow:

• 3.5 inch [

• []

Version 2.0 (Student) 6 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Selection

Selection involves selecting a particular sequence of instructions in preference to another.

Below are the two main types of selection instructions that can be found in programming

languages:

• IF condition

THEN action

• IF condition

THEN action

Note! the condition must evaluate to TRUE, which can

be seen in the IF. ... THEN example.

ELSE different action

The first selection control structure is the IF THEN statement. As already mentioned, the

condition must evaluate to TRUE therefore, in the following example, it must be true that it

is raining.

FLOWCHART

IF condition

THEN action

Version 2.0 (Student)

PSEUDOCODE

IF it is raining

THEN take an umbrella

33

Ni,) Tak.e an
umbrella

ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

There are certain disadvantages associated·with white box testing. These disadvantages

include:

• the number of distinct paths in most programs tends to be extremely large resulting in

impractical testing

• a program that is completely path tested could still contain many errors

• a program may contain several missing paths

• there are problems with while loops which are not properly tested, as a result of

loop execution from the Boolean test data never being TRUE

In summary, white box and black box testing strategies complement each other.

v

.?-

Figure 5.35 White box and black box testing complement each other

5.7.2 Unit testing

Unit testing involves testing individual modules in a program and is a similar method to

white box testing. Unit testing is the second option of the prograln verification and testing

phase of the software development lifecycle.

Version 0.1 (Student) 74 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Unit tests verify the design and implementation of all the components. Special test software

must be used to act out the roles of the modules which the one under test will interact. When

the lowest level components have been tested, modules are combined into subsystems that

are tested in a similar manner. The procedure continues until the complete system is finally

assembled and tested as a whole.

Figure 5.36 Unit testing

There are however problems that occur when one module is tested in isolation from other

modules:

• the test software may itself be a complex program, requiring

considerable development and testing time

• preparation of the test data may involve considerable effort

Due to its manner of testing, unit testing can be associated with

bottom-up rather than top-down design and is therefore not a

Version 0.1 (Student) 75

.• ouoa·,
:r\f;:~;qf":: .. ·{
~··:·J..YMSlH.f.~

:;~'t;~a}
~$¥:e~l'!~

ACJ & JVR

Feedback Instruments Ltd Introduction to Programming Ideas

5.9 Program maintenance

Once the system has been shown to work and has fulfilled the original requirements the

software can be released to the customer. The development phase may be completed but it is

still normal for the system developers to continue to maintain and possibly upgrade the

hardware and software for the particular design. Program maintenance is the eighth phase

of the software development lifecycle.

The maintenance phase is concerned with:

• [] resulting from a customer's observations of any

shortcomings following the initial installation and use

• [] over the lifetime of a program

• adaptation to run on hardware different to that for which the software was

originally intended

Version 0.1 (Student) 80 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

6 Programming languages

Programming languages can be seen as either close to human languages (high level

languages) or close to binary (low level languages).

With programming languages as with other goods and services, consumers and producers

seek constant improvement. The more control and power each progression in programming

has the more the programmers see the possibilities in increasing the capabilities further. The

numerous advancements in programming languages means that even though there is still

software being used that was written in languages such as BASIC and COBOL, these

languages are becoming gradually [].

When looking at high level programming languages specifically within the high level sector

there are three main categories in which they can be placed:

• Logic languages

• []

• New programming languages

6.1 Logic languages

These types of programming languages are also known as non-procedural programming

lanGuaGes they tend to be associated with artificial intelligence as it concentrates on
b b ,

[]. For example a question is asked and the

computer derives a logical answer instead of the programmer programming in how to obtain

the answer. For the computer to be able to find the answer a description of the relationship

between input data and the output data is needed. These programs are successful in that they

are conCIse.

Version 2.0 (Student) 81 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

There are many characteristics of logic programming. One of the main features is the use of

control statements.

Logic programming concentrates on what, not how, it

uses a collection of facts and rules about those facts to

draw up solutions or answers to input questions. It does

not use the algorithmic toolkit.

Figure 6.1 Logic programming does not

use the algorithmic tool kit

6.2 Prolog

Prolog stands for PROgramming LOGic. It is a high level language which is based on

formal logic system where by the programmer states the relationship between the

assumptions and conclusions.

It was designed in the 1970s by Alain Colmerauer and colleagues at the University of

Marseilles, France. Prolog has been used in numerous ways but is most predominantly

known for its use in fifth generation computing.

The language itself is used in expert systems. These are

programs which have knowledge about a particular subject

built into them. Expert systems have helped in various areas,

for example to diagnose some illnesses. Expert systems

consist of facts (about the illness) and rules (which state how

the illness is diagnosed). So, measles is a disease with

symptoms spots on the skin and if the patient has itchy red

spots, then the chances are they have measles.

Version 2.0 (Student) 82

,
t,'

",;~r "
~; i

Figure 6.2 A patient with

n'leasles

ACJ& JVR

Feedback Instruments Ltd Introduction to Programming Ideas

A prolog program will consist of a known set of facts, and rules about those facts. Prolog

actually performs pattern matching. It puts fac ts and rules together to give an answer to the

appropriate ques tion.

Examples of possible facts:

In English In Prolog

s h eep ea t grass eat(sheep,grass) .

cows eat grass eat(cows ,gras s) .

Examples of possible questions:

do sheep eat grass ?-eat (s h eep , grass) .

do cows eat grass ?-eat(cows,grass).

You ask, eat (sheep, g r ass) and the program looks for a match among the facts and

returns true (if it matches) or false (no match found).

~ .' {fia;, , ~

." ~ .~ ~

"' ,'0'
~ J. •

Figure 6.3 A sheep eating grass

Version 2,0 (Student) 83 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

6.3 Procedural languages

These languages require the programmer to define clearly all the steps of the solution. Most

well known languages are procedural. Pascal is a [] language.

The program is split into a number of steps called procedures which are then carried out in

sequence. These steps indicate the way the program runs or the flow of control. Procedural

languages tend to be close to human language, which enables programmers to read them

with more ease than languages such as assembly language.

Procedural languages are much more exhaustive than many other forms of programming

language. For any non-trivial program there are [] to write, especially

when it is used to produce a complete software package. This is due to every step needs to

be clearly specified by the programmer and all possibilities covered by the action of the

program. Procedural languages demand [intensive effort] and [] to create.

6.4 Examples of procedural languages

6.4.1 FORTRAN

Formula TRANslator was developed in the [] due to the need for a programming

language that could do mathematical and scientific calculations, giving it extensive and

powerful numerical capabilities.

Version 2.0 (Student) 84 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

The language itself is based on simple English type statements, such as:

integer I, MX, MN, A(100)

real RS

read (A(I), 1=1, 100)

MX = A (1) This is just a small fragment of FORTRAN code

MN = A(l)

do 10 I = 2, 100

if (A(I) .gt.MX) = A(I)

if (A(I) .1t.MN) MN = A(I)

Starting at the top of this code the first line introduces the 3 integers. This is followed by the

real number variable of RS. Line 3 reads the contents of A from the input devices, this

indicates that both MX and MN are the contents. The do command indicates that everything

from here to line IO should be run in a loop.

FORTRAN was one of the first high level languages to be implemented and also one of the

most popular in its time. Although widely used FORTRAN had limitations due to its

mathematical and scientific nature. Therefore if a company wanted a software package

primarily for wordprocessing FORTRAN would not be the most applicable language.

When it was designed there was no consideration to the complexity of the language, its

primary aim was to be concise. This made FORTRAN lack various aspects for program

enhancing which are usually associated with high level languages.

There is an updated version of FORTRAN called FORTRAN 77, which has incorporated

more aspects, such as running programs within a program (subroutines) and structural

nesting for example a loop within a loop. Due to its early popularity there are many amount

of programs written in FORTRAN.7. A new version has been developed called FORTRAN

90.

Version 2.0 (Student)

FORA.r U L A

IRAN SLAIION

Figure 6.4 FORTRAN

85 ACJ &JVR

Feedback Instruments Ltd Introduction to Programming Ideas

6.4.2 COBOL

COBOL is described as been completel~ opposite to FORTRAN in almost every aspect,

other than they are both high level languages and very popular.

COBOL is a multipurpose language that is [], and is useful for

[]. It is very popular for business applications, especially ones

being used on larger computer systems.

COBOL was designed to be clear

and have good readability, which

reduced the look of being

mathematical that some other

FORTRAN
FROMAGE

programming languages have.

This gives the language a human

perspective. The COBOL

programming language itself has

sin1ilarities to natural language. Figure 6.5 COBOL is different to other languages

COBOL fragment:

Version 2.0 (Student)

I

! data diu is ion
01 UNIVERSITY FILE

02 STUDENT occurs 100 tiffles
03 STUDENT-NAME pic A(15)
03 COURSE occurs 30 tiffles

04 COURSE-NAME pic AAAA999
04 SCORE pic 99

Figure 6.6 COBOLfragment

86 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

This is a small sec tion of COBOL programming. The sample shows a university students

name, relevant course and the score attained.

6.4.3 BASIC

BASIC consists of hundreds of instructions all of which resemble a natural language. In

order for these instructions to work there is also a set of rules to follow, called syntax. All

instructions must have a line number:

10 CLS

20 PRINT "he llo"

30 END

If a line is not numbered then the instruction will be carried out as soon as the program is

run, and it will not be in sequence.

The language was originally designed in [

programming. BASIC was classed as the [

], to help teach the concepts of

] language.

Figure 6.7 BASIC was designed in 1963

Early BASIC could sometimes look confusing as GOTO commands would be followed by a

line number, which meant the program would jump to the line number indicated .

Version 2 .0 (Student) 87 ACJ & JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Fragment of Basic:

10 REM - PRIME NUMBERS LESS THAN 100

20 N=N+I0

30 IF N=100 THEN GOTO 120

40

~

120 END

This fragment of code takes a value N and adds 10 to it. When N is equal to 100 the program

ends. The REM statement at line 10 indicates that the line is only a remark and not part of the

actual program.

The complexity changed as BASIC followed the improvements in the personal computer

revolution. Microsoft enhanced the languages capabilities and upgraded to QuickBasic,

which moved the language forward. The line numbers were eliminated and modern features

such as data types and subprograms were introduced.

6.4.4 Pascal

As the predecessors of pascal, FORTRAN and COBOL were []

specifically designed for certain uses of expertise. This meant there was a need for an all

round language hence the development of languages such as ALGOL60 and Pascal.

There are various rules that are associated with Pascal. These rules dictate the variables that

can be used whilst programming. Pascal's facilities allow the definition of data types, such

as only real numbers.

Version 2.0 (Student) 88 ACJ& JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Pascal has data types that are both program defined and user defined, usually placed at the

beginning of the program. Pascal is used in many different ways due to its versatility,

although it is one of the preferred high level1anguages that is taught at most levels of

programmmg.

Along with most other high level languages Pascal is unable to run directly on the machine

as the program is not written in binary. It is therefore necessary to have []. The

compiler turns the program into [] so that it can run. The Pascal language itself is

quite easy to follow as the instructions are based on natural language.

Fragment of Pascal:

IF score >=70 THEN

BEGIN

END

Write ('Successful');

IF SCORE >=80 THEN

BEGIN

Wri te (' and I)

IF Score >=90 THEN

Write ('distinguished')

ELSE

Write ('Very Good')

END

Figure 6.8 Graphical representation of the code

Version 2.0 (Student) 89 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

There is a variable score which has a value (taken in elsewhere in the program). This section

of the code carries out one action which writes a phrase on the screen, depending on the

value of the score. If the score is greater that or equal to 70 (>=70) then the output is the

word 'Successful'. The code continues to run until it has correctly categorised the score.

6.4.5 C and C++

C was designed by Bell Laboratories in the early []. C soon became one of the most

important development languages for MS-DOS and UNIX enthusiasts. This was mainly due

to the lack of other languages that could perform as well within these environments.

The language itself is high level and uses the natural language statements IF, THEN, ELSE.

It is a well structured language that is extremely well suited to engineering but has excellent

all round abilities. Due to its immense use C has a large range of standard functions

available. One major advantage of C is that it can be compiled into a stand alone application,

such as an .exe file.

As a language C can adopt a [] which means the final program can be split

into several more manageable separate parts or files. When learning C it can be made easier

if the student already knows Pascal or a different procedural language .

. exe file

Figure 6.9 C can adopt a modular approach

Version 2.0 (Student) 90 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Small C program:

line

1 /* simple program to write on the screen */

2 #include <stdio.h>

3 main ()

4 {

5 printf ("Hello World!") i

6 }

This program starts off with line 1 a comment, this is the text between the symbols 1* and *1.

Line 2 is the standard input/output library of the program, this allows a selection of pre

written functions to be used. Line 3 is the point at which the program executes (runs) from.

The braces of the program are shown in lines 4 and 6, these enclose the main routine. Line 5

is the main routine.

Once this program has been run with aid of a C compiler it will put up on screen Hello

World!

In an attempt to add the features of a general purpose object-oriented language to C, Bjorne

Stroustrup created C++. Not only is C++ an improvement on C but it also fixes some of the

problems that exist in the C programming language.

Version 2.0 (Student) 91 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

If you look at the first section of the C example again only in C++, it will look similar to the

following.

c++ program:

void main ()

{

cout«"Hello World!"

}

This C++ program produces the same output as the previous C program, Hello World!

void main()
r

, l

cout«'}lello lIUorld!" CO" .-""'.-' .-.....
~,.,:::..;: -' .':':".-""-

Figure 6.10 A program producing an output

6.5 New programming languages

Programming languages are no different from any other technological advancements. There

is always a need for faster more powerful languages. This has never been more apparent

then with the vast use and demand for the []. Although the existing languages are

compatible with Internet programming, the actual programmers felt there was a gap in the

programming which could be filled by new specific languages.

Version 2.0 (Student) 92 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Primarily most new programming languages are object oriented, for example [

]. Object oriented programming enables the programmers to not only define

the data types and structure but also the functions. An object is basically a unit of data and

code which enable the programmers to use pre-built objects. Having objects both reduces

the amount of actual code needed.

The uses and fragments of a selection of new programming languages will be explained in

this section.

6.5.1 Visual Basic

Visual Basic was based around an older language BASIC. It is seen as a good language to

use for a graphical programming environment. Visual Basic is not completely object

oriented but is based around some object oriented concepts. The language was designed by

Microsoft several years ago to enable programmers to create Windows applications with

greater ease and speed.

As with the majority of programming languages once they have been released the actual

programmers demand more from them. Visual Basic is now in [] since its

introduction in [].

The actual programs readability is good as it is based on natural language. For example the

instruction to add a new item is:

-
Figure 6.11 The instruction to add a new item

Version 2.0 (Student) 93 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

//A first program in Java

import java.applet.Applet; //import Applet class

import java.awt.graph~cs; //import Grphics class

public class welcome extends Applet {

public void paint (Graphics g)

{

g.drawstring ("Welcome to Java Programming!",25,25) i

}

}

This fragment of java would appear on the screen as follows:

Welcome to Java Programming

:Applet started

Figure 6.13 A fragment of Java

6.5.3 JavaScript

JavaScript is not the same as Java or produced by the same company. JavaScript was

designed by [] specifically for use with the []. JavaScript is a simpler

language that can be used by non-programmers. It does not create applets or stand alone

applications.

Version 2.0 (Student) 96 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Although they are not the same language JavaScript does support Java's expressions and

basic flow control. JavaScript is not fully object oriented as it does not use classes or

inheritance. Unlike Java the programming is not compiled by the server just interpreted by

the client. The objects that are present in the program are checked at the mn time as the

program is not compiled.

In order to use JavaScript programming language it is essential to be using a web browser

that is JavaScript embedded, for example Netscape Navigator (post version 2.0) or

Microsoft Internet Explorer (post version 3.0).

Figure 6.14 A JavaScript embedded web browser

Basically JavaScript looks very similar to many other HLL, with a natural language look to

it.

<HTML>

<HEAD>

<SCRIPT LANGUAGE = JavaScript" >

document.write ("Hello World./I)

</Script>

<BODY>

</BODY>

</HTML>

Starting from the top of this fragment of code, the first line is opening the HTML page. The

HEAD statement indicates that what follows will be at the top of the page, the type of

language is the depicted. Next the contents is entered: Hello World, this is done using the

line of code: document. wri te ("Hello World.") is actually the only piece of

JavaScript the rest is part of the HTML page. Following this is the closing of the script then

the body and the HTML page.

Version 2.0 (Student) 97 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Learning outcomes

At the end of this material you should be able to:

• understand and explain the basic principles of structured programming

• explain key elements of the software development life cycle

• be able to describe features of different programming languages

• outline how various programming languages were developed and why

• understand the importance of structured programming

Suggested reading

The number for each book is the ISBN for that book. This number uniquely identifies the

book. You can use this number to order the book from a library or bookshop.

• Principles of Programming Languages

Bruce J MacLennan

CBS College Publishing

0-03-005163-6

• Foundations of Computer Technology Systems

A J Anderson

Chapman & Hall

0-412-59810-8

• Programming Languages - Structures andModels

H L Dershem & M J Jipping

PWS Publishing Company

0-334-94740-9

Version 2.0 (Tutor) 1 AJC&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

• Algorithmics - The Spirit of Computers

David Harel

Addison-Wesley

0-201-50401-4

• Software Tools & Techniques for Electronic Engineers

Keith Jobes

McGraw Hill

0-07-707720-2

Version 2.0 (Tutor) 2 Ale &lVR

Feedback Instruments Ltd Introduction to Programming Ideas

The microcomputer

A microcomputer or PC (Personal Computer) consists of hardware and software. Hardware

are items like screens (monitors), the peripherals (such as printer or keyboard) and the

microprocessor itself.

The microprocessor is also known as the CPU (Central Processing Unit) and is often

described as the brain of a microcomputer.

Output peripherals Input peripherals

• Monitor • Keyboard

• Printers • Scanner

• Speakers • Mouse

• Modem (transmitter) • Joystick

• Modem (receiver)

• Microphone

• Lightpen

Version 2.0 (Tutor) 3 AJe &JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Computer memory

Computer memory has two main categories: primary & secondary memory

Prilnary nlenlory has two main types

i) RAM (Random Access Memory). Here the data is held for processing. RAM is

volatile. This means that any information stored when the power supply is cut will be

lost, hence the need for backups.

ii) ROM (Read Only Memory). ROM consists of programs and instructions which

are required for the operating system to be loaded. Usually held here is Basic Input

Output System (BIOS) data.

Secondary Inemory

When large amounts of data need to be stored, secondary memory is used. This comes in

numerous forms. As technology advances the number of devices available for secondary

memory are increasing, along with the speed of transfer and the capacity of the device. A

few examples follow:

• 3.5 inch floppy disk

• CD-WORM

• magnetic tapes

Version 2.0 (Tutor) 4 AJC&JVR

Feedback Instruments Ltd

5.2 Requirements analysis

In order to analyse a problem the following

stages have to be determined:

• problem solving

• [specifications (input / output)]

5.2.1 Problem solving

Introduction to Programming Ideas

Figure 5.4 Problem solving

Problem solving is the first part of the [requirements analysis] phase of the software

development lifecycle and:

• involves careful analysis and investigation to discover the nature of the problem

• includes development of a [logical process or design of a solution] before use of a

computer

Figure 5.5 Discovering the nature of the problem

Version 0.1 (Tutor) 40 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

5.2.2 Specifications (input / output)

Defining the specification is the second pOart of the requirements analysis phase of the

software development lifecycle. It is very important to clarify the processes needed to solve

the problem. If the problems are not clearly defined then it is unlikely that a satisfactory

solution to the problem will ever be arrived at. It is important to split up the problem into

three aspects. The aspects to be determined are as follows:

• the [output] required from the system - the materials generated by a program

• the input to the system - the data that a program requires to produce its results

• the [processing] - a mechanism for converting input to output

A well designed program will always have this input, process, and output, as shown in the

diagram below.

INPUT ---.!~I PROCESS 1--___ ... OUTPUT

Figure 5.6 The aspects of the problem

The specifications should clearly state what inputs the program should accept and what

outputs will be produced by these inputs. The input variables may be either external

variables, such as speed and temperature, or user controls, such as asking the user to enter a

control value or their name. The output variables may also be external or may be

information displayed on the monitor. For example, an input number must be greater than 0

but less than 100, and the output must be greater than 200.

The working limits that the input and output must adhere to should also be specified along

with other information regarding them such as [tolerance, resolution and precision].

Version 0.1 (Tutor) 41 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

The process box can be broken down into more detailed process boxes with data flowing

into and out of each. This is similar to developing subtopics for an essay outline. Each

process box represents a [module or major task] of the program.

Process
Input .. , ~ ~ ~ ... Output Main

Program
Module Module Module

.~<.;,,~~ .• ~~ ~ .. ,:~~",;:~., 'V"'~';""''-~i' ·''>,· ····F',if..'.:,'~~, ... ~ ,. ::;;" .. '~= :::;;'\ ~ :::~\
" 'J. ," ~ .. " .. '"

Figure 5.7 A process box with input and output data

5.3 Program design

5.3.1 Definition of the problem

Before any preparation or programming can begin, the problem has to be defined. Definition

of the problem is the first part of the [program design] phase of the software development

lifecycle. The problem must be understood, and a solution must be engineered. It is logical

to begin with a requirements list. This is a set of written statements that specify what the

software must do or how it must be structured. These requirements are specified by a

systems analyst or a software engineer.

A number of problems should also be studied including:

• [how would people use the system]

• what data will the system be processing

• [what hardware will be used to implement the system]

• what factors that might influence the performance of the system

Version 0.1 (Tutor) 42 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

The factors and the requirements should then be compared. This process is valuable because

it helps to produce a completed program or system that will be more naturally organised than

if the requirements alone drove the initial design.

Activity 8

: Fin"d another: dlagra"rri" or "gr"aphic "describIng the software "llfecycle".: Sketch the" diagram" :
.

" "

:below and indicate the source" (book title, author" or "other :so"urce)." :" : " : ": :::":":::":""

.... "

" "
•• < •••

: Stu"dents should submit any reasonable" diagram or graphic~ :
. " .

5.3.2 Expressing algorithms

Flowcharts are a very important aspect of programming and are the first option of

expressing algoritlllns in the [progranl design] phase of the software development lifecycle.

They can be seen as the blueprint of the programs duties. These visual, diagrammatic

techniques are one way of presenting the [control flow] of an algorithm in a clear and

readable fashion. A flowchart shows the logic of an algorithm, emphasising the individual

steps and their interconnections. This illustrates the way in which control flows from one

action to the next.

Version 0.1 (Tutor) 43 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Over the years a relatively standard symbolism emerged when presenting a flowchart and

below are examples of some of the representations.

0 Flow ~ InputfOutput () Terminal
connector symbol symbol o Decision D Process

1I
Direction

symbol symbol of flow

Figure 5.8 Representative symbols used inflowcharts

To the right is a flowchart that

shows how to work through a

bag of pick and mix sweets:

give it to
somebody else

Figure 5.9 A flowchart showing how to eat a bag of sweets

Activity 9

· · " · . , · . ," , .. .
:D,raw af~o,,,:cha~ ,t<?:0l:1t~irie~he:pr~cess' of goi~g ~~t for a~ eye~ingeg'getr~ady~~ee~::::::::::

........ '.'. . .' .. .'. . .' .. .' '. ." ,......... ~ '.

:fryends~:4e~id,e:w~er~'~~ g~ '~ep'endi~g o~how, in~~~:t?~n~y:yo~ h~v~ ,arid so:on-::::::::::::::::::,
. , '. , · " -' · . , · " , · . . ,

'Answer' : . , ' : . : . : ' : . : . : ' : ' : . : ' : ' : ' : ' : ' : ' : ' : ' : . : ' : ' : . : ' : ' : ' : ' : ' : ' : . : ' : ' : . : ' : ' : ' : ' : ' : ' .
· , , , . , , .. , , .. , , , , .. · , · ,

·
'?~,d~l!-t~ .s~o~l~ ?~~e :~oll?~ :~ec~sio~ boxes: eg ~~n,e~a,o,i ,n~gh,t~c~ll:b:.: q11?-e~~s,e~ :~i1y,:::::::::::::,

·, , · ,......

: ~~a~'<?~a~~~ fJ<?'Y~~a~, is ~~~ep~ab~~.:
· '", , ... " .

Version 0.1 (Tutor) 44 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

The advantages of using flowcharts are as follows:

• there is close correspondence with underlying code

• flowcharts are good for procedural specifications

Figure 5.10 Advantage of using flowcharts

Pseudocode

Pseudocode is an alternative method to using flowcharts and is the second option of

expressing algorithlns in the program design phase of the software development lifecycle.

Pseudocode, also called Structured English, is the least formal means for stating the program

ideas. The idea behind pseudocode is to write English-language statements that are almost as

specific as the code itself but flexible enough to be translated into more than one

programming language.

Version 0.1 (Tutor) 45 ACJ &JVR

Feedback Instruments Ltd Introduction to Programming Ideas

An example of pseudocode can be seen below:

for every sweet in a packet

do pullout a sweet

if it is a toffee

else

then eat it

if it is a chocolate

then eat it

else

if it is a peanut

then eat it

else

if it is a coffee

then give it to somebody else

else discard it

The advantages of using pseudocode are as follows:

• it is an appropriate method when detail is not completely known

• it is quick and easy

• it is a good method for

communicating algorithms to end-users

Once the requirements, the specifications

and the problem have been defined and it

has been decided that the problem can be

solved with a suitable structured solution

then it is time to start coding the problem.

Version 0.1 (Tutor)

I ...

46

1
rz..
Orz:l
"'121
~o
-<u

"""
E-<0 zQ p
.~ rz:I
Ql£
-<

2 3 ~
rz.. rz.. ~~ .•
Orz:l Orz:l h:
tl>Q "'121
~o ~o
-<u -<u
E-<0 E-<0 ~ zQ zQ p p
~rz:I ~~ Ql£ Qp..
-< -<

.~

ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

6 Programming languages

Programming languages can be seen as either close to human languages (high level

languages) or close to binary (low level languages).

With programming languages as with other goods and services, consumers and producers

seek constant improvement. The more control and power each progression in programming

has the more the programmers see the possibilities in increasing the capabilities further. The

numerous advancements in programming languages means that even though there is still

software being used that was written in languages such as BASIC and COBOL, these

languages are becoming gradually [obsolete].

When looking at high level programming languages specifically within the high level sector

there are three main categories in which they can be placed:

• Logic languages

• [Procedural languages]

• New programming languages

6.1 Logic languages

These types of programming languages are also known as non-procedural programming

languages, they tend to be associated with artificial intelligence as it concentrates on [what

is to be done rather that how to do it]. For example a question is asked and the computer

derives a logical answer instead of the programmer programming in how to obtain the
-

answer. For the computer to be able to find the answer a description of the relationship

between input data and the output data is needed. These programs are successful in that they

are concise.

Version 2.0 (Tutor) 76 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

There are many characteristics of logic programming. One of the main features is the use of

control statements.

Logic programming concentrates on what, not how, it

uses a collection of facts and rules about those facts to

draw up solutions or answers to input questions. It does

not use the algorithmic toolkit.

Figure 6.1 Logic programming does not

use the algorithmic tool kit

6.2 Prolog

Prolog stands for PROgramming LOGic. It is a high level language which is based on

formal logic system where by the programmer states the relationship between the

assumptions and conclusions.

It was designed in the 1970s by Alain Colmerauer and colleagues at the University of

Marseilles, France. Prolog has been used in numerous ways but is most predominantly

known for its use in fifth generation computing.

The language itself is used in expert systems. These are

programs which have knowledge about a particular subject

built into them. Expert systems have helped in various areas,

for example to diagnose some illnesses. Expert systems

consist of facts (about the illness) and rules (which state how

the illness is diagnosed). So, measles is a disease with

symptoms spots on the skin and if the patient has itchy red

spots, then the chances are they have measles.

Version 2.0 (Tutor) 77

Figure 6.2 A patient with

measles

ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

A prolog program will consist of a known set of facts, and rules about those facts. Prolog

actually performs pattern matching. It puts facts and rules together to give an answer to the

appropriate question.

Examples of possible facts:

In English In Prolog

sheep eat grass eat (sheep,grass) .

cows eat grass eat (cows,grass) .

Examples of possible questions:

do sheep eat grass ?-eat(sheep,grass).

do cows eat grass ?-eat(cows,grass).

You ask, eat (sheep, grass) and the program looks for a match among the facts and

returns true (ifit matches) or false (no match found).

Figure 6.3 A sheep eating grass

Version 2.0 (Tutor) 78 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

6.3 Procedural languages

These languages require the programmer to define clearly all the steps of the solution. Most

well known languages are procedural. Pascal is a [procedural] language.

The program is split into a number of steps called procedures which are then carried out in

sequence. These steps indicate the way the program runs or the flow of control. Procedural

languages tend to be close to human language, which enables programmers to read them

with more ease than languages such as assembly language.

Procedural languages are much more exhaustive than many other forms of programming

language. For any non-trivial program there are [many lines of code] to write, especially

when it is used to produce a complete software package. This is due to every step needs to

be clearly specified by the programmer and all possibilities covered by the action of the

program. Procedural languages demand [intensive effort] and [considerable time] to create.

6.4 Examples of procedural languages

6.4.1 FORTRAN

Formula TRANslator was developed in the [1950s] due to the need for a programming

language that could do mathematical and scientific calculations, giving it extensive and

powerful numerical capabilities.

Version 2.0 (Tutor) 79 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

The language itself is based on simple English type statements, such as:

integer I, MX, MN, A(100)

real RS

read (A(I), 1=1, 100)

MX = A (1)

MN = A(l)

This isjust a small/ragment o/FORTRAN code

do 10 I = 2, 100

if (A(I) .gt.MX) = A(I)

if (A(I) .1t.MN) MN = A(I)

Starting at the top of this code the first line introduces the 3 integers. This is followed by the

real number variable ofRS. Line 3 reads the contents of A from the input devices, this

indicates that both MX and MN are the contents. The do command indicates that everything

from here to line 10 should be run in a loop.

FORTRAN was one of the first high level languages to be implemented and also one of the

most popular in its time. Although widely used FORTRAN had limitations due to its

mathematical and scientific nature. Therefore if a company wanted a software package

primarily for wordprocessing FORTRAN would not be the most applicable language.

When it was designed there was no consideration to the complexity of the language, its

primary aim was to be concise. This made FORTRAN lack various aspects for program

enhancing which are usually associated with high level languages.

There is an updated version of FORTRAN called FORTRAN 77, which has incorporated

more aspects, such as running programs within a program (subroutines) and structural

nesting for example a loop within a loop. Due to its- early popularity there are many amount

of programs written in

been developed called

Version 2.0 (Tutor)

FORTRAN.7. A new version has

FORl\.·r U L A FORTRAN 90.

T RAN SLATION

Figure 6.4 FORTRAN

ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

6.4.2 COBOL

COBOL is described as been completely opposite to FORTRAN in almost every aspect,

other than they are both high level languages and very popular.

COBOL is a multipurpose language that is [problem oriented], and is useful for

[commercial data processing]. It is very popular for business applications, especially ones

being used on larger computer systems.

COBOL was designed to be clear

and have good readability, which

reduced the look of being

mathematical that some other

FORTRAN
¥ROMAGE

programming languages have.

This gives the language a human

perspective. The COBOL

programming language itself has

similarities to natural language. Figure 6.5 COBOL is different to other languages

COBOL fragment:

'1
I
1

Version 2.0 (Tutor)

I

Ft.:nl!~}1tt!~t~~'!'.M·!ilJ¥.~· %:1,",*,_, 'III II

data diuision
01 UNIVERSITY FILE

02 STUDENT occurs 100 ti~es
03 STUDENT-NAME pic A(15)
03 COURSE occurs 30 ti~es

04 COURSE-NAME pic AAAA999
04 SCORE pic 99

Figure 6.6 COBOL fragment

81

I

ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

This is a small section of COBOL programming. The sample shows a university students

name, relevant course and the score attained.

6.4.3 BASIC

BASIC consists of hundreds of instructions all of which resemble a natural language. In

order for these instructions to work there is also a set of rules to follow, called syntax. All

instructions must have a line number:

10 CLS

20 PRINT "hello"

30 END

If a line is not numbered then the instruction will be carried out as soon as the program is

run, and it will not be in sequence.

The language was originally designed in [1963], to help teach the concepts of

programming. BASIC was classed as the [first easy to use] language.

Figure 6. 7 BASIC was designed in 1963

Early BASIC could sometimes look confusing as GOTO commands would be followed by a

line number, which meant the program would jump to the line number indicated.

Version 2.0 (Tutor) 82 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Fragment of Basic:

10 REM - PRIME NUMBERS LESS THAN 100

20 N=N+10

30 IF N=100 THEN GOTO 120

40

~

120 END

This fragment of code takes a value N and adds 10 to it. When N is equal to 100 the program

ends. The REM statement at line 10 indicates that the line is only a remark and not part of the

actual program.

The complexity changed as BASIC followed the improvements in the personal computer

revolution. Microsoft enhanced the languages capabilities and upgraded to QuickBasic,

which moved the language forward. The line numbers were eliminated and modem features

such as data types and subprograms were introduced.

6.4.4 Pascal

As the predecessors of pascal, FORTRAN and COBOL were [specialist languages]

specifically designed for certain uses of expertise. This meant there was a need for an all

round language hence the development of languages such as ALGOL60 and Pascal.

There are various rules that are associated with Pascal. These rules dictate the variables that

can be used whilst programming. Pascal's facilities allow the definition of data types, such

as only real numbers.

Version 2.0 (Tutor) 83 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Pascal has data types that are both program defined and user defined, usually placed at the

beginning of the program. Pascal is used in many different ways due to its versatility,

although it is one of the preferred high level languages that is taught at most levels of

programmmg.

Along with most other high level languages Pascal is unable to run directly on the machine

as the program is not written in binary. It is therefore necessary to have [compilers]. The

compiler turns the program into [binary] so that it can run. The Pascal language itself is

quite easy to follow as the instructions are based on natural language.

Fragment of Pascal:

IF score >=70 THEN

END

BEGIN

Write ('Successful');

IF SCORE >=80 THEN

BEGIN

Wr it e (' and')

IF Score >=90 THEN

Write ('distinguished')

ELSE

END

Write ('Very Good')

'f;'~S$fii
\:: &. ,,:-;

'v"ry :a;o...i

Figure 6.8 Graphical representation of the code

Version 2.0 (Tutor) 84 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

8 Workplan

No Suggested Activity Assessment

1 Work through sections 2 and 3: Complete student activities

The computer environment 1,2,3,4,5

The history of programming languages and end of section questions

2 and 3 Work through section 4: Complete student activities

Introduction to structured program design 6, 7

and end of section questions

4 and 5 Work through section 5: Complete student activities

The software development lifecycle 8,9, 10

and end of section questions

6 Review section 4 Complete end of section

Work through section 6: questions

Programming languages

7 Review section 5

Work through section 7:

Sample programs

Version 2.0 (Tutor) 97 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

9 Suggestions for assignment

Here are three programs littered with mistakes. Type them in as they are here: one program

per file and de-bug them. Use the error messages generated when you compile to correct the

mistakes. The mistakes can be trivial (wrong punctuation) up to more serious (missing

variable declarations) and beyond, to missing chunks of the program, giving wrong answers.

You should not assume that if the program runs after you have debugged it that it does

anything sensible or useful! Always look at the run window using AIt & F5. The aim is to

get the programs working!

The students should take the three sample programs and de-bug them. This can be done in

any language and is good initial practice in the use of a programn1ing language without the

demands of writing a program.

Version 2.0 (Tutor) 98 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

9.1 Suggestion for Pascal assignment

Program 1

program repeating(input,output)

var first no: interger;

beg inn

writeln('Hello, please give me a number .. ');

readln(first_no)

writeln{@and another number please');

readln (sec_no) ;

while first no > 5 do

begin

secno:=secno + 1

first no:=first no - 1

end;

writeln{'Thank you')

Version 2.0 (Tutor) 99 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Program 2

program if_prog{input, output);

canst weightingl = 0.6;

weighting2 = 0.4;

var result: real;

markl:integer;

behin

writeln{'Please enter assiognemnt mark');

readln{markl) ;

writeln{'Please enter exam mark');

readln{mark2) ;

result .- (markl * ??) + (mark2 * weighting2);

if result> 60 write{'well done')

else

write{'OK I suppose)

end.

Version 2.0 (Tutor) 100 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

Program 3

Students need to look carefully at this program and ask what its purpose is: this is an

advance on de-bugging only.

program more_if (input, output) ;

var something: interger;

begin

writeln('Some number please? Your number is given a rating');

readln(something) ;

if something < 5 then

write ('Low!')

else

if (something > 5) and (something < 10) then

write ('Better')

else

if something > 10 then

{endif}

{endif}

Version 2.0 (Tutor)

wr i t e (, 0 K')

101 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

{endif}

wri teln ('Why? ')

end.

9.2 Assignment 1: sample answer

Program 1

program repeating(input, output)

var first_no, secno: integer;

begin

writeln('Hello, please give me a number .. ');

readln(first_no) ;

writeln('and another number please');

readln (secno) ;

while first no > 5 do

begin

secno .- secno + 1;

first no .- first no - 1

end;

writeln('First no is', first_no);

writeln('Second no is', secno);

writeln('Thank you')

Version 2.0 (Tutor) 102 ACJ&JVR

Feedback Instruments Ltd Introduction to Programming Ideas

end.

Program 2

program if-prog(input, output);

const weightingl = 0.6;

weighting2 = 0.4;

var result: real;

markl, mark2: integer;

begin

writeln('Please enter assignment mark');

readln(markl) ;

writeln('Please enter exam mark');

readln(mark2) ;

result .- (markl * weightingl) + (mark2 * weighting2);

if result > 60 then

writeln('Well done')

else

writeln('You need to improve your mark');

end.

Version 2.0 (Tutor) 103 ACJ&JVR

Appendix I

i

#!/usr/bin/perl

$default = "CHECKED";
$filename= "knowd.datllj
#--
sub getareas
{

if (-r $filename)
{

}

open(FILE,$filename) j

while «FILE»
{

}

$line = $ j

chomp ($line) j

($areas[$num_acts]
$num_acts++;

close (FILE) j

[0] , $areas [$num_acts] [1]) =

'#--
print IIContent-type: text/html\n\n ll ;
print II<HTML><TITLE>Knowledge Database</TITLE></HEAD>\n";
print "<BODY background=\" .. /images/back.gif\">";
print "\n";

split /,

print "<SCRIPT> window.defaultStatus = \"Helpdesk Database - NEW ENTRY\"</SCRI
print "";
print" HelpDesk Database - NEW ENTRYc/B>\n";
print "<HR>";
print "<FORM ACTION=\" .. /cgi-bin/enterc.cgi\" METHOD=\"POST\">\n";
print " ";
print "Step l Click on the entry area:<P>\n";
i
'getareas () ;
for($loop = 0; Sloop < $num_acts; $loop++)
'{

print " <INPUT
if (($loop%5)

TYPE=\ "radio\" NAME = \ "ACTION\" VALUE = \ "$areas [Sloop] [1]
== 0)

{

}
print "
";

$default = "";
:}
print "cHR>";
print "cIMG SRC=\" .. /images/tick.gif\"> ";
print "Step 2 Type in the new query below :'
";
print "<INPUT NAME=\"QUERY\" SIZE=\"100\" MAXLENGTH=\"500\" VALUE=\"\">";
print "c/TEXTAREA>";

print "<HR>";
print "cIMG SRC=\" .. /images/tick.gif\"> ";
print "cB>Step 3c/B> Enter keywords to find this query (6 Maximum)\n ll ;
print "
<INPUT NAME=\"KEYS\" SIZE=\"50\" MAXLENGTH=\"50\" VALUE=\"\">\n";
print "</TEXTAREA> II ;

print "<HR>";
print " ";
print IIStep 4 Authorisation Password and Submit

print "cP>Enter Password " . ,
." . . ,

print <INPUT TYPE=\"password\" NAME=\"PASS\" SIZE=\"8\" MAXLENGTH=\"7\">"i
print <P> <INPUT TYPE=\"submit\" VALUE=\"SUBMIT\">\n"i
print or to start again click here "i
print <INPUT TYPE=\"reset\" VALUE=\"Clear Form\">"i
print </FORM>\n" i
print <HR><FORM>OR click here to : "i
print '<INPUT type=\"button\" value=\"Home Page\" name=\"button4\"onClick=\"wi
print" <INPUT type=\"button\" value=\"Query Database\" name=\"button5\"onClic
=\"window. location=, .. /cgi-bin/queryk.pl'\">\n"i
print "</FORM>\n"i
print "<P><I>(c) University of Humberside - Darren Bird</I>\n"i
print "</BODY></HTML>\n"i
exiti

Appendix J

For· Introduction to Programming - devised by Amanda Bird, programmed by
Darren Bird.

At

http://staff.dc.lincoln.ac. ukl-ambirdlpatterns

you will find a repository for your programming knowledge.

The idea is that you can pass on to all your colleagues (here and in Lincoln!) doing
the Intro to Programming unit any really good ideas you have developed while
programming. The ideas or patterns you add become a resource for everyone doing
the unit. The more everyone uses this to note their ideas, the better it will be!

There is a simple structure to the repository. Every idea or pattern has a name that you
give it. Please make the name explanatory e.g. The semi colon problem

You can enter your name if you wish but the default is Anonymous.

You can then check one of the boxes for a confidence level. If you think your idea is a
solid and tested solution to the problem, give it a high confidence rating. If you think
it could be improved (by you or someone else) give it the appropriate number of stars!

You then type in a very brief description of the problem and in the next text area, your
solution.

When you are happy with the idea, click on the Submit Pattern button.

I will get the facilities for searching the collection of patterns added in the next week
ortwo ...

Thank you.

Appendix K

i
.~ ! /usr /bin/perl
I

:ny $title = "New Patterns";
,ny $dbname = "/home/ambird/patterns/dbfile.txt";
ny $searchpage = "search.html";
I

~------------------- subroutines

~-------------- MAIN PROGRAM -------------------------

~cgipairs = split (/&/, $ENV{'QUERY_STRING'});
Eoreach $pair (@cgipairs)
{

($name,$value) = split (/=/,$pair) ;
$value ~ tr/+/ /; $value =~ s/\\//;
$value =~ s/% ([a-fA-fO-9J [a-fA-fO-9J) /pack("C", hex($l)) leg;
$value =~ s/~!/ ~!/g;
$value =~ s/\r//g;
$value =~ s/\n/\<BR\>/g;
$PARAM{$name} = $value;

~rint "Content-type: text/html\n\n";
print "<H2>$title</H2>";

Start HTML

~rint "<P>You have entered a new pattern\n";
brint "<P>Press the back button to return or\n";
print "search.<P>\n";

~name = $PARAM{'NAME'};
pconf = $PARAM{'CONF'}i
pauthor = $PARAM{'AUTHOR'};
pdesc = $PARAM{'DESC'};
ppattern = $PARAM{'PATTERN'};

getCGI keys

~f ($name eq ",,)

~
i

print "Warning
exit;

~f ($author eq "")

~

i

print "Warning
exit;

~f ($desc eq "")
(

print "Warning
exit;

If ($pattern eq "")
[

print "Warning
exit;

tf (-e $dbname)

No field entered for name\n";

No field entered for author\n";

No field entered for_description\n";

No field entered for pattern\n";

open(FILE,"»$dbname") or die "<P>Couldn't open $dbname\n";
print FILE "\n";

}
else
{

}

print FILE "NAME: $name\n";
print FILE "CONFIDENCE:$conf\n";
print FILE "AUTHOR: $author\n";
print FILE "DESCRIPTION:$desc\n";
print FILE "PATTERN:$pattern\n";

close (FILE) or die "cP>Can't close $dbname\n";

print "cP>File $dbname does not exist!\n";

print "cP> \n" ;

exit;

#!/usr/bin/perl

my $title = "New Search";
my $dbname = "/home/ambird/patterns/dbfile.txt";
my $count = 1;

#------------------- subroutines --------------------

#-------------- MAIN PROGRAM ------------------------

@cgipairs = split (/&/, $ENV{'QUERY_STRING'});
foreach $pair (@cgipairs)
{

($name,$value) = split (/=/,$pair) ;
$value =- tr/+/ /; $value =- s/\\//;
$value =- s/% ([a-fA-fO-9] [a-fA-fO-9]) /pack("C", hex($l)) leg;
$value =- s/-!/ -!/g;
$PARAM{$name} = $value;

}

print "Content-type: text/html\n\n"; # Start HTML
print "cH2>$titlec/H2>\n";
print "cP>You have search for: $search\n";

$search = $PARAM{'SEARCH'};

if ($search eq "")
{

print "cP>\n";
print "cB>WARNING
print "cP> \n" ;
exit;

No search pattern entered!c/B>\n";

}

if (-e $dbname)
{

open(FILE,"c$dbname") or die "cP>Couldn't open $dbname\n";

while (cFILE»
{

if (/ "NAME: /)
{

}
}

close (FILE) ;

$name = $;
$conf cFILE>;
$author = cFILE>;
$desc = cFILE>;
$pattern = cFILE>;
$allofit ="$name $~uthor $desc $pattern";
$allofit =- s/cBR>/ /g;

if ($allofit =--/$search/oi)
{

}

print "cP>cU>cB>Matching
print "c/U>c/B>cP>\n";
print "$namecBR>\n";
print "$confcBR>\n";
print "$authorcBR>\n";
print "$patterncBR>\n";
$count++;

entry $count. \n" ;

}
print "<P>\n";
print "End of Search \n" ;
print "<P>\n";

exit;

Appendix L

Department of Computing and Informatics
2:05 pm Apr 7. 2004

AP10088 Structured software development

Leaming outcome
present structured techniques in software
developmenl [40J

apply structured techniques in the
development of simple software [41}

. Criterion
Identification of the Waterfall model stages
used and presentation of 8 pseudocode
description of your solution [356]

Identification of the Waterfall model stages
used and presentation of a flowchart
description of your solution. {3591

appfy structured techniques in the
development of simple software [360]

AP100SS Structured software development ($REPORT _AUTHOR)

Fail
No Of incorrect identification of relevant
Waterfall model stages. No indentation or
use of Keywords. No solution or a sparse
solution thai is fundamentally incorrect. No
attempt made to identify appropriate data
values or their proper use.

No or incorrect identification of relevant
Waterfall model stages. The solution is
incoherently represented and lor uses
incorrect notation.

If any of the f~lowing holds a fail will apply.
The program fails to compile under the
corporate environment. No trace table is
presented. Source code is undocumented.

.3
Correct identification of relevant Waterlall
model stages. The solution captures the
basics but omits some points of
Significance. Most steps presented and in
the correct order. Some data values
correctiy identified and manipulated

2ii
Correct identification of relevant Waterlall
model stages. The sofution captures the
basics but omits a few points of
significance. Some data values identified
and manipulated correcUy. Minimal use of
decomposition as a structuring mechanism

2i
Correct identification of relevant Waterlall
model stages. A complete solution but
cx:casional errors in use and consistency of
pseudo code. Some use of decomposition.
Majority of data values identified and
manipulated correctly.

Correct identification of relevant WaterlaU
model stages. Only a single level of
description is presented. Correct notation
used. Only a rudimentary visual
organisation and choice of text attempted.

Correct identification of relevant Waterlall Correct identification of relevant Waterfall
model stages. Some mismatch between the model stages.The level of decomposition
level of decomposition used and the correctly matches the detail of the problem.
compleXity of the problem. Correct notation The correct notation has been applied.
used. Control constructs, in general, Control constructs correctly applied. Visual
correctly applied. Visual organisation is organisation is generally sound but open to
adequate. In some cases text used to improvement. In some cases text used to
express actions and decisions could be express actions and deciSions could be
improved. improved. '

Program compiles but executed code is All of the following must be present. The
incomplete. A basic trace table presented. program compiles without errors and is
A basic interface is presented. Source code error toleranl. Rudimentary trace tabfe is
layout and commenting is rudimentary. presented. The solution matches the
Some relationship between pseudo-code specification. An interface is used that
and implementation is evident. meets most user and results presentation

requirements. Source code layout and
commenting is acceptable. The program
generally matches the pseudo code design
decomposition.

All of the following must be present. The
program compiles without errors and is
error tolerant. Trace table is appropriate.
The solution matches the specification. An
interlace is used that meets user and
results presentation requirements. Source
code deploys best practice documentation
standards for easy understanding and
maintenance. The program matches the
pseudo code design decomposition.

"',

'-

UNIVERSITY 01'

LINCOLN

Correct identification 01 relevant Waterlall
model stages. A complete sotution that has
keywords and indentation correctly and
consistently applied. All steps are listed one
step per line and in the correct order. Good
use of decomposition. All pertinent data
values identified and manipulated correctly.

Correct identification of relevant Waterfall
model stages.The level of decomposition
correctly matches the detail of the problem.
The correct notation has been consistentiy
applied. A correct and consistent
application of appropriate control
constructs. The visual organisation of the
solution is excellent. The text used to
express actions and decisions Is
appropriate and succinct.

All of the following must be present. The
program compiies wrthout errors and is
error tolerant with graceful recovery. Trace
table is appropriate. The solution matches
the Specification fully. An interlace is used
that meets user and results presentation
requirements well. Source code deploys
best practice documentation standards for
easy understanding and maintenance. The
program matches the pseudo Code design
decomposition well.

Page 1

Department of Computing
3:36 pm Nov 19, 2002

AP1 0119 Introduction to Programming

Learning outcome Criterion
Describe the software life-cycle and apply Student develops appropriately structured
its principles in staffal practice and presented pseudo-code.

Design and write short programs that
compile and execute

Employ good programming practice in
code development

Present annotated program code in a
clear and structured fashion

Select appropriate constructs and
concrete datatypes for imptementing
algorithms

Devise, implement and document a
structured software test plan

Student describes role and nature of
pseudo-code placing it in context of
softw~e Iifecycle

Student's program compiles runs and
processes Input appropriately.

Student's code reflects accurately the
pseudo-code submitted.

Student's code contains meaningful
comments that explain key elements of
the algorithm.

Student uses appropriate datatypes for
required input and processing.

Student uses appropriate constructs for
the algorithm's requirements.

Student devises appropriate test data.

Student reports on the use and results of
test data

~9lntroduction to Programming ($REPORT_AUTHOR)

Ul'lVERSITY OF

LINCOLN

A1 A2. A3 Fail 3 '2ii 2i

2

3

Lt
.5

Pseudo-code lacks structure and Some attempt at structure. Some
coherence. Top-level statements are not top-level statements are decomposed.
decomposed. No evidence of stepwise Some evidence of refining to several
refinement. levels but levels partially conflated.

Student does not describe a coherent 0(Student partially describes a meaningful
meaningfullifecycle model. No sources 0(and recognisable software lifecycle
quotations. model. At least two sources listed and at

least one relevant quotation.

Top two levels have good structure. Decomposition of levels is good and
Decomposition at third level is weaker. shows clear understanding at top down
Some separation of levels but more detail method. Lowest levels are primitives.
needed at lower levels.

Decomposition of levels is dear.
appropriate and well laid out. No errors of
logk:. Lowest levels are primitives.

Student describes a meaningful and Student describes a meaningful and Student describes a meaningful and
recognisable software lifecycle model and recognisable software lifecycle model and recognisable software lifecycle model and
makes reference to other models. At least makes reference to other models. At least shows understanding of alternative
four sources listed and two relevant four sources listed and more than three models. At least five sources listed and
quotatk>ns. relevant quotations. more than four relevant quotations.

Student's program is not on disk or does
not compile.

Student's program compiles with Student's program compiles. Runs and Student's program compiles. Runs and Student's program compiles. Runs and

Studenfs pseudo-code bears no relation
to the code or is a minor rewriting of the
code with language specifk: features
included

warnings. Runs but the processing andfor the processing andfor results are largely the processing and/or results are fairly the processing and/or results are
results are partial or inaccurate. Poor accurate. Reasonable user interface. accurate. Good user interface. Program accurate. Excellent user interface.
user interface. terminates with user help. Program terminates cleanly.

Student's pseudo-code bears some
relation to the Code. Some language
specific features inclUded.

Code has obviously been based on the
pseu~. No language specific
features in the pseudo code.

Code reflects pseudo code very closely.
No lanQuage specifk: features in pseudo
code.

.
Code entirely reflects pseudo code. No
language specifIC features in pseudo
code.

There are no comments or comments are Comments are minor but do attempt to Comments attempt to explain critical
elements of the algorithm such as
branches or data validation.

Comments highlight some key atQl?rithm
elements and explain clearty critical
design decisions.

Comments highlight all key algorithm
elements and explain clearly critical
design decisions.

trivial and'or do not contribute to explain some algorithm elements.
understanding of the algorithm.

Datatypes are inappropriate or
inadequate for purpose.

Program is sequence only with no tests
branching or loops. No parameters.

Test data absent or completely
inappropriate.

Test results missing or meaningless.
Student does not report on the test.

One or two datatypes used but others
also required. .
Program contains some branching but Is
mainly sequence only. No parameters.

Test data included but lacks range. Test
only obvious cases.

Report is minimal and does not
demonstrate grasp of key issues.

Small range of datatypes used. largely
appropriately.

Program has branching and a loop used
appropriately. Parameters and global
variables used.

Reasonable range of test data included.
Test a wider number of cases.

Range of datatypes used appropriately.
Data structures also employed where
required.

Program has branching and types of loop
used appropriately. Parameters and local
variables used.

Reasonable range of test data included.
Test cases cover good range of possible
data.

Data types and data structures obviously
reflect considered design decisions. All
are appropriate .

Program has branching and types of loop
used appropriately. Highly modular use of
parameters and local variables.

Excellent range of test cases. Difficult or
obscure cases also covered.

Report demonstrates clear understanding Report demonstrates clear understanding Report demonstrates clear understanding
of the purpose of testing. of the purpose of testing. Student of the benefits and limitations of testing.

demonstrates understanding of what Student demonstrates understanding of
testing of code has achieved. what testing of code has achieved.

Page 1

Appendix M

The teaching of programming to novice programmers: three approaches

Appendix M Transcript of meeting with students in Lincoln 02/1212003

Introduction to Appendix M

This is a transcript typed by the author of a meeting with first year students taking the

Introduction to Programming unit as part of the Games Computing degree.

Present Amanda Bird (A), Suzanne Bowen (S), Suneithi Chand (Su) and Andy

Walters (An)

A And we're recording ... so thank you very much ... fire away.

S Well we mean we've got ours split into two now which makes it a bit easier, 'cos

we just ... have the unit Introduction to Programming and we have Data Types

Structures and Algorithms as well. So, the DTSA one is actually harder so the actual

Introduction to Programming has been ... is fairly easy really from what we've been

doing ... I mean I haven't really done any programming before ... erm - well, a long

time ago I did, I'm a mature student

A Are you? You don't look it!

Su That's what I said when I first saw her!

S Oh no I'm 30.

ANo

Su: That's what I thought

A If you had told me you were 19 I wouldn't have blinked.

S No I'm not.

A How do you stay so youthful? What is your secret? Share!

S I've no idea. All my family are the same!

A So basically you did a bit of programming in the past. What did you do?

S I did Pascal

A Yeah

S Using the same books that I'm using now [laughs] to try and teach myself again but

I've done a bit of Pascal, a bit of C ... I was ... obviously when I was younger, like

Basic and Visual Basic but we don't really use them now. The only thing with this

programming course is that we have to do Pascal and a lot of the people on the course

don't really ... you know, are wondering why we are doing a language that nobody

A J Bird 432

The teaching of programming to novice programmers: three approaches

Appendix 1\1 Transcript of meeting with students in Lincoln 02112/2003

uses any more to teach us to program. 'Cos I think it would be better to just to ... cos

we're doing C++ next year. .. to actually just. ..

A So are you on the Games route?

S Yes

Su Yes

S Yes we're both on the games industry one ...

A So you won't be doing Java.

S We'll be doing C++ after Christmas

S But to teach us how to program, we're learning Pascal. I don't see the point in it

A That's interesting. So you've got some experience of programming.

SA bit. ..

A Did you actually teach yourself or were you ...

S Just teach myself from a book ...

A Can you see any arguments for doing Pascal rather than say plunging straight into

C++?

Su It is easier to learn ... cos there are a lot of people who have never programmed

before. S Yeah, I think if you have never programmed before you might as well do

C++ still

S You might as wellleam the language that you're gonna be using rather than a

language that nobody ever uses and hasn't used for what, 10 years

A So the actual programming of Pascal, you've just started doing that, you've done

quite a lot of theoretical stuff first. ..

S Yeah we've only done two weeks of programming out of the twelve weeks

A How have you found that? Would you have preferred to leap straight in to

programming? Would you have preferred to sit down in front of a machine first?

S No I think it's been really interesting actually

Su Yeah

S I mean that side of it you know is quite difficult if you've never done anything like

that before which I mean even though I've like had a go at programming I've never

done any of this sort of background ... background work

A So what cos I don't teach on this unit now, I did last year, what have covered in the

last 9 weeks or so?

S You can speak [to Suneithi] You don't know do you? [laughs]

A J Bird 433

The teaching of programming to novice programmers: three approaches

AppendixM Transcript of meeting with students in Lincoln 02/1212003

Su Last thing we did was debugging

S Yeah, we've done all the waterfall method .. .like, we've done it all in order so

we've done like the first two parts of it and then we'd have lectures [muffled]

Su Top-down step-wise refinement

S Yes

A So what you're learning is a methodology rather than just pure programming

[Another student arrives, An]

A Yes, 1. .. the more the merrier! Grab a chair, please do join us.

S We're just saying what we've been doing in the lectures so far. .. We've

[muffled] .. .lectures ... [muffled] so far .. .lectures ..

Su Static typing

S That's datatypes ... oh sorry, yeah

A [Muffled] Variables, datatypes so that kind of thing ... so all of that is kind of

completely divorced from any language - it's all pure.

S Yeah ... and then we've done ...

Su So the language that we learn is just Pascal. ..

A Do a bit of sort of editing ... actually hands on Pascal. ..

S Only in the last couple of weeks, yeah

A So you're only going to get, like another, well this week and next week of

Pascal...then like January's blank and then you're onto your C++

S Yeah that's why ... we didn't really see the point in doing Pascal but...

A Could I ask how other people have found it? Can you give me some feel for the rest

of your group ... how they feel about this ... doing Pascal. ..

Su There's quite a lot...there's quite a lot of[muffled] ... programmers ... so they don't

do much

S I think most of 'em find it easy because they ha~e done programming before

A Have you come quite new to programming?

Su I did some Pascal at college but not it wasn't that much, so it's not that new but.. ..

S I did A Level French.

Su Ancient history.

A So now you're back in the games ... you're doing a games degree. How do you see

these and games going together?

A J Bird 434

The teaching of programming to novice programmers: three approaches

Appendix 1\1 Transcript of meeting with students in Lincoln 02/12/2003

An I've done a bit of programming before for about two years [muffled] Pascal, I can

see why we do it. .. [muffled] I think if"you don't [muffled]

A Yeah, that's usually been the argument we've advanced ... but I think as tin1e goes

on maybe the students that come in become more sophisticated in what they do know,

so maybe it is time to overhaul it. What I'm trying to ... I was saying to Suzanne and

Suneithi that what I'm trying to get at would be seeing what we could do to make

teaching programming to new programmers lTIOre effective. We've tried various

things in the past and none ofthen1 seem particularly useful like doing on-line help to

supplement the Pascal help or I mean the thing that I've directed people to which is

like a little box to fill in to solve problems and suggest solutions to problen1s for your

colleagues, I suspect if you've only done 2 weeks of Pascal that nobody would have

bothered with that, so that's another washout but there you go ... I really suppose, on a

basic level I'm just sort of throwing my hands up and saying we've tried lots of

things, I can't think of anything else, what do you guys think?

S I mean, I think ... I know a lot of people have thought it's been a bit slow, I think

basically because they know what they're doing [laughs] and they think its ... like the

first few lectures of DTSA were originally all one lecture, and then they thought it

was too difficult for people so they made it into one like ... yeah but programming,

programming's ... you know ... we've basically had sort of 1 lecture sort of per issue so

it's not been too bad but..

An [muffled -large portion of dialogue lost] try to get into the frame of mind ... most

of it's to do with theory

S Yeah but I think that's the point of it, yeah

An [muffled] ... rather than concentrating on particular language

A Yeah I suppose the argument we'd advance is the stuff you're gonna be coding later

is so complicated that there's no question of sitting there and going I'll do it like this,

you need a methodology, you need a set of stages to go through, a set of thinking

tools, like you say, that will pick that up but I don't know ... I'm still trying to get at,

is there, is there something I'm missing, 'cos I always come away from whenever I

have a go at this every year, there must be something really simple, that would just

make it click for people who haven't encountered this before, but I don't know. I'm

just.. Some years we've packed things in a lot quicker, some years we've done things

A J Bird 435

The teaching o/programming to novice programmers: three approaches

AppendixM Transcript of meeting with students in Lincoln 02112/2003

a lot slower, some years we've done lots of Pascal first, some years we haven't, I

don't know, so ...

S I don't think we should ...

Su I think that this unit for this first semester should be just theory

A Urn, no programming at all?

Su Yeah, just theory and then after semester B it should start programming then.

S Even though it's not that difficult but our assignment that is due in after Christmas

is to write a big long algorithm in Pascal that some people have only done for 2

weeks, [laughs] you know it's like, program this!

Su Where to start? Oh right. I'm finding I don't know where to start with that one.

S Whereas you know if they'd have started ... you know done the theory before

Christmas then started people off with C++ ... maybe, I don't know.

A I need to get hold of a copy of the assignment 'cos I've not seen it.

Su I've got a copy I think ... no I don't.

A What about the things that support the programming, like the Pascal help or lecture

notes or books ... what sort of things do you find most useful? Other people, friends,

what sources really solve problems?

S Well, we have a study group

A Is that informally constituted? Just something you put together?

S Yeah, something I organised round my flat, so - all the clueless people all come to

my flat once a week,

Su We get studying done eventually. [laughter]

S Yeah, we're trying to get the ratio right

A Socialising to ... Pizza versus Pascal

S Yeah. Pizza usually wins over Pascal, I must admit but ...

Su Pizza always wins. It does [laughter]

S Yeah, 'cos we have seminar questions and stuffthat we have to do, in fact some of

the seminar stuff we have to do is harder than the assignment! Yeah. We've had to

write, is it linked list. .. linked list deletion pseudo code and I find pseudo code harder

than actually doing it in Pascal.

A That's interesting.

S 'Cos I never know what to write

A J Bird 436

The teaching o/programming to novice programmers: three approaches

Appendix 1\1 Transcript of meeting with students in Lincoln 02/12/2003

Su Everyone says that there's no right or wrong answer for pseudo code but there

always is a right and wrong answer. No matter how you write it you have to write it

some other way. It really annoys me

S I hate it when tutors say there's no right or wrong answer because obviously there is

a wrong answer. Obviously, you can't put anything. There's no right or wrong

answer, but you should do it like this.

A That's interesting,

S They do like to say that. ..

A We try to lull you into a false sense of security and pounce upon your helpless

answers ...

S Every one of our tutors have said at some point, oh there's no right or wrong answer

for this assignment, but. ..

Su But ... there's always a but ...

S If you don't write it this way like we say you'll fail.

A So programming is not much of a problem but some of the things that go round it

like pseudo code that's harder to get your head round?

S Yeah, I think it is .. .it's probably not for most people.

An It probably depends on what kind of background you have. What kind of person

you are. 'Cos there's a lot of people who are doing this course who've got no

programming background ...

S I think the majority ...

An [muffled] ... people are struggling and I think it's the programmers who are going

to struggle with other parts ...

S Yeah, they're going to struggle next semester when we're doing mainly animation

and that.

A Do you feel there are people on your course, who are struggling with introduction

to programming stuff, the theoretical pseudo code-y stuff?

Su I know quite a few who struggle with pseudo ... but the theory stuffwe can ... we

can figure out.

An [muffled]

A It's the classic dilemma, isn't it?

An [muffled]

A J Bird 437

The teaching ofprogramming to novice programmers: three approaches

AppendixM Transcript of meeting with students in Lincoln 0211212003

A That's another very interesting point I think you've made. People in the most need

to address that problem, not getting to grips with it are the people most likely to think

that's it, I'm out of here, they don't tum up.

S I've heard quite a few people saying, and I think it's the wrong approach but they'll

go, I don't get it, I'll just sit the resit.

Su I know

S As if they're going to get it but they'll say oh I don't get it and I'll fail it ...

A Really?

S I'll fail it this time

A Such a high-risk thing strategy! Do they not realise that if they do that often

enough they're going to fail the year? Do they not realise ... you know that's like

walking on a tightrope with a river full of crocodiles below ... one false move and ...

Su No assignment support over summer as well so ...

A No, well, lecturers have to take holiday some time, quite frankly when you all

bogged offin the July, we do too I mean we're back for boards and that sort of thing

you know ... Ifwe take two weeks off and it just happens to coincide with the two

weeks you need us, it's difficult

S But I think if you don't get it now you're not gonna get it when you do the resit.

A No I'm interested in that attitude, I've come across that but I didn't realise it was as

overt as that - people actually say say, bugger it, I'll do it in the summer 'cos how do

you know what's going to happen to you between now and the summer - what if one

of your family is really ill or the next units are equally as hard or something.: .there's

always something, isn't there?

S A lot of people have sort of cottoned on to the fact that your first year doesn't really

count towards your grades so a lot of people don't tum up, they think, oh well I'll

struggle, get a 3rd in my first year and then I'll like ~o some work next year.

A If you're still here next year!

Su That's actually demotivated me though since you told me that it doesn't really

matter what we get, it's just demotivated me and I ... I was working really hard before

A That's OK to say I'm not going to knock myself out to the nth degree 'cos all I've

got to do is get a reasonable mark, just pass everything but to kind of just say well I'm

not gonna do anything ...

Su [muffled] .. .in the first place, really irritating

A J Bird 438

The teaching of programming to novice programmers: three approaches

Appendix 1\1 Transcript of meeting with students in Lincoln 02112/2003

S I think your pride gets in the way ofyou~ ... well, in my case it does, I still want to,

I haven't missed one single lecture or sen1inar ... I haven't been late for any of 'em.

A Yes I think that's a very relevant view ... it's like booking theatre tickets then you

don't bother going - you're paying for them so it's cold hard cash, isn't it?

S You need to get your money's worth.

Su Yeah

A I like that, I n1ight tell that to my third years as they don't tum up either. I've got

100 in the 3rd year at George Street in Hull, in this morning's lecture there were about

30, so that was 70 at home listening to Viking radio eating toast in bed, great! So,

what's coming across to me is that, this group of people, and the rest of your group

who aren't here are extren1ely motivated and you've kind of taken a step back frOlTI

the process and said, well you know this is how it is working for us. Do you think you

are kind of, you are a self-selected group, and that if I collared some of the bog

standard 19 year olds, would I get a very different picture of how they see things?

S Probably would, but bog standard 19 year olds wouldn't have even bothered filling

in your questionnaire.

A No they haven't, I've had a poor response ..

S [muffled]

Su Most people when they come to uni don't realise that they've gotta do some work!

They should realise it. They think they can do naff all

S Anything extra curricular like this they wouldn't even bother so ... but

An ... stereotypical student [muffled]

Su Lots of people just waiting to be told what to do.

A Interesting

S I mean we've got a typical mature student outlook, I'm paying for it so I'm coming.

Su where do I fit in? [laughs]

Su I'm here because I want to be here not because my mum and dad sent me.

A You are going to uni whether you like it or not!

S Basically because we've had jobs before as well you know it's not that ghard to get

out of bed in the morning. It's like ooh 9 0 clock lecture, that's so early'. I mean I

used to get up at 6 and go towork all day and I work now I work nights and come here

and don't miss any lectures.

A Is that true for you as well? You've worked previously, presumably?

A J Bird 439

The teaching of programming to novice programmers: three approaches

AppendixM

An Yes.

Transcript of meeting with students in Lincoln 02/12/2003

A So what made you decide to come back into higher education?

An Personal circumstances. I'd never been to university, didn't really know what to

do ... Wish this course had been running 20 years ago. This is the course I enquired

about...

S Cos there's only 2 universities in the country that do games computing, the other

one's down London.

Su There's Bradford

S And Scotland ...

A We've been going quite a while now. 4 coming up to 5 years on it now, so we were

the first, the absolute first. We've had 2 cohorts go through.

S Two lots?

Various [muffled]

S And have they done well 'cos there seems to be a large drop out rate ... about a third?

A Yes, I think that's partly because of the people it attracts. We get a lot of people

who think, oh yes, games computing - what I'm gonna do is, I'm going to play games

for 3 years and they're going to give me a degree.

S That's what some people actually do on our course

AWell they did when they were based in Hull, we had a games room in Hull, one of

the top floor labs and basically, sort of from first thing in the morning till last thing at

night and all through the summer, they were just like Doom-ing

Su That just echoes, that just echoes what happens in the game lab here

A I mean people play games a lot, not because they are analysing the game, they're

just playing it and I think, the things that you talked about like not coming to lectures

and not engaging with the subject, that's why the people drop out.

S I must admit I was surprised we don't have more !ectures. I know it sounds [?] but I

can't work out why we don't have more lectures and seminars.

Su We only have nine ...

S We only have 1 hour for each unit - I expected to come to uni and like work all day,

ANo ...

S I'd prefer more, I'd prefer more ... well at least, more seminars to go along with the

lectures

A J Bird 440

The teaching of programming to novice programmers: three approaches

Appendix M Transcript of meeting with students in Lincoln 02112/2003

A It's a fairly standard model, 1 hour lectu!e, 1 hour seminar per unit for your

subjects and what we usually say is that kind of you double that by your own self

study so I don't know, if you do 10 hours, you should do at least another 10 hours and

another 5 on top of that, and it rises sharply when your assignments are due in, and in

your final year, when you are doing dissertation then it is almost a full time job really.

Su Third year is going to be hard I think ...

S Well I try and do it as if I'm doing a full time job, you know sort of get up, do

lectures and work until five even when I haven't got them and then go to work!

A Do the evening shift! Well, when do you sleep, if that's not an impertinent

question?

S Well, I only work. .. I only work every other day. So like last night I finished work at

1 0 clock, then I couldn't get to sleep when I got home, so it was about 3 0 clock and

then we had our modelling lecture at 9 this morning

A So you're feeling really sharp this morning!

S I've had lots of coffee today!

A Speaking of which, shall I get a round of drinks in?

Su Sure.

S Sure

A [Arranges drinks orders]

Five minute break for fetching of coffees

A So, one of the things, one of the things that started us offwas I was saying about

resources that support your programming learning, things like books and you were

talking about your study group that you've got sort of going - what about books and

on line resources and stuff like that, how much do you use of that?

SErm ...

Su we do have a few Web links, Terry put some links up, tutorials on Pascal.

S One of the PhD guys that's tutoring us lent me a book so ...

A Do you prefer to look on the internet for stuff, or are books OK? Is the library

much ... ?

S I prefer to look up stuff on the internet, but I can't understand stuff if I'm reading it

off a screen. I print it out. I'm one of those weird people. Are you the same

A J Bird 441

The teaching ofprogramming to novice programmers: three approaches

AppendixM Transcript of meeting with students in Lincoln 02/12/2003

An Agrees

S I can't take it in until...

A [muffled]

S - so much for a paperless society!

A Ah it'll never happen ...

S I print out all my lecture notes and I carry them round with me and then people ...

A Back strain!

S I know

SuHumanSLE

S I am, yes. I have the entire SLE in my folder [laughs]

S But yeah, we ... I'm learning from that Illustrating Pascal and I've got a Illustrating

C for next year by the same author

Su It's quite old isn't it? [muffled]

S Not sure ifI've got it in my bag or not -

A It's called Illustrating Pascal?

S Illustrating Pascal. It's quite old, about 1990

A Well it doesn't have to be up to date [muffled] last twenty years or so ...

S And there's an Illustrating C and [muffled] the book and basically it's just double

pages on one subject, so one subject is just a page and that's it

A So short and to the point?

S Drawn, things drawn in pictures just to show you. I got it off Amazon but they've

got Illustrating Pascal on Amazon as well it's only about a tenner ...

A That's quite cheap, isn't it?

S Only get books ... I only get text books if they're like under 20 pounds ...

A I think that's fair .. .

S Cos like I put all the suggested reading books in t~e basket to see how much they

cost - suggested reading for this semester and next semester and it was like 200, 300

pound - A A Not going to happen is it?

Su [muffled]

S Yeah, got the UML one though cos it was 9.99!

Su SAMS, SAMS Teach YourselfUML
,

SIn 24 hours .. .I'mjust waiting for a free 24 hours to actually read the book

[laughter] Just to prove it, cos it's proven, it's 24 hours

A J Bird 442

The teaching of programming to novice programmers: three approaches

Appendix 1\1 Transcript of meeting with students in Lincoln 02112/2003

An You can read it in 24 hours but you wo~'t understand it in 24 hours.

A That takes 24 weeks. So, what I'm getting correct me if I'm wrong, is a picture that

the student body is 2 separate cohorts - there's people like you who are really

engaged with it and are quite reflective on the process. They can kind of take a step

back and think 'I do it like this because ... ' and then there's like everyone else,

bimbling around, going I'll do it in summer. Is there much communication between

those 2 groups? - do they go oh wow you're really swotty or are they like - got the

answers?

SUm ... I don't think so, even though I'm like, even though I do all my stuff I still

struggle but I just try, try hard, try harder but, urn, there's not that much

communication, I can't say, I can only say I know about 10 people ...

An [muffled]

Su Plagiarism

S Yeah

An [muffled]

A Well the thing is, it's ...

An [muffled]

A Well the thing is I agree, it's a very grey area in programming, isn't it because no

programmer ever works in complete isolation but you're doing an assignment and

someone looks at your code and thinks that's very good I'll have that.. we've had

cases where people have literally nicked it off the printer and submitted it as their

own, write out the name at the top and it's very difficult, sometin1es when someone

says well actually I wrote it you know and what do we do

S You have to penalise both sides, don't you?

A It's been really difficult, there's been a couple of cases where we had to decide,

who's ripping offwho? So I think it's a fair point.

S I know what you mean because I mean like we have our study group and stuff like

that. .. you talk to loads of people about your assignments. When you sit down to

actually write it, you can't remember which thoughts were your own.

Su Yeah

A Actually, I don't think ...

S It's sort of like subconscious plagiarism. You write something and you think did I

write that because I cannot remember if somebody told me that or what so you end up

A J Bird 443

The teaching o/programming to novice programmers: three approaches

Appendix M Transcript of meeting with students in Lincoln 02/12/2003

like trying to change it but really I mean you are gonna get some, you are going to

have to use some things ..

A There's always some overlap because there are only so many ways you can do

something. There is always gonna be a kind of similarity.

S .. variables .. thy're always gonna have similar anmes because people are gonna think

oh count OK yeah call that count, call that, that but I think there's probably less of

motivated people on course than motivated people

A Do you know how many .. I'm trying to get a feel for the size ofthe cohort . .is it

about 150 people on the first year?

S 151

Su You know the exact figure?

S Well, Kevin keeps saying 'I've got 151 of these to mark! Yeah 151 five girls ...

A Really?

S Five girls, 140 spotty teenagers

A 145 that leaves 6 unaccounted for ... how many mature students are there?

S I'm the second oldest

Su There's you two, there's Steve and [?] isn't there?

S There's, there's ...

Su About four. ..

S I mean mature students, if you're over 21 I don't really call them mature students

A Call somebody mature if they have worked for a few years and then come back into

education

S There's only a handful of people that are in their late twenties and then there's me

that's 30 and Andy over that's ancient! You're old!

A So, what do you all want to do when you graduate?

S I thought when you grow up I thought you were &onna say then!

Su when you grow up she's immature ... [laughs]

A [muffled] So when you graduate where do you see yourselves going after this

course? What do you fancy doing?

S Even though ... I actually want to program, even though, even though we always get

told that's like the lowest of the low of games computing but I actually want to. Most

people are here for the animation

Su I am [muffled]

A J Bird 444

The teaching of programming to novice programmers: three approaches

Appendix M Transcript of meeting with students in Lincoln 02/12/2003

S ... which surprised n1e, the people who are actually here for animation, why didn't

they do, apply for the games design?

A Higher points count

Su and the portfolio. I haven't got the patience to do a portfolio, I really don't, which

is why I'm not doing an art degree ... I have no patience

A A fair analysis really which is if you want the more media side of things you

usually are required to have some sort of track record in doing this whereas I suppose

you're degree will take zero start point. ..

Su I think it's good though the way it ... cos when you do get into the industry, it will

help you

S It does make it more interesting. I mean the stuff that we've done so far's been

really interesting except for communication skills

Su [muffled]

S ... necessary evil, I suppose but. ..

An [muffled]

A So you're quite experienced progran1mer?

An [muffled]

A That's really what's drawn you in?

Su [muffled]

An [muffled]

S There is an interesting mix.

Su Most people think ... I only know a handful of people who want to do design

S People think, people do think it's an easy degree and it's not.

Su Mickey Mouse degree

S Yeah, Mickey Mouse degree. A lot of 'em call it Mickey Mouse degree, yeah

A Well I think when you hit dome of the 2d & 3d animation, some of the heavy duty

programming ... I can see why for the outsider although I don't think I agree when it

comes to some of the topics, stuff that you're gonna do ...

S No ... I've downloaded the maths for next semester

A [muffled] .. skinning and splining and ..

Su Modelling ... yeah

A To do it well I think is quite demanding, I meari 'anyone can faff about a bit. ..

A J Bird 445

The teaching ofprogramming to novice programmers: three approaches

Appendix M Transcript of meeting with students in Lincoln 02112/2003

S But I mean they do literally let anybody onto this course though so that is a major

problem

A Well it is, we had wastage, we've always traditionally taken in the computing

department, sort of taken people with low A level points, everybody gets a chance,

everyone gets an equal playing field and if they won't take the chance, fair enough

they are out in year one or year two and that's entirely their choice. You can't make

someone go for it you can't say this is the best opportunity you'll ever have in your

life, they go Yeah OK, whatever ... you know

S Yeah, there's a lot of people like that.

A OK, so some of the ideas I'm getting from are very useful. I don't suppose

anybody has looked at the URL that I've set up where you've got ... ?

Su No, not yet.

A I think I might e-mail and ask people to look at in, might put a couple of samples up

next week. .. see that's week 12 and then it's Christmas. When's your assignment due

in?

Su Which one? For programming?

A For programming

Su 13th Jan

A I'll put some stuff in this week and emaiL ..

S We'll have to do it before Christmas

A So it's got to be done really, hasn't it? Urn, OK.

END OF TAPE

Appendix M: Conclusion

This meeting was meant to one of a series but due to difficulties in finding student

volunteers, this proved to be the only meeting that took place.

A J Bird 446

Appendix N

End of unit - Introduction to Programming.

Please write as much as you can in answer to the two questions below. Thank you!

What has been the hardest/most difficult aspect of learning to program?

What resource (book, friends, web page ...) or strategy has been the most useful in

learning to program?

September 2003 - Introduction to Programming questionnaire

Please note: completing this questionnaire is voluntary but the information you supply will help
support this unit's development! Thank you for your time.

Please return your questionnaire to the tutor.

Name: (leave blank if you wish)
Course:
Age in years:

1. What qualifications do you have at post 16? (A levels, BTEC, NVQ, others)

2. What programming experience do you have? (If none, please go to question 4)

3. If you have programming experience, please describe briefly some of the work/programs you
have done: (Then please go to question 5)

4. If you do not have programming experience, please outline some of the issues around learning
programming that you think might concern you.

5. What do you think the Introduction to Programming unit should teach new programmers?

Please continue any answers over the page if you wish 1 of 1

.~

Questionnaire

Student Profile

Please fill in the following details:

Gender:

Age (at I sl Sept lOnO) Years Months

GCSEs ohtained. (Please include grades)

A levels/further qualifications. (Please include any HND/Btec qualifications)

What programming experience have you had? Please note the languages you have used, if any!

Questio////aire

Please circle one number beside each statement. (I is strongly disagree and 5 is strongly agree,)

lsagree ~ A .gree

Learning is easier in small groups 1 2 3 4 5

I find it difficult to grasp a new topic when I cannot relate to it 1 2 3 4 5

Correct lecture notes should be given for reference 1 2 3 4 5
Learning is a process of being told what to do and then going 1 2 3 4 5
away to practise it.
I find working in groups difficult because people learn differently 1 2 3 4 5
Learning from a booklet of printed lecture notes is difficult 1 2 3 4 5
Practical work helps the learning process 1 2 3 4 5
Lectures are not that easy to follow all the time 1 2 3 4 5
Learning is easy when you have enthusiastic lecturers 1 2 3 4 5
Lectures provide the necessary framework to understanding 1 2
topics

3 4 5
[like to learn in my own time away from the university 1 2 3 4 5
There is some useful material to learn from on the Internet 1 2 3 4 5
[n order to learn the student must work as well 1 2 3 4 5
[find it easier to learn and absorb information in silence 1 2 3 4 5
Computer-based learning can be tedious 1 2 3 4 5
Seminars are sometimes a waste of time as you come out feeling 1 2
no different

3 4 5
Learning is easier in lectures as information needed is just handed 1 2 3 4 5
to you
Assignlllents that are long don't help you [earn a topic any more 1 2 3 4 5
easily

One of the best ways to learn is to discuss the problems with 1 2
friends

3 4 5
You should learn by using the library 1 2 3 4 5
Learning should be backed up with more face to face work with 1 2 3 4 5
tutors

Learning takes concentration 1 2 3 4 5 .'

Learning takes a lot of hard work and can't be done solely from 1 2 3 4 5
lectures -
Learning is more effective through practical examples 1 2 3 4 5
[t is important to attend both lectures and seminars to fully 1 2
understand things

3 4 5
C;roup work is a more active and interesting way of learning 1 2 3 4 5
[t is easier to remember facts if you actually write about them as 1 2
well as read them

3 4 5

2

Programming - feedback questionnnaire A J Bird

You do not have to give your name but all named questionnaires will be placed in a
draw to win a £5 HMV voucher.

I) What programming language have you studied this semester?

2) What other programming languages have you previously studied?

3) Do you program on your home computer?

If so in what language(s)?

4) What aspects of the language you have studied this semester have you found
.. hardest?

... easiest?

5) What suggestions would you make to improve the teaching of the language you have
studied this semester?

1

Programming - feedback questionnnaire A J Bird

6) What suggestions would you make for the teaching of introductory programming?

7) Please place the following resources in order of importance to you in learning
programming.
(If you felt help from other students was the most important place a 1 beside it and so
on. Any resources you did not use, leave the box blank)

DThe language's help system D Individual programming practice

D Books from the library D Sample programs

o Books bought (new or 2nd hand) o On-line help set up by the University

D Internet sources DMagazines

o Myton House help desk o Students on the same course

D Friends/colleagues not at the University

D Lecture notes D Lab worksheets

D Computer Aided Learning material

Please add any other comments below:

THANK YOU

2

CBT Questionnaire A J Childs

Questionnaire on CBT. You do not have to give your name.

1) Please outline your educational background (eg A levels taken - you do not have to specify
grades)

2) How do you prefer to learn a new topic or subject? Lectures, tutorials, private reading,
discussion with friends. through assignments, seminar or lab work, through CBT? Try to
describe how you tackle a completely new subject.

3) How do you feel about the CBT you have done up to now? If you could identify clear
advantages and/or disadvantages, what would they be?

CBT Questionnaire A J Childs

4) How do you see CBT fitting into the learning environment for your course/subject? Should
there be more or less CBT? Is CBT better than any other method?

5) What could be added to CBT to improve its effectiveness? Any ideas welcome!

2

CBT Questionnaire A J Childs

6) Should CBT replace the bulk of mass lectures? Does CBT neced even scheduled classes?

3

CBT QUESTIONNAIRE

STUDENT NAME:

AGE:

COURSE & YEAR:

SEMINAR TUTOR:

DATE & TIME:

TITLE OF PACKAGE USED:

SECTIONS COVERED:

Did you enjoy using the package? Yes/No

Is the package you used, of a) Too high a level
(tick as appropriate) b) About the right level

c) Too Iowa level

Could the package you used, replace the Yes/No
lecture needed to cover this material?

,

For how long at one time could 20 mins or less 30 mins
you use this CBT package? 40 mins 1 hr
(tick as appropriate) 1 hr 20 mins 1 hr 30 mins or more.

How would you rate the overall Very Good
presentation of the package? Good
(tick as appropriate) -Average

Poor

Does the use of graphics, animation and video,
Help keep your attention Yes/No

- Help reinforce the material Yes/No

How would you rate the quality of
graphics in this package?
(tick as appropriate)

How would you rate the quality of
animation in this package?
(tick as appropriate)

Do you think the addition of video
is a valuable addition?

Are there any features in particular
you would like to see added to CBT
software? If so, please indicate alongside.

Would you prefer to see problems
to solve in the package?

Why are you using the CBT system?
(tick as appropriate)

Any other comments?

Very Good
Average

Very Good
Average

YeslNo

YeslNo

Good
Poor

Good
Poor

a)
b)
c)

To reinforce lectures
Instead of lectures
Own interest

d) You have been told to.

Thankyou.

The teaching of programming to novice programmers: three approaches

Bibliography

ACM Transactions on Computer-Human Interaction Sept 1994 Volume 1 Number 3

Acton H B (ed.) (1972) John Stuart Mill Utilitarianism Liberty Representative
Government, London: Dent

Adams W (1973) The Use of APL in Teaching Programming in Turski (ed.) (1973)
Programming Teaching Techniques

Ainley J and Goldstein R (1988) Making Logo work: A guide for teachers, Oxford:
Blackwell

Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiksdahl-King I and Angel S
(1977) A Pattern Language Towns Buildings Construction, New York: Oxford
University Press

Alexander C (1979) The Timeless Way of Building, New York: Oxford University
Press

Alexander S and Bond D (2001) Learners still learn from experience when online in
Stephenson (ed.) (2001) Teaching and Learning Online Pedagogies for New
Technologies

Allen P, Booth S, Crompton P and Timms D (1996) Added value: quality rather than
quantity in Active Learning Number 4 July 1996

Alspaugh C (1972) Identification of Some Components of Computer Programming
Aptitude, Journal of Research in Mathematics Education Volume 3 No 2 Found at
http://www .nctm.org/jrme/ abstracts/volume 03/vo103-02-mar 1972.html 24/08/2000

ALT-C (1997) Virtual campus, real learning Conference programme and abstracts,
Oxford: ALT

ALT-N Association for Learning Technology Newsletter No 18 July 1997

ALT-N Association for Learning Technology Newsletter No 20 January 1998

ALT-N Association for Learning Technology Newsletter No 21 April 1998
.

ALT-N Association for Learning Technology Newsletter No 22 July 1998

ALT -N Association for Learning Technology Newsletter No 23 October 1998

Alvey Committee (1982) A programme for advanced information technology: the
report of the Alvey Committee, London: HMSO

Ambler S (2000) The extreme programming software process explained Computing
Canada, Willowdale, March 2000, Volume 26 Issue 5

A J Bird 458

The teaching of programming to novice programmers: three approaches

Bibliography

Andrews J, Garrison D R and Magnusson K (1996) The Teaching and Learning
Transaction in Higher Education: a study of excellent professors and their students,
Teaching in Higher Education Vol. 1, No 1 1996

Anderson F H (ed.) (1960) The New Organon and Related Writings, New York:
Liberal Arts Press

Anderson J (1988) The Expert Module in Polson and Richardson (1988) Foundations
of Intelligent Tutoring Systems

Angrist J and Lavy V (2002) New Evidence on classroom computers and pupil
learning, The Economic Journal 112 (October) pp 735 - 765, Oxford: Blackwell
Publishers

Annett J (1970) Computers in education I: The Black, fVhite and Blue Papers in
Journal of Educational Technology, Vol. 1 No.1 Jan. 1970 London: NCET

Annett J (1976) Computer Assisted Learning 1969 - 1975, London: SSRC (Social
Science Research Council)

Annett J and Duke J (eds) (1970) Proceedings ofa Seminar on Computer Based
Learning Systems, Bodington Hall Leeds 8 - 12 September 1969, London: NCET

Appel M H and Goldberg L S (eds) (1977) Topics in Cognitive Development Volume
1 Equilibration: Theory, Research and Application, New York: Plenum Press

Appleton B (2000) Patterns and Software: Essential Concepts and Terminology
found at http://www.cn1crossroads.comibradapp/docs/patterns-intro.htmI09/03/2003

Arblaster A (1982) Human Factors in the design and use of computing languages in
International Journal of Man-Machine Studies (1982) 17, pp 211-224

Arblaster A (1983) The evaluation oj a programming support environment in Green et
al (eds) (1983) The Psychology of Computer Use

Armour P (2000) The five orders of ignorance Association for Computing Machinery
Communication of the ACM New York: October 2000 Volume 43 Issue 10 pp17-20

Arzarello F, Chiappini G, Lemut E, Malara Nand Pellerey M (1993) Learning to
Program as a Cognitive Apprenticeship Through Conflicts in Lemut et al (eds) (1993)
Cognitive Models And Intelligent Environments for Learning Programming

Atkins M (1998) An evaluation of the COlnputers in Teaching Initiative and the
Teaching and Learning Technology Support Network, HEFCE

Atkinson C (1983) Making Sense of Pia get The Philosophical Roots, London:
Routledge Kegan Paul

A J Bird 459

The teaching ofprogramming to novice programmers: three approaches

Bibliography

Atkinson R C and Wilson H A (eds) (1969) Computer Assisted Instruction A book of
readings, New York: Academic Press

Atkinson R L, Atkinson R C and Hilgard E R (1983 8th Edition) Introduction to
psychology, New York: Harcourt Brace Jovanovich

Attikiouzel J (1990) Pascal for Electronic Engineers, London: Chapman and Hall

Aune B (1970) Rationalism, Empiricism and Pragmatism An Introduction, New York:
Random House

Austen E and Enns J (2000) Change Detection: Paying Attention to Detail PSYCHE,
6(11), October 2000 found at http://psyche.cs.monash.edu.au/v6/psyche-6-11-
austen.htmI22/02/2001

Ausubel D, Novak J and Hanesian H (1978) Educational Psychology A Cognitive
View Second Edition, New York: Holt Rinehart and Winston

Ayer A J (1990 edition) Language Truth and Logic, London: Penguin Books

Ayscough P B (1979) Preparation for laboratory exercises in Learning through
computers An introduction to Computer Assisted Learning in Engineering,
Mathematics and the Sciences at tertiary level

Bacon R (1996) The effective use of computers in the teaching of physics in Active
Learning, Number 4 July 1996

Baecker R M and Marcus A (1990) Human Factors and Typography for More
Readable Programs, Reading, Massachusetts: Addison-Wesley

Baecker R M and Marcus A (1998) Printing and Publishing C Programs in Stasko et
al. (eds) (1998) Software Visualization

Baecker R M (1998) Sorting out Sorting: A case study of Software Visualization for
Teaching Computer Science in Stasko et al. (eds) (1998) Software Visualization

Baecker R M and Price B (1998) The Early History of Software Visualization in
Stasko et al. (eds) (1998) Software Visualization .

Bajpai A C and Leedham J F (eds) (1970) Asp_ects of Educational Technology IV,
London: Pitman

Balz G A (1967) Descartes and the modem mind, Hamden: Archon Books

Barker J and Tucker R N (eds) (1990) The Interactive Learning Revolution
Multimedia in Education and Training, New York: Kogan Page

Barker P (1989) (ed.) Multi-media Computer Assisted Learning, London: Kogan Page

A J Bird 460

The teaching of programming to novice programmers: three approaches

Bibliography

Barker P (1989) Multi-media CAL in Barker (1989) (ed.) Multi-media Computer
Assisted Learning

Barker P and Yeates H (1985) Introducing COlnputer Assisted Learning, Englewood
Cliffs: Prentice Hall

Barr A, Beard M, Atkinson R (1976) The computer as a tutorial laboratory: the
Stanford RIP Project in Intenlational Journal of Man Machine Studies Volume 8 pp
567 - 596

Bartlett F C (1932) Remembering: A study in experimental and social psychology,
Cambridge: Cambridge University Press

Bazik J, Tamassia R, Reiss S and Van Dan A (1998) Software Visualization in
Teaching at Brown University in Stasko et al (eds) (1998) Software Visualization

Beauchamp T L (ed.) (1999) Hume An Enquiry into Human Understanding, Oxford:
Oxford University Press

Beaumont G (1989) Preliminary Turbo Pascal, London: Kogan Page

Becker H J (1994) Analysis and Trends of School Use of New Information
Technologies, U.S. Congress Office of Technology Assessment Found at
http://www.gse.uci.eduiEdTechUse/c-tb1cnt.htm12/03/2002

Beer G (1996) Open Fields: Science in Cultural Encounter, Oxford: Clarendon Press

Beetham H (ed.) (1997) IT & Dearing: The Inlplications for HE Colloquium
Proceedings, CTISS

Bell D, Morrey I and Pugh J (1997) The Essence of Program Design, Harlow:
Prentice Hall

Bell J (1999) Doing your research project A guide for first-time researchers in
education and social science, Buckingham: OU Press

Bern Sand Looren de Jong H (1997) Theoretical issues in psychology, London:
SAGE

Bern Sand Looren de Jong H (1997) Theoretical issues in psychology, London:
SAGE

Benford S, Burke E and Foxley E (1993) Obtaining and using the Ceilidh system for
teaching programming in CAL into the mainstream CAL 93 Conference handbook

Bernard H R (1994) Research Methods in Anthropology Qualitative and Quantitative
Approaches, Thousand Oaks, California: SAGE Publications

A J Bird 461

The teaching ofprogramming to novice programmers: three approaches

Bibliography

Berryman J, Hargreaves D, Hollin and Howells K (1987) Psychology and You,
London: British Psychological Society/Routledge

Beswick N (1987) Re-thinking Active Learning 8 - 16, London: Flamer Press

Beynon J and Mackay H (1993) Computers into classrooms More Questions than
Answers, London: Falmer Press

Biermann A W (1997) Great Ideas in Computer Science A Gentle Introduction,
Cambridge, Massachusetts: MIT Press

Biggs M (2000) Pair programming: Development times two Infoworld, Framingham,
July 2000 Volume 22 Issue 30

Bird G (1972) Philosophical Tasks, London: Hutchinson University Library

Bishop J (1993) Turbo Pascal Precisely, Wokingham, England: Addison-Wesley

Blackwell A (1996) Metaphor or Analogy: How Should We See Programming
Abstractions? in Vanneste, Bertels, De Decker and Jaques (eds) Proceedings of the
8th Annual Workshop of the Psychology of Programming Interest Group, pp 105-113.

Blackwell A and Bilotta E (eds) (2000) 12th Workshop of the Psychology of
Programming Interest Group, Cozenza, Italy, April 2000

Blackwell A and Green R G (2000) A Cognitive Dimensions Questionnaire Optimised
for Users in Blackwell and Bilotta (eds) (2000) 12th Workshop of the Psychology of
Programming Interest Group

Blum B (1996) Beyond Programming to a New Era of Design, New York: Oxford
University Press

Bonar J and Soloway E (1989) Pre-programming Knowledge: A Major Source of
Misconceptions in Novice Programmers in Soloway and Spohrer (eds) (1989)
Studying the Novice Programmer

Booth S (1992) Learning to program: A phenomenographic perspective, Goteborg,
Acta Univertsitatis Gothoburgensis found at
http://www.ped.gu.se/biorn/phgraph/civil/graphica/diss.ab/booth.html 15/02/2001

Booth S (1997) On phenomenography, learning and teaching, Higher Education
Research & Development, 1997, Volume 16, No.2, pp 135-158

Bork A (1983) Computers and the future: education in CAL 83 Selected papers from
the Computer Assisted Learning symposium

Bower G Hand Hilgard E R (1981) Theories of Learning (5 th edition), New Jersey:
Prentice-Hall

A J Bird 462

The teaching of programming to novice programmers: three approaches

Bibliography

Boyd-Barret 0 and Scanlon E (1991) (eds) Computers and Learning, Wokingham,
England: Addison-Wesley

Boyle T (1997) Design for multimedia learning, Hemel Hempstead: Prentice Hall

Boyle T, Gray J, Wendl B and Davies M (1993) Taking the plunge: A case study ill
the intensive use of computer-assisted learning in CAL into the mainstream CAL 93
Conference handbook

Bradshaw P M (1985) CAL in the teaching-learning process in Reid and Rushton
(eds) (1985) Teachers, computers and the classroom

Brahan J Wand Godfrey D (1981) A marriage of conven iellce: Videotex and
Computer Assisted Learning in Computer Assisted Learning Selected papers from the
CAL 81 symposium

Breakwell G (1995) Research: Theory and Method in Breakwell et aI. (eds) (1995)
Research methods in psychology

Breakwell G, Hammond Hand Fife-Schaw C (1995) (eds) Research Methods in
Psychology, London: SAGE

Briggs L (ed.) (1977) Instnlctional Design Principles and Applications, Englewood
Cliffs, New Jersey: Educational Technology Publications

Brittan G (1978) Kant's Theory of Science, Princeton, New Jersey: Princeton
University Press

Brown M and Hershberger (1998) Program Auralization in Stasko et al. (eds) (1998)
Software Visualization

Brown M and Sedgewick R (1998) Interesting Events in Stasko et al. (eds) (1998)
Software Visualization

Brown P (1982) Pascal from BASIC, London: Addison-Wesley

Bruner J (1985) Child's Talk, Oxford: Oxford University Press

Bruner J (1986) Actual Minds Possible Worlds, Cambridge, Massachusetts: Harvard
Press

Brusilovsky P (1993) Towards an Intelligent Environment for Learning Introductory
Programming in Lemut et al (eds) (1993) Cognitive Models And Intelligent
Environments for Learning Programming

Bryant I (1998) Action research and reflective practice in Scott and Usher (1998)
(eds) Understanding Educational Research

A J Bird 463

The teaching of programming to novice programmers: three approaches

Bibliography

Burkhardt H, Fraser R and Wells C (1981) Teaching style and program design in
Computer Assisted Learning Selected papers from the CAL 81 symposium

Burroughs G (1971) Design and Analysis in Educational Research, Oxford: Alder
Press

Butcher P G (1985) Computing aspects ofinteractive video in CAL 85 Advances in
computer-assisted learning: selected proceedings from the CAL 85 symposium

CAL95 (1995) CAL 95 Learning to succeed Conference Handbook

CAL97 (1997) International Conference WWW Proceedings

CAL Group (1994) CAL Group News Issue 2 November 1994, CAL Group

CAL into the mainstream (1993) CAL 93 Final programme

Callear D (1999) Intelligent Tutoring Environments as Teacher Substitutes: Use and
Feasibility in Educational Technology Volume XXXIX No 5

Calvin A D (1969) (ed.) Programmed Instruction Bold New Venture, Bloomington:
Indiana University Press

Calvin W (1997) How Brains Think Evolving Intelligence, Then and Now, London:
Wiedenfeld and Nicholson

Canfield Smith D (2000) Building personal tools by programming Association for
Computing Machinery Communications of the ACM, New York: August 2000
Volume 43 Issue 8 pp 92-95

Canfield Smith D, Cypher A and Teler L (2000) Novice programming comes of age
Association for Computing Machinery Communications of the ACM, New York
March 2000, Volume 43 Issue 3 pp 75-81

Carr W and Kemmis S (1994) Becoming Critical Education, Knowledge and Action
Research, London: Falmer Press

CET (1977 a) Technical Report No 14 Computer assisted learning in higher education
- the next ten years A future study report, London: CET

CET (1977 b) Technical Report No 15 Educational Computing in the local authority
sector - the next ten years A future study report, London: CET

CET (1978) Annual report for the year October 1977 - September 1978, London: CET

Chambers J (1992) Empiricist Research on Teaching A Philosophical and Practical
Critique of its Scientific Pretensions, Dordrecht, Kluwer Academic Publishers

Chomsky N (1968) Language and Mind, New York: Harcourt Brace and Jovanovich

A J Bird 464

The teaching of programming to novice programmers: three approaches

Bibliography

Chomsky N (1980) Rules and Representations, New York: Columbia University Press

Clark D (1996) Interactive media programmes and the problem of scaling in Active
Learning Number 4 July 1996

Clements D H (1985) Computers in Early and Primary Education, Englewood Cliffs:
New Jersey: Prentice Hall

Coburn P, Kelman P, Roberts N, Snyder T, Watt D, Weiner C (1982) Practical Guide
to Computers in Education, Reading, Massachusetts: Addison-Wesley

Cohen L and Manion L (1994) Research Methods in Education, London: Routledge

Conrad B (2000) Taking programming to the extreme edge Infoworld, Framingham,
July 2000, Volume 22 Issue 30

Cooper D (1985) Teaching Introductory Programming, New York: WW Norton & Co

Coplien J (2000) Software Patterns, New York: SIGS Books & Multin1edia

Coulson J E (ed.) (1961) Programmed learning and computer-based instnlction
Proceedings of the conference on Application of Digital Computers to Automated
Instnlction October 10 - 12 1961, New York: Wiley and Sons

Cranston M (ed.) (1965) Locke on Politics, Religion and Education, New York:
Collier Books

Creative Computing August 1984

Creative Computing August 1984 Learning to Program pp 58-59

Crook C (1994) Computers and the collaborative experience of learning a
psychological perspective, London: Routledge

CTI (1992 a) Annual report of the Computers in Teaching Initiative, CTI

CTI (1992 b) Computers in university teaching: core tools for core activities, CTISS

CTI (1993) Annual report April 1992 to March 1993, CTI

CTI (1994) Annual report 1993-1994 of the Computers in Teaching Initiative, CTI

CTI (1996) Annual report 1994-1995, CTI

CTI (1998 a) A review of learning and teaching in UK higher education fron1 the
Computers in Teaching Initiative, Oxford: CTI

CTI Active Learning No 3 December 1995 Oxford: CTISS

A J Bird 465

The teaching ofprogramming to novice programmers: three approaches

Bibliography

CTI Active Learning No 4 July 1996 Oxford: CTISS

CTI Active Learning No 6 July 1997 Oxford: CTISS

CTI Active Learning No 8 July 1998 Oxford: CTISS

CTI Computing (1998 b) Journal of the CTI centre for computing Number 10
Summer 1998, CTI

CTI Computing (1998 c) NewsSheet Autumn/Winter 1998, CTI

CTI Engineering Software for engineering education, Issue 14 1998

CTISS (1988) The CTISS file No 6 April 1988 Oxford: CTISS

CTISS (1988) The CTISS file, No 5 February 1988 Oxford: CTISS

CTISS (1990) The CTISS File No 10 September 1990 Oxford: CTISS

CTISS (1990) The CTISS File No 9 February 1990 Oxford: CTISS

CTISS (1991) The CTISS File No 12 September 1991 Oxford: CTISS

CTISS (1992) The CTISS File No 13 April 1992 Oxford: CTrSS

CTISS (1992) The CTISS File, No 14 October 1992 Oxford: CTISS

Cullen J, Hadjivassiliou K, Hamilton E, Kelleher J, Sommerlad E and Stem E (2002)
Review of the current pedagogic research and practice in the fields of post
compulsory education and lifelong learning Final report (revised) submitted to the
Social and Economic Research Council by the Tavistock Institute, London: Economic
and Social Research Council

Cullum H (1995) CBT - Engineering materials, Final year project report, A J Bird's
personal copy

Cummins R and Cummins D (2000) (eds) Minds, Brains and Computers the
Foundations of Cognitive Science An Anthology, Malden, Massachusetts: Blackwell
Publishers

CunniffN, Taylor R and Black J (1989) Does Programming Language Affect the
Type of Conceptual Bugs in Beginners' Programs? A Comparison ofFPL and Pascal
in Soloway and Spohrer (eds) (1989) Studying the Novice Programmer

Cvetkovic S, Chirico S, Larco-Burcheli Land Okretic V (1993) CAL systems
developed in advanced programming environments for teaching signals and systems
in CAL into the mainstream CAL 93 Conference handbook

A J Bird 466

The teaching of programming to novice programmers: three approaches

Bibliography

Dancy J (ed.) (1998) A Treatise concern~ng The Principles of Human Knowledge,
Oxford: Oxford University Press

Darby J (1990) The Computers ill Teaching Initiative: A Progress Report in The
CTISS File No 10 Septenlber 1990

Darby J (1991) Computers in Teaching: The Needs of the 90s A report from the
Computers in Teaching Initiative The CTISS File No 12 September 1991

DarbyJ (1992) Editorial in The CTISS File No 13 April 1992

Darby J (1993 a) Editorial in The CTISS File No 15 April 1993

Darby J (1993 b) Teaching and Learning Technology Programme in CAL into the
nlainstream CAL 93 Conference handbook

Darby J and Martin J (eds) (1995) Teaching with multimedia, Active Learning No 3
December 1995, CTI

Darby J and Martin J (eds) (1996) Active Learning No 4 July 1996, CTI

Davert C E (1974) Procedural Guidelines for the Design of Mediated Instruction,
Great Plains National Instructional Television Library, Washington (D.C.):
Association for Educational Conlmunications and Technology

Davies S (1993) Models and theories ofprogramming strategy in International
Journal of Man-Machine Studies 39 pp 237-267

Davy J and Jenkins T (1999) Research led innovation in teaching and learning
programming in SIGSCE Bulletin Conference Proceedings 1999

de Cecco J P (1964) Educational Technology Readings in Progranlmed Instnlction,
New York: Holt Rinehart and Winston

Dearing R (1997) Higher education in a learning society: Report of the national
committee of enquiry into higher education Found at
http://www.leeds.ac. uk.educo llncihe 12/08/1999

Dekeyser H, Goeminne K, Schuyten G, Dunantlaan H, Protier S, Martens Rand
Valcke M (1995) Computer-assisted learning in an applied statistics course: what
kind of benefit is there? in CAL95 Learning to succeed Conference Handbook

Dennen V (2000) Task Structuring for On-line Problem Based Learning: A Case
Study Educational Technology and Society 3 (3) 2000

Dennett D (1996) Kinds of Minds Towards an Understanding of Consciousness,
London: Weidenfeld and Nicolson

A J Bird 467

The teaching oj programming to novice programmers: three approaches

Bibliography

Denning P J, Comer D, Gries D, Mulder M, Tucker A, Turner J and Young P (1989)
Computing as a discipline, Communications of the ACM, 1989, Volume 32 no 1 pp
9-23

Department ofIndustry (1982) A programme for advanced information technology:
the report of the Alvey Committee, London: HMSO

DePasquale P Subsetting language elements in novice programming environments
Found at
http://people.cs.vt.edu/~edwardsIRESOLVE2002/proceedingslDePasquale.html
04/02/2003

Derry S J (1990) Metacognitive models oj Learning and Instructional Design in Jones
and Winne (eds) (1990) Adaptive Learning Environments Foundations and Frontiers

DES (1967) Children and their Primary Schools A Report of the Central Advisory
Council for Education (England) Vol. 1: The Report, London: DES

Dewey J (1933) How we think: a restatement of the relation of the reflective thinking
to educational practice, Boston: D C Heath and Company

DFE (Department of Education) and Welsh Office Education Department (1995)
Information Technology in the National Curriculum, London: DFE and Welsh Office
Education Department

DFE (Department of Education) and Welsh Office Education Department (1995)
Information Technology in the National Curriculum, London: DFE and Welsh Office
Education Department

DFEE (Department for Education and Employment) (1997) Survey ofInformation
Technology in Schools 1996, London: DFEE

Dick B (1999) What is action research?
Found at http://www.scu.edu.aulschools/gcm!ar/whatisar.htm129/01l2004

Dickson W P, Neal V A and Gillingham M G (1984) A Low Cost Multimedia
Microcomputer Systems Jor Educational Research and Development in Educational
Technology Volume XXIV No 8 August 1984

Draper S (1996) Programming skills, visual layout design, and unjustifiably useJul
testing: Three reports in the psychology oj programming Found at
http://wildcat.psy.gla.ac.uk/~steveIPPIG96.html 06112/2000

Draper S, Henderson F, Brown M, McAteer E, Smith E and Watt H (1995) The TILT
evaluation instruments and method: the state oj our practice in CAL95 Learning to
succeed Conference Handbook

Dreyfus H (1992) What Computers Still Can't Do A Critique of Artificial Reason,
Cambridge, Massachusetts: MIT Press

A J Bird 468

The teaching 0/ programming to novice programmers: three approaches

Bibliography

Du Boulay B, O'Shea T and Mark J (19~9) The Black Box Inside the Glass Box:
Presenting Compllting Concepts to Novices in Soloway and Spohrer (eds) (1989)
Studying the Novice Progranlmer

Duffy T, Lowyck J and Jonassen D (eds) (1993) Designing Environments for
Constructive Learning, Berlin: Springer-Verlag

Duit R (1994) The Constructivist View: A Fashionable and Fruitful Paradigm/or
Science Education Research and Practice in Steffe and Gale (1994) (eds)
Constnlctivism in Education

Duke J (1970) Computers in Education II: The Leeds Serninar in Journal of
Educational Technology Vol. 1 No.1 Jan. 1970 London: NCET

Dunn S and Morgan V (1987) The Impact of the Computer on Education A course for
teachers, Englewood Cliffs, New Jersey: Prentice Hall

Durgin F (2000) The Reverse Stroop Effect Found at
http://www.swarthmore.edu/SocSci/fdurginl/publications/ReverseStroop/PBRStroop.
html 22/02/2001

Eckstein J and Voelter M (2001) Patterns and pedagogy - A winning team
Found at http://www-l06.ibm.com/developerworks/webservicesllibrary/j-patt.hhnl
07/08/2003

Educational Technology Research and Development, Volume 45 No 3 1997 and
Volume 45 No 2 1997

Educational Technology, Volume XXIV No 8 August 1984

Edwards S (2003) Teaching software testing: Automatic grading meets test-first
coding, OOPSLA '03, October 26 - 30 2003, Anaheim, California

Eick S (1998) Maintenance o/Large Systems in Stasko et al (eds) (1998) Software
Visualization

Eisenbach S and Sadler C (1981) PASCAL for Programmers, Berlin: Springer-Verlag

Eisenstadt M (1993) Human Cognition Research Laboratory The Open University
(U.K.) in Bridges between Worlds INTERCHI 1993 Human Factors in Computing
Systenls Conference Proceedings

Eisenstadt M and Brayshaw M (1998) The truth about Prolog execution in Stasko et
al (eds) (1998) Software Visualization

Eisner E (1985) The Art of Educational Evaluation A Personal View, London: The
Falmer Press

A J Bird 469

The teaching of programming to novice programmers: three approaches

Bibliography

Eisner E and Peshkin A (1990) (eds) Qualitative Enquiry in Education The
Continuing Debate, New York: Teachers College Press

Elkind D and Flavell J H (1969) Studies in Cognitive Development Essays in honour
ofJean Piaget, New York: OUP

Engle G Wand Taylor G (1968) Berkeley's Principles of Human Knowledge Critical
Studies, Belmont, Wadsworth

Ericsson K A and Hastie R (1994) Contemporary approaches to the study of thinking
and problem solving in Sternberg (1994) (ed.) Thinking and Problem solving

Espich J E and Williams B (1967) Developing Programmed Instructional Materials,
London: Pitman

Evans G, Dodds A, Kemm R, Weaver D and McCarroll G (1999) Individual
differences in strategies, activities, and outcomes in computer aided learning: a case
study Found at http://www.aare.edu.au/99pap/dod99220.htmI5/02/2001

Evans KM (1991) Planning small scale research A Practical Guide for Teachers and
Students, Windsor, Berkshire: NFER-NELSON Publishing Company

Eysenck M (1998) Psychology an integrated approach, Harlow: Addison Wesley
Longman

Farmer M (1984) The Intensive Pascal Course, Bromley: Chartwell-Bratt

Feynman R (2000) The Pleasure of Finding Things Out The Best Short Works,
London: Allen Lane The Penguin Press

Field J (ed.) (1997) Electronic Pathways Adult Learning and the new communication
technologies, Leicester: NIACE

Fielden and Pearson P (1978) The cost ofleaming with computers The report of the
Financial Evaluation of the National Development Programme in Computer Aided
Learning, London: CET

Firdyiwek Y (1999) Web-Based Courseware Tools.: Where Is the Pedagogy? in
Educational Technology, Volume XXXIX No 1

-
Flavell J and Markman E (eds) (1983) Volume III Cognitive Development, New
York: Wiley

Flavell J H (1963) The Developmental Psychology of Jean Piaget, Princeton, New
Jersey: D Van Nostrand

,

Flugel J C (1964 3rd Edition) A hundred years of psychology, London: Duckworth
and Co

A J Bird 470

The teaching ofprogramming to novice programmers: three approaches

Bibliography

Fonnanek R and Gurian A (1976) Chart~ng intellectual development A practical guide
to Piagetian tasks, Springfield: C C Thomas

Fothergill R (1983) The Microelectronics Education Programme in the United
Kingdom in World Yearbook of Education 1982/983, New York: Kogan Page

Fothergill R, Anderson J, Aston M, Bevis G, Irving A, Russell P and Wheeler P
(1983) Microelectronics Education Programme Infonnation Guide 4 Microelectronics
Programme policy and guidelines, London: CET

Fox R and Tiger L (1972) The Imperial Animal, London: Secker & Warburg

Fox R and Tiger L (1998 Edition) The Imperial Animal, New Brunswick: Transaction
Publishers

Fricke A and Voelter M (2000) Seminars A Pedagogical Pattern Language about
teaching seminars effectively, EuroPLoP 2000

Fund for the Advancement of Education (1964) Four case studies ofProgramnled
Instruction, New York: Fund for the Advancelnent of Education

Fyfe S, Slack-Smith L, Edwards P, Fyfe G and Kennedy D (1995) Cross Check on
Quality: Use and Evaluation of Interactive Multimedia Courseware in the Biomedical
Sciences in CAL95 Learning to succeed Conference Handbook

Gage N and Berliner D (1982) Educational Psychology, Chicago: Rand McNally
College Publishing Company

Gagne R (1982) Developments in Learning Psychology Implications for Instructional
Design; and Effects of Computer Technology on Instructional Design and
Development in Educational Technology June 1982

Gagne R and Briggs L (1979) Principles of Instructional Design, New York: Holt,
Rinehart & Winston

Gagne R M (1965) The Analysis of Instructional Objectives for the Design of
Instruction in Glaser (1965) Teaching Machines and Programed Learning II Data and
Directions

Galin D (2004) Software Quality Assurance From theory to implementation, Harlow,
England: Pearson Addison Wesley

Gardner N (1996) Avarice versus ideology: a perspective on TLTP in Active Learning
Number 4 July 1996

Gardner N and Slater J (1989) Computers in Teaching Initiative Detailed
Descriptions, CTI

A J Bird 471

The teaching ofprogramming to novice programmers: three approaches

Bibliography

Gaskin J C A (ed.) (1999) Thomas Hobbes Human Nature and De Corpore Politico,
Oxford: Oxford University Press

Geertz C (1993) The Interpretation of Cultures, London: Fontana Press

Gelman R and Baillargeon R (1983) A review of some Piagetian concepts in Flavell
and Markman (eds) (1983) Volume III Cognitive Development

Gentner D and Stevens A (1983) (eds) Mental Models, Hillsdale, New Jersey:
Lawrence Erlbaum Associates

Gerard R W (1969) Shaping the mind: Computers in Education in Atkinson and
Wilson (eds) (1969) Computer Assisted Instruction A book of readings

Gergen K (1994) Social Construction and the Educational Process in Steffe and Gale
(1994) (eds) Constructivism in Education

Gershuny J and Slater J (1989 a) Computers in Teaching Initiative An executive
summary, Bath: CTI

Gershuny J and Slater J (1989 b) Computers in Teaching Initiative Report, Bath: CTI

Gershuny J and Slater J (1990) Computers in Teaching Initiative: A Brief Review in
The CTISS File No 9 February 1990

Giarelli J and Chambliss J (1988) Philosophy of Education as Qualitative Enquiry in
Sherman and Webb (1988) (eds) Qualitative Research in Education: Focus and
Methods

Gibbs W W (1994) Software's Chronic Crisis, Scientific American, September 1994

nd

Ginsburg H and Opper S (1979) Piaget's Theory ofIntellectual Development, (2
Edition) New Jersey: Prentice-Hall

Ginsburg H P (1997) Entering the child's mind, Cambridge: Cambridge University
Press

Glaser M, Chi R, FaIT M (ed.) and Glaser R (1988J The Nature of Expertise,
Hillsdale, New Jersey: Lawrence Erlbaum Associates Publishers

Glaser R (ed.) (1965) Teaching Machines and Programed Learning II Data and
Directions, Washington: National Education Association of the United States

, Glassborow F with Allen R (2004) You Can Do It! A Beginner's Introduction to
Computer Programming, Chichester: Wiley and Sons

Glassman W E (1979) The Cognitive Approach in Medcof and Roth (1979)
Approaches to Psychology

A J Bird 472

The teaching of programming to novice programmers: three approaches

Bibliography

Glynn 1(1999) An Anatomy of Thought The Origin and Machinery of the Mind,
London: Orion Books

Goldsworthy R (1999) Lessons on Learning and Technology: Roles and
Opportunities for Design and Development in Educational Technology Volume
XXXIX No. 4

Goodman R (1967) Programmed Learning and Teaching Machines An Introduction,
London: English Universities Press

Gopnik A and Meltzoff A (1997) Words, Thoughts and Theories, Massachusetts: MIT
Press

Gosman A D, Launder B E and Reece G J (1979) CAL in an integrated course on
fluid mechanics and heat transfer in Learning through computers An introduction to
Computer Assisted Learning in Engineering, Mathematics and the Sciences at tertiary
level

Green T (1980) Programming as a Cognitive Activity in Smith and Green (1980)
Human Interaction with Computers

Green T (1983) Learning Big and Little Programming Languages in Wilkinson (ed.)
Classroom Computers and Cognitive Science

Green T (1990 a) Programming Languages as Information Structures in Hoc et al.
(eds) The Psychology of Programming

Green T (1990 b) The Nature of Programming in Hoc et al. (eds) The Psychology of
Programming

Green T, Payne S and van de Veer G (1983) (eds) The Psychology of Computer Use,
London: Academic Press

Greenbaum Rand Tilker H (1972) The challenge of psychology, New Jersey: Prentice
Hall

Greenfield S (1997) The Human Brain A Guided Tour, London: Weidenfeld and
Nicholson

Greer J and Mandinach E (1990) Environments to support learning in Jones and
Winne (eds) (1990) Adaptive Learning Enviromnents Foundations and Frontiers

Gross R D (1994 2
nd

Edition) Key studies in psychology, London: Hodder and
Stoughton

Gross T F (1985) Cognitive Development, Monterey, Brooks/Cole Publishing
Company

A J Bird 473

The teaching ofprogramming to novice programmers: three approaches

Bibliography

Guiffre Cotton E (2000) The Online Classroom: Teaching with the Internet,
Bloomington, Indiana: EDINFO Press

Guyer P (ed.) (1992) Cambridge Companion to Kant, Cambridge: Cambridge
University Press

Guzdial M (1994) Software-realized scaffolding to facilitate programmingfor science
learning, Interactive Learning Environments 4, 1 pp 1- 44

Habermas J (1972) Translated by Sapiro J Knowledge and Human Interests, London:
Heineman

HalffH (1988) Curriculum Instruction in Automated Tutors in Polson and Richardson
(1988) Foundations ofIntelligent Tutoring Systems

Halford G S (1978) Introduction: The structural approach to cognitive development
in Keats, Collis and Halford (eds) (1978) Cognitive Development Research based on a
neo-Piagetian approach

Hall J, Colbourn C, and Light P (1995) "The knee bone's connected to the ... "
Evaluating educational technology in medical education in CAL95 Learning to
Succeed Conference Handbook

Hall M Teaching with Electronic Technology Found at
http://www .ala.orglaasl/kqweb/28 _ 5 _ webprofilefulltext.html 14/09/2000

Hall P, Hovenden F, Rachel J and Robinson H (1998) Postmodern Software
Development Found at http://mcs.open.ac. uklmcs-tech-reports/96-07 .pdf 07/0112004

Hall S (1996) Reflexivity in Emancipatory Action Research: Illustrating the
Researcher's Constitutiveness in Zuber-Skerritt (ed.) (1996) New Directions in
Action Research

Hammersley M (1992) What's wrong with ethnography? London: Routledge

Hammond N (1993) Editorial in CAL into the mainstream CAL 93 Conference
handbook

Hammond N and Trapp A (eds) (1993) CAL into the mainstream CAL 93 Conference
handbook, CTI Centre for Psychology

Hampton J A (1979) Service mathematics teaching infurther and higher education in
Learning through computers An introduction to Computer Assisted Learning in
Engineering, Mathematics and the Sciences at tertiary level

Hanson L F and Komoski P K (1965) School Use of Programed Instruction in Glaser
(1965) Teaching Machines and Programed Learning II Data and Directions

A J Bird 474

The teaching of programming to novice programmers: three approaches

Bibliography

Harasim L (ed.) (1990) On Line Education Perspective on a New Environment, New
York: Praeger

Harding R and Robinson B (1995) ~Velcome message, CAL95 Learning to succeed
Conference Handbook

Harding R D (1979) The computer as an aid in applied mathematics in Learning
through computers An introduction to Con1puter Assisted Learning in Engineering,
Mathematics and the Sciences at tertiary level

Hartson H (ed.) (1985) Advances in Human-Computer Interaction, Norwood, New
Jersey: Ablex Publishing Corporation

Hauswirth M, J azayeri M and Winzer A (1998) A Java based environment for
teaching programming language concepts Found at
http://www.infosys.tuwien.ac.atlStaff/poohipapers/Simplesem11190-HTML.html
03/05/2000

Hawkes M (1999) Exploring Network-Based Communication in Teacher Professional
Development in Educational Technology Volun1e XXXIX No.4

Hawkridge D G (1973) Technical Report No 1 Problems in Implelnenting Computer
Managed Learning, London: CET

Hawksley C (1988) Pascal Programming A Beginner's Guide to Computer and
Programming, Cambridge: Cambridge University Press

Hayes N (1994) Foundations of Psychology An Introductory Text, London:
Routledge

Hearnshaw L S (1989) The shaping of modern psychology An historical introduction,
London: Routledge

Helm P (1997) Teaching and Learning with the new technologies: for richer, for
poorer; for better, for worse ... in Field (ed.) (1997) Electronic Pathways Adult
Learning and the new communication technologies

Hirschorn P (1979) The Behaviourist Approach in Medcof and Roth (1979)
Approaches to Psychology

Hoc J (1983) Analysis ofbeginners ' problem-solving strategies in programming in
Green et al (eds) (1983) The Psychology of Computer Use

Hoc J, Green T, Samuryay R and Gilmore D (eds) (1990) The Psychology of
Programming, London: Academic Press

Hock R R (1995) Forty studies that changed psychology Explorations in the history of
psychological research, New Jersey: Prentice Hall

A J Bird 475

The teaching ofprogramming to novice programmers: three approaches

Bibliography

Hofmeister A (1984) Microcomputer Applications in the Classroom, New York: Holt,
Rhinehart and Winston

Hofstetter F (1979) The meaning of PLATO at the University of Delaware in Lewis
and Tagg (eds) (1980) Computer Assisted Learning Scope, Progress and Limits

Holt R (1972) Teaching the Fatal Disease (or) Introductory Computer Programming
using PLII Found at http://plg.uwater1oo.caJ~holt/papers/fatal_ disease.html
1911012000

Honey P and Mumford A (1992) The Manual of Learning Styles, Maidenhead,
Berkshire: Peter Honey

Hooper R (1974 a) Technical Report No 3 Making Claims for Computers, London:
CET

Hooper R (1974 b) Computers and Sacred Cows, London: CET

Hooper R (1977) Final Report of the Director, London: CET

Hooper Rand Toye I (eds) (1975) Computer assisted learning in the United Kingdom
Some case studies, London: CET

Howe JAM, Ross P M, Johnson K R, Plane R and Inglis R (1981) Teaching
mathematics through programming in the classroom in Computer Assisted Learning
Selected papers from the CAL 81 symposium

Howe J, Ross P, Johnson K, Plane R and Inglis R (1981) Teaching mathematics
through programming in the classroom in Computer Assisted Learning Selected
papers from the CAL 81 symposium

Howes D H and Boring E G (eds) (1966) Elements of psychophysics ,'New York: Holt
Rinehart and Winston

http:// antioch-college. edu/~andrewc/home/kant/kant _glossary .html 29/06/1999

http://aral.cps.msu.edulCPS101SS99/CPS101Visitor/InstructionalTheory.htm
25/0412001

http://ascilite.org.aulconferenceslbrisbane99/programlsnapshot-abstracts.htm
15/0212001 .

http://ascilite.org.aulconferenceslbrisbane99/program/snapshot-abstracts.htm
15/0212001

http:// atsc'!Iool.eduweb .co. uklmbaker/worksht/pup-recs.html 0310512000

http://byte.comlart/9509/sec7 lart19 .htm 04/12/2000

A J Bird 476

The teaching o/programming to novice programmers: three approaches

Bibliography

http://c2.comlcgi-binlwiki?HistoryOfPa~tems 13/08/2003

http://c2.cOln/ppr/aboutiauthor/kent.htn11 30103/2004

http://c1assics.mit.edu/Aristotle/memory.html 08/06/1999

http://coglab.psych.purdue.edu/coglab/Labs/StroopEffect.html 22/02/2001

http://cogprints.soton.ac.ukldocun1ents/diskO/2000/200011 0/50/index.html 22/02/2001

http://courses.cs.vt.edu/~cs3604/lib/Therac _ 25/Therac _1.html 07/01/2004

http://csis.pace.edu/~berginipapers/SilnpleDesignPattems.htm!. 07/08/2003

http://csis.pace.edu/~berginlpattems/codingpattems.html 09103/2003

http://csis.pace.edu/~berginipattems/ExperientiaILearning.htn11 09/03/2003

http://csis.pace.edu/~berginlpattems/fewpedpats.html 09103/2003

http://csis.pace.edu/~bergin/PedPat 1.3.html

http://cui.unige.ch/Visualllocal/Blackwe1l96c.html 25/04/2001

http://cuiwww.unige.ch/OSG/info/Langlist 04/12/2000

http://edu-ssl0.educ.queensu.ca/~brownanicourses/aqcsdp97fall/leamingtopro g.htm
15/02/2001

http://eI.www.media.miLedu/people/acs/chapterl.htmI30/07 11999

http://ericae.net/tc2/TC830363.htm 0811212000

http://eyelab.psy.msu.edu/people/hendersonlresearch.htmI22/0212001

http://faculty.insead.fr/adner/projects/E-procurement%202.pdf 13/1112003

http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?query=axiomatic+semantics 19/02/2003

http://gear.kku.ac.thlTutoriaIlPascalldefaul t.htm 04/12/2000

http://hc.les.dmu.ac.uklmichaellqualaims.htmI3/0 112004

http://hc.les.dmu.ac. ukltim/pysc 1 0 1 OIL 1_ handout.html 01/06/1999

http://hc.les.dmu.ac.ukltim/pysc1 0 1 0/L2 _ handout.html 0110611999

http://hc.les.dmu.ac. ukltim/pysc 101 0/L3 _ handout.html 01/0611999

A J Bird 477

The teaching of programming to novice programmers: three approaches

Bibliography

http://hillside.netlvision.html 18/03/2004

http://homepages.dsu.edu/mckeownj/CPCCCSCpaper.html 04/1212000

http://http.cs.berkeley.edul~abegel/ed222a/ed222a-paper.htmI25/04/2001

http://ironbark.ucnv.edu.au/courses/subjects/cl 0 l.html 0411212000

http://keirsey.comlpersonality/nfij .html 28/0912002

http://kmi.open.ac.uk/people/paulmlaied/ 0411212000

http://lieber.www.media.mit.eduipeople/lieber/Lieberary/Softviz/CACM
Debugging/Hairiest.html 18/04/2001

http://lrs.ed. uiuc.eduiGuidelinesl 14/0912000

http://mcs.open.ac.uk/mcs-tech-reports/96-07 .pdf 07/01/2004

http://news.com.coml21 00-1 017 -913223 .html 04/0312003

http://pages.cpsc.ucalgary.ca/~kremer/pattems/history .htm!

http://panizzi.shef.ac.uk/medt1llmjm1.html 09/12/2000

http://people.cs.vt.edul~edwards/RESOLVE2002/proceedingslDePasquale.html
04/02/2003

http://pizza.cs. ucl.ac. uk/teaching/htmllProgramming-I.xml.html 13102/2003

http://plg.uwater1oo.ca/~holtlpapers/fatal_ disease.html 19/10/2000

http://psyche.cs.monash.edu.au/v6/psyche-6-11-austen.html 22/02/2001

http://psy-test.comlBsys.html 08/1212000

http://reports-archive.adm.cs.cmu.edulanonlusr/anon!home/ftp11998/CMU-CS-98-
101.html24/0412001

http://seeri.etsu.eduiSECodeCases/ethicsCID~athByWire.htm 07/01/2004

http://socrates.berkeley.edul~maccounlar_bias.html25/0412001

http://spicy.atd.depaul.edu/jumpstart/assess/gloss/glossary.html 14/09/2000

http://taylorandfrancis.comlpsypress/BKFILES/0863 776124.htm 22/0212001

http://thinkofit.comldrwoolldwconf.htmI4/09/2000

A J Bird 478

The teaching of programming to novice programmers: three approaches

Bibliography

http://thinkofit.com/plato/dwplato.htm l4/09/2000

http://trochim.human.comell.edu/kb/qualdata.htm 07/01/2004

http://uk.geocities.comibalihar_sangheralqrmparticipantobservation.html 02/02/2004

http://unicoi.kennesaw.edu/-jban1ford/csis4650/umllGoF _Patternshnemento.htn1
30104/2004

http://userpages.umbc.edu/---schmitt/331 S96/dhubba1lreport.html 04112/2000

http://waltoncollege.uark.edu/disted/effective~edagogies_for_managin.htm

14/09/2000

http://web.cps.msu.edu/---urbanlITS.htm# _ Toc355707493 1911111999

http://wildcat.psy.gla.ac. uk/---steve/PPIG96.htInl 06112/2000

http://wind.cc.whecn.edu/---gnelson/paper/TCC-98.html 14/09/2000

http://www4.thny.bbc.co.uk 1311112003

http://www-l06.ibm.com/developerworks/webservices/library/j-patt.html 07/08/2003

http://www.aare.edu.au/99pap/dod99220.htm15/02/200 1

http://www.acm.org/classics/dec95 20/10/2000

http://www.acm.org/classics/oct95 2011 0/2000

http://www.acm.org/sigplanl 04112/2000

http://www.adlnet.org/home.cfm 12/03/2002

http://www.ai.mit.edu/ 12/03/2003

http://www.ala.org/aasl/kqweb/28_5_ webprofilefulltext.html 14/09/2000

http://www.anova.org/jsmill.html 1010611999

http://www .art. ttu.edu/arted/syllabi/res%20biblio/qual.html 14/02/2001

http://www.artima.com/intv/simplest.html 30103/2004

http://www .ascusc.org/jcmc/vo14/issue2/Iarose.html 13/01/2004

http://www.atl.ualberta.calarticles/idesignllearnchar.cfm 20109/2000

http://www.auckland.ac.nz/cpd/caleval.html 15/02/2001

A J Bird 479

The teaching ofprogramming to novice programmers: three approaches

Bibliography

http://www.bc.edulbc_org/avp/eve/02-03mt35001fall.pdf 1310212003

http://www.borland.com/pascal/ 04112/2000

http://www.br.cc.va.us/vcca/i1ltay1.html09112/2000

http://www.cals.ncsu.edu/agexed/aee735/ppt2/tsld007.htm 09112/2000

http://www.che.ude1.edu/faculty/full/sandler/comp.html 14/09/2000

http://www.chelt.ac.uk/el/philg/gdn/discuss/kolb1.htm 09/12/2000

http://www.chesworth.com/pvllanguages/index.html04/12/2000

http://www.chisp.net/~dminer/c64/gazette/8801/8801090.html04/02/2003

http://www.cica.indiana.edulcsc195/jonassen.html 25/04/2001

http://www.cis.gsu.edu/~mmoore/CIS3300/handouts/SciAmSept1994.html

2011112003

http://www.classes.cec.wustl.edu/~cs504/home.html 04/12/2000

http://www.cmcrossroads.comlbradapp/docs/pattems-intro.html09/03/2003

http:///www.cmcrossroads.comlbradapp/docs/pizza-inv .html 18/0312004

http://www.cnn.com/TECH/space/9909/30/mars.metric/ 07/01/2004

http://www.columbia.edulitc/english/f2007/jameson/concepts/dialectic.html
08/0312001

http://www.computer.muni.cz/studentllooking/spring97 /j anlee/ 0411212000

http://www.cs.cmu.edulafs/cs.cmu.eduluser/mleone/web/language/publications.html
04112/2000

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mleone/web/language-research.html
0411212000

-
http://www.cs.helsinki.fi/research/aaps/Jeliotl 08/1212000

http://www.cs.iastate.edu/~leavens/ComS227.html#Overview 13102/2003

http://www .cs.iupui.edul~aharris/n30 1/alg/tmcm-j ava-labsllabs/xTurtleLab 1.html
04/121200D

http://www.cs.montana.edul~dynalab/description/index.html08/1212000

A J Bird 480

The teaching o/programming to novice programmers: three approaches

Bibliography

http://www.cs.nott.ac.ukl~smx/PGCHE/ceilidh.htn11 31/03/2004

http://www.cs.utexas.edu/users/ethics/SE_ education/se_ edu _ uk.html 1311112003

http://www.csal.co.uklhtbinlids511txtdisp.cgi03/08/2000

http://www.csa2.co.uklhtbinlids511procskel.cgi02/08/2000

http://www.csc.liv.ac.ukl~ken/cpp/progl.htn11 03/05/2000

http://www.cse.unsw.edu.au/~cs31111Lectures/ 2003S2SAlnewlntro.pdf 2011112003

http://www.cti.ac.uk 14/09/2000

http://www.cti.ac.uklinfo/handbook.html 19/0811999

http://www.cti.ac.uk 18/0211999

http://www.cti.ac.uklnews/ 18/0211999

http://www.curtin.edu.au/conference/ ASCILITE97 /papers/Sanders/Sanders.html
15/02/2001

http://www.cvcp.ac.ukl 18/0211999

http://www.cwu.edu/~ceps/constdef.htm 30/0711999

http://www.dacs.dtic.n1illtechs/history/His.RL.l.0.html 04/03/2003

http://www.developercareers.com/ddjlarticles/199911999141199914bI199914b.htm
08112/2000

http://www.dcs.qmw.ac. ukl~normanlpapers/new _directions _ metrics/HelpFileHistory
_ of_software _ metrics_as _ a.htm 06/04/2004

http://www.dfee.gov.uklpns/DisplayPN.cgi?pn _id=200 1_0070 15/02/2001

http://www.doc.ic.ac.ukl~nd/surprise_95/joumallvoI2/hstlarticle2.html 31/03/2004

http://www.dofactory.comipattems/PattemMemento.aspx 30/03/2004

http://www .dreamsongs.con1INewFiles/ AlexanderPresentation.pdf 18/03/2004

http://www.eduard-rhein-stiftung.de/htmIlT2002 _ e.html 2011 /2003

http://www.educationau.edu.au/archives/cp/09.htmI5/02/200 1

http://www.educationau.edu.au/archives/cp/09.htmI5/02/200 1

A J Bird 481

The teaching of programming to novice programmers: three approaches

Bibliography

http://www.emporia.edu/math-cs/simpson/cs250/cs250.htm 04112/2000

http://www.engin.umd.umich.edu/CIS/course.des/cis400/euphoria/euphoria.html
04/12/2000

http://www.epicent.com/journals/computer/smith002.html25/04/2001

http://www.ericfacility.netlericdigests/ed355205.html29/0112004

http://www.extremeprogramming.org 18/0112001

http://www.gise.orglJISE/Voll-5/DOESINST.htm 24/04/2001

http://www.gregorc.com/01l1112000

http://www.gse.uci.edu/EdTechUse/c-tb1cnt.htmI210312002

http://www.hcc.hawaii.edu/intranet/committees/FacDevCom/guidebk/teachtip/keirsey
.htm 0811212000

http://www.hcc.hawaii.edulintranet/committees/FacDevCom/guidebk/teachtip/modalit
y.htm 08112/2000

http://www.holtsofi.com/turinglessay.html 31110/2000

http://www.icb1.hw.ac.uk/ctllmsc/ceejw1lpaperl.html 30/07/1999

http://www.ics.ltsn.ac.uk/pub/conf2000IPapers/jenkins.htmI310212003

http://www .ils.nwu.edul ~e _for _ e/nodes/I -M -NO D E-415 9-p g.html 15/02/2001

http://www .ils.nwu.edul~e _for _ e/nodesINODE-43-pg.htmlI5/02/200 1

http://www .ils.nwu.edul edoutrage/ edoutrage II.html 15/0212001

http://www .ilt.columbia.edu/iltlpapers/IL Tpedagogy.html 15/0212001

http://www .ilt.columbia.eduIK 12/li vet ext/ docs/ copstruct.html 30/0711999

http://www.inform.umd.eduIUMS+StateIUMp
ProjectsIMCTPIWWW/Essays/Constructivism.txt 30/07/1999)

http://www .inform. umd.edu: 8080IUMS+StateIUMD
Projects/MCTP/WWW /Essays.html 30/0711999

http://www.infosys.tuwien.ac.at/Staff/poohlpapers/Simplesem/1190-HTML.html
03/05/2000

http://www.insightsvancouver.com/comparisons.htm 24/0412003

A J Bird 482

The teaching of programming to novice programmers: three approaches

Bibliography

http://www.internetvalIey.com/intval.htn11 14/09/2000

http://www.irisa.frlmanifestations/1995/ AADEBUG95/we1con1e.html 1211112000

http://www.it.bton.ac.uk/staff/rng/teaching/notes/Soar.html 13/03/2003

http://www.jdl.co.uk/training/4-siders/softwEng_ 4s.html 2011112003

http://www.jn1u.edu/gened/Knowledge/Chap12.htm 04112/2000

http://www.kablenet.com/kd.nsf/Frontpage/A8F5EAC 1 009EEC2780256C950060AD
CF?OpenDocument 03/2/2003

http://www.kn1i.open.ac.uk/~pauhn/ppig/spring97 .html 09/07/1998

http://www.knight.org/advent/cathen/02004a 04/06/1999

http://www.lawandco.com/wwwboard/messages/2.html 09/07/1998

http://www.leeds.ac.uk.educol/ncihe 18/0211999

http:// www.learninglinks.org/emotional_intelligence.pdf 06/04/2004

http://www.lifelonglearning.co.uk/greenpaper/ 18/02/1999

http://www.louisepryor.com/showTopic.do?topic=6 13/02/2003

http://www.mc.maricopa.edu/users/vaughanltext/lex/defs/dialectic.html 0803/2001

http://www.mii.kurume-u.ac.jp/~leuers/Freud.htm17 106/1999

http://www.nae.eduINAE/naehome.nsf/weblinks/MKEZ-5KYNFL?Open Document
19/11/2003

http://www .nasponline.org/publications/cq312cbattery.html 24/04/2003

http://www .nctm.org/j rmel abstracts/vo 1 ume _ 03/vol 03 -02-mar 1972 .html 24/08/2000

http://www.neoscience.org/reflexiv.htm13/01/2004

http://www.nickerson.to/visprog/ch2/progvis24.htm 20102/2003

http://www.niss.ac.uk/educationlhefce/pub98/ 18/02/1999

http://www.ovum.con1/go/content/c,36416 1911112003

http://www . parliament. the-stationery-
office.co.uk/pa/cm 199900/cmselect/cmpubacc/65/6503.htm 07/0112004

A J Bird 483

The teaching of programming to novice programmers: three approaches

Bibliography

http://www . peak.org! ~sechrest/talks/intemet.howto.html 10102/2004

http://www.ped.gu.se/biorn/phgraph/wild/briefing.html 15102/2001

http://www.ped.gu.se/biorn/phgraph/civil/graphica/diss.ab/booth.html 5/0212001

http://www.pentile.com/Human _ Vision.html 06/0312001

http://www.phenomenologyonline.comlglossary .cfm ?range=e-h 08/05/2003

http://www . ppig.org!resources.html#newsletters 04/1212000

http://www.programmersheaven.com/04/12/2000

http://www.python.org!cp4e/ 06/05/2003

http://www .python.org!doc/essays/cp4e.html 09/0312003

http://www.rolemodelsoftware.com/moreAbout U s/publications/thereforeBoom. php
18/0312004

http://www.saginaw.k12.mi.us/~mobility/vsionsys.htm 06/0312001

http://www.sci.brooklyn.cuny.edu/~amow/ED/coreloopinvar.html 04/12/2000

http://www.scit.wlv.ac.uk/~cm1995/cbr/library.htm126/1112003

http://www.scu.edu.au/schools/gcm/ar/whatisar.html 29/01/2004

http://www.sd.monash.edu.au/blue/papers.html 03/0512000

http://www.si.umich.edulICOS/ gentleintro.html 1210312003

http://www.sigmod.org!pubs/contents/proceedings/series/popl/ 04/12/2000

http://www.smccd.netlaccounts/mecomey/f2000foto/color/color.htm 06/0312001

http://www.smccd.netlaccounts/mecomey/f2000foto/color/light.htm 6/0312001

http://www.smccd.net/accounts/mecomey/f2QOOfoto/color/matter.htm 06/0312001

http://www.smccd.net/accounts/mecomey/f2000foto/color/vision.htm 06/03/2001

http://www.soften.ktu.1t1jep-06032/city/courses/IFPR402/human.html 06/0412004

http://www.space.comlnews/mcoJeport-b_99111 O.html 07/0112004

http://www.swarthmore.edulSocSci/fdurgin1/publications/ReverseStrooplPBRStroop.
html22/02/2001

A J Bird 484

The teaching of programming to novice programmers: three approaches

Bibliography

http://www.tall.ox.ac.uklalt/alt-c98 18/02/1999

http://www.tau-web.de/hci/space/i3.html 06/03/2001

http://www.tec.puv.fi/~kimmos/News/0574 15/02/2001

http://www.tec.puv.fi/~kimmoslNews/0575 15/02/2001

http://www.tec.puv.fi/~kinlmoslNews/comp/programnling/I626 15/02/2001

http://www.tec.puv.fi/~kimnl0s/News/vanhatiComp.edu 15/02/2001

http://www.telalink.net/~haukipascaI/ 04/12/2000

http://www.templetons.comlbrad/alice.htnl1 26/1 0/2000

http://www.tml.hut.fi/~pnr/Tik-76.278/gof/htmIlMemento.htmI30/03/2004

http://www.ucc.ie/hfrg/projects/respectlurmethods/interviews.htm 03/02/2004

http://www.uIst.ac.uk!cticonlplbowman.htmI28/11/2000

http://www.uIst.ac.uklcticomp/papers/traxler.htmI09/07/1998

http://www.unb.ca/web/units/psych/likely/headlines/CI650_99.htm 01/06/1999

http://www.unb.ca/web/units/psychJlikely/headlines/CI700_49.htm 01/06/1999

http://www.unb.ca/web/units/psychJlikely/headlines/C 1780 _99.htnl 01/06/1999

http://www.unb.ca/web/units/psychJlikely/headlines/CI800_29.htm 01/06/1999

http://www.unb.ca/web/units/psychJlikely/headlines/CI830_49.htm 01/06/1999

http://www.unb.ca/web/units/psychJlikely/headlines/CI850_69.htm 01/06/1999

http://www.unb.ca/web/units/psychJlikely/headlines/CI870_79.htmI7 /06/1999

http://www.unb.ca/web/units/psychJlikely/headlines/CI880_89.htm 08/07/1999

http://www.unb.ca/web/units/psychJlikely/headlines/CI890_99.htm 08/07/1999

http://www.unb.ca/web/units/psychJlikely/headlines/C 1900 _14.htnl 08/07/1999

http://www.unb.ca/web/units/psychJlikely/headlines/C 1915 _ 24.htnl 08/07/1999

http://www.unb.ca/web/units/psychJlikely/headlines/C 1925 _29 .htnl 08/07/1999

A J Bird 485

The teaching o/programming to novice programmers: three approaches

Bibliography

http://www.unb.ca/web/units/psychllikely/headlines/CI940_49.htm 08/0711999

http://www.unb.ca/web/units/psychllikely/headlines/CI950_59.htm 08/0711999

http://www.uni-
giessen.de/hrz/tex/more jnfolinfo/mailarchiv/litprog.1995/msg00507 .html 03/05/2000

http://www.userlab.comlVisionl.html 06/03/2001

http://www .warn. umd.edu/~mlhall/teaching.html 04/12/2000

http://www.well.com/user/smalinlmiller.html 05/03/2002

http://www.wikipedia.orglwiki/Context-free_grammar 27/02/2003

http://www . wjh.harvard. edul ~visco gllab/ 22/0212001

http://www.xcalibur.co.uk/training /programminglstart.html 03/0512000

http://www.yorku.ca/dept/psychlclassics/Aristotle/memory.htm 01106/1999

http://www.yorku.ca/dept/psychlclassics/suggestions.htm 0110611999

http://www.yourdon.com/articles17 602Infosystems.html 06/04/2004

http://www2.lucidcafe.comllucidcafe/lucidcafe/library/96may/freud.html 17/06/1999

http://www2. ucsc.eduipeople/anoe/GrandIllusion.html 22/02/2001

http://www-hcs.derby.ac. uk/tip/models.html 13103/2003

http://www-isu.indstate.edul ctl/styles/learning.html 0811212000

http://www-jime.open.ac.uk/97I1lisvl-03.html 04112/2000

http://www-2.cs.cmu.edu/~mleone/language/projects.html 09/0312003

http://www2.sis.pitt.edul~peterb/00 12-0311syllab~s.html 13102/2003

http://www.Xprogramming.comI8/0112001

http://xrs.net/resources/Pascal/ 13102/2003

Hubbard G (1986) Organising/or innovation: A Comparative Commentary on two
Government Programmes in Journal of Computer Assisted Learning Vol. 2 No 1
Marchi April 1986

Hudson K (1984) Introducing CAL A practical guide to writing Computer Assisted
Learning programs, London: Chapman and Hall

A J Bird 486

The teaching of programming to novice programmers: three approaches

Bibliography

Inglis A, Ling P and Joosten V (1999) Delivering Digitally: managing the Transition
to the Knowledge Media, London: Kogan Page

Inhelder Band Piaget J (1964) The early growth of logic in the child Classification
and Seriation, Bristol, Routledge

Inhelder B, Sinclair Hand Bovet M (1975) Learning and the Development of
Cognition, London: Routledge

Innovations in Education and Teaching International, February 2002, Volun1e 39
Number 1, SEDA, London: Routledge

Institute for Learning and Teaching (1998) Institute for Learning and Teaching:
Implementing the vision http://www.cvcp.ac.uk

Irwin T (1988) Aristotle's First Principles, Oxford: Oxford University Press

Irwin T and Fine G (1995) Aristotle: Selections, Indianapolis: Hacket

ISC Courseware Developn1ent Working Party (1992) The CTISS File No 14 October
1992

Jackson D and Usher M (1997) Grading student programs using ASSYST, Technical
syn1posium on Computer Science Education, Proceedings of the twenty-eighth
SIGCSE technical symposium on computer science, San Jose, California: pp 335 -
339

Jamison D, Suppes P and Butler C (1970) Estimated Costs of Computer Assisted
Instruction for Compensatory Education in Urban Areas in Educational Technology,
September 1970

Jaynes J (1993) The origin of consciousness in the collapse of the bicameral mind,
London: Penguin

J egede 0, Fraser B and Curtin D (1995) The Development and Validation of a
Distance and Open Learning Environment Scale, Educational Technology Research
and Development 1995 Vol. 43 Pt 1 pp 90 - 94

Jenkins T and Davy J (2000) Dealing with Diversity in Introductory Programming
Found at http://www.ics.1tsn.ac.uklpub/conf2000IPapers/jenkins.htm13/02/2003

Johnson-Laird P (1983) Mental Models Towards a Cognitive Science of Language,
Inference and Consciousness, Cambridge: Cambridge University Press

Johnson-Laird P, Girotto V and Legrenzi P (1998) Mental n10dels: a gentle guide for
outsiders Found at http://www.si.umich.edu/ICOS/gentleintro.html 12/03/2003

Johnston H (1985) Learning to Program, Englewood Cliffs, New Jersey: Prentice Hall
International

A J Bird 487

The teaching of programming to novice programmers: three approaches

Bibliography

Johnston J (1987) Electronic Learning: From Audio tape to Video disc, Hillsdale,
New Jersey: Laurence Erlbaum

Jonassen D and Rohrer-Murphy L (1999) Activity Theory as a Frameworkfor
Designing Constructivist Learning Environments in Educational Technology
Research and Development Volume 47 No 1

Jonassen D Operationalizing Mental Models: Strategies for Assessing Mental Models
to Support Meaningful Learning and Design- Supportive Learning Environments
Found at http://www.cica.indiana.edu/cscl95/jonassen.htmI25/0412001

Jonassen D, Mayes T and McAleese R (1993) A Manifesto for a Constructivist
approach to Uses of Technology in Higher Education in Duffy et al (eds) (1993)
Designing Environments for Constructivist Learning

Jones A and Scrimshaw P (1988) (eds) Computers in Education 5 - 13, Milton
Keynes: Open University Press

Jones A et al. (1995) Evaluating CAL at the Open University: 15 years on in
Computers in Education Volume No 26 April 1996 pp 5 - 15

Jones A, Scanlon E and Blake C (2000) Conferencing in communities of learners:
examples from social history and science communication in Educational Technology
and Society 3 (3) 2000

Jones D & Pritchard A (1999) Realizing the Virtual University in Educational
Technology Volume XXXIX Number 5

Jones M and Winne P H (eds) (1990) Adaptive Learning Environments Foundations
and Frontiers, Berlin: Springer-Verlag

Journal of Computer Assisted Learning Vol. 2 No 1 MarchiApril1986

Journal of Computer Assisted Learning Vol. 5 No 1 March 1989

Kagan J and Havemann E (1980) Psychology An Introduction, New York: Harcourt
Brace J ovanich

Kahn H and Wiener A J (1968) The Year 2000 A Framework for Speculation on the
Next Thirty-Three Years, New York: Macmillan

Kahney H (1983) Problem solving by novice programmers in Green et al (eds) (1983)
The Psychology of Computer Use

Kant I (1979 edition) (Introduction by Lindsay A D Translated by Meiklejohn J M D)
Critique of Pure Reason, London: Dent

Kaye A (ed.) (1991) Collaborative Learning Through Computer Conferencing The
Najaden Papers, Berlin: Springer-Verlag

AJ Bird 488

The teaching ofprogramming to novice programmers: three approaches

Bibliography

Keats J A and Keats D M (1978) The.role of language in the development of thinking
- theoretical approaches in Keats, Collis and Halford (eds) (1978) Cognitive
Development Research based on a neo-Piagetian approach

Keats J A, Collis K F and Halford G S (eds) (1978) Cognitive Development: Research
Based on a neo Piagetian approach, Chichester, Wiley

Kelly A, Maunder S and Cheng S (1996) Does practice make perfect? Using
TRANSMATH to assess mathematics coursework in Active Learning Nutnber 4 July
1996

Kemmis S, Atkin R and Wright E (1977) How do students learn? Working papers in
computer assisted learning, UEA Norwich, Centre for Applied Research in Education

Kent T and McNergney R (1999) Will Technology Really Change Education? From
Blackboard to Web, Thousand Oaks, Califon1ia: Corwin Press

Kevles D (1997) Pursuing the Unpopular: A History of Courage, Viruses, and Cancer
in Silvers (1997) Hidden Histories of Science

Khan T (1996) Pedagogic Principles of Case-Based CAL in Journal of Computer
Assisted Learning Volume No 12 September 1996 pp 172-192

Kibby M and Hartley J (eds) (1993) CAL into the mainstream (1993) Computer
Assisted Learning Selected contributions fron1 the CAL 93 symposium, Oxford:
Pergamon Press

Kidd M E and Holmes G (1983) CAL evaluation: a cautionary word in CAL 83
Selected papers from the Computer Assisted Learning symposium

Kimelman D Rosenburg B and Roth T (1998) Visualization of Dynamics in Real
World Software Systems in Stasko et al (eds) (1998) Software Visualization

Klaus D J (1965)AnAnalysis of Programing Techniques in Glaser (ed.) (1965)
Teaching Machines and Programed Learning II Data and Directions

Koch S and Leary D (eds) (1985) A Century of Psychology as Science, Worcester,
Massachusetts: McGraw - Hill

Kolb D (1984) Experiential Learning Experience as The Source of Learning and
Development, Englewood Cliffs, New Jersey: Prentice-Hall

Krems J (1995) Expert Strategies in Debugging: Experimental results and a
Computational Model in Wender et al (eds) Cognition and Computer Programming

Kurland D, Clement C, Mawby R and Pea R (1987) Mapping the Cognitive Demands
of Learning to Program in Pea and Sheingold (eds) Mirrors of Minds

A J Bird 489

The teaching ofprogramming to novice programmers: three approaches

Bibliography

Kurland D, Pea R, Clement C and Mawby R (1989) A Study of The Development of
Programming Ability and Thinking Skills in High School Students in Soloway and
Spohrer (eds) (1989) Studying the Novice Programmer

LaRose R, Gregg and Eastin M (1998) Audiographic Telecourses for the Web: An
experiment, JCMC 4 (2) December 1998 Found at
http://www.ascusc.org/jcmc/vo14Iissue2I1arose.html13/0112004

Laurillard D (1993) Rethinking University Teaching a framework for the effective use
of educational technologies, London and New York: Routledge Kegan Paul

Leask M and Pachler N (1999) (eds) Learning to Teach Using ICT in the Secondary
School, London: Routledge

Leatherdale W (1974) The Role of Analogy, Model and Metaphor in Science,
Amsterdam, North Holland Publishing Company

Lecarme 0 (1973) What Programming Language should we Use for Teaching
Programming? in Turski (ed.) (1973) Programming Teaching Techniques

Lefranyois G R (1989) Of children: an introduction to child development, Belmont,
California: Wadsworth Publishing Company

Lemut A, du Boulay Band Dettori G (eds) (1993) Cognitive Models And Intelligent
Environments for Learning Programming, Berlin: Springer-Verlag

Lerner R M (1984) On the nature of human plasticity, Cambridge: Cambridge
University Press

Lesgold A (1988) Intelligent Tutoring Systems in Jones and Scrimshaw (1988) (eds)
Computers in Education 5 - 13

Leventhal L (1993) How Confirmation Bias Affects Novice Programmers in Testing
and Debugging: Research Strategies and Implications for Tools in Lemut et al (eds)
(1993) Cognitive Models And Intelligent Environments for Learning Programming

Levin J, Rogers A, Waugh M and Smith K Observations on educational electronic
networks: The importance of appropriate activitie.s for learning,
http://lrs.ed.uiuc.edu/guidelines/LRWS.html14/09/2000

Lewis D (1978) The secret language ofthe child How children talk before they can
speak, London: Souvenir Press

Lewis R (1989) Information Technology in Education Research Programme 1988-
1993 in Journal of Computer Assisted Learning Vol. 5 No 1 March 1989

Lewis Rand Tagg E (eds) (1980) Computer Assisted Learning Scope, Progress and
Limits, Amsterdam, North Holland Publishing Company

A J Bird 490

The teaching of programming to novice programmers: three approaches

Bibliography

Lewis W (1981) Problem-Solving Pri!lciples for PASCAL Progranlmers Applied
Logic, Psychology, and Grit, Rochelle Park, New Jersey: Hayden Book Company

Lieberman H (2000) Programming by example Association for Computing Machinery
Communications of the ACM New York March 2000 Volume 43 Issue 3 pp 72-74

Linn M and Dalbey J (1989) Cognitive Consequences of Programming Instruction in
Soloway and Spohrer (eds) (1989) Studying the Novice Progratnnler

Linn P (1987) Microcomputers in Education: Living and Dead Labour in Scanlon and
O'Shea (eds) (1987) Educational Computing

Low J, Johnson J, Hall P, Hovenden F, Rachel J, Robinson Hand Woolgar S (1996)
Read this and change the way you feel about software engineering, Information and
Software Technology 38 (1996) pp 77- 87

McGettrick A (1998) Software Engineering Education in the UK - An Overview
Found at http://www.cs.utexas.edu/users/ethics/SE_education/se _ edu _ uk.html
13111/2003

MacCunn J (1964) Six Radical Thinkers Bentham J S Mill Cobden Carlyle Mazzini T
H Green, New York: Russell and Russell

Mackenzie J (1979) Simulations in Learning through computers An introduction to
Computer Assisted Learning in Engineering, Mathematics and the Sciences at tertiary
level

Maddison A (1982) Microcomputers in the classroom, London: Hodder and
Stoughton

Magee B (1997) Confessions of a philosopher, London: Weidenfeld and Nicholson

Mahoney M (1977) Publication Prejudices: An Experimental Study of Confirmatory
Bias in the Peer Review System in Cognitive Therapy and Research, Volunle 1, No.2,
1977, pp 161-175 Found at
http://www.mang.canterbury.ac.nz/courseinfo/AcademicWritingiPrejud.htm
25/04/2001

Maier H W (1969) Three Theories of child development Contributions of Erik H
Erikson, Jean Piaget and Robert R Sears and their applications, New York: Harper
Row

Maier P, Barnett L, Warren A and Brunner D (1998) Using technology in teaching
and learning, London: Kogan Page

Malim T and Birch A (1998) Introductory Psychology, London: Macmillan Press

Manktelow K (1999) Reasoning and Thinking, Hove: Psychology Press

A J Bird 491

The teaching ofprogramming to novice programmers: three approaches

Bibliography

Markle S M (1964) Good Frames and Bad A Grammar of Frame Writing. New York:
Wiley and Sons

Marshall D (1988) CALlCBT - The great debate, Sweden: Chartwell-Bratt

Martin J (1996) Is Turing a better language for teaching programming than Pascal
Found at http://www.holtsofi.com/turing/essay.html 31110/2000

Martin J and Beetham H (eds) (1998) Active Learning No 8 July 1998

Marton F (1988) Phenomenography: A Research Approach to Investigating Different
Understandings ofReality in Sherman and Webb (eds) (1988) Qualitative Research in
Education: Focus and Methods

Maslow A H (1970) Motivation and Personality, New York: Harper and Row

Mason R and Kaye T (1990) Towards a New Paradigm for Distance Education in
Harasim (ed.) (1990) On Line Education Perspective on a New Environment

Matterson A (1981) Polytechnics and Colleges, Harlow: Longman

Matthews G (1972) Plato's epistemology and related logical problems, London: Faber
and Faber

Maund C (1937) Hume's Theory of Knowledge A Critical Examination, London:
Macmillan

Mayer R (1989) The Psychology of How Novices Learn Computer Programming in
Soloway and Spohrer (eds) (1989) Studying the Novice Programmer

Mayer R E (1992 2nd Edition) Thinking, problem solving, cognition, New York: W H
Freeman and Company

Mayer R, Dyck J and Vilberg W (1989) Learning to Program and Learning to Think:
What's the Connection? in Soloway and Spohrer (eds) (1989) Studying the Novice
Programmer

Mayes T (2001) Learning technology and learnin¥ relationships in Stephenson (ed.)
(2001) Teaching and Learning Online Pedagogies for New Technologies

McCalla G (1990) The search for Adaptabiliiy, Flexibility and Individualization:
Approaches to Curriculum in Intelligent Tutoring Systems in Jones and Winne (eds)
(1990) Adaptive Learning Environments Foundations and Frontiers

McConnell D (2000) Implementing Computer Supported Cooperative Learning,
London: Kogan Page

McCormick S (1985) Software and television - a new approach in CAL 85 Advances
in computer-assisted learning: selected proceedings from the CAL 85 symposium

A J Bird 492

The teaching of programming to novice programmers: three approaches

Bibliography

McDonald B, Atkin R, Jenkins D and.Kemmis S (1977) Computer assisted learning:
its educational potential in Final Report of the Director

McFarland T D and Parker R (1990) Expert Systems in Education and training,
Englewood Cliffs, New Jersey: Educational Technology Publications

McGregor J and Watt A (1986) Simple Pascal, Avon: The Bath Press

McIver L (2000) The Effect of Programming Language on Error Rates of Novice
Programmers in Blackwell and Bilotta (eds) (2000) 1ih Workshop of the Psychology
of Programming Interest Group

McKeown J and Farrell T rVhy rVe Need to Develop Success in Introductory
Programming Courses Found at
http://homepages.dsu.edu/n1ckeownjlCPCCCSCpaper.html 04112/2000

Meadows S (1994) The child as thinker The development and acquisition of cognition
in childhood, London: Routledge

Meadows S (1995) Understanding Child Developn1ent Psychological perspectives in
an interdisciplinary field of enquiry, London: Routledge

Medcof J and Roth J (eds) (1979) Approaches to Psychology, Milton Keynes: Open
U ni versi ty Press

Megarry J (ed.) (1983) World Yearbook of Education 1982/983, New York Kogan
Page

Melrose M J (1996) Got a Philosophical Match? Does it Matter? in Zuber-Skerritt
(ed.) (1996) New Directions in Action Research

Mendelsohn P, Green T and Brna P (1990) Programming Languages in Education:
The Search for an Easy Start in Hoc et al (eds) (1990) The Psychology of
Programming

MEP (1986) Topics in contemporary computer studies Book 3 The sensible use of
computers, MEP

MEP (1986) Topics in contemporary computer studies Book 5 Teaching computing
by applications, MEP

Merrienboer J, Krammer H, Maaswinkel R (1992) Automating the Planning and
Construction of Programming Assignments for Teaching Introductory Computer
Programming in Tennyson (ed.) (1992) Automating Instnlctional Design,
Development and Delivery

Mill J S (1869 Edition) Analysis of the Phenomena of the Human Mind Volumes I
and II, London: Longlnans, Green, Reader and Dyer

A J Bird 493

i
I-

The teaching of programming to novice programmers: three approaches

Bibliography

Mill J S (1964 Edition) (Introduction by Lindsay A D) Utilitarianism Liberty
Representative Government, London: Dent

Miller G A (1991) Psychology The Science of Mental Life, London: Penguin

Miller J (1988) The role of human-computer interaction in intelligent tutoring systems
in Polson and Richardson (1988) Foundations ofIntelligent Tutoring Systems

Miller L (1974) Programming by Non-programmers in International Journal of Man
Machine Studies 6 pp 237 - 260

Mitchell D (1997) Making sense of computer aided learning research: A critique of
the pseudo-scientific method, Quebec Canada: Graduate Programme in Educational
Technology, Concordia University

Mitchell P (1970) Educational Technology: Panacea or Placebo? in Aspects of
Educational Technology IV, London: Pitman

Modgil Sand Modgil C (eds) (1987 a) B F Skinner Consensus and controversy, New
York: Falmer Press

Modgil S and Modgil C (eds) (1987 b) Noam Chomsky Consensus and controversy,
New York: Falmer Press

Mogey N (1996) Tenacious Lecturers Target Procurement: the problem of obtaining
TLTP software in Active Learning Number 4 July 1996

Montagnon P and Bennett R (eds) (1965) What is programmed learning? London:
BBC Publications

Moore A (1993) Siuli's Maths Lesson: Autonomy or Control? in Beynon and Mackay
(eds) (1993) Computers into classrooms More Questions than Answers

Moore T and Carling C (1987) Chomsky: consensus and controversy - introduction in
Modgil and Modgil (eds) (1987 b) Noam Chomsky Consensus and controversy

Morgan C T and King R A (1975 5th Edition) Introduction to Psychology, New York:
McGraw Hill

Mossner E (ed.) (1969) A Treatise of Human Nature, London: Penguin

Mouly G (1978) Educational Research The Art and Science ofInvestigation, Boston,
Massachusetts: Allyn and Bacon

Muijs D (2004) Doing quantitative research in education with SPSS, London: Sage

Mukherjea S and Stasko J (1994) Toward Visual Debugging: Integrating Algorithm
Animation Capabilities within a Source-level Debugger in ACM Transactions on
Computer-Human Interaction September 1994 Volume 1 Number 3 pp 215 - 244

A J Bird 494

The teaching of programming to novice programmers: three approaches

Bibliography

Mulholland P and Eisenstadt M (1998) Using Software to Teach Computer
Programming: Past, Present and Future in Stasko et al (eds) (1998) Software
Visualization

Munsinger H (1975 2nd Edition) Fundamentals of child development, New York: Holt
Rinehart and Winston

Mussen P H (1983) Handbook of Child Psychology (eds Flavell J Hand Marklnan E
M) Volume III Cognitive Developn1ent, New York: John Wiley and Sons

Myers B (1998) Natural Programming: Project Overview and Proposal Found at
http://reports-archive.adm.cs.cmu.edu/anon/usr/anon/home/ftp/1998/CMU-CS-98-
10 l.html 24/04/2001

Nash A and Ball D (1983) An introduction to microcomputers in teaching, London:
Hutchinson

Naur P (1983) Program development studies based on diaries in Green et al. (eds)
(1983) The Psychology of Computer Use

NCET (1969 a) The report of the National Council for Educational Technology 1967 -
1968 Towards more Effective Lean1ing, London: NCET

NCET (1969 b) Working Paper No 1 Computers for Education Report of a Working
Party into the potential applications and development of c01nputer based learning
systems, London: NCET

NCET (1969 c) Computer Based Learning: A Programme for Action, London: NCET

NCET (1969 d) Computer Based Learning Systems A programme for research and
development Report of a Feasibility Study to outline an advanced programme of
research and development to apply computers to education and training, London:
NCET

NCET (1970) Journal of Educational Technology Vol. 1 No.1 Jan. 1970 London:
NCET

NCET (1970) Journal of Educational Technology Vol. 1 No.2 May 1970 London:
NCET

NCET (1973) Educational Technology: Progress and Promise The Report of the
National Council for Educational Technology 1967 - 1973, London: NCET

NDPCAL (1977) Final Report of the Director Richard Hooper National Council for
Educational Technology

Nelson G On-line evaluation: Multiple choice, discussion questions, essay, and
authentic projects Found at http://wind.cc.whecn.edu/ ·gnelson/paper/TCC-98.html
14/09/2000

A J Bird 495

The teaching of programming to novice programmers: three approaches

Bibliography

Nelson K (1996) Language in cognitive development Cambridge: Cambridge
University Press

Newby T, Stepich D, Lehman J and Russell J (1996) Instructional technology for
Teaching and Learning Designing Instruction, Integrating Computers and Using
Media, Columbus, Ohio: Merrill

Nisbet J and Broadfoot P (1980) The Impact of Research on policy and practice in
education, Aberdeen: The University Press

Noe A, Pessoa L and Thompson E (2000) Beyond the grand illusion:
what change blindness really teaches us about vision Found at
http://www2.ucsc.edu/people/anoe/GrandIllusion.htm122/02/200 1

Norman D (1983) Some Observations on Mental Models in Gentner and Stevens (eds)
(1983) Mental Models

Norris M and Rigby P (1992) Software Engineering Explained, Chichester, England:
John Wiley and Son

North S (1998) Visualizing Graph Models of Software in Stasko et al (eds) (1998)
Software Visualization

O'Connor DJ (1957) An Introduction to the Philosophy of education, London:
Routledge and Kogan Page

O'Donohue Wand Kitchener R F (eds) (1996) The philosophy of psychology,
London: Sage

O'Shea T and Self J (1983) Learning and teaching with computers: artificial
intelligence in education, Brighton: Harvester Press

Ohlsson S (1990) Artificial Instruction: A Methodfor Relating Learning Theory to
Instructional Design in Jones and Winne (eds) (1990) Adaptive Learning
Environments Foundations and Frontiers

Olson DR (1970) Cognitive development The child's acquisition of diagonality, New
York: Academic Press

Opacic P and Roberts A (1985) CAL impleme..ntation in Reid and Rushton (eds)
(1985) Teachers, computers and the classroom

Opie C (ed.) (2004) Doing Educational Research A Guide to First Time Researchers,
London: Sage

Organick E (1973) Information Structure Concepts for Beginners: An Informal
Approach in Turski (ed.) (1973) Programming Teaching Techniques

A J Bird 496

The teaching of programming to novice programmers: three approaches

Bibliography

Ormerod T (1990) FIuman Cognition ~nd Programming in Hoc et al (eds) (1990) The
Psychology of Programming

Owen M (2000) Structure and discourse in a telernatic learning environment
Educational Technology and Society 3 (3) 2000

Pane J and Myers B (2000) The Influence of Programming on a Language Design:
Project Status Report in Blackwell and Bilotta (eds) (2000) lih Workshop of the
Psychology of Programming Interest Group

Papert S (1980) Mindstorms: Children, Computers and Powerful Ideas, Brighton:
Harvester Press

Papert S (1989) Teaching Children Thinking in Soloway and Spohrer (eds) (1989)
Studying the Novice Programmer

Papert S and Soloman C (1989) Twenty Things to do with a Computer in Soloway and
Spohrer (eds) (1989) Studying the Novice Programmer

Parekh B (ed.) (1974) Jeremy Benthanl Ten critical essays, London: Frank Cass

Payne A, Hutchings Band Ayre P (1980) Computer Software for Schools, London:
Pitman

Pea R and Kurland D (1983) On the Cognitive Prerequisites of Learning Computer
Programming Technical Report No 18, New York: Center for Children and
Technology

Pea R and Kurland D (1987) On the Cognitive Effects of Learning Computer
Programming in Pea and Sheingold (eds) (1987) Mirrors of Minds

Pea Rand Sheingold K (eds) (1987) Mirrors of Minds Patterns of Experience in
Educational Computing, Norwood, New Jersey: Ablex Publishing Corporation

Pea R, Kurland D and Hawkins J (1987) Logo and the Development of Thinking Skills
in Pea and Sheingold (eds) (1987) Mirrors of Minds

Peltonen M (ed.) (1996) The Cambridge Companion to Bacon, Cambridge:
Cambridge University Press

Percival P and Ellington H (1988) A Handbook of Educational Technology, London:
Kogan Page

Perkins D, Hancock C, Hobbs R, Martin F and Simmons R (1989) Conditions of
Learning in Novice Programmers in Soloway and Spohrer (eds) (1989) Studying the
Novice Programmer

A J Bird 497

The teaching of programming to novice programmers: three approaches

Bibliography

Petre M and Blackwell A (1999) Mental Imagery in Program Design and Visual
Programming International Journal of Human-Computer Studies (1999) Volume 57
(1) pp 7-30

Petre M, Blackwell A and Green T (1998) Cognitive Questions in Software
Visualization in Stasko et al (eds) (1998) Software Visualization

Piaget J, Amann A, Bonnet C L, Graven M F, Henriques A, Labarthe M, Maier R,
Moreau A, Othenin-Girard C, Stratz C, Uzan Sand Vergopoulo T (1978) Success and
understanding, London: Routledge Kogan Page

Pillsbury W B (1929) The history of psychology, London: George Allen and Unwin

Pinker S (2002) The Blank Slate, London: Penguin Books

Pocztar J (1972) The Theory and Practice of Programmed Instruction A Guide for
Teachers, Paris, UNESCO

Polson M and Richardson J (1988) Foundations ofIntelligent Tutoring Systems,
Hillsdale, New Jersey: Lawrence Erlbaum Associates Publishers

Popper K (1969) Conjectures and Refutations, London: Routledge

Powell J (1985) The Teacher's Craft A Study of Teaching in the Primary School
Edinburgh: The Scottish Council for Research in Education

Powney J and Watts M (1987) Interviewing in educational research, London:
Routledge Kogan Page

Pressman R (1992) Software Engineering: A Practitioner's Approach, New York:
McGraw-Hill

Price B, Baecker R and Small I (1998) An introduction to Software Visualization in
Stasko et al (eds) (1998) Software Visualization

Price S and Hobbs P (1995) The Long-term Viability of ToolBook in CBL
Development, UK ToolBook User Conference 1994, University of Bristol

Priest S (1990) Three British Empiricists Hobbes to Ayer, London: Penguin

Provenzo E F, Brett A and G McCloskey (1999) Computers, curriculum and cultural
change An introduction for teachers, Mahwah, New Jersey: Lawrence Erlbaum
Associates Publishers

Ramadhan Hand du Boulay B (1993) Programming Environmentsfor Novices in
Lemut et al (eds) (1993) Cognitive Models And Intelligent Environments for Learning
Programming

A J Bird 498

The teaching of programming to novice programmers: three approaches

Bibliography

Rawlings G (1997) Slaves of the Machine the Quickening of Computer Technology,
Cambridge, Massachusetts: MIT Press

Redish K and Smyth W (1986) Program style analysis: a natural by-product of
program compilation, Communications of the ACM, Volume 29, Issue 2 February
1986 pp126 - 133

Reid I and Rushton J (1985) Teachers, computers and the classroom, Manchester,
Manchester University Press

Reimann P and Spada H (1996) (eds) Learning in Humans and Machines Towards an
Interdisciplinary Learning Science, Oxford: Pergamon

Reiss S (1998) Visualization for Software Engineering - Programming Environments
in Stasko et al (eds) (1998) Software Visualization

Rensink, Ronald A (2000) ~Vhen Good Observers Go Bad: Change Blindness,
Inattentional Blindness, and Visual Experience, Psyche 6(9) Found at
http://cogprints.soton.ac.ukldocuments/diskO/2000/20001l OISO/index.html 22/02/2001

Repenning A and Perrone C (2000) Programming by analogous examples Association
for Computing Machinery Communications of the ACM, New York March 2000
Volume 43 Issue 3 pp 90-97

Reynolds J (1981) The Craft of Programming, Englewood Cliffs, New Jersey:
Prentice Hall

Richards G (1996) Putting psychology in its place An introduction from a critical
historical perspective, London: Routledge

Richardson K (1988) Understanding Psychology, Milton Keynes: Open University
Press

Richetti J (1983) Philosophical writing: Locke, Berkeley and Hume, Cambridge,
Massachusetts: Harvard University Press

Richey R (1986) The Theoretical and Conceptual Bases of Instructional Design,
London: Kogan Page

Ridgway J (1991) Of Course ICAI is Impossible ... , Worse, Though, it Might be
Seditious in Boyd-Barret and Scanlon (1991) (eds) Computers and Learning,

Ridgway J, Benzie D and Burkhardt H (1983) Investigating CAL? in CAL 83 Selected
papers from the Computer Assisted Learning symposium

Rigney J W (1961) Potential uses of computers as teaching machines in Coulson (ed.)
(1961) Programmed learning and computer-based instruction Proceedings of the
conference on Application of Digital Computers to Automated Instnlction October 10
- 12 1961

A J Bird 499

The teaching of programming to novice programmers: three approaches

Bibliography

Rogalski J and Samuryay R (1993) Task Analysis and Cognitive Model as a
Framework to Analyse Environments for Learning Programming in Lemut et al (eds)
(1993) Cognitive Models And Intelligent Environments for Learning Programming

Rogers G A J and Ryan A (1988) Perspectives on Thomas Hobbes, Oxford:
Clarendon Press

Romiszowski A (1987) Artificial intelligence and expert systems in education:
Progress, promise and problems in Australian Journal of Educational Technology,
3(1),6-24 Found at http://c1eo.murdoch.edu.au/gen/aset/ajet/ajet3/wi87p6.html
12/0912000

Rose E (1999) Deconstructing Interactivity in Educational Computing in Educational
Technology Volume XXXIX No. 1

Rosin R (1973) Teaching "About Programming" in Turski (ed.) (1973) Programming
Teaching Techniques

Ross W D (ed.) (1960) The Works of Aristotle translated into English Vol. VII
Metaphysica, Oxford: Clarendon Press

Roth I (1990) (ed.) Introduction to Psychology Volume 2, Milton Keynes: Open
University Press

Ruehr F and Orr G (2002) Interactive program demonstration as a form of student
program assessment, Consortium for Computing Sciences in Colleges

Rushby N (1979) An introduction to Educational Computing, London: Croom Helm

Rushby N (ed.) (1977) Technical report No 16 Computer Managed Learning in the
1980s A future study report, London: CET

Rushby N (ed.) (1981) Selected Readings in Computer Based Learning, London:
Kogan Page

Russell B (1998) (Introduction by Skorupski J) The problems of philosophy, Oxford:
Oxford University Press

Russell J (1978) The acquisition of knowledge, Hong Kong: Macmillan Press

Sackman H, Erikson W J and Grant E E (1968) Exploratory experimental studies
comparing online nad offline programming performance, Communications of the
ACM, Volume 11, Number 1, January 1968, pp 3 - 11

Sacks 0 (1989) Seeing Voices, Berkeley: University of California Press

Saettler P (1968) A history of instructional technology, New York: McGraw-Hill

A J Bird 500

The teaching of programming to novice programmers: three approaches

Bibliography

Samun;ay R (1989) The Concept of Variable in Programming: Its Meaning and Use
By Novice Programmers in Soloway and Spohrer (eds) (1989) Studying the Novice
Programmer

Sanders Sand Ayayee E (1997) Engaging Learners in Computer Aided Learning:
Putting the Horse before the Cart Found at
http://www.curtin.edu.au/conference/ ASCILITE97 /papers/Sanders/Sanders.html
15/02/2001

Sanger J (1988) Programming Learners or Algorithm, who could askfor anything
more? in Schostak (ed.) (1988) The Impact of Educational Technology on Schooling

Sanger J, Wilson J, Davies Band Whitakker R (1997) Young Children Videos and
Computer Games Issues for Teachers and Parents, London: Falmer Press

Sapolsky R (2003) Bugs in the brain Scientific American, March 2003

Sax G (1979) Foundations of Educational Research, Englewood Cliffs, New Jersey:
Prentice Hall

Scaife J and Wellington J (1993) Information Technology in Science and Technology
Education, Buckingham: Open University Press

Scanlon E and O'Shea T (eds) (1987) Educational Computing, Chichester: John
Wiley

Scardamalia M and Bereiter C (1992) Surpassing Ourselves An Inquiry into the
nature and implications of expertise, Chicago: Open Court

Schostak J (ed.) (1988) The Impact of Educational Technology on Schooling,
London: Methuen

Schuell T J (1990) Designing Instructional Computing Systems for Meaningful
Learning in Jones and Winne (eds) (1990) Adaptive Learning Environments
Foundations and Frontiers

Scott D (1998 a) Methods and data in educational research in Scott and Usher (eds)
(1998) Understanding Educational Research

Scott D (1998 b) Ethnography and Education in Scott and Usher (eds) (1998)
Understanding Educational Research

Scott D and Usher R (1998) (eds) Understanding Educational Research, London:
Routledge

Scott-Kakures D, Castagnetto S, Benson H, Taschek Wand Hurley P (1993) History
of philosophy, New York: Harper Perennial

A J Bird 501

The teaching of programming to novice programmers: three approaches

Bibliography

SelfJ (1985) Microcomputers in Education A Critical Evaluation of Educational
Software, Brighton, Harvester Press

Sengler H (1983) A model of the understanding of a program and its impact on the
design of the programming language grade in Green et al (eds) (1983) The
Psychology of Computer Use

Sewell D (1990) New Tools for New Minds A Cognitive Perspective on the Use of
Computers with Young Children, New York: Harvester Wheatsheaf

Shaffer D R (1985 2nd Edition) Developmental psychology Childhood and
adolescence, Pacific Grove: Brooks Cole Publishing Company

Shapin S (1994) A Social History of Truth Civility and Science in Seventeenth
Century England, Chicago and London: The University of Chicago Press

Shaw M (1990) Prospects for Engineering Discipline of Software, IEEE software
November 1990 pp 15-24

Sherman R and Webb R (eds) (1988) Qualitative Research in Education: Focus and
Methods, London: The Falmer Press

Shermer M (2004) The Enchanted Glass in Scientific American, May 2004 p 27

Shields B (1991) Universities Funding Council Information Technology Training
Initiative (ITTI) in The CTISS File No 12 September 1991

Shimahara N (1988) Anthroethnography: A Methodological Consideration in
Sherman and Webb (eds) (1988) Qualitative Research in Education: Focus and
Methods

Shneiderman B (1980) Software Psychology Human Factors in Computer and
Information Systems, Cambridge, Massachusetts: Winthrop Publishers

Shneiderman B (1985) A Model Programming Environment in Hartson (ed.) (1985)
Advances in Human-Computer Interaction

Sibley M (1985) Computer Assisted Learning, Lop.don: Century Communications

Siemer-Matravers J (1999) Intelligent Tutoring Systems and Learning as a Social
Activity in Educational Technology Volume XXXIX No 5

SIGSCE Bulletin Conference Proceedings The 4th annual SIGSCE/SIGCUE
Conference on Innovation and Technology in Computer Science Education
ITiCSE'99 June 27 -July 1, 1999, Cracow, Poland

Silverman D (1994) Interpreting Qualitative Data Methods for Analysing Talk, Text
and Interaction, London: Sage

A J Bird 502

The teaching of programming to novice programmers: three approaches

Bibliography

Silvers R B (ed.) (1997) Hidden Histo~ies of Science, London: Granta Books

Sime H, Arblaster A and Green T (1977) Reducing programmer errors in nested
conditionals by prescribing a writing procedure in International Journal of Man
Machine Studies 9 pp 119 -126

Sinclair B and Bacon R (1997) Learning with SToMP: flexibility in a complete
environment in CAL 97 International Conference WWW Proceedings

Skinner B F (1953) Science and Human Behaviour, New York: Macmillan

Skinner B F (1962) The Science of Learning and the Art of Teaching in Smith and
Moore (eds) (1962) Progranlmed Learning Theory and Research An Enduring
Problem in Psychology Selected Readings

Skinner B F (1978) Reflections on behaviorism and society, New Jersey: Prentice
Hall

Skyrme D J (1981) The evolution ofgraphics in CAL in Computer Assisted Learning
Selected papers from the CAL? 1 sytnposium

Slater J (1996) The Impact ofTLTP in Active Learning Number 4 July 1996

Sleeman D and Brown J (eds) (1982) Intelligent Tutoring Systenls, London:
Academic Press

Sleeman D, Baxter J and Kuspa L (1989) A Summary of Misconceptions of High
School Basic Programmers in Soloway and Spohrer (eds) (1989) Studying the Novice
Programmer

Smith F and Miller G A (eds) (1966) The genesis of language A psycholinguistic
approach, Cambridge, Massachusetts: MIT Press

Smith H and Green T (eds) (1980) Human Interaction with Computers, London:
Academic Press

Smith J (2002) Learning Styles: Fashion Fad or Lever for Change? The Application
of Learning Style Theory to Inclusive Curriculum Development, Innovations in
Education and Teaching International, February 2002, Volume 39 Number 1

Smith P and Webb G (2000) The Efficacy of a Low-Level Program Visualization Tool
for Teaching Programming Concepts to Novice C Programmers in Journal of
Educational Computing Research, Volume 22 No 2, 2000, pp 187-216

Smith PR (ed.) (1981) Computer Assisted Learning Selected papers from the CAL 81
symposium, Oxford: Pergamon Press

Smith PR (ed.) (1983) CAL 83 Selected papers from the Conlputer Assisted Learning
symposium, Oxford: Pergamon Press

A J Bird 503

The teaching of programming to novice programmers: three approaches

Bibliography

Smith P R (ed.) (1985) CAL 85 Advances in computer-assisted learning: selected
proceedings from the CAL 85 symposium, Oxford: Pergamon Press

Smith W I and Moore J W (eds) (1962) Programmed learning Theory and Research
An enduring problem in psychology Selected Readings, Princeton, New Jersey: D
Van Nostrand

Solomon C (1986) Computer Environments for Children A reflection on Theories of
Learning and Education, Cambridge, Massachusetts: MIT Press

Soloway E and Spohrer J (eds) (1989) Studying the Novice Programmer, Hillsdale,
New Jersey: Erlbaum Associates

Somekh B and Davis N (eds) (1997) Using Information Technology Effectively in
Teaching and Learning Studies in pre-service and in-service Teacher Education,
London: Routledge

Sorley W R (1920) A History of English Philosophy, Cambridge: Cambridge
University Press

Spohrer J and Soloway E (1989) Novice Mistakes: Are the Folk Wisdoms Correct? in
Soloway and Spohrer (eds) (1989) Studying the Novice Programmer

Spooner C (1986) The ML Approach to the Readable All-Purpose Language in ACM
Transactions on Programming Languages and Systems Volume 3 No 2 April 1986

Squires D (1999) Educational Software for Constructive Learning Environments:
Subversive Use and Volatile Design in Educational Technology Volume XXXIX No.
3

St Amant R, Lieberman H, Potter Rand Zettlemayer L (2000) Visual generalization
in programming by example in Association for Computing Machinery
Communications of the ACM New York March 2000 Volume 43 Issue 3 ppl07-114

Stainback S and Stainback W (1988) Understanding and Conducting Qualitative
Research, Dubuque, Iowa: Kendall Hunt

Stansifer R (1995) The study of programming languages, Englewood Cliffs, New
Jersey: Prentice-Hall

-
Stasko J and Lawrence A (1998) Empirically Assessing Algorithm Animations as
Learning Aids in Stasko et al (eds) (1998) Software Visualization

Stasko J, Domingue J, Brown M and Price B (eds) (1998) Software Visualization
Programming as a Multimedia Experience, Cambridge, Massachusetts: MIT Press

Steffe L P and Gale J (eds) (1994) Constructivism in Education, Hillsdale, New
Jersey: Erlebaum

A J Bird 504

The teaching of programming to novice programmers: three approaches

Bibliography

Steier F (1994) From Universing to Conversing: An Ecological Constructionist
Approach to Learning and Multiple Description in Steffe and Gale (eds) (1994)
Constnlctivisn1 in Education

Stephenson J (ed.) (2001) Teaching and learning Online Pedagogies for New
Technologies, London: Kogan Page

Sternberg J (ed.) (1994) Thinking and Problem solving, San Diego: Academic Press

Sternberg R J (1996) Cognitive Psychology, Fort Worth: Harcourt Brace College
Publishers

Stillings N, Weisler S, Chase C, Feinstein M, Garfield J and Rissland E (1995)
Cognitive Science An introduction Cambridge, Massachusetts: Harvard Press

Stokes R J S (1994) Computer Assisted Learning in Engineering at the University of
Humberside, Open Learning Foundation

Stolurow L M and Davis D (1965) Teaching Machines and Computer-Based Systems
in Glaser (1965) Teaching Machines and Programed Leanling II Data and Directions

Stone L (1977) The Family, Sex and Marriage, 1500 - 1800, London: Weidenfeld and
Nicholson

Straker A (1989) Children using computers, Oxford: Blackwell

Satratzemi M, Dagdilelis V and Evangelidis G (2001) Telemachus: A system for the
submission and assessment of students programs, Learning Technology, Volume 3
Issue 3 July 2001, IEEE Computer Society

Stronach I and MacLure M (1997) Educational Research Undone The Post Modern
Embrace, Buckingham: OU Press

Suppes P Jerman M and Dow B (1968) Computer Assisted Instruction Stanford's
1965-1966 Arithmetic Program, New York: Academic Press

Sutcliffe F E (ed.) (1968) Discourse on Method and The Meditations, London:
Penguin Books

Tansey P J (ed.) (1971) Educational Aspects of Simulation, London: McGraw-Hill

Tawney D (ed.) (1979 a) Learning through computers An introduction to Computer
Assisted Learning in Engineering, Mathematics and the Sciences at tertiary level,
London: Macmillan

Tawney D (1979 b) CAL in different contexts in Learning through computers An
introduction to Computer Assisted Learning in Engineering, Mathematics and the
Sciences at tertiary level

A J Bird 505

The teaching ofprogramming to novice programmers: three approaches

Bibliography

Tawney D (1979 c) CAL and learning in Learning through computers An introduction
to Computer Assisted Learning in Engineering, Mathematics and the Sciences at
tertiary level

Taylor A E (1970) Thomas Hobbes, Port Washington: Kennikat Press

Taylor J and Walford R (1978) Learning and the Simulation Game, Milton Keynes:
Open University Press

Taylor M (1997) Learning Styles in Inquiry, Volume 1, Number 1, Spring 1997,45-
48 1997 http://www.br.cc.va.us/vcca/il1tayl.html 09/1212000

Teasley B (1993) Program Comprehension Skills and Their Acquisition: A Call for an
Ecological Paradigm in Lemut et al (eds) (1993) Cognitive Models And Intelligent
Environments for Learning Programming

Tennyson R (ed.) (1992) Automating Instructional Design, Development and
Delivery, Berlin: Springer-Verlag

Thagard P (1996) Mind Introduction to cognitive science, Cambridge, Massachusetts:
MIT Press

The Proceedings of the Loughborough Programmed Learning Conference April 1966,
London: Methuen

Thomas J E (1980) Musings on The Meno A new translation with commentary, The
Hague: Martinus Nijhoff

Thomas P and Paine C (2000) Tools for Observing Study Behaviour in Blackwell and
Bilotta (eds) (2000) 12th Workshop of the Psychology of Programming Interest Group

Thompson J (1996) Embedding technology into language examinations: a case study
in Active Learning Number 4 July 1996

Thornbury H, Elder M, Crowe D, Bennett P and Belton V (1996) Suggestions for
successful integration in Active Learning Number 4 July 1996

Thorndike E (1931) Human Learning, Cambridge,.Massachusetts: MIT Press

TLTP (1994) Newsletter No 1 July 1994, TL1;'P

TLTP (1994) Newsletter No 2 Autumn 1994, TLTP

TLTP (1998) Newsletter No 11 Summer 1998, TLTP

TLTP A report on a workshop on the implementation and distribution of courseware
across a university campus, TLTP

TLTP Institutional case studies, TL TP

A J Bird 506

The teaching oj programming to novice programmers: three approaches

Bibliography

TLTP Science case studies, TLTP

TLTP What has been achieved? CTI

Tuck R (1989) Hobbes, Oxford: Oxford University Press

Tuckman B (1978) Conducting Educational Research, New York: Harcourt Brace
Jovanovich Inc

Tufte E (1997) Visual Explanations Images and Quantities, Evidence and Narrative,
Cheshire, Connecticut: Graphics Press

Turner J (1975) Cognitive development, London: Methuen and Co

Turpin S (ed.) (1995) Catalogue Phase 1 Spring 1995, TLTP

Turpin S (ed.) (1996) Catalogue Phase 2 Spring 1996, TLTP

Turpin S (1997) Association for Learning Technology Newsletter No 18 July 1997

Turski W (ed.) (1973) Programming Teaching Techniques Proceedings of the IFIP
TC-2 Working Conference on Programming Teaching Techniques Zakopane, Poland
September 18-22, 1972, Amsterdam: North-Holland Publishing Company

UNCAL (1975) The Programme at Two An UNCAL Companion to Two Years On
University of East Anglia: Centre for Applied Research

Underwood J D M and Underwood G (1990) Computers and Learning Helping
children acquire thinking skills, Oxford: Blackwell

Unwin D and Leedham J (eds) (1967) Aspects of Educational Technology, London:
Methuen

Urban-Lurain M (1997) An Instructional Theory Jor Introductory Computer Science
Jor Non-Computer Science Students Found at
http://aral.cps.msu.edu/CPSI01SS99/CPSI0IVisitor/InstructionaITheory.htm

Usher R (1998 a) A critique oJthe neglected epistemological assumptions oj
educational research in Scott and Usher (eds) (1998) Understanding Educational
Research

Usher R (1998 b) Textuality and reflexivity in educational research in Scott and Usher
(eds) (1998) Understanding Educational Research

Van Dalen D (1979) Understanding Educational Research An Introduction, New
York: McGraw-Hill

van de Veer G and van de Wolde G (1983) Individual differences and aspects oj
control flow notations in Green et al. (eds) (1983) The Psychology of Computer Use

A J Bird 507

The teaching of programming to novice programmers: three approaches

Bibliography

van de Veer G (1993) Mental Representations of Computer Languages -A Lesson
from Practice in Lemut et al (eds) (1993) Cognitive Models And Intelligent
Environments for Learning Programming

Van Lehn (1988) Student modelling components of ITS in Polson and Richardson
(1988) Foundations ofIntelligent Tutoring Systems

VanLengen C and Maddux C (1990) Does Instruction in Computer Programming
Improve Problem Solving Ability? in Journal of Information Systems 12/90 Found at
http://www.gise.org/JISE/Voll-5IDOESINST.htm 24/04/2001

Vasta R (ed.) (1992) Six theories of child development Revised formulations and
current issues, London: Jessica Kingsley Publications

Venables A and Haywood L (2001) Programming students NEED instantfeedbackl,
5th Australasian Computing Education Conference, Adelaide, Australia

Verma G and Beard R (1981) What is educational research? Perspectives on the
Techniques of Research, Aldershot, Hants: Gower Publishing Company

Verma G and Mallick K (1999) Researching Education Perspectives and Techniques,
London: Falmer Press

Vygotsky L S with Cole M, John - Steiner V, Scribner S, Souberman E (eds) (1978)
Mind in Society The Development of Higher Psychological Processes,

Walford G (ed.) (1994) Researching the Powerful in Education, London: UCL Press
Limited

Wartenburg T E (1992) Reason and the practice of science in Guyer (ed.) (1992) The
Cambridge Companion to Kant

Watkins M, Glutting J and Youngstrom E (2002) Cross-Battery Cognitive
Assessment: Still Concerned Found at
http://www .nasponline.org/pub licationsl cq312cbattery.html 24/04/2003

Watson D (1987) Developing CAL: Computers in the Curriculum, London: Harper
and Row

Watson G (1966) The Stoic theory ofknowled_ge, Belfast: Queen's University

Watson J (2003) Egg shells out [12m in development restyle, Computing, 13
November 2003

Watson R I and Evans R B (1991 5th Edition) The Great Psychologists A History of
Psychological Thought, London: Harper Collins

Webb G (1996) Becoming Critical of Action Research for Development in Zuber
Skerritt (ed.) (1996) New Directions in Action Research

A J Bird 508

The teaching o/programming to novice programmers: three approaches

Bibliography

Webster R (1996) Why Freud was wroM,·New York: Harper Collins

Weinberg G (1971) Psychology of Computer Programming, New York: Van Nostrand
Reinhold

Weizenbaum J (1984) Computer Power and Human Reason From Judgment to
Calculation, Middlesex, England: Pelican Books

Wellington J J (1996) Methods and Issues in Educational Research, Sheffield:
UniverSIty of Sheffield Division of Education

Wells H K (1960) Sigmund Freud a Pavlovian critique, London: Lawrence Wishart

Welsh T (1999) Implications 0/ Distributed Learning/or Instructive Designs: How
~Vill the Future Affect the Practice? in Educational Technology Volume XXXIX No.
2

Wender K F, Schmalhofer F and Bocker H (eds) (1995) Cognition and Computer
Programming, New Jersey: Ablex Publishing Corporation

Wertheimer M (1987 3rd Edition) A briefhistory of psychology, Fort Worth: Harcourt
Brace and Jovanovich

Wertsch J V (ed.) (1995) Culture Communication and Cognition: Vygotskyian
Perspectives, Cambridge: Cambridge University Press

Wertsch J V and Stone C A (1995) The concept o/internalization in Vygotsky's
account o/the genesis o/higher mental/unctions in Wertsch (ed.) (1995) Culture
Communication and Cognition

White B and Watts J C (1973) Experience and environment Major influences on the
development of the young child, Volume I, New Jersey: Prentice Hall

Wiedenbeck S and Fix V (1993) Characteristics o/the mental representations 0/
novice and expert programmers: an empirical study in International Journal of Man
Machine Studies (1993) 39 pp 793 - 812

Wilkes M V (1995) Computing Perspectives, San Francisco, California: Morgan
Kaufman

Wilkinson A (ed.) (1983) Classroom Computers and Cognitive Science, New York:
Academic Press

Willian1s L and Kessler R (2000) All I really need to know about pair programming I
learned in Kindergarten Association for Computing Machinery Communications of
the ACM, New York: May 2000 Volun1e 43 Issue 5 ppl08-114

Willig C (2001) Introducing Qualitative Research in Psychology Adventures in
Theory and Method, Buckinghan1: Open University Press

A J Bird 509

The teaching of programming to novice programmers: three approaches

Bibliography

Wilson B (1999) Evolution of Learning Technologies: From Instructional Design to
Performance Support to Network Systems in Educational Technology Volume
XXXIX No. 2

Winslow L (1996) Programming Pedagogy - A Psychological Overview in SIGSCE
Bulletin Volume 28 No 3 Sept 1996

Winter R (1996) Some Principles and Procedures for the Conduct of Action Research
in Zuber-Skerritt (ed.)(1996) New Directions in Action Research

Wittich W A and C F (1973) Instructional Technology Its Nature and Use, New York:
Harper and Row

Wolcott H (1990) On Seeking- and Rejecting- Validity in Qualitative Research in
Eisner E and Peshkin A (eds) (1990)

Wood A (1979) CAL in biology in Learning through computers An introduction to
Computer Assisted Learning in Engineering, Mathematics and the Sciences at tertiary
level

Wood D L (1985) Designing microcomputer programs for disabled students in CAL
85 Advances in computer-assisted learning: selected proceedings from the CAL 85
symposium

Wood D, Bruner J S and Ross G (1976) The Role of Tutoring in Problem Solving in
Journal of Child Psychology and Psychiatry Volume 17 1976 pp 89 - 100

Wood T (1994) From Alternative Epistemologies to Practice in Education:
Rethinking What it Means to Teach and Learn in Steffe and Gale (eds) (1994)
Constructivism in Education

WoolfB P (1990) Towards a computational model of Tutoring in Jones and Winne
(eds) (1990) Adaptive Learning Environments Foundations and Frontiers

Woolgar S (1988) (ed.) Knowledge and Reflexivity New Frontiers in the Sociology of
Knowledge, London: SAGE Publications

Woolgar S (1988) Reflexivity is the Ethnographer of the Text in Woolgar (1988) (ed.)

Woolhouse R (1971) Locke's philosophy of Science and Knowledge A consideration
of some aspects of An Essay Concerning Human Understanding, Oxford: Blackwell

Woolhouse R (ed.) (1988) Principles of Human Knowledge/Three Dialogues,
London: Penguin

Wright J P (1983) The Sceptical Realism of David Hume Manchester: Manchester
University Press

A J Bird 510

The teaching of programming to novice programmers: three approaches

Bibliography

Wright T (1999) Towards a Method for Evaluating Computer-Assisted Learning
Software Found at
http://www.fed.qut.edu.au/projects/aseraiasera99_abstracts.htm#Authors%20S-Z
21104/2004

Wu Q and Anderson J (1993) Strategy choice and change in programming in
International Journal of Man-Machine Studies (1993) 39 pp 579-598

Yazdani !'1 Artificial intelligence, Powerful Ideas and Children's Learning
http://www.media.uwe.ac.uk/n1asoud/author/ideas.htm 24/08/2000

Yolton J W (ed.) (1974) An Essay concerning Human Understanding Volume I,
London: Dent

Yolton J W (ed.) (1974) An Essay concerning Hmnan Understanding Volume II,
London: Dent

Yourdon E (1976) flow to be a superprogrammer, Infosystellls, February 1976

Zabeeh F (1960) Hume Precursor of modern empiricism An analysis of his opinions
on Meaning, Metaphysics, Logic and Mathematics, The Hague: Martinus Nijhoff

Zuber - Skerritt 0 (ed.) (1996) New Directions in Action Research, London: Falmer
Press

Zusne L (1975) Names in the history of psychology A biographical sourcebook,
Washington: Hemisphere

A J Bird 511

The teaching of programming to novice programmers: three approaches

Index

A

accidental sampling
action research
Ada 149

40
21-27

Ada Programming Support Environment See APSE
affective issues in programming 127
AI 134, 190, 104 - 105
Alexander, C 19,58-61,94,242,244
algorithm animation 138, 140, 141 - 142
algorithmic toolkit 73
algorithms 74
ALICE See syntax editor
Alvey Committee 354
anthropology 311
APSE 149
aptitude tests 102 - 103
artificial intelligence See AI
associationism 157
ASSYST 266
author 7

background 17
own CAL 218

automated grading of student programs
axiomatic semantics 133

B

Bacon, F 295
BALSA 141
BASIC 80
behaviourism 157 - 166
benign introspection 51
benign reflection 52
Bergin, J 62, 63
Bruner, J 169 - 171
big Q 30 - 33

263 -270

512

The teaching of programming to novice programmers: three approaches

Index

c
CAl
CAL

178
8,10,11,12,146,196 - 201,286
by the author 55 - 58,218 - 221
by the School of Engineering
cost of 349
drill and practice 185

202 - 213

for collaborative and active learning 196 - 201
intelligent 190 - 193
tutorial 53, 57, 178, 189
types of 178 - 184

CAN 8, 205, 286
CASE 142
CBCA 101
CBT 178
Ceilidh 264
change blindness 110 - 114
CMC 198
CMI 178
COBOL 81
code layout 142
cognitive psychology 104, 166 - 167
cohort studies 41
Controlled Area Network See CAN
Computer Aided Instruction See CAl
Computer Aided Learning See CAL
Computer Aided Software Engineering. See CASE
Computer Assisted Learning See CAL
Computer Environment for Interactive Learning in Diverse Habitats. See Ceilidh
Computer Based Training See CB T
Computer Programming for All See CP4E
Con1puter Managed Instruction See CMI
Computer Mediated Communication. See CMC
Computers in Teaching Initiative. See CTI
con1puting curriculum 60 - 68
conditioned reinforcers 164
confirmatory bias 114 - 115
connectionism 158
constructionism 175 - 176
constructivism 171 - 175
correlational research 33
CP4E 137
Cross-Battery Cognitive Assessment. See CBCA
criterion referencing 261 - 264
CTI 355 - 360

513

The teaching o/programming to novice programmers: three approaches

Index

D

data gathering 249
Dearing Report 358
De Bono, E 101
debugging 123 - 131
Department of Engineering 8
dependent variables 44
design patterns 62
designing new programming languages 135
diaries 38
Dijkstra, E 71
drill and practice CAL 185
Dynalab 138

E

Economic and Social Research Council See ESRC
Educational paradigms 180 - 181

instructional 180 - 181
revelatory 180 - 181
emancipatory 180 - 181
conjectural 180 - 181

educational research 29
methodologies
tools and methods
value of

ego-less programming
epistemology 156
ESRC 356

20-27
27 -47
47-49

129

ethnography 53,300, 308, 311 - 312
ethnomethodology 311
Euphoria 136
evaluating student programs 259 - 270
ex post facto 33
exit questionnaire
expert programmers
external validity

threats to
extraneous factors
extreme programming

280
97, 106, 124,125,322 - 330
42
43
46

153

514

The teaching of programming to novice programmers: three approaches

Index

F

first programming language 79 - 92
focus groups 38, 275
forn1alisn1 37
FORTRAN 81
FORTRAN 77 264
FPL 80

G

Games Computing degree 271
gaines 187 - 189
Gardner, H 118 - 119
gate, the 59
goals of the research effort 17
goto 71, 72
GRAIL
Gregorc, A F

84, 135
119-121

1-1

Hawthorne effect 43
henneneutics 309
Higher Education Funding Council 9
higher education 8
Hillside group 246
human aspects of learning to program 96
Humberside Polytechnic 8

515

The teaching o/programming to novice programmers: three approaches

Index

I

ICAI 190 - 193
IconAuthor 286
Idols of the Tribe 295
ILT 366 - 367
inattention blindness 110- 114
independent variables 54
Information Technology Training Initiative See ITT!
Institute for Learning and Teaching, See ILT
Intelligent Computer Assisted Instruction. See leAl
Intelligent Tutoring System. See ITS
intelligences 118
interactive program demonstration 267
internal validity 42, 46
introductory programming 13
introspection 52
IS09000-3 5
ITS 134,150
ITTI 356

J

Java 139
Jeliot 139

K

Keirsey Temperament and Character tests 100
Kolb, D 119
Kruskal Wallis 251

L

Language List
Law of Effect
learning styles
learning to program
Lens 138
Lewin, K 23
Likert Scale 251

79
164
117-121
1,65,220

literate programming 143 - 146
little q 30 - 33
LOGO 7,82,87 - 89, 128
longitudinal studies 41

516

The teaching of programming to novice programmers: three approaches

Index

M

Mars Climate orbiter 3
MBTI 100,101
Memento pattern 244
MENO-II 134
mental models 103, 107-108
MEP 353 - 355
metaphor and analogy 115 - 116
MicroeleCtronics Project See MEP
microworlds 193 - 195
ML 136
modelling 187 - 189
modes of presentation 170

enactive 170
iconic 170
symbolic 170

n10dularity 75 - 76
MPE 149
MSc 7,8,283
Myers-Briggs Type Indicator See MBT!

N

National Council for Educational Technology. See NCET
National Developn1ent Programn1e in CAL. See NDPCAL
NCET 342 - 347

Work up to 1969 342 - 346
1969 - 1973 346 - 347

NDPCAL 347-352
nOVIce programmers 97, 124,125,130,221,238,299,322 - 330

o
observation
ontology
OOPSLA87

253 - 256, 276
156
62,243

operant conditioning 164
Open University 348
outline of author's research 55

517

The teaching a/programming to novice programmers: three approaches

Index

p

pair programming 154
Papert,S 7,88
parameters 75-76
parsmg 327
participant observation 36,37
Pascal 7,8,90 - 92, 283, 315 - 321,434
Pascal Help system 223 - 226
pattern elements 63
pattern languages 88
Pattern Languages in Programming See PLoP
pattern syntax 63
pattern template 248,314
patterns and software 61
patterns 88, 242, 245
Pavlov 159
PBD 151-152
PBE 152
pedagogical patterns 62, 93, 94
Perl script 423, 424, 426 - 429
personality tests 99 - 101
PGCE 7,282
phenomenography 308, 310
phenomenology 308, 310
PLiI 81
PLATO 337 - 340
PLoP 243
positivism 308 - 309
Postgraduate Certificate in Education See PGCE
pragmatism 37
pretests 43
probability sampling 39
procedure 74
program visualisation 137, 139
programmed instruction 165
Programmed Logic for Automatic Teaching Operation See PLATO
programmer profiles 259
Programming by Demonstration See PBD
Programming by Example See PBE
programming concepts 68

curriculum 66 - 68
environments 148
semantics 132
syllabus 68

program11}ing to learn 65
Prolog 17,82,86, 139,284
psychology of programming 96
Python 137

518

The teaching o/programming to novice programmers: three approaches

Index

Q

QA 5
qualitative research tools 34
qualitative versus qualitative research 27 - 28
Quality Assurance See QA
questionnaires 34, 250 - 254,447 - 457
questionnaires on CAL use 213 - 218

R

random sampling 39
reading 13
reflexivity

concept of 53
constitutive 51
disengaged 52
epistenl0logical 53
role of language 54

repetition 74
research focus 18,19
research questions 13, 290
sampling strategies 39

519

The teaching o/programming to novice programmers: three approaches

Index

s
scaffolding 171
School of Engineering 201
SDE 133
selection 73
semantics 323
semi-structured interviews 35
sensitisation 45
sequence 73
Sheffield University 282
Skinner, B.F 162
SLE 268,442
SmallTalk 61,83
Specialised Learning Environment See SLE
software 1

cnsls 4
development 3
engmeenng 4, 68
metrics 260
program visualisation 137
Quality Assurance See SQA
visualisation and teaching programming
visualisation systems 142

SQA 5
stages in action research 26 - 27
Stanford project 311 - 337
statistical regression 47
Stroop effect 112
structured programming 2,69, 70, 71
submit 265

146 -148

suggestions for the teaching of programming 302
survey methods 33
syntax 323
syntax editor 132

520

The teaching o/programming to novice programmers: three approaches

Index

T

taxonomy for software visualisation 140
Teaching and Learning Technology Progrmnme. See TLTP
teaching of programming 92
teaching programming using software 131
TekniCAL 202
Telemachus 266
Thorndike, E 157
timeless way 59
Time-shared Interactive Computer Controlled Television. See TICCIT
TICCIT 337 - 340
TLTP 300, 360 - 365
Total Quality Management See TQM
TQM 5
triangulation 39
Turing language 136
tutorial CAL 53, 57, 178, 189
types of CAL 178 - 184
typography 143

u

University of Lincoln
UNCAL 349

256 - 258

Understanding Conlputer Assisted Learning See UNCAL

v
variables 75
videoconferencing 197
vision See visual cognition
visual cognition 109 - 110
Vygotsky, L 167 - 169

w
Web-based Center for Automated Testing See ~Veb-CAT Grader
Web-CAT Grader 268
Whorf, B 91

x
XP See extreme programming

521

The teaching ofprogramming to novice programmers: three approaches

Index

z
Zone of Proximal Development See ZPD
ZPD 168

522

