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Modelling Smart Fluid Devices Using CFD Abstract

ABSTRACT

The apparent slow development and uptake of smart fluid technology has been
suggested to be partly due to the inherent non-Newtonian nature of the fluids. To
improve matters, it is desirable to determine practical pre-prototype performance. This
is possible with a continuum approach and by solving the basic governing equations.
Analytical methods are limited to the simplest devices. Therefore, the most practical
way forward was hypothesised to be with existing highly developed CFD packages.
This thesis investigates the possibility of using CFD to model smart fluid flow.

Imitially, the feasibility of modelling basic isothermal, steady, one-dimensional
flow was investigated. The procedure was then extended into modelling
two-dimensional flow. Here the CFD method was used to investigate some practical
problems involving a second perpendicular flow to naturally replace heated fluid. In
addition, a smart fluid seal problem was resolved.

The procedure was extended in order to investigate unsteady flow. For a CFD
clutch run-up model, problems were identified in an existing analytical solution. To
help verify the CFD model, an experimental study was carried out. For the results to
agree, an inertial boundary condition has to be developed that allows the inertia of the
outer rotor to be included in the CFD model. Here the fluid dynamics affect the rotor
dynamics and vice versa.

A constitutive model of a viscoelastic form was found to be most appropriate for
modelling sudden changes in excitation. This allowed CFD responses to correspond
well with experimental results carried out on an ER fluid Rayleigh step-bearing rig.

The usefulness of CFD for determining the generation and transfer of heat, in
addition to temperature distribution, was investigated by comparing CFD results to both
experimental and semi-empirical analysis.

In conclusion, CFD as a pre-prototyping tool promises to be very useful.
However, it is only as good as the continuum assumption allows it to be. The procedure
is also limited by how well the constitutive equation can be determined and by the detail

and quality of fluid property data.

-ii -



Modelling Smart Fluid Devices Using CFD Acknowledgments

ACKNOWLEDGMENTS

Foremost, I need to express my gratitude to my supervisor Mr. Bill Bullough for
his expertise and guidance during the course of the project. Secondly, I must thank
Professor Ray Atkin from the University’s Department of Mathematics for his help with
the mathematical aspects of this project, and for all his support and encouragement. [ am
also extremely grateful to Dr. Roger Stanway for his support and guidance on how to

put a thesis together.

Special thanks go to technician Mr. Jim Hodgson in the Mechanical engineering
department for machining and assembling all the device parts that [ required.
Dr. Richard Tozer must be acknowledged for maintaining the high voltage unit used for
exciting the ER fluid. I am grateful to Smart Technologies, formally known as ER fluid

developments, for allowing me to use their rheometer.

It may come as a surprise that it was only until a year into this project that I
discovered my dyslexia disability. I must thank my brother for suggesting that I take a
test, and the University’s Department of Psychology for their assessment. As a result, [
now understand why I struggle with reading and writing. Consequently, I am grateful

for the many grammatical corrections made by others to this thesis.

Finally, I must thank my wife Chloe for all her support, and my parents for their

encouragement.

-1 -



Modelling Smart Fluid Devices Using CFD

Table of Contents

TABLE OF CONTENTS

Chapter 1 : Introduction 1
1.1  Smart Machines and Smart Fluids................ccooo 1
1.2 Possible APPHCAIONS ...t 4
1.3 Computational Methods ...............ocoiiiiiiiioi e 6
1.4 Summary: IntrodUCHION................cooiiiii e 7
Chapter 2: Literature Survey 10
2.1 INPOAUCTION ..o e 10
2.2 Simple Sizing TeCANIQUES .......o.oiiiiiiiie e 10
2.3 ContinUUM MECRANICS............ooviiiiiiitieiei ettt 11
2.4 Analytical SOIUTIONS ..........c.oooiiiiiiiii s 14
2.5 RBEOMEIIY .o 17
2.6 Dimensional Analysis for Smart Fluids................ococoii e, 21
2.7  Numerical Methods (1.6. CFD) ..o 23
2.8 Summary: LIterature SUIVEY............ccoioiiiiiiiii e 25
Chapter 3: Feasibility Study 29
3.1 INETOAUCTION ...ttt 29
32  Computational Fluid Dynamics Package ..o 29
3.3 1D Smart Fluid Flow Examination using the Bingham CFD Model .......................... 31
34  Smart Fluid Flow Examination in Rayleigh Step Bearing ...............cccoccoviniinnn. 36
3.5  Non-Uniform Field Distributions ....................ccoooiiiieiiii e 39
3.6  Bayer ER Fluid Test Using a Constant Stress Rheometer.......................ccocoocciin 42
3.7  Inter-Changeability of Smart Fluid Data and Negative Plastic-Viscosity..................... 46
3.8 Summary: Feasibility Study ...........ccooooiiiiiiii e, 52
Chapter 4: 2D Steady State Smart Fluid Flow 78
4.1 INEPOQUCTION ......uiiiiiii ettt 78
4.2  Analytical Theory: 2D Bingham Plastic Flow between Two Flat Plates...................... 79
43  CONCENTRIC Clutch with Cooling Through-flow.................cccoiiiiiin, 83
44  RADIAL Clutch with Cooling Through-flow ...................ccooooiiiiiiiii e, 87
4.5  Smart Fluid S€als.........ccoooiiiiiiiiiii e 97
4.6  Summary: 2D Steady State Smart Fluid Flow................ccoooiiii 102
Chapter S: Smart Fluid Unsteady Flow Response 113
5.1 INEEOAUCHION ....oeeitiic ettt er et et ea e es e s ne e 113

-1V -



Modelling Smart Fluid Devices Using CFD

5.2 Annular Valve Responsive Study: CFD vs. Analytical Analysis.................cooen,
5.3  Rayleigh Step Bearing Responsive Study: CFD vs. Experimental .......................
5.4  Concentric Clutch Response: Analytical vs. CFD vs. Experimental ......................
5.5  Summary: Unsteady FIOW ...,
Chapter 6 : Heat Transfer in Smart Fluid Devices
6.1 TNEPOAUCEION ... e,
6.2  Energy Source TerMS ...........ccoovviiiiiiie e
6.3  Heat Transfer from a Smart Fluid Radial Plate Clutch Surface ...
6.4  Heat Transfer from a Smart Fluid Concentric Clutch Surface.................................
6.5  Comparison of Clutch Designs......................ooooiiiieee e
6.6  Summary: Heat Transfer................c..oooooiiiiiiiec e

Chapter 7: Conclusion and Further Work

7.1 Main Conclusions

7.2 Further Work

References

Appendix A : CFD Sub-Routines
Appendix B : Publications

Table of Contents



Modelling Smart Fluid Devices Using CFD Nomenclature

NOMENCLATURE
a shear stress in circumferential direction
a acceleration of bob
Amin minimum shear stress for flow to occur
A area
Ay constant (for use in constant stress rheometer formulae)
Ag full area of rotor disc
A; radial insulation area
A surface area
b constant = (-Gh/2)
B output rotor inertial parameter
By constant (for use in constant stress rheometer formulae)
Cp constant (for use in constant stress rheometer formulae)
Cr friction coefficient
dy local strain rate tensor
Dy constant (for use in constant stress rheometer formulae)
E excitation (i.e. for an ER fluid. £ = V/'h)
g gravitational acceleration
G 1D pressure gradient

G(r) 1D pressure gradient has a function of radius
Goams  pressure gradient on transition from plug to plug-less behaviour
G’ shear modulus

Gr Grashof Number

h gap width

hpiug plug width

He Hedstrom Number

Hep.-o Hedstrom Number when Re =0

! current

I inertia of complete assembly (for use in constant stress rheometer formulae)
I output rotor inertia

J current density

kai thermal conductivity of atmospheric air

ks bearing term (for use in constant stress rheometer formulae)
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thermal conductivity of casing
length

length of concentric clutch
electrode length

length of radial clutch
surface length

length in the x-direction
mass

momentum in

momentum out

number of output rotors
torque

torque due to estimated electro-stress effect

total torque

torque due to Newtonian nature of fluid
mean Nusselt number

pressure

electrical heating

power in

viscous heating

flow rate in the x-direction
flow rate in the z-direction

radius

radius of plug boundary
inner radius

outer radius

input radius

mean radius

output radius

outer plate radius

ratio between the two viscosity’s in the bi-viscous model (R,, = 4,/u,)

outer clutch radius on the concentric clutch

capstan radius
outer clutch radius on the radial clutch
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Re
Re,
s
Sk

t

tq

*

t

tmin

SN NF s

SIS

Uinlet

Reynolds number
turbulent Reynolds number

constant in the He vs. Re equation

constant (for use in constant stress rheometer formulae)

time
dynamic response time

electron hydraulic time constant

minimum possible run-up time dictated by the rotor inertia

optimum run-up time (no rotor inertia)

run-up time

run-down time

temperature

temperature on inner rotor surface (wetted side)
outer surface temperature

mean temperature 7, = 75/2 + T,/ 2
temperature on outer rotor surface (wetted side)
temperature of shaft at a known vertical location
bulk air temperature

temperature in reservoir

temperature a pressure tapping

velocity in the x-direction

output speed

uniform inlet viscosity

transitional speed between plug to plug-less flow
constant speed of plate

in the y-direction

velocity (for use in constant stress rheometer formulae)

voltage
velocity in the circumferential direction

turbulence parameter at wall surface
rotor and casing thickness

angular acceleration
plastic-viscosity

non-Newtonian viscosity
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Hs

zero field viscosity (Newtonain)
solid viscosity: initial Newtonian viscosity in the bi-viscous model
shear rate

shear-stress
yield-stress

true yield-stress in bi-viscous model
estimated shear-stress due to excitation
shear-stress due to the zero field Newtonian viscosity
static yield-stress

dynamic yield-stress

shear stress on wall

fluid density

operational density

angular velocity

relative rotational speed

speed at which plugs start to from on outer rotor
heat transfer coefficient

cell width

time-step size

temperature difference

angular acceleration (for use in constant stress theometer formulae)
pressure difference

total pressure difference

speed diflerence across the plug

material property: characteristic relaxation time
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CHAPTER 1:
INTRODUCTION

1.1 Smart Machines and Smart Fluids

In this section, the role that smart fluids' can play in the field of smart technology will
be outlined. Market potential in the form of existing and possible smart fluid
applications is suggested. To further promote commercial development, a
computationally based pre-prototyping design methodology is proposed as a sensible

way forward.
1.1.1  Smart Machines

The main philosophy behind “smart machines” and “smart structures” involves an
inherent capability to flexibly adapt to meet any changes in requirements. Adaptation
generally takes place due to a change in the environmental surroundings, e.g. a change
of road surface. A smart device in general requires three functions:
i.  Sensors to perceive the environment,

ii.  Intelligence to decide what to do (Central Processing Unit, CPU),

iii.  The ability to change if required, i.e. a change in stiffness, damping, shape, etc.
Sensors and adequate CPUs are already cheaply available. Research is therefore
primarily concerned with the third requirement for which “smart materials” and

“smart fluids” are available to fulfil this role.
1.1.2 Smart Fluids

In general, a smart fluid operates as a medium between machine parts, and undergoes
controllable rheological change through an electrical input.

A paper entitled “The third wave of machines” [1] examines machine history
trends and identifies a “dynamic-electronic machine” as the logical follow on to the
“dynamic-electromagnetic machine” (i.e. an electric motor). With a smart fluid, these
advanced machines are feasible. The machine’s output would be configurable through
an electronic signal without any physical adjustment to the machine. Examples include
electronically controlled clutches, valves and damping devices.

While the benefits of using a smart fluid are clear, the perceived costs are not. One
might expect a smart fluid unit to be more expensive than a conventional mechanical

unit. However, the smart fluid unit is likely to be multi-tasking and typically have less

! Main examples include Electro-Rheological (ER) and Magneto-Rheological (MR) fluids.
-1-
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mechanical complexity, thus offering greater reliability and efficiency, and thereby
reducing overall costs.

The two main types of smart fluid are Electro-Rheological (ER) and
Magneto-Rheological (MR) fluid suspensions. In essence, they both appear to behave as
viscoplastic materials with a controllable yield-stress. Alternative forms of smart fluid
include any form of configurable fluid such as liquid crystals [2]. Engineers have been
waiting to exploit the unique characteristics of ER and MR fluids for almost half a
century. It is only recently that adequately developed fluids have become available.

Almost all ER fluids are dispersions of dielectric particles in electrically
insulating oil. The dielectric particles are the dispersed phase and the insulating oil is
dispersion medium. Under no electric field an ER dispersion behaves like a common
dispersion. When an electric field is applied to the ER dispersion, a dielectric mismatch
between the suspensions and particles causes the particles to polarise under the
influence of an electric field. The polarized particles attract each other due to
electrostatic interaction. Consequently, the polarized particles interact and form
chain-like or even lattice-like structures, causing the fluid to undergo a significant
rheological change. The particle cluster chains cause the resisting power against flow
resulting in an ER effect. An ER fluid generally consists of polymer based micron-sized
particles and a suitable base fluid may for example be silicone oil, although there is
wide of appropriate mixes. An ER fluid is known to react rapidly with response times of
the order of 1-2 ms.

The ER phenomenon was first discovered and investigated in depth by Willis
Winslow who was granted the first ER fluid patent in 1947 [3]. To date, it is fair to say
that no large-scale commercial application of ER fluids has been forthcoming.
However, Bridgestone in Japan, Fludicon' in Germany and ERFD in England have all
developed commercial ER fluids.

While Winslow was investigating the ER effect, Jacob Rabinow discovered the
MR effect [4]. He applied for the first MR patent in 1947 [5]. The MR fluid is a
suspension consisting of soft, magnetisable particles and is excited through a magnetic
field Unlike its ER counterpart, there have been some recent successful MR
applications.

The constitutive equations for ER and MR fluids appears to be similar. Under zero

excitation, ER and MR fluids display Newtonian behaviour. With increased excitation,

| This is the correct spelling.
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1.1.3

both fluids exhibit a roughly proportional increase in yield-stress (7). This behaviour
approximately fits a Bingham plastic model (Fig. 1.1). Table 1.1 compares the key

characteristics of ER and MR fluids.

1: Introduction

ERfluid | MRfluid
yield strength | kPa 2t08 50 to 100
viscosity no field | mPas 100 to 200 200 to 300
temperature range | °C 10 to 130 -40 to 150
e R e e
fluid density | kg/m’ | 1000 t0 2000 3000 - 4000
response time | ms 1-2 10-20

Table 1.1: Comparable properties of ER and MR fluids.

As indicated in Table 1.1, the supcrior yicld-strcss magnitude of the MR fluid
continues to make it the preferred choice. However, a faster response and simpler mode
of application keeps the ER fluid in contention for the immediate future. In addition,
there are rumours of very high strength ER fluids being developed. Perhaps the most
significant point here is not the absolute strength of new fluids, but the possibility of

being able to use a lower voltage source to produce a reasonable yield-stress.

Market Potential for Smart Fluids
The yield strength developed by a smart fluid is a good indication of its usefulness.
Some complain that ER yield strengths are lower than initially promised’, but in time
they should inevitability improve. Before this is likely to happen, some successful
commercial applications are required. Up until now this catalyst for ER fluid
development has not been forthcoming.

Now that commercial applications are being pursued, smart fluid performance
should continue to improve, thus helping to increase market demand. Pessimistic
attitudes towards smart fluids that continue to hold back progress should change when
revenue starts to flow. It appears to be a good time to enter this market now that long
running problems are finally beginning to be overcome. Such problems include
developing economically viable commercial fluids that possess high enough yield
stresscs. Other factors include being able to characterise the fluid data so that it can be

useful at the design stage.
With a phenomenon involving electronically controllable resistance to flow, it

| There are many compromises to be reached when making an ER fluid.
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takes little imagination to foresee the potential uses. It is, however, only of late that
some small-scale commercial applications have materialised that are all mainly
MR-based. These mechanisms have generally been developed to solve tasks difficult to
achieve by other means and therefore justifying the cost. Commercial applications
include a unique MR fluid lens grinding method [6] [7], active damping systems [8]
applied to seat suspension systems, and prosthetic limbs, active suspension systems [9]
being used in a luxury car and some race cars, also MR brakes are being used in acrobic
exercise machines [8].

A significant reason for the slow progress in bringing a smart fluid device to the
market place is the non-Newtonian nature of fluids. In the early days, smart fluids were
often thought to behave as Newtonian fluids above the yield-stress [10]. This simplistic
approach leads to a lack of appropriate universal methods of characterisation. Ignoring
the non-Newtonian nature of smart fluids results in a situation where it is difficult to
compare fluid data and predict device performance. For pre-prototyping purposes, the

ability to predict practical device performance is highly desirable when developing a
complex product.

1.2 Possible Applications
The basic modes of possible operation for a smart fluid are illustrated in Fig. 1.2, all of

which employ narrow gap geometry. This basic, electrically configurable, shear force

phenomenon has interested engineers for decades and recently some successful
commercial applications have materialised.

1.21  Smart Fluid Clutch & Brake Systems

Here the shear mode of operation is utilised. Key benefits include:

Electrically controlled transmission.
No laterally moving mechanical parts, resulting in increased efficiency and

i

ii.
reliability.

peed of response and controlled take up of power.

iii.  Fasts
sadvantage involves viscous heating. In a small-scale device, thermal

The main di

equilibrium may
cooling may be necessary. In addition, whilst the clutch is engaged, an electrical power

plied that must be dissipated. Possible uses of such a device are now

not be sustainable. For larger scale industrial machines, additional

input is ap

considered.
Used as a braking system, the speed of the load can be electrically reduced.

Although viscous heating effects will occur, all braking systems suffer from heating

-4 -
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and this system may offer improvements over current braking systems. Although for the
same voltage when the temperature increases, so does the current, and so an increase in
power input is required.

As a transmission system, linking an input (engine) to an output (load) significant
viscous heating will only occur during cngagements. Once the clutch is locked at a
steady speed, the yield-stress can be reduced whilst retaining engagement. Being able to
smoothly engage will reduce stresses that could result in lower specifications of
machine parts, thereby giving a reduction of weight and costs.

Operating as a gearbox, the device is allowed to slip, thereby regulating the
amount of torque transmitted to the output. The system would be responsive and
hardwearing. Inefficiency resulting from viscous heating might be acceptable for
applications lacking alternative methods. One suitable application could be simulating
the rapid changes in torque on a Formula One racing engine for testing purposes.

Promising smart clutch systems include fast-acting actuators. A high inertia input
would serve as an energy source ready to be tapped into at a moments notice'. If the
output is to be stopped with speed and precision, or reversed to create reciprocal
motion, a second clutch is required [11]. It has been suggested that such devices are
well suited for robotic systems [12]. The need for a second clutch is highlighted in
eqn(1.1), which shows the ratio between run-up (#,) and run-down (¢,;) times for a
single clutch device when the acceleration (@) is assumed linear. The ratio between the

two is essentially the torque when excited (V= N, + N,) to that when un-excited (N - N,).

t N, +N N
N=la = ’iz——f‘—t———"—zN“ here (N,>>N,). (1.1)

N

o (4

To significantly reduce costs and device size it would be advantageous to design a
reciprocal device using only one clutch. It may be possible to achieve such a device
using a planet gear system. Fig. 1.3 shows one example of my attempt to design such a
device.

Basic analytical models are possible for predicting basic steady state isothermal
behaviour of these devices [13]. It would however seem that solving more geometrically
complex models involving heat transfer and unsteady flow will necessitate the use of

computational methods.

1 . . .
The system can be likened to stepping onto an escalator rather than waiting for an elevator.

-5.
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1.2.2 Smart Fluid Valves and Dampers

1.2.3

1.3

A smart fluid valve suffers from being an open system device, requiring a relatively
large amount of smart fluid that is expensive. Such devices have been investigated in
some depth [14, 15]. On a small scale, they have been used as part of a damping system
and developed into high frequency actuators adequate for use in loud speakers [16].
Under steady isothermal flow, the valve has been successfully modelled [14]. To model
a whole damping system in an unsteady state, computational methods are essential.
There are several ways to go about building a smart damper. A simple narrow
channel device would be a good starting point. Current commercial products are
MR-based. This is due to the main manufacturer (Lord Corporation) preferring to focus
their research into MR fluids. It is possible to model smart dampers analytically [17].
However, it would be advantageous to include heating effects and again this seems only

feasible using computational methods.
Other Applications

The most obvious smart fluid systems prefer relatively high vield strengths. Perhaps,
however, the best applications will be those that come about from less obvious
applications that make do with low yield strengths. Such applications may possibly be
found in the field of macro-sized engineering where required fluid volumes and yield
strengths should be very small. On a similar basis, Smart Fluid Technologies are

developing a brail computer display for the blind using a weak ER fluid.

Computational Methods

With a continuum fluid approach, direct analytical solutions will be limited and solution
of complex practical problems will require numerical methods. Commercial
computational fluid dynamic (CFD) software can be used for such purposes with
specifically written programs for viscoplastic materials.

The CFD method involves solving numerically the full set of governing equations
by a semi-iterative method. This is achieved by splitting the fluid domain into a finite
number of cells. A nodal point represents a small element of fluid and stores the flow
parameters for that particular control volume. During the iterative process, neighbouring
nodes interact with one another. When this interaction reaches a steady state, the flow
field 1s said to have converged.

Several CFD solvers have been developed. Some codes fare better than others on
different types of flow problem. Different solvers may use different numerical

techniques but the basic principle is the same. That is, they solve the exact governing

-6 -
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equations by discretising the flow. For a smart fluid there is likely to be a limit to how
representative a homogenous continuum can ultimately be. Nevertheless, a CFD

approach should be able to correct for some basic non-continuum behaviour.

1.4 Summary: Introduction

After over half a century since the discovery of ER and MR phenomena, smart fluid
applications are now finally being developed. The potential for creating new and
exciting applications is enormous. A significant problem is the inherent difficulty in
designing suitable fluids. In addition, a lack of appropriate universal fluid
characterisation makes predicting pre-prototype device performance even more
difficult.

The need for a standardised approach to characterising smart fluid behaviour has
been identified. Standardised data could then be used as part of a CFD based
pre-prototyping methodology for predicting basic device performance. This tool would

improve the commercial utilisation of smart fluid technology.
1.4.1 Project Aims and Objectives

The initial objective was to review current approaches in order to identify suitable fluid
characterisation and modelling methods. With reference to analytical models and
reliable experimental results, the feasibility of modelling smart fluids using CFD based
techniques was then investigated. After solving steady state problems, the method was

extended into unsteady and non-isothermal regimes.
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1: Figures
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Fig. 1.2: Basic modes of application for smart fluids.
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Fig. 1.3: An example of a single reciprocal clutch device using a planet gear system.
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CHAPTER 2 :
LITERATURE SURVEY

2.1 Introduction

The previous chapter identified a requirement for improved modelling and
characterisation techniques for smart fluids. Difficulties in pre-prototyping inhibit the
successful development of commercial products. A possible practical CFD approach to
pre-prototyping a smart fluid device was therefore proposed.

Understanding the mechanics of a smart fluid would allow the output
characteristics of a smart fluid device to be predicted. A practical pre-prototyping tool
for estimating device performance would aid the development of smart fluid products.
In addition, the ability to test the feasibility of proposed concepts would speedily aid the
assessment of tentative designs. The economic benefits would be further improved if a
small-sample rheometer test were sufficient to acquire the fluid properties.

This chapter reviews current methods for smart fluid flow quantification with the
aim of identifying improved approaches. Simple but effective sizing techniques are first
investigated. More sophisticated approaches are then reviewed in which viscoplastic
models are used to gain solutions of the governing equations of motion. A dimensional
analysis approach is explained. Rheology is studied in relation to determining smart
fluid properties. Finally, the potential of using CFD in this field of study is investigated.

The work presented here is an extension of work published in [18].

2.2 Simple Sizing Techniques

Basic performance estimation can be achieved by studying the output characteristics of
simple smart fluid devices (Fig. 2.1). After converting the data into a flow curve,

{7 vs. y} the fluid is then approximated as a Bingham plastic with a plastic-viscosity
equal to the zero-field value (14,) , as illustrated in Fig. 1.1. The yield-stress (7)) is taken

to be equal to the electro-stress (z.), which is calculated as the total shear-stress effect

(7.,) minus the Newtonian effect (7,) [19] [20]:
L= 1= Teo~To & Me= Uy Where 7,=,y 2.1)

The gap size (h) is found to have no significant effect on the fluid properties obtained
[14] [21] [22]. This indicates that the fluid can be treated as continuum due to the large
gap-size/particle ratio. An expression is now needed to relate 7, to an excitation (£ ). For

an ER fluid one of the following expressions may be used [23]:

-10 -
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t,=af’® or t,=a(E-E,) or t,=a(E-E,)+B(E-E,),

¥y

where @, B and F, are properties of the fluid material. The approprate relation will
depend on the particular fluid. Adopting this approach will allow design formulae to be
derived, thus allowing calculations for a device in which the flow is steady, isothermal

and laminar.

Example One: Concentric Clutch

A torque (N) is required to maintain a relative speed difference (£2). Previous clutch
data is used to determine 7., allowing 7, = f(E) to be established. The overall torque for

different clutch configurations is then predicted using:

N,

2: Literature Survey

(2.2)

N,, =2xlri(z,+1,) with 7, =,uor—hQ- and v, =—2= (2.3)

2arilL .

Example Two: Annular Valve (Poiseuille Flow Mode)

2.3

The total pressure difference (AP.,) over a length (L) gives rise to a flow rate (§). A

balance of the forces allows 7, = f(F) to be determined:

QrhAP = 202wl = T, =1, = E’lL.(pr _AP) where AP, = eld 24

nrk’ .
For different valve configurations, 4P,, is now predicted using:

2L,
h

AP, =AP,+ AP, with AP, =

The assumption that the total stress is a simple summation of both the electro and

Newtonian stresses results in the linear characteristics (N, vs. £2) and (AP,, vs. ¢ ), as

shown in Fig. 1.1. The simplicity of the technique enables a fast but very crude
estimation of the basic steady state performance. For the valve, it can clearly be seen
from eqn(2.5) that high ratios of L/h are desirable, as this gives large pressure
differences. An assumption is made that at any excitation, g remains the same. This

may not be true, and g, can have significant effects on solutions when 7 is large. In

addition, 7, is approximated equal to 7. which presumes g = .

Continuum Mechanics

(2.5)

To accurately model the flow of a smart fluid using continuum mechanics, it is
important to understand the fluid’s rheology. Although smart fluids are mainly

suspensions, in the non-excited state they display Newtonian behaviour over a wide
-11 -
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range of flow conditions and geometry. Hence, the particles within the dispersant are
not introducing any severe non-Newtonian behaviour. This is likely to be due to the
particles being micron-sized as opposed to macro-sized.

On a microscopic scale, the micron-sized particles are visible. In the immediate
future, there is little prospect for deriving applicable fluid behaviour laws for difficult
geometries from micro-structural considerations. However, on the macroscopic scale
the particles are no longer visible, allowing the smart fluid to be considered as a
homogenous continuum. The behaviour can then be described in terms of continuum
properties such as velocity, pressure, density and temperature, as well as space and time

derivatives.
2.3.1 Goveming Equations and Non-Newtonian Viscosity

The differential governing equations for isothermal flow, of a liquid continuum, upon
which any useful mathematical pre-prototyping tool would be built upon, can be written

in Cartesian tensor notation as:

rate of gain mass
of density flux
—— e
ot ox,
rate of term due
changeof =~ momentum termdueto  to deformation
momentum flux static pressure stresses body
~ — — — forces (2.7)
Ow) + Zloup) = -2+ T F
o’ ox, ! ox, o, pg; 1,

If the above differential equations are to be solved, a rheological expression is
required to represent the ‘stress tensor’ (7). For this expression, a constitutive equation

can be written in a generalised form [24], in which dj; is the ‘local strain rate tensor’:

. : - Ou,
T, = H,e; inwhich g, =f(3) where d; = (2&+%} (2.8)
xj X, .

Here the stress tensor is being expressed as a function of the local shear-rate (7). The
term gy is the ‘non-Newtonian viscosity’' also referred to as the ‘apparent’ or
‘effective’ viscosity. To obtain the function 4, is the main task in the field of rheology,

and usually involves curve-fitting exercises. When u,, is a constant, the partial

! Non-Newtonian viscosity is a term used in some CFD manuals and is a good description.
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differential equations (2.6) & (2.7) are the well-known Navier-Stokes equations for
flow.

For 2D and 3D flows, it is possible for the resultant magnitude of shear-stress to
be greater than 7, whilst the individual components have magnitude less than 7, [25].

The resultant magnitudes of 7; and dj; are given as:
t= 1/—54,.]1,] , V= 1/%d,.jd,.j , (2.9)

and then u_=1/y , (2.10)

is the corresponding non-Newtonian viscosity at each discrete point. The Bingham
plastic equation, being the simplest viscoplastic constitutive model, is often used to
characterise MR and ER fluids. Accurate representation of experimental data [14]
supports the use of this model. For simplicity, the plastic-viscosity (z) is often taken to
be equal to the zero-field (u,) value (Fig. 1.1):

T=1,+4,7,

ur e @1
hence, Fom = £ y y

d; =0 , T<T

The Bingham plastic equation is a two-parameter model and variations are possible.

One may suit a particular smart fluid better than another (see [24]):

Casson: r = ‘/E +\/;z_,_, ﬁ , 1.e. 2 parameters,

Herschel-Bulkley: t=1t,+m )')|""]}3 , i.e. 3 parameters, (2.12)

Shulman: r= [ty'/"' +(,ue}':)'/"]" i.e. 4 parameters.

Many assumptions are necessary in order to obtain a solution. It is therefore
suggested that the use of any model other than the Bingham plastic equation is futile, in
an attempt to gain a more accurate solution. A good review of viscoplastic constitutive
equations can be found in [24]. In complex confined geometries, great care is required

to ensure that assumptions leading to the Bingham plastic model are not violated [26].

2.3.2 Bi-viscous Constitutive Equation

For the Bingham model, 4, approaches infinity as  — 0 {eqn(2.11)}. This may cause
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a problem for a CFD package. An alternative approach is to use a shear-rate

limit (7, , corresponding to 7)), above which the fluid behaves as a Bingham plastic.

Below this limit, the material behaves as a Newtonian fluid that is so heavily viscous
that it can be thought to resemble a solid. This model also makes practical sense. The
un-yielded region is being treated like a heavily viscous fluid, as opposed to a relatively
weak solid material. This model is called the bi-viscous model and is expressed in

Fig. 2.2 and as follows:

t:ty-{-/[ey . t>rey
T=u,y , T<T,, (2.13)

Wlth Rbi = lus/lue . (2 14)

where Rj; is a ratio between the two viscosities. For ER plate squeeze film dampers

practical flow solutions are obtained by setting R, = 10° [17].

2.4 Analytical Solutions

To derive a solution, the governing equations need to be simplified further. For
example, incompressible and laminar flow can be assumed. Further simplifications are
usually made by considering the flow to be one dimensional (1D) and time-independent.
Steady state acceleration terms are usually assumed negligible, placing a limit on the
magnitude of the velocity variables. With these assumptions, eqn(2.6) & eqn(2.7)

reduce to:

or
% _0 and P_Zy

ox ox oy (2.15)

Equation(2.15) can then be integrated to obtain 7,, which then equals the Bingham

plastic equation:

7 .
w:—éfy+c v Ty =T, 4,

(2.16)

by

Plug Flow

In some sections of the flow, 7 < 7, can result in areas of fluid flowing as a solid body.
This phenomenon is known as plug flow. By assuming no-slip boundary conditions and
applying the appropriate conditions on the boundary of plug sections (r = t7,), the
constant (C), the plug regions and the velocity profiles can be obtained. It is then a

simple matter to determine the overall flow-rates and/or forces. One-dimensional, ideal
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Bingham plastic flow has been extensively dealt with in the literature for a variety of

simple geometries [24].
2.4.1 Example One: 1D Annular Valve Solution

The flow in an annular valve caused by a pressure difference AP,,, can be modelled as
1D Poiseuille flow between two plates if gap size (4) is much smaller than the mean
radius (7).

Equation (2.15) indicated that the shear-stress varies within 4, thus allowing the
presence of a central plug region with size dependent on the pressure gradient
G (= AP./L). A full analysis [24] gives the Buckingham equation for flow rate

expressed as,

3
. mrAP R L 3 L
g= ™ [{hAP ] T, _3(hAP ]Ty—].()}, (2.17)

in which the limiting pressure gradient before which flow can occur is:

2
_A_f_>—;l (2.18)

Fig. 2.3 shows how eqn(2.17) compares to the more simplistic approach described in
section 2.2, when representing real experimental data for an ER valve [14]. The flat
plate assumption is found to be acceptably valid when the gap size is much smaller than
the mean radius [23] [27].

2.4.2 Example Two: Concentric Cylinder Clutch
Here a clutch consists of two annular rotors with wetted surfaces (7; and r,), separated
by a distance of 4. The movement of one rotor relative to the other causes 1D Couette

flow. In a practical device, h <<r,, allowing the possibility of modelling the clutch as if

there is flow between two flat plates.

Flat Plate Bingham Plastic Solution

%_—_0 = t=constant=1t1, +uy = N=2nLr2[ry+yer-h£2) (2.19)

A constant shear-stress across the gap prevents plug flow. A torque (V) equals the
amount required to overcome the yield-stress, plus a Newtonian contribution. This is

effectively the same solution as that described in section 2.2.
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Cylindrical Geometry Bingham Plastic Solution

243

When considering flow between concentric cylinders, a radial distribution of
shear-stress arises. Stress is lower on the outer rotor, allowing the possibility for a plug

to form when 7 on the outer rotor is less than 7,. Within the yielded region r; to
2 ow
©(r)=N/2nLr" =7, + ,uera—. (2.20)
r

The radius 7, at which the plug forms can be derived from eqn(2.20):

r,= N 2.21
P 2nlz, . (2.21)

Any plug thickness therefore diminishes as the torque is increased, and a higher value of

7, makes plug behaviour more likely. Integration of eqn(2.20) gives a velocity profile
valid between r; and r, [13]. When the boundary conditions, (r;)=0m/s and

u(r,) = rp42, are applied the following is given:

N 1 1 T, r
Q= —-— —ZLin£ (2.22)
dm L\n" 1) B ono

Obtaining N vs. £2 involves solving eqn(2.21) & eqn(2.22). For flow completely within
the gap (r, = 7o)

N 1 1 T, r
Q= —-—|-2IhZ 2.2
47[/1eL erz rlzJ Iue rl * ( 3)

The presence of the plug results in a non-linear torque-speed relationship at low speeds
as shown in Fig. 2.4. When the fluid is on the point of being plug-free, r, =r..
Substituting this into eqn(2.23) gives the plug speed limit:

o] L 224
P 2"12 2 ) ( . )

As shown in Fig. 2.4 the presence of a plug gives a non-linear torque-speed relationship

at low speeds.

Radial Distributions in Excitation

When allowing a radial distribution of E, the choice of model to relate yield-stress
{i.e. eqn(2.2)} is found to have significant effects on the resulting flow profiles; some
allow plugs to be present under certain conditions, while others do not. Until the

specific relationship is known, it is probably safe to assume that when the gap size is
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much smaller than the mean radius, there is a near uniform field strength across the gap
[23] [27]. This approach leads to a good representation of experimental data and must
therefore represent a reasonable assumption. Note that for MR fluids, the field strength
can be complex and often has a non-linear distribution and thus specific solutions may
be called for.

2.4.4 Limitations of Analytical Theory

For a hydrodynamic step bearing, one-dimensional governing equations for 1D
combined Poiseuille and Couette flow between flat plates can be derived. The solution
indicates under which speed and pressure conditions plug flow will occur [28].
However analytical equations relating wall speed to flow rate and pressure drop have so
far only been achieved for the condition of zero net flow rate. It can be concluded that
even for a relatively simple case there is a limit to what can be achieved analytically.
Approximate 2D Bingham plastic solutions are obtainable for various other
devices such as a concentric clutch with cooling flow [29]. The solution requires the gap
size to be very small, and for steady state acceleration terms to be neglected. In an

engineering context, assumptions of these kinds could be impractical.

2.5 Rheometry

Rheology is the study of the deformation and flow of matter. As indicated in
section2.3.1, a pre-prototyping mathematical tool requires some continuum fluid
properties to determine the stresses. More specifically the following function needs to

be established:
U, =FOWTEL). (2.25)

It is anticipated that an adequate formulation would be similar to the Bingham plastic
model. This is, however, neither necessary nor important. The essential requirement is
only to obtain eqn(2.25). Rheometry will now be reviewed in some detail in relation to

establishing smart fluid characteristics.
2.5.1 Characterisation

In general, a smart fluid is a viscoplastic material with a yield-stress dependent on
excitation. The viscosity (4) is a continuum property arising from a molecular network
of binding forces that resist flow. Viscosity can be a function of six variables: chemical
nature, temperature, pressure, shear-rate, time and excitation. The chemical nature of a
batch of fluid is fixed and pressure should have negligible effects in all but the extreme

cases. This leaves the four variables of concern as indicated in eqn(2.25).
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A smart fluid is usually a suspension and therefore classed as a “particulate
system”. According to the Warren Spring Laboratory [30], under steady shear
granulo-viscous behaviour should be expected and under dynamic shear some
thixotropic behaviour might also be expected. On a positive note, normal forces and
viscoelastic behaviour are more associated with polymeric systems. In addition, since
the particles in the suspension are so small, thixotropic behaviour may not be
significant.

Some smart fluids may exhibit some form of thixotropic behaviour. That is, they
will show time-dependent properties. Over time, given suitable conditions, the structure
might build up either at rest or under excitation. The potential for significant thixotropic
behaviour is somewhat daunting, for the subject is a very complex one. It was decided
to proceed with caution and expect minimal thixotropic properties, whilst bearing in
mind that in time this assumption might have to be revised. If necessary, time
characteristics can be measured [13], but these measurements can only really be made
of use within CFD modelling. When a smart fluid device is allowed to lock (i.e. with the
fluid at zero relative velocity), hysteresis effects are likely to be encountered [22]. This
phenomenon is explainable and does not constitute a true fluid/time property. This is a

source of common confusion.

Characteristic Time Factor 1

A high Deborah number (A/r) defines solid behaviour. If an event happens quickly
enough, solid behaviour will be displayed. At low shear-rates, the elastic nature can
usually be neglected. However, at high shear-rates it cannot. This is in principle why
rheometers work in the low shear-rate range. With very rapid changes in stress due to
changes in excitation, solid-like behaviour might be expected, for which viscoelastic
formulations may be required.
Yield-stress

For a smart fluid, the yield-stress is generally recognised as the most important fluid
parameter, for it indicates its potential usefulness. The recognised definition of
yield-stress is the value of stress required for flow to occur. Fig. 2.5 illustrates the
difference between static yield-stress (7,) and dynamic yield-stress (54). The latter is
seen to be an apparent yield-stress rather than the true yield-stress. Instead of cutting the
7 -axis at an angle, the flow curve can continue to dip with decreasing strain-rate. Some
rheologists even question the existence of a yield-stress in a fluid. Nevertheless, 7, still

proves a useful parameter. For an ideal viscoplastic material (Bingham plastic) 7, = 7.

-18 -



Modelling Smart Fluid Devices Using CFD 2: Literature Survey

In practice, above a certain strain-rate most viscoplastic fluids behave approximately as
a Bingham plastic.

To obtain the real behaviour at low shear-rates, sophisticated equipment is
required. This may eventually constitute an essential area of study. However, for the
time being such considerations are not essential. What is required initially is a
sufficiently accurate flow curve to allow eqn(2.25) to be inferred. This relation will
possibly contain a parameter representing yield-stress, but is not a necessity of the

technique being employed.

Other Important Considerations

End effect and edge errors are a consequence of device geometry not corresponding
exactly to the theoretical formulation, and must be considered in some situations. Wall
slip can occur when the mixture separates into two phases at the shearing surface and
will affect rheometer results. Such behaviour is not expected to be of much importance
for single-phase fluids with a small particle size [30].

At high speeds, phase separation could occur, and this possibly implies that a low

shear-rate device should be used. For relatively low values of 7, at high y, u,, - 4,

(i.e. the viscosity equals that of the base fluid). This further suggests that the low
shear-rate data is of the greater importance. In addition, cavitations may occur at high
speeds.

During measurement, the fluid should be homogeneous and any excitation should

be uniform. These considerations rule out cone-on-plate rheometer types for ER fluids.
2.5.2 Types of Rheometer

There are a large number of viscometer and rheometer designs on the market. Prices
range from a few thousand pounds to over half a million pounds and each design will
have its own set of features reflected in the price. Ideally, the correct one to use should
not be dictated by financial considerations, but dependent on criteria such as:
e is it important to measure normal stresses and/or complex dynamic moduli?
¢ the required temperature range,
o the nature of the fluid and the required accuracy,
¢ are shear creep and recoil functions and/or stress relaxation considerations?

The four main types of rheometer are; parallel plate, flow in an annular gap,
pipes/capillaries and parallel disc/cone. To cover a required range of y, two different

types may even need to be used. The particular nature of the fluid to be tested is a very

important consideration.
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Coaxial Cylindrical Rheometer

These are widely used due to their relative cheapness and ease of operation. The fluid is
contained in an annular gap and the governing equations are as given in section 2.4.2. If
the data does not agree with the perceived formulae then explicit formulae can be
utilised [30]. Controlled stress viscometers that measure the shear-rate as opposed to the
traditional controlled shear-rate designs are becoming more common.

ER Fluid Developments (ERFD) was a company based in the UK which
specialised in ER fluid-based technology. They designed and developed a specific
constant stress theometer for the USA army [31]. The device allowed yield-stress,
plastic-viscosity and current density to be obtained. Measurement of yield-stress is
absolute and dependent upon the geometry and applied stress. Data acquisition is to
within one second to minimise heating problems. Rotational speed during the drop of
the weight is dependent on the fluid properties, acceleration of the weight and the
viscous drag of the fluid.

Cone-on-Plate Rheometer

These devices are quite common, use a small sample and are easy to operate. Problems
involving particle jamming and obtaining constant excitation fields are potential major

problems.

Paralle! plate Rheometer
Parallel plate viscometers are growing in popularity. Fluid can be held within the gap by
surface tension, or a disc can rotate within a housing. The speed of rotation and the

torque due to viscous drag are measured. For particulate systems, the problem of

particle jamming can be overcome, however the shear-rate does vary with radius:

.orQ2
j= = (2.26)

Again, explicit formulae can be used [30].
Tube Rheometer

Here a relationship between flow rate and pressure drop is used to calculate the fluid
properties. A relatively large sample is required. Explicit formulae can be used to
calculate y [31]. The method is time consuming, but large shear-rates can be measured

and the fluid is not exposed to atmosphere.

2.5.3 Common Rheometers used for Smart Fluids

Two predominant methods are used for obtaining smart-fluid data, the annular valve
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and cylindrical viscometer (concentric clutch). Rheology flow curves that are
determined using these methods from different devices do not always agree [32].
Usually the shear-stress on the boundary is adequately measured. The discrepancy arises

when calculating 7. For simplicity, the Newtonian equations (which must assume a
Newtonian profile), are often used to calculate 7. These relations become increasingly
less valid depending upon the scope of the deviation from the traditionally expected
Newtonian velocity profile. Caution must therefore be taken when faced with any
experimentally derived fluid data.

Cylindrical Viscometer (Couette Flow)
The shear-rate and shear-stress for a viscoplastic fluid (except at very low speeds where \
plugs may be present), can be accurately determined using the equations below:

. rQ N
h 2wl

(2.27)

Here r,, is the radius of the rotating cylinder (the other cylinder is stationary) and r,, is
the mean radius, which must be significantly larger than the gap width. Due to a slight
variation in shear-rate at very low rotational speeds, a plug may become attached to the

outer cylinder. This situation is avoidable if a suitable radius is chosen.

Annular Valve (Poiseuille Fiow)

, =§£‘_ ), =2 [2+ d(l“‘?)] (2.29)

P y. =
* 24’ b*\" d(nt,)
These two equations give the conditions at the wall [30]. The second term in the second
equation is relevant for viscoplastic flow. The shear-rate is therefore calculated using
numerical integration, which makes this method less accurate than the Couette flow

method due to the difficulty in getting the derivative.

Bingham Plastic Model
An alternative approach is to assume that the smart fluid is an ideal Bingham plastic.
The plastic-viscosity can be assumed equal to the no-field viscosity (4,). The analytical

solutions presented in the next section for a concentric clutch and annular valve can then

be used to determine 7.

2.6 Dimensional Analysis for Smart Fluids

Non-dimensional variables allow experimental data to be represented in a meaningful

and graphical form. Hedstrom [13] used dimensionless parameters to produce a
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convenient graphical form of representing the Buckingham equation (section 2.4.1). The
relevant parameters are friction coefficient (Cf'), Reynolds number (Re) and Hedstrom

number (He). These parameters can be written in the general form:

Cf = f(Re,He),
(2.29)

Cf=—5, Re=22 He=
pu

Using an average velocity and taking the viscosity as the no-field value, experimental
data can be converted into Cfand Re. Using, for example a Bingham plastic model, He
can be obtained from the experimental results. Re gives an indication of the magnitude
of deformation (shear rate) and He is an indication of the strength (yield stress) of the
fluid.

If a particular smart fluid is well characterised by the Bingham model then the
technique should provide an accurate and useful collation of data as shown in Fig. 2.6

for a MR valve [33].

2.6.1 Numerical Algorithm

When this technique was applied to ER valve and clutch data [14] [34] [32], it was
observed that He diminished with increasing flow rate. This suggests that z, is
dependent on y. This is explainable, as the greater the deformation rate, the less the
particles can form chains and contribute to providing resistance to flow. Determining
exactly why this behaviour occurs is not necessary; the deviation from ideal Bingham
plastic behaviour can be accounted for with the use of an algorithm. The variation of He
can be approximated as [14] [34] [32]

He=He,,_,~sRe, (2.30)

where s is a constant. A relationship can be derived to infer the value of He at Re =0 in
terms of the excitation level. Such a relationship can be determined using a static clutch
device, or by extrapolation of fluid data to the zero velocity axis. The constant (s) can be
taken as an averaged value, or again a more exact relationship can be determined in

terms of the excitation level.
2.6.2 Applications and Limitations

The above technique allows device performance to be predicted regardless of whether

the smart fluid has a constant electro-stress effect or not. It has been effectively applied

to valves and clutches. The approach is, however, limited to devices in which the

geometry and flow field can be simply characterised. Accounting for combined Couette
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and Poiseuille flow will be complicated, if not impossible. The procedure here involves
assuming a Bingham plastic constitutive model, with 4 equal to the zero-volts
plastic-viscosity. This modest assumption could explain why He is found to decrease
with increased Re [eqn(2.29) & eqn(2.30)]. This seems to suggest that the fluid is
becoming weaker with increased shear-rate. This may explain why the following
algorithm, eqn(2.30), arises. If the fluid was a true Bingham plastic, He should not be
dependent on Re (i.e. the degree of shear-rate). Obtaining the relation is contentious and

involves the best fitting of data points.

2.7 Numerical Methods (i.e. CFD)

2.7.1 How CFD Can Work for Smart Fluids

Equation (2.9) allows the “magnitude” of the local shear-rate () to be determined for
every cell location. A constitutive model then allows u,,(=7/9) to be determined for

each cell location. Each individual cell is then essentially treated as a Newtonian fluid
for which the Navier-Stokes equations apply. The velocity gradients at each cell face
influence 4, of the adjoining cells. For a domain in which enough cells are chosen, the
problem can be solved using a semi-iterative method, until the whole domain converges
to a solution.

Computational difficulties due to un-yielded sections of fluid having a zero
shear-rate can be avoided by treating the entire material as a fluid using the bi-viscous

constitutive model (section 2.3.2).
One-Dimensional Flow

An early investigation into using a commercial CFD package to model an ER valve was
described by Kinsella et al. [35]. This treated essentially a 1D problem. Some of the
results are representative of the 1D analytical solution and experimental results.
However, after studying this work for myself, an employed ‘empirical grid evaluation
technique’ appears to be ill conceived. This arises from a misinterpretation of
convergence and nodal positioning. There is no need to apply such a method. Also the
suggestive use of an algorithm (section2.6.1) in the main code to represent a better

approximation of fluid is ill conceived.

Two-Dimensional Flow

For a small gap size, an approximate 2D solution can represent a concentric clutch with
an axial cooling flow [25]. An analytical solution gives the flow rate in terms of the

rotor speed and pressure difference. CFD solutions are found to be approximately in
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agreement with this solution. For practical values of rotational speed (0 - SO00 rpm) the

torque is found to be unaffected by the cooling flow.

2.7.2 Main Advantages of CFD Approach

Solutions Unobtainable by Analytical Means

With the governing equations being difficult to solve for a hydrodynamic flow, a
solution is only available when the net flow rate is zero [28]. A CFD model should be
capable of solving this situation and many other more practical cases when the net flow
rate is not zero. In addition, complex hydrodynamic geometry can also be studied.

Unsteady Flow

For an ER fluid, the finite time (¢*) required for the fluid properties to change in
response to voltage is found to be less than one millisecond [22]. This offers the
potential for very rapid response mechanisms to be built. The fluid and device inertia
thereafter imposes a limit on how fast a device can actually respond. The separation of
the true response time from unsteady recordings of a step type excitation input is a
complex and tedious operation [36]. By assuming an instantaneous change in
rheological properties, CFD can be used directly to estimate the response by solving the
governing equations in the time domain.

For 1D flow it is possible to obtain approximate analytical solutions to
time-dependent flows [37], [38] and [39].

Heat Transfer

In general, a smart fluid will operate in shear and will thus incur some viscous heating.
Modelling heat transfer using CFD is generally relatively straightforward for a whole
host of complex geometries. It should only be a matter of solving the energy equation
along with usual momentum equations. All fluid properties, including electrical
conductivity, can easily be included as a function of temperature within the CFD
method. Furthermore, for an ER fluid, an extra sub-routine could be used to include a

heating source due to the flow of current.

More Representative Models

Within the CFD methodology, complex constitutive equations that accurately represent
experimental rheometer data can be readily used. The CFD method requires the function

tm= £(y) for each excitation. In practice, the best way to enter this data may be of the
form {r vs. y} for which the parameters are dependent upon E and/or y. The

parameter representing 7, could be a function of 7, as indicated in section 2.6.
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Four parameter models are usually too complex for use in analytical solutions, but
can easily be utilised in CFD models such as Carreau [40]:
1= U, 1

n—t, (1+K)T - (2.31)

2.7.3 Compilete Model

Commercial CFD code is already widely used to obtain real engineering solutions.
These include complex non-isothermal flows, which accommodate complex geometry
by virtue of highly developed AutoCAD meshing software. With a commercially
available code, the vast majority of the required programming has already been done. If
required the software can be customised by the addition of suitable subroutines.

Once an effective fluid model is obtained, the objective is to use CFD to model
machines that have elaborate geometry. This model may involve non-uniform field
distributions, unsteady and non-isothermal flows, and fluid properties that can vary with
temperature as well as with the applied field and deformation rate.

In some respects, the necessity of attempting to achieve such accuracy still needs
to be determined. For example, gap widths are generally very small, and thus fluid
temperature variations may be insignificant. In addition, one must remember that there
is likely to be a limit as to how representative a homogenous continuum can ultimately

be. Nevertheless, CFD promises to be a formidable tool.

2.8 Summary: Literature Survey

Offsetting traditional Newtonian formulations with an electro-stress provides some form
of basic characterisation. An alternative approach using the Bingham plastic equation
provides a superior representation and gives an indication of the fluid’s flow profiles.
Exploitation of this continuum approach is very limited using direct analytical
equations. Even for the simplest flows, the formulations soon become too complex. The
only sensible way forward is to use a CFD approach with a bi-viscous formulation.

To make the most of the CFD technique, a rheometer requiring a small sample of
fluid is necessary to provide data for the shear-stress model eqn(2.25). A possible

rheometer for this purpose is the radial disc rheometer.
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2: Figures
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Fig. 2.1: Examples of basic smart fluid devices: concentric clutch and flow control valve.

Fig. 2.2: Bi-viscous model: Shear-stress versus shear-rate.
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Fig. 2.3: Experimental results on a ER valve compared with a simplistic model and Bingham plastic
solution. Value data from [14].
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Fig. 2.4: Analytical equation for concentric clutch with a Bingham plastic fluid medium. Non-linear
N vs. Qrelationship due to plug presence at low speeds.
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CHAPTER 3 :
FEASIBILITY STUDY

31 Introduction

In the last chapter, it was concluded that a CFD approach for modelling smart fluids
could prove to be a very useful pre-prototyping design tool. The most useful simulations
would resolve unsteady flow in complex geometries. The required constitutive data
would ideally be inferred from a rheometer requiring only a small sample of smart fluid.

In this chapter, a CFD feasibility investigation is undertaken employing the use of
the Bingham plastic model to characterise 1D viscoplastic flows. Known analytical
solutions are used for comparison purposes. These basic 1D flows closely approximate
the behaviour of several smart fluid devices, including concentric and radial clutches an
annular valve and a Rayleigh step bearing.

An ER fluid is characterised using a specific theometer designed to measure ER
fluid properties. At this juncture, this was the only available rheometer, but it was
considered highly suitable for the task in hand.

3.2 Computational Fluid Dynamics Package

At the start of this project, two versions of a robust commercial package, Fluent4 and
Fluent5, were available for use through the University network. This software was
chosen as it allows user-defined subroutines to be used in order to help solve specific

problems.
3.2.1 Fluentinc.

Fluent4 was first made available in 1997 as a general-purpose user-friendly program for
modelling fluid flow and heat transfer. Equations for conservation of mass, momentum
and energy are discretized using a control-volume method. First order, second order and
power law, upwind schemes are available for interpolation of cell face values. Many of
the CFD models created in this thesis used simple quadrilateral cells. In must cases the
flow was well aligned with the grid and so the use of the higher order schemes made no
discernable difference to the solutions obtained.

To solve the discretized governing equations, an iterative, line-by-line matrix
segregated solver is used. A block diagram giving an overview of the solution process is
shown in Fig. 3.1. A pressure-velocity coupling method is required and for most cases,
the default SIMPLE algorithm was found to work just as well as the other available
models. For some transient models, the PISO pressure-velocity coupling algorithm
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helped to give faster convergence. The solution procedure is speeded up using a
multigrid method that computes corrections on a series of coarser grid levels. Fluent5 is
more powerful than Fluent4 and includes options to use a coupled solver and

unconformable grids with advanced grid adaptation tools.
3.2.2 Convergence

The residual sum can be described as the imbalance between a cell variable and its
neighbouring values summed over the whole computation mesh. On a computer with
infinite precision, the residuals should decay to zero when convergence is achieved. In
reality, the residuals decay and then level out at a small value. The size of the residuals
can be used to judge when convergence has been reached — a value of 1x107 is used as
the default convergence criteria for the main variables. However, work on this thesis has
found that successful convergence of a smart fluid modei requires this criterion to be
much smaller (<1x107). In fact, it is difficult to judge convergence this way. Variable
history monitoring is nearly always required. This involves monitoring variable outputs
such as torque, velocity, pressure etc. at influential locations. For example over time,

the value of torque on a wall will level out once the solution converges.
3.2.3 Bingham CFD Model

The bi-viscous formulation (see section2.3.2 and Fig. 2.2) describes an un-yielded
region as a highly viscous fluid that efiectively behaves as a solid in comparison to a

yielded region. Equation (2.13) can be rewritten in a manner suitable for use in CFD:

T

! -:—L-J,-u . T>T V>V

o 5 e for & or oy (3.1)
b o .

/‘Inn:lus T<Tey y<yy

Equation (3.1) allows the cell viscosity to be determined. With high enough
valucs of 4, it is anticipatcd that a CFD bi-viscous solution will be indistinguishablc
from the Bingham plastic solution. This formulation is not a true Bingham plastic and
shall therefore referred to as the “Bingham CFD model”. The effect that y; has on a
solution needed to be investigated thoroughly.

Test One: 1D Couette Flow between Concentric Cylinders
A bi-viscous formulation for an concentric clutch () is compared to the Bingham plastic
solution presented in section 2.4.2. Movement of one rotor relative to the other causes
1D Couette flow. Between 7, and 2, Aw across the plug is determined by setting 7,=0

and g = 4;in eqn(2.23):
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4 \
N 1 1
Aw (rp to rz) = mt—z——zJ .

s rp n

Equations (2.21), (2.23) and (3.2) can now be solved simultaneously’ to give the
bi-viscous solution. Fig. 3.4 shows the ettect ot 1 on the velocity protile when the
speed is low enough for the presence of a plug. Here w4 > 1000 Pa is required so as to
make the Bingham plastic and bi-viscous solutions comparable as shown in
Fig. 3.4. Increasing 4, increases the gradient in the un-yielded region of the bi-viscous

model (Fig. 2.2) making it more comparable to the more recognised Bingham plastic
model (Fig. 1.1).

Test Two: 1D Poiseuille Flow between Parallel Plates

3.3

A bi-viscous formulation for an annular valve is now compared to the Bingham plastic
solution presented in section 2.4.1. 1D flow is caused by the application of AP.,. The
bi-viscous solution is obtained using eqn(2.17), modelling the plug section as a
Newtonian fluid with viscosity u. Fig. 3.5 shows the effect of x4, on the velocity profile.
Here x4, > 100 Pa is adequate to make the two solutions comparable.

In conclusion, the bi-viscous model is comparable to the Bingham plastic equation
provided that g is sufficiently large so that 7, = 7,; a value of 4, = 10004 seems to be
adequate. The bi-viscous formulation thereby promises to be a suitable constitutive
model for CFD use. Above a specific value, a further increase in g has no observable
effect on the solution. It is noted that a smaller value puts less strain on the CFD solver.
It is therefore not good practice to set an unrealistically large number in order to be

safely above the required value.

1D Smart Fluid Flow Examination using the Bingham CFD Model

The numerical CFD package had first to be validated before it could be used with any
confidence. Available computational power had to be shown to be powerful enough to
at least model basic 1D Bingham flows. Using the 1D flow assumption, models for
concentric and radial clutches, and an annular valve were formulated.

In the previous section, a constitutive “Bingham CFD model” was proposed that
would effectively behave like the Bingham plastic equation. An elaborate model
relating 7, 4 and E is not required since no specific experimental data is being used at

this stage. Unless otherwise stated, default CFD parameters were used. All the models

! An iteration-based spreadsheet (Microsoft Excel) was used.
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are for steady, 1D, isothermal, incompressible flow.
3.3.1 Flow Mode: Annular Valve

1D Poiseuille flow in an annular valve (Fig. 3.32) was modelled. With no extra
complications, the exact radial geometry of this device could be modelled, allowing
radial effects to be taken into consideration. It was however prudent to keep the problem
in line with the analytical flat plate solution. Modelling of this flow should be, in
principle, straightforward. However, difficulties that arose will be discussed.

The flat plate assumption requires only half the domain to be modelled when a
‘symmetry line’ boundary condition is used. Flow is caused by the application of AP,

or vice-versa, and can be expressed using eqn(2.17).
CFD Model: Annular Valve

The following table summarises the CFD model used in this section.

Software Fluentd, finite volume, segregated solver

Physical Model | 2D, steady, laminar, incompressible, isothermal flow

Fluid Properties | viscosity (Bingham CFD model), density (constant), 2, = 100,

Discretisation of | interpolation scheme | 1% order for all equations
flow equations.

pressure-velocity SIMPLE

grid (x, p) 80 (x-dir) x 10 (y-dir)
Boundary upper outer wall no slip wall condition
Conditions . e

symmetry line symmetry condition

inlet and outlet test2 velocity inlet & pressure outlet respectfully

inlet and outlet test3 velocity inlet & fully developed outlet
respectfully

Table 3.1: Summary of CFD model used to solve steady 1D annular valve flow.

Due to the nature of the CFD package, a 2D grid must be used. The upper side of the
grid was set to be a stationary wall and the lower side a line of symmetry. Since flow is
uniform, in principle only a small number of cells are required in the axial x-direction.
However, L/h is large, so a sizeable number of cells are needed to keep cell aspect ratio
reasonable. A value of z = 100z, was used in the simulations.

Inlet and Outlet Conditions

There are several ways in which to set the inlet and outlet boundary conditions.

Specifying a uniform velocity, w,,,, =/ h2mr,, , sets a corresponding flow-rate, ¢. The

method requires a certain inlet length for the uniform velocity profile to develop.

Through looking at the velocity profiles this was found to be only a few gap sizes 4 in
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length, but does depends on how many cells are used. This condition is likely to be
encountered experimentally, unlike a fully developed profile at the inlet as the analytical
theory assumes. The outlet can be set to be either a fully developed or static pressure
condition.

An alternative set of boundary conditions is to impose a pressure gradient ((7)
using a uniform pressure boundary condition. This method requires no attention to flow
development lengths. It is numerically wrong to use an inlet pressure condition with a
fully developed condition'.

Newtonian Model: Determining which Set of Inlet and Outlet Conditions to Use

It was prudent initially to test the CFD model on a Newtonian fluid. Fluent4 was used
with default solution parameters on a 20 x 20 grid (#=0.5 mm and Z =100 mm). To
determine if convergence had occurred variable, histories of velocity were recorded on
the centre line.

The converged results using a pressure boundary condition are presented in
Fig. 3.6. Next, the velocity inlet and pressure outlet boundary condition was tested and
the results are shown in Fig. 3.7. It is observed that nearly 10 times fewer iterations are
now required. The use of a fully developed outlet condition was found to make little
difference. A plot of pressure along the symmetry-line (Fig. 3.8) indicates that 20 cells
along the axis is a required minimum. To get a better soiution, more ceiis at and near the
inlet are needed. Alternatively, a section of the length can be set aside as an inlet pipe in
which a uniform inlet velocity develops. At a point where the pressure gradient is
adequately developed, the velocity profile is seen to compare well with analytical theory
(Fig. 3.9). It can be concluded that 20 cells within the gap is adequate.

An inlet velocity was now set to imply a theoretical value for G of 300 bar/m
across a Bingham fluid of strength 7,= 5kPa, 4= 100 mPa.s. The results (Fig. 3.10)
show that 20 times more iterations are now required to reach a solution, and
convergence is very slow. Convergence occurs when the residual for w-velocity is
somewhere between 1x10°% and 1x107. The grid is too sparse near the inlet to
adequately determine the pressure gradient (Fig. 3.8). The velocity profile does,
however, fit the analytical theory well at a point where G is properly developed
(Fig. 3.9). Fig.3.11 and Fig. 3.12 further indicate the importance of reducing the
residuals past the default setting.

! Only an experienced CFD user knows that it is not allowed, there is no physical reason why it cannot be
used.
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Final Results from Annular Valve Model

Solutions are now computed on a larger grid (R0x200) to give a more accurate pressure
profile. For a variety of fluid properties ¢ was set using e, and G was determined.
Parameters were chosen to illustrate certain types of behaviour. The results are
presented in Fig. 3.13. Over the full range, the CFD results correspond very closely with
the analytical theory. Although . appears insignificant in comparison to 7, in the
equation for f4m, s is found to be significant. This is due to the presence of large
shear-rates at the walls. In conclusion, the results from the CFD model were found to be
in excelient agreement with the analytical solution.

3.3.2 Shear Mode: Concentric Clutch

As discussed in section 2.4.2, the simplest model of this device involves flow between
two flat piates of dimensions L x 2mr,, separated by a gap width (7). The anaiyticai
theory is more complicated when radial geometry is considered, with a non-uniform
shear-rate allowing the possibility of plug flow. In comparison, no extra difficulty is
encountered when setting up a CFD model with radial geometry. The analytical model
relating torque (V) at speed (£2) for both flat plate and radial geometry is given in
section 2.4.2.

CFD Model: Concentric Clutch

The following table summarises the main CFD model used in this section.

Software Fluent4, finite volume, segregated solver

Physical Model | 2D, steady, laminar, incompressible, isothermal flow

¥iuid Properties | viscosity (Bingham CFD modei), density (constant)

Discretisation of | interpolation scheme 1* order for all equations

flow equations

pressure-velocity SIMPLE

grid (x, y) [axisymmetric] 10 (x-direction) x 20 (y-direction)

Boundary outer cylindrical wall no slip wall condition
Conditions

inner cylindrical wall circumferential speed
Table 3.2: Summary of CFD model used to solve steady 1D for in a concentric clutch.

The grid is constructed using axisymmetric geometry. The inner and outer wall radii are
setatryand r; = r; + h, (rm = ri/2+ ry/2). Flow is 1D, limiting variations in velocity to
the radial direction only. The axisymmetric option assumes circumferential flow to have
both zero velocity and pressure derivatives; no cell density is therefore required in this
direction. For the axial direction, zero derivatives allow a cyclic boundary condition to

be used. The inner cylinder speed was set to rotate with a constant angular speed. A
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schematic of the CFD model is shown in Fig. 3.14.
CFD Concentric Clutch Results

For a given speed, the torque can be determined using a wall forces command, and
plotted against the analytical bi-viscous solution. Results are presented in Fig. 3.15.
Over the full range, the CFD results are found to comrespond very closely with the
theory. For the smallest mean radius used, the difference between the two analytical
theories (flat plate and radial geometry) for torque was found to be less than 0.1 %, and
so only the radial geometry theory is shown in Fig. 3.15.

One should expect to see a plug profile at low speeds as shown in Fig. 3.16.
However, the plug formed does not correspond with velocity profiles from the
bi-viscous solution. Upon investigation, it was discovered that the CFD software was
appiying the constitutive modei incorrectly. Equation (3.i) was being used as the

constitutive equation but no consideration was given to y,. The viscosity is simply

allowed to run away until it equals y. Clearly this is not the correct way to apply the

model. The solution to this problem involves writin

..................... Pr 10 2 New s

correct viscosity.
Fig. 3.17 shows that when the correct formulation of the Bingham CFD model is
used, the results make sense. To get the Bingham plastic flow profile, a value of at least

1000 mPa.s is required. This is in accordance with the prediction in section 3.2.3.

3.3.3 Smart Fluid Radial Clutch

Plugs should not occur in this type of device even though the shear-rate varies in the
radial direction. In its simplest form, the device is approximated by assuming flow
between two flat discs separated by a distance (4). The analytical equation for torque is
given by:

rQ\. mwuQ, 2t

¥ - { o \ v f \2
szr'm Tyt He— =5, \n-nj+ —\n-n). (3.3)
il w )T on 3

CFD Model: Radial Clutch

The following table summarises the main CFD model used in this section.
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Software Fluentd, finite volume, segregated solver
Physical Model | 2D, steady, laminar, incompressible, isothermal flow
Fluid Properties | viscosity (Bingham CFD model), density (constant)
Discretisation of | interpolation scheme 1* order for all equations
flow equations pressure-velocity SIMPLE
grid (x, y) [axisymmetric] 20 (x-dir) x 30 (y-dir)
Boundary inner symmetry line
Contitons outer (wd) wall [w-velocity] = (r&2/h)x]
left hand side (wl) wall
right hand side (w2) wall [w-velocity = r2|

Table 3.3: Summary of CFD model used to solve steady 1D flow in a radial clutch.

The model is relatively straightforward to simulate. The wall velocity is set to be
dependent on r (i.e. w = r42). The end wall is set to have a linear velocity profile so that
it is in line with the theoretical solution. In practice this wall, which physically holds the
fluid in, will be either stationary or moving.

Over a range of parameters, the CFD results (Fig. 3.18) are found to compare
extremely well with the analytical theory. This requires convergence to be reached, for
which the default convergence criterion needs to be ignored. Convergence was better

judged by comparing the shear-stresses on both plates.

3.4 Smart Fluid Flow Examination in Rayleigh Step Bearing

A more complicated 1D analytical solution is now compared to a CFD model. Here the
performance of a Rayleigh step bearing (Fig. 3.19) is evaluated, firstly when the film
medium is a Newtonian fluid and secondly when it is a Bingham plastic. The flow
occurring in this device is mainly 1D, even though both Couette and Poiseuille types of
flow are both present.

A dynamic bearing is an application of the hydrodynamic effect. A smart fluid
bearing could provide a variable hydrodynamic load. This could be of use in some
applications, e.g. catering for sudden load changes in a smart adaptive system if nano
ER/MR fluids are forthcoming.

3.4.1 Analytical Theory

A detailed description of the analysis for combined 1D Couette and Poiseuille flow

between two plates can be found in [28] and [41]. Fluid occupies the region (0< y<h)

between two flat parallel plates. The plate at y = 0 moves with a particular speed (U ) in

the x-direction, whilst the other plate at y=h is stationary. Depending upon the
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direction and/or magnitude of 7. . U. pressure gradient (G) and gap size (k). various
flow situations can be observed. The movement of the lower plate causes Couette flow;
a pressure gradient in the x-direction causes Poiseuille flow. The following velocity

field is assumed:
u,=u(y) , u,=u=0. (3.4)

The only non-zero stress component takes the form:

T Gy C

=Gy C, (3.5)

with C being a constant to be determined. Using the Bingham plastic constitutive

equation and relevant no-slip boundary conditions, a governing equation can be derived.

A

n/" £y -~
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J

The most practical situation in which G >0 and U > 0 is considered. Taking %, = -7, 3,

& dwdy =0 at y, and y; respectively, and using eqn(3.5) leads to:

o 1
s 1
hplug=y2_yl=—(—;y_’ =_"2‘G(}’1+y2)' (3.6)

Here the plug width (A,4,) is therefore independent of the plate speed, and the plug is
central provided that 2,/ G < h. Combining eqn(2.11) and eqn(3.5) gives:

du
#'Td;sz+C+tr (3.7

Integrating eqn(3.7) and considering the flow in the separate parts, results in the

following velocity profiles:

p,u=1Gy* +(C+r1)y+ul/ fortheregion 0<y<y, (3.8)
p,u=-LG - y)—(C-t,Yh-y) fortheregion y,<y<h, (3.9)
U, =u(y)=u(y,) fortheregion y, <y<y,. (3.10)

With an integration between y = 0 and y = h the flow rate can be acquired:

g 1B _J(yY 5 (5) ..y

——— Gl =L | -2 Z2 +322

e R TR a1
The flow rate is now given in terms of the pressure gradient (G) and unknown plug

boundaries y; and y,.
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Step Bearing Model: h2 = ZC1o

Equation (3.11) is applicable to the situation when /;=zero as shown in Fig. 3.19.

Because /; is now the only gap width /; = Ah. Since h; = zero, the net flow rate is zero

and it is possible to derive the following formulae from eqn(3.11):

W

uU

G=a+bB+cB*.

| a b c

0<B<20

10£B<70

6.00 2.63 -1.41x1072
821 229 -1.34x10

For a Newtonian fluid:

J
G= 6,:;(

In addition, the velocity profile reduces to:

U u=—-—1—Gy2—(—Gﬁ+£—q)y+pU.

2

2EeEh

3.4.2 CFD vs. Analytical Solution

To numerically solve the continuum flow equations, the segregated CFD solver was

3: Feasibility Study

(3.12)

(3.13)

(3.14)

(3.15)

employed.
Newtonian Flow

Software Fluent4 and FluentS, finite volume, segregated solver

Physical Model 2D, steady, laminar, incompressible, isothermal flow

Fluid Properties | viscosity (Newtonian), density (constant)

Discretisation of | interpolation scheme 1* order for all equations

flowlequations pressure-velocity SIMPLE
grid (x, y) [y = vertical direction] | 20 x 20

Boundary upper wall (stationary) zero velocity wall condition

Conditions lower wall (moving in +ve) constant velocity wall condition
inlet on the left hand side pressure inlet (0 Pa)
wall on the right hand side zero velocity wall condition

Table 3.4: Summary of CFD model used to solve steady 1D annular valve flow.

Using Fluent4, a model was set up to correspond to that in Fig. 3.19 and Table 3.4. A

grid analysis was undertaken to determine the required density of cells to represent the
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flow. In Fig. 3.20, the exact analytical solution for pressure (solid red line) is compared
to CFD results for varying grid sizes. A sparse grid (10 cells in the y-direction) fared
well, but to get very close to the exact solution more cells were required (20 cells in
y-direction). With 20 cells in the x-direction, the aspect ratio is very large. However,
since the flow is laminar and 1D, a 20x20 grid is adequate. This is demonstrated over a
wide range of parameters in Fig. 3.21. To further demonstrate the agreement between

CFD and analytical theory, velocity profiles are shown in Fig. 3.22.
Bingham CFD model

Work on the Bingham CFD model was carried out using FluentS. Computation using
Fluent4 was very slow. Here, as before when using the Bingham CFD model,
consideration of convergence was found to be vitally important. The analytical solution
is compared to CFD solutions in Fig. 3.23. The agreement here can be seen to be very
good. To help determine if convergence had been met, the pressure values at certain
locations were monitored. A comparison of velocity profiles results in good agreement,

as shown in Fig. 3.24.
3.4.3 Concluding Remarks

If an adequate CFD model with correct convergence criteria is utilised for a given plate
speed with A, = 0, the resulting pressure gradients and velocity profiles correspond very
closely with the analytical solution. This is in contrast to poorly matching data found
in [42], which is mainly a result of inexperience on the part of the CFD operator in
setting a correct model and understanding convergence. The fact that both mathematical
solutions correspond, considerably reduces the probability of errors in each method.
Hence, it is very likely that the analytical and CFD solutions are correct.

It is worth remembering that the Bingham plastic analytical solution could not be
solved directly. If the geometry was even more complicated, involving for instance a
change in gap-width/s along the bearing iength, as found in most hydrodynamic
situations, then there would be little scope for deriving a useful analytical relation
relating geometry, speed and pressure. In contrast, providing the field distribution is

calculated (see section 3.5) then this situation should prove no problem in CFD.

3.5 Non-Uniform Field Distributions

For a given smart fluid, some uncertainty will exist in exactly how its properties vary
with field-strength (£). The situation may worsen if the field distribution itself is
uncertain, the severity of which depends on the type of field being imposed (electric or

magnetic) and the geometry of the situation. However, the situation will improve when
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more accurate rheometer data is available.

A magnetic field could be calculated by external means and then superimposed
onto the CFD grid. Each cell would then have its own finite value of field strength. For
the simplest geometry, all cells would have the same value of E. Alternatively, for
specific cases, algorithms may be available for estimating £, depending upon both cell
location and time. This thesis is concerned mainly with ER fluids, so these methods
have not been considered further.

In an ER fluid, it would be highly useful to be able to calculate the electric-field
distribution within the CFD simulation. For example, the user would specify which
electrodes are live and which are earthed. This is entirely possible by solving an

additional user-defined scalar transport equation:

0% |

Here the flow does not affect the field. The equivalent expression, which may be more

familiar, is as follows:
divE=0,curl £E=0. (3.17)

A specific value voltage or flux then needs to be set at all boundary conditions. The
CFD package can now calculate the voltage distribution. A subroutine can then use this
data to calculate the average magnitude of excitation (£) (volts/metre) for each cell

location:
E= Ey'Etj . (3.18)

This value will be used to calculate 7, and ultimately s, {eqn(3.1)}.

3.5.1 ER Bingham CFD model
An example of a sub-routine written to calculate the excitation field and return the fluid
viscosity' value is shown in Table A. 1(Appendix A).

Example One: Annular Valve with Middle Section Excited

To test the sub-routine, an annular valve (see Fig. 3.25; L = 60 mm & A= 0.5 mm) was
modelled using an axisymmetric grid 120 x 20, split equally into three sections. A

constant inlet flow rate of 16.47 Lt/min was imposed. The first test involved setting all

' Because fluentS does not calculate the fluid shear-rate correctly in axisymmetric geometry, the
sub-routine also calculates the shear-rate.
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electrodes (valve walls) to zero voltage and comparing the simulation to the Newtonian
analytical solution. In the second test, the upper voltage was set to 2500 V. This should
generate a uniform field throughout the whole valve giving a yield-stress of 5 kPa, for
which eqn(2.17) should hold true. Finally, only the middle third section was excited.
The results shown in Fig. 3.26 are in excellent agreement. In the final case, it can be

seen that dp/dx equals that of the unexcited and excited case in the appropriate regions.

Example Two: Flow between Two Parallel Plates with a 180 Degree Bend

An analytical solution to a smart fluid problem involving anything other than flow
between flat plates soon becomes very demanding. This need not be the case using
CFD. An example would be a problem involving Poiseuille flow between two flat
parallel plates with a 180-degree bend. The geometry of this is shown in Fig. 3.27. The
‘ER Bingham CFD model’ is used with the inner wall excited to 2500 volts and the
outer earthed at zero volts.

The solutions for voltage contour distribution and velocity profiles are shown in
Fig. 3.27 and Fig. 3.28 respectively. At this stage, other than making sure that the CFD
solution is fully converged and adequately discretized' there is no way to verify that the
solution is correct. There will, be a point when one can no longer verify the solution by
any means other than experimentation. The reason for using the CFD method as a
pre-prototyping tool is precisely that analytical methods are too difficult to achieve for
problems such as this one. As far as one can tell, the solution makes perfect sense and
looks correct. The central fluid appears to be rotating around the bend with an angular
velocity. Thus, the instantaneous velocity increases with radius across the plug region

and can be observed in Fig. 3.28

3.5.2 Previous Work

Concentric Geometry
For an ER fluid, the excitation field across a gap width would typically be assumed to

equal V/h. However, in concentric geometry the excitation field would obey:

Vv 1

E= -
InG; /7) 7 (3.19)

giving a non-linear excitation (depending on the severity of r,/7,) that deviates from the
usual linear assumption. Using eqn(3.19) the error involved when assuming a constant

excitation in a concentric geometry is illustrated in Fig. 3.29. For an extreme case when

! This is done by monitoring any change in flow with further iteration and accessing grid independency.
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r; = 10 mm, a deviation of 5.0 % is seen. For a more practical case with r; = 30 mm, the
error is only 1.0 %. Other errors in a smart fluid model, such as uncertainty about the
fluid’s properties, would be much greater. It is therefore not prudent for the time being
to pay much attention to this effect.

Papers [23] & [27] have however investigated such behaviour. Here interesting
effects can be observed, such as cancellation of plug effect in a concentric clutch due to

higher excitation near the inner rotor. The effect depends on the particular model for z,.

Concentric Geometry Effect in CFD
The ‘Bingham CFD Model’ should pick up the concentric distribution effect described
above. However this was found not to be true, as the CFD package did not use the right
coordinate system to calculate E. This is a similar problem to that found previously,
when the CFD package was not calculating the shear-rate correctly'. It was deemed
uneconomical to spend time correcting the problem at this juncture. It will probably be

rectified in later versions of Fluent anyway.

3.6 Bayer ER Fluid Test Using a Constant Stress Rheometer

A constant-stress viscometer on loan from ERFD? was used to characterise a
silicon-based ER fluid from Bayer AG (3565 50%). The fluid was unused but several
years old and separation of the base fluid was evident. The fluid, still in its original five-
litre container, was mounted in a paint stirrer and repeatedly agitated for several days
until it appeared to be fully homogenous. The properties of the fluid might have
changed due to its age, so it had to be re-characterised.

This type of rheometer is similar in design to the widely used coaxial cylindrical
rheometer. However, instead of applying a constant shear rate though a constant speed
difference, an attempt is made to apply a constant shear stress. A constant shear stress
causes the rotating bob (Fig. 3.27) to accelerate. Using the Bingham plastic constitutive
model it is possible to calculate the theoretical acceleration. It is thus possible to

determine fluid properties by looking at recorded velocity data.
3.6.1 Theory and Description of Apparatus and Calibration

The rheometer has Couette geometry with radii of capstan: R.q,=19.5 mm, bob:

r; =25 mm and cup: r>=25.5 mm. The source of constant stress is a hanging weight of

! This is a problem when using the CFD axisymmetric model - the correct shear rate is thus calculated in
the user-defined subroutine for the smart fluid.
? ER Fluid Developments (ERFD), now known as Smart Technologies.
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variable mass (M). A schematic of the apparatus is shown in Fig. 3.30. An experiment is
recorded using the data acquisition system. A displacement versus time fitting routine
determines the acceleration. Circulation of water through a double-walled cup was
provided using a pump heater system. This allowed the temperature of the fluid
specimen to be controlled.

A force balance gives:

Ma, = Mg- I/Rmpza,, - k,v, - (viscous torque)/R (3.20)

cap ?

where £; is a bearing term, a, [ms?] is acceleration, v, [ms]is velocity and 7, is the
moment of inertia of the complete assembly. For a Newtonian liquid, the viscous force

equates to:
F = 4Ly, /(U -UR*) R, = Dpv,, (3.21)

where L, is the length of the bob and D is made up of equipment constants. Substituting
eqn(3.21) into eqn(3.20) gives:

a, = Mg/(M +1,/R.)~(ky + Duw /(M +1,/R.}). (3.22)

Thus, a plot of a; against v; should, in principle, be a straight line with an intercept (45)

and slope (Sp):
where 4, = Mg/(M +I,/R.,’), (3.23)
k, +D,u, k Dyu,
and S, = ———"f5 = Pt 2 57=8,+Cp,. (3.24)
M+1,/R,’ (M+I/R,} (M+1,/R,?)

These two values are calculated from the raw data by the program, and printed out at the
end. It can be seen that the intercept (4,) is a function only of the apparatus and the
weight used. If the fluid is Newtonian, then 4, is not a function of the temperature or
the cup contents. For a Bingham plastic, the extra viscous torque is now derived as:

,
N, =D,R,,'t,In-%. (3.25)

1

This value of viscous torque inserted into the basic equation decreases the value of Ay

measured, while the plastic-viscosity acts through the S, term. It can be shown that;

r.
A4, =t, lnTZDbRw/(M+],,/Rw,2). (3.26)

1

Ad, is computed as an angular acceleration, and must be multiplied by the capstan
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radius to give m/sec’. In eqn(3.26) all the values are apparatus constants and/or known
from the calibration. It is also clear that A4, cannot be greater than the no-field value of
A for that weight, and this puts a limit on the value of yield-stress that can be measured
with any given weight. The rheometer was calibrated using standardised Newtonian
fluids.

3.6.2 Method

The heater and computer were turned on. A fluid sample was placed within the gap.
Rotating the bob allowed any air gaps to escape. Once the required temperature was
reached, testing could commence. The weights were checked to be safely in place and
the correct electric field magnitude was set. An automated process was then set in
motion; the weight was raised, there was then a short pause and the electric field was
switched on before the weight fell. Current density was read and recorded manually
before the weight drops. Both speed and any pressure gradients were deemed low
enough for any cavitation effects to be avoided. In addition, due to micro size of the
particles any wall effects are not considered important. The process took about 15
seconds, allowing the procedure to be repeated four to six times for each setting. The
values of 4 and S for each run are automatically written to a database. After some initial
practice runs, three sets of accurate data were taken.
First Set of Data

It was considered likely that some re-separation of the ER fluid had occurred.
Therefore, before testing, the fluid was shaken for one hour on a paint-mixing machine.
Throughout the tests a driving weight of 6kg was used. Testing was conducted at room
temperature (~20°C), ~25°C, ~30°C, ~35°C and ~40°C. Increments of 0.2 kV were used.
The same fluid was used throughout the testing procedure.

Fig. 3.31 shows the results for z,.. It is difficult to make an exact fit to the data, but
the trend is obvious. The change in 1, for different temperatures is seen to be minimal at
some voltages but up to 50 % at others. Fig 3.32 shows the corresponding
plastic-viscosity values. Above 0.5 kV the value becomes negative. Again, there is no
major difference between results at different temperatures, although at 40°C the
plastic-viscosity (4) starts increasing again, when the voltage rises above 2 kV. This
may be a result of an increase in electrical conductivity when both the temperature and
voltage are high.

Second Set of Data

It was envisaged that a second set of testing would correspond with the first set. A new
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fluid sample was used. The results are shown in Fig. 3.33 & Fig. 3.34.
Third Set of Data

The procedure was repeated again, this time changing the fluid sample at each

temperature. The results are shown in Fig. 3.35 & Fig. 3.36.

3.6.3 Discussion of Results

Yield-stress

To help analyse the results for 7, at each temperature, they have been placed on a
separate graph. Results at 25°C, 30°C and 40°C are shown in Fig. 3.37, Fig. 3.38 and
Fig. 3.39 respectively. The results tie together well at some voltages and temperatures,
while at other values the discrepancy can be up to 500 Pa. This can be explained as
follows. Each fluid sample came from the same bottle. However, each subsequent
sample had been subjected to a higher degree of mixing prior to testing, in order to see
if this had any effect on the results. This was done by placing the fluid container on a
paint shaker for various lengths of time making the fluid more homogenous. It appears
to have done so, for on average the last test resulted in much higher 7, values. In
addition, for the last set of tests a new sample was used for each temperature. Once the
fluid breaks down (around 2.5-3.0 kV) at high temperatures the fluid may be damaged
(some partial chains may fuse together). At the end of a test run, the fluid was indeed
found to he damaged. This was due to a current discharge at high voltages that fuses
particles together into globules. In addition, it was evident that partial chains had sunk
and settled on the bottom of the capstan. This was not expected to happen and may be
due to the fluid being old and/or not totally dispersed.

Plastic-viscosity

Results for the plastic-viscosity (), at 25°C 30°C 40°C are shown in Fig. 3.40,
Fig. 3.41 and Fig 3.42 respectively. At 25°C and 30°C the results are reasonably
consistent, although the discrepancy can be up to 50 mPa.s. However, at 40°C
discrepancies of up to 150 mPa.s are seen.
Comparison with Manutacturers Results

A manufacturer’s specification was available for comparison with the results taken at
40°C. The manufacturer’s methods are questioned later (section 3.7). It is, however,
possible to infer an estimation of 7, from their data, and conclude that the values of s,

are small and possibly negative. In Table 3.5 the manufacturer’s data is seen to

favourably compare with the constani-stress viscomeler results.
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Excitation - Manufacturer’s Data Constant Stress Rheometer
kV/mm Pa Pa
1.5 700 750
2.0 1100 1300
2.5 1600 1800
3.0 2100 2300

Table 3.5: Comparison of rheometer yield-stress values to the manufacturer’s data.

Concluding Comments

The method seems reasonable for obtaining typical values of 7, However, the results

for u. are too scattered to be of any real use in a program that is supposed to predict
accurate performance. The idea of a negative plastic-viscosity is also disconcerting and
will need to be investigated.

In the absence of any other accurate data, the results are of some use. The final set
of data should be assumed the best set of data (Fig. 3.35, Fig. 3.36). This set had the
maximum amount of pre-shaking and a new sample was used at each temperature (i.e a
fluid sample that may have been damaged at high voltage was not subsequently used for

the next temperature range).
3.6.4 Conclusion

These results were based upon a relatively limited knowledge of rheometry that was
acquired from a combination of studying the literature and some basic practical
experience. However, if in the future it becomes necessary to consider the more
complex time-dependent behaviour, it will be necessary to work with experts in the
field.

The characterisation of the ER fluid using a specifically designed test facility
provided mixed results. The results agree approximately with the manufacturer’s data
for basic values of yield-stress. However, the data is not consistent enough to be used in
CFD pre-prototyping methodology, particularly for values of plastic-viscosity. It is now
proposed that a better type of rheometer could be based on the form of a radial plate

device.

3.7 Inter-Changeability of Smart Fluid Data and Negative Plastic-Viscosity

This section tackies the probiem of inter-changeability of fluid data obtained from
different devices. In addition, the concept of a negative value of plastic-viscosity (z) is
investigated. Such values were obtained for an ER fluid in the constant stress rheometer

detailed in section 3.6.
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At first sight, provided /., remains positive. the concept of a negative value of .
may seem feasible (Fig. 3.43). In conventional terms, we have a situation in which the

shear-rate (7 ) actually decreases as the shear-stress (7) is increased. This is a confusing

concept. Alternatively, shear-stress reduces as the shear-rate is increased. This makes
some sense; maybe as p increases, the fluid structure resisting flow could be breaking
down, thus reducing its ability to resist load.

The point can be made that flow will not occur when 7< 1, and therefore, s
cannot be negative [43]. However, one also could argue that this need only be the case

for flow to be initiated.
3.7.1 Numerical Algorithm to Correct non-Bingham Plastic Behaviour

If the CFD pre-prototyping methodology for smart fluids is to be effective, then fluid
data from one type of rtheometer should match that from another. For the Bayer 3635
ER fluid tested in section 3.1, the original manufacturers data is available. These data
sets, obtained on a clutch and annular valve device, should correspond with one another.
A study using the manufacturer’s Bayer 3635 ER fluid data in[32] and a similar
problem in [34] show that sets of data from a clutch and annular valve do approximately
correspond. For this agreement to be evident the dimensional method employing He, Re
and Cf outlined in section 2.6 is used. This procedure uses a numerical algorithm
{eqn(2.30)} that effectively suggests that the fluids yield-stress becomes weaker with
increased shear-rate. This loosely ties in with the idea that a smart fluid could have a
negative value of .

It was suggested in [44] that a numerical algorithm {eqn(2.30)} is unique to an
ER fluid and can thus be used to improve a CFD-based Bingham plastic constitutive
model. The method requires a value of Re to be known, thereby allowing He and hence
7, to be calculated. It is difficult to define Re on a cell-by-cell basis. Even defining an
average Re value based on the overall geometry would be limited to only the simplest
geometry. The suggestion in [44] is really a misconception based on a fundamental
misunderstanding of how CFD works. In addition, the suggestion that a wall refinement
technique is required is also a misunderstanding. Here concepts of convergence and cell
aspect ratios have not been fully understood.

In a CFD based technique there is no need to assume g = 4, and thus to convert

values of shear-rate to Re, or values of 7, to He. Doing so undermines the whole

purpose of using CFD in the first place.
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3.7.2 inter-changeability of fluid data

Without employing the dimensionless procedure used in [32] the inter-changeability of
the data from an annular clutch and valve device was investigated. The fluid data is the
same as that used in [32] which uses the dimensional analysis procedure.

Cylindrical Clutch Data
Low shear-rate data at 40 °C was obtained by the manufacturer’s (Bayer) using a small
cylindrical Couette device [, = 11.2 mm (stationary), 4= 0.55 mm, L = 32.3 mm]. The

data is presented by the manufacturer in the form of a flow curve data (i.e. z vs. 7 ) and

was calculated using the following relationships:
t, = N/2ar,’L,and j=Qr/h. (3.27)

The shear stress would have been better derived using a mean radius (r,=r;+r;).
Furthermore, the estimation of ¥ is only strictly valid if the fluid is fully sheared; this is
not the case if wall plug is present. Using this information, a corrected 7 vs. y curve
was calculated and is shown in Fig. 3.44.

By assuming a Bingham plastic form and that 4 = u, holds true, eqn(2.21) can be
used to determine if any of the data is in the plug regime. In addition, eqn(2.23) can be
used to calculate a value of 7, for each data point. The procedure suggests that most of
the data is in the plug regime (Fig. 3.44), which severely limits the usefulness of the
data and indicates a degree of misunderstanding on the part of the manufacturers. Even
worse, if 4 < i, as appears to be the case (Fig. 3.44), then all the data points could
easily fall within the plug regime.

As reported in [32] the value of yield-stress does indeed appear to reduce with
increased shear rate (Fig. 3.45). However, this is assuming that the ER fluid can be
characterised using the Bingham plastic equation with g, = 4, Furthermore, eqn(2.23)
that is used to calculate the 7, is only valid for plug-less flow. Thus, it is not right to
infer from these results that the yield-stress decreases with increased shear-rate. In fact,
if 4 was to be slightly smaller than 4, then such an effect will be cancelled out.

Since most of the data (if not all depending on what value of 4, is chosen) is in the
plug regime it would appear the Couette data is of little use. However in section 3.2.3 a
spreadsheet was created that calculated the torque profile in the plug regime. In a curve
fitting exercise, using 4= 55 mPa.s for all voltages, a value of yield-stress was chosen
that allowed the Bingham plastic clutch theory to tie up with the clutch data on a
reasonable basis (Fig. 3.44). The procedure is contentious, but no more so than the
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methods used in [34].

In summary, the clutch data that appears to be mostly in the plug regime has been
utilised to determine values of the 7, at certain voltages. This was done using the
Bingham plastic clutch theory with the assumption that = 4= 55 mPa.s.

Annular Value Data
High shear-rate was obtained at 40 °C by the manufacturer using a small annular value
[r=65mm, h=075mm, L=100mm]. Again, the data is presented by the

manufacturer in the form of a flow curve data using the following relationships:
r, =Ap-h/2L,and j=64/bh’. (3.28)

The method for determining stress is appropriate, but the method for determining 7 can
only reaily be applied to a Newtonian fiuid. Equation (3.28) was used to reproduce the
original valve data (Ap vs. ¢). It should now be possible to use the Bingham plastic
fluid data from the clutch to predict the valve data. Since the excitation values, used on

both devices do not correspond, the following relationship was used to infer z,

(Fig. 3.46):

r,(Pa)=387E'  note: E (kV/mm) (3.29)

For an ER fluid 7, is usually a function of an £ or E? {eqn(2.2)}. Here £'* arises in
order for the curve to fit the yield-stress values from the clutch data well, and is similar
to that used in [34]. A linear curve is often used, however the manufactures data
indicates the relationship is slightly non-linear, thus eqn(3.29) is believed to be a better
means of inferring yield-stress at higher excitations.

Using the CFD valve model from section 3.3.1, with 4 = 55 mPa.s and eqn(3.29)
values of pressure where calculated for given values of flow rate. The CFD results are
compared to the experimental valve in Fig. 3.47.

Discussion of results

The agreement between the predicted valve results using the Bayer clutch fluid data and
the actual experimental values are not perfect. However, the Bayer clutch data is
considered to be mostly in the plug regime, the results are surprisingly good.
Furthermore, the agreement is just as good as in [34]. Thus, there seems to be no need
to consider the yield-stress to be shear-rate dependent using a numerical algorithm
{eqn(2.30)}. Any indication that the yield-stress reduces is likely to be due to the

plastic-viscosity being taken to equal non-field viscosity. Thus it is important to have
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original Couette flow data that is of good enough quality (thus away from plug-regime)

so that is possible to occur values of yield-stress and plastic-viscosity.

3.7.3 Negative Plastic-viscosity

Using the CFD models tested previously (section 3.3), the concept of a negative value
of plastic-viscosity (4) was investigated. Fig. 3.43 shows the flow curve of a Bingham
plastic with a negative L.

Perhaps a good way to understand this phenomenon is using the non-Newtonian
viscosity concept, eqn(2.11), as used in the CFD approach. Fig. 3.43 indicates 4, at

three different values of 7. Here the consequence of a negative /. is to simply reduce
JLinn at a greater rate with 7, than when g is positive. A complication will arise when y

is large enough for s, to become negative. This simply can never be the case, so it is
assumed that at some stage the fluid will become sufficiently sheared such that any
smart fluid effect is broken down and the fluids minimum viscosity is that when there is

no-field:
Hooax = Ho. (3.30)

Here we are no closer to understanding if a negative 4 is allowed. The best way to
proceed is to test the concept using previous CFD models.

Annular Vaive with a Negative Plastic-viscosity
An annular valve for which the Bingham plastic solution {eqn(2.17)} applies can be
investigated when the plastic-viscosity is negative. As demonstrated in Fig. 3.48, the
flow rate approaches infinity as x4 is reduced to zero. This is because when g, equals
zero the shear-rate can increase with no increase in shear-stress.

A CFD model of a valve, known to be correct was used. The results obtained

when 4, = 100 Pa are displayed in Fig. 3.48 for a 2 kPa fluid. When g, is positive, the
CFD results fit the theory. When s =0 Pa.s, the solution does not converge. The
condition in eqn(3.30) was applied, and as shown in Fig. 3.48 a converged solution was
obtainable for a value of x = 0Pa.s. The model even works when 4, is negative - the
lower the value the weaker the fluid and the greater the flow rate.

Shear Flow between Flat Plates with Negative Plastic-viscosity
The annular valve problem is relatively complex. A simple shear flow between two
plates was therefore investigated. A periodic condition is applied to a 50x10 grid of

dimensions 2.5 mm by 0.5 mm. The bottom plate was set to move with speed 1.5 m/s,
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which sets shear-rate of 3000 /s.

For a Bingham plastic fluid medium, the theoretical shear force is given by
eqn(2.19). This equation seems to hold true when s, is negative, and is plotted in
Fig. 3.49 for a 2 kPa fluid. Also shown in this figure are corresponding CFD solutions,
which are in excellent agreement when g, is greater than or equal to zero. However,
when / is negative, the agreement is poor. A plug shaped velocity profile forms (shown
in Fig. 3.50) whereas a linear shear profile is expected. If a linear profile is initialised
then the solution agrees but then starts to diverge upon further iteration, indicating a
clear problem. Various things were tried in order to eliminate potential causes. The grid
size was investigated, periodic conditions were eliminated as a cause, alternative
solution parameters were used, a concentric geometry was tested. However, the solution
remained the same.

A further attempt to achieve the expected solution was carried out. The actual
flow curve data dictated by the Bingham plastic equation was transformed into
[4m vs. 7). CFD requires the data to be in this form, and this is precisely what Fluent
does upon solution. Power law curves were then used to match the data. Upon doing so
it is difficult to tell which power law curves were derived using negative or positive
values of 4. One thing that is for certain, is that solutions derived using a positive
plastic-viscosity give the expected solution, and ones with a negative plastic-viscosity

still give the same unexpected solution as before.
3.7.4 Conclusion

The validity of a negative plastic-viscosity, suggested by the constant stress viscometer
results (section 3.6), was scrutinised. A practical dimensional approach suggests a
negative value may be plausible - with increased shear-rate the structure may be
breaking down and thus the shear-stress it can support is reduced. However, this may be
due to the plastic-viscosity (1) being taken to equal the no-field value ().

Mathematically the concept of a negative 4, is not plausible. For flow to occur 7
must be greater than 7, Thus at this stage it is implausible to derive analytical equations
using negative values of 4. For analytical work to be used to verify CFD results, . will
have to remain positive.

It can be concluded that for the simplest shear flow CFD does not appear to be
compatible with the concept of a negative plastic-viscosity. If the actual shear-stress
falls with increased shear-rate, then the solution appears to always diverge, whichever

equation is used. This may be due to the concept being fundamentally flawed.
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Altemnatively, the CFD package in its current form may not be able to handle the idea
and thus may need modifying.

To fully understand this perplexing problem, more consideration is required. The
plastic-viscosity is only significant in smart fluid devices that exhibit a relatively high
shear-rates such as in an annular valve. As a result it was decided that time was best
utilised elsewhere. As a result the debate is still open, however I suspect that the
problem lies with the use of the Bingham plastic model in rheometer procedure, and that

negative values are impossible.

3.8 Summary: Feasibility Study

There appears to be no problem in solving basic steady state 1D smart fluid problems.
There may be an issue with computing time for more complicated flows, especially if
pressure boundary conditions are used. A specific ER fluid rheometer provided realistic
ER fluid results. However, these results are deemed not to be very accurate. Perhaps a
radial plate rheometer would be the best way forward, as suggested in section 2.5.2.
Some major issues have been tackled involving the concept of a negative

plastic-viscosity.
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Fig. 3.8: Annular valve modelled as two flat plates. Pressure profile along symmetry line for the
different methods of applying boundary conditions.
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Fig. 3.9: Annular valve modelled as two flat plates. Velocity profiles for a Newtonian and Bingham
plastic fluid medium compared with the analytical profile.
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Fig. 3.10: Annular valve with Bingham fluid medium modelled as two flat plates. Convergence test
when a uniform inlet velocity and a pressure outlet boundary condition are used to set the flow-rate.
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Fig. 3.11: Annular valve modelled as two flat plates. Bingham fluid medium. Convergence test: pressure
on the centre line during convergence.
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Fig. 3.12: Annular valve modelled as two flat plates. Bingham fluid medium. Convergence test: velocity
profile at outlet during convergence.
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—— analytical
® CFD: S kPa, 0.05 Pa.s, 0.5 mm

A CFD: 10 kPa, 0.1 Pa.s, 0.5 mm
s CFD: 5 kPa, 0.1 Pas, 0.5 mm

\
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pressure gradiant G [Bar/mj
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Fig. 3.13: Annular valve with Bingham fluid medium modelled as two flat plates. CFD comparison with

analytical theory for a variety of parameters.
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upper plate (wall speed = 0 m/s)

periodic boundary

AN

condition

lower plate (wall speed = w m/s)

Fig. 3.14: Schematic of CFD model for concentric clutch, 1 x 10 cells
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Fig. 3.16: Concentric clutch using Bingham CFD model. Here the CFD profiles become more plug like
as y, is increased, but do not agree with theory. r, =10 mm at 10 rpm.
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Fig. 3.17: 1D concentric clutch with Bingham flow medium. /& = 0.5 mm, r,, = 30 mm.
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Fig. 3.18: 1D radial clutch with Bingham flow medium. Here the Fluent4 CFD predictions for

torque (V) agree with analytical theory. & = 0.5 mm, r, = 30 mm.
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Fig. 3.19: Rayleigh step bearing illustration. The CFD mathematical model is for the condition when
h { fhune 0 mm.
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Fig. 3.20: Rayleigh step bearing with Newtonian fluid medium. CFD grid analysis.
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Step Bearing with Newtonian Fluid Medium
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Fig. 3.21: Step bearing with Newtonian fluid medium. CFD vs. analytical solution for a range of

parameters.
5:08-04 Step Bearing with Newtonian Fluid Medium
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Fig. 3.22: Step bearing with Newtonian fluid medium. CFD velocity profile vs. analytical solution at the
inlet to the bearing. The net flow-rate is zero.
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Fig. 3.23: Step bearing with Bingham fluid medium. CFD vs. analytical solution for a range of

parameters.
1 " | L > |
fluid = Bingham CFD Model (Fluent5)
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Fig. 3.24: Step bearing with Bingham fluid medium. CFD vs. analytical velocity profile. For large plugs

more cells will be required near the walls.
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Fig. 3.25: Schematic of annular value in which the middle third section is excited.
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Fig. 3.26: Annular value in which the middle third section is excited using the ER Bingham CFD model.
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Fig. 3.27: CFD voltage distribution. Model is of flow between parallel plates with a 180-degree bend,
separated by distance & = 0.5 mm. Fluid enters top left (inlet velocity condition) and fluid leaves bottom
left (pressure outlet condition). Corresponding velocity profile distributions are shown Fig. 3.28.

2 1| parallel plates with 180 degree bend {— on centre of bend |
fluid = ER Bingham CFD model
yield-strength = 1000 Pa/kV/mm
25 plastic-viscoisty = 50 mPa.s

: h =0.5mm
= 2
E
v
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‘=15
@
E
3.
‘@
S 1
g

05
0 - - "
0 005 0.1 0.15 02 025 0.3 035 0.4 0.45
distance across gap [ mm |

05

Fig. 3.28: Velocity profiles across gap. Model is of flow between parallel plates with a 180-degree bend
separated by distance i = 0.5 mm. Corresponding model is shown in Fig. 3.27. Velocity profile is taken
on the horizontal at the centre of the bend.
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Fig. 3.29: Illustration of the small error involved when assuming a constant excitation in a concentric

geometry.
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Fig. 3.30: Schematic of ERFD rheometer. The inner electrode is excited with DC voltage through a high
voltage cable that runs down the centre of the shaft.
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Fig. 3.31: Yield-stress results from constant stress viscometer. 1* set of testing. One fluid sample used

throughout the test.
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Fig. 3.32: Plastic-viscosity results from constant stress viscometer. 1™ set of testing. One fluid sample

used throughout the test.
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Fig. 3.33: Yield-stress results from constant stress viscometer. 2" set of testing. One fluid sample used
throughout the test.
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Fig. 3.34: Plastic-viscosity results from constant stress viscometer. 2" set of testing. One fluid sample

used throughout the test.
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Fig. 3.35: Yield-stress results from constant stress viscometer. 3" set of testing. New fluid sample used

for each temperature.
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Fig. 3.36: Plastic-viscosity results from constant stress viscometer. 3™ set of testing. New fluid sample

used for each temperature.

=170 -



Modelling Smart Fluid Devices Using CFD

3: Figures
— —
o ’ —A— Test One
| 1 == Test Two ot /
3500 +
=8~ Test Three //
i A///
"a 2500 /
=
?
e e
=
i
’ 1500 +
1000 = /
500 1 /
0 T . v
0 500 1000 1500 2000 2500 3000
volts [V]
Fig. 3.37: Yield-stress results from constant stress viscometer at 25°C.
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Fig. 3.38: Yield-stress results from constant stress viscometer at 30°C.
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Fig. 3.39: Yield-stress results from constant stress viscometer at 40°C.
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Fig. 3.40: Plastic-viscosity results from constant stress viscometer at 25°C.
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Fig. 3.41: Plastic-viscosity results from constant stress viscometer at 30°C.
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Fig. 3.42: Plastic-viscosity results from constant stress viscometer at 40°C.
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Fig. 3.43: Bingham plastic model showing concept of a negative plastic-viscosity.
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Fig. 3.44: Flow curve for a Bayer 3565 ER fluid obtained in Couette flow cylindrical device.

Temperature = 40 °C
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Fig. 3.45: Bayer 3565 ER fluid data obtained in Couette flow cylindrical device. Values of yield-stress

calculated using eqn(2.23) with z, = 55 mPa.s. Only data points in the plug-less regime are
valid.
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Fig. 3.46: Flow curve for a Bayer 3565 ER fluid obtained in Couette flow cylindrical device.
Temperature = 40 °C
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Fig. 3.47: Valve data for a Bayer 3565 ER fluid. Temperature = 40 °C
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Fig. 3.48: Flow curve from a Couette flow device. Here the original manufacturers data has been

corrected.
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Fig. 3.49: Flow curve from a Couette flow device. Here the original manufacturers data has been

corrected.
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Fig. 3.50: Flow curve from a Couette flow device. Here the original manufacturers data has been

corrected.
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CHAPTER 4 :
2D STEADY STATE SMART FLUID FLOW

41 Introduction
In this chapter, the successful 1D CFD work on smart fluids is expanded into the 2D

regime. Two-dimensional flow problems of practical interest are solved using CFD and
compared with the Bingham plastic analytical theory. Work done in this chapter has
been published in four different papers. Conference proceedings include [29] [45] [46]
(Appendix B). Work on the smart fluid seal was published in the Journal of Intelligent
Material Systems and Structures [47] (Appendix B).

A possible solution to the problem of maintaining a stable fluid temperature in a
smart fluid clutch is examined. It has been proposed that a secondary flow perpendicular
to the torque transmitting direction would allow hot fluid to be removed from the clutch.
An analytical solution to this problem is possible but relatively complex. The resulting
equations need to be solved numerically [25]. A CFD solution to this problem is of
interest and if agreement between the two were found, it would provide a useful
verification of the two approaches.

In the CFD method, the smart fluid is modelled as a homogeneous viscoplastic
continuum using the Bingham CFD model. One-dimensional Couette flow occurs
between two plates. Perpendicular to the Couette flow direction, a pressure gradient (G)
is applied. The flow is steady, and the excitation and thus yield-stress are assumed
constant across the gap-width (k). The resulting flow in both directions is coupled and,
in general, these flow fields and the transmitted forces depend upon the relative speed of
the plates and the pressure gradient.

The analytical solution originally developed to model a smart fluid concentric
clutch [25] is extended and applied to a radial clutch. For both devices, different fluid
properties, speeds and axial pressure gradients are investigated. The resuits indicate that
for realistic rates of through-flow torque transmission should not be overtly affected.

Utilising the 2D concentric clutch CFD model, a further problem is resolved. This
problem deals with flow in a concentrically located rotating smart fluid shaft seal.
Incompatible reports of the effect of rotational speed on sealing capabilities exist. The
discrepancy is explained when the effect of radius ratio, rotational speed, axial pressure
gradient and the fluid properties on leakage flow rate are investigated using a CFD
model.
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4.2

Analytical Theory: 2D Bingham Plastic Flow between Two Flat Plates

4.21

An analytical solution developed by Atkin [48] is now summarised. Fig. 4.1 illustrates
the geometry used. A distance (k) in the z-direction separates two parallel plates,
between which 2D, fully developed, isothermal flow of a homogeneous, incompressible
continuum with fixed Bingham plastic properties [23] occurs. The velocity components

are assumed to be:
v,=u(z), v,=v(z), v,=0. 4.1

The Poiseuille type flow is caused by a pressure gradient, G(= dp/dy = AP/L), and the
Couette type flow occurs due to the speed difference between the plates. For simplicity,
one plate (z=h) is always considered stationary, with the other (z=0) moving at

constant speed (U ). The boundary conditions are therefore:

u(@)=U, u(h)=0; v(0)=v(h)=0. 4.2)

Governing Equations

In the absence of body forces the momentum equations (section 2.3.1) are:

O I .
Ao Tox, | ox, ox; . (4.3)

In the manner described in section 2.3, the Bingham plastic constitutive model [23] is

used to represent the stress tensor (7;) in terms of the deformation rate tensor (dj):

T
z, =(—"’+yo)dy. T>7, h _ﬁ a"‘,- d Tzi'\/%“'yry
y where e,.j—ax +5x—- an . (4.4)
;=0 r<z, ; ; 7—11/}{e,.jey.
For the velocity field given by eqn(4.1) the only non-zero rate of strain components are
given by:
du dv
dx: =dzx=_d_? dyz=dzy=7d_z— (45)

and using eqn(4.4) the resulting non-zero shear stresses are:

r-—t1+,uiig— r—&-+ dv 4.6
xz )’ rdz’ yz y /'le dZ, ()
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2 2
where ;‘»:J[%] +[gzﬁ] @7

The equations of motion {eqn(4.3)} reduce to:

dp d
5;1“=0 —£+Zz—rﬁ=0 (4.8)

which can be integrated to give:
t.=a, t,=0z+b, 4.9

xz

where a and b are constants, G = dp/dy and so, using eqn(4.4):

r=yrl 41} =\a +(Gz+b) . (4.10)

From equations (4.6), (4.7), (4.10) it follows that:

du T dv T
W _d1- D o (Gz+b)1-2
Ko a( r),/“¢ ( { j. (4.11)

T

The equations obtained by substituting eqn(4.10) into eqn(4.11) can be integrated to
determine the velocity components u and v that satisfy the boundary conditions
{eqn(4.2)}. It follows from the analysis in case (i) and (ii) below that to satisfy the
boundary conditions on v, b = -Gh/2.

For flow to occur 7 must be greater than 7, which is a positive constant. From

172

eqn(4.10) flow can only occur if (a® +5%)"* > t,. There are two cases to consider:

(i) t,<|a| and (i) |a|<t, <(a’®+b*)".

Case (i) No-Plug Regime |a | > 7,

If| a|> 7, then ris always greater than 7, and flow occurs across the whole gap with no

plugs present. A direct integration of eqn(4.11), using eqn(4.10) and the boundary

conditions {eqn(4.2)}, results in the velocity components:
u=U-U(z), v=V(2), (4.12)

where

- T, | . 4(Gz+b b
U(z)= —-2{sinh™ -sinh™| —
u,U(2) |a|[z G{sn [ al ] sinh (laJH' (4.13)
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2
Gzz +bz—%’[Ja2 Gzt a5 (4.14)

uV(z)=

Both velocity components are therefore dependent upon G and thereby affected by a
change in the pressure gradient. An integration of the velocity profile eqn(4.14) gives

the flow rate in the y-direction as:

2

; h
q, =_L_,cg:_+£,_{r, \/Gzh2+4a2—%—sinh“'[—(—;£)} (4.15)

124, u, |4G 2|

where L, is the length of plate in the x-direction. To satisfy the condition u=Uat y =10
it follows that:

2t, . ([ Gh
wU =|al [h—F’smh '(mﬂ . (4.16)

This equation can be used to determine |a|.
Case (il) Plug Flow Regime | @ | < 7,

In this flow regime the possibility of yield surfaces arise. A solution with a central plug,
which is symmetric about the mid-plane z = h/2, is derived. The plug boundaries can be
determined by using the condition that = 7, in eqn(4.10). This gives a plug thickness
of:

2
hp =2z,-2 =51/ty —a? (4.17)

which must be less than the gap-width (). This inequality leads to a critical condition
on the pressure gradient for flow to occur. The derivation of the velocity components is

now more involved. The final velocity components can be written in the form:

U-U(z) 0<z<z V(z) 0<z<z
u=<U/2 z,<z<z, v=<V(z) z,£z<z, (4.18)
Uh-z) z,<z<h Vih—-2z) z,<z<h

where U and ¥(z) are given by eqns(4.13) & (4.14). Again the condition u= Uaty=h

gives:
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2 2

27,2 -a | 2ar Gh t,-a
U= h-— y _ y inh—l My -nh—l Y )
u U =la| G G |I® (2|a|) SL ——“_|a| (4.19)
An integration of the velocity profile u gives the flow rate expression:
q-y = 2L.\'[ jV(z)dz + V(zl )(22 - zl )] = 2Lx (ql + qz) > (4.20)
0
2
4, = 1 —Gi(3h ~22)+ 22 JGH v 4d
u | 12 2G
: (4.21)
2 2 1
+&—(ﬁ—zj a’ +Gz(ﬁ—z) +——‘tya2 sinh™ g(ﬁ—-z
2G\2 2 2G lal\ 2 0
4, =(0.5h-2)V(z)). (4.22)

Piug and Plug-Less Flow
It is useful to know which conditions are required for flow to occur, and for a
changeover from the no-plug to plug regime. At the limiting condition for flow to occur

r= 1,. This condition in eqn(4.10) gives:

a2+b’_1 = £i+ G =
tyz tyz ry2 (3’?_ Y (4.23)

Fig. 4.1 (b) illustrates this relationship. The switch from plug to plug-less regime occurs
when a = 1,. For a given value of G, the values of flow rate and plate speed at the point
of transition between plug and plug-less flow can be calculated using eqn(4.15) (4,.,..)

and eqn(4.16) (Uirans) respectively with a = 7,. If a given value of G is below 27, /h

then a minimum stress (amin) is required for flow to occur - this can be deduced from
eqn(4.23):

(4.24)

4.2.2 Conclusion

If | a|> 1, then shear-stress from the Couette flow alone is strong enough to ensure the
fluid is sheared throughout with no plugs present. In this case, for a given value of G
and U, a is given by eqn(4.16) and the resulting flow rate (which is dependent on G and

-82.



Modelling Smart Fluid Devices Using CFD 4: Steady State 2D Flow

a)is given by eqn(4.15). However if |a|< 1, then flow can only occur if G is
sufficiently strong enough to help overcome the fluid yield-stress. A plug will be
present which is symmetric about along the centre line, a is now given by eqn(4.19) and
the resulting flow rate is given by eqn(4.20).

The equations are quite complex. To obtain a, equations (4.16) and (4.19) must be
solved numerically. Care must be taken, as the opportunity for human error is high. The

equations governing the 2D flow/stress field give rise to two flows that are coupled.

4.3 CONCENTRIC Clutch with Cooling Through-flow

A theoretical concentric cylinder clutch was examined in a pre-prototyping exercise in

order to estimate the effect of a secondary, axial, cooling flow on torque transmission.
The through-flow was investigated using the analytical theory presented in section 4.2
and CFD analysis.

The ‘2D Bingham plastic flat plate theory’ was originally developed to analyse
this particular problem [48] where gap-width (/) is much smaller than the clutch’s mean
radius (rw). Solutions to the analytical theory and CFD results from undergraduate
projects [49] and [50] have been presented in the International Journal of Modemn
Physics [25]. Here the CFD and analytical results do not correspond very well. This
appears to be due to a lack of appreciation in understanding how to obtain a correctly
converged solution. The following CFD results that utilise an adequate grid density and

convergence procedure agree well with the analytical solution.
4.3.1 Theoretical Model: 2D Concentric Clutch

Within the fluid gap-width (%), the field strength is assumed constant, and flow occurs
in both the circumferential and axial directions. The former is caused by rotation of the
inner rotor, and the latter is due to the difference in pressure between inlet and outlet
along the axis.

4.3.2 Analytical Solution

Given that i << rp, the flow is approximated to that between two flat plates. The inner
rotor corresponds to the lower plate (y=0) moving with speed U(=~Q) in the

x-direction whilst the upper plate (y = h) is fixed. The steady state torque () is then
given by:

N =2zhr,’|a|L,. (4.25)

Since the clutch is approximated as two flat plates, a mean radius must be used when
calculating the torque. This was not done previously in [49], and can affect the results
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slightly due to an #* effect.

The equations were solved numerically using a spreadsheet'. Values of the
parameters h, rm, Ly, £2, Ap, 7, and g, were entered allowing the spreadsheet to calculate
values of G and b. A Newton-Raphson method then solves eqn(4.16) or (4.19) for a. If
G < 21/h, eqn(4.24) can be used to obtain @y, The transition pressure gradient (Girans)
between plug and plug-less flow regimes is determined when a = 7; is used in eqn(4.16)
or (4.19) and solved using a Newton-Raphson method. Equation (4.15) or (4.20) can
then be used to calculate flow rate. Care must be exercised because the equations are

quite complex and errors can be made when entering them into the program.
4.3.3 CFD Model: 2D Concentric Clutch

The following table summarises the CFD model used in this section.

Software Fluentd4, finite volume, segregated solver

Physical Model | 2D, steady, laminar, incompressible, isothermal flow

Fluid Properties | viscosity (Bingham CFD model), density (constant)

Discretisation of | interpolation scheme 1 order for all equations
flow Equations

pressure-velocity SIMPLE

grid (y, z) [z = radial direction] 40 (axial) x 40 (radial)
Boundary outer rotor wall, zero velocity condition
Concitons inner rotor set circumferential velocity

inlet inlet axial velocity

outlet fully developed

Table 4.1: Summary of CFD model used to solve 2D concentric clutch with through-flow.

Without having to make the flat plate approximation, the same problem was solved
under identical flow assumptions using the CFD method. The clutch was modelled
using an inner and outer cylindrical wall. All derivatives in the tangential direction are

zero, allowing an axisymmetric grid to be used. A uniform inlet velocity was used to set

the flow rate (g, ) (using a mean radius r,,). The length of the clutch was increased by

20% to allow space for the parabolic velocity profile to develop. This was ample room
to allow the profile to develop. Since the flow aligns with the grid, a first order power
law interpolation scheme was found to be adequate in determining cell face values. To
allow convergence the residuals had to be reduced considerably more than the default

values. It also proved advantageous to increase the under relaxation values for

' Done using Microsoft Excel.
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w-velocity and viscosity equations to a value closer to 1.0.
4.3.4 Results: 2D Concentric Clutch Model

In some areas, the CFD results are found to be in very good agreement with the
analytical predictions. In other areas, the correlation is poor. This inconsistency is due
to the analytical flat plate assumption being less valid for representing cylindrical
geometry at lower speeds where wall plug behaviour can be found.

Fig. 4.2 displays results of torque vs. rotational speed for a 10 kPa fluid under
various levels of pressure gradient (G). To fully test the comparison between the CFD
package and analytical theory, some large values of G were chosen in order to put the
flow in both plug and plug-less regimes. Here a uniform inlet velocity was used in order
to achieve a theoretical value of G as indicated by the analytical model. As a result, the
corresponding values of flow rate shown in Fig. 4.3 are in perfect correlation. Referring
back to Fig. 4.2, when G = 0 bar/m there is no axial flow and the torque profile is seen
to be unaffected and is thus the familiar N vs. £2 for a smart clutch device. However, for
larger values of G, the effect on torque becomes evident.

As discussed in section 2.4.2, below a certain speed (£2,), given by eqn(2.24), a
plug would be attached to the outer wall due to the concentric geometry, in which case
the flat plate assumption, used for the analytical model, is less valid. Equation (2.24)

applies only to the case when ¢,=0 Lt/min. However, its value is still likely to be of

some use in indicating whether the flat plate assumption is valid or not. As indicated by
eqn(4.10), for the same (2 an increased value of G, reduces the shear-stress (a), which
would result in (2, being underestimated. Bearing in mind that the CFD results have
been obtained for the cylindrical geometry, this behaviour is indicated in Fig. 4.2.
Below (2,, the CFD points match the analytical theory less well than above £2,. The

torque dips at very low speed due to plug presence on the outer rotor.

When G >2t,/h, a minimum value of a before flow can occur is not required
(see Fig. 4.1 (b)). This effect is shown in Fig. 4.4 for a 6 kPa strength fluid. Here the
yield-stress has effectively been removed and no initial torque is required before flow
can occur. The corresponding flow rates are shown in Fig. 4.5. Here for the 8 and

10 kPa fluid, no axial flow occurs at zero speed because 7< 7,
It is useful to look at how the flow rate affects the torque (N vs. ¢, ) as in Fig. 4.6

at a speed of 600 rpm for 2 and 10 kPa at 100 mPa.s. Increased flow rate is seen to

diminish torque. The corresponding values of G required to obtain g, are shown in
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Fig. 4.3. For the same plate speed (U), with increased pressure gradient (G),

circumferential shear-stress (|a|) decreases and a transition from case (i) (la|>1,) to
case (ii) (Jal<t,) can occur. The transition point occurs at higher flow rates with

decreasing 7, and £2. Flow rates greater than 1.0 Lt/min intuitively seem to be too high
for such a small device and thus flow is always likely to be in the plug regime.

Finally, the velocity profiles must be considered. In case (i) there is no plug and
w(h/2) =W /2, whereas in case (ii), the region z, <z<z, is occupied by a plug
moving with this speed in the transverse direction. The axial component is symmetric
about y = h/2 with maximum speed at y = /2, in case (i). In case (ii), the plug moves
with speed W(z;) in this direction. These features agree with the profiles obtained from
the CFD as shown in Fig. 4.7 and Fig. 4.8.

4.3.5 Discussion

When G is increased to 100 bar/m and 300 bar/m the torque profile is affected, i.e. the
pressure gradient is reducing the value of a. The effect is quite severe at 300 bar/m, and
the value reduces significantly at low speed. Within the range of practical operation,
when {2 is relatively large and G small, a change from plug flow to plug-less flow
occurs. A value of 100 bar/m seems large but for a 10 kPa fluid this gives a flow rate
less than 1.0 Lt/min at 1000 rpm. However, the clutch is unlikely to operate in a fully
active slipping state 100 % of the time. During the cycles when the clutch is un-active
(e.g. during disengagements) 7,=0kPa and significant amounts of axial flow will
occur, thus helping to remove heated fluid.

When the axial flow rate is zero, the torque remains relatively independent of
speed, provided g is small. This is not the case when pressure is applied so as to force
an axial flow rate. At low speeds, G can dominate and a lot of torque can be lost. The
severity depends upon the magnitude of G. For high values of G, the situation can be
likened to a clutch device operating with a fluid that has no static yield-stress. Such a
set-up may be useful in certain forms, for example as a speed-limiting device'. It can
also be noted that at low speeds viscous heating is less of a problem and thus large
values of G are not required.

When considering this device to be a valve as opposed to a clutch, unusual

{Ap vs. g, } curves are formed. If the device is forced to rotate then no initial G need be

overcome for flow to occur. This could help give a better range of operation in a smart
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fluid valve. When the flow rate is less than the critical value as predicted by the
analysis, no plug is present, whereas above this value there is a central plug.

The number of cells within the gap width that are needed in order to achieve a
grid independent solution, was found to be greater than that required for Newtonian
flow. This is due to the velocity profile being more complex. Default convergence
criteria were found to be insufficient. It is mainly a lack of consideration to these two
important points that gave poor comparable results in previous work [25].

It is clear that for practical cases (§,~1.0 Lt/min, based on rudimentary heat
balance calculation) the linear approximation based on |Gh/2al<<1 is not valid. The
consequence of this is that there will be a drop in pre-set torque with increased
through-flow. However, the results show that the severity of this loss in output is quite
small, allowing for an otherwise impractical (due to heating effects) device to be
contemplated.

On this occasion, the CFD indicated that the original plug-less flow theory (7> 7,)

was insufficient. This led to the development of the plug flow analysis (7 < 7).

4.4 RADIAL Clutch with Cooling Through-flow

A theoretical two plate radial clutch is now examined in a pre-prototyping exercise.

With a similar aim to the previous section, the effect of a secondary radial cooling flow
on pre-set torque transmission is estimated. The through-flow is investigated using CFD
analysis and the results are partially verified by developing the Bingham plastic 2D
parallel plate theory (section 4.2).

This situation is more complex than before, as the pressure gradient that causes
flow is no longer constant. This imposes difficulties in the analytical solution. The
pressure profile has to be obtained numerically as when CFD is used. Once this profile
is calculated using a CFD model, it can be used in the analytical theory to obtain values
of torque and flow-rate.

Again, the smart fluid is considered a homogeneous, incompressible continuum
with constant values of yield-stress and plastic-viscosity. The Bingham equation is

utilised and analysis assumes steady, 2D, laminar and isothermal flow.
4.4.1 Theoretical Model

The two discs are separated at a distance (h) in the z-direction as shown in Fig. 4.9.

Flow occurs in both the circumferential (8) and the radial (r) directions. The former is

' As the speed increases, the torque resisting motion would also quickly increase.

-87-



Modelling Smart Fluid Devices Using CFD 4: Steady State 2D Flow

442

caused by the relative angular speed (£2) of the plates (Couette flow), whereas the latter
is due to a pressure difference between the inlet and the outlet radii (Poiseuille flow).
For simplicity, one plate (z = 0) is always considered stationary, whilst the other (z = k)

rotates with constant speed £2. The velocity components are assumed to be:
v, =v,(rz), v,=v,(r,z), v,=0. (4.26)

Analytical Solution

An analysis of the deformation rate tensor (d;) shows that provided h<<r, the
dominant terms are d;, d., d;g and dg. This is equivalent to neglecting the normal
stresses. As centrifugal acceleration terms are expected to be relatively small, steady
state acceleration terms are also neglected. Under the approximation h<<r, the

dominant terms in the momentum equations {eqn(4.3)} are then:

dp ot Oty op
Py Zeo P {cf eqn(4.
> 5 s Rl {cf. eqn(4.8)} 4.27)

These partial differential equations can be integrated to give:
1. =G(r)z+b(r), 1o =a(r), p=p(r), (4.28)

in which b(r) and a(r) are arbitrary functions of » and so are arbitrary constants at a

given radius and:
dp
G(r)=—

r) rl (4.29)

The magnitude of resultant shear-stress at radius () is:

(r)= \/ tn2 + 1&2 = \[ a(r)’ + (G(r)z + b(r))2 . (4.30)

Equation (4.30) is equivalent to eqn(4.10) at a given radius (#). In this case, from
eqn(4.4),

T T

dv d
. =(7Y+ ”‘J A =(7y+ yelf {cf. eqn(4.6)} (4.31)

It follows that eqn(4.2), eqn(4.11), eqn(4.13), eqn(4.14), eqn(4.16), eqn(4.17), eqn(4.18)
& eqn(4.19) are relevant for this situation at radius () when the following replacements

are made:
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u =v, u,=u, rQ=U, anda, b, Gdependuponr. (4.32)
Once again to satisfy the boundary conditions on v,:
b(ry=-G(r)h/2. (4.33)
Torque

The torque required to keep the plate moving at speed (2 is given by:

, 2z r,
N= Idr J'rza(r)drdO =2r Irza(r)dr (4.34)

r 0 5

In the couple case the total torque is calculated at discrete radii and summed over the

range r; and 7, so that:
N =2x) ria(r)or (4.35)

When Gh/2a <<1 and U = r{2 then eqn(4.16) reduces to:

rf2
a(r) = ﬁ-’-’-;— +7, (4.36)
giving from eqn(4.34):
Q 2T
N=5'ZT(ro‘—r.-‘)+ 3’(ro3—n3) (4.37)

This expression is the same as for the case when there is no axial flow (G(r) = 0).
Fiow Rate: Plug-Less Flow |a(r)|> 7,

An integration of the radial velocity profile gives the flow rate at radius (r) as:

p =_G(’)h3m+2m{ % \/G(r)zhz+4a(r)2—ﬂsinh"[m]} (4.38)

’ 64, u, |4G(r) G(r)’ 2a(r)
{cf. eqn(4.15) note L, = 2nr}.
Fiow Rate: Plug Flow |a(r)| <,

The radial flow rate at radius () is a summation of flow in the plug-less region plus that

of the plug:
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q,=2n r[2 [' u,(r,2)dz+u,(r,z)(z, -z, )] =q,+4q, {cf. eqn(4.20) note
, (4.39)

L,=2nr}

. _2n&r _G(r)y2 3 52 %) 5
g, = [ (3h-22)+ 0 JG(r)*h* +4a(r)

K, 12
T, h
+ 26() (5— z)\/a(r)z +G(r)*(05h-z) (4.40)
o]
2G(r) la(r)\ 2 -
g, = 2ar(0.5h—2,)u,(r.z,) . {cf. eqn(4.20), eqn(4.21) & eqn(4.22)} (4.41)

If we consider radial flow only (Poiseuille flow only a(r) = 0 ) eqn(4.39) reduces to,

. _wrh’G(r) ) T, ’
"= "ep, [l+3(hc(r)] 4[hG(r))]. (4.42)

With appropriate change in notation, this equation is the same as that presented in [24].

Pseudo-Plug Flow
If |a(r)| >, flow will occur across the whole gap. However if |a(r)| <z, flow can only

occur if a central pseudo-plug region is present. The term pseudo-plug is used because
in this geometry it is impossible to a have a solid central section moving at constant

speed. However, at given radius the velocity profiles have a central section in which the
speed is constant.

4.4.3 CFD Model: 2D Radial Clutch

The following table summarises the main CFD model used in this section.
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Software Fluentd4, finite volume, segregated solver
Physical 2D, steady, laminar, incompressible, isothermal flow
Model
Fluid viscosity (Bingham CFD model), density (constant)
Properties
Discretisation | interpolation scheme 1* order for all equations
:Zl;l?l:r;ons pressure-velocity SIMPLE
axisymmetric grid 80 (in gap-width) x 100 (along the radius)
Boundary upper dise wall, zero velocity condition
SRl lower disc wall, with circumferential velocity r(2
inlet inlet axial velocity
outlet static pressure outlet

Table 4.2: Summary of CFD model used to solve 2D radial clutch with through-flow.

The problem outlined above was solved using Fluent4. The same flow and fluid
assumptions already outlined apply. However, the lubrication assumption /4 << r is not
required and furthermore the steady state acceleration terms are not be neglected.

Since all derivatives are zero in the tangential direction, a 2D axisymmetric grid
was used. A uniform inlet velocity boundary condition allowed the flow rate, ¢,, to be
set, a static zero pressure condition was used for the outlet. A fully developed condition
is not correct. One wall is set to be stationary and the other set to rotate with angular
speed £2. Increasing grid resolution produces a model that more accurately simulates the
continuum problem. However, this comes at the expense of computational speed
therefore engineering judgement had to be exercised. Since the flow aligns with the grid

a first order power law interpolation scheme was adequate to determine cell face values.

4.4.4 Results: 2D Radial Clutch

Poiseuille Flow Only

The case of radial flow only was initially studied, for which pseudo-plug profiles were
found. In the analysis, eqn(4.17) suggests that the plug size will increase with radius
when G decreases with radial position. To maintain mass continuity, the velocity of the
fluid reduces; this results in a more dominant plug at greater radii, due to a reduction in
deformation rate. This behaviour can be observed in Fig. 4.10.

The pressure profile can be numerically differentiated to determine G(r) at
discrete values of radius. If the CFD profile is correct then eqn(4.42) must yield a

constant value of ¢, at all radii, if mass is to be conserved. Initial tests showed

disagreement at small radii that could not be fully attributed to flow development. The
-91 -



Modelling Smart Fluid Devices Using CFD 4: Steady State 2D Flow

discrepancy was found to be due to a lack of cell density in the radial direction. Unlike
the concentric clutch case, the pressure profile is non-linear particularly at and near the
inlet radius. Increasing cell density resulted in good agreement over most of the radius
range. The initial 5 mm of the CFD flow field conforms to mass continuity but does not
correspond to theory. A flow development length that is required for the uniform inlet
velocity to develop, results in a pressure profile that does satisfy the assumptions of the
theory.
Coupled Flow
The CFD model was used to find how N is affected by higher flow rates. As G(r)

increases, |a(r)| decreases, and eventually there is a crossover from case (i) to (ii). For

every computed flow field G(r) was determined numerically, allowing a(r) to be
calculated using the relevant equation. This allowed the total torque to be evaluated by
summing the values at each discrete radius (eqn(4.35)). This was achieved by importing
CFD data into a spreadsheet that allowed each CFD point to be checked.

A grid analysis showed that 80 cells in the axial direction gave grid independent
answers. To achieve an accurate pressure field over the full radius required about 400
cells. However, the majority of torque is generated well away from the inlet. This meant
that only 100 cells in the radial direction were required for a grid independent answer.
Considering the geometry (ro,-r;yh a grid of 80 x 100 cells was chosen. Engineering
judgment was therefore used to set up a practical grid; the validity of which is
demonstrated in the following results.

Fig. 4.11 and Fig. 4.12 show N and Ap behaviour over a wide range of 7, and flow
rates at two typical speeds of operation. At 600 rpm there is a ~50% drop in N at
6 Lt/min at each value of 7, whilst at 1200 rpm the severity of the coupling loss is much
less (~20%). For a constant pressure difference, it can be noted that reducing the speed
also reduces the flow rate.

Next, the effect of the geometry is considered. When there is no radial flow,
doubling the gap size halves the shearing rate and likewise the Newtonian contribution
to torque. Nevertheless, for practical parameters the Newtonian shear-stress is small in
comparison to the yield-stress contribution, meaning that there is only a small loss in N.
In terms of coupling effect as shown in Fig. 4.13, doubling the gap size results in a
significantly better scenario. The ratio between circumferential/radial velocities is
doubled, resulting in a greater Couette flow domination and less coupling.

As shown in Fig. 4.13 a 17 % increase in radius from 30 to 35 mm gives a 91 %
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increase in torque. Such an increase also results in a higher ratio of
circumferential/radial velocity in this new section - radial velocity decreases with radius
while circumferential velocity increases. At 6 Lt/min the loss in torque is now ~40% as
opposed to ~50% previously, so the overall increase in torque due to the extra 5 mm is
more than 60% - this is a significant consideration.

In the absence of radial flow, x4 only contributes to the Newtonian term, which is
typically very much smaller than the yield-stress term. Fig.4.14 shows that a high
plastic-viscosity can give a much greater Newtonian contribution, but this has little
effect in terms of coupling.

We now look at the velocity profiles. Fig. 4.15 and Fig. 4.16 show the radial and
circumferential velocity profiles when the conditions S kPa at 0.8 It/min are used. In this
case, both plug and parabolic regions are present. The pseudo-plug regime is observed
at small radii at and near the inlet when the Poiseuille flow is dominating. At larger radii
at and near the outlet, Couette flow dominates and the plug-less regime is present.

The pseudo-plug propagates from being present only at the inlet to the full radius
at greater radial flow rates. When the Poiseuille flow is dominant at all radii, the plug
size is seen to increase with radius in a similar way to that observed for the Poiseuille
case (Fig.4.10). It can be noted that near the outlet where most of the torque is
generated the circumferential velocity profiles are relatively linear.

Required Range
To emphasise parameter effects and show good agreements between theory and CFD,
results have been presented over a relatively large range [0-6 It/min]. To determine an
approximation of the magnitude required for a practical situation, a basic heat balance
calculation is carried out. Evaluating the power input and the amount of energy the

smart fluid can carry away gives the following relationship:

QN

Even for low values of 7, the overall majority of the work done on the smart fluid is
that needed to overcome the yield-stress of the fluid. It is therefore the yield-stress, as
opposed to the plastic-viscosity, that is mostly responsible for heat generation. A
yield-stress of 10 kPa was seen to generate a torque of 0.6 Nm (Fig. 4.11). To stop the
fluid rising by more than 2°C, a flow rate of 0.5 Lt/min is therefore required. In
comparison, a yield-stress of 20 kPa requires 1.0 Lt/min.

A flow rate of 1.0 Lt/min is therefore a substantial cooling flow for this situation,
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and over the operational range of [0 - 1.0 Lt/min] it can be seen that there is very little
drop in pre-set torque (Fig. 4.17). In this range, we are predominately in the plug-less
flow regime, the importance of which simply means that the circumferential flow is

dominating.
445 Discussion

Constitutive Theory

In the analytical analysis, when the plug has a constant width, the region can simply be
treated as a rigid body that moves at constant speed; the fluid mechanics is not applied
in the plug region and there is no misuse of the model. Nevertheless, is this approach
valid when the plug width varies? Such problems are considered by Lipscomb et.al [26]
who state that in complex flow geometries, solid plug regions cannot exist. Interestingly
they suggest the use of the bi-viscous model, which is in fact the same as the Bingham
CFD model that has been used. The theory in this chapter has been re-derived using this
bi-viscous model. As a result, the flow profiles in both yielded and un-yielded regions

had to be modified. The expressions for N and ¢ contain extra terms, but these are

negligible for high values of u. To help simplify matters, the theory presented here is
for high values of 4;, thus the same as using a Bingham plastic constitutive model. The
results clearly show that the CFD method, which uses a bi-viscous approach, is
comparable to the analytical theory. It can be concluded that the discontinuity that has
been highlighted in the Bingham plastic constitutive model is not significant — in
comparison to yielded regions, the fluid mechanics in any plug region is unimportant.

ER fluids and MR fluids are expected to have very high values of , the
magnitude of which is therefore of little importance. It should however be noted, that
some shear thinning fluids are characterised by having a noticeable value of u; at low
shear-rates, which then starts to decrease as particle interactions start to become
significant. The CFD model used here could be a very useful tool for modelling such
fluids. It can also be noted that at high enough shear-rates, all materials and suspensions
display Newtonian behaviour, as the Bingham plastic model ,, tends towards the
plastic-viscosity at high deformation rates.

Steady State Assumption
The main difference between the analytical and CFD model was that the former
neglected steady state acceleration terms in the momentum equations. A simple
conservation of momentum calculation shows that the output torque will be less than the
input:
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M,-M,=mv,—mv, since mv,>>nmv,
it follows that, (4.44)
M, =M, —nmvy,

This first became known from initial CFD results. The difference between the
torque on the input and output plates is only noticeable at large flow rates and at low 7,
for which the extra loss in N is only 6%. In the estimated practical flow range of
[0-1.0 Ltmin], the difference is less than 1%. The CFD torque values presented here are
those that correspond to the input plate. Finally, the theory neglects any loss in torque,

and so to make an accurate comparison the input plate that must be considered.
4.4.6 Main indications of Appraisal

The results show that provided the Couette flow is dominating, the pre-set torque is
relatively unaffected by the radial flow. The presence of pseudo-plugs is not desirable in
so much as it means that Poiseuille flow is dominating. On a more practical point, the
presence of a plug means that the difference between plate speeds is distributed over a
smaller distance, resulting in greater shear-rates and hence more significant viscous heat
generation.

Fluid manufacturers try to design smart fluids to have a low plastic-viscosity. This
gives a low Newtonian shear-stress contribution, and consequently a constant
shear-stress over a relatively large range of shear-rates, that can be manipulated by
changing 7, through the field strength. The viscosity is found to have little effect in
terms of the severity of the coupling effect. However, although the Newtonian
contribution is small, for fluids that display low z, it can be quite significant as the rate
of heat generation increases with speed. It is therefore an advantageous characteristic if
for the same pressure the flow rate increases with increased speed.

A larger gap size results in a lower radial velocity and therefore less coupling
effect for the same flow rate. However, a larger gap size requires a bigger power supply
to generate the same field strength. A compromise in this respect is therefore required.

There are other consequences of having a through-flow. The condition that must

be satisfied at the outer radius for flow to occur can be rewritten as:

\fﬂ%”im(r)z >t (4.45)

Provided that G(r) > 2t /h, even when both clutch plates are stationary the smart fluid
will always be in a sheared flowing state. The requirement of a limiting torque before

-95.



Modelling Smart Fluid Devices Using CFD 4: Steady State 2D Flow

any flow occurs is therefore eliminated. This suggests that the clutch cannot support any
load, but in practice, as soon as there is any circumferential flow the radial flow rapidly
becomes much less dominant, allowing the clutch to support torque. The ability to
support load will rapidly vary from zero at £2=0, to a substantial value as £2 develops.
The severity of the change will depend on G(r), 4 and 7.

The ability to vary N over a wide range is now possible by controlling the
shear-rate, which before was not possible due to low plastic viscosities and having to
overcome an initial limiting torque. Such a device characteristic may be utilised in
various applications such a rapid self regulating controller, a damper, and devices that
need to be readily taken from zero to non-zero €2 through control of z,.

If the inability to support little load at very low speed is undesirable then the
pressure can simply be reduced so that G(r)>2t /b, for which at £2=0rad/s the

shear-stress is given by:
G(r)’ R /4+a(r) =1,. (4.46)

In practice, for a clutch operating with the dimensions and parameters outlined in
this chapter at the estimated low flow rates, the range is such that there will always be a
considerable amount of load-supporting ability at zero speed.

Applications
The radial plate clutch may eventually be designed to induce its own through-flow
because of the centrifugal action on the parallel fluid film. This would be most easily
controlled if supplied from an external fluid source, or by the centrifugal flow induced
by the clutch plates, as when slipping or locked.

Due to a more severe coupling effect at high yield-stresses, and the necessity of
simplistic design, smart fluid type clutches would seem to benefit from ER Fluids as
opposed to MR fluids. However, with a higher gap width the coupling effect may be
acceptable for high yield strength fluids.

Complex Model

In essence, it can be concluded that that there is good agreement between CFD and
theory. Any discrepancy appears to be due to a lack in the number of cells to accurately
represent the continuum model. The initial aims of this work have therefore been
fulfilled. For the required flow range to keep the smart fluid thermally stable the loading

capabilities are little affected.

The analytical theory in this chapter is useful with regard to getting an overall
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view of the problem and in this case allowed the CFD results to be verified. However, it
is not readily adaptable to other flow conditions. In practice, CFD will be needed
eventually to predict prototype performance, and even test concepts in the absence of

analytical techniques.

4.5 SmartFluid Seals

In this final section contradicting reports on the effects of rotational speed on the sealing
capabilities of smart fluid seal are resolved with the aid of a CFD model. Effects on
leakage rate of radius ratio, rotational speed and axial pressure gradient as they interact
with fluid properties are illustrated.

Experiments based on steady, 2D flow induced by a pressure gradient in the axial
(shaft) direction and rotary motion in the other (circumferential) direction, have been
carried out using ER fluids by Atkin et. al. [51]. The results indicate that the motion in
the circumferential direction of one surface with respect to the stationary surface,
always causes flow to take place in a direction appropriate to that of the pressure
gradient inducing it. In a second analysis carried out by Kordonski and Gorodkin [52],
no equivalent theory is supplied, but experimentally a MR fluid seal was found to
withstand a significant axial pressure gradient without leakage occurring. Since the
constitutive equation for ER and MR fluids is understood to be similar, (both materials
being modelled as a Bingham plastic), these conflicting results are in need of
examination.

In the previous sections we have seen that the viscoplastic continuum analysis
(albeit in some cases approximated by the absence of centrifugal terms and limited by
use of the lubrication assumption) compares well with the CFD results in both radial
plate and concentric cylindrical clutch cases [45] and [29]. Here CFD is used to resolve
the apparent paradox between the results reported previously [51] and [52].

From the outset, due caution has to be exercised at low shear-rates when the exact
properties of the various fluid types are not fully known. This could be due to the

presence of surfactant and anti coagulant additives.
4.51 Theory

Again the parallel plate theory presented in section 4.2 can be used to help resolve this
problem. Here the problem to investigate is whether flow occurs in the axial direction
when the clutch rotates, or does the ER fluid behave like a seal.

When the gap-width (h) is very small compared to the mean radius (r,) of the

electrodes, the flow is considered to be between two flat plates; z = 0 which moves with
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speed U(=r;£2) and a fixed plate z = h (see Fig. 4.18 a schematic). The pressure
gradient G (= dp/dy = AP/L) is in the y-direction. If #(z) and v(z) denote the velocity
components in the x- and y- directions, the problem is the same as that described in

section 4.3 and so all the results derived there apply here.
4.5.2 CFD Model: Smart Fluid Seal

The problem outlined above was also solved using CFD. As before a concentric
axisymmetric geometry was used. This is possible because, as stated in the earlier
assumptions, all derivatives in the tangential direction are zero. The flat plate
approximation adopted in the theoretical analysis does not have to be made here. The
fluid is therefore confined by an inner and outer cylindrical wall boundary condition.
The inner cylindrical wall is set to rotate at a tangential speed U = r;£2. Uniform
pressure conditions are set at the inlet and outlet, allowing a pressure difterence to be set
over a certain seal length. The model here differs from the concentric clutch model in
section 4.3.3, in the way that a flow is imposed using pressure boundary conditions. As
a result, convergence is very slow but no flow development length is required.
Previously a constant velocity boundary condition was used in order to set a flow rate.

It is important to determine an adequate cell density for the CFD model to
correctly represent a continuum. In the radial direction, it was found that 20 cells are
adequate. in theory, fewer celis are needed in the axial direction because the fiow is not
changing with distance in that direction. However, it is important not to skew the cells

severely and so 100 cells are used in that direction.
453 Review

The aim of this section is to consider why some experimental results in [51] and the 2D
Bingham plastic flat plate theory, derived in section 4.2, suggest that it is impossible to
have an effective smart fluid seal when the shaft is rotating, whilst other experimental
results in [52] for MR fluids indicate that the opposite is true. A list of the values of the
relevant parameters used by these authors is given in Table 4.3; those indicated by an

asterix (*) are estimates.
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Atkin et. al. [S1] : Kordonski & Gorodkin [52]
yicld-stiess IR fluid: 256-1500 Pa MR fluid: ~5-10 kPa *
shaft diameter 60 mm 20 mm
gap width 1-2 mm 0.075-0.15 mm
shaft speed 500-2000 rpm (~ 50-200 rad/s) <250 rpm (~ 25 rad/s)
pressure gradient | 1000Pa/10mm = 0.1 GPa/m 10 min, 300 max GPa/m *

Table 4.3: Seal parameters used in Atkin et. al. [51] and Kordonski and Gorodkin [52]

The experiments by Atkin et.al. [51] were conducted in the range |a|>7,. However,

from the magnitudes of the yield-stress and speed, it appears that the results reported in

Kordonski and Gorodkin [52] could be in the range |a|<7,, when in the parallel plate

case there is a central plug. It seems pertinent at this point to consider any effects that
occur due to the cylindrical geometry. For purely rotational tflow (v=0) between two
concentric cylinders with radii »; and », (r; <r), caused by either cylinder rotating with
an angular speed (£2) and the other stationary, it is possible to have flow in only part of
the gap with a plug attached to the outer cylinder at small enough speeds. The angular
speed (£2,) at which the plug disappears for a Bingham plastic material is given by

eqn(2.24). For Q> Q, there is flow across the whole gap. Estimates of (2, are given in

Table 4.4.
n | n-n % e e 2
mm mm Pa Pa.s rad/s
10 0.15 10000 0.1 22
Kordonski & Gorodkin [52] _ T—
i0 0.15 10000 0.5 ii
Atkin et_al I51] 30 2.00 1000 0.1 44
on smaller shaft 10 2.00 1000 0.1 4963

Table 4.4: Speed (£2,) required to exit the plug regime.

The value of €2, is significantly affected by the fluid properties. It can be concluded
from line 3 Table 4.4, and Table 4.3 that experimental work in Atkin et. al. [51] is likely
to have been carried out at rotational speeds greater than (2, (the limiting speed for

plugs) when the theory predicts flow across the whole gap. This conclusion is further

validated by the fact that the results (within experimental error) do match 1

P L R

n to the
p to th e
theory. However, with the same parameters and a smaller shaft radius very high speeds
are needed. As illustrated in line 1 in Table 4.4, and Table 4.3 for a smaller shaft [52]
the limiting speed is much higher than many of the experimental speeds used. This

consequently means that plugs are likely to be present which goes some way to
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explaining why it may be possible to have full sealing.
4.5.4 CFD Analysis

Further insight into the effect of the relevant parameters when flow is present in both
axial and circumferential directions is gained from the CFD analysis. Since shaft
diameter is likely to be a significant factor, results were obtained for two sizes
corresponding to the apparatus used in Atkin et.al. [S1] and Kordonski and
Gorodkin [52]. To highlight the important parameters, an orthogonal array, which limits
the total number of simulations to 16, was used (Tagucci Analysis). Table 4.5 below
shows thc flow ratc results for all 16 simulations. Also indicated is the theorctical

transition speed £2,.

Shaft radius 10 mm Shaft radius 30 mm

No. Q {Gap! Yieldi Vis.: dP/dz | Q limit: Flow Rate {Lt/hr] | Q limit { Flow Rate [Lt/hr]
Size } Stress eqn. (5) i Diff = from theory | eqn. (5) i Diff = from theory

rad/si mmi kPa i Pas GPa/m rad/s CFD ; Diff[%]| rad/s CFD i Diff{%]

1 10f 0.5 10! 0.05 10 492 0.20 84.8 55 4.03 60.7
2] 30i 0S5 10; 0.10 20 246 4.71 40.3 28; 3985 30.8
3 10 0.2 10{ 0.10 10 40 0.05 47.1 4 0.64 12.4
4 10§ 0.5 51 0.05 20 246 747 38.8 28:  60.71 26.5
5] 30§ 0.2 10{ 0.05 20 79 0.41 46.7 9 421 14.5
6] 30f 0S5 5{ 0.10 10 123 4.51 36.4 148  35.56 23.0
7 10 0.2 5¢ 0.10 20 20 0.44 375 2 3.52 20.8
8 30§ 0.2 5§ 0.05 10 40 0.43 28.6 4 4.06 6.7
Avcrage 161 228 45.0 18 19.07 244

Table 4.5: Smart fluid seal parameters and results used in Tagucci analysis

Here the values of (2 are close to the range used in Kordonski and
Gorodkin [52]. For the chosen range of parameters the results from the CFD simulations
differ from those of the flat plate theory, the variation ranging between 7 % - 85 %, the
largest discrepancy occurring when (2<<(2, (simulation 1). The flow profiles
corresponding to simulation 1 when r;=10mm are shown in Fig. 4.19. The
circumferential velocity is seen to exhibit plug-like behaviour, corresponding to high
values of u.., and the axial velocity is non-symmetric. The plug-like region is attached
to the outer cylinder and extends over almost half the gap. The large discrepancy
indicatcs that the flat platc approximation is inapplicable and that it is necessary to
consider the cylindrical geometry. Other large discrepancies indicate that for this range
of parameters care has to be taken when using the flat plate approximation. Care in
interpreting the results of Fig. 4.19 should be exercised because of the concentric
cylindrical arrangement and the selection of the value of u. It must be noted that no

constant velocity plug per se is evident.
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The CFD results are used in Fig.4.20 to show the average effect of each
parameter. A considerably lower flow rate on the smaller shaft can now be seen. At the
relatively low speeds of 10 and 30 rad/s the shaft speed is found to be relatively
unimportant. The yield-stresses and pressure gradients are found to have an almost
linear eftect, i.e. doubling the yield-stress halves the tlow rate. As clearly represented in
Fig. 4.20, the significant parameter of most interest appears to be the gap size. It must
be noted that the resulting flow rates are quite small (litres/hour).

It can also be shown that for smaller £2,/(2 (less extensive plug behaviour) the
results are generally closer. In addition, in all cases of larger r,/h values (30 mm shaft),
the results are considerably closer (Table 4.5). Over the range of parameters that were
chosen the gap size is a more significant factor than yield-stress and pressure gradient.
In addition, it was tound that the plastic-viscosity and rotational speed are generally less
important.

455 Discussion

The preseni analyses indicate that, the results in Atkii et. al. [51] and Kordonski and
Gorodkin [52] can both be reconciled. Although the analyses predict that there is
leakage when rotation occurs, for some range of parameters this may be very small (see
Table 4.5). For all parameter values taken in Table 4.5 it is found that smaller flow rates
are obtained with a smaller shaft radius. Since this model only approximates the real
fluid, the flow rate could be zero as found experimentally in Kordonski and
Gorodkin [52].

Whilst the eqn(2.24) for £2,, used to predict the occurrence of plugs in cylindrical
geometry is restricted to purely rotational flow, the CFD results, which allow for flow in
both the circumferential and axial directions, substantiate the occurrence of a plug-like
region attached to the outer cylinder. The CFD analysis also allows for the effect of the
relevant parameters on flow rate to be investigated and indicates that the gap width and
the shaft radius are the most significant.

For some parameter values shown in Table 4.5, there are large discrepancies
between the values for flow rates predicted by the CFD and those that follow from the
theoretical analysis in which the flow is taken to be between two parallel flat plates.
Here the speeds were chosen to be within the range used in Kordonski and
Gorodkin [52]. However, in the earlier work where higher speeds are used, very good
agreement is found between this theory and the resuits from CFD. This indicates that
care has to be taken when replacing the cylindrical geometry by two parallel flat plates.
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4.6

Finally, in all the analysis presented, the excitation field is assumed constant
across the gap. For further work, the effect of a non-uniform field distribution could be
included in both theoretical analysis and CFD.

Summary: 2D Steady State Smart Fluid Flow

The essential results are very promising. In the CFD models, the true radial geometry
was modelled using an axisymmetric grid. The analytical model for the concentric
clutch and seal problem used a flat plate approximation. Above the minimum speed, at
which a wall plug should have disappeared, the flat plate assumption becomes quite
valid and agreement between CFD and theory is very good. This minimum speed can be
estimated using eqn(2.24). The radial clutch problem the analysis could only be used to
partially check the CFD results.

With the confidence in the basic method gained from this work, more complex
CFD modelling can now be contemplated involving more difficult geometry, heat
transfer and unsteady modes of operation. The CFD software already has a very
sophisticated input and output interface and the internal code can be adapted using
subroutines. This allows for the modelling of realistic fluids in which the main fluid
property (i.n) can be dependent on field strength, temperature, deformation rate and

even the time domain.
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Fig. 4.2: Two-dimensional concentric clutch with though-flow. Torque vs. rotational speed, CFD vs.

analytical results for constant values of pressure gradient G. The corresponding values of flow rate are
shown in Fig. 4.3.
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Fig. 4.3: Two-dimensional concentric clutch with though-fiow. Torque vs. rotational speed, CFD vs.
analytical results for theoretical constant values of pressure gradient G.
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Fig. 4.4: Two-dimensional concentric clutch with though-flow. Torque vs. rotational speed, CFD vs.
analytical results for different values of yield strength.
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Fig. 4.5: 2D concentric clutch with though-flow. CFD vs. analytical resulis for constant values of
pressure gradient G. The corresponding values of flow rate are shown in Fig. 4.3.
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Fig. 4.6: 2D concentric clutch with though-flow. CFD vs. analytical results for constant values of
pressure gradient . The corresponding values of flow rate are shown in Fig. 4.3.
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Fig. 4.7: 2D concentric clutch with though-flow. Circumferential velocity profiles.
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Fig. 4.8: 2D concentric clutch with though-flow. Axial velocity profiles.
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Fig. 4.9: Schematic of 2D radial clutch with through-flow.
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Fig. 4.10: 2D radial clutch with through-flow. Radial velocity profiles for the case of Poiseuille flow only
(i.e. no angular speed).
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Fig. 4.11: Radial Clutch with through-flow. Torque vs. flow-rate. CFD results compared with analytical

theory.
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Fig. 4.12: Radial Clutch with through-flow. dp vs. flow-rate. CFD results.
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Fig. 4.13: Radial Clutch with through-flow. Effect of geometry. CFD results compared with analytical

theory.
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Fig. 4.14: Radial Clutch with through-flow. Effect of geometry. CFD results compared with analytical
theory.

- 109 -



Modelling Smart Fluid Devices Using CFD

4: Figures

r="7.5 mm

Fig. 4.15: Radial Clutch with through-flow. Radial velocity profiles. £2= 600 rpm, ¢ = 0.8 Lt/min

Fig. 4.16: Radial Clutch with through-flow. Circumferential velocity profiles. £2= 600 rpm,
q =0.8 Lt/min
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Fig. 4.17: Radial Clutch with through-flow. Torque vs. flow-rate. CFD results compared with analytical

theory.
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Fig. 4.18: Schematic of smart fluid seal and how it can be modelled as flow between flat plates.
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Fig. 4.19: Smart fluid CFD results, velocity profiles for case no. 1 on the 10 mm shaft. Circumferential

(left) and axial (right).
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Fig. 4.20: Effect of each parameter on average flow rate using CFD simulation results.
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CHAPTERS :
SMART FLUID UNSTEADY FLOW RESPONSE

51 Introduction

This chapter is primarily concerned with the modelling of time-dependent flows of
smart fluids using CFD. The optimum utilisation of a smart fluid device will involve
unsteady operation. It is therefore useful to be able to model the unsteady flow of a
smart fluid. Remarkable little mathematical research has been done for this mode of
operation. Even smart fluid data is generally presented in the steady state.

The inclusion of additional terms in the governing equations of motion adds an
increased level of complexity, further indicating the need for a CFD approach.
Analytical solutions of the governing equations of motion is possible for some basic
devices including smart fluid valves [37] [53] and clutches [38] [39]. However, in some
areas these studies were found to disagree with CFD analysis. Reasons for these
differences had to be identified.

One of the main advantages of a smart fluid is its ability to rapidly transmit large
forces and torques in an electrically controlled way. The speed of response will be an
important factor in determining whether a smart fluid device outperforms alternative
mechanisms. The dynamics of the fluid and the coincident hardware will dictate limits
of operation. An understanding of how the basic fluid characteristics affect the
dynamics of operation will also help in deciding the best form of fluids to use.

Several smart fluid devices were chosen for investigation. In order to proceed,
definitions and possible methods of modelling unsteady flow of a smart fluid were laid
down. Subsequently, CFD and experimental studies were carried out on an annular
valve, Rayleigh step bearing and concentric clutch, and where possible, the results are

compared with earlier analytical studies.
5.1.1 Modelling Unsteady Smart Fluid Fiow

Within this thesis, the Bingham CFD model has been successfully used to model the
steady state flow of a smart fluid. However, dynamic behaviour in the time domain may
not even be of a continuum nature, meaning that great care must be exercised. For
example when the particles are moving the fluid may not be homogenous.

This subject area is far from being fully understood, mainly due to its inherent
complexity. In particular, the characterisation of fluids and assignment of fluid

properties are areas in which further work is necessary. Much more research and
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collaboration with specialised rheologists is required. For this to happen, more interest
in the subject must first be stimulated. This should occur as more applications continue
to appear on the market. For the time being, it is necessary to use existing equipment,
until the cost of more appropriate rheometers can be justified’.

However, progress can be made by setting down some basic assumptions and
proceeding forward with caution. If the results are found to be unsuitable then the
original assumptions can be re-evaluated. The particles in a smart fluid are usually
micro-sized, therefore at least to some extent it is thought that the fluid can be
characterised in terms of macroscopic properties.

Denoting the time associated with the fluid dynamic response as #4, and the time
associated with changes in rheology as ¢, in general, it would seem reasonable to

approximate the maximum possible response time as:
Lo =1+, (5.1

Any actual response is expected to be faster than #,,,, due to ¢ occurring in unison with

time t;. The time t" is often referred to as the ‘electron hydraulic time constant’.

Electron Hydraulic Time Constant ( t )

An ER clutch apparatus can help to determine ¢ [12]. Experimentation is carried out
with a constant relative speed difference between the electrodes, high enough such that
no plugs are present. Hence, the velocity profile can be approximated as linear and
should remain the same before and after excitation. In this situation, ;=0 s and so the
time for the torque to increase is attributed to ¢. Typical results using an ER fluid
indicates that ¢ is fast at 1-2 ms [12]. Exactly what physical properties affect 1 is
debatable. It will depend to some extent on the particular constitution of fluid. A
mechanism to describe the development of the yield-stress is still not fully available
[54) [55] [56] [57]. Although it is thought that t" is determined by chaining time (dipole
orientation in an ER fluid). Nevertheless, it is understood that charged particles move
very fast, possibly making ¢ look negligible comparison to #; in some flows. If ¢ is
found to be small compared with ¢, then to all intents and purposes it may be possible
to consider the rise in 7, to be instantaneous. For an ideal viscoplastic material, ¢ would

represent the time required for the yield-stress to kick in. The real situation is likely to

' During this study a detailed proposal to design and build an ER/MR rtheometer in collaboration with
Ravenfield Designs Limited (Makers of Viscometers and Scientific Instruments) was submitted to the
EPSRC. Unfortunately, it was turned down, probably due to the expense involved.
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be more complicated.
Fluid Dynamic Response Time (7, )

The actual time associated with a change in flow is the fluid dynamic response (1,).
Conceptually, this response depends upon how fast information can be transferred
through the smart fluid, thus the stiffer the fluid medium, the faster the response. In
general, with a large non-Newtonian viscosity' and a small fluid gap, the dynamic

response is expected to be fast.
5.1.2 Viscoelastic Model

As discussed in section 2.5.1, if a fluid is hit fast enough it will respond elastically.
Since accelerations are expected to be high, such behaviour is likely to be associated
with smart fluids. It may therefore prove necessary to introduce viscoelastic effects.
Simplistically, visco-elasticity causes a delay in the transmission of information. A
more suitable constitutive equation for a particular smart fluid may involve a

shear-modulus G’ [58]. One such model [36] gives the shear-stress as follows:

(t)=1,+1, = ry[l - exp(—;q—)"t):l + u,y (5.2)

y

One way to help interpret this model is to assume that the change in yield-stress (7,) is
instantaneous, and to consider the delay in the development of the electro-stress’ () as

a consequence of the shear modulus (G ). The resulting time constant from eqn(5.2) is:

(9_'),] (5.3)
7, .

In Fig. 5.1 and Fig. 5.2 this viscoelastic constitutive model is compared to the Bingham
CFD model which has been successfully used up until now, within this thesis, for steady
flow. With increasing time, the viscoplastic constitutive model begins to represent the
original Bingham CFD model. It is important to consider the range of 7, for example,
with G’ =10 kPa, the shear-stress from both models is comparable, after 1 ms when

p >2000 /s, and after 10 ms when y > 400 /s.

As shown in Fig.5.1, with the viscoelastic model there is no physical

yield-stress () to overcome before flow occurs. As with the Bingham CFD model, this

' At a constant shear-rate of only 1000 /s, and a yield-stress of only 1000 Pa.s, g, = 1.0 Pa.s.

? Shear-stress due to the excitation minus the Newtonian contribution.
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is a desirable aspect when solving the governing flow equations. The entire smart fluid
always exists as a fluid. This is in contrast to the ideal Bingham plastic model, where
one must identify any un-yielded regions (y =0 /s) and then consider how these solid
regions affect the flow.

When using the Bingham CFD model, plug velocity profiles arise and compare
well with the ideal Bingham plastic solution when ; is sufficiently large (see Fig. 3.5).
For the viscoelastic model (as shown in Fig. 5.2), at very low shear-rate the viscosity
becomes increasingly large with time. A more appropriate model may require a
maximum viscosity (i) to be imposed. As with the Bingham CFD model an
appropriate value of 4, may prove to be 100-1000 times greater than z. This value
gives results comparable to the ideal Bingham plastic equation (see section 3.3.1). Thus
a modified model that uses a maximum cut off viscosity (4), will subsequently be

referred to as the viscoelastic Bingham CFD model.

5.2 Annular Valve Responsive Study: CFD vs. Analytical Analysis

In a practical operation, the flow of a smart fluid in an annular valve would be unsteady.
Various studies have therefore been carried out in order to understand behaviour in this
mode of operation [37], [15], [36], [5S3]). Experimentally measuring the response is
difficult due to compressibility effects in the connecting pipes and so forth. The distinct
advantage of a mathematical approach is that measuring devices such as flow-rate
meters, pressure tappings and connecting pipes do not interfere with the fluid mechanics
of the idealised system.

The response due to a change in excitation was investigated using the Bingham
CFD model and the new viscoelastic Bingham CFD model. The device was modelled as
1D flow between two flat plates (Fig. 5.3). The valve operates as an open system with
fluid flowing into the value at one end and out at the other. In section 3.3.1 the steady
flow situation was investigated using the Bingham CFD model and the results agreed
very well with the analytical Bingham plastic analysis.

A mode of operation that the valve could typically experience is a rapid change in
flow-rate (), due to a change in excitation, with AP,, remaining approximately
constant or vice versa. Using the line of reasoning outlined in section 5.1.1 the dynamic
speed of response (7;) can be investigated. This would help in optimising the valve

design and assist in determining suitable applications that the device could fulfil.

5.2.1 Response using VISCOPLASTIC model

The fluid dynamic response (#,) of an isolated valve was obtained for a step change in
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excitation. This should give some indication of the size of an optimum response time.
The change in 7, is from a value of zero and is assumed instantaneous. Here the actual
fluid property response (") is therefore not being considered. In a real smart fluid, a
small but finite time is required for the new fluid structure to form; this may need to be
considered later. The fluid flow is also assumed incompressible and isothermal.
Analytical analysis of the problem when G (=AP/L) remains constant and is
subject to a step-change in E has previously been investigated by [37] and [5S3].
Whittle et.al [37] simplified the problem by approximating the flow to that between two

flat plates. The solution indicates that time constants are given by:

12
. b

u ~Z752—"2/Z, (5.4)

where A is the gap-width, g, is the plastic viscosity, and » is number of terms. Here the
yield-stress is not believed to affect the response time. However, would not 7,
(considered by many as the most significant smart fluid parameter) affect the dynamic
response time (75)? An analytical and numerical solution of the same problem by
Li er.al [53] suggests that 7, does indeed affect #,.

CFD Model: Flow Rate Response to an Instantaneous Excitation

The following table summarises the CFD model used in this section.

Software Fluent5, finite volume, segregated solver

Physical Model | 1D, laminar, incompressible, isothermal flow

Fluid Properties | Bingham CFD model and viscoelastic Bingham CFD model

Discretisation of | interpolation scheme | 1* order, PRESTO for pressure
flow Equations pressure-velocity SIMPLE

unsteady flow 1* order implicit

uniform grid (x, y) 3 (x-direction) x 20 (y-direction)

Boundary valve wall no slip wall condition

Conditions ; e
centre line symmetry condition
pressure difference periodic condition

Table 5.1: Summary of the CFD model used to determine the flow rate response in a smart fluid
annular valve.

As found in section 5.1.1, obtaining a solution takes 100 times longer when a constant
pressure difference is set in preference to a flow rate. Unfortunately, the model does
require a constant value of G to be set. Computing time was therefore improved by

using a periodic boundary condition so that only a few cell widths are necessary

-117 -



Modelling Smart Fluid Devices Using CFD 5: Unsteady Flow

(Fig. 5.3). It was also envisaged that reaching convergence at each time-step would not
be a problem because the flow field from the previous time-step would closely match
that of the next one.

The new CFD model was initially verified for steady flow using equations in
section 2.4.1. Increasing the under-relaxation factor for the momentum equations to 0.9,
drastically reduced the time required to reach convergence. For the unsteady model,
using the PESTO scheme for the discretization method for pressure, also improved
convergence times. Fig. 5.4 demonstrates how care is necessary in order to ensure true
convergence at each time-step. In this figure the flow rate curve appears to be fine, but
with the flow rate per iteration also being monitored, it is clear that convergence is not
being reached at each time-step. To improve the solution, an increase in the number of
iterations per time-step and/or a smaller time-step is required. A time-step of 1x107 s
with 100 iterations/time-step was found to be adequate'. In conclusion, care and
patience had to be exercised in order that the resulting solution had been converged

correctly with confidence.
Discussion of CFD Resuits: Flow Rate Response to an Instantaneous Excitation

A Tagucci approach [59] was utilised to obtain a good indication of the effects of the
various parameters, while testing the CFD model for a wide range of parameters from
only eight simulations. For each case, it was important to make sure that eqn(2.18) was
satisfied, in order to maintain flow after excitation. The parameters and results are

summarised in Table 5.2.

parameters theory intial parameters CFD dynamic responsc time /4
model ratio of Waitle 2! CrD 9%
pmumber] weid ipressurei fuid | plastic | gap | initial ifinal flow] phug | wall shear! wall shear| initial ifinalflow| . i offinal
stress | gradient! density iviscosity! width |flow ratei rate width to rate stress {flow rate: rate Zverzo steady state
gap width terms value)
ber/ s . ) )
kPa ) kg/m Pas mm  |Lv/minmi Lt/min/m % /s Pa Lt/min/m; L¢/min/m ms ms
a s 60 1500 i 0.050 0.50 750 389 333 300000 15000 751 402 0.30 2.76
h 10 60 1500 { 0.100 : 1.00 | 3000 1556 333 300000 i 30000 3004 1612 0.61 5.20
______ ¢ [TsTToa20 1o1s00 i 0100 | 0.50 [ 750 i se4 i 167 | 300000 { 30000 | 751 i 365 0.15 131
d < 60 3000 ¢ 0.050 i 1.00 { 6000 4514 16.7 600000 : 30000 6007 4530 243 20.00
______ e | 10 120 ;1500 | 0050 i 100 I 12000 i 9028 : 167 | 1200000 60000 | 120i4 i 9072 121 9.69
______ f 10 60 3000 1 0.100 i 0.50 375 56 66.7 150000 15000 376 61.7 0.30 2.87
R bos 1120 ;3000 1 0.100 | 100 | 6000 5252 8.3 600000 i 60000 6007 5280 1.21 7.15
h 10 120 3000 | 0.050 i 0.50 1500 778 33.3 600000 30000 1502 805.2 0.61 5.27

Table 5.2: Tagucci parameters and results for an annular valve; viscoplastic response due to
instantaneous excitation.

The function of the Tagucci approach is to help determine the approximate affect of

each parameter on the dynamic response time (Fig. 5.5). Since the differences in

' Even so. it did take up to 24 hours to iterate a full solution.
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response times are large, the Tagucci results are only approximate. Fig. 5.5 suggests that
doubling fluid density increases the response time by a factor of two; this is in
accordance with eqn(5.4). This is expected, because doubling the density doubles the
fluid’s inertia, and thus it will take twice as long to reduce its speed. The gap width is
found to be very significant. Fig. 5.5 indicates that the effect is greater than 47, but less
than the A’ indicated by eqn(5.4). Increasing the gap width will increase the overall
weight of fluid to be stopped. In addition, the shear-rate and thus the fluid shear stresses
will also be reduced; both of these factors will contribute to a longer response time. The
pressure gradient (which eqn(5.4) suggests has no effect on the time constant), is indeed
found to only have a small effect on the response time. The reason for this is as follows:
When 7, is greater than 7., a change in G gives a proportional change in the mean
shear-rate and thus shear-stress. In this case, if G is increased, the fluid shear stresses
that resist motion also increase, and counterbalancing effects occur. For the chosen
parameters, the statement that 7, >> 7, is not fully justified, and so G is indeed found to
have a small effect. The plastic-viscosity is found to have an effect in line with eqn(5.4).
However the yield-stress is also seen to have an affect on #; and is not a parameter in
eqn(5.4). Conceptually the CFD results make sense; the larger the non-Newtonian
viscosity {eqn(2.11)}, the faster the flow rate will be reduced to its final steady state
profile. The relative contribution of 7, and £ to the magnitude of x4, depends on 7. In

this device, the shear-rates are high', and so the value of 7, =y, can be on a par with

7,. Thus, both 7, and 4 should affect 7.

Fig. 5.6 indicates that the flow rate change is non-linear. This is not surprising, as
the shear-rate and thus shear-stress do not remain constant throughout the event. As
shown in Table 5.2, the results before the event agree very precisely with steady state
analytical prediction. In addition, when the plug width is less than one third of the gap
width the event also agrees very closely with analytical prediction. When this is not the
case, the difference in flow rate is up to 10 %. This is because an improved grid should
really be used when the plug region is large’. However, for this analysis a 5%
difference is quite acceptable. The velocity profiles for case a are shown in Fig. 5.7 and
clearly indicate how the plug rapidly forms. As anticipated, the results in Table 5.2
indicate that the CFD response time is longer than that predicted by eqn(5.4).

' Within the valve the shear-rate varies, but becomes very large in proximity to the wall.

? When the plug is large, fewer cells remain for resolving the remaining flow.

-119 -



Modelling Smart Fluid Devices Using CFD 5: Unsteady Flow

Discussion

In order for the results to be deemed reliable, it is vitally important to determine the
reason for the difference between these CFD results and the analytical prediction of
Whittle et.al. [37]. Both mathematical methods are solving the same basic equations,
and the same outer boundary conditions are being used. However, one difference is in
the constitutive model used. The analysis in [37] uses the Bingham plastic equation,
whereas the CFD solution uses the bi-viscous model, which (for the reasons outlined in
section 3.2.3) is referred to as the Bingham CFD model. As investigated in
section 3.2.3, when ; is large then the models should give comparable results. Up until
now, this has conclusively been found to be the case. The problem is therefore not
thought to be due to the technical difference in the constitutive model.

Another difference between the solutions involves the plug region. In the CFD
model, a plug is an extremely high viscous region. In contrast the equations in [37] do
not produce a plug shaped profile. Outside the identifiable plug region the correct
profile is produced. However, inside the plug region, the Bingham plastic equation is
not valid. The density of the fluid in this region will affect the solution. However, what
seems to have been overlooked by Whittle et.al [37] is that the shape of the velocity
profile in the plug region will also affect the fluid’s momentum. This point has also
been commented on by Li et.al [S3] who suggest that the solution derived in [37] does
not properly account for a balance of momentum for the plug flow region.

It is now suggested that, the plug (whose actual width increases with time
(Fig. 5.7)) must surely have a direct effect on the flow response time due to the
following conceptual reason. Once a plug forms it has a certain momentum’. In [37] the
velocity profile is such that the momentum of the plug region is undervalued. As a
result, the calculated response time is faster than it really should be. Furthermore, in a
solid, force and velocity are transferred across a material virtually instantaneously,
compared to in a fluid where the material shears, and thus there is a delay in the
transmission of information. A higher yield-stress results in a larger plug, and so the
dynamic response is faster.

To achieve a direct comparison between all three solutions, a CFD model was set
up to precisely match a situation solved in both Whittle ez.al [37] and Li et.al [53]. The
pressure gradient is set as constant (12.5 bar/100 mm). The initial CFD velocity profile
with 1, = 0 kPa was found to agree exactly with that in [37] and [53]. This confirmed

" mass x velocity
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that the parameters in all three models were likely to be the same. The overall flow rate
response was then calculated for 7, = 2 kPa. For the CFD model, the change in velocity
profiles is shown in Fig. 5.8. The form in which the profiles change over time is the
same in all three models. However, as predicted above, the solution derived in {37]
gives a faster overall response time. For example, after 0.1 ms the maximum velocity
has reduced to ~ 1.5 m/s in [37] and 2.7 m/s in [53]. As indicated by Fig. 5.8, the CFD
model gives a speed of approximately 2.7 m/s after 0.1 ms, and therefore seems to be in
agreement with the solution derived by Li et.al. [53].

To verify that a lower yield-stress does indeed give a slower response, it was
decreased from 2.0 kPa to 1.0 kPa. Fig. 5.9 shows the flow rate response for both fluid
strengths. It can be seen that after 2 ms the flow rate of the 2.0 kPa fluid is closer to its
final steady value than the 1.0 kPa fluid.

Conclusion
It can be concluded that the viscoplastic model, which assumes an instantaneous change
in yield-stress, can be used to determine a flow rate response. However, since the
change in the stress is instantaneous, very small time-steps with a significant amount of
iterations per step are required. This takes a significant amount of time even when a
very small grid is used. Strong similarities in the form and shape of the response are
found between the CFD results and the analytical works discussed previously {37] [53].
However it can be concluded that Whittle et.al [37] under predicts the fluids initial
momentum and therefore the response time. This is due to the Bingham plastic equation
not being valid in the plug region. The results presented here also call into question their

statement that the yield-stress does not affect the response time.
5.2.2 VISCOPLASTIC CFD Model: Valve Shut Down Time due to an Instantaneous Excitation

The CFD model used here is the same as that used above, with parameters chosen such
that after excitation, t, <Gh/2, and thus the flow is stopped. The time it takes for the
flow to stop is called the shut-down time (z.). This work was done to further verify the

CFD model against an available analytical solution. Li et.al. [53] provide an expression

that estimates the shut-down time:

3
»PIIC

e, (5.5

where h is the gap-width, & is the plastic viscosity, G is the pressure gradient, and 7, is
the yield stress.
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Using the refined CFD model from section 5.2.1, summarised in Table 5.1 the
flow rate response was calculated for two different values of yield-stress (Table 5.3).

The two flow rate responses are shown in Fig. 5.10.

Parameters Shut Down Time ¢,
yickd stress  : pressure gradient}  fluid density | plastic viscosity gap width Liet.al. formula CFD difference
Pa bar/100mm kg/m’ mPa.s mm ms ms %
2000 2 1500 100 1.00 0.938 0.760 189
5000 2 1500 100 0.50 0.047 0.028 403

Table 5.3: Annular valve shut down time results due to instantaneous excitation.

The order of magnitude calculated for #. by both the CFD solution and eqn(5.5) is
similar at each yield-stress, but the actual magnitudes differ. The difference is as great
as 40 % for the higher yield-stress. The reason for this is two fold. Firstly eqn(5.5) is
only an approximate result and does over-predict the actual results obtained in [53] by
roughly 10 %. However, perhaps more importantly, the CFD model under-predicts ¢, for
the following reason. The plug expands until it occupies the entire gap (Fig. 5.11). As
this happens, the CFD grid becomes increasingly less valid, due to fewer cells being left
to properly resolve the flow between the wall and the plug. At least 5 cells are required
to resolve a shear flow satisfactorily. However, using this grid there are less than five
cells remaining in the non-plug region once the plug reaches 75 % gap-width. To get a
more accurate solution, an improved grid with more cells near the outer wall is required.
In addition, the grid can be refined as the solution progresses; this can even be done

automatically using later versions of Fluent.
5.2.3 Response using VISCOELASTIC model

As discussed in the two previous sections 5.2.1 & 5.2.2, important information has been
gained using the viscoplastic Bingham CFD model. In particular, the yield-stress was
highlighted as an important parameter. Previously this parameter had been suggested
not to contribute to the flow response time. The strategy of initially using a simple
constitutive model and proceeding forward with caution has proven successful. Thus,
the next step was to test an improved, more sophisticated model.

The theoretical viscoplastic flow rate response is very fast; indeed faster than
indicated by experimentation, although here it is difficult to differentiate out an isolated
valve response from unsteady experimental data. Since the response has been indicated
to be fast, it is likely that some visco-elasticity may be occurring. The alternative

viscoelastic constitutive model {eqn(5.2)} is now investigated.
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Viscoelastic Bingham CFD Model Test

Equation (5.2) was written into a subroutine as shown in Table A.2 (Appendix A). An

initial test involved a simple shear flow between two parallel plates. Initial parameters

are 7,=0Pa, 4,=0.1Pas and y=3000/s [u = 0, 1.5m/s, h=0.5 mm]. The shear

modulus (G") is chosen to be 1x10%. At time t=0 s, an instantaneous formation of 7,
(=5 kPa) takes place, but does not immediately take effect due to visco-elasticity. The
shear-rate is not expected to change; only the viscosity ., should increase. Fig. 5.12
shows u,, changing over a period of 1.0 ms. Although the test was basic, the model did
appear to be working correctly.

Flow Rate Response for a Constant Pressure Difference

The proven CFD set-up for the valve used in section 5.2.1 is now used with the
viscoelastic Bingham CFD model replacing its viscoplastic equivalent. On
investigation, a time-step size of 1x10”s with 100 iterations/step proved to be a
satisfactory solution procedure. Note that the time-step need not be as previously.

Fig. 5.13 shows the effect of using different values of G’ (100 Pa, 500 Pa, 1000 Pa
ad 10000 Pa) for a solution with the remaining parameters the same as in case c in
Table 5.2. For all but very low values of G’, very little difference can be seen when
compared with the previous Bingham CFD model solution. In fact, the flow rate
response for G’ = 10000 Pa (shown in Fig. 5.13), overlaps the original viscoplastic
solution. The reason for the small effect of G’ becomes apparent if the high shear-rates
are considered. Table 5.4 indicates that the initial shear-stress on the valve wall is six
times the actual yield-stress, in which case 7,>>7,. A quick study of eqn(5.2) shows that
G’ affects only % and not 7,. In addition, the lower the value of G, the longer the full

development of yield-stress takes. The CFD results are therefore as expected.

Parameters intial parameters final steady state ]
i shear ratio of G flow rate d’"““‘fm dif
ywld | plastic .mhd modulus | density | oo gap | wall shear | wall shear | and yield 29(;% of final between a
stress | viscosity | viseOsRy ; " gradient | width | rate stress stress | tpeoretical i CED value) and b
Pa i mPas | Pas Pa | kg/m’ | bar/i00mm | mm I Pa Ltminm | LUmi/m ms ms
50001 100 1 1000 : 10000 i 1500 120 0.50 | 300000 ; 30000 2.00 564 565 16 0433
5000 1 100 100077710001 1500 130 0.50 ] 300000 ¢ 30000 0.20 564 565 1a 0465 0.030
5000 100 1000 500 1500 120 0.50 | 300000 30000 0.10 564 565 0.505 ’
$000 100 10001001500 120 0.50 ] 360000 T 30000 0.02 564 565 0.805
$000 100 1000 10000 1500 60 0.50 { 150000 15000 2.00 194 195 b 0.825
5000 {100 1000 1 1000 1 1500 60 0.50 [ 150000 | 15000 020 194 195 Ta 0940 ] 0115
$000 100 1000 100 1500 60 0.50 150000 16000 0.02 194 195 2.650
10000 100 1000 © 10000 | 1500 60 050 | 150000 ;15000 1.00 556 559 15 1480
10000 100 1000 1000 1500 60 0.50 | 150000 15000 0.10 55.6 559 a 4510 3.030
10000 ¢ 100 1000 T 100 T 1500 60 0.50 ] 150000 ¢ 15000 0.0 556 559
Table 5.4: Parameters and results for an annular valve; viscoelastic response due to instantaneous

excitation.

If the average shear-rate is halved through reducing G then 7, is much smaller and
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G’ should be able to have more effect on the response time. This is found to be true as
the CFD results in Fig. 5.14 and Table 5.4 indicate. For the same parameters albeit with
half the pressure gradient, a small G’ value clearly gives a longer response time.

The effect of 7, is now considered. In the viscoplastic model, a larger value of 7,
caused the flow to reduce more quickly. With the viscoelastic, as shown in Fig. 5.15 and
Table 5.4, the same effect is not quite so obvious. In this case it is the ratio of G /7, that

is significant, rather the individual magnitudes.
Pressure Response for a Constant Flow Rate

An alternative CFD set-up was required in order to model a pressure response. Here the
flow rate remains constant, and a step change in excitation causes a pressure rise. To
save computing time, a flat plate model with a symmetry line was utilised. A 20x20 grid
was used and the full valve length was modelled. A uniform inlet was used to set the
flow rate, and a zero pressure was set at the outlet. This model was similar to the earlier
steady state model, which is known to be satisfactory. As before, an initial uniform
steady solution with zero excitation (7, =0 Pa) was calculated and saved. All other
parameters and procedures remained the same as before.

A flow rate was chosen to give a final pressure difference of 30 bar for a 5 kPa
fluid. This value equates to 0.71 Lt/min, when a mean radius of 25 mm is assumed, and
gives an initial wall shear-rate of 75000 /s, and thus a wall shear-stress of 7500 Pa.
Thus, 7, is of the same order as 7, and therefore the value of G’ is found to have a
significant effect on the pressure response time (Fig. 5.16). As shown in Fig. 5.17 a
small yield-stress gives a faster pressure response. Conceptually this should be
anticipated as the fluid is weaker and the change in the shape of the velocity profile is
minimal. However one needs to be careful in trying to interpret such a result, because
the ratio of G /7, {eqn(5.3)} will affect the response time. For the 1.0 kPa and 5.0 kPa
fluid, this ratio is 5.0 and 1.0 respectively. The higher this ratio, the quicker the
generation of yield-stress and so the faster the response should be.

The effect of changing x4 was investigated and the results are shown in Fig. 5.18.
Here the plastic-viscosity is halved, and has a significant effect on the overall
shear-stress, but does not really change the response time. This is because G’ has no

effect on L.

5.3 Rayleigh Step Bearing Responsive Study: CFD vs. Experimental
In this section, the response of a smart fluid Rayleigh step bearing was investigated
using CFD and experimental methods. The MR fluid hydrodynamic effect has already
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found successful commercial application in grinding high quality lenses [7] [60]. Here
the increased pressure due to the hydrodynamic effect and localized high viscosity result
in a non-contact method for the removal of material from a lens surface. The ability to
rapidly and controllably vary the local pressure force without any mechanical contact is
a desirable industrial aim. The potential for the application of a highly responsive
mechanism of controllable pressure is probably substantial. For example, pressure could
be used to control a lifting force, or as part of a hydraulic system. The overall usefulness
of a smart fluid hydrodynamic effect is likely to be determined by how fast the response
can be. Determining this factor, as well as developing the overall CFD pre-prototyping
design methodology, was the main basis for this piece of work.

Steady state CFD analysis on a Rayleigh step bearing was carried out in
section 3.4. A linear pressure gradient (G) is generated due to a plate speed (U) and
yield-stress (7,) — this is the hydrodynamic effect. Here results from analytical and CFD
analysis were found to correspond well. The work is now extended to determine
unsteady response behaviour. To this author’s knowledge, there is no easy analytical
solution to this unsteady flow problem. A numerical method is therefore required, hence
the need to use CFD. In the absence of an analytical solution, an experimental study was
undertaken in order to verify the unsteady CFD results.

Tribology is an inherent feature associated with devices such as the one being
studied here. A smart fluid can be likened to a variable viscosity lubricant, which is
obviously extremely useful. Tribology in relation to smart fluids is beginning to be dealt
with by researchers, and is proving to be an interesting and perplexing subject. For
example, elasto-hydrodynamic lubrication (as associated with ball bearings) proves
difficult since the fluid particles prefer not to travel under the ball. For the purposes of
this project, modest attention will be paid to tribological considerations. The prime
concern is to study and model the basic continuum behaviour.

Experimental work from Leek et.al. [41] shows a pressure response due to a step
change in excitation to be relatively slow (>100 ms). With the pressure response being
considerably slower than expected, Leeket.al. gave their own work a tough
examination. They concluded that they could not conceive of any further unexamined
aspect of their technique that would cast doubt upon the validity of their pressure
response data. Having studied this work it is clear that obtaining a set of pressure data is

not at all straightforward. A hole in the bearing is necessary if a pressure reading is to be

acquired. This in turn will locally disrupt the electric field.
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5.3.1 CFD Model: Pressure Response Using the Bingham CFD Model

The following table summaries the CFD model used in this section.

Software Fluents, finite volume, segregated solver

Physical Model | 2D, laminar, incompressible, isothermal flow

Fluid Properties | viscosity (Bingham CFD model)

Discretisation of | interpolation 1* order, PRESTO for pressure
Flow Equations | scheme

pressure-velocity | SIMPLE

unsteady flow 1* order implicit

under-relaxation pressure (0.7), momentum (0.7), density (1.0)

grid (x, y, 2) 20 (x-direction) x 20 (y-direction) ( y = radial
direction )
Boundary upper wall no slip wall condition
Condicons lower wall x-velocity = U m/s
inlet pressure boundary condition
end no slip wall condition

Table 5.5: Summary of CFD model used to solve unsteady 1D flow in a smart fluid valve.

With the length L >>h and the pressure gradient being uniform along the length, it
would be advantageous to use period boundary conditions in order to reduce the number
of required cells. However, this is not possible due to a flow reversal at the end of the
bearing length. Hence, the whole bearing geometry needs to be modelled.

At t=0s the flow is steady and there is no excitation. The initial flow is thus
computed using a steady state model with 7, = 0 Pa. This data was then substituted into
the unsteady model as the initial flow condition.

After some initial tests, a grid {20 x 20 cells (150 mm x 0.5 mm)} was deemed
adequate for acquiring steady state results. The next step was to determine a suitable
unsteady solution procedure; i.e. the time-step size and number of iterations/time-step.
Some results of a parameter size study are shown in Fig. 5.19. Here the solution was
highly time-step size dependent, the pressure response was spiky, and thus the results
were not reliable. To improve matters, a much smaller bearing length was used
(L = 10h) giving smaller and hence better cell aspect ratios. As can be seen in Fig. 5.20,
the response was no longer spiky and much more realistic.

Results from a new criteria study (Fig. 5.21) indicated that a reliable solution
required a very small time-step, and that a 20x20 size grid was adequate. Increasing the
grid size in the vertical direction appeared to affect the solution. However, it was found

that with an increased number of vertical cells, more iterations/time-step were required.
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For only a relatively weak smart fluid of 1 kPa, the pressure response was found to be
very fast with #;< 0.2 ms (Fig. 5.21). However, a convincing pressure rise could not be
obtained, even with a very small time-step of 1x10”s. This is likely to be due to the
unrealistic nature of the model being employed, with the yield-stress and thus
shear-stress changing instantaneously at # =0 s. In reality, there would be a small but
finite time over which the yield-stress would develop. Consequently, the results

obtained using this model appear anomalous.
5.3.2 CFD Model: Pressure Response Using a Viscoelastic Bingham CFD Model

As indicated above, the viscoplastic model is unrealistic as the yield-stress develops
instantaneously at =0 s. A much better approach could involve using the viscoelastic
Bingham CFD model that was outlined in section 5.1.2 and used in section 5.2.3 to
model the valve. The same CFD procedure was used with only the constitutive equation
changed. The change in shear-stress is smooth, and consequently the results look more
realistic (Fig. 5.22). This figure clearly shows that the results are time-step independent
above a size of 0.1 ms. Furthermore the results are seen to be grid independent. The
pressure response for a 1000 Pa fluid can be observed to be of the order of 0.5 ms (see
Fig. 5.22).

For the viscoelastic model the value of G’ influences the time in which the
yield-stress develops and therefore has a specific effect on the pressure response time.
This is shown to be the case in Fig. 5.23 for some typical values of G'. Changing the
speed did not have any drastic effect on the pressure response time (Fig. 5.24), although
a higher speed does appear to give a slightly faster response. Because the shear rates are
relatively low, the plastic viscosity is found to have a minimal effect on the solution
(Fig. 5.25). In addition, changing the gap width (and hence the shear rate) also did not
have much of an effect on the pressure response time (Fig. 5.26).

The value of yield-stress is seen to have a significant effect on the response time
(Fig. 5.27). However, this is more to do with the ratio G /7, rather than the actual
magnitude of 7. Equation (5.2) dictates that the larger the value of G/, the faster the

yield-stress will develop, and should thus give a faster response time. This is indeed the

case, has illustrated in Fig. 5.23.
Conclusion

Due to a more realistic steady change in shear-stress, the viscoelastic Bingham CFD
model appears to give a much more reliable result than the viscoplastic Bingham CFD

model. Without doubt, the CFD study indicates that the response is very fast. These
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results seem to indicate that the time scale of the response recorded by Leek et.al. [41]
is faster by several orders of magnitudes than their results suggest. This is promising
because Leek et.al. were surprised by how slow their experimental pressure responses
were. ,

The response is seen to be in two stages (Fig. 5.27 and Fig. 5.28). The initial rapid
response is due to the sudden change in u,, and the velocity profile changes
considerably and quickly. This change in 4, is not instantaneous but is delayed by the
ratio G’/7,. The second stage is slower, but still relatively fast, here the velocity profile

is still changing but more slowly until it finally reaches its steady state value.
5.3.3 Experimental Investigation

The CFD model has a net zero flow-rate. This condition is experimentally repeatable
using a Rayleigh step bearing with 4, = 0 (Fig. 3.19). An experimental study utilising an
ER fluid in a hydrodynamic step bearing was therefore undertaken in order to resolve
the discrepancy between the results obtained by CFD and by Leek et.al. [41].

This was also a practical test of the smart fluid CFD pre-prototyping
methodology. Because experimental responses in [41] appeared to be slow, an unsteady
smart fluid CFD model was utilised to shed some light a problem. Apart from the cost
associated with having access to CFD software, very little resources were required to do
this. With the CFD results appearing to indicate that the results in [41] are indeed slow,

a new experimental study is now justified.

5.3.4 Initial Experimental Rig

Experimental Set-up and Procedure

An existing viscosity pump was adapted. The main design details are illustrated in
Fig. 5.29. Care was taken to ensure that arcing and fluid leakage would not occur'. The
inner rotor draws fluid in from a small reservoir. The fluid outlet is blocked, and so the
fluid flows in along the inner rotor and flows back out again along the stationary outer
casing. The temperature was monitored using k-type thermocouples (0.1°C) at locations
indicated in Fig. 5.29.

To make sure the device worked as envisaged, a Newtonian Tellus 37 oil was
used as an initial test medium. This was a worthwhile procedure as many problems were
identified. A constant speed should generate a constant pressure recording that should in

turn agree with the mathematical steady state analysis (section 3.4.1). Initial pressure

" ER fluid is expensive.
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results agreed well with analysis at low speeds (50 -100 rpm), but became very poor as
the speed was increased (400 rpm - 34 % error).

Flat Plate Assumption

A possible reason for the discrepancy was that flat plate assumption and omission of
side end effects in the analysis were inadequate. The first assumption was investigated
using two different meshes based on the cylindrical bearing geometry. Examples of
these meshes are shown in Fig. 5.30; one mesh is more representative of the true step
bearing than the other. A speed of 500 rpm was chosen, as experimental discrepancy is
particularly high at this speed. The pressure gradient along the bearing was found to be
indistinguishable to that using the flat plate assumption solution (difference < 2 %). The
flat plate approximation was therefore considered adequate, and not likely to be a factor
for any significant discrepancy in the experimental results. A 3D grid was then set-up to
determine if end effects influenced the overall solution. Again, no significant difference

in pressure distribution was found that could account for the experimental difference.
Frictional Heating

Once the device was assembled, a considerable torque had to be applied to obtain
rotation. This meant that a significant amount of frictional heating was being generated.
To make sure the device did not leak, the end pieces had to be screwed on relatively
firmly (Fig. 5.29).

The main bulk of generated heat is likely to occur due to friction between the end
pieces and rotor mountings. The torque required to rotate the inner rotor was measured
to be approximately 4 Nm. This torque, multiplied by the rotational speed, equals a
sizable amount of input energy (200 watts @ 500 rpm). This would not normally be
expected to cause a major problem, but the inner rotor is electrically and therefore also
thermally insulated. The end pieces are made from Perspex and therefore have a low
thermal conductivity, and consequently the frictional heating is dissipated into the steel
rotor. Heat will then leave the inner rotor mainly by conduction through the ER fluid
and the outer casing, and then into the atmosphere though convection. It is therefore not
surprising that after the device was run for only a few minutes, it was noticeable that the
shaft had become significantly hotter than the main casing.

This situation was crudely simulated using a simple CFD model'. The temperature
in the reservoir (7,s) was found to be up to five degrees less than the temperature at

pressure transducer (7}). In addition, the model was thermally unstable. The values used

| CFD heat transfer is dealt with in detail in Chapter 6.
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in this model are estimates, but it is clear that frictional heating was a major problem.
With the actual temperature of the fluid in the channel being much higher than
estimated, the viscosity being used in the steady mathematical analysis {eqn(3.14)} was
an overestimate, thus providing an explanation for the large discrepancy with the
experimental results.

In addition, the PTFE bearings that keep the input rotor central soon became
damaged. As a result, the pressure readings oscillated with amplitude of up to 50% of

the average reading, and with a frequency equal to the constant rotational speed. This

situation was improved by replacing the inner PTFE bearings with more durable brass
ones.

improved Results
Using the modifications to the rig outlined above, and operating at low speeds for short
periods it was possible to obtain some good results using a Tellus 37 oil medium.
However, the set-up was still thermally unstable, with the temperature increasing
rapidly even at low speeds.

One set of results was obtained by setting a constant speed and recording the
pressure at intervals as the temperature increased. During this procedure, the viscosity
of the oil decreases and thus the pressure should do likewise in accordance to eqn(3.14).
This procedure was applied at speeds of 300, 400, 450 & 500 rpm and the results are
shown in Fig. 5.31. Due to the speed at which the temperature increased it was difficult
to get accurate simultaneous temperature readings at all locations. As a result, only the
temperatures in the side bearing locations were recorded. The temperature between one
side of the channel and the other was found to vary by up to 1.5 °C. This was expected
as one bearing may be tighter than the other, and hence generate more heat.

The results shown in Fig. 5.31 agree as well as can be expected. The pressure is
justifiably less than that predicted, as the wiper does not act as a perfect block and thus
some fluid can get around the edges. Another set of results shown in Fig. 5.32 illustrates
how the generated pressure increases with speed for a relatively constant temperature.
This was achieved by turning off the motor and allowing the rig to cool down before it
could be used again; the next reading was then taken once the appropriate temperature
had been reached.

ER fluid Tests
Using the adapted viscosity pump, a procedure was established that provided reliable
results indicative of the steady state analysis {eqn(3.14)}. However, with an ER fluid

medium no reliable results could be achieved. This was for a variety of reasons, but
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mainly because the viscosity pump had not been originally designed or machined with
the degree of accuracy required to serve as an ER fluid device. The gap-width simply
varied too much such that the excitation and thus yield-stress varied considerably and
no realistic pressure response could be ascertained.

In an attempt to improve matters the inner end pieces were redesigned in order to
hold the inner in a more centrally located position. However, it was then discovered that
the left and right sections of the casing that held the end pieces were not quite co-axially
located and thus when the device was assembled the inner rotor was held fast by the
forces of friction. It was impossible to achieve a compromise and so a new rig had to be

designed and machined.
§.3.5 Experimental Set-up and Procedure: New Rig

Due to the problems discussed above with the adapted viscosity pump, it was necessary
to design and build a new experimental rig specific for the job in hand. The main
significant design improvement was the use of two roller ball bearings. These would
provide a means of locating the inner shaft so that it is concentric with the outer. In
general, the design was such that it could easily be produced in the workshop with the
required accuracy. The main design features are shown in Fig. 5.33 and Fig. 5.34.

The speed was set roughly using a mechanical speed gauge. However, for each
result, the input speed was recorded using a tachometer and so the average speed was
accurately known. This speed was then used to calculate the theoretical pressure at the

location of the pressure transducer (L = 114 mm).
5.3.6 Newtonian Resuits from New Rig

Initially Newtonian Tellus 37 oil was used to determine the applicability of the
theoretical model to the experimental set-up. The pressure recording oscillated with a
frequency equal to the input rotor speed (Fig. 5.35) and so an average pressure was

taken. A summary of some typical results is shown in Table 5.6.
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average _ pressure at length 3/4 length (L =114 mm )
. . fluid ;
gap width | rotor speed fluid viscosity experimental CFD difference
temperature average amplitude

mm pm °C Pas bar bar % bar bar %
0.5 510 25.0 0.0703 231 i ~030 i 1299 | 2.62 | 031 {1179
0.5 398 25.0 0.0703 1.84 i ~025 { 13.60 | 2.04 | 0.21 { 10.11
0.5 295 25.0 0.0703 141 {~018 { 1274 | 1.51 | 0.10 | 6.62
0.5 190 25.0 0.0703 091 :~011 { 1214 | 097 | 0.07 : 7.02
0.5 102 25.0 0.0703 050 i ~007 { 1403 | 052 | 0.02 i 433
0.5 503 31.0 0.0554 177 §~024 { 1353 | 2.04 | 027 : 13.00
0.5 405 31.0 0.0554 145 i ~020 : 13.80 | 1.64 [ 0.19 : 11.74
0.5 301 31.0 0.0554 1.07 {~0.14 { 13.06 | 122 | 0.15 i 12.11
0.5 211 31.0 0.0554 078 :~010 : 1287 | 086 | 0.08 : 9.26
0.5 111 31.0 0.0554 042 i ~006 i 1439 | 045 | 003 | 7.49

Table 5.6: New Rayleigh step bearing rig. Some typical results using Tellus 37 oil.

The temperature was found to remain uniform within the outer casing (locations T}, T3,
T; and T, are shown in Fig. 5.29). However, once the device was running, the
temperature at location Ts (Fig. 5.33) measures the actual fluid temperature and this
remained higher than those at the other locations. It was difficult to measure the inner
shaft temperature with any accuracy due to the shaft being in rotation. The best
indication of the true fluid temperature was to use the temperature at location T’s only.
The assumption is that since the casing temperature is approximately uniform, the fluid
film temperature would also be uniform.

As shown Fig. 5.35, the recorded pressure has an amplitude and period. The
period equals the rotational speed. The fluctuation was therefore likely to be due to a
small variation in the gap width as opposed to the result of any trapped air. As indicated
in Table 5.6 for different speeds the amplitude of the oscillations is approximately
13-14% of the total amplitude, this would indicate a gap width variation of 3-4 %. With
the gap-width, being only 0.5 mm this is not too surprising. In addition, this situation
was a dramatic improvement on initial results that indicated a 20-30 % variation in
gap-width. Here the machinist had made the inner bearings out of Nylon as opposed to
the specified Tufnel which was simply too soft. After a small remake, the results are
now seen to be much better.

As indicated in Table 5.6 and Fig. 5.36 the experimental results are below the
theoretical values. This is to be expected because some pressure fluid will escape under
and around the lateral nylon seal (Fig. 5.33). As the speed is increased, the percentage
difference between theory and experimental results increases. This is most likely to be
due to an error in the mean fluid viscosity used to calculate the pressure {eqn(3.14)}. As
the speed increases so does the heat transfer, thus making it more difficult to infer a
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correct temperature and thus an accurate value of the fluid viscosity ().
5.3.7 ER Fluid Results from New Rig

The ER fluid characterised in section 3.6 was used as the fluid medium for
experimentation. As before, the bearing was set to rotate at a constant speed. A constant
DC voltage was then applied using a switching box design to do so very quickly [61].
Results of input speed, pressure, voltage and current are recorded on the digital
oscilloscope. Initial and final steady state pressures should correspond with the steady
state theoretical pressure (section 3.4.1).

Since the available fluid data was not accurate, an upper and lower estimate was
calculated and the experimental result should fall within this range. Although it is
somewhat unfortunate that exact comparisons for pressure magnitude could not be

achieved at least indications of the response time can be seen.
5.3.8 Zero voltage Results from New Rig

For the condition of zero voltage the results should be essentially Newtonian and thus
similar to thus of Tellus 37 oil in section 5.3.6. A summary of some experimental

results is shown in Table 5.7.

data set 1 la 2a 3a 4a 12b

speed pm 265 265 488 495 267 251

g temperature °c 23.5 26.6 27.0 28.5 30.0 26.0
g excitation kV 0.0 0.0 0.0 0.0 0.0 0.0
final pressure bar 1.13 1.07 1.80 1.82 0.97 0.93

lower | upper | lower : upper | lower : upper | lower | upper | lower i upper | lower i upper
estimate | estimate| estimate ! estimate| estimate  estimate | estimate ; estimate | estimate { estimate | estimate estimate

yiekd-stress Pa 0 0 0 0 0 0 0 0 0 0 0 0
g plastic-viscosity Pas | 0.060 ; 0.070 | 0.060 i 0.700 | 0.060 | 0.070 | 0.060 ; 0.070 | 0.055 i 0.070 { 0.060 i 0.070
“;heoniell pressure | bar 1.2 1.3 1.2 13.5 2.1 2.5 2.2 2.5 1.1 1.4 11 1.3
difference % 2.1 16.1 7.2 92.0 15.5 275 15.3 274 92 28.6 14.8 27.0

Table 5.7: New Rayleigh step bearing rig. Typical resulits for ER fluid medium with no volts
applied.

The table illustrates that for the lower estimate of plastic viscosity the steady state
pressure is a few percent lower that the theoretical pressure — this is line with the
Newtonian Tellus oil results. As shown in Fig. 5.37 the pressure is seen to oscillate with
a frequency equal to the rotational speed. The amplitude is seen to be nearly 15 % of the
total pressure. The bearings are manufactured with a very high tolerance. Thus, the

inner casing is obviously not machined to the required accuracy'. A smooth surface to

' The standard achieved is supposedly the best that the workshop can produce.
-133-



Modelling Smart Fluid Devices Using CFD §: Unsteady Flow

an accuracy of at least 0.01 mm was required; this was visibly not the case. As a result,
the inner rotor is not located co-axially with the required accuracy and thus the
gap-width and pressure oscillate with a frequency equal to the speed. This is very
unfortunate because the situation will be even worse then the fluid is excited — the

yield-stress is a function of £ and this will alternate with the gap width (£ = V/h).
5.3.9 ER fluid Results from New Rig

As discussed above the fact that gap-width does not remain constant is indeed more of a
problem when the ER fluid is excited. This is illustrated in Fig. 5.38 in which a pressure
response can clearly be seen, however it is difficult to determine an exact response time.
This is essentially due to a varying gap width causing unsteady flow/pressure. Fig. 5.38
is not the worst result; through trial and error it was possible to work out where best to
locate the bearings in order minimise the problem. If time had permitted, it would have
been better to machine a new casing to a better tolerance. This was the second rig built
to examine this problem and since it would take time for the workshop to produce a new
one, which can only be presumed to be of a better standard than the previous, it was
decided to proceed using the current design. Although the results are not ideal, it is
possible to identify an approximate response time. For example, the pressure response
in Fig. 5.38 appears to be less than 20 ms and in Fig. 5.39 appears to be less than 30 ms.

Table 5.8 shows some of the better results for a variety of parameters.

data set 5 6 9 13 8a 26b

speed pm | 110 70 257 125 125 250
g temperature | °C 27.0 28.0 28.0 38.0 32.0 32.0
g excitation | kV 1.2 12 1.2 1.2 12 1.0
g

m:(‘)’:;"“m ms 20 20 20 30 20 20

Table §.8: New Rayleigh step bearing rig. Some typical results for ER fluid medium with volts applied.

Although it is difficult to identify a final steady state pressure, the magnitude at
the pressure tapping after excitation is approximately only half that of the steady state
theoretical prediction {eqn (3.12)}. These predictions use the yield-stress results from
section 3.6 and a plastic-viscosity equal to no-field value. The experimental pressure is
expected to be less than the theoretical prediction due to mathematical model being
perfectly pressurised. The value of yield-stress is likely to be quite accurate and was
found to be approximately the same at a variety of temperatures (Fig. 3.33). The value

of plastic-viscosity is however in question. A lower value gives a lower pressure and

-134 -



Modelling Smart Fluid Devices Using CFD 5: Unsteady Flow

thus a better comparison with the experimental result. Obtaining a theoretical result
using a negative value of plastic-viscosity indicated in by the rheometer results in
section 3.6 is still elusive. Since there is no accurate data for plastic-viscosity, it is
difficult to proceed further. Perhaps here more collaboration with rheological experts is
required. Although studying the magnitudes of pressure is important, the main aim was

to investigate the pressure response time.

Response times
From some of the better results it was possible to incur a time associated with pressure
response (Table 5.8). One thing that is certain is that it is fast, much faster than the
results from Leek et.al [41]. Some responses are shown in Fig. 5.38, Fig. 5.39, and
Fig. 5.40. The overall shape of the response is similar to the CFD results using the
viscoelastic Bingham CFD model (section 5.3.2). To make a direct comparison accurate
values of G’ are required and these were not available. However, experimental results

do appear to be slightly slower than the CFD predictions in (section 5.3.2).
5.3.10 Summary

The results can be improved upon by machining a rig to greater tolerance, and through
obtaining and using improved fluid data. The latter will require more collaboration with
rheologists. However, the viscoelastic Bingham CFD model appears to predict a
pressure faster than the results indicated by Leek er.al. [41]. The experimental results
carried out on a new Rayleigh step bearing apparatus tend to indicate that the CFD

results are correct.

5.4 Concentric Clutch Response: Analytical vs. CFD vs. Experimental

In this final section, the fluid dynamic and rotor inertia effects of a cylindrical smart
fluid clutch are investigated. Specifically, the run-up time (¢) required for one rotor,
initially at rest, to reach a constant speed equal to that of the input rotor is studied.
Analytical and CFD Bingham plastic time-dependent solutions are considered.
Responses are also measured experimentally using an ER clutch. An inertial CFD
boundary condition had to be developed in a sub-routine to account for the mass of the
accelerating rotor.

The fluid flow is approximated as 1D between two flat parallel plates. This is a
reasonable method of modelling the flow as demonstrated in section 3.3.2, provided that
h << rm. The lower plate was taken as the inner driving cylinder (r = r;) moving at speed
U = rif2 The upper plate was taken as the output rotor (r = r,) running at speed u, = f{¢).

The flow is steady at and before ¢ =0 s, and is always isothermal.
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The effects of fluid and device parameters on #,, were studied. This includes
plastic-viscosity (1), yield-stress (), density (p), input plate speed (U) and gap
width (h). Identifying limitations and optimum parameters was of prime concern. The
length of the clutch rotors (L) simply determines how much torque is produced per
metre length and has no effect on solutions.

Literature Review: Analytical Theory
An analytical analysis of the problem described above has been carried out by
Whittle et.al [38]. Here the authors solve the time-dependent governing equations for a
homogenous Bingham plastic continuum material using approximations that they
justify. The authors have derived a rough design formula giving an ‘optimum run-up

time’ (#,), that occurs when the output rotor inertia vanishes:
t,~Ah'p/pu, where A=4.0 isaconstant . (5.6)

This formula is intended to aid the design of devices and fluids by giving an estimate of
the fastest possible #,. However, it was necessary to reassess the validity of this
formula, and compare it with CFD results. Parameters not present in eqn(5.6) are U and
7. A change in velocity gives a proportional change in y. Thus when U is twice as
large, the viscous shearing force that drags the output rotor up to the same speed also
doubles. For a Newtonian fluid, a change in U should therefore have little or no effect
on the solution of .. However, for a smart fluid, the total shear-stress is much less

dependent on y and in some cases approximately equal to ty'. In this situation, logically
the run-up time should be longer if U is higher or if 7, is lower.

5.4.1 Clutch with Newtonian Fluid medium and No Output Rotor inertia: CFD vs. Analytical
The situation when the fluid dynamics alone solely influence ¢,, is of initial interest.
This is the case when the output rotor has zero inertia, thereby giving an optimum
run-up time (f,). Using an array of parameters in a Tagucci analysis, the average effects
of i, p, U and h, on 1, can be established. Here 7, = 0 Pa and values are chosen over a
range typical to the application in hand.

Development of CFD Model

The following table summarises the CFD model used in this section.

' Shear-rates in a clutch will be relatively small and therefore 7, >>7,.
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Software Fluent5, finite volume, segregated solver

Physical Model 1D, laminar, incompressible, isothermal flow

Fluid Properties | viscosity (Newtonian), density (constant)

Discretisation of | interpolation scheme 1* order for all equations
floyy, Equations, pressure-velocity SIMPLE
unsteady flow 1* order implicit
uniform grid (x, y, ) 3 (x-direction) x 20 (y-direction)
[ y = radial direction |
Boundary upper wall (outer rotor) no stress wall condition (free
Conditions surface)

lower wall (inner driven rotor) | constant speed wall condition

left and right edges cyclic condition
Table 5.9: Summary of CFD model used to solve 1D concentric clutch with no rotor inertia.

For 1D flow, all derivatives in the circumferential (x-direction) and axial (z-direction)
are zero. As a result, only a few cell widths are required in the x-direction when a
periodic boundary condition is used (Fig.5.41). In addition, the z-direction is
automatically taken to be 1.0 m long, thus shear force is reported per metre length. The
length in the x-direction is arbitrary and was set to equal to the gap-width length simply
the model well proportioned (Fig. 5.41). The wall corresponding to the outer rotor was
given a zero-shear-stress condition; this would be the condition imposed if the outer
rotor has no mass and therefore zero inertia. Refer to Fig. 5.41 and Table 5.9 for more
details.

In order to determine the initial steady state linear velocity profile, the upper plate
was set as a standard no-slip wall condition. The solution was then computed and the

data saved. This data file was then used to initialise the unsteady solution.
Grid Adequacy, Convergence Criteria and Time-step Size

A value of twenty cells in the y-direction was found to be adequate'. For convergence,
the normalised residual history criteria must be reduced to at least 1x107. A criterion of
1x10° was therefore used to ensure convergence at each time-step was being achieved.
In order to record the run-up curve, the x-velocity component on the outer rotor was
written to a file at each time-step. Fig.5.42 shows the velocity run-up curve for
different time-step values. Decreasing the time-step to less than 0.1 ms is seen to have

little effect. Variable history files written for each time-step allowed convergence to be

further verified for each time-step.

' This was established using basic steady state formula for clutch N = f (speed, viscosity, gap size).
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Results: Newtonian Fluid with No Rotor Inertia

54.2

Having determined the correct solution parameters to use for this particular
time-dependent solution, a detailed analysis of the problem can be carried out. The

chosen parameters and the results are presented in Table 5.10.

5: Unsteady Flow

parameters . coefficient
simulation ; " N . run-up time
number density velocity viscosity gap width A
kg/m’ m/s Pas mm ms
a 1000 1.5 0.05 0.5 12.8 2.558
b 1000 1.5 0.10 1.0 25.6 2.555
c 1000 3.0 0.05 1.0 51.1 2.553
d 1000 3.0 0.10 0.5 6.4 2.564
e 2000 1.5 0.05 1.0 102.5 2.563
f 2000 1.5 0.10 0.5 12.8 2.558
£ 2000 3.0 0.05 0.5 25.6 2.554
h 2000 3.0 0.10 1.0 51.1 2.553

Table 5.10: CFD results and Tagucci parameters used for a concentric clutch with a zero
yield-stress fluid medium and no load.
In order to determine #,, a definition must be set. This corresponds to the time required

for the speed of the output rotor (u,) to reach a percentage of the input rotor speed (U).
t, equals the time when EZ—]"— =P%.

Since the solution is iterative, it is not sensible for P to equal 100 %. A value of 99.9%
was therefore chosen'. Using this value, the parameter 4 from eqn(5.6) is found to be
consistent at =~ 2.6. The results therefore conform to the dimensionally correct formula
of eqn(5.6), but with a slightly different constant of proportionality. The CFD result for
A is likely to be different to that in eqn(5.6) due to the #,, not being an exact time,
whereas the analytical result is.

Fig. 5.43 shows the average effect of each parameter, and clearly suggests that the
effect on ¢, is as described in eqn(5.6). Fig. 5.44 shows the run-up curves. Curves a & f
overlap one another — doubling the density is cancelled out exactly by doubling the
viscosity. The curves show a decreasing acceleration over time. As the plates come up
to the same speed, the shear-rate and thus shear-stress decrease giving a reduced
acceleration. It is clear from Fig. 5.45 that the velocity profiles throughout the event are

non-linear.
Clutch with Bingham Plastic Medium and No Output Rotor Inertia: CFD vs. Analytical

The CFD set-model up in section 5.4.1 was now utilised with the Bingham CFD model

' An alternative value would give different results, it is therefore important to be consistent.
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in place of the Newtonian fluid. The CFD set-up was first checked to ensure correct
results were obtained for a steady state shear. This was done using the steady state
analytical equation for torque from section 3.3.2, and the model was found to be
adequate.

The run-up situation was then investigated, and as anticipated, #, was found to be
several orders of magnitude faster than that obtained with the Newtonian model. A
solution procedure using a time-step size of 1x10°° s, was found to be adequate, but a
time-step of 1x107 s was used to ensure accuracy. This may seem to be at the expense
of computational time. However, using a smaller time-step means that each time-step
converges more quickly thus justifying the value chosen. To ensure convergence, fifty

iterations per time-step were performed.
Results: Bingham fluld with no Rotor Inertia

The chosen parameters and the results are presented in Table 5.11 and the average effect

of the parameters is shown in Fig. 5.46.

i Parameters run-up time
sn;nu\::la;:n yield stress| velocity d:]:;gy viscosity i gap width W?;ttnl:u:al CFD
Pa m/s kg/m’ Pas mm ms ms
a 5000 1.50 1500 0.50 0.50 3.0 0.109
b 10000 1.50 1500 1.00 1.00 6.0 0.110
c 5000 3.00 1500 1.00 0.50 1.5 0.432
d 5000 1.50 3000 0.50 1.00 24.0 0.223
e 10000 3.00 1500 0.50 0.50 3.0 0.106
f 10000 1.50 3000 1.00 1.00 12.0 0.220
g 5000 3.00 3000 1.00 0.50 3.0 0.886
h 10000 3.00 3000 0.50 1.00 24.0 0.217

Table 5.11: CFD results and Tagucci parameters used for a concentric clutch with a Bingham fluid
medium and no load.

This time the definition of ¢, is quite distinctive as can be seen in Fig. 5.47. Fig. 5.46
illustrates that, within the scope of the Tagucci analysis, the chosen parameters 4, p, U
and 7, are all important parameters affecting 7,. A gap-width of half the size allows
information to travel across the gap roughly twice as fast. A yield-stress twice as large
allows roughly twice as much accelerating force. Fluid density has the same effect as in
the Newtonian case. As anticipated, U now has an effect; a higher value gives a
proportionally longer run-up time. Plastic-viscosity is found to have little effect. As
hypothesised earlier, the response time is now several orders of magnitude faster than
the Newtonian case. Fig. 5.48 typically shows how the velocity profile changes during

an event, and shows how a plug forms and increases until the whole gap is moving at
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the same speed. The CFD results are clearly in conflict with the estimation {eqn(5.6)}
provided in [38].
5.4.3 Clutch with Inclusion of Rotor Inertia: Analytical Predictions when Fluid Inertial Effects
are Neglected
Experimental results using a clutch set-up (presented later), show 7, to be an order of
magnitude greater than the 7, CFD results. The difference was attributed to the inertia of
the output rotor not being negligible. Accounting for the inertia of the output rotor in the
CFD model is in principle straightforward. However, getting the CFD model to function
correctly proved very difficult, so in the mean time an approximate analytical solution
was formulated in order to get an indication of the size of 7,,.
Here the inertia of the fluid is not being considered, making the solution simple,
but only valid when the outer rotor inertia (J,) is dominant. At the outer radius (,), the

smart fluid imposes a torque (N,) on inner surface of area (4,):

L=lLa = t_nrd =1 1du = _ L _au

N
r *r dt rr,

(5.8)

r=r,

© Ar’ dt rer, -

For a Newtonian fluid the shear-rate and hence shear-stress reduce over time, and so
eqn(5.8) shows that the acceleration will be highly non-linear. In contrast, for a strong
smart fluid (7>7,) in which the shear-stress remains approximately constant, the
acceleration would be linear. For a weak smart fluid (7.<7,), the plastic-viscosity makes
the total shear-stress somewhat dependent on the shear-rate, and so the acceleration
would start off being linear, and then gradually become non-linear.

Prediction Using a Constant Stress Assumption

If the known initial shear-stress is to remain constant throughout the event, a useful
parameter fwi» can be derived. This would give the fastest possible run-up time. The
stronger the smart fluid, the more valid the approximation would be'. Since the
shear-stress is assumed to remain constant, the acceleration is linear, and from eqn(5.8)

it follows that:

-— o

: 1 I.h 1

Aaro tmin B 21”031‘ (lunn)t=0s .

U I U
Tios = (/“m )l=03 ; - (59)

For a Newtonian fluid u,,= s, and eqn(5.9) shows that f,,, is independent of U. Table

! 1, # fishear-rate), and so the total shear-stress becomes less dependent on shear-rate the larger the values

of 7, become
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5: Unsteady Flow

5.12 shows tm, for parameters in the range of initial experimental results, using a

Newtonian fluid.

Inertia of output rotor /,, kgm® 2.5E-05 i 2.5E-05 { 2.5E-05 : 5.0E-05 : 2.5E-05

gap width A mm 0.5 0.5 1.0 1.0 0.5

outer rotor radius r , mm 25 25 25 25 50

length L mm 30 30 30 30 30

viscosity ., Pa.s 0.05 0.1 0.05 0.05 0.05
! min ms 84.9 424 169.8 339.5 10.6

Table 5.12: Minimum possible run-up time (,,;;) when the rotor inertia is included for a Newtonian
fluid medium.

Here tnin is now of the same order of magnitude as it was in the initial experimental
results, and more importantly is faster.

Using the same assumptions for a smart fluid, then it follows from eqn(5.8) that:

fonin = 1"U2 ! - |- (5.10)
Ar \ Tyt 1Y
Since 7, is generally much larger than 4,y , it follows from eqn(5.10) that:
A 2
¢~ [l} = u ()| 2t (5.11)
Aoro t_\' 10

Equation (5.11) suggests that the rotor should run-up linearly, regardless of the value of
inertia. Such behaviour was even evident when I, = 0 kg.m’ (see Fig. 5.47). Table 5.13

shows results from eqn(5.11) for parameters in the range used previously. The estimated

run-up times are very fast in comparison to the Newtonian fluid case.

inertia of output rotor /, kgm’ 2.5E-05 | 2.5E-05 | 2.5E-05 { 2.5E-05 | 5.0E-05
gap width 4 mm 0.5 0.5 0.5 1.0 0.5
outer rotor radius r, mm 25 25 25 25 25
length L mm 30 30 30 30 30
yield stress 1, kPa 1.0 5.0 1.0 1.0 1.0
speed 2 pm 500 500 250 500 500
run-up time ms 11.1 22 5.6 11.1 1.1

Table 5.13: Approximate £, solution for a Bingham plastic fluid medium assuming a constant
stress.

These predictions do not account for the inertial effects of the fluid. However, the times

are much larger than the optimum zero inertia times calculated in section 5.4.2 and
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therefore indicates that the inertia of the outer rotor has a great influence. This suggests

that this simple solution may be relatively correct.
Prediction using a Linear Flow Profile Assumption
An improved approximation was next sought. When the inertia of the rotor is a factor, it

may be reasonable to assume that the velocity profile will remain linear, but of variable

magnitude throughout the event, in which case the shear-rate is given as follows:

u—u, _ U-u,()

h h

. (5.12)
Equation(5.8) can now be solved using a backward differencing scheme for the

acceleration term,

U-u(t) 1, u(®)—u(t-Ar)

o

X Tl At

(5.13)

This equation was easily solved for u(f) within a spread sheet. The results for a

Newtonian fluid are presented in Fig. 5.49, and still show that U has no effect on the

solution. A faster time is achieved using a higher viscosity and reduced inertia value.
5.4.4 SmartFluid Clutch CFD Model with Inclusion of Outer Rotor Using an Inertial Boundary
Condition

It has been concluded that it will be important to consider the mass of the outer rotor

and not just the fluid itself. If CFD software is to prove useful for practical cases, then

the dynamics of machine parts, which are being forced to accelerate by the smart fluid,

must somehow be included in the model. The relatively up to date Fluent5 CFD

software does not offer such a facility. However, user-defined subroutines within

Fluent5 allow for the possible development of such a boundary condition.

The shear-stress imposed on the fluid surface by the outer rotor that is

accelerating in the positive x-direction is given by:

du

, (5.14)
dt (

[]

N, =la = 7,=B

o

22 ’L’

(]

where B = (5.15)

The acceleration of the outer rotor can be acquired using a 1* order backward difference

approximation:
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du

dul _lu-t.nlo (5.16)
dt

At

o

Using eqn(5.16) and eqn(5.14) a shear-stress boundary condition (z,) can now be used
in the CFD model. For initial testing purposes, B was typically taken to be:

I 2.437x10°°

(]

B=——5—-= 3
2L 27+ (25mm)’ -30mm

=8.488. (5.17)

Initial Subroutine for Inertial Boundary Condition

Once the sub-routine (Appendix A - Table A.3) is written, it must be placed in the
appropriate directory and compiled so that it is available for selection as a boundary
condition. The CFD model previously used for the Newtonian fluid medium was
utilised. The zero shear-stress boundary condition was replaced with the user-defined
shear-stress condition. After various efforts, the boundary condition was never made to
function properly. Typically after one iteration u(f) became very large giving an
unrealistic acceleration and consequently rapid divergence. This is a chicken and egg
situation; u(f) is an unknown, but is required for use in the user-defined subroutine.
Several attempts to improve the situation were made, including incorporating under

relaxation terms. After exhausting all ideas, an alternative approach was sought.

Modified Subroutine for Inertial Boundary Condition

In principle, it should be possible to get the shear-stress boundary condition to work
properly. In practice, the CFD package prefers to work with velocities. Equation (5.14)

can be rearranged to give a boundary condition in terms of velocity:

d uo—uo - . y
T =B;¥‘ =B(___.A—t('.i’)_—_,um’y :uozﬂ"Tf’)’At+uo(“N)_ (5.18)

]

As per usual, the correct size and number of iterations per time-step had to be
determined. The boundary condition appeared to be working. However, a problem that
is evident from Fig. 5.50 was discovered. The value of acceleration at t=0s is
theoretically known' and is included in Fig. 5.50 as a dotted line. The shear-rate and
consequent shear-stress and acceleration can only possibly reduce over time. Hence, any
run-up curve should remain on the right hand side of this dotted line. As can be seen in
Fig. 5.50, the opposite is true. The error appears to worsen the smaller the time-step.

However, the solution does improve with increasing grid size. It was discovered that the
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anomaly arose due to u, and u,, ,, being taken to be equal to adjacent cell centre

velocity, rather than the actual wall velocity. Reducing the cell size reduced this error
and thus gave a better solution. Reducing the time-step increased the ratio between the
step increase in velocity and the actual velocity error, thereby giving a worse solution.
Hence, the results are time-step size dependent and are most certainly not a correct

solution of the problem in hand.
Corrected Inertial Boundary Condition Subroutine
Since dw/dy is known, it is possible to determine the true value of u,. It is however

impossible to correctly obtain the u,,_,,,, since the previous shear-rate is not available

for use’. A detailed investigation concluded that the following was possibly a way
forward:

u = (cell center velocity of cell next to the wall) ,_,,+

o(1- A1)

A (5.19)
2

Here the shear-rate at time ¢, and cell width (Ax) are being used to obtain a more

accurate value of u,_,, . This situation is exactly equivalent to basing the force balance

at y=h— Ax/2 opposed to at y=h. When the time-step is small, this approximation
should be acceptable. It is therefore important to have a small cell width at the wall.
With this additional term the results (as shown in Fig. 5.51), are now on the correct side
of the theoretical line. In this figure, it can also be seen that the use of a very small
time-step (< 1x107s) is inappropriate. This is because the increase in speed per
time-step should not be any less than the error in speed due to the approximation, as is

explained above.
Partial Verification of Final Model

If the value for the output inertia boundary condition is consequently reduced, then the
event should ultimately be the same as is described in section 5.4.1 in which a free
surface (no-inertia) boundary condition is used. This situation was investigated and the
results are shown in Fig. 5.52. As they should do, the two different boundary conditions

are complementary when the inertia value is very low.

' at 1 = 0 s the shear-rate and hence force on the outer rotor is known

? known from consultations with Fluent development team
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CFD Analysis: Newtonian Fluid with Rotor inertia

Parameters run-up time

simulation inertia . . . plastic . o
ber | ter B input speed | fluid density viscosity gap width 90%
Pa.s’/m m's kg/m3 Pa.s mm ms

a 1 1.50 1000 0.50 0.50 203

b 2 1.50 1000 1.00 0.10 261

c 1 3.00 1000 1.00 0.50 202

d 1 1.50 2000 0.50 0.10 261

e 2 3.00 1000 0.50 0.10 268

f 2 1.50 2000 1.00 0.50 396

g 1 3.00 2000 1.00 0.10 208

h 2 3.00 2000 0.50 0.50 400

Table 5.14: CFD clutch results for zero yield-stress with inclusion of rotor load

With the newly developed inertial boundary condition, it was possible to determine
more accurately how the inertia of the rotor affects #,,. In addition, the versatility of the
boundary condition could be tested for different parameters. This was again done using
a Tagucci analysis with parameters as listed in Table 5.14. Results are presented in
Fig. 5.53. It is now clear that the value of output rotor inertia is a major factor for the
run-up time. The speed (U) is still not a factor for the Newtonian case. In conclusion,
the value of rotor inertia is significant. Fig. 5.54 shows that the run-up time is now

several hundred milliseconds, this is in line with initial experimental studies.
CFD Analysis: Bingham CFD Model with Rotor Inertia

When using the Bingham CFD model technical difficulties were encountered. When a
yield-stress is present, the overall response is faster and so Af needs to be smaller; the
error associated with the correction term in eqn(5.19) is now quite large compared with
the A term in eqn(5.18). Eventually new documentation came to light that indicated that
user-defined memory locations were available for use. This would allow the plate speed
to be stored in a memory location so that the previously computed plate velocity was
known. In fact three memory locations were used; one to store the actual time-step
number, so that the point at which u, should be updated could be determined; one to
store u, and one to store « old.

Again, a Tagucci analysis was employed with parameters as listed in Table 5.15.
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Parameters run-up time
simulation yield stress{ velocity ﬂuifi Plasti‘c palrna::fer theory y €FD difference
number density | viscosity B (Emin) | tri)

Pa m/s kg/m’ Pas kg/m® ms ms %
a 5000 1.50 1000 0.05 5.0 146 ; 1.58 7.8
b 10000 1.50 1000 0.10 10.0 1.46 i 1.53 48
c 5000 3.00 1000 0.10 5.0 268 i 3.01 11.0
d 5000 1.50 2000 0.05 10.0 291 | 3.15 7.5
e 10000 3.00 1000 0.05 10.0 291 i 3.07 5.1
f 10000 1.50 2000 0.10 5.0 0.73 § 0.89 18.2
g 5000 3.00 2000 0.10 10.0 536 ; 6.01 10.9
h 10000 3.00 2000 0.05 5.0 146 ; 1.65 11.7

Table 5.15: Parameters and results for a concentric clutch with Bingham plastic fluid medium and
inclusion output rotor inertia. Theoretical #,,, is from eqn(5.10).
It is clear from Fig. 5.55 that the yield-stress, input speed and rotor inertia are important
parameters. The run-up curves shown in Fig. 5.56 are all reasonably linear; as a
consequence the linear assumption used to derive #,» {eqn(5.10)} is quite valid and
gives a good approximation for ¢, (Table 5.15). The actual CFD run-up time is slightly
longer; this is due to the fluid inertia having some effect (clear from Fig. 5.55) and from
a slight drop in shear-stress due to the fall in shear-rate.

Clutch with Bingham medium and Rotor Inertia: CFD vs. Analytical
Two solutions for high and low output rotor inertia are given by Whittle et.a/ [38]. It
was worth comparing these solutions to the CFD counterpart. For the high rotor inertia
solution, the parameters are such that B (= 163.514kg/m’) {eqn(5.15)} is large'.
Fig. 5.57 shows that the corresponding CFD solution is close but not exactly in line with
the analytical solution [38]. This appears to be due to the CFD model having a higher
initial shear-stress due to 7, being included in the solution. The analytical solution
approximates the rotor inertial acceleration to be due to 7, alone {equivalent to the
derived approximation eqn(5.11)}. The CFD run-up curve looks to be linear but in fact,
the initial gradient is slightly larger than that in [38] due to 7,. Initially 7, = 300 Pa, but
then obviously decreases as the shear-rate reduces (Fig.5.58), while 7,=2000 Pa
remains constant. For the analytical solution® [38] 7, ~ 245 ms and is line with that from
eqn(5.11) (tn = 245 ms). Since eqn(5.11) neglects all fluid inertia it can be concluded

that for these parameters the fluid density has very little effect on the overall solution.

! For a practical clutch this value would be much lower.
? Result read from printed figure in [38].

- 146 -



Modelling Smart Fluid Devices Using CFD 5: Unsteady Flow

Because of the high inertia, the velocity profiles are found to be linear in both the CFD
(Fig. 5.58) and analytical solution. The #;, solution {eqn(5.10)} is also included on
Fig. 5.57, this gives t,, if the initial shear stress and thus acceleration were to remain the
same. Here the initial assumption in [38] of a linear from to u,(?) is quite valid, and thus
it is quite understandable that it gives a reasonable result in line with the CFD solution.
The low output rotor solution in [38] is now compared with the corresponding
CFD result. The inertia is now much lower, but still relatively high (B = 14.062 kg/m?’).
The CFD velocity profiles (Fig. 5.60) show that the shear-rate becomes much less linear
with time. This is in line with the profiles in [38], although on a different time scale as
can be seen in Fig. 5.59. Up until about the 3.0 ms the run-up profiles are similar
although differ due to the same reason as for the high inertia case. After about 3.0 ms
significantly different behaviour occurs and u,(f) suddenly begins to run-up as if there
was no rotor inertia, and the overall time becomes close to that given by eqn(5.6). This
is explained by Whittle et.al. [38] to be due to the fact that a critical point has been
reached in which acceleration becomes limited by the fluid dynamics. This is surely in
error, the shear stress on the rotor cannot just suddenly reduce and so the rotor should
still run-up with a similar acceleration. However, before a significant examination into
why the solutions are so different, it useful to present an experimental study of the

problem in hand.
5.4.5 Clutch with a Newtonian Fluid Medium: Experimental vs. CFD results

To determine the reliability of the theoretical solutions experimental results in a
concentric clutch apparatus were sought. This was achieved by modifying an existing
apparatus. The device had been designed to give linear motion and consists of two, dual
channel, ER clutches. One clutch was utilised for the experimentation. The clutch had
been designed to have low output inertia [62]. To maximise torque for the same rotor
inertia a double channel formation is used (Fig. 5.61). To limit the need for seals, and
therefore friction, the clutch is mounted vertically. The lower input rotor rotates with
constant speed £2. The fluid rotates with the same angular speed as the input rotor once
the output rotor has run up to the same speed.

The output rotor was stripped of all unnecessary parts to reduce its inertia. A
release mechanism was built to hold the “output” rotor stationary (Fig. 5.61). Two small
servomotors served as tachometers. The upper tachometer could not be mounted
co-axially. This was due to the design requiring electrical excitation to be applied

through the top cap. A simple gear train was therefore used to mount the upper

tachometer as shown in Fig. 5.61.
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Experimental Method

The clutch parts are disassembled cleaned and reassembled. The clutch is then filled
with Tellus 37 oil from the inner channel; fluid then flows into the outer channel
thereby ensuring that all the air is expelled. The experimental procedure is then as
follows:

i.  The output rotor is held stationary while the input speed (£2) is set.

ii. An approximation of the fluid temperature is obtained using an infra-red
thermometer. The thermometer takes a reading on the outer casing that is
painted black for maximum thermistivity.

iii.  The output rotor is then released and both the input and output rotor speeds are
recorded on a digital oscilloscope.

iv.  The results are then stored and imported into a spreadsheet for analysis.

To achieve different fluid temperatures the output rotor was held stationary while
viscous heating took affect. The outer casing is only a few millimetres thick and highly
conductive. It is therefore reasonable to assume that fluid temperature is relatively
uniform and equal to that measured on the outer surface. For the Tellus 37 the viscosity
is given accurately by the following equation [63]:

1-031¢
1+0.94¢

u=0089 where ¢=0.057,-1.0 (5.20)

CFD Model and Results
The CFD models from section 5.4.4 were utilised. In order for the single channel CFD
models to behave as a dual-channel clutch, the length (L) must be doubled. The value

for B is calculated as:

I 29x10°

o

B= —= :
2ar,’L  2m-(24.5mm)’ -60mm

=5231kg/m’. (5.21)

The mean radius (r,,) of the output rotor was measured at 24.5 mm, this was used to set
the wall speed (U = rnf2).

All the results (Fig. 5.62, Fig.5.63, Fig.5.64, Fig.5.65 & Fig.5.66) clearly
indicate that ¢, is independent on the speed U. As indicated in the figures the CFD and
experimental results clearly agree over a wide range of results. The run-up time is not
dependent on speed U and is only effected through the viscosity that changes with
temperature. Typical run-up time equals 200 ms. These times are not very fast but with

a smart fluid the response should be much quicker.
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546 Clutch with an ER Fluid Medium and Rotor inertia: Experimental vs. CFD resuits

An investigation was now carried out using the same CFD model as in section 5.4.5 for
an ER fluid medium. The fluid used was Bayer 3565 50%. The experimental method
was now as follows:
i.  The input speed (2is set to the desired value.

ii.  The voltage supply is set to give the correct excitation.

iii. An approximation of the fluid temperature is obtained.

iv.  Voltage is applied by switching on 10 V to the switching box.

v.  The output rotor is then released and the velocities are recorded on the digital

oscilloscope.

vi.  The results are then imported into a spreadsheet for analysis.
At low speeds and high voltages, excitation actually caused the driving motor to stop
stationary. The motor was simply not powerful enough to keep the input rotor rotating
while the outer was being held stationary. At high voltages, the yield-stress and forces
involved were just too strong in order to be able hold the output rotor stationary,

without damaging the apparatus.
Problems encountered

Although significantly faster than the zero excitation case, initial results indicated that
t, was slower than expected. When clutches are locked together, the electrical
conductivity is higher than when the fluid is in shear. This is because the fluid can form
strong chain like structures when not under shear, providing a favourable means of
current transfer. From this an indication of #,, was inferred from recordings of current
that was faster than that indicated by the tachometer recording. Stiffening up the
apparatus and reducing possibility of slippage in the cogging system gave tachometer
recordings consistent with the current recordings’.

Results and Discussion

All the experimental tests were carried out at least twice. All the results are found
to be repeatable and are therefore of high quality. The first set of data (Fig. 5.67) was
for zero volts giving t,, curves (~200 ms) typical to those found before for a Newtonian
fluid. Using a viscosity corresponding to the correct temperature gives a very close

match between CFD and experimentation. For an excitation of 2.0 kV/mm #,, is seen to

! Although the gears appeared to be attached tightly, accelerations of 10000 rad/s/s could easily cause
slippage.
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be linear' (Fig. 5.68). As illustrated in Fig. 5.68 agreement between CFD and
experiment is good. This is also the case for different temperatures and for higher
excitations® as shown in Fig. 5.69 Fig. 5.70. Interestingly at a temperature of 40°C

1= 0 Pa.s. In which case 7, should be linear and is indeed so as shown in Fig. 5.71.
5.4.7 Discussion

The CFD and experimental results agree well, and are in accordance with the derived
analytical approximations in section 5.4.3. However, there is a fundamental difference
between the run-up times given by CFD and the analytical work of Whittle er.al. [38].

These differences are summarised in Table 5.16.

Model Observation Conclusion
Newtonian Good agreement for 7, between CFD
fluid medium and [38]. CFD results agree well with
with no output ” eqn(5.6) given by [38].
rotor inertia ( section 5.4.1)

Eqn(5.6) does not contain a

Bingham eqn(5.6) given by [38] over-predicts the yield-stress or an input

me(l;ll:;:i:vith CFD results for 7, b'y several orders of spéadl hatanveter’, and
no output magnitude. therefore does not predict
rotor inertia ( section 5.4.2) the results obtained by

CFD.

Very good agreement between CFD

ﬂlzfclvv:el:li:unm and experiment: The. inclusion of the Du:hteortohtz:lieg:::';n:zn;efor

et output rotor inertia changes the consiflered (5.6)
— o magnitude of the response by a factor b e )i up
rotor inertia e longer valid.

Very good agreement between CFD

Bingham and experiment.
plastic fluid The parameter B is such that the [38] is in disagreement with
medium with | soution given by [38] will indicate that | both CFD and experimental
output rotor the response is limited by the fluid results.

inertia dynamics and thus t,, is given by

eqn(5.6).
Table 5.16: Summary of the clutch run-up results given by Whittle et.al [38] and CFD.

When the output rotor inertia (/,) is high, rough agreement the two mathematical studies
is reached (Fig. 5.57). Here the fluid inertia has a negligible effect, helping to keep the
velocity profiles linear (Fig. 5.58). In [38], it is suggested that when the output rotor
inertia is dominant the rotor accelerates in a linear manner, caused by a constant shear

stress (7=17). The two different studies therefore agree well when the solution is

" The electro-stress is high in comparison to the plastic-viscosity.

? On activation of 3kV/mm the motor was not sufficiently powerful to keep the clutch at 600 rpm.
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dominated by rotor inertia.

The disagreement occurs when a more practical case of low output inertia is
considered (Fig. 5.59). The solution of Whittle et.a/ [38] indicates that after a certain
time, the fluid dynamic response prevents the approximately constant acceleration from
continuing. The response is seen to suddenly change and become very slow (Fig. 5.59).
This fluid dynamic response appears to be similar, if not the same, as for the case of no
rotor inertia with 7,= 0 Pa (section 5.4.1 - Fig. 5.44). In this case, the final run-up time
should be given approximately by eqn(5.6) (i.e. #, = 23 ms). The complete run-up curve
is not presented in [38], but if the curve is extrapolated, then 23 ms will not be far off
the mark - note that the CFD response time is only 4 ms.

When the rotor inertia is not significantly high, [38] appears to suggest that the
actual overall response is fluid dynamic limited, and so #, can be determined using
eqn(5.6) (t,). However, this author believes this to be wrong for the following reasons:

i. In [38] the fluid dynamic response is said to become dominant because it is
slower than the rotor inertia response. This does not make any sense; the fluid
dynamic response affects the acceleration of the output rotor, and the inertia of
the rotor affects the fluid dynamic response. Therefore neither one can be
dominant as they both affect each other.

ii. The optimum fluid dynamic response time (fn=¢,) is true when I, =0 kg.mz,
and thus only the fluid is been accelerated. If any additional inertia were
included (i.e. the output rotor) then the laws of motion dictate that ¢,, must be
longer. The CFD and experimental results are in agreement with this logic, the
analytical solution is not [38]. In the latter case, adding rotor inertia does not
always increase fn,!

iii.  Although the approaches are quite different, when 7, =0 Pa, eqn(5.6) for ¢, the
analytical work [38] does indeed agree with CFD. In fact, the arrangement of the
parameters in eqn(5.6) is found to agree precisely with the CFD results.
According to [38], eqn(5.6) will also hold true for a Bingham plastic fluid.
However, the CFD results indicate that when 7,>0 Pa, both 7, and U now
become important parameters. This is understandable when the following is

considered. The non-Newtonian viscosity concept' gives finite sections of fluid
a viscosity equal to eqn(2.13). Initially ¥ (and hence u,,) are uniform across the

gap. When 7, =0 Pa, typically u,,= =50 mPa.s. For a 5.0 kPa fluid with a

' The concept is the foundation of all the CFD work in this thesis.
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shear-rate' of 3000 /s, f4, is now 34 times larger. The initial shear-stress (447 )

is therefore 34 times larger than before, and thus the acceleration will be much
faster for the same fluid density. In addition, (unlike the Newtonian case), for a
smart fluid the initial shear-stress does not significantly reduce as the event

. progresses {7, # f(y) }, further indicating a faster run-up time.

From an engineer’s perspective it is difficult to argue with the above points and thus the
validity of the analytical solution is questioned [38]. However both analytical [38] and
CFD solutions are essentially solving the same governing flow equations so their results
should agree. The reason for the disagreement has to be identified.

One difference between the two approaches is that in [38] the radial geometry is
used, and in the CFD model a flat plate approximation was used®>. However, it is
unlikely that this small assumption can explain the fundamental differences in the
orders of the run-up times encountered.

Another difference between the two approaches is the choice of boundary
condition on the output rotor. The main objective is to determine the velocity function
{us(f)} on this boundary. For a practical CFD solution, a user-defined subroutine was
utilised to apply Newton’s law of motion on the output rotor, and thus determine its
speed. Here no initial assumptions of the form of u,(f) are taken. Although the CFD
solution is iterative, great care was taken to ensure that the time-step sizes and number
of iterations per step were appropriate. To obtain the fluid limited solution (t,), (i.e.
when the outer rotor has zero mass), a free surface boundary condition was used. The
formula for ¢, in [38] appears to have been derived by consideration of a special case of
the overall solution only.

In the analytical solution [38], u,(¢) is initially assumed to be linear, due to a
constant value of yield-stress, and is in fact equivalent to the derived approximation of
eqn(5.11). The value of shear-stress on the output rotor is therefore under-predicted’.
An inappropriate negative gradient velocity occurs on the output wall. A condition is
therefore imposed to prevent the velocity gradient from becoming negative. This does
not necessarily mean that the subsequent solution is now correct — it is still an indirect
solution of the problem in hand. This procedure seems dubious.

The analytical solution in [38] does not predict or allow for the formation of

'U=1.5m/s, h=0.5mm.
2 This was done to simplify the CFD model as far as possible.
3 The severity of this inaccuracy depends on the magnitude of shear-rate.
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plugs. In the CFD analysis, as soon as the output rotor a plug forms, due to 7<z,. The

thickness of this plug increases with time.
5.4.8 Practical Considerations

Only the fluid properties and value of B affect the output acceleration. Of all the fluid
parameters, the yield-stress is the most significant (Fig. 5.55), approximately effecting
the acceleration in a directly proportionally manner.

If we assume a cylindrical output rotor of thickness (z) and density (p,) then from
eqn(5.15):

|, _27rra3Lpoz
2or’L 2mr’L

o

=Pz - (5.22)

A low value of B would be 2 kg/m2 (1000 kg/m’ x 2 mm); for a dual channel this would
be halved to 1 kg/m’. This value is low and means that fluid inertia needs to be
considered, thus requiring a CFD solution. However, in practice, the inertia will be
higher due to a rotor shaft, and most importantly, the inertia of the device it will be
attached too. In this case B will be much larger, and eqn(5.10) and eqn(5.11) should

prove useful.

5.5 Summary: Unsteady Flow

Using the continuum CFD approach outlined in section 5.1, the response of a smart
fluid in several devices was successfully modelled. In the annular valve, both pressure
and flow-rate responses due to step changes in excitation were analysed. For the
viscoplastic case, analytical studies were available to help verify the results. It was
concluded that the work of Whittle et.al. [37] was inadequate in not correctly modelling
the fluid momentum of the plug section. The yield-stress and plastic viscosity (due to
high shear rates) were found to have strong effects on the response time.

For modelling the Rayleigh step bearing the viscoelastic Bingham CFD model
proved to give much more realistic results than the viscoplastic Bingham CFD model.
An experimental study on Rayleigh step bearing shows that the response is faster than
experimental results obtained by Leek et.al. [41] who themselves believed that there
results were slow. The CFD response appears to be slightly faster than the experimental
situation, but this is likely to be due CFD model being ideally pressurised. More
accurate fluid data with some idea on the value of G’ is required if a more detailed
comparison is to be made.

Although the clutch run-up problem was quite simple to solve, the actual
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technicalities proved difficult. For the CFD to be useful, the model had to be aware of
the mass of influencing parts (output rotor). A formula was derived to act as a CFD
inertia boundary condition. Programming this function into Fluent proved difficult'.
However the effort was worthwhile as the results were found to be clearly in line with
experimental results for both Newtonian oil and ER fluid mediums. The CFD solution
clearly disagrees with the analytical solution of Whittle et.al. [38].

! Even with help from Fluent.Inc via. Email the sub-routine was difficult to build. This was partly due to

the limited documentation describing Fluents’ macros.
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Fig. 5.1: Flow curve showing the comparison of the constitutive viscoelastic and Bingham CFD model at
different time intervals. Here the usual Bingham plastic type flow curve becomes recognisable after
about 10 ms.
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Fig. 5.2: Non-Newtonian viscosity curve showing the comparison of the constitutive viscoelastic and
Bingham CFD model at different time intervals.
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5: Figures
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Fig. 5.3: INlustration of annular valve model.

010 1 —e—time history of flow rate CFD annular valve: response due to a step[— 3000
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Fig. 5.4: CFD annular valve in unsteady flow: Example of an un-converged solution. Flow rate is
decreasing from left to right with time due to a step change in excitation. The recording of
flow-rate/iteration clearly shows that convergence is not being fully reached for each time-step.
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1 average effect of the following parameters A*
140 || Yield stress = 5* and 10** kPa O**| |
; pressure gradient G = 60* and 120** bar/100 mm
fluid density = 1500* and 3000** kg/m’
120 H plastic viscosity = 0.05* and 0.1** Pa.s
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Fig. 5.5: CFD annular valve response due to an instantaneous excitation using the Bingham CFD model
(t <0 s, E =0 kV/mm). Tagucci analysis: average effect of each parameter on the response time (z,).
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Fig. 5.6: CFD annular valve response due to an instantaneous excitation using the Bingham CFD model
(t<0s, E=0KkV/mm). Tagucci analysis: see Table 5.2 for all parameters. The range of flow is too large
to fit all the curves onto one graph. However, the general shape is the same for all curves.

- 157 -



Modelling Smart Fluid Devices Using CFD 5: Figures

—(0 ms
—0.1 ms
—0.2ms
—0.5 ms

annular valve: response - s

due to instantaneous excitation

fluid = Bingham CFD model —920'ms

cells = 3x20 (periodic) [axis symmetric]

"3 ‘ ¥ ~=5.0 ms
At= 1x107s, 100 iterations/step

casca

15

velocity [ m/s |

20

25

Fig. 5.7: CFD annular valve response due to an instantaneous excitation using the Bingham CFD
model. Tagucci analysis: velocity profile case a (See Table 5.2 for all parameters).
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Fig. 5.8: CFD annular valve response due to an instantaneous excitation using the Bingham CFD
model. Parameters used to match those used in [37] and [53].
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annular valve: response due to step change in excitation
fluid = Bingham CFD model (1 & 2 kPa, 101.2 mPa.s)
cells = 3x20 (periodic) [axissymmetric]

At =1x107 s , 100 iterations/step

G =12.5 bar/100 mm

----- analytical theory: steady state, with no excitation
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Fig. 5.9: CFD annular valve response due to an instantaneous excitation using the Bingham CFD
model. Parameters for the 2 kPa fluid are used to match those used in [37] and [53]. Here the
yield-stress is reduced and the flow rate response is seen to be slower.
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Fig. 5.10: CFD annular valve response due to an instantaneous excitation using the Bingham CFD
model. Here the flow rate is being reduced to zero. Velocity profiles for the 2 kPa fluid are shown in
Fig. 5.11.
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Fig. 5.11: CFD annular valve response due to an instantaneous excitation using the Bingham CFD
model. Here the flow rate is being reduced to zero.
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Fig. 5.12: Simple shear mode test of viscoelastic Bingham CFD model {eqn(5.2)}. Flow between two flat
plates with a step change in excitation at # = 0 s. Here the yield-stress and thus non-Newtonian viscosity
change is no longer instantaneous.
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Ar =1x107 s, 100 iterations/step, G = 120 bar/100mm
7,=5kPa, i, = 100 mPas, z,= 1000 Pas, p = 1500 kg/m’

730 4
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690 4
\
— = = = analytical theory: steady state flow rate
% 670 Bingham CFD model (viscoplastic i.e. G'= 0)
£ ] ——G'= 10000 Pa
= g0+ ——G'= 1000 Pa
o
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\
550 +— — - . +— —r . = - !
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Fig. 5.13: CFD annular valve response due to an instantaneous excitation using the viscoelastic
Bingham CFD model. Here it is only when G’ is low that any real difference can be seen.

750 4 = = = analytical theory: steady state flow rate
——G'=10000 Pa
=G = 1000 Pa
650 - =~ (G'=100 Pa
R e = —
a0 | R o S

annular valve: response to a step change in excitation
fluid = viscoelastic Bingham CFD model

cells = 3x20 (periodic)

At=1x10"%, 100 iterations

v G =60 (lower data) & 120 (upper data) bar/100mm

t,=5 kPa, u,= 100 mPa.s, u,= 1000 Pas, p= 1500 kg/m’

flow rate | Lt/min/m |
&

§4

0.0 05 1.0 15 2.0 25 3.0 35 40 45 5.0
time [ ms |

Fig. 5.14: CFD annular valve response due to an instantaneous excitation using the viscoelastic
Bingham CFD model. Here the effect of pressure gradient and hence shear rate are investigated.
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2XH annular valve: response to a step change in excitation

fluid = viscoeastic Bingham CFD model

cells = 3x20 (periodic)

At=1x10"s, 100 iterations, G = 60 bar/100mm
7,= 5 (upper data) and 10 (lower data) kPa
4,=100 mPa.s, z2,= 1000 Pa.s, p= 1500 kg/m’

350 4

300 -
| s
‘ = = = analytical theory: steady state flow rate
= ——G' = 10000 Pa
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B
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=
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e e — e
50 — . ' . : v v . v ,
0.0 05 1.0 15 2.0 25 3.0 35 40 45 5.0
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Fig. 5.15: CFD annular valve response due to an instantaneous excitation using the viscoelastic
Bingham CFD model. Here the effect of yield-stress is investigated.

fluid = viscoelastic Bingham CFD model

20x20 cells (100 mm x 0.5 mm) [flat plate model]
step-size = 1x10™ s, 100 iterations/step

flow rate = 0.71 Lt/min (r ,,= 25 mm)
yield-stress = 5 kPa, plastic viscosity = 100 mPa.s
fluid denisy = 1500 kg/m’

——G' =10000 Pa
——@G'= 5000 Pa
—G'=1000 Pa

average pressure along length [ bar |

----- steady state analytical solution, yield stress = 5 kPa

— — —steady state anayltical solution, yield stress = 0 kPa

00 05 1.0 15 20 25 30
time [ ms |

Fig. 5.16: CFD annular valve pressure response due to an instantaneous excitation using the viscoelastic
Bingham CFD model. Here the effect of G’ is investigated.
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.......................................................................................................

fluid = viscoelastic Bingham CFD model

20x20 cells (100 mm x 0.5 mm) [flat plate model]
step-size = 1x10 s, 100 iterations/step

flow rate = 0.71 Lt/min (r,= 25 mm)

yield-stress = 1 & 5 kPa

plastic-viscosity = 100 mPa.s

fluid density = 1500 kg/m’

bar |

average pressure along length |

— — — steady state analytical solution, initial

..... steady state analytical solution, final

yield stress = 5 kPa, G' = 5000 Pa
——vield stress = 1 kPa, G' = 5000 Pa

—

0.8 1.0 1.2 1.4 1.6 1.8 2.0
time [ ms ]

Fig. 5.17: CFD annular valve pressure response due to an instantaneous excitation using the viscoelastic
Bingham CFD model. Here the effect of yield-stress is investigated.

16 4

fluid = viscoelastic Bingham CFD model

20x20 cells (100 mm x 0.5 mm) [flat plate model]
step-size = 1x10”° s, 100 iterations/step

flow rate = 0.71 Lt/min (=25 mm)

yield-stress = 5 kPa

fluid density = 1500 kg/m*

-
N

-
o

— — —steady state analytical solution, yield stress = 0 kPa

steady state analytical solution, yicld stress = 5 kPa

average pressure along length [ bar |

= plastic viscosity = 100 mPa.s, G' = 5000 Pa
—plastic viscosity = 50 mPa.s, G' = 5000 Pa

0 L R s

0.0 0.2 0.4 0.6 0.8 .10 12 14 16 18 20
time [ ms |

Fig. 5.18: CFD annular valve Pressure response due to an instantaneous excitation using the viscoelastic
Bingham CFD model. Here the effect of plastic-viscosity is investigated.
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5.0E+06

Step Bearing Pressure Response

instantaneous formation of yield stress at# =0 s
fluid = Bingham CFD Model (1000 Pa, 100 mPa.s)
zero excitation viscosity = 100 mPa.s

grid = 20x20 (150mm x 0.5mm)
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S —— dt=1E-7, 100 iterations/step
------ final theoretical steady state pressure
50405
------ initial theoretical steady state pressure
B 1
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Fig. 5.19: CFD smart fluid Rayleigh step bearing pressure response due to an instantaneous formation
in yield-stress. The bearing length and cell aspect ratio are large. Here the result is time-step size
dependent and so the solution is not reliable.

4.0E+06

35E+06
Step Bearing Pressure Response

instantancous formation of yield stress at t =0 s
e fluid = Bingham CFD Model (1000 Pa, 100 mPa.s)
zero excitation viscosity = 100 mPa.s

grid = 20x20 (h = 0.5mm)
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2.0E+06 = :
----- initial theoretical steady state pressure

----- final theoretical steady state pressure

average pressure gradient [ Pa/m |

1.56+06
=~ dt=1E-7, 100 iterations/step, L. = 10h
S O to8 —dt=1E-6, 100 iterations/step, L = 10h
5.0E+05
0.0E+00 .
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Fig. 5.20: CFD smart fluid Rayleigh step bearing pressure response due to an instantaneous formation
in yield-stress. The bearing length and cell aspect ratio are large. Here the solution has been improved
by using a smaller cell aspect ratio (I, = 10h).
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4 0E+06

3.56+08

3.0E+06

Step Bearing Pressure Response

s instantaneous formation of yield stress at 7 =0 s
= fluid = Bingham CFD Model (1000 Pa, 100 mPa.s)
E:; e zero excitation viscosity = 100 mPa.s
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L o sy oy P
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——dt=1E-6, 100 iterations/step, L = 10h, 40x40 cells
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Fig. 5.21: CFD smart fluid Rayleigh step bearing pressure response due to an instantaneous formation
in yield-stress. The bearing length and cell aspect ratio are large. Here the effect that the time-step and
grid size have on the solution is investigated.

4.0E+06
Step Bearing Pressure Response

o fluid = viscoelastic Bingham CFD model (1000 Pa, 100 mPa.s)
zero excitation viscosity = 100 mPa.s
h =0.5mm
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------ initial theoretical steady state pressu;e

------ final theoretical steady state pressure

———dt=1E-6, 100 iterations/step, L = 10h, 20x20 cells, G'= 10000

2.06+08 ——dt=1E-6, 200 iterations/step, L = 10h, 20x20 cells, G' = 10000
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Fig. 5.22: CFD smart fluid Rayleigh step bearing pressure response due to change in yield-stress using
the viscoelastic model. Here the effect that the time-step and grid size have on the solution is
investigated. All the simulations above a time-step size of 0.1 ms are overlapping one another.
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4,0E+06

3.5E+06

Step Bearing Pressure Response
fluid = viscoelastic Bingham CFD model (1000 Pa, 100 mPa.s)
plastic viscosity = 100 mPa.s

3.0E+06 h =0.5mm, L = 10A

2.5E+06

------ initial theoretical steady state pressure
ol || RS b e 52 0 G TS T KT final theoretical steady state pressure
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—=dt=1E-5 s, 100 iterations/step, G' = 5000 Pa
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average pressure gradient [ Pa/m |
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Fig. 5.23: CFD smart fluid Rayleigh step bearing pressure response due to change in yield-stress using
the viscoelastic model. Here the effect that G’ has on the solution is investigated.
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Fig. 5.24: CFD smart fluid Rayleigh step bearing pressure response due to change in yield-stress using
the viscoelastic model. Here the effect that plate speed (U) has on the solution is investigated.
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4.0E+06

3.5E+06

3.0E+06
E Step Bearing Pressure Response
B 256406 fluid = viscoelastic Bingham CFD model
= zero excitation viscosity = 50 and 100 mPa.s
; yield stress = 1 kPa, G'= 5000 Pa
© 208408 h =0.5mm, L =10h
Bt
-
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=
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et ~——=plastic viscosity = 50 mPa.s
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Fig. 5.25: CFD smart fluid Rayleigh step bearing pressure response due to change in yield-stress using
the viscoelastic model. Here the effect that plastic-viscosity has on the solution is investigated.
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Fig. 5.26: CFD smart fluid Rayleigh step bearing pressure response due to change in yield-stress using
the viscoelastic model. Here the effect that gap width (/) has on the solution is investigated.
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Step Bearing Pressure Response

fluid = viscoelastic Bingham CFD model
zero excitation viscosity = 100 mPa.s
G'=5000 Pa

h =05mm, L =10k

— =~ initial theoretical steady state pressure

------ final theoretical steady state pressure 5 kPa

yield stress = 1 kPa

~——vicld stress = 5 kPa

3.0E+06

15 20

time [ m

s

Fig. 5.27: CFD smart fluid Rayleigh step bearing pressure response due to change in yield-stress using
the viscoelastic model. Here the effect that yield-stress has on the solution is investigated.

s CFD step bearing pressure response
o fluid = viscoelastic Bingham CFD model
13 05 (1000 Pa, 100 mPa.s, G' = 5000 Pa)
% h =05mm, L =10h
: 0.4 -
! o steady state analytical solution, yield stress = 0 kPa
steady state analytical solution, yicld stress = 1 kPa
—Ef' 5y [l g, TR PR CFD velocity profile @ t=0s
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; ------ CFD velocity profile @ t = 1.0 ms
L et - SR B 0.2 H I s | 19 o CFD velocity profile @ t = 3.0 ms
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Fig. 5.28: CFD smart fluid Rayleigh step bearing pressure response due to change in yield-stress using
the viscoelastic model. Example on how the velocity profile changes over time. Refer to Fig. 3.19 for

model arrangement.
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Fig. 5.29: Initial ER fluid Rayleigh step bearing. This is an adapted viscosity pump.

Fig. 5.30: Two-dimensional Rayleigh step bearing grids used to test flat plate assumption.
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250 11 Raleigh Step Bearing with Telus37 oil medium ‘
| | inner bearings = brass ‘
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effective bearing length = 108 mm
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Fig. 5.31: Rayleigh step bearing with Tellus37 oil medium. Experiment vs. theory. Here the
temperature was allowed to increase while the bearing speed remained constant.
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Fig. 5.32: Rayleigh step bearing with Tellus37 oil medium. Experiment vs. theory. Here results were

taken for constant values of temperature.
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Fig. 5.33: Schematic of the new ER fluid Rayleigh step-bearing rig.

Fig. 5.34: Picture of new ER fluid Rayleigh step bearing rig.
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new Raleigh step bearing rig
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Fig. 5.35: New Rayleigh step bearing rig. Example of oscillation in pressure at a frequency equal to the

input speed (398 rpm = 1 rev/ 0.15 s, 6.6 Hz).
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Fig. 5.36: New Rayleigh step bearing rig. Experimental vs. CFD for a Newtonian Tellus 37 oil fluid

medium at two different temperatures.
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Fig. 5.37: New Rayleigh step bearing rig. ER fluid medium with zero volts excitation. Speed = 265 rpm.
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Fig. 5.38: New Rayleigh step bearing rig. ER fluid medium with 1.2 volts excitation. Speed = 110 rpm.
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Fig. 5.39: New Rayleigh step bearing rig. ER fluid medium with 1.2 volts excitation. Speed = 125 rpm.
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Fig. 5.40: New Rayleigh step bearing rig. ER fluid medium with 1.2 volts excitation. Speed = 250 rpm.
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L - periodic boundary
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Fig. 5.41: CFD model for a 1D concentric clutch. Outer and inner rotors are approximated as flat
plates.
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—— CFD: time-step 1ms, 100 iterations/step
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unsteady concentric clutch
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cells = 3x20 (periodic) [flat plate model]
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Fig. 5.42: CFD concentric clutch with Newtonian fluid medium and no rotor inertia. Determination of
correct time-step size. Data for 0.01 ms and 0.1 ms are overlapping.
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Fig. 5.43: CFD concentric clutch with Newtonian fluid medium and no rotor inertia. Tagucci analysis:
average effect of each parameter on clutch run-up time.
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Fig. 5.44: CFD concentric clutch with Newtonian fluid medium and no rotor inertia. Tagucci analysis:
run-up curves. See Table 5.10 for parameters. Curves a & f and ¢ & / respectively overlap one
another.
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Fig. 5.45: CFD concentric clutch with a Newtonian fluid medium and no rotor inertia. Velocity profile
change during the event.
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Fig. 5.46: CFD concentric clutch with a Bingham fluid medium and no rotor inertia. Tagucci analysis:
average effect of each parameter on clutch run-up time.
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Fig. 5.47: CFD concentric clutch with a Bingham fluid medium and no rotor inertia. Tagucci analysis:
run-up curves. See Table 5.11 for parameters. Curves a & b and d & f overlap one another.
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Fig. 5.48: CFD concentric clutch with a Bingham fluid medium and no rotor inertia. Velocity profile
change during the event,
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Fig. 5.49: Concentric clutch with Newtonian fluid medium and inclusion of rotor inertia. Analytical
solution assuming linear velocity profiles at time #. Solution of eqn(5.13).
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Fig. 5.50: CFD clutch with Newtonian fluid medium and inclusion of rotor inertia. Initial results using
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Fig. 5.51: CFD clutch with a Newtonian fluid medium and inclusion of rotor inertia. Results from
improved subroutine with correction factor. The run-up curves are now on the correct side of the
theoretical dotted line.

output speed [m/s]

d
o

16

14

12

-
o

BN
N

o
)

04

0.2

0.0

A\

7
/
/
B

= zero interia condition
—— B=8.488 (dt =1E-3)

et

|t —B=4.244 (dt=1E-3)
l

/

——B=2.122 (dt =1E-4)

| —B=0.50 (dt =1E-4)
/ | —B=0.25 (dt =1E-5)

\ —B=0.10 (dt =1E-5)
|
L

—B=0.01 (dt =1E-6)
[ [
CFD model with inclusion of rotor inertia
inertia is being reduced to a low value
fluid = Newtonain
cells = 3x40 [flat plate model]

/ akes
/
/ /———-"‘/
///-—
._/"’""-/
2 4 6 timee[ T ] 10 12 14

Fig. 5.52: CFD clutch with a Newtonian fluid medium and inclusion of rotor inertia. When Inertia is
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Fig. 5.53: CFD concentric clutch with Newtonian fluid medium and inclusion of rotor inertia. Tagucci
analysis: average effect of each parameter on clutch run-up time.
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Fig. 5.54: CFD concentric clutch with a Newtonian medium and inclusion of rotor inertia. Tagucci
analysis: run-up curves. See Table 5.14 for parameters.
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Fig. 5.56: Concentric clutch run-up curves using Bingham CFD model and inertial boundary condition.

Tagucci analysis: parameters given in Table 5.15.
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Fig. 5.57: CFD concentric clutch with Bingham CFD model and inertial boundary condition. Linear
run-up curves are produced when the output rotor inertia is high. Parameters are the same as those
used in [38]. Constant stress solution is from eqn(5.10).
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Fig. 5.58: CFD concentric clutch with Bingham CFD model and inertial boundary condition. Linear
velocity profiles are produced when the output rotor inertia is high. Parameters are the same as those

used in [38].
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Fig. 5.59: CFD concentric clutch with Bingham CFD model and inertial boundary condition. Linear
run-up curves are produced when the output rotor inertia is high. Parameters are the same as those
used in [38].
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Fig. 5.60: CFD concentric clutch with Bingham CFD model and inertial boundary condition. Linear

velocity profiles are produced when the output rotor inertia is high. Parameters are the same as those
used in [38].
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Fig. 5.62: CFD concentric clutch with Newtonian fluid medium. Comparison of run-up curves for CFD
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Fig. 5.63: CFD concentric clutch with Newtonian fluid medium. Comparison of run-up curves for CFD
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Fig. 5.65: CFD concentric clutch with Newtonian fluid medium. Comparison of run-up curves for CFD
and experimental results at a temperature of 40°C.
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Fig. 5.66: CFD concentric clutch with Bayer ER fluid medium at zero volts. Comparison of CFD and
experimental run-up curves at a temperature of 30°C.
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Fig. 5.67: CFD concentric clutch with Bayer ER fluid medium at zero volts. Comparison of CFD and
experimental run-up curves at a temperature of 30°C.
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Fig. 5.68: Concentric clutch with an ERF medium. Experimental vs. CFD results for a yield-stress of
1000 Pa.
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Fig. 5.69: Concentric clutch with an ERF medium. Experimental vs. CFD results for a yield-stress of
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Fig. 5.70: Concentric clutch with an ERF medium. Experimental vs. CFD results for a yield-stress of
400 Pa.
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CHAPTER 6 :
HEAT TRANSFER IN SMART FLUID DEVICES

6.1 Introduction

In line with the overall aim of this thesis to investigate the applicability of CFD as a
suitable pre-prototyping tool for smart fluids, CFD heat transfer capabilities are
investigated. Some of this work was presented at the 2001 ER/MR conference and
published in the proceedings [64]. Subsequently the work was also published in the
Journal of Intelligent Material Systems and Structures [65] (Appendix B).

A 10 kPa fluid experiencing a shear-rate of only 1000 /s would typically have a
non-Newtonian viscosity (1»,) 100 times greater than that of the base oil. It is therefore
clear that significant consideration should be given to viscous heat generation when
operating a smart fluid in shear.

In general, the generation of a yield-stress requires an electrical input.
Consequently a Joule loss will occur. For an ER fluid, this loss is due to electrical
conduction though the fluid. For an MR fluid, the Joule loss occurs in the coil used to
produce the magnetic field. A CFD method of modelling heat generation in an ER fluid
due to conduction is attempted using the concept of a current density.

A smart fluid clutch requires adequate heat dissipation in order to maintain an
acceptable fluid temperature. This is particularly important when continually switching
in order to achieve an electronically controlled variable configuration of output
motion [66]. In some instances, multi-plate clutches will be required to provide large
output torque in a small, low inertia device. It follows that a means to predict
temperature within a device of complex geometry, using a fluid with non-linear
properties, will be required for both steady and unsteady flow problems. These
difficulties typically indicate a problem best handled by CFD. The majority of the
necessary routines are inherent in most commercial packages.

Practical steady state heat transfer studies on a concentric clutch and a radial
clutch apparatus are carried out in order to investigate underlying physical phenomena.
For both clutches, the rate of heat transfer from the clutch surface is calculated.
Analytical and experimental methods are used in order to verify CFD results. After
gaining a good understanding of the basic heat transfer problem in both clutch
configurations a study was then undertaken to determine the best designs for both single

plate and multi-plate clutches. For the same outer radius dimension, both radial and
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concentric clutch designs offer similar dynamic capabilities. It may well be that the heat
transfer characteristics of the device dictates the best design. A CFD model could
quickly indicate the best design without resorting to prototype experimentation for

comparisons.
6.2 Energy Source Terms
6.2.1 Viscous Heating
In the CFD method, the resultant magnitude of shear-stress at a cell centre is given by:
resultant magnitude of shear stress (t)=y,7 . 6.1
The amount of energy that is generated within the cell due to viscous forces is then:
. . N 3 1 Nm
heat generated in each cell=1-vol-y [——z-m —=—= watts] , (6.2)
m s s '
where vol is the cell volume. This is essentially how a CFD package can calculate the
viscous energy source of each cell.

For the situation of laminar steady Bingham plastic flow between two flat discs of

radius (R) separated by distance (%), rotating at relative speed (£2):
Q? 2rt

P,=N-Q= ’”;fh R'+=22 K. (from section 3.3.3) (6.3)

This simple analytical model was compared with results from a CFD model. The
model consisted of an axisymmetric grid (only 20 x 20 cells). The lower disc is located
at x = 0 (w=0), and the upper disc at x = h (@ = £2). To eliminate end effects a linear
velocity profile was set on the end wall (w =RS2x/h). The energy model with viscous
heating effects was enabled. All walls were set at a temperature of 300 K.

The total heat flux leaving the clutch was determined using the surface heat flux
command and compared to eqn(6.3). Over a wide range of parameters, no obvious
difficulties were found®. For example, Fig. 6.1 shows very precise agreement at two
different fluid strengths.

6.2.2 Electrical Heating in an ER fluid Due to Conduction

When electrical current (albeit a low one) passes through an ER fluid, consideration

! Otherwise all walls would be by default isothermal.
2 For the FluentS CFD package it was discovered that viscous heating effects were not being calculated
when the axisymmetric swirl model with the coupled solver was used.
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may have to be paid to heating through conduction/resistance. The fluid has a resistance
in which electrical power is dissipated. The amount of dissipation will depend upon the
magnitude of the current and voltage (P = IV). It could well be that this magnitude is
on a par with the amount of viscous heating. During fluid quantification a current
density (j ) can be calculated by dividing the local current (/') by the local plate surface

area (A4;):

j:AL’ [“A] (6.4)

cm’
Within a cell, the amount of electrical power being generated can be given by:

\%

. A
ngc—_'j'E'VOI |:—m—2i|-[;j|-m3=watts. (6.5)

It has been proposed that measurements of current density fit the following function for
an ER fluid [31]:

j=PE+QE*. (6.6)

Constants P and Q have units [nA/V] and [fAN2 or 107"’ ANZ] respectively. They can
be found by plotting j/E against E. For Q=10 ,j= 16 pA/cm’ at 4 kV/mm. LogQ is a
linear function of the concentration of active species in the solid, and this seems to be

true of all ER fluids. Q is also sometimes a function of temperature:

AH
0=0, exp(-;;) . 6.7

A plot of logQ vs. 1/T can therefore be used to give a value of AH for a given solid.

The CFD model from section 6.2 was modified to include a sub-routine that can
calculate the electrical heating. The sub-routine written as shown in Table A.4
(Appendix A) allows a source term (watts/m3 ) to be selected in Fluent. One disc is set at
zero volts and the other at both 500 and 1500 to give a yield-stress of 1 kPa and 3 kPa.

The sub-routine calculates the magnitude of the excitation in the cell and then
determines jx E. Fig. 6.1 shows good agreement with theory for two different
excitations. For both excitations, a value of 30 pA/cm? was assumed. This is on the high
side corresponding to an ER fluid at a high temperature. For the 3.0 kPa fluid it can be
seen that at 70 rpm the viscous and heating effects are on a par. It therefore likely that

viscous as opposed to electrical heating effects are going to be more significant.
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Conclusion
There is no problem in determining viscous heating. Heating through electrical
conduction can be calculated provided the current density is known. The function j is
also temperature dependent. However, this model may be too simplistic, as shear-rate is
also a factor. A detailed study to determine the function may be required. In most cases,
it may be possible to ignore electrical heating effects. It can however be noted that
equations (6.3), (6.5) & (6.6) indicate that:

P=RE") , P,=f(E’) where t, =f(E), (6.8)

thus for large voltages, electrical heating may be more dominant than viscous heating.

6.3 Heat Transfer from a Smart Fluid Radial Plate Clutch Surface

Heat dissipation from a radial plate clutch was investigated. This was in line with
testing the CFD heat transfer capability and is a problem of some interest. Experimental
results over a range of angular speeds and fluid gap widths were compared to analytical
and CFD solutions.

The upper plate is driven and the lower plate, being thermally insulated, is held
stationary. The work rate (2N ) is equated to the heat transferred into the upper plate.
Under thermal equilibrium, energies can be equated to determine temperature gradients.
Shear-rate in this radial device varies with radius, inviting concern with respect to
temperature gradients along the oil film and plates.

For the experimental study, the working fluid was Tellus 37 oil. Using a smart
fluid at this early stage was not necessary. At this juncture detailed thermal properties of
a smart fluid are not accurately known, and these would be required if the CFD model
were to provide accurate results. In addition, a complication in separating out the

electrical heating would also arise.
6.3.1 Radial Clutch Description

The clutch comprises two mild steel (EN3) radial discs (10 mm wide & 85 mm dia.).
The upper disc is attached to a motor by a solid shaft of 20 mm dia. of the same material
(Fig. 6.2). This shaft is insulated (60 mm length, 36 mm dia.). Gauge blocks (slip
gauge) were used to set a gap between the discs, which contains hydraulic oil of known
fluid properties (Tellus37).

The bottom plate was held stationary and thermally insulated with use of Tufnol
and Kao wool so that a zero heat flux boundary condition could be assumed. Five

k-type thermocouples are implanted approximately 1.0 mm away from the wetted
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surface, located at radial positions of 0, 10, 20, 30 and 40 mm. To allow for a 1D
analysis the outer edges of the device and driving shaft are also insulated.

It was to become clear that determining the amount of heat conducted up through
the shaft required a temperature (Ts;) to be measured’. The accuracy of an available
infra-red camera that could remotely measure this temperature was deemed inadequate.
The temperature Ty, was therefore inferred from a near air temperature. To calculate the
amount of heat convection from the disc surface, the bulk air temperature (7,) was also
measured.

6.3.2 Experimental Method

All the thermocouples were first checked to be working correctly and calibrated. The
gap-size was set at either 0.5, 0.75 or 1.0 mm. Temperature readings were taken and
then the motor was set to rotate at 500, 750 or 1000 rpm. Temperature readings were
then taken every twenty minutes or so until the temperatures had reached their steady
state values. The readings consisted of the five input plate surface temperatures (7;), two
readings above the plate to allow an average T. to be determined, and the near air

temperature (T.») (Fig. 6.2).
6.3.3 Analytical Model

Very detailed notes on the analysis can be found in [63]2. The rate of steady state heat
transfer at constant rotational speed is considered. Insulation on lower and
circumferential surfaces allows 1D heat transfer to be assumed. Furthermore, it is
assumed that all mentioned temperatures are uniform in both radial and circumferential
directions - a key assumption that would later be verified by experimental and CFD
results.

The solution of heat transfer in the experimental device does not require the
detailed distribution of temperature within the individual parts. It is enough to take into
consideration just inner T; and outer 7, temperatures of the rotors (wetted surfaces), disc
surface temperature (T), surrounding air temperature (7.) and the shaft temperature
(Tw) at known length away from the upper disc surface. Newtonian fluid is situated
between the stationary and rotating disc having a viscosity3 that is dependent upon the

! A colleague ( Dr. V. Oravsky, [63] ) had insisted that upper shaft temperature would be equal to the air
temperature.

2| had my name removed from this paper due to disagreement on parts of the analysis. My experimental
data was used in this paper.

3 Formulae described in [63] to predict manufacturers viscosity specification.
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average fluid temperature (7;/2 + T,/2):

1-031f T+T
= 0,089 =005 = |_10
He 1+0.947 ( 2 ) : (6.9)

Hest Balance
Mutual comparison of the heat flows provides a system of equations defining the three
unknown temperatures T, 7; and T:

Py = 0ot = Oonurdoc = Lot + ouroce - (6.10)
Frictional tangential forces in the fluid generate an amount of heat equal to N£2:

P, = NQ=05mu,Q°R*/h. (6.11)
This heat is transferred through the oil, output disc and shaft (via conduction):

0, = AT ~T,Vh,y and Qs aiee = Ay (T, = T,)/ By i - (6.12)

A proportion of the heat is transferred from the rotating disc into the surrounding air via

convection at a rate approximated by Newton’s law of cooling:
Qpoce =h(4,- AT, -T,) . (6.13)

The heat transfer coefficient for convection was given using a semi-empirical
relationship expressed through averaged Nusselt ( Nu ), Reynolds (Re) and Prandtl (Pr)
numbers [67]. The expression is for a horizontal disc (no shaft) rotating at a speed such
that the flow is laminar (Re < 2.5 x 10”). This expression is assumed appropriate to our
modet:

Nu =(0277+0105Pr)Re*’, h = Nu-k,, /R (6.14)

Rotating Shaft
To determine QM, , two different methods are employed. The first (model-one),
assumes that at a certain vertical position on the shaft the temperature reaches the bulk

air temperature (7). The experimental data is then used to determine an empirical

coefficient for the shaft (W/m2/°C) so that the theoretical temperatures match
experimental ones. This fictive parameter associated with Q, is described as

‘calibrating the theoretical model’. The method absorbs all other uncertainties that may
be present in the experimental set-up. This model was devised by Dr V. Orskay and is
presented in detail in [63]. Unfortunately, I couldn’t agree with the applicability of his
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model to this problem so a second method (model-two) was devised. At the very least
model-one does not serve the purpose of helping to validate the CFD results; the fictive
parameter absorbs all errors allowing the theoretical model to compare well with the
experimental results and does therefore not allow the CFD results to be compared on an
equal footing.

Model-two assumes that the temperature of the air at a location very close to the
shaft (7,5) is representative of the true temperature in the shaft at this location (Fig. 6.2).
This allows the conductivity equation to be applied for heat rate through the shaft:

0. =k AT -T,)/ h,. (6.15)

This method uses the exact experimental device geometry, material properties and
measured temperatures, and is thus a more practical and realistic model. That is
providing the assumption in determining Ty, is appropriate. This assumption is thought
to be quite justifiable because very little heat could actually escape from the shaft by
convection. This is because the shaft has a small surface area, and the supporting metal
structure acts as a large heat sink and consequently a more favourable means for the

heat to be dissipated (Fig. 6.2).

Solution
Mutual comparison of the above heat flows, provides a system of equations defining the
three unknown temperatures 7y, T, and 7;. The shaft (7i;) and surrounding air (7.)
temperatures are known, allowing theoretical 7; to be determined using a spreadsheet
which solves the above equations using a simple iterative procedure. In order to do this

the fluid air properties are linearised as shown in Table 6.1.

thermal conductivity of steel k. =51836 (W/mK)

thermal conducﬂvlgy of oil = k, =0.134 (W/m.K)

viscosity of air M,y =440x107°T,, +5.26x10™° (kg/ms)
density of air i poy =—0.002948T,, +2.0618 (kg/m’)
thermal conductivity of air k,, =7.41x107°T,, +0.00401 (W/m.K)
Prantel Number fdr air : Pr, =-19x107'T, +0.765

Table 6.1: Linearisation of the fluid air properties, and other material proprieties.

6.3.4 CFD Model

The following table summarises the CFD model used in this section.
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6.3.5

software Fluent5, finite volume, segregated solver

Physical Model | Flow is laminar in both oil and air regions. Viscous heating terms are
included. Buoyancy terms in the air region are included

(g =9.81ms™).
fluid properties | air (p, 14, k) properties are linearised and are a function of
cell temperature as indicated Table 6.1
oil (Newtonian) Tellus 37: properties as a function of cell
temperature as indicated by eqn(6.9)
boundary Insulated walls are set to have zero heat flux. Rotating parts are set
conditions to the correct angular velocity. The shaft end is set to temp. T,. The

boundary of the air region is placed at the vertical position equal to
the T, location. This boundary is then set to be equal to atmospheric

pressure and temp. 7.

Table 6.2: Summary of CFD model used to solve a single plate radial clutch with heat transfer
model.
The CFD model was set up in comparison to the analytical model that used model-two
to calculate the heat conduction in the shaft. The exact geometry of the experimental
device was used to produce an axisymmetric grid. Table 6.2 outlines which relevant
models were used and the boundary conditions that were applied to close the system of
equations. CFD involves the full set of Navier-Stokes and energy equations, thereby
avoiding the requirement for the semi-empirical heat transfer coefficient for convection
as used in theoretical analysis.

Convergence was verified by making sure that the residual history of each
equation was sufficiently low and that the net heat-flux though the appropriate parts was
the same. Grid sufficiency was met using a built in grid adaptation facility, which

increases the grid density in regions where the derivatives of temperature were high.
Results and Discussion: Experimental vs. CFD vs. Numerical

The essential results are shown in Table 6.3. Both experimental and CFD data verified
that the assumption of uniform radial temperature distribution in all metal and fluid
parts was valid. No variation above 0.1 °C on the lower plate was recorded in all
experiments. The CFD analysis clearly showed that although there is a radial
distribution in shear-rate, the high conductivity of the metal parts distributes the

temperature evenly.
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: experimental temperature I theortical input rotor predictions I /0, 7
gap width |  speed shaft bulk air § input rotor | difference from experimental i
H § model-two i CFD
T, To T, model-one i model-two i CFD
mm pm °C °C °C °C °C °C
500 249 254 28.1 0.3 21 1.8 39 3.1
24.5 24.8 28.3 -0.5 1.5 1.2 3.7 2.9
9 2.
0.5 750 25.8 25.9 31.8 0.2 31 2.4 2 2
25.8 26.0 317 0.0 3.2 2.5 29 22
1000 26.5 263 35.8 0.7 35 25 24 19
26.5 26.4 35.6 0.4 3.7 2.7 24 1.9
500 26.6 27.0 29.1 0.1 1.3 0.8 3.9 3.1
26.6 27.0 29.2 0.1 1.2 0.7 3.9 3.1
X 2.8 22
0.75 750 26.6 26.5 316 -0.5 2.0 1.0
26.4 264 314 -0.3 2.1 1.1 2.8 32
1000 24.5 24.2 323 0.0 35 1.7 24 1.9
24.5 24.5 317 0.8 4.1 2.3 2.4 19
274 27.6 29.0 0.5 1.5 0.9 3.7 3.0
500
25.6 25.8 27.3 0.6 1.6 Lo 3.7 3.0
1.00 750 254 254 30.1 0.4 16 03 28 22 .
27.1 27.2 31.0 0.2 2.1 0.8 2.9 2.3
254 253 320 0.3 3.0 1.0 24 1.9
1000
253 25.2 31.9 0.3 3.0 0.9 2.4 1.9

Table 6.3: Comparison between measured experimental temperatures and theoretical predictions.

Theoretical model-one is seen to give temperature results closer to the experimental
results than model-two. This is because it allows uncertainties to be absorbed by virtue
of the empirical coefficient for the shaft. This parameter is essentially chosen to make
the theoretical model fit experimental results and this is why the model both over- and
under-predicts the experimental results. Model-one is not particularly useful, as the
experimental results were needed before any predictions could be made. In my opinion,
model-one is not based upon sound methodology, and this is why model-two was
employed.

Theoretical model-two is very much less subjective and provides a much fairer
means for comparison with the CFD method. The model over predicts the experimental
temperature results (by 4.1 °C in one case). The CFD results are also over-predictions
but by far less of a margin. These higher reading are to be expected due the theoretical
and CFD models being ideally insulated (Fig. 6.2), whereas experimentally it was not.
So that a 1D heat flow assumption could be used for the theoretical analysis, most of the
apparatus was insulated. As a result, the area assumed ideally insulated is relatively
large in comparison to the thermally open surfaces. Although the conductivity of the
insulating materials is low, the large surface would give rise to some additional heat
loss. This would easily explain the 0.3-2.7 °C over-prediction of the CFD model.

It would appear that theoretical model-two does not sufficiently allow enough heat

to be dissipated. Apart from the convective part of the model, all aspects are quite
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similar to the CFD method, and thus it is likely to be this part of the model that is the

problem. The semi-empirical expression used to calculate a heat transfer coefficient (h)
is for a complete rotating disc, and does not take into account the shaft/wall geometry in
the experimental set up (Fig. 6.2). It was however hypothesized [63] that the expression
would remain true if the area for convection was based upon the disc area minus the
area of the shaft. It was deemed prudent to determine whether the semi-empirical
formulae eqn(6.14) was valid. In a CFD simulation, a hypothetical disc was set to rotate
in a large region of air, an amount of heat flux was set to leave the disc and enter the

atmosphere. The model is summarised in Table 6.4.

software Fluent5, finite volume, segregated solver

Physical Model Flow is laminar in both oil and air regions. Viscous heating terms
are included. Buoyancy terms in the air region are included

(g = 9.81ms™).
fluid properties air (p, p, K) properties are linearised and are a function of cell
temperature as indicated Table 6.1
boundary Rotating disc was set to the correct angular velocity. This air
conditions boundary condition is then set to be equal to atmospheric pressure

and temp. 7.

Table 6.4: Summary of CFD model used to solve heat transfer from a rotating disc.

Setting a far field temperature (7') closes the system of governing equations and allows
T, to be determined. As shown in Fig. 6.3 over a range of parameters, remarkably close
correlation between theory and CFD was found. A shaft and wall constraint as seen in
the experimental set-up was then introduced. Now as shown in Fig. 6.4, the
semi-empirical expression over predicts the surface temperature. This would explain
why the CFD results are closer to the experimental data than the comparable theoretical
model-two, and why CFD gives lower values of Q',,,aﬂ/Q', . In this case, it is important to
note the necessary inclusion of the driving shaft, which carries away a significant
proportion of the generated heat.

It can be noted from Table 6.3 that for a gap width of 0.5 mm the shaft
temperature increases with speed. The opposite effect is observed for 0.75 & 1.0 mm
gap widths. The reason for this is likely to be related to the ratio of power being
generated, to that being able to leave though the disc. An increase in £2 allows greater
heat convection from the disc that may not be sufficient to counter the increase in
viscous heat generation. Therefore, a small gap width in which the heat generation is
larger, the shaft may heat up as the speed is increased. In addition, the final shaft

temperature is dependent upon the outside air temperature (7.) that can differ between

- 200 -

6: Heat Transfer



Modelling Smart Fluid Devices Using CFD 6: Heat Transfer

experiments.

6.4 Heat Transfer from a Smart Fluid Concentric Clutch Surface

A second practical investigation involving the dissipation of heat from a concentric
clutch surface was carried out. The clutch maintains a steady speed and so the smart
fluid is shearing at a steady rate. The problem would further verify the usefulness of
CFD. The outer input rotor is driven at a constant speed (¢2), whilst the inner output
rotor is held stationary (Fig. 6.5).

Previous Work

Semi-empirical analytical work and some sparse experimental data on this specific
problem has already been done [68]. Initially the work by Smyth et.al. [68] was
reviewed in detail. The procedures are found to be similar to those encountered for the
radial clutch (section 6.3). In a state of thermal equilibrium, the analytical theory
equates the work rate (2N) to heat transferred through the outer casing by conduction
and then convection. This allows temperatures to be predicted in relation to the bulk air
temperature (7). The device and the analytical model are illustrated in Fig. 6.5.

In this work, it was correctly hypothesized that the model chosen to represent the
convection is all-important. The values of Re and Gr dictate the form of convection and
an appropriate model for Nt that in tum dictates the value of 2 (W/m’). To make the
calculation easier, the air properties were linearised (between 20°C and 100°C) and

found to accurately correspond with those used in Table 6.1".
6.4.1 Analytical Model of Convection from a Rotating Cylinder

The semi-empirical model corresponds with that in [68]. Here the clutch length (L)) is
taken to equal the outer surface length (Ls) (Fig. 6.5). For a mean radius (r») the

torque (N) results in a frictional heating and input power (2, ):

r, 2 'L,
P, = NQ=2xrL, -(y,-l'h—+ry)-[2 when 1,=0, P, = 2”;1' L u82. (6.16)

This heat is dissipated from the outer casing of diameter (D) into the surrounding air of
bulk temperature (T) by convection at a rate approximated by Newton’s law of

cooling:

! Properties in [68] are linearised in terms of °C, those in Table 6.1 are linearised in terms of Kelvin.
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6.4.2

P,=Q,=haDL(T,-T.). (6.17)

Using eqn(6.16), for a given speed, fluid properties, and clutch dimensions, the rate of

heat transfer from the clutch surface @, can be calculated. Once the heat transfer

coefTicient for convection is known eqn(6.17) can be used to calculate the rotor surface
temperature (T;). This is determined by calculating the mean Nusselt number ( N )

using the semi-empirical relations from [68]:

Nu =0.456 (Gr- Pr)*¥, free convection, Re <(Gr/Pr)®’ (6.18)

Nu =0.18[(0.5Re? +Gr)Pr]**"®, mixed convection, Re <5 x 10* (6.19)

The non-dimensional parameters are given as:

hD QD? 289D°AG
=22 Re:p_#—' Gr=’”’%——-, (6.20)

Nu

and the fluid air properties are given as in Table 6.1 using a mean air temperature (7,,):

T -T,
T =22 =
m 5 (6.21)
With care, it is a relatively simple mater to use a spreadsheet’ to solve for 7. Once 7, is
known the output plate temperature (T,) at 7, can be calculated from the following

conduction equation:

. 2k L.
P = = =L \T.-T,).
e = Ot vt e /r.,)( .—T,) (6.22)

Subsequently the input plate temperature can also be calculated:

P =0 2wk L,

= ,r')(Ti—n)- (6.23)

It can be noted that when eqn(6.17) is equated with any of the above heat flow
equations the lengths L; are cancelled out. Hence, the clutch length has no effect on the

distribution of temperature.
CFD Model of Convection from a Rotating Cylinder

The following table summaries the CFD model used.

! Microsoft Excel was used.
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software FluentS, finite volume, segregated solver

basic assumptions | Viscous heating terms are included. Buoyancy terms in the air
region are included (g = 9.81ms™).

turbulence model | RNG k-£ model with the two layer zonal near wall model.

fluid properties air (p, u, k) ideal gas: properties function of cell temp.
as indicated Table 6.1
discretisation of | interpolation 1* Order
flow equations scheme
solver FVM pressure-velocity SIMPLE
grid: smart fluid 20 cells within gap (hexagonal)
grid: air tri, fine at the wall to model boundary layer
boundary See Fig. 6.6.
conditions

Table 6.5: CFD Summary: Concentric clutch model.

There was no problem with the conduction part of the model. However, it was quickly
discovered the convection part of the model would be much more difficult to get right.
This is because of the effect of buoyancy in the air region. Consequently, the problem is
3D. However, since the clutch length has no effect on the solution the clutch can be
considered infinitely long, allowing the problem to be set-up using 2D coordinates as
shown in Fig. 6.6.

After investigating several different set-ups the best way to model the all
important air region was to put the clutch in a box surrounded by air (Fig. 6.6). In all,
there are four material regions: the outer fluid air region, the solid outer shaft region, the
inner smart fluid region with gap-width (%) and the solid inner shaft region. Each region
had to be correctly specified in the CFD model. The outer rotor is set to rotate at angular
speed (£2). The difficultly now lies in modelling the air region, it was important to take
great care in correctly setting all aspects affecting the buoyancy driven flow. This
involved following recommendations from the Fluent5 manual [69] for this particular
type of flow.

The energy model is turned on and a gravitational body force is set to act in the
downward y-direction. An operational density (p,) had to be specified for it used to

specify pressure boundary conditions. In the CFD model:
P,= P8+ p; (6.24)

The static pressure set at a boundary is p s and so it is important to know the value of p,.

This was chosen to correspond to the mean value in the analytical model. In order to
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correctly set the pressure on the side boundaries the pressure had to be set as a function
of y. However, the precise value of p, didn’t significantly affect the solution provided it
was relatively representative (Fig. 6.7).

As recommended in the Fluent5 manual [69], the more accurate body force
weighted discretisation scheme for pressure was used. In addition, the discretisation
schemes for momentum and energy were increased to second order. The shape and size
of the grid was a very important consideration. A combined trilateral (3-sides) and
quadreic (4-sides) grid was used (example shown in Fig. 6.8 and Fig. 6.9). This allowed
that main area of influence to be economically filled while allowing the remaining air
region to be economically filled. This grid would allow the majority of the flow to be
well modelled.

A very significant part of the model includes turbulence. The flow is a
combination of mixed and forced convection (Re>10%), and so it is important to
consider turbulence. There are several available turbulence models available for use.
The flow here is not particular complex and so the obvious choice was the popular tried
and tested k-& model. This model is generally accepted to be robust, economical and
accurate for a wide range of flows. The RNG k-¢ variation was used because is well
suited for modelling swirling flows.

A significant part of the model included a turbulent wall function. Having chosen
the RNG k-¢ model, the standard wall function model would be the obvious choice, as it
requires only a minimal number of cells near the clutch wall surface. For this model the
turbulence wall parameterl (") must be > 30~60 for a near wall region log-law to be
valid. However, it proved impractical to get a practical value of y* without making the
mesh ludicrously coarse. A course grid at the wall meant it was difficult to adequately
resolve temperature gradients. The Two Layer Zonal near wall model was therefore
used. This model requires at least 10 cells to be within the viscosity-affected near wall
region (Re, < 200) and most ideally for y" = 1.0. This was achievable by increasing the
grid density in the near wall region, though a combination of adapting cells which had
high temperature gradients, and near wall cells with y* values greater than 1.0. Fig. 6.11
illustrates a check that there are at least 10 cells in the Re, < 200 region.

6.4.3 Results and Discussion

The main parameters were chosen to correspond with those used by Smyth et.al. [68].

'y*: dimensionless parameter representing the distance from the wall to the first adjacent cell, is only a

parameter in the fist cell next to wall.
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6.5

These parameters with overall results are shown in Table 6.6. The Reynolds number is
well above the value {(Gr/Pr)*’} required to enter the mixed' convection regime.

Furthermore, Re remains below the value (5x10°) required for eqn(6.19) to remain

valid.
fluid gap width mm 0.5 0.5 0.5 0.5 0.5 0.5
mean fluid radius mm 30.25 30.25 30.25 30.25 30.25 30.25
E rotor diameter mm 80 80 80 80 80 80
§ input rotor speed pm 500 750 1000 500 750 1000
g fluid yield stress kPa 0 0 0 500 500 500
plastic viscosity mPa.s 50 50 50 50 50 50
mean air temp. °C 20.0 20.0 20.0 20.0 20.0 20.0
Re 21656 | 31995 | 41931 | 20303 | 29672 | 38538
theory ﬁ'::n‘fei‘:i’g:d mixed | mixed | mixed | mixed | mixed | mixed
theory 48 107 191 198 333 492
frictional watts
heating CFD 47.6 106.9 190.3 197.3 331.8 490.2
difference | % -0.1 -0.4 -0.4 -0.9 -1.2 -1.5
main theory 28.3 34.5 41.6 54.7 65.3 76.0
surface CFD °C 26.45 34.85 46.85 | 47.85 65.85 91.85
temp. : difference -1.9 0.3 5.3 -6.8 0.5 15.8

Table 6.6: Comparison of results between CFD and theoretical predictions for heat transfer in a
concentric clutch.

For low values of viscous heating, there is good agreement between the
semi-empirical model and the CFD result. Such agreement can be seen in Fig. 6.12 for
un-excited fluid (4 =50 mPa.s & 7,=0kPa) over a range of 500-1000 rpm. The
semi-empirical theoretical results correspond well with those in Smyth et.al. [68]. Thus,
it is likely that the theoretical semi-empirical model has been correctly implemented.

Under excitation, for a yield-stress of 500 Pa, frictional heating is greatly
increased. The CFD model predicts the same amount of heating as the theoretical model
(Table 6.6). However, the difference in the theoretical temperatures is more severe
Fig. 6.12. Nevertheless, the coloration is still within a suitable range considering the
simplicity of the semi-empirical model. Fig. 6.13 shows a typical example of the

temperature distribution

Comparison of Clutch Designs

In this section, concentric and radial clutch designs are compared. Only the steady state
situation is considered in which significant viscous heating occurs due to a constant

rotor speed difference (£2). In order to produce a competitive commercial device it is

! combined free and forced convection
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important to consider acceleration (a@= N,/1,) and control ratio (N,/N,) in addition to
the overall magnitude of N,,. Here N,, is the overall torque, N, is the no-field torque,
and N, is the torque from the smart fluid effect (= N,, - N,). The angular acceleration
(@) is only the value at the instant when the output rotor is released. However, as found
in section 5.4, the shear stress and thus a will remain approximately constant for a
practical device. To maximise this acceleration, the output rotor would be made from
lightweight material, whereas the input rotor would consist of a heavier, high

conducting material to maximize heat dissipation and help reduce regulation.
6.5.1 Torque and Acceleration Comparison

By assuming a uniform casing and rotor thickness (z), it is possible to derive
approximate equations for torque and inertia based upon the number of internal rotor
channels (). Here the input and output shafts are not considered, as they will affect the

results equally in each clutch design.
Multi Channel Concentric Clutch

With reference to Fig. 6.14, the following applies to a multi-channel concentric clutch
with each rotor of mean radius (), electrode length (L.), outer casing length and radius

(L. and R, respectively), and number of internal rotors (n):

2 ur,Q
N, = 2”:2{270;,, L,(‘r'v +T)} , (6.25)
I, =Y 2mpzr,’L, (6.26)
when n=1 Ne 2|5 K9] (6.27)
I, pz\r, h
R, =(ry)ua +(h+152), L =L +2(z+h) (outer casing dimensions) (6.28)

Multi Channel Radial Clutch.

With reference to Fig. 6.15 the equivalent equations for a radial clutch with outer casing

length and radius (L, and R, respectively), and number of inner rotors (n) are:
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N, =2n{2m | o B2 L (6.29)
3 4h
I = 1 pnrer,” (6.30)
2
N _2(47, #9) (6.31)
I, mE\3r, h
R =r,+(h+z), L= 2n(z+h)+z (outer casing dimensions). (6.32)

Some important conclusions can now be drawn. The radial clutch torque is dependent
upon r, . For the concentric clutch, the torque is dependent upon r,, but L, also plays a
role. For a single rotor, dual channel clutch (n = 1), N,<< N,, then for the same torque

{eqn(6.25) = eqn(6.29)} and mean radius, the lengths L., L, and L. can be determined:

L ,=%r, giving L =3z+2h & L =3r,+2z+2h here (zmh)<<r,. (6.33)

Here the concentric design length (L.) is therefore much larger than the radial design
length (L,). Also, for the same torque {eqn(6.25) = eqn(6.29)}, when N,<< N, , and with

L, = rp then:

r . =0.69r,,

m |concenm Iradial ’

Here the concentric device is 69 % smaller in the radial direction but is significantly
larger in the axial direction. The concentric design may therefore be more suited to
radial confined geometry but will always be much longer than the radial clutch design
for the same torque output. In addition, the ratio of N,/N, in the radial design is 25 %
greater than in in the concentric design. It can be noted that for both devices a smaller
radius gives greater acceleration. On an acceleration basis, for a single dual channel
(n=1) and when N, is small, the radial clutch is more favourable by 33 %.

For a single dual channel (n=1), on a size-by-size basis, the radial clutch seems to
be much better. For the radial design, adding more channels makes no difference to the
acceleration. However, adding more channels to the concentric design will slightly

improve the acceleration as @ {eqn(6.26)} improves as the radius decreases.
6.5.2 Heat Transfer Comparison (Single Rotor Clutch)

Single rotor (n=1) dual channel, horizontal axis, radial (Fig.6.14) and concentric

(Fig. 6.15) clutch designs are now compared on a heat transfer basis.
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Semi-Empirical Analytical Model
For a mean radius (), casing dimension (z) and gap size (h), the overall case geometry
(R, & L,) for the radial clutch is known {eqn(6.32)}. For the concentric design, L, is
also required. Due to the high thermal conductivity of the outer casing, the surface
temperature (7;) is likely to be approximately uniform. Thus, T is assumed to be
uniform at all points on the clutch surface. Shafts will have similar effects in each
design and are therefore not included. For a given speed, eqns (6.25) & (6.29) are used
to determine N,,. Using Newton’s law of cooling, 7; can be calculated for a given bulk

air temperature (7):
P,=N_Q=(T.-T.XA % +4,%). (6.35)

Here Ah and A h, are the average rates of heat dissipation by convection in radial and

axial directions respectively. These coefficients are dependent on the condition of the
surrounding air flow, and are calculated using a mean Nusselt number ( Nu ) determined

from the following semi-empirical formulas [67]:

(NZ), = 0.4(Re* + Grf™, Gr=p*BgR*r"*AO/u*, (vertical disc). (6.36)

(Nw), = 0.18[(0.5Re2 + Gr)Pr]o'315 , Gr=p*BgD*AB/u*, (horizontal shaft).  (6.37)

The electrode length (L.) required for the concentric clutch model was chosen to
make 7 equal in both clutch models. In summary, 7, z, A, £2 7,, 1 and T, are chosen.
This allows T to be calculated for the radial clutch. For the same parameters, L. is then
calculated to obtain the same T; for the concentric clutch model. The calculation was
done in a spreadsheet with the air fluid properties being dependent on the mean

temperature (7 + T.,)/2.
CFD Model

In sections 6.3 and 6.4, CFD was used to model convective heat from the clutch surface.
Here the convection problem investigated was two-dimensional. In this section, the aim
was to analyse a three-dimensional convection problem. However, after initial attempts,
it was deemed uneconomical to model this three-dimensional problem. This was partly
due to the huge number of cells and thus computational time required, and inexperience
in setting up a complex, buoyancy driven convective air problem. Given enough time
and computational resources, solution to this problem is obviously achievable, but is not
in the remits of this study. The objective here is to study the application of CFD to

smart fluids, rather than model complex convective air problems.
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In the previous sections, semi-empirical formulae from [67] have already been
verified by CFD to be applicable. Even if the semi-empirical formulae are not entirely
accurate, they are still appropriate for making an impartial comparison of the two clutch
designs.

However, the CFD procedure is still useful for checking the approximations for
torque and viscous heating found using eqn(6.25) and eqn(6.29). In addition, most
significantly, the main assumption of a uniform surface temperature can be checked for
validity.

When setting up the CFD model four regions had to be specified. The two fluid
regions were the smart fluid and surrounding air, and two solid material regions
included the inner output rotor and outer casing. The outer casing was surrounded with
a 10 mm thickness of air which itself was closed off using a pressure boundary
condition with temperature T;. The inner rotor was set to rotate with speed (2. All

solution parameters were left at default values.
Results

For the parameters, r,=30mm, A=0.5mm, z=1.0 mm and 7.~ 25 °C, the surface
temperature (7) for radial clutch design can be calculated. The electrode length (L.) can
then be determined in order to achieve the same T in both clutch designs. This allows
torque and acceleration for both designs to be compared. The results shown in
Table 6.7, Fig. 6.16 and Fig. 6.17 indicate that for the same T, the radial clutch offers
more acceleration. Also for the same Ty, the overall size and consequent surface area of
the concentric design is larger than the radial one. This allows it to convent more heat,
and thus can generate slightly more torque for the same surface temperature. However
the acceleration from the radial device is still greater and the over size is smaller than

the concentric design.
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yield-stress r, kPa 5 5 10 10

plastic-viscosity | u, mPa.s 50 100 50 100
speed 2 pm 250 ¢ 500 : 750 { 1000 250 : 500 i 750 : 1000{ 250 ; 500 i 750 {1000 250 : S00 ; 750 { 1000
analytical Nm 0.572{0.579i0.585{ 0.592| 0.579: 0.592{ 0.605: 0.619{1.138 1.144{ 1.151: 1.158) 1.144 1.158 1.171{1.184
totattorque iN, i CFD 0.581{0.589;0.596:0.6040.588;0.603:0.617:0.632{1.154{ 1.163{ 1.171{ 1.179| 1162} 1.1771 1.192}{ 1.207
differencei % | 15§ 1.7¢ 1.8% 19| 16: 18§ 19§21 |14 1617 18] 15i16i18i 19
5 analytical Watts 150303460620 152 31.0i 476 648|298 599 90.4i121.2] 30.0: 60.6; 92.0i124.0
. viscous heatingi P, | CFD 15.2: 307467 63.1 | 154 3151484 659 30.1} 60.8: 92.0{122.9{ 30.4: 61.7} 93.7 {126.7
% difference; % | 1.5 i 13§ 1.5: 17116 163 1.8 % t7 | 11 i 15% 17i14]15%18: 1921
casing length | L, mm 40 140 : 40 40 { 40 40 i 40 i 40| 40 ; 40 i 40 i 40| 40 | 40 i 40 i 40
casing radius | R, mm 31583153151 31.5031.5{31.5{31.5;31.5]31.5;31.5§31.5]31.5]31.5:31.5;315i315
accelenation | a x10° rad/s’ 165 i 167 { 169 § 171 | 167 | 171 { 175 179 | 329 | 331 i 333 i 335 | 331 { 335 { 338 | 342
analytical Nem 0.636:0.647:0.657:0.666)|0.643:0.661: 0.678 0.694] 1.264: 1.277}1.289{1.299| 1.271: 1.29211.310{ 1.328
totaltorque iN,{ CFD 0.650;0.663:0.675;0.685]0.658:0.678: 0.697;0.715] 1.28211.302{ 1.314}1.325]| 1.290{ 1.3181.338}1.357
& difference % | 22§24 (27 :28 123125127129 14:19}{19i{20]|15%i20i21;]22
$ analytical Watts 166§ 3395 516;69.7]168; 346} 53.3i 727]33.1{ 66.9101.2{136.0| 333 67.6 102.9;139.0
£ iviscous heating} P ., CFD 169:344:526: 71.5117.1{ 352 54.4: 746 33.5! 67.9102.9: 1385} 33.7 i 68.7 {105.1:142.]
g difference! % | 15§ 1.5 20251 16: 16 i 21 {25] 12 15: 16 1.8 | 13§ 1.6 2.1 22
casing length i L, mm 14.07:14.09:14.091 14,071 14.03: 14.00: 13.96{ 13.91] 14.09i 14.12{ 14.13} 14.13] 14.07{ 14.07:14.06} 14.04
casing radius | R mm 320 320:320: 320320 32.0{ 32.0§ 320 32.0: 32.0} 320} 32.0] 32.0 32.0§ 320 320
acceleration | a x10° rad/s’ 125 126§ 128 § 130 | 126 i 130 i 134 | 138 | 247 ; 249 i 251 i 253 | 249 i 253 i 257 | 261
surface temperature ;| 7T, °C 340.6:358.8:373.2:385.7(341.1:360.21375.7]389.6[ 381.9:417.9{446.0:470.3| 382.4:419.3:448.6:474.3

Table 6.7: Comparison between measured experimental temperatures and theoretical predictions.

The relative performances between the clutch designs can be expressed as a ratio
between the radial and concentric design results. For a variety of fluid properties and
speeds, this ratio does not change by more than a few percent (see Fig. 6.17). Fig. 6.17
clearly shows that for the same mean radius and surface temperature, the radial clutch
gives approximately 10% less torque but 30% more acceleration than the concentric
clutch. In addition the radial clutch length is more than half that of the concentric
clutch. Fig. 6.18 shows how T increases with speed. The plastic-viscosity is found to
play a noticeable but relatively insignificant role, due to it having a minimal effect on
Neo.

The CFD results for torque and generated heat agree to within 1-3 % of the
analytical approximations (Table 6.7). The CFD values are slightly different due to
rotor end effects, which are not accounted for in the semi-empirical solution. In the
CFD model, the actual surface temperatures are found to be much higher than
semi-empirical solution; this is because the CFD convective model is two-dimensional,
when it should really be there-dimensional. However, since the smart fluid properties
are not set to be temperature dependent the conductive model inside the clutch is still
quite valid and allows the distribution and differences in temperature to be analysed. In
both designs, only a very small variation in temperature occurs within the clutch itself
and thus the uniform surface assumption is quite valid (Fig. 6.19). In which case, the
constant surface temperature assumption appears to be valid. The high thermal
conductively of the outer casing evens the out surface temperature. In the radial design,
the temperature is seen to be greater at a higher radius due to increased shearing.
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6.5.3 Heat Transfer Comparison (Muiti-Plate Clutch)

The single rotor study shows that the radial clutch type is a more favourable design —
for a smaller size the radial device gives a similar torque output but more acceleration
than the concentric design. It can be noted that for the radial design, increasing the
casing length has no direct effect on @ {eqn(6.31)}. However, this is not true for the
concentric design in which the unused space below the first outer rotor can be utilised
with more blades. A multi-plate clutch device was therefore studied next.

Practical sizes of casing were chosen (L & R). This dictated the number (n) of
double channel segments that can be accommodated in both design configurations.
Using a similar method as to that described in section 6.5.2, for a particular speed and
fluid properties, the amount of torque, viscous heating and surface temperature could be
calculated for both devices. In practice, the smart fluid properties will be a function of
temperature. Since the shear rates are relatively low, the plastic-viscosity plays no
significant role, in which case it is only the assumption that the yield-stress is the same
for all temperatures that is in question. However, as can be seen in Fig. 3.31 a smart
fluid is often designed to have a yield-stress that remains quite constant over a range of
temperature, thus making this assumption a valid one.

Again, CFD models were used to check the validity of the constant surface
temperature assumption and the accuracy of the magnitudes of torque and viscous

heating.
Summary of Model

The input parameters are as followings, 2=0.5mm, z=10mm, 7,=1.0kPa,
He =50 mPa.s, £2=250 rpm and To=25 °C. Several practical configurations of outer
casing geometry were investigated (R & L). The input speed and yield-stress have only
a proportional effect on the magnitude of viscous heating. It was discovered that even
for relatively low values, significant viscous heating occurs, to the extent that the
temperature rises way above the range in which the air properties were linearised. To
reduce viscous heating, an additional criterion had to be set. This was that the clutch
would be in shear for only 10 % of the time. This would be a more practical realistic

state of operation:

running in shear 100 % of the time  unrealistic mode of operation F, =N, Q,

running in shear 10 % of the time  realistic mode of operation >, =0.1N, Q.

The clutches are still being modelled as an unsteady problem, but with only 10 % of the
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heating that would occur in an excited clutch in permanent shear. This is perfectly fine
for the clutch comparison objective in hand, however if results that are more detailed
were required an unsteady problem would result that could only realistically be solved
using a CFD model.

Although the geometry is more complex, in essence the CFD model is no more
complicated. In order to reduce the torque and thus viscous heating to correspond with

the analytical model g, = 0.1, was set.
Resuits

Table 6.8 and Fig. 6.20 show the main results. Looking at the ratios of relative
performance (Fig. 6.20) there is now virtually no difference between the two designs.

For the same casing dimensions, torque, acceleration and surface temperatures are very

similar.

yield-stress 7, Pa 1000 1000 1000 1000
plastic-viscosity M. mPa.s 50 50 50 50
speed 0 pm 250 250 250 250

casing length L mm 30 60 60 30
casing radius R mm 30 60 30 60
analytical | o | 0.102 18.70 2.048 9.35

total torque N,i CFD 0.101 18.32 1.980 9.12

g) difference | % -14 2.1 -3.4 2.5
£ analytical |, | 2.68 49.0 5.36 24.5
21 viscousheating {P,i CFD 2.64 48.2 5.29 23.8
E: difference | % | -1.5 16 13 58
acceleration a rad/s’ 3634 18691 36338 18691

surface temperature { 7, | analytical i °C 32.0 55.5 36.6 423
analytical | | 1.021 18.71 2.155 8.86

& total torque N CFD 1.000 17.83 2.054 8.48
g difference | % -2.1 4.9 -4.9 -4.5
S analytical ;| 267 49.0 5.64 232
51 viscousheating |P,!| CFD 2.61 48.1 5.52 226
P difference | % | -2.4 18 22 27
3 acceleration a rad/s’ 35245 18419 35245 18419
surface temperature | T, | analytical | °C 31.9 55.5 37.2 41.4

Table 6.8: Comparison between measured experimental temperatures and theoretical predictions.

Table 6.8 illustrates how acceleration is greatly enhanced by reducing the outer radius
of the clutch and that increasing the length of the clutch has no effect on acceleration.
The CFD results for torque and viscous heating are seen to agree well with theory. Any
difference is due the CFD model being more realistic with field distribution not being
uniform at the rotor ends.

It appears that for a multi-plate clutch, both radial and concentric designs fare

equally well. The CFD results do however illustrate one other major consideration,
-212-



Modelling Smart Fluid Devices Using CFD 6: Heat Transfer

namely how well heat generated in the annular gaps can be conducted into the outer
casing. To maximise acceleration the output rotor is likely must be constructed of a
lightweight material that is expected to have a low thermal conductivity. This hinders
heat transfer from the outer casing. The thermal conductivity of the inner rotor was set
to equal that of nylon. Typical temperature distribution within the radial and concentric
clutch designs are shown respectively in Fig. 6.21 and Fig. 6.24. The result of the nylon
output rotor is to hinder heat transfer and thus contribute to areas of increased
temperature. This is more of a problem for the concentric clutch, but by only a few
degrees. For example, with dimensions (R = 60mm, L = 60 mm), the difference between
maximum and minimum temperatures within the clutch is 2.3 °C for concentric design
(Fig. 6.22) and 1.5 °C in the radial design (Fig. 6.24).

6.5.4 Conclusion

The above study suggests that both radial and concentric clutch designs perform
approximately equally. However, in the case that inner rotor is made of a low
conducting material, it will be difficult to dissipate heat from the inner channel. As a
result, the multi-plate radial clutch seems to be slightly better. Furthermore, a radial
design does not exhibit plug behaviour over its full range of operation thus generally

leading to lower viscous heating.

6.6 Summary: Heat Transfer

As is evident from comparisons of the experimental and theoretical data for a viscous
clutch device set-up, the correct magnitudes of heat transfer can be effectively
predicted. For a more complex set-up, such as a muiti-plate clutch in an unsteady
operation, CFD promises to be a simple and important tool for heat transfer evaluation.
In the experimental studies, the viscous medium was Newtonian Shell oil. Heat
transfer in non-Newtonian fluids is a complex subject. However, it is proposed that
modelling heat transfer in smart fluids need not be that complicated due to the following
reasons: All smart fluid devices operate within a very narrow channel, for which the
distribution of temperature across the gap width is likely to be nominal as indicated in
this study. Using CFD, the most important variable (yield-stress) can be easily entered
as a function of temperature, excitation and shear rate. Furthermore, correctly
determined non-Newtonian velocity profiles will give the rate of heat generation on a

cell-by-cell basis.
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[
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Fig. 6.1: CFD single channel radial clutch model (R = 30 mm, 4 = 0.5 mm) to determine viscous and
electrical conduction source terms. j =30 pA/cm’,

® = thermocouple position >/

Insulation

Fig. 6.2: Schematic of radial clutch experimental set-up.
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Fig. 6.4: Test of semi-empirical formulae: Rotating disc in air (shaft and wall constraint included).
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Fig. 6.5: 2D concentric clutch with heat transfer. Schematic of clutch device (left) and analytical model
(right).
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Fig. 6.6: 2D concentric clutch with heat transfer. Schematic of CFD model.
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6: Figures
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Fig. 6.7: 2D concentric clutch with heat transfer. Plot of surface temperature per iteration. The exact

value of operating density does not significantly affect the solution.
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Fig. 6.9: 2D concentric clutch with heat transfer. Close up example of CFD grid before grid adaptation.
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Fig. 6.10: 2D concentric clutch with heat transfer. Two close ups of CFD grid after some grid
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Fig. 6.11: 2D concentric clutch with heat transfer. At least 10 cells must be within viscosity-affected
near wall region (Re, < 200) for the Two-Layer Zonal near wall turbulence model to be valid.
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Fig. 6.12: 2D concentric clutch heat transfer model. CFD vs. semi-empirical model.

-219 -



Modelling Smart Fluid Devices Using CFD

2.98e+02

2.97e+02

2 040402

2930402

Fig. 6.13: 2D concentric clutch heat transfer model. Temperature distribution at a speed of 500 rpm.
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Fig. 6.14: Radial clutch geometry for a multi channel device.
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Fig. 6.17: Single rotor dual channel concentric and radial clutch design comparison. Ratio of torque,
acceleration, and clutch length for the same clutch surface temperature.
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6: Figures

Fig. 6.19: Single dual channel concentric and radial clutch comparison. Temperature distribution on
clutch surface is uniform.
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Fig. 6.20: Multi channel concentric and radial clutch design comparison. Ratio of torque, acceleration,
and clutch length for the same clutch yield-stress value.
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Fig. 6.21: CFD multi channel smart fluid concentric clutch. Distribution of temperature at 500 rpm.
Range 300-311.298 °C. (R = 60mm, L = 60 mm)

Fig. 6.22: CFD multi channel smart fluid concentric clutch. Distribution of temperature at 500 rpm.
Range 309-311.298 °C (AT = 2.3°C). (R = 60mm, L = 60 mm)
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Fig. 6.23: CFD multi channel smart fluid concentric clutch. Distribution of tem
60mm, L

Range 300-311.491 °C. (R =

perature at 500 rpm.

60mm, L = 60 mm)

Fig. 6.24: CFD multi channel smart fluid concentric clutch. Distribution of tem
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CHAPTER 7 :
CONCLUSION AND FURTHER WORK

7.1 Main Conclusions

The potential for creating new and exciting applications is enormous now that smart
fluids are finally being introduced into the market place. However, the non-Newtonian
nature of the fluids introduces inherent difficulty when attempting to predict
pre-prototype performance. The main objective of this work has been to identify a
technique for alleviating this problem via CFD. This involves using a standardised
approach for characterising smart fluid behaviour that can then be used with CFD to
predict pre-prototype device performance.

For a long time, the Bingham plastic model has commonly been used to describe a
smart fluid. Proper utilisation of the constitutive model requires a full consideration of
the governing equations, which can subsequently be solved by analytical or CFD
techniques. A common interpolation of this model is to consider that the excitation
generates a yield-stress, above which the zero volts viscosity provides Newtonian flow.
In this author’s opinion, the rheologist’s method of translating the non-Newtonian flow
model into an effective viscosity {u.»=f(y)} is a more valuable interpretation. Such a

method is the basis for any continuum-based CFD technique. For low shear-rates, y,, is

very large and for high shear-rates, u,, is small. This approach can be useful in
intuitively determining basic behaviour. For example, a large value of 7, causes a more
viscous fluid medium to be produced, and so should reduce two clutch plates to equal
speed in a much faster time than if a lower value of 7, is used. This was found to be
precisely in line with a full CFD and experimental study (section 5.4), but contradicts an
earlier complex analytical solution of the same problem [38].

It can be concluded that the CFD method is not inherently superior to an
analytical approach - both methods are, after all, solving the same basic governing flow
equations. However, the CFD method is found to be more versatile, being able to solve
the governing equations without making a large number of assumptions. When the flow
assumptions are valid, both the continuum approaches agree. This is despite the fact that
the CFD method used an effective viscosity approach to model the Bingham plastic
equation, an approach which some people express reservations about.

One drawback of a direct analytical solution is the necessity of considering where

the plug regions may occur and including them in the model. In CFD it is not necessary
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to significantly consider plug formation; plug regions form and possess the appropriate
values of momentum as determined by the fluid’s density and velocity.

Exploitation of the continuum approach is very limited via direct analytical
solutions. Even for the simplest flows, the formulations soon become too complex. The
only sensible way forward is to use a CFD approach. However, both methods require
the fluid to be a continuum, and furthermore to have been characterised.

A specific constant stress rheometer used in section 3.6 to characterise an ER fluid
was found to indicate consistent continuum properties. However, it also suggested that
the plastic-viscosity could be negative. This is believed to be impossible, but the truth
remains to be established. These results were deemed not to be very accurate. This
rheometer offers only simple steady state characterisation with no values of G’
Provided a smart fluid can be characterised in terms of continuum properties, a CFD
approach promises to be a vitally important pre-prototyping tool and should improve the

commercial utilisation of smart fluid technology.

7.1.1  Original Contributions and Significant Discoveries

Unsteady Flow

If the CFD method is to have significant practical purpose it must be able to model

smart fluids in unsteady flow.

e A significant argument in support of the usefulness of smart fluids is their speed of
response. The dynamic speed of response of a smart fluid annular valve and a
Rayleigh step bearing was therefore investigated and found to be very fast.

e By assuming an instantaneous change in yield-stress some firm conclusions can be
drawn, but problems associated with an unrealistic change in shear stress were
encountered. This led to an investigation of a viscoelastic version of the Bingham
plastic model that allows a much smoother change in shear stress. This model was
found to give much more realistic results.

e The Rayleigh step bearing response was found to be fast and in range with
experimental data obtained on new experimental rig. However, detailed fluid
properties were not fully available for a more intricate analysis - the viscoelastic
model requires a shear modulus parameter G

e It is not surprising that the CFD study showed that the density, and thus mass and
inertia of unconstrained machine parts affected the fluid dynamic response. This is
in disagreement with an analytical solution of the same problem. In the analytical

solution it was difficult to properly account for the effect of the rotor. A smart fluid
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typically operates as the medium between two machine parts, the dynamics of which
affect the boundary conditions and vice versa.

e For a CFD clutch run-up problem to be useful, the model had to be aware of the
mass of influencing parts (output rotor). Results are found to be clearly in line with
experimental results for both Newtonian oil and ER fluid mediums.

Heat Transfer

To model viscous heating, heat flow and thus temperature distributions, it is almost as

simple as introducing the energy equation.

e For a smart fluid device, comparisons of CFD data to results obtained by
experimental and semi-empirical analysis analytical data show that CFD can
correctly predict magnitudes of heat transfer.

e The only real difficulty encountered was in correctly modelling the convection from
the device into the surrounding air. This has nothing to do with the smart fluid
nature of the model.

e For a more complex set-up such as a multi-plated clutch, CFD promises to be a
simple and important tool. Here CFD can handle the complex geometry, evaluate
viscous heating, heat transfer across the plates and dissipation of heat from the
clutch into the atmosphere.

e Heat transfer in non-Newtonian fluids is a complex subject. However, it is proposed
that modelling heat transfer in a smart fluid using CFD need not be that
complicated. In general, temperature distribution across a small gap-width is likely
to be nominal as indicated in this study; the yield-stress is the most important
variable contributing to heating and can be easily entered as a function of
temperature; furthermore, non-Newtonian velocity profiles will give accurate rate of

heat generation on cell-by-cell basis.
CFD Solution Technique in General
e With the use of user-defined sub-routines, the commercial CFD code (Fluent5 from
Fluent.Inc) was found to be highly suitable for modelling a smart fluid.
e For a smart fluid the viscosity usually varies on a cell by cell basis, consequently
computing is found to be significantly slower than that expected if the fluid is

Newtonian. However, the continual increase in computational power will alleviate

this problem.
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e An adequately converged smart fluid solution always required the residual histories'
to be reduced for more than usual. Convergence was best judged through monitoring
overall variables.

e In general, the Fluent platform was quite stable. However, it often proved wise to
compute a viscous Newtonian flow before the smart fluid model was activated.

e Minor problems encountered with the CFD package included, for example; incorrect
calculation of the resultant shear rate when axisymmetric geometry was used. Once
identified, such problems were relatively easy to fix. The Fluent CFD package is
vastly powerful and versatile. The problems encountered will have been minuscule
to those that would have been encountered if a new CFD code specific for

modelling smart fluids had been built from scratch.
Other Advantages of the CFD Approach

It is sufficient to say that given enough computational power it should be straight

forward to model a whole host of complex smart fluid machines and devices. This will

allow promising designs and ideas to be rapidly identified, while those with less
potential can be sidelined, thus allowing limited research resources to be directed more
appropriately. The work in this thesis indicates that:

o Complex geometry by virtue of highly developed meshing software can be
generated without difficulty.

e In using an already commercially available CFD code, the vast majority of the
required programming has already been done. Adapting the CFD code specifically
for the smart fluids is possible using suitable subroutines.

o Future rheometer studies may produce constitutive models that are more accurate.
Within the CFD method, it will be relatively simple to utilise a more complex
constitutive equation. Here 1, could be a function of time, temperature, excitation,
yield-stress or elasticity constants and so forth.

e For an ER fluid, the field distribution can be readily determined by simply stating
which boundaries are live, earthed and insulated. For a MR fluid, if the form of field
distribution is known it will be a relatively simple matter to incorporate it in the
overall model.

e Another potentially useful feature of later versions of commercial CFD packages

includes the ability for the geometry to change. This would be a useful feature for

' the imbalance between a cell variable and its neighbouring values summed over the whole

computational mesh
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modelling, for example, a smart fluid damper.

7.2 Further Work

7.21 More Collaboration with Rheologists

For an experienced operator, the CFD method can readily be used to model a whole
host of smart fluid devices. However, the significance of the results is limited by the
adequacy and accuracy of the constitutive model and the data upon which it is based.
The extent to which a continuum model is valid needs to be established. There is little
point using a complex CFD model to account for minor field changes across a
gap-width if the continuum assumption is not entirely satisfactory.

Building a specialised smart fluid rheometer can be very expensive
(£100-500,000). A radial design of rheometer is likely to be more appropriate. During
this study a detailed proposal to design and build an ER/MR rheometer in collaboration
with Ravenfield Designs Limited (Makers of Viscometers and Scientific Instruments)
was turned down by the EPSRC. However, re-written in light of the results of this
thesis, the proposal would have much more potential.

In some respects, the necessity of attempting to achieve such accuracy still needs
to be determined. For example, gap widths are generally very small, and so fluid
temperature differences across them may be small and thus insignificant in the overall
scheme of the engineering problem. In addition, one must remember that there is likely
to be a limit as to how representative a homogenous continuum can ultimately be.
Nevertheless, the CFD promises to be a formidable tool. Detailed rheological studies
may highlight deviations from continuum behaviour in some areas, for example, at low
shear rates or near wall regions. In the CFD method, it may be possible to introduce
corrective functions to account for such behaviour. This would be similar to the way in

which turbulence is modelled.
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APPENDIX A : CFD SUB-ROUTINES

The following tables show examples of Fluent5 subroutines. These functions must be
complied into the main before they are available for selection. See FluentS manuals for

details.

#include "udf.h"
#define MU 0.1
#define MUHI 1000
#define V 1000

#define DEDX (C_UDSI_G(c,,0){0])
#define DEDY (C_UDSI_G(c,t,0)[1])

#define DUDX C_DUDX(c,¢)

#define DVDY C_DVDY(c,t)

#idefine DODY (C_OMEGA_G(c,t){1])
#define DODX (C_OMEGA_G(c,t)[0])
#define DUDY C_DUDY(c,t)

#define DVYDX C_DVDX(c,t)

#define W C_W(c,t)

#define V C_V(c,t)

#define R x[1]

DEFINE_PROPERTY(nel1000_100,c,t)

{
real x[ND_NDJ;
real Err;
real Eoo;
real Ezz;
real Erz;
real Ero;
real Eoz;
real strain_rate;

real mu;
real TAU;
real EDOT;

C_CENTROID(x,c,t);

Err = 0.5*DVDY*DVDY;

Eoo = 0.5*(V/R)*(V/R);

Ezz = 0.5*DUDX*DUDX;

Erz = (0.5*R*DODY)*(0.5*R*DODY);

Ero = (0.5*(DUDY+DVDX))*(0.5*(DUDY+DVDX));
Eoz = (0.5*R*DODX)*(0.5*R*DODX);

strain_rate =2 * sqrt(Err+Eoo+Ezz+Erz+Ero+Eoz);
EDOT = sqrt(DEDX*DEDX+DEDY*DEDY);

if (EDOT < 100000)
TAU = MU;

eclse
TAU = EDOT/1000;

if (strain_rate < (TAU/(MUHI-MU)))
mu = MUHL;
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else
mu = TAU/strain_rate + MU;

return mu;

}
Table A.1: Example of subroutine for calculating the resultant excitation and then viscosity.

#include “udf.h”
#define MU 0.1
#define MUHI 1000
#define TAU 5000
#define G 10000

DEFINE_PROPERTY (t2d_5000_100,c,t)

{
real strain_rate;
real mu, yield;
real time = RP_Get_Real(“flow-time”);
strain_rate = CELL_STRAIN_RATE_MAG(c;t);
yield = TAU*(1 - exp(-G*strain_rate/TAU*time));
mu = MU + (yield/strain_rate)*(1-MU/MUHI);

if (mu > MUHI)
mu = MUHI;

return mu;

}

Table A.2: Example of a subroutine for calculating the non-Newtonian viscosity using a viscoelasti
Bingham CFD model. ty using a viscoelastic

#include “udf.h”

DEFINE_PROFILE(shear_stress, thread, nv)
{

face_tf;

cell_tc;

Thread *ct;

real dt;

real stress=0;

real A=5.231;

/* loop over each of the faces of this zone */
begin_f_loop (f,thread)

{
if(rp_dual_time) && (n_time_levels >1))

{
¢ =F_CO(f,thread);
ct =F_CO_THREAD(f,thread);

if((rp_dual_time) && (n_time_levels >1))
{
dt = RP_Get_Real("physical-time-step”);

stress=(C_U(c,ct) - C_U_MI(c,ct))/dt
}

}
F_PROFILE(f,thread,nv) = stress;

}
end_{_loop(f.thread)
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}

Table A.3: Example of a subroutine for calculating the wall shear stress due the output rotors
inertial value.

#include "udf.h"
#idefine J 16.0
#define E 2.0
DEFINE_SOURCE(ge, cell, thread, dS, eqn)
{

real ge;

real x|[ND_NDJ;

qe =-J*E;
dS[eqn] =0;

return ge;

}

Table A.4: Example of a subroutine for calculating electrical heating in an ER fluid.
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APPRAISAL OF AN ESF RADIAL PLATE CLUTCH WITH COOLING FLOW
USING A NNF CFD SOLVER

Darren J. Ellam, Raymond J. Atkin and William A. Bullough
SMMART Engineering Network, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK

ABSTRACT

To aid the application of electro-structured fluid (ESF) devices, a
virtual two plate radial clutch is examined in a pre-prototyping
exercise to estimate the effect of a radial cooling flow on pre-set
torque transmission. A throughflow of ESF will act to keep the fluid
temperature under control making such devices more reliable over a
wider operating range.

The ESF is treated as a Bingham viscoplastic material and clutch
behaviour is investigated under steady state isothermal conditions. The
resulting two-dimensional non-Newtonian fluid (NNF) model is
solved using a computational fluid dynamics (CFD) package. The
results are partially verified using analytical analysis and compared
with sparse experimental data. This work is expected to lead to a more
complex CFD model for which analytical methods will not be
available.

Indications are that, for realistic rates of throughflow, torque
transmission should not be overtly affected. Hence the cooling of
slipping ESF clutches by throughflow can be contemplated.

NOMENCLATURE

C, Jkg°K  fluid specific heat capacity

G(r) N/m*  pressure gradient (function of radius)
T Nm applied torque

T, Nm 7, contribution to applied torque

7, Nm Newtonian contribution to applied torque
dp bar pressure difference between inlet and outlet
h m gap width

m kg/s mass flow rate

p Pa static pressure

g ms  flow rate through clutch

r m radial position

r, m outer radius

¥ m inner radius

v, m/s velocity in radial direction

Ve m/s velocity in circumferential direction

z m axial position (from lower plate)

¥ Is magnitude of local deformation rate
H Pas plastic viscosity

Hon Pas non-Newtonian (effective) viscosity
Hiso Pas limiting viscosity (viscosity at low shear

rates)

a radians circumferential direction

p kg/m*  ESF density

T Pa magnitude of local deformation stress
T, Pa electro-stress (yield stress)

T Pa radial shear stress

T Pa circumferential shear stress

0 rad/s relative angular speed
INTRODUCTION

An ESF provides a reliable means of coupling electronic and
mechanical control. Unlike their mechanical counterparts ESF clutch
controllers offer the ability to rapidly and smoothly actuate
accelerating loads on a very regular basis without direct plate to plate
contact.

In such ESF type devices fluid temperature is driven upwards by
repeated switching of inertial loads at high accelerations and in high
shear rate conditions. This is an unavoidable inefficiency in such
transmission of power. In a closed system electro-rheological fluids
(ERFs) experience avalanche current discharges in thermal runaway.
In high yield stress magneto-rheological suspension (MRS)
applications the heating effect can be intense. For both scenarios, the
introduction of a cooling flow would seem to offer obvious benefits
for clutch devices provided that the throughflow did not severely affect
the torque transmission.

It should be noted that a valve controlled damper test rig has



worked trouble free for years (Peel et.al, 1994). It enjoys the control
volume method of working where the fluid is continuously exhausted
from the valve and cooled externally. Furthermore, analytical theory
using the Bingham plastic equation is found to be very successful in
predicting operation.

Electro-Structured Fluids

The aim is to appraise the clutch problem for ESFs that can be
defined by the Bingham plastic type constitutive equation. This
particularly includes MRSs, ERFs and ERF/MRS mixtures, which
comprise of a suspension of particles in a fluid medium. The particles
are <10 pm in diameter, therefore on a macroscopic scale the fluid can
be treated as a continuum. ESFs also include liquid-liquid
non-miscible liquids and liquid crystals. Such fluid types can be
potentially modelled using the NNF CFD technique presented in this

aper.

g In the unexcited state the Bingham type ESFs can be considered
to behave as Newtonian fluids. On the application of a field the fluid
can undergo a reversible microscopic interaction that generates a fluid
yield stress capable of supporting a load. Altering the field strength
simply generates a different electro-stress, 7,, value. In this state the
fluid behaviour can be described using non-Newtonian viscoplastic
equations.

The Bingham plastic constitutive equation will closely represent
the properties of most ESFs and is therefore used in this paper. On an
individual fluid basis a more representative model may be used at a
later time. Furthermore this work concentrates on the steady state case
where the fluid is subject to a constant field strength, in which
response time effects are not considered.

ESF Clutches

In the simplest case the ESF radial clutch comprises of two
circular plates. The gap width, A, typically 0.5 mm, is filled with ESF
and it is this fluid medium, rather than physical contact of the two
plates, which transmits the torque. Varying the excitation and hence
the ESF propertics allows the transmitted torque to be controlled. A
commercially viable clutch may be multi-plate in design and much
more physically complex.

This paper follows a previous publication on the effect of an axial
throughflow in a geometrically and therefore rheologically simpler
concentric type clutch (Atkin et.al, 2000). In essence, the analysis
shows that the axial and circumferential flows are coupled, but for
practical parameters, the reduction in torque is negligible allowing
such a device to be contemplated. In addition, the computed CFD flow
field precisely complemented the analytical theory. Figure 1. shows a
schematic of both types of clutch.

Approach Taken
In a real clutch situation, fluid properties will be temperature

dependent, heat transfer will take place, difficult geometries will be
encountered and the general mode of operation will be unsteady. In
this respect only CFD holds out to the prospect of a meaningful
pre-prototype procedure. Before moving directly to a complex CFD
approach it is prudent to test whether the main proposition is valid:

will the torque be significantly affected by the rate of cooling flow?
Also, can a current CFD package deal with a relatively complex
two-dimensional situation.

Using the Bingham plastic constitutive theory, an approximate
analytical theory is developed. This theory is then used to validate the
results of a CFD model for exactly the same geometry and parameters.
The results are also compared with some data from experiments
carried out at low loading conditions, which correlates with the
theoretical predictions.

CONCENTRIC CLUTCH TWO RADIAL PLATE CLUTCH
z

ESF in gap width & )
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Figure 1. Schematic of radial and concentric type clutches
and illustration of how the CFD model is set up.

ANALYTICAL THEORY

Modellin
The analysis of the two plate radial clutch arrangement (Fig. 1.) is

simplified by assuming that the flow is steady, two-dimensional,
laminar and isothermal. The ESF is considered to be a homogeneous,
incompressible continuum with constant properties of electro-stress
and plastic viscosity.

A distance of /4 in the z-direction separates the two clutch plates.
Flow occurs in both circumferential and radial directions, the former
caused by the relative angular speed, €2 of the plates (Couette flow),
the latter due to the difference in pressure between inlet and outlet
radii (Poiscuille flow). For simplicity one plate is always considered to
be stationary, the other rotates with a constant speed 2. The velocity
components are

v, =v(rz), vg=ve(rz), v,=0. (1

In the absence of body forces the momentum equations are

[Ov, av,] op oty
pl—+V,— |=——+ —
o o) o oxp . ®))

The 3-d Bingham plastic constitutive model (Bird et.al, 1983) is
used to represent the stress tensor 7, in terms of the deformation rate



tensor dy, so that

d,j =0, T<Te, 3)
where
dy = v v,
o, Oxi @
rT=% %l’,ﬂ‘,} . (5)

y=tf)dd, . 6)

An analysis of d,; shows that provided » <<r the dominant terms
are d,,, d,, d,o and dg. This is equivalent to neglecting the normal
stresses. As centrifugal acceleration terms are expected to be small,
steady state acccleration terms are also neglected. Under the
approximation A <<r the dominant terms in the momentum equations

(Eq. (2).) are then

o 0tn g %te _o P _

o oz , &z 4 %)
These partial differential equations can be integrated to give
t,=G(r)z+b(r), e =c(r), p=p(r), 8)
where y
o= 71”_ : )

and G, b and ¢ are functions of radius. Eq. (5). gives the magnitude of
the resultant shear stress as

r=tm2tta? = JG(r)z+b(r) +c(r)? .
It can be deduced that flow will only occur if

Jrict >z, (10)

If |¢(r))>t. flow will occur across the whole gap. However if
le(r)i<t. flow can only occur if a central pseudo-plug region is
present. A plug region is a section of solid material in which r <.
The term pseudo-plug is used because in this geometry it is impossible
to a have a solid central section moving at constant speed, but at given
radius the velocity profiles have a central section in which the speed is

constant. . .
The torque required to keep the upper plate moving with angular

speed (2is given by

T= I: drjoz;zc( r)dé = 27[’]:)‘20( rjdr. an

In the coupled flow case the total torque is calculated at discrete radii
and summed over the range r; and r, so that

T=2x) rec(r)or.
n

(12)
Using the constitutive theory (Eq. (3).) it follows that
e
Tp=|——+py|— and 14 =| —+ u |—

& . (13)

and, combining Eq. (8). and Eq. (13)., after suitable rearrangement

ov, Te Ove T,
;1——=(Gz+b)(l——) and p——:c(l——)
oz T Oz (14)

Applying the following boundary conditions allows the velocity
profiles to be developed

z=0, v,=0 & v3=0
z=h, v,=0 & vp=rQ2. (15)

In order to satisfy the boundary conditions on v,

b=_G(r)h
2 . (16)

(i) Plug-less flow region c(r }> 1.

Here the velocity profiles are given as follows

2
v =V, =—l-(GzT+bz——g— 2 +(Gz+b)2 —Jcl+b2]J

H an

ve=Vg = E-l- z —T—‘[sinh—l[ﬁ) - S,nh—\(_b_J}
H G lel el ). (18)

Both velocity components are therefore dependent on G and are so
affected by a change in the pressure gradient. To satisfy the condition
ve =r(2 at z = h the following expression determines c(r) at position r

w2 =c| [h - Zg—smh-l[ﬁh—ﬂ

2lel (19)

An integration of the radial velocity profile (Eq. (17).) gives the
radial flow rate
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Couette Flow Only. When | Gh/ 2c|<<1 Eq. (19). reduces to

c(r)=£;£+r.

@n

This is also the expression for ¢(7) in the case when there is no axial
flow (i.e G = 0). This expression can be integrated to give

uns2

=0Tc=
=T+ h

(m‘-n‘)+2—3m-(m3-ri3). -

It can be observed that when there is no throughflow the output torque
consists of a Newtonian contribution (T,) due to the shear rate, plus a
fixed electro-stress contribution (7) due to the excitation of the ESF.
The fixed value of T, must be overcome before flow can occur.

(i) Plug flow region |c(r )<z,

In this case 7 alone is not large enough to cause flow and so a
contribution from 7,, is required to satisfy the flow condition 7> 1. .In
this flow regime a central pseudo-plug is present. The plug boundaries
can be determined by the condition that t = r, for which

n)
G(r)l(z—i) +c(r)2=t,,2

hence
/‘2_ 2 h ,,.2_02
zl=_}_'___f__c—' 22 D — ————
2 |G| 2 G . (23)
This gives a plug thickness of
2
2y — 2 =—-"1‘, 2-¢?
PTG . 4)

which must be less than the gap size h. This inequality leads to a
critical condition for flow to occur equivalent to Eq. (10). The velocity
components are NOW

V.(r.z) Vo(r,z) 0<z<z,
v, ={Vi(r.z) vo =<r§d/2 n<z<2,
V,(I',h—Z), r{)—Va(r,h—z). ZZSZSh, (25)

where V, and Vare given by Eq. (17). and Eq. (18). The result for this
solution which corresponds to Eq. (19) is

|G|

202
sinh-l(ﬂ-]—sinh'l Ve 7o
2|c| fel

Again an integration of the velocity profile v, gives the radial flow rate
expression

/”D=lc|{h—2‘”"2_cz]—zlclr‘ x

(26)

q =2"-7[2J:1Vr("»2)d2+Vr(",21)(22 —21):|=‘]1 +q2

. 2w Gz \
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2
+ %(0.5}; —z\c2 + G2(0.5h-2)?
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g2 =2 (0.5h -2V, (r.z1). 27

Poiseuille Flow only. If we consider radial flow only
(i.e. ¢(r)=0) then using Eq. (17). Eq. (27) reduces to

._nh3G(r)[~l+3 e} Te ’
EA— [ hG(r) hG(r)) | .

With appropriate change in notation this equation is the same as that
presented by Bird et.al (1983).

(28)

COMPUTATIONAL FLUID DYNAMICS

The same problem as outlined above was solved using a
commercial CFD package (Fluent IV). The same flow and fluid
assumptions alrecady outlined at the beginning of the analytical
analysis section apply to the CFD solution. However the lubrication
assumption, & <<r, is not required and furthermore the steady state
acceleration terms are not neglected.

The governing Navier-Stokes equations are discretised using a
finite volume method that involves splitting the continuum into a finite
number of cells allowing the partial differential equations to be
integrated on a control volume basis. The Newtonian viscosity is
replaced with a non-Newtonian viscosity, u,, which is solely
dependent on the local deformation rate (Eq.(6).) and fixed fluid
properties; it is derived using the Bingham plastic equation:

Te
Han ===+ [ £ [tj-50
Y (29)

There is the potential for computational difficulties due to



unyielded sections of fluid having a zero deformation rate making ,,
equal to infinity. Rather than computing the stresses and strains in
unyielded regions here the entire material is treated as a fluid with an
upper limit of u,, This constitutive model is comparable to the
bi-viscous model that utilises a Bingham plastic equation in yieided
regions and treats unyielded regions as a highly viscous Newtonian
fluid with viscosity u;_.o. The difference between the two is that CFD
does not apply boundary conditions to determine plug regions; the
plug boundaries occur when g, — 7, /7 ; and then within this plug
the viscosity increases to a possible maximum value of 4, ,o. When
this limiting viscosity is large enough there should be no noticeable
difference between the bi-viscous, Bingham, or CFD method of
representing the stress tensor. So long as 4,0 is high enough to
prevent u,, being cut off before any potential plug boundary occurs the
particular value is quite insignificant. The viscosity ;.0 was
therefore set at 100 Pa, typically 1000 times the plastic viscosity.

Since the flow aligns with the grid a first order power law
interpolation scheme was adequate to determine cell face values.
Velocities are determined from the momentum equations, and pressure
is determined using the SIMPLE pressure-velocity coupling algorithm.
The viscosity, f., is calculated in a sub-routine linked to the main
code. The fully discretised equations are then solved by a
semi-iterative method using a Tri-diagonal Matrix Algorithm and
treating off-line variables as known from the previous iteration.
Convergence of a solution is usually interpreted by using the
normalised residuals; these are a measure of the degree to which the
equations are satisfied. The manual (Fluent, 1997) describes more
fully the numerical and solution techniques.

The clutch was modelled as two radial plates; all derivatives are
zero in the tangential direction allowing a 2-d axisymmetric grid to be
used. A uniform inlet velocity boundary condition allowed the flow
rate, g, , to be set, a relative static pressure condition of 0 Pa was used
for the outlet. One plate wall is set as stationary the other is set to
rotate at an angular speed (2 Increasing grid resolution produces a
model that more accurately simulates the continuum. However, this
comes at the expense of computational speed therefore engineering
judgment must be exercised.

EXPERIMENTAL INVESTIGATION

A small undergraduate investigation by Hon (1996) of this radial
flow problem has been previously carried out on an ERF based
apparatus. The two plate clutch arrangement had a 2 mm inner and
30 mm outer radii with a gap size # of 1 mm. Results were taken
between 440-750rpm steady statc rotation at ficld strengths
corresponding to electro-stress values of between 54-700 Pa.

The application of relatively small pressures at the inlet using the
weight of the fluid in a vertical/axial supply line resulted in low flow
rates (<0.1 /min). Small values of pressure result in |Gh/2¢c|<<1
being valid, making Eq. (21). and Eq. (22). relevant. Over the full
range of experimental values the torque is within 30% of that predicted
by Eq.(22). The accuracy in interpolating the manufacturers fluid
data, in particular ., plus the rudimentary nature of the apparatus and
experimental technique is likely to be responsible for this discrepancy.

The important result to note is that at each particular field
strength there was no measurable change in pre-set torque as
increasing flow rates were imposed. This complements the analytical

theory in so much as it predicts this behaviour at low pressure
gradients and hence low flow rates.

RESULTS

Poiseuiile and Couette Flow

The computed CFD flow field for the case of radial flow only
clearly shows the presence of pseudo-plug profiles (Fig. 2). The
approximate analysis (Eq. (24). with ¢(r) = 0) suggests that the plug
size should increase with radius due to G(r) decreasing with radial
position. To maintain mass continuity the velocity of the ESF reduces,
this results in a more dominant plug at greater radii (Fig. 2.) due to a
reduction in deformation rate, and a non-linear pressure profile

(Fig. 3.).

r=25mm [
r=20mm | r=15mm
71, ro=15,30 mm P s
h=05mm ‘/ /
Te=5kPa
u=0.1Pas r=10 mm
g =1.0 Wmin \\

Figure 2. Radial velocity profiles for the case of Poiseuille
flow only (i.e. no angular speed)

The pressure profile can be numerically differentiated to
determine the gradient, G(7), at discrete valves of radius. If the CFD
profile is correct then Eq. (28). must yield a constant value of ¢, at all
radii if mass is to be conserved. Initial tests showed disagreement at
small radii that could not be fully attributed to flow development. The
discrepancy was found to be due to a lack of cell density in the radial
direction. Unlike the concentric clutch case the pressure profile is
non-linear particularly at and near the inlet radius. Increasing cell
density resulted in good agreement over most of the radius range. The
computed CFD flow field satisfies mass continuity over the whole
radius. However, within the first 5 mm of the clutch the pressure
profile is rather erratic due to the imposed uniform inlet velocity
requiring some length to develop. As a consequence of using G(r)
calculated from the CFD pressure profile, the analytical equation that
yields the flow rate (Eq. (28).) does not correspond to the CFD answer
in this initial development length region.

When no throughflow is imposed the same grid was used to
calculate the flow field for Couette flow only. Equation (22)., which is
relevant to this case, was found to be verified.

Coupled Flow
It is of interest to use theory and CFD to predict how T is affected



at higher values of flow ratc when the approximation | Gh/2cj<<1 is
no longer valid. As |G(r)| increases ic(r)| decreases and eventually
there is a cross over from case (i) to (ii) (see Fig. (3).). For every
computed flow field G(r) was determined numerically allowing c(7) to
be calculated using the relevant equation (Eq. (19). or Eq. (26).). This
allowed the total applied torque to be evaluated by summing the values
at each discrete radii (Eq. (12).). This was achieved by importing CFD
data into a spreadsheet allowing each CFD point to be checked.

A grid analysis showed that 80 cells in the axial direction gave
grid independent answers. To achieve an accurate pressure field over
the full radius requires about 400 cells. Eq.(22). shows that the
majority of the torque is generated well away from the inlet, this meant
that in practice only 100 cells in the radial direction were required for
a grid independent answer. Considering the geometry (r,-r)/h the
chosen grid of 80 x 100 gives a cell aspect ratio of 40. Such a cell ratio
is acceptable for laminar flow problems in which derivatives are
relatively lincar. Engineering judgment was therefore used to set up a
practical grid; the validity of which is demonstrated in the following
resw;igwe (3). shows a non-lincar pressure profile and how the shear
stress, c(r), varies with radius. The effect of the uniform inlet boundary
condition can clearly be seen within the first S mm from the inet
radius, which is required for the parabolic type profiles to develop.
This effect on the overall applied torque is not noticeable due to a
large dependence on radius (T = f(r*)). For this particular case both
plug and plug-less regimes are present, the cross over point occurs at
5 kPa.
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Figure 3. Static pressure and circumferential shear stress

profiles within radial clutch.

Figure (4). & (5). show behaviour over a wide range of 7, and
flow rates at two typical speeds of operation. At 600 rpm there is a
~50 % reduction in T at 6 It/min at each value of ,, while at 1200 rpm
the severity of the coupling loss is much less (~29 %). For a constant
pressure difference reducing the speed also reduces the flow rate.

i h= 0-5=nslm30 — 600 rpm
06 {7~ 10kPa :‘1-_’001 o mm {{ — - 1200 rpm
R ~Sadipal o et * Theory

applied torque (Nm)

flow rate (itimin)
Figure 4. Torque coupling effect with flow rate.
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Figure 5. Effect of flow rate on dp corresponding to Fig. (4).

Next the effect of the geometry is considered. When there is no
radial flow doubling the gap size halves the shearing rate and likewise
the Newtonian contribution to torque (Eq. (22).). But for practical
parameters the Newtonian shear stress is small in comparison to the
electro-stress contribution, which means there is only a small reduction
in T. In terms of coupling effect as shown in Fig. (6)., doubling the gap
size results in a significantly better scenario. This is due to a doubling
in the ratio between circumferential/radial velocity, resulting in a
greater Couette flow domination and less coupling.

As shown in Fig. (6). a 17 % increase in radii from 30 to 35 mm
gives a 91 % increase in applied torque. This is due to the large
significance of radius (7= f(r4)) and a resulting higher ratio of
circumferential/radial velocity in this new section, radial velocity
decreases with radius while circumferential velocity increases. At
6 l/min the loss in torque is now ~40% as opposed to ~50%
previously.
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Figure 8. Torque coupling effect with flow rate for different

geometry.

It is worth investigating the effect of the plastic viscosity. In the
absence of radial flow, u only contributes to the Newtonian term (7,)
that is typically much smaller than the electro-stress term (7)
(Eq. (22).). Figure (7). shows that a high plastic viscosity cpuld give a
much greater Newtonian contribution but has little effect in terms of

the coupling effect.
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Figure 7. Torque coupling effect with flow rate for different
values of plastic viscosity.
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We now take a look at the velocity profiles. Figure (8). and
Fig. (9). show the radial and circumferential vclociFy proﬁles for th.e
case of 5 kPa at 0.8 lt/min corresponding to the data in Fig. (3).. In this
case both plug and parabolic regions are present. The pseudo-plug
regime is observed at small radii at and near the inlet where the
Poiseuille flow is dominant. At larger radii, at and near the outlet,
Couctte flow dominates and the plug-less regime is present. .

The pseudo-plug propagates from being present only at the inlet
to the full radius at greater radial flow rates. When the Poiscuille flow
is dominant at all radii the plug sizc is seen to increase with radius in a
similar way to that observed for the Poiscuille flow only case
(Fig. (2).). From Fig. (9). it can be seen that near the ou}lct where most
of the torque is generated the circumferential velocity profiles are

relatively linear.
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Figure 8. Radial velocity profiles for coupled flow at equally
spaced radial positions corresponding to Fig. (3).

rire=35,30 mm
h=0.5mm
7,=5kPa
#=0.1Pas

£2 =600 rpm

g = 0.8 t/min

r=27.5mm

/

r=7.5mm

Figure 9. Circumferential velocity profiles for coupled flow
at equally spaced radial positions corresponding to Fig. (3).

Required Range

To emphasise the effect of changing parameters and show good
agreement between theory and CFD over a wide range, the results
have so far been presented over the range [0 - 6 lt/min]. To determine
the magnitude that is required in a practical situation, a basic heat
balance calculation is carried out. Evaluating the power input and
equating this to the amount of energy the fluid carries away gives the
relation

temperature change = ,
pCor . (30)

Even for low values of z,, the majority of the work done on the
ESF is that needed to overcome the yield stress of the fluid. It is
therefore the electro-stress as opposed to the Newtonian contribution
that is responsible for heat generation. For the geometry used in this
paper a electro-stress of 10 kPa generates a torque of 0.6 Nm; it
follows from Eq. (30). that to stop the fluid rising by more than 2 °C a
flow rate of 0.5 l/min is required. In comparison an electro-stress of
20 kPa requires 1.0 it/min.



A flow rate of 1.0 lt/min is therefore a substantial cooling flow
for this situation and over the operational range 0 - 1.0 It/min it can be
seen that the drop in pre-set torque is less severe (Fig. (10).) - the loss
in applied torque, for all values of z,, at 1.0 1t/min is ~9 % @ 600 rpm
and ~4 % @ 1200 rpm. In this range we arc mostly in the plug-less
flow regime where the circumferential flow is dominant. But for low
speeds the radial Poiseuille flow is seen to begin to become dominant -
the loss in applied torque at 1.0 l/min is ~21 % @ 300 rpm.

0.7 4 A=05mm r,=5Smm - -+ 300 rpm 600 rpm
4#=01Pas r,=30mm || —-1200rpm * Theory

£,=2kPa
b - ——— —————— -———— - - ”——— e —— - ——— -
YT AR T S L .
[} T .g v v T - v N
[+ 0.1 02 03 04 058 (1] o7 08 09 1
flow rate (t/min)

Figure 10. Torque coupling effect with flow rate in
estimated required range of 0 - 1 it/min.

DISCUSSION

Constitutive Theory

The 3-d Bingham plastic constitutive model (Eq. (3).) used for the
analytical theory in this paper, states that regions in which 7 <1, have
a zero deformation rate. On the boundary of a plug r=1,, and th.e
velocity is continuous. When the plug has a constant width, ngmg this
region to be moving with a constant speed satisfies al.l conditions. But
is this approach valid when the plug width varies? This prqblcm forms
the basis for why Lipscomb ct.al(1984) state that in complex
geometry solid plug regions cannot exist. They suggest the use of the
bi-viscous model that, as alrcady mentioned in the CFD section,
rcgards unyielded fluid as almost solid in comparison to yiclded
sections of fluid. The modet can be expressed as follows

N (r—.'+;4]d,, T>T,
Ty =\7

Hiody T<7,. 31

We have analysed thc radial and coupled flows when
h << r using the bi-viscous model. The theo(y presented here, using
the Bingham plastic constitutive  equation, are the results
corresponding to high values of ;0. These expressions were used to
derive all the data in this paper. The results clcarly. show that the CFD
method, which uses a similar bi-viscous approach, is comparable to th'e
Bingham plastic analytical theory. It can be opncluded tl?at for this
particular casc that the 3-d Bingham plastic model is a good

approximation. Allowing the pseudo-plug to be a fluid with a high
viscosity results in insignificant extra terms — the modelling of
unyielded regions is unimportant in comparison to the yielded regions.

ERFs and MRSs are expected to display very high values of
Hi-o, the magnitude of which is therefore of little importance. It
should however be noted, that some shear thinning NNFs are
characterised by having a noticeable constant value of ;. at low
shear rates which then starts to decrease as particle interactions start to
become significant. The CFD model used here could be a very useful
tool for modelling such fluids. It can also be noted at high enough
shear rates all materials and suspensions display Newtonian behaviour;
for the Bingham plastic model y,, tends towards the plastic viscosity
at high deformation rates.

Stea Assumption

The main difference between the analytical and CFD model was
that the former neglected steady state (centripetal) acceleration terms
in the momentum equations. A simple conservation of angular
momentum calculation, on a control volume placed around the
boundaries of the clutch, shows that the magnitude of the output torque
(that required to keep the lower plate stationary) will be less than the
input torque (that required to rotate upper plate at speed £2):

mnve; <<mroVeo = Tougpue = MIoVeo = Tinput (32)

This first came to light from initial CFD results. The difference in
torque is only noticcable at large flow ratcs when 7, is low. The
difference being up to 7 % at 6 lt/min and 1200 rpm. In the estimated
practical flow range of 0 - 1 It/min the difference is less than 1 %. The
CFD torque values presented in this paper are those that correspond to
the input plate - this is done to allow an accurate comparison between
CFD and analytical theory.

Main Indications of Appraisal

The results basically show that provided the Couette flow is
dominant the pre-set torque is relatively unaffected by the radial flow.
The presence of pseudo-plugs is not desirable in as much as it means
that the radial Poiseuille flow is dominates. On a more practical point,
the presence of a plug means that the difference between plate speeds
is distributed over smaller distances resulting in greater shear rates and
hence more significant viscous heat generation. In this present
application the presence of plugs is not desirable.

Fluid manufacturers have designed ESFs to have a low plastic
viscosity, this gives a low Newtonian shear stress contribution and
consequently a relatively constant shear stress for a given 7, over a
wide range of speeds. The plastic viscosity is found to have little effect
in terms of the severity of the coupling effect. However, although the
Newtonian contribution is small, for ERFs that display low r,, it can be
a significant contribution to the overall applied torque. Since the rate
of heat generation increases with speed it is advantageous that for the
same pressure difference the flow rate increases with increased speed.

A larger gap size results in a lower radial velocity and therefore a
smaller coupling effect for the same flow rate. Unfortunately a larger
gap size requires a larger power supply to generate the same field
strength. A compromise in this respect is therefore required.



Furthermore a small increase in outer radius results in a much greater
applied torque and also a reduction in coupling effect. The outer radius
is therefore a very significant consideration but, depending on the
application, a compromise in terms of the device size may be required.

There are other consequences of having a throughflow. The
condition (Eq. (10).) that must be satisfied at the outer radius for flow
to occur can be rewritten as:

’Gzh2
+ct>r,.
4 33)

This inequality suggests that, provided |G(r)>2t./h, even when
both clutch plates are stationary the ESF will always be in a sheared
flowing state. The requirement of a limiting torque (7, see Eq. (22).)
before any flow occurs is therefore eliminated. This suggests that the
clutch cannot support any load, but as soon as there is any rotational
flow the radial flow becomes less dominant allowing the clutch to
support a tor sec Eq. (26)).

In ;mcuq: 1('or aF:llutch operating at the c_stimatcd low flow rates,
|G(r) )< 2t./h , there will always be a considerable amount of load

supporting ability at zero speed which is given by

G(nh? ‘d+c(rP=1,2. (34)

In the absence of a radial flow the T'- £2 relationship is a linear
one (Eq. (22).). At relatively large radial flow rates, for high values of
t,, non-linearity can be observed at low speeds - for the same flow ra§e
the coupling effect becomes much more severe as the angular speed is
reduced. This can be clearly seen in Fig. (10). at high 7,. Here we are
merely pointing out what the theory sugg&sts, an experimental study is
required to fully understand this scenario. It should however pe .noted
when the clutch is operated at low speeds the work on the fluid is less
severe, possibly allowing the radial flow rate to be reduced to a zero
value at zero angular speed. o .

The severity of the coupling effect is similar for both concentric
and radial types of clutch. It should however be noted that althpugh
significant the ability to maintain T while allowing the fluid to
circulate is only one factor in deciding the best type of design and fluid
specification. Response times and inertial effects, which are currently

being studied, are expected to be important,

Com
In essence it can be concluded that there is good agreement

between the CFD and analytical theory. Any discrepancy appears to be
due 1o a lack in the number of cells required to accurately represent the
continuum model. The initial aims of this work have therefore been
fulfilled. In the required flow range to keep the ESF ther;nally stable,
at realistic angular speeds, the loading capabilities are little affected
and the CFD analysis for this flow arrangement is proven to be correct.

The analytical theory in this paper is useful with regards to
getting an overall view of the problem and in this case allowed the
CFD results to be verified. However it is not readily adaptable fgr
different flow conditions and geometry. In practice CFD will
eventually be needed to predict prototype performance and even test
concepts in the absence of analytical techniques.

This work has allowed confidence to be gained in the basic
method allowing more complex CFD models to be contemplated
involving difficult geometry, heat transfer and unsteady modes of
operation. The Fluent CFD software already has a very sophisticated
input and output interface and the internal code can be easily adapted
using subroutines. This allows for the modelling of realistic fluids in
which the main fluid property 4,, can be dependent on field strength,
temperature, local deformation rate and even the time domain. There is
therefore no need to use idealistic viscoplastic models - for some ERFs
the yield stress appears to reduce with increased shear rate
(Pecl et.al, 1994). In practice all that is required is the non-Newtoman
viscosity function that can be derived from small fluid sample Couette
type viscometer tests carried out over a temperature and field strength
range (Bullough et.al, 2000).
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THROUGHFLOW EFFECT ON SLIP TORQUE IN AN ESF CONCENTRIC CLUTCH
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ABSTRACT

A problem of considerable interest in the development
of ESF clutch devices operating at high shear rate is how to
maintain a relatively constant fluid temperature whilst
retaining the ability to control the transmitted torque by
means of electrical excitation. In this paper the possibility of
using an axial throughflow in a concentric cylinder Couette
type device for typical operating conditions is investigated
an ERF at different voltages and axial pressure gradients.

KEYWORDS: ELECTRO-STRUCTURED FLUIDS (ESF),
ELECTRO-RHEOLOGICAL FLUIDS (ERF),
COMPUTATIONAL FLUID DYNAMICS (CFD)

INTRODUCTION

Modelling the ESF at any given excitation as a
homogencous,  incompressible continuum with fixed
Bingham plastic properties {1], 2-d, analytical solutions for
fully developed, isothermal flow between one stationary and
onc moving plate clectrode are presented. Flows in both the
circumferential and axial directions are coupled and, in
general, these flow fields and the transmitted torque depend
upon the relative rotational specd and axial pressure
gradient. Results are compared with experimental data and
corresponding results from a Bingham plastic CFD package.
Test results at low, but realistic, loading conditions correlate
with theoretical predictions at each field strength.
Indications arc that the ratc of throughflow should not
interfere overtly with set torque transmission. Hence the
cooling of slipping ESF clutches by throughflow can be
contemplated.

Verification of the CFD method constitutes a foundation
for future work on ESFs. This is expected to include: the
effect of temperature & and shear rate on the electro-stress 7,
and plastic viscosity . heat transfer, non-linear field
strengths, unstcady flows, and complex geometries. This
degree of modelling will require the CFD approach.

THEORETICAL ANALYSIS

In the inter clectrode space, where the ficld strength is
assumed constant, flow occurs in both the circumferential
(tangential) and axial directions, the former caused by
rotation of the inner clectrode and the latter due to the
difference in pressure between inlet and outlet along the
axis. Since the inter electrode gap width & is small compared
to the mean radius 7. of the clectrodes flow is considered to
be between two flat plates, x =0 which moves with speed
V(=r2) in the y-direction and a fixed plate x=h . The
pressure gradient G(=dp/dz = AP[L) is in the z-direction.
If v(x) and w(x) denote the velocity components in the y- and
2- directions respectively the two rates of strain components
14(dw/dx) and “:(dw/dx) give an expression for the resultant
2-d shear rate

¥ =R{(av/dx)? +(dw/dx)2}\2 . ey

The non zero shear stresses 7, and 7. and the magnitude of
the resultant shear stress, 7, are given by:

Ty =0, Tem=Gx+b, r=,/a2+(Gx+b)2 R )
where a and b are constants.

Flow occurs when 7 > 7, . Here 7, is a positive constant.
Velocity components, which satisfy the no-slip condition on
the boundaries x=0 and x=h, can be determined. To
satisfy the boundary conditions on w it follows that
b=-Gh/2 . The main results are given below (see [1] &
[2] section 2, for further details).

Casc (i) ja|>7,

Here flow occurs across the whole gap with no plugs
present. Both v and w depend upon G and V and so are
affected by varying either the axial pressure gradient or the
speed of the plate. To satisfy the condition v(h)=0

la|fh - (27, /G)sinh-1(Gh[2|a|)}= V" . 3)
If the plate moves, for any finite pressure gradient flow

occurs in the axial z-direction. The leakage flow rate ¢, is
given by:

3
s = _Gnimy | l”i{l‘.’i,/gzhz + da?
o m O @

T
= sinh l(Gh/2|a|)}

q. has Newtonian and Bingham contributions, the latter
always trying to reduce the former. When G =0, ¢, =0
and at high values of G the Newtonian term dominates.

Case ()| a|<7,

In this case there is a central plug symmetrically placed
about x=h/2 of thickness 2(r,2—a2)*/|G|, which is
less than h provided |G |> Xz, 2—a2)"? /h . Again both v
and w depend upon G and V. The result for this case which
corresponds to (3) is

;a|(h-2Jr.2-az G)—(ZIalr./G)x

{sinh—l(Gh/2 lal)- sinh-l( T, 2-q2 /l a l) }: uv
The leakage flow rate is now given by:

4:=2q1 +42), (6)
where ¢, is the flow rate between 0 and x;, the lower plug

boundary, and ¢, is the flow rate in the plug, (see {2],
equations (14), (15)).

&)

COMPUTATIONAL FLUID DYNAMICS PACKAGE



Without making the flat plate assumption, the same
problem under identical flow assumptions as outlined above
was solved using a commercial CFD package (FLUENT
V).

The govemning Navier-Stokes equations are discretised
using a finitc volume method which involves splitting the
continuum into a finite number of cells allowing the partial
differential equations to be integrated on a control volume
basis. The Newtonian viscosity is replaced with a non-
Newtonian viscosity me which is dependent only on the
local deformation rate (Eq.1) and is derived from the
Bingham plastic equation.

Since the flow aligns with the grid a first order power
law interpolation scheme was adequate to determine cell
face values. Velocities are determined from the momentum
equations, and pressure is determined using the SIMPLE
pressure-velocity coupling algorithm. The fully discretised
equations are then solved by a semi-iterative method using a
Tri-diagonal Matrix Algorithm and treating off-line
variables as known from the previous iteration.
Convergence of a solution is usually interpreted by using the
normalised residuals; these are a measure of the degree to
which the equations are satisfied. The FLUENT manual
describes more fully the numerical and solution techniques.

The clutch was modelled using an inner and outer
cylindrical wall; all denivatives arc zero in the tangential
direction allowing a 2-d axisymmetric grid to be used. A
uniform inlet velocity boundary condition allowed the flow
rate §: (based on the mean radius rm) to be set, a fully
developed flow condition was used for the outlet. The length
of the clutch was incrcased by 20% to allow space for the
parabolic velocity profile to develop. The inner cylinder wall
was set 1o rotate at a tangential speed V.

RESULTS

The main objective was to investigate the dependence of
the magnitude of the transmitted torque T =2mrwiL|a|
upon the axial flow rate ¢, . The clutch is considered to be
operating in a ‘slipping’ state which means that a relative
speed always exists between the two rotating mcmbers
When the clutch is in a locked state the torque on the device
is not high enough to overcome the electro-stress; in this
state there is no shear rate and therefore no cooling is

red. | |

In general the shear stress lal, given by either Eq. (3) or
(5), depends upon the axial pressure gradient G, the speed V'
as well as the fluid parameters 7, and u and the gap width A.

Experiments have been carried out [3] at voltages
corresponding to 7, of 54-1460 Pa, and rotational speeds
300-1500 rpm. In all cases very low flow rates were
involved and it was found theoretically that |a|>t, so that
case (i) applies and that |Gh/2al<<1 which allows the
velocity profiles to be approximated as

v=V (1-xh)., w=(G/2u)(1-7,/la)x(x-h) ©

and Egs. (3) and (4) reduce to
{al=p(V /h)+1e,  §s=—(Gh¥xna /6p)1-1./ |a]) (7)

Here the velocity components are partially un-coupled. The
transverse component being linear and independent of G
whilst the axial component is parabolic, hence the term
“parabolic’ theory. Also |a| and hence T are independent of
G(or q: ). Typical results show good agreement between
theory, experiment and CFD (see [2]).

Due to technical reasons experiments were only
performed at low 7, and ¢, . It is therefore of interest to use
theory and CFD to predict how T is effected at higher values
when the approximation {Gh/2al<<1 is no longer valid.
For higher pressure gradients |a| decreases as |G| increases
and eventually there is a transition from case (i) |a|>7, to
case (it) |a|<r, . The transition point is found to move to

higher flow rates with decreasing 7 and V. Behaviour for
1, =2and 10 kPa at 600 rpm is shown in Fig.1&2. The

CFD results are found to be in very good agreement with the
analytical predictions.

1 s CFD
o t, = 10kPa — Parabolic Theory,
. - - Plug Theory
] Ttree..,,
AR I
_ T e
¥ Q = 600 rpm
o u=0.1Pas
L =100 mm
24 ¢ ~2kPa h=05mm
S -
] v v r + Y T v )
00 X3 1.0 15 20 28 30 35 40 485 5.0
q [iUmin]
Figure 1: Torque vs. Flow rate: Theory and CFD
45
} *» CFD
4 1] — Parsbolic Theory| e ®
35 --~PlugTheoly .‘__.‘(.
00 (1.3 1'.0 175 270 25 370 375 4?0 4.‘5 50}
q [/min]

Figure 2: Pressure drop vs. Flow rate: Theory and CFD

Finally the velocity profiles are considered. In case(i)
v(h/2)=V /2 (no plug), whereas in case (ii) the region
X; £x 5 x; is occupicd by a plug moving with this speed in
the transverse direction. The axial component is symmetric
about x =A/2 with maximum speed at x=h/2 in case (/)
and in case (ii) the plug moves with speed w(x;) in this
direction. These features agree with the profiles obtained
from the CFD. Typical velocity profiles are shown in
Fig.3&4. When the flow rate is less than the critical value as
predicted by the analysis, no plug is present whereas above
this value there is a central plug. Profiles given by CFD
confirm that in the experimental range the tangential
component is linear (Fig.3) and the axial component is
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Figure 4: CFD axial velocity profiles

DISCUSSIONS

The present problem is will an induced axial
throughflow affect the torque pre-set by the excitation
voltage? A test rig built for a former sealing problem [4]
was utilised for the present problem, thus, imposing
limitations on the inlet pressure head of a few centimetres of
ERF (§:<0.01/t/min ). Pressurisation of the inlet tank was

not possible due to the small amount of fluid available.

The equations governing the 2-d flow/stress field give
rise to two flows that are coupled. A spreadsheet was used
to numerically solve the resulting equations for the torque
and flow rate for set values of 7,, u G and V and geometry.
The number of cells in the gap width required to achieve a
grid independent CFD solution was found to be much
greater than that required for a similar Newtonian flow. Also
the default convergence criteria (residual history of le-3)
was found to be insufficient; the residuals had to be taken
down to le-7 if convergence was to be guaranteed. These
conditions were much more stringent than had been
previously used [2]. The very high degree of correlation
between the two methods complement each other showing
that there little scope for error in the Bingham plastic
analysis and for this realistic geometry the flat plate
assumption appears valid.

In essence the results show that agreement between CFD
‘parabolic’ analysis and experiment is probable over the full
range of experimentation [2]. Over a wider range of
conditions it can be seen that the set torque is expected to be
more and more influenced by the pressure difference G,

which causes the throughflow. It is clear that for practical
cases (§.~1.0/t/min based on rudimentary heat balance

calculation) that the linearised approximation based on
|Gh/2al<<1 is not valid. The consequence of this is that
there will be a drop in pre-set torque with increased
throughflow (see Fig.1). However the results show that the
severity of this loss in output is quite small allowing for an
otherwise impractical (due to heating effects) device to be
contemplated.

It will be noted that whilst the conditions for change
over from ‘parabolic’ to ‘plug’ regions is reasonably well
defined by a=1., no critical stability criteria are known
(Reynolds or Taylor types). This is important since the
analysis here assumes laminar flow of a continuum. It will
be further noted that in the case of the higher flow rates,
which are indicated to be linearly linked to the pressure drop
required to induce them (sec Fig.2), that ¢.xd4p, the
‘heating effect’ provided by a circulation pump, will exceed
o x T, the shaft driving power heating component, that it is
intended to carry away.

Perhaps the real importance of the present work is that it
sets up a sound foundation for more accurate modelling of
ESF devices. In a real engineering situation the ESF will not
be an ideal Bingham plastic, geometry will be more
complicated and heat transfer may well be a factor. This
implies that the analysis given here will be insufficient to
accurately predict operating conditions. This is why the
opportunity was taken to test the CFD package for a two
dimensional flow field encountered in experiments. Apart
from the general advantages of CFD, on this occasion it also
indicated that the original ‘parabolic’ axial flow theory may
be insufficient: this led to the development of the plug flow
analysis. More rigorous experimental tests that are extended
into the ‘plug’ region are called for before the analysis can
be proved to be useful for accurate analytical prediction.
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The aim of this paper is to bring together various works on concentrically located rotating shaft seals
which utilize electro-structured fluid sealant, in order to produce a generalized approach to their
design, thus resolving seemingly incompatible reports on the effects of rotational speed on sealing
capabilities. In tum the results from these works are reviewed, a viscoplastic analysis of the two
dimensional problem is presented and the effects on leakage rate of radius ratio, rotational speed and
axial pressure gradient as they interact with fluid properties are illustrated.
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INTRODUCTION

Experiments, and analysis based on steady, two-dimensional flow induced by a pressure
gradient in the axial (shaft) direction and rotary motion in the other (circumferential)
direction carried out on an ERF by Atkin et. al. (1994), indicates that the motion in the
circumferential direction of one surface with respect to the stationary surface always
causes flow to take place in a direction appropriate to that of the pressure gradient
inducing it. In a second work by Kordonski and Gorodkin (1995) no equivalent theory is
supplied but experimentally a MRF seal is found to withstand a significant axial pressure
gradient without leakage occurring. Since the constitutive equation for ERF and MRF is
understood to be similar, both materials being modelled as a Bingham plastic, these
conflicting results are in need of examination.

Recently the use of a Computational Fluid Dynamics package (CFD) has been used
to solve viscoplastic flows by use of an algorithm attached to a fundamental Newtonian
fluid solver that is inclusive of centrifugal effects. Given that the viscoplastic continuum
analysis, albeit in some cases approximated by the absence of centrifugal terms and
limited by use of the lubrication assumption, compares well with the CFD results in both
radial plate and concentric cylindrical clutch cases (Ellam, Atkin and Bullough (2000),
Atkin, Ellam and Bullough (2000)), it is now used to resolve the apparent paradox
between the results reported by Atkin et. al. (1994) and Kordonski and Gorodkin, (1995).

From the outset due caution needs to be exercised at low shear rates when the exact
properties of the various fluid types are not fully known. This can be due to the presence
of surfactant and anti coagulant additives — see for example Tully, Binder and Carlson
(1991). This position reinforces calls for a more comprehensive understanding and
perhaps more accepted standard methods of fluid testing. CFD analysis is becoming very
powerful yet the results of the analysis can vary significantly depending on the definition
of yield stress and plastic viscosity. These difficulties may be overcome by the adaptation
of the main basic effective viscosity vs. deformation rate vs. excitation test standard.
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THEORETICAL ANALYSIS: BINGHAM PLASTIC FLAT PLATE THEORY

Since the publication by Atkin et. al. (1994) the theory has been developed to include the
plug regime, which occurs when the effect of relative speed of the seal surfaces compared
to the pressure gradient on the flow rate is relatively low. A review of this extended
analysis is presented below.

Within the gap width, where the field strength is assumed constant, flow occurs in
both the circumferential and axial directions, the former caused by rotation of the inner
electrode and the latter due to the difference in pressure between inlet and outlet along the
shaft. Since the inter electrode gap width A is small compared to the mean radius r,, of the
electrodes the flow is considered to be between two flat plates, x =0 which moves with
speed V' ( - r,£2 ) in the y-direction and a fixed plate x = 4 (See Figure 1 for a schematic).
The pressure gradient G( = dp/dz = AP/L ) is in the z-direction. If v(x) and w(x) denote the
velocity components in the y- and z- directions respectively the two rates of strain
components Yx( dv/dyx ) and 4( dw/dx ) give an expression for the resultant 2-d shear rate,

= £{(av dx)} +(dw/dx)’}". 1)

The non-zero shear stresses 7, and 7., and the magnitude of the resultant shear stress,
7, are given by:

r,=a t1,=0x+)b, r=1la’+(Gx+b)’, ()

for which a and b are constants.

Flow occurs when r> 7,. Here the yield stress 7, is a positive constant. Velocity
components, which satisfy the no-slip condition on the boundaries x = 0 and x = A, can be
determined. To satisfy the boundary conditions on w it follows that b =-GA/2 and the
resultant shear stress is symmetric about x = /2. Using (2) (with b = -Gh/2) the condition
7> 7, can be recast in the form a’/z,” + G*/(2t/h)’ > 1. For a given material and known
geometry this gives a criteria for the values of @ and G for flow to occur. When the
operating parameters are such that the values of a and G lie inside the ellipse
&/t + G/(2t/m)? = 1 no axial flow can occur and the shaft cannot rotate. The main
results are given below (see Atkin et. al. (1994) & Bullough et. al. (2001) section 2, for
further details).

Case (i) |a|>7,

Here flow occurs across the whole gap with no plugs present. Both v and w depend
upon G and ¥ and so are affected by varying either the axial pressure gradient or the
speed of the plate. To satisfy the condition v(h ) =0,

\a) b (2x, /G)sinh ' Ghf2\a))] = . 3)

The magnitude of the shear stress |a| depends upon G and ¥ as well as the fluid
parameters 7, and plastic viscosity 4 and the gap width . If the plate moves, for any finite
pressure gradient flow occurs in the axial z-direction. The leakage flow rate is given by:

Gh’ 2nr, [t,h ?
g, =__5::’_-+ - {%JGW +4a’—£é—‘:—sinh"(Gh/2|al)}. )
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g, has Newtonian and Bingham contributions, the latter always trying to reduce the
former. When G =0, ¢, =0 and at high values of G the Newtonian term dominates. For
very low flow rates when [Gh/2a| << 1 (3) (4) reduce to

lal= uV Ih)+1,, ¢, =-(GWar, 16p)1-1,1]a)), ()

so that in this approximation |a| is independent of G but ¢, depends upon G and ¥ and is

zero if either G or ¥ vanish. Equation (5), also arises from the analysis of shear flow
when w = 0. For higher pressure gradients using (3) it is found that |a| decreases as |G|
increases and eventually there is a transition from |a| > g, to |a| < 7.

Case (ii)|a|< T,

In this case there is a central plug symmetrically placed about x = 272 of thickness
2r,' —a’) " |G|, which is less than /4 provided |G |> 2(r," —a®)" /. Again both v and
w depend upon G and V. Results corresponding to (3) and (4) are obtained. The transition
point from case (i) to (ii) is found to move to higher flow rates with decreasing 7, and V.

Typical behaviour for 7, =2 and 10 kPa at 600 rpm is shown in Figs. 1 & 2 of Atkin,
Ellam and Bullough (2000). Flow profiles are shown in Figs. 3 & 4.

COMPUTATIONAL FLUID DYNAMICS PACKAGE

The same problem is solved under identical flow assumptions as those outlined above
using a commercial CFD package (Fluent v4) for flow between two concentric cylinders
but without making the flat plate approximation adopted in the theoretical analysis. The
governing Navier-Stokes equations are discretised using a finite volume method which
involves splitting the continuum into a finite number of cells, allowing the partial
differential equations to be integrated on a control volume basis. Each cell volume has a
viscosity that is dependent on the local deformation rate y . This non-Newtonian viscosity

i is determined using the bi-viscous model where u,,, is set at 1000 Pa.
T, <

Since the flow aligns with the grid a first order power law interpolation scheme is
adequate to determine cell face values. Velocities are determined from the momentum
equations, and the pressure is determined using the SIMPLE pressure-velocity coupling
algorithm. The viscosity, i, is calculated in a sub-routine linked to the main code. The
fully discretised equations are then solved by a semi-iterative method using a Tri-diagonal
Matrix Algorithm and treating off-line variables as known from the previous iteration.
Convergence of a solution is usually interpreted by using the normalised residuals; these
are a measure of the degree to which the equations are satisfied. However for highly
viscous flow it is found to be safer to monitor variable histories at various points in the
flow to determine when the solution has converged. The FLUENT manual describes more
fully the numerical and solution techniques (Fluent, 1995).
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CFD Model

The seal is modelled using an axisymmetric grid. This is possible because, as stated in the
carlier assumptions, all derivatives in the tangential direction are zero. The fluid is
therefore confined by an inner and outer cylindrical wall boundary condition. The inner
cylindrical wall is set to rotate at a tangential speed V" = r,42 Uniform pressure conditions
are set at the inlet and outlet, allowing a pressure difference to be set over a certain seal
length.

It is important to determine an adequate cell density for the CFD model to correctly
represent a continuum. In the radial direction it is found that 20 cells are adequate. In
theory fewer cells are needed in the axial direction because the flow is not changing with
distance in that direction. However it is important not to skew the cells severely and so
100 cells are used in that direction.

REVIEW

The aim of this section is to consider why some experimental results in Atkin et. al.
(1994) and the Bingham plastic flat plate theory suggest that it is impossible to have an
effective ESF seal when the shaft is rotating whilst other experimental results reported by
Kordonski and Gorodkin (1995) for their MRF indicate that the opposite is true. A list of
the values of the relevant parameters used by these authors is given in Table 1; those
indicated by a (*) are estimates.

Table 1: Scal parameters used in Atkin et. al. (1994) and Kordonski and Gorodkin (1995)
Atkin et. al. (1994) Kordonski and Gorodkin (1995)
Yield stress ERF: 256 - 1500 Pa MRF: ~5-10kPa*
Shaft diameter 60 mm 20 mm
Gap width 1-2mm 0.075-0.15 mm
Shaft speed 500-2000 rpm (~S0 - 200 <250 rpm (~25 rad/s)
rad/s)
Pressure 1000Pa/10mm = 0.1 10 min, 300 max GPa/m *
gradient GPa/m

The experiments in Atkin et. al. (1994) were conducted in the range |a| > 7, but, from
the magnitudes of the yield stress and speed, it appears that the results reported in
Kordonski and Gorodkin (1995) could be in the range |a| < 7, when, in the parallel plate
case, there is a central plug. It also seems pertinent at this point to consider any effects
due to cylindrical geometry. For purely rotational flow (w = 0) between two concentric
cylinders with radii 7, and r; (r; <r;), caused by either cylinder rotating with angular
speed £2 with the other stationary, at small enough speeds it is possible to have flow in
only part of the gap with a plug attached to outer cylinder. The angular speed at which the
plug disappears for a Bingham plastic material is given by Wilkinson (1960)
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For £2 - £2,... there is flow across the whole gap. Estimates of £2,,,;, are given in Table 2.

Table 2: Estimates of (Qus
Case r r2—r; 13 2 i
mm mm Pa Pas rad/s
Kordonski and Gorodkin (1995) 10 0.15 10000 0.1 22
10 0.15 10000 0.5 11
Atkin et. al. (1994) 30 2 1000 0.1 44
on smaller shaft 10 2 1000 0.1 4963

The value of £2,,.. is significantly affected by the fluid properties. It can be concluded
from line 3 of the above table that experimental work in Atkin et. al. (1994) is likely to
have been carried out at rotational speeds greater than £2;,,;, the limiting speed for plugs
being present, when the theory predicts flow across the whole gap. This conclusion is
further validated by the fact that the results (within experimental error) do match up to the
theory. However with the same parameters and a smaller shaft radius very high speeds are
needed. As illustrated in line 1 in the above table, for a smaller shaft (as used by
Kordonski and Gorodkin (1995)) the limiting speed is much higher than many of the
experimental speeds used. This consequently means that plugs are likely to be present
which goes some way to explaining why it may be possible to have full sealing,

CFD ANALYSIS

Further insight into the effect of the relevant parameters when flow is present in both
axial and circumferential directions is gained from the CFD analysis. Since shaft diameter
is likely to be a significant factor, results are obtained for two sizes corresponding to the
apparatus used in Atkin et. al. (1994) and Kordonski and Gorodkin (1995). To highlight
the important parameters an orthogonal array, which limits the total number of
simulations to 16, is used (Tagucci Analysis). The table below shows the flow rate results
for all 16 simulations, also indicated is the theoretical transition speed 2.
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Table 3: Chosen parameters and resulting flow rates
Shaft radius 10 mm Shaft radius 30 mm
No Q | Gapi Yield} Vis. { dP/idz | Q_limit{ Flow Rate [Lt/hr] | Q_limit ; Flow Rate [Lt/hr]
Size | Stress eqn. (5) : Diff = from theory | eqn. (S) : Diff = from theory
rad/si mm: kPa | Pas{ GPam | rad/s CFD i Diff[%}} rad/s CFD i Diff [%]
1 [0t 0.5 10¢ 0.05 10 492 0.20 84.8 55 4.03 60.7
2 30 05 10i 0.10 20 246 471 40.3 28 39.85 30.8
3 10 0.2 10 0.10 10 40 0,05 47.1 4 0.64 124
4 10§ 0.5 S5;i 0.05 20 246 7.47 38.8 28 60.71 26.5
S| 30t 0.2 10§ 0.05 20 79 0.41 46.7 9 421 14.5
6] 30f 05 5{ 0.10 10 123 451 364 14  35.56 230
71 10§ 02 51 0.10 20 20 0.4 375 2 3.52 20.8
8 30f 0.2 51 0.05 10 40 0.43 28.6 4 4.06 6.7
Average 161 228 45.0 18 19.07 244
L

Here the values of Q2 are close to the range used in Kordonski and Gorodkin (1995).
For the chosen range of parameters the results from the CFD simulations differ from
those of the flat plate theory between 7 - 85 %, the largest discrepancy occurring when
£2<< {2, (simulation 1). The flow profiles corresponding to simulation 1 when
r; = 10mm are shown in Figure 2. The circumferential velocity is seen to exhibit
plug-like behaviour, corresponding to high values of 4,,, and the axial velocity is
non-symmetric. The plug-like region is attached to the outer cylinder and extends over
almost half the gap. The large discrepancy indicates that the flat plate approximation is
inapplicable and that it is necessary to consider the cylindrical geometry. Other large
discrepancies indicate that for this range of parameters care has to be taken when using
the flat plate approximation. Care in interpreting the results of Figure 2 should be
exercised on account of the concentric cylindrical arrangement and the selection of the
value of tma. It will be noted that no constant velocity plug per se is evident.

The CFD results are used in Figure 3 to show the average effect of each parameter. A
considerably lower flow rate on the smaller shaft can now be seen. At the relatively low
speeds of 10 & 30 rad/s the shaft speed is found to be relatively unimportant. The yield
stresses and pressure gradients are found to have an almost linear effect, i.e. double the
yield stress halves the flow rate. As clearly represented in Figure 3 the significant
parameter of most interest appears to be the gap size. It must be noted that the resulting
flow rates are quite small (litres’hour).
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It can also be shown that for smaller £2,,,/62 (less extensive plug behaviour) the results
are generally closer. Also in all cases the larger /A values (30 mm shaft) the results are
considerably closer (Table 3). Over the range of parameters that were chosen the gap size
is a more significant factor then yield stress and pressure gradient. Also it is found that the
plastic viscosity and rotational speed are generally less important.

CONCLUSION

The present analyses indicate that, the results in Atkin et. al. (1994) and Kordonski and
Gorodkin (1995) can both be reconciled. Although the analyses predict that there is
leakage when rotation occurs, for some range of parameters this may be very small (see
Figure 3). For all parameter values taken in Table 3 it is found that smaller flow rates are
obtained with a smaller shaft radius. Since this model only approximates the real fluid,
the flow rate could be zero as found experimentally in Kordonski and Gorodkin (1995)
and Fujita et. al. (1999).

Whilst formula (6) for $2,., used to predict the occurrence of plugs in cylindrical
geometry is restricted to purely rotational flow, the CFD results, which allow for flow in
both the circumferential and axial directions, substantiate the occurrence of a plug-like
region attached to the outer cylinder. The CFD analysis also allows for the effect of the
relevant parameters on flow rate to be investigated and indicates that the gap width and
the shaft radius are the most significant.

For some parameter values in Table 3 there are large discrepancies between the
values for flow rates predicted by the CFD and those which follow from the theoretical
analysis in which the flow is taken to be between two parallel flat plates. Here the speeds
where chosen to be within the range used in Kordonski and Gorodkin (1995). However in
earlier work (Atkin et. al. (1994), Ellam, Atkin and Bullough (2000), Atkin, Ellam and
Bullough (2000) and Bullough et. al (2001)) where higher speeds are used very good
agreement is found between this theory and the results from CFD. This indicates that care
has to be taken when replacing the cylindrical geometry by two parallel flat plates.

Finally, in all the analysis presented the excitation field is assumed to be constant
across the gap. The effect of a non-uniform field distribution can be included in both
theoretical analysis and CFD and further work is in progress.
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Figure 1: Schematic of seal
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Figure 2: CFD results, velocity profiles for case no. 1 on 10 mm shaft. Circ. (left) and Axial (right).
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Figure 3: Effect of each parameter on average flow rate using CFD simulation results.
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HEAT TRANSFER FROM AN ESF RADIAL PLATE CLUTCH SURFACE
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The aim of this work was to investigate the rate of heat transfer from a radial plate\clutch surface.
The paper presents experimental results over a range of angular speeds (§2) and fluid gap widths (h),
which are then favourably compared to analytical and Computational Fluid Dynamics (CFD)
solutions for the same geometry and operating conditions. Verifying the heat transfer capabilities of
the latter goes some way towards validating the CFD package as a viable virtual prototyping method.
The results allow a procedure to be established for the selection of a good Electro-Structured Fluid
(ESF) clutch design.

Keywords: CFD, ERF, MRS, Heat Transfer

INTRODUCTION

An ESF clutch operates in the shear mode thereby requiring an adequate heat dissipation
capability to keep the ESF at an acceptable operating temperature. This is particularly so
when continually switching in order to achieve an electronically controlled variable
configuration of output motion (Bullough, 2001a). In some instances multi-plate clutches
will be required to provide a large output torque in a small, low inertia device. It follows
that sooner or later a means of predicting the temperature within, and heat transfer
through, a device of complex geometry will be required and that the non-linear properties
of the ERF/MRS will give rise to a problem best handled by CFD in steady and unsteady
non-isothermal situations.

For the same outer radius dimension both radial and concentric, dual channel, clutch
type designs offer similar control ratio (7/7,) and acceleration (7/7) capabilities. It may
well be, therefore, that the capability for heat transfer dictates the best type of design.

In a previous work (Smyth, Tan and Bullough, 1994), the heat transfer from the
surface of a concentric clutch was modelled and subsequent developments (Bullough,
2001b) have validated the technique. This model was latterly tested by running the outer
rotor at speed whilst holding the inner stationary and measuring the temperature on the
outer surface by a remote infra red thermometer. The use of a well known viscous fluid
allowed the slipping torque and hence the work input £2T to be calculated. A balance
between the heat transfer from essentially the rotating outer case would equal the
calculated work rate when the clutch reached equilibrium test conditions.

In the present work, much the same approach is followed but, this time on a radial
plate clutch in which the upper plate is driven and the lower plate is held stationary and
thermally insulated. Hence the heat transferred through the upper plate is equal to the
power input £27. Unlike the predominately uniform shear field in the large diameter,
small fluid gap concentric clutch the shear rate in the radial device varies with radius.
This situation invites concern with respect to temperature gradients across and along the
oil film and plates.
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RADIAL CLUTCH DESCRIPTION

The clutch comprises two mild steel (EN3) radial discs (85 mm dia., ~ 10 mm thick). The
upper disc is attached to a motor by a solid shaft of 20 mm dia. (shaft insulation
36 mm dia. x 60 mm) of the same material. Gauge blocks were used to set a gap between
the discs, which contains hydrautic oil of known fluid properties (Shell Tellus 37).

The bottom plate was held stationary and was thermally insulated by the use of
Tufnol and Kao Wool so that a zero heat flux boundary condition could be assumed. Five
k-type thermocouples are implanted approximately 1.0 mm away from the wetted surface,
located at radial positions of 0, 10, 20, 30 and 40 mm. To allow for a 1-d analysis the
outer edges of the device and driving shaft are also insulated. Refer to Figure 1.

To determine the amount of heat that is conducted up though the shaft, in the CFD
model, it is important to accurately know the temperature 7. The accuracy of an infer
red camera which could remotely measure this temperature was deemed inadequate for
this situation. The temperature 7, was therefore inferred from the near air temperature.
To calculate the amount of heat convected from the disc surface the bulk air temperature
T, was also measured.

EXPERIMENTAL METHOD

All thermocouples were first checked to be working correctly and calibrated. The gap size
was set at either 0.5, 0.75 or 1.0 mm. Temperature readings were taken and then the
motor was set to rotate at 500, 750, or 1000 rpm. Temperature readings were then taken
every twenty minutes or so until the temperatures had reached their steady state values.
The readings consisted of the five lower plate temperatures 7}, two readings above the
plate allowing an average T, to be determined and the near air temperature 7,

THEORETICAL MODEL AND SOLUTION OF HEAT TRANSFER IN THE
EXPERIMENTAL DEVICE

Full details of the theoretical analysis can be found in the joint paper (Oravsky 2001).
Only the rate of steady state heat transfer at constant rotational speed is considered.
Insulation on circumferential surfaces allows 1-d heat transfer to be assumed.
Furthermore, it is assumed that all mentioned temperatures are uniform in the radial
direction. The fluid is taken to be Newtonian with viscosity dependent on the temperature
(T2+T2).

Frictional tangential forces in the fluid generate an amount of heat equal to 72 As a
result, heat is transferred through the oil, upper disc and shaft (via conduction). A
proportion of the heat is transferred from the rotating disc into the surrounding air via
convection, at a rate approximated by the Newton’s law of cooling. The heat transfer
coefficient for convection was given using a semi-empirical relation expressed through
averaged Nusselt, Nir, Reynolds, Re, and Prandtl, Pr, numbers (Oravsky, 2001) &
(Wong, 1997).

Two methods can be used to determine QM. The first (I model see joint paper

(Oravsky, 2001), involves assuming that at a certain vertical position on the shaft the
temperature reaches T, the experimental data is then used to determine an empirical
coefficient for the shaft (W/m’°C) so that the theoretical temperatures match
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experimental ones. This method also absorbs other uncertainties that may be present in
the experimental set-up such as heat escaping through the insulated walls.

The second method (2™ model) assumes that the temperature of the air 7, at a
location very close to the shaft at known length above the disc surface L, is equal to the
true temperature in the shaft at this location. This allows the conductivity equation to be
applied for heat rate through the shaft. The geometry of the apparatus was such that very
little heat could be convected from the shaft (small surface area) due to the attached motor
and supporting metal structure providing a large heat sink and consequently a more
favourable means for the heat to travel.

It was found that the /* model gives temperature results closer to experimental ones
but the 2™ model is very much less subjective and provides a fairer means for verification
of the CFD method. In both cases mutual comparison of the heat flows provides a system
of equations defining the three unknown temperatures 7, 7; and 7,. The shaft 7., and
surrounding air T, temperatures are known allowing the theoretical 7; to be determined
using a simple iterative procedure.

CFD ANALYSIS (SOFTWARE PACKAGE FLUENTS)

The CFD model was set up in comparison to the 2™ theoretical model. The exact
geometry of the experimental device was used to produce an axis-symmetric grid required
for the finite volume solution procedure. Table 1 outlines which relevant equations are
applied and the boundary conditions that were used to close the system of equations. CFD
applies the full set of Navier-Stokes and energy equations, thereby avoiding the
requirement for the semi-empirical heat transfer coefficient for convection as used in
theoretical analysis in the above two models.

Table 1: CFD parameters for analysis on FluentS

Flow The flow of the oil and air is set to be laminar. Viscous heating terms are
included. Furthermore, buoyancy terms in the air region are included.

Air(p,u,k) | Ideal gas, properties as a function of cell temp..

Qil(,k) Newtonian (Tellus 37), properties as a function of cell temp. (Oravsky,
2001)

Boundary | Insulated walls are set to have zero heat flux. Rotating parts are set to the
Condition | correct angular velocity. The shaft end is set to temp. 7,,. The boundary of
the air region is placed at the vertical position equal to the 7, location.
This boundary is then set to be equal to atmospheric pressure and

temp. 7,

Convergence was verified by making sure that the residual history of each equation
was sufficiently low and that the net heat flux equated to 72 Grid sufficiently was met
using a built in grid adaptation facility, which increases the grid density in regions where
the derivatives of variables are high. The temperature 7, and resulting heat fluxes though
the various parts can then recorded.
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RESULTS: EXPERIMENTAL VS. CFD VS. NUMERICAL

The experimental and CFD data verified that the assumption of uniform radial
temperature distribution in all metal and fluid parts was correct. No variation on the lower
plate was recorded in all experiments. The CFD analysis clearly showed that although
there is a radial distribution in shear rate the high conductivity of the metal parts
distributes the temperature out evenly. The essential results are shown in Table 2.

Table 2: Results: measured experimental temperatures and resulting theoretical predictions
Experimental Temp. Lower Plate Temp. (T_i) Q shQ s
difference (T - T_exp.) | Theory
Gap Shaft Air theory model model
Width ; Speed T sh T o Exp. one two CFD two CFD
{mm] { [rpm] ] [*C] [*C] ['C] ]

0.5 500 249 254 28.1 0.3 21 1.8 39 3.1
245 248 28.3 0.5 1.5 1.2 37 2.9
750 258 259 31.8 2.2 31 24 29 22
258 26.0 31.7 0.0 3.2 25 2.9 2.2
1000 26.5 26.3 358 0.7 3.5 25 24 1.9
265 26.4 35.6 0.4 3.7 2.7 24 1.9
0.75 500 26.6 21.0 29.1 0.1 1.3 0.8 3.9 3.1
26.6 27.0 29.2 0.1 1.2 0.7 39 3.1
750 26.6 26.5 31.6 2.5 20 1.0 28 22
264 26.4 314 -0.3 2.1 1.1 2.8 32
1000 245 242 323 0.0 35 1.7 24 1.9
245 245 317 0.8 4.1 2.3 24 1.9
1.00 500 274 276 29.0 0.5 1.5 0.9 3.7 30
256 258 27.3 0.6 1.6 1.0 37 30
750 254 254 30.1 2.4 1.6 0.3 28 22
27.1 272 31.0 0.2 2.1 0.8 29 23
1000 254 253 32.0 0.3 3.0 1.0 24 1.9
253 252 319 0.3 3.0 0.9 24 1.9

Theory /st model gives the closest predictions to the experiments. This is because it
allows other uncertainties to be absorbed by virtue of the empirical coefficient for the
shaft. Theory 2™ model gives results that are rather high (4.1 °C in one case). The CFD
results fare better, the reason for which is discussed below.

DISCUSSION

The semi-empirical expression used to calculate the heat transfer coefficient for the heat
flow rate into the air from a complete circular rotating disc does not take into account
shaft/wall constraints that are present in the experimental set up (see Figure 1). It was
however hypothesized (Oravsky, 2001) that the expression would remain true if the area
for convection were based on the disc area minus the shaft insulation area. In light of the
results, it was thought prudent to check whether the expression was valid. In a CFD
simulation, a hypothetical disc was set rotate in a large region of air (atmosphere), an
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amount of heat flux was set to leave the disc and enter the atmosphere. Setting a far field
temperature T closes the system of governing equations and allows 7, to be determined.
Over a range of parameters, remarkably close coloration between theory and CFD was
found. A shaft and wall constraint as seen in the experimental set-up was then introduced.
It can be seen from Figure 2, which shows the results of this case, that the semi-empirical
expression over predicts the surface temperature. This would explain why the CFD results
are closer to the experimental data than the comparable 2™ theoretical model, and why

CFD gives lower values of QM/ 0,.

For theory 2™ model and CFD all the temperatures predicted read high. This is due to
the theoretical models being ideally insulated on the lower and outer parts whereas
experimentally it was not. So that a 1-d assumption could be used in the theoretical
analysis most of the apparatus was insulated. As a result the area assumed ideally
insulated is relatively large in comparison to the non-ideally insulated surfaces. Although
the conductivity of the insulating materials is low, the large surface could give rise to a
significant heat loss though insulating parts. This fact along with the difficulty in
accurately setting a uniform gap would explain the 0.3-2.7 °C error in the CFD results. In
this case it is important to note the necessary inclusion of the driving shaft: it carries away
a significant proportion of the generated heat.

It can be noted from Table 2 that for a gap width of 0.5 mm the shaft temperature
increases with speed. The opposite effect is observed for 0.75 & 1.0 mm gap widths. The
reason for this is likely to be related to the ratio of power being generated to that being
able to leave though the disc. An increase in £2which allows greater heat convection from
the disc may not be sufficient to counter the increase in viscous heat generation. So for a
small gap width in which the heat generation is larger the shaft may heat up as the speed
is increased. Also the final shaft temperature is dependent on the outside air temperature
T, that can be different for each experiment.

COMPARISON OF CLUTCH DESIGNS

An attempt is now made to compare two different clutch designs. In order to produce a
competitive commercial device it is important to consider acceleration (7;,./7) and
control ration (7ix./T.) as well as T, A variable speed driven rotor is therefore likely to
be made of a lightweight material, whereas the outer casing that rotates at constant speed
is likely to consist of a heavier highly conducting material to maximize heat dissipation
from the device and help maintain run up speed on reduced regulation.

Dual channel, horizontal axis radial and concentric clutch designs are compared. The
geometries are shown Figure 3. It is likely that the outer casing and consequent surface
temperature 7, would be approximately uniform. Shafts will have similar effects in each
design and are so therefore not included. Having chosen a mean radius, dimension z and
gap size h, the overall geometry of the radial clutch outer casing (R, and L,) are known.
For set speed differences £2 fluid properties and air temperature 7, a uniform surface
temperature (7;) can be calculated. It is assumed that,

Q=(T,-T.XAh + Ah,) (1)

where h, and 4, are the heat transfer coefficients for dissipation of heat by convection in
the radial and axial directions. Such values are determined by the condition of the air at
the outer clutch surface and are therefore independent of any yield stress values. These
are calculated using the following semi-empirical formulas (Wong, 1977):
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Nu=0.4(Re’+ Gr)m Gr = p’BgR’n"* AB/u’ ¥))

Nu=0. 18[(0.5Re'”+ Gr)Pr]'”” Gr = p’BgD’ A8 /u’ 3)

The Bingham plastic equation is used to determine the value of torque 7. A further
parameter, length of the electrode L,, is required for the concentric clutch. This length
was chosen to make 7, equal to that of the radial clutch. The amount of T,,,/7 for the
same parameters giving the same 7, can now be compared as shown in Figure 4.

1t is observed that the plastic viscosity plays a noticeable but relatively insignificant
role when compared to the effects of fluid yield shear stress. It can be seen that the radial
disc design gives the better results even though the concentric design was approximately
twice as long in axial dimension. In all cases, T;,..i/7, was approximately the same. Also
coefficients h, & h, were similar.

It must be noted that L, need not be constrained to being relatively small. Increasing
this dimension has no direct effect on 7,/ but would give and improved 7;,,,;. However,
the inner electrode being of a low conducting material will make it difficult to dissipate
heat from the inner channel. To get good Ty7 a commercial device is likely to be of the
form length > radius resulting in a large surface area for radial heat flow. A multi-plate
radial clutch occupying similar dimensions would therefore be better since it would allow
radial flow. Furthermore, a radial design does not exhibit plug behaviour over its full
range of operation generally leading to lower viscous heating.

CONCLUSION

As is evident from comparisons of experimental and theoretical data, of a viscous clutch
device set-up, the correct magnitudes of heat transfer can be predicted effectively. For
more complex set-ups, such as multi plate clutches, in an unsteady operation, CFD
promises to be a simple and important tool for heat transfer evaluation purposes.

In the experimental study, the viscous medium was Newtonian oil. Heat transfer in
non-Newtonian fluids is a complex subject. However, it is proposed that modelling heat
transfer in ESFs need not be that complicated due to the following three reasons:

e Most ESF devices operate with ESF in a very narrow channel for which the
distribution of temperature across the gap width is likely to be nominal as
indicated in our simulations.

e Using CFD the most important variable (yield stress) can be easily entered as a
function of temperature, excitation and shear rate.

e Furthermore, correctly determined non-Newtonian velocity profiles will give the
rate of heat generation on cell-by-cell basis.

Should the radial model prove effective then through flow could be used to cool the
sheared fluid automatically, i.e. by a centrifugal pump type action. The range of cooling
flow required without disrupting the electrically applied stress has already been
established (Ellam, Atkin and Bullough, 2000).
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FIGURES

Figure 1: Schematic of experimental apparatus
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Figure 3: Clutch models
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