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This thesis considers some aspects of the problem of finding efficient and optimal
designs when observations are correlated. The two main areas that are examined are

nested row-column (NRC) designs and early generation variety trials (EGVTs).

In NRC designs, the experimental area is divided into b blocks, and each block is
divided into p, rows and p, columns (blocks of size p, x p,). Here, optimal NRC

designs, which can be constructed from semi-balanced arrays, are obtained under the

assumption that within-block observations are correlated.

For a stationary reflection symmetric dependence structure, optimal NRC designs
with blocks of size 2x 2 are obtained for models with fixed block effects, which
may also include row and/or column effects. It is shown that the efficiency of binary

designs can be very low for some correlation values.

Also, optimal NRC designs for blocks of size 3x3 and p,x2 (p, 23)are
determined. The optimality region for blocks of size p, x p, (p,, p, 2 2) under the

AR(1)*AR(1) process is also specified. It is shown that optimal NRC designs are
highly specific to the correlation values.

The purpose of EGVTs is to select top performing new crop varieties for further
testing. Recently there has been much interest in the spatial analysis of EGVTs, but
there has been little work on the design of efficient EGVTs when a spatial analysis is
intended.

Several intuitively simple criteria to assess the efficiency of designs for EGVTs are
examined, and simulation studies suggest that some of these criteria are well

associated with probabilities of selecting the highest yielding new varieties.

Also, the efficiency and robustness of some systematic designs for EGVTs is
investigated over several models and dependence structures. For the examples
considered, it is shown that designs in which the plots containing control varieties are

at least a knight’s move apart are robust.



Acknowledgements

I am greatly indebted to Richard Martin for his inspiration, research direction
and guidance in the preparation of this thesis.

I am grateful to John Eccleston, Brian Cullis and Barbara Chan for many
helpful discussions, and to the support provided by the Engineering and

Physical Sciences Research Council.

I am especially grateful to Daxa Jobanputra for the use of her PC when mine
stopped working in the week before submitting this thesis.

Also, I express my special appreciation to my parents for their love and

encouragement.

iii



CONTENTS

List of Tables xi
List of Figures xiy
1 Introduction 1
Glossary S
2 Background material 7
2.1 Blocking 8
22 Modelling 8
2.3  Dependence structures 10
2.3.1 Symmetries in the dependence Structure ...........ceeeevereverereervrceernnenens 11
2.3.2  One-dimensional ProCESSES........ueevrerermeresrerrereecsereeseeseesesessesensenns 14
2.3.21 Nearest neighbour and moving average processes...........cceveeeen. 15

2.3.2.2  AULOTEZTESSIVE PTOCESSES ...ccverrreerrurrrureracsssrerrversessrersssasseseresses 16

2.3.2.3 Harmonic correlation Structure..........ccoceeeercrereereecneesereensensenes 17

2.3.24 The Cullis-Gleeson model..............cccovvrmrvceervererreeerreerrrrerereernns 18

2.3.3  Some two-dimensional ProCesses...........ccvevuverrvrersrerereeerenesseessrnerseess 18
2.3.3.1 The AR(1)*AR(1) PTOCESS......cceecveererrerrrerenerenerrecnernneeresnsesasens 18

2.3.3.2 The NNI*NNI PrOCESS.....cccctvrrreierrrerssreessirnesssssecsssesssssssssesneses 19

2.3.3.3 Conditional autoregressive PrOCESSeS..........cervuermreeevecrareeererseserees 19

2.4  Treatment effect estimation 23
2.4.1 Generalised least squares eStIMAtion...........cccovveeireeerirerserereresveserenene 23
2,42 Ordinary least squares eStMAtION...........cceeceeerererrecerierssrecrsuersrerensasess 24

2.43 Expectation and Variance of 7 ..........cccccevvreeeeeerevererierensenenssseesseraennes 25
2.43.1 Variance of 7 under gls..........cooceveverveireererreernisnenesseeseeseseressens 25

2.43.2 Variance of T under ols...........ccouevevrrerrereennieneenenieesensesneseinns 26

2.4.4 Estimability and connectedness ...........ccceveeeveeceerecererruneerernercecsneenes 26

2.4.5 Estimation and prediction under a mixed effects model...................... 27

2.5  Optimality and efficiency 28
2.5.1 The @ -Value..eecrrrents st en s 28

iv



252
253
254
255
25.6

2.6 Simplification of the C-matrix
2.7  The form of X;"WX;

3 Findi
3.1 Intuitively appealing designs

3.1.1

Universal optimality .........cccoviiiiniiniiiiciccee e
Weak universal optimality ........cccccoveeercrrrreerncceieicrreereee vt
Efficiency bounds..........cocceerirerireecnniirntecrirnenresnessneseneineseeeessnees

ng optimal and efficient designs.

Neighbour balance..........cccceveeerreeseeniereerirece e cnesee e

3.1.1.1 Directional or non-directional neighbour balance........................

3.1.1.2 Distinct pairs only or like pairs included ..........cccocevverrecerennnnne.
3113 Circular bOCKS......coceieieceiicrerectecn e rae e reseeenesn e nes
3.1.1.4 Higher level neighbours...........cccorniriinniinnninricnnccninennns

3.1.2

3.2  C-matrix close to complete symmetry

3.3  Algorithmic methods

4 Background material for NRC designs
4.1  NRC design model

4.2

4.3

5 Some recent results on nested row-column designs

5.1 Nested row-column designs for uncorrelated errors

5.1.1
5.1.2
5.1.3
5.14
5.2
521

POSItIONAl DALANCE. ....eeveeieeiieeieeeeiicceeeeeeee s seereereeesse e e seessasnesessnnns

Simplifications to B

Q" for models I to IV

Singh & DEY (1979) ....eneeiiiiieeereecsnecrerereseeessreseseessesresnessesas
Ipinyomi & John (1985) .......cocirinreciiieeeeerereerree e eseetee e eeseeereenns
Bagchi ef al. (1990).......ccovviiiiiricririeriennieecsnensenssaesnnesnesseseessananne
Leeming (1997)..ccciriiiiiiicninneeccssensseeeensnnessessesssesssesasessesenns

One-dimensional designs for correlated errors
Kiefer & Wynn (1981)....cccciiiuiiniiiniiiiieneeerinesresee s s s csevsenan

522 KUNETE (19872) coremrmreermreneeeenneeeeeeseessesseossesereesseressseesmssessessssssmsssens

37

37
38
38
38
39
39
40
40
42

42

47
47



52.3  ChENE (1988).c..omonicveeiomscenesssnscesssssssssssssssansssssssssssssssssessessmssenans 60

5.2.4 Martin & Eccleston (1991) ....cooceoeeeeiirrrnneireccenrrreeseerssscessesscnsesenens 63
5.2.4.1 Ordinary least squares results.......ccooceeerenirenriccnninnnneccsnssnnssenes 65
5.2.42 Generalised least sqUares resuls ......ccecurerssenssnsssnnsecssressensasesnasens 67

5.2.5  Martin (1998) .cccccvmriinseriserescransssnissesssesssssssessasssssssssossassassssssasessassns 68
5.2.5.1 Generalised least squares results for general K....c.oceevevuevurucncnns 73
5.2.5.2 Ordinary least squares results for general K......ccccvvrverisiscesnnnnns 75
5.2.5.3 Optimal types for Small K.....cccccvervrcinsenicnsnissiessnnssenisessansnesanenns 75
5.2.5.4  DIiSCUSSION ceversrersnissnnssrnsssisssnsssesseccssissasssecsonsssesssasssnssassssossassnesans 77

53 Two-dimensional designs for correlated errors 77

5.3.1 Martin & Eccleston (1993) ....cocccinvincrinninimninsscnnanionscnissssissssesssens 78
5.3.1.1 Ordinary least squares results......cc.cceceerurerncssinseccsesssissnessenssccnnns 81
5.3.1.2 Generalised least SqUAres reSUltS .....ccceeereeercnversercrssesaracssnsnacsessones 82

5.3.2 Uddin & Morgan (1997a) .....ccecurisncssnenssaserssrsssseessnsssessssessonsssncsnses 83
5.3.2.1 Blocks of size 2x2 under model L.......cccevererrrenisnnsnsnisunncsissenans 84
5.3.2.2 Results for the AR(1)*AR(1) ProCess......ccoeeerereecrersaresesasssssossassss 84

5.3.2.2.1 Optimal designs under model I 87
5.3.2.22 Optimal designs under model I 87
5.3.2.23 Optimal designs under model IV 89
5.3.2.2.4 Optimal designs under model Il 90
5.3.2.3 Some corrections .......eeveeeranersearens .. 91
5.3.2.4  DiSCUSSION wecovrurerursursssscserarsssssnsnsssnssassrssassasssesnsessesssssasssssssassssnses 92

5.3.3 Uddin & Morgan (1997D) .....ccuvreiesnensnnnnnisnsnnsscsiesessissosesssssesssseses 92

5.3.4 Morgan & Uddin (1991).........c...... 95

5.3.5  Uddin (2000) ......coverrerssrssnssessoresnessessesesssssasanssssssssssssssssssssssssassasssssssss 96

6 Optimal nested row-column designs for blocks of size 2x2 under
dependence 97
6.1 Introduction and preliminaries 97

6.1.1  IntroducCtion....ccccscercereersersumsoneostessssssessesssncnisssssssessessasasassesssssassssees 97

6.1.2  Dependence StIUCLUTE .......cccceeeiriississersssessessatssstosssssssssssssssassasssesssasss 98

6.1.3 A mixed effects model with uncorrelated errors.......ccccecerveenercncerccances 100

6.1.4 Design CONSIIUCTION c..cevurcuerrsvesrssssssssssssssrcssisssssnssssssssssssenssessossasasss 102

6.2 Generalised least squares estimation 106




6.2.1 Optixxial designs for model IV under gls........ccoooeiiiivimcnicicciccnnnnae 106
6.2.2 Optimal designs for model T under gls.......cccccoeveieiicciiiinincnncenns 111
6.2.3 Optimal designs for model IIT under gls........ooveeereerivienennnninnnne. 112
6.3  Ordinary least squares estimation 112
6.3.1 Optimal designs for model IV under ols........cccceoeervmnsvruenicvincnsnennns 112
6.3.2 Optimal designs for model H under ols.......cccccceevurvreinernennnneennne 116
6.4  Discussion 118
7  Optimal nested row-column designs for blocks of size 3x2 under
dependence 120
7.1 Introduction 120
7.2  Dependence structure 121
7.3  Types 123
7.4  Elements of Q° 132
7.5  Optimal designs 134
7.5.1 Optimality 0f type 117......co o eieeieerreercetermeeeen e eae e seossrensens 139
7.5.2  OpHMAlity OF tyPe 13......ouuueumerreesesesesressesssssessssssssssssnssssessesmesssasnees 143
7.5.3  Optimality Of tyPe 18.......ouuemmeereeseceeseeseinsessessssosessssssessessesssssssssens 144
7.5.4 Optimality 0f type 20........ooiicieeeeeeetrecrieesssserecsnsseessreersreressssases 148
7.5.5 Optimality of type 60.......cccervurrirrerreecerercreeceree e e e esrer e seessvnneses 150
7.5.6  OPHMANLY OF EYPE 67 eerrneeereereereeeeeeeseseesseeeesesseessessenseesessssassnssass 151
7.5.7 Plots and description of opﬁmaﬁty TEZIONS ...ooonrrersrecnccncrersesssisneenns 153
7.5.8 Optimality results for the AR(1)*AR(1) Process..........ceveeeeecrereaccent 154
7.5.9  DISCUSSION ......ovieeiririntiiitc et st tsssesteses b essssssssbasnessesssane 158
8 Optimality results for the AR(1)*AR(1) process 160
8.1 Introduction 160
8.2  Blocks of size p, x p, 160
8.2.1 Elements of £\ .....omiiieeeceeercesieneetstsenenasasesessensasaseeresasanans 164
8.2.2 Optimality of the binary type......ccoovvireeiiiiiiicnncniiennciesane 168
8.3  Blocks of size p, x2 176
8.3.1 Model IV .. ettt eecinsnirs st csssac e st e e ssneeessanes s snnes 176
8.3.1.1 When p, 20 and p, <O ..o 176

vii



8.3.1.2 When p, <0 and p, 20 ..ccoiiiiiiiiiiciimrecrnereenreeeree e reresne e 178

8.3.2 Model IML......cociiiiriiiiiiiriniir it etesssstssrees e et e s e e e e e e sanenaeeas 185
8.3.2.1 Elements of £ Q" .vviriiiieeeeieeeereeeetenecsiscesiensses et seseensesens 185
8.3.2.2 Optimality results .....cccoveiiiiccicriiinininrcneniiisieiertecae e esnereseeseees 187

8.4  Blocks of size 3x3 193

841 When p,,0, 20 ittt 195

842 When p,20 and p, <O .....oeevrieiiiiirrintenete e 205

843 When p, <0 and p, 20 .ccrrereeeiiiirtecceesesee e 213

844 When p,,0, O ..ttt 213

8.5  Discussion 218

9 Background material for early generation variety trial designs.......... 217
9.1 Introduction 217
9.1.1 Spatial analyses of variety trials.........ccccoceververnenrtrnerreneneereenreceneees 218
9.1.2 Designs for unreplicated trials ..........ccocercerernrievecccrnieneecrennnnenresaneens 223

9.2 Models, estimators, predictors and criteria 229

9.2.1 Models 1, 2 and 3: Estimation and prediction ..........cccccceecueereererreenne 232
0.2 1.1 Model L.ttt sesesessesssaesesessesasaesenes 232
9.2.1.2 Model 2 ...ttt s s stsn s s nes 233
9.2.1.3 Model 3 ...ttt ssre e 237

0.2.2  EffiCiency Criteria.....ccccecverrereerereeerenresveereesresseresssnsseseesnessesseseessenns 238

9.3  Algorithms to obtain efficient EGVTs 241

9.3.1 Speeding up the search algorithms.........c.ccceceeeeverrevrrrrrerreeeeerenene :243

10 Simple criteria to compare EGVT designs 248
10.1 Introduction 248
10.2 Simulation methodology 251
10.3 Simulation results 255

10.3.1 Preliminary study —on a 4x4 array with c=2..........c.ooeveeverrrrrennn. 255

10.3.2 Preliminary studies —on a 10x10 array with ¢=2 ............ccueeerneee. 258

10.3.3 Simulation study —~on a 20x8 array with c=2 .....ccceccvevevrercrieenne 260

10.3.4 Simulation study —on a 20x 8 array with ¢=35 ........ccovvvvverrrieereneen. 266

viii



10.4 Discussion

11 Efficiency of some systematic EGVT designs

11.1 Introduction

11.2 Some systematic designs for Example 11.1

11.2.1 Example 11.1 undermodel 1 ......c.ococimmniiivvcincicernecncceenee
11.2.1.1 Estimated selection probabilities.........c.cceccerverrerrerreecreereerenenes

11.2.1.2 An examination of the A, -efficiencies for D; to D3 under

11141+ L= 18 OO SO U OO PRSPPI
11.2.2 Example 11.1 undermodel 2 .........cceormrirrireeicreeecerercenee s
11.2.2.1 Estimated selection probabilities.........cccccrrererrcrerveererseerccreeees

11.2.2.2 An examination of the A, -efficiencies for D; to Di3 under

11.3 Systematic designs for Example 11.2

11.3.1 Example 11.2 undermodel ]l ........cccooireinnireiinenireeeecrneeciccnne
11.3.2 Example 11.2 undermodel 3 ..........cceeemmrreereereeeeceeeercceeeeeees

11.4 Discussion

12 Summary and Conclusions

12.1 NRC designs

12.2 EGVT designs

Appendix 1 - Some general results

Al.l Frequently used vectors and matrices

Al.2 Generalised Inverses

Al.3 Kronecker Products

Al.4 Toeplitz and centro-symmetric matrices

AlS Inverse of a partitioned matrix

Al.6 Autoregressive integrated moving-average process

Al.7 Balanced block designs

Al.8 Positive definite and non-negative definite matrices

Appendix 2 - Additional material to chapters 3 to 7

ix



section 3.3 326
A2.2 Proof for part of the optimality result in section 6.2.1....ccveeeccssscescsens328
A2.3 Elementsof Q" for the separable process in chapter 7 ....cecressssceess 328
A2.4 Inadmissible types from Table 7.1 331
A2.5 Proof of Corollary 7.4 334
A2.6 Proof of Theorem 7.5 335
A2.7 Proof of Theorem 7.6 339
A28 Proof of Theorem 7.7 351
A2.9 Proof of Theorem 7.8 360
A2.10 Proof of Theorem 7.9 363
Appendix 3 Additional material for chapters 9 to 11 365
A3.1 Equivalent expressions for the BLUEs and BLUPs for model 2 .......365
A3.2 Expressions for the sub-matrices of C;' rrern366
A3.3 Derivation of var(z,), var(¥, - r,) and cov(Z,,7, —z,) under
model 2 369
A3.4 Simulating correlated values 372
A3.5 Best designs found for Example 11.1 under model 1 373
A3.6 Best designs found for Example 11.1 under model 2 374
A3.7 Best designs found for Example 11.2 under model 1 378
A3.8 Best designs féund for Example 11.2 under model 3 381

Upper bound on the number of different designs for the example in

References 385




List of Tables

Table 3.1

Table 4.1
Table 5.1

Table 5.2

Table 5.3
Table 5.4

Table 6.1

Table 6.2

Table 6.3

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 8.1
Table 8.2

Table 8.3

Table 8.4

Table 8.5

Table 8.6

Upper bound on the number of different designs in a complete

enumeration for a complete block design with b blocks of size k........ 44
Models TtO IV ...rriierecccneerirerectie et ea e e sssa e e s beee s 49
List of types and expressions for ¢, fork=3 ....ccccccoevvnvrninrinnrenne. 72
List of types and expressions for ¢, fork=4..............ccceevevrevvernnennne 72
List of types fOr K =6 ....ocoueiircceeiiiiitiiri e 72
T'T, for cases (I’) and (") ccovereerermsmniesinenneec et 91
List of types and expressions for ¢, for blocks of size 2x 2 under
reflection SYMIMELTY......cciecviieviriireericere e e e seseresesarenssresesssneesaes 104
List of types, ¢ and c., ../ c;. for blocks of size 2x 2 under
reflection symmetry, model IV and ols.........ccceeceeeecienvviennvncnnnneen. 113
List of types, ¢ . and c_., ./c2. for blocks of size 2x 2 under
reflection symmetry, model IT and ols........cccernreerircirerenrcereeerenne 117
List of types and expressions for ¢, , for blocks of size 3x 2 under
reflection SYMmMELTY ......ccuvervrirerrereeeierereenieeeseeesnesnsaeranesanersnnnonns 127
For blocks of size 3x 2 under a separable dependence structure, model
IV and gls, type e is equivalent to type 117 when w,, =0 ................ 142

For blocks of size 3 x2 under a separable dependence structure, model
IV and gls: optimality conditions for type 67, where type 67 is better

Hhan BYPe €.ttt et e asesn e e eesree e 152
For blocks of size 3x 2 under the AR(1)*AR(1) process, model IV and
gls: optimality conditions for type 117..........cvvvererercnervecreecresacenees 156
Pr AN Dy ittt ettt s seeaessasasasesene 175

For blocks of size p, x2 under the AR(1)*AR(1) process, model IV
and gls: optimal column-types for p, = —p, cccccvrervreccrincrcrcereeierenee 183

For blocks of size p, x 2 under the AR(1)*AR(1) process, model III
and gls: element w, , of the matrix ¥, for j, odd (i=12,.,7).....186

List of types for blocks of size 3x 2 under the AR(1)*AR(1) process
(p,20), model T and gls.......ccceerrrviniriinnieiennccnenreeneenrcaeeees 189

List of all combinations of x, ; € {4,5,...,.8}, x,; € {0,1,3,6} and
Xags X6 € {01} oot 197

List of valid types for blocks of size 3x3 under the AR(1)*AR(1)
process (2,,0, 20), model IV and gls.....cccoormverenevrcrenenreecrnrnnes 198

xi



Table 8.7

Table 8.8

Table 10.1

Table 10.2

Table 10.3

Table 10.4

Table 10.5

Table 10.6

Table 10.7

Table 10.8

Table 10.9

Table 10.10

Table 10.11

Table 10.12
Table 10.13

For blocks of size 3x3 under the AR(1)*AR(1) process, model I'V and

gls: condition for type 1 to be betterthan type e...............oceuvennenneee. 203
List of types for blocks of size 3x3 under the AR(1)*AR(1) process,
(p,20, p,<0),model IV and gls.......cooerrivieniiiinrnerennencneenes 208

Minimum, median and maximum of 7,,, and @,,, over 500 designs

for the model 1 study, and over 248 designs for the model 2 study in
SECtioN 10.3.2 ...uiiiiiiriiiinicntcn e reeseresene 258

Spearman rank correlation coefficients between 7, ,, and the A-, A _ -,
tr(C,""') )-, A, -and A_- values (i=1,2) for the simulation study in
SECHION 10.3.2 ..ot nesee o 259
Spearman rank correlation coefficients between @, , and the A-, A, -,
tr{C™)-, A,,- and A_- values (i =12) for the simulation study in
SECtiON 10.3.2 .evniniiircee e saesae e 260
Minimum, median and maximum of 7, ,, over 150 designs for the

simulation study in section 10.3.3.......cccceevuivvivnecrnirersvenneensneorseesencne 262

Minimum, median and maximum of 7, ;, over 150 designs for the
simulation study in section 10.3.3.........ccccevervmrirrenrenenieeereeneneeneaeens 263

Spearman rank correlation coefficients betweenthe A_ -and A, -
values and 7, ;5 for the simulation study in section 10.3.3................ 265

Spearman rank correlation coefficients between the A -and A, -
values and 7, ,, , for o2 =4, 1, for the simulation study in section

10.3.3 ettt treerstreec e sae e sane e s ne e s s et e s snnre s nr e s s s an e ane sararees 266
Minimum, median and maximum of 7, ,s over 150 designs for the
simulation study in section 10.3.4........ccoverrvrrveerreesinmrevnecrevesreeenees 268

Minimum, median and maximum of 7, ,, over 150 designs for the
simulation study in section 10.3.4.......ccccveerevemeecverreererereirereeeeeeeene 268

Spearman rank correlation coefficients between the A, -and A, -
values and 7, , for o7 =4, 1, for the simulation study in section

L0.3.4 rrreeeecrecrre st ere e s s e s st sesa s s aat et e e an e s satenenatbetas 270
Spearman rank correlation coefficients between the A, - and A -

values and 7, ,;, for the simulation study in section 10.34................ 270
Values of p{)/ pyq under model 1 ..........covmviivrierrienrernnesensernenenenns 271

Minimum and maximum A_ - and A - values over the 3 subsets of
designs §, R and B, for ¥, and (p,, p,) =3, }), for the simulation
study in section 10.3.4........ccoceniviiirniinicrirecnennnenereessneseessasaens 273

xii



Table 11.1

Table 11.2
Table 11.3

Table 11.4
Table 11.5

Table 11.6
Table 11.7

Table 11.8
Table 11.9

Table 11.10
Table 11.11
Table 11.12

Table 11.13
Table 11.14

Table 11.15
Table 11.16
Table 11.17

Table 11.18
Table 11.19
Table 11.20

Case numbers and the ratio p{)/ p{) for the 10 combinations of the

settings of ¥ and ( p,, p,) for Example 11.1 under model 1............ 281
{1 -(A,, -efficiency)} x 10,000 for D; to D;3 under model 1.......... 282
{1 - (A, -efficiency)} x 10,000 for D; to Di3 under model 1........... 283
Best systematic designs from D; to Dy3 under model 1 ..................... 284
Estimated 7,,, (x1,000) for D; to D3 under model 1 .................... 286
Differences 7, ,0(Dy00) = T210(Daus) (i =12,3) under model 1......287

Categories for prior information on plot size ratio, approximate ranges
for p,/p,, and setting(s) of ( p, , p, ) (and corresponding cases) used to

determine if a design iS TODUSL ......covrereieriereirecerirnterceee e 290
Robustness of Dy to Di3 (for o7 >0) under model 1..............cunne.. 291
Case numbers for the 30 combinations of the settings of ¥, (p,, 2,)

and o2 formodels 2 and 3 .........cveveeeemrceeceeecescenenesenreaeeeeenens 292
{1-(A,,-efficiency)} x 10,000 for D; to D;3 under model 2.......... 293
{1- (A, -efficiency)} x 10,000 for D, to D;3 under model 2........... 296
Robustness of D; to D3 (for o7 >0) under model 2....................... 300
Best and near-best designs from D, to D3 under model 3................. 301
Robustness of D; to Dy3 (for o7 >0) under model 3............ccc........ 302
{1 -(A,,-efficiency)} x 10,000 for Di4to D2s under model 1......... 307
{1-(A,,-efficiency)} x 10,000 for Di4to D2s under model 1......... 308
Robustness of D4 to Dys (for a; > 0) under model 1 with respect to

A -effICIENCY ..o 309
{1 - (A, -efficiency)} x 10,000 for D4 to D;s under model 3......... 312
{1 - (A, -efficiency)} x 10,000 for D4 to D2s under model 3 ......... 313

Robustness of D4 to Dys (for o7 > 0) under model 3 with respect to
A -effiCIENCY ...t 314

xiii



List of Figures

Figure 2.1
Figure 2.2

Figure 2.3

Figure 3.1

Figure 3.2
Figure 5.1

Figure 6.1

Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Figure 7.1

Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Responses for Example 2.1.......cccoocnnniiiiniciiieninecerre e 9
ustration of the line representing u,, ,, for a block of size 5x5 ...... 12
Elements of A equal to u;; ,, for blocks of size 5x5 .......cccouvreeeence. 13

Lag ( g,, g, ) neighbours of the plot marked X for a block of size 5x 5

.......................................................................................................... 39
SBAs with the minimum Value 0f € c.coceeeervicrvvrcreennreerrreeeneecesneensness 41
A SEN design for ¢ =k =4 (columns are blocks) with the minimum

VAIUE OF ...ttt st et e s aerenesran e ssnra v seaesnteessaesrnesnsane 64

Valid parameter space of ( p,, p;, p,) for blocks of size 2x 2 under a

stationary reflection symmetric dependence structure........c..ccceueuueee 100
Optimality regions for blocks of size 2x 2 under reflection symmetry,
model IVand gls, for £ 24 .......oocevrvriiireccencccrrnenec e 107
Optimality regions for blocks of size 2x 2 under reflection symmetry,
model IV and gls, for £ =3 .......ccoiivirrerecceccienenrneree e see e 110
Optimality regions for blocks of size 2x 2 under reflection symmetry,
model IV and ols for £ 2 4 .....c.ovvivieiicnercrienncencsnesnrenesaesenennne 114
Optimality regions for blocks of size 2x 2 under reflection symmetry,
model IVand ols for £ =3 .......ccooirievecieircenenrereccenniescessesasennene 116
Optimality regions for blocks of size 3x 2 under a separable
dependence structure, model IV and gls, for p, = 0.9 .......ceccoueun. 136
Optimality regions for p, = —0.5 ...c.cccrervirvnievenrrcnsnneneessesnssnene 137
Optimality regions for P, = 0..cccocceieievernnnicrecereecrcreeneecrrreeens 137
Optimality regions for p, = 0.5 .....ccocvivciviiinncineccnens 138
Optimality regions for 0, =0.9......ccvrrevevenrnirenrncenrererierensisnsenns 138
Optimality regions for blocks of size 3x 2 under the AR(1)*AR(1)
process, model IV and gls........occoevieeinrevnecciceiecrereeceeeeeneenee e 155
For the AR(1)*AR(1) process under model IV and gls: optimality
region for binary type when p, = p, =4 ..ccocivniiciniiininrcnecnennns 171
For the AR(1)*AR(1) process under model IV and gls: optimality
region for binary type when p, = p, =10 ......cconvriniriinicnrnnnrennnae 172
Pairs of plots corresponding to w,,, W, ¢, W,,, W,, and w,, for blocks
OF SIZE 3X 2 coirievienerereieereeenerencsaninsestssneosasansessssesassssssosnsssasssssnssas 188
Optimality regions for blocks of size 3x 2 under the AR(1)*AR(1)
process, model ITL and gls......cccoccvviriinnininncnniicinerirerecrenenessessenens 191

Xiv



Figure 8.5

Figure 8.6

Figure 8.7

Figure 8.8

Figure 8.9

Figure 8.10

Figure 9.1
Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5

Figure 11.1
Figure 11.2

Pairs of plots corresponding to w,, w,;, w,; and w, ; for blocks of

BIZE 3X 3 curiiieeeeeeiee et eete ettt as e et s e ae s nessaes b e ereesetaeans 195
For blocks of size 3x3 under the AR(1)*AR(1) process, model IV and
gls: equivalent typesS tOtYPE 2. .ceeuiiicrere e e 196
For blocks of size 3x 3 under the AR(1)*AR(1) process, model IV and
gls: optimality regions for p,, 0, Z 0 ...cccevveevrrrrevricnreenreeneennen, 202
Pairs of plots corresponding to w,,, w, ;, w,; and w, ¢ for blocks of
S1ZE 3X 3 1revrereerrrerrereenieerentereenen e ses st sessen e e s aes e s e sesssasnesessesnerrastannans 205
For blocks of size 3x 3 under the AR(1)*AR(1) process, model IV and
gls: optimality regions for p, 20 and p, < 0....ccevevicrincnicinnnnene 212
Optimality regions for blocks of size 3x 3 under the AR(1)*AR(1)
process, model IV and gls........cccooueminininninnrieiernnereeereeeanee 214
Layout of long thin plots with short side of plots within rows........... 219
Plots of 7, ; againstthe A-, A -, A -, A -, tr(Cl‘"'" )- values, for the
simulation study in section 10.3.1.......c.ocevvivciecrnirvcnenineccienennenn, 257
Plots of 7, ,, against the A, - and A, - values for ¥,, (p,,p,) =
(4,3) and o2 =1, for the simulation study in section 10.3.3............. 264
Plots of 7, ,, against the A, -and A, - values for ¥,, (p,,p,) =

(3, #) and o? =1, for the simulation study in section 10.3.3............. 265
Plots of 7,,, against the A, - and A - values for \¥,, (p,,p,) =

(3, %) and o? =1, for the simulation study in section 10.3.4............. 270
A, -and A -inefficient designs for ¥, and (p,, p,)=%, P)........ 275
Systematic designs, D; to D3, for Example 11.1..........ooovinennn. 278
Some systematic designs for Example 11.2.......ccccovereerineenvennennnen. 303

Xv



1 Introduction

Efficient experimental designs are designs in which as much information as
possible is gained from a given amount of experimental material. The
experimental material consists of units called plots and each plot receives a
treatment. In an agricultural context, treatments may be varieties of wheat or
different pesticides. It is assumed here that the object of the experiment is the

comparison of treatments.

There are many methods to design efficient experiments. One of the main
techniques is that of blocking, where relatively homogeneous plots are
grouped together in blocks. Also, the choice of treatment contrast estimator
and the allocation of treatments to plots are usually very important

considerations.

Prior knowledge can often be used to select an estimator and blocking
structure which can lead to an efficient design. In this thesis, attention is
restricted to the allocation of treatments to plots in such a way that an efficient
design results, given that the blocking structure and estimator to be used in an

experiment have been determined using prior information.

Before the arrival of the computer, the simplicity of the analysis of
experiments was important. Therefore only standard situations with simple
models, such as experiments with equal block sizes and treatments of equal
status were usually considered. Under randomisation the treatments are
allocated to the plots at random, subject to the design structure. This means
that it becomes more reasonable to assume that observations are uncorrelated
and follow a Normal distribution, although randomisation implies that
observations are actually equally correlated within strata (blocking structures).
Under these assumptions, tables of efficient or optimal experimental designs



are usually available. Examples of such tables are in Fisher & Yates (1963),
John et al. (1972), John (1981) and Lamacroft & Hall (1982). More recently,
computer algorithms to find efficient (or near-optimal) designs when
observations are assumed to be uncorrelated have been given, for example, by
Paterson & Patterson (1983) and John & Whittaker (1993). Also, such
algorithms are used in the software package ALPHA+ (Williams & Talbot,
1993). However, rather than assuming observations to be uncorrelated,
advances in computing power have made it possible to fit realistic models that
take account of non-standard features, such as a postulated dependence
between the observations or unequal interest in comparisons between
treatments. For such situations tabulated optimal designs are usually not

available,

This thesis considers the problem of finding efficient and optimal designs
when observations are correlated. Recently there has been much interest in
this area. Martin (1996) provides a comprehensive review, outlining various
methods to find efficient designs under dependence. The two main areas that
are examined in this thesis are nested row-column designs and early

generation variety trials.

In nested row-column (NRC) designs, the experimental area is divided into
blocks, and each block is divided into rows and columns, which may represent
two blocking factors. These designs can be used to take account of possible
differences in the two blocking factors within each block. John & Williams
(1995, section 5.9) give an example of a NRC design for an agricultural
experiment, where the rows and columns might be used to control field
gradient and soil type, respectively, and the blocks represent different
locations at which the experiment is carried out. If it is assumed that the
experimental material consists of sets of spatial (i.e. two dimensional)
material, the rows and columns may be taken to represent the 2 dimensions of

the spatial arrangement, with the blocks being the sets (such as location or



batch) of the spatial material. An agricultural field trial is an obvious example
of a spatial application. Other examples, given by Martin (1996), are sheet

metal production and paper making.

There has been a great deal of work on finding optimal NRC designs when
errors are assumed to be uncorrelated and treatment contrasts are estimated
from comparisons made within all of blocks, rows and columns. Between
block, row or column information may also be taken in to account. Morgan
(1996) provides a review of optimal NRC designs when observations are

assumed to be uncorrelated.

If observations are assumed to be correlated, the dependence structure can be
modelled and then used to estimate the treatment contrasts. If the dependence
structure is adequately modelled this approach is likely to result in treatment
contrasts being estimated with greater precision. A number of recent papers
have addressed the problem of obtaining optimal and efficient block designs
when errors are assumed to be correlated. See, for example, Cheng (1988),
Martin & Eccleston (1991, 1993), Uddin & Morgan (19973, 1997b) and
Martin (1998). Further optimality results for NRC designs with correlated

errors are given in this thesis.

In addition to the results on NRC designs, early generation variety trials are
also considered. Many agricultural variety trials are carried out across the
world and their results are often of considerable economic importance. This
includes many variety selection programmes. At the early stages of a variety
selection programme there is often a large number of new varieties to be tested
with insufficient seed to allow within-site replication of the new varieties.
However, replicated standard varieties are included for comparative purposes.
These experiments are called early generation variety trials. The purpose of
these trials is to select top performers from the new varieties, to be further

tested in later stages of the programme.



Recently there has been much interest in the spatial analysis of agricultural
variety trials that take account of the inherent spatial dependence of adjoining
plots; see, for example, Besag & Kempton (1986), Gleeson & Cullis (1987),
Cullis & Gleeson (1989), Cullis et al. (1989), Cullis & Gleeson (1991),
Kempton et al. (1994), Grondona et al. (1996), Gilmour et al. (1997), Cullis et
al. (1998). However, little has been published on the design of efficient early
generation variety trials under spatial correlation. Indeed, Cullis et al. (1998)

recognise that this is an ‘important issue requiring attention’.

There is no commonly used simple criterion to assess the efficiency of early
generation variety trials. The efficacy of several intuitively simple criteria is
considered in chapter 10.  The experimental designs most frequently employed
for early generation variety trials have had the standard varieties
systematically distributed over the experimental area. The robustness of some

systematic designs is investigated in chapter 11.

Chapter 2 of the thesis provides some background material for designs under
dependence. Chapter 3 outlines various methods to find optimal and efficient
designs. Chapters 4 to 8 consider the NRC design problem, and early
generation variety trials are investigated in chapters 9 to 11. Chapter 12 brings
the thesis to a close with a discussion of the main conclusions and suggestions
for further research.



Glossary

The following is a list of abbreviations used in this thesis. A reference to the

section in which the corresponding definition can be found is also given.

. Defined
Abbreviation in section:
AD Augmented design. 9.1.2
AR(1)*AR(1) | Doubly geometric process. 2.3.3.1

Special case of AR(2) with
AR(2a) m =2n and n, =-n* for g <1. 3.2.3
Special case of AR(2) with
AR(Zb) m =n and n, =2n* for || < %. 323
Autoregressive process of order p,
AR(p) ARIMA(p.0,0). 2322
Autoregressive integrated moving-average
ARIMA(p,d.q) | process of autoregressive order p, moving Al.6
average order g and differencing d.
Autoregressive moving-average process,
ARMA ARIME.r(p,o,q). graveragep Al6
BIB design Balanced incomplete block design. Al.7
BIBRC design ?a{anced incomplete block row-column 5.1.1
esign.
BLUE Best linear unbiased estimator. 244
BLUP Best linear unbiased predictor. 245
BNRC design | Balanced nested row-column design. 513
CAR(1) Conditional autoregressive process of order 1. |2.3.3.3
CAR(2) Conditional autoregressive process of order 2. {2.3.3.3
CG(d) Cullis-Gleeson model of order d. 2324
EGVT Early generation variety trial. 9.1
gls Generalised least squares estimation. 24.1
HCS Harmonic correlation structure. 2.3.2.3
LV Linear variance model, CG(1). 2324
Moving-average process of order g,
MA(g) ARIMA(0,0.q). 23.2.1
MAD Modified augmented design 9.1.2
Separable structure with the NN1 process in -
NN1*NN1 both directions. 2.33.2
NNg Nearest neighbour process of order g. 2.3.2.1
NRC design Nested row-column design. 4.1
NSW New South Wales. 9.1.2
ols Ordinary least squares estimation. 2.4.2




REML Residual maximum likelihood. 9.1
SBA Semi-balanced array of strength 2. 3.1.3
SDEN design g:s(i);%_ly directionally equineighboured 524
SEN design Strongly equineighboured design. 524
. Spatial block strongly directionally
SSDEN design equineighboured design. 5.3.1
SSEN design (Sigsait;ai block strongly equineighboured 53.1
. Spatial block strongly equineighboured design
SSENC design under complete symmetry. 5.3.1
SSENR design Spatial block strongly equineighboured design 531

under reflection symmetry.




2  Background material

In this chapter, background material is provided for block designs. Definitions

of optimality, efficiency and dependence are given here.

Consider the situation with ¢ treatments to be allocated to b blocks each
consisting of p, rows and p, columns. Let k = p, p, and let the total number
of plots be m = bk. Treatments will be labelled 1, 2, ..., t. Treatments are
equally replicated in a design if each treatment occurs an equal number of
times. When plots are spatiélly arranged, it is assumed that all plots are
congruent, that is, all plots are of the same shape and size. Plots are said to be

arranged in one-dimension when either p, or p, equal 1, and the
corresponding design is called a one-dimensional design. For p, and p,

greater than 1, plots are said to arranged in two-dimensions, and the

corresponding design is called a two-dimensional design.

Example 2.1
Let Example 2.1 be a design which has ¢ =5 treatments, 5 =10 blocks and
P = p, =2 rows and columns. n

Example 2.1 is considered throughout chapter 2 as an illustrative example. An
allocation of treatments to plots for Example 2.1 is given by the following
design, labelled D2.1.

12 174] [2
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2.1 Blocking

It is assumed that plots are allocated to blocks, such that the blocks comprise
relatively homogeneous plots. For example, in a multi-site agricultural field
trial, it would be unusual to have blocks comprised of plots from different
sites, since these plots are unlikely to be homogeneous. Also, when blocks
consist of plots from a single site, spatially well separated plots would not
usually be in the same block.

The assumption of within-block homogeneity means that comparisons made
within blocks are usually more accurate than comparisons between blocks.
Hence, allocating treatments so that the treatment comparisons of interest can
be made within blocks is essential, unless a between-block analysis is used. In
a between-block analysis, the blocks are regarded as a random sample of
blocks from some population, and treatment contrast estimates are made from

comparisons between blocks.

In practice, as well as the need for within-block homogeneity, the blocking
structure often depends on practical considerations. For example, in a field

trial, long thin plots may be more manageable than square plots.

Complete block designs have each of the treatments allocated equally often to
every block. When there are a large number of treatments, complete block
designs are often not feasible and so incomplete block designs are used. For
these designs, the size of the blocks is less than the number of treatments, that
is k <t. Assume henceforth, unless otherwise stated, that k<t.

2.2 Modelling

Let y,; ; be the response from the plot in the jlﬁx row and j,d‘ column of

block i, where i =1,2,...,b, j, =12,...,p, and j, =12,...,p,. The plots are



assumed to be ordered lexicographically. That is, block by block, and row by
row within blocks. Let the ordered plots be numbered 1, 2, ..., m. Figure 2.1

gives the plot numbering and the responses for Example 2.1.

Figure 2.1

Responses for Example 2.1. Plot numbering in parentheses
Y | N2 Y11 | Y212 Yot | Vo2
Mm@ 5) | 6 (37) | (33)
N21 | N2 ’ Y221 | V222 Y1021 [ V10,22
3| @ D | 4 (39) | (40)

Block 1 Block 2 Block 10
Let the postulated model be
y=Xr+Za+eg, (2.1)

where

Y is the m-vector of observations ordered lexicographically. That is, the first
D, observations are from the first row of the first block, observations p, +1
to 2p, are from the second row of the first block, ... , observations

P2(p, —1)+1 to k are from the p, ® row of the first block, ... , observations
k+1 to k+ p, are from the first row of the second block, .... , the last p,
observations are from the p,™ row of block &;

z = (71,7,4,...,7,) is a t-vector of fixed treatment effects;

X is the mxt treatment design matrix. The (7, v)™ element of X is equal to 1
if plot I receives treatment v, for I =1,...,m and v=1,...,t, and 0 otherwise;
a is a g-vector of fixed nuisance effects, such as block, row or column
effects; '

Z is the mxq design matrix corresponding to @ ;

¢ is the m-vector of errors such that E(¢) = 0,, and var(g)=Vo?, for Va

positive definite mx m matrix. For uncorrelated errors, V'is the mxm

identity matrix, 7, .



For some models, including the models for NRC designs given in chapter 4,
Z=1,QB,

where 1, is a n-vector of ones and @ is the Kronecker product (see Appendix

A1.3). For a model where & is a b-vector of fixed block effects only (no row

or column effects), B=1,. Then the (/, 1')'h element of Z is equal to 1 when

plot/isin block i, for I =1,...,m and i =1,...,b, and O otherwise;

The treatment design matrix for the design D2.1 is
X 1

X= :Y_z.

-X-b.

where X, is the treatment design matrix for block 7, so that

1 0000 1 0000
01000 00010

X, = » Xp= , etc
00100 01000
00010 0 0001

2.3 Dependence structures

Usually the true dependence structure is not known and so simple structures
are often modelled, at least initially. With this in mind, it is often assumed
that observations between blocks are uncorrelated and that the within-block
dependence structure is the same for all blocks. This means that V=1, @A,

where o’A isa kxk covariance matrix for plots within any block. For
spatially arranged plots, another simplification is to assume that the
dependence structure is a second order stationary process. This means that
observations have the same variance, and the correlation between observations

is the same if they are the same lag apart. More formally, under stationarity,

10



the correlation between two observations in the same block, that are lag g,
apart within rows and lag g, apart within columns, is defined as
COTI( Y, jy sy > Visisgrirrer) = Pors
where p, o = Pg o, and [pg . I<1 V g, g,.
If A is the within-block correlation matrix, then for blocks of size 2x 2, asin

Example 2.1,

1 po Poy Pu
Po 1 pay Poa
Por Pax 1 P ’
Pi Por P 1

A=

under these assumptions.

As will be seen in section 2.4.1, for generalised least squares estimation of the
treatment contrasts, the inverse of A is needed. It is usually difficult to derive
results on optimal designs when the postulated A has an inverse with a

complicated structure and a large number of parameters.

2.3.1 Symmetries in the dependence structure

When plots are spatially arranged, Martin & Eccleston (1991, 1993) consider
some further simplifications to the dependence structure. Often A is centro-
symmetric (see Appendix Al.4 for a definition), which essentially means that
the direction of the ordering of plots within blocks is not relevant. Usually the
plot structure should be symmetric for centro-symmetry to be reasonable. The
plot structure refers to the actual physical layout of the block and the plots
within the block. Note that for a stationary process, A is centro-symmetric.

Some other symmetries, which are special cases of centro-symmetry, are given
below. Firstlet (A),, =u,, , and for any block, let

L) =P —D+ ),

11



transform the two-dimensional plot co-ordinates ( i, 7, ) to the one-
dimensional plot number £ j,, j,), given that the plots are in lexicographical

order.

For illustration purposes, let the centre of each plot be represented by a node,

and let the element of A, u,(; ;) <1, corresponding to plots in f{ ji, j,) and

fJ's J,"), be represented by a line connecting the nodes for these two plots. If
Ji=J" and j, = j,' then ug, ;) ;.. is represented by the node for plot

S j»J;) For example, Figure 2.2 shows, for a block of size 5x 5, the line
connecting the nodes for plots 3,3) = 13 and f4,5) = 20.

Figure 2.2
Dlustration of the line representing u,5 ,, for a block of size 5x5.

For a reflection symmetric dependence structure, the elements of A, which .
correspond to vertical and horizontal reflections of the line (or node) for

Ur il A€ equal. For example, Figure 2.3a illustrates that for blocks
of size 5x 5 under reflection symmetry, g,y = thq,3 = U316 = U35 In
general, a dependence structure is reflection symmetric if
U £ Grddd ) = Y f (i) S 1=
= U £Grpr IS P A=)

= U f (- =i (PR P41
Under stationarity, this means that

pgl»xz = pxx--xz = p‘ghxz = p—x;.-gz v gl’ g2'

12



Martin & Eccleston (1993) say that this may be a reasonable assumption if the
plot structure is symmetric under vertical and horizontal reflections, which is

true here when plots are rectangular.

Figure 2.3
Elements of A equal to u,;,, for blocks of size 5x 5 under:
a) reflection symmetry, b) axial symmetry
Nais
s ) ~~_N
:x: 3 ‘*\’ja,zo
T3 3200 %3,2)\\\0
hY

A dependence structure is axially symmetric if
u ) L = ll ‘s
F i) f(RAD S U S U D
=Y £ (py 41y 10 S (P A=y H= 1)
= U f (e =i WS (PrHRPrH= ) *

This means that the elements of A, which correspond to NE-SW and NW-SE
diagonal reflections of the line (or node) for u,;, ;) -, ., are equal. For the

example with blocks of size Sx 5, Figure 2.3b illustrates that under axial
SYMMELTy, U, 3 = Ugy3 = U350 = U324 Axial symmetry may be reasonable if
the plot structure is symmetric about NE-SW and NW-SE diagonal reflections.
Under stationarity, axial symmetry means that

Pas: = Pory™ P-gi-g = P-gr-sy ¥ 81> &2
If a dependence structure is both axially and reflection symmetric then it is

completely symmetric.

13




Under stationarity, a special case of a reflection symmetric dependence
structure has

Pag: = PgoPog, Y 81> 82
This is called a separable process. Recall that p, , and Pog, arethelag g
row and lag g, column correlations, respectively. For a separable process,
A=A, @A, where A and A, are the correlation matrices for observations

within rows and columns, respectively.

2.3.2 One-dimensional processes

For plots arranged in one dimension, simple time series processes, such as low
order autoregressive moving-average (ARMA) processes (see Appendix
ALl.6), are often considered. Let N, be the kx k lag g neighbour matrix, such

that

1ifli-jl=g
= <g<k-l.
(Ng )"f {0 otherwise’ for0<g

k-1
Clearly N, = I, and 3 N, = J,, where J, = 1,1,' isan nx n matrix of
g=0

ones, For example, if k=4,

0100 0010 000 I
1010 0001 000 0

N, = N, = dN, = .

tTlo1 0 1™ 71 00 0/™ |00 0 o0
0010 0100 100 0)

Then for any stationary process, the within-block correlation matrix is
k-1
A=3%pN,,
g=0

where p, is the correlation of observations lag g apart, and p, =1. Here A is

a symmetric Toeplitz matrix and is therefore also centro-symmetric (see
Appendix Al.4).

14



2.3.2.1 Nearest neighbour and moving average processes

Under the nearest neighbour process of order g, NNg, plots which are lag g
apart are correlated, and plots which are greater than g lags apart are
uncorrelated. Thatis, p, #0 and p, =0 for g > g, so the within-block

correlation matrix is

q
A=3pN,.
g=0

The NNg process is a finite-k version of the g®-order moving average process,
MA(q), where for plot j,

q
g =§j+z¢héj—h’

h=]

and ¢, is the random error and {, { are independent random variables with

zero mean and constant variance V j.

The NN1 process has A = I, + p,N, with |p,| < [2cos{(k +1)"7r}]—1 for A

positive definite. Therefore |p,| <1 when k=2, and [2 cos{(k +l)‘lzr}I1 -4

as k . For example, when k=4,

1 po 0 0
1 0 -
A=|P % for |p| < f2cos(d7)}" = 0.62.
0 p 1 p
0 0 p 1
For the MA(1) process,
D
p = —
b o+el)
and
Py =0 for g>1.

Hence |p,| <4. Therefore the MA(1) process is a special case of the NN1

process.

15



For the NN1 process, A has a very simple structure. However, the form of

A is fairly cumbersome, with

(A7) ey = 1+ 0> K=, Y (1 —p¥ X1 - p2*I™)
i, J(iS)) (1 _¢12 )(1 "¢’12(kﬂ)) .

For example when k =4, in terms of p,,

1-2p!  -p(-p}) or -p;
A = 1 -p(l-p)  1-pf -y ot
A-3p'+p")| A -p 1-p!  -pQ-pD)
-p pi -p-p})  1-2p]

2.3.2.2 Autoregressive processes

For the stationary autoregressive process of order p, AR(p),
P
&; = hZ’Th“:j-h +&;,
=]
where the {y, | are such that the process is stationary.
For the AR(1) process,

pg =nf = pf for |p|<1and g20.

For example, when & = 4, the within-block correlation matrix is

1 p A P
A - pl l pl p12
= )
Ao 1 p
pop Pl

For the AR(1) process A™ has a simple form:
1 fori=j=1k

_aYaa) _ 1+ p} fori=j#Lk
(1 plXA )"j— -p  forli-j=1"
0 otherwise

16



Hence, for the k = 4 example,

1 -p, 0 0

TR B - A T
A-p)} 0 -p 1+p! -p
0 0 -p 1
For the AR(2) process,
= __h
p——.
b (-m)

and p, = mp, +mpy, for g>1,
where |7,| <1 and |r| <1-7,.

2.3.2.3 Harmonic correlation structure

The harmonic correlation structure, HCS, has

pg=£‘— for g>0,

where p, < p, < p,, suchthat p, <0 and p, 2 {1n(4)}'1 =~ 0.72 depends on
k. See Martin & Eccleston (1992) for further details. The within-block

correlation matrix is
k-1 1
A=IL+p > —N,.
g=l

As for the MA(1) process, A™' has a complicated structure for the HCS. For

example, when k=4,

1 p 9 1p o & 62 &
A= P 1 p p and A= 1 |6 & &s &, .

oo o 1 p 9P| 62 &5 G4 &

o, 1o, p 1 ¢ 61 & &

where £, =36(2-p,X2+p,—4p%), & =-12p,(12-8p,~5p]),
6 =-6p(6-130)2-p), & =-12(4-12p, +11p]),
Cs =4(36—49p12 +12p7), ¢s=—4p,(36 -36p, +11p12)

and  4(p,)=(12-16p, +p; X12+16p, ~23p}).
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2.3.2.4 The Cullis-Gleeson model

Recall that for model (2.1), var(y) = Vo?, where Vis positive definite. An
extension to this variance model is when the data are differenced so that the
variance of the differenced data is finite, as in the Cullis-Gleeson model of

order d, CG(d), which is now defined. For this model the variance of the
within-block d-differenced data,

var{I, ®V, y§= I, ® (Wi, ;, + V.V, )o?,
where V, is the (k —d)x k within-block d-difference matrix (see Appendix
Al.6)and w20 for 0<d <k.

The CG(d) process is a special case of an autoregressive integrated moving
average process of d ® level differencing, autoregressive order 0 and moving-
average order d, i.e. an ARIMA(O0, d, d) process (see Appendix A1.6). The

CG(1) model is also known as the linear variance, LV, model.

2.3.3 Some two-dimensional processes

Some simple two-dimensional processes are considered in section 2.3.3.

2.3.3.1 The AR(1)*AR(1) process

The separable process (see section 2.3.1) with AR(1) in both directions is the
AR(1)*AR(1) process. This is also known as the doubly geometric process.
Here p, o =pf, and po,, =p5}-

Hence from the definition of the AR(1) process in section 2.3.2.2, it follows
that for the AR(1)*AR(1) process,

2 pz—l
1 Pro P - Pio

A= P L P A

P21 P22 P23
Pl Ps PG5 e 1
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1 Poy pg,l p({ll-l
N

p-l -2 p-3
Psy Poy Par e 1

with ’px.o

R Ipo,ll < 1. For blocks of size 2x2 as in Example 2.1,

A= 1 poy ® 1 pio ’
Poy 1 Po 1
and by (Al.11) (in Appendix A1.3) and the inverse of the within-block

correlation matrix for an AR(1) process (in section 2.3.2.2),
Al = : 1 i ( 1 _Po.1]®( 1 "Pl.oj.
(1= po X1 = Pig)\~ Pou 1 = Pro 1

2.3.3.2 The NNI*NNI process

The separabie dependence structure with the NN1 process in both directions,
NN1*NNI1, has

Pio if g =1 Poy if g, =1
=4 and =4 . .
Pao { 0 ifg >1 Pos {

Note that for Example 2.1, where blocks are of size 2x 2, the AR(1)*AR(1)

and NN1*NN1 processes are equivalent, with l Pro ,00,,] <1.

>

2.3.3.3 Conditional autoregressive processes

Dependence structures are sometimes defined in terms of the conditional mean
and variance of the error at each plot given the errors at the other plots within
a block. In order to ease the notation slightly, since within-block dependence

is considered, the subscript i in ¢, A, 15 omitted in this section.
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Consider the process with

E(a

Jutz 811',12' s.t. (jl’jz) # (jl"jZ')) = 2481.82811‘82,12‘81 4

where the summation is over all lags (g,,g,) # (0,0), {, .. = ¢ _g.-g, forall
gl’gZ’ a‘nd Z(g,,gz <1'
Also,
. s oy st 2
var (“"jl,jz Igjl'sjz' st.Ui 1)) #Uh's Ja )) =0y,

say, is constant.

For the second order conditional autoregressive process, CAR(2), ¢, ,, =0
for all (g,,g,) except (g,,2,)=(0, 1), (1, 0), (1, 1) and (-1, 1). Therefore,
E(gj

.2

€y S J) # (jl"jz')) =

Coa (31,-1.11 +Ejn,, )* ¢ 1.0(811»]2‘1 + gfl.ml)
+¢ (511+1,fz+1 € )+ (811-1.12*'1 €, jpm ),

for Soa+<i0 +5+4, <l1.

Within any block, a plot with plot co-ordinates ( j,, j,) is said to be an
external plot if

Jislor p,
or j,islor p,.
The off-diagonal element of A™ for a pair of distinct plots that are both not
external plots and are lag (g,,8,) apart, is given by -¢, . . The diagonal
element of A™ for a plot that is not an external plot is 1. When
S11 =G 11 = ~60181,0» the CAR(2) process is equivalent to the AR(1)*AR(1)
process (see Martin, 1982). The CAR(2) process with §;, =¢_,; =0 is called

the first order conditional autoregressive, CAR(1), process.
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For the CAR(2), the lag ( g,,8,) correlation is specified by the integral

2 xx
o? i : cos(g,9,)cos(g,3,) d9ds, -

anr’o? - 2419 c08(9) = 24, cos(9,) = 28 cos(9y +9,) - 24y cos(9, - 9,)

The elements of A™ for a pair of external plots can usually only be obtained
numerically. To avoid this, non-stationary versions of the CAR(2) process are

sometimes used. One such process takes the off-diagonal elements of A™, for

all plots that are lag (g,,g,) apart to be ~¢

81822

and the diagonal elements of
A tobe 1. Thatis,
A—l =Iplp2 —C:LO(IA ®Np1)_g0,l(Npl ®Ipz)
(N ®N; + N, ®N, ) (2.2)
—:-I,I(N;I;l ®NZ +NK ®N,l;2),
for &y + 10 +& +¢ 0, <1, where N, N/ and N, are nxn matrices such
that

(Nf)if{l ifi-j=1

0 otherwise’
(Ng)..= 1 lfl-‘l?—-—l and
/10 otherwise

N,=N;+N/.

Such a non-stationary version of the CAR(1) and CAR(2) processes, for
blocks of size 2x 2, as in Example 2.1, where all pairs of plots are external

plots, has A™ equal to

1 _51,0 '_;0,1 Y 1 ";1,0 "40,1 —Cl,l
“'{1,0 1 0 —CO,I and _41.0 1 “C—l,l —go.l
‘Co.l 0 1 '41.0 "Co,t ‘4-1.1 1 ‘gl.o ’

0 "Co,: ‘51.0 1 "41.1 "Co,l ‘Cl.o 1

respectively.
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A special case of (2.2), which will be called the 3-parameter CAR(2) in this
thesis, has ¢}, = ¢_,,. Therefore (2.2) simplifies to

A_l =Ip1p2 _41,0(Ipl ®Nh)—CO,1(Nh ®Ip2)—4l,l(Npl ®sz)’

for £y, + 0 +24,, <4, where A is positive definite if

T V1
2510 cos((p2 " 1)) +246. cos((pl " 1))

3 z
+44), cos((p1 " 1)) cos((p2 " 1)} <l1.

Note that £,,, {10, &1y 20, such that £, + o +287; <3, implies that the

(2.3)

condition in (2.3) is satisfied.

For a two-dimensional block, the left and right edges or the top and bottom
edges may be joined, giving a cylindrical block. It is assumed here that the
rows are circular for cylindrical blocks (i.e. left and right edges are joined). A

cylinder version of the CAR(2) process has A™ as given by (2.2), but N ﬁz and

N gz are defined as

L 1 ifi-j=1(mod p,) forp,>2
wz), = .
2% |10 otherwise

and

U 1 ifi-j=-1(mod p,) forp,>2
(ve) = . -
P4j |0 otherwise

If both left and right edges and top and bottom edges of a two-dimensional
block are joined then the block forms a torus. The CAR(2) process for a torus

is a stationary process, which has A™ as given by (2.2) with N;, and N} as

given for the cylinder version of the CAR(2) process, and Ny, and N},
defined as
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L 1 ifi~j=1(mod p,) forp >2
(vi) = .
Al%ij {0 otherwise

and

(Nf,’,)..“{l ifi— j=-1(mod p,) forp1>2.
i.j

" 10 otherwise

2.4 Treatment effect estimation

The design implications of analyses that take the correlation structure into
account have been investigated by, for example, Martin (1982), Gill & Shukla
(1985b) and Martin (1986). In particular, Martin (1986) considered designs
with b =1 under model (2.1). Note that when b=1, Z =1, and « is a scalar,
so Zg is a constant term in model (2.1). Martin (1986) concluded that a
reasonable approach for field trials is generalised least squares estimation (see
section 2.4.1) with the correlation specified by a small number of parameters,
and that the estimated treatment contrasts are likely to be reasonably robust to

the exact form of the dependence process chosen.

2.4.1 Generalised least squares estimation
Assume that V'is known and used to find 7, the generalised least squares (gls)
estimate of treatment effects. To find 7, it is necessary to solve equations
(2.4)and (2.5),

XV XXV Z2)a=xV"y (2.4)

and (Z'VIX)E+(Z'V7'Z)a=2V"y. (2.5)

Note that in practice ¥ is not usually known exactly. However, if a prior
estimate of V'is used, the design implications will be approximately correct if
the prior estimate is close to " (Martin, 1986). For design purposes, Vis

assumed to be known.

23



Solving (2.5) for ¢ interms of 7, gives

@=(ZVIzZy'zvi(y-Xt) (2.6)
where for a matrix T, T is its Moore-Penrose generalised inverse (see
Appendix Al.2).

Pre-multiplying (2.6) by Z and substituting in to (2.4) gives

Ci=q, 27
where

C=X'Q,,X, (2.8)

9=X'QzpY, (2.9)
and Q,, =V7'-vizz'vi'z)yzv. (2.10)

Note that no unique solution to equation (2.7) exists since C is not of full rank
(the rows and columns of C sum to zero). All solutions to equation (2.7) can
be given by

t=Cyq, (2.11)
where for a matrix 7, T~ is any generalised inverse (see Appendix A1.2). One

choice of the matrix C~ in (2.11) is given by C*, which is the unique Moore-

Penrose generalised inverse of C. It is assumed henceforth, unless otherwise
stated, that 7 is obtained from (2.11) with C~ givenby C*. Thatis, 7 is
obtained from

t=C*gq. (2.12)

2.4.2  Ordinary least squares estimation

Under ordinary least squares (ols) estimation, ¥, in the expression for Q, , in
(2.10), is replaced by I,, so

Q,,=1,-2(2'2)* 2"
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Kiefer & Wynn (1981) justify the use of the ols estimator by showing that it is

quite robust against small perturbations in V from the uncorrelated case when

V =1, . However, Martin (1986) notes that a prior estimate of ¥ can usually

be chosen that is ‘considerably closer’ to the true V than I, is.

2.43 Expectation and Variance of 7

In order to find the expected value and variance of £, itis first simpler to find

the expected value and variance of g.

Consider the expectation of g.
E(g) =X"0;,E())
=X'0,,X1+X'0;,7a
=Cr

since 0, ,Z =0.

Then by (2.13)
E(Z) = C*E(q) =C'Cz.
Using 7 obtained from (2.11),
E(f) = C E(q) =CCr.

2.4.3.1 Variance of © under gls

Note that
Q:sVQ1y =0y
Then,
var(q) =X"Q; pvar(y)0; y X

=X'Q2,VVQZ,VXO'2

=X'0;,X a? (by the equation in (2.16))

(2.13)

(2.14)

(2.15)

(2.16)
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~Co? 2.17)
and by (2.17)
Var(£) = C*var(g) C* = C'o?, (2.18)

2.4.3.2 Variance of © under ols

Under ols,
var(q) = X'QszaI(Z)QZJX
=X'QZJVQZJX0-2’
hence

var(£) = C*var(q) C*

=C*X'Q,,VQ,,XC*c’. (2.19)

2.4.4 Estimability and connectedness

A linear function of the treatment effects, ¢'z, is estimable if
E(d7)=c't.

Using 7 obtained from (2.11), it can be seen from (2.15) that if ¢'=c'C™C

then ¢'r is estimable. In fact ¢'=c¢'CC is a necessary and sufficient

condition for ¢'z to be estimable, as noted in John & Williams (1995, section

1.5).

Definition 2.1
Let D*o? denote var(%). -

Under gls, D = C can be used. If ¢'z is estimable then ¢'7 is an unbiased
estimator of ¢'z, and ¢'7 is known as the best linear unbiased estimator
(BLUE)of ¢'z. Also, ¢'f is invariant to all solutions of equation (2.7), and

var(¢'t) = ¢ D*co® = ¢' D co?.
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When c'z is estimable, ¢'l, =0, so ¢'z is a contrast of the treatment effects.
For Example 2.1, ¢' =(0, 1, 0, 0, -1) compares treatments 2 and 5 so that

¢'t =1, —75. A contrast comparing two treatments is a pairwise contrast.

A design is said to be connected if and only if rank(C) = ¢ ~1. Then every
treatment contrast is estimable from within-block comparisons (see John &
Williams, 1995, section 1.8). It is assumed henceforth, unless otherwise

stated, that all designs considered are connected.

245 Estimation and prediction under a mixed effects model
If z in model (2.1) is a vector of random effects, such that (', &") has zero

mean and variance matrix

(Ga’f 0 )
0 Vol )
where G is a t xt positive definite matrix, then
E())=Za
and var(y) = X var(r) X'+ var(e)
=XGX'o? +Vo® = V..
This model is called a mixed effects model since it includes both fixed and

random effects (excluding the errors). Note that the rank of the m x g matrix

Zisgq.

The BLUE of the contrast ¢,'a is ¢,'@, where g is the gls estimator of o,
ie. & =(zviz)'zvly.

The best linear unbiased predictor (BLUP) of the contrast ¢,'z is ¢,'T , where

7 =0olGX'V T\ (y-28).

This form of the BLUP is given by Searle et al. (1992, section 7.4).
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Mixed effects models are considered in this thesis (for example, in chapters 9

to 11), but the fixed effect model (2.1) is assumed unless otherwise stated.

2.5 Optimality and efficiency

An efficient design estimates the treatment contrasts of interest as well as
possible. The accuracy of the estimation is usually measured by some
combination of the variances of estimated contrasts, which when compared to

a bound gives the efficiency.

2.5.1 The (Dp -value

When all contrasts are of equal interest the @, -value can be used to measure
efficiency. If {,, {,, ... , {,, are the non-zero eigenvalues of D (¢ -1

eigenvalues of D are non-zero when rank(D) = t ~1) then

( 1
-1
( 1 Z%—Jp forO<p<o

(t "'1) i=l
1
=1 1 Yo X
®, - value =< I-IIZ— forp=0  (Kiefer, 1975).
i=1 64
1
max — forp=o0

i

!

Definition 2.2
Let D be the set of all connected designs with ¢ treatments and b blocks of size

Dy xXp,. u

Let D° < D be the set of competing designs. For example, if interest is in

binary designs only then ©" would be the set of binary designs in @, A
design d” € D" is then ®,-optimal among designsin D" if d" has the

smallest &, -value over all designs in ©°. Three commonly used measures of
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efficiency are the A-, D- and E-values, which correspond to the @, -value

with p=1, 0 and oo, respectively.

2.5.2 The A-value
When p = 1, the @, -value, which is also known as the A-value, is 1/(20%)

times the average variance of all pairwise contrasts. For example, for a design
with 3 treatments the average variance of the pairwise contrasts is
Hvar(?, - ,) + var(F, - #,) + var(#, - 7,)}.

In general the average variance of all pairwise contrasts is

var(z, — 2.20
t(t 1)) §1§1 ¢ (220)
which simpliﬁes to
(t —I)Z var(f,) - Z ZZcov(r,,r )t
t(t 1) S tl jumi+l
Note that

ivar(z’,) =t(D")o’

and

-1 ¢t
3 S 2c0v(i,4,) = L' DL, ~ (D)} o? = —r(D*) 0%,
i=l e+

since 1,'D*1, =0 by (A1.6) in Appendix Al.2.
Therefore (2.20) is equal to

2tr(D%)o?
-9
In terms of any generalised inverse of D, (2.20) is equal to
2 .
tr(D™ —-—1 'D1 .
- 1){ (D7) } (2.21)
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2.5.3 The D- and E-values
The D-value is related to the volume of the confidence ellipsoid for 7 under

normality, and the E-value is

o {vaf(gzz)} - max {g{) g},
cco €c

the maximum variance of an estimated standardised contrast.

2.5.4  Universal optimality

Kiefer (1975) considered universal optimality. This requires the minimisation
of O(D) for all non-increasing, convex and orthogonally invariant @ .

Under gls, if a design d” € D" has

(1) completely symmetric C-matrix and

(i) maximum trace of C over designs in @

it is universally optimal over the set of designs @° (Kiefer, 1975). Note that a
nxn matrix with zero row and column sums is completely symmetric if it is
of the form aE, , where a is a scalar constant and E, =1, —~n™'J, ; that is, if all
the diagonal elements are equal and all the off-diagonal elements are equal.
The term ‘completely symmetric’ unfortunately has two different meanings:

the one defined here and the one describing a dependence structure as defined

in section 2.3,

A design is called variance balanced if the variances of all estimated pairwise
contrasts are the same. This is true when D" is completely symmetric. Note
that E, =Q, , is symmetric and idempotent. This means that if a design has
D = aF, then, by (A1.7) in Appendix Al1.2, D* =a™'E,. Therefore the design
is variance balanced with the variance of all estimated pairwise contrasts equal

to 2a7 a2,
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Universal optimality includes @, -optimality for all p>0. Therefore a

universally optimal design is A-, D- and E-optimal. If no universally optimal
design exists, then the @, -optimal design may differ from the @ -optimal

design for p#p'.

Let D, D be the set of designs for which C and var(g) are completely
symmetric. Let

C=qE, and var(g)= a,E,c?,

then

a
D* =a—§E, (2.22)
1

is completely symmetric. The non-zero eigenvalues of E, are all equal to 1,
hence the non-zero eigenvalues of D = (a? / a,)E, are

¢ =¢,=..=¢,, =a’/a,,and so for a design in D,

@, -value = 2 forall p=0.

2

This means that over designs in 9,, the @, -criterion for all p> 0, simplifies

to finding the minimum of a set of scalars. It follows that
=%
(D) = 2 (2.23)

since universal optimality includes @ -optimality for all p> 0. Therefore, a
design that is ®,-optimal over 9, is also universally optimal over ), under
both ols and gls.

Note that for designs in @,, minimising t(D*) = a,(t—1)/a?, is equivalent to
minimising the @, -value. When comparing two designs d, and d,, which
belong to D,, d, is defined to be universally better than d, if tr( D*) for d is
less than or equal to tr( D*) for d,. In fact, when tr(D") is the same for d,
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and d,, the designs are equivalent. However, for convenience, the definition

of universally better includes the cases where designs are equivalent.

2.5.5 Weak universal optimality
Under ols, Kiefer & Wynn (1981) introduced weak universal optimality,
which is a weaker notion of optimality than universal optimality since it

includes ®, -optimality for p>1 but does not generally include 0 <p <1.

Hence weak universal optimality may exclude D-optimality.

Let D" c D be the set of designs which have, under ols, C-matrix completely
symmetric. A design d” € D", that has under ols, D* completely symmetric
and minimal tr( D*) over ®", is weakly universally optimal among designs in

D" (Kiefer & Wynn, 1981).

Itis clear that d” € @, < D". This means that when D" is completely
symmetric, minimising tr( D*) over 9" is equivalent to minimising tr( D*)

over @,. Hence d" is universally optimal over D,.

2.5.6 Efficiency bounds

For competing designs the @, -value can be compared to a lower bound,
denoted by (D; -value. For a given tr(D), a simple lower bound for the @, -
value is CD; -value = (¢t ~1)/{tr(D)}. This bound is attained if D is

completely symmetric. A global bound is obtained if the maximum of tr(D)

over D is used, or an upper bound for it.

A comparison of the @, -value with a lower bound gives the

(d)' - value)

d, -efficiency = 72 .
P ‘<I>p - value)
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If the lower bound is attainable, that is, if a design with @, -value = <D; -value
exists, then clearly the design is @, -optimal, and near-optimal designs will
then have D, -efficiency near to 1. However, if the @, -optimal design has
@, -value considerably greater than the CI); -value (i.e. if the <I>l'J -value is not a
tight lower bound), the @, -efficiency of the @, -optimal and near-optimal

designs will be much less than 1.

2.6 Simplification of the C-matrix

In this section a simplification to the C-matrix, (2.8), is given when model
@R1)with Z=1,®B and V" =1, ® A (see section 2.3) is assumed.

By using the properties of Kronecker products given in Appendix Al.3, the

inverse of Vis
V=1, ®A" (by(ALI1)). (2.24)
Then
@V'zy = {U, @ BXI, ®A*XI, ® B)}  (by (AL.10))
= (I, ®BA"'B)" (by(Al.12))
=1, ®(BA'B)" (by(AL11)). (2.25)

Substituting the expressions for V™! and (Z'V"'Z)* from (2.24) and (2.25), |
respectively, into the expression for Q, . in (2.10) gives
0,y =, ®A™)-(I, ® A XI, ® B)Y, ®(B A™B)* {I, ® BXI, ®A™)
=(I, A1) -1, ®A'B(BA'B) BA™  (by (AL12))
=1,0Q" (by(Al.13)),
where under gls

Q" = A'-A'B(BA'BYBA = Q.
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Under ols,
Q' =1,-B(BB)'B =Q,,.

Therefore, the expression for the C-matrix in (2.8) simplifies to
C=X(,0Q)X

for both ols and gls. Note that Oy , = (Q5,A05,)".

A further simplification follows by taking X'= (X', X,',....X,') where X is

the kxt treatment design matrix for block i. This gives

b
C=Yx'Qx, (2.26)

i=l
and

var(g) =X'(I, ®Q"XI, ® A, ®Q" )Xo’
=X'(I, @Q°AQ") Xo?

b
=>X'QAQYX,0%. (2.27)

i=l

2.7 The form of X;'WX;

Assumingthat Z=1, ® B and V' =1, ® A, let W represent Q" under gls, and
under ols, ¥ can be replaced by either Q" or Q°AQ". Let (), =w,,. The

rows and columns of W sum to zero, and the diagonal elements of W are

positive. It is shown here that given V = I, ® A, the elements of X,'WX, can

be written down easily.

Let ©f) be the set of plots containing treatment v in block 7, and if treatment v

occurs more than once in block i, let ©2 be the set of pairs of plots (,, /,)

that contain treatment v, such that /, < 1,. Alsolet @

imsy DE the set of pairs
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of plots (/;, /,) containing distinct treatments v, and v, in block i, such that

I, < I,. Then the v™ diagonal element of X,'WX; is

(Xi’WXi)v = 2wy +22w'112 (2.28)

(l)
and for v, # v, , the (v,, v, )™ element of X,'WX, is

(XI'WXi)\:x,vz = > Vi,

o (2.29)
It follows from (2.28) that
(X, W) = () + 23 > Wi, (2.30)

v=l®‘

‘where 2w, is the sum of the off-diagonal elements of W corresponding to

@(2)
the pairs of plots in block i that contain treatment v. If block i is binary,
©2 ={} forall v, so

tr( X,'WX,) = (). (2.31)

As an example, consider a design with p, =2, p, =3 andt=5. Ifthei™

block is
213
1156

2
3

then the elements of ®) and ®?, forv=1,2,...,5 are

O ={4}, ©) ={13}, @3 ={2.6}, O]} ={}, {3 = {5}, 50
0 =03 =07 ={}, 03 ={(1,3)} and 6F ={(2,6)}

and the elements of O, , are

O ={(14),(3.4)}, O35 ={(2.4).(4.6)}, OX, ={}, O = {(4.5)},

025 = {(1.2),(1,6).(2,3),3.6)}, 03, = {}, 05 ={(15),3.5)}, O3, ={},

025 ={(2.5.(5.6)}, O ={}.
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Hence,

( Waa (W1,4 + W3.4)
Wit Wi
(W1.4 +W3.4) [ +2w,, ] (
X,'WX, = Wz +We
(w2.4 + W4.6) ( +wy s+ wﬁ)
0 0
k Was (WI,S + Ws,s)

and
tr( X,'WX,) = to(W) + 2(w, 5 + W, ¢).

(W2,4 +W,e )
Wia +Wis

+ W, 5 + W3_6
Wya t W

+2W,
0

(Wz,s +Wse )

|
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3  Finding optimal and efficient designs

Under spatial dependence it is often difficult to obtain efficient or optimal
designs. Martin (1996) lists several methods to find efficient designs under
dependence:
i. designs that are intuitively appealing can be constructed and their
efficiency evaluated;
ii. designs can be sought for which the C-matrix is (close to being)
completely symmetric, and their efficiency evaluated;
iii. optimality will usually depend on the model that is assumed for the
dependence, and which estimator is used;
iv. optimality may depend not just on the model assumed, but on actual
parameter values of A;
V. the structure of Q' AQ" of (2.27) for ols estimation or Q" of (2.26) for gls
estimation can be used to suggest what features lead to efficiency;
vi. if there are few competing designs, a complete enumeration and
evaluation may be possible;
vii. well-structured searches, or other algorithmic methods, can be used.
It can be seen that several of these techniques are used in the design problems

considered in subsequent chapters. Some of these are discussed in more detail
in this chapter.

3.1 Intuitively appealing designs

Designs which have a simple structure or form may be considered. For
example, when the number of treatments is small, all #/(¢ - k)! arrangements
of k of the ¢ treatments may be used as the blocks of a design, with each
arrangement allocated to the ordered plots 1 to k. As an illustration, for blocks
of size 1x3 with t=3, the design with b =3! =6 is
(12[s].[n]s]2],[2]1]3].[2[3]1].[3]1]2].[3]2] 1] D31
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3.1.1 Neighbour balance

More generally, designs which have some sort of neighbour balance may be
constructed. In the simplest sense, this means that the number of times
treatments are next to other treatments is the same. D3.1 clearly has
neighbour balance since each treatment occurs next to every other treatment
the same number of times. Exact neighbour balance is only possible for

particular combinations of ¢, b, p,, p,, and approximately balanced designs

may be used instead. Martin (1996) describes several types of neighbour

balance, some of which are summarised in sections 3.1.1.1 to 3.1.1.4.

3.1.1.1 Directional or non-directional neighbour balance

If the direction of the neighbours is important, say when left to right differs
from right to left and/or top to bottom differs from bottom to top, then
directional balance is needed. Note that D3.1 has directional balance since
each ordered pair of treatments occurs twice; for example, treatment 1 has
treatment 2 as a neighbour on the left twice and also on the right twice. Non-
directional neighbour balance is adequate when the direction is not important,
for example, when left to right is equivalent to right to left. As an example,
take the first three blocks of D3.1 to give the design:
L1]2]3],[1[3]2],[2]1]3], D3.2
which has non-directional neighbour balance. Clearly a design with
directional neighbour balance also has non-directional neighbour balance.

3

3.1.1.2  Distinct pairs only or like pairs included

As well as considering balance with respect to distinct pairs of treatments, as
in D3.1 and D3.2, like pairs of treatments may also be included, with perhaps
each pair occurring equally often as the unlike pairs. Note that like treatments
which are neighbours are often called self-adjacencies.
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3.1.1.3  Circular blocks
A one-dimensional block may be assumed to form an annulus, so that the last

plot joins the first plot. For example, if the block

was a circular block then treatments 1 and 3 would be neighbours. If the
blocks of D3.1 are circular then it is still neighbour balanced, with each

ordered pair of treatments occurring 3 times as neighbours.

Recall from section 2.3.3.3 that the edges of a two-dimensional block may be

Joined to form a cylinder or a torus.

3.1.1.4 Higher level neighbours
As well as adjacent or first neighbours, higher level neighbours can also be
considered. Plots are lag g, and lag g, neighbours, if they are g, plots apart

in the horizontal direction and g, plots apart in the vertical direction,
respectively. Assume that lag ( g,,g,) is equivalent to lag (- g,,— g,). Asan
illustration consider Figure 3.1, which shows the lag ( g,, g, ) neighbours of
the plot marked X for a block of size 5x5. The adjacent neighbours have
(g:,8,)=(1,0)0r (0, 1) and the diagonal neighbours have (g,,g,)=(1,1) or
(1-1).

Figure 3.1
Lag ( g,,g,) neighbours of the plot marked X for a block of size 5x5.

(2, 2)|(1, 2)|(0, 2)|(1,-2)|(2,~2)
(2, D1, D{(0, 1)](1,-1)(2,-1)
(2,0)i(1,0)] X [(1,0)1(2,0)
(2,-DI(1,-D{(0, DI(1, 1){(2, 1)
(2"2) (1"2) (0: 2) (la 2) (2’ 2)
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3.1.2  Positional balance

In addition to neighbour balance, designs with positional balance can also be
considered. Positional balance means that each treatment occurs equally often
in each plot position of a block. For example, D3.1 has both neighbour and
positional balance since each treatment occurs in each plot position twice.
However, D3.2 has neighbour balance but does not have positional balance,

since, for example, treatment 1 occurs in plot 1 twice and in plot 2 once.

3.1.3 Semi-balanced arrays

Semi-balanced arrays (SBAs) of strength 2 were introduced by Rao (1961),
where they were called orthogonal arrays of type II of strength 2. In this thesis
they shall be called semi-balanced arrays, henceforth. A SBA of length k on ¢
symbols is defined as a k x b array of # symbols, where, in every set of two
rows the b columns contain each of the 4#(¢-1) combinations of unordered
pairs of symbols an equal number of times, ¢. That s, b =}c/(#-1) for an
integer ¢. For k> 2,if tis even then ¢ must be even. Rao (1961) gives the
minimum value of ¢, for a given ¢, as 1 (b = 44(¢-1)) for ¢ odd, and 2
(b=1(t~1)) for t even, and shows that a SBA can be constructed with the
minimum value of ¢ when a field with ¢ elements, GF(#), exists. Constructions
of SBAs have been given by Rao (1961) and Mukhopadhyay (1972). Figure
3.2 gives SBAs with the minimum value of ¢ for =3, 4 and 5.



Figure 3.2
SBAs with the minimum value of ¢ for a) =3, b) t=4, ¢) t=5.

11213

2{3]1 (c=1)
3|12

a)

1[1]1]2]2]2[3[3[3]4[4(4
2[3[4[1]3]4]1]2[4]1]2]3] _9p
3{4]2(4[|1{3{2(4]1|3]1]|2
412[3(3[4{1{4{1[2]2{3]1

b)

1]1]2]2]3[3[4]4]5]5
2(413[5]1]4[2|5[1]3
3{214|3|4[5(5]1[2]1 (c=1)
415]5[1]2]1[3]2(3]|4
5(3[1]4]56(2[1(3[4]2

<)

The columns of a SBA can be used to construct the blocks of a design which
has neighbour balance at each level. For k > 2, the neighbour balance implies
positional balance. For example, for blocks of size 1x3 with ¢ = 3, the SBA in
Figure 3.2a gives the design:

[1[2]3],[2]3T1],[3]1]2]. D3.3
Also, note that the first 4 rows of the SBA in Figure 3.2c¢ gives the design

D2.1 in chapter 2, which has blocks of size 2x2 with #=5. Designs
constructed from SBAs in this way for £ > 2 (i.e. when there is both

neighbour and positional balance), have a completely symmetﬁc C-matrix
when Q" is symmetric (Martin & Eccleston, 1991, also see section 5.2.4).
Under ols, var(f) is completely symmetric for a SBA when Q'AQ" is
symmetric (Martin & Eccleston, 1991).
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For a one-dimensional array of plots, the SBA construction is also used in
Jacroux et al. (1997) and Majumdar & Martin (2000) to find optimal designs

under a polynomial trend and uncorrelated errors.

Many of the results on optimal designs considered in subsequent chapters

assume that the designs are constructed from SBAs.

3.2 C-matrix close to complete symmetry

Some optimal designs, such as those constructed using SBAs, have a large
number of blocks, which may be greater than resources allow for some
situations. In this case, designs with a fewer number of blocks may be used,

which may not have C and var(z) completely symmetric. However, designs

constructed so that C is close to complete symmetry may be possible, and if

tr(C) is sufficiently large, such designs are likely to be very efficient.

3.3 Algorithmic methods

Given b, k and ¢ there are a finite number of ways of allocating treatments to
plots, and so it is theoretically possible to examine all competing designs and
to choose the best design; this is complete enumeration. Unfortunately, as
illustrated in the example below, for any non-trivial problem there are often
too many designs for this approach to be feasible. Therefore, it is of interest to
try to develop algorithms that are more effective than complete enumeration.
Edmonds (1965) defined the concept of effectiveness in the following way:

An algorithm is considered to be effective if it can guarantee to solve any

instance of the problem for which it was designed by performing a

number of elementary computational steps and the number can be

expressed as a polynomial function of the size of the problem.
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A problem is deemed to be NP (non-deterministic polynomial) if no effective

algorithms are known for the problem. If an effective algorithm does not exist

e then, if the problem is small enough complete enumeration may be
feasible;

e there may be algorithms which give optimal solutions for most cases in a
reasonable time;

e heuristic procedures could be used; that is, procedures which do not

guarantee to produce an optimal solution for every instance of the problem.

As an illustration of complete enumeration, assume that ¢ =k and only
complete block designs are of interest. Also assume that the direction of the
ordering of the plots is not relevant, so that, for example, the blocks

[112]3] end [3]2]1]

are equivalent. Without loss of generality, it can be assumed that one of the b
blocks has the same arrangement of treatments over all competing designs.
For all other blocks, there are 4(k!) different permutations of treatments within
ablock. This means that an upper bound on the number of different designs is
{%(k! )}”‘l .- However, this does not take account of designs that are equivalent
under block interchanges. For example, when k= b = 3, the design D3.3 is
equivalent to the design

L1]2]3],[3]1]2],[2]3]1], D3.4

since blocks 2 and 3 are interchanged.

A tighter upper bound on the number of different designs, that takes block

interchanges into account, is

(%(k!)+b—2
b-1 |

This is illustrated in Appendix A2.1 for k=3 and b=3, 4, 5.
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As b and/or k increase this upper bound increases substantially. This is
illustrated in Table 3.1, which gives the upper bound on the number of
different designs in a complete enumeration, for b =3, 4, 5 and
k=3,4,..,10.

If it is assumed, perhaps unrealistically, that 1 million designs can be

considered in 1 second, then for b = 5 and k = 6, the time taken will be about
12 minutes. For b =5 and k = 10, the time taken will be over 14,000 million
years! This example shows that a small problem could be feasibly solved by

complete enumeration, but for larger problems, the time taken would clearly
be prohibitive.

Table 3.1

Upper bound on the number of different designs in a complete enumeration
for a complete block design with b blocks of size k.

E |[p=3 b=4 b=5
3|6 10 15
4178 364 1,365
511,830 37,820 595,665
6| 64,980 7,840,920 711,563,490
713,176,460 ~2.67x10° ~1.68x10'"
8 | 203,222,880 ~1.37x10"? ~6.88x10"
9| ~1.65%x10" ~9.96 x10'* ~4.52x10"

10] =1.65x10" ~9.96 x10"7 ~4.52x108

For design problems, heuristic techniques often involve defining neighbours
of a feasible design. For example, the neighbourhood may consist of all

designs which can be obtained by swapping treatments in or out of the current

design.



Local optimisation is a method, where after selecting a starting design, a
suitable neighbour, which gives an improvement, becomes the current design.
This process is repeated until no neighbours of the current design yield an
improvement. There are many ways of selecting a suitable neighbour. The
neighbourhood may be sampled at random or in a fixed order and the first
improvement selected or the whole neighbourhood may be scanned and the
best improvement selected. Such searching techniques may yield locally
optimal designs rather than the globally optimal design.

Simulated annealing (see Dowsland, 1995) attempts to overcome this problem
by allowing some worse designs to be accepted as the current solution
according to a probability function. This probability is determined by a
parameter known as temperature, which usually decreases as the algorithm
progresses. The lower the temperature the lower the probability of accepting a
worse design. The temperature is reduced according to a cooling schedule,

until some stopping criterion is satisfied.

Two other methods applicable to optimisation problems are tabu search and
genetic algorithms. For the tabu search method (see Glover & Laguna, 1995)
a fixed proportion of the neighbourhood is sampled at each iteration and the
best design of those sampled is selected. The search is often controlled by 3
memory functions. Short term memory is managed in the form of a tabu list in
which certain moves are not allowed in order to avoid returning to designs
which have been considered recently. Medium term memory attempts to
guide the search towards good designs by identifying common features of the
best designs encountered so far, which can be difficult to do. Long term
memory tries to spread the search over the set of feasible designs, either by
identifying features which have occurred frequently to date and outlawing

them or identifying features which have not appeared so far and forcing them
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in to the design. Tabu status may be overridden if the optimality function for
the tabu move is better than the best design found so far. Designing a tabu
search algorithm to include all 3 features is a task that is very specific to the

problem.

Genetic algorithms (see Reeves, 1995) work on populations, rather than on a
sequential stream of designs. A method for producing an offspring design
from two parents is defined and better designs are allowed to breed with
higher probability than poorer ones. A new population is produced by a
combination of exact copies, cross-over of 2 parents and mutation. The idea is
that a survival of the fittest approach will eventually lead to a population of
highly efficient designs.
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4  Background material for NRC designs

In this chapter, additional background material, to that given in chapter 2, is
provided for nested row-column (NRC) designs.

4.1 NRC design model

For a NRC design the plots are arranged in b blocks of size p, x p,, where
P1»> P, >1, and the plots are ordered lexicographically. For the NRC designs

considered in this thesis, it is assumed, unless otherwise stated, that treatments

are equally replicated.

Let the postulated model be

Yy=Xt+Z,B+Z,y +Z;0 +¢& 4.1)
where
Y, z,Xand ¢ are as defined for model (2.1);
B is a b-vector of fixed block effects;
Z, =1, ®1, isthe mxb block design matrix. The (/, i)™ element of Z, is
equal to 1 when plot /is in block 7, for I =1,...,m and i =1,...,b,and 0
otherwise;
y and & are bp,- and bp, - vectors of fixed row within-block effects and
fixed column within-block effects, respectively;
Z,= 1,081,091, and Z, = [, @1, ®1, are the mxbp, and mxbp, row

and column design matrices, respectively;

Model (4.1) can be re-parameterised as the model (2.1):
y= Xz+Za+eg,
by taking

a =(a),a;,....,a,'),

47



where
1
aQ; = (ﬂi’}’(i—l)pl+l’}/(i—l)pl+2""Qyipl ,5(1-1),;24.1:5(i—1)p2+2,---,5,-p1)

isa(1+ p, + p, »-vector of block, row and column effects for block i.

The matrix Z =1, ® B, where
B=[1k (Ipl ®1Pz) (lPl ®Ip2)]
is the within-block design matrix.

For example, for a design with blocks of size 2x 2, such as Example 2.1,

111 0] 10

1/ 1 0 01
B= .

110110

1{ 01 01

Recall that Z was also assumed to be of the form Z = I, ® B in sections 2.6

and 2.7, hence the results in these two sections are also valid here.

Model (4.1) can also be written as

Yindr = Trnipy ¥ Pi tVavpen ¥ Ou-vppen, ¥ Eipiy s (4.2)
where
T(i, j,,J,) is the treatment applied to the plot in the j,® row and j,™ column
of block i, g, is the i block effect, Yypey, 1S the J,™ row effect for block i,

Oityp+s, 15 the j,™ column effect for block i.

4.2 Simplifications to B

Consider the case where row and/or column effects are not included, that is
when the row and/or the column effect vectors in model (4.1) are zero vectors.
This gives the four models in Table 4.1, which are labelled as models I, IT, IIT
and IV, as in Uddin & Morgan (1997a). Model I includes both row and
column effects, and models II and III include only row and column effects,

respectively. Model IV includes only block effects.
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Table 4.1

Models [ to IV

Model g‘;’)::t c:t!g;n d::i;u:x:tlx?g(B Rank(B) und?r ols
T 7720, |2%0, |1, ®,)(1, @) | ntr-1| £, ®F,
I Y#0,, | 0=0,, | 1,91, P 1,®E,
11 }_’=Qbh é¢(_)bpz 1, ®1Pz p, Ept ®1p,
v =0, | 6=04, | 1 1 E}

If row and/or column effects are included in model (4.1) (models I, II and IIT)

then B =0, can be assumed without affecting the estimated treatment

contrasts since the rank of B is the same whether B includes the column vector
1, ornot. Interms of model (4.2) this means that the block effect g, is
incorporated into the row and/or column effects; that is, model (4.2) may be
re-written as

Vit = Tt Y avmeh + Capprs, +Eivnps
say, where

Yivmen = BitVuvpen-
Therefore, in terms of model (2.1), the simplified within-block design

matrices, given in Table 4.1 can be used for the four models, I to IV.
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4.3 Q* for models I to IV

Under ols, simple forms for Q" = I, — B(B' B)* B' (see section 2.6) can be

derived using the simplified B matrices given in Table 4.1. For model I,

B-B:( pzlﬂ 1Pl®11’2"]
1,8, nl,

and a generalised inverse of B'B is

BBy =[p 2By 0 ]

0 pI ”

Then

BB By B = (i.fn ®1h)+(1h ®—1—Jh)—[—1—-Jh ®—1—th.

b Py b p;

Since B(B'B)'B' = B(B'B)™B', it follows that

Q' =E,®F,.

For model 11,
B(BB)'B =B(BB)'B=1,®p;J,,

so Q =IH®EP2. Similarly for model I, =Eh®lh,andQ = E, for

model IV. Therefore, under ols, for all four models I to IV, Q" is centro-
symmetric (by (A1.21) and (A1.16) in Appendix Al.4).

Now consider gls for A centro-symmetric. For models I'to IV, if A is centro-

symmetric then Q" = A7 ~ A7 B(B'A'B)* B' A" (see section 2.6) is also

centro-symmetric. This is now shown for model L.
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It is first shown that
BH,,, =H,B,
where H, is a matrix with ones on the NE-SW diagonal and zeros elsewhere,

htp2 0 H

P2

. H, 0 . :
as defined in Appendix Al.4and H,, = ( % ) . First consider

. H, 0
BH,.p, =1, ®L,) 1,10 & .

P2
=[(H, ®1,) (1, ®H,)],
and since H,, =H,®H,,
H,B =(H,®H,)(,®,) (1,®1,)]
=[(H,®H,l,) (H,1,®H,)]
- b1,
since H,1, =1,. n
Since A™ is centro-symmetric (by (A1.18) in Appendix A1.4),
B'A'B=B'H,A'H,B
=H,,,BA'BH,,, .

Since H,, H_ . =1 p+p, 1t follows that

(BA'BY*= H., (BA'B'H

n+p: p+py*
Finally consider
B(Bv A—IB)+Bv = BH;+pz (BlA—lB)+H;I+p2Bv
- H,B(BA\'B)*B'H,,

showing the centro-symmetry of B(B'A™'B)* B'. By (A1.19) and (A1.20) in

Appendix Al.4, it follows that Q" is centro-symmetric. Similarly Q" can be
shown to be centro-symmetric for models IT to IV.
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S  Some recent results on nested row-column designs

A review of some recent work on optimal and efficient NRC designs is given
in this chapter. Section 5.1 provides a brief summary of results on NRC
designs when errors are assumed to be uncorrelated. Correlated errors are
assumed in sections 5.2 and 5.3, where a detailed review of results on one-

dimensional block designs and NRC designs, respectively, are given.

Recall that the NRC design models I to IV were shown in chapter 4 to be
equivalent to the block design model (2.1).

5.1 Nested row-column designs for uncorrelated errors

Section 5.1 considers some work on balanced, efficient and optimal NRC
designs when errors are assumed to be uncorrelated. That is, for model (4.1):
y=Xt+Z,f+Z,y +Z;8 +¢, with var(¢) =I,c*. Note that a brief review
of NRC designs for uncorrelated observations is given in section 5.9 of John &

Williams (1995), and a more detailed review is given in Morgan (1996). In

the papers discussed in section 5.1, the block, row and column effects: 8, Y

and ¢ , respectively, are either all fixed effects or all random effects. In

section 5.1 the corresponding models will be referred to as fixed and mixed

effect models, respectively. For the mixed effect model:
E(8)=0,, var(g)=Il0;;
E(y)=0,,, va(y)=1,0;;
E(8)=0,,, va($)=1,,0%;

and g, 8,y and § are mutually uncorrelated.

In what follows, the fixed effect model is assumed, unless otherwise stated.
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5.1.1 Singh & Dey (1979)

Singh & Dey (1979) gave a procedure for the analysis of NRC designs. They

defined a design with k <t to be a balanced incomplete block row-column

(BIBRC) design if

(i) every treatment occurs at most once in a block (i.e. blocks are binary),
and

(ii) for any pair of distinct treatments (v, v,),

(pl - l)wr(v,,u,) + (pz _l)wc(w,vz) - w-(‘w:) =,

where » @iy 0y aNd @ denote the number of blocks in which

r(w,m)? «(n.%2)

v, and v, occur together in the same row, column and elsewhere,

respectively, and @ is an integer independent of the pair of treatments

chosen.
This means that for a binary design, if each pair of treatments occur together
equally often within rows, equally often within columns and equally often
elsewhere within blocks, the design is a BIBRC design. In these designs every
treatment occurs in exactly

ao(t-1)

(7, =p,-1)
blocks. Clearly rt =bp,p,, therefore, for certain @, these designs exist for

b= wt(t—-1)
pp(p—1Xp, -1)

Let D" be the set of binary designs in D (see Definition 2.2 in section 2.5.1).
For designs in ©°, by the equation in (2.31),

t(C) = btr(Q"),
which is constant over designs in @". Condition (ii) means that the C-matrix
is completely symmetric. This gives the following theorem.
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Theorem 5.1 (Singh & Dey, 1979)
For a fixed effect model with uncorrelated errors, BIBRC designs are

universally optimal over all designs in @". n

Some methods of construction of BIBRC designs were given and several
designs for blocks of size 2 x2 were presented. These designs had @ =1,23
(i.e. b=41(t-1), 41(t-1),%1(t - 1), respectively). An example of a cyclic
BIBRC design with =13 and 2¢ = 26 blocks of size 2x3 was also given.

$.1.2  Ipinyomi & John (1985)

Ipinyomi & John (1985) considered a class of NRC binary designs based on a
cyclical method of construction. Unlike the designs in Singh & Dey (1979),
these designs exist for many parameter combinations (¢, b, p,, p,) and require
a relatively small number of blocks. Let D" be the set of cyclic NRC binary
designs given by the development of a single initial block. The best designs in
D", with respect to the A-optimality criterion, were tabulated for 5<z<15,
P, <3 and p, <7. For blocks of size 2x 2, cyclic designs with b=t were
presented, and for blocks of size 2x 3, cyclic designs with ¢ and 4¢ blocks

were given.

5.1.3  Bagchi et al. (1990)
Bagchi et al. (1990) considered the optimality of NRC designs, and gave the

following theorem.

Theorem 5.2 (Bagchi et al., 1990)
For the fixed effect model when observations are uncorrelated, a design is

universally optimal within the set of connected designs ® if

1)  the number of times that treatment v appears in row j, of a block i is the
same foreach j, =1, ..., p,,and

ii)  the columns form a balanced block design. =
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A balanced block design is a binary equireplicate design with each pair of
treatments occurring equally often in a block (see Appendix A1.7). Designs
satisfying conditions (i) and (ii) are called balanced nested row-column
(BNRC) designs. A BNRC design has, by condition (i), non-binary blocks.

An example for blocks of size 2x2 with ¢t =4 and b=6 was given. The

following two variance balanced designs with b = +#(t —1) were considered.

172] [1[3] [1]4] [2]3] [2]4] [3]4 Ds.1

2|1 |31} |4{1] |32 412 4|3

1[3] [1]4] [1[2] D5.2

113 |1]4] |1
2

2
4 23 3|4 4|2 2|3 314

Since both these designs are variance balanced, the C-matrix is completely
symmetric, that is C =aE,. This means that the design with the larger a, is
universally better (see section 2.5.4). The non-binary design D5.1 witha =4,
is universally better than the binary design D5.2 witha=2. Design D5.1is a
BNRC design and is therefore universally optimal in the entire class of
competing designs.

For the mixed effect model after recovering and combining information from

the different strata, Theorem 5.3 below shows that optimality results are very

sensitive to the relationship between the variance components, o*, o, o,
and o}, Let

x =(c*)7, x,=(0’ +p0,)7,

x;=(c’+po3)”, x,= (c? '*'1720'72 +po; '*'Plea';)—l

and x=x, —x, —x, +Xx,.
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Theorem 5.3 (Bagchi et al., 1990)
Under the mixed effect model when errors are uncorrelated, after recovering

information from the different strata, if x < 0, then a BIBRC design, if it exists,
is universally optimal within 9. If x > 0 then a BNRC design whose rows
form a balanced block design is universally optimal within 9. =

5.1.4 Leeming (1997)

Leeming (1997) considered blocks of size 2x 2, where for each block there
are two replications of a control treatment (labelled O) which occur once per
row and once per column, and the remaining plots are allocated the test
treatments. Two designs were compared under the assumption that the test
treatment versus control treatment comparisons are of interest. Design D5.3

has blocks of the form

al0
O|b

for each pair of distinct test treatments (a, b), repeated ¢ times, where ¢ =1 for
todd and ¢ =2 for ¢ even. Design D5.4 has blocks of the form

alo
0| a

for each test treatment a, repeated 4c(t-1) times. Hence, both designs have

, Ds5.3

> D5.4

b =4cK(t-1) blocks. For example, when ¢ =4, D5.3 has the blocks

170 170 1/o| [2Jo] [2]0] [3]0
ol2]’'[o[3]’|of4]|’'[o]|3]’[0o]a]|’|O]|4

repeated 3 times.

For the fixed effect analysis, it was shown that design D5.4, which has non-
binary diagonals, is universally better than D5.3. When plot, row and column
information are recovered and combined, the design which is universally

better depends on the variance components.
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As an example, Leeming (1997) considered a simplified version of a 2x2
NRC design from Kachlicka & Mejza (1995), which had 3 sub-plots for each
whole plot. The design of Kachlicka & Mejza (1995) was for an experiment
to observe potato crop yields under the influence of 3 levels of irrigation on
the whole plots, and 3 levels of nitrogen on the sub-plots. The control
treatment was the absence of irrigation. Leeming (1997) considered a similar
experiment when potato yield was observed only under the influence of the 3

levels of irrigation.

5.2 One-dimensional designs for correlated errors

There has been much interest recently in the design of efficient experiments
when plots are arranged in one-dimension under the assumption that errors are
correlated. Discussed in section 5.2 are: Kiefer & Wynn (1981), Kunert
(1987a), Cheng (1988), Martin & Eccleston (1991) and Martin (1998). These
papers provide much of the foundation of the results on optimal NRC designs
given in subsequent chapters of this thesis. Some others that have considered
one-dimensional block designs under dependence are: Cheng (1983), Gill &
Shukla (1985a), Kunert (1987b), Morgan & Chakravarti (1988) and Russell &
Eccleston (1987a, 1987b).

Model IV is assumed throughout section 5.2. Kiefer & Wynn (1981) gave
optimality conditions for the NN1 process under ols. For the AR(1) process
under gls, optimality conditions were derived by Kunert (1987a). The
optimality conditions from both Kiefer & Wynn (1981) and Kunert (1987a)
are satisfied by SBAs. Cheng (1988) showed that SBAs are universally
optimal over binary designs for any within-block covariance matrix A under
gls, and also showed when non-binary designs are optimal for the NN1
process when k& =3 and 4. Martin & Eccleston (1991) gave a condition for
the universal optimality of a SBA over all designs for any symmetric A, and
also considered the optimality of non-binary blocks when k =3 and 4. Martin
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(1998) gave optimality results for k=3 to 6, and also some results for general

block sizes, over a range of dependence structures.

5.21 Kiefer & Wynn (1981)
Kiefer & Wynn (1981) considered optimal one-dimensional block designs for

the NN1 process under ols. For blocks in which treatments v, and v, occur,

let ":m be the number of blocks in which v, and v, are lag 1 neighbours, and

let e; » be the number of blocks in which treatment v, occurs at an end plot

plus the number of blocks in which treatment v, occurs at an end plot. Note
that if both treatments occur at the end plots of a block, then the contribution

of that block to e:b is 2. Kiefer & Wynn (1981) gave the following theorem.

Va

Theorem 5.4 (Kiefer & Wynn, 1981)
For the NN1 process, under ols, if a design

i)  isabalanced block design (see Appendix A1.7), and

ii) hase,, +kn,, equal for all distinct pairs of treatments (v,, v,),

then the design is weakly universally optimal over all balanced block designs
in 9. Note that such designs will only exist for certain b. ]

For t =7, k=4 and b = $1(1-1) = 14, they gave an example of a weakly
universally optimal design: .
[112]573],[2]3]6[4],[3[4]7[5].[4]5]1]6],
(5162]7],[6[7]3]1].[7[1]4]2],

(811138121, [6]2[4[3].[7[3]5[4].[1[4]6[5],
(z[5[7[6], [3T6[1]7], [A[7]2[1]. Ds.5
which is a cyclic design developed from the initial blocks
[1]2]5[3]and[B]1[3]2].
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This design has e:m =8 and n:m =2 V v, #v,. Note that designs D3.1 and

D3.2 (in sections 3.1 and 3.1.1.1, respectively) are also weakly universally
optimal with e:‘w2 =8 and 4, and n:m =4 and 2, respectively, V v, 2 v,.
SBAs satisfy conditions (i) and (ii) of Theorem 5.4; in fact the properties of a
SBA are more than what is needed. However, a design constructed from a

SBA would have at least b = 41(¢-1).

5.2.2 Kunert (1987a)
Kunert (1987a) gave the following results for block designs under the AR(1)

process and gls.

Lemma 5.5 (Kunert, 1987a)
For the AR(1) process under gls, tr(C) is maximised for a binary design for all

possible p, when k=3, and for p, = p; (k) when k>4,
where

pr(k) = k-2-J&m)

(2 -6)

Note that p, > p, (k) > w, <0, where (Q"),, =w,,,.

Lemma 5.6 (Kunert, 1987a)
For the AR(1) process under gls, a binary design has a completely symmetnc

C-matrix if

1) The design is a balanced block design,
i) The design is lag 1 neighbour balanced,
and for all pairs of distinct treatments (v,, v, ):

iii) Z( n, e, + wew)isconstant,and

b
iv) e, e, , isconstant,
i=]l
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where n,; is the number of times treatment v occurs in block i, and e, is the

number of times treatment v occurs at an end plot in block i. ]
This gives the following theorem.

Theorem 5.7 (Kunert, 1987a)
For the AR(1) process under gls, a design d” satisfying (i) to (iv) of Lemma

5.6 is universally optimal over @ for p, = p, (k). m

Note that d" has b = 4ct(t —1) blocks for an integer ¢. As in Theorem 5.4

(Kiefer & Wynn, 1981), the properties of a SBA are more than what is needed
for optimality.

5.23  Cheng (1988)
Cheng (1988) showed that, for any within-block covariance matrix A, the
SBA gives a completely symmetric C-matrix. This is because for a SBA

every pair of distinct treatments (v;, v, ) occurs in every pair of distinct plots
(1,,1,) an equal number of times, x,, say. Hence, by the equation in (2.29),
{X'(Ib 4 W)X}.,,vz =x2 Zwll,lz

h<il
= %{ywlk —tW)} Vv # v,
Also, since for a SBA with k > 2, each treatment v occurs in each plot, x,
times, say, by the equation in (2.28),

{X'(lb ® W)X}v,v = X i Wi

=1

=xu(W) Vv

Therefore C =X"(I, ®Q")X is completely symmetric.
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As in section 5.1.1, by the equation in (2.31), it clear that for a binary design,
tr{X'(7, ® W)X} = bex(W),
which 1s constant for all binary designs. This gives the following theorem.

Theorem 5.8 (Cheng, 1988)
A SBA is universally optimal over all binary designs in © for any within

block covariance matrix A. L

The NN1 process was considered in some detail for £ =3 and 4. Assuming
that each block is of the same #ype, that is each block has the same structure of
treatments on the ordered plots 1 to &k, Cheng (1988) lists the different types of
blocks, each contributing a different possible value to tr{X"(I, ® W)X}. Four
types are listed for k£ =3:

[aaa], [aab], [aba] and [abc], (5.1
where a, b and c are distinct labels. Note that reversing the order of the labels
gives an equivalent type in terms of its contribution to (I{X "I, W)X } since
for the NN1 process, IV is centro-symmetric (see Appendix Al.4). Hence the
type [aab] is equivalent to the type [baal.

Consider a design with all its blocks of the same type. Then for any pair of
blocks (i,i,)

X,=X,B,, (5.2)
where, P,, = F, ; is a symmetric permutation matrix such that £, , 7, , =1,.

For example, consider the following non-binary unequally replicated design
with k=3, b=2, t =5 and blocks of type [aba]:
(12[1],[3[513. Ds.6
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For this design,

1 0 00O 00100
X,=X,A;=|0 1 0 0 0|, X,=XP,={0 0 0 0 1},
1 0 0 0O 001 00O
where
(0 0 1 0 0)
0 00001
P,=l1 0 0 0 Of.
00010
\0 1 0 0 0
Hence, by the equation in (5.2)
w(X,' WX, ) =t(B,, X,'WX, F,,)
=t(X, WX, B, B,
= (X, 'WX,,)
=c¢p VYV (i,i)
That is, tr( X,'WX,) is the same for all the blocks. Therefore,
tw{X'(l, W)X} = be,, . (5.3)

Under gls, ¢+ was calculated for each of the 4 types, and so the type with
maximum c_. gives the design with maximum tr(C). In this way, it was
shown that for the NN1 process, the binary type [abc] has maximum ¢ .
when p, < 4, and the ﬁon-binary type [aba] has maximum ¢ When

P, 2 3. For a SBA, blocks are binary, so the SBA is universally optimal over
all designs in 9 when p, < 4. When p, 2 4, a design with blocks of type

[aba] has completely symmetric C-matrix when the design is lag 1
neighbour balanced, so then the design is universally optimal over designs in
D. Lag 1 neighbour balance for a design with blocks of type [aba] means

that a design with b equal to the number of pairs of distinct treatments, 4(¢-1),
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is possible (including when ¢ is even). Note that the design does not need to

be equi-replicated.

Under ols, not all neighbour balanced designs have var(£)= D*c?
completely symmetric, so Cheng (1988) compared SBAs to designs with

blocks of type [aba] such that treatments appear equally often Ds.7
at end plots, '

since these designs have D* completely symmetric. By considering tr{ D*}
for these two variance balanced designs. It was shown that the SBA is
universally better than D5.7 when p, < , and D5.7 is universally better than

the SBA when p, > {.

For k =4, 10 different types were listed by Cheng (1988):

[aaaa], [aaab], [aaba], [aabb], [abab],

[abba], [aabc], [abac], [abca], [abcd]. (5.9
However, for a centro-symmetric W, there is an extra type which has been

noted by the author: [baac] (see the Acknowledgements in Martin, 1998).
Under gls for the NN1 process, there are 3 different types of universally
optimal design depending on the value of p,, with the SBA being optimal
when-4 <p <t Under ols, the SBA is the best of these three designs when
~2/5 < p, £ 2/7. Note that for all the designs considered in Cheng (1988),
when | p1| is not too large, the SBA is universally optimal under gls, and is the
universally better design in comparisons between designs in D, (see section

2.5.4) under ols.

5.2.4 Martin & Eccleston (1991)

Assuming that b = {c1(s-1), for an integer ¢, Martin & Eccleston (1991) define
a binary block design to be Strongly Directionally EquiNeighboured (SDEN)
if X'(I, ® W)X is completely symmetric for all symmetric W. For k>2,a
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SDEN design is a SBA (see section 3.1.3). When k=2, Q" is a scalar
multiple of E,, so that X" (I, ®Q2").X is completely symmetric when each
treatment pair forms blocks. Also for k =2, gls and ols are equivalent.

Recall from section 3.1.3 that for a SBA with &k > 2, if ¢ is even then ¢ must be

ceven.

A binary block design is defined to be Strongly EquiNeighboured (SEN) if
X' (I, ®W)X is completely symmetric for all symmetric and centro-

symmetric /¥. Centro-symmetry essentially means that
(i) plots/and k+1-1 are equivalent, and
(11) the pairs of plots (/,,/,) and (k +1-1,,k+1-1,) are equivalent.
A SEN design
(i) has positional balance under (i), and
(i1") each unordered pair of distinct treatments occur equally often within the

same block in each unordered pair of distinct plot positions, under (ii).

Clearly a SDEN design is a SEN design. However, for a SEN design if is
even and k is even then ¢ can be odd. For example, when ¢t =k =4 a SEN
design with b = 4#(z-1) = 6 is given in Figure 5.1. This consists of half of the
columns of the SBA in Figure3.2b.

Figure 5.1
A SEN design for t=k =4 (columns are blocks) with the minimum value of ¢.
1[1(1[2]3(4
2|13(4]111]1} (¢=1)
3/412|4|2}3
4(213|3|4]|2

Only those b for which SDENSs or SENSs exist are considered. If all blocks are
of the same type (see section 5.2.3) then the equation in (5.3) is true, and ¢, is

given by the equation in (2.30). Also, if X'(I, ® W)X is completely



symmetric then X'(I, ® W)X = aE,,and so tr{ X' (I, @ W)X } = a(t~1).
This gives a = bc,, /(t—1), hence

be,
-1
Recall that W can be replaced by Q" or Q"AQ’. (see section 2.7). Therefore

X'(I, @W)X =

X'(I, ®W)X completely symmetric means that C and var(q ) are completely
symmetric. Also, recall from section 2.5.4 that C and var(q ) were taken as

a,E, and a,E,c*, respectively.

Here,

a =bc. [(t-1) (5.5)
and,

a, =ch.AQ. (t-1), (5.6)
which means that by the equation in (2.22)

D*= (t—blicf-@—zz : 5.7

Recall from section 5.2.3 that, for a binary design, ¢, simplifies to tr(W¥),
which is constant for all binary designs.

5.2.4.1 Ordinary least squares results
Under ols, Q" = E, is centro-symmetric (see Table 4.1, model IV), and if A
is centro-symmetric, so then is Q'AQ" = E,AE,. Therefore, for a SEN design

t-1)*
b(k 1)?

(D} = 7 t(E,AE,),

which is constant over all balanced block designs. This gives the following

theorem.
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Theorem 5.9 (Martin & Eccleston, 1991)
An SDEN/SEN design is weakly universally optimal under ols among all

balanced block designs in @ for all A/all centro-symmetric A. m

Note that for a stationary process, Kunert (1987b) showed that the SBA is a
weakly universally optimal balanced block design under ols. However, A in

Theorem 5.9 also includes non-stationary processes.

As in Cheng (1988), it is possible to construct balanced non-binary designs
which can be more efficient than a binary design. Blocks of size k=3 and 4
were considered for a centro-symmetric A, which includes the NN1 process
considered by Cheng (1988). For & = 3, the variance balanced design D5.7
with blocks of type [aba] is compared to a SEN design with an equal
number of blocks. It is shown that the SEN design is universally better than
DS.7if

4WU S 7w2,2 ’
where W= E,AE;. Interms of the elements of A this inequality is
uyy +8uy; SSu 3 +4u,,, (5.8)

where

A=lu, u,; wu, |
s U, U,
(cf. the result of Cheng, 1988).
For k = 4, Martin & Eccleston (1991) show when variance balanced block

designs of types [aabb] and [abab] are universally better than the SEN
design.

For the NN1 process with k even, conditions for when variance balanced
designs with blocks of type [aabbcc...] and [abab...ab] are

universally better than the SEN design, are also derived in Martin & Eccleston
(1991).
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5.2.4.2 Generalised least squares results
For any symmetric Q", a binary design has

t(C) = d(Q"),
and by the equation in (2.30), for a non-binary design, c_. < tr(Q") if

4

é @Zz:)wll h < O’
i.e. when

@), <0 v 1=1,. (5.9)

That is, if the off-diagonal elements of Q" are non-positive. Therefore tr(C) is
maximal for a SEN design if any only if the condition in (5.9) is true. This

gives the following theorem.

Theorem 5.10 (Martin & Eccleston, 1991)
An SDEN/SEN design is universally optimal under gls for all Q" /all centro-

symmetric Q"
a) among all binary designs in @
b) among all designs in 9D if the condition in (5.9) is true. ™

Theorem 5.10 is also valid when the data need to be differenced, as for the
CG(d) model (see section 2.3.2.4). Recall that part a) of Theorem 5.10 was
given by Cheng (1988), although he did not consider differenced data.

Martin & Eccleston (1991) note that many dependence structures have some
positive off-diagonal elements in Q. Two exceptions are the LV model and

the AR(1) process with p, = p;(k), where p; (k) is given in Lemma 5.5.

Blocks of size k = 3 and 4 were considered by Martin & Eccleston (1991) for
centro-symmetric A. When k=3, only designs with blocks of two of the four
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types listed in (5.1) (in section 5.2.3) can be universally optimal. If

2u,, Suy 3 +u,, (5.10)
then the SEN design is universally optimal over D, otherwise the design D5.7
is universally optimal (cf. the result of Cheng, 1988).

For k =4, the 10 types listed in (5.4) were reduced to the 5 types

[aabb], [abab], [abba], [abca] and [abcd].
For each of these types, conditions in terms of the elements of Q" were given
for which designs with C completely symmetric are universally optimal over
. However, since the extra type [baac] was not considered here, these

conditions are incorrect, but were corrected in Martin (1998).

5.2.5 Martin (1998)
Martin (1998) extends the results of Martin & Eccleston (1991), considering
blocks of size 3 to 6 in detail, and also giving some results for general block

sizes, over a range of dependence structures. Only k£ <¢ is discussed here,
although Martin (1998) also considered the extended block case of k> ¢.

Most of the assumptions in Martin (1998) are as in Martin & Eccleston (1991).
However, it is assumed throughout Martin (1998) that W is centro-symmetric

as well as symmetric, and therefore a reference to w, ,, implies also the
elements w, ; , Wy, gy, a0d Wiy gy, - Recall, from section 2.7, that the

rows and columns of ¥ sum to zero and the diagonal elements of W are

posttive.

Although some results for general dependence structures are given by Martin
(1998), the main dependence structures considered are the NN1, HCS, AR(1),
two special cases of the AR(2), the LV and the CG(2) models. The two
special cases of the AR(2) (defined in section 2.3.2.2) are called the AR(2a)

and the AR(2b). The AR(2a) has 7, =27 and n, =—5” for || <1, and the
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AR(2b) has 7, =75 and n, =27" for || < . These 7 processes are all one-
parameter processes. Martin (1998) defines positive dependence to mean any
process formed by differencing (e.g. LV and CG(2)), and any correlation

structure with p, > 0. Negative dependence means any correlation structure

with p, <0.

The designs considered here
(1) have b = 4cq(¢-1) for an integer c,
(ii) are equireplicated,
(iii) have each block of the same type (see section 5.2.3), and
(iv) have X'(I, ® W)X completely symmetric.
The complete symmetry of X'(I, ® W)X is achieved by using the columns of

a SBA of length k on ¢ symbols, as described in section 3.1.3. Let the number
of different symbols in a type be s < k. The design is constructed from s rows
of the SBA, with the columns forming the blocks. If a type has s < k different
symbols, the s rows are used in the appropriate plot positions, and the
remaining kK —s plot positions are filled with the within-block replicates
according to the type. For example, when ¢ =5, using the SBA given in
Figure 3.2c¢, a binary design with blocks of type [abcd] formed from the
columns of the first s = 4 rows of this SBA is the SDEN design with b = 10:
[1][2]3[4],[1]4]2]5].[2]3[4]5],[2]58]3]1],
[3[1[412],[3[4l6[1].[2[2[5]3].[]5]1]2],
[8]1]2]3],[5]3]1]4]. D5.8

A non-binary design of type [aabb] has s =2, and so the first two rows of
the SBA can be used to construct the design:

L[ f2]2],[1]1]4]4],[2]2]3]3],
[3[3[1]1],[3]3[af4],[4]4]2]2],[4]4]5]5],

2]2]5]5],

|56]/5]1[1],[5]6]3]3]. D5.9
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It has been shown in section 5.2.3 that for a SDEN design, X" (I, ® W)X is
completely symmetric. It is now shown that X" (I, ® W)X is also completely

symmetric for non-binary designs constructed as described above.

b
Let @), =)0  be the set of pairs of plots that contain the distinct
i=l

iwvg

b
treatments v, and v,, and let ®, = | J®{? be the set of pairs of distinct plots
i=1

containing treatment v. Then for any design, from the equation in (2.29),

b
xu,emuxi,, = xlzl; (Z) Wy,
i= ®’=V1-V'2

=% Z Wi »
&
.2

and from the equation in (2.28),

k b
xu,emx},, =x, {gw, 222w, ,2}

1 o2
i=1 o)

= xz{tr(W) +2Y W, } s

where x; is the number of times each pair of distinct treatments occur in each
pair of distinct plot positions, and x, is the number of times each treatment
occurs in each plot position (as defined in section 5.2.3). For a design
constructed from a SBA in the way described above, @, is the same for all
v, # v,, and so the off-diagonal elements of X"'(J, ® W)X are equal. Also,

O, is the same for all v, and so the diagonal elements of X"(I, ® W)X are
equal.
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It follows that
tr{X' (I, W)X} = txz{tr(W)+22wM}
®\'

=bc, (bytheequationin(5.3)),

tr,=b and w(W)+2>2w,, = tw(X'WX)=c,,
®V

where 3w, , is the sum of the w, , for those plots ], </, with the same

v

symbol in the type.

As an example consider designs D5.8 and D5.9. For both designs, x, = 2.
For the SDEN design D5.8, 0", = {(1,2),(1,3), (14),(2.,3), (2.4), 3.4)} ¥
W # v,,and ©, = {} V v,50 g, =t(W). ForD5.9, O, = {(1,3),(1,4),
(23),24)} V v, # v,,and O, = {(1,2),(3.4)} V¥ v, 50 ¢, =tr(W) +
2(wy +ws,). Clearly ©%), JO, = ©L", (O, is the set of all pairs of

distinct plots.

Since X'(I, ® W)X is completely symmetric, C and var(q ) are completely
symmetric, as shown in section 5.2.4. Therefore D" is also completely
symmetric. Under gls, maximising c_. gives the universally optimal design
(by the equation in (5.5)). Underols, Q" = E, so minimising cg .z, /3,

gives the universally optimal design among designs for which C and var(q) are
completely symmetric and the weakly universally optimal design over designs
with C completely symmetric (by the equation in (5.7)). Note that

¢, = k-kr'r,
where r = X,'1, is the vector of within-block replicate numbers for any

block i.
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Fork=3, 4,5, 6, Martin (1998) gives a list of types corresponding to the
different ¢, possible for W centro-symmetric. Expressions for ¢, are given
fork=3,4,5 Thereare4,11,32 and 117 types fork=3,4,5 and 6,
respectively. The types and expressions for ¢, are repeated here in Table 5.1

and Table 5.2 for k = 3 and 4, respectively.

Table 5.3 gives the list of types for k= 6. For a given k, types are numbered
1,2, .... When comparing two types ¢, and e,, ¢, is defined to be better than

- 2 .
eifc,. . /¢ for ¢ islessorequal to ¢ .

./ ¢, for e;. A design with
blocks of type e is called a type e design. In comparing designs of different
types it is assumed that ¢, and hence b are equal. A type is called optimal if

the design of that type is optimal.

Table 5.1
List of types and expressions for ¢y fork=3.
typeno. | type Sy
1 faaa] |0
2 [aab] | 2wy
3 [aba] | 2w,
4 [abc] | 2wy +W,;,
Table 5.2
List of types and expressions for ¢, for k=4.
type no. type Cw
1 [aaaa] | 0
2 [aaab] | 2wy,
3 [aaba] | 2w,
4 [aabb] | 2w, +2w,, +4w,,
5 [abab] | 2w;; +2w,, +4w, ;4
6 [abba] | 2wy, +2w,, +2w, (+2w,,
7 [aabc] | 2wy, +2w,; +2w;,
8 [abac] | 2wy +2w;; +2w,
9 [abca] | 2wy, +2w,, +2w,
10 [baac] | 2wy, +2w,, + 2w,
11 [abed] | 2w, +2w;,
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Table 5.3
List of types for k= 6.

type type type type
no. type no. type no. type no. type
1 | {aaaaaa] | 31 | [aababc] | 61 | [aabcbc] | 91 | [acabdb]
2 | faaaaab] | 32 | [abaabc] | 62 | [aabccb] | 92 | [abbacd]
3 | [aaaaba] | 33 | [baaabc] | 63 | [abacbc] | 93 | [abcabd]
4 | [aaabaa] | 34 | [aabbac] | 64 | [abaccb] | 94 | [abcadb]
5 | [aaaabb] | 35 | [ababac] | 65 | [abcabc] | 95 | [acbabd]
6 | [aaabab] | 36 | [baabac] | 66 | [abcacb] | 96 | [acbadb]
7 | [aabaab] | 37 | [abbaac] | 67 | [abccab] | 97 | [abbcad]
8 | [abaaab] | 38 | [babaac] | 68 | [abbcca] | 98 | [abcbad]
9 | [baaaab] | 39 | [bbaaac] | 69 | [abcbca] | 99 | [abcdab]
10 | [aaabba] | 40 | [aaabcb] | 70 | [abcecba] (100 | [acbbad]
11 | [aababa] | 41 | [aabacb] | 71 | [aaabcd] |101 | [abbcda]
12 | [abaaba] | 42 | [abaacb] | 72 | [aabacd] {102 | [abcbda]
13 | [aabbaa] | 43 | [baaacb] | 73 | [aabcad] {103 |{ [abcdba]
14 | [aaabbb] | 44 | [aabbca] | 74 | [aabcda] {104 | [acbbda]
15 | [aababb] | 45 | [ababca] | 75 | [abaacd] {105 | [caabbd]
16 | [abaabb] | 46 | [baabca] | 76 | [abacad] {106 | [cababd]
17 | [aabbba] | 47 | [abbaca] | 77 | [abacda] |107 | [cabbad]
18 | [ababab] | 48 | [babaca] | 78 | [abcaad] |108 | [aabcde]
19 | [ababba] | 49 | [bbaaca] | 79 | [baaacd] |109 | [abacde]
20 | [abbaab] | 50 | [aaacbb] | 80 | [baacad] |110 | [abcade]
21 | [aaaabc] | 51 | [aabcab] | 81 | [aabbcd] [111 | [abcdae]
22 | [aaabac] | 52 | [abacab] | 82 | [aabcbd] |112 | [abcdea]
23 | [aabaac] | 53 | [baacab] | 83 | [aabcdb] |113 | [baacde]
24 | [abaaac] | 54 | [aabcba] | 84 | [aacbbd] |114 | [bacade]
25 | [baaaac] | 55 | [abacba] | 85 | [aachdb] |115 | [bacdae]
26 | [aaabca] | 56 | [baacba] | 86 | [aacdbb] |116 | [bcaade]
27 | [aabaca] | 57 | [abbcaa] | 87 | [ababcd] (117 | [abcdef]
28 | [abaaca] | 58 | [babcaa] | 88 | [abacbd]
29 | [aabcaal | 59 | [bbacaa] | 89 | [abacdb]
30 | [aaabbc] | 60 | [aabbcc] | 90 | [acabbd]
5.2.5.1 Generalised least squares results for general k

Now consider gls. As seen in Martin & Eccleston (1991) for k=3 and 4,

when A is the within-block correlation matrix for a stationary process, {w,,}

can easily be written down in terms of { o, }. Recall from Theorem 5.10 that

a SEN design is universally optimal among all designs when the condition in

(5.9) is true. This occurs for all the seven processes considered in Martin




(1998) in a parameter region around zero, but not for the CG(2). For the LV
model it is true for all y, and for the AR(p) when all 7, =2 0. Martin (1998)

points out that for the AR(p), optimality of the SEN design can extend slightly
outside the region {7, 20 V i} (cf. the result for the AR(1) process in

Theorem 5.7). He also gives a condition, in terms of 77, when the SEN design

is optimal for the AR(2b). It is noted further that for the AR(2a) and NN1, the
range of the parameter in which the SEN design is optimal tends to zero as &

increases.

Clearly if the condition in (5.9) is not true, then a non-binary type is optimal.
If w,, >0, then a type with the same symbol on plots /; and /,, and different

symbols on all the other plots, will have a larger ¢, than for a binary design.
Under the centro-symmetry of Q°, if J, +1, # k +1, a different repeated
symbol can be used on plots £ +1—/, and k+1-1I,. Hence this design will be
universally better than the SEN design, and is optimal if w, , is the only

positive off-diagonal element.

Martin (1998) notes that as p, becomes more negative (i.e. increasing
negative dependence), w, , often becomes positive first, in which case a type

with the same symbols on plots 1 and 2 (and a different repeated symbol on
plots k~1 and k, for k> 3), is likely to be optimal. For example, for k=3, 4,
5 and 6, the resulting types are [aab], [aabb], [aacbb] and [aacdbb].

For general £, conditions for when w, , becomes positive are given in Martin

(1998) for the seven processes being considered.

For increasing positive dependence, w, , often becomes positive first. The

optimal type has the same symbol on plots 2 and 4 (and a different repeated
symbol on plots k-3 and k-1, for k=6 and £> 7). For example, the
resulting types for k=5, 6, 7 and 8, are [bacad], [cababd], [bacadef]
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and [cadabebf]. For general £, conditions for when w, , becomes positive
are given in Martin (1998) for the seven processes being considered. As the

positive or negative dependence increases, further w, , may become positive,
by

and therefore optimal types are more difficult to deduce.

5.2.5.2 Ordinary least squares results for general k

Under ols, Martin (1998) points out that in general it is more difficult to see
which types are optimal since optimality depends on ¢,z /3, , and it is
difficult to see which off-diagonal elements of E,AE, are large and negative.
However, some general results are given despite these difficulties, including

some simple comparisons between binary and non-binary types.

5.2.5.3 Optimal types for small k
For k=3, 4, 5, 6, optimal types and change points are given in Martin (1998)

for ¢ > 2 under both ols and gls for each of the processes under consideration.

Definition 5.1 :
A type is deemed to be inadmissible if, in the situation considered, there is

another type which is always better. =

Type 1 is inadmissible for k= 3, 4, 5, 6. When k= 3, the 4 types listed by
Cheng (1988) ((5.1) in section 5.2.3) are given in Table 5.1. Now consider
gls. First assume ¢ 2 3. Since w,, >0, type 4 is always better than type 2, so
type 2 is inadmissible. Therefore type 4 is optimal if it is better than type 3,
which is the case when 2w,, >w, ,. This is equivalent to w,; <0 since the
row/column sums of # are zero. Otherwise type 3 is optimal (cf. the result of
Martin & Eccleston (1991), given as the inequality in (5.10)). When ¢ =2,

type 3 is optimal if w,, < w, ,, otherwise type 2 is optimal.
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Under ols, ¢, is$,%and 2 for types 2, 3 and 4, respectively. Hence
Cong, | ‘31223 is $w,;, $w,, and 1 (2w, +w,,) for types 2,3 and 4, respectively.

First assume ¢ >3. Recall that Martin & Eccleston (1991) gave the condition
for when type 4 is better than type 3 (the inequality in (5.8)). For a stationary
process, the inequality in (5.8) is equivalent to

3-8p,+5p, >0.
Type 4 is better than type 2 if 5w, > 2w, ,. For a stationary process this is
equivalent to

3+p,—4p,>0.
For ¢ = 2 under stationarity, type 3 is optimal if p, > p, , otherwise type 2 is

optimal.

For k = 4, the complete list of 11 types is given in Table 5.2. Now consider
gls for t24. Types 2 and 3 are inadmissible since type 11 is better. For type
7, ¢y lies between ¢, for types 4 and 11, and ¢, for type 8 lies between ¢,
for types 5 and 11. Hence types 7 and 8 are also inadmissible. Therefore the

optimal type depends on the maximum of 2w, ,, 2w, 3, Wy, +W,3, Wy 4, W,

and O, for types 4, 5, 6, 9, 10 and 11, respectively. This corrects the result in
Martin & Eccleston (1991), which omitted the optimality of type 10 for A

centro-symmetric. For a stationary process, w, ; > 0 requires w; ; > 0. This
means that type 6 is better than type 10. If w,; <O then type 11 is better than
type 10. Hence, type 10 is inadmissible under stationarity.

Under ols for ¢ > 4, type 10 is inadmissible for a stationary process since

Craz, /3, for type 10 lies between cg oz, /cZ, for types 7and 9. Conditions

are given in Martin (1998) for when types 4, 5 (Martin & Eccleston, 1991) and
9 are better than type 11 under stationarity.
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For k=5 under gls for ¢ > 5, optimality conditions in terms of { p, } are
complicated in general. Under ols for £> 5, it is simple to compare one type
with another type for a stationary process, but the number of possible

comparisons is very large.

For k= 6 under gls for ¢ > 6, types 2, 3, 4, 30, 31, 35,37, 40, 41, 48, 50, 52,
36,59, 71,72, 76,78, 108, 109, 110, 111, 113 and 114 are inadmissible. This
reduces the number of types from 117 to 93.

5.2.5.4 Discussion

In the Discussion section of Martin (1998), it is noted that

* general results on optimality are difficult to obtain even for small-sized
blocks;

e itis difficult to give all the types for higher k;

* the parameter range in which the binary type is optimal can be very small,
and can tend to zero as k increases;

® in practice, optimality is not important as long as an efficient design is
used;

® designs robust to changes in the parameter values and the dependence
structure are needed. Therefore a design that is optimal for only a small
region for one particular process should not usually be used.

5.3 Two-dimensional designs for correlated errors

Section 5.3 considers some recent work on efficient two-dimensional NRC
designs for correlated errors. Martin & Eccleston (1993) extended the ideas of
Martin & Eccleston (1991) to designs with blocks having plots arranged in

two dimensions, mainly considering model IV. Uddin & Morgan (1997a)
found optimal NRC designs for blocks of size p, x2 under the AR(1)*AR(1)

process for models I to IV. Uddin & Morgan (1997b) considered NRC
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designs under model IV for blocks of size p, x 2 under the AR(1)*AR(1) and
3-parameter CAR(2) processes. They derived conditions for the universal
optimality of binary designs, and gave reasonably efficient cyclic designs
which have a smaller number of blocks than the optimal designs when ¢ > 3.

Morgan & Uddin (1991) and Uddin (2000) constructed optimal torus and
cylindrical designs, and showed that (planar) NRC designs obtained from

them have very good efficiency.

S.3.1 Martin & Eccleston (1993)

The results of Martin & Eccleston (1991) are generalised to a two-dimensional
array of plots in Martin & Eccleston (1993). As well as centro-symmetry,
reflection, axial and complete symmetry (see section 2.3.1) are also
considered, and the corresponding designs that have X'(I, ® W)X

completely symmetric are defined.

A binary Spatial block design is Strongly Directionally EquiNeighboured
(SSDEN) if X'(I, ® W)X is completely symmetric for all symmetric /.
Clearly a SSDEN design is a SDEN design (see section 5.2.4) in which the

plots are spatially arranged. Consider the following example.

Example 5.1
This example consists of blocks of size 2x2 with t=4 treatments. m

The columns of the SBA in Figure 3.2b give the following SSDEN design
with b = 12 for Example 5.1.

112 [1]3] [1T4] [2]1], [3]1], (4[],
3lal’'[alz’ 213’ [4[3|'[2[4|’[3]2
2|3| (3]2] [374] [2]4] [4]2] [4]3], D5.10
1a]’@{v "2 317" [1[3] [2]

Design D2.1 for Example 2.1 (¢ = 5) is also a SSDEN design.
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A binary Spatial block design is Strongly EquiNeighboured (SSEN) if

X'(I, ®W)X is completely symmetric for all symmetric and centro-
symmetric W. A SSEN design is a SEN design (see section 5.2.4) in which
the plots are spatially arranged. For Example 5.1, the SEN in Figure 5.1 gives
the SSEN design with & = 6 (the first 6 blocks of design D5.10) :

112} [1]3]) [174] [2]1] [3]1] [4]] D5.11
3{4’ {421’23’ [a131' 272!’ [3]2

A binary Spatial block design is Strongly EquiNeighboured under Reflection
symmetry (SSENR) if X"(I, ® W)X is completely symmetric for all

Symmetric, centro-symmetric and reflection symmetric . On the given plot
arrangement a SSDEN or SSEN design is a SSENR design. If p, and p, are

both even, and ¢ = 4¢’ or ¢ = 4¢'+1 for an integer ¢', then a SSENR design
with b = cf(t-1) may be possible. For Example 5.1, Martin & Eccleston
(1993) give the following SSENR design withb =3 (¢ =c'=1):

112] [173] [1[4 D5.12
3|4 14212731

Here the blocks are the first 3 blocks of design D5.10.

A binary Spatial block design is Strongly EquiNeighboured under Complete
symmetry (SSENC) if X"(I, ® W)X is completely symmetric for all
Symmetric, centro-symmetric and completely symmetric #. Any SSDEN,
SSEN or SSENR design with p, = p,, on the given plot arrangement, is a
SSENC design. However, a SSENC design with a smaller number of blocks
may be possible. If p, isodd and ¢ = 4c¢'+1 for an integer ¢', then a necessary
condition for a SSENC design is that b = $c#(z-1). SSENC designs with

b = 4cx(1-1) may also be possible for p, even. For example, Martin &
Eccleston (1993) give the following SSENC design with 5 blocks (¢ =1) of
size 2x 2 with t= 5 treatments.

IT?,zlsz a[3] [5]4] D5.13
4|3 5/4|’1(5 21 312
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Optimal NRC designs with blocks of size 2x 2 are considered under both ols
and gls, and it is shown that non-binary designs can be universally better than
binary designs. Under centro-symmetry,

Uy Uy Uz Uy

u u u u
A=l 12 M2 s Ty (5.11)

Upy Upyy U,
Uy U3 U, Uy

The completely symmetric structure has
Wy =Uyy, Uy=w; and u,=u,;.
This corrects a small slip in Martin & Eccleston (1993) which omitted the

equality u, , =u, ;. For a stationary process,

Uy =ty =1, u,=po, U3=pPoys (5.12)
he=py and u,3=p,;.
Therefore under stationarity, the completely symmetric process has Pro = Pox
and p;; = p,,. A special case of this is the completely symmetric separable

process, which has

A=(l Pio ® 1 pl,O]’
Po 1 P 1

(ie. Pro = Po; and PL=P11~ p‘Z:O ).

When the plots are numbered, 1 to k, by rows from the top-left, the types and
¢y values listed in Table 5.2 are valid here. Hence the type [abcd] in Table

5.2is given here as [23] . As in Martin (1998), a type is called optimal if the
variance balanced design of that type is optimal.

The results in Martin & Eccleston (1993) assume model IV. They note that
results for models including row and/or column effects (models I, IT and III)

can be obtained in a similar way as those for model IV. They give their
opinion that
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Jfixed row and column effects are usually not necessary when a
reasonable dependence structure is postulated

but they add that
there are some who feel that both should be included in the model.
Further research on optimal designs for this situation would then be of

interest.

3.3.1.1 Ordinary least squares results
In this section (5.3.1.1) ols is assumed. The following theorem is obtained by

the same reasoning as Martin & Eccleston (1991) used to obtain Theorem 5.9.

Theorem 5.11 (Martin & Eccleston, 1993)
A SSDEN/SSEN/SSENR/SSENC design is weakly universally optimal under

ols among all balanced block designs in 9 for all A/all centro-symmetric
A/all reflection symmetric A /all completely symmetric A. m

Under a completely symmetric dependence structure, for blocks of size 2x 2,
Wi =Waa, Wo=w; and w,=w,;. (5.13)

The equality w, , =w, ; was omitted in Martin & Eccleston (1993). Therefore
types 4 and 5 ([g g] and [gg] , respectively) are equivalent, since they have

the same ¢, = 4w, + 4w, ,. Henceforth, only the type with the lowest type

number will be given for equivalent types.

For a completely symmetric dependence structure under stationarity, by
comparing ¢, /¢’ where W = E,AE,, type 4 is shown to be better than the
binary type (type 11) if

(5/9w,, +w,, <0,
ie. if

3+4p,,-7p,, <0. (5.14)
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Under a completely symmetric separable process, the inequality in (5.14)
becomes

Pro<-3/7

Type 6 ( [g‘ g]) is also compared to type 11. For A centro-symmietric, type 6

is better than type 11 if

S(wyy +w,,)+9(w, +w,3)<0,
i.e. if

3(uyy +1y,) =140y, +uy3) +11(uy 4 +u, 3) <0. (5.15)
Under a completely symmetric stationary dependence structure, the inequality

in (5.15) becomes

3-14p,, +11p, <0, (5.16)
and for a completely symmetric separable process, the inequality in (5.15)
becomes

Pro 2 3/11. 5.17)

5.3.1.2  Generalised least squares results

Theorem 5.12, below, follows from Theorem 5.10 (Martin & Eccleston,
1991).

Theorem 5.12 (Martin & Eccleston, 1993)

A SSDEN/SSEN/SSENR/SSENC design is universally optimal under gls,

using a known Q" for all Q"/all centro-symmetric Q" /all reflection

symmetric Q" /all completely symmetric Q"

a) among all binary designs in @

b) among all designs in 9 if ("), SO V } #1,, the condition in (5.9), is
true. =
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For blocks of size 2x 2, under the completely symmetric structure, the
equations in (5.13) means that types 2 and 3 from Table 5.2 are equivalent; as
are types 4 and 5; 7 and 8; and types 9 and 10. Asin section 5.2.5.3, types 1,2
and 7 are inadmissible. Type 9 is also inadmissible since ¢, lies between the
¢y for types 6 and 11. Hence types 4, 6 and 11 can be optimal, depending on
the maximum of w, ,, w,, and 0, respectively. When type 11 is optimal a
SSENC design is universally optimal. When types 4 and 6 are optimal, the
optimal design is a design for which C is completely symmetric. This corrects

a small mistake in Martin & Eccleston (1993) which omitted the word
‘completely’.

For a completely symmetric stationary process, the design with blocks of type
6 is universally optimal if

1-4p,,+3p, <0, (5.18)
Otherwise the SSENC is optimal. Under the completely symmetric separable
process, the inequality in (5.18) simplifies to

Proz L (5.19)

5.3.2 Uddin & Morgan (1997a)
Assuming that within-block observations are correlated, universally optimal

NRC designs with blocks of size p, x2 have been obtained under gls for

models I to IV and the AR(1)*AR(1) process by Uddin & Morgan (1997a).
Results for blocks of size 2x 2 under a general dependence structure for
model I are given here in section 5.3.2.1. Optimality results are given in

section 5.3.2.2. Some corrections are also given in section 5.3.2.3.

The plots in positions (1,1), (1,2), (2,, 1) and (p,, 2) will be referred to as end

Plots, and the other plots as interior plots.
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3.3.2.1 Blocks of size 2x2 under model I
Assume that the within-block dependence structure is not necessarily the same
for each block. Let A, be the within-block dependence matrix for block 7, and

let I =4(1,-1,-1,1). Thenif 9=17"A,l does not depend on i, the C-matrix

under gls is equal to 1/$ times the C-matrix under ols. Therefore a design is
optimal under gls if and only if it is optimal under ols with V' =1 ;.

As seen in section 5.1.3, under ols with ¥ =I,,, a BNRC design is universally
optimal; that is a design with blocks of type [g 2] for each unordered pair of

treatments. This leads to the following theorem.

Theorem 5.13 (Uddin & Morgan, 1997a)
If 89=1'A;1 does not depend on i, then a design with blocks of type [ﬁ g] for

cach unordered pair of treatments is universally optimal over @ under gls for
model I, =

3.3.2.2  Results for the AR(1)*AR(1) process

Rather than considering the elements of Q" as in Martin & Eccleston (1991,
1993) and Martin (1998), Uddin & Morgan (1997a) give the C-matrices under

the four models in terms of the following matrices and vectors.

The neighbour count matrices are the ¢x ¢ matrices, N¢, N?, N ,R and N®,
where

(ve )\m is the number of plots containing treatments v, and v, as

lag (0, 1) neighbours (i.e. column neighbours) — see Figure 3.1;

(N Dlm is the number of plots containing treatments v, and v, as

lag (1, 1) or lag(-1, 1) neighbours (i.e. diagonal neighbours);

(N r lw: is the number of interior plots containing treatments v, and v,

as lag (1, 0) neighbours (i.e. row neighbours);
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(v R)M is the number of plots containing treatments v, and v, as

lag (1, 0) neighbours;

Cy, is the C-matrix under ols for the design with 25 blocks of size 2,
given by the end rows of the b blocks;

Cy is the C-matrix under ols for the design with (p —2)b blocks of size
2, given by the interior rows of the b blocks;

r g is the t-vector whose v ® element is the replication of treatment v in

the two end plots of column 4 of the i* block;

I is the t-vector whose v ™ element is the replication of treatment v in
the (p-2) interior plots of column % of the i* block;
Ry isthe tx ¢ diagonal matrix whose v % diagonal element is the

replication total of treatment v in the 45 end plots of the b blocks.

For example, consider the following design consisting of one block, with
t=4,

114
31
11 D5.14
22
12
Here
(2 3 2 1) (4 3 1 0
NC_3200,ND_3200,
2 000 0 01
\l1 0 0 0 0 010
(2 0 1 0) (2 1 1 1
0 0
N = 2oo,NR_1zo ,
1 000 1 000
0 0 0 0) (1 0 00
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2 0 1 2
0 1 1 1
Ten = ol e = ol’ rm*= L1 'nan= 0
0 1 0 0
20 00
0
0 00O
‘\0 0 0 1

For model IV, the C-matrix is
2 R
C=(+p5)X' X = &y Ry + P01 oN” = pos N = proN "™ = po1py N

—(1—p°"Xl—p"°)iVV.' (5.20)
zf(po,l’Px) i

where

! (Po1sp)= 2py1+ (1= p0o1)
and

Vi=rea+re+(1- PoaXTm +T52)-

Itis shown that if a design is optimal under model I (IV) and satisfies

Ym=ry and rg =rg, foralli (5.21)
then the design is also optimal under model I (IIT). Condition (5.21) means
that for any block the treatments in the end (interior) plots of the first column
are a permutation of the treatments in the end (interior) plots of the second
column of that block.
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The rest of this section gives the optimality results from Uddin & Morgan
(1997a). The proofs are omitted here. The design construction is as described
in Martin (1998), where the blocks are of the same type. To give a completely
symmetric C-matrix: for types with only 2 symbols, each unordered pair of
treatments gives a block, and for types with more than 2 symbols the SBA

construction method is used. This means that b = 4 c#(z —1) for an integer c.

Definition 5.2
Designs D5.15 to D5.20, with blocks of the following type, are now defined.
gb ab] ({[ab] [ab] ) Cab] ] gl;
ag ab ba >, TOWS ab +4p, TOWS ab s cd
bal |la6] ||a6] | 3 | | Hpows || §2
b cal ba} ) ab
2¢| tn, rows ba b 4p, rows g-g )
cal ) |ba] | ba
Btc) ‘ i4 4P, TOWS
s : H; TOWS B :
_b cj _b a|
D5.15|Ds.16 [D5.17 T {D5.18 + D519 1 |D5.20
T M,n,,n, are odd, such that n, +n, +n, = p,.
¥ for p, even. m

5.3.2.2.1 Optimal designs under model IT

Theorem 5.14 (Uddin & Morgan, 1997a)
Under model II for the AR(1)*AR(1) process, D5.15 is universally optimal

over D when p,, >0, otherwise D5.16 is universally optimal. »

5.3.2.2.2 Optimal designs under model I
When p, is even, the condition in (5.21) is satisfied for D5.15. This gives the

following theorem.
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Theorem 5.15 (Uddin & Morgan, 19972)
Under model I for the AR(1)*AR(1) process, for even p, =4, D5.15 is

universally optimal over  when p,, > 0. .

Theorem 5.16 (Uddin & Morgan, 1997a)
For model I under the AR(1)*AR(1) process, when p,, >0 and p, is odd,
D5.15 is universally optimal over @ if

b > (1-2p0, X1 +3p,,)
l 2po,l (- Po,l)

otherwise D5.17 is universally optimal. "

b4

Theorem 5.17 (Uddin & Morgan, 19972a)
For model I under the AR(1)*AR(1) process, when p,; <0 and p, is even,

D5.18 is universally optimal over D if

9 < 2Ph +30-p0)}
e {Po,(1- Por)}

otherwise D5.19 is universally optimal. -

>

For p, odd and Doy <0 optimal types are not given, but it is noted that more

than two types can be optimal.
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5.3.2.2.3 Optimal designs under model IV

For model IV, only p,,,p,, >0 was considered. The following theorems

were given.

Theorem 5.18 (Uddin & Morgan, 1997a)
For model IV under the AR(1)*AR(1) process, when p,;, 0,0 >0 the binary

block design (constructed using SBAs) is universally optimal over D if
(1= P X1—=py5) S

1 for p, =2,
4001P1,0
2
a=poy) (1+p,,) >1 for p, =3,
2(1+ py, )Pio
3 2
A=-p5, )Y A=pyo)- 4P01P10 >p for p 24. ]

2p,(1- Po1)Pro

Theorem 5.19 (Uddin & Morgan, 1997a)
For model IV under the AR(1)*AR(1) process, when p,;, 0,4 >0 the design

D5.15 is universally optimal over @ if

800.P10 >/
1P, > f(pos.p:) foreven p, (5.22)
(I-po, X1 = Pio) o
2
8001P10 + (- po,) = 4(po1,p) forodd p,. =

(- PosXl=pio) (Poy>P1)

Theorem 5.18 and Theorem 5.19 cover small and large combinations of ( Pors
P1). For other values, an integer programming problem is given by Uddin &

Morgan (1997a), which can be solved on a computer to give the optimal type
given the values of Poss Pro and p,. Uddin & Morgan (1997a, page 1201),

solve this integer programming problem for p, =3, 4, ... , 10, 15, 20 and
Pro= poy =0.1,0.2,...,0.9. For p,, 0.6 design D5.15 is optimal.
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5.3.2.2.4 Optimal designs under model ITI
As for model IV, only p,,, 0, >0 were considered for model IIl. When p,

is even, the condition in (5.21) is satisfied for D5.15. This gives
Theorem 5.20.

Theorem 5.20 (Uddin & Morgan, 1997a)
Under model III for the AR(1)*AR(1) process, for even p,, D5.15 is

universally optimal over @ if the condition in (5.22) is satisfied. »

Although the optimality of other types is not shown for model III, design
D5.20, which is likely to be highly efficient, is considered for p, even.

Under the AR(1)*AR(1) process, when p, ,, o, , >0, design D5.20 is likely to
be highly efficient for model Il with even p, >4 if

2(1- Poa )2 a- Pl.o) - ng,lpl.o >

pl for pl =4’
Po(1- Po1)Pio
A= p01) A=p1 s X2 = P51) =2P01P10 >p, for p, =6,
Por(1= 061)Py0
. 5 s
2(1-po, )y (1- Pro) —=2P61P10 >p, for p, 28.

Po (1- Pos )Pl,o

An integer programming problem, which yields efficient designs, is given in
Uddin & Morgan (1997a) for model IIl. The solutions to this are given for the
Same values of p,, p,, and p,, as for model IV (see section 5.3.2.2.3). The
Corresponding efficiency lower bounds are also given, and are greater than or
equal to 0.997 for the cases considered. For the range of the p, covered,
D5.15 is optimal for p,; >0.6.



5.3.23 Some corrections

Some corrections to Uddin & Morgan (1997a) are given in this section.

The values of 7'7; in Uddin & Morgan (1997a, page 1197) are incorrect,

although the results in the theorems are unaffected. The corrected values of

T\'T,, in the notation of Uddin & Morgan (1997a), are given in Table 5.4. For

a definition of T, and cases (i”) and (i”*), the reader is referred to Uddin &

Morgan (1997a).
Table 5.4
I'T, for cases (i”) and (i”").
II'T, for
™ i " case (1’) case (1°*)

even | even | odd | 2(1+a+a?) 2(1+a)’
even | odd | even | 2(1+2a?) 2(1+3a?)
odd | even | even | 2(1+a+a?) 2(1+a)’
odd | odd | odd | 2(2+a?) 2(3+a?)

Also, Table 1 in Uddin & Morgan (1997a, page 1201) has two incorrect
entries. In the notation of Uddin & Morgan (1997a), the entry for p=9 and

@ =0.2 should be (5,2,1), and the entry for p =20 and @ =0.4 should be

(3.7.6).
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3.3.2.4 Discussion
In the *Summary discussion’ section of Uddin & Morgan (1997a) it is noted
that

¢ D5.15, which is a BNRC design is optimal or efficient for at least some
(Poss p1p) for all four models;
* Dbinary block designs are only optimal for model IV, and then only for
small (p,,, p,) and small p,;
* under models I and IT binary rows are required, and under model III, for
small correiations, binary columns are needed;
e although the designs given here have a large number of blocks
knowledge of maximal trace blocks will certainly be required at the
logical next step: determination of optimal designs which, due to

smaller numbers of blocks, cannot enjoy complete symmetry.

533 Uddin & Morgan (1997b)
Under model IV and gls, Uddin & Morgan (1997b) consider the AR(1)*AR(1)
process and the 3-parameter CAR(2) process for blocks of size p, x2. For the

AR(1)*AR(1) process, Poys Pro 20 is assumed, and for the 3-parameter
CAR(2) process it is assumed that ¢, {05 ¢34 20

The off-diagonal elements of Q" are given for the two processes. However,
they are slightly incorrect. For the AR(1)*AR(1) process, the corrections are
not given here specifically for blocks of size p, x2. However, for the general
case where blocks are of size p, x p, the elements of Q" are given in section
8.2.1. For the 3-parameter CAR(2) process, the off-diagonal elements for
given p, >3 and p, =2 are actually for p, 24 and p, =3, respectively.
Therefore conditions for when all the off-diagonal elements are non-positive
(i.e. when the condition in (5.9) is true) are also incorrect. The corrected

conditions are as follows.
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For the AR(1)*AR(1) process,
@),<0 v 121, o
DosPra— (A= p1o X1 = po, )’
oA 24Po1>P1)

(1= po X1~ Py, )h—l
24 o1 P1)

where £, ,,p,) is as defined in section 5.3.2.2.

<0 for p 24, (5.23)

<0 otherwise,

Po1Pro —~

For the 3-parameter CAR(2) process,
@),<0 v 121, o
1=810=2001 =26, >0 for p, 2 4,

—min({y;, 4, X6- 641 —8(,,~841,) for p, =3,
1= -~ - 161,
Cro~2601 =241, > (=CroCo1-Co)

(5.24)

any &4,801-$1s for p,=2.

These corrections were pointed out by Dr. R. J. Martin and the author, and the
conditions (5.23) and (5.24) appear in the corrections to Uddin & Morgan
(1997b).

Optimality conditions for binary designs are given for the two processes. Let
the corner and interior designs be the designs formed from the end and

interior plots, respectively.

Theorem 5.21 (Uddin & Morgan, 1997b)

A binary design
i)  thatis neighbour balanced (i.e. each distinct pair of treatments occur

equally often as row, column and diagonal neighbours);
i) thatis a balanced block design;
iii) for which the interior design is a balanced block design when p, > 3;

iv) for which the corner design is a balanced block design when p, > 3;
v)  for which the end rows give a balanced block design when p, >4,
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is universally optimal for model IV under the AR(1)*AR(1) process among all
binary designs in 9, and among all designs in 9 if the condition in (5.23) is
true. |

Theorem 5.22 (Uddin & Morgan, 1997b)

A binary design that satisfies (i) to (iv) of Theorem 5.21 is universally optimal
for model IV under the 3-parameter CAR(2) process among all binary designs
in @), and among all designs in P if the condition in (5.24) is true. n

The two processes considered here are described by Uddin & Morgan (1997b)
as ‘distinctly different’, however, as pointed out in the review of their paper by
Martin (1999), both processes are second order reflection symmetric
conditional autoregressions with non-negative row and column dependence
parameters. Therefore they have very similar A~ matrices and so it is not

surprising that the optimality conditions are also similar.

SBAs satisfy both theorems, but designs that satisfy these theorems with a

smaller number of blocks may exist. An example from Uddin & Morgan
(1997b) for t =12 and p, =3 has b =}#(¢ —1) = 66 blocks. Labelling the
treatments O, 1, ..., 10, o, this design is constructed by cyclically developing
6 initial blocks by adding 1 modulo 11 to each treatment label, except for the

treatment label o, which is invariant. The 6 initial blocks are:
0|5 0|9 0|3 i1 ol 1 119

9110(-{3|71(|s11161(:1412]|>|/81|5 o|bH|- D5.21
413 511 914 3|5 410 3|4

As an illustration of the cyclical development, the following 11 blocks are
cyclically developed from the 4™ initial block.

w1 wl|2 ©|3 w©|4 ©l|b 0|6
4({2i,{56{3|s|6]4|>/7|5]|5|/816 917
3|6 416 5|7 6|8 719 8110
0|7 wo|8 |9 w0 {10 |0
108:09’110920’31'
910 10| 1 0|2 113 214
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Uddin & Morgan (1997b) also give another example for 1 =8 and p, =4

which has b = }#(z - 1) = 14 blocks. Martin (1999) notes that this example is a
SSENR design, and so is universally optimal over all binary designs in 9 for
all reflection symmetric dependence structures. In fact, the design D5.21 is
also a SSENR design.

In justifying their restriction to binary designs, Uddin and Morgan (1997b)
comment that non-binary designs are unlikely to be used in practice when

k <t. However, they also note that for the AR(1)*AR(1) process,
considerable gains can be obtained by using a non-binary design, and that the
parameter range for which the binary design is optimal is limited. For the 3-
parameter CAR(2) process, it is noted that the parameter range for which the
binary design is optimal is much larger, and there is little gain in using a non-

binary design.

The designs satisfying Theorem 5.21 and Theorem 5.22 have a large number
of blocks for ¢ not small. However, the optimality conditions in these
theorems have been used to suggest the structure of efficient designs with a
smaller number of blocks. For blocks of size 4tx2 and 4(¢ -1)x 2 for ¢ even
and odd, respectively, reasonably efficient cyclic binary designs with ¢ -1 and
t blocks, respectively, are given in Uddin & Morgan (1997b) for ¢ < 30.

S5.3.4 Morgan & Uddin (1991)
Morgan & Uddin (1991) construct optimal designs for correlated errors on b

toruses of size p, x p, under gls. The torus equivalent of model IV is

assumed. The within-torus error process is the torus version of the CAR(2)

process (see section 2.3.3.3).

95



A planar version of a torus design is obtained by cutting the torus between any
two rows and any two columns. Clearly the planar version of a design on b
toruses is a NRC design with 4 blocks. The planar versions of the optimal
torus designs given by Morgan & Uddin (1991) are shown to have very good
efficiency. The CAR(2) with £, =&, and £, =¢_,, is used for the

efficiency calculations.

5.3.5 Uddin (2000)

Uddin (2000) finds optimal designs under gls for correlated errors on b
cylinders each of size p, x p,. The cylinder equivalent of model IV is
assumed. The dependence structure is the cylinder version of the CAR(2)
with £}, =¢_,, (see section 2.3.3.3).

Assuming that the rows are circular, a planar version of a cylindrical design is
obtained by cutting the cylinders between any two columns. As in Morgan &
Uddin (1991), efficiency calculations for the planar versions of some of the
optimal cylinder designs, using the CAR(2) process with {;, =¢_,;,, show that

these planar designs are very efficient.
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6  Optimal nested row-column designs for blocks

of size 2x2 under dependence

In this chapter, NRC designs with blocks of size 2x 2 are examined under
models I to IV. The results in this chapter appear in Chauhan & Martin (1999)
and Chauhan (1998). Section 6.1 provides an introduction and preliminary
material. Optimality results under gls and ols are given in sections 6.2 and

6.3, respectively.

6.1 Introduction and preliminaries

6.1.1 Introduction

As seen in chapter 5, there has been considerable interest recently in optimal
NRC designs under dependence. Martin & Eccleston (1993) gave some
general results under model IV — given as Theorem 5.11 and Theorem 5.12
here. Specific results for blocks of size 2x2 were also obtained. Uddin &
Morgan (1997a) gave optimality results for a very general dependence
structure for blocks of size 2x2 under model I (see Theorem 5.13). For
blocks of size p, x 2, they considered the AR(1)*AR(1) process under models

I'to IV and gls. However, some of their results are for positive correlation

values only.

As seen in section 5.1, 2x 2 designs, under model I when errors are
uncorrelated and all treatment comparisons are of equal interest, were
considered by Singh & Dey (1979), Ipinyomi & John (1985) and Bagchi et al.
(1990). Also, John & Williams (1995, section 5.9) give an example of a cyclic
2x2 design with ¢ = 7. Kachlicka & Mejza (1995) and Leeming (1997)
considered the 2x2 layout when control versus test treatment contrasts are of

interest,
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For blocking to be effective, blocks should consist of relatively homogeneous
plots. Using blocks consisting of only two rows and two columns should
produce good homogeneity. Although designs that are used, for example, in
variety trials and plant breeding experiments usually have more than two rows
and columns, the results given here may provide some insight into the

structure of efficient designs for larger-sized blocks.

6.1.2 Dependence structure
Assume that blocks are of size 2x2. Let (A),; =, ;. If A is assumed to be

symmetric there are at most 10 distinct parameters in A. Under centro-
symmetry, A is given as the expression in (5.11) in section 5.3.1, which has at
most 6 distinct parameters. This simplifies to A having at most 4 and 3
distinct parameters under reflection symmetry and complete symmetry,
respectively. Under stationarity, taking A to be a within-block correlation
matrix, the diagonal elements of A are equal to 1. Here the most general form
of A has A centro-symmetric with at most 4 distinct correlations (excluding
Poo =1), as given by the expression in (5.12). Under reflection symmetry, the
2 within-diagonal correlations p,, and p_;; are equal, so A has at most 3

distinct correlations (excluding p,, =1), and is of the form

1 P Pur Pu

1
A= Pro Pi1 Poy . 6.1)

P Pu 1 P
P Pox Po 1

The following processes are special cases of the reflection symmetric process

under stationarity.

(i) completely symmetric process (i.e. p,0 = P01

(i) separable process (i.e. p,; =Py 000;) This is equivalent to the
AR(1)*AR(1) and NN(1)*NN(1) processes when blocks are of size 2x2;

(ii1) nearest neighbour process, which has p,; =0;

(iv) completely symmetric and separable process (i.e. o, = 0,, and p,, = plo).
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In section 2.3, it is stated that the true dependence structure is not usually
known exactly, and so simple structures are often considered. Also, the
conclusion of Martin (1986) (sce section 2.4) suggests that a reasonable
approach is to specify the correlation by a small number of parameters. With
this in mind, A is assumed to be reflection symmetric here. Reflection
symmetry includes several interesting special cases, as seen above, and is a
more general dependence structure than considered in Uddin & Morgan
(1997a) and Martin & Eccleston (1993), excepting the result in Theorem 5.13
in section 5.3.2.1, and the result given as (5.15) in section 5.3.1.1. Recall that
Theorem 5.13 gives the optimal design for the general case where the within-
block dependence is not necessarily the same for each block, and the result

(5.15) compares two types under ols when A is centro-symmetric.

Definition 6.1
The matrix W, which represents either Q" or Q°AQ" has the following form

with w; >0 and >'w, =0. L]

Definition 6.2
The correlation parameters p, 4, p,, and p,, are relabelled as p,, p; and

P4 respectively. The subscripts have been chosen for consistency with the

elements of W so that optimality results can be given succinctly. n

Definition 6.3
The eigenvalues of A are

A=l+py+p3+ P, =14 py=py—pys
A=l=p+py—psy  A=1=py—ps+p,, -

99



It is assumed that A is positive definite, so these eigenvalues are positive.
Hence, the valid parameter space is the interior of a tetrahedron — see Figure
6.1. For the nearest neighbour and completely symmetric special cases, the
valid parameter spaces, which are planar sections of this tetrahedron, are

|p2| +|ps| <1 and 2|p,| < (1+ p,) < 2, respectively. For the separable

structure, the constraints are |p,|, |;| <1, and for the completely symmetric

separable process, the constraint is | pa| <1.

Figure 6.1
Valid parameter space of (o, , 9, , 2, ) for blocks of size 2x2 under a

stationary reflection symmetric dependence structure.
A=0,4,=0,4 =0 and 4, =0 correspond to the planes which pass through

the vertices (B, C, D), (A, B, D), (A, B, C) and (A, C, D), respectively.

(-1,13'1)

6.1.3 A mixed effects model with uncorrelated errors |

Consider a mixed effects model with uncorrelated errors, random row and
column effects, and fixed block and treatment effects (cf. the model of
Leeming (1997), which has random row, column and block effects). It is now

shown that for blocks of size 2x 2, this mixed effects model is equivalent to
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model I'V under a special case of reflection symmetry. Using the same
notation as for model (4.1), let the mixed effects model be
Yy=Xz+Z,+Z,y+Z,5+¢, 6.2)
with
E(¢)=0,, var(e)=1,07,
E(7)=E(8)= 0y, var(y)=Iy0;, var(d)=1Iy0;
and ¢,y and § are mutually uncorrelated.
Here
EQ)=Xz+Zp, (6.3)
and
var(y) = Z, var(y)Z,' + Z,var(§)Z,' + var(g)
=Z,Z,'0} + Z,Z,'0} + I o}
=(,®,8J,)0} + (I,J,81,)a; + (I,®1,81,)s;
=], ®A,,
where

A =(1,8J,)0? + (J,®1,)0% + (I,®1,)0}

2 2 2 2 2
o, +0; +0; o, o, 02
_ o3 ol +o} +oi 0 o;
- 2
o} 0 ol +0; +0} o;
2 2 2 2 2
0 o; o, o, to; +0;

Recall that for model IV under a stationary reflection symmetric process,
E(y) is the same as (6.3), and var(y) =o*(I, ® A), where A is given as
(6.1). Ttis clear that Ac® = A, when

o’p,=a? fori=2,3;

Ps=0 and o*(-p,-p;)=0}.
The variance components of the mixed effects model are positive and so

P2, P53 >0 isrequired. Note that 1~ p, — p, >0 since A is positive definite.
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Therefore model IV under reflection symmetry with p, =0 and p,,p, >0 is

equivalent to this mixed effects model.

6.1.4 Design construction

Recall from Theorem 5.12 in section 5.3.1.2 (Martin & Eccleston, 1993) that
for blocks consisting of k£ <t plots under a reflection symmetric dependence
structure, a binary design called a SSENR design is, under gls, universally
optimal among all binary designs in 9, and is universally optimal among all
designs in @ if and only if all the off-diagonal elements of Q" are non-
positive. Here, ® is the set of all connected designs with ¢ treatments and b
blocks of size 2x2. Under ols, the SSENR design is weakly universally
optimal among all balanced block designs in © (Theorem 5.11). A SSENR
design with b = }c(t-1) exists for certain integers ¢, including ¢ =1 for certain
t. SBAs are also SSENR designs, for which the minimum values of ¢ which
may be possible are 2 and 4 for £ odd and ¢ even, respectively. Sometimes a
SSENR design can be constructed from a quarter of the columns of a SBA
(see, for example, D5.12)

As in Martin (1998) assume that each block is of the same type with s <k
different symbols. For suitable b, designs are constructed using s rows of a
SBA of length min(z, k) on ¢ symbols. For example, when t =5, the binary
(SSDEN) design D2.1 (in section 2.2) is constructed from the first 4 rows of
the SBA in Figure 3.2c; this is equivalent to the SDEN design D5.8 (in section
3.2.5) for one-dimensional blocks consisting of 4 plots. A non-binary design

of type [gg‘] can be constructed from the first 2 rows of this SBA to obtain

the following design, which is equivalent to the one-dimensional design D5.9.

1)1 11| [2(2 2|2 3|3

3 s s * ’

2|2 4|4 33 5|5 1)1

3(3 4|4 414 5|56 D6.1

5|5
414 2|2 5|6 (1]1] [3]|3
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For designs constructed in this way, C and var( q ) are completely symmetric.
Therefore, from the results in sections 2.5.4 and 5.2.4,

®,-value = a,/a} forall p=0,
where

a=bc./t-1) and a,=bcy,(1-1)
In the rest of this chapter references to the @, -value are forall p20. The
®, -value simplifies to

@, -value = ¢ Gt /cé. s
and under gls simplifies further to

O, -value =1/c_.
since Q'AQ"=Q". Let the ®,-value of an optimal design be called the
@, -value. Then the @, -efficiency of a design with @, -value is

) (CD; - value)
D, -efficiency = m
P

(see section 2.5.6).

As in section 2.5, let 9D, be the set of designs in D for which C and var(g)

are completely symmetric, and let D" be the set of designs in © which have
C-matrix completely symmetric under ols. Throughout this chapter, under gls,
an optimal design will refer to a design that is universally optimal over 9.
Under ols, an optimal design will mean a design that is universally optimal

over P, and weakly universally optimal over D",

For k=4 and 1 > 4, the list of 11 different types from Martin (1998) when Q"
or Q°AQ’ are centro-symmetric, given as Table 5.2, is reduced to the 9 types

in Table 6.1, since, in the notation of Table 5.2, w); =w, , and w, , =w, ,

here. In Table 6.1 these 9 types are re-labelled as types 0 to 8. This re-
labelling means that for types i and i+ 3 (i = 2, 3, 4) the off-diagonal element
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of W in the expression for ¢, is w;, and so optimality results can be given

succinctly. Clearly for =3 and 1 =2, only types O to 7 and O to 4,

respectively, are possible.

Table 6.1
List of types and expressions for ¢, for blocks of size 2x 2 under reflection

symmetry.

Typeno. | type | (m.m,n1,) C

0 32l | 500 | 0

r | 3] | ey | 2w

2 a3l | (02,2) | 4w +4w,
3 —:B- (2,0,2) | 4w, +4w,
4 —g g— (2,2,0) 4w, + 4w,
5 ng] (1,2,2) dw, +2w,
6 EE; (2,1,2) 4w, + 2w,
7 Fgg: (2,2,1) 4w, +2w,
8 bl | 2,2, | aw

Reflection symmetry is a special case of centro-symmetry, so for any type,
reversing the symbols on the ordered plots 1 to 4 results in an equivalent type.
Also, by the reflection symmetry, a vertical or horizontal reflection of the
symbols gives equivalent types. For example, type 1,

58]

is equivalent to types

2] (B8] =a[33]
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by reversal, vertical reflection and horizontal reflection, respectively. Also, for

the special case of the completely symmetric dependence structure, w, =w,,

so a diagonal reflection of a type gives an equivalent type. For example, type

[g g] is equivalent to type [SB] (see section 5.3.1.1).

For model I under gls, and under ols with uncorrelated errors, type 4 is optimal
(Theorem 5.13 in section 5.3.2.1). Therefore only models II, I1I and IV are
examined here. Note also that optimality results for model II are equivalent to

model I results if p, and p, are interchanged, w, and w, are interchanged

and the types reflected about a diagonal (that is, types 2 and 3 are interchanged
and also types 5 and 6 are interchanged). Therefore, optimality results for
model ITT immediately follow from the results for model IL

In sections 6.2 and 6.3, it is useful to see that there is a relationship between
the within-row, within-column and within-diagonal correlation parameters
(P2, ps,p,) and the optimality regions of the types with binary rows, columns
and diagonals, respectively. Let (n,,n;,n,) describe a type with n, binary
rows, n, binary columns, and n, binary diagonals. The values of (n,,n,,n,)
are given with the types listed in Table 6.1. If p, and p; are interchanged
then types with (n,,n,,n,) and (n,,n,,n,) are interchanged. That is, the
optimality regions for types 2 and 3 (and types 5 and 6) are symmetric about
P, = p;. Similarly, interchanging p, and p, means that types with
(n;,ny,n,) and (n,,n,,n,) are interchanged, and so types 2 and 4, and types 5
and 7 are swapped; and interchanging p, and p, means that types with
(n,,ny,n,) and (n,,n,,n,) are interchanged, so types 3 and 4, and types 6 and

7 are swapped.
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6.2 Generalised least squares estimation
Under gls, for designs constructed using SBAs, a type with maximum €y

gives an optimal design. Table 6.1 gives ¢, = c_. for the 9 types. Clearly

type 0 is inadmissible.

Definition 6.4

Let 6 = {2, 3, 4} and assume throughout sections 6.2 and 6.3 that i € 8,
J€6\{} and {,, 7} =0\ {i}. .

6.2.1 Optimal designs for model IV under gls
For model IV, the elements of Q" are

w, = -}(A;' + 435! +ﬂ;l), w, =44 —-w,.
When ¢ >4, type 1 is inadmissible since type 8 is better. Also type i+3 is
inadmissible since type i is better if w, > 0, otherwise type 8 is better.
Therefore the optimal design depends on the maximum of {w,} and 0. Itis
shown in Appendix A2.2 that w, is maximal if w, 20, and so the design of
type i is optimal if w, > 0, otherwise the binary design (type 8) is optimal.
This gives the following theorem.

Theorem 6.1
For blocks of size 2x 2 with ¢ >4, under model IV, a stationary reflection

symmetric dependence structure and gls, a design of type i is optimal if
(pjl =P )2 S(l-—p,-)(l—p, _2'?“1)

and type 8 is optimal otherwise.
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The regions in which designs of these types are optimal are shown in parts a),
b) and ¢) of Figure 6.2 for p, =-4, 0 and 4, respectively. For fixed p,, the
rectangular region enclosed by the lines 4, =0, 4, =0, 4, =0 and 4, =0
(see Figure 6.2) is the region in which A is positive definite. Rotating this .
region by a quarter turn and interchanging p, and p, gives the region in

which A is positive definite for p, replaced by — p,.

Figure 6.2
Optimality regions for blocks of size 2x2 under reflection symmetry,
model IV and gls, for t > 4. Vertical axis: p, , horizontal axis: p,.
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For p, near -1, type 4 is optimal for most of the region. When p, is near to
1, types 2 and 3 are optimal for most of the region where p; > p, and

Ps < p,, respectively. As would be expected from the results in chapter 5,
when the dependence is low, that is when p,, p, and p, are near zero, the

binary design is optimal. Note that on the boundaries between optimality

regions more than one type is optimal.

Now consider the special cases given in section 6.1.2, when ¢t > 4. The
optimality regions for the nearest neighbour process are shown in Figure 6.2b.
The completely symmetric process, for which optimality results were obtained
by Martin & Eccleston (1993) (see section 5.3.1), corresponds to the diagonal
P2 = p; in Figure 6.2a to Figure 6.2c. Here type 4 is optimal if

4p, 2(1+3p,), otherwise type 8 is optimal (this is the optimality condition in
(5.18)). For the separable process, type 2 is optimal if (1- p, X1-p;) < —4 Pas
type 3 is optimal if (1- p,X1- p;) < —4p,; type 4 is optimal if
(1-p,X1-p,)<4p,p,; otherwise type 8 is optimal. This is illustrated in

Figure 6.2d. The optimality conditions under separability for types 4 and 8
were given by Uddin & Morgan (1997a) for p,, p; >0 (Theorem 5.18 and

Theorem 5.19 in section 5.3.2.2.3). The completely symmetric separable
process corresponds to the diagonal p, = p; in Figure 6.2d. Here type 4 is

optimal if p, >4 and type 8 is optimal otherwise (the optimality condition in
(5.19)).

For some { p, } there can be a substantial loss in @, -efficiency if the binary
design is used when it is not optimal. When a design of type i is optimal,
, CD; -value = (4w, +4w,)™".
A design of type 8 has
@, -value = (4w,)™",
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so the @, -efficiency of the binary design when the non-binary design of type i
is optimal is

@, -efficiency = -(—;—%—5 = i{l + /1,.(/1;1‘ + ,1;: )}
1 i

Near the line 4, =0 in Figure 6.2a to Figure 6.2¢, 4, is close to zero and the

@, -efficiency is near to 4 .

Now consider the case when ¢t =3. The optimal design is one of types 1 to 7.
As for t 2 4, type i is optimal when w; 20. If w, <0 then type i +3 is better

than type i. Type 1 cannot be optimal since the necessary condition for type 1
to be optimal: w, + 2w, <0 V i(i.e. type 1 better than types 2, 3 and 4), is not

possible for A positive definite. Type i+3 is better than typesjand j+3 if
2w; <w, and w; <w,, respectively. However, if w; <w, <0 then 2w, <w,.
Hence, type i +3 is optimal if w ,<w,; <0 V j. The optimality conditions for

types 2, 3 and 4 are as for ¢ > 4, and types 5, 6 and 7 are optimal in the region
where the binary type was optimal for ¢ > 4 (see Figure 6.3). Theorem 6.2
gives the optimality conditions in terms of { p, }.

Theorem 6.2
For blocks of size 2x2 with ¢ =3, under model IV, a stationary reflection

symmetric dependence structure and gls, the optimality condition for a design
of type i is as in Theorem 6.1. Type i+3 is optimal if

(p, —pjz)zz(l_pi)(l—pi—z’li) and p, = T‘g‘(l’h)- .
For t =2, type 1 cannot be optimal so optimality depends on the maximum of

{wi}. Hence, type iis optimal if w, 2w; V j. This gives the following

theorem.
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Theorem 6.3 . .
For blocks of size 2x2 with ¢ =2, under model IV, a stationary reflection

symmetric dependence structure and gls, type i is optimal if

— 1 .
p; = min(p,).

This means that when ¢ = 2, the type with both rows/columns/diagonals
non-binary (type 2/3/4) is optimal if the within-row/column/diagonal

correlation is lowest.

Figure 6.3 -
Optimality regions for blocks of size 2x2 under 1"eﬂect10n symmetry,
model IV and gls, for ¢ = 3. Vertical axis: p, , horizontal axis: p,.

a) p,=-05 b) p, =0
l_.

l_
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6.2.2 Optimal designs for model IT under gis
Under model II the elements of Q" are:

w =(1=-p)24:4,), w,=-w,

Wy =(Py = P3)(2454,), Wwe=~w;.
This means that types 0 and 2 are equivalent, as are types 1 and 5. For t>2,
it is clear that types 1, 6, 7 and 8 are inadmissible since either type 3 or 4 is
better. Therefore type 3 is optimal if w; = 0, otherwise type 4 is optimal.

Note that both these types have binary rows. Theorem 6.4 gives this result in
terms of { p, }.

Theorem 6.4
For blocks of size 2x2 with ¢ >2, under model II, a stationary reflection

symmetric dependence structure and gls, type 3 is optimal if
P3= p,
and type 4 is optimal otherwise. =

For the separable process, type 3 is optimal if p, < 0, otherwise type 4 is

optimal (see Theorem 5.14 in section 5.3.2.2.1).

The @, -efficiency of type 8 when type 3 is optimal is

(4w, +4w3)‘1 - w _1-p, .
(4w))™ w, + W, Ay

@, -efficiency =

This simplifies to 3(1+4,/4,) since 2(1- p,) =4, + 4,. Similarly, the @, -
efficiency of type 8 when type 4 is optimal can be shown to be $(1+4,/4,).
These @, -efficiencies equal 1 when p; = p,. If p; # p,, the @, -efficiency
of type 8, given that type 3 is optimal, is near to  when 4, is near zero and A,
is large. Similarly, assuming that p; # p, and type 4 is optimal, the &, -

efficiency of type 8 is near to + when A, is near zero and 4, is large.
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6.2.3  Optimal designs for model III under gls
The relationship between model IT and ITI, described in section 6.1.4, gives the

following theorem.

Theorem 6.5
For blocks of size 2x2 with ¢> 2, under model III, a stationary reflection

symmetric dependence structure and gls, type 2 is optimal if
Pr= P,
and type 4 is optimal otherwise. n

6.3 Ordinary least squares estimation

Under ols estimation, Q" and Q AQ" have simple forms but finding the type

with minimum tr{ D*} involves both ¢_. and ¢_., ..

6.3.1 Optimal designs for model IV under ols
Under model IV, Q" = E, and so Cqr = 4—-4r'r, where r is an s-vector of

the number of times each label occurs in the type (as given in section 5.2.5).

For the 9 types under consideration, ¢, = Corna® is given in Table 6.1, and

Table 6.2 gives c_. and c_., -/c2.. The elements of Q°AQ" are

w ='1'(4—/l,),. w; ='}(4pi—/11) = '&1’1 - W.

When ¢ > 4, type 8 is better than type 1. Necessary conditions for type i +3
to be optimal are w; > —(9/17)w, and w, <—(11/18)w, (i.e. type i +3 better

than types i and 8, respectively), which cannot be true. Therefore the optimal

design depends on the minimum of w, +w,; and$w,. This gives Theorem 6.6.
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Table 6.2
List of types, Cs and Cornat /c;. for blocks of size 2x2 under reflection

symmetry, model IV and ols. T indicates that Cr = Coras = 0.

Type Model IV
No. | ¢ Cornr ! Cos

0 0 1
1 3/2 8w, /9
2 w, +w,
3 2 W, +w,
4 W, +w,
5 82w, +w,)/25
6 52 82w, +w;)/25
7 82w, +w,) /25
8 3 4w, /9

Theorem 6.6
For blocks of size 2x 2 with ¢ > 4, under model IV, a stationary reflection

symmetric dependence structure and ols, type i is optimal if
74,;24(1~p) and p, =min(p,),

otherwise type 8 is optimal. ]

The regjons of optimality, illustrated in Figure 6.4, are similar to those for

t 2 4 under gls (Figure 6.2). However, the regions of optimality for types 4
and 8 are larger and smaller, respectively, than under gls. The @, -efficiency
of type 8 when type i is optimal is

w, +w,) _ 94,

49w, {2@-4)}

which is near to zero when A, is near zero. Note that the boundaries 4, =0

D, -efficiency =

are as shown in Figure 6.2.
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Recall that for model IV under ols when A is centro-symmetric, the condition
for when type 4 is better than type 8 is given as the inequality in (5.15) in
section 5.3.1.1. Under stationarity, the completely symmetric dependence
structure corresponds to the diagonal p, = p; in Figure 6.4, and the inequality
in (5.15) simplifies to p, = (3+11p,)/14 (given as the condition in (5.16)).

Also, type 2 is better than type 8 if p, <43 -7p,) (the condition in (5.14)).

Figure 6.4

Optimality regions for blocks of size 2x2 under reflection symmetry,
model IV and ols for ¢ > 4. Vertical axis: p, , horizontal axis: p, .

a) p,=-05 b) p, =0
l =y

1—
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When ¢ =3, type 1 cannot be optimal since w, >~ w,/9 V i (i.e. type 1 better
than types 2, 3 and 4) cannot be true. If w, < w; V j, then type iis better than
typej V j, and type i+3 is better than type j+3 V j. Therefore for type i to be

optimal, w, < w; V j,and w, < -9w,/17 (i.e. type i better than type i +3) are

required. Type i+3 isoptimal if w, <w, V jand w; > -9w, /17.

Theorem 6.7
For blocks of size 2x 2 with ¢ =3, under model IV, a stationary reflection

symmetric dependence structure and ols, type i is optimal if
p; = 1}11€ign(p,,) and 134, <8(1-p,),

and type i+3 is optimal if
pi = rlr)leian(p,,) and 134, 28(1-p,). [

The optimality regions (see Figure 6.5) are similar to those obtained for ¢ =3
under gls (Figure 6.3). However, the regions of optimality for types 5, 6 and 7

are smaller than under gls, and much smaller for p, <0. For example, in

Figure 6.5a, the optimality region for types 5 and 6 are small triangles at either
end of the optimality region for type 7. Also, unlike under gls, the optimality
region for types 5, 6 and 7 together, is slightly smaller than the optimality
region for type 8 when ¢ > 4.

When =2, type 1 is inadmissible, and type i is optimal if w, <w ;¥ J, which

gives precisely the same optimality conditions as under gls.
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Figure 6.5
Optimality regions for blocks of size 2x2 under reflection symmetry,
model IV and ols for ¢ =3. Vertical axis: p, , horizontal axis: p,.

a) p,=-05 b) p, =0
l—

l—.

6.3.2  Optimal designs for model IT under ols
Under model II, Q" = I, ® E, and so ¢_. = n,, the number of binary rows in

the type (Table 6.3). The elements of Q"AQ" are
wi =4, +A), wy=-w, W, =4 =A), W,=-w,.
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Table 6.3
List of types, c.andc, . /c;. for blocks of size 2x 2 under reflection

symmetry, model II and ols. t indicates ¢ , = ¢, . =0.
Q QAQ

Type Model IT
No. | €, Coar! 6';.

0 0 1
1 1 2w,
2 | o | ¢
3 2 w, +w,
4 2 W, -w,
5 1 2w,
6 2 w, +4w;,
7 2 w, — 4w,
8 2 w,

As under gls, types 0 and 2 are equivalent, and also types 1 and 5. It follows
that for ¢>2, if w, <0 type 3 is optimal, otherwise type 4 is optimal. This
leads to exactly the same optimality conditions in { p, } as under gls (see
section 6.2.2). However, the ®, -efficiencies of type 8 when types 3 and 4 are
optimal are different:

@, -efficiency = i Tk W 2
w, A+A,/4)

and

W —w; _ 2

w, A+ 4/14)°
respectively, which are the reciprocals of the @, -efficiencies of type 8 when

D, -efficiency

types 4 and 3, respectively, are optimal under gls. These @, -efficiencies
equal 1 when p; = p,. If p, # p, and type 3 is optimal, the @, -efficiency of
type 8 is near to zero when A4, is near zero and A, is large. Similarly,
assuming that p; # p, and type 4 is optimal, the @, -efficiency of type 8 is

near to zero when A, is near zero and 4, is large.
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6.4 Discussion

As in sections 5.2 and 5.3, optimal designs are highly specific to the
correlation parameters. The optimality results obtained here are similar under
gls and ols for the model with block effects only (model IV). For models with
row and/or column effects (models 1, IT and IIT), the optimality results under
gls and ols are identical, and the optimal designs have blocks with two
different treatments each replicated twice. Under the model with row/column
effect only, if the within-column/row correlation is less than the within-
diagonal correlation, the design with binary rows/columns is optimal (cf. the
comment from Uddin & Morgan (1997a) given in section 5.3.2.4), otherwise
the design with both binary rows and columns is optimal. Note that although
the binary design might usually be preferred in practice, the @, -efficiency of

the binary design can be very low for some correlation values.

When ¢ is not small the designs here have a large number of blocks, which

may not be practically feasible. However, under gls, the results obtained here
on the maximisation of c_. will provide a lower bound for the @, -value for
all p>0 over all designs with ¢ treatments and any number of blocks of size
2x2, including designs with a smaller number of blocks than required for a
SBA. In general, for designs with ¢ treatments and b blocks of size p, x p,,
given that ¢_. is maximised, a lower bound for the @, -value (for all p20)

over all designs with ¢ treatments and blocks of size p, x p, is

1 _(@-1n
q, be . ’
This lower bound can be used to provide an upper bound on the

®, -efficiency. When this lower bound is not attainable, it is the ®, -value of

a hypothetical design that has b blocks with C-matrix completely symmetric
and tr(C) maximised.
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Also, results on the minimisation of Co sl c;. (or equivalently the
maximisation of ¢, under gls) allow t1'1e @, -efficiency of a binary design to
be calculated. This means that an upper bound on the loss in @, -efficiency of

using a binary design when a non-binary design is optimal can be found.

As well as providing a lower bound for the &, -value, the optimal designs

obtained here may indicate the form of the optimal or near-optimal designs for
a smaller number of blocks, as in Uddin & Morgan (1997b).

Unless block sizes are very small, optimality results can be difficult to obtain
even when C and var(g) are completely symmetric. However, some results for
NRC designs with blocks having more than 2 rows and/or columns are given
in chapters 7 and 8.
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7 Optimal nested row-column designs for blocks

of size 3x2 under dependence

In this chapter, optimal NRC designs are obtained for blocks of size 3x2 and
126 treatments under model IV and gls, for a separable dependence structure.
Preliminary material is given in sections 7.1 to 7.4, and optimality regions are

specified in section 7.5.

7.1 Introduction

Finding optimal NRC designs is difficult for blocks of size 3x2 and hence
only model IV under gls with ¢ 2 6 is considered here. The separable
dependence structure is assumed, which has the AR(1)*AR(1) process as a
special case, Design construction and the method of obtaining optimality

conditions are as in chapter 6, and therefore are not repeated here.

Under a centro-symmetric A, Martin (1998) lists 11 types for blocks
consisting of 4 plots. When k = 6, there are 117 types, which is over 10 times

more types than for k = 4. Hence finding the type with maximum ¢, is much

more complicated for blocks of size 3x 2 than for the 2x 2 layout.

For uncorrelated errors under model 1, examples of 2x3 NRC designs appear
in several papers. The examples in Singh & Dey (1979) and Ipinyomi & John
(1985) are cyclic designs (see sections 5.1.1 and 5.1.2). Also, Morgan (1996)

hasanexampleofa 2x3 BIBRC design with t =9, b=4r=6.

For correlateq errors, the results of Uddin & Morgan (1997a, 1997b) for
blocks of size P, %2 include the case where p, =3. The AR(1)*AR(1)

Process is considered in these two papers. Recall that optimality results for the
AR(1)*AR(1) process under model IV and gls (for positive correlation values)
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are given here as Theorem 5.18 and Theorem 5.19 in section 5.3.2.2.3. For

P, =3, these theorems show when the binary and non-binary types

ab ab
[cd:l and l:ba},
ef ab

respectively, are optimal. The optimality of other types (for positive
correlation values) can be found by solving an integer programming problem.

Also, Uddin & Morgan (1997b) give a cyclic SSENR design with blocks of
size 3x 2, which is given here as design D5.21 in section 5.3.3.

Recall from section 6.1 that small-sized blocks, such as the blocks of size

3x2 considered here, should produce good homogeneity.

7.2 Dependence structure

For blocks of size 3x2 , A isa 6x6 matrix. If A is symmetric it consists of
at most 21 distinct parameters. Under centro-symmetry this is reduced to at
most 12 distinct parameters. For a stationary process, there are at most 7

distinct correlations (excluding p,, =1), and

(1 P Por P Poz p1.2\
Pro V' pay Por Paz Poxr
A= Poa Pay 1 po Pox Pu . (7.1)
Pu P P01 pay Poa
Poz Paz Poyr Pax 1 P
\P1z Poz Puu Por Pro 1 J

Given that 3 simple structure with a small number of parameters is usually

desirable (see sections 2.3 and 2.4), the maximum number of distinct

correlations (excluding Poo =1)in(7.1) may still be considered to be large.

Under stationarity and reflection symmetry, A consists of at most 5 distinct
correlations (excluding Poo =1)since p,, = p, and p,, = py,- Although

reflection symmetry was considered for blocks of size 2x 2, here the 5
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possible distinct correlations would mean that optimality results would be
much more difficult to obtain. For this reason, and to have a simple A,
optimality results are obtained for a separable process, which has at most 3

distinct correlations (excluding p,, =1).

Definition 7.1
For the separable process, A=A, ® A,, where
) 1 poy Pz
A, =( P;,o) and A, =|po, 1 o1
Pro Poz Pox 1

The separable process is a special case of reflection symmetry under

stationarity with p,, = p,,0,0 and p,; = Po2P10- Several interesting special
cases are contained within the separable process. These are the:

i) AR(1)*AR(1) process, where o, = pe;s

if) NNI1*NNI1 process, where p,, =0;

iii) Completely symmetric and separable process, where p,; = P 4.

Definition 7.2 .
In order to simplify the notation a little, the correlation parameters g, , Po.

and p, , are re-labelled as p,, p, and p,, respectively. =
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7.3 Types

When A represents a stationary process, W = Q' is centro-symmetric, so the
117 types due to Martin (1998), listed in Table 5.3, need to be considered.
Under reflection symmetry,

Wit =Waa, Wi3=W,,, W =W,; and Wis =Wys,

S0 giving the following definition.

Definition 7.3
Under reflection symmetry Q" has the following form:

\
(wl.l Wiz W3 Wia Wis Wi
Wiz W Wi, W3 Wi W

Wiz Wi, Wiy W3, W3 W,

Q = . (7.2)
Wie W3 Wi, Wis W, W,
Wis Wie W3 W, W, W,
\Wie Wis Wia W3 W, W,
where
6
2w, =0 (7.3)
il
and 2(”’1.3+W1,4)+(W3,3+W3.4)=0- (7.4)
™

It follows from the zero row/column sums of Q° in (7.2) that

Wit W twis+wig=wiatw  twy; +wy,.

Note that the form of Q" for a separable process is also given by (7.2).

Under A reflection symmetric, as for the 2x 2 layout considered in chapter 6,
a reversal, vertical reflection or horizontal reflection of the symbols in any

type will result in an equivalent type with respect to the value of ¢, . When

Plots are numbered 1 to k, by rows from the top-left, the 117 types in Table 5.3
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give the list of types for 7 centro-symmetric. For example, the type
[abcdef] in Table 5.3 is represented here as the type

cdj.
ef

The type numbers from Table 5.3 are used here.

Under reflection symmetry the number of different types is reduced from 117
to 74, due to vertical and horizontal reflections. Table 7.1 lists the types from

Table 5.3 that are equivalent under reflection symmetry. For example, types 2
and 3,

aa aa
aaland|aa|,
{ab} [ba]

respectively, are equivalent due to a vertical reflection, and types 50 and 59,

aa bb
ac|and|ac],
bb aa

are equivalent due to a horizontal reflection.

For a given type, the expression for ¢, is of the form

6
Cw = 4wy + 2wy 5 +2x; W,  +2D0 X Wi (7.5)
j=2

where X; ; is the coefficient of 2w, ; (i# j)in ¢, . This means that ¢, can
be specified by the 6-vector
(X12,%3,%, 4 s X1.55X1,65%3.4):

For each of the types listed in Table 7.1, expressions for ¢, are also given.
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From the reduced set of 74 types, two pairs are equivalent since they have the

same cy values, although they are not horizontal or vertical reflections of

each other. The pair of types 87 and 91,

ab ac
ab|and|ab]|,
EE

respectively, are equivalent. Expressions for ¢, for types 87 and 91 are
4wy + 2wy, + 2(w 3 +wy )

and 4w, + 2w, 5 +2(w ;3 +w, ),

respectively. These two types are equivalent since w, , = w, ¢(= w, ;) under

reflection symmetry. Also, types 92 and 96,

ab ac
ba|and |bal,
EIE

respectively, are equivalent since the expressions for ¢ ,
4wy, + 2w, +2(w Wy ,)
and dw, + 2wy 3 +2(w +W34),

respectively, are equivalent because w, ; = w; 4(= W ().

Therefore, the list of types is reduced to 72 under reflection symmetry. This
list is reduced further by eliminating inadmissible types, that is, types for
Wwhich there are always better types. Fifty-four types, marked in Table 7.1 by
round brackets, are shown to be inadmissible in Appendix A2.4). The
inadmissibility of some of the types marked by round brackets in Table 7.1
follows from Lemma 7.1 (given below). Hence, the number of types that need

to be considered under reflection symmetry is just 18.
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Lemma 7.1
Under reflection symmetry (when Q" has the form given by (7.2)),

W3 +w;, 20; W +w, <0, W tw,;20;
W, +w s20; wy, +w 20,
Proof

Since Q" is a non-negative definite matrix, it follows from the result (A1.25)
in Appendix Al.8, that the sub-matrix

(ws,s W34

Wyg Wiy )

of Q°, givenin (7.2), is also a non-negative definite matrix. It then follows
that w; ; + W4 20, and from equation (7.4), wy; +w;, 20 implies

W3 +w, , <0. Similarly, it can be shown that w;, +w, ; 20 for j=25,6.

Definition 7.4 o
For a reflection symmetric dependence structure, let Z be the set of admissible

types. Thatis,
E = {13, 18, 20, 29, 60, 61, 62, 63, 65, 67, 70, 86, 87, 92,99, 103, 116, 117}.
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Table 7.1

List of types and expressions for ¢, , for blocks of size 3x2 under reflection

symmetry.

The vector (x,5,%;3,%, 4,%; 5, % 6,%3 4 ) (S€€ €quation (7.5)) is included when
the elements of this vector are not immediately obvious from the expression

given for ¢, .
Note: type numbers in round brackets are inadmissible under
reflection symmetry.
) expression for ¢,
ch type eqmva;lsent and
' P (%125 %135%1,45 %155 %165 %3,4)
[aa]
0
1 aa
1) 32 (2.4,4,2,2,1)
Pye
) aa 3 2wy,
ab (1,3,3,1,1,1)
[aa] '
@ ||ab 2Ws.5
aa 2,2,2,2,2,0)
aaj
) 1a 4wy, +4w,,
bb 2,2,2,0,0,1)
©) gg " 2wy, +2wy 5 +4w,,
ab (1,3,1,1,1,0)
@ gg 1o 2wy, +2wy 5 4w,
ab (1,1,3,1,1,0)
ab] 4w, + 4w,
¢)) aa
ab 0,2,2,2,0,1)
[ba] 4
©) aa 12 4w, +4w, 4
ab (0’ 2’ 2’ 0’ 2’ 1)
13 g g‘ dwyy +4w,,
aa (2’ 09 0’ 2’ 29 1)
(14) gg 15 4wy +2wy 3 +4w, , + 4w, 3+ 4w,
bb (2,2,2,0,0,0)
b
a6) | |aa 17 2wy, +2wy5 42w,
bb (1,1,1,1,1,1)
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Table 7.1 continued.

type equivalent
no. type types CW
e
18 ag 4w, +2w; 5+ 8wy 3 +4w,
a
b
(19) gb 4wy, + 2wy +Aw 5 +4w  +aw
a
b
20 b g. 4w, | +2w; 3 +8w; 4 +dw
a
@1 :g 4w, +2w, ,
bc 1,2,2,0,0,1)
(22) gg‘ 27 2w, + 2wy, + 2w,
ac (1,2,1,1,1,0)
aa] 2w, + 2w, 5 +2W
23 b a 26 1,1 3,3 1,4
@) ac (1,1,2,1,1,0)
24) ab Aw,, + 2w,
ac 0,2,2,1,0,1)
ba] 4w, , +2w
25 aa 28 11 16
@ ac 0,2,2,0,1,1)
29 (g‘g dw;y 3 +2w,,
aa (2,0,0,2,2,0)
22l
(30) gb 41 | 4wy +2wy3 2wy, + 2w 5 +HAwy,
C
Pye
(31) lga 40 | 4wy, 2wy +2w, Haw 5+ 2w,
C
[ab] 4w, + Wy, +2W, +W
32 aa 43 11T Wss3 1.6 T W3a
32) bc 0,1,1,0,1,1)
[ba] dw, | + Wy, +2W, s +W
3 aa 1.1 3,3 1.5 3,4
@3 bc 42 ,1,1,1,0,1)
[aa] 2w, +3w, 3 +3w
34 bb 44 11 33 34
B8 ac (1,0,0,1,1,1)
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Table 7.1 continued.

type

no.

type

equivalent

types

Cw

(35)

0
ab
_a c..

48

4w, + 2w, 5 + 6w, 3 +2w; 5

(36)

b a]
ab
I_a c_

47

4wy, + 2wy + 2w 3 +4w,  +2w 4

G7)

[ab]
ba
[ac

46

4wy, + 2w,y + 6w1.4 + 2w1_5

(3%)

(ba]
ba
h-a C—

45

Awyy +2Wy, +4W, 3 + 2w, + 2w

(39)

T
aa

49

4w, ) + W3 +2w, 5 +W;,
(1,1,1,0,0,1)

(30)

faa]
ac
bb

59

4w, + 2wy, + 4w, , + 2w, 5+ 2w1‘4

1)

57

2wy, +3wy 5+ 2wy o+ Wy,
(1’ 09 1’ 1’ 1’ 0)

(52)

4w, + 2wy, + 4w, ; + 4w, s

(53)

55

4w, + 2wy +2w 5+ 2w+ 4w,

(54)

58

2wy, +3w,, + 2w 3+ Wy,
(1,1,0,1,1,0)

(56)

4w, + 2wy 5 + 4w, , +4w,

60

4wy, + 2wy 3 +4w,, +2w;,

61

4w, + 2wy + 2w1'2 +4w,,

62

4w, + 2wy, + 2wy, + 4w, 4
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Table 7.1 continued.

type

no.

type

equivalent

types

Cw

63

[ab]
ac

69

4w, +2w;, + 4w, 3 + 2w, ¢

(64)

D
ac
l—Cb_

66

4w, + 2wy 342w, 5+ 2w, 4 +2W; 5

635

[ab]
ca
I.b C_

68

4w, + 2w3_3 +4w, , + 2w, 4

67

b

Aw,, +2wy; +4W, 5 +2w;,

70

4w | +2w; 4 + dw, o +2W; 4

(71)

72

4w, +2w,, + 2w, +2w 5 + 2w, 4

(73)

74

2wy +3wy 3 + W,
(1,0,0,1,1,0)

(75)

79

4wy +wWy3+Wy,
0,1,1,0,0,1)

(76)

4wy, +2w,y5 + 4w, 5 + 2w, s

an

80

4w, + 2wy +2w 3+ 2w, + 2wg

(78)

4wy, +2w; 5 + 4w, , + 2w,

(81)

4w, +2w; 5+ 2w, , +2w;y

(82)

85

4w, +2w, 5 + 2wy, +2wy,

(83)

84

dw,, + 2wy 3 + 2wy, + 2wy,
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Table 7.1 continued.

type

no.

equivalent

_types

Cw

86

4W1,1 +2w, 5 + 4w, ,

87

4W1.1 + 2w3‘3 + 4w, ,

(88)

102

aw,, + 2wy, + 2wy 3 +2w; 4

(89)

98

4W1,1 +2w,, + 2wy 3 +2wW,; 4

(90)

95

4w +2w;, + 2w 3 +2w

91

106

4w, + 2wy; +4w,

92

4w, + 2wy + 4w, 4

(93)

101

4wy +2w, 5 + 2wy, + 2w, 4

o4

97

Awyy + 2wy 5 +2W, 4 +2W

96

105

4w1'1 +2wy 5 +4w,

99

4wy, +2w; 5 + 4w, s

(100)

4w, + 2wy, + 2w 5+ 2wy,

103

4W1,1 +2wy 5 +4w ¢

(104)

107

4w, , + 2wy, + 2w + 2w,
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Table 7.1 continued.

type

no.

equivalent

types

Cw

(108) | |bec 4wy, +2wy 3 +2w,,

(109) | |ac 114 | 4wy +2w55+2w;,

(110) | | ca 113 | 4w +2w;5 42w,

(111) | | cd 4wy +2w, 3+ 2w 5

(112) | | cd 115 | 4w +2wy5+2w 4

116 aa 4w, | +2w; 5 +2w;,

117 cd 4wy +2w;y,

7;4 Elements of Q*

Definition 7.5
The eigenvalues of A, are

Ay=1+p; and Az =1-p5,

and the eigenvalues of A, are

'41,1 =1-pz,
Aoz =%(2+pz +ypi +8pf)
and 21.3=%(2+pz-\/p§+8p1’)-
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This means that the eigenvalues of A are 4,4, fori=12and j=123. For
A to be positive definite A A, ;>0 is necessary for all 4,j. Since

'Pl

Pals|ms| <1, 4, A4,,, 4,, and 4,, are positive. Therefore for A to be

> 3>

positive definite A3 >0 isrequired. The condition 4, ; >0 is equivalent to
9, >0, where 3, is given in the following definition.
Definition 7.6
Let
=4k =1+p,=2p!,  4,=3-4p, +p,,
& =1-2p, +p,, 8, =1-p,,
I =1+p, ‘ 9" = 24,4 32,85, -

Note that 3, (i=1,2,4,5) and " are positive when A is positive definite, and

9, can be positive or negative.

Expressions for the elements of Q" for the separable process are derived in

Appendix A2.3, and are listed in Definition 7.7, with common denominator
g,
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Definition 7.7
The elements of Q" for a separable process are

wyy = 9,29, - 4,,2,,9,)1 8",

Wiy =-8, (2,03‘92‘95 + A8 )/ g,

wis =4y, (20,8, + 4,99,/ 5",

Wie =4, (2,01 239 = 2,99, )/ g,

s = =4 200, = p2)9, + 1y A0, 82}/ S,

Wis =230, = P2)9, — Ay, 9241 S,

Wiy =4y, (28,9, - 4,82 )1 8",

Wie==2,820,(1+ p,)8, + 4,91 S .

For ease of reference, the terms given in Definition 7.5 and Definition 7.6 are
now given here again:

1,,1=1+p3, Ay =1-ps, Ay =1-p,,

A =%(2+pz +Vp; +8p1’), Aos =%(2+pz ~VP; +8p] )
G =Adps=1+p,=2p}, 9 =3-4p +p,,

G =1-2p, +p,, g, =1-p,

I =1+p,, g’ =244 342,99,

7.5 Optimal designs

Specifying the regions of optimality for non-binary types is cumbersome, and
S0 exact optimality regions are derived only for the six types: 117, 13, 18, 20,
60 and 67, in sections 7.5.1 to 7.5.6, respectively. The five non-binary types,
13, 18, 20, 60 and 67, are considered here since they cover much of the region

in which A is positive definite when p, is not too large. When p, is non-

Positive these types cover most of the positive definite region. The optimality
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regions for these types, for fixed p, =-09,-0.5,0,0.5,0.9, are illustrated in
Figure 7.1 to Figure 7.5, respectively.

A grid search over the parameter spaces of p,, p, and p, (i.e. finding the
type with maximum ¢, for each (p,,p,,p,) setting in the grid) indicates
when other types are optimal. However, it is possible that types for which the
optimality region is very small, may have been missed in the grid search. This
means that optimality regions, for those types for which exact optimality
regions have not been derived, can be extrapolated from the grid search results

by comparing the c,, values for neighbouring types. These optimality regions

may not be exact and therefore are called tentative optimality regions. The
grid search also provides a check that the exact optimality regions for the six

types listed above are correct.

Recall that A is positive definite when §, > 0. This means that
lp1| <31+ p,) is needed. The vertical lines, p, = i,/-}(l + p,), in Figure
7.1 to Figure 7.5, and the horizontal lines, p, = *1, give a rectangle, the

interior of which is the positive definite region.

Figure 7.3 illustrates the optimality regions for the NN1*NN1 process. The
completely symmetric and separable process corresponds to the diagonal
Py = p; inFigure 7.1 to Figure 7.5. The optimality regions for the

AR(1)*AR(1) process are shown in Figure 7.6 in section 7.5.8.
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The key, given below, shows the optimal types for Figure 7.1 to Figure 7.5.

KEY:| 13

18

20

60

61

63

65

aa| |ab] [ab] [aal [aa] [ab] [ab
bb| |ab| |bal| |bb| |bc]| |ac]| |ca
(aa| [ab] [ab| |cc| |bc| |bc]| |be

67
ab

cc
ab

|

86

[aa
cd

87

92

Bl

99

ab
cd
ab} [ba

3|

103

116

117

ab]
cd
ef

Figure 7.1

Optimality regions for blocks of size 3x2 under a separable dependence
structure, model IV and gls, for p, =-0.9.

e

P3

1—.
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Figure 7.2  Optimality regions for p, =—0.5.

P3
1--.

0.5 1

-1 -0.5 0 0.5 1

Figure 7.3  Optimality regions for p, =0.

P
1-4
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Figure 7.4 Optimality regions for p, =0.5.

Ps
1-—1

0.5 -

Figure 7.5 Optimality regions for p, =0.9.

Ps 117 6\5
1= .

N
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7.5.1 Optimality of type 117

In this section, the optimality region for the binary type (117) is specified.
From Theorem 5.10 (in section 5.2.4.2), all the off-diagonal elements of Q
need to be non-positive for type 117 to be optimal over all D. Here, D is the
set of all connected designs with ¢ treatments and b blocks of size 3x2. In the

following, each of the off-diagonal elements of Q" are considered, and
conditions given, in terms of the correlation parameters, for when these

elements are non-positive.

First consider the expression for w,, given in Definition 7.7 (at the end of

section 7.4), which can be re-written as
Wi ==84(x, + P37, )/ 9,
where
X2 =48, =(1- p, X1-p))
and z,,=29,9-2,,9,=5-p,+3p, + PP, —8p;.
Note that
212 =B+ p)9 = 2(1- p)’ (1 + p,),
which is positive. Therefore z,, >0, since A is positive definite (i.e.

8, > 0). It then follows that

w2 S0 if py2-i2 (7.6)

The expression for w, 3 can be re-written as

W3 ==Ay (M3 = p353)/ 9,
where

X3=2p9 + 38, =1+3p, + p, + p.p; —6p;
and z,; =99, =(1-p,X1-2p, + p,).

When z,, <0, x,,/z,, <-1,50 p; 2x,,/2,, is true for all |p;| <1 here.
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Hence,

x
py<—2 for z,3>0

213

z3<0

W3 <0 if

The expression for w, , can be written as

Wie = ‘)*2,1(213 = psxi3)/ 9.

When x,; <0, z,;/x,,<~1, 50

z
<—= for x,;>0

For w,,:
Wis =—(x s~ Pszx,s)/‘gtr
where
X5 =2(p, = pi)9, + ;'2.1‘942
=1-2p, +5p, —6p,p, = Spt +2p; —3plp, + 8p;
and z,5=2,,9; =(1- p,X1- ).
Clearly, z, >0, so

. X5
ws<0 if pys—.
215

Now consider w, (:

Wie=—(zs - pixs)/ 9.’

and

Wie<0 if pixs<zs.

(7.7)

(7.8)

(1.9)

(7.10)
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Finally consider w, ,:

Wig==A (X34 + p3230)/ s
where

X4 =8% =(1-2p, + p,)

2, 2
and z3, =2(1+ p,)9, ~ 8} =5-4p, +6p, —4p,p, —4pl +p;.

Lemma 7.2
When A is positive definite, Z34>0.

Proof
First consider when
Z3,>0
ie. (5-4p ~4p)+23-2p,)p,+p2 >0,
ie. p<q(p) or p,>q(0).

where

0(p)==3+2p, - 2\1-2p, +2p}
and g,(p,)=-3+2p, +2\1-2p, +2p7 .

Only ¢,(p,) needs to be considered since ¢.(p,) <-1. Therefore z;,, >0
when Py > qz(pl)-

Note that

Pr=0(p) -8 = 2= + P =120+ 207 |
is positive, since the inequality

2{(1-/01 +pf)—m}>0
simplifies to

pi(l-p)* >0. |
Since 9 >0 (for A positive definite), it follows that p, —g,(p,) > 0, which

n
Completes the proof.
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It follows from Lemma 7.2 that

x 7.11
Wy, S0 if p >34, (7.11)

Z34

Theorem 7.3
For blocks of size 3x2 and t>6 treatments under model IV, glsand a

separable dependence structure, a design of type 117 is optimal if the
i ]
conditions given by (7.6) to (7.11) are satisfied.

i =0
The boundaries of the optimality regions for type 117 correspond to w, J
for i # j. In Figure 7.3 and Figure 7.4, for example, the curves enclosing the

j# ] f the
optimality region for type 117 correspond to w,; =0 (i# ) Foreacho
equations w;, ; =0 (i # j), Table 7.2 lists the type which is equivalent to type
117 (i.e. the non-binary type which has ¢, = 4w,, +2w, ).

Table 7.2

For blocks of size 3x 2 under a separable dependcncg structure, model IV
and gls, type e is equivalent to type 117 when w,; =0.

w;; =0 .
(i#Jj)
w,=0 86
Wy = 87
Wie=0 92
w5 =0 99
W =0 103
w;, =0 116
Corollary 7.4
Type lll;ycannot be optimal when p, < 1632 -23 % -0.37. | ]

; 117 is not
The proof of Corollary 7.4 is in Appendix A2.5. It means that t(})';;e 1
optimal in Figure 7.1 and Figure 7.2, for p, =-0.9 and p, =-0.5,

respectively.
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7.5.2  Optimality of type 13
In order to specify the optimality region for type 13, ¢, for type 13 is
compared to ¢, for the 17 types in E\{13}. Itis shown in Appendix A2.6

that for the optimality of type 13 itis sufficient that type 13 is better than types
20, 60 and 67. Conditions, in terms of { p, }, are now derived for type 13 to be

better than types 20, 60 and 67.

First consider type 13 better than type 20. This is true when
Wiz + 2wy 22w +4w; , +2w .

After some algebra, it can be shown that this inequality is equivalent to
%1320 + P321320 £ 0,

where
X320 =7=8p, + p}

and  z)35, =23-8p, +16p, ~31p].

Note that z,;,,—168, = (1~ p, X7~ p,) is positive. Hence,

4 >0 = z5,,>0 (ie. Zy320 > 0 for A positive definite). Therefore type

13 is better than type 20 when

Ps <~ x13.20 ) (7.12)

213,20

Type 13 is better than type 60 when
Wis +W,, 22w, +2w,.
After some algebra, it can be shown that this is equivalent to
1-2p,+p,<0
ie. 9,<0. (7.13)
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Type 13 is better than type 67 when

Wiz +W;, 22w, + 2w .
This is equivalent to
X367 ¥ P3Zi367 S0,
where
Y36 =95 =(1- p)’
and z,; =2-2p,+ p, - py.
Note that z;;; - & =(1- p,)’ is positive. Hence, z,;, >0 for A positive

definite. Therefore type 13 is better than type 67 when

p, < -1 (7.14)
Z13.67
Theorem 7.5

For blocks of size 3x2 and ¢ 6 treatments under model IV, gls and a
separable dependence structure, a design of type 13 is optimal if the conditions
given by (7.12) to (7.14) are satisfied. n

The proof of Theorem 7.5 is given in Appendix A2.6.

7.5.3  Optimality of type 18

Itis shown in Appendix A2.7 that for type 18 to be optimal, it is sufficient that
type 18 is better than types 60, 61, 63, 67, 87, 99. It is now shown when type
18 is better than these types, in terms of { p, }.

First consider when type 18 is better than type 99. This occurs when
w3 20.

From section 7.5.1 it can be seen that w, 3 20 is equivalent to

py 203 (7.15)

213
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For z,;,<0, type 18 cannot be better than type 99, since x,,/2z,5 <-1, s0

23 >0 is assumed.

Type 18 is better than type 60 when

4w, 3 +2w, o2 2w, 5 +Wy,.
After some algebra, this inequality can be written as

P3lige0 2 Xig60>

where
2 3 3
Yise0 =3 +16p, +11p, —24p,p, - 40p] +24p] p, + p; —8p,p; +16p] + p;

" 2 1p, =9p2 +8p,p2 +16p} — p3.
Z1860 =21-32p, +5p, +8p,p, -8p] ~8p{p, ~9p; +8p.p; 1

i - Zigeo > 0 18
Itis easy to show that when Zige0 <0, X560/ 21560 <—1. Hence, zi54,

assumed, and type 18 is better than type 60 when

py 2 e (7.16)

‘1860

Now consider when type 18 is better than type 61:

2wis+2w 2 w,.
After some algebra, this inequality can be shown to be equivalent to

P3lig6 = X615

where
2
Yiger =3+7p +11p, =T pp, =16 +2p;

2
and zjgq =9- Tp+py+7pp,—8p% - 2p;.
When Zig61 <0, X4/ 2156, <—1. Hence, 2,44 >0 is assumed, and type 18

is better than type 61 when

: 7.17
2 b LXI0 ( )

“18 .61
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Type 18 is better than type 63 when

2w 3+ 2w g 2 W6
This is equivalent to

PiZ1g63 2 X1g635

where

X363 = 9 X1 = (1= p )3+ Tp, +11p, — Tpyp, — 161 +27)
and zi, =3~8p, =T, +14p,p, +11p] =3plp, —4p] +2p,p] -8p;.
For z,, ., <0, X363/ 21563 <=1, therefore z;4 43 > 0 is assumed. Hence, type

18 is better than type 63 when

py 228 (7.18)

21863

Type 18 is better than type 67 when

dw, ;> Wi,
This is equivalent to

P3liger 2 Xig675

where
X367 =3+16p, +2p, +8p,p, —28p; - p3
ad 25, =9-16p, +10p, —8p,p, +4p] + p}.
For z,.¢, <0, type 18 cannot be better than type 67, since X3¢,/ 2567 < -1,

S0 Z;367 >0 is assumed. Hence, type 18 is better than type 67 when

0,2 X18.67 (7.19)
3 &

L1867
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Finally, type 18 is better than type 87 when

W3 +w 20
Le. pPyZiger 2 Xiger,
where
Xiggr =2+3p, +5p,-3p1p, - 8] + P}
and zi5q; =4,,(2-3p, + p,)=2-3p,— p, +3p.P, - P;3 .
For z)54, <0, X547/ 21587 <—1,50 Zjggy >0 is assumed. Hence, type 18 is

better than type 87 when

p, > Jier (7.20)

218,87

Theorem 7.6
For blocks of size 3x2 and ¢ > 6 treatments under model IV, gls and a

separable dependence structure, a design of type 18 is optimal if the conditions
given by (7.15) to (7.20) are satisfied. =

This theorem is proved in Appendix A2.7.
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7.5.4  Optimality of type 20
For type 20 to be optimal, it is sufficient that type 20 is better than types 65,
67, 92 and 99, as shown in Appendix A2.8. In terms of { p, }, the conditions

in (7.21) to (7.24), given below, need to be satisfied for type 20 to be optimal.

Type 20 is better than type 65 when

2wy + 2w s 2w
After some algebra, this inequality can be written as

PaZzoes 2 Xy0655

where

Xyes =3-8p, +11p, —10p,p, = 1p} -9plp, +2p; +2p\p; +16p;
and zy, 6 =3+4p, ~Tp, +6p,p,—5p} +13p}p; =4p; —2p1p; —8p; -
Itis assumed that z,g ¢s > 0, SiNCe X;065/ Zy065 < —1 When 2, < 0.

Therefore, type 20 is better than type 65 when

p, > 22085 (7.21)

220,65

Now consider when type 20 is better than type 67

dw 2wy,
This can be written as
P3Z20.67 2 X30,675
where
X061 =3-8p, +2p, +4p] - p;
and z,, ., =9+8p, +10p, —28p] + p2.
Itis assumed that z,,, >0, since for Z,5¢ <0, X3067/ Z2067 <= 1.

Therefore, type 20 is better than type 67 when

p, > w087 . (7.22)

220,67
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Type 20 is better than type 92 when

Wi,+w 20
ie. P3Z20.92 = X30075
where
_ —3p2—5p2 2 2, 8,3
X392 =2=5p+5p,—4pp, =3p1 —5Spipy+p; +p1p; +8p;
and  zyy5, =(1-p, X2+ p, + p3 + PPy — 500).
Similarly to the above comparisons, z,,,, > 0 is assumed. Therefore, type 20

is better than type 92 when

py > 2200 (7.23)

Z20.92

Finally, type 20 is better than type 99 when

w1,4 2 0,

which is equivalent to

213
PRSEN (7.24)
X3

(see the condition in (7.8) in section 7.5.1).
A proof of the following theorem is given in Appendix A2.8.

Theorem 7.7
For blocks of size 3x2 and ¢t > 6 treatments under model IV, glsanda

separable dependence structure, a design of type 20 is optimal if the conditions
given by (7.21) to (7.24) are satisfied. n
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7.5.5  Optimality of type 60
For the optimality of type 60, it is sufficient that type 60 is better than types
13,67, 86 and 116, as shown in Appendix A2.9.

From the condition (7.13) in section 7.5.2, it follows immediately that type 60
is better than type 13 when
9,20. (7.25)

Type 60 is better than type 67 when

Wi 2w
ie. p,<Pr=pl) (7.26)
1-p)
(from part of the proof of Lemma A2.16 in Appendix A2.8).

Type 60 is better than type 86 when
Wy, 20,

From the inequality (7.11) in section 7.5.1, it follows immediately that this is
equivalent to

u 7.27
p3 —is ( )
234
where
X34 = ,932

d 23, =5-4p, +6p, ~4p,p, —4p! + p} >0.
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Finally, type 60 is better than type 116 when
W, 20

ie <-J2
e p, (7.28)

212

This follows from the inequality (7.6) in section 7.5.1. Recall that
X2 = A9,

and z,=5-p,+3p,+pp,-8p; >0.

A proof of the following theorem is given in Appendix A2.9.

Theorem 7.8

For blocks of size 3x2 and ¢t > 6 treatments under model IV, gls and a
separable dependence structure, a design of type 60 is optimal if the conditions
given by (7.25) to (7.28) are satisfied. L

7.5.6  Optimality of type 67

Appendix A2.10 shows that for the optimality of type 67, it is sufficient that
type 67 is better than types 13, 18, 20, 60, 99 and 116. The conditions for type
67 to be better than types 13, 18, 20 and 60, follow immediately from the
inequalities (7.14), (7.19), (7.22) and (7.26), respectively. Type 67 is better
than type 99 when the condition in (7.27) is satisfied. The condition for type
67 to be better than type 116, follows from the inequality in (7.9). These
conditions for the optimality of type 67, in terms of {w,,} and { p, }, are

given in Table 7.3.
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Table 7.3
For blocks of size 3x2 under a separable dependence structure, model IV
and gls: optimality conditions for type 67, where type 67 is better than type e

C In terms of
{ W, j } {p:}
X
13 | 2w, + 2w 2wy, +wy ps 2= (7.29)
Z13,67
P <D for 250
18 Wi 24w, Zig67 ' (7.30)
Or Zige7 <0
X20.67
<-——= forz >0
20 Wi 24w, , ? 220,67 e (7.31)
Or Zy67 <0
60 Wis 2w, ps 2 (i—'—”—zl (7.32)
' a-pf)
99 _Jae
Wi,20 P3 s (7.33)
S Z34
116 Xus
W s>0 P32~ (7.34)
— ‘1.5
Recall that
X367 = 1942 s

S =2=2p,+p,~pf >0,

iaer =3+16p, +2p, +8p,p, - 28p] - p;,

Zuer =9-16p, +10p, —8p,p, +4p + p3,

*n61 =3=8p, +2p, +4p} - p?,

Zo61=9+8p, +10p, -28p] + p3,

_ Q2
X34=05,

24 =5-4p +6p, —4p,p,—4pl +pi >0,

and 215 = 2/2.11942.
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This gives the following theorem, which is proved in Appendix A2.10.

Theorem 7.9
For blocks of size 3x2 and ¢t > 6 treatments under model IV, gls and a

separable dependence structure, a design of type 67 is optimal if the conditions
given by (7.29) to (7.34) are satisfied. ]

7.5.7  Plots and description of optimality regions
Plots of the exact optimality regions for the six types 117, 13, 18, 20, 63 and
67 are in Figure 7.1 to Figure 7.5 for p, fixed at —=0.9,-0.5,0,0.5,0.9,

respectively. Tentative optimality regions (see section 7.5) for other optimal
types are also shown. For p, <0, the optimality regions in Figure 7.1 and
Figure 7.2 are fairly simple, with six possible optimal types. However, for

P, 20, Figure 7.3 to Figure 7.5 are much more complicated, with many more

optimal types (up to 14 optimal types).

As in the results in chapters 5 and 6, the binary type (117) is optimal when the

correlation parameters are near to zero. For the NN1*NNT1 process (p, =0)
the optimality region of type 117 is larger than for p, =0.5,0.9. As p, nears

1, this region becomes very small. Note that three of the types in E (types 29,
62 and 70) do not seem to be optimal, at least for the settings of p, considered

here.

When p,, p, 20, only types 20, 65, 92,99, 103 or 117,

ab ab ab ab ab ab
ba|, |cal|, |ba}|, [cd|, |[cd| or [cd|,
ab bc cd ab ba ef

respectively, can be optimal. All these types have no self-adjacencies in either

rows or columns. As p, and p, increase, the number of diagonal self-

adjacencies in the optimal type increases. Note that types 20, 65 and 92,
which are only optimal when p,, p, > 0, all have diagonal adjacencies.
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Types 18, 61, 63 and 87,

ab aa ab ab
ab(, |bc|, [ac| and |ab],
ab bc bc cd

respectively, are only optimal when p, < 0, that is, when the correlation of
adjacent plots within a column is negative. These types have column self-
adjacencies and no diagonal self-adjacencies. As p, approaches - m .
type 18, which has the maximal number of column self-adjacencies, is
optimal. Types which can be optimal over both p, 20 and p, <0 are types
60, 67, 86, 99, 103 and 117, none of which have column self-adjacencies.

Types 13, 60, 61, 67, 86 and 116,

aa aa aa ab aa bc
bb|, |bb|, {bc|, |ccl, |cd| and {aal,
ccC cc bc ab bb de

respectively, are only optimal when P <0, that is, when the within-row

correlation is negative. These types have at least one non-binary row, with the

number of non-binary rows increasing as p, increases and p, decreases.
Types 18, 20, 87, 99 and 117 can be optimal for both p, 20 and p, <0. All
these types have binary rows.

7.5.8 Optimality results for the AR(1)*AR(1) process

This section specifies the optimality regions for the six types considered in
sections 7.5.1 to 7.5.6 under the AR(1)*AR(1) process, which is a special case
of the separable process with p, = p?. For the AR(1)*AR(1) process

"5 = W, ¢, 50 more of the 117 types listed in Table 5.3 are equivalent than
under reflection symmetry. That is, types 67 and 70 are equivalent, as are
tyPes 99 and 103. Optimality regions for types 117, 18, 20 and 60 are
Specified here, and it is shown that types 13 and 67 cannot be optimal here. A

plot of the optimality regions (given as Figure 7.6) shows that the nine types,
18, 20, 60, 61, 86, 87, 92, 116 and 117, can be optimal here. For types 18, 20,
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60 and 117, exact optimality regions are specified, and for the remaining five

types, tentative optimality regions are shown.

Figure 7.6
Optimality regions for blocks of size 3x 2 under the AR(1)*AR(1) process,
model IV and gls.

S

P
1—-.

] TP
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KEY: | 18 20 60 61 8 87 92 116 117

ab| [ab] [aal [aa] [aa]l [ab] [ab] [bc] [ab
ab| |ba| |bb] |bc| |cd| |ab| |ba] |aal| |cd
ab| |ab| {ccl| |bc| [bb] lcd| [cd| {de]| |ef

The conditions (7.6) to (7.11), for the optimality of the binary type (117) are
Simplified for the AR(1)* AR(1) process, and are given in Table 7.4. If

Pys py >0, the condition W, 4 <0 in Table 7.4 for when p; >2- Vs , is the

Optimality condition for type 117 given by Uddin and Morgan (1997a)
(Theorem 5.18 in section 5.3.2.2.3). When Pi» P3 >0, clearly w;, <0 and

"34<0. Itis also easy to show that w,, <0 => w,; <0 when p,, p, >0.
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Table 7.4
For blocks of size 3x2 under the AR(1)*AR(1) process, mo.d.el IV and gls:
optimality conditions for type 117.  indicates that the condition is true.

(1-p)
w,,<0 22—
R MRS
_ 2
wl,3so P;SMLTpl‘l
(1-p,)
2
pssl—(lz——p—l)—z— whenp,>2-—J§
W”SO (+ pl_pl)
’ or
P1<2'\/—5_
Wis=wss0 | p;<1 7
(1_/’1)3
w,,<0 2 -
M P T S 430l )

For the optimality of type 18, conditions (7.15) to (7.20) need to be satisfied.
However, under the AR(1)*AR(1) process it is sufficient that type 18 is better
than type 87. That is, the condition (7.20), which simplifies to

(2+3p -p)

(A=-pX2-p)

needs to be satisfied.

P32

The four optimality conditions for the optimality of type 20, (7.21) to (7.24),

are reduced to the one condition (7.23). This is the condition for type 20 to be

better than type 92, and simplifies to

> 1-pX2-p)
(2+3p,-p!)

This is equivalent to the result in Uddin & Morgan (1997a), given here in

Theorem 5.19 in section 5.3.2.2.3.

P3
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The two conditions (7.27) and (7.28) are sufficient for type 60 to be optimal.
These conditions correspond to type 60 being better than types 86 and 116,
and simplify, respectively, to:

(l-p1)3
(S+p+3p] - p))

Py -

and

_(1—/71)

o .S .
? 5-p)

Type 13 cannot be optimal here, since the condition, (7.13), for type 13 to be
better than type 60, simplifies to (1 p,)* 0. Also, type 67 cannot be

optimal, since the condition (7.34) simplifies to p; >1.

As mentioned previously, the binary type is optimal when the correlation is

low (i.e. when ( p,, p,) is near (0, 0)). For P15 P; 2 0, only three types can be
optimal. These are types 20, 92 and 117,

ab ab ab
ba|, |ba| and [cd]|,
ab cd ef

respectively, which do not have any row or columns self-adjacencies, and the

number of diagonal self-adjacencies increases as p, and p, increase.

When at least one of the correlation parameters are negative, optimal non-
binary types have non-binary rows and/or columns, and no diagonal self-

adjacencies. For p, <0 and p, > 0 (positive within-column correlation)

types 60, 116 and 117,

aa bc ab
bb|, [aa| and |cd],
cc de ef

Tespectively, which all have binary columns, are optimal. Also, as p,

Increases and p, decreases, the number of row self-adjacencies increases.
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Similarly, when P <0 and p; > 0 (positive within-row correlation) types 18,

87 and 117,

ab ab ab
ab s ab and cd s
ab cd ef

respectively, which have binary rows, are optimal. Note that, as p, decreases

and p, increases, the number of column self-adjacencies in the optimal type

increases,

When P1> P3 <0 six types can be optimal. These are types 18, 60, 61, 86, 87

and 117. All of these types, except type 117, have some column, row or

diagonal self-adjacencies.

When p, = P3, going from low p, to high p,, types 86, 117, 92 and 20 are
optimal. Type 86 is optimal when p, < -0.236 (to 3 decimal places); type
117 is optimal when -0.236 < p, < 0.268 ; type 92 is optimal when

0.268 < p, <0.358; type 20 is optimal for p, = 0.358.

7.5.9  Discussion

Itis clear that optimality regions are much more difficult to specify here than
for the blocks of size 2x 2 considered in chapter 6. For larger sized blocks,
Optimality results, are very difficult to obtain, unless the dependence structure
is very simple. Even listing the different types for W centro-symmetric is

Computer intensive when blocks consist of k> 8 plots.
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For large-sized blocks, given the dependence structure and its parameter
values, optimising techniques, such as the simulated annealing algorithm of
Martin & Eccleston (1997), could be used to try to solve the trace
maximisation problem to find the optimal type. The design can then be
Constructed using SBAs. Another approach, for any number of blocks, is to
Use an optimisation technique to find a @, -efficient design for a particular p.

The former approach, although yielding a design with a large and restricted
number of blocks, is likely to be much quicker at finding optimal designs since

optimisation is over one block only.
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8  Optimality results for the AR(1)*AR(1) process

8.1 Introduction

From the previous chapters, it is clear that optimality regions are very
cumbersome to specify, unless the block size is very small, evenif A hasa
simple structure. However, for the AR(1)*AR(1) process, which has a fairly
simple structure for A~ , optimality results have been derived by Uddin &
Morgan (1997a, b) (see section 5.3) for blocks of size p, x2. In this chapter,
further results are obtained for the AR(1)*AR(1) process under gls, using the
SBA construction method. It is assumed here that ¢ > k. For blocks of size
Pixp, (p, 2 max(2, p,)), the optimality region under model IV is specified
in section 8.2 for the binary type, and it is shown that as p, and p, increase,
the optimality region becomes smaller. The different off-diagonal elements of
Q' under model IV and gls, are listed. Although optimality conditions for
non-binary designs, for general p,, p,, are extremely difficult to obtain, the
results from Uddin & Morgan (1997a) for blocks of size p, x2 are extended,
in section 8.3, for models III and IV under negative correlations. Also,

optimality conditions for blocks of size 3x3 under model IV are derived in
section 8 4.

8.2 Blocks of size p, x p,

The general blocksize Py x p, for p;,p, 22,is considered in this section
under model IV, gls and the AR(1)*AR(1) process.

Definition 8.1 o
In order to simplify the notation, the within-column and within-row

correlation parameters, p,,; and p, , , are re-labelled as p, and p,,

respectively. =
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Recall from section 2.3.3.1 that, under the AR(l)*AR(l) process, the matrix

A=A, ®A,,
where

(1 P pk!
-2
Al= p" 1 pr /’rpz
I prt pr 1
(1 p, Pt .. o
-2
and A [P 1 p o P2
\p/™ ph? ppc 1

for Ipc ,

The elements of the matrix Q" are now derived. First consider
(l—pfz)A?:(l-’-prz')IPz—prN prAPZ

P2

where N, and A, are nxn matrices, such that

W), = {1 if Ji-j|=

0 otherwise
and

a,), = {1 if (i,/)=(L1)or (nn)

0 otherwise.
It fOllOws that

(=AM, =(1- o, XL - p,), 0= p, )= P,)A)'s
and that

=-p)1,,'AM, = 1-p,){2+(p, -2X1-p,)}-
Sinnlarly

U=p1A31, =(1- p, (L= p.) (A= p)reees(1= £:)A)'s
and (1~ p1)1,' A1, = (- p.){2+(p - 2X1- P20}
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The elements of Q° can be obtained from

Q' =AT @A - (1,471, ) A7, 1L, A7 © (1, AL, ' AL, 1, AT

When Py»p, 25, there are at most 25 distinct elements of Q°. In order to

show which elements of Q" are equal, Q" is described in terms of the two

classes of matrices described in Definition 8.2 and Definition 8.3.

Definition 8.2
Define a Class 1 (n,n,U,,U,,U,,U,,Us,U,,U,) matrix to be an

™mn, X mn,, symmetric and centro-symmetric matrix of the form

for ny 2 5;

and (U‘ U,

Where U, U,,U;, U,, Uy, U, and U,, are n, x n,matrices for n, 21.
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[4

Definition 8.3

Define a Class II(n,u, ,u, ,u, ) matrix to be an #x n symmetric and centro-

symmetric matrix of the form

u 1y, U, u, | u)
Vo T I——'
U, ! Us Uy Uy ! Uy
u, ‘u, u u, 'u
R 3172 forn=3,
. ' . . ' .
B |
U, | U u U, ' U
_ZJ|__3___3 ______ "_J'__?.
\U 11U, U, Uy 1 4y

e
u U ’

where u,, u, and u, are scalars.

Under model IV and gls, Q" is aclass [ ( p,, p,,.W, ., W, W, , W, . W, W ,W,)

matrix, where ¢, is given in Definition 8.4 below. Let
Sl Y = Wi
Before defining the matrices, {/¥}, note the functions of the correlation

parameters given in Definition 8.4.

Definition 8.4
Let

- =(1_P:)(1“Prz)
and

S21={2+(p - 2X1-p, N} {2+(p, - 2X1-p, )}

=4+2(p, -2X1-p,. )+ 2p, -2X1-p,) +(p = 2X P, = 2X1- p. X1 - p,)

where ¢, >0 fori=12.
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821 FElements of £,Q
An element, w a ?

to 55, are defined in Definition 8.5. For p,,p, 25, W, ; € {5,555..525}.

Note that Spsee 8y > 0 and S175eee382s < 0.

Definition 8.5
Let

S =1-0=-pX1-p,)/ {55

S =1+ p) =1~ pX1-p,) 1{y5

3=+ p)-(1-p,Y’(1-p,) &5

Se=(1+ P2 X1+ p)=(1- p, V(1= p,)’ /S35
Ss==p,~(1=pX1=p,) 1{s;
Ss==p, —(1~p, X1-p,)’ 1$3;
$;==p,(1+ 1)~ (- p Y (1= p,) 135
Se=—p,(1+p)~(1-p. Y (A~ p,) /{35
S ==p,~(1-p,)'(1-p,)/¢,;
Si0==p, =(1= .Y (1= p, )33
Su==p.(1+p;)-(1-p.) (1= p,) /35
Su==p.(1+p))=-(1-p. Y- p,) 12
S3=p.p, (1= p.) (1= p,)" £33
Su=p.p, ~(1-p.)0=-p,) ¢35
Sis=p.p, ~(1-p.Y(1=p,)" 1435
Sis=p.p, (1= p,Y(U-p,Y /¢y
S=~(1-p.X1-p,)/¢,;
Sie=~(1-pX1-p,) /{5

Sis === p, X1-p, )1 ¢,

from the matrix ¢,Q" belongs to {s,,s,.,...,53,} , Where s
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S =~(1-p.)(1-p,)/¢,;
San=~(1-p.)(1-p,)/ ¢,
Sn=—(1-p)1-p,)/¢;
Sn=~(1~p,)(1-p,)/¢,;
Su=~(-p.Y(1-p,)1¢,;
Sis=~(1-p.Y’(1- p,)’ 1<,

S ==p, ~(1-p, X1~ p,)/ &3
S ==p.~(=p,X1-p,)/¢,;
S=p.p,—(l=p X1-p)/¢,:
S = PP, =(1-p.) (1~ p,) /Sy
S =p.P,~(-p, Y U-p,)/{;;
Sy ==p,(1+ p1)~ (1= p,Y’(1=p,) Iy -

i i S; §.
The elements of the matrices {W,} are now given in terms of the {s, }

The matrix Wy isaclassI(p,,1,w,,, W, W13, Wy 5, s Wa2s Wa 3, Wy 4 ) Matrix,
where

Y=,

Wip=s, for p,23;

Wia=s5, for P, 24,

w =S forp2=2;
b §, forp, 23

W2 =5, for p; =3;
Wis=ss for p,24;

w2,4 = sl9 fOI' p2 > 5 .
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The matrix W, isaclass I( p,,1,W, 5,115 Wip 425 W1 p435 W12, s W2pp20 W2 i3

W p+4) Matrix, where

Sy forp=p,=2

w. =
L+l )
o s, otherwise

Wipe2 =83 for p, 23,

S;g forp =p,=2
Wi, =985 forp 23 and p,=2;
Sy forp, 23

Waps2 =S for p, 235
Wapes =84 for p, >4,

Wi s =83 for p, 25.

The matrix W, is a class IL ( 2, W, 2,41 » Wi2py42-W2.2py42) MAtTIX, Where, for
b 24,

Wiap, el =520

Witpe2 =522,

w2,2p2+2 = 523 .

1 i matrix
The matrix W, is a class II (P2sWimtyps > Wik Waia-Dptd ) ,

where, for p, >3,
w‘-(h-l)p,ﬂ =817,
w‘v(Prl)pzn =83,

Waim-typez =519 -
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w w w

ptl2p, 2

The matrix W, is a class I (p,,1,w P2+Lpy43 2

Pl py+1 2 7 potl,pr 25

Wo2,p,425W 42,543 W, 42 544 ) MaAtrix, where, for p, 23,
wp2+l.p2+l =53,

W s pe2 =8, for p, 23;

W, t1.py43 =S4 for D, 24;

sy forp,=2

w 2
sy forp,23

Pl 2p, =

Wparper =54 for p, 23;
Wiz =Sg  for p, 24,

Wpsa.p44 =525 fOr p, 25,

The matrix W6 isaclassI (Pz slawpz+l,2p2+l ’wp2+1.2p2+2 sWo41,2p,43 ’wp2+l.3pz »
Yet22p,425Wp 022 pr#3°W 225,44 ) MALTIX, Where, for p, 2 4,

Wonapma = S0
Won2pe2 =85 for p, 23,
Wost2pe3 =8y for p, 24,

Wpsp, = sy for p, =2;
' sy, forp,23

Woapaa =8 for py 235

Wor22p,03 =81 for p, 24,

Wps22p,44 =Sy5 for p, 25,

Finally, , is a class II P2V a3pe1 o Wpya1. 35425 W py423ppe2 ) MALTIX, Where,
for p,>5,

Wy tl3pya1 = Sa;3

W i13p,02 = S245

wh+2.3p2+2 = 825.
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8.22  Optimality of the binary type
For a binary type to be optimal, all of the off-diagonal elements of Q" must be

non-positive. By considering the elements of W,, given in section 8.2.1, for

1=12,..7, the optimality region for the binary type is specified.

First consider Pe> P, 20. Under this assumption, the w, , (J; # J,;) which
can be positive (and the corresponding s, (i #1,2,3,4)) are:
wlva"z=S13=pcpr_(1-pc)2(l—pr)z/§2 for p; ‘>"3;

w = S23=pcpr—(1_pc)(l_pr)/C2 fOTP,=P;=2 .
P s = popo = (1= p.Y}A=p,)/ ¢, forp 23 and p, =2

wz’PZ+3=sl4=pcpr—(1_pc)2(1-pr)3/;2 for p224;
Whsiapsa =S5 = 0,0, —(1=p, )Y (1-p,)' 1§, for pyz4 and p, 23;
Wosiam =S =p.p,—(1—-p.Y1-p)/¢, for p24and p,=2;

wh"’z-zh‘” =56 =PcPr _(l_pc)s(l—pr)3/§2 fOr pl,pZ 24.

The following four cases, which include all valid values of p, and p, are
considered:
) p,=2;
i) p, = P, =3,
i) p, >4 and p,=3;
V) p,p,24.

When P, =2, there are three sub-cases that need to be examined:

i’) p1 = 2’
i") p = 3 .
im) pl >a .
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For cases (i") and (i"), s, <0 and s,, <0, respectively, are needed for the
binary type to be optimal. For case (@i"), both 5,5 <0 and 5., <0 are needed.
However, 5,9 < 834, S0 a sufficient condition for the optimality of the binary
typeis s,, <0. This gives exactly the conditions in Theorem 5.18 (Uddin &
Morgan, 1997a). For case ii), s,; < 0 is required. For case (iii), s, <0 is
sufficient, since s,, <s,,. For case (iv), the maximum of {53, 5,4, 5;55 516 } IS

5165 80 8,4 <0 is a sufficient condition for the optimality of the binary type.

Now assume that p, >0, p, <0. The w, , (Ji# J,) which can be positive
(and the corresponding s, (i #1,2,3,4)) are:
Wia=ss=~p,—(1-p,X1-p,) 1§, forp,23;
Wim =S =—p, ~(1-pX1-p,)/ ¢, for p,=2;
Wiy =ss==p, —(1-p,X1-p, ) /{, for p,24;
Wpitpr =87 ==p, (1+ p})=(1- p,)(1-p,)* ¢, for py,p, 23;
Wanap =S5 ==p,(1+ p))=(1- p.Y (- £}/ ¢,
for p 23 and p, =2;
Yosames =853 =—p,(1+ p})=(1- p,Y U= p,)' 1<,
for p23 and p, 2 4.
The sufficient conditions for the optimality of the binary type are:

S <0 for case (i");
53, S0 for cases (i") and (i),

S <0 for cases (ii), (iii) and (iv).
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For p, <0, p, 20, the w5, (Ji # J,) which can be positive (and the
Corresponding s, (i #1,2,3,4)) are:

Wi = {527 =-p, —(l—pCZ(I—p,)/Cz forp=p,=2,

Sy ==p.—(1-p.)"(1-p,)/ ¢, otherwise

Wipmsr =S, =—p.(1+ p2)-(1 -p) (- 2. /¢, for p, 23,

Wpsiapn =Si0==p, —(1-p, (1= p,)/§; for p24;

Wosapms =83 ==p,(1+ p2) - (1= p,Y'(1-p,)’ 14,

for py24 and p, 23.

The sufficient conditions for the optimality of the binary type are:

S5 S0 forcase (i');
Se <0 for case (i");
51050 for case (i");

s <0 for cases (ii), (iii) and (iv).

Finally, assume that Pes Pr<0. The w, , (J, # j,) which can be positive
are the w s listed above for when p. 20 and/or p, 20. Sufficient
conditions for the optimality of the binary type are:

S <0 and s,, <0 for case (i');

S <0 and s, <0 for cases (i") and (i"");

5550 and s, <0  for cases (ii), (iii) and (iv).

Figure 8.1 and Figure 8.2 show the optimality region for the binary type when
Ph=p;=4and p = D, =10, respectively. The curves corresponding to
5=0 for p,, p 20;
$,=0 for p, 20, p, <0;
$3=0 for p, <0, p,20;
§5s=0and s, =0 for p,, p, <O,

170



are the boundaries of the optimality region. Note that the curves given by
$s=0and s, = 0 intersectat p, =0 and p, ~ -0.0690 for p=p,=4,and

they intersect at P. =0and p, ~ -0.0101 for p, = p, =10. The curves given
by 5, =0 and 5, =0 intersect at p, =0 and p, » -0.0690 for p, =P =4,
andat p, =0 and p, ~ -0.0101 for p, = p, =10.

For p_ near 1, the binary design is optimal if p, is near 0. Similarly, for p,
near 1, the binary design is optimal if p, is near 0. If p, or p, are near—1,
the binary design is not optimal, except when both p, and p, are near to -1
for p, = P2 =2 (see Figure 6.2d).

Figure 8.1
For the AR(1)*AR(1) process under model IV and gls: optimality region for
binary type when p, = p, = 4.

b
1 -
Opﬁ‘f"ity rcg.ion
0.5 for bin /y design
O ~Jececnsnoccnanssannns
-0.5
-1 I ] I T TP
-1 -0.5 0 0.5 1
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Figure 8.2
For the AR(1)*AR(1) process under model IV and gls: optimality region for
binary type when p, = p, =10.

Pr
| S Optimrlity region
for binary design
0.5 -
O —f==ccvececerencnans .
-0.5 :
-1 ! T l ] T Pe
-1 -0.5 0 0.5 1

Notice that the size of the optimality region for the binary type is much
Smaller for p, = p, =10 than for p, = P, =4, with the binary type being
Optimal for 3 very small region when p,, p, <0 for p, = p, =10. For
Pes P, <0 the curves given by s, =0 and s, =0 intersect at

Pe = p, = -0.0717 and -0.0101 (to 4 decimal places) for p, = p, =4 and

bh=p, =10, respectively.

For blocks of size 2 x 2 and 3x2 the optimality conditions derived here are
Precisely the optimality conditions from Theorem 6.1 (in section 6.2.1) and in
Table 7.4 (in section 7.5.8), respectively. For other p, and p,, optimality
conditions are summarised in Theorem 8.1 to Theorem 8.3, Theorem 8.1

€xtends the results in Theorem 5.18 (Uddin & Morgan, 1997a) to negative
Correlations,
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Theorem 8.1
For blocks of size p,x 2 ( py24)and t 2 k treatments under model IV, gls

and an AR(1)*AR(1) process, a binary type design is optimal if and only if all
the following conditions hold:

5050 & p +(1-p)1-p,)/ ¢, 20,

$:<0 & p,+(1-p,X1-p,)/¢{, 20,

S0=0S (1-p,Y0-p)/ ¢ 20,0,

53250 & p 1+ p))+1-p, ) (-p,)/ ¢, 20, "
g:: g{;:x:ssj‘ size pyx3 (p,23)and t 2k treatments under model IV, gls
and an AR(1)* AR(1) process, a binary type design is optimal if and only if all
the following conditions hold:

5520 S p +(1-pX1-p,) 14, 20,
$:50 & p 1+ pH)+(1-p.)YU-p,) 1,20,
$209 p +(1-p)0-p)/ 20,

w20 & p 1+ p)+(1-p,)0-p,) 1,20,

530 (1-p,YU-p,) 15 2p.p, forp=3,

5550 & U-p.YU=-p) /¢, 2p.p, for p 24. L
g(l)lreglr:g::(;i size p,x p, (p,,p, = 4) and ¢ 2 k treatments under model IV,
glsand an AR(1)*AR(1) process, a binary type design is optimal if and only if
all the following conditions hold:

5520 p +(1-pX1-p,) /¢, 20,
5750 & p (14 p)+(1-p,)Y1-p,) {20,
$50. & p +1-p,)(1-p,)/¢, 20,
=0 & p A+pH+(1-p,)0-p,) 120,

51620 < (1-p,Y(U-p,) /¢, 2 0P, "
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For p; and p, not small, and |p,|,|p,| < 1.
S5 —p,—(~p)pp:);
Sy —p, (14 pH)-(1-p,)1A-p ) pP,):
So% =p.—(1=p)pp,);
Sum —p, (1+p)~U-p X1-p,) ApP;);
Sis® pp, —(1-p.) (1= p,) (p.P2).
It follows that for fixed correlation parameters, as p, and p, increase, the

optimality region for the binary type becomes smaller, as shown in Figure 8.1
and Figure 8.2. Also, when p, and p, are large, the binary type is optimal

only for (p,, p,) very close to (0, 0).

That the optimality region for the binary type becomes smaller as p, and p,

increase, is also shown by considering the optimality region for the binary

type when p, = p,. For p, = p,, the binary type is optimal when
PL = p, < py, where for p, = p,, p, and p, can be obtained by solving
(A-py)° =p} {n—-(p-2p, ¥

and (-p.) ==p{p = (p, - 2)p.},
Tespectively. For p, = P, =2,3,...,10, 50, 100, the values of p, and p, are
listed in Table 8. 1.

174



Table 8.1

pL and pU

(to 3 decimal places, except that exact values are given for p, =p, =2, and p,
and p; are given to 4 decimal places for p, = p, =50, 100).

b =P, PL Pu
2 -1 4
3 -0.155 0.219
4 -0.072 0.161
5 -0.043 0.139
6 -0.029 [0.123
7 -0.021 0.110
8 -0.016 0.099
9 -0.013 0.090
10 -0.010 0.083
50 -0.0004 {0.0192
100 -0.0001 §0.0098

For p, = P, not small, approximations for p,, and p, can be obtained by

Solving
(1-p,) = p,p, (8.1)
ad 1-p, =-plp, | (8.2)

fespectively. An approximate solution to the equation in (8.1) gives
Py =1/(p, +2),

and the solution to the equation in (8.2) gives

Py~ =1/pl -1).
These approximations for py and p, are reasonably close to the exact values
in Table 8.1 for P24 and p, 25, respectively (for p, =4, the
approximation for py, is 4 ~0.167, and for p, =5, the approximation for p,
1s~1/24 %0.042). For P24, p; <1/(p,+2) and p, >-1/p} —3). This
Means that p,, - P <1Ap, +2) + 1/(p? —3). Hence, as suggested by the
values in Table 8. 1, as p, = p, increases, the size of the optimality region for

the binary type decreases.
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8.3 Blocks of size p, x2

Uddin & Morgan (1997a) (see section 5.3.2) gave results for blocks of size

D1 %2 under the AR(1)*AR(1) process and gls. However, for models III and
IV, they only considered p,, p, =0. In this section, these results of Uddin &
Morgan (1997a) are extended for either p, or p, negative. Models IV and ITI
are considered, respectively, in sections 8.3.1 and 8.3.2. When both p, and
P, are negative, deriving optimality results is much more difficult, and so

attention is restricted here to p, =0 and p, <0, andto p, <0 and p, 20.

83.1 Model IV
Model IV is assumed in this section. For p. 20 and p, <0, optimality

results follow easily from an examination of the off-diagonal elements of Q"
which can be positive. This is described in section 8.3.1.1. In section 8.3.1.2,
the method used by Uddin & Morgan (1997a) to obtain optimal types for
Positive correlations is adapted here for p, <0 and p, 20.

8.3.1.1 When p.20and p, <0
Under the assumption that p, 20 and p, <0, only the elements

Wip, =Wi2 ==p, —(1-pX1-p,)/ ¢,
N4 W2y, =W3e==p, (14 P1)=(1=p.Y (1= )/, for p 23,
can be positive. Inclusion of the element w,, in ¢ . corresponds to non-
binary top and bottom (end) rows, and the inclusion of w; 4 in ¢

corresponds to the other (interior) rows being non-binary. The results in

chapter 6 considered p, =2, and hence attention is restricted to p, 23 here.
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Lemma 8.4
Wy, 2w, for p,20 and p, <0.

Proof
Note that

w3.4 —wl,Z = —prpc2 +(1—pc)(l—pr){l—(l—pc)z}/gz'

It follows that for p, 20 and p, <0, W34 2 W, ,, since

I-(1-p.) = p.(2-p.)20 and p,p} <0. "

Itis clear from Lemma 8.4 that w; 4 <0=>w,, <0, and hence w, , <0
(i-e. 55, < 0)is a sufficient condition for the optimality of the binary type (as

shown in section 8.2.2, cases (i) and (i"")). This means that non-binary
designs are optimal when wy, 20. It follows immediately that designs D8.1

and D8.2, described below, are then optimal for w,, <0 and w,, 20, and

W12 20(= w, , 2 0), respectively.

Definition 8.6 . .
Design D8.1 consists of blocks where the type has binary columns, binary end

TOWs and non-binary interior rows., Design D8.2 consists of blocks where the

type has binary columns and has all rows non-binary. -

For example, when p, =5, designs D8.1 and D8.2 have blocks of type

d e aa

aa bb

bb| and |cc|,

cC dd

fg ee
Tespectively.
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Now consider the following theorem.

Theorem 8.5
For blocks of size p, x2 (p, 23)and ¢ > k under model IV, gls and an

AR(1)*AR(1) process, design D8.1 is optimal, for p, 20 and p, <0, if
W, <0and w,, 20,

and design D8.2 is optimal if
w,20,

otherwise the binary design is optimal. "

As seen in the results in chapters 6 and 7 for the AR(1)*AR(1) process, when
P:20, p, <0 and p, =2 at most three types can be optimal, and as p,
increases and/or p, decreases the number of non-binary rows in the optimal
type increases. For D, =3 (see Figure 7.6) D8.2 (called a design of type 60 in

chapter 7) is optimal for most of the region under consideration, including for

all p. >0 when p, <—+. In general for P, 23, D8.2 is optimal for all
P: 20 when p, <~1/(2p, —1). Therefore, the size of the optimality region
for D8.2 increases as p, increases, and the size of the optimality regions for

the binary type and design D8.1 decreases.

83.1.2 when p.<0and p, 20
For p, <0 and P, 20, the elements
Wip, 01 =W and Wp s12p,41 = Wis for p, 24
€an be positive. The inclusion of the element w3 in ¢ corresponds to
column neighbours to the comer plots, and the inclusion of w; 5 in ¢_.

Corresponds to column neighbours for the other (interior) plots. Unlike in

section 8.3.1.1, optimality results cannot be easily obtained here by examining

the elements of Q" which can be positive. Instead, optimal designs are
identified by the method used by Uddin & Morgan (1997a) to obtain
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optimality results for p,, p, > 0. They made a close examination of diagonal

strings in a type (see Uddin & Morgan, 1997a, for further details). Here,

column strings, which are defined as a set of consecutive plots in a column
containing the same treatment, are examined. The column pattern is the list of
string lengths in a column, and a column-type (n,q, ,q, ) has n disjoint column
strings, where the lengths of the strings containing the end plots are ¢, and q,,
such that g, >¢g,. If there is only one column string, the column-type is (1, p, ,0).

For example, for p, =7, consider the type

(o]
=

which has disjoint columns of column-type (4,2,2), with column patterns
(2,2,1,2).

The C-matrix under model IV, is given in section 5.3.2.2 as equation (5.20). It
follows from this that

(€)= (1+ pY( X' X) - p2te(Rp )+ p. p, (N )= p, ti(NC)

b
_prtr(NR)—pczprn-(NlR)—{(l—pc)(l_pr)/cz}zlfl‘rfl ’

i=1
where R;, NP, N©, N® NF and V, are as defined in section 5.3.2.2.
Clearly tr(X" X) is the number of plots in the design, and tr(R;) is the
number of corner plots in a design. Hence, an upper bound for tr(C) is given

by tr(C)<2pb(l+ p?)-4bp? + H,

where

H ==p,x(N) = {(1- p, XL~ p)IEYE VY,

i=]
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with equality if
1) all the rows are binary (i.e. t( N® ) =tr(NF)=0);
i) there are no diagonal self-adjacencies (i.e. tr{ N°) = 0).
It is assumed that columns 1 and 2 contain disjoint sets of treatments, so that
(1) and (ii) are satisfied.

As well as assuming that all blocks are of the same type, it is assumed that

both columns are of the same column-type. This means that £ can be written
as

H =-2bH",
where

H' = p.tt(N)+{(1- p XU= £,) §:3V' Vs
and for any column # in any block i, tr((N% ) and V), = rz, + (1= p, )1, are
the contributions of that column to tr( N) and V;, respectively, and r;,, and
I are defined in section 5.3.2.2. Therefore, the optimal type can be found

by minimising H".

Given any column % in any block i, it is always possible to make the column
strings be composed of separate sets of treatments, without changing tr(N¢).
For example, consider the following two columns for p, =8 and ¢ =5, called

Cland C2, respectively:

and

B W W

VIR BWWNHE

-

L

Column C1 has two strings containing treatment 1, and C2 has disjoint sets of
strings. However, both C1 and C2 have tr(NS) =6.
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Given two columns with the same value for tr(N§ ), where only one of the

two columns is composed of disjoint sets of strings, the column with the

disjoint sets of strings will have a lower value for V,'V,, than the other
column. Therefore the column with the disjoint sets of strings has a lower
value for H*. For example, C1 has

Va'Vi =20+3(1- )+ 70~ p,)*}
and C2, which has disjoint sets of column strings, has a lower value for V'V,
of

Vth'V;h = 2{1 + (1_ pc) + 5(1 _pc)z} .
Hence, it is assumed that the column strings are composed of separate

treatment sets, and the column-type which minimises A" is the optimal

column-type.

A column-type (1,4, ,q, ) with column pattern (g, ,4,,2;.--st,_5,9; ) and g, =1
(ie. n>1) has
n—1
Va'Vip = (l-pc)z{(‘h _1)2 +(q, "1)2 +Zt12}
1=}
+2(1-p,Xa +a, - D)+2 for 7>1.
For n=1 (i.e. when q,=p, and g, =0), V,,'V;, = ¥¢3.
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For n>1, V,'V,, is minimised over all column-types (n, 4,9, ) by minimising

n-2

n-2
2.4 such that 2t =p —q,—q,. Let the minimum value of ¥,'V,, over all
=1 =1

column-types (n,4,,4, ) be denoted by w(n,g,,q,), then
w(n,q,,q,) = (1-.pc)2kql -1 +(q, - 1) + K p —q, —‘Izan'z)}
+2(1-p Xgq, +9,—-2)+2 forn>1,

where

y
#(x,y) =min >
i=t

v
for {1,,1, .1, } a set of y non-negative integers, such that > ¢, = x.
i=l

Uddin & Morgan (1997a) gave the value of 4(x,y) as

Mx,y) = x+(2x - y)int(ij - y{int2 (—{)}
y Y

For n=1, itis clear that w(1, p,,0)= $£2. For a column-type (n,q9,,9,),
t(N3) = 2(p, —n).

Therefore, the optimal type consists of two disjoint columns, both of column-
type (n,q,,q, ), which minimise

Ap =mp, +{(1- p, X1~ p,)/ {}w(n.9,,,).
Given (p,, p, » P, ), this is an integer programming problem that can easily be
solved on a computer. Similarly to Uddin & Morgan (1997a), this problem is
solved for p, =3,4,...,10,15,20 and p,=0.1,0.2,...,0.9, with p, =—p, .
The optimal column types are given in Table 8.2. Recall that for p, =3,
column-types (3,1,1), (2,2,1) and (1,3,0) correspond to types 117, 87 and 18,
Tespectively, in chapter 7 (see Figure 7.6).
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Table 8.2

For blocks of size p, x2 under the AR(1)*AR(1) process, model IV and gls:
optimal column-types for p, =—p,.

pr
P51 T 02 T03 ] 04 05 ] 061 07 ] 087 09
3|G.LD| (22.1) (1,3,0)
4{(4,1,1) (2,2,2) | (1,4,0)
51(51,1){(3,2,2) (2,3,2) | (1,5,0)
| 6] (322 (2,3,3) (1,6,0)
71(422)] (332) (24.3) (1,7,0)
8 (422)  [(3,3.3) (2,4,4) (1,8,0)
91(5.2,2) (3,3,3) (2,5,4) (1,9,0)
101(522)[(433)] (3.43) (2,5,5) (1,10,0)
151(7.3.2){(5,3.3)[(4.4.4)] (3,5.5) 28,7  (1,15,0)
20(7,3,3)|(5.4.4) 455 | G211 (2,10,10)  [(1,20,0)

Optimality conditions for the binary type have been given in section 8.2.2.

Hence, attention is restricted here to 1< n< p, —1. Optimality conditions for

the column-type (1, p, ,0) are derived next, for which the following Lemma,

from Uddin & Morgan (1997a, page 1199), is required.

Lemma 8.6 (Uddin & Morgan, 1997a)

For ZSnSpl,

w(1,p,,0) - w(n,qg,,q,) < {

(n-1)¢;
Hn-1D{] -4(1-p.)*} forpodd

with equality for n=2 and q, =int{3(p, +1)}.

for p, even

Let D8.3 be a design with blocks that have disjoint columns of column-type
(1,p,.,0). Thatis, D8.3 has blocks of type

ab
ab

ab
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Theorem 8.7
For blocks of size p, x2 (p, =2)and ¢ > k under model IV, gls and an

AR(1)*AR(1) process, design D8.3 is optimal, for p, <0 and p, 20, if
16p, +(1-p X1-p,)5, <O for p, even;

16pc +(]'—ch1—er2 _-4(1-pc)3(1_.pr)/§2 SO for pl Odd'
Proof

For a design of column-type (1, p, ,0), let H" be called H, , where
Hy = 2p -1p, +{(1- p.X1=p,)/ §3}0(1. p,,0).
For any other column-type, let H" be called H,, where
H;22(p -n)p, +{(1- p X1~ p,) & }w(n.q,,q,) for 2<n< p 1.
Column-type (1, p, ,0) is then optimal if
H{ <H;.
This is true if
H{ $2(p,=n)p, +{(1-p. X1~ p,)/ $1}w(n,41,4,),
Le. 2n~Dp, +{(1- p,X1- p,) /¢ Hw(1,p,0) - w(n,q,,4,)} SO.  (8.3)

By Lemma 8.6, the inequality in (8.3) is true for p, even when
2An=Np, +4(n-1X1- p X1~ p,)¢; <0,

ie. 16p, +(1-p,X1-p,)¢, <0,
and similarly for p, odd. -

Itis clear from Table 8.2 and from Theorem 8.7 that as p, decreases and/or
P, increases, the number of column self-adjacencies in the optimal type
increases. This is illustrated in Figure 7.6 for p, = 3, where type 18
corresponds to design D8.3. Note also that the size of the optimality region

for design D8.3 becomes smaller as p, increases.
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83.2 Model III
Assuming model I in this section, recall from Table 4.1 that B=1 a9, .

Only blocks of size p, x2 are considered here. By a careful examination of

the off-diagonal elements of Q" (given in section 8.3.2.1) some optimality
results are derived for p, >3 in section 8.3.2.2. For p, =3, the problem of

finding optimal types is completely solved for

p.l.1p,1<1. For p, 24,

optimality results are much more difficult, in general, to derive. However,

some results, which were fairly easily be obtained, are given.

8.3.21 Elements of {0’

Here the elements of Q' = A = A™'B(B'A"'B) ' B'A™" are derived. Recall

that A=A, ® A,, where A, and A, are defined in section 2.3.3.1. Consider
A'B=(A} @ A1, ®1,, )=A}1, ®AT.

If follows that

BAB (L, A, A
s0 then

(A B) - (L, A7, ) A,
Therefore,

N'BBA'BY BAY = (1,' A1, ) AL, AT @A
={201+ p,)/ £}, A7 O AL,
since 1,'A3'1,, = 4¢,(1- p,)(1- p2) =4, K1+ p,).
Note that (1+ p,)* A, A7 isaclass T (p,,1, (1= p,).(1- p,)?) matrix.
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Now consider
Q"= (A - 20+ p,) 14,300, A7 )@ A

This means that, for p, = 2 under model Il and gls, £,Q" isa

class1(p,,2,W,,W, W, ,W,,W,,W,,W,) matrix. As for model IV, let
CI{Q.}AJZ = Wikt

The 2x2 matrices {W,} are of class I 2Lw; oW, n ), such that
Wmn = = pw, ;, for j, odd.

The elements w, 5, for j, odd, are defined in Table 8.3.

Table 8.3
For blocks of size P, X2 under the AR(1)*AR(1) process, model III and gls:

element w, , of the matrix W, for j, odd (i=12,...,7).

i | (isJy) Wi
1 |(L,1) 1-2(-p,)/ ¢, >0
-p.=21-p)/ 5, <0 forp =2
2 | (1,3) ,
{—p,_.—2(l-—pc) /¢y for p, 23
3 1(L5) -2(1-p,)1¢, <0 for p, 24
4 |(L2p,-1) | —2(-p,)/¢, <0 for p, 23
5 1G3) A+ pH)-2(1-p,)* /¢, >0 for p, 23
6 |35 -p, =20-p, )15,  for p 24
71367 -2(1-p,)’ /¢, <0 for p, 25
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8.3.2.2 Optimality results
Optimality results are now obtained by considering the off-diagonal elements

of Q". The binary type is never optimal for model III, since w;,, >0 for

P, 20, otherwise w,,>0.

First consider p,,p, 20. Recall from section 5.3.2.2 that an optimal type

under model IV is optimal under model IIT if the treatment labels in the end
(interior) plots of the first column of the type are a permutation of the
treatment labels in the end (interior) plots of the second column. Theorem
3.20 in section 5.3.2.2.4 uses this relationship between models IIl and IV to
show that a design of type

is optimal for p,, p, >0 and p, evenif

16p.p, 2(1-p X1-p,),.

From the off-diagonal elements of Q" in Table 8.3, it is clear that

WiasWis, Wiz, , W36 >0 for p 24,
and also w,, > 0 for p, 2 5. Hence, itis difficult to determine optimal types
for D24,

However, for p, =3, which is not included in Theorem 5.20, only w, , and
Wi2p = W, ¢ are positive. It is assumed, until the end of Theorem 8.8, that
P, =3. Inclusion of the element w, , in ¢, 1€y corresponds to diagonal self-

adjacencies in the type, as illustrated in Figure 8.3a. Note that a pair of like
treatments, which are diagonal neighbours, contribute 2 to the total number of
diagonal self-adjacencies in a type.
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For a given type, the expression for ¢ 16+ 1s taken to be of the form

6
CiCor = 4wy, +2w, 5 + 22, X Wiy +2X34Ws 45 (8.4)
J=2

where x, , is the coefficient of 2w wie Ch # Jp)in $ie .. This means that
2x, 4 is the number of diagonal self-adjacencies in a type, where

%14 €{0,1,2,3,4}. The element w, ¢ in ¢ 1€+ corresponds to like treatments on
the corner plots (see Figure 8.3b), and X, 6 € {0,1,2}. For some (x,,,%4)
combinations, ¢, includes the negative off-diagonal elements w, ,, w;; and
W,s. The pairs of plots corresponding to these elements are also illustrated in

Figure 8.3.

Figure 8.3
Pairs of plots corresponding to Wi4s Wiss Wiz, W3 and w, ; for blocks of

size 3x 2.

—

a) w, b) w4 C) Wi, d) wy; €) wis
\ / r—t—y [ ] p [ J L

X 5K
/ \ Grguanl [ ] [ ® J

The different types corresponding to valid combinations of ( Xy, %) aTE

listed in Table 8.4. The type numbers are those used in chapter 7.

Expressions for ¢ follow immediately from the {x; , } terms, since
Gl = 4w, + 2w3 5 +2(x, Wy 4 + X)Wy 6) + 2(X; Wy 5 + X, 3Wy 3+ Xy sW5),
where 4w, + 2W;3 4 2(x Wy 4 + X W, 6) > 0 and X ,w,, + X 3w, 5 + X W 5 <0,

This means that the type with maximal

(x1-4wl.4 Xy W) 6) + (X W 5 + X)Wy 5+ X W, 5)

is the optimal type.
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Table 8.4

List of types for blocks of size 3x 2 under the AR(1)*AR(1) process ( p, 20),
model IIT and gls, with corresponding values of x,,,x, ¢, and of x,,,x, 3, and

x, s (see equation (8.4)), where Wi W6 >0 and w;,, w5, W5 <0.
When p, 20 (p, <0), inadmissible types are marked by + (-), and a type
which is better is given.

Type Better type when X X
1o, Type 0,20 | p, <0 Xia | X6 | %12 13 L5
ab|
17 cd 92 92 0 0 0 0 0
| |ef] :
oy
112 cd 103 103 0 1 0 0 0
* 1 |ea]
e
123 cd 92 t ol2]o|o0o]o
_ba-
e
1:0 ca 92 92 1{o]lo]o|o
N  de|
93 'ab-
ca 92 03¢ 1 {1}o]|o]o
+ | |bd !
53 'ba' 0
ac 36 t 103 ¢ 1 2 0 1
* | |ab]
b
2 | lba 03t 2]0flofoo
) | cd]
e
16 ab 37t 53¢l 211010
- lac
e
19 ab 20 t| 103+ 220 f21]0
N |ba
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Table 8.4 continued.

T
gge Type | Bettertypewhen | X4 | X165 | X12 | X13 | Xus
37 | [ab] | 20
+ ba or 36 # 3 0 0 0 1
[ ac | 2 @
7 | [2a]
a 92 # 103 3 1 1 1 1
+ | |ab] ©
b
20 | fha 19#l 4|00 o] 2
- |ab |
Notes for Table 8.4:

When p_ >0 : + since Wi > Wies

3 since w4 +wy 5 > w5+ W)

When p, <0 :

When P..p, 20, the two types 20 and 92 are admissible. This leads to the

following theorem. Figure 8.4 shows the optimality regions for these two

types.

Theorem 8.8
For blocks of size 3x 2 and ¢> 6 under model II, gls and an AR(1)*AR(1)

process, a design of type 20 is optimal for p,,p, 20 if

#since wy, +w 3+ W +W s +w <0
@ since type 20 is better than type 37 if w; , +w, 5 20,
otherwise type 92 is better than type 37.

T since w3 +w;, <0;

§ since w; , <w;¢;

#since w3 +w ¢ > W, +W;
@since wy o > w,, +w; 3 +3w, , + W

Wetw 520 & (1+p.X1+p,)22,

otherwise a design of type 92 is optimal.
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Figure 8.4

Optimality regions for blocks of size 3x 2 under the AR(1)*AR(1) process,
model I and gls.

Pr
1=
ab
0.5 kﬂ
103
O - .
-0.5 - [22]:
60 ,
-1 | T l TP,
-1 -0.5 0 0.5 1

Now assume that p, 20 and p, <0. Only w,, and w;, are positive for
P, 23. Hence, design D8.2 (defined in section 8.3.1.1) which has blocks of
type

QN O
QN TN

is optimal, giving the following theorem.
Theorem 8.9

For blocks of size p,x2 (p, 23)and ¢ k under model I1I, gls and an
AR(1)*AR(1) process, design D8.2 is optimal for p, 20 and p, <0. =
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For p,,p, <0, w,, and w; 4 are positive, and w, ; and w, , can be positive
for p,23. For p, >4, as well as w,, and w;,, w, s and w; ¢ can also be
positive. However, if w; ; <0 then w; 5 <0 since w5 <w,;, and so
Wi45W3 6 <0. This means thatif w;, <0, only w,, and w,, are positive, so
design D8.2 is optimal. The condition w, 3 £0 is equivalent to

1+(p, -2)p. - (p "3)/7: 20,

which can be written as
P. zikpl-z)-,/(p,’-S))/(pl-3) for p, 24. (8.5)
Note that if w; ; > 0 then w;, > 0, and w, 5 and w, ¢ can also be positive.

Hence, optimal types are difficult to determine when w320,

Theorem 8.10
For blocks of size p, x 2 ( p, 23)and t 2 k under model III, gls and an

AR(1)*AR(1) process, design D8.2 is optimal for p,,p, <0 if
w320 & 1+(p, -2)p, =(p, =3)p; 20. n

For p, =3, w30 < 1+ p, 20. This gives the following corollary.

Corollary 8.11
For blocks of size 3x2 and ¢ > 6 under model I, gls and an AR(1)*AR(1)
process, design D8.2 is optimal for all p,,p, <0 .

When P.,p, <0, itis clear from the inequality in (8.5) that as p, increases,

the size of the optimality region for D8.2 decreases.
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Finally, consider p, <0 and p, 20. Here Wyi6> Wiz, » Wig are positive for
Py 25,and w5, w,, Wy 5, W, 5 can be positive for p, 24. As for when
P.sp, 20, itis complicated to determine optimality conditions for general
p,. However, for p, =3, only w,, and w;, a = Wi are positive. Recall that
Wi3<0 < 1+p, >0, and so wy, > 0. From the list of types in Table 8.4, it

is clear that type 103 is optimal, since all other types are inadmissible.

Theorem 8.12
For blocks of size 3x 2 and ¢> 6 under model III, gls and an AR(1)*AR(1)
Process, a design of type 103 is optimal for p, <0 and p, 20. n

Figure 8.4 gives a plot of the optimality regions for p, =3. As mentioned in

the discussion of Uddin & Morgan (1997a) (see section 5.3.2.4), the optimal
type for small p_, p, > 0 has binary columns under model . For

PespP.20,as p, and/or p, increase the number of diagonal self-adjacencies
in the optimal type increases. For p, <0, the optimal type (type 60) has

binary columns and non-binary rows. Recall that for model IV (see Figure
1.6), type 60 is optimal for most of the region when p, <0.

8.4 Blocks of size 3x 3

In this section, optimal non-binary types are considered for blocks of size

3x3 under model IV and gls. It is difficult to obtain optimality conditions for
Pe>p. <0. However, when at least one of (p,, o, ) is positive, optimality
conditions have been derived here. As for the blocks of size 2x 2 considered
in chapter 6, the optimality regions for a type and its diagonal reflection are
Symmetric about p, = p,. This means that optimality results for p, <0 and

P, 20 follow immediately from the results for p, 20 and p, <0.
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The matrix Q" is a class I (3,3, W,,W,,W,, ;) matrix,

W, W, W

ie.

419.= W, Ws W[

W, W, W,

The matrices W,, W,, W, and W, are of the form:

Wi

W2

W2

W,

rW1,4
Wis

\M1,6

(w4,4

Was

\ V4,6

From section 8.2.2, the off-diagonal elements of ¢£,Q" that can be positive are

wl,2 ==pr —(1 _Pc)(l- pr)2 /4’2’

Wips =W =—p, ‘(I‘Pc)z(l‘Pr)/Cz,

W2 =Ws=p.0, —(1- Pc)z(l—P,)z /&5,

Wippe2 =Wy s = =P, (1+P3)‘(1“Pc)2(1"Pr)3 /¢,

and w

where

¢, =B-p)3-p,).

All other off-diagonal elements of {,Q" are negative.

patlpye2 = Wy s = =P, (1+Pc2) ‘(l'pc)s(l"pr)z /¢y

For a given type, the expression for ¢, (e is taken to be of the form

8
Gl = AW, 42wy, + 2w, + Wy +2D X W

+ 2("2,5”’2,5 F Xy 5Wy 3+ X, Wy s + X4 6Was ) ’

Jj=2

(8.6)

Where x I is the coefficient of 2w, , (Jj, # j,) in {ic ..
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841 When p_,p, >0

Itis assumed here that p,,p, 0. Recall from section 8.2.2 that the binary
type is optimal for blocks of size 3x 3 if Wy pe2 =W s SO (case (ii)). It
follows that if w, ; > 0, non-binary types are optimal. Inclusion of the element
W sinc o corresponds to diagonal self-adjacencies in the type, as illustrated

by the pairs of diagonally adjacent connected nodes in Figure 8.5a. If the
number of diagonal self-adjacencies is greater than or equal to eight (i.e. if

%5 24), then c_. must include at least one of the negative off-diagonal
elements: w,,, W,5» Wa. Inclusion of the element w,; in ¢ corresponds to

like treatments on the corner plots. Figure 8.5 illustrates the pairs of plots
corresponding to these elements. Note that x, 5 € {0,1,... 8}, x, ; € {0,1,3,6} and

Y285 X456 € {0,1}.

Figure 8.5
Pairs of plots corresponding to Wi, W3, W, and w, ¢ for blocks of
size 3x 3.

a) Wis b) w,, C) W,g d) w,s

When X3 =X, 3 =X, ¢ =0, the highest value of x,; that is possible is x, ; =3.

Let the corresponding type be called type 1. To ensure that all the types which
can be optimal are considered, Table 8.5 lists all the 80 combinations of

%524, X3, X, and x, 4. A type exists for only 19 of these 80

combinations (called valid combinations). These 19 types are given in Table
8.6.
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Vertical and horizontal reflections of a type will result in an equivalent type

with respect to ¢ - For some of the types listed in Table 8.6 other equivalent

types are also possible. For brevity, these are not all listed, however, they can

be easily obtained given the values of X 55 X35 X33 and x, . For example,
for type 3, which has (355 %135 %5 55 %4 6) = (4,1,0,0), the types in Figure 8.6

are equivalent. The three rows in Figure 8.6 show the different arrangements
of the treatment label a, such that x, ; = 1, and the two columns show the

arrangements of the treatment labels b and c.

Figure 8.6
For blocks of size 3x 3 under the AR(1)*AR(1) process, model IV and gls:
equivalent types to type 2.

aba [aba]
|bac]|, |cab],
dce [ dce |
[abd] [abd]
bac|, cab|,
leca | leca|
[abd] [abd]
bac|, cab].
lace] lace]
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Xag | Xa6

13

X5

X238 | X46

X3

X5

X8 | Xas

Ll il =1 I k=Y = ]

X3

11333366¥6

v indicates that the combination is valid (i.e. atype with the {x, ;} values

List of all combinations of x, € {4.5,....8}, x,; € {0.1,3,6} and x,4, x, ¢ € {0,1}
exists); X indicates that the combination is invalid.

(see equation (8.6)).

Table 8.5
Xis

55555555\5
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Table 8.6

List of valid types for blocks of size 3x 3 under the AR(1)*AR(1) process
(pc»p,20), model IV and gls, with corresponding values of x, s 24, x, 3,

X5 and x, , (see equation (8.6)). The binary type (type 0), and the type with
X5 =3, X3 =X,3 =X, =0 (type 1) are also included. Assume w, s 20 and

W3, W, 5,W, ¢ <0. For inadmissible types, type numbers are in brackets,

and a type which is better is given.

Type

no.

Type

Better
type(s)

X5

X3

X28

Xs6

(0)

fabc]
def
[ghi]

1

[abd]
bac
lecf)

@

bac]
ada
| eaf

10

(3)

[aba]
bac
| dce|

or
10

4)

[abc]
bab
lade]

&)

[abc]
bad
|abe

(6)

faba]l
bac
|ade]

)

faba]
cad
laea

®

[aca]
bab
|ada

®)

aba
cad
_aba_

10

[bac]
aba

| dae|
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Table 8.6 continued.
Type Better

no. Type type(s)
[aba]
(11) | |bac 10 5 3 0 0
lacd|

[abal
(12) | {bab 1m | s {3101
lacd

[aba]
(13) | |bac 11 513110
| abd |

aba]l
(14) | {bac 11 5 6 0 0
|ada |

[aba’
15 bab 6 1 1 1
| cbd |

aba]
(16) | |bac 15 6 | 6 | 0|0
jaca|

[aba]
(17) | |bab 16 | 66| 011
laca]

[aba]
(18) | |bac 16 6 | 6 1 0
| aba |

[aba]
19 bab 7 3 1 1
|abc]

faba]l
20 bab 8 6 1 1
laba|

Twenty-one types are listed in Table 8.6. The type with maximal

X1, sWis + X 3W) 3+ X gWy g + X, (W6

is the optimal type, under the assumption that w, s 20.
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Recall from section 8.2.1 that,
Wip =W =-(1-p X1~ p,)/{; <0;
Wipea =Wys = P p, =~ (1= p) (1= p,)' 135
Waim-tpper =W = —(1-p X1 p.Y1¢, <0;

wp2+l,2p2 =W =—(1—pc)3(1_pr)/62 <0.

Sixteen types are inadmissible when w, 5 > 0 (marked by brackets in Table
8.6). That type e€{0,2,4,5,6,7, 8,9, 12,13, 14, 17, 18} is inadmissible,
follows immediately from a comparison of (x, 5,X; 3, %5, X4 ) for type e and

the type which is better (given in Table 8.6). The inadmissibility of types 3,

11 and 16 follows from Lemma 8.13 and Lemma 8.14, as shown below.

Lemma 8.13
wz,s Z w1'3 for pr Z O .

Proof
Note that
Was=wis = (1= pX1- p)1=(1= )}/ &,

It fOHOWS that for P ZO’ w2,8 Zwl,S’ since {1—(1—pr)2} =pr(2_pr)2 0.

=
Lemma 8.14
w4'62W1_3 for P, =0.
Proof
The proof is similar to the proof for Lemma 8.13. n
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The inadmissibility of types 3, 11 and 16 is now shown. First consider type 3.
Type 1 is better than type 3 if

Wiz +w <0, (8.7)
and type 10 is better than type 3 if
Wis SW s+ W5+ W, (8.8)

When the inequality (8.7) does not hold (i.e. when w,; +w, 5 2 0), the
inequality (8.8) is true if

W3S Wy g+ W,
which clearly holds by Lemma 8.13 and Lemma 8.14. Hence, either type 1 or
type 10 is better than type 3.

The conditions for type 10 to be better than type 11, and for type 15 to be
better than type 16 are

s Sw e+ w,,
and 5wy, Sw,, + Wiss

respectively, which are clearly true by Lemma 8.13 and Lemma 8.14 (and

since w, ; < 0).

Therefore, only the five types 1, 10, 15, 19 and 20, remain to be considered.
Theorem 8.15 to Theorem 8.19 show that these five types are the only non-
binary types that can be optimal for p,,p, 20.

For each optimal type, e, Theorem 8.15 to Theorem 8.19 give sufficient
optimality conditions. These conditions correspond to type e being better
than the type number in parentheses, which is given after each condition. For
€xample, in Theorem 8.15, type € =1 is optimal when type 1 is better than
types 0 and 10. In terms of {w,,}, type 1 is better than types 0 and 10 when

Y1520 and 2w, 5 +w, 4 +w, s <0, respectively.

201



Theorem 8.15 to Theorem 8.19 can be proved by showing that under the
optimality conditions given, type e is better than the remaining admissible
types. A detailed proof is given for Theorem 8.15. The proofs for Theorem
8.16 to Theorem 8.19 follow in a similar way. A plot of the optimality regions
for p,,p, 20 is given as Figure 8.7.

Figure 8.7
For. blocks of size 3x 3 under the AR(1)*AR(1) process, model IV and gls:
optimality regions for p,,p, >0

P
1 -
20
0.5
0
0 .—l i { pc
0 0.5 1

KEY: 0 1 10 15 19 20

abc]labd][bac]{abal|[aba|[aba
def||bac||abal|bab]||bab||bab
ghi|{ecf{|{dael|cbd|{abc{{aba
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Theorem 8.15

For blocks of size 3x3 and ¢ > 9 treatments under model IV, gls and an
AR(1)*AR(1) process, a design of type 1 is optimal for p,,p, =0, when

Assume that type 1 is better than types 0 and 10. Table 8.7 gives the

w520 (type 0);
and 2w +w,;+w, <0 (type 10).
Proof

conditions for type 1 to be better than the three remaining admissible types. It

follows from Lemma 8.13 and Lemma 8.14 that when type 1 is better than

type 10,

The inequalities in Table 8.7 are clearly satisfied when w520,

W3 +w <0,

2wy s+ Wyg+W,6<0 and w; +w,;5<0.

Table 8.7

For blocks of size 3x3 under the AR(1)*AR(1) process, model IV and gls:

condition for type 1 to be better than type e.

e

Type 3 better than type e when:

15

3w1_5 tW 3t Wyg W6 S 0

19

4w,'5 +3w 3+ W g +W, 6 < 0

20

Swi s+ 6w 3t Wy g+W, ¢S 0

Theorem 8.16

For blocks of size 3x3 and ¢>9 treatments under model IV, gls and an
AR(1)*AR(1) process, a design of type 10 is optimal for p,,p, =0, when

and

2w s+ w, . +w,s20 (type D).

wis+w ;<0 (type 15).
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Theorem 8.17
For blocks of size 3x3 and ¢>9 treatments under model IV, gls and an

AR(1)*AR(1) process, a design of type 15 is optimal for p,, p, >0, when
wis+w ;20 (type 10)
and W s+2w, ;<0 (type 19). =

Theorem 8.18
For blocks of size 3x3 and ¢ 29 treatments under model IV, gls and an

AR(1)*AR(1) process, a design of type 19 is optimal for p,, p, = 0, when
wis+2w ;20 (type 15)
and Wi s +3w ;<0 (type 20). n

Theorem 8.19
For blocks of size 3x3 and ¢ > 9 treatments under model IV, gls and an

AR(1)*AR(1) process, a design of type 20 is optimal for P.»P, 20, when
W;s+3w, 320  (type 19). -

Although only two of the optimal types for p,,p, =0 have binary rows and
columns, none of the six optimal types have any row or column self-
adjacencies. As for the blocks of size 2x 2 and 3x2 under the AR(1)*AR(1)
Process in chapters 6 and 7, respectively (see Figure 6.2d and Figure 7.6,
respectively), it is clear from Figure 8.7 that for p,,p,20,as p, and p,
increase, the number of diagonal self-adjacencies in the optimal type
increases. Notice that, type 20, which has the maximal number of diagonal
self-adjacencies over the types which can be optimal, is optimal for more than

half of the region under consideration. When p, = p,,as p, = p, increases

from zero, the optimal type changes from:
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¢ type O (binary type) to type 1 at p, = 0.219,
* typeltotype 10 at p, ~ 0.274,

e typel0totype15at p, = 0.311,

* type 15totype 19 at p, ~ 0.371,

¢ type 19totype 20 at p, » 0.414.

842 When p, 20 and p, <0

Under the assumption that p, >0 and p, <0, only the off-diagonal elements
Wi, and w, ., =w,, can be positive. Note that w, s >w,,. Therefore the
following three cases need to be considered here:

a) Wes<0(>w,<0),

b) w,<0andw, >0,

©)  w,20(=>w,,>0).

Recall from section 8.2.2 that a sufficient condition for the binary type to be

optimal is w, ; <0 (case (ii)). As illustrated in Figure 8.8, inclusion of W, in
Cq* corresponds to row self-adjacencies in the top and bottom rows, and the
inclusion of w,; in ¢ .~ corresponds to row self-adjacencies in the middle

row. Here x,, €{0,l,....4} and x, 5 € {0,1,2}.

Figure 8.8
Pairs of plots corresponding to Wiz, Wes, W3 and w, ¢ for blocks of

size 3x3.

a) w, b) w,s C) W3 d) wye




For x,, >1, x, ; may be positive, and Figure 8.8c illustrates the pairs of plots
corresponding to the inclusion of the negative w;, in ¢ .. If the plots in both

the top and bottom rows contain the same treatment, i.e.

aaa
[bcd],
aaa

then x,, =4 and x_, = 6. However, if the plots in the top and bottom rows

have different treatments, i.e.

aaa
cdej,
[bbb]

then x, , is still equal to 4, but X, 3 is reduced to 2. The latter type is better,
and hence x, ; is taken to belong to {0,1,2}. If the middle row contains the

same treatment, i.e.

bcd
aaa|,
efg

then x,, =2 and x,¢ =1. The pair of plots corresponding to the inclusion of

the negative w, ¢ in c_, is illustrated in Figure 8.8d.

Similarly to section 8.4.1, the 18 different types with x,, €{0,L,....4},
%45 €{0,1,2} and the possible valid combinations of x, ; and x, ¢ are listed in

Table 8.8. As in section 8.4.1, equivalent types, to those listed in Table 8.8,

can easily be obtained for given values of (X, ,,X,s,% 3, %,¢). Recall from

section 8.2.1 that
W2 ==p, =(1-p )1 -p.) /&,
W2 = Wes ==p, 1+ p)) = (1= p.) A= p,)* 1 {3,
Wip, =W3 ==(1-p 1= p,) /¢, <0,

and Wort1,2p, = Wy = -(1- P¢)3(1° p.) ¢, <0.
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When w,, <0 and w, s 20, (case b) only types with x; , =0 need to be
considered, i.e. types 0, 21 and 22. Clearly, type 21 is better than type 0, so
only types 21 and 22 need to be compared, and the type with maximal

X4 sWys+X, (W,
is optimal. This gives Theorem 8.20 and Theorem 8.21. In the theorems
given in this section, as in section 8.4.1, the sufficient optimality conditions

for type e” correspond to type e  being better than the type number in

parentheses.

Theorem 8.20
For blocks of size 3x3 and ¢ > 9 treatments under model IV, gls and an

AR(1)*AR(1) process, a design of type 21 is optimal for p, 20 and p, <0

when w, <0 (type 27);

o520 (typeO);
and  w,,+ W6 S0 (type 22). L]
Theorem 8.21

For blocks of size 3x3 and ¢ >9 treatments under model IV, gls and an
AR(1)*AR(1) process, a design of type 22 is optimal for p, >0 and p, <0

when w, <0 (type28)
and Wes+w,s20 (type21). =
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Table 8.8
List of types for blocks of size 3x 3 under the AR(1)*AR(1) process, (p, 20,

P, <0), model IV and gls, with corresponding values of (x, ,, %, 5,X;3,%46)
(see equation (8.6)). Under the assumption that w,,,w,s 20 and w;,w, ¢ <0,
inadmissible types have type numbers in brackets, and a better type is given.

nge Type Bt;g:r X2 | Xos | Xz | Xa
abc’

(0) | |def 21 ol o] o] o
| ghii]
bed]

(1) 3ae 27 0] 10| 0O
| Tgh]
bed]

(22) a]a;a 28 0| 21011
| €TJ |
[aab]

(23) %dﬁ 27 11 o0oflol o
L Tgh]
[aac]

(24 bl%d 27 1 1 0 0
| €TQg
[aac]

(25) Lgbwtg 28 1 {201
e
faac]

(26) ggf 27 {2 0] 010
| DDg
[aad]

27 | |bbe 2 (1|00
ccf
[aad]

28 | |bbb 2 2|01
| cce]
[aaa]

(29 b1c:d 26 210/ 11]o0
erg
[aaa]

(30) | | bbc 27 2 1 1 0
| def |
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Table 8.8 continued.

T

r?cf. © Type Bt;;t:r X2 | Xas5 | %13 | Xae
[aaa]

3D bbb 28 2 2 1 1
| cde |
[aaa’

32 |lcde|| 33 | 30| 1] o0
| bbf
[aaa] 27

(33) | |bbd or 3 1 1 0
| cce] 36
[aaa]l 28

(G4) | |bbb or 3 2 1 1
_CCd_ 37
[aaa

(35 cde 36 4 0 2 0
bbb
[aaa]

36 bbd 4 1 2 0
| ccc
[aaa]

37 bbb 4 2 2 1
| ccc

Note: To avoid confusion with the types in Table 8.6, the types here are
numbered from 21 onwards, except for type 0, which is also in Table 8.6.

When w,, 20 (= w, s 2 0) (case c), the type with maximal
X1,2W10 + Xy sW, g + Xy Wy 3+ X Wa g

is optimal. From the 18 types listed in Table 8.8, only the four types, 27, 28,
36 and 37 need to be considered, since the other types are inadmissible. Type
33 is inadmissible since type 27 is better if w, , +w,; <0, otherwise type 36 is

better. The inadmissibility of type 34 can be shown similarly.
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Lemma 8.22 o
Wist+W, 2w ,+w; when p 20 and p, <0.

Proof
From the expressions for Wizs Wiss Was and Wes given earlier in this section,
(w4,5 + w4,5) - (Wl,z + W1,3) =
= p, P+ (- p 1= p)2=p)1-(1-p.) '}/ ¢,

It follows that when p_ 20 and p, <0, w5 +w, s 2 W,, +W,, since

1-(1-p,) = p,(2=p,) 20 for p,20,and - p,p? >0 for p,<0. m

Lemma 8.22 means that w, s +w, ¢ S0=> w,, +w; < 0, and so type 36
cannot be optimal since both w, s + w, ¢ <0 and w,, +w,; 20 are required

for type 36 to be better than types 37 and 27, respectively. Therefore, a
comparison of the three remaining types, 27, 28 and 37, leads to Theorem 8.23
to Theorem 8.25.

Theorem 8.23
For blocks of size 3x3 and # > 9 treatments under model IV, gls and an

AR(1)*AR(1) process, a design of type 27 is optimal for p, 20 and p, <0
when w,20 (type2l)

and  w,;+w, <0 (type28).

Proof

Type 27 is better than type 37 when 2w, +w, s + 2w, 3 + W, s <0, which is

clearly true when type 27 is better than type 28. This completes the proof.
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Theorem 8.24
For blocks of size 3x3 and ¢ > 9 treatments under model IV, gls and an

AR(1)*AR(1) process, a design of type 28 is optimal for p, 20 and p, <0
when w, 20 (type 22);

Wis+W, 620 (type 27);
and  w,+w;<0 (type37). n

Theorem 8.25
For blocks of size 3x3 and ¢ > 9 treatments under model IV, gls and an

AR(1)*AR(1) process, a design of type 37 is optimal for p, >0 and p, <0
when w, +w,20 (type 28). »

Figure 8.9 illustrates the optimality regions for types 0, 21, 22, 27, 28, and 37,
Wwhich all have binary columns. As for the blocks of size 2x 2 and 3x2
under the AR(1)*AR(1) process (see Figure 6.2d and Figure 7.6, respectively),
as p, increases and/or p, decreases, the number of row self-adjacencies in
the optimal type increases. Type 37, which has the maximum number of row
self-adjacencies, is the optimal type for approximately 85% of the region

under consideration.
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Figure 8.9

For blocks of size 3x 3 under the AR(1)*AR(1) process, model IV and gls:

optimality regions for p, 20 and p, <O0.

0 —

-0.3 -

-0.5

|

ghi

37
| T T
0 0.5 1
0 21 22 27 28 37
abc] [bcd] [becd][aad]|aad]||aaa
def||aae||aaa||bbe||bbb{|bbb
fgh||efg]|ccf||[cce]|ccc

I

Pe
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843 When p, <0 and p, >0

Optimality results for p, <0 and p, 20 follow immediately from the results,
in section 8.4.2 by interchanging p, and p, in the optimality conditions in
section 8.4.2 (i.e. swapping w;, and w,,;w, s and w, ;; w,c and w,,) and
interchanging types 21, 22, 27, 28 and 37 with types 21°, 22°, 27°, 28° and 37°,

which are given in Definition 8.7 below.

Definition 8.7
Let the types

bac] [bac] [abc] [abc abc
dae|, |dae|, |abc|, |abc]| and |abc],
fgh| |fag def] |dbe abc

be called types 21°, 22°, 27, 28’ and 37", respectively. |

844  When p_, p, <0

When p,, p, <0, the w;,, which can be positive are w;,, w4, w5, w5 and
W, s. Recall from section 7.5.8 (Figure 7.6) that for blocks of size 3x 2 under
the AR(1)*AR(1) process and model IV, 3 types can be optimal in each of the
regions specified by { p,, p,: p,,p, 20}, {p.,p,: P. 20, p,<0} and
{Pesp,: p,<0, p, 20}. For blocks of size 3x 3, double the number of types
(i.e. 6 types) can be optimal in each of these 3 regions. For p,, p, <0,

6 types can be optimal for blocks of size 3x 2. Therefore, it is likely that for
blocks of size 3x 3, more than 10 types could be optimal when p,, p, <0.

Hence, it is difficult to specify optimality regions for non-binary types here.
However, the binary type is optimal for p,, p, <0 when W, S0 and

W4 S0 (see Theorem 8.2). Figure 8.10 shows the optimality regions for all
the types which can be optimal when at least one of ( p,, p,) is positive, as

Wwell as the optimality region for the binary type for |p,|, |,| <1.
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Figure 8.10

Optimality regions for blocks of size 3x 3 under the AR(1)*AR(1) process,
model IV and gls.

P,
1 -
0.5 37
O -—
-0.5 ? 37
-1 | I I r P,
-1 -0.5 0 0.5 1

KEY: 0 20 37 r

abc]|labajlaaa]|abc
def||bab||bbb| |abc
ghij|aba||ccc||abc

? indicates the region for which optimal types are not known.

Note: the types corresponding to the optimality regions which
are not labelled can be seen in Figure 8.7 and Figure 8.9.

The plots of the optimality regions for blocks of size 2x2 and 3x 2, given as
Figure 6.2d and Figure 7.6, respectively, show that designs with the maximum
number of row self-adjacencies and binary columns, and designs with the
maximum number of column self-adjacencies and binary rows, can be optimal
for p,, p, <0. For blocks of size 3x2, a design of type 61

214



aa
bc|,

which has both row and column self-adjacencies, can also be optimal for
P..p, <0.

These results for blocks of size 2x 2 and 3x 2, suggest that for blocks of size
3x3, type 37 is likely to be optimal for part of the region given by
Pr < p, <0, and type 37’ is likely to be optimal for part of the region given

by p, < Pr <0. Also, types which have both row and column self-

adjacencies, such as

aad aae aab
bec|, |bcd| and |ceb],
bfc bcd cdd

(and diagonal reflections of these types) are likely to be optimal when
P:s p, <0,

8.5 Discussion

A brief summary of the optimality results obtained in this chapter is given
here.

Sufficient optimality conditions for the binary type, for blocks of size p, x p,
under model IV, have been derived in terms of ( p,, p, ). These show that for

large-sized blocks, the optimality region of the binary type is small. The
optimality of non-binary types is very difficult to ascertain for general ( DisP2)

and also for p,, p, <0. However, when at least one of ( p,, p,) is positive:
* the results of Uddin & Morgan (1997a) have been extended for p, =2;
* all the optimal types have been derived for p, = p, =3.
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Results obtained for the AR(1)* AR(1) process under model IV show that:
e for p,,p,20,as p, and/or p, increase,

the number of diagonal self-adjacencies in the optimal type increases;
* for p.20 and p, <0, as p, increases and/or p, decreases,

the number of row self-adjacencies in the optimal type increases;
* for p,<0and p, 20, as p, decreases and/or p, increases,

the number of column self-adjacencies in the optimal type increases.

Note that for p,, p, <0, optimal designs are likely to include those designs

with both row and column self-adjacencies, as well as designs with the

maximum number of row self-adjacencies and binary columns ( p, > p, ), and

designs with the maximum number of column self-adjacencies and binary
rows (p, < p,).

Under model III, some optimélity results for blocks of size p, x2 have been

obtained, and all the optimal types have been determined for blocks of size
3x2. Itis expected that some results could also easily be derived for general
(p,5p,) under model III.
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9 Background material for early generation
variety trial designs

Background material for statistical aspects of early generation variety trials is
provided in this chapter. Section 9.1 gives an introduction to early generation
variety trials. Model definitions and derivation of estimators and efficiency
Criteria are given in section 9.2. Algorithmic methods to obtain efficient
designs for early generation variety trials under spatial dependence are

discussed in section 9.3.

9.1 Introduction

For crops such as wheat, barley and sugar cane, plant breeders are continually
developing new varieties, which are submitted for extensive testing before
being used commercially (Patterson & Silvey, 1980). This testing includes a
selection programme, where top performing varieties are identified.
Performance is usually assessed with respect to several factors, such as yield,

grain quality, disease resistance and processing quality.

At the early stages of a selection programme, there are usually a large number
of new varieties to be tested — usually greater than 200 new varieties,
Sometimes many more. The field trials used to select the top performing new
varieties at the early stages are called early generation variety trials (EGVTs).
The top performers are then tested further in the later stages of the selection
Programme. The importance of accurately selecting the top performers from
an EGVT is highlighted by Cullis et al. (1998), who state that, “The accurate
estimation of the genetic merit of breeding lines in early stage variety trials is
crucial to the success of the entire breeding programme. Furthermore,

incorrect selection at this stage can also result in serious cost inefficiencies.”
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EGVTs are often called unreplicated trials, since the new varieties (also called
test varieties) are unreplicated at a given site, usually due to the limited
amount of seed available. Replicated standard varieties (also called check or
control varieties) are included for comparative purposes and to detect the
existence of trends. Variety trials in which the new varieties are replicated are

often called replicated variety trials.

Several papers advocating spatial analyses of variety trials are briefly
summarised in section 9.1.1. Some of the papers considered in section 9.1.1
include examples of designs for unreplicated trials. These designs, as well as

others, are considered in section 9.1.2.

9.1.1  Spatial analyses of variety trials

The likely association between neighbouring plots in agricultural field trials
has long been recognised. For example, regarding the layout of field trials,
Fisher (1960, chapter IV, part 29) wrote, “After choosing the area we usually
have no guidance beyond the widely veritable fact that patches in close
proximity are commonly more alike, as judged by the yield of crops, than
those which are further apart.” A commonly used approach (mainly for
replicated trials) to take account of this association between neighbouring
Plots has been the use of incomplete block designs with a valid randomisation
of treatments to plots. A method of analysis used for these designs is outlined
in Cochran & Cox (1957, chapter 9), and is called an incomplete block

analysis here.
Recently, the rapid increase in computing power has made it feasible to

analyse agricultural field experiments by taking the spatial dependence of

adjoining plots into account. Such analyses are called spatial analyses.
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Besag & Kempton (1986) considered several different applications where
neighbouring plot values can be used in the analysis of replicated agricultural
field experiments. They consider the use of spatial models based on first

differences to take account of fertility effects in replicated trials.

Gleeson & Cullis (1987) proposed a one-dimensional spatial analysis for
replicated field experiments with long narrow plots. They consider a model
for plot yield, which as well as having independent local errors, includes
random trend effects. For long narrow plots, the correlation of the yield of
adjacent plots is likely to be much higher within the direction of the shorter
side, and so it may be reasonable to model spatial correlation only in this

direction. For example, if p,, and p,, are the lag 1 correlations of plot

yields within-rows and within-columns, respectively, and the short side of the
plots is along the rows of the trial layout, as illustrated in Figure 9.1, then

Poy >> p,, is likely. Hence the within-row correlation is assumed to be
negligible (i.e. P =0 is modelled). Gleeson & Cullis (1987) modelled trend

effects to be from a one-dimensional process (a low-order ARIMA process),
and hence the analysis they proposed is described as a one-dimensional
analysis. They proposed the use of the residual maximum likelihood (REML)
method of Patterson & Thompson (1971) to estimate the parameters of the
model,

Figure 9.1
Layout of long thin plots with short side of plots within rows.

Cullis & Gleeson (1989) investigated the spatial analysis proposed by Gleeson
& Cullis (1987) on 1019 Australian replicated variety trials, and obtained an
average reduction of 42% in the variances of varietal yield differences,
Compared with conventional randomised complete block analyses. For
incomplete block analyses (see Cullis & Gleeson, 1989, for details) on 219 of
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these trials, the average reduction in variances was 33%, compared with the
complete block analyses. These results therefore provide evidence to support

the use of spatial analyses.

For the situation where plots are approximately square, substantial spatial
correlation may exist in both directions (rows and columns) and so the method
of Gleeson & Cullis (1987) was extended to a two-dimensional analysis by
Cullis & Gleeson (1991). Cullis & Gleeson (1991) modelled the random trend
effects to be from a separable process, with row and column correlation
structures taken as ARIMA processes (let this separable process be called an
ARIMA*ARIMA process).

To assess the benefits of taking account of two-dimensional spatial variation,
Kempton et al. (1994) studied a two-dimensional version of the spatial
analysis proposed by Besag & Kempton (1986) on 224 UK replicated cereal
trials. They demonstrated that a two-dimensional spatial analysis was

appreciably better than a one-dimensional spatial analysis.

As well as using the conventional complete block and incomplete block
analyses, Grondona et al. (1996) used the methods of Cullis & Gleeson (1987,
1991) to analyse 35 replicated cereal yield trials. The one-dimensional
analysis of Cullis & Gleeson (1987) was used when the random trend was
modelled as low-order ARIMA processes, and when the random trend was
modelled as two-dimensional ARIMA*ARIMA processes, the analysis
method of Cullis & Gleeson (1991) was used . The average estimated
standard error of the pairwise varietal yield differences was used to assess
model adequacy. It was shown that the spatial analyses were generally better
than the complete block and incomplete block analyses, and that modelling
two-dimensional spatial correlation was generally better than modelling one-
dimensional spatial correlation. Moreover, the AR(1)*AR(1) process

Outperformed the other processes considered in 21 of the 35 trials.
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Gilmour et al. (1997) identified three major components of spatial variation in
plot errors from field experiments, and extended the two-dimensional spatial
method of Cullis & Gleeson (1991) to account for them. These components
are:

* non-stationary, global variation across the field;

® stationary, local variation within the trial;

® extraneous variation, often induced by the experimental procedures.

Fora p, x p, array of plots, they propose the model
Z=Xg+Zg+£+Q, 9.1)
where

Y is the m-vector of plot data (usually yield);

z is avector of fixed effects (such as treatment effects);
@ is a vector of random effects (such as row and column effects);
X and Z are the design matrices corresponding to z and a, respectively;

7 is the vector of zero mean random errors;
¢ represents the spatial trend effect.

Henceforth, the spatial trend effect will be called the additional spatial
component. Large scale variation may be taken into account by differencing
of the data (as in, for example, Besag & Kempton, 1986). However, Gilmour
et al. (1997) point out that the need for differencing has been questioned by
several authors and that it can lead to the need for more complex modelling of
the variance structure for the plot errors. Therefore, they include, if deemed
appropriate, polynomial functions of the spatial co-ordinates in the matrix X as
an alternative to differencing. Smoothing splines may also be used by
including the appropriate terms in X and Z (see Gilmour et al., 1997, for
details). The additional spatial component is intended to take account of the

local variation, and models for ¢ are chosen from a class of separable

Processes. The restriction to separable processes is justified by the
“significant savings in computer time for the analysis of larger trials,”

resulting from the separability assumption. The AR(1)*AR(1) process is
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recommended as an initial model for & due to its “general superiority over the

incomplete block model.” Also, Gilmour et al. (1997) state that the
AR(1)*AR(1) process facilitates a more accurate assessment of the presence
of global and extraneous variation than the incomplete block model. Also,
they note that the extraneous variation is often well described by design

factors such as rows and columns.

Most of the literature on the spatial analysis of field trials employs a
frequentist analysis. However, Besag & Higdon (1999) have described a
Bayesian spatial methodology for the analysis of agricultural field trials.

Now consider EGVTs. Various methods for ranking the new varieties in
EGVTs have been used. Early methods calculated a fertility index, from the
yields of the control varieties, for every plot in the experiment. These indices
were used to adjust the yields of the new varieties for local variation in fertility
(see Cochran & Cox, 1957, section 9.51).

Methods that take spatial dependencies into account for EGVTs have been
investigated by Kempton (1984), Besag & Kempton (1986), Cullis et al.
(1989), and more recently by Cullis et al. (1998).

Cullis ez al. (1989) extended the method of Gleeson & Cullis (1987) to the
analysis of EGVTs with long narrow plots. Cullis et al. (1998) gave a method
for the spatial analysis of multi-environment EGVTs, that is EGVTs that are
carried out across several sites. They state that “it is now generally accepted
that spatial models of analysis provide more accurate and precise estimates of
genotype effects than either complete or incomplete blocks analysis.” They
Suggest that the AR(1)* AR(1) process be used as an initial model for the

additional spatial component.
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Federer (1998) proposed a method of analysis for designs called augmented
row-column designs, which could be used for unreplicated trials. He
considered a mixed effects model with random new variety effects and fixed
control variety effects, and included uncorrelated errors. Polynomial
regression values of row and column positions and their interactions were
used, and were considered to be random effects (see Federer, 1998, sections 8
and 9, for further details).

9.1.2  Designs for unreplicated trials
Assume here a two-dimensional layout of plots in a p, x p, array. Assume

further that there are ¢ control varieties and ¢ new varieties. Then the total

number of varietiesis v=c +¢. Let r, > 0 denote the number of times that
control variety i is replicated (i = 1,...,¢), and under equi-replication of the

control varieties, let r, =7 V i.

The experimental designs most frequently employed for EGVTs have had
replicated plots of control varieties, which are called check plots,
Systematically distributed among the unreplicated plots of new varieties, with

the new varieties randomly allocated to the non-check plots.

For unreplicated trials, Federer & Raghavarao (1975) give r xr augmented
designs (ADs) for a fixed effects model, which includes row and column
effects. These designs are constructed from Youden designs (see Federer &
Raghavarao, 1975, for details), and have each control variety occurring once
in each row and column. As an example, they consider the following
Tepresentation of a 7x 7 AD with ¢ =3 controls and ¢ = 28 test varieties.
The symbol o represents the new varieties, and 1, 2 and 3 represent the control
varieties. In practice, the rows and columns of this representation would be
randomised.
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Note that this design has a high proportion of check plots (check plots taking

up about 42% of the plots).

Federer & Raghavarao (1975) suggested four ways to assess the efficiency of
unreplicated designs, with respect to the average variance of all pairwise
comparisons

i) among control varieties,

ii) among new varieties,
iii) between control and new varieties,

iv) among all varieties.

Federer et al. (1975) proposed ADs for p, = p,, which have roughly half the
plots for the control varieties with the unreplicated new varieties neighboured
by 2, 3, or 4 control varieties. The ADs in Federer et al. (1975) were
Compared with respect to the average variance of all pairwise comparisons
among new varieties, although Federer et al. (1975) suggested that the average
variance of all pairwise comparisons between control and new varieties be

used in screening experiments.

Usually a high proportion of check plots would not be possible for EGVTs
since, typically, there are a large number of new varieties and a limited
number of plots that can be used. Therefore, the ADs proposed by Federer &
Raghavarao (1975) and Federer et al. (1975), which have a high proportion of
check plots, cannot usually be used in EGVTs. For this reason (and some
other reasons discussed by them), split-plot designs, called modified ADs
(MADs) were proposed by Lin & Poushinsky (1983) for square or nearly
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square plots. A description of these designs, and an outline of the proposed

method of analysis, is now given.

The MADs have 9 sub-plots within a whole-plot, arranged in a 3x 3 square.
The outer dimensions of the experimental area are therefore multiples of 3
times the sub-plot dimensions. The restriction to square or nearly square
sub-plots “ensures an approximately equal distance between a centre sub-plot
and its surrounding eight sub-plots”. The importance of this property is
discussed in Lin & Poushinsky (1983, section 5). For illustration purposes,

they consider designs with p, = p, =3c and r = c +2, where the centre of

each whole-plot has one of the ¢ control varieties allocated to it, according to a
¢xc Latin square design. Also, for each control variety, x, two whole-plots
are arbitrarily chosen from the ¢ whole-plots which already contain control
variety x, and control variety x is then arbitrarily allocated to one of the eight
remaining sub-plots (called outer sub-plots). This means that ¢ = 2c(4c—1).
For ¢=2 to ¢ =12, 22% to 13% of the plots are check plots. After allocating
the control varieties, the test varieties are allocated randomly to the remaining

sub-plots,

They give the following design with p, = p, =12, t =120, ¢=4 and r =6,

as an example, where 1 to 4 represent the control varieties.
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They assume the following model:
Viy=Trapn+ B+
with var(y,;) =0} + o}
and cov(y, ;, y; ;) = 0'; for j+J',
where
i, is the yield of the variety in whole-plot i and sub-plot j;
Tra,; 1S the fixed effect of the variety in whole-plot i and sub-plot j;
B, is the effect of whole-plot i ;

&, ; is the error.

The yields from the centre sub-plots provide an estimate of 0',23 + g2, and the

additional check plots allow o? to be estimated. The estimated yields for the

test varieties can then be adjusted for estimated row and column effects. Two
other methods of adjusting the estimated yields are also given (see Lin &
Poushinsky, 1983, for details). The new varieties corresponding to a
pre-assigned proportion of the best adjusted values are then selected for
further testing,

Since the above MADs are intended for approximately square plots, MADs
for long and narrow plots were given by Lin & Poushinsky (1985). These
MAD: have the whole-plots arranged as in the MADs of Lin & Poushinsky
(1983), but the sub-plots are laid out in rows within whole-plots. There are 5
sub-plots in each whole-plot, with the centre sub-plot being a check plot.

In separate work, Kempton (1984) considers the use of replicated standard
Varieties for unreplicated trials. He recommends that the frequency of check
Plots should be less than 1 in 5. This holds for the MADs of Lin &
Poushinsky (1983) for ¢ =3 to ¢ =12, but clearly not for the ADs of Federer
etal. (1975).
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A set of plots, <& is defined to be in a diagonal if for any plot x € &,
e either all the lag (1, 1), (2,2), (3, 3), ...

® orall thelag (1, -1), (2, -2), (3, -3), ...

neighbouring plots of x (see Figure 3.1 in section 3.1.1.4) are the plots
in & \{x}.

Kempton (1984) gives several examples of systematic designs, one of which
(from 1905) has the check plots in several diagonals with check plots three

plots apart in rows and columns, as in the following design which has p, =4,

P,=6,1t=16, c=1 and r =8.
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Recently, designs with the check plots in diagonals have been used in EGVTs
by New South Wales (NSW) Agriculture, Australia. Also, an example of an
EGVT, conducted by the Centro Internacional de Mejoramiento de Maiz y
Trigo (International Maize and Wheat Improvement Center), Mexico, was
considered by Federer (1998). The augmented row-column design in Federer
(1998), which had p, =15, p, =12, t=120, ¢ =2 and r =30, with one-third

of the plots being check plots, is given as:
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The check plots are three plots apart in rows and columns (i.e. in diagonals, as
in the above example design from Kempton, 1984) with 2 or 3 replicates of

each control variety appearing in each column and twice in each row. Each of
the diagonals containing the check plots has the same control variety allocated

to them, except for the check plots in the bottom two rows.

Another example design in Kempton (1984) and also in Besag & Kempton
(1986) has ¢ =2, with the control varieties allocated to every sixth row so that
the two control varieties alternate within the rows and columns, as in the

transpose of the following design.

1l{oe|ejejo|e]2Te[efof[e]o]1]e]e|jofe]e[2]{e|e|e|o|a|{1][e|[e[e
2(e|o]ejoeje J[ojejo (o0 |2]|0e|eio|e|o/]|ejejeje]e 2]e oo
1[o|o(e]e}]e 2ie|oef{o|elej]lejo|o|oje|d|o|{ojo|oje|]|e|es]|e
2|/*je|e{ofe lJje|o|o|eje|[2|0fe]|ejejeo|] e|e|eje|e|{2|0o]|e]e
Jjojele{e]e 2ie|ejojojeo|]jeo|o]|eje|[e|2]|e|e [eje|e|]|eje|fe

This type of design is recommended by Kempton (1984) for long and narrow
plots, and has been used for winter wheat trials at the Plant Breeding Institute,
Cambridge, UK. Besag & Kempton (1986) give an example of such a design,
that was used in an EGVT from 1980, where the plots are of size 1.5m x 4.5m,
and p, =52, p, =37, t=1560, c=2 and r =182. The short side of the plots
is within rows, as shown in Figure 9.1. The check plots take up about 19% of
the plots.

Cullis ez al. (1989) state that long narrow plots are generally used in cereal
testing programmes in Australia, and that a common layout has the control
varieties allocated at a given (within row) frequency with additional check
plots placed throughout the trial. They give an example of a NSW wheat trial
from 1988, with plots of size 15mx1.8m, and p, =10, p, =67, t =525,
¢c=7 and (r,...,n) =(121, 3, 4, 5, 4, 4, 4), with the long side of the plots
Within rows. Control variety 1 was allocated to the ten plots in each of the
columns 1, 7, 13, ..., 67, (every sixth plot within each row), and the remaining
Plots of this control variety and the other 6 control varieties were allocated

randomly over the trial. The check plots constitute about 22% of the plots.
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Another example of a systematic design is the following design, given by
Kempton & Talbot (1988), for roughly square plots with ¢ = 4.

1|ejefejefe 2|ejeje|eje13|{eje|ejo|/e|4io|ej0ojeo|e]|]!e|le|e
elejej3]efe|e|efeigq[e|jejeo|leje|j|jojeofajoeleid|{ejeje]a|e]|]3
4|ejejojoje]|1]efefefefe]2|e]|e]efo|e|3|e]|e|[e|e]e]glo]e]e
*l1®|®|2]¢|ejejeo|e[3|e{e|sje[jejg4|o|/efo|ale|[]le|e|a]jeje(?2
Jje|efefejoelglefo[ala|[e[g]o]efe|e]e[2]e]e]ofe[e|3[e]e]e

The check plots for this design are 6 plots apart in rows, and 2 plots apart in
columns, with every third column containing check plots. Note also that the
columns are binary.

Cullis et al, (1998) consider a multi-site EGVT from 1991 for wheat in South
Australia. This trial had plots of size 1.33mx3m, and p, =34, p, =12,
t=330, ¢ =6 and » =12, with the short side of the plots within rows. The
six control varieties were allocated at random to six plots within each column,
except for the first column, where they were allocated to the top six plots. A
“filler variety” was replicated six times in the bottom six plots of the last
column to “maintain a rectangular layout”, since ¢ +cr = 402 is less than

Pip, =408. The check plots constitute about 18% of the plots for this trial.

9.2 Models, estimators, predictors and criteria

Foran EGVT on a p, x p, array of plots, the general form of the models
assumed here is:

Z=lm#+X,z,+X,.z,.+Z,Z+Zcé+§+g 9.2)
and

var(y) =V,
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where
Y is the m-vector of observations in lexicographic order;
s ZasYs O, n and ¢ are control variety effects, new variety effects,
random row effects, random column effects, random error and additional
spatial component, respectively;
X, X,, Z, =1, ®l1, and Z =1, ®I, are the design matrices
corresponding to z,, z,, y and J, respectively;

Visa mxm positive definite matrix.

The model in (9.2) is a special case of the initial model given by Gilmour e al.
(1997), but here large scale variation is assumed to be adequately modelled by

var(y) =¥. Therefore polynomial functions of the spatial co-ordinates and

smoothing splines are not included.

Definition 9.1
Let

r=(z,,z,") and X=[X, ! X,] n

In this thesis, three special cases of the model in (9.2), which are defined in

Definition 9.2, are considered.

Definition 9.2
Models 1, 2 and 3 are special cases of the model in (9.2), such that,

* formodel 1: £ is a vector of fixed effects;

* formodel2: z,,and z, are vectors of fixed and random effects,

respectively;

* formodel 3: 7 is a vector of random effects. u

230



Definition 9.3
For model i (i =1,2,3) let

var(y) =V,
and let
Vi- = Vx’_l -, Vi_l lm)-l Vi-l‘,m Vi-l . n

For unreplicated trials, Federer & Raghavarao (1975), Lin & Poushinsky
(1983, 1985), Kempton (1984) and Besag & Kempton (1986) modelled both
control and new variety effects as fixed effects, as in model 1. In Cullis et al.
(1989) and Federer (1998), fixed control effects and random new variety
effects were modelled, as in model 2. For multi-environment EGVTs, Cullis
et al. (1998), modelled both control and new varieties as random effects, as in

model 3.

It is assumed that 9 = (7',8".¢',77')" has zero mean, and variance matrix

oll 0 0 0

Y m

0 o3I, 0 O
0 0 oA O
0 0 0 ol

n-m

var(@) =

Where A is the correlation matrix of the additional spatial component, which
is assumed to be from an AR(1)*AR(1) process, as recommended by
Grondona et al, (1996), Gilmour et al. (1997) and Cullis et al. (1998) (see
section 9.1.1).

Definition 9.4
Let p, and p, be the lag 1 within-row and within-column correlation
Parameters, respectively, for the AR(1)*AR(1) process. n

For long narrow plots, p, > p, will be likely.
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Definition 9.5
For ease of reference, let

2 2 -
‘P=(0',2, o2, C;s Op)-

For design purposes, it is necessary to assume that ¥ is known. It is also

assumed that V'is to be used in the estimation or prediction of z, and/or z,.

In practice, for data from a completed trial, estimation will usually use a fitted
variance structure. The design efficiency implications, discussed in chapters 9

to 11, will be approximately correct if the assumed V is close to the fitted 7.

9.2.1 Models 1, 2 and 3: Estimation and prediction
9.2.1.1 Model 1
Recall that for model 1, z,,and z, in equation (9.2) are fixed effects. Hence
EQ)=1lu+X,7,+X,1,,
and var(y) =Z, var(y)Z,' + Z, var(§)Z," + var(£) + var(r)
=0y, ®J,)+03(J, ®I,)+ciA+al,
=V,
Note that the rank of the mx (v+1) matrix [1,, | X, | X,]is v.

Definition 9.6
For model 1, let

2
var(yfl,jz ) = oy
Also, let

= A0
corr(yfl.jz ’yjl+81.]z"'8|) p8|-82 ’

where y h.J, 18 the yield of the plot in row j, and column j,. u
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Under model 1,
0'(1) O' +0'5 +0'; +0'
and for (g, g,) # (0,0),

1 2 2 &l 2,
Paoo = (‘%*%Prl)/"a)’

PSIL, (0'5 "'O';P'gz') T
and pg)g = agp’g‘[pl“]/a(zl) .
For illustrative purposes, consider an unreplicated design with p, = 2, py =3,
t=2and c=r=2. Undermodel 1 with ¥ =(},%, %, P and (p,,p,) =4, ),
oy =15/8 =1.875;
Pio =11/75 = 0.147; pf =31/375 ~ 0.083;  pf = 16/25 =0.64;

Pl =6/125=0.048; p) = 6/625 = 0.010.

The gls estimator (see section 2.4) of  is

E=C X'y, (9.3)
where C, = X" V. X . It follows from (9.3) that, if ¢'z is an estimable
contrast, var(c'z) = ¢'Cy¢. Equivalently, £ can be taken as C; X'y,

where C,, = X'V X is of rank v, and var(f) = C.

9.21.2 Model 2
Now consider model 2, where z, in equation (9.2) is a vector of fixed effects,
and z,, is a vector of random effects, such that (@',z,') has zero mean and
variance matrix
var@) 0
0 o,G,)
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This means that
EQ)=lu+X,z,,
and var(y) =¢lX,G X, +V, = V,.
The rank of the mx (¢ +1) matrix [1,, | X,]is c+1.

Under model 2 with G, =1,, coV( ¥, .+ ¥} 452,12+, fOF (81,8,) #(0,0) is the
same as in model 1, but var(y, , ) depends on the variety (new or control)
allocated to the plot in row j; and column j,. Hence, the dependence process
given by ¥, is not stationary. It is easy to show that when the (j,, j,)™ plot
contains a new variety,

va'r(yjhfz ) = 0'3 + 0'(21) = 0.(22.")’
and when the (j,, Js )® plot contains a standard (control) variety,

var(y;, ;) = 04y = (-

(2,nn) s s
Let pxn»xz * pg:;z) and pg.gz) denote corr( y/l-h ’yfl +82,J2+81 ) for
(81,8;) # (0,0) under model 2 when the (j;, j,)" and (j, + g, j, + & )" plots
® both contain new varieties
* both contain control varieties
¢ contain a new and control variety,
respectively. Then, for G, =1,, (g,,g,) #(0,0), and x,,x, € {n,s},

Quxp) _ .
Pgo ® = (O’rz + ‘7:2 Plrg")/ (0'(2;.)"(2.::1))’

(2;.:;)__( 2, 2 !xl)( )
Pog,  =\Ts+0:p:" J\CamOamm)s

Quaxy) _ 2 g !gl( )
and Pag, =00, P [\CamCam)

Consider an unreplicated design with p, =2, p, =3, t=2 and c=r =2
under model 2 with ¥ =(4, }, §, §), (p,,p.) =, $) and 52 = 4. Here
Oty =19/8=2375 and op, =15/8=1.875,
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and for the design

111
212

some of the correlations are
corr(yy 4, ¥12) = Pl(,%’m) =~ 0.130;

corr(y, 1, ¥2,) = plg™ =11/95 ~ 0.116;

corr(y,1,¥,,) = pir =16/25 = 0.64;

COrr(yl’z,yz,z) = pé,z{"’ s 0.569;
comr(y, 5, ¥,3) = p3™ = 18/475 =~ 0.038.

Note that the correlations of pairs of plots, which are the same lag apart, can
be different.

The BLUE of the estimable contrast ¢,'z, is ¢,'z,, where

L =X, X,)'X,'V; y. 9.9
The best linear unbiased predictor (BLUP) (see section 2.4.5) of ¢,'z, is
¢,'T,, where

T,=0,G,X,'V, (y - X,1,). (9.5)
A derivation of BLUPs is given by Searle et al. (1992, section 7.4). This

derivation gives

(2, =X,V X,,) " X,,'V5 'y, (which s the gls estimator)
where X, =[1, | X,], and 7, as

T,= U:Gan'Vz-l(X . O (ﬁ,is')')-
This derivation is shown in Appendix A3.1 to give the same £, and 7, as in

(9.4) and (9.5).
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Henderson (1975) also considered best linear unbiased prediction and showed

that
]
. NP AN
z, =C(z’)(/\,"’,)V1‘z,
7, !
where
X0, VX, '{_'K__liY_ _______ 9.6)
@= 3('717'-")'(" | X,V X, +0,°G;' )

Equivalently, in terms of ¥;",

7 X'
L% ey, 9.7)
(zn) (X) 12
where
c (XWX XWX, ) ©.8)
P\XVX, X,V X, 402G

Definition 9.7
Let C; (for i=1) and C;* (for i =2,3) be partitioned as

(9_"1’_ '_C_"i"_’J .

It is shown in Appendix A3.2 that
=0, mx,), Cm=C=-02CX, 'V, X,G,

and
C™ =6?(G, - 02G,X,'V; X,G, + 0°G,X,'V; X,CS)X,'V; X,G,).
In Appendix A3.3 it is shown that

var(£,)=C{®, var(f,-z,)=mse(t,)=C",

and cov(£,, 7, -z,) = C§™.

236



9.2.1.3 Model 3

Now consider model 3. Here both z, and z,, in equation (9.2) are vectors of
random effects, such that (',z,',z,")' has zero mean and variance matrix

var(@) 0 0
0 oG o
0 0 oG,

Hence,

EQ)=Lu ad var(p)=o;X,GX,' +V, =7V,.

It can be shown, similarly to model 2, that the BLUP of ¢'z is ¢'T , where
I=G'X'Vy,

C, = X'V X + G (of full rank),

2
and G= o,G, 0 .
0 3G,

The inverse of C, can be given as
Cl=G- GX'V, XG,

and  var(7 - r) = mse(7) = C; .

Cullis ef al. (1989) state that “for most EGVTS the test lines are either
8enetically independent or there is insufficient knowledge of the pedigrees.”
Also, Cullis ef al. (1998) assume that the random control variety effects have
the same distribution as the random test treatment effects. Therefore G, = I,

and G, = I, are assumed henceforth, unless otherwise stated. Note that

2 . . .
o, =0} is called the genetic variance.
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Under model 3, the dependence process given by ¥, is not stationary. Let
p =1 if the plots
pg:&; denote corr(y; , ., ., g2.J,+5, ) for model 3, where u p
with row and column co-ordinates ( j,, j,) and (j, + g, , /, + g,) both contain
the same control variety, and u =0 otherwise. Then for (g,,g,) #(0,0),
2,
o =luot vl +atpll oty
2,
Posy = (""3 +o5+o}p )/ JOR
u lg2) 2
md p2) = (o +otaflp ot
where

2 2 2
var(y; ;)= 0, +0g =0

Consider an unreplicated design with p, =2, p, =3,¢t=2and c=r=2
2 _
under model 3 with ¥ =4, %, 4, 1), (0,.0.) =&, $) and o2 = 4. Here
oa) =19/8=2.375,

and for the design

1]t
2{2]e

some of the correlations are

corr(y,, 31,) = pla =11/95 = 0.116;

corr(y,,,y,,) = plyP =31/95 ~ 0.326;

COrr( Yy, ¥,,) = COM( ¥,5, ¥22) = P& =48/95 = 0.505;
corm(y, 5, ¥,5) = pOP =118/475 =~ 0.248.

9.22  Efficiency criteria

The aim of EGVTs is to select good new varieties for further testing, Recall
that Lin & Poushinsky (1983) proposed that the estimated yields for the new
varieties be adjusted, and then the new varieties corresponding to a

Pre-assigned proportion of the best adjusted values be selected for further
testing,
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At NSW Agriculture, current practice is to model the new variety effects as
random effects (Cullis et al., 1998), and to fit a spatial model for the
dependence using software called ASREML (Gilmour ef al., 1995). Then the
fitted dependence structure is used to obtain predictors of the new variety
effects. These new variety effects are ranked, and approximately the best one
third (Cullis er al., 1998) of the new varieties are selected for further

evaluation.

There is no commonly agreed simple criterion for comparing designs for
unreplicated trials, where the aim is to select the best new varieties for further
testing, It is assumed here that only the yield will be used to determine the
performance of a new variety. In practice, however, other factors, such as
disease resistance and grain quality (for cereals), are also likely to be
considered.

The A, -, A, -, A, - and A-values, defined in Definition 9.8 (given below)

are the average variance of all pairwise comparisons among control varieties,
among new varieties, between control and new varieties, and among all
varieties, respectively. Recall from section 9.1.2 that these values correspond
to the four ways to assess the efficiency of unreplicated designs that were
proposed by Federer & Raghavarao (1975). Also, recall that Federer ez al.

(1975) suggest that A, -values be used in screening experiments.
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Definition 9.8 '
Given that C;, C;' and C;' are partitioned as in Definition 9.7, the following

values are defined for model i :
A, -value = 2(c—l)"{tr(C,"")) - c'llc'Cf”)lc} ;
A, ~value = 2(t— 1! tr(C™) - £1,C™1, };
A, -value = (cty { tr(C) + ctr(C™) = 21,'CEM1, )

s sn (ss) ! ~(sm)
A-valye = 2(v—1)-‘{u(§1(-)-4:5'(--)) - v"1,'(§1--19--)1v}.

The expressions for the A, -, A, - and A-values given in Definition 9.8

follow from the expression in (2.21) in section 2.5.2, when D~ in (2.21) is

replaced by

e | com
(s5) (nn) Bt AU Gt S
Ci s Ci and (C,(m) : C‘(nn)

respectively.

Note that another way to assess the efficiency of unreplicated designs,
Suggested by Dourleijn (1993), is with respect to the average pairwise variance

between the new varieties and the average of the control varieties.

The four values in Definition 9.8 are linearly related:
V(v-1) (A-value) = 2c1( A, -value) + #(t = 1) (A,, -value) + c(c ~1) (A, -value).
This means that for ¢ small and ¢ large, the A-and A__-values will be highly

correlated.

It is shown in chapter 10 that the A-, A,,- and A, - values correlate well with
the probability of selecting high yielding varieties in unreplicated trials.
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9.3 Algorithms to obtain efficient EGVTs

As mentioned in chapter 1, attention is restricted in this thesis to the allocation
of treatments to plots. For EGVTS, it is sufficient to consider the allocation of
control varieties to the plots, with the new varieties being allocated randomly

to the remaining plots.

There has been little work on the design of efficient EGVTs for spatial
models, such as the model assumed by Gilmour et al. (1997). Eccleston &
Chan (1998) demonstrated the use of a hybrid simulated annealing algorithm
(due to Martin & Eccleston, 1997), and a tabu search (see section 3.3)

algorithm to find A, -efficient designs on a small example of an unreplicated

trial, given that the variance structure is fully specified. The Martin &
Eccleston (1997) algorithm is used here in chapters 10 and 11. The outline of
a general tabu search algorithm in section 3.3, describes three memory
functions. However, the tabu search algorithm of Eccleston & Chan (1998) is
a simpler implementation with only one memory function, which corresponds

to a tabu list of designs deemed to be efficient as the search progresses.

Both the simulated annealing and tabu search algorithms take a random design
as the starting design. In general, neighbours of a design are obtained by
randomly interchanging two treatments (a new variety with a control variety,
Or a control variety with a different control variety). A series of treatment
interchanges from the starting design leads to the final design at the
completion of one run of the algorithm. Assuming that the algorithms are
allowed to consider a fixed number of designs, they can be set up so that,
either

many designs are considered in one run (or a few runs)
or few designs are considered in each run, but many runs are carried out.
Experimentation with the algorithms suggests that the latter approach, with
multiple runs, is more likely to yield better designs.
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Building from a very small expository example of an unreplicated design in
Martin & Eccleston (1997), Eccleston & Chan (1998) considered unreplicated
designs for a 10x 5 array with ¢ =2, r =5 and ¢ =40, under model 1 with

¥ =(0,0,1,0)and (p,,p.) =, 3). Using the simulated annealing and tabu
search algorithms, the best design given for this example, by Eccleston &
Chan (1998), with respect to the A, -value (not, as stated, the A-value), is

([ BR N JENE BN N IR AN RN )
(BN AR AR BN AN N SIN RN )

ejlojoelv|olo]|o|o|me
sjlond|o|o|o|m|ojoie
[ejoelmio|o]|ora|o]e

Its A,, -value is 0.8497, although a slightly better design, with A -value =
0.8495 is given as case 4 in Appendix A3.5. Eccleston & Chan (1998) also
considered the following design, which has the check plots systematically
arranged in two diagonals, with the number of self-diagonal adjacencies
maximised.

(AR R IR ER AR R RIS I B )

ojoleo|ojkd|o 0|00 |m
ojoejoiv|o|o|o|oim|e
oidjo|o]oejoj]|0|e]e
Njejo|o|ojmjo]ojo]le

This design has A, -value =0.9231. The A, -efficiency for this design
(With respect to the A,, -value for the best design found) is 0.920. The design

Wwith the same check plots as in the previous design but with no self diagonal
adjacencies (i.e. with the control varieties alternating in the diagonals) was
found to have a better A, -value =0.8714, which has A -efficiency of
0.975.
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9.3.1 Speeding up the search algorithms

For each design considered in an algorithmic search (such as by using the
simulated annealing and tabu search algorithms described in Eccleston &
Chan, 1998), the A-value, under model 1, can be calculated by obtaining a
generalised inverse of C, (or the inverse of C,,). For model i (i = 2,3), the
A-value can be determined by calculating the inverse of C, under model
i=23. This can be very time consuming since C, (i=1,2,3), a vxv matrix,
is usually very large for EGVTs. Hence, the search for good designs can be

very slow. Methods to speed up this search process are now given.

First consider model 1. The gls estimate of 7, given in section 9.2, involves a
generalised inverse of C, or equivalently the inverse of C,,. For simplicity
= Cﬂ,lX ! Vl'l y is considered here. The elements of y are re-ordered such
that

P.}.) = (Zs ’Zu ) = -m?

where P is a mx m permutation matrix, and y, and y are vectors of

responses for the plots with control and new varieties, respectively. The
treatment design matrix is also re-arranged corresponding to the ordering in

Y- This gives

|
PX = X(l) = :X_"i..}-..o_- ,
0 | X
where X, and X . are the control variety and new variety design matrices

corresponding to y and y , respectively. It is assumed that X, =1, without

loss of generality, since the ordering of the new varieties in the plots does not
affect the estimation or variance of contrasts. Also, var(_z) = ¥, is re-arranged

as
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. VJJ I VJ’I
var(y(l)) =PVP =V, = f’“' 7ol

745 ! p(sm
s (1122,

Then
Cu=Xo'VnXe and £=C X'V o Yo

Let C! be partltloned as in Definition 9.7, i.e.

(s5) | (sn)
Ga = (‘Cmr :'qa:))
Ca . Ca

By applying the formula (A1.23) in Appendix A1.5 for the inverse of a
partitioned matrix to

[X e x, .X SVeX J (X X, | X, 'V“"’}
Co=|2el o ifw ' _“m :

it follows that

cw =,

Cl(-"") = _M-IX vV(.m)(V(nn) )—l,
and Cl("") = (V("n))-l + (V(nn))—l y(m X, M X"'V("')(V(""))'l,
where

M=Xx v{V(u) — ylm(pomyt V"“’} X,,.

33

By applying the formula (A1.23) from Appendix A1.5 to ¥ it follows that

v, = {V(‘" - V""’(V‘""’)"V"“’}", (9.9)
Vi ==V, Ve pmyt, (5.10)
V’m = (V(mv))-l + (V(nn))-l V('")V”V(’")(V(""))'l.
By the equation in (9.10):
V., =™y 4 v vy . .11)

ns’ 38 " sn°
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Hence,
(s5) -1 | 1 .
Cla =M~ = (Xss V:s Xu)— (by (99))’
Cl(;") =M71X o 'V"Vm (by (9.10));

Ca” =V = ViV, + VI X MTX, VY,
(by (9.10) and (9.11)).
This means that for each design considered in an algorithmic search, C;} can
be obtained by inverting the usually much smaller matrices ¥,, and M, which
are of size (m~t)x(m—1t) and cxc, respectively. This derivation is related

to Method (a) in Federer & Raghavarao (1975).

Although the gls estimates of 7, and t, are not needed for the search
algorithms, they can be obtained by using V' and M™":
Z, = M'IX”'VS;IZ,
and £, =X,y -V, - Xt}
For the simulations in chapter 10 under model 1, the gls estimates of z, and

£, were obtained using these expressions.

For model 2, ¥, depends on the allocation of control and new varieties to the
plots (i.e. on X, ). This means that a search algorithm, which inverts the
matrix ¥, for each design considered, is likely to be slow for m large. A

method to speed up the search algorithm, similar to that given in the Appendix
of Cullis et al. (1998) is now described for G, = 1,.
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Let Ube the mx (m—t) check-plot incidence matrix, such that (U), ;, =1 if

plot /, is the ," check plot, and (U),,1, =0 otherwise. The matrices UU"

and X, X,' are related:

X,X,'=1,-UU".

Note that

0
U=P(I"(')") and X, =P(

It

fora mxm permutation matrix P.

1]+]1

2(2]-

whichhas p, =2, p,=3,t=2 and c=r=2. Ithas

(1
0
0
0
0

L0

sothat UU' and X, X,' are diagonal matrices with diagonals (1,0,1,1,1,0)

S ©C O ~ O O

S O =~ O O© O

0)
0
0
0
1

0)

and X, =

and (0,1,0,0,0,1), respectively.

Also, let

Vi=V+oll,.
Then 7, can be written as

V=¥, + XX, - 1,) = V; - GIUU"
Applying formula (A1.24) from Appendix A1.5 to ¥; gives

‘Vz-l = Vl—l + VI-IUSI-IUOVI—I’

where S, =021, - U'V;'U.

)

To illustrate this, consider again the design

(0
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Given that the m x m matrix ¥;, which is invariant to the allocation of

varieties to the plots, is inverted once at the start of the algorithm, substantial
. . -1

time savings are likely when m is large, since for each design considered, ¥,

can be obtained by inverting S, a (m —#) x (m —t) matrix.

For model 3, V] with G, =I, and G, =I,, can be expressed (similarly to
model 2) as

AEVARSAS F Al
where V" is as for model 2, and S, =0I, - X,'V; ' X,. Therefore, V" can
be obtained by inverting S, and the ¢x ¢ matrix S, for each design
considered by the search algorithm, given that ¥} is derived at the start of the
algorithm,
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10 Simple criteria to compare EGVT designs

10.1 Introduction

In this chapter some simple criteria are considered for their appropriateness to
compare different designs (i.e. different allocations of control varieties to the
plots) for an EGVT, when the aim is to select the highest yielding new

varieties for further testing.

Definition 10.1
* Let z, . denote the probability that the z new varieties with the largest

estimated (or predicted) new variety effects include the g, (g, <z <t)

best new varieties.

* Let @, . denote the probability that the z new varieties with the largest

estimated (or predicted) new variety effects include at least one of the

q, (9, <z <t)best new varieties. , »

Andrews & Curnow (1996) compared the efficacy of selecting a fixed number
of new varieties in a replicated agricultural variety selection programme,
Wwhere the aim was to maximise the expected mean yield of the selected
varieties, to the efficacy of selecting sufficient varieties to achieve some
minimum or expected probability that a specified number of best varieties are
among those selected. They carried out simulations in which estimates of

7,,,: and @, . were obtained. As well as comparing test varieties amongst

themselves, they also considered the situation where control varieties were

Compared with test varieties.

UnfOrtunately, estimates of r, . and @, . can only usually be obtained from

simulations, Instead, it would be useful to consider measurements associated

with Tq.: and @, _ that are readily available.
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When z,, is assumed to be a vector of random effects, as in models 2 and 3,a
simple criterion is to maximise the average squared correlation between Thy
and 7, over I =1,2,...,t, where 7, is the effect of the /™ new variety and Ths

is its predictor. If this average squared correlation is high (i.e. near 1) then it

is likely that this measurement would be a well associated with 7, . and/or

w‘]z,z *

Two papers which consider the correlation between the true and predicted
variety effects are Yeo & David (1984) and Cullis ez al. (1992). Yeo & David
(1984) considered the general problem of choosing the best g objects out of ¢

objects, “when instead of measurements y, (i =1,...,t) of primary interest,
only associated measurements x, are readily available.” They gave a table of
7,,:» under the assumption that the ¢ pairs (x,,,) are a random sample from a
bivariate normal distribution. These values of 7, . depend on the correlation

between the two variables, which is assumed to be equal for all pairs of
variables. As an example of an application, they considered a variety trial,
where variety effects were modelled as uncorrelated normal variates with zero

mean, and «, . depends on the correlation between the true and estimated

Variety effects, which is assumed to be equal for all varieties. Note that for
EGVTs under models 2 and 3, the correlation between the /™ true and

predicted new variety effects (see equation (10.2) below) is not necessarily the
same for all /.

Cullis et al. (1992) carried out a simulation study to compare five methods of
analysis (including the spatial analysis of Cullis ez al., 1989) of EGVTs, using
a measurement which they called the relative response to selection (RSS).
The RSS is a function of the correlation coefficient of the true (simulated) and
estimated (or predicted) new variety effects. Methods of analysis with a high

RSS were favoured over methods with a low RSS.
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For model i (i =2,3), the squared correlation between the I ™ true and

predicted new variety effects is

, o cov? (7,7, 7,1)
corr (7,45 Tpy) {var(r,, J)var(ﬁ,z)}
) (10.1)
Var(rn.l) ’

since cov(z,;,7,,) = var(7, ) (by (A3.13) and (A3.14) in Appendix A3.3).
Assuming, as in section 9.2.1, that G, = I,, gives
corr’(z,,,%,,) =1-02(C™),,. (10.2)

Now consider maximising the average squared correlation, i.e. maximising

3
1Y corr’(r,,,7,,) =1-o77t{C™).
1=l

This is equivalent to minimising tr(C,"""). Recall that the A, -value is a
function of tr{C™):

A,,~value = 2(t = 1) {r(CE™) - 11, C™1, }.
Unreplicated designs considered in the simulation studies described in section
10.3, suggest that when ¢ is large, tr(C,""')) is approximately equal to +(¢—1)
times the A,,-value. Therefore, for ¢ large, the criterion of maximising the
average squared correlation between 7,, and 7,; seems to be approximately
the same as minimising the A,,-value. Also, recall that for ¢ small and ¢

large, the A- and A, -values will be highly correlated.

For model 1, 7, is fixed, so corr(z, ;,7,,) cannot be used. However, it may

still be useful to consider tr(C,(""’) as a potential associated measurement of

z*

Zg.: and/or o
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As well as considering tr(C,""')) and the A- and A, -values as potential
associated measurements, it may also be useful to consider the A, - and A, -

values since they are suggested by Federer & Raghavarao (1975) (see section
9.1.2); although the A, -value is not expected to be useful. Simulation studies

to investigate if any of these 5 measurements are well associated with Ty s
and/or @,, ., are described in this chapter. The methodology of the simulation

studies is given in section 10.2, and the results are summarised in section 10.3.

A discussion of the conclusions from the simulation studies is given in section
10.4.

10.2 Simulation methodology
Simulated yields from the model in (9.2) can be used to estimate 7, . and
@,,,;+ These estimates can then be compared to the potential associated

measurements. The simulations that were carried out here used MATLAB

version 4.2c.1 to generate the yields.

The elements of the vector of random errors n, which has E(7) = 0, and
var(n) = O',fl,,,, were generated as independent N(O, a,f) values using the

MATLAB function randn, which gives pseudo-independent N(0,1) values.

The additional spatial components (or trend effects) are assumed to be from an
AR(1)*AR1(1) process, and are generated by the procedure described in
Appendix A3.4. In the simulation study in Cullis ef al. (1989), the trend
Wwithin each row was assumed to be from an ARIMA(0,1,0) process, and the
elements of the vector of first-differenced trend effects were generated as
independent normal, zero mean, values. In Cullis ef al. (1992), twenty sets of
uniformity data were considered. Uniformity data are data from trials where a

single variety is grown on all plots (i.e. essentially a design with just 1
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treatment). Cullis ef al. (1992) assumed model 2 with ¢ =& =0, and from
each set of uniformity data, the value of the trend effect for each plot in the
simulation was obtained. The value of a,f (the variance of the random errors)

was also obtained from the uniformity data, and then used to generate the
simulated data.

Now consider the generation of the control and new variety effects. Andrews
& Curnow (1996) simulated yields from trials with ¢ =1 control variety, and
took the control effect to be zero and the variety effects to be independent

N(0,1) values. Cullis er al. (1989, 1992) generated the new variety effects as
independent N(0, o2 ) values. Cullis et al. (1989) noted that plant breeders in
the NSW Department of Agriculture suggest that “genetic variance should be
larger than the error variance, although in some trials the genetic variance
may be as small as # of the error variance.” To take account of this, the
genetic variance (o?) values of 0.2, 1 and 5 were considered in Cullis et al.
(1989), with error variance, 0',3 , taken as 1. Note that Cullis ez al. (1989) took
the variance of the differenced trend effect to be 0.01, 0.1 and 1, and Cullis et
al. (1992) took o2/ a,f =0.5, 1, 5. Both papers assumed ¢ =1, as in Andrews

& Curnow (1996). However, the control variety effect was generated
differently: as 80% of the average of the new variety effects.

When z, and/or 7, are fixed effects, they could have particular values

assigned to them. However, for the simulation studies in this chapter, in order

to represent typical observed effects, the elements of z, and/or 7, have been
generated from an independent N(0, o?) distribution. Without loss of

generality, it is assumed that a;z + a,l; =1. To reflect what is likely in practice,
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as recommended by Dr. B. Cullis of NSW Agriculture (personal

correspondence, 1998), o /(a;2 + a,f) = o2 is taken to be between 0.1 and 1.

Also, in some of the simulations in section 10.3.3, o is taken as 5.

For each simulated trial, the vectors z,, z,, 7 and § were generated
independently of each other as described above, giving a simulated vector of

yields y (#=0 assumed) from a normal distribution with mean and variance

depending on which of the models, 1, 2 or 3, is assumed, and also, for models

2 and 3, on the design (i.e. an allocation of control varieties) used.

For a given design, the potential associated measurements can be calculated.

Then by simulating a large number, N, of trials, estimates of 7, , and @, _ .,
denoted by #,,.. and @, ., respectively, can be obtained for this design.

From the simulated yields for a particular trial, £, (or 7,) can be calculated
under the assumption that var( y) is known. In practice, for data from a

completed trial, estimation will usually use a fitted variance structure.
However, the possible differences arising from this are not considered in this
thesis. The z greatest estimated (or predicted) new variety effects are then
assumed to be selected. Over N trials, 7, . and @, . are calculated as the
Proportion of the N simulated trials in which the z selected new varieties
include

i) the g, best varieties

1) at least one of the g, best varieties,

respectively,
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By obtaining 7,.. and @, over a set of designs which cover a wide range of
the potential associated measurements, 7, . and @,, . can then be compared

with the potential associated measurements to see if any of these

measurements are well associated with 7, . and @,, .. For the simulation

studies in section 10.3 (except in section 10.3.1), in order to have designs with
a wide range of values for the potential associated measurements, the set of
designs considered comprise the three subsets of designs, B, § and R, as
described in Definition 10.2.

Definition 10.2 .
* Let R be a set of designs for which control varieties are allocated

randomly.

* Let @B be a set of designs selected to have high values of the potential
associated measurements.

¢ Let g be a set of designs selected to have low values of the potential

associated measurements. n

Designs in the subsets B and § are obtained using the simulated annealing
algorithm of Martin & Eccleston (1997). For the purpose of finding a design
with a high (or low) value of a potential associated measurement, one run of
the algorithm is executed (see section 9.3), and since designs with a good
spread of both high and low values of the potential associated measurements
are required, the algorithm is set up so that fewer designs are considered in
one run than would be considered if the design with the best/optimal

measurement was required.
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10.3 Simulation results

The results of several simulation studies are presented in this section. Most of
the simulation studies described here assume model 1. As an initial
preliminary study, a very small array, for which all the different designs can
be easily enumerated, is considered in section 10.3.1. Further preliminary
studies, for a larger array, are outlined in section 10.3.2. In sections 10.3.3
and 10.3.4, two larger studies are considered over several different variance

Structures and genetic variance settings.

10.3.1 Preliminary study — on a 4x 4 array with ¢ =2

A preliminary simulation study, under model 1, on a 4x 4 array with c=r=2
(and 7 =12) is considered in this section. Although EGVTs are unlikely to be
this small, for a small example like this, the simulation can be conducted over
all the possible different designs. Two designs are deemed to be different if

they have different C, matrices. The variance components are set at
0, =0;=02=0and o} =1 (ie. ¥ =¥, =(0,0, 1,0), called the purely
spatial model). The parameters of A are setat (p,, p,) = (3, ), which may

be reasonable in practice when plots are square or nearly square. This
example was also considered by Martin & Eccleston (1997) to illustrate their
algorithm,

A complete enumeration of the designs gives 736 different designs. It is clear
that the number of ways of allocating the two replications of the two control

varieties is

1fieyis) 5460
2(2A2) 7
This is reduced to 736 different designs, since reversals, horizontal and

vertical reflections, NW-SE and NE-SW diagonal reflections of a design give
designs with the same C, matrix.
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The control and new variety effects are simulated with genetic variance

o? =1. The number of simulated trials for each designis N =10,000. From
these 10,000 trials, 7,; = &, , is obtained. Here, z =3 is taken as 25% of ¢,
and g, = g, =1is 8}% of #. Over the 736 designs, 7,4 lies between 0.943
and 0.959, with median value 0.952. For other ¢, and z, a wider range of

7, may result (for ¢, =2 and z =4, say). For a lower genetic variance than
taken here, it is likely that a lower median of 7, ; would result, since new

variety effects and their estimates would be less spread out, hence making
accurate selection less likely. Also, for a higher genetic variance, it is
expected that accurate selection of high yielding varieties would be more

likely (see Table 10.4 in section 10.3.3, and Table 10.8 in section 10.3.4).

Plots of 7, against the A-, A,,~ A, - A, - and tr(C™)- values are given

in Figure 10.1a to Figure 10.1e. The Spearman rank correlation coefficient (a
measure of a monotonic relationship) between each of the potential associated

measurements and 7, 5, is given in parentheses for each of Figure 10.1a to
Figure 10.1e. From Figure 10.1, for the example being considered here, the
A- A, -and tr(Cf""’)- values are likely to be reasonably well associated with
713, With 7, ; high for low A-, A,,- and tr(Cl""")- values, and low 7, , for
high measurements. However, there is no clear relationship between 7,5 and
the A -and A, - values, especially between 7,3 and the A - values. The
Spearman rank correlation coefficients in Figure 10.1 suggest that the A_ -

value is the best associated measurement (from the five measurements

considered) of 7, ; for this example.
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Figure 10.1
Plots of 7, against the A-, A,,-, A= A,,~, tr(C™)- values, for the

simulation study in section 10.3.1 with Spearman rank correlation
coefficients in parentheses.
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10.3.2  Preliminary studies — on a 10x10 array with ¢ =2

Simulation studies under models 1 and 2 were conducted on a more

realistically sized 10x10 array, with c=2, r=10,and ¥, (p,, p,) and o}
as in the 4x 4 example described above. For the simulation study under
model 1, 500 designs were considered, comprising 16 designs with high

A-, A~ A, -and A, - values (4 designs with respect to each of these 4

measurements), 16 designs with low A-, A A, -and A, - values, and 468

randomly selected designs. The simulation study under model 2 had 200
randomly selected designs, as well as 24 designs with high A-, A,,-, A, - and
A,, - values (6 designs with respect to each of these 4 measurements), and 24

designs with low A-, A A, -and A, - values.

"
For both simulation studies N =5,000 trials were simulated for each design,
from which 'y, and @,,, were estimated. The minimum, median and
maximum values of #,,, and &, 4, which are very similar for both studies,
are given in Table 10.1. The &, ,, are very close to 1. This may mean that
any relationship between @, ,, and potential associated measurements may be

difficult to discern.

Table 10.1
Minimum, median and maximum of #,,, and &, ,, over 500 designs for the

model 1 study, and over 248 designs for the model 2 study in section 10.3.2,
(to 3 decimal places, except when value is exact)

’;2.10 “.’2.10
min. |median| max. min. | median| max,
Model 1 0.981 | 0.988 | 0.993 | 0.997 | 0.999 1
Model 2 0984 | 0991 | 0.995 ] 0.998 | 0.999 1
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For both studies, the Spearman rank correlation coefficients (given in Table
10.2) between #, ,, and the A-, A, -, A,, - and t{C™)- values (i =1,2) are
very similar (close to —0.35), even though both studies have a different number

of designs. For each study, the correlation coefficients between 7, ,, and the
A- A~ A, -and tr(C,(""’)- values are very similar since the A-, A, -, and
tr(C,"'") )— values are highly inter-correlated, with Spearman rank correlation
coefficients greater than 0.998 and 0.999, for the model 1 and model 2 studies,
respectively. The correlation coefficients between the A-/A,,, -/ tr(C,‘""’ )-
values and the A, -values are also high (greater than 0.95 and 0.94, for the

model 1 and model 2 studies, respectively). The Spearman rank correlation

coefficient between 7, ,, and the A -value is near zero for both studies.

Table 10.2

Spearman rank correlation coefficients between Z,40 and the A-, A -,
tT(C,(""))-, A, -and A_ - values (i=1,2) for the simulation study in section
10.3.2 (to 2 decimal places).

A- A,- | ulcem)-| A,- As-
Modell | -035 | -035 | -035 | -0.35 0.07
Model2 | -035 | -035 | -035 | -0.34 0.00

Now consider @, ,, for the two studies. Table 10.3 gives the Spearman rank
correlation coefficients between d, ,, and the A-, A,, -, tr(C,"'"’) and A, -
values. The association seems to be weaker than for 7510 » Which may be due
to the 032_,0 being close to 1. Also, note that the correlation coefficients
(except for the A, -value) are slightly higher for model 2 than for model 1.
As for 7510 the correlation coefficient between @, and the A -value is

Dear zero for both studies (see Table 10.3).
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Table 10.3

Spearman rank correlation coefficients between @, ,, and the A-, A, -,
tr(ce™)-, A,, - and A, - values (i=1,2) for the simulation study in section
10.3.2 (to 2 decimal places).

A- Ann - tr(ci(ml) )' Am - Ass =
Model 1 -0.22 -0.22 -0.22 -0.23 0.01
Model 2 -0.18 -0.18 -0.18 -0.20 0.00

The studies described in this section provide more evidence to suggest that the

A,, -value is not well associated with Ty .z OF Oy .. Also, there seems to be

little difference over models 1 and 2, in the association between the potential

associated measurements and gz OT @y ;-

Under model 3, a simulation study, with the same settings as in the studies for
models 1 and 2 described above, was also carried out. This study gave
Spearman rank correlation coefficients that were very close to the correlation

coefficients for model 2.

10.3.3 Simulation study — on a 20x 8 array with ¢ =2

The simulation study described in this section uses a 20x8 array, with ¢ =2,
r=10 (£=140), under model 1. Approximately 14% of the plots are check
plots, which satisfies the recommendation of Kempton (1984) (see section

9.1.2). One hundred and fifty designs were considered. To ensure a wide
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range of values, these designs comprised 15 designs with high A-, A, - and
4,, - values (5 designs with respect to each of these 3 measurements), 15
designs with low A-, A, - and A, - values, and 120 randomly selected
designs. Designs with high (low) 4,,-values are likely to have high (low)
tr(C,""" )- values, since the A, - and tr(C,"'") )- values are likely to be highly
correlated. The A -criterion is not considered here, since the preliminary

studies (in sections 10.3.1 and 10.3.2) suggest that it is of little use as an

associated criterion to maximising Tz OF @, -

The variance components were set at ¥, =(0,0,1,0)and ¥, =}, £, §,%) =
(4 %, %, 1), where o} + o =1, as recommended by Dr. B. Cullis (personal
correspondence, 1998) (see section 10.2). Recall that ¥, is the purely spatial
model. The settings in ¥, have o} > a',2 to reflect the situation with long
narrow plots. The correlation parameters, (p,, p,), were set at (1, 4), (3, $)
and (7, {5), which may be reasonable for square or nearly square plots, long
thin plots and very long thin plots, respectively. The genetic variance, o2, is
takenas 4, | and 5. Simulations were conducted over all 18 combinations of
¥, (p,, p,)and o2, with N = 5,000 trials being simulated for each of the

150 designs. Note that the 30 non-random designs were selected separately, as
described in section 10.2, for each of the 6 variance structures (i.e. for the 6

combinations of ¥ and (p,, p.))-
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For each trial, z =35 = 4¢ of the new varieties were assumed to be selected,

and estimates of 7, 55, 7,35 and @, ;5 were derived from the simulations.

Cullis ez al. (1998) say that about  of the new varieties go on for further
testing, in which case z = 47 may be a more appropriate setting for z. The
possible differences arising from this are not considered in this section.

However, the study in section 10.3.4 takes z to be about 4 of #. For the 18

combinations of ¥, (p,, p,) and o, the minimum, median and maximum

values of 7, ,; over the 150 designs are given in Table 10.4. As expected,

71,35 decreases as o decreases, with 7, ;5 very low for o2 =4. Also, the

median of 7, ,; is lower for ¥, than for ¥,.

Table 10.4

Minimum, median and maximum of 7, ;; over 150 designs for the simulation
study in section 10.3.3 (to 3 decimal places for 0': =4, 5; to 2 decimal places,

otherwise).
b7 ¥,

o2 | (p,,p.) | min. | median | max. | min. | median | max.
(4,4) |0.94210.962 [0.976 |0.779 [0.887 [0.914
5 &, 3 093910958 (0.971]0.776 |0.886 |[0.917
(5, %) ]0.94710.988 ]1.000}0.79510.942 |0.972

4.4) |031 |038 |043 |0.13 |022 |025

1 &, 3) (031 |0.37 040 |0.13 [0.22 0.25

(&, &) 1034 |065 |0.81 |0.14 |034 |0.43
4,4 ]0.013]0.024 [0.031 {0.005 {0.010 [0.015
+ [ 4,2 [0.015]0.023 |0.032[0.004 [0.011 |0.015
(5, 55) |0.017 |0.089 {0.156 }{0.005 |0.020 |0.032
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Table 10.5
Minimum, median and maximum of #, ;5 over 150 designs for the simulation

study in section 10.3.3 (to 3 decimal places for o2 = 1, 5; to 2 decimal places

for o7 =4, except when value is exact).

¥, ¥,

c? 1(p,,p.) | min. | median | max. | min. | median | Max.
4,4 [0.999 1 1 0.996 [0.999 |1
5 1 &3 [0.999]1.000 |1 0.992 (0999 |1
(&, %) 10.999]1 1 0.994 {1.000 |1

4.1 [0939]0.958 [0.968]0.863 [0.911 [0.928
1 | 4,3 [0937]0.955 [0.966[0.855[0.909 [0.927
(&, &) |0.941]0.985 [0.998[0.853[0.944 |0.965
+,4) [067 |0.70 |0.72 |0.56 [0.62 [0.65
+ [ &p» [oes [069 071 [056 [0.62 Jo0.66
(%, %) 0.67 |0.88 [0.82 [0.57 Jo.68 [0.73

The minimum, median and maximum values of 7, ;; are given in Table 10.5.
For o2 =35, the 7, 35 -values are either very close to 1 or equal to 1, and hence
it would be difficult to compare #, ;5 with the potential associated
measurements. The values of @, ;5 are also, in many cases, equal to 1, over
all the o7 settings considered. Hence, @y 55 (for all of the o? settings
considered) and 7, ,; (for o = 5) are not considered further. In retrospect, a

lower value of g, (for @,, 35) Would have been better.

As in the 10x10 example, which was discussed in section 10.3.2, the A-, A, -

and tr(Cl‘""’)- values are highly inter-correlated, with Spearman rank
correlation coefficients greater than 0.999. The correlation coefficients
between the A-/ A, /tr(C{™ )- values and the A, -values are also high
(greater than 0.96). Hence, only the A, - and A, - values are considered in

the rest of this section.
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Figure 10.2 shows 7, ,; plotted against the A,,-and A, - values for '¥,,
(p,sp.) =}, %) and o2 = 1. There seems to be a strong linear relationship
between the A, -value and 7, 5, and apparently a non-linear relationship
between the A, -value and 7, ;. For the other combinations of parameter

settings, the plots are similar,

Figure 10.2
Plots of 7, ;5 against the A, -and A  -values for ¥,, (p,,p,) =}, 1)

and o} = 1, for the simulation study in section 10.3.3.

a) 7,5 against A, -value b) 7,5 against 4, -value
0.25 — 5 025 o %
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”7.35 * : * ﬂ'7.3’ * oy w
0.15 - :. 0.1 — .
) - 't
A i, 2
25 30 35 1.T2 17 22 27
A, —value A, —value

Spearman rank correlation coefficients between the A, - and A, - values and
73'7,35 > given in Table 10.6, show that, as either the A,,-value or the

A,, - value decreases the value of 7, 4 tends to increase. As expected, the
correlation is stronger when o = 1,5 than when o =1. Also, the correlation
is better for ¥, than for ¥, except when o2 =+ and (p,,p,) = (4, f). The
correlation is also stronger for (p,,p.) =5, &) than for (p,,p,) =3, 1),

(, 3). There seems to be little difference in the correlations for the A, -and
A, - values, although the correlation coefficients are very slightly better for
the A, -value than for the A, -value in most cases. Table 10.7 gives the

Spearman rank correlation coefficients for 7,35 for o2 =4, 1. Asfor 7, 4,
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both the A,,- and A, - values correlate well with 7y 35 Plots of 7, ;, against

the A, -and A, - values are very similar to the plots for 753s. For example,

compare Figure 10.2 with Figure 10.3.

Table 10.6

Spearman rank correlation coefficients between the A, - and A - values
and 7, 5, for the simulation study in section 10.3.3 (to 2 decimal places).

Figure 10.3

¥, ¥,

O': (pr’pc) Ann' An.:' Aml" Am"
#4,3 |-0.66 |-0.65 |-0.89 |-0.88

5 #,3) [-0.67 |-0.66 |-0.91 [-0.90
(&, %) |-0.90 |1-0.89 |-0.97 [-0.97
4,9 |-0.70 [-0.69 |-0.88 |-0.87

1 (+,3) 1-0.74 [-0.71 |-0.87 |-0.86

(&, 75) |-0.98 |-0.98 |-0.96 |-0.96
#,H {-0.32 |-0.33 |-0.52 |-0.50

$ (}, '}) -0.42 |-0.40 |-0.45 |-0.42
(%, %) |-0.94 |-0.94 |-0.75 |-0.75

Plots of #, ,; againstthe A,,-and A, - values for '¥,, (p,,p,) =, ?)

and o} = 1, for the simulation study in section 10.3.3.

a) T35 against A, -value b) 7,5 against A, -value
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Table 10.7
Spearman rank correlation coefficients between the A, ,-and A, - values

and 7, ,,, for o} =14, 1, for the simulation study in section 10.3.3.
(to 2 decimal places)

¥ v,
0’: (pr’pc) A,",- An.s' Ann' Am'

&4 [-066 [-0.67 [-0.71 [-0.71
1 { &3 [-055 [-0.52 [-0.77 [-0.77
(&, %) |-0.91 [-0.90 [-0.92 [-0.91
¢, 4) [-048 [-0.48 [-0.67 [-0.66
1.3 [-0.48 [-0.48 [-0.76 [-0.73
(., %) |-0.93 [-0.94 [-0.86 [-0.84

(7Y

The simulations in this section provide evidence to suggest that when ¢ is

small and ¢ is large, the A-, A, -, A, - and tr(Cl""" )- values are all well

nn"s
associated with 7, .- The strength of this association seems to be dependent

on the genetic variance and on the variance structure.

10.3.4  Simulation study — on a 20x 8 array with c=5

The simulation study considered in this section has the same sized array as the
study in section 10.3.3 (i.e. 20x 8). Here, however, there are ¢ =5 control
varieties and ¢ =134 new varieties. Four of these control varieties are
replicated 6 times and the fifth control variety is replicated twice

(e r= (6,6,6,6,2)'). The fifth control variety may be taken to represent a
standard variety with respect to quality rather than yield. This would reflect
Current practice at NSW Agriculture, where a standard variety to assess
Quality, with fewer replications than the standard varieties to assess yield, is
included. Note that 161% of the plots are check plots. These settings of p,,

Py, I and c are also considered in chapter 11, where the robustness of some

Systematic designs is investigated.
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Aswell as ¥, =4, § §, $), which was considered in section 10.3.3,

¥, =(% 1o I, &) = (3, 1, 1, $) was also assumed here. The variance
component settings given by ¥, have a',2 = o2, and were recommended by
Dr. B. Cullis of NSW Agriculture (personal correspondence, 1998). Recall
that he also recommended that o> = {5, 4, 1 be assumed. The correlation

parameters were set at (p,,p,) = (%, 1), (3, #). This gives 12 combinations of

\IJ’ (p,.,pc) and 0':.

For each of the 4 combinations of ¥ and (p,,p,), 150 designs were selected
as in section 10.3.3. For each of these designs, N = 5,000 trials were
simulated, and estimates of Zy4s» Wy 4s and @, 45 were obtained. Here z is

taken as approximately 4 of #. Table 10.8 gives the minimum, median and
maximum values of 7, ,; over the 150 designs. It can be seen that all the

estimates of r, ,;, over the 12 combinations of ¥, (p,,p,) and o2, are less
than }. If the simulation study (including the range of o) reflects what is
likely in practice, then such low estimates of 77 45 Suggest that only a few of

the best new varieties are likely to go on for further testing. If this is the case,
the success of the entire programme would arguably be undermined at the
EGVT stage (see the quote from Cullis et al. (1998), given in section 9.1). For

the purposes of this investigation, however, the actual values of Ry OL D ,

are not of particular importance, except, that is, when they are very near to
Zero or one, in which case, any relationship with the potential associated

measurements is unlikely to be discernible. The values of @, .5 are very close
to 1 (for all the o2 settings), and from Table 10.8, it is clear that the 7, .5~
values are close to 0 when o2 ={y. Hence, 7, 45 (for o2 =) and &, , (for

all the o7 settings) are not considered further. In retrospect, a lower setting of

9, would have been better for @,, 4s» and a higher value of g, would have
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been better for 4, 45 when o-,f = #&. The minimum, median and maximum

values of 7, ,s are given in Table 10.9. As would be expected, the values of

7,45 are much higher than the values of Z74s0

Table 10.8
Minimum, median and maximum of #, .5 over 150 designs for the simulation

study in section 10.3.4 (to 3 decimal places for o2 = {5; to 2 decimal places,
otherwise).

\II2 \P3

o. | (p,,p.) | min. | median | max. | min. | median | max.
| @b fo31 jo42 [046 [029 [034 [0.37
(3,%3) ]0.30 ]0.42 047 (027 10.33 0.37
3,4 ]0.12 }0.17 0.20 [0.10 |0.13 0.15
¥ (+,%) |0.11 |0.17 0.21 {0.10 |0.12 0.14

(4,3 [0.007]0.014 |0.021{0.006 |0.011 [0.016
116 4,3 [0.0070.014 |[0.020]0.006 |0.010 |0.017

Table 10.9
Minimum, median and maximum of #, ,; over 150 designs for the simulation

study in section 10.3.4 (to 2 decimal places).
¥, ¥,
o; | (p,sp.) | min. | median | max. | min. | median | max.

(4,4 [092 [095 [0.97 |091 |093 [0.95
& 3) [0.92 095 {097 [0.91 [093 [0.95
4,4 [0.82 [0.87 [0.89 [0.81 |0.84 |0.86
Y 4.3 Jos2 [087 090 Jos1 084 o6
&, 4) |0.57 [062 [0.64 |057 |0.60 |0.62
® [74.3) [0.58 062|064 [0.57 |059 |0.62

As in section 10.3.3, the A-, A, - and tr(C,(""’)- values are highly inter-
correlated, with Spearman rank correlation coefficient greater than 0.998. The
correlation coefficients between the A-/A,,, -/ tr(C,"'"’ )- values and A, - values
are also high (greater than 0.842) but not as high as in section 10.3.3.
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Therefore, only the A,,- and A, - values are considered in the rest of this

section.

Table 10.10 gives the Spearman rank correlation coefficients between the
A,,-and 4, - values and 7, .5 for o =4, 1, which suggest that both the 4, -
and A, - values are well associated with 7, ;. Plots of 7, .5 against the A, -
and 4, - values are similar to those for the simulation study in section 10.3.3.
Plots for \¥,, (p,,p,) =@, $) and a? = 1 (the same settings as the plots in
section 10.3.3) are given as Figure 10.4.

Recall from the simulation study in section 10.3.3, that the correlation
coefficients between the A,,- and 7, 55 -values were very slightly better than

the correlation coefficients between the A, - and 7, 35 -values, in most cases.
Here, for 7, 45 the difference in the correlation coefficients between the A -
and A, - values is slightly greater than in section 10.3.3, with better
correlation coefficients for the A, -values than for the A, -values, in 7 of the
8 combinations considered. Also, the correlation is better, in most cases, for
¥, than for ¥,, and for (p,,p,) = (3, %) than for (p,,p,) =, 4). As
expected, the correlation is also better for o2 = 1 than for o} =$. Similar

conclusions are drawn from the Spearman rank correlation coefficients for

731,45 » given in Table 10.11.
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Table 10.10

Spearman rank correlation coefficients between the A, - and A, - values
and 7, ., for a2 =4, 1, for the simulation study in section 10.3.4

(to 2 decimal places).
¥, ¥,
0'3 (pr’pc) Ann' A,,_,' A,m- Am-
) &, b [-0.80 {-0.74 {-0.65 [-0.57
& 3 |-0.85 [-0.79 [-0.71 |-0.63
3 &, 4 [-0.71 [-0.68 [-0.58 [-0.54
&, 3 {-0.77 |-0.73 {-0.51 |-0.53

Figure 10.4

Plots of 7, , against the A -and A , - values for ¥,, (p,,p,) =, 3)

and o7 = 1, for the simulation study in section 10.3.4.

a) 7T, ,s against A -value b) 7,,s against A, -value
PR, -
0.45 | LR 045 :’: .
. 0.40 N ﬁétﬂ" 0.40 — gs*
X 3 . Ry s Pt .
0.35 —~ 0.35 ~ .
il » ot -
* % hd *
030 +_ . _r 0 , o ’
22 27 32 14 19 24
A, —value A, —value
Table 10.11

Spearman rank correlation coefficients between the A, - and A, - values
and 7, ., for the simulation study in section 10.3.4 (to 2 decimal places).

Y, ¥,

0'3 D0 A= | A= | A= | An-
&, |-0.62 [-0.62 |-0.58 [-0.48

: &3 |-0.75 |-0.71 [-0.52 |-0.46
&, 4 |[-0.65 |-0.63 |-0.52 |-0.51

} &, » [-0.71 [-0.70 [-0.42 |-0.48
&, 4 |-0.53 {-048 [-0.37 [-031

1‘6 @, d |-0.51 |-0.50 [-0.28 |-0.27
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10.4 Discussion

Most of the simulation studies described in section 10.3 assumed model 1.
The exceptions are the preliminary studies under models 2 and 3 (see section
10.3.2), which suggest that, for given ¥, (p,,p,) and o2, the strength of the
association between r, . and the potential associated measurements, is likely
to be similar over all the models, 1, 2 and 3. However, it would not be
sensible to draw conclusions for models 2 and 3 from the studies under model

1, without conducting further simulation studies for models 2 and 3. Hence,

the discussion in the rest of this section is with respect to model 1 only.

When c is small and ¢ large, as is usually the case for EGVTs, the simulations
suggest that of the 5 potential associated measurements investigated, all but

the A, -value seem to be well associated with 7, ,. Thatis, the A-, A,,-,

A, -and tr(Cl(""’)- values are likely to be useful in comparing designs with

respect to the efficacy of the selection of high yielding new varieties.

For the settings of ¥ and ( P, P.) considered in section 10.3 under model 1,

Table 10.12 gives P18,

Table 10.12
Values of p{)/ p® under model 1 (to 1 decimal place, except when exact).
(pop)| | T ¥,
D | 1 231
e3> 3 44 |14
G2 | 9 | 71 |19

The strength of the association between the A-, A~ A,-and tr(C,(’"")-
values and 7,,.. Seems to depend, not only on the genetic variance, as might

be expected, but also on the correlation structure, with a stronger association

When the lag 1 column correlation is greater than the lag 1 row correlation (i.e.
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when p{/ p{) >1). As seen in section 10.3, the association was stronger for
¥, than for ¥, or ¥,, and also for (p,, p.) =, %), (&, 75) than for

(pr’ pc) = (i”%)'

There is some evidence to suggest that the A-, A, - and tr(C{™)- criteria are
slightly better associated criteria to maximising z, . thanthe A -criterion.
Some further investigations to compare the reliability of the A, - and A, -

criteria are described in chapter 11.

As well as considering how well the A-, A -, A, - and tr(C,(""’)- values are

-
nn

associated with x,, . for designs over a wide range of these values, it would

be interesting to see how the Spearman rank correlation coefficients change if

designs in the set B (designs selected to have high A-, A_-, A, -and
‘T(Cl(""))- values) are omitted. From the plots of 7, , against the A, - and
A, - values (see Figure 10.4, for example) the Spearman rank correlation
coefficients between 7, .. andthe A, -and A, - values are likely to be
slightly worse (higher) when designs in @ are omitted. This is the case, for
example, for the study in section 10.3.4 with ¥,, (p,, p,) =}, #) and o2 =
1. For this example, the correlation coefficients between 7745 and the A -
and A, - values, when all designs are considered, are —0.85 and —0.79,

respectively, and the correlation coefficients are —0.79 and —0.72, respectively,

when designs in B are omitted.

In addition to finding measurements which are well associated with Zgy.z0 AN

€Xamination of the spread of these measurements would be useful. For

eXample, consider the A, - and A, - values in Figure 10.4 (i.e. for ‘¥, and

(P, p,)=(*, %)). The minimum and maximum A,,-and A - values over
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the 3 subsets of designs G, R and B (defined in Definition 10.2) are given in
Table 10.13. Recall that the sets § and B each contain 15 designs, and R
contains 120 designs. The range of the A~ and A, - values over all the
designs is large. The relative efficiency of the A,,-worst design

(A,,-value = 3.22) to the A, -best design (A,,-value = 2.20) is 0.68 (to 2
decimal places), and the relative efficiency of the A, -worst design (A, -
value = 2.38) to the A,, -best design (A, -value = 1.33) is 0.56 (to 2 decimal
places). This shows that designs with high A _,- (A, -) values are
substantially worse than designs with low A - (A, -) values, suggesting that
designs with high A - (A, -) values should be avoided.

Table 10.13

Minimum and maximum A, -and A - values over the 3 subsets of designs
G, Rand B, for ¥, and (p,, p,) =, ), for the simulation study in
section 10.3.4 (to 2 decimal places).

R @R

min. max. min. max. min. max.
A,-value | 220 | 233 | 235 | 270 | 291 | 3.22
A,-value | 133 | 143 | 144 | 1.70 | 2.01 | 2.38

A comparison between the A,,-/A,, - values of designs in R and B, shows

that designs in @ can be much worse than designs selected randomly, with the
relative efficiency of the A, -worst design in B (A, -value = 3.22) to the

A, -best design in R (A, -value = 2.35) approximately equal to 0.73, and the
relative efficiency of the A, -worst design in B (A, -value = 2.38) to the

A,, -best design in R (A, -value = 1.44) approximately equal to 0.61. This
Suggests that very inefficient designs are unlikely to be selected randomly.

273



By using the best design obtained from a few runs of the simulated annealing
algorithm (see section 10.2), there can be a moderate gain in efficiency over

using a randomly selected design. This is illustrated by the relative efficiency
of the worst design in R to the best design in G of 0.81 and 0.78 (to 2 decimal

places) with respect to the A, -and A, - values, respectively. More

extensive algorithmic searches are likely to give a much greater gain in

efficiency compared to a randomly selected design.

The relative efficiencies given above and the conclusions drawn from them are
for one particular example only. However, the spread of the A, - and A, -
values in Figure 10.2 and Figure 10.3, suggests that similar conclusions can be

drawn for the other examples.

As well as investigating the properties of efficient designs, it is useful to know
about inefficient designs, so that they can be avoided. The inefficient designs
used in the simulation studies in section 10.3 generally had check plots
clustered together. For the 20 8 example with ¢ =5 control varieties, which

Was considered in section 10.3.4, an example of a A, -inefficient design, and

an example of a A, - inefficient design, used in the simulation for ‘¥, and

(p,, p.)=(3,4) are given in Figure 10.5. The A,,-inefficient design has all
the check plots clustered together in the right half of the array, and the A -

inefficient design has the check plots in a few columns, with many column
self-adjacencies of the control varieties. The efficiencies of these designs,
Wwith respect to the best design found from an extensive search (see case 3 in
Appendix A3.7) are given in parentheses in Figure 10.5. Worse designs than
these are almost certainly possible, since these designs were obtained from

only a few runs of the simulated annealing algorithm.
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Figure 10.5

A,,-and A, -inefficient designs for ¥, and (p,, p,) = ).

Efficiencies (to 2 decimal places) given in parentheses.

A,,-inefficient

design

(0.84)

A, - inefficient

design

(0.69)
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11 Efficiency of some systematic EGVT designs

11.1 Introduction

Systematic designs are often used for EGVTs. A systematic design for an
EGVT has the check plots systematically distributed in the array. This chapter
examines the efficiency and robustness of some systematic designs for EGVTs
over different models and variance structures. Some examples of systematic
designs were given in section 9.1.2. These examples included designs with
the check plots in diagonals (see section 9.1.2), as is the current practice at
NSW Agriculture. Also, the example of an EGVT from the International
Maize and Wheat Improvement Center (given in section 9.1.2) had check plots
in diagonals. For long narrow plots, with the short side of the plots within
rows, as in Figure 9.1, wheat trials at the Plant Breeding Institute, Cambridge,
UK, have had the check plots allocated to a few rows (Kempton, 1984, and
Besag & Kempton, 1986).

By considering approximations to the A,, - and A, -values under model 1,
Martin et al. (2000) derive some theoretical results on efficient unreplicated
designs. The 10x5 example from Eccleston & Chan (1998), which has
¢=2, r=5 and t =40, is used as an illustrative example by Martin et al.
(2000). This example was also considered in Chan et al. (1998), and some

Systematic designs for this example are investigated in section 11.2.

Example 11.1.

This example has a 10x 5 array with ¢ =2 and r =5. L

For the investigations in this chapter, as well as Example 11.1, a second

€xample (Example 11.2) is examined in section 11.3.

Example 11.2
This example has a 20x 8 array with ¢ =5 and r =(6,6,6,6,2)'. =
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Recall that Example 11.2 was also considered in section 10.3.4. A variety of
systematic arrangements of the check plots is investigated for these two

examples, including designs with check plots in diagonals and in a few rows.

As in much of chapter 10, the A,,-and A, - criteria are used. The efficiency
of a systematic design, with respect to the A, - or A, -value, is found by a
comparison with an optimal (i.e. the design with the lowest possible A,,- or
A, -value) or near-optimal design. An extensive search of the design space
was carried out using the annealing algorithm of Martin & Eccleston (1997),
and the best design obtained from this search was used to calculate the
efficiency of the systematic design. The efficiency and robustness of some
systematic designs for Example 11.1 are examined in section 11.2 under

models 1, 2 and 3. Section 11.3 looks at Example 11.2 under models 1 and 3.

A discussion of the conclusions for this chapter is given in section 11.4.

11.2 Some systematic designs for Example 11.1

In this section, various systematic designs are considered for Example 11.1.
Although the number of plots in this example is less than there would usually
be in an EGVT, results from this small example are likely to be relevant to
larger examples. Also, optimal designs are easier to find for small examples

than for larger examples.

The systematic designs considered for Example 11.1 are given in Figure 11.1.
Designs D, and D, have the check plots in diagonals (diagonal designs), with
like and unlike diagonal control variety adjacencies, respectively. The
diagonal designs D, and D, are typical of current practice at NSW Agriculture
(Dr. B. Cullis, personal correspondence, 1999).
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Figure 11.1
Systematic designs, D, to D3, for Example 11.1

leoeeceoe 1] oeec oo l]eeceoe J]eecseoe 1]eeeoe
L2 B 20000 o e Qeoe LI 3 B ) es 0ol
e oo LECS BN s 0o ece] eseoe} ®2 e e
oo e ] LI By A e ee0 L3S BN ¢ e 00?2
® e o000 ] eeo o o] e0 0 ]e LRI A CICES B
20000 20000 2000 2000 2¢ee00 0
200 ®jeee se jeoes oo ]eoe LRI B A ]
oo Qe e Qe LI ) LI I ) o] ees
o002 CRCRCES el eseoe ©e200 0 CRCRCI S |
oo 0o ) e o002 s 000 LIS 8K LIy I
D, D, D, D, D;s
11111 12121 DX o000 e
cecee cec e 11111 12121
LI I Y es e oo o000 a0 000
LI Y Y eo o0 o0 LI I I es e
o 000 . o0 00 o & ¢ o0 e e 09 @
es s eoe o e e e s e eo 0 e
LI 3 I eo e oo e o0 ee s o000
AL N ] L3N I B 3 e e 000 eoeo 00 e
escsee R 22222 21212
22222 21212 s 0o o0 P )
D5 D7 Ds D9
¢ee oo seo0 00 e o e 00 es 00
¢o oo LI I I ) e oo e ees o
11111 12121 EEEE EEEE
e s oo e o0 o0 12121 o e o0 e
co s o ceev oo K 12121
LI I I co e o0 eo o e 21212
LI I R cso 000 21212 evsee
22222 21212 EEEE REEEX
®ee s ee CRC I I s o0 LRI A
LA B BN Y ® & & 00 e & 0 0 e & o8 0
Do Dn )P} Dy3

Designs D; to D5 are called knight 's move designs, since any pair of check
Plots are at least a knight’s move apart (i.e. lag (1, 2) or lag (2, 1) apart). If
P19 and P} are roughly equal and not too large (and all other correlation
values are small), Martin ef al. (2000) show that both the A, -and A, -

efficient designs have the check plots reasonably apart. That is, as few lag

(1, 0), 0, 1), (2, 0), (0, 2), (1, 1) and (1, -1) (see Figure 3.1 in section 3.1.1.4)
check plot adjacencies as possible. Also, for p((,f,) not too large and all other
correlations small, Martin et al. (2000) show that the A, -efficient designs

have as few row and column adjacencies of like control varieties, as many
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control-new variety adjacencies in rows and columns, as few lag (2, 0) and
(0, 2) like control adjacencies and as many lag (2, 0) and (0, 2) control-new
variety adjacencies as possible. Hence, knight’s move designs are likely to be

efficient for some correlation structures.

When t =(p, -g)p, (i.e. D r, =gp, ) for a positive integer g, let a row design

be a design with all the check plots in g rows. For Example 11.1,
t=(p,-2)p, and Ds to D3 are row designs which include pairs of designs

(Dy,s5 D,,,;), for i =1,2,3, such that both designs in a pair have the check

plots in rows i and 11— i, where rows are labelled 1 to 10 from top to bottom,

Designs D,,,, and D,,,,, have the number of like and unlike row control

variety adjacencies maximised, respectively. Designs D;; and D;3 have the
check plots in rows 4 and 7, and rows 5 and 6, respectively, with no like

control variety adjacencies. For model 1, Martin et al. (2000) show that when

1)

P, is not too large and all other correlations are small (i.e. when the lag 1

within-column correlation is dominant), the A, -efficient designs have as
many row and column adjacencies of new varieties (especially column

adjacencies) and as many control-new variety column adjacencies as possible.

Hence, some row designs are likely to be A, -efficient in some circumstances.

Most of the systematic designs in Figure 11.1 have been chosen for
consideration since theoretical results from Martin e al. (2000) suggest that
they are likely to be efficient for certain dependence structures under model 1;

Such as when pf) is not too large and all other correlations are small, which is

likely to be the case for long narrow plots (see section 9.1.1). When

I'=p/(p,~q), let a column design be a design with all the check plots in g

columns. Some column designs will be A, -efficient when pl(’lg is large and

all other correlations are small (Martin et al., 2000). However, column
designs are not considered here since attention is restricted to square (or near-

Square) plots and long narrow plots, as in Figure 9.1.
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Many other systematic arrangements of the check plots are clearly possible,
including other diagonal designs, knight’s move designs and row designs.
However, examining the efficiency and robustness of a large number of
systematic designs would be complicated and unwieldy. Instead, an
examination of a few representative systematic designs (D; to D3) is carried
out. This should provide some preliminary results, and may suggest other

systematic designs worth investigating later.

The following settings of ¥ = (af R 0'3 , cr;2 s 0':) are considered here:
#,=00,0,1,0,¥,=(h11D.¥ =(b.to b o) and ¥, =(1, 1,0, 1). As
in chapter 10, o] + 07 =1 is assumed without loss of generality. The settings
¥\, ¥,, ¥, and P, are also assumed in Chan et al. (1998), and \¥,, ¥, and
‘¥, were considered in chapter 10. Let ¥,, ¥, and ¥, be called the spatial
models, since ag # 0, and let ¥, be the non-spatial model, since the variance
of the additional spatial component is zero. Note that ¥, has

g ,2 =0, = 0': = 1. To reflect what is likely in practice, the ratio

ol /( oF+ o) is taken as 15, 4 and 1, as in section 10.3.4. The correlation
Parameters ( p,, p,) of the AR(1)*AR(1) process are taken as (3, ), (1, §) and
(%%, 15), as in section 10.3.3.

11.2.1 Example 11.1 under model 1
Model 1 (see section 9.2.1.1) is assumed in this section. There are 10
combinations of the settings of ¥ and (p,, p.), called cases 1 to 10 in Table

11.1. The ratios of the lag 1 column to row correlations, p{./ pfy, are also

given in Table 11.1.
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Table 11.1
Case numbers and the ratio pg,/ p{s for the 10 combinations of the

settings of ¥ and (p, , p,) for Example 11.1 under model 1.

The ratios pg/ p{) are given in parentheses (to 1 decimal place, except

when exact). + indicates that the combination is also considered for

Example 11.2 under model 1

(p.> p.) ?, k7 ¥, ¥,
(%)) 1) +12@3)+]3@) ¢
G |43 t|S5@HtT|6aHt|0M ¥
Get) | 709 8 (7.1) 9 (1.9)

The best designs found for each case, from an extensive search with respect to

the A  -and A, - values, are given in Appendix A3.5. The example being

considered here has a small number of plots, which made it feasible to have a
very large number of runs (100) of the algorithm of Martin & Eccleston
(1997), so that the 20 resulting designs (10 cases and the 2 criteria) are very
likely to be the optimal designs.

Nineteen of the 20 best designs found for the 10 cases have binary columns

(i.e. no variety occurs more than once in any column). The exception is for

case 1 under the A, -criterion. Also, when p{) > p{0 (case 2 and cases 4 to

9) the best designs found do not have check plots in the top or bottom rows.

For the spatial models (cases 1 to 9), check plots in the same column are at
least lag 3 apart (often lag 5 apart). When P = pay» except for the non-

Spatial model (j.e. for cases 1 and 3), the best designs found have many pairs
of the check plots a knight’s move apart. As expected from Martin ef al.

(2000), when p¢) > p® (case 2 and cases 4 to 9), row designs (often Do and
Duy) are the best designs found with respect to the A,,-value. Under the
A, ~criterion, the best designs found have many of the check plots a knight’s

move apart. For the non-spatial model (case 10), the A,, - and A, -best
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designs found have several lag 1 row and column adjacencies of unlike control

varieties (Martin et al., 2000).

Table 11.2 and Table 11.3, respectively, give the values of
{1 -(A,,-efficiency)} x 10,000 and {1 — (A , -efficiency)} x 10,000 for the

systematic designs D, to D;3. This means that for a given case, the best of
these designs has the lowest entry in the corresponding column of Table 11.2
or Table 11.3. For example, the entry 988, for case 1 and design D, in Table
11.2 corresponds to an A, -efficiency of 0.9012. Also, the entry 0 in Table

11.2 and Table 11.3 corresponds to an efficiency of 1.0000.

Table 11.2
{1 -(A,,-efficiency)} x 10,000 for D, to D;; under model 1.
(lowest value in bold)

(p,.0,) C%)) (€% ) (15, 15)
Yy Y, |V, |V, |, | || Y Y | Y
4 9
3

Case No. 2 3 5 6 7 8
péﬂ)/pl‘,‘gl 1 | 23] 1 44| 14] 9 |71 19| 1
D, diagonall 988
D, | designs|| 449] 361 39| 241| 530] 134]1025] 935 ss0] 54
D; finighes]| 138 335 1| 260 562 1271137 953] 546| 54
D, | move || 56| 332 34| 206| 557| 146 1124] 958| 556| 54

D; | iens|™"60[ 342] 49| 191| 554 152]1070| 952] 558] 54

Dy 1463| 477] 525{1004| 717 350|2184| 532| 233]| 249
D, 1314| 415| 508 914 698| 3532057 543| 250} 249
Dy 1234] 184| 387| 340| 184| 80| 478| 40| 24) 249

Do | row |f 965| 72] 358] 177] 150 85| 234| 57| 45| 249
Dyo| designs|| 1218 108] 351| 160] 32 o] 249] 15| 0] 249

Dy, [| 958 0] 324 0 0 5 o] 34 19] 249
Dy, ﬁlos 166| 3891 250 257| 110|1472| 447| 160| 249
D, [1581] 764] 660]1157] 1059] 500]3460]1149] 439] 249
D
to
D;
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Table 11.3
{1 - (A, -efficiency)} x 10,000 for D, to D;; under model 1.

(lowest value in bold)

(p,.p)] 4, 4) ) (45, %)
EAREAEAEAEREEEZ v, [ Y,
4
3

¥,
Case No. ' 1 2 3 5 6 7 8 9 10
Pl i@ 1 |23 | 1 44| 14 9o [ 7110 1

S ———————— _—-———_—.—'_-=
D, di,,gmll 1533] 769| 462 797 484 282]1455| 490| 337] 14
D, |designsft 382 135]| 25| 252 157 31| 988| 272| 178] 14

D, knight's 1971 150 15| 345 226| 49]1177| 316| 187 14

D, | move || 24] 97] 12| 232] 185] 42|1132] 309] 190 14

D, |designs ™71 107 25| 204| 175]| 43| 1057| 294 187] 14

Ds 3540| 2476 | 3296 | 2062 | 1813 | 2779 | 3130 | 1696 | 2842 | 3087
D, 2411} 14342120 1487 | 1151 17381 2705| 995]| 1702 | 1931
Dy 3058|2073 | 3118 1210 1251 | 2552| 1358 | 1171 | 2674 | 3087

Dy | row ||1666| 881]1868| 467| 488]1445] 721 404 [ 1486] 1931

Dyo| designs [ 2865 1912 3047] 840] 1027] 2461 623 1004 ] 2614 | 3087

Dy, [1431] eo1[1780] 76| 244[1333] o[ 239[1414] 1931
D, | 1646| 877]1852| 322] 467]1410] 1122 522 1487|1931
Dy 2749] 1781 [ 2269 1507] 1337] 1782] 3093 ] 1142] 1685] 1931

Over the 10 cases considered, the A, -efficiencies of the systematic designs,

D to Dy3, range from 0.6540 (the entry 3460 for Dy3 in Table 11.2) to 1. For
the spatial models, the A, -worst design is Dy; in 8 of 9 cases. This is

Perhaps not surprising given the A__-inefficient design presented in Figure
10.5 in section 10.4. If Dy; is excluded, the A, -efficiencies range from

0.7816 (the entry 2184 in Table 11.2) to 1.

For the spatial models, Table 11.4 lists the best design from D; to Dy3 under

model 1. The minimum A, - and A, - efficiencies of the best of these

designs, over the 10 cases, are 0.9944 and 0.9761, respectively.
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Table 11.4
Best systematic designs from D; to D3 under model 1.
Case numbers in parentheses. Spatial models only.

\Pl \}’2 \IIS
A.- | A-| A-] A.- | A.- | A-

nn ns nn ns nn

(p,, p.)

&b D, D, () D, Du (2) D, D; (3)

('}', %) Du D“ (4) Dz Dll (5) D2 DlO (6)

(TIGa 1%) Du D11 (7) Du DIO (8) D2 DIO (9)

As expected from Martin et al. (2000), when p} / p{d > 1, the A, -best
design from D, to Dy; is a row design (either Do or Dy;). For cases 1 and 3,
where pm / p(l) =1 (spatial models), a knight’s move design (D; or D,) is the
A, -best design from D, to D;;.

In this paragraph, comparisons are among all 13 designs D, to D;3. The A, -

efficiencies for these designs range from 0.6460 (the entry 3540 in Table 11.3)
to 1. The A, -worst design is the row design Dg. For the spatial models, the

= “best designs are D, or Dy when pf} / p{3 2.3 (cases 1,2, 3, 6 and 9).
Design Dy, is the A,, -best design for many of the other cases (cases 4, 7 and
8). Note that for case 5, where p{} / p{) = 4.4, the A, -best design is D,.

Over the 10 cases, the designs D, to Ds, have reasonably high efficiencies with
Tespect to both the A,,- and A, - values. The A, - efficiencies for D to Ds

range from 0.8863 to 0.9999, with median 0.9667, and the A, -efficiencies
range from 0.8823 to 0.9988, with median 0.9824. The row designs, Dg to

Dy, have reasonably high A, - efficiency, but can have low A -efficiencies
over the 10 cases. The A, - efficiencies for Dg to D, range from 0.7816 to
1.0000, with median 0.9751, and the A , -efficiencies range from 0.6460 to
1.0000, with median 0.8344.
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11.2.1.1 Estimated selection probabilities
Recall from the simulation studies in section 10.3 that both the A, -and A, -

values correlate well with selection probabilities, with some evidence to

suggest that the correlation is a little better for the A, -values. The estimated

selection probabilities for the systematic designs, D, to D3, are examined here

to see if they provide more evidence to favour the A, -criterion.

Estimates of 7, ,, (#,,,) were obtained as described in section 10.2, from

N =10,000 trials of simulated yields for designs D; to D;3, over the 10 cases.
The 7?2.10 -values are given in Table 11.5. The estimated standard error of the

7310 -values is approximately 0.005 for most cases, which gives an
approximate 95% confidence interval of 7,,,+0.01 for each 7, ;4 -value. For
each case, the highest 7, ,,-values (these are values which are greater than the

highest value (to 3 decimal places) minus 0.005) are given in bold in Table
11.5. Note that Dy3 has the lowest (or near to the lowest) 7410 -value for most

cases,

285



Table 11.5
Estimated 7310 (x1,000) for Dy to D;; under model 1.

(highest values in bold)

(8,.p.) . ) (4 %)
YIwv |9 | Y, Y, |9 Y| | Y,
Case No.|| 1 2 3 5 6 7
por/pafl 1] 23] 1 a4 | 14] 9
D1 |disgonall[ 561 [ 452 ] 419 | 563 | 469 | 404 | 834 | 575 | 445 | 338
D, |designsfl 577 [ 461 | 411 [ 577 | 477 | 401 | 837 | 562 | 440 | 338
Ds |inignes|] 574 | 462 | 413 | 577 | 467 | 400 | 833 | 582 | 453 | 334

D, | move || 584 [ 461 | 400 | 569 | 468 | 399 | 829 | 578 | 447 | 328
D; | %5i8%|"571 | 466 | 417 | 574 | 472 | 403 | 830 | 584 | 452 | 324

W ]+

D 338 | 465 | 406 | 533 | 476 | 405 | 802 | 590 | 459 | 330
Dy | Il 543 | 461 [ 402 | 547 | 462 | 405 | 798 | 580 | 457 | 326
_DL 557 | 463 | 400 | 558 | 465 | 404 | 838 | 602 | 439 | 320

Do | row || 556 | 466 | 406 | 574 | 467 [ 409 | 845 [ 585 | 440 | 326
Dyg desisnsl 554 | 476 | 401 | 564 | 471 | 410 | 847 | 602 | 459 | 319
Dy, !?54 479 | 405 | 577 | 476 | 409 | 849 | 599 | 458 | 331
Dy, 565 { 463 | 397 | 571 | 467 | 400 | 825 | 567 | 446 | 316
Dy, | 540 | 449 | 382 | 544 | 457 | 400 | 760 | 558 | 446 | 324

Consider the pair of row designs (D,,,,, Dj,.5) for i =1,2,3, where each pair

has the same check plots (i.e. the pairs (Ds, D7), (D3, Ds), (D10, Di1)). Let

D;..4 be called a row like-control design since like control variety adjacencies
in rows are maximised, and let D,,,;, which has no like control variety
adjacencies, be called a row unlike-control design. Design D,,,, has a much
lower A, -efficiency than design D,,,, but both designs have similar

A, -efficiencies. However, note that for cases 1 to 5 and case 7, the
differences in the A, -efficiencies for D,,,, and D,,,; (i =1,2,3) have the

Same sign as the differences in the A, -efficiencies for these designs.
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Let 7, ,0(D,) be the selection probability for design D,. Over the designs
(Dy1045 Dys) (§=1,2,3), if the A, -value correlates well with 7, ,, then
Z210(Dy04) = 7310(D,,,5) would be expected, and if the A, -value correlates
well with 7, ,, then 7310(Daihq) < 7310(D,y,s) Would be expected. For cases
1t0 9 and the 3 pairs of designs (D,,,,, D,,s), the 27 differences
23.10(D314) - 310(Dy,,s) are given in Table 11.6. These differences are very

small, ranging from -0.016 to 0.017, with median 0.001; and are negative in
only 14 of the 27 combinations. This suggests that the A  -value is not, for

these designs, well associated with the selection probabilities.

Table 11.6

Differences 7, ,,(D,,,,) - 7310(Daips) (i=1,2,3) under model 1.

(o, p.) &, 4 D (15, )

2 BEAEREAEREAEAEAREAEEERE2
Case No. 1 2 3 4 5 6 7 8 9
pr/p®l 1 [ 23 [ 1 3 |44 | 14| 9 | 71| 19

| (Ds, D7) |-0.004 T0.004 | 0.004 |-0.014 | 0.014 [ 0.000 ] 0.004 | 0.010 | 0.002

| (D, Dg) 10.001 [-0.003 [-0.006 |-0.016 |-0.002 -0.005 |-0.008 | 0.017 |-0.001

(D10, Dyy) | 0.000 ]-0.003 |-0.004 |-0.014 |-0.005 | 0.001 |-0.003 | 0.003 | 0.001

A comparison of 7,40 for the 6 cases when the best designs from D, to D3
under the A, -and A, -criteria are different (cases 2, 3, 5, 6, 8 and 9) (see
Table 11.4), shows that for all cases except case 5, 7,,, is greater for the

A, -best design; although the difference is small for cases 6 and 8. Note also
that the designs with the highest 7, ,, -values (marked in bold in Table 11.5)
include the A, -best design from D; to D3 in 8 out of 9 cases, thus providing
more evidence to support the use of the A, -criterion rather than the

A, -criterion in this section.
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Now consider case 10 (¥, ) over designs D, to Dy;. There is not a large
difference in the A,,-efficiencies (either 0.9946 or 0.9751), but the
A, -efficiencies vary a great deal; they are either 0.9986 (for D, to Ds),

0.8069 (for row unlike control designs) or 0.6913 (for row like control
designs). The 7510 -values are fairly similar (ranging from 0.316 to 0.338)

suggesting that there is no evidence that the selection probabilities for the row
like control designs, Dg, Dg and Dy, are different to the selection probabilities
for the other row designs.

In section 11.2.1.2, A, -efficiency is considered, unless otherwise stated.

11.2.1.2 An examination of the A, -efficiencies for Dy to Dy

under model 1
Now consider the A, -efficiencies from Table 11.2 in more detail, beginning
with the spatial models. Of the 2 diagonal designs, D, is better than D, over
all 9 cases (under both criteria); the difference in the efficiencies between
these two designs ranges from 0.013 to 0.054. The 3 knight’s move designs,
D; to Dy, have similar efficiencies; the difference in the efﬁcien‘cies between
the best and worst knight’s move designs ranges from 0.0006 to 0.0083. For
the row designs, as stated above, there is little difference in the efficiencies
between designs with row like-control and row unlike-control designs. As
might be expected (see section 10.4), since check plots are close together,
design D3 has efficiency lower than the best from the other row designs.
Clearly D,y and D, are the best from the row designs, Dg to D3, although in
Some cases ('¥,, for example) the efficiency is similar for Dg and Dy. For the
non-spatial model (¥, ), D, to Ds are equally the best from D, to D3, under

both criteria, Also, row designs, D¢ to D3, have a relative A,,-efficiency of

0.98 compared to D, to D,
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For the cases considered here, Table 11.2 (foot) lists the A, -best and

near-best designs from D; to D;3. A design is deemed to be best/near-best if it
has efficiency greater than or equal to 99.5% of the efficiency of the best
design from D; to Dy;. This suggests that either diagonal or knight’s move

designs be used when pf; / p{J is near 1, and row designs be used for

P! p{{ greater than about 2.

As well as identifying good systematic designs from D to D;; for specific
situations, it is useful to consider the robustness of the designs. Assume that

there is no prior information on the variance components, other than that

o ¢2 >0, and that p,, p, >0 and the ratio p,/ p, depends mainly on the plot
size ratio. Then for square plots and long thin plots p. = p, and

P. > p,, respectively, are likely. Over the 10 cases considered, all designs

from D; to D,, are reasonably robust with efficiency greater than 0.78.

The robustness of designs D, to D3 is considered for six categories of prior
information about the plot size ratio. These six categories, called categories
(a) to (f) are listed in Table 11.7. Since it is assumed that p,/p, depends
mainly on the plot size ratio, an approximate range for p,/ p,, corresponding
to each of the categories is also given in Table 11.7. Note that over the 6 |

Categories, these ranges for p,/ p, are not exclusive.

289



Table 11.7
Categories for prior information on plot size ratio, approximate ranges for
p.! p,, and setting(s) of ( p, , p,) (and corresponding cases) used to

determine if a design is robust.

. . : Cases Cases
Category Prior mfc.)rmatl.on Approximate (p,. P for | for models
on plot size ratio range for p./p, |setting(s)| model 1 2 and 3
Square or Lo,
a ¥<p./p,S2| (4, 1to3 [11to013,
@ near-square plots P! P K2 2110 23
4 t0 6,
(b) | Long thin plots 2€p./1p, 85| 4% | 4t06 |14t016,
[ 24 t0 26
7t09,
(¢) | Very long thin plots PP 25| (&%) | 709 |17t019,
27t029
1to6
Not very long 4 ), 3
(d s ¥<p /p, S5 1to6 |11to 16,
- ) thin plots Pe! P &+ 3 21 to 26
%) oo,
(e) | Not square plots plp, 22|\ ﬁ; 4t09 |14t019,
(b, %) 24 t0 29
Little prior &b, 1to9,
® information on p.lp 2t | &3, 1to9 (11to19,
plot shape (%, %) 21t029.

For each category, a design D; (i = 1,...,13) is deemed to be robust if the

minimum and median A, -efficiencies (over the cases for which p,/p, are

included in the corresponding range for p,/p, ) are greater than m, and m,,

Tespectively, where m, and m, are near 1. The designs (from D, to D3)

deemed to be robust (with respect to A, -efficiency) for 3 settings of m,, m,

are given in Table 11.8. For example, for category (d), the cases included in

the range 4 < p.! p, <5 are cases 1to 6. Over these cases, D, has minimum
and median A, -efficiencies of 0.9470 and 0.9699, respectively. Hence, for
Category (d), D; is deemed to be robust for m, = 0.85 and m, = 0.95.
However, D, is not deemed to be robust for category (d) when m, = 0.9 and

m, =0.98 (see Table 11.8). Note that for each category, the range for p,/p,
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given in Table 11.7 is approximate, since the cases considered do not have

p.! p, at the upper and lower values of the range. For example, for category
), (45 p,/p, <5), p./ p, is equal to either 1 (cases 1 to 3) or 3 (cases 4 to

6) for the cases considered. Also, for some categories ((a), (b) and (c)), the

cases considered have only one setting of p,/p, .

For the spatial models, the most robust (m, =0.9 and m, =0.99) designs, for

Square or near-square plots (category (a)), are D, and Ds, otherwise (categories

(b) to (f)) Dy or Dy, are the most robust.

Table 11.8
Robustness of D; to Dy; (for o7 >0) under model 1.
Category Prior h1f9rmati9n m =085 | m =09 m =0.9
on plot size ratio m, =095 | m, =098 | m, =0.99
Square or D; to Ds,
k(a) near-square plots Dg to Dys D to D D, to Ds
. D1 to Ds, D59
k(b) Long thin plots DstoDyy | Dy to Dy Dy to Dy;
© Very long thin plots| Dgto D;; | Dg to Dy, Dg to Dy,
@ Not very long D,toDs, |DjtoDs, D,
thin plots DstoD;; | DstoDyy
(¢) | Not square plots DstoDy; |DgtoDyy | DyotoDyy
Little prior
(® | information on gz :g gs’ Dgto Dy | Dn
| plot shape i 12

11.2.2  Example 11.1 under model 2

For model 2 (see section 9.2.1.2), there are 30 combinations of the settings for

¥, (p,, p.)and o?. These 30 combinations are called cases 1 to 30 in Table
11.9,
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Table 11.9
Case numbers for the 30 combinations of the settings of ¥, (p,,p,)and o}

for models 2 and 3. + indicates that the combination is also considered
for Example 11.2 under model 3.

O': (pr’pc) \Pl \Pz lIJ:, lP4

Gy |1 T2 3 f

s G |4 t[S 6 1| 10f
(1) | 7 8 9
L |11 [12 |13

| &,y |14 [15 |16 | 20

& |17 |18 |19
G |21 1] 22 23 ¢
1 [ 4,3 [241]25 [26t]30¢

(%) | 27 [28 [ 29

The A, -and A, - best designs found for the 30 cases are listed in Appendix
A3.6. For all except 3 of the 30 cases, the A,,-best designs found are one of

the systematic designs given in Figure 11.1, usually Ds. Also, note that the
A, -best design found for case 13 is a column design. Most of the A, -best

designs found have many pairs of check plots a knight’s move apart.
However, for ¥, with o =+ (cases 1, 4 and 7), the A, -best designs found

have many like control variety diagonal adjacencies, with like control varieties
clustered together away from the top and bottom edge plots. For the non-

spatial model ('¥,), any design with one check plot in each row and with 2
different control varieties in each column (such as D, to Ds) seems to be

A, -optimal for o2 =4, 4, 1, and A, -optimal for o = 1. Any design with
the check plots in 2 rows and with 2 different control varieties in each column

(such as D to Dy3) seems to be A, -optimal for o2 = #, 4.
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The A,, - and A, - efficiencies of D, to Dy are given in Table 11.10 and

Table 11.11, respectively. All these designs have reasonably high

A,, -efficiencies (greater than 0.82), but the A, -efficiencies are, in some

Cases, very low (less than 0.3). Similarly to model 1, D; to Ds have high

efficiencies over all the cases and under both criteria. The minimum, median

and maximum A, -efficiencies (A, -efficiencies) for D, to Ds over all 30

Cases are 0.9490 (0.8529), 0.9942 (0.9761) and 1.0000 (1.0000), respectively.
The row designs, Dg to D3, can have very high A -efficiencies (median

A,,-efficiency of 0.9947 over all 30 cases) and very low A, -efficiencies

(median A, -efficiency of 0.6527).

Table 11.10

{1-(A,,-efficiency)} x 10,000 for D, to D;3 under model 2.
(lowest value in bold)

Table 11.10a o2 =4

(p,sp,) €2%)) 6 %)) (i, )
M R EAERAEAEREAEAEAEARAN?
L CaseNoJl 1 [ 2 | 3] 41 5 1 61 71 81 9 | 1o
Dy |diagonall] 114] 48] 30 114] 55| 35] 361] 84] 46 6
D, |designsll 73] 36| 24| 94| 48] 32] 334] 80| 45 6
Ds | nignesll _74] 39] 26| 91| 49 33] 336] 82| 46 6
Dy | move | 79| 37 25| 94 49| 33] 331] 82| 46 6
D |designs 59137 24| 94| 49| 33| 334| 82| 46 6
Ds | o] o 0 0 o] 0 0 0 0 0
D, I_10f 2 1 6 3] 2] 11 9 5 0
Ds | 6o 321 16| 105| 44| 24| 351 62| 29 0
35| 18] 115 so| 28| 368] 73] 34 0
351 19] 106] 49| 28) 412] 84| 41 0
38 21] 11s] s4| 32| 424| 91| 45 0
381 21| 113] s3] 31] 427] 95| 48 0
39 32| 540 99f 50 0

D¢ | Ds
& | & |ALL|ALL

D7 D7
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Table 11.10b o2 =14

o) @D ) (#, 1)
¥,
12

Cle|oie|c|o|o|elbn|aln]aln

164

4!

Ds, to & & to to & & | ALL
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Table 11.10c o} =1

(p,,p,) (625 )) %)) (15, 15)
' B R R R EA AR AEAREAR]
CaseNo.|| 21 | 22 [ 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30
Dy |diagonalll 221{ 95| 39| 139] 151 56] s10] 270 72] o
D, |designs|| 24| 13| o] 44 99| 27] 420] 228] s3] o
Ds |nignesl| _62] 36] 12| 71] 116] 37| 472] 237] 56| o
Dy {move | 28] 25 8| 48| 112| 36| 448] 239{ 58] 0
D; | dsiens|™38] 26| 8| 48| 113| 37| 440] 239] s8] o
Ds Ezn 2] 30] 1] of o] 462 o] of 24
D, 185{ of 33] of 1] 11{ 434 33| 21| 24
Dy [ 213] 45| 48] so| s3] 24| s1] 48] 33] 24
Do | row || 208f 41| s2| 49| 71 42] o 89| s8] 24
Dyo|designsl] 216] 63] 60] 81| 92 48] 259] 146] 82| 24
Dy 212] 60| 64| 80| 108] 64| 228| 179 101 24
Dy, | 214] 78| 74| 94| 133] 78| 794 286] 149| 24
Dy, 375 171] 124 324| 246| 142]1785| 455| 220 24
ALL
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Table 11.11
{1 - (A, -efficiency)} x 10,000 for D, to D;3 under model 2

(lowest value in bold)
Table 11.11a o2 =4

(pr’pc)

&3

.3

(5, 15)

Y Y,

¥,

¥,

o| €

Case No. 1

diagonal" 379
designs || 1471

2
186

235

TR

297

o &

168

~

294

8
180

92| o

10

]

601

525

863

700

376

554

509

508

522

751

676

322

563

539

move || 1310

494

408

838

551

384

490

462

designs | 7301

465

363

819

497

362

458

437

(=1 -2 K] k-]

D12

{| 6606

6314

7556

3994

7188

2639

5193

7430

7659

5137

4754

6258

2930

3863

2189

3832

6162

6428

5711

5837

7433

2301

7080

621

4342

7368

7659

row

4007

6006

1029

5630

241

3305

6032

6428

3823
desigas || 5706

5797

7405

2286

7044

553

4702

7333

7659

3934

5948

1007

5565

155

3145

5981

6428

[ 3812
3808

3953

5973

1003

5592

144

3170

5985

6428

||546l

4980

6348

2704

5823

1260

3424

6041

6428

Table 11.11b o2 =%

(o, 0)

6% ))

& 3)

i 2

¥,

Case No.|| 11

D,
D,

diagonall| 314

12
240

13
227

14
225

15

170

16
130

17

20

363

designs L372

226

264

259

302

349

241

256

D; |
D,

knight's)| 327

237

305

212

296

368

269

284

move 369

185

206

252

247

285

253

241

designs

168

179

249

227

258

248

230

Cloeio|ele

designs IP567
Dy 1884

~—JL‘364

4507

4522

6067

2294

3362

5600

1885

5807

6426

2980

2995

4529

1499

2198

4120

1538

4339

4961

|| 3594

4049

5913

1187

2921

5474

471

5733

6426

row || 1927

2401

4272

423

1668

3904

189

4215

4961

3999

5876

1128

2840

5431

313

5692

6426

2328

4210

351

1570

3839

36

4162

4961

1872

2349

4237

337

1593

3861

211

4164

4961

3327

3229

4637

1421

2147

4088

1264

4223

4961
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Table 11.11c o2 =1
o) @9 &, 3 (&, )

R R R AR EAEAREAR?
CaseNo.Jl 21 |22 1237 [ 24 [ 25 | 26 | 27 | 28 | 29 | 30
Dy |diagonall] 483] 277] 226 305] 173 121] s39] 83] 49 0
D, | designsf 207( 105| 171| 172] 171 228 340 124] 179 0
Ds |inignes|| 226] 146 222] 170] 192] 262] 412] 155] 205[ 0
Dy | move || 204] 81| 131] 166] 145[ 193] 375] 126] 175 0
D, | designs 730 69| 110] 164 133| 174]| 363| 118] 167 0
s

Ds 3872|3773 | 5280 1911 ] 2687 ] 47821 1999 | 2667 | 5016 | 5668
D, 2453|2360 | 3739 1220 1673 | 3342 ] 1648 1698 | 3572 ] 4165
Dy ([ 3056{ 3341|5120 1005 | 2304 | 4655 | 5941 2393 4938 5668

Do [ row || 1548] 1850 3496 | 346] 1244| 3147] 255[ 1389] 3456 | 4165
Dyo| designs | 3004 [ 3283 5081 912]2227[ 4612 310{ 2296 4900] 5668
Dy 14751 1775] 3436 243 1156 | 3087 0| 1292 3408 ] 4165
& 1477) 1806 | 3464 | 244 1183 ) 3108] 406| 1334 3415] 4165
Dy [12797] 2606 | 3855 | 1215] 1682 3329 ] 1647 | 1559 | 3483 | 4165

11.2.2.1 Estimated selection probabilities

As for model 1, there is little difference in the A, -efficiencies between row

like-control and row unlike-control designs, however, row like-control designs

have much lower A, -efficiency. Hence, the differences in estimated
selection probabilities, 7510 for pairs of row designs were compared as in

section 11.2.1.1. These 81 differences (27 cases and 3 pairs of designs) are
Vvery small for the spatial models (\¥,, ¥, and ¥,). Their minimum, median

and maximum are -0.0167, ~0.0007 and 0.0159, respectively, and only 45 of

them are less than zero. This indicates that the A, -value may not, for these

designs, be well associated with the selection probabilities.

Note that for many cases the differences in the A , -efficiencies for D,,,, and
Dyus (i=1,2,3) have opposite signs to the differences in the A, -efficiencies

for these designs (cf, model D).
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Now consider the non-spatial model (¥,). Here, designs D to D;3 have very
low A, -efficiency (less than 0.58) but these designs have A, - efficiency
equal to or very near to the A, - efficiency of the best design found. The
diagonal and knight’s move designs (D; to Ds) have A, -efficiency equal to
that of the A, -best designs found. The row like-control designs have equal
A,, -efficiencies, as do the row unlike-control designs; the latter group being
more A  -efficient than the former. If, over D; to Dy, the A, -values
correlate well with the selection probabilities, 7, ,,, then x,,, for D, to Ds
should be greater than 7,,, for both these groups of row designs. Also, if,
over D; to Dy3, the A, -values correlate well with 7, ,, then all designs

should have very similar Zyt0-

For ¥, and a given setting of o2, let 7, be the average of the estimated
selection probabilities for D, to Ds. Also, let 7 be the average of the

estimated selection probabilities for D, Ds and D, (row like control designs),

and let 77, be the average of the estimated selection probabilities for D;, Dy,
Di1, D1z and D3 (row unlike control designs). The differences, 7, — 7,
(7~ 7)), are 0.005 (0.006) , 0.000 (0.006) and 0.012 (0.012), for

oy =1, %+and 1, respectively. The estimated standard errors of these

differences are approximately 0.003 for o2 = 5, and 0.005 for o2 =4, 1.
This suggests that the A _, -criterion may be better for '¥,, but the evidence is

not strong enough to not use the A, - criterion.

In section 11.2.2.2, only the A, -efficiency is considered.
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11.2.2.2 An examination of the A, -efficiencies for D, to Dy;

under model 2
Now consider the A, -efficiencies of designs D; to D;3 in more detail. For
the spatial models, D, to Dy, are highly efficient (A, -efficiency greater than

0.949). As for model 1, D, is slightly better than D, for all 27 cases. There is
little difference between the knight’s move designs, D; to Ds; the difference in
the A  -efficiency between the best and worst knight’s move designs is less

than 0.0034. The best and near-best designs with respect to the A, -values
are given in Table 11.10. Designs Dg and D; are best or near-best for all cases
expect for cases 21 and 27, which both have ¥, and o} = 1. Note that for
some cases, such as ¥, when o2 =1y, and ‘¥, for all 3 settings of o, all of

D, to Dy; are deemed to be near-best.

In 24 of the 30 cases, the best and near-best designs from D, to Dy; include
those with the highest estimated 7, ,,. For all 30 cases the best and near-best

designs have at least the third highest estimated 7310~ This supports the use of

the A, -criterion in this section.

The robustness of the designs D, to D3 is considered as in section 11.2.1.2,
For the settings (my,m,) = (0.85, 0.95) and (0.9, 0.98) used in Table 11.8, all

Or nearly all the designs from D; to Dy3 are deemed to be robust. Higher
values of (m,,m, ) are used to obtain the robust designs listed in Table 11.12.

For the spatial models, designs D¢ and D, are the most robust,

(m,,m,)=(0.95, 0.9975), over the categories considered.
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Table 11.12
Robustness of D; to Dy; (for o;z >0) under model 2.

Category Prior information m = 0.9 m = 0.95 m, = 0.95

on plot size ratio m, =0.99 | m, =0.995 | m, =0.9975
Square or

@ ncc:lar-square plots DitoDi; | Dyto Dy

(b) Long thin plots D,toDy; | Ds& Dy

(C) Very long thin plots | Dg to De D¢ & D,

@ gf; ;‘fgslmg D toDys |DyDstoDg | Ds& Dy

(e) Not square plots DytoDyy | Ds & Dy
Little prior

(® | information on D, toD;; | DgtoDg
plot shape

11.2.3 Example 11.1 under model 3

The results for model 3 (see section 9.2.1.3) are very similar to those obtained
for model 2 since the best designs found are the same for 49 out of 60
combinations (30 cases and 2 criteria). For the spatial models, D or one of

the other systematic designs from D, to Dy; is the A, -best design found for

56 of these 60 combinations.

For the non-spatial model, any design with all the check plots in one column
seems to be A,, -optimal for g2 = 4. For o7 =4, 1, any design with one
check plot in each row and with two different control varieties in each column

seems to be A,, -optimal.

The efficiencies of D, to D,; are similar to those for model 2. As in section

11.2.2, all these designs are A, -efficient (A, -efficiency greater than 0.82).
The A, -efficiencies are lower, but not as low as for model 2 (A, -efficiency

greater than 0.65). A comparison of the estimated selection probabilities,

3,105 @S in section 11.2.2.1, gives similar results.
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Henceforth in this section, A, -efficiencies will be considered. Note that for

the spatial models, the A, -best design from D; to D;3 had a slightly higher

7, 10-Value than the A, -best design in 24 out of 27 cases (the difference in

the 7, ,,-values ranging from 0.003 to 0.037), providing more evidence to

support the use of the A, -values here.

As noted in section 11.2.2.2, designs D, to Dy; have high A -efficiencies

(greater than 0.955), D, is slightly better than Dy, and the knight’s move
designs (D to Ds) have very similar efficiencies. The best and near-best

designs are listed in Table 11.13. Designs Dg and D, are best or near-best for

most of the cases expect for cases 21 and 27 (as in section 11.2.2.2). The best

and near-best designs from D, to Dy; include the design with the highest

estimated 7, ,, in 25 of the 30 cases, and at least the third highest estimated

”2,10 in 29 cases.

Table 11.13
Best and near-best designs from D, to D;3 under model 3.
(with respect to the A, -efficiency) (case numbers in parentheses)

o? (¢%)) (¢ 2%) (T, %)

’ lPl \Ilz \Ps \Pl \Pz \Ps \IJI lI’2 \YJ \PA
D6 D5 Dl D6 D6
& | ALL | ALL & to | ALL & & | ALL | ALL

i Dy, D; | Do D, D,

I O 20 B T I <) I T - I () T ) T O ) I B ) I I ()
D, |D,, | D, | Ds | Ds | Ds | Ds | Ds | Ds
to Ds, to & & to to & & | ALL

'!. D7 D7 D12 D7 D7 Dg D9 D7 D7

1 an jay | @y a9 | as | 16 | an | 4 | a9 | 0
D2 Dz D1 D5 D5 D1 Ds Ds Dz

1 to to to to & to & to to ALL
D; Dy | D; | D Dy [ Do | Dy | Dg | Dg

L 1@ @ | ey e || @) ey | @8] 2| G0
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Using the same settings of ( m,,m,) as in Table 11.12, the robust designs,
listed in Table 11.14, are very similar to those for model 2, with D and D,

being the most robust.

Table 11.14
Robustness of D, to Dy; (for a? >0) under model 3.

Prior information m, = 0.9 m, = 0.95 m, = 0.95

Category on plot size ratio m, =0.99 | my, =0.995 | m, =0.9975

() Square or

D, toD;; D, to Dy
near-square plots
(b) | Long thin plots D,toDy; [Ds& Dy

(¢) | Very long thin plots| Dsto Dy | Ds & D7

@ | ;fgsl‘mg DitoDy; |DsDstoDy | Ds&Dy
(&) __| Not square plots D, to Dy | Dgto Dy

Little prior
® information on D;toD;; | DstoDs

plot shape

11.3 Systematic designs for Example 11.2

Example 11.2 is investigated in this section. This example has a 20x 8 array
with ¢=5 unequally replicated control varieties, such that r = (6,6,6,6,2)'. It
has a larger array of plots and more control varieties than Example 11.1. The

Systematic designs considered here are displayed in Figure 11.2.

As for Example 11.1, some diagonal designs are considered here. The
efficiency of diagonal designs is of particular interest, since designs of this
type are used at NSW Agriculture. Designs Dy, to D;g are diagonal designs.
Of these diagonal designs, D4 and D5 have no like control variety diagonal
adjacencies, whereas for Dy and D,; the number of like control variety
diagonal adjacencies, for each of control varieties 1 to 4, is eight. For Dy
each of these control varieties is in a separate diagonal so that the number of

like control variety diagonal adjacencies is ten.

302



Figure 11.2 Some systematic designs for Example 11.2
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For Example 11.2 it is not possible to have row designs, such as D, to D3,
which have all the check plots in a few rows with no new varieties in these
rows; although designs with 24 of the check plots in 3 rows (with no new
varieties in these rows), and 2 check plots placed elsewhere, are possible.
However, these designs have not been investigated here since some row
designs were considered in some detail for Example 11.1. Some other types
of systematic arrangements of the check plots (such as ‘diagonal pair’ and
‘V-shape® designs) are examined here instead. Designs D;9 and Do have the
control varieties in diagonal pairs, with unlike and like pairs, respectively. For
D, the check plots are in “V-shapes’, with no like control variety diagonal

adjacencies.

Knight’s move designs are also examined here, since for Example 11.1 the
knight’s move designs, D to Ds, had high efficiencies under both criteria and
over many of the cases considered. Designs D,; to D5 are knight’s move
designs, with the check plots at least lag (1,2) apart for D;; and Dy;, and at
least lag (2,1) apart for Dy4 and Ds.

Clearly, many more systematic designs are possible than those in Figure 11.2,
but in order to avoid a large and complicated investigation only designs D4 to

Dys are considered here.

It is not clear how the positions of the 2 check plots containing control variety
5 should be chosen, since it is only replicated twice (the other 4 control
varieties are each replicated 6 times). As a preliminary investigation, to see if
the positions of the check plots containing control variety 5 have an N
appreciable effect on the efficiency, these check plots are placed either on
Opposite corner plots of the array, or in the inner part of the array. Designs
Dy, Dys, Dy, and D4 have control variety 5 on opposite corner plots. For the

other designs, control variety 5 is allocated to plots in the inner part of the
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array. A comparison of the efficiencies for these two types of positions for

control variety 5, may indicate better positions for this control variety.

Note that columns are binary for all designs except D, s, which has non-binary

edge columns.

Finding optimal or near-optimal designs will take longer here than for
Example 11.1 since the number of plots in the array and the number of check
Plots is over 3 and 2} times greater, respectively, than for Example 11.1.
Hence, fewer runs are carried out in the algorithm of Martin & Eccleston
(1997) than for Example 11.1. This means that the best designs found here are
less likely, than in Example 11.1, to be optimal designs.

Since the results were similar for models 2 and 3 in section 11.2, only models
1 and 3 are considered here. For model 1, the 4 settings of ¥ assumed in

section 11.2 are considered, and for model 3, ¥ was taken as ¥, ¥, and ¥,
with o2= g and 1. For both models, (p,>p.)=(, ¥) and (#, %) are assumed.

Recall that ¥, =(0,0,1,0), ¥, = (1§ 4%, ¥, = (¥, I I, %) and
Y,=(1,1,0,1).

113.1 Example 11.2 under model 1

For model 1 (see section 9.2.1.1), the best designs found under the two criteria
for the 7 combinations of settings of (p,, p,) and ¥, are given in Appendix
A3.7. These designs have similar properties to the best designs found for

Example 11.1. For ease of reference, the case numbers marked by t in Table
11.1 (in section 11.2.1) are used here. Recall that for each case, p{)/ p® is

also given in Table 11.1.
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Many of the best designs found have binary columns, except for ¥, (cases 1
and 4) under both criteria, and for ¥, (case 10) under the A, -criterion. The
A,,-best designs found for cases 2, 4 and 5, have the check plots clustered in
a few rows. For these 3 cases the lag 1 within-column correlation is dominant
(Martin et al., 2000) with p{2/ p{o greater than 2. For case 5, where

pé’l) / pf'o) ~4.4, only 5 of the 20 rows contain check plots in the best design

found. For the cases with low pg./ o7, the check plots in the best designs

found tend to be at least a knight’s move apart as in Example 11.1.

All the A, -best designs found for the spatial models contain the arrangement

¢ S
5 ¢

P

where ¢, # ¢, are two of the control varieties 1, 2, 3 or 4. Also, note that the
A,,-best design found for case 3 has many diagonal pair adjacencies of unlike
control varieties, as in D;5. For the non-spatial model ('¥,), the column lag

between check plots ranges from 1 to 15, suggesting that this is not an
important factor determining efficiency (as in Example 11.1). Note also that

the best designs found for ¥, have some diagonal pair adjacencies of both like

and unlike control varieties.

In this paragraph, comparisons are among all 12 designs D14 to D,s.
Table 11.15 and Table 11.16, respectively, give the values of
{1-(A,,-efficiency)} x 10,000 and {1 — (A, -efficiency)} x 10,000 for these

designs. The A, -and A -efficiencies are highly correlated (correlation
coefficient greater than 0.93 for the 7 cases), with the A, -best and A, -best

designs being the same design in 3 out of 7 cases. A comparison of the

estimated selection probabilities, 7, ,s, for the 4 cases when the A, -best and

A, -best designs are different, suggests that there is insufficient evidence of a
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difference in 7, ,; between the A, -best and A, -best designs. Hence, it is
assumed that both A, - and A, - values are good associated measurements of
the selection probabilities, and for simplicity, the A, -efficiency is mostly
considered henceforth in this section. However, if row like-control and row
unlike-contro! designs had been considered for Example 11.2, as in Example
11.1, then an examination of the estimated 74 4 for these row designs may
have suggested that, for some row designs, A, - values are not well associated

with 7 7,45+

Table 11.15
{1-(A,,-efficiency)} x 10,000 for Dy4 to Dys under model 1.

(lowest value in bold)

(p,:p.) ) )
vl ¥ | W |V, | ¥, ] V|9 | Y,
Pl PO 1 ] 23 1 3 | 44 | 14 ] 1
L_CaseNo.|| 1 2 3 2 5 6 | 10
Dy 528 | 191 94 | 246 | 235 80 | 146
Dis| l 514 | 294 | 191 | 264 | 346 | 172 | 295
D diagonal
Dis| ‘sesigns || 872 | 402 | 235 | 389 | 347 | 179 | 142
D,y 920 | 509 | 453 | 411 | 429 | 353 | 394

18 Il 982 ] 643 | 386 | 464 | s91 | 338 | 336

D

Do} diagonal F259 204 | 119 | 208 | 322 | 119 | 165
Dyg|  pairs 447 | 307 | 182 | 303 | 391 | 171 | 222
Doy | V-shapes |[ 447 | 148 | 181 | 132 | 172 | 119 | 323

D 168 | 13377108 [216 | 239 [ 104 [ 239
D) Sew's | 7193 | 210 | 148 | 242 | 319 | 151 | 261
designs || 301 | 186 | 77 | 256 | 255 | 76 | 138

230 135 274 309 127 221

302
Best & near- D, Du, Dyq,
best desi Dy, D2 Dy,
signs & Dis, Dis,
from & Dy, D2 Dxn Da;y, Dio,
D14 to Dys Dz D2 D4 g” D
24
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Table 11.16
{1 -(A,, -efficiency)}x 10,000 for Dy4 to D55 under model 1.

(lowest value in bold)

(p.,p,) C2)) €% ))

2 BEZ ¥, 2 ¥, ¥, ¥, ¥,
pslipll 1 ] 23 1 3 | 44 | 14] 1
Case No." 1 2 _j__ 3 4 5 6 | 10

Dy4 470 | 318 | 593 | 399 | 280 | 188
Dis| 646 | 574 | 540 | 593 | 526 | 625
Dy| Gusonl 877 | 592 | 878 | 597 | 426 | 178
Dy, 1054 [ 1079 | 841 | 756 | 874 | 932
Dyg 1242 | 966 | 985 | 848 | 738 | 683
D1so| diagonal 479 | 391 | 476 | 4s5 | 352 | 330
Dyl pairs W1 1033 | 774 | 600 | 703 | 633 | 505 | 493

Doy | V-shapes | 634 | 378 | 421 | 407 | 324 | 372 | 488
Dap| 625 | 475 | 491 | 584 | 450 | 452 | 503
D,,| knight’s [ s63 | 577 | s32 | ss2 | 550 | 493 | s17

D move
Do4| designs || 813 | 535 | 336 | 665 | 458 | 288 | 137
Dys | 711 | 590 | 492 | 619 | 531 | 439 | 457

All the systematic designs, D,4 to Ds, are reasonably A -efficient, with
A -efficiencies in the range 0.9018 to 0.9924. The A, -efficiencies are in
the range 0.8196 to 0.9863.

For each pair of designs (D,, D,,,) for i = 14, 16, 22, 24, the layout of the
check plots is almost the same, except that D, has control variety S is two
Opposite corner plots and D,,, has control variety 5 in the inner part of the
array. Over almost all the cases considered for these pairs of designs, D, is
ore A,,-and A, - efficient, suggesting that, generally, having control
variety 5 in the corner plots is likely to give a more A,,-and A - efficient

design than having control variety 5 in the inner part of the array.
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For each of the pairs of designs (D14, Di6), (D15, D17) and (Do, Do), the
difference in the designs is that the first design in each pair has unlike control
variety diagonal adjacencies, and the second has like control variety diagonal
adjacencies. A comparison of these designs, with respect to both A, -and

A, - efficiencies, suggests that, for the spatial models, like control diagonal

adjacencies should be avoided. Note also that Dyg, which has the most like
control diagonal adjacencies from designs Dy4 to Dys, is the A, -and A -

worst from these designs in many cases.

For the spatial models, designs D,; (V-shapes) or Dy, (knight’s move) are the

A, -best or near-best from D,4 to D55 for all the cases considered here (see

Table 11.15). Since the number of cases considered here is less than for

Example 11.1, robustness is considered in terms of minimum A, -efficiency

only. The robust designs from D4 to D,s are listed in Table 11.17 for
Categories (a), (b) and (d) only. For square or near-square plots (category (a))
D,; and Dy; are deemed to be the most robust, and for long thin plots (category
(b)) Dy4, Dy and D,, are the most robust. Dy, is included in the most robust
designs for all 3 categories.

Table 11.17
Robustness of Dy, to Dss (for a-f >0) under model 1
with respect to A, -efficiency.

Category Prior information m, =0.95 m, =0.975

on plot size ratio

(a) Square or Dy to Dys D;; & Dy
| near-square plots

AEL Long thin plOtS DM to D17, Dlg to D25 DM, D21 & Dzz

Not very lon
d ] g D
d in plots Do to Dys 22
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11.3.2 Example 11.2 under model 3

Model 3 (see section 9.2.1.3) is assumed in this section. There are 10
combinations (cases) of the settings of ¥, (p,, p.) and o assumed for

Example 11.2 under model 3. The corresponding case numbers (1, 3, 4, 6, 10,
21, 23, 24, 26 and 30) are marked by 1 in Table 11.9 (in section 11.2.2).

Properties of the 20 best designs found with respect to the A,,~and A , -
criteria (given in Appendix A3.8), are now discussed. Consider firstly the
spatial models. For o2= {5 (cases 1 to 6), the A, -best designs found have
the check plots on the edges of the array. For ¥,, (p,,p,) =, 1) and

o} =5 (case 3), the best designs found have all the check plots in the edge
columns with like control varieties clustered together. For (p,,p,) =, %)
and o= {5 (cases 4 and 6), the A, -best designs found have like control
varieties clustered in the edge rows. When o? = 1 (cases 21, 23, 24 and 26),
the A, -best designs found have most of the check plots in the outer two or

three rows and columns, with many of the check plots a knight’s move apart

for (p,,p,) =@, %) (cases 21 and 23), and many unlike control variety
diagonal pairs for (p,, p,) = (1, #) (cases 24 and 26).

In contrast to the A, -best designs found, the A, -best designs found avoid
having check plots on the edges, suggesting that A, -efficient designs are
likely to be A, -inefficient. For ¥, under both settings of o2 (cases 3, 6, 23
and 26), the A, -best designs found are binary in rows and columns. Also, for
0‘: =1 (cases 21, 23, 24 and 26), the A, -best designs found contain, as for

model 1, the arrangement
¢ 5
5 ¢
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Now consider the non-spatial model ('¥,). When o? = {5 (case 10), the

A,,-best design found has the check plots clustered in 5 rows with many like

control variety row adjacent pairs. For o = 1 (case 30), the A, -best design

found is binary in rows and columns and has many check plots a knight’s

move apart. Under the A, -criterion for cases 10 and 30, both rows and

columns are binary, and the size of the column lag between check plots seems

to be unimportant.

In this paragraph, comparisons are among designs Dy4 to D,s. The efficiencies
of these designs (see Table 11.18 and Table 11.19) show that, as expected, the
A, -best design (often Dy3) is in many cases the A, -worst design, especially
for o} = 4. However, note that all the designs are very highly A, -efficient,
with A, -efficiency in the range 0.9856 to 1. Also, the relative A, -

efficiencies are extremely high (greater than 0.9 for 9 of the 10 cases). For
the non-spatial model ('?,), Dy, is the best design from D4 to D2s under both

criteria,

As for model 1, the estimated selection probabilities for designs D 4 to D,s do
hot provide any evidence to favour one of the two criteria. This means that

either the A,,- or A, - values could be used as an associated measurement of
the selection probabilities. However, since the A, -efficiencies are all very
similar, a detailed examination of the designs with respect to the A, -
criterion, as in section 11.3.1, may not be useful here. Instead, A, -

efficiencies are considered. Over Dy4 to Dys, the A, - efficiencies range from

0.9338 to 1.
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A comparison of pairs of designs as in section 11.3.1 (but with respect to the

A, -criterion here), suggests that it is better to have control variety 5 in the

inner part of the array, rather than in opposite corners. Unlike control variety

diagonal adjacencies are preferred in most cases when 2 = 1. For o2 = f;,

however, like control variety diagonal adjacencies are preferred in most cases.

Also, for the cases considered here, having the check plots lag (2, 1) apart is

better than having them lag (1, 2) apart.

Table 11.18

{1 - (A, -efficiency)} x 10,000 for D;4 to D,s under model 3.

(lowest value in bold)

o, & 1

(p,.:p,) 3,3 €%)) €5)) &3
S \P \Pl \P3 lIll ‘PS \P4 \IJI \P3 \Ill \yS \P4

CaseNol 1 | 3 [ 4 | 6 |10 |21 |23 |24 26 30 |
Dy 371 40 [ 13] 12 0] 15| 15| 4] s 1
Dis| 39 41 13] 12 o[ 23 23] 10] n 5
Dio| g ™49 | a6 | 14 | 12 | 0] 97 ] 55 ] 21 [ 15] 1
Dy7 | 50| 46 | 15 | 13 1 {106 | 63| 36| 30| 17
Dig 66 | 55| 19 15 0 {144 | 84 | 43 | 28 6
Dio| diagonal || 46 | 47 | 16 | 14 o 25 25| 13| 11 2
Dyo| pairs ' 55| st | 17 ] 14 o 83 | s4 | 24| 18| 3
Day| Vshapes || 49 | s0 | 16 | 15] 0| 31 | 29 ] 17| 16 | s
Do) 37 | 40| 14 ] 12| 1| 11| 15] 15| 14 10
Dy oigh's 38740 | 14 [ 12 | 1|20 23| 15] 13] 7
D24 Gesigns || 36 | 39 | 13 | 12| 0] 21 ] 22| 9] 7] o
Dys 37 40 ] 14| 12 o 27] 28| 13 10 2
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Table 11.19

{1 - (A, -efficiency)} x 10,000 for Dy4to D,s under model 3.
(lowest value in bold)

2

O, ol 1
(PP &b X)) 4.3 .3
VIV ||V ||| |Y|Y|W]Y

L _CaseNojl 1 | 3 | 4 [ 6 |10 {2123 ]24]26]30
Dy, (510 [ 301 | 132 | 121 | 1 | 568 |412 [228 | 239 | 10
Dis| 433 {245 [127 116 | 12 [427 [285 {193 [214 | 47
Dis ‘5‘:5;:‘ 275 {182 {101 | 70 1 ]662 {461 [266 | 215 | 11
Dyy 189 {122 {116 | 97 | 77 | 521 [335 [285 {261 | 186
Dis 52| 40 | 47 | 24 2 1523 {3209 (198 {142 | 36
Dio| diagonal |[ 388 [ 210 [ 102 | 98 1 {394 [260 ] 159 | 180 | 16
Dao| pais |25 [127 [ 102 | 79 1 546 [ 310 [245 | 198 | 23
Dy | V-shapes |f 378 [ 195 | 93 | 89 2 1386 [250 [138 | 174 | 23
Dy, 499 1300 176 [ 186 | 52 | 556 | 406 | 324 | 355 | 123
Dy | knisht's 1476 243 | 144 | 147 | 26 [ 416 | 276 | 230 | 253 | 74
Das| designs || 482 | 200 [ 132 | 127 | 0 | 549 | 401 | 246 |252 | 6
Dys 413 | 236 | 118 | 115 0 |405 [271 | 185 {205 | 18
Best & near
best designs

from

Dl4 to D25
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Table 11.20
Robustness of Dy4 to Dys (for o >0) under model 3

with respect to A, -efficiency

Prior information = =
=m, =0.95 =m, =0.96
Category | o plot size ratio | "1~ "2 h =

Square or D15, D19, D21, D
(a) near-square plots | D,; to Dys Dis & Dz
(b) | Longthinplots | All All

Not very long Dis, Dig, Dy1, D &D
@ thin plots D,; to Dos 19 a

For model 1, D,; (V-shapes design) was the A__-best or near-best design from
D4 to Dys for many cases. For model 3, Dyg and Ds; are A, -best or near best
for o} = {5 and o} =1, respectively. Robust designs are given in Table

11.20, with respect to A, -efficiencies. The diagonal pair design D;9 and the

knight’s move design D, are the most robust over the categories considered.

11.4 Discussion

A discussion of the conclusions drawn from the investigations in this chapter
is given here. The results for model 1 were as expected from the theoretical
results derived by Martin et al. (2000), with the best designs found, and the
efficiencies of the systematic designs that were considered, dependent on the

variance components ¥ and the correlation parameters (p,,p.)- However,

for models 2 and 3, as well as the settings of ¥ and ( p, , p,), the properties of

the best designs found are also dependent on the genetic variance o?. The

results for models 2 and 3 are very similar, but, unlike for model 1, it is
difficult to ascertain properties of efficient designs for given ¥, (p,,0.)

and o2,
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The results in chapter 10 suggested that the A, -values may be slightly better
associated measurements of selection probabilities than the A, -values.
Further evidence to support the use of A, -values is given in section 11.2 by
comparing some row designs which have high A, -values and low

A, -values. However, for most of the systematic designs considered here,

excepting the row designs, there seems to be little difference between the

A,,- and A, -values as associated measurements of selection probabilities.

When the range of the efficiencies of the systematic designs considered is very
small, as for the A, -efficiencies in Example 11.2 under model 3,

comparisons of these systematic designs may not be useful, unless A, -values

are highly correlated with selection probabilities, and the range of the selection

probabilities is not small.

Although designs which have all the check plots on the edges of the array,

such as Dg and Dy, are A, -efficient for some combinations of ¥, (p,, p,)

and o, ,f » practitioners are likely to be reluctant to use such designs. Instead,

knight’s move designs, which have the check plots spread evenly over the
array may be preferable, since they generally have both high A,,-and A , -

efficiencies.

In practice, the parameters of the variance structure would usually be
estimated from the yield (data). To estimate these parameters well, and if
necessary, to assess the (variance) model adequacy, it would usually be
Preferable to have some check plots close together and some check plots more
Spread out. To take account of this, a systematic arrangement which has the
check plots spread out over the array (such as a knight’s move design), with
Some additional randomly allocated check plots, may be appropriate.
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12 Summary and Conclusions

The main conclusions drawn from the results obtained are summarised here
(more detailed conclusions were provided at the end of each of chapters 6, 7,
8, 10 and 11). Sections 12.1 and 12.2, consider the work on NRC and EGVT

designs, respectively. Suggestions for further work are also presented.

12.1 NRC designs

Recent work on optimal and efficient NRC designs was reviewed in chapter 5.
A few corrections to some of the papers considered were also given. Further
results for optimal NRC designs were derived in chapters 6 to 8. These
optimal NRC designs exist for certain b (number of blocks), and are
universally optimal (see section 2.5.4) over all designs in @ (where D is the
set of all connected designs with b blocks of the required size and the required
number of treatments #) under gls. Under ols, the optimal designs are
universally optimal over designs in © which have C and var(q) (see section

2.4) completely symmetric, and are weakly universally optimal over designs in
D which have C completely symmetric. These designs can be constructed
using SBAs. Fairly simple dependence structures were considered and most

of the optimality results obtained are for small-sized blocks.

For blocks of size 2x 2 (chapter 6), under a stationary reflection symmetric
Process, optimal binary and non-binary designs were obtained for all four
models I'to IV (see chapter 4), under both ols and gls, and for 12 2. It was
shown that binary designs can have very low efficiency for some correlation

values,

For blocks of size 3x2 (chapter 7), under a separable process, optimality
results were much more difficult to derive than for blocks of size 2x 2, and

hence, attention was restricted to model IV, gls and ¢ 2 6. Much more work
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for blocks of size 3x2 is clearly possible, including finding optimal designs

when any of models I to ITI, ols, or 2<¢ <5 are assumed.

Results obtained for the AR(1)*AR(1) process (chapter 8) under gls and ¢ >k,
provide extensions to Uddin & Morgan (1997a). For blocks of size p, x p,

(P, p, 22) the optimality region for binary designs was specified under

model IV, for positive and/or negative correlation values. The results of

Uddin & Morgan (1997a) for blocks of size P %2 (p, 22)under model IV,

Wwere extended to when only one of the two correlation values is negative.

Some results under model III for blocks of size p, x2 (p, 22) were also
derived. In addition to this, non-binary designs for blocks of size 3x3 under

model IV were determined, for when at least one of the correlation values is

positive,

It is likely that the work on the AR(1)*AR(1) process could fairly easily be

extended further by:

* specifying optimality regions of binary designs for general sized blocks
(Pyxp,, p,, p, 22) under models I, II and IT and gls;

® considering the optimality of binary and non-binary blocks of size 3x3
under models I, IT and III, and for 2 < ¢ <8 under model IV;

® considering ols estimation;

The optimality results obtained for non-binary blocks of size p, x2 and 3x3

under model IV and the AR(1)*AR(1) process do not include the situation

Wwhen both correlation values are negative. It would be interesting to find the

optimal designs for this situation. Also, it would be useful to find optimal

designs for other dependence structures, such as for conditional autoregressive

Processes (see section 2.3.3.3).

The number of blocks required for the optimal NRC designs in chapters 6 to 8

is often large and restrictive. However, the results obtained for gls will give
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upper bounds on the efficiency of designs which have a smaller number of
blocks. Also, these results could be used to suggest the form of optimal or
near optimal designs for a smaller number of blocks, by, for example, having
the C-matrix close to complete symmetry (cf. Uddin & Morgan, 1997b).

In practice, the dependence structure and its parameters are not known exactly.
Therefore, as well as finding optimal designs, an investigation into their
robustness would be useful.

Also, in practice, it may be easier to find robust designs, for given b, t and
block-size, by using an algorithmic search over a range of correlation values

suggested from prior information.

12.2 EGVT designs

Designs for EGVTs, and the spatial analysis of field experiments, were
reviewed in chapter 9. Also, some methods to speed up algorithmic searches

for efficient EGVT designs were presented in this chapter.

Simulation studies to see if some simple criteria are useful for comparing
different designs for EGVTs, when the aim is to select the highest yielding
new varieties, were carried out in chapter 10. Simulations for model 1 (see

section 9.2.1) suggest that the A-, A,,-, A, - and tr(C"”)- values are well

associated with selection probabilities.

Further suggested work in this area includes more thorough investigations
under models 2 and 3 (see section 9.2.1) of the criteria considered. Also, the

usefulness of other simple criteria (such as measures of the spread of the

control varieties) could be examined.
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The efficiency and robustness of some systematic designs for EGVTs were
investigated in chapter 11 over models 1, 2 and 3, and different variance
structures. For the 2 examples considered, knight’s move designs (see section
11.2) were shown to be robust. More detailed conclusions are provided in
section 11.4. Although the 2 examples considered gave useful results, an
examination of additional, differently constituted, examples and designs, may

provide extra insight into the properties of efficient systematic designs.

Martin et al. (2000) derived theoretical results for EGVT designs under model

1, by considering approximations to the A, - and A - values. It would also

be very useful to derive such approximations for models 2 and 3, which would

then allow properties of efficient designs under these models to be determined.

In practice, the selection of high yielding new varieties is dependent on how
close the fitted dependence structure is to the true structure. Therefore, it
would be useful to examine criteria for comparing designs with respect to
estimating variance parameters as well as possible. Also, an examination of
designs which allow variance parameters to be estimated well, would be
helpful.

The investigations in chapters 10 and 11 modelled the additional spatial error
to be from an AR(1)*AR(1) process. Consideration of other dependence

processes would also be of interest.

Improvements in the efficacy of the algorithmic search method used in
chapters 10 and 11 to find efficient designs would be advantageous. Such
improvements may be obtained by having better settings for the parameters of
the algorithm used, or perhaps by using other search techniques, such as
genetic algorithms. -
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Al Appendix 1 - Some general results

Al.l Frequently used vectors and matrices

A list of some frequently used vectors and matrices is provided here.
1, is an nx1 vector of ones;
0, =0x1, is an nx1 vector of zeros;
I, is the nx n identity matrix;
J,=1,1"is an nxn vector of ones;
E =1 -n'J

Al.2 Generalised Inverses
(John & Williams, 1995, Appendix A)

Let 4 be an nx n matrix such that r = rank(4). A~ is a generalised inverse of
A if and only if

AA4™A=A4. (AlLl)
4" is not unique.
For a scalar constant g # 0,

(ad)” = a4, (Al1.2)

The Moore-Penrose generalised inverse of A, denoted by A" is such that
A4A= 4, A*AA4* = A, (AA*)=AA* and (4°A)=A"A. (AL3)

4" is unique and satisfies (A1.1).

Let 4, 4,,..., A, be the eigenvalues of 4 and let x,, x,,..., X, be the
Corresponding orthogonal and normalized eigenvectors of 4, such that

e 1 ifi=]
0 ifiwg
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Let the { 4, } be ordered so that A5 Ay5..., A, are the non-zero eigenvalues of

4 . Then the spectral decomposition of A is given by

A =Zli£i£i' (Al4)
=1
and 4" =31 xyr. | (ALS)
=l Yy

If 4 is symmetric with » =n-1 and 41, =0, , then

1"'A+1n - o . (A1-6)
If 4 is symmetric and idempotent (i.e. 44 = 4) then

A+ =A (A1o7)

AL3 Kronecker Products

(John & Williams, 1995, Appendix A)
Let 4 be an n x n, matrix with (i, /) element a,, and let Bbe an my x m,
matrix. The Kronecker product of A and B is the mm, x n,m, matrix

a,B a,B - a,_,,zB

AR B = aZ:,B az_.zB az',:zB
a, 1B a,,th SRR
So 1.®I =1 (Al1.8)
and 1" ®lm = lmn' (Al'g)
Also,
(4®BY = 4'®B' (A1.10)
and (4®By = A @B". (Al.11)
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Then, if the matrices are conformable

(A®BYC®D) = AC® BD (Al.12)

(4+B)®C = A®C+B®C (Al.13)
If 4 and B are square matrices then

tr(4® B) = tr(A)tx(B) (Al.14)

Al.4 Toeplitz and centro-symmetric matrices
(Graybill, 1983, section 8)

Let 4 be an nxn matrix with (j, /)™ element a, ;. A is a Toeplitz matrix (also
known as a banded matrix) if

a,=a_;,say, V2-nsSi-j<n-2.
4 is centro-symmetric if

A=H, AH,
Wwhere H, is an nxn symmetric matrix with ones on the NE-SW diagonal,
that s,

(H..),_, ={1 ifi+j-l-—:n .

0 otherwise

Therefore, for a centro-symmetric matrix,

Q= Qs Y bJ
Note that a symmetric Toeplitz matrix is centro-symmetric. (AL.15)
The following are centro-symmetric matrices:

1,J,, E,. (A1.16)

If 4 is centro-symmetric,

4' is centro-symmetric, (Al.17)
and if 4 is also non-singular,

47" is centro-symmetric. (Al.18)
If4 and B are centro-symmetric matrices then for scalars a and b

ad+bB, (AL.19)

4B, and (A1.20)
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A®B (Al.21)

are centro-symmetric.

ALS Inverse of a partitioned matrix

(Graybill, 1983, section 8)
Let X be a non-singular nx n matrix partitioned as

xo[4158)
B! c)

where 4, Band Care n, xn,, n, xn, and n, x n, matrices, such that
n+n,=n,

The inverse of X is

- -1 ~1p 4-1 | _ 41 ~1
¥ ({1.114-?2-!19.4__T-_4_D.Bl.9--), (A1.22)
-D7B' A” | 3
where D=C-B'A"B.
Equivalently,
x| Bl i -E'BCT (A1.23)
-C'BE' | C'+C'BE?BC)

where E = A~ BC'B'.
Note that, for conformable matrices 4, B, C and D,

(4+BDC)" = 4 - 4 B(D+C47B) 4™ (A1.24)

Al.6 Autoregressive integrated moving-average process.

Let ¢ be an m-vector with elements { & ;1. These elements {¢,} are from an

autoregressive moving-average process of autoregressive order p and moving-

average order ¢ (ARMA(p,q)) if

5] +iﬂh8j—h +i¢h§j—h ’

h=1

where { j} are independent random variables with zero mean and constant

variance V j.
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Let V, be the (m - d)x m d-difference matrix corresponding to an m-vector

X, say. For example, when m=4 and d =1,

1 -1 0 O
V1= 0 1 "1 0 ’
0 0 1 -1

so that if x'= (x,,x,,x;,%,),
X =X,
Vix= X; = X3

X3 =Xy

gives the first differences of x. For second differences,

Vz=l--2 1 0’
0 1 -2 1

eV ((xz —x3) = (% —x,) X, = 2%, + X,

If the elements of V¢ are from an ARMA(p,q) process, then the elements of
€ are from an autoregressive integrated moving-average process of

autoregressive order p, moving-average order g and differencing d

(ARIMA(p,d.q)).

Al.7 Balanced block designs

Shah & Sinha (1989, chapter 2) gave the definition of a balanced block
design. For a given @, b, k), a design is a balanced block design if:

i) the design is binary,

ii) the design is equi-replicate, and

iii) each pair of treatments occur equally often in a block.

When V' =1 & » @ balanced block design is universally optimal among all
Connected designs under a fixed block effect model. When £ <¢, a balanced
block design is a Balanced Incomplete Block (BIB) design.
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Al.8 Positive definite and non-negative definite matrices
An nxn matrix 4 is defined to be positive definite if and only if
A= 4

and x'Ax >0 for all n-vectors x # 0, .
An nx n matrix 4 is defined to be non-negative definite if and only if
A=4

and x'A4x 20 for all n-vectors x# 0, .

If 4is a nx n non-negative definite matrix then for any nx» matrix P

P' AP is a non-negative definite matrix. (A1.25)
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A2 Appendix 2 - Additional material to chapters 3 to 7

A2.1 Upper bound on the number of different designs for

the example in section 3.3

For the illustration in section 3.3, an upper bound for the number of different

complete block designs is given as

n.=(f(kz)+b—z}
b-1

Assume here that the number of different designs equals n’. Fork=3and b =
3,4, 5, the n" different designs are listed below.

For k = 3, there are $(3!) = 3 different arrangements of the treatments within a
block. These are

L112]3],(A]3]2] and [2][1]3].

Let the blocks having these arrangements be called 4,, 4, and 4;,

respectively. A design is given as a series of b of these arrangements. Let the

first block remain unchanged over all designs, and let it be 4, say.

When there are 3 blocks, the 6 different designs are

D 4,4, 4;
2 4,4, 4,
3) 4,4, 4,;
Y 4,4, 4,;
) A, 4, 4;
6) 4,4, 4.
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For b = 4, there are 10 different designs:

1)
2)
3)
4)
3)
6)
7
3
9)
10)

For b =5, the 15 different designs are:

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

4, 4, 4, 4;
A, 4y 4, 4y
4, 4, 4, 4;
4, 4, 4, 4,;
4, 4, 4, 4;
4, 4, 4, 4;
4, 4y, 4, Ay
4, 4, 4, 4;
4, 4, 4, 4
4, 4, 4, 4.

4 4 4 4, A4
A Ay Ay A, Ay
Ay Ay A, A4, Ay
4, 4, 4, 4, 4;
4, 4, 4, 4, 4;
4, 4, 4, 4, 4;
4, 4, 4, 4, 4;
4, 4, 4, 4, 4
4, 4, 4, 4, 4;
4, 4, 4, 4, 4
Ay 4y, 4y, 4y Ay
4, 4y, 4, 4, 4;
4, 4, 4, 4, 4;
4, 4, 4, 4, 4;
4, 4, 4, 4, 4
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A2.2 Proof for part of the optimality result in section 6.2.1

Lemma A2.1
For i€{2,3,4} and {j,,/,} = {2,3,4}\{i},

Writing w, as
W=t -4 - 4),
it follows that
w20 = L2241+ 2,24} for j=j or j,
since 4, >0 = 4'>0 forl=23,4.
Thus
w,—w, =4 - ;') 0. -

A2.3 Elements of Q" for the separable process in chapter 7

Expressions for the elements of Q" for the separable process under model IV
for blocks of size 3x 2 are derived in this section. Recall (from Definition 7.6
in section 7.4) that

‘91:32.2}1.3=1+P2‘2P12’ 9,=3-4p, +p;, G=1-2p +p,,
'94=1'P1a '95“_‘1"'/’1’ ‘9.=2’11,lx1.2'2'2,l&‘92'

From the matrix A given in Definition 7.1 (in section 7.2) it follows that
A=A @A (A2.1)
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The inverse of A, is

1 -
ME—L{ fﬂ
11,1'11,2 P

and the inverse of A, is

1 9495 -Phyy —Prt pi
Ay = Zol| pPhy 1t —pdy
S R PrAyy 9,9

From equation (A2.1) it follows that

"{1,111,231.1'911\.l =
21
(8,9, —ps98 | =pa PPs oy E -p +A’2 AP =p)
ek S N WY V- YN 2 e Sl R Bl
“—-P-l};,; ----- PPy | A+p, Yoy —ps(l+pr)iy, i - Py PrPs%a,
by =ply -ptph (+pdhy | pe e
:_l;z—:;l-“;;sb—’;—--f) ? = Pty PPy i 9,9 = P399
\Ps(p=p)) -p,+p} E P13y, =Pk, L= P9 99 )
(A2.2)
Now consider
A—-llslst-l - A_211‘313'A_21 ® A;llzlch-l-l’
where
L'AT = A 112 (A2.3)
and
L'AY =979, 9 9,). (A2.4)
It follows that

A;l.l.zlz'Ail = /11_3.1.212'
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and

g 98, 9
NLL'AY =97 98, 9 89,
9 99, 9

From equations (A2.3) and (A2.4), it follows that
LAY, =2/,
and 1,'AJ'l, = (9,+29,)/9, = 9,/9,.
Hence,
(A" = AL A = 44,978,
Therefore,

A A8

(9 9% 199 99,18 )

O % 195 99,19 8
__ 1 |98 99, g 8 | 9,9, 99, (435
20,89, 99, 9,9, S5 __ % 195 _ 99,

S 9% 198, 99, % %

(8% % 189 99,18 8)

The elements of the matrix Q' = A™ = (1’ A™1, ] A" 1,1, A can now be
obtained easily from the matrices given in (A2.2) and (A2.5). For example,
(Q‘ ),1 =w, is
39 % ’
Akt S 24,99,
Which can be re-written, with denominator ° =24,,4,,4,,99;., as
W, =9, (2'92'95 =2k 5 )/ g .

The other elements of Q" can be obtained similarly, and are listed in

1=

Definition 7.7 (in section 7.4), with common denominator °.
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A2.4 Inadmissible types from Table 7.1
It is shown in Appendix A2.4 that 54 of the 72 different types in Table 7.1 are
inadmissible under reflection symmetry. Let ¢’ be the value of ¢, for type
e. Table A2.1 lists these inadmissible types, giving for each inadmissible type
e,

types ¢, and e,;
(o).

c(;) (e)

-y and P-c;
and
an inequality &
such that if & is true then ‘
type e, is better than type e, (i.e. c\'2 ),
otherwise

type e, is better than type ¢, (i.e. c$P2c$).
Therefore, type e is inadmissible since either type e, or e, is always better than

type e. For example, consider e = 21. Here X is the inequality w;, 20. If

W2 20, thentype ¢, =5 is better than type 21 (since cla)—c®) = 2w, 20),

and if w; , <0, type e, = 117 is better than type 21 (since c{’~cy =

=2(W,; —w,3) 20). Therefore type 21 is inadmissible.

Ife (;)—Cﬁf}) is always non-negative then type e, is always better than type e,

and so only type ¢, is then given.
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Table A2.1

List of inadmissible types for blocks of size 3x2 under reflection symmetry.
For each inadmissible type e,

e, e, ¢, @ -c® and K are given.

t indicates that ¢{’—c{P> 0 is always true.
1 indicates that ¢ —c®) = - (c‘,f,"—c‘,f))
1t indicates that ¢$’-c$’2 0 is always true by Lemma 7.1

e | ¢ |e @)l o X
1] 2 2w, t
2(117 2(w;, +wy3) T
41117 4w, 1
5| 86 2wy, t
6| 87 2w, t
7] 92 2w, 1
8] 99 2wy, t
9]103 2w, T
14| 86 = 4w s +w,) Tt
16| 34 W3+ W, Tt
19103 —4(w, + W) 1
21 51117 2W,‘2 —2(w; —wy3) | W, 20
22| 6117 2w, 2w —w3) w320
23| 7]|117| 2w, 2wy =w,) | w20
24 8|117 2W1,5 =2(w s =w;3) | ws20
25| 9|117| 2w = 2w 6 —=W;3) | W20
30| 14| 92 2(w,,+w.,) t Wy, +W 320
| 31 14| 87| 2(w,+w,) 1 Wi+ w20
32| 104 Wiz + Wy, Tt
33100 Wy +W;, Tt
| 34116 13| 2w, -wy;~w;, |1 2wy = w3 =Wy 20
35| 18| 87| 2(w,+ws) + w3+ w20
36| 19| 92| 2(w,; +w,e) 1 W3+ w20
| 37| 20| 92| 2(w,,+w) 1 Wi+ W 520
38| 19| 87| 2(w,, +wy) 1 Wie+ W20
39| 81 Wy +wy, Tt
50| 86 =2(w 3+ W) Tt
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e |l e |e c(;‘,)-c(;) c(;i)—c(,f) [
51| 291 96 - 2(W1,1 +wy,) - 2(”’1,1 +W,)
W3+ Wy, +wy;+wy, 20
521 18| 99| 4w, 1 w320
531103 =2(w 3 +w,) Tt
sal 29] g7]” 2(wy; +w;,) : —2(wy; +w;)
Wy +wy, Twy,+wy, 20
56| 20| 99| 4w, $ W20
64111 —2(w 3 +w,) t+
71| 30| 82|2w, 1 W20
T3I117| 29| 2w, = wy3—wy, |1 2wy =Wy =Wy 20
751116 Wi+ W, t+
76| 52| 87| 2w, 1 W20
77| 36| 882w, ¥ w420
78| 56| 92| 2w, + w520
| 81) 60|116| 2w, pd w220
82| 61]108 2w, t w320
83| 62108] 2w, 1 W20
88| 63|112] 2w, 1 w320
| 89 35(111{ 4w, -2w, w320
90| 87| 96/ 2(w;-w,) 1 Wy 3—W,420
93] 65|112| 2w, ¥ W, 20
| 94| 37|111 4w, -2w, w420
100/ 67116 2w, t w20
1104] 70| 116] 2w, 3 w20
[ 108| 86|117( 2w, 1 w20
1 109| 87117 2w, t w3 20
1110] 921117] 2w, + W20
111] 99117 Zm, ' W5 20
ﬂa 103|117 2w, t w20
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A2.S Proof of Corollary 7.4

It is shown in section 7.5.1 that

. X2
and
. X5
ws<0 if p,< ?-s-
1

where
X, =4,9,,

2
Z2=3=p+3p, +pp,-8p; >0,

2 2 3
X5 =1=2p +5p, ~6pp, =5pi +2p; =3p{ P +8pi

and z),=2,97>0.

Consider when
Wss0 = w,20

: 18 _x,
1.e. Ps S—= = P <
L5 212

L x42,< X225

It can be shown, after some algebra, that this is true when

pZ <v,

where

pe=p=4p])
G+p)

The minimum value of v, for || <1, is at p; =-3+242, giving

v=16y2-23 . Therefore, when p, < 16\/—2_—23, wsS0=>w,20,sotype

117 cannot be optimal.
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A2.6 Proof of Theorem 7.5

Theorem 7.5 is proved in this section. First consider Lemma A2.2 and Lemma
A2.3.

Lemma A2.2

Proof

Assume here that type 13 is better than type 60, (the condition in (7.13))
i.e. 9, <0.

Recall from the condition in (7.7) in section 7.5.1 that w, ; <0 when

23 =89, <0, which is clearly true here since 9, > 0.

The inequality x, ;/ z,s S—1 is equivalent to 29,9, <0, and is therefore true

here. Recall from the condition in (7.9) that w; s 20 when

Fus
3
215
It therefore follows that w, s 20 here. -
Lemma A2.3
p; <0
w, 20
(13) 5 .(67) 12
wisey= 4 S0
W, 20
Proof
Assume here that type 13 is better than type 67:
ie. P S_x13,67 .
213,67

Since x,, and z,,, are positive, it follows that p; <0.
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Now consider when

ey’ 2§ =>w,20,

x

. 1.2
l-e. p3 S hand x13’67 : p3 S —_——

213,67 212
. X, x
ie. 13.67 5 %12 ,

213,67 22
i A2.6
L.e. Xi361212 2 X1221367¢ ( )

After some algebra, the inequality (A2.6) simplifies to
94,20,

which is clearly true.

Recall from (7.8) that W, <0 when x,, <0. Consider when
ey > ¥ = w,s0 forx;>0,

%13.67 = p, Silg_’

213,67 X3

ie. p,<-

i A2.7
le. —X)3X1367 S 21321367 ( )

After some algebra, the inequality (A2.7) simplifies to
99,9, 20,
which is true.

To show that W, ¢ 20 here, consider when

ey 2N = w20,

X.
: 1.4
l.e. ps S—M = p3 < -
213,67 234
i A2.8
Le. X1367234 = X3421367¢ ( )

After some algebra, the inequality (A2.8) simplifies to
'1’2.1 l91 l92 Z 0 s
which is true, [
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Assume that
B 2c  for e €{20, 60, 67}.
Call this assumption y,;. Let Z,, = Z\ {13, 20, 60, 67}, i.e.
Ey; = {18, 29, 61, 62, 63, 65, 70, 86, 87, 92,99, 103, 116, 117}. In order to
prove Theorem 7.5, it is sufficient to show that, under y,,,

ey 2c) forall eeE,,.

In terms of {w, , }, Table A2.2 and Table A2.3 give cfy” 2" for e, €420,
60, 67} and c(¥ > ¢ for e € E,,, respectively. Table A2.4 gives the
condition when

ey 2@ = W2 forije {1,234},
where e, e,, e, e, are such that

ci,‘,” 2 C(Q) = cg,” 2 cf,e}) = cg,” Zcf,f’) = 09.3) ch,',‘)

for e, #e,#e, # ¢,

and {e,,e;,e,} < E,,\{63, 65}.
By Lemma A2.2 and Lemma A2.3, all the conditions in Table A2.4 are
satisfied when ¢{ 2 c” and ¢ 2c%". Therefore, ¢ 2 ¢l for all

ecE,\{63, 65}.

It now remains to show that when c$? 2 ¢ and ¢ 2 ¢,
ey’ 2c®  forall e e {63, 65}.
For ee {63, 65}, 0¥ 2¢{¢ involves w, s, which may be positive or negative.
However, the condition for
ey 20 = 09> 0
can be written without using w; ¢. This is given in Table A2.5. Then, it is

shown that the condition

13
c;y)zci(vn) = (cﬁ”?c{,‘,"” = 05,13)26‘;)).
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is satisfied when c$® 2¢$5” and c¢§® 2¢$;”. Since it has been shown in

Table A2.4 that c$” 2 ¢#” when ¢ 2c'5” and c§¥ 2 ¢, the proof is

complete.
Table A2.2
e for e €{20, 60, 67).
e cw) 2y
20 Wis+2w; 22w +4w,  +2w
60 Wis+w; 22w, +2w,,
67 W3’3 + ‘w-l4 b 2w1,l + 2W1'5
Table A2.3
ey 2cl) for eeE,,
e ey 2cy)
18 | wys+2w,, 2 2wy, + 4wy + 2w
29 W20

61 Wy 2wy 22w + W, +2w,,
62 | wy 42wy 22w, + W, +2w,
63 | wy,+2w,, 22w, +2wW; + W,
65 | wyy+2w, 22w, +2w  +wW,
70 Wis+W; (22w, +2w¢

86 | wy;3+2wy 22w, +2w;,

87 | wyy+2w,, 22w, + 2w,

92 | wyy 42wy, 22w, +2w,

| 99 | wyy 42w, 22w, +2w;

103 Wy3+ 2w, 22w, +2w4

116 Wiy +w;, 22w,

N7 | wy;+2w,, 22w,
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Table A2.4
The condition when ¢ >’ = 0¥ 2¢§”.

ilile e e3P 2 cl8) = U > ol
when
60 70 P s0
86 W;420
1 2 29 W3, 20
67 99 Wy, 20
116 Ws20
70 | 103 W20
%6 61 W, 2 2w,
213 62 W2 22w,
w3 <0
99 18 1.3
117 Ws20
w,<0
3|4 |17 Y L
92 W4 <0
Table A2.5

The condition for when ¢ 2¢$” = (¥ 2c§™ = P 2¢)
for e € {63, 65}

o | B 2cE = o 2 az C‘V}:OSZ) c}}”’(;—;? ©
(e’ 2cy ) =y’ 2cy’)
when when
63 | w3 +2w;, 22w, +4w,, w350
65 | Wy;+2w;, 22w, +4w, W4 <0

A2.7 Proof of Theorem 7.6

A proof of Theorem 7.6 is given in this section.

Lemma A2.4
P <0
w;20=>4w,50
W, +w S0
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Proof

Consider when
w320,

le. 2p9 +4,,98,<0.

This inequality is equivalent to
1+p,)1=p)) + p, 3+ p, XL+ p3) = 2P (3+ p3) SO,

which is true when

Le. pSqpnpy) o p2g(pps)s

where
‘ll(Pz’Ps)=(a1‘\/:7:)/as’ qz(Pz’P3)=(a1+\/‘—’;)/a3’
a=03+p,)1+p,), a, =al +8(1+ p, )1 - p;)3+ p;)

and a,=4G+p,).

Recall that A is positive definite when

g9 >0,
ie. ~Ja, <p <4a,,
where

a, =41+ p,).

It can be shown, after some algebra, that
2:(p2, p3) > \/;4-

is equivalent to
@ 1+ p,)1- p,)* >0,
Wwhich is clearly true. Therefore, w, 220 when p, S ¢,(p;,p,). However, it
can be shown that the inequality
(P2, p,) <0
is equivalent to
(+p)1- )3+ py) >0,
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which is true. Hence w3, 20=> p, <0.

Since w;; +w,, <0 (see Lemma 7.1), clearly w; , <0 here.

Now consider w,, +w, s < 0. From the expressions for w,, and w, ¢ given in
Definition 7.7, this inequality is equivalent to
2p5(p2 = 1) = 2P39,9,95 ~ 2’11.2’12.193 <0,
ie. p(8%,-9)+9220.
It can easily be shown that 8, — 9; = 9, + 9, which is positive. Hence
W, +w, ¢ S0 when

9

>t
P e 8- )

Now consider when

w320 D w,+w<0,

. X 92
Le. psz_zl-l :p:’z_m’
13

ie. L ER =

213 (%, -9)

le. x,(8-90)2 "2'1,3‘942 .

After some algebra, this simplifies to
99,920,

which is clearly true. =
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Lemma A2.5
g 2= p +p, <0,

Proof
From the inequality in (7.20), c$¥ > ¢$” when

X
18,87
P32 ——
21887

where z,,., >0. Now consider
X887/ 2137 <1
ie. 2(p +p,)8 <0.
Therefore p, + p, <0 is needed for type 18 to be better than type 87. =

Assume that
ey’ 2cy’  for e €{60, 61, 63, 67, 87, 99}.
Call this assumption y,,. For convenience, the conditions cg,a) 2 c,(,f‘), given
in section 7.5.3, are reiterated here in Table A2.6. Let =, =2\{18, 60, 61,
63, 67, 87, 99}. To prove Theorem 7.6, it is sufficient to show that under y,,,
g2y foralleeE,,.
Conditions for ¢§® 2 ¢, in terms of {w,, }, are given in Table A2.7. The
condition ¢§® 2 ¢, is clearly satisfied for all e € {13, 20, 29, 62, 65, 92,
117} when ¢§® > ¢ for all e, e =}, where E;, < {60, 61, 63, 67, 87, 99} is
also given in Table A2.7.

Under y,,, proving that ¢$® > &{9) for e e {70, 86, 103, 116} is more

complicated, as shown in sections A2.7.1 to A2.7.4, for e =70, 86, 103 and
116, respectively.
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Table A2.6
c%") b cp(;]) for e, €{60, 61, 63, 67, 87, 99}.
e, ¢ > ol
60 | 4w 3+2w 522w, +w;,
61 | 2w, +2w 2w,
63 | 2w ;+2w s 2w,

67 w3 2wy,
8T | wy+w;50
99 Wiy 20
Table A2.7
ey 2cy foreeE,,
€ ey 2 Els
13 4w 3 22w, + 2w +wy, T| 67,99
20 W3 W, 99
29 2w 3 2wy, + W 99
62 | 4w, +2w 2w, +2w, 61, 99
65 | 4w, +2w, o 22w, + W, 63, 99
70 | 4w, +2w, 22w +w;, 87,99 1}
86 | 2w +w 2w, 60, 61,99
92 2w+ W 2 Wy, 87, 99
103 | 2w +w 2w, 87,99 %
116 | 4w, +2w,, > w,, 60, 87,99 3
117 2w, +w 20 87,99

T this inequality is equivalent to 2w, +4w, 3 + 2w, s 2 Wy, + 2w,

(cf. ¢ 2cY in Table A2.3).
1 this is shown in sections A2.7.1 to A2.7.4.

A2.7.1 To show c$ >c$” under 7,

H 8 99 H
It is now shown that ¢$® 2¢® when c§® 2c¢f” and ¢§® 2 ¢l . Firstly
consider

o492 gD
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In terms of {w, ,}, this inequality is given in Table A2.7. After some algebra,
it can be shown to be equivalent to

pyz (A2.9)

218,70

where

X18,70 = X13,60

=3+16p, +11p, = 24p,p, — 409 +24p] p, + p; —=8p,p} +16p] + p;
and 7,550 =9~16p, ~11p, +24p,p, +16p] ~13p; +8p,p; =16p; = p;.

It is assumed that z,,,) > 0, since x,5 59/ 21579 <=1 for 2,55, <0.

Lemma A2.6
cg,s) 2 c(,f,” = cgs) 2 c(,z,o) when p, <0.
Proof

By the inequalities in (7.15) and (A2.9),
cf,‘,s) 2 c(:,g) = c(,,l,s) 2 c(,;o)
is equivalent to

X13
py2—= Dp2

13 218,70

X18,70

L& X3Zi370 2 Xig70Z13-

In terms of { p, }, this is
29,9,(1+2p,—4p, =2p,p, + 4p12 - pzz) 20

Le. g(p)SpSqi(p), (A2.10)
where

0(p)= —(2+p,)—\/5 +6p,+5p;
and ¢,(p,)=—(2+ p)++5+6p, +5p% .

Clearly ¢,(p,) <-1, and it can be shown that ¢,(p,) >0. Therefore, p, <0
satisfies the inequality (A2.10). n
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8 (99)
It is shown in Lemma A2.6 that c$® 2 c{” when ¢$® >¢$ for p, <0.

Hence only p, >0 remains to be considered.

When xy550/ 21,021, ¢§” 2¢$® for |p;|<1. The inequality x40/ 25 21
is equivalent to
X870 2 218,70
ie. 29,(1-4p,—4p, +4pp, +4p} - p3) <0,
ie. p,<q(p) or p,2 7.(p),

where

#(p) ==2(1- p,) —/5=12p, +8p>
and g,(p) ==21- p)+45-12p, +8p] .
Clearly ¢,(p,) <0. Also, it can be shown that ¢,(p,) > 0. Therefore, for

Py >0, cG®2c0P when p, 2¢,(p,) (ie. type 18 cannot be optimal when
P, 2 ¢,(p,) since type 70 is better than type 18). This means that only

. . . 18) (70)
0<p, < ¢,(p,) remains to be considered; in which case, cf,, 2c},’ when

¢y 2c®, as shown in Lemma A2.7.

Lemma A2.7

eGP 2l = 0 > ¢y when 0< p, <g,(p).
Proof
Consider when

70
49 28N = (9 3 00

: X15 87 X18,70
Le. py2—— = P 2

213,87 Z13.70
ie.

X1387%1870 = X13.70%18.87 ¢

After some algebra, this can be shown to be equivalent to

49,9,(1= p, = p, + pp, +4pi —4p;) 20
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ie. g(p)<p, <q(p), (A2.11)
where qs(p|)=‘l'{—(l-pl)—\/l7—18pl+65p12}

and %(Px)='}{—(l—p,)+\/l7—l8p,+65p12}.
Clearly ¢,(p,)<0. It can be shown that ¢.(p) < ¢s(p,) , therefore

0<p, <q,(p,) satisfies the inequality (A2.11). .

A2.7.2 To show ¢\{® > ¢ under y,,

It is shown in this section that ¢{® 2 ¢ when c{® 2 ¢, c® > ¢V and
cy® 2c0?. Consider

¢4 2 0,
After some algebra, it can be shown that this is equivalent to

X
py 288 g 5 <o,

213,86

where

Yigss =1+3p; +3p, = 6p,p, =9p; +5p ps = pip3 +4P;
ad zi305 = (L~ pN4=3p, + p, +3p10, — 401 = P3).
Note that Zi386 > 0 for p, <0.

Now consider the following lemmas, which show that:

* for p, <0 and p, 2¢,(p), <SP 2cEV =P 2505

* for-i<p <0and p, <q(p), BV 280 =P 280,

* forp<-t  and p,<q(p), P20 =Y 289,

This completes the proof that ¢$® > ¢ under z,,. Note that the functions

{9,} considered in this section are not the same as the {g,} defined in section
A27.1.
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Lemma A2.8
ey 2V =P >89 when P2 2¢(p) and p, <0,

where

a.(p) = %{(5+3pl)-\/33+6pl -23p? }

Proof

Consider when

86
V2l = clP 289

: X138.86
Le. p, ZM =>p2
z
218,61 18,86

ile. 8,9,(1-3p,+5p, +3p,p, —4p2 —2p3) 20

. A2.12
Le. q(p)<p,<q,(p), ( )
where

¢,(p,) is given above,

and  ¢,(p)) = *{(5 +3p,) +433+6p, =23} }
It can be shown that ¢,(p,) >1. Therefore the inequality (A2.12) is satisfied

™
when p, 2 ¢.(p,).
Lemma A2.9

2y = el 289 when p, Sg(p,) and - < p, <0.
Proof
Consider when

86
Y2 = eGP 29

: X13 X13,86
Le. py2—= =p,2 .
213 Z13.86

After some algebra, this simplifies to
It can be shown that ¢,(p,) S1+4p, when -+ < p, <0, therefore satisfying
(A2.13), =
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Lemma A2.10
ey’ 2e” 2P 2c®  when p, <¢(p) and p <~

Proof
Consider when

eyl 28D =P > 09

x.
ie. Py 2 xw 60 =p, 2 18,86

218,60 213,86

ie. =3-6p,+8pp, +p220

ie. p,<q(p) (A2.14)
or p,=2g¢, (px) ’
where

#:(p)=(B-4p)-2\3-6p, +4p?
and ¢,(p)=(3-4p)+2{3-6p, +4p} .

It can easily be shown that ¢:(p,) > 1. It can also be shown that
%.(p)) < ¢3(p,) when p, <—}. Therefore p, < ¢,(p,) satisfies the inequality
(A2.14) when p, <-1. ]

A2.7.3 To show cm) anos) under 2.,

18 99)
In this section it is shown that c$® 2 c%™ when ¢{® 2¢$” and c{¥ 247
First consider ¢$® 2 ¢4,
This is equivalent to

p, 28103 X3, 103

213, 103

where
9p2 +5p2 py — pip2 +4p]
Xig103 =14+3p +30, = 6010, =9p1 +5p1 P2~ PP |
2 2 3
and  ziq,0, =1-3p, ~3p, + 6,0, +5p1 = pi P2 =2P7 + P1P7 — 4P -

It iS aSSllmed that le 103 > 0 , Since x]8,103 /218'103 <-1 for 218,103 < 0'
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Lemma A2.11
Cﬁ}s) 2 c(,f,” = c(,,‘f) 2> c(;,‘”) when p, <0.

Proof
Consider when

cf,‘,’” > c‘;") - cg’s) > c‘,’,f’”

X,
18,87 18,103
p

18,87 218,103

ie. -299,9(p +p,)20. (A2.15)
It can easily be shown that

9,>0=>9,>0 when p <0.
Therefore inequality (A2.15) simplifies to

(A +p,)<0 for p, <0, (A2.16)
By Lemma A2.5, the inequality (A2.16) is satisfied when c(® 2c$” and
P <0. =

A2.7.4 To show ¢3¢ under z,,

18 (99)
To show that ¢§® > ¢ when ¢{® 22, c® 2% and c¥ 2§, first

consider

oy 209,

. X
le. p 2 18116
zxsus

where

2 2 3, .3
Y5 = S+12p, +9p, —20p,p, =38p} +22p] p, + p; —8p,p; +16p; + p;

and

2
Zigns = (1= p,)(11-20p, +10p, =8p,p, + 62 + p3).
Note that 215116 > 0 when p; <0.
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The following lemmas show that :

e for p, 2-4, P > B = o8 5 (116,

o for —4<p <0and p,<~4, P26 =909,

o for p<-1 and p, <-4, WP 2080 =209,

This completes the proof that c{® 2¢$/® under z,,. The functions {¢,}
defined in this section are different to the {¢;} previously defined.

Lemma A2.12

e 2 =l 2040 when p, 2 4.
Proof
Consider when

c{;‘,s) > c(;” = cg’S) > c(;1716)

: 18,87 X18116
l.e. Ps S = P >
18.87 218,116

Le. 49,9,(1-p,)(1+3p,) 20

i.e. pz > _} . [}
Lemma A2.13
g2 = 02U when -4 < p, <0 and p, S—+.
Proof
Consider when

P2 = D 2 WO

: X X15116
le. p, 213 = p, 2B

213 218116

ie. 29,9,(1+4p,-2p,-2p% - p?) 20

Le. q(p)spsq(py) (A2.17)

where
2(py) = 1“&'&(3 -2p,+p3)

ad g,(p,)=1+4,/2(3-2p, + p2).
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Clearly ¢,(p,) >1, and it can be shown that ¢.(p,) S -1 when p, <-%.

Hence p, <-4 and -4 < p, <0 satisfy the inequality (A2.17).

Lemma A2.14
cg? 2P i 2l when p, <-4 and p, <-4

Proof

Consider when

116
W 20 = o > Q9

: X18.60 X18.116
Le. py2—— =>p,2——
18,60 218,116

ie. ~838(1-p)3+6p,-6p.p, —4p% +p2) 20
ie. p<q(p,)
or  p2¢,p,),

where
7:(p) = '}{3(1‘ P3) _\/21 ~18p, +13p; }

and ¢,(p,)= *{3(1—,02)+\/21—18p2 +13p2 }

It can be shown that ¢,(p,) >1. Also, ¢,(p,) 2 —% when p, < -+, so

Py p; S =% satisfies the inequality (A2.18).

A2.8 Proof of Theorem 7.7
Assume that

P 2cy  for e, €{65, 67,92, 99}.

(20)

(A2.18)

" (&) 3
Let this assumption be called y,,. Conditions for ¢$” 2 ¢, in terms of

{w,,}, are given in Table A2.8. Let E,, = E\ {20, 65, 67, 92, 99}. Theorem

7.7 is proved here by showing that, under y,,
2l forall eeE,,.

First consider the following lemmas.
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Lemma A2.15
p >0
W, 209w, <0

W, +w <0
Proof
By Lemma 7.1, it is clear that w,; <0 when w, , 20. Similarly to the proof
of Lemma A2.4 in Appendix A2.7, it can be shown that when w; , 20, p, >0

and w,, +w,, <0. .

Lemma A2.16
PICOPS e = Wis 2w, Wwhen p >0,

Proof

First consider

Wis 2 W,
2
i,e, p3 2 (L_ezl_) .
d-p0)
Now consider when

(20) 5, .(92)
Cw 2Cp = W 2 W2

; x (pr=p)
ie. 220N oy, SN2l
o 23,9 P3 (1-pf)
Le. 82-5p,+p,+pl =5p}p, + 1+ pp] +4p]) 20 (A2.19)
It can be shown that the inequality (A2.19) is true when p, > 0. [

Conditions for ¢§;” 2 ¢ for e € E,y, in terms of {w, , }, are given in Table
A2.9, and are clearly satisfied under y,, for

ee {13, 18, 29, 60, 61, 62, 63, 86, 87, 117} when ¢ 2 cly2) for all e, € =3,
where &), ¢ {65, 67, 92, 99}.
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Table A2.8
P 2e  for e {65, 67,92, 99}.

& | 5@
65 | 2w +2w 2w
67 AW Z Wy,
92 Wetw 20
99 W, 20
Table A2.9
PV 2cs” foreeE,,
¢ ¢’ 2cy” =20
13 4w, 22w, +2w s +wy, | 67,99
18 W2 W3 99
29 2w, 2w, + W 99
60 | 4w, +2w 22w, +w,, 67, 92,99
61 | 4w, +2w 2 Wy, +2w,, 92,99
62 | 2w +2w 2w, 92,99
63 | 4w, +2w, 22w, + Wi, 65, 99
70 | 4wy +2w, 22w 4 + Wy, 92,99 %
86 | 2w, +w 2w, 92, 99
87 | 2w +ws2w; 92,99
1037 2w, +w, = w, 92,99 3
116 | 4w, 42w 2 Wy 4 92,99 b
N7 | 2w, +w20 92,99

1 this is shown in sections A2.8.1 to A2.8.3.

In sections A2.8.1 to A2.8.3, it is shown that, under X209

7 2cy?  for ee {70,103, 116}.

Since p, >0 under y,, (Lemma A2.15), it is assumed henceforth in this

section that p, >0.
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A2.8.1 To show c¢;” 2¢cy” under y,,

. 20 99 H
It is shown here that ¢ > cl7” when ¢2” 2¢$? and ¢$}” 2 ¢f”. First
consider

P 200,

This can be written as

20,70
3 2 ’

Z30,70

where
3
Xm0 =3-8p, +11p, -8p,p, ~8p] =8p{p, + p; +16p] + p;
and 2,59 =9+8p, ~11p, +8p,p, =16 +32pp, =13p; =169} = p;.

It is assumed that z,,,, > 0, since for 2,57 <0, X070/ Z29.70 <~1.

For c” 2¢(”, X200/ 220,70 <1 is required, since |p;| <1. This occurs when
X20,70 < 220,70

ie. 29,(1+4p, —4p, —4p,p, +4p? —p2)>0

ie. g(p)<p,<q(p)

where

#(p)= =21+ p)-y5+12p, +8pl2
and ¢,(p,) =-2(1+ p,) ++/5+12p, +8p% .

Clearly, ¢,(p,) <~1, s0 p, <¢,(p,) is needed for type 20 to be optimal.
Lemma A2.17 and Lemma A2.18 show that for p, <¢,(p,), ¢3” 2¢c3

under y,,.
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Lemma A2.17
P 2c8? =80 2c0”  when #:(p) S p <:(p) and p, >0,

where
1 {_ ' 5
s+ 1-7p,)-(1=-p)Y17+30p, +17p }
qJ(Px) 4(2+P1) ( P])( P 1\/ | 1
Proof
Consider when

e 28 = @0 > 0

X30,02 X50,70

ie. p,2

=>p2
20,92 Z30,70

ie. 499,(1-p, +6pp,=3p} +Tplp—4p; ~2p P —4p)) 20
ie. g(p)Sp,Sq,(p), (A2.20)

where

¢,(p,) is given above

and ¢,(p,) =_4T2i—p)'{_(l+pl)(l-7pl)+(l—pl)\[l7 +30p, +17p} }
1

It can be shown that ¢,(p,) <¢,(p,) when p, >0. Hence,

7:(p) < p, <q,(p,) satisfies the inequality (A2.20). m
Lemma A2.18
P29 =8 2c0"  when p, <¢,(p,) and p, >0.
Proof
Consider when

eV 28 = G0 > 0

. z x
ie. p, RN Py 20,70
1,3 230,70

ie. 288,(1-2p, —4p, +2p,p, +4p] - p;) 20
ie. ¢(p)<p,<q(p), (A2.21)
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where
75(p)==2+p, —/5-6p, +50;
and g,(p)=-2+p, +/5-6p, +5p] .

Clearly, ¢,(p,) <-1. Also, it can be shown that 7:(p1) <¢s(p,) when
P, >0. Therefore p, < ¢,(p,) satisfies the inequality (A2.21). ~

A2.8.2 To show ¢} > 4™ under y,,

. o . 103
It is shown in this section that ¢Z% > c$% under y,,.

Lemma A2.19 .

e 2l =37 24" when pl 2 p,.
Proof
Consider when

(20) 99) (20) (103)
Cw 2Cp =>Cy Z2Cy

ie. Wie20 22w, ,+w 2w,
ie. Wis W
X 2 n
Le. Pl 2P,
Lemma A2.20
> cPP = cP”2¢l™ when 0<p, < p, and p; 20.
Proof
Consider when

20 (103)
P 2cl? =V 2cy
i.e. WL4 + WI,S 20 > 2W1.4 + w],s 2 wl,6
lLe. Wis 2Wg

ie. py(5-p +3p,+ Py —8pIXpy - £y) 21 pX1= P, X, - P3)
(A2.22)

356



Clearly, (A2.22) is true when p, = p,. If p, > p, then (A2.22) can be written
as

- d-p X1~ p5)
2 >
(5=p+3p,+ PPy - 8p7)

Py 2 (A2.23)

since (5—p, +3p, + p,p, —8p?) can be shown to be positive for A positive
definite. This also means that the right-hand side of the inequality in (A2.23)
is negative, so p; 20 and 0< p, < p, satisfy the inequality (A2.22). =
This means that the regions R, and R,, defined below, are not covered by
Lemma A2.19 and Lemma A2.20:

R = {(p1.02.p3): 0<p, <P, , p,>0and p; <0}
and R, ={(p,,p5,0,): 0< p, < p, and p; >0}.

1 . 0. 20
It is now shown that, for these two regions, c¢1%> ¢,

Consider
c("2,0) 2 c'('I,OS) .
This can be written as

X
20,103
p 3 2 ’

~
“20,103

where
— 2 3 2 2 +4 3
%2010 =1=3p0, 430, =2p,p;, — pi =3P, P2 + P1P; P

and  zy,03 =143p,=3p, +2p,p, =397 +1pip, - 2p; — piP: —4p;.

When x34103/ 230,403 20, €52 ¢ for p, <0. The inequality

*20103/ 220303 2 0 simplifies to x,9,05 2 0, and for p, >0, this is equivalent to

PrSqi(p) or p2q,(p), (A2.24)
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where

41(Pl)=(2—1/;—){'3+2p1+3p3 —(l—pl)J(1+p.X9-7pl)}

nd gy(p) =z F3+20 430 +(- P+ AIO-TA)}

For A positive definite, p, > 7.(p,), so (A2.24) simplifies to p, 2 ¢,(p,).
Also, it can be shown that p} > ¢,(p,) when p, > 0. Therefore, (A2.24) is
satisfied by the region R,.

Also, ¢$™2 ¢2 when

X20103/ 220103 > 1
ie. X20103 > £20,03
ie. $(1+pXpo;—p,) >0
ie. P <P
This is clearly satisfied by the region R,.

A2.8.3 To show ¢ >c}'® under y,,

Now to show that ¢3” > ¢$'® under y,,, first consider
0 25,
After some algebra, this can be written as

x
20,116
P32 ——

?
230116

where
3 3
Xpons =5=12p, +9p, - 4p,p, ~6p} =10p} p, + p; +16p] + p;
and  zy,)6 =(1- p,X11+4p, +10p, =26 p} + p3).

Note that z,,,,, > 0 is assumed, since for Zaon16 <0, X20m16 ! Z20016 <—1.
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By Lemma A2.21 and Lemma A2.22, ¢22 >¢$'® when ¢ 2¢$? and

0287,

Lemma A2.21
P 2epP =0 2cl'®  when p, 2¢,(0),
where
(1-p -4p7)
7 (p) = _“—(3__"_7;13“"' .
Proof
Consider when
30 28D = (20 5 016
ie. p>lm P52 Toonis
22092 220116
ie. 48.9,(1- p,X1-p, +3p, + pp, —4p%) 20
ie. P2 2(p)
Lemma A2.22
e’ 2el? =cP 2c5'®  when p, <g(p).
Proof
Consider when

6
9 > 09 = (29 > (11O

. z X20,116
ie. py2dd o p > 20lE

13 Z20.116
ie. 299,(1-4p,-2p,+6p} —p3)20

ie. 7:.(p) < P1S¢:(p1),

where
7:(p) =-1 ‘\/2(1’ 2p, '*'3/’12)

and ¢,(p,)= —1+J2(1—2p, +3p}).

(A2.25)
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Clearly, ¢,(p,) <—1. Also, it can be shown that ¢,(p,) <¢;(p,), so
Pz < ¢,(p,) satisfies (A2.25). =

A2.9 Proof of Theorem 7.8
Let the assumption that

ey 2cy’  for ¢ {13, 67, 86, 116}.
be called y,,. Let E, =E\ {13, 60, 67, 86, 116}. In order to prove Theorem
7.8, itis shown that, under g,

P2c) forall ee B,
Conditions for ¢$;” 2 ¢{® and ¢;” 2 ¢, for e e B, are given in Table
A2.10 and Table A2.11, respectively. For ee {29, 99,117}, ¢},” 2 ¢, is
clearly satisfied for all e, € Eg,, where Eg, < {13, 67, 86, 116}. For e {18,
20, 61, 62, 63, 65, 70, 87, 82, 103}, it is shown below that under z,,

WV 2cl0,
Table A2.10
¢ 2y for ¢ {13, 67, 86, 116}.
€ ¢ Z o
131 2w, 42w, 2w, 5 +w,, T
67 Wy Z2W, s
86 Wy, 20
116 W, 20

T this inequality is equivalent to w, s +W; 4 <0,
since row/column sums of W are zero
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Table A2.11
' 2cs? for ee B,

€ D2l =5
18 | 2wy, +wy 24w, + 2w, 67, 86 b
20 | 2w, +wy, 24w, +2w 67,86 %
29 W4 22W, 5 +2W ¢ 13, 86
61 | wiy+wy, 22w, 86,116 1
62 | w,+wy 22w, 86,116 1
63 | 2wy, +w, 22w + W, 86,116 1
65 | 2w, +wy 22w, +Wg 86,116 1
70 Wia 2 W 116 pe
87 1 2w, +wy 22w, 86,116 }
92 | 2w, +w, 22w, 86,116
99 | 2w, +wy, 22w, 67, 86
103 | 2w, +w, 22w, 86,116 1
IH-, 2wy, +wy 20 86,116

% this is shown below.

Now consider the following lemmas, which show that, under z,,,

¢ 28 for ee {18, 20, 61, 62, 70}.

Lemma A2.23

cQ? > MO = (60 > (70
Proof
Consider

e =2c(2,

i.e. wl'z 2 wl's
ie.  -p,8,9 2p(p,-p2)
ie. p; SO.

Recall that for ¢{§” > c('®, p, < -x,,/z,, isneeded. Since x,;, z;; >0, it

follows that, - x,,/z,, <0, which completes the proof. =
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Lemma A2.24 0 - 0
{5725 and ¢ 23} = {6 24P and ¢ 230},
Proof
By adding both sides of the inequalities for e = 18 and 20 in Table A2.11, it
follows that when ¢ > ¢(® and ¢{§” 2%,
2W 5+ Wy 22w 5+ 2w, +2W
ie. 2wy + w2 (W3 + Wy ,)+ 2w

ie. 2w ,+ W3 +2w;, 22w,

R . 60 (86) -
which is true when ¢{;” 2¢$" and ¢{% 2¢{”.

e (60) 5 ,(61) ©) > 61y
{c0 250 and ¢ 29} = {47 2 ¢l and ¢ 257 )

Proof

When ¢ 2¢§" and ¢{&” > ¢%? | the following inequality is true:
2w + 2wy, 22w 5+ 2w,

ie. 2wy, + 2wy, 2~(W33+ Wy ,)

ie. 2wy, +wy 3 +3w,;, 20.

.. - 86 (60) ~, (116) ]
This inequality is true when ¢ 2¢$® and ¢(§” 249,

. (©0) 5 (o)
It now follows that for e € {63, 65, 87, 92, 103}, c';”) 2 ¢4 when ¢, 2 ¢’

and ¢(” > ¢, where e, e, and e, are listed in Table A2.12.

Table A2.12

¢, e, and e,
€ € 6
63 | 61 | 70
| 65 | 62 | 70
87 | 61 [116
92 | 62 [116
103 | 70 | 86
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A2.10 Proof of Theorem 7.9
Assume that

¢y ey for e {13, 18,20, 60, 99, 116}.
Let this assumption be called y,,, and let E,, = E\ {13, 18, 20, 60, 67, 99,
116}. Theorem 7.9 is proved by showing that under y;,

¢y 20, forall ee B,
Conditions for ¢{y” > c ™ are given in Table A2.13, and conditions for

¢y’ 2¢,” are given in Table A2.14.

Table A2.13 ¢{72c® for ¢ {13, 18,20, 60, 99, 116}.

€ QP =l

13 | 2w, + 2wis2wy 3+ ws,
18 Wi, 24w,

20 Wi 24w,

60 Wis 2w,

99 w3, 20
116 w20

Table A2.14 ¢} 2¢," for ec B,

e c(;7) > cu(,t) E;’

29 2wy, + 2w, 5 2 Wy, 13,99

61 | 4w, s +2w,, 22w, +4w,, | 18,60,99,116

| 62 | 4w, +2w,, 22w, , +4w,, | 20,60,99,116

63 | 4w s +2w, 24w, +2w, | 18,60,99,116 %
65 | 4w, +2w,, 24w, +2w ¢ | 20,60,99,116 3}

| 70 Wys 2 W 60, 99 t
86 | 2w +wy, 22w, 60, 99
87 | 4w 5 +2w,, 2 4w, 18,99,116
92 | 4wy, +2w,, 24w, 20, 99,116
1037 [ 2w,, +w,, = 2w,, 60, 99 1
117 2w g tw; 20 99,116

S

T shown in Lemma A2.26.

+ clearly satisfied when ¢{§” > ¢(°.
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Note that under g,,, c5” =c$”, which means that p; <0 since x,,,

Z34 > 0. Now consider the following lemma.

Lemma A2.26
P 2 e = €0 > 7 when p, <0.

Proof
First consider

cl& > (10
ie. Wis 2We.
This inequality simplifies to

p2=pi S0,
Now consider when
¢ 2 ¢80 = 6D > (0

ie. p-piSp(1-p)) > p,-pi SO
ie. ps(l-pl) <0,
which is true when p; <0.

The conditions for ¢{¢” 2 ¢,(” for e e {29, 61, 62, 86, 87, 92, 117} are clearly

satisfied for all e, € E;,, where Eg, < {13, 18, 20, 60,99, 116}. Lemma

A2.26 means that w, ; 2w, ¢, 50 ¢y 2 ¢, is also satisfied for

e {63, 65,103}
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A3 Appendix 3
Additional material for chapters 9 to 11

A3.1 Equivalent expressions for the BLUEs and BLUPs for
model 2

It is shown here that the BLUE of ¢,'z, and the BLUP of ¢,'z, are given by
¢,'t, and ¢,'T,, respectively, where

L, =(X,'V, X)) X,'"Vyy (A3.1)
and %, =0,G,X,'V;(y - X,1,), (A3.2)
are equivalent to Z, given by

(A,E,")=(X,'V; X,) ' X,V y (A3.3)
and 7,=0lG,X, 7'y - X, (42,). (A3.4)

First consider the equation in (A3.3), which can be re-written as

'& C(ll) | C(l:) | I
£)- ('ciﬁf"c'&? S
where
-1
ce i ¢t 1,7V, | 1,'VX,
“Tn‘.'q“ =(X,,'V; X)) = ““:r“ il
C * C(-“) X! Ifz -m !XI’VZ X-l

Therefore

£, =(C*",," + C¥X,"W;y. (A3.5)

The sub-matrices C*", C", C*" and C** are determined using (A1.22),
which gives the inverse of a partitioned matrix. This gives

CW =1, V') + (751 L Y5 X,C0X, ',

CU = ot~ -1V, )"1,,,'V{1X,C(")
and C* =(x,'v;Xx,)".
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From the equation in (A3.5) it follows that
2, =@V )CX, VIS + COx Yy
=C®X,'V;y

giving the equation in (A3.1).

Now consider Vz_I(Z — X,,(i1,1,')) from the equation in (A3.4).
This is equal to

et
= V{'(Vz -1,c™, - 1,c%x, - X,C1, - X,C* X,’)V{' y
= i - ) vy
N A RS AS da) A Ay
i BB NS TS A
AR F A AR S T LA
= {V; AW R AV doc dl
—V7'X,cx, v, by
= Vz‘J_’ - I/Z‘Xxi:

= V;(Z - X,_T:,),
giving the equation in (A3.2).

A3.2 Expressions for the sub-matrices of C;'

Expressions are derived here for the sub-matrices of C;' (given in section
9.2). Recall that
c, = (XVX S )
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First to simplify the notation, let
a=x,'V"',; b=V"1,; A=X,V'X, +0,'G;
0=0,7",)" v=d4a'a

and C,,,=X,''X, + 0;°G;' =4 - wad.

Now consider the following Lemmas.

Lemma A3.1

Gty =47 + o(l-wv)' A aa' A7,
Proof
The proof follows from the formula in (A1.24) in Appendix Al.5. ]
Lemma A3.2

V=W - X,Com X, Wy (A3.6)
Proof

First consider V; . The matrix V, isdefinedas ¥; + 02X,G,X,'. Fromthe
formula in (A1.24), it follows that

AR AR A WS
Then it can easily be shown that

(.7,)' = 0/0-ev)
and V;'l, =b - VX, 4.
Hence, ¥, can be written in terms of ¥, as

AR AR A W &l

~o(l-ov) (B8 - ba A7 X,V - VX, A7 ab
+VX, A ag 47XV, (A3.7)
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Now consider the right hand side of the equation in (A3.6). The matrix ¥;"
can be written as
V=V - wbb.
Also,
XV =X,V - wab.
It then follows from Lemma A3.1 that ¥;' — ¥;' X,C;5.X,'V; is equal to the

2.
right hand side of the equation in (A3.7). "
Lemma A3.3
G:A-IX"'I/I-IX”G" =O_:Gn - A-l. (A38)
Proof

The proof follows by substituting 4 — ¢,2G;" for X,'V;"'X,, in the left hand

side of the equation in (A3.8). -
Lemma A3.4 9

G:V;X nGn = VI.X nCZ_,}m . (A3 )
Proof

The proof involves writing both sides of (A3.9) in terms of ¥;'. First
consider o2V, X,G,. Substituting the expression for ¥, given by (A3.7) into
oV, X,G, and replacing 024X,V X,G, by 02G, - A™ (Lemma A3.3)
gives

X,A™ - o(l-ov)(ba 4™ - VX, 47 aad™). (A3.10)
Now consider V;"X ,,C;J,,, . From the expression for C;,, given in Lemma
A3.1, it follows that V] X,C;., is equal to the expression given by (A3.10).
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Lemma A3.5
c;.=c?(G, - 636G, X,'V;X,G,). (A3.11)

Proof
Consider the right hand side of the equation in (A3.11). Substituting the

expression for o2V, X,G, from (A3.10) gives
oG, - 0’G X,V X A"
+o(l-wv)(0?G,aad™ - 61G,X,'V'X, 4 add™).

Then Lemma A3.3 gives the expression for C;,, in Lemma A3.1. |

From the formula (A1.23) for the inverse of a partitioned matrix, it follows
that:

o =X, - X, X, X X,)
=(x,v;x,]' (from Lemma A3.2);

O ==C{X, W X,Cl
=-0,Ci"X,'V;X,G, (byLemma A3.4);

Cim™ =G5t + CL, X,V X,CEX, VX, C5L,

=0(G, - 62G, X, V. X,G, + 01G,X,'V; X,C{X,'V; X,G,)
(by Lemma A3.4 and Lemma A3.5).

A3.3 Derivation of var(z,), var(Z, —z,) and

cov(z,,7, —z,) under model 2
From the equation in (2.16) in section 2.4.3.1, it follows that

var(?,) = (x, v x, ] =C.
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Recall from equation (9.7) in section 9.2 that

i, C(u) ! C(sn) . .

() S
R'

= Rn' Z’

R'=C{IX,V, + COOX,'Vy

~N

where

and R"'= C;M)X,'K‘ + C;"")X,,'I/l.,

Now consider

(7)1

fc(n) : Cgm)J fX
C(’") fc("") \X

(e iem\[(x X, xvX, _ °°)
\co Lo )\ x, X, | X, WX, + 6. °G')  \010.%G)

f]c : 0 0 ' _2C§”’)G-l
=l et | = |l
0 i7) \oig’c™G;)

R'X, | R R P e
( _____ '___:X.-) = (fv_l__gz_c.i_-gz___-) (A3.12)

)K(X X,)

ie

To derive var(Z,-z,) and cov(Z,,%, —,) the equation in (A3.12) is useful
(as in Appendix A of Henderson, 1975). First consider
van(z,) =R,'var(y)R,
=0,R,'X,G,X,'R, + R'ViR,.
Substituting R,' X, =1, — 0;°C{"™G;" gives
var(z,) =02G, — 2C™ + o’C{™G,'C{™ + R,'V|R,.
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nn =2 ~(nn) =1 ~(m)
It can easily be shown that R,'V;R, =C{™ - o;2C{™G;'C{™. It then

follows
.13
that var(Z,) =o2G, - C{™. (A3.13)
Now consider
cov(z,,z,) =E(7,z,")

=R,'E(yz,")

=R,'X,E(z,z,")

=R,'X,var(z,)

=0’G, - C{™. (A3.14)
Hence,

Var(Zn —I.n) = mse(in)
=var(z,,) - 2COV(Z,,,£,,) + va.r(_r_,,)
=C{  (by(A3.13) and (A3.14)).

Finally consider
COV(I_A‘,Z" —In) = E{i’,(zn —In)' }
=E(Z,7,') - E(Z,z,')
= R'E(yy)R, - R'E(yz,").
The term
R'E(yy)R, = uR,'1,EQ")R, + R X,r,E())R,
+R:'XnE(Zn£n')Xn'Rn + RJ'I/an’
Since R '1, =0, and R,'X, =1, this simplifies to
R'E(yy)R,
=HT 1 'R" + Z:IJ'X:'R:' + a:R:'XnGan.Rn + R:'Van
=o}R'X,G,X,'R, + R'VR,
(since 1,'R, =0,' and X,'R, =0).
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Note that R'V,R, =C{™ - o.,°C{™G;'Ci™.
Now consider the term
R'E(yz,') =R/'X,E(z,z,')
=0R'X,G,.
Hence, it follows that

cov(£,,7, - z,)=C;™.

A3.4 Simulating correlated values
A method to generate an n-vector x from a N(0,,A) distribution is outlined

in this section, where A is a positive definite #x 7 matrix.

A vector x with aN(0, ,A) distribution can be given as
x=Ae,

where 4 is a nx n matrix, such that A = A4', and e is a n-vector, such that

¢ has aN(0,,7,) distribution.

For a separable process, i.e. when A=A, ® A,, where A, (i=1,2)isa n xn,
matrix (n=mn, ), A can be taken as

A=4,84,
where A, = 4,4, (i=12).

Using MATLARB, the function chol can be applied to the matrix A to give 4,

and a vector ¢ can be generated using the function randn.
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A3.5 Best designs found for Example 11.1 under model 1

(p..p.)

lIll

lIIZ

¥

A"S Ann Ans Ann Ans Ann
Case 1 Case 2 Case 3
e o 000 e o e te e e 0 00 ¢ e o oo
] e e Q2000 e e s 00 2 LI I ]
20000 e o e ) 20001 o0 0 0] oo ] e
LEC U N | 1eeeaoe e e s e 20000 20000
('i’,%) e 200 csewte o0 Qe CICES B ees el
{eoeoee 2000 eeeole D]l ®e 2000 2000
*oo0le s 0002 10800 LR B LRC A |
®2200 0 Jecee CECIC I | e e 00?2 oo Qe
LR ) a0 e e e21e00 1eo00oe ) SR I
e Jeooe o200 L I ) o020 CRCI I )
Case 4 Case 5 Case 6
®es 00 0 CIC I B ) LI
LRCRE 2 e o o0 CRCTS WA ]
21002 ©21¢9e s 00 e
s02¢0 1002 12000
('}aé) LECRC I ) LI ) ) IO )
LI I I A Dll XK Dll e0 Q0 DIO
1002 o102 2000 ]
*2¢e0 1] ee2 1 eleee
Ool.o 2.... o.ozo
ceoance LRI B ) LRI N )
Case 7 Case 8 Case 9
LRI I ) e o o000 o e e o
oo 120 e o 000 o] e e
12e¢1| | l11111 cee12
e e s 00 s 0 e 0 10200
(T%,'l%) eaeo s s oo e se 000
Dll Dll seec e RN XERXK Dlo
e 1 200 s o 0 e 2004}
20010 LI I o012
LI 3 By 4 22222 e 2000
eo s 00 D LI )

ns

nn

Case 10

L
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[ N ]
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~Ne

10000} ]
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se s e
LI I
AL 2 |
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® 2000

LC R |
o0 21
es 000
21000
10020
e o o e o0
LI )
2] e
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A3.6 Best designs found for Example 11.1 under model 2

Model 2, o? = %, with respect to A, -criterion

(p,.p.)

Fy

¥,

¥,

¢ )

Case 1

Case 2

Case 3

s e 0o
s 0 e e
oo feoe
eje e
L BN
LI L]
®20 20
e 20
2000
o oo 09

e 000
®2 000
ee0 020
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1002
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oo ]ooe
o feooe
se0e e
® @ 0o &9

es oo e
Jeeoee
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e oo
2001
e e Qe
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627

Case 4

Case 5

Case 6

LI B J
*0 000
® 20600
20200
©2e 2
LIS B |
*j1e e
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co 000
o0 00

e e o 0
200
200 00
® 0200
e ]ee?
10020
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* o0 00

e e o000
Jeesse
eeo o] e
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2000 1]
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o200 0
e e 00 )
o0 200
s o0 e

(%, 1%)

Case 7

Case 8

Case 9

o0 200
20020
®20 00
00 0]
LU B
1021
.1...
se0 00
s 0000

ee s o0
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1o
eeo o0 ]e
® 1002
LI LA |
20000
CRCIE By A
©200 0
s 00 00

s o000
es ]ee
10000
seeo]e
s 1002
o0 20]
20000
LI,
e2¢e 00
ceos 0 e e

The systematic design D is the A,,,-best design found for all the above cases.

374



Model 2, o} =4, with respect to A__-criterion

(pr’pc) lIll \P2 \PS
Case 11 Case 12 Case 13

* s 0o eo0 0000 oo jee
es o] s 0] e es o]
o126 10000 ) S I
©2]1 e LRI B seee]e
('i'"&’) ee e 20 o] ee2 120
2e 000 e s 20t e0 002
ee Q00 20000 20000
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o000 o000 0 e0o e 0 e

Case 14 Case 15 Case 16
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oo Qe 10020 20160
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For(p,,p,)=(3,3)and ¥, ¥, the A,,-best designs found are:

(pr’pc) \I" ‘P3
Case 11 Case 13
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o000 ) eo 0 e 2
2000 0090 2
LRC IR ] e e o0
1021 LI
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For(p,,p,) = (#5.%) and ¥, (case 17), Dy is the A, -best design found.
For the other cases Dg is the A, -best design found.

Model 2, 2 =1, with respect to A, -criterion

(p,,p.)

¥
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Model 2, o} =1, with respect to A_, ~criterion

(o, .P,) ¥, ¥, ¥,
Case 21 Case 22 Case 23
l [ I ) 2

L2 I
Qoo
seeo e ]

(¢ 2)) coeze
efjeee D7 Dz

20000
oo e e
LRI B )

1eeer
Case 24 Case 25 Case 26
¢ X)) D, Ds Ds
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Model 2, ¥,:

Any design with one check plot in each row and with two different control
varieties in each column (for example, designs D; to Ds) seems to be

A, -optimal for o2 =45, 4,1, and A, -optimal for o} = 1.

Any design with the check plots in two rows and with two different control
varieties in each column (for example, designs Ds to D;3) seems to be

A,,-optimal for o2 = 4, 4.
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A3.7 Best designs found for Example 11.2 under model 1

Best designs found with respect to A,,,-criterion
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Best designs found with respect to A, -criterion
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Best designs found for ¥, (Case 10),

A, -best
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A3.8 Best designs found for Example 11.2 under model 3

Best designs found with respect to A, -criterion, for o2 = 7y
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Best designs found with respect to A, ~criterion, for ocl=%
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Best designs found with respect to A, -criterion, for o i=1
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Best designs found with respect to A, -criterion, for o2 =1
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