
Variational water-wave models and

pyramidal freak waves

Floriane Marie Pauline Gidel

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

Department of Applied Mathematics

June 2018

ii

iii

Declaration
The candidate confirms that the work submitted is her own, except where work which has formed

part of jointly authored publications has been included. The contribution of the candidate and

the other authors to this work has been explicitly indicated below. The candidate confirms that

appropriate credit has been given within the thesis where reference has been made to the work of

others.

The work in Chapter 2 of the thesis has appeared in publication as follows:

[57] F. Gidel, O. Bokhove and A. Kalogirou, Variational modelling of extreme waves through

oblique interaction of solitary waves: application to Mach reflection, Nonlinear Processes in

Geophysics, 24 (2017), 43-60, doi: 10.5194/npg-24-43-2017.

The original idea was given by O. Bokhove as an extension of his previous collaboration with A.

Kalogirou [20]. Therefore, sections 2.2.2, 2.4.1 and 2.4.2 follow the method initially introduced in

[20]. The other sections are directly attributable to the candidate’s work. In addition, the candidate

wrote the publication fully, with proofreading from A. Kalogirou, O.Bokhove, M. Kelmanson, G.

Kapsenberg and T. Bunnik.

The work in Chapters 3 and 4 of the thesis has appeared in publication as follows:

[58] F. Gidel, O.Bokhove and M. Kelmanson, Driven nonlinear potential flow with wave breaking

at shallow-water beaches, Proc. ASME 2017 36th Int. Conf. on Ocean, Offshore and Arctic Eng.,

OMAE 2017, 1 (2017).

The strategies presented in this paper were obtained through discussions and collaboration with

O. Bokhove and M. Kelmanson. The candidate derived and implemented the mathematical and

numerical models, and wrote the publication, with proofreading from O. Bokhove, M. Kelmanson,

T. Bunnik and G. Kapsenberg.

The experiments in Chapter 5 were planned with and supervised by T. Bunnik and G. Kapsenberg.

This copy has been supplied on the understanding that it is copyright material and that no quotation

from the thesis may be published without proper acknowledgement. The right of Floriane Marie

iv

Pauline Gidel to be identified as Author of this work has been asserted by her in accordance with

the Copyright, Designs and Patents Act 1988.

c©2018 The University of Leeds and Floriane Marie Pauline Gidel

v

À Guy Gidel,

et à ma famille, sans qui ce projet n’aurait pas pu aboutir

vi

vii

Acknowledgements
This thesis would not have been possible without the support of many great individuals, to whom

I want to dedicate the first lines of this manuscript.

First, many thanks to my supervisors, Onno Bokhove and Mark Kelmanson, for their help and

advice during the last four years. Onno, thank you for creating and leading this great project,

and for having given me the opportunity to take part in it. I was privileged to experience such a

rewarding and instructive work and that would not have been possible without your passion and

infectious enthusiasm about research. This thorough project was the best way to begin my research

career, so I sincerely thank you for your trust, your involvement and your guidance. Mark, thank

you for your encouraging feedbacks that have been essential to keep me motivated and stimulated

me to always do my best. Thanks also for your patience when correcting hundreds of times the

same “Frenglish” typos; your insightful suggestions and advice have greatly improved the quality

of this manuscript. More generally, thank you both for sharing your ambition and helping aim

further than I could imagine. The PGR award is a great result of this ambition.

Many thanks also to my MARIN supervisors, Tim Bunnik and Geert Kapsenberg, for their great

help during my secondment. Thanks for sharing your knowledge and expertise about the maritime

industry and its challenges; our interesting discussions helped me to define the objectives of this

thesis. I am especially grateful for your assistance before and during the experiments, which

considerably improved the quality and impact of this thesis.

My sincere gratitude to David Hughes and Jennifer Ryan for assessing this work.

Special thanks also to Rainer Hollerbach for his precious help during the first half of my PhD. I am

really grateful that you took the time to go through the details with me and helped me overcome

my issues. Thanks also to Bulent Düz for his interest in my research and his insightful feedback

on my code tutorials. My gratitude to Lawrence Mitchell for his precious help with Firedrake and

the optimisation of the solvers, and with his feedback on the tutorials.

This PhD thesis would not have been possible without the financial support of the European

Marie Skłodowska-Curie Actions (MSCA) Fellowship. Being a MSCA fellow was a chance in

viii

many aspects and I am really thankful for this support. Essentially, by combining academic and

industrial experience, it enabled me to address all important stages of the modelling process; that

is, the specification, the modelling, and the experimental validation.

I also thank the members of the School of Mathematics who, directly or indirectly, contributed to

the smooth progress of this thesis. Thanks also to the “water team” for the nice meetings, during

and after work, and, in particular, to Tomasz for sharing both the Leeds and MARIN adventures

with me. My warmest thanks to Tom for his precious advice, his help and valuable support from

first day to submission, the nice discussions, and, more importantly, all the beers!

On a personal note, I want to express all my love and gratitude to my parents, Dominique and

Marie-Hélène, for their unconditional support. Thank you for giving me the chance to grow in

the best conditions, for your help with everything I undertake, for comforting me in the difficult

moments, for your patience and so much more. In addition, thanks Mum for proofreading parts

of this thesis. I am also deeply grateful to my brothers, Pierre and Grégoire, for their invaluable

support and humour over the years. Growing next to you was the best adventure and I am the

proudest sister. Many thanks to Charlotte as well for being such a great sister(-in-law), and to my

second family, les Giroux, for their precious support and all the great moments. Special thanks to

my dearest friend, Anaı̈s, for her support, kindness, humour, advice, and even proofreading.

Thanks to all my cousins, uncles and aunts, for their encouragements, their interest in my research,

their continued support, their advice, and for the lovely family reunions. I am so proud to be part

of a such a great family! Thanks to my grandmothers, Paulette and Marie-Thérèse, for their love

and unconditional support. I am so proud to have grandmothers who, while being over 90, Skype

me when I am abroad, try to understand my research and to read my English publications, visit

me in Netherlands, and always encourage me. Thank you both for being great examples.

Thanks to the most courageous, Pierre, for encouraging me to embark upon this project and to

finish it. Most importantly, thank you for accepting all the constraints of my three years abroad,

for your advice in the most difficult moments, for believing in me when I do not, and for your

priceless patience. Thanks also to your family for their warm welcome.

ix

I also want to address my warmest thanks to my friends for accompanying me on this journey

despite living in another country. Special thanks to those who visited us in Leeds or Utrecht (or

both!) for the great memories (Zoé, Clémentine, Marjory, Julie, Alice, Flo(flo), Sarah, Romain,

Éric, Pado, Flo(fleur), Marie, Paulbib, Bozzo, les Lopez...). “Bisochat” to the fan club for all the

good times that boosted me. I am deeply thankful to my cousin Margaux and my friends Floriane

(both!), Julie, Marie for your continued encouragements; your support has been priceless. Thanks

to Amélie and Clémence for all the great moments and laughs. Thanks to all the new friends I

met during this adventure and who accompanied me during the last four years; I cannot cite you

all, but special thanks to Charlotte, Pauline, Kaatje and Florian for the Dutch souvenirs, and to

Mathilde for sharing both UK and Dutch memories!

I want to dedicate my last thoughts to my grandfathers, André Langrand and Guy Gidel, who

cannot see the outcome of this project but would have been the proudest. Thank you for giving me

your taste for science and for always being proud of me.

x

xi

Abstract
A little-known fact is that, every week, two ships weighing over 100 tonnes sink in oceans [32],

sometimes with tragic consequences. This alarming observation suggests that maritime structures

may be struck by stronger waves than those they were designed to withstand. These are the

legendary rogue (or freak) waves, i.e., suddenly appearing huge waves that have traumatised

mariners for centuries and currently remain an unavoidable threat to ships, and to their crews

and passengers. Thus motivated, an EU-funded collaboration between the Department of Applied

Mathematics (Leeds University) and the Maritime Research Institute Netherlands (MARIN)

supported this project, in which the ultimate goal, of importance to the international maritime

sector, is to develop reliable damage-prediction tools, leading to beneficial impact in terms

of both safety and costs. To understand the behaviour of rogue waves, cost-effective water-

wave models are derived in both deep and shallow water. Novel mathematical and numerical

strategies are introduced to capture the dynamic air-water interface and to ensure conservation

of important properties. Specifically, advanced variational Galerkin finite-element methods are

used to provide stable simulations of potential-flow water waves in a basin with wavemakers

and seabed topography, which allows reliable simulations of rogue waves in a target area. For

optimised computational speed, wave absorption is considered with a beach on which waves break

and dissipate energy. Robust integrators are therefore introduced to couple the potential-flow

model to shallow-water wave dynamics at the beach. Experimental validation of the numerical

tank is conducted at Delft University of Technology to ensure accuracy of the simulations from

the wavemaker to the beach. The numerical tank is designed for subsequent use by MARIN to

investigate the damage caused by rogue waves on structures in order to update maritime design

practice and to ensure safety of ships, therefore leading to a competitive commercial advantage

across Europe.

xii

xiii

Contents

Declaration . iii

Dedication . v

Acknowledgements . vii

Abstract . xi

Contents . xiii

List of figures . xix

List of tables . xxviii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 5

1.2.1 The SurfsUp project . 5

1.2.2 The Maritime Research Institute of Netherlands 5

1.2.3 Aims of this thesis . 6

1.3 Water-wave modelling . 7

1.3.1 Main characteristics . 7

1.3.2 Modelling wave dynamics . 9

1.3.3 Numerical modelling . 14

1.3.4 Variational approach . 16

1.4 Thesis overview . 17

2 Rogue-type waves in shallow water: the example of solitary-wave interactions 19

2.1 Introduction . 19

xiv CONTENTS

2.2 Water-wave model . 24

2.2.1 Introduction . 24

2.2.2 From Luke’s variational principle to the Benney–Luke set of equations . 24

2.2.3 From the Benney–Luke set of equations to the Kadomtsev–Petviashvili

equation . 27

2.3 Comparison with modified Miles’ theory and Kodama’s exact solution 28

2.3.1 Introduction to Kodama’s exact solution 28

2.3.2 Application to the present Benney–Luke model 31

2.4 Numerical implementation . 33

2.4.1 Space discretization: finite-element method (FEM) 33

2.4.2 Time discretization: second-order Störmer–Verlet scheme 36

2.5 Numerical results . 39

2.5.1 Definition of the domain . 40

2.5.2 Amplification of the stem wave . 43

2.5.3 Angle of the stem and reflected waves 46

2.6 Conclusions and discussions . 49

3 Rogue-type waves in a deep-water tank 53

3.1 Introduction . 53

3.2 Variational nonlinear potential-flow model . 55

3.3 Spatial discretisation strategies . 61

3.3.1 Updating the vertical structure . 61

3.3.2 Expansion of subsurface velocity potential 63

3.3.3 Finite-element method in the horizontal plane 65

3.4 Temporal discretisation schemes . 67

3.4.1 Hamiltonian dynamics . 67

3.4.2 1st–order symplectic-Euler scheme . 71

3.4.3 Second-order Störmer-Verlet scheme 73

3.4.4 Stability of the schemes . 76

3.5 Numerical solvers . 81

CONTENTS xv

3.5.1 Firedrake solvers . 81

3.5.2 Firedrake discretisation . 81

3.6 Optimisation of the solvers . 83

3.6.1 Performance analysis . 83

3.6.2 Preconditioning . 87

3.7 Convergence analysis . 90

3.7.1 Energy conservation . 90

3.7.2 Test of spatial convergence . 97

3.8 Rogue-type wave simulations . 100

3.8.1 Import data from measurements . 100

3.8.2 Focussed wave: the dispersion effect . 102

3.9 Conclusions and extensions . 107

3.9.1 Advantages of the present numerical wave tank 107

3.9.2 Extention to wave-structure interactions 108

3.9.3 Three-dimensional rogue-type wave simulation 109

3.9.4 Extension to more sophisticated wave tanks 110

4 Numerical wave tank: wavemaker, wave propagation and absorbing waves 113

4.1 Introduction . 113

4.2 Variational coupling of deep- and shallow-water nonlinear models 115

4.2.1 Definition of the domain . 115

4.2.2 Variational approach . 117

4.2.3 Coupling mechanisms at the interface between deep and shallow water . 120

4.3 Numerical coupling of deep- and shallow-water domains 121

4.3.1 Spatial coupling strategies . 121

4.3.2 Temporal coupling strategies . 132

4.4 Implementation of the fully-coupled system . 136

4.5 Results . 138

4.6 Conclusions and discussions . 142

5 Experimental validation of the numerical wave tank 145

xvi CONTENTS

5.1 Introduction . 145

5.2 Experimental set-up . 147

5.3 Collection of experimental data . 149

5.3.1 Measuring equipment . 150

5.3.2 Measuring uncertainty . 154

5.3.3 Calibration of the wave gauges . 156

5.4 Wave specification . 157

5.5 Wavemaker input . 161

5.5.1 Experimental wavemaker input . 161

5.5.2 Numerical wavemaker input: extraction of the measured wavemaker

motion and velocity . 166

5.6 Validation of the numerical wave tank . 167

5.6.1 Capture and absorption of irregular waves 167

5.6.2 Capture and absorption of long waves 171

5.6.3 Capture and absorption of short waves 174

5.6.4 Capture and absorption of steep waves 180

5.7 Conclusion . 185

6 Code tutorials 189

6.1 Introduction . 189

6.2 Rogue-type waves in shallow water: Benney-Luke model for oblique interaction

of solitary waves . 190

6.2.1 Introduction . 190

6.2.2 Code source . 191

6.2.3 Use of the code . 191

6.2.4 Code description . 192

6.3 Three-dimensional wave tank with wavemaker and seabed topography 197

6.3.1 Introduction . 197

6.3.2 Code sources . 197

6.3.3 Use of the code . 198

CONTENTS xvii

6.3.4 Code description . 202

6.4 Numerical wave tank: coupling to shallow-water beach 224

6.4.1 Introduction . 224

6.4.2 Code source . 224

6.4.3 Use of the code . 225

6.4.4 Code description . 226

6.5 Use of experimental data . 236

6.5.1 Introduction . 236

6.5.2 Code source . 236

6.5.3 Run a comparison with experiments of Chapter 5 238

6.5.4 Import other measured data . 239

6.6 Conclusions . 241

7 Conclusions 243

7.1 Overview . 243

7.2 Summary of thesis objectives . 244

7.3 Achievements and applications . 244

7.4 Extensions of the present numerical models . 248

7.4.1 Extensions of the shallow-water rogue-wave model 248

7.4.2 Extensions of the deep-water tank . 249

7.4.3 Extensions of the coupling process . 249

7.4.4 Extensions of the shallow-water absorbing beach 250

7.5 Outreach activities . 250

Appendix 254

A Rogue-type waves in shallow water: the example of solitary-wave interactions . . 255

A.1 Time discretization of the Benney–Luke model 255

B Rogue-type waves in a deep-water tank . 256

B.1 Transformed equations . 256

B.2 Fully discrete symplectic-Euler scheme 263

B.3 Fully discrete Störmer-Verlet scheme 266

xviii CONTENTS

B.4 Stability criteria for the symplectic-Euler scheme 269

B.5 Space-continuous-time-discrete weak formulations with the Symplectic-

Euler scheme . 270

B.6 Space-continuous-time-discrete weak formulations with the Störmer-

Verlet scheme . 274

B.7 Weak formulations obtained from the continuous variational principle . . 279

B.8 Wavemaker motion and velocity as used in section 3.7.1 281

B.9 Fast Fourier transform of the experimental free-surface elevation 282

C Numerical wave tank for offshore applications: dynamics of wavemaker, wave

propagation and absorbing waves . 283

C.1 Harten-Lax-van Leer (HLL) flux for the Godunov scheme 283

C.2 Space-discrete matrices . 283

C.3 Transformed deep-water weak formulations and equations 284

C.4 Deep- and shallow-water Hamiltonians 285

C.5 Verification of the nonlinear shallow-water solutions 286

D Experimental validation of the numerical wave tank 287

D.1 Fourier modes of irregular waves . 287

Bibliography 288

xix

List of figures

2.1 Left: top view of a channel containing an incident solitary wave propagating in the

x direction with amplitude ai. The side wall is oblique and makes an angle ϕi with

the x direction. Right: top view of the reflection pattern when the incident wave

impacts upon the wall. The pattern is composed of three waves: (1) the incident

wave, (2) a reflected wave of amplitude ar that forms an angle ϕr with the angle

perpendicular to the wall, and (3) a Mach stem wave propagating along the wall

with amplitude aw and an angle ϕw with the wall. 20

2.2 Three-dimensional water-wave domain with rest depth H0, velocity potential

φ(x, y, z, t), total depth h(x, y, t) and free surface deviation η(x, y, t). 24

2.3 O-type and (3142)-type solitons as represented by Kodama et al. [84]. Top:

evolution (from left to right) of the O-type soliton, consisting of two line solitons

with different amplitudes and angles with respect to the y–axis. As it propagates,

the shape of this soliton remains unchanged. Bottom: evolution (from left to

right) of the (3142)-type soliton, consisting of two line solitons travelling in the

x direction with different angles and amplitudes. As the soliton propagates, a new

line soliton is created at the intersection of the two initial line solitons, leading

to a stem wave. Figure obtained from [84]. c©IOP Publishing. Reproduced with

permission. All rights reserved. 29

2.4 Schematic plan showing the link between the scaling of the three systems of

equations involved in the derivation of the exact solution and critical condition for

which Miles’ and Kodama’s predictions hold in the Benney–Luke approximation. 33

xx LIST OF FIGURES

2.5 Definition of the domains in the two cases described in the text: (a) intersection

of two channels, with two obliquely incident solitons interacting at a virtual wall,

and (b) half of the domain with a soliton propagating in one channel and colliding

with an oblique wall. This wall is in the x–direction (in which case the soliton has

a two-dimensional propagation of direction) or oblique, in which case the incident

soliton propagates in the one-dimensional direction (x). 40

2.6 Soliton surface deviations obtained for an initial amplitude ai = 1.0 and angle

ϕi = π/6 rad. Blue: behaviour of the incident (dashed line) and stem (full line)

waves when the incident soliton propagates in an oblique direction; red: behaviour

of the incident (dashed line) and stem (full line) waves when the incident soliton

propagates in one direction. The dashed lines essentially coincide after t > 30. . 42

2.7 Domain discretization using quadrilaterals in Gmsh. In order to reduce

computational requirements, mesh refinement is restricted to only the region

adjacent to the wall. 43

2.8 Comparison between the expected amplification (solid line) from Miles (2.4) and

our numerical results (symbols) for different values of the interaction parameter κ,

namely κ ≈ 1.1265 (ε = 0.12), κ ≈ 1.0526 (ε = 0.14), κ ≈ 1.0077 (ε = 0.15),

κ ≈ 0.9989 (ε = 0.16), κ ≈ 0.9733 (ε = 0.17), κ ≈ 0.9345 (ε = 0.18), and

κ ≈ 0.8692 (ε = 0.20). 44

2.9 Numerical results and predictions for the reflected and stem waves in the case of

regular reflection, i.e. κ > 1. Top left: top view of the numerical evolution of

the incident, reflected and stem waves. Top right: schematic plan view of the

expected evolution of the stem and reflected waves at two different times t1 and

t2 with t1 < t2. The stem wave should propagate along the wall with constant

length. The angle ϕr of the reflected wave is expected to be constant and equal

to the incident-wave angle ϕi. Bottom centre: side view of the time evolution

of the incident, reflected and stem waves, highlighting the amplification of the

stem-wave amplitude compared to the initial solitary-wave height. 47

LIST OF FIGURES xxi

2.10 Numerical results and predictions for the reflected and stem waves in the case

of Mach reflection, i.e. κ < 1. Top left: schematic plan view of the numerical

evolution of the incident, reflected and stem waves. Top right: top-view scheme

of the predicted evolution of the stem and reflected waves at two different times

t1 and t2 with t1 < t2. The stem wave should grow linearly in length, leading to

an angle ϕw > 0 with the wall. The angle ϕr of the reflected wave is expected

to be constant and larger than the incident-wave angle ϕi. Bottom centre: side

view of the time evolution of the incident, reflected and stem waves, highlighting

the amplification of the stem-wave amplitude compared to the initial solitary-wave

height. 48

3.1 Schematic numerical wave tank. Waves are generated by a vertical piston

wavemaker oscillating horizontally at x = R(y, t) around x = 0. The depth

at rest H(x) varies in space due to the seabed topography b(x) starting at x = xb. 55

3.2 The fixed, computational domain as defined by Ω̂. 56

3.3 Diagram showing two ways (blue and pink paths) to obtain the transformed Euler

equations. 61

3.4 Discretised 3D fixed domain Ω̂d. The mesh contains Nx × Ny elements in the

horizontal plane, and one vertical element on which the velocity potential is

expanded with high order expansions in order to eliminate the z–dependency of

the weak formulations. 61

3.5 Discrete domain for solving the transformed Euler equations with the finite-

element method. The unknowns are expanded in each horizontal plane with

continuous Galerkin expansions. 65

3.6 Evolution of the wavemaker motion (top) and velocity (bottom) at y = 0 (blue)

and y = Ly (red). 84

3.7 Number of iterations for convergence with the symplectic Euler scheme before

any optimisation. 85

3.8 Number of iterations for convergence with the Störmer-Verlet scheme before any

optimisation. 86

xxii LIST OF FIGURES

3.9 Number of iterations for convergence for (a) Symplectic Euler and (b) Störmer-

Verlet with appropriate preconditioning. 89

3.10 Snapshots of the free-surface elevation at t = 0.0s (top), t = 5.66s (middle) and

t = 16s (bottom), obtained with the symplectic-Euler scheme and ∆t = 0.001s. . 91

3.11 Snapshots of the velocity potential at t = 0.0s (top), t = 5.66s (middle) and

t = 16s (bottom), obtained with the symplectic-Euler scheme and ∆t = 0.001s. . 92

3.12 Energy variations with (a) the 1st-order symplectic Euler scheme and (b) the 2nd-

order Störmer-Verlet scheme. The wavemaker generates the waves from t = 0.0s

to t = 5.65s and is then turned off. The simulations are computed with ∆t1 =

0.001s (full line) and ∆t2 = 2∆t1 = 0.002s (dashed line). 94

3.13 Energy variations with (a) the 1st-order symplectic Euler scheme and (b) the 2nd-

order Störmer-Verlet scheme in the absence of wavemaker motion. The full dark

green lines show variations in the cases SE1 (a) and SV1 (b), the full blue lines

show variations in the cases SE2 (a) and SV2 (b), and the dashed pink lines are

respectively twice the variations of SE1 (a) and four times the variations of SV1 (b). 95

3.14 Comparison of energy variations with the 1st-order symplectic-Euler scheme

(pink) and the 2nd-order Störmer-Verlet scheme (blue) with ∆t = 0.001s to

highlight the higher accuracy of the Störmer-Verler scheme. 96

3.15 Top view of the numerical domain at time t = 0.0s with resolutions

∆x = ∆y = 0.025m (top),∆x = ∆y = 0.05m (middle) and

∆x = ∆y = 0.1m (bottom). 98

3.16 Temporal evolution of the slope of the regression line for symplectic Euler and

Störmer-Verlet. 99

3.17 Schematic of MARIN’s basin used for measurements. The tank is 195.4m long,

with a constant water depth at rest of 1.0m. A piston-type wavemaker moves

around x = 0m to generate the waves. 100

3.18 Interpolated and measured wavemaker motion (top) and velocity (bottom) in the

case of focussed wave generation. 101

LIST OF FIGURES xxiii

3.19 Snapshots of the velocity potential at times t0 = 0.0s, t1 = 93.01s,

t2 = 105.12s, t3 = 109.40s, t4 = 113.68s and t5 = 119.98s. The

focussed wave is captured at time t3 = 109.40s. 103

3.20 Snapshots of the free-surface elevation (bottom), at times t0 = 0.0s,

t1 = 93.01s, t2 = 105.12s, t3 = 109.40s, t4 = 113.68s and t5 = 119.98s.

The focussed wave is captured at time t3 = 109.40s. 104

3.21 Wave elevations of numerical (blue and cyan) and experimental (red) data at

various locations. The numerical results are obtained with the symplectic Euler

scheme (blue full line) and the Störmer-Verlet scheme (cyan dashed-dotted line). 105

3.22 Fast Fourier transform of the wave elevations of numerical (blue and cyan) and

experimental (red) data at various locations. The numerical results are obtained

with the symplectic Euler scheme (blue full line) and the Störmer-Verlet scheme

(cyan dashed line). 106

3.23 Analytical solution of a ninefold amplification resulting from the interaction of

three solition, as derived by Baker [6]. (a): three initial soliton travel in the positive

x direction, with amplitude A0 = 0.5. (b): two-by-two soliton interactions. (c):

the three solitons interact, leading to a wave of amplitude A = 4.2 = 8.4A0. (d):

the undisturbed solitons continue to propagate with their initial angle and amplitude.109

3.24 Waves generated from a flap-type wavemaker with amplitude α. The generated

fluid particles follow a circular motion. 110

3.25 Experimental tank with two wavemakers. When they both move forward, a

collision occurs in their common corner (red). 111

4.1 Two-dimensional vertical domain containing a piston wavemaker on the left

boundary to generate the waves and a beach on the right boundary to limit their

reflection. The basin is divided into two subdomains: a deep-water domain À

where nonlinear potential-flow equations are solved and a shallow-water domain

Á where the nonlinear shallow-water equations are solved. At the interface Â

between the two domains, coupling conditions are derived. 116

xxiv LIST OF FIGURES

4.2 Left: Fixed deep-water numerical domain (blue) as defined by Ω̂D. Right: Fixed

shallow-water numerical domain as defined by Ω̌S (bold black) and corresponding

water depth at rest Ȟ(x̌) (blue) and beach topography b̌(x̌) (orange). 122

4.3 Left: deep-water mesh which includes nz + 1 horizontal layers, each containing

Nx elements of size ∆xDW . Right: shallow-water mesh that contains Ňx volumes

of length ∆xSW and Ňx + 1 interfaces on which the inward and outward fluxes

of each volume are determined. 124

4.4 Comparison of the wave propagation in a domain closed by a vertical wall and a

domain with wave absorption on the beach at different times. 139

4.5 Energy of the deep- and shallow-water models. At time t = 0.0s, the system is at

rest. The wavemaker is turned on at t > 0.0s, leading to an increase of energy, first

in deep water, followed by an increase of energy in shallow water. The absorption

of energy by the beach leads to a conservation of the global energy. At t = 68.03s,

the wavemaker is turned off, resulting in an energy decrease that results from wave

breaking on the beach. 140

5.1 Piston wavemaker (left) and absorbing wall (right) in the tank of TUD. 147

5.2 Experimental tank of TUD (left) and its schematic representation (right) with

custom-made beach and L–shape probes (grey). 148

5.3 Photo (left) and schematic (right) of the experimental beach and the supporting

frame which is weighted with lead blocks (black) to preclude unwanted bed motion.148

5.4 Left: Start of the beach. A gap of 0.02m between the tank bottom and the start of

the beach ensures equal water level on both sides of the beach. Right: dimensions

of the start of the beach. The water depth at rest at x ≤ xB is 1.00m. 149

5.5 Accelerometer facing the piston wavemaker to measure its motion and acceleration. 150

5.6 Wave probes in the experimental tank (left) and schematic representation of their

location (right). 151

5.7 Photographs of the probes used for measuring the free-surface elevation. Left:

type used for WHM1, WHM3 and WHM6. Right: type used for WHM2, WHM4,

WHM5 and WHM7. 151

LIST OF FIGURES xxv

5.8 Beach probe to estimate the location of the waterline. 153

5.9 Estimation of the real waterline position from the measured location. 153

5.10 Chequered board (left) and its location relative to the beach (right). 153

5.11 Estimation of the waterline coordinate from the chequered board. 154

5.12 Left: Configuration 1: weights are placed on both sides and in the middle of the

beach to hold it in place. Configuration 2: two weights are placed in the middle of

the beach and one on the side opposite to the probes. 155

5.13 Wave-height measurements at probe WHM4 with configuration 1 (left of

Fig. 5.12) (blue and orange curves for repeated measurements) and configuration

2 (right of Fig. 5.12) (yellow and violet curves for repeated measurements) in

various measurement-time intervals. 155

5.14 Configuration of the number of waves to be generated. At time t0, water is at rest;

at time t1, the first wave reaches the beach and the wavemaker is turned off; at

time t2, the last generated wave meets the reflection of the first wave at the probe

WHM1; and, at time t3, the reflection of the last wave meets the first wave again

at probe WHM1. 158

5.15 Transfer function (RAO) as a function of the wave periods, obtained by

interpolating the values of Table 5.6 with a 2nd–order polynomial. 162

5.16 Wavemaker-input signal built from U1 and U2 with the ramp function for the case

Tp = 1.67s, Hs = 0.05m. 164

5.17 Full wavemaker-input signal to generate waves with Tp = 1.67s and Hs = 0.05m.165

5.18 Example of measured and estimated wavemaker motion (top row), velocity

(middle row) and acceleration (bottom row) used as input of the numerical model. 166

5.19 Comparison between numerical (blue) and experimental (black) Fourier modes of

irregular waves measured at probes 1 to 7 with Hs = 0.1m and Tp = 1.56s (cf.

wave profile in Table 5.4, case 2.2.1). 169

5.20 Energy absorption for irregular waves with Hs = 0.1m and Tp = 1.56s. Three

wave profiles are considered: case 2.2.1 (top row), case 2.2.2 (medium row) and

case 2.2.3 (bottom row) (see Table 5.4). 170

5.21 Photography (left) and schematic (right) of the experimental tank of TUD. 171

xxvi LIST OF FIGURES

5.22 Wave profile at probe 1 (x1 = 15m) are used to analyse the reflection of long

waves at the beach and on a vertical wall. Top: temporal evolution of the free

surface. Bottom left: Fourier modes of the wave spectrum from 8s to 30s revealing

the main-frequency components of the spectrum. Bottom middle: Fourier modes

of the wave profile from 40s to 68s to highlight reflection of long waves on the

10%-slope beach. Bottom right: Fourier modes of the wave profile from 80s to

115s to obtain the reflection of long waves on a vertical wall. 172

5.23 Numerical energy in the “beached” tank for case 1.1.1 (see Table 5.3) with

Hs = 0.05m, Tp = 1.67s and xc = 28.24m. 174

5.24 Temporal evolution of the free surface at probes WHM1 to WHM7 in the case

1.3.1, that is, for Tp = 0.80s and Hs = 0.03m (see Table 5.3). The coupling point

is set at xc = 28.24m, yielding a coupling-depth at rest of Hc = 0.2m. 176

5.25 Temporal evolution of the deep- (black) and shallow-water (dashed blue) depths

at the coupling point xc = 28.24m for the case 1.3.1 (see Table 5.3). 177

5.26 Fourier modes of the numerical (blue) and experimental (black) reflected waves

measured at probe 1 of case 1.3.1 (Hs = 0.03m and Tp = 0.8s, see Table 5.3)

during the time interval [70s, 90s]. The coupling is set at xc = 28.24m. 178

5.27 Numerical energy in the case 1.3.1: short waves withHs = 0.03m and Tp = 0.8s.

Left: coupling at xc = 28.24, with H(xc) = 0.2m= λ/5. Right: coupling at

xc = 29.44m, with H(xc) = 0.08m= λ/12.5. 179

5.28 Experimental (black) and numerical (red and green) frequency spectra of the free

surface at probe 1 (x1 = 15m) for the case 1.3.1 (see Table 5.3) to highlight the

effect of the coupling location on the wave reflection. The case where h(xc) =

0.08m (green) reflects the waves 40% less than the case where h(xc) = 0.2m (red). 180

5.29 Specification of steep waves from the breaking-wave limit. 181

5.30 Numerical (blue) and experimental (black) evolution of the free-surface elevation

at probe 1 when generating steep waves approaching the breaking-wave limit (case

1.1.3 (top), 1.2.3 (middle) and 1.3.2 (bottom), see Table 5.3). 182

LIST OF FIGURES xxvii

5.31 Numerical (blue) and experimental (black) Fourier spectra of the free-surface

elevation at probe 1 when generating steep waves approaching the breaking-wave

limit (case 1.1.3 (top), 1.2.3 (middle) and 1.3.2 (bottom), see Table 5.3). 183

5.32 Deep- and shallow-water depth at the coupling point for case 1.1.3, 1.2.3 and

1.3.2 in which steep waves approaching the breaking-wave limit are simulated

(see Table 5.3). 184

5.33 Numerical deep- and shallow-water energy for case 1.1.3, 1.2.3 and 1.3.2 in which

steep waves approaching the breaking-wave limit are simulated (see Table 5.3). . 185

6.1 Code sources . 190

6.2 Mapping the x–dependent solutions to the 3D free-surface domain. 216

7.1 Examples of demonstrations given at Leeds open days. More details are given in

the SurfsUp blog. 251

7.2 Geographical origin of visitors to our blog: darker colours correspond to a higher

frequency of visits. 252

7.3 Award of Postgraduate Researcher of the year 2017 at the Leeds Doctoral

Showcase. Photo courtesy: Arththi Paathi. 253

B.4 Evolution of the wavemaker motion (top) and velocity (bottom) at y = 0 (blue)

and y = Ly (red) in the test of energy conservation. 281

B.5 Fast Fourier transform of the measured free-surface elevation at the probes x1 =

10m, x2 = 20m, x3 = 40m, x4 = 49.5m, x5 = 50m and x6 = 54m. 282

C.6 Comparison between the exact (red) and numerical (blue) solutions in the case

of an oscillating lake with parabolic topography (black) at different times. The

numerical solution is discretised with 600 volume cells. 286

D.7 Numerical (blue) and experimental (black) Fourier modes of case 2.2.2. 287

D.8 Numerical (blue) and experimental (black) Fourier modes of case 2.2.3. 287

xxviii List of tables

xxix

List of tables

2.1 Prediction of the minimal distance needed by the stem wave to reach at least

twice its initial amplitude in a sea state with characteristic wave height a0 = 3 m.

The dispersion parameter µ is set to 0.02, while the small-amplitude parameter

ε varies from 0.12 to 0.20, leading to different wave evolutions. The numerical

distance needed to reach more than twice the incident-wave amplitude is measured

from the numerical simulations. The corresponding water depth, real distance of

propagation and wavelength are computed from the definition of ε, µ and scaling

(2.12). These values are approximate. 51

3.1 Parameters used in the test case. Dimensions are given in square brackets. 83

3.2 Averaged number of iterations and time for convergence for each solver of the

symplectic Euler and Störmer-Verlet schemes before any optimisation. 86

3.3 Averaged number of iterations and time for convergence for each solver of the

symplectic Euler and Störmer-Verlet schemes with appropriate preconditioning. . 88

3.4 Tests for which the energy variations are computed. 91

3.5 Parameters used in the test case. Dimensions are given in square brackets. 97

4.1 Characteristics of the coupled and wall domains, including topography and

wavemaker settings. 138

5.1 Laser measurements of the probe locations. 152

5.2 Precision of the probe-location measurements. 152

xxx LIST OF TABLES

5.3 Test cases for regular waves. Three wavelengths are considered (second

column). The corresponding frequencies, periods, and velocities are estimated

with Eq. (5.9). For each wavelength, several characteristic wave heights are

tested (sixth column), yielding varying steepness (seventh column), including one

approaching the breaking-wave limit (sw = 0.05). 159

5.4 Test cases for irregular waves with random frequency and amplitude. 160

5.5 Prescribed (U sent) and measured (U meas) wavemaker inputs, measured wave

period T and amplitudes h(x2) at probe WHM2 and h(x6) at probe WHM6. . . . 161

5.6 Transfer function (RAO) computed at WHM2 and WMH6 for various wave periods.162

5.7 Test of the transfer function. 163

5.8 Frequencies and wave heights of the steep-wave profiles of cases listed in Table 5.3.181

6.1 Test cases and corresponding run numbers for the generation of regular waves in

the wave tank of TUD. 237

1

Chapter 1

Introduction

1.1 Motivation

“ Nothing in life is to be feared, it is only to be understood”, Marie Curie [11].

Mme Curie’s well-known assertion is arguably not the case for rogue waves (also called freak

waves), which were feared throughout history; even since scientists have begun to understand

them. Despite having traumatised, if not killed, sailors for centuries, these suddenly appearing,

huge waves started to raise scientific attention only relatively recently, as late as the end of the

20th century. One of the first explorers to report such an event was Christopher Columbus who, in

a letter to Castilian Sovereigns, during his third Voyage in 1498 [73], observed:

“He heard a terrible roaring from the south, and beheld the sea heaped up, as it were, into

a great ridge or hill, the height of the ship, covered with foam, and rolling toward him with a

tremendous uproar. His own ship was suddenly lifted up to such a height that he dreaded lest it

should be overturned or cast upon the rocks, while another of the ships was torn violently from her

anchorage. The crews were for a time in great consternation, fearing they should be swallowed

up; but the mountainous surge passed on, and gradually subsided”.

A similar event was observed four centuries later, in 1826, by the naval officer Dumont d’Urville,

whose testimony was believed to be folklore, in particular by the scientist François Arago [75].

Despite many other reports of similar events (see examples in [110]), it was indeed difficult for

2 Chapter 1. Introduction

scientists to believe in the existence of such waves, which they could neither witness nor explain

with existing knowledge. This scepticism has to be understood within the context of the 19th-

century findings on water waves (see a chronology in [35]). At the time when d’Urville witnessed

the 33m-high wave, knowledge on water waves was still very limited: his accident coincided

with the first milestones on experimental and mathematical theory for water waves with, for

instance, the book of Weber and Weber (1825) [141] and the essay of Cauchy (1827) on the

initial-value problem for linearized water waves [26]. Later mathematical findings did not support

mariners’ stories either, since linear wave theory, first introduced by Airy [4] in 1841, predicts

that wave heights follow a Gaussian distribution; as a consequence, in a sea state with a 10m-

averaged wave height, a 30m-high wave would occur only once every 10 000 years; that is, much

less frequently than reported by sailors.

In the 20th century, several instances of severe ship damage (e.g., the USS Memphis (1916) [129],

the Michelangelo (1966) [22], the Neptune Sapphire (1973) [110], the Wilstar (1974) [22], the

Taganrogskiy Zaliv (1985) [110]) and losses of strong vessels (e.g., the Wasatah (1909) [63], the

SS Edmund Fitzgerald (1975) [13], the MS München (1978)[10]) have offered supportive evidence

that has increased both the credibility of mariners and the curiosity of scientists. As a result, the

first paper on freak waves was published by Draper in 1964 [39] who, building on his knowledge

on ocean waves and the measurement of a 20m-high wave on a British Ocean Weather Ship,

claimed that “exceptionally high waves are not curious and unexplained quirks of Nature. Their

occurrence can be calculated with an acceptable degree of precision”. In the meantime, progress

on water-wave theory, in particular with the work of Stokes [131, 132] on nonlinear gravity-wave

dynamics, led to a second-order correction to the linear wave theory for crest-height prediction

(i.e., the distance between the depth at rest and the highest point of the wave). In 1980, Tayfun

[134] indeed showed that, while wave heights are well predicted by the Gaussian distribution

(or, as extended by Longuet-Higgins in 1952 [91], the Rayleigh distribution), wave crests are

higher and better predicted with his second-order-correction model. On the 1st of January 1995,

a 25.6m-high wave was measured at the Draupner offshore platform; that is, 2.25 times higher

than the recorded averaged wave height in this area of the North sea [65]. The “New Year wave”

was not only the evidence that such extreme and sudden waves exist, but also the long-awaited

observation to launch research into rogue waves.

Chapter 1. Introduction 3

Since the “New Year wave” in 1995, improved technologies have enabled new and relatively

frequent records of extreme waves, which are designated as rogue waves when at least twice

as high as the characteristic wave height [65] (i.e., the average height of the largest third of

surrounding waves). For example, more than ten waves of height exceeding 25m were spotted

in a three-week period (1996) in satellite SAR images [124, 88, 123], which confirmed that

extreme waves are more frequent than predicted by either linear or second-order models. In

addition, several passenger-ship accidents reported in the news media in the early 21st century

(e.g., the Bremen and the Caledonian star (2001, [90]), the Dawn (2005, [47])) and accidents

at the coast (see examples in [38]) have enabled scientists to list and map witnessed rogue-

wave events in order to study the origin of rogue waves (examples of inventory are found in

[107, 38, 90, 41, 109]). As a result, we know today that these waves occur in both deep and

shallow water [109] and do not always occur due to stormy weather, but also due to particular

marine conditions such as: in areas where waves travel against a strong current (e.g., in the

Agulhas current [123, 97, 87, 112, 136, 137, 14]); in areas with varying bottom topography

[128, 139, 60, 14]; and, in crossing seas [135, 27, 138, 123, 16] as in the case of the New-Year

wave [2]. A thorough overview of current knowledge on rogue waves is given in [14]. While

some of the aforementioned conditions may be circumvented (such as the Agulhas current), other

conditions are neither fully understood nor predictable and can therefore not be avoided, thus

regularly leading to new accidents (recent ones are the Canadian whale-watching-boat tragedy in

2015 [99] and the Jean Nicoli passenger ship in the Mediterranean sea in 2017 [46]). Expected

to become increasingly frequent due to global warming [17, 18], the threat of these unpredictable

rogue waves must not be neglected. Building safer maritime structures that would not sink in the

case of an unfortunate encounter is therefore essential for the safety of crew and passengers.

Designing maritime structures able to resist extreme events has two major requirements. First,

rogue-wave dynamics must be understood in order to be generated in experimental tanks, wherein

wave-structure interactions can be tested. Reproducing rogue waves experimentally was the

motivation of several studies in the last two decades (see, e.g., the EXTREME SEAS and the

MaxWave projects). This was, for example, achieved by means of temporal focusing (waves with

different lengths travel at different speeds to meet in a target area) [111, 67, 29] and through the

4 Chapter 1. Introduction

generation of a Peregrine breather [114, 28]. Experimental investigation of rogue-wave impact

upon maritime structures has therefore been possible [30]. However, the reliability of such tests

depends on the number of repeated measurements; design practice indeed requires averaged

calculations of wave force over a large sample of measurements in order to reduce uncertainty

[14]. The high cost of experiments (several thousand euros per day of testing) precludes the

maritime industry from being able to provide a sufficient number of measurements, thereby

limiting reliability of current data and, as a direct consequence, update of design practice. The

second design requirement is the statistical study of the probability for a vessel to encounter

a rogue wave. As explained in the previous paragraph, rogue waves are more frequent than

predicted by the linear and second-order models, which therefore cannot be used in a practical

sense to improve ship design. Another crest-height distribution, the Weibull distribution [142],

was introduced by Forristall in 2000 [49] and has since been used by the maritime industry to

design offshore structures [14]; however, it underestimates the occurrence of rogue waves. A way

to estimate the frequency of the occurrence of freak waves is to conduct field measurements of the

waves at sea. However, as highlighted in [14], limited storage usually enables the measurement of

sea-surface time series of only 20 minutes, which is too short to obtain reliable statistical properties

of rogue waves [15]. An alternative solution to experimental or field measurements is the use

of numerical models that could simulate rogue-wave dynamics and realistic sea states. While

some accurate water-wave and rogue-wave models exist (WASIM, OceanWave3D, ReFRESCO),

their use is currently computationally limited by their high demands on simulation time, data

storage and energy use. A solution to the aforementioned dynamical and statistical design-

practice requirements would be to derive a cost-effective water-wave-simulation tool, in order

to: determine statistical properties of rogue waves in a realistic sea state; study wavemaker

motion resulting in wave-structure interactions in a target area; and, optimize or replace repeated

experiments and large-scale simulations of rogue-wave dynamics. Deriving such a model is the

aim of the SurfsUp project.

Finally, we note that only the first half of Mme Curie’s quotation was used to open this chapter:

its continuation

“ Now is the time to understand more, so that we may fear less”,

Chapter 1. Introduction 5

succinctly captures the spirit in which the remainder of this work is undertaken. To this end, i.e.

with increased understanding in mind, we embark upon the objectives of the SurfsUp project and

the goals of the thesis.

1.2 Objectives

1.2.1 The SurfsUp project

The SurfsUp project (“SurfsUP: Freak Waves and Breaking Wave Impact on Offshore Structures”)

is a European Industry Doctorate (EU EID) collaboration between the Maritime Research Institute

of Netherlands (MARIN) and the department of Applied Mathematics at the University of

Leeds. Funded by the Marie Curie actions, the partnership aims to use and expand mathematical

knowledge about water waves to answer international maritime and industrial challenges. The

three-year project comprises both the development of cost-effective water-wave models at the

University of Leeds (18 months) and the experimental validation of the numerical simulations

at MARIN (18 months). By combining mathematical and industrial expertise, the objective is

to provide an added value to MARIN’s design practice with a view towards increasing safety

of maritime structures. Two major tasks are considered: first, the modelling of a cost-effective

water-wave model in which rogue-wave dynamics can be reproduced and tested; and, second, the

modelling of wave-structure interactions. In particular, coupling these two models will enable the

estimation of rogue-wave loads on maritime structures. This thesis focuses on the first task, as

detailed after a brief introduction of MARIN’s activity and facilities.

1.2.2 The Maritime Research Institute of Netherlands

Founded in 1932, MARIN is a worldwide leader in hydrodynamic and nautical research and

development whose aim is to provide innovative design solutions to build better, safer, cleaner,

and more cost-effective ships and marine platforms. Their activity is shared between several

departments, each focusing on specific targets (ships, offshore developments, trial and monitoring,

maritime simulations, nautical center, and research and development). This thesis is part of the

6 Chapter 1. Introduction

research and development activity and, more specifically, the “Basin waves and extreme waves”

program that aims to expand the experimental and numerical knowledge about wave generation

and wave modelling in the basins. For that purpose, several wave tanks are available at MARIN,

equipped with wind and wave generators, seabed topography and absorbing beach, in order to

reproduce realistic sea states. A specification and a description of the use of each wave tank

is available on MARIN’s website [98]. In the next section, MARIN’s research and industrial

requirements are considered in order to set the objectives of this thesis.

1.2.3 Aims of this thesis

MARIN has developed several simulation software packages for water-wave dynamics coupled

with maritime structures. The most widely used, PARNASSOS [70] and ReFRESCO [140, 43],

provide accurate determination of physical effects and full-scale predictions that are used from the

initial design process through to the performance testing of built structures. However, the high

accuracy of these simulations require expensive computational resources that limit their use. In

particular, the update of consultancy practice for the design of safer structures in a rogue-wave

environment requires the simulation of long time series due to the low frequency of occurrence

of such waves. Existing wave models at MARIN would necessitate days, weeks or even months

to provide expected results, as well as costly computational resources and storage. The main

motivation of this thesis is therefore to develop a cost-effective water-wave model that can optimise

both large-scale simulations of rogue waves and experimental tests in the basins.

In order to optimise large-scale simulations of rogue waves, the water-wave models must satisfy

several criteria. First, computational speed must be ensured by means of an optimisation process.

Second, conservation of important properties such as the mass and the energy must be maintained

despite the various length scales involved (domain length, wavelength, wave height). Robust

discretisation techniques will therefore need to be derived. Third, the extreme height of rogue

waves and their great steepness must be captured by demonstrably stable numerical methods.

Advanced implementation techniques will therefore be designed to ensure stability of rogue-wave

simulations. Finally, with a view towards being used as a tool for design practice, accuracy must be

Chapter 1. Introduction 7

proven. To ensure accuracy, verification with theory and experimental validation will be organised

and conducted to ensure that models can be trusted.

To optimise experimental studies of rogue-wave damage on realistic maritime structures, an

objective of this thesis is also to develop a numerical tank that matches the design of MARIN’s

basins. Water waves will therefore be simulated in a computational basin that contains wavemakers

for the generation of the waves, with a seabed topography to enable both shallow- and deep-water

rogue-wave simulations, and with a sloping beach to absorb the breaking waves. Specifically,

the numerical tank will ensure reliable simulations of rogue waves in a target area, in order

to optimise experimental wavemaker input in MARIN’s basins. In addition, the mathematical

model and numerical methods will be derived with a view towards the addition of a maritime

structure in the computational basin, in order to facilitate the coupling between the numerical tank

and the wave-structure interaction model developed as the second task of the SurfsUp project.

The resulting advanced mathematical and numerical model can subsequently be used to measure

several configurations of rogue-wave impacts upon a vessel or a wind turbine, thereby providing

the information hitherto missing for the update of industrial consulting practice.

To better explain the building process of the numerical tank, some mathematical and numerical

background on water-wave modelling is first recalled in the next section.

1.3 Water-wave modelling

1.3.1 Main characteristics

A wave is characterised by its height Hs, which is the distance between its trough (the lowest

displacement of the surface) and its crest (the highest surface displacement), and by its wavelength

λ, which is the distance between two consecutive crests or troughs. A wave travels at the phase

velocity cp, which can be visualised as the speed at which the crest travels, and is computed as

the ratio between the angular frequency ω, and the wave number κ = 2π/λ. The angular wave

frequency is defined by the dispersion relation, which depends on three main effects: surface

tension, gravity and nonlinearity.

8 Chapter 1. Introduction

A capillary wave is a wave for which the surface-tension effect is predominant. This is the case for

waves with very small wavelength (typically few millimetres), for which the cohesion between the

water molecules at the surface is stronger than the adhesion between the water and air molecules.

In this work, only wavelengths of at least several centimetres will be considered, in which case the

surface-tension effects are negligible by comparison with the gravity effect.

Waves with predominant gravity effects are called gravity waves. This is the case for water waves,

which result from the displacement of water from the state of rest due to an external force (the

wind or a wavemaker motion for instance) or an internal disequilibrium (in stratified media for

example), while gravity tries to restore the state of rest. For gravity waves, the dispersion relation

is given by

ω2 = gκ tanh(κH), (1.1)

where g is the constant of gravity acceleration (g = 9.81m/s2), and H is the fluid (water) depth

at rest. The dispersion relation (1.1) enables one to highlight several properties of water waves.

As the wavenumber κ is inversely proportional to the wavelength λ, Eq. (1.1) indicates that, at

constant depth H , the phase speed of long waves is larger than that of short waves: that is, waves

travel at different speeds depending on their wavelength. This phenomenon is called dispersion,

and is involved in most wave-wave interactions; it is therefore an important property to consider

when studying rogue-wave dynamics. In addition, two limiting systems can be derived from (1.1).

First, when H →∞, the dispersion relation (1.1) becomes

ω2 = gκ, (1.2)

so the phase speed cp =
√
g/κ depends on the wavelength, meaning that dispersion is involved in

the wave dynamics. In particular, in this deep-water limit, which holds when H > λ/2, the

velocity of the wave packet, called the group velocity, must be distinguished from the phase

velocity. The group velocity cg =
∂w

∂κ
is the speed at which the envelope of the waves travels

in space. In the deep-water limit, the wave group travels twice as slow as the waves contained

within the group. An interesting property of the group velocity is that it corresponds to the speed at

which energy is transported by the wave group [122]; it is therefore an indicator to consider when

computing rogue-wave dynamics and loads. On the other hand, when depth becomes shallow, i.e.

Chapter 1. Introduction 9

whenH → 0, the dispersion relation may be expanded as a Taylor series to yield, at leading order,

ω2 = κ2gH +O(κH2). (1.3)

This shallow-water limit is considered when the depth is shallower than λ/20, and leads to a phase

speed cp =
√
gH that does not depend on the wavelength. Therefore, shallow-water sea states are

non dispersive. As a consequence, the wave group travels at the same speed as the phase.

Since waves are non dispersive in the shallow-water limit, effects other than dispersion, such as

nonlinearity, should be considered when generating rogue waves in shallow water. The nonlinear

effect was highlighted by Stokes [131, 132], who noticed that, in some cases, ocean-wave profiles

are non-sinusoidal: crests are steeper than troughs. In fact, when high waves (relative to the water

depth or wavelength) interact with each other, the resulting waves are not a linear sum of the

initial waves as in the linear theory. Instead, second- (or higher-) order terms are involved in the

wave profile, leading to an increase of the wave steepness (i.e., the ratio between its height and

its wavelength). In addition, the nonlinear effects play a role in the phase and group velocities: in

shallow water, high nonlinear waves travel faster than lower waves; in deep water, the dispersion

relation (1.2) is still valid up to second order, but not for higher-order waves for which the wave

velocity is increased by the wave amplitude (see [108] for a classification of water-wave theories).

Therefore, dispersion and nonlinearity are two wave properties to incorporate to our water-wave

models in order to simulate rogue waves. The governing equations used to model water-wave

dynamics are considered next.

1.3.2 Modelling wave dynamics

Fluids are often characterised by the evolution of their depth and velocity, through the conservation

of mass (the continuity equation), the conservation of momentum (the equation of motion) and

the conservation of energy. The ocean is often assumed to be incompressible and is therefore

well described by the Navier-Stokes equations, which describe incompressible viscous fluids. In

addition, far from solid boundaries, the viscous effects of water are often negligible compared to

the inertial forces. The balance between inertial and viscous forces is quantified by the Reynolds

10 Chapter 1. Introduction

number. For large Reynolds number, that is, for negligible viscosity, the Navier-Stokes equations

are simplified to the incompressible Euler equations for inviscid fluids. These latter equations,

together with appropriate boundary conditions, are often used to simulate water waves in large-

scale simulations. However, solving such systems of equations is complex, can rarely be achieved

using closed-form mathematics, and hence requires significant computational resources. As one

objective of this thesis is to provide cost-effective water-wave simulations, further simplifications

are considered. These are outlined in the next sections.

Potential-flow theory

Another characteristic of water waves can be used to reduce the number of unknowns in the

equations. In water waves, the motion of particles is mostly translational. Therefore, the ocean

can be assumed to be irrotational, meaning that the vorticity generation ω is neglected. As a

consequence, the velocity u = (u, v, w) is expressed as the gradient of a potential, the so-

called velocity potential. This assumption reduces considerably the computational need since the

equations are expressed in terms of one unknown, the velocity potential φ(x, y, z, t), instead of

the three velocity components (u, v, w). Under the potential-flow theory, the continuity equation

becomes

∇2φ = 0,

which is the Laplace equation and which holds in the entire fluid domain. To be solved, this

equation needs to be augmented with boundary conditions on the fluid surfaces. For instance, at

a fixed wall, a Neumann boundary condition assumes that no flow occurs through the boundary;

mathematically, this condition is expressed as∇φ ·n = 0, with∇φ being the velocity and n the

outward normal to the surface, so that the outward normal velocity is null. A major difficulty in

water-wave modelling is the boundary between water and air, called the free surface and defined

by

z = h(x, y, t),

with z the vertical coordinate and h the total depth of water. The source of the extreme difficulty

associated with a free surface is that it is a priori unknown and hence must itself be determined

Chapter 1. Introduction 11

as an integral part of the solution process because its location is needed in order to apply two

nonlinear free-surface-boundary-conditions. First, a kinematic boundary condition, that expresses

that the boundary moves with the fluid through the material derivative:

∂h

∂t
+∇φ · ∇h− ∂zφ = 0,

where the first term indicates that the fluid surface is unsteady (i.e., time-dependent), and the

second and third terms indicate that the fluid is non-uniform (i.e., space-dependent). Second, a

dynamic boundary condition that is derived from the Euler equation for irrotational fluid; that is,

the unsteady Bernouilli equation of motion. With the assumption that the water pressure at the free

surface is the atmospheric pressure, the equation of motion for mean water depth at rest H0 reads:

∂φ

∂t
+

1

2
(∇φ)2 + g(h−H0) = 0,

which is the conservation of energy equation for water waves; it indicates that the temporal

evolution of the velocity potential (first term) depends on the kinematic energy (that is, the energy

resulting from the wave motion, expressed by the second term) and the potential energy (that

is, energy resulting from the water depth, expressed by the third term). The Laplace equation,

augmented with the kinematic and dynamic boundary conditions at the free surface and no normal

flow at the walls, is sufficiently accurate to model water waves, including rogue waves, since it

includes both nonlinearity and dispersion. However, solving such equations is still challenging

due to the moving nonlinear free surface, which, as mentioned above, is both a boundary and

an unknown of the system of equations. Deriving implementation strategies to solve the three-

dimensional potential-flow model numerically is therefore one of the challenges of this thesis.

Further simplifications, such as linearization or considering the shallow-water limit, can also be

applied to simplify the equations or reduce the three-dimensional free-surface domain to a two-

dimensional horizontal domain, on which horizontal boundaries are simplified. These assumptions

are used in this thesis to model rogue waves in shallow water and wave breaking at the beach. The

advantages and limits of the resulting models are introduced next.

12 Chapter 1. Introduction

Shallow-water model

When the depth at rest H is shallow relative to the wavelength λ, with factor H < λ/20, the

vertical structure of the velocity is small by comparison with the horizontal velocity components.

As a consequence, the three-dimensional domain with free surface can be reduced to a two-

dimensional horizontal domain in which the solutions are depth-averaged. Another advantageous

aspect of this so-called shallow-water model is that it can describe the free-surface water-wave

dynamics in the shore zone where wave breaking occurs as a result of the nonlinear effects

introduced in section 1.3.1: specifically, the wave crest, which is higher than the rest of the

wave, travels faster and overlaps the rest of the wave. The shallow-water model captures the

discontinuous breaking as hydraulic bores, in which the mass and momentum are conserved but

energy dissipates. As a consequence, the vertical vorticity cannot be neglected and the potential-

flow theory is not valid for shallow-water breaking waves. The nonlinear shallow-water equations

therefore describe the evolution of the depth of water h(x, y, t) (conservation of mass) and of the

depth-averaged horizontal velocity ũ = (ũ, ṽ) (conservation of momentum); they are an efficient

way to model wave-energy absorption at the beach. However, as explained in section 1.3.1, waves

under the shallow-water limit are non dispersive, while dispersion is an essential rogue-wave

property since it leads to wave-wave interactions. The shallow-water assumption may therefore be

used to model wave breaking at beaches, but is too limited to model rogue waves in shallow water.

Alternative models are presented next.

The Korteweg-de-Vries model

In 1834, J.S. Russel observed a surprising wave on the Union Canal near Edinburgh [125]:

“I was observing the motion of a boat which was rapidly drawn along a narrow channel

by a pair of horses, when the boat suddenly stopped – not so the mass of water in the channel

which it had put in motion; it accumulated round the prow of the vessel in a state of violent

agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form

of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued

its course along the channel apparently without change of form or diminution of speed. I followed

Chapter 1. Introduction 13

it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour,

preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in the windings of the

channel. Such, in the month of August 1834, was my first chance interview with that singular and

beautiful phenomenon which I have called the Wave of Translation.”

This kind of solitary wave of permanent shape and constant velocity has since been then called

a “soliton” and has been widely studied. In particular, Korteweg and de Vries [85] described in

1895 the long-wave soliton dynamics by means of the so-called Korteweg-de-Vries equation, in

which weak dispersion (that is, dispersion obtained by considering terms up to order O(κ3) in

the shallow-water limit of the dispersion relation given in section 1.3.1) is balanced by weak

nonlinearity (that is, a nonlinear term weighted by a coefficient of order O(ε) with ε � 1).

The weakly dispersive, weakly nonlinear soliton solutions will therefore be considered in this

thesis to simulate rogue waves in shallow water. However, a limit of the KdV model is that

it allows soliton propagation in one direction only. In order to increase wave heights through

wave-wave interactions, a model that includes multidirectional wave propagation would be

more consistent. While a quasi-two-dimensional extension of the KdV model exists, the so-

called Kadomtsev–Petviashvili (KP) equation [76], this thesis instead considers the simulation

of shallow-water rogue waves under the Benney-Luke approximation, whose advantages are

introduced next.

Benney-Luke-type model

An alternative weakly-dispersive, weakly-nonlinear model can be derived from the potential-flow

equations using the small-amplitude and long-wave scaling parameters introduced by Milewski

and Keller [106] and Pego and Quintero [113]. The shallow-water limit is then obtained by means

of a second-order expansion of the velocity potential near the seabed, which reduces the three-

dimensional free-surface domain to the horizontal plane [20]. The resulting equations, hereafter

called the Benney-Luke-type model by analogy with the equations of Benney and Luke [12], have

the advantage of representing wave propagation in several horizontal directions, thus facilitating

the set-up of wave-wave interactions compared to the KP model. In addition, the Benney-Luke-

14 Chapter 1. Introduction

type model is closer to potential-flow theory and, therefore, less restrictive than the KP model. In

this thesis, shallow-water rogue waves will therefore be simulated as soliton-type solutions of the

Benney-Luke-type model.

1.3.3 Numerical modelling

Solving the above mathematical models analytically is interesting in order to get an exact solution

of the equations. However, while some problem-specific exact soliton solutions of the KdV and

KP equations are well known (see, e.g., [84]), analytical resolution of nonlinear equations is

in general too complex; proving existence and smoothness of the solution of the Navier-Stokes

equations is for example part of the seven Millennium Prize Problems [37]. Instead, the equations

can be solved by means of numerical methods that exploit computer resources to compute an

approximate solution of a discretised version of the continuous model. In this thesis, most of the

mathematical models will be solved numerically using the finite-element method, whose principle

and advantages are explained next.

Numerical methods aim to split continuous equations into a finite number of discrete equations

that can be solved by computers. Just as a picture made of pixels, the computational domain

is discretised (that is, split) into small elements, called finite elements, on which the solution of

the equations is averaged. These finite elements are carefully defined so that they cover the whole

domain without overlapping each other. The set of finite elements is called the mesh. The elements

are made of nodes (the degrees of freedom) and edges, and can take various forms depending on

the problem to solve and on the geometry of the initial domain (e.g., triangles, tetrahedron, or

quadrilaterals). The number of the elements is called the spatial resolution and their size must be

chosen to ensure convergence of the solution, that is, to minimize the error of the approximated

solution: the smaller the element, the better the approximation (since the solution is averaged on

a smaller volume). The ratio between spatial and temporal resolutions must be chosen to ensure

stability; that is, numerical well-posedness. Galerkin showed that complicated solutions can be

computed by superposing several simpler functions, the so-called basis functions. The solution

in each element is the interpolation of the nodal values, called the coefficients, through the basis

functions. The aim of the finite-element method is to compute the coefficient values, that is, the

Chapter 1. Introduction 15

contribution of each basis function to the solution in the element and therefore, to the solution in

whole domain. The decomposition into the sum of weighted basis functions enables one to write

the initial equation in linear matrix form both within each element and over the whole domain.

As the nodes of one specific element also contribute to the solution in the neighbouring elements,

the matrix in the whole domain, called the global matrix, is computed by adding the contributions

of each elementary matrix to the corresponding node. This process, which consists in mapping

the nodes of each element (the local nodes) to the nodes of the mesh (the global nodes) is called

assembling. Solving the matrix system then leads to the coefficient solutions on each node of

the mesh. The solution in the whole domain is then computed by interpolating these coefficients

with basis functions and appropriate boundary conditions. In summary, the finite-element method

consists of four main steps: the discretization of the domain with finite elements to form a mesh;

the derivation of linear equations in each element by choosing appropriate basis functions; the

assembling, that is, the combination of each element equation to obtain the global equation; and,

the application of boundary conditions to solve the global equation. A more advanced explanation

of the finite-element method can be found in, e.g., [72, 31, 59].

All the difficulty of numerical modelling lies in finding a good balance between the cost of

the numerical model (that is, its complexity and computational need) and the accuracy of the

numerical solution (that is, how different it is from the exact solution). One advantage of the

finite-element method is that the matrices are sparse and therefore require minimal computational

resources; this is a considerable advantage when developing cost-effective simulation tools. In

addition, the method is flexible through the choice of the element shape and size to better map the

domain geometry, as well as through the choice of the basis functions. Moreover, in this thesis, the

implementation of the aforementioned finite-element-method steps is also facilitated by the use of

Firedrake, an automated system that solves partial differential equations using the finite-element

method. For example, meshing is done with the Mesh() function of Firedrake, which ensures non-

overlapping and optimal referencing of the finite elements. The decomposition of the solution in

terms of the basis functions and coefficients is then done internally, meaning that the equations can

be directly implemented in space-continuous form, after choosing the basis functions from among

a wide range of options. After providing initial solutions and boundary conditions, Firedrake

16 Chapter 1. Introduction

nonlinear solvers can be used to linearise the nonlinear equations with Newton iterations and to

solve the linearised system with a Krylov subspace method. Several parameters, such as the Krylov

method, the preconditioning options, or the convergence threshold, can be changed in order to

optimise the solvers and the computational cost. The solver also takes care of the assembling,

which is computed in parallel for optimised cost. More generally, the mesh and solvers are built

so that the Firedrake code can be executed in parallel without any additional changes. Firedrake

is therefore of great help to both implement cost-effective water-wave simulations and to provide

models that can easily be extended to future applications. Detailed documentation can be found

in [120].

Accuracy of the numerical solution relies on the stability of the numerical solver (that is, the

simulations do not blow up as a result of any inherent extreme physics) and its efficiency in

conserving mass, momentum and energy as dictated by the mathematical models. To ensure these

properties, the mathematical and numerical models of this thesis are derived from a variational

approach, whose principle is explained next.

1.3.4 Variational approach

The models introduced in section 1.3.2 can be derived from a variational principle initially

introduced by Luke [92], and subsequently modified by Miles [104]. This formulation describes

incompressible and inviscid potential flows with a free surface through the variations of the

pressure of the fluid integrated over the domain; the so-called Lagrangian. The variational

principle states that these variations, which actually consist of the variations of the water depth

h and velocity potential φ, must be equal to zero. The Lagrangian, obtained from Bernouilli’s

equations, can be expressed in a Hamiltonian form, which makes it attractive for numerical

simulations. Gagarina et al. [52] showed that robust time integrators can be used to discretise

Hamiltonian systems and to solve them with discontinuous Galerkin finite-element methods.

These integrators preserve the structure of the Hamiltonian which is of high interest when

modelling high-amplitude water waves (such as rogue waves) in large basins, since the mass,

amplitude and energy must be conserved. These integrators also work for a non-autonomous

Hamiltonian, i.e., Hamiltonian with explicit time dependence such as the external forcing due to a

Chapter 1. Introduction 17

wavemaker, since they can be transformed into an autonomous variational principle using a change

of variable [20]. The variational approach is thus relevant and adequate for our objective.

1.4 Thesis overview

The aims of this thesis, introduced in section 1.2.3, are addressed as follows. First, the case of

rogue waves in shallow water is considered in Chapter 2 by simulating soliton interaction using

the Benney-Luke-type model. As explained in section 1.3.2, this model enables the simulation of

weakly-nonlinear and weakly-dispersive waves in shallow seas, wherein several fatal accidents

have been observed in recent years [109]. To ensure accuracy of the model, the rogue-wave

simulations are verified against the predictions of Miles [103, 105] for the resonant amplification

of interacting solitons. These shallow-water predictions are also an important tool to calibrate our

numerical model in order to reach the highest dynamical amplification obtained in the literature.

The obtained Benney-Luke-type model, which is easier to solve than the full three-dimensional

potential-flow model, also enables the validation of the consistency of our variational approach

and numerical methods for the simulations of rogue waves.

Second, in Chapter 3, finite-depth to deep-water waves are considered using potential-flow theory

in a tank with seabed topography. Modelling and implementation strategies are introduced

to capture the dynamical free surface of the nonlinear unbroken waves generated by a piston

wavemaker. In addition, the wavemaker motion is tuned to generate a rogue wave from the

dispersion effect based on the experimental data provided by MARIN [24]. In order to ensure

the cost efficiency demanded by the maritime industry, the computational performance of the

numerical model is optimised and the cost/accuracy balance is tested for two temporal integrators.

With this potential-flow model and the Benney-Luke-type model of Chapter 2, rogue waves can

be simulated in a target area and tested in both deep- and shallow-water sea states.

In Chapter 4, the numerical tank required by MARIN to test wave-structure interactions is

constructed from the deep-water potential-flow model. In order to avoid wave reflection and

disturbance of the target area, the vertical wall at the end of the deep-water basin of Chapter 3

is replaced by an absorbing beach on which waves lose energy when breaking. As explained

18 Chapter 1. Introduction

in section 1.3.2, wave breaking cannot be modelled when using potential-flow theory, and the

shallow-water equations should be solved instead. The main challenge of the numerical tank is

therefore to stably and accurately couple the nonlinear potential-flow model in the deep-water area

to the nonlinear shallow-water equations at the beach. To address this challenge, the equations

are coupled variationally and the numerical strategies introduced and validated in Chapter 3 are

applied to the coupled system. To verify consistency of the model, bidirectional conservation of

energy from deep to shallow water and from shallow to deep water is verified.

The accuracy of the numerical tank is then evaluated in Chapter 5 by means of an experimental

validation conducted at Delft Technical University (TUD). Various wave profiles are tested in order

to ensure the efficiency of the numerical tank when modelling realistic sea states. In addition, the

comparison between numerical simulations and experimental data aims to highlight the limits of

the numerical tank with a view towards future improvements.

These future improvements, as well as the use of the present shallow-water (Chapter 2), deep-

water (Chapter 3) and numerical-tank (Chapter 4) models are also facilitated by detailed Firedrake-

implementation tutorials provided in Chapter 6. The instructions aim to not only help the maritime

industry to use the water-wave models as an optimisation tool for large-scale simulations and

experiments, but also to provide implementation strategies that can be further developed to address

future constraints.

Finally, a summary of the models, their applications and limits are discussed in the conclusions.

19

Chapter 2

Rogue-type waves in shallow water: the

example of solitary-wave interactions

2.1 Introduction

Offshore structures such as wind turbines, ships and platforms are designed to resist loads and

stresses applied by winds, currents and water waves. These three factors can cause damage or

destroy these structures when their effect is underestimated. Designers and engineers must take

into account the effect of not only each of these phenomena separately, but also their interaction,

which can increase their adverse effects. In this work, we focus on the impact of extreme waves

created from the propagation of an obliquely incident solitary wave along the side of a ship (a

wave–structure interaction) or its impact with another identical obliquely incident wave (a wave–

wave interaction). These two cases are mathematically equivalent since reflection at a rigid wall

(represented here by the ship’s side) is modelled through the boundary condition of no normal flow

at the wall, which is equivalent to the intersection of two identical waves travelling in opposite

directions, in which case a virtual wall is formed. The study of extreme, freak or rogue waves

resulting from reflection at a wall or interaction of waves has spawned different theories in the last

50 years, some of which are subsequently reviewed.

20 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

The objective of the present work is to simulate rogue-type waves in shallow water by applying

a theory first introduced by Miles [105, 103] for the resonant interaction of obliquely interacting

solitons. Miles first derived an analytical solution of the Korteweg-de Vries (KdV) equation of

motion in the case of obliquely incident solitons [105]. By letting the phase shift between the

incident solitons tend to minus infinity, he then obtained the resonant limit of the obliquely incident

soliton solution [103], from which he derived resonance conditions on the incident solitons’

wavenumbers and circular frequencies. His results enabled him to explain experimental results

of Perroud [117], who observed that regular reflection of an obliquely incident solitary wave upon

a rigid wall is not possible for sufficiently small angles of incidence. For a specific range of angle

of incidence ϕi and scaled amplitude ai of the wave, the reflection of the soliton may instead result

in three wave fronts: the incident and reflected waves (of respective amplitudes ai and ar), as well

as a Mach stem wave (of amplitude aw) propagating along the wall with an increasing length. This

kind of reflection is called “Mach reflection” and is illustrated in Fig. 2.1.

ϕi
x

y

incident

ϕi

ϕi

ϕr

ϕw

incident

reflected

stem

x

y

Figure 2.1: Left: top view of a channel containing an incident solitary wave propagating in the

x direction with amplitude ai. The side wall is oblique and makes an angle ϕi with the x direction.

Right: top view of the reflection pattern when the incident wave impacts upon the wall. The pattern

is composed of three waves: (1) the incident wave, (2) a reflected wave of amplitude ar that forms

an angle ϕr with the angle perpendicular to the wall, and (3) a Mach stem wave propagating along

the wall with amplitude aw and an angle ϕw with the wall.

Miles [103] showed that Mach reflection holds in the case of small-but-finite wave amplitude,

shallow-but-finite water depth, and weak nonlinearity, that is,

ϕ2
i = O(ε), ai = O(ε), for any ε� O(1). (2.2)

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 21

The resonance conditions obtained by Miles [103] on the solitons’ wavenumbers and circular

frequencies enabled the prediction of the amplitude and direction of propagation of each wave

front, based on an interaction parameter, that he defined as

κ =
ϕi√
3ai

. (2.3)

The most important observation of Miles [103] is the transition at κ = 1 from a regular reflection

(κ ≥ 1) to a Mach reflection (κ < 1), which has led to the following definition of the stem-wave

amplification,

αw =


4

1 +
√

1− κ−2
, for κ ≥ 1,

(1 + κ)2, for κ < 1,

(2.4)

so that αw = aw/ai is the quotient of the stem-wave and incident-wave amplitudes. Equation (2.4)

shows that at the transition point where κ = 1 the stem wave may grow up to 4 times the amplitude

of the incident wave, leading to extreme loading on offshore structures. The aim of the present

study is to develop a (numerical) model that can accurately simulate the evolution of the stem

wave so that the distance and direction of propagation required to reach the 4-fold amplitude can

be estimated. A challenging aspect is that it takes a long time and large distance of propagation

before the stem wave reaches its maximum amplitude, which was a limiting factor in previous

experimental and numerical studies. Kodama et al. [84] extended Miles’ theory to the Kadomtsev–

Petviashvili (KP) limit, in which the assumptions are

a0

H0
= O(ε),

(
H0

λ0

)2

= O(ε), tan2 ϕi = O(ε), ε� O(1), (2.5)

where H0, a0 and λ0 are the water depth, the wave amplitude and wavelength, respectively. While

the KP limit (2.5) still considers shallow-but-finite depth and small-but-finite amplitudes, the

main difference with Miles’ theory concerns the condition on the angle ϕi. Yeh et al. [146]

explained that, in contrast to Miles’ theory, wherein the soliton propagates in one direction

only (the Korteweg–De Vries – KdV – limit), the KP limit assumes a quasi-two-dimensional

approximation, and therefore the condition tan2 ϕi = O(ε) cannot be simplified to ϕ2
i = O(ε)

as in Miles’ assumptions. The quasi-two-dimensional KP soliton is not a solution of the KdV

equation, but it can be transformed to an asymptotic KdV soliton via some manipulations detailed

22 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

in [146]. However, the width of the obtained KdV soliton is proportional to√
aKP

cos2 ϕi
, (2.6)

with aKP the scaled amplitude of the initial KP soliton, and it therefore depends on the angle

ϕi. This is physically unrealistic since the KdV soliton should have the same shape whatever its

direction of propagation. For this reason, Yeh et al. [146] brought a “high-order correction” to the

solution, setting the amplitude of the KdV soliton to be

aKdV =
aKP

cos2 ϕi
, (2.7)

so that its width depends on its amplitude aKdV, but not on any angle. Taking this into account,

they slightly modified the definition (2.3) of the interaction parameter κ to

κ =
tanϕi

cosϕi
√

3ai
, (2.8)

where ai = aKdV/H0 is the scaled amplitude of the incident wave, leading to what we will

hereafter identify as the “modified Miles’ theory” for the expected stem-wave amplification:

αw =


4

1 +
√

1− κ−2
, for κ ≥ 1,

(1 + κ)2, for κ < 1,

with κ =
tanϕi

cosϕi
√

3ai
.

(2.4)

(2.8)

Using this modified interaction parameter (2.8) in Eq. (2.4), they found much better agreement

between previous numerical simulations (eg. [50, 133]) and modified Miles’ theory. Moreover,

Kodama et al. [84] showed that the stem wave resulting from the interaction of two solitary waves

with small incident angles is an exact solution of the KP equation. Solving this KP equation, they

could describe the exact solution depending on the angle of incidence and the amplitude of the

initial waves, and validate their theory with numerical simulations [84, 89]. Both the amplitude

and length of the stem wave indeed followed their predictions in the case of regular and Mach

reflection. The numerical scheme could not simulate the highest amplitudes that Miles predicts

for κ ≈ 1. Recently, Ablowitz and Curtis [1] studied Mach reflection for the Benney–Luke

approximation, showing that, in that case, modified Miles’ theory applies asymptotically, leading

to amplifications of up to 3.9.

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 23

The purpose of the present work is to derive and apply a stable numerical scheme able to estimate

the solution over a long distance of propagation, in order to model high-amplitude waves and to

confirm the transition from regular to Mach reflection happening for κ ≈ 1. We develop a model

similar to the one of Benney and Luke [12], which is an asymptotic approximation of the potential-

flow equations for small-amplitude and long waves. Whilst it has the advantage of conserving both

the nonlinear and dispersive properties of the waves (essential to the modelling of a freak wave,

for instance), it does not require a mesh moving vertically with the free surface since the model

is reduced to the horizontal plane. Pego and Quintero [113] derived these modified Benney–Luke

equations and Bokhove and Kalogirou [20] used them to simulate a soliton splash resulting from

a wave running in a restricted channel. Their simulations were in reasonably good agreement

with experiments, which confirms that the Benney–Luke approximation is an accurate model of

water waves. The present approaches are necessary to determine how, in future work, we can

impose the line solitons on the wavemakers to generate a 4-fold amplified wave in the middle of

a wave basin and measure its impact on offshore structures. The variational technique used in

the present approach enables us to express the equations as a Hamiltonian system to which robust

time integrators can be applied [62, 52]. The space and time Galerkin finite-element method used

to discretize the present model ensures the overall conservation of mass, energy and momentum,

which are essential in the high-amplitude and long-distance propagating waves studied here.

The remainder of this chapter is organized as follows: the modified Benney–Luke-type model

is derived in section 2.2 from the variational principle for an inviscid and incompressible fluid

introduced by Luke [92] in the potential-flow approximation, using the small-amplitude and small-

dispersion scaling of Pego and Quintero [113]. In order to apply modified Miles’ theory and verify

our numerical results against Kodama’s exact solution, the KP limit is obtained from the Benney–

Luke approximation, leading to a new variational principle for KP. A careful scaling is then defined

in section 2.3 to obtain an asymptotic soliton solution of our present model, based on the exact

solution of the KP equation from Kodama et al. [84]. The corresponding interaction parameter

is consequently derived, leading to another version of modified Miles’ theory (Eqs. 3 and 7),

later used to compare our numerical simulations with respect to Miles’ expectations. The finite-

element method is then used in section 2.4 to discretize the equations in space together with the

24 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

second-order Störmer–Verlet temporal scheme that ensures stable simulations. Results are finally

discussed and compared to the expectations in section 2.5.

2.2 Water-wave model

2.2.1 Introduction

Our water-wave model is derived using a variational approach that ensures conservation of mass,

momentum and energy. In a basic sea state with extreme waves, these conservation properties

are essential given the different length scales involved. Starting from Luke’s variational principle

for an inviscid fluid with a free surface [92], a model similar to the one derived by Benney and

Luke [12] for small-amplitude and long waves is obtained. The (numerical) method developed by

Bokhove and Kalogirou[20] is used to derive the relevant variational principle for our Benney–

Luke model. This asymptotic model conserves the nonlinear and dispersive properties of the sea

waves, which enables comparison with the Kadomtsev–Petviashvili (KP) model for which the

modified Miles’ theory as expressed in Eqs. (2.4) and (2.8) applies.

2.2.2 From Luke’s variational principle to the Benney–Luke set of equations

Figure 2.2: Three-dimensional water-wave domain with rest depth H0, velocity potential

φ(x, y, z, t), total depth h(x, y, t) and free surface deviation η(x, y, t).

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 25

Water-wave equations are often adequately described by the potential-flow approximation.

In the absence of vorticity, the fluid velocity u = (ux, uy, uz) can be expressed as the

gradient of the so-called velocity potential φ(x, y, z), such that u = ∇φ. The deviation

from the surface at rest H0 is defined by η(x, y, t) so that the total depth h(x, y, t) can be

expressed as h(x, y, t) = H0 + η(x, y, t) (cf. Fig. 2.2). We consider a flat seabed lying at

z = 0, with vertical walls at ∂Ωb, where Ωb is the horizontal plane of the bed coordinates

Ωb = {0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly}. Luke [92] described an inviscid and incompressible fluid

with a free surface in the potential-flow approximation through the following variational principle:

0 = δ

∫ T

0

∫
Ωb

∫ H0+η(x,y,t)

0

[
∂tφ+

1

2
|∇φ|2 +

1

2
(∂zφ)2 + g(z −H0)

]
dz dx dy dt, (2.9)

where g is the acceleration of gravity. The gradient ∇ is defined on Ωb only, such that

∇ = (∂x , ∂y)T is the horizontal gradient. The velocities at the walls and seabed are assumed to

be zero, that is, n · ∇φ = 0 on ∂Ωb, with n the outward horizontal normal and ∂zφ = 0 at z = 0.

The boundary conditions at the free surface z = h and the equations of motion in the domain Ω

are obtained from Eq. (2.9) as

∇2φ+ ∂zzφ = 0 in Ω,

∂tη +∇φ · ∇η − ∂zφ = 0 at z = h,

∂tφ+
1

2
|∇φ|2 +

1

2
(∂zφ)2 + gη = 0 at z = h,

n · ∇φ = 0 on ∂Ωb,

∂zφ = 0 at z = 0.

(2.10a)

(2.10b)

(2.10c)

(2.10d)

(2.10e)

The amplitude parameter ε = a/H0 � 1, with a the amplitude of the waves, and the small

dispersion parameter µ = (H0/λ0)2 � 1, with λ0 the horizontal wavelength, have been

introduced by Milewski and Keller [106] and Pego and Quintero [113] to scale Eq. (2.9). The

scaled variational principle is

0 = δ

∫ T

0

∫
Ωb

{∫ 1+εη̂

0

[
ε∂t̂φ̂+

ε2

2
|∇̂φ̂|2 +

1

2

ε2

µ
(∂ẑφ̂)2

]
dẑ +

1

2
ε2η̂2

}
dx̂ dŷ dt̂, (2.11)

26 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

where

x̂ =

√
µ

H0
x, ŷ =

√
µ

H0
y, ẑ =

1

H0
z, t̂ =

√
gH0µ

H0
t,

η̂ =
1

εH0
η and φ̂ =

√
µ

εH0

√
εH0

φ.

(2.12)

From now on, the hats on the variables introduced in Eq. (2.12) are omitted.

The scaling (2.12) focusses on small-amplitude long waves. The relative sizes of ε and µ

must be set depending on the balance between the nonlinear and dispersive effects. To satisfy

conditions (2.5) introduced by Kodama et al. [84], ε and µ must satisfy µ = O(ε). Similarly, the

original Benney–Luke equations [12] assume ε = µ, meaning that the nonlinear and dispersive

effects are balanced.

To obtain the Benney–Luke–type model in [20], the velocity potential φ is expanded in terms of

the seabed potential φ(x, y, 0, t) = Φ(x, y, t) and the dispersion parameter µ:

φ(x, y, z, t) = Φ(x, y, t) + µΦ1(x, y, z, t) + µ2Φ2(x, y, z, t) +O(µ3). (2.13)

Combining the expansion (2.13) with the system of Eq. (2.10) and retaining terms up to second

order, Eq. (2.13) becomes (see [20], for details)

φ = Φ− µ

2
z2∆Φ +

µ2

24
z4∆2Φ +O(µ3). (2.14)

Substituting Eq. (2.14) into the variational principle (2.11) and retaining terms up to order

O(ε2µ, ε3) yield the variational principle under the Benney–Luke approximation [20]

0 = δ

∫ T

0

∫
Ωb

[
η∂tΦ +

µ

2
∇η · ∂t∇Φ +

1

2
(1 + εη)|∇Φ|2 +

µ

3
(∆Φ)2 +

1

2
η2

]
dx dy dt. (2.15)

Arbitrary variations in both Φ and η, together with boundary conditions n · ∇Φ = 0 and

n · ∆ ∇ Φ = 0 at ∂Ωb, lead to the Benney–Luke equations

δη : ∂tΦ−
µ

2
∂t∆Φ +

ε

2
|∇Φ|2 + η = 0,

δΦ : ∂tη −
µ

2
∂t∆η +∇ · ((1 + εη)∇Φ)− 2

3
µ∆2Φ = 0.

(2.16a)

(2.16b)

Equations (2.16) will be solved numerically as explained in section 2.4. However, to test our

Benney–Luke model on modified Miles’ theory (Eqs. 3 and 7), it must first be compared to the KP

theory for which Kodama et al. [84] have shown that modified Miles’ theory holds.

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 27

2.2.3 From the Benney–Luke set of equations to the Kadomtsev–Petviashvili

equation

In [20], Bokhove and Kalogirou introduced a scaling to derive the Korteweg–de–Vries equations

from the Benney-Luke equations. Similarly, the Kadomtsev–Petviashvili equation for small-

amplitude solitons can be derived from the Benney–Luke variational principle (2.15) and

Eq. (2.16) through the transformations

X =

√
ε

µ
(x− t), Y =

ε
√
µ
y, τ = ε

√
ε

µ
t, Ψ =

√
ε

µ
Φ and η = η. (2.17)

In order to apply the high-order correction arising from the quasi-two-dimensionality of the KP

soliton [146] and introduced in Eq. (2.8), the order of ε will be set to O(ε) = O(
√
µ) in the

numerical simulations so that O(Y) = O(y) in Eq. (2.17). As a consequence, the nonlinear effect

will be stronger than the dispersion effect, which is consistent with the definition of shallow–water

rogue waves. Substituting scalings (2.17) into Eq. (2.16a), η can be expressed from Ψ as

η = ΨX − εΨτ −
ε

2
ΨXXX −

ε

2
(ΨX)2 − ε2

2
(ΨY)2 +

ε2

2
ΨτXX −

ε3

2
ΨXY Y +

ε3

2
ΨτY Y .

(2.18)

Substituting Eq. (2.17) into the transformed variational principle (2.15) yields

0 = δ

∫ T

0

∫
Ωb

[
η (εΨτ −ΨX) +

ε

2
ηX (εΨτX −ΨXX) +

ε2

2
ηY (εΨτY −ΨXY)

+
1

2
(1 + εη)

(
(ΨX)2 + ε (ΨY)2

)
+
ε

3

(
(ΨXX)2 + ε2 (ΨY Y)2

)
+

1

2
η2

]
dX dY dτ.

(2.19)

Subsequent elimination of η using Eq. (2.18) and truncation toO(ε2) gives the variational principle

for KP in terms of η ≈ ΨX :

0 = εδ

∫ T

0

∫
Ωb

[
ΨXΨτ +

1

2
(ΨX)3 − 1

6
(ΨXX)2 +

1

2
(ΨY)2

]
dX dY dτ

= ε

∫ T

0

∫
Ωb

δΨ

[
−2ΨXτ − 3ΨXΨXX −

1

3
ΨXXXX −ΨY Y

]
dX dY dτ.

(2.20a)

(2.20b)

Note that we consider an infinite plane, with Ψ vanishing at the boundaries |X,Y | → ∞, such

that the boundary terms arising from the integration by parts vanish in Eq. (2.20b). Since δΨ is

28 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

arbitrary, the variational principle (2.20) yields the following equation for the leading-order scaled

potential Ψ:

2ΨXτ + 3ΨXΨXX +
1

3
ΨXXXX + ΨY Y = 0. (2.21)

From Eq. (2.18), at leading order in O(ε), η can be expressed as η = ΨX and, therefore, taking

the partial derivative of Eq. (2.21) with respect to X leads to the KP equation for η:[
2ητ + 3ηηX +

1

3
ηXXX

]
X

+ ηY Y = 0. (2.22)

A solution of the KP Eq. (2.22) is found by substituting the following soliton solution ansatz, the

form inspired by Eq. (9) in [146], into Eq. (2.22):

η(X,Y, τ) = Asech2 [B (X + Y tanϕ− Cτ)] , (2.23)

where ϕ is the angle of incidence, A is the amplitude of the soliton, and B and C are coefficients

to be determined via direct substitution. The KP soliton is then found to be

η(X,Y, τ) = Asech2

[√
3

4
A (X + Y tanϕ− Cτ)

]
, (2.24)

with C =
1

2
A +

1

2
tan2 ϕ, B =

√
3A/4 and A the prescribed amplitude. Using Eq. (2.18) at

leading order, i.e. η = ΨX , the solution for Ψ thus becomes

Ψ(X,Y, τ) =

√
4

3
A

[
tanh

(√3

4
A (X + Y tanϕ− Cτ)

)
+ 1

]
. (2.25)

2.3 Comparison with modified Miles’ theory and Kodama’s exact

solution

2.3.1 Introduction to Kodama’s exact solution

Kodama et al. [84] have studied the reflection pattern for “symmetric V -shape initial waves

consisting of two semi-infinite line solitons with the same amplitude”, in a system of coordinates

(X̃, Ỹ , τ̃) related to our system of coordinates (2.17) (X,Y, τ) via

X̃ =

(
3√
2

)1/3

X, Ỹ =

(
3√
2

)2/3

Y, η̃ =
1

3

(
3√
2

)4/3

η and τ̃ =
√

2τ. (2.26)

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 29

Figure 2.3: O-type and (3142)-type solitons as represented by Kodama et al. [84]. Top: evolution

(from left to right) of the O-type soliton, consisting of two line solitons with different amplitudes

and angles with respect to the y–axis. As it propagates, the shape of this soliton remains

unchanged. Bottom: evolution (from left to right) of the (3142)-type soliton, consisting of two

line solitons travelling in the x direction with different angles and amplitudes. As the soliton

propagates, a new line soliton is created at the intersection of the two initial line solitons, leading

to a stem wave. Figure obtained from [84]. c©IOP Publishing. Reproduced with permission. All

rights reserved.

They solved the KP equation

[
4η̃τ̃ + 6η̃η̃X̃ + η̃X̃X̃X̃

]
X̃

+ 3η̃Ỹ Ỹ = 0, (2.27)

for which the surface deviation solution η̃ is given by

η̃ = Ãsech2

√Ã

2

(
X̃ + Ỹ tan ϕ̃− C̃τ̃

) , (2.28)

30 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

where Ã is the amplitude of the soliton, ϕ̃ is the angle of incidence at the wall, and C̃ is a constant

defined as C̃ ≡ 1

2
Ã+

3

4
tan2 ϕ̃. They showed that in this specific case, the transition from regular

to Mach reflection occurs when

tan ϕ̃ =
√

2Ã. (2.29)

Moreover, Kodama et al. [84] defined exactly the incident, reflected and stem solitons resulting

from the interaction as an O-type soliton in the case where tan ϕ̃ >
√

2Ã, and a (3142)-type

soliton in the case where tan ϕ̃ <
√

2Ã. The O-type soliton consists of two line solitons travelling

in the x–direction, each having a specific amplitude and angle with respect to the y–axis (see

Fig. 2.3). The (3142)-type soliton consists of two other line solitons, also travelling in the x–

direction with their own amplitudes and angles with respect to the y–axis, but this soliton also

has the property of being non-stationary, i.e. that while it propagates along the x–axis, a new line

soliton is progressively created and grows parallel to the y–axis at the intersection of the two initial

line solitons. In the case of both O-type and (3142)-type solitons, one of the line solitons can be

associated with the incident solitary wave presented in the introduction, the second line solitons

with the reflected wave (with a different amplitude and angle), and the intersection of the two line

solitons as the stem wave, growing in length only when the angle of the incident wave is smaller

than the critical angle (2.29). These two solitons are represented in Fig. 2.3, obtained from [84].

A comparison between these theoretical solitons and those obtained numerically from the V-shape

initial soliton showed very good agreement, confirming that the incident, reflected and stem waves

described by Miles are indeed asymptotically equivalent to the O-type and (3142)-type solitons,

depending on the initial angles. In the case of a symmetric initial pattern, that is, for two initial

line solitons of equal amplitude and angle of incidence, Kodama et al. [84] gave the expression of

the maximal amplitude of the intersection wave as

amax =



1

2
(tan ϕ̃+

√
2Ã)2 for tan ϕ̃ <

√
2Ã,

4Ã

(1 +

√
1− 2Ã

tan2 ϕ̃
)

for tan ϕ̃ ≥
√

2Ã. (2.30)

Since the condition tan ϕ̃ =
√

2Ã is equivalent to Miles’ condition κ = 1, we can define the

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 31

interaction parameter corresponding to the KP Eq. (2.27) as

κ̃ =
tan ϕ̃√

2Ã
. (2.31)

Substitution of the interaction parameter (2.31) into the amplification expectations (2.30) indeed

yields Miles’ predictions (2.4) for αw = amax/Ã.

2.3.2 Application to the present Benney–Luke model

In section 2.2.3, the Benney–Luke model was reduced to the KP Eq. (2.22). This equation for the

surface deviation η is slightly different from the one used by Kodama et al. [84] and introduced in

Eq. (2.27). In order to compare our numerical solutions to Kodama et al.’s result [84], Eqs. (2.30)–

(2.31), our KP Eq. (2.22) is (re)scaled using the coefficients introduced in Eq. (2.26), which yields

Eq. (2.27) used by Kodama et al. [84]. Using the same transformations (2.26) in the KP soliton

solution (2.28), we can obtain a solution for our KP Eq. (2.27) in terms of the original variables

(X,Y, τ, η) introduced in Eq. (2.17), given by

η = 3

(
3√
2

)−4/3

Ãsech2

√Ã

2

((
3√
2

)1/3

X − C̃
√

2τ +

(
3√
2

)2/3

Y tan ϕ̃

) . (2.32)

The connection between the above solution (2.32) and the previously presented solution (2.24) can

be established by applying the following transformations in Eq. (2.32):

A = 3

(
3√
2

)−4/3

Ã, C =

(
4

3

)1/3

C̃ and tanϕ =

(
3√
2

)1/3

tan ϕ̃, (2.33)

with C =
1

2
A +

1

2
tan2 ϕ, yielding the solution (2.24) derived in section 2.2.3. Therefore,

applying scaling (2.33) to the critical condition (2.29) yields the critical condition for Eq. (2.22)

and solution (2.24), given by

tanϕ =
√

3A. (2.34)

We then apply scaling (2.17) to transform solution (2.24) for η back to the original Benney–Luke

approximation (2.16) used in our simulations, in which case the asymptotic solutions for η and Φ

32 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

become

η(x, y, t) = Asech2

[√
3ε

4µ
A
(
x− x0 +

√
ε(y − y0) tanϕ+ (t− t0) (1− Cε)

)]
,

Φ(x, y, t) =

√
4µ

3ε
A

[
tanh

(√
3ε

4µ
A
(
x− x0 +

√
ε(y − y0) tanϕ

+ (t− t0) (1− Cε)
))

+ 1

]
,

(2.35a)

(2.35b)

where the soliton has been localized around the position (x0, y0) at time t = t0. Finally, by setting

ai = A, tanϕi =
√
ε tanϕ and Ĉ =

1

2
ai +

1

2ε
tan2 ϕi, (2.36)

the solutions (2.35) of the Benney–Luke equations can be rewritten as

η(x, y, t) = aisech2

[√
3ε

4µ
ai

(
x− x0 + (y − y0) tanϕi + (t− t0)(1− Ĉε)

)]
,

Φ(x, y, t) =

√
4µ

3ε
ai

[
tanh

(√
3ε

4µ
ai

(
x− x0 + (y − y0) tanϕi

+ (t− t0)
(

1− Ĉε
)))

+ 1

]
.

(2.37a)

(2.37b)

This solution is used as an initial condition at time t = 0 in the simulations. Condition (2.34)

defines the following relation between ϕi, ai and ε in our Benney–Luke scaling, for Eq. (2.16):

tanϕi =
√

3εai. (2.38)

This condition is equivalent to Miles’ condition κ = 1 and therefore we can define our Benney–

Luke interaction parameter as

κBL =
tanϕi√

3εai
. (2.39)

Note, however, that taking into account the remark from [83] about the quasi two-dimensionality

of the KP limit, as explained in the introduction, the interaction parameter defined in Eq. (2.39)

must be corrected to

κBL =
tanϕi

cosϕi
√

3εai
(2.40)

in order to satisfy Miles’ prediction (2.4). As shown in the potential-flow Eq. (2.10) for the

Benney–Luke approximation, the small-amplitude parameter ε is defined as ε = a/H0. Therefore,

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 33

in the specific case where ai = 1 and ε = aKdV/H0, the interaction parameter (2.8) is recovered.

The diagram in Fig. 2.4 summarizes the equations and solutions derived thus far, in each scaling.

In the next section, we explain how the Benney–Luke system of equations is discretized in both

space and time in order to be solved numerically.

Figure 2.4: Schematic plan showing the link between the scaling of the three systems of equations

involved in the derivation of the exact solution and critical condition for which Miles’ and

Kodama’s predictions hold in the Benney–Luke approximation.

2.4 Numerical implementation

As a first step in the computational solution, the Benney–Luke model needs to be discretized in

space and time, on a meshed domain. This section explains the methods used to discretize the

domain and the equations.

2.4.1 Space discretization: finite-element method (FEM)

A continuous Galerkin finite-element method is used to discretize the solutions in space. The

variables η and Φ are approximated by the finite-element expansions

ηh(x, y, t) = ηi(t)ϕi(x, y) and Φh(x, y, t) = Φj(t)ϕj(x, y), (2.41)

34 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

where the subscript h denotes the discretized form of the solutions with basis functions ϕj(x, y),

and i, j ∈ [1, N] with 2N unknowns. The Einstein notation for the implicit summation of repeated

indices is used. To limit restrictions on the finite-element expansions, the second-order derivative

in the fourth term of the variational principle (2.15) is expressed through the auxiliary variable

q(x, y, t) = −2

3
∆Φ(x, y, t) (2.42)

as suggested in [20], so that, in the variational principle (2.15), the term
µ

3
(∆Φ)2 can be written as

∫
Ωb

µ

3
(∆Φ)2 dΩb =

∫
Ωb

µ

(
2

3
(∆Φ)2 − 1

3
(∆Φ)2

)
dΩb

=

∫
Ωb

µ

(
−2

3
∇∆Φ · ∇Φ− 3

4
(
2

3
∆Φ)2

)
dΩb

=

∫
Ωb

µ

(
∇q · ∇Φ− 3

4
q2

)
dΩb,

(2.43)

which leads to the variational principle

0 = δ

∫ T

0

∫
Ωb

[
η∂tΦ +

µ

2
∇η · ∂t∇Φ +

1

2
(1 + εη)|∇Φ|2

+µ

(
∇q · ∇Φ− 3

4
q2

)
+

1

2
η2

]
dΩb dt.

(2.44)

In keeping with Eq. (2.41), the second-order Galerkin expansion for q is now expressed as

qh(x, y, t) = qi(t)ϕi(x, y). (2.45)

Substituting expansions (2.41) and (2.45) into the variational principle (2.44) yields the space-

discrete variational principle

0 = δ

∫ T

0

∫
Ωb

[
ϕjηjϕiΦ̇i +

µ

2
ηjΦ̇i∇ϕj · ∇ϕi +

1

2
(1 + εϕjηj)ΦiΦl∇ϕi · ∇ϕl

+ µ

(
qiΦj∇ϕi · ∇ϕj −

3

4
qiqjϕiϕj

)
+

1

2
ϕiϕjηiηj

]
dΩb dt,

(2.46)

with Φ̇i the time derivative of Φi. The space-discrete variational principle (2.46) can also be

written in matrix form

0 = δ

∫ T

0

[(
Mij +

µ

2
Aij

)
Φi

dηj
dt
−H(Φi, ηj)

]
dt, (2.47)

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 35

where Mij and Aij are the mass and stiffness matrices, respectively defined as

Mij =

∫
Ωb

ϕiϕj dx dy and Aij =

∫
Ωb

∇ϕi · ∇ϕj dx dy, (2.48)

and the Hamiltonian is

H(φi, ηj) =
1

2
(Aij + εSijkηk)ΦiΦj + µ

(
AijqiΦj −

3

4
Mijqiqj

)
+

1

2
Mijηiηj , (2.49)

where

Sijk =

∫
Ωb

ϕk∇ϕi · ∇ϕj dΩb. (2.50)

Note that dH/dt = 0 due to skew symmetry. Rather than using this matrix form directly, we

accommodate the spatial discretization using Firedrake [120, 7, 9, 36, 66], “an automated system

for the portable solution of partial differential equations using the finite element method (FEM)”.

This automated system uses the finite-element method to solve partial differential equations, and

requires specification of the following:

• the domain in which the equations are solved, and the kind of mesh to use (e.g.

quadrilaterals, the spatial dimension);

• the order and type of polynomials used;

• the type of expansion for the unknowns (e.g. continuous Galerkin, Lagrange polynomials);

• the function space of the unknowns and test functions; and

• the weak formulations discretized in time.

In the present case the domain is defined as a horizontal channel ending in an oblique wall, and

quadrilaterals are used for its discretization (see details in section 2.5.1). Here, we chose to use

quadratic polynomials to expand Φ, q and η. The resulting weak formulations implemented in

Firedrake in terms of Φh, qh and ηh are obtained by taking the variations of Eq.(2.44) with end-

36 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

point conditions δΦ(0) = δΦ(T) = 0:

δηh : 0 =

∫ T

0

∫
Ωb

[
δηh∂tΦh +

µ

2
∇δηh · ∇∂tΦh + ηhδηh +

ε

2
δηh∇Φh · ∇Φh

]
dΩb dt,

δqh : 0 =

∫ T

0

∫
Ωb

µ

[
3

2
qhδqh −∇δqh · ∇Φh

]
dΩb dt,

δΦh : 0 =

∫ T

0

∫
Ωb

[
− ∂tηhδΦh −

µ

2
∇∂tηh · ∇δΦh

+ (1 + εηh)∇δΦh · ∇Φh − µ∇qh · ∇δΦh

]
dΩb dt.

(2.51a)

(2.51b)

(2.51c)

The forms given in Eq. (2.51) are convenient since they highlight the unknowns Φh, qh and ηh as

well as the test functions δΦh, δqh and δηh. The final step is to discretize the equations in time,

with a second-order Störmer–Verlet scheme, as explained in the next section.

2.4.2 Time discretization: second-order Störmer–Verlet scheme

Gagarina et al. [52] have shown that, for a generic Hamiltonian system in the form

δL(P,Q, t) = δ

∫ T

0

(
P

dQ

dt
−H(P,Q)

)
dt, (2.52)

here with P = {Φi} and Q = {(Mij+µ/2Aij)ηj}, robust variational time integrators conserving

the overall mass and energy can be formulated. To derive these time schemes, P and Q are

discretized on each time interval [tn, tn+1] as the approximated momentum Pτ and coordinate Qτ

and expanded with coefficients Pm and Qm and linear continuous basis functions ψ̃m and ψm:

Pτ = Pmψ̃m(t) and Qτ = Qmψm(t). (2.53)

The linear basis functions ψ̃m and ψm are continuous within each time interval, but admit

discontinuities at the interface between two time slots. Therefore, to discretize Eq. (2.52), the

notion of jumps [[.]] and averages {{.}}βα for a time-dependent function d(t) must be introduced

[52]:

[[d]]|tn = dn,− − dn,+ and {{d}}βα|tn = αdn,− + βdn,+. (2.54)

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 37

The coefficients α and β are real numbers defined such that α+β = 1 and α, β ≥ 0. The notation

dn,± denotes the left and right traces of d(t) at time tn, that is,

dn,± = lim
ε→0

d(tn ± ε). (2.55)

Discretization of the variational principle (2.52) then yields [52]

δLτ (Pτ ,Qτ , t) = δ

[N−1∑
n=0

∫ tn+1

tn

(
Pτ dQτ

dt
−H(Qτ ,Pτ)

)
dt

−
N−1∑
n=−1

[[Qτ]]{{Pτ}}βα|tn+1

]
,

(2.56)

where N is the number of finite time intervals [tn, tn+1] that divide the time domain [0, T].

Among the time integrators derived in [52], the second-order Störmer–Verlet scheme was shown

to be efficient and stable for the simulation of a soliton splash with the Benney–Luke–type model

in [20]. While other choices can be made to increase the accuracy (with higher-order schemes,

such as Runge-Kutta time scheme) or the computational speed (with lower-order schemes, such

as the first-order symplectic-Euler scheme), we decide to apply the second-order Störmer–Velet

scheme which balances the accuracy and computational cost of the numerical model. Gagarina et

al. [52] showed that to obtain a second-order Störmer–Verlet scheme, P and Q must be discretized

with mid-point and trapezoidal rules, respectively, that is,

Qτ =
tn+1 − t

∆t
Qn,+ +

t− tn

∆t
Qn+1,−,

Pτ =
2(t− tn)

∆t
Pn+1/2 +

tn + tn+1 − 2t

∆t
Pn,+.

(2.57)

(2.58)

Substituting Eqs. (2.57)–(2.58) into the discretized variational principle (2.56) yields

δLτ (Pτ ,Qτ , t) = δ

[
N−1∑
n=0

(
Pn+1/2

(
Qn+1,− −Qn,+

)
−∆t

2

(
H(Pn+1/2,Qn,+) +H(Pn+1/2,Qn+1,−)

))
−

N−1∑
n=−1

(
Qn+1,− −Qn+1,+

) (
2αPn+1/2 − αPn,+ + βPn+1,+

)]
.

(2.59)

38 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

The variations of Eq. (2.59), when augmented by end-point conditions

δP0,− = δ(2P−1/2 − P−1,+) = 0, δQ0,− = 0, δPN,+ = 0 and δQN,+ = 0 to

ensure that boundary conditions are satisfied, yield the following scheme:

α
(
Qn+1,− −Qn+1,+

)
= β

(
Qn,− −Qn,+

)
Pn+1/2 = 2αPn+1/2 − αPn−1,+ + βPn,+ − ∆t

2

∂H(Pn+1/2,Qn,+)

∂Qn,+
,

(1− 2α)Qn+1,− + 2αQn+1,+ = Qn,+

+
∆t

2

(
∂H(Pn+1/2,Qn,+)

∂Pn+1/2
+
∂H(Pn+1/2,Qn+1,−)

∂Pn+1/2

)
,

βPn+1,+ = (1− 2α)Pn+1/2 + αPn,+ − ∆t

2

∂H(Pn+1/2,Qn+1,−)

∂Qn+1,− .

(2.60a)

(2.60b)

(2.60c)

(2.60d)

Setting Pn = αPn,+ + βPn,− with α = 0 and β = 1 ensures stability of the numerical scheme

[52]. Substituting these conditions into Eq. (2.60) yields the continuity condition [[Q]]tn = 0 for

Q in Eq. (2.60a), and the second-order Störmer–Verlet scheme is recovered,

Pn+1/2 = Pn − ∆t

2

∂H(Pn+1/2,Qn)

∂Qn
,

Qn+1 = Qn +
∆t

2

(
∂H(Pn+1/2,Qn)

∂Pn+1/2
+
∂H(Pn+1/2,Qn+1)

∂Pn+1/2

)
,

Pn+1 = Pn+1/2 − ∆t

2

∂H(Pn+1/2,Qn+1)

∂Qn+1
,

(2.61a)

(2.61b)

(2.61c)

with the stability condition

|ω∆t| ≤ 2, (2.62)

where ω is the (maximum) frequency of the discrete waves. Demonstration of stability condition

(2.62) and dermination of ω are given in Chapter 3, section 3.4.4. Setting the vectors P = {Φi}

and Q =
{(

Mij + µ
2 Aij

)
ηj
}

, the variational principle (2.47) for Benney–Luke equations

can therefore be discretized as in Eq. (2.61), leading to Eq. (A.7) in Appendix A.1. Since the

space discretization is performed internally within Firedrake, the weak formulations (A.7) can be

implemented with the full form of the variables Φh, qh and ηh and test functions δΦh, δqh and δηh

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 39

yielding the time discretization of Eq. (2.51), namely

0 =

∫
Ωb

(
Φ
n+1/2
h − Φn

h

)
δηh +

µ

2
∇δηh · ∇

(
Φ
n+1/2
h − Φn

h

)
+

∆t

2

[
ηnhδηh +

ε

2
δηh∇Φ

n+1/2
h · ∇Φ

n+1/2
h

]
dΩb,

0 =

∫
Ωb

(
q
n+1/2
h δqh −

2

3
∇δqh · ∇Φ

n+1/2
h

)
dΩb,

0 =

∫
Ωb

(
ηn+1
h − ηnh

)
δΦh +

µ

2
∇δΦh · ∇

(
ηn+1
h − ηnh

)
− ∆t

2

[(
(1 + εηnh)∇δΦh · ∇Φ

n+1/2
h − µ∇qn+1/2

h · ∇δΦh

)
+
(

(1 + εηn+1
h)∇δΦh · ∇Φ

n+1/2
h − µ∇qn+1/2

h · ∇δΦh

)]
dΩb,

0 =

∫
Ωb

(
Φn+1
h − Φ

n+1/2
h

)
δηh +

µ

2
∇δηh · ∇

(
Φn+1
h − Φ

n+1/2
h

)
+

∆t

2

[
ηn+1
h δηh +

ε

2
δηh∇Φ

n+1/2
h · ∇Φ

n+1/2
h

]
dΩb.

(2.63a)

(2.63b)

(2.63c)

(2.63d)

Time-step Eqs. (2.63a), (2.63b) and (2.63c) are implicit, while Eq. (2.63d) is explicit. Although

the equations are nonlinear, the step Eqs. (2.63b), (2.63c) and (2.63d) are linear with respect to the

unknowns, qn+1/2
h , ηn+1

h and Φn+1
h , respectively. Therefore, linear solvers are used to solve the

three weak formulations (2.63b, c, d), which reduces the computational cost. The implementation

of such linear and nonlinear solvers is straightforward in Firedrake, since functions that solve weak

formulations for specific unknown and test functions already exist [120, 9, 7, 66, 36]. Details on

the implementation are given in Chapter 6.

2.5 Numerical results

In this section, the domain is specified and discretized in order to evaluate Φ and η numerically.

The numerical evolution of the stem-wave amplitude is compared to the predictions from our

modified Miles’ theory Eqs. (2.4) and (2.40). Finally, the angles of propagation of the reflected

and stem waves are measured and compared to the values predicted by theory.

40 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

2.5.1 Definition of the domain

Orientation of the channel

ϕi

direction of propagation

solitons
virtual wall

boundaries of the channels
direction of propagation

solitons

boundaries of the channel

real wall (vertical)

(90− ϕi)deg

real wall (oblique)

ϕi

ϕi

Lc

Lw

Lc

Lc

Lw

Lw

a

x

y

b

x

x

y

y

Figure 2.5: Definition of the domains in the two cases described in the text: (a) intersection of

two channels, with two obliquely incident solitons interacting at a virtual wall, and (b) half of the

domain with a soliton propagating in one channel and colliding with an oblique wall. This wall

is in the x–direction (in which case the soliton has a two-dimensional propagation of direction) or

oblique, in which case the incident soliton propagates in the one-dimensional direction (x).

The interaction of two solitary waves can be modelled using either two obliquely intersecting

channels, with incident solitons propagating along each channel (see scheme a) in Fig. 2.5),

or from the reflection of a soliton at a wall with the no-normal flow condition at the wall (see

scheme b) in Fig. 2.5). While the case a) is more relevant to the theme of this chapter, we choose

to model case b) to reduce the size of the domain by half and thus to reduce the computational

cost. Since cases a) and b) are mathematically equivalent, the results and conclusions obtained

with half of the domain will also be valid for the intersection of two oblique channels.

The domain is described by the length of the wall Lw, the length of the channel Lc, and the

angle of incidence ϕi. The channel should be long enough, compared to the wavelength of the

incident wave, in order for the boundaries to be far enough from the initial soliton to be considered

infinitely distant. From Eq. (2.35), the width of the initial soliton depends on
√

3ε/4µ; for every

simulation, µ is set to 0.02 while ε varies from ε = 0.20 to ε = 0.12, thus yielding soliton width

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 41

from 2.5 to 4. We set Lc = 5 to leave enough space between the extremities of the soliton and

the boundary of the channel for every case, for the extremities to be considered infinitely distant

from the soliton boundaries. To allow the stem wave to grow and reach its maximal amplitude,

the wall also needs to be long compared to the wavelength. This constraint was a limit in previous

numerical and experimental studies [133, 89] since it requires robust and stable numerical schemes

and large wave basins. We set the wall length to 200 ≤ Lw ≤ 600 depending on the value

of ε, that is, more than 100 times the incident-wave width. When considering half of the domain

represented in Fig. 2.5b, we chose to set the wall in the x–direction, in which case the initial soliton

must propagate in an oblique direction and is therefore equivalent to a KP soliton, as defined in

Eq. (2.37). Alternatively, we can let the initial soliton propagate in the x–direction, in which case

the wall is oblique and the expression of the KP-type soliton (2.37) can be simplified to a KdV-type

soliton propagating in the x–direction, as [40]

η(x, y, t) = aisech2

[√
3ε

4µ
ai

(
x− x0 + (t− t0)

(
1− Ĉε

))]
,

Φ(x, y, t) =

√
4µ

3ε
ai

[
tanh

(√ 3ε

4µ
ai

(
x− x0 + (t− t0)

(
1− Ĉε

)))
+ 1

]
.

(2.64a)

(2.64b)

The behaviour of the incident and stem waves in the cases of an oblique incident soliton (2.37) and

a soliton propagating in the x–direction only (2.64) are compared in Fig. 2.6. The initial solitons

have amplitude ai = 1.0, small-amplitude parameter ε = 0.14 and small-dispersion parameter

µ = 0.02. The angle between the direction of propagation of the solitons and the wall is ϕi = π/6

in both cases. The dashed lines represent the evolution of the interpolated amplitude of incident

solitons with time. While the initial amplitude was ai = 1.0 in both cases, we observe that

both amplitudes first increase before decreasing to an asymptotic value slightly smaller than 1.0

(ai = 0.93). This behaviour is not expected for solitons, which should keep a permanent shape.

However, we solve here the Benney–Luke equations for which the KP soliton is only an asymptotic

(and hence not exact) solution because we recall that the transformation (2.17) from the Benney–

Luke model to the KP theory is not exact since it requires a truncation to O(ε2). In the numerical

simulations represented in Fig. 2.6, ε = 0.14, so the condition ε � O(1) is respected only

asymptotically; this is a possible explanation of the observed variation in amplitude. Figure 2.6

shows that the incident KP and KdV-type solitons Eqs. (2.37) and (2.64) converge, and that both

42 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

Figure 2.6: Soliton surface deviations obtained for an initial amplitude ai = 1.0 and angle

ϕi = π/6 rad. Blue: behaviour of the incident (dashed line) and stem (full line) waves when the

incident soliton propagates in an oblique direction; red: behaviour of the incident (dashed line)

and stem (full line) waves when the incident soliton propagates in one direction. The dashed lines

essentially coincide after t > 30.

do so to the same surface deviation, ai = 0.93. This same limit shows that the approximation

error from Benney–Luke to the KP soliton is asymptotically the same as from Benney–Luke to

KdV. The stem-wave amplitudes (solid lines in Fig. 2.6) resulting from the interaction of the

KP-type (2.37) and KdV-type (2.64) initial solitons with the wall are both amplified at the same

speed and with the same amplification factor, which confirms that the KP-type and KdV-type

initial solitons Eqs. (2.37) and (2.64) give the same results. The small variations in the curves are

due to the mesh resolution which is not fine enough to resolve a regular amplitude. However,

the computed approximation is sufficiently accurate to provide an estimate of the asymptotic

amplitude of the stem wave. Since we have demonstrated that the two types of initial solitons

Eqs. (2.37) and (2.64) evolve similarly to give the same results, subsequent simulations will be

conducted using only a unidirectional soliton, as defined by Eq. (2.64), which is a solution of both

the KP and KdV equations.

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 43

Mesh

In order to evaluate Φ and η at any position in the channel, the domain is discretized using

quadrilaterals. This is done using the Gmsh mesh generator [56]. Since the domain is large, we

define a heterogeneous mesh with areas of higher refinement along the wall, where the solution

needs to be more accurate. Moreover, the end of the domain is truncated with a blunt wall instead

of the sharp angle, to avoid boundary quadrilaterals having internal angles that are too acute. The

final domain comprising different mesh refinements is presented in Fig. 2.7, in which the insets

show the aforementioned refined mesh and right-hand boundary quadrilateral elements.

Figure 2.7: Domain discretization using quadrilaterals in Gmsh. In order to reduce computational

requirements, mesh refinement is restricted to only the region adjacent to the wall.

2.5.2 Amplification of the stem wave

The numerical amplification of the stem wave is compared with the predictions of modified Miles’

theory applied to our Benney–Luke model Eqs. (2.4) and (2.40), namely

αw =


4

1 +
√

1− κ−2
, for κ ≥ 1,

(1 + κ)2, for κ < 1,

with κ =
tanϕi

cosϕi
√

3εai
.

(2.4)

(2.40)

44 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

Figure 2.8: Comparison between the expected amplification (solid line) from Miles (2.4) and our

numerical results (symbols) for different values of the interaction parameter κ, namely κ ≈ 1.1265

(ε = 0.12), κ ≈ 1.0526 (ε = 0.14), κ ≈ 1.0077 (ε = 0.15), κ ≈ 0.9989 (ε = 0.16), κ ≈ 0.9733

(ε = 0.17), κ ≈ 0.9345 (ε = 0.18), and κ ≈ 0.8692 (ε = 0.20).

The interaction parameter defined in Eq. (2.40) depends on three parameters: the scaled amplitude

of the incident soliton ai, its angle of incidence ϕi, and the small-amplitude parameter ε. From

Miles’ theory, a change in these parameters will modify the behaviour of the reflected and stem

waves. Figure 2.8 shows a comparison between predictions Eqs. (2.4) and (2.40) and numerical

simulations for the maximal amplification of the stem wave. The amplitude and angle of incidence

of the initial soliton are the same for each of the simulations, with values ai = 1.0 for the amplitude

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 45

and ϕi = 30 degrees for the angle of incidence. Only the small-amplitude parameter ε changes in

the different cases, taking values from 0.12 to 0.20, which leads to different interaction parameters

and thus different evolutions of the stem and reflected waves. Variation of ε is an alternative choice

to the one made in the work of Ablowitz and Curtis [1], where, for a specific ε, they compute

simulations with varying amplitude and angle of incidence; this choice enabled them to show

that the small-amplitude parameter ε has only a weak impact on the amplification of the stem

wave for κ < 1 but limits the amplification, with a decrease of O(ε) close to the resonant case

κ = 1, leading, for example, to a maximal wave amplification of 3.9 when ε = 0.1. Despite this

asymptotic limitation in the wave amplification, the purpose of the present simulations is to model

wave amplification in various sea states, with various depths of water and characteristic wave

heights, and we do so by using different values of ε, recalling that the small-amplitude parameter ε

is the quotient between the characteristic wave height and the water depth. Modelling various sea

states will allow the maritime industry to test wave impact on a wider range of structures, since

different structures are used in different sea states. Moreover, the incident-wave amplitude varies

slightly when propagating along the basin, which has a high impact on the predictions. Indeed, a

small change of orderO(10−2) in the incident-wave amplitude implies a change of orderO(10−2)

in the interaction parameter, which can lead to a prediction variation of up to O(10−1) near the

transition case κ ≈ 1, in which the expected amplification varies dramatically. The amplification

aw/ai is also affected by a change in the incident amplitude ai. It is therefore necessary to use the

accurate value for the incident amplitude. In performing the computations required for Fig. 2.8, we

defined the maximal amplification as follows: when the stem wave reaches its maximal amplitude

awmax , we measure the amplitude of the incident wave ai at the same x–position. The new incident

amplitude ai is used to adjust the interaction parameter and to compute the amplification of the

stem wave αw = awmax/ai. The grid refinement is 0.25×0.25 in the finest area (e.g. at the wall) and

0.4×1.5 elsewhere. The numerics follow the theoretical curve, but a slight difference between the

present results and those expected from modified Miles is noticeable. As alluded to beforehand,

we assume that this is due to the fact that the soliton used as an incident wave is an asymptotic but

not an exact solution of the Benney–Luke equations. The scaling from Benney–Luke to KP is not

exact but asymptotic, with a truncation at second order, which leads to a slight difference in the

final wave amplification. This observation agrees with the conclusions of Ablowitz and Curtis [1]

46 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

on the asymptotic amplification of the stem wave in the case of the Benney–Luke model. The

shift is probably also increased by the mesh resolution, which could be optimized to get a better

estimate of the incident-wave amplitude in order to limit the error caused by its approximation.

New simulations with higher mesh resolution are expected to verify the current results. However,

the present Benney–Luke model still predicts the evolution of the stem-wave amplitude very well,

enabling it to reach up to 3.6 times the initial amplitude. The stem-wave maximal amplification

is reached for κ = 0.9733, marginally smaller than the κ = 1.0 predicted by Miles. While the

model from Kodama et al. [84] is expected to predict the evolution of the stem wave based on the

KP equation perfectly, they were unable to reach more than 3.2 times the initial amplitude in their

numerical simulations.

2.5.3 Angle of the stem and reflected waves

Miles’ theory also predicts different directions of propagation of the stem and reflected waves in

the cases of regular and Mach reflections. While in the first case, characterized by κ ≥ 1, the

angle of the reflected wave ϕr is expected to be equal to that of the incident soliton ϕi, it should

become larger than ϕi in the case of Mach reflection, i.e. when κ < 1:ϕr = ϕi for κ ≥ 1,

ϕr > ϕi for κ < 1.
(2.65)

Moreover, in the case of regular reflection, the stem wave is expected to propagate along the wall

with a constant length, while for Mach reflection, its length should increase linearly, making a

non-zero angle ϕw with the wall: ϕw = 0 for κ ≥ 1,

ϕw > 0 for κ < 1.
(2.66)

Predictions Eqs. (2.65) and (2.66) are checked numerically next.

Regular reflection

Figure 2.9 shows numerical results and predictions for the case where κ = 1.12 ≥ 1. The wall

makes an angle of 30 degree with the direction of propagation of the initial solitary wave, hence

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 47

ϕi = 30 degree. In the bottom-right plot of Fig. 2.9, there is an angle of 60 degree between

the reflected and stem waves, which means that the angle ϕr between the reflected wave and the

line perpendicular to the wall is equal to 30 degree, that is, equal to ϕi. This observation holds

at any time, and therefore the expectations (2.65) for the reflected waves are satisfied in the case

of regular reflection. The stem wave propagates along the wall without increasing in length, and

therefore no angle can be measured between the stem wave and the wall, i.e. ϕw = 0, as predicted

in Eq. (2.66) for regular reflection. These results, together with Fig. 2.8 for the amplification of

the stem wave, are consistent with modified Miles’ theory in the case κ ≥ 1 for both the reflected

and stem waves.

Figure 2.9: Numerical results and predictions for the reflected and stem waves in the case of

regular reflection, i.e. κ > 1. Top left: top view of the numerical evolution of the incident,

reflected and stem waves. Top right: schematic plan view of the expected evolution of the stem

and reflected waves at two different times t1 and t2 with t1 < t2. The stem wave should propagate

along the wall with constant length. The angle ϕr of the reflected wave is expected to be constant

and equal to the incident-wave angle ϕi. Bottom centre: side view of the time evolution of the

incident, reflected and stem waves, highlighting the amplification of the stem-wave amplitude

compared to the initial solitary-wave height.

48 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

Mach reflection

Figure 2.10: Numerical results and predictions for the reflected and stem waves in the case of

Mach reflection, i.e. κ < 1. Top left: schematic plan view of the numerical evolution of the

incident, reflected and stem waves. Top right: top-view scheme of the predicted evolution of the

stem and reflected waves at two different times t1 and t2 with t1 < t2. The stem wave should grow

linearly in length, leading to an angle ϕw > 0 with the wall. The angle ϕr of the reflected wave is

expected to be constant and larger than the incident-wave angle ϕi. Bottom centre: side view of

the time evolution of the incident, reflected and stem waves, highlighting the amplification of the

stem-wave amplitude compared to the initial solitary-wave height.

Figure 2.10 shows numerical results and schematic expectations for the propagation of the

reflected and stem wave for κ = 0.58 < 1. In the bottom-right sub-figure, the angle between

the incident and reflected waves can be measured, as represented in the top-right sub-figure, in

order to check that ϕr is larger than ϕi. The total angle ϕr +ϕi measures 70 degree, with the initial

incident angle set to ϕi = 30 degree. Therefore, ϕr is 40 degree, which is indeed larger than ϕi,

thereby agreeing with our predictions. The top-right sub-figure of Fig. 2.10 also shows that the

stem-wave length should increase linearly to form an angle ϕw with the wall. In the bottom-right

figure, a top view of the numerical results at different times from t = 0.28 to t = 1.12 highlights

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 49

the increase in the stem wave’s length as it propagates along the wall. The dashed orange line

that connects the solutions in the left subfigure confirms that the wavelength increases linearly.

Therefore, predictions (2.66) are also verified in the case of Mach reflection.

2.6 Conclusions and discussions

The present model (2.16), together with the new scaled interaction parameter (2.40), shows good

agreement with the predictions of Miles regarding the amplification of the stem wave and the

angles of the reflected and stem waves. Two different regimes can be observed in the numerical

results, with different behaviours of the waves in the case of Mach and regular reflections,

which confirms the conclusions obtained by Ablowitz and Curtis [1] regarding the ability of the

Benney–Luke model to predict reflection of obliquely incident solitary waves. Due to limited

computational resources, the resolution used in our simulations does not allow determination of

the exact value of the interaction parameter at the transition from Mach to regular reflection,

but currently the maximal amplification is reached at κ = 0.9733, which is very close to the

predicted maximal amplification at κ = 1.0. The maximal amplification obtained herein is

αw = 3.6, which is higher than the amplifications obtained with most previous models and

experiments [84, 89, 133, 50], but still slightly lower than the expected 3.9 amplification from

Ablowitz and Curtis [1]. This agrees with the conclusion of [1] concerning the impact of ε on

the amplification near κ = 1. While they obtained the maximal amplification αw = 3.9 for

ε = 0.10, our amplification αw = 3.6 is obtained for ε = 0.17, which is larger than 0.1 and

thus leads to a larger difference with Miles’ prediction of αw ≈ 4. Moreover, thanks to the robust

scheme used to derive and discretize our equations, which ensures stable simulations over the large

domain despite the different length scales involved, our model is the first model able to describe

numerically the dynamic development of the stem wave up to such high amplitudes. Previous

studies [84, 89, 133, 50] were not able to attain such high amplifications because of numerical

limitations such as insufficient computational resources. Ablowitz and Curtis [1] obtained the

highest numerical amplification αw = 3.9 by considering the final state, initialized asymptotically

using the KP two-line solution. This last approach gives an accurate understanding of the

50 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

asymptotic maximal amplification of the stem wave with the Benney–Luke model, but does not

describe the development of the stem wave along the wall. The description and understanding of

the wave propagation along the wall is however fundamental for application purposes. The present

results, although currently limited by computational resources, allow us to consider the relevance

of obliquely interacting solitary waves in maritime engineering. More advanced simulations

should enable determination of the value of κ at the transition from Mach to regular reflection

and to reach higher amplification of the stem wave.

One may wonder how likely it is that solitary waves would undergo reflection in an open ocean.

Interaction of obliquely incident waves on the sides of a ship leads to an increasing wave

amplitude, sometimes reaching the deck. This phenomenon is called “green water” and has been

studied experimentally and numerically by the Maritime Research Institute Netherlands (MARIN)

to limit the damage caused by waves on ships [23]. When the incident wave interacts with a ship

moving downwind, the effective ship length increases, leaving more time for the stem wave to

develop to its maximum amplitude. Peterson et al. [118] also studied the formation of extreme

waves in shallow water and explained under which conditions they are likely to occur and threaten

ships. Kalogirou and Bokhove [77] developed numerical models of waves impacting buoys and

ships. An extension of our oblique-wave interaction simulations to wave interactions with ships

will be an interesting extension of our present work.

The present model can also be used to predict the impact of extreme (i.e. freak or rogue) waves

on structures. Indeed, when the stem wave reaches more than twice the amplitude of the incident

wave, it can be viewed as a freak wave since it has similar properties in terms of nonlinearity,

dispersivity and high amplitude. Table 2.1 shows the distance required by the stem wave to reach

more than twice the incident-wave amplitude in several cases parameterized by different values

of ε. For each value of the small-amplitude parameter ε, the numerical (dimensionless) distance

Ln required to reach at least twice the amplitude of the initial wave has been measured from the

simulations. Then, the definition of the small-amplitude parameter ε = a0/H0 and the choice of

a sea state with characteristic wave height a0 = 3 m enables computation of the corresponding

water depth H0. The physical distance Lr required by the wave to propagate up to twice the

characteristic wave height can then be obtained from scaling (2.12), using Lr = Ln × H0/
√
µ.

Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions 51

The value of the small-dispersion parameter µ is set to 0.02 as in the results section, thus leading to

various wavelength λ0 that can be obtained from the definition of the small-dispersion parameter

µ = (H0/λ0)2. In a wave tank where waves can be generated in several directions, the angle of

propagation and initial profile of two solitary waves can be defined from the asymptotically exact

solution (2.37) of our model (2.16), so that their interaction will lead to a stem wave. The evolution

of the stem wave can be predicted from the present model, so an offshore structure such as a scaled

ship or a wind turbine can be placed at a position where the stem wave will reach more than twice

the initial amplitude of the solitary waves. For instance, a scaling of 1/10 between the values of

H0, Lr and λ0 in Table 2.1 and experiments leads to achievable incident-wave amplitudes and

distances of propagation in MARIN’s shallow-water basin. From the amplitude of the stem wave

at a given position, the impact of the wave on structures can be estimated and the predictions

yielded by the model tests can be validated. The model can help the maritime industry to design

safer offshore structures that can resist extreme-wave impacts.

ε

0.12 0.14 0.15 0.16 0.17 0.18 0.20

Numerical distance Ln 5.8 5.5 5.5 7.8 7.7 8.0 8.0

Water depth H0 (m) 25.00 21.43 20.00 18.75 17.65 16.67 15.00

Real distance Lr (m) 1025 833 778 1028 965 940 846

Wavelength λ0 (m) 176.78 151.52 141.42 132.58 124.78 117.85 106.07

Table 2.1: Prediction of the minimal distance needed by the stem wave to reach at least twice

its initial amplitude in a sea state with characteristic wave height a0 = 3 m. The dispersion

parameter µ is set to 0.02, while the small-amplitude parameter ε varies from 0.12 to 0.20, leading

to different wave evolutions. The numerical distance needed to reach more than twice the incident-

wave amplitude is measured from the numerical simulations. The corresponding water depth, real

distance of propagation and wavelength are computed from the definition of ε, µ and scaling

(2.12). These values are approximate.

52 Chapter 2. Rogue-type waves in shallow water: the example of solitary-wave interactions

Finally, the present work can also be used as a starting point for the modelling of the interaction

of three obliquely incident line solitons, which should lead to a nine-fold-amplified resulting wave

that can also be generated in wave tanks.1 Baker [6] has derived the exact KP–solution of the nine-

fold amplified soliton resulting from the interaction of three solitons. The scalings introduced in

this chapter may be applied to the analytical solution to simulate the nine-fold amplification under

the Benney-Luke limit.

Some limits to the current model must also be highlighted. As already concluded in previous

studies, the wave needs to propagate over a long distance (relative to its wavelength) in order

to reach its maximal amplitude. Consequently, the numerical domain needs to be large and the

mesh fine enough to estimate the wave crests accurately. This numerical requirement increases the

computational time. A compromise between the accuracy of the simulations and the running time

is therefore needed. This constraint is important because near the transition from Mach to regular

reflection a slight change in the incident wave amplitude modifies dramatically the interaction

parameter and consequently the predictions of the stem and reflected waves. Therefore, a careful

analysis of the numerical results must be made. For the same reason, simulations for κ ≈ 1 and

large amplifications αw ≈ 4 are extremely difficult to obtain, since a slight change in the initial

settings (ai, ε and ϕi) modifies completely the behaviour of the resulting waves. Indeed, Li et al.

[89] conjectured that the transition between Mach and regular reflection in the neighbourhood of

κ = 1 might appear gradually and not as abruptly as expected from Miles’ predictions (2.66).

Moreover, the Benney-Luke model is valid under the assumption of weakly dispersive and weakly

nonlinear waves. The threat of wave impact on ships being increased by the steepness of the

waves, the modelling of Rogue–type waves for wave–structure–interaction applications would be

improved by incorporating nonlinearity and dispersivity to the equations. In the next chapter, a

new methodology is derived to simulate nonlinear, dispersive waves, including Rogue-type waves,

in a tank where wave-structure interactions may be tested.

1O. Bokhove suggested this calculation to Y. Kodama, personal communication, who performed the calculation

using the KP equation at the “Rogue waves” international workshop held at the Max Planck Institute in 2011, Dresden,

Germany.

53

Chapter 3

Rogue-type waves in a deep-water tank

3.1 Introduction

An essential step in the simulation of freak-wave impact on marine structures is to maximize

the amplitude and the steepness of the waves by combining the nonlinear and dispersion effects.

While the long-wave dispersive Benney-Luke model derived in Chapter 2 was based on weak-

nonlinearity and weak-dispersion parameters, we now consider a deep-water “numerical wave

tank” in which nonlinear dispersive waves are driven by a vertical piston wavemaker. As in the

in-house experimental basins of the Maritime Research Institute of Netherlands (MARIN), the

wavemaker motion aims to emulate real sea states, including sophisticated wave-wave interactions.

In order to assist in the design of experimental configurations at MARIN, the present numerical

model was built to address several computational and industrial challenges.

First, the modelling of nonlinear water waves includes the capturing of the geometry of the free

surface, at the air-water interface, which in mathematical terms is an a priori unknown boundary

of a solution domain, for which most of the models in the literature are based on an adaptive mesh

following the free-surface motion (see for instance [51, 93, 94, 95, 144]). An iterative update of the

mesh is not practicable whithin the remit of our present aims since a major industrial requirement

is the minimisation of the computational time. Instead, in section 3.2, we extend the method

proposed by Engsig-Karup et al. [45], which consists of transforming the time-dependent free

54 Chapter 3. Rogue-type waves in a deep-water tank

surface into a fixed boundary. We apply the same technique to the wavemaker boundary to solve

the equations in a fully static numerical domain.

In contrast to the work of Engsig-Karup et al. [45], we use a variational approach in section 3.2

to derive weak formulations from Luke’s variational principle [92]. Although Kim and Bai [81]

obtained accurate simulations of two-dimensional potential-flow waves using this transformed

variational approach, their model is not suitable for the above-mentioned applications, as 3D

effects of the waves must be considered in order to simulate wave propagation in several directions,

resulting in wave-wave or wave-structure interactions. Moreover, in [81], the waves travel in

an unbounded domain, while the presence of wavemakers in our model will help industry to

investigate wavemaker motions that, for the purposes of design and testing, generate specific waves

in a target area.

By means of the variational approach, we obtain in section 3.3 a non-autonomous (wavemaker

driven) space-discrete Hamiltonian system on which robust temporal integrators may be applied

[53], complying with three essential computational requirements: stability and conservation

of both mass and overall energy. Hence, in section 3.4, the 1st–order symplectic Euler

scheme is introduced along with the second-order Störmer-Verlet scheme; their numerical

implementation with Firedrake [120, 9, 7, 71, 96] is explained in section 3.5. For both approaches,

computational time is optimised through preconditioning of the Firedrake solvers in section 3.6:

their performance in terms of computational speed and accuracy are compared in section 3.7, to

assist the user in the choice of an optimised temporal-discretisation scheme appropriate to their

bespoke application. In addition, a test of convergence is performed to verify the accuracy of the

spatial discretisation method. In section 3.8, a comparison between the numerical free surface

and the one measured at MARIN [24] shows that both temporal-integration schemes perform

well in the simulation of extreme Rogue-type wave. A Fourier analysis of time series for both

measurements and simulations confirms this observation. The final section sums up the strategies

and achievements of the presented numerical model, augmented by a detailed presentation of

current and future extensions for industrial applications. These improvements include the coupling

of the simulated fluid motion to an absorbing beach, i.e. the objective of Chapter 4.

Chapter 3. Rogue-type waves in a deep-water tank 55

3.2 Variational nonlinear potential-flow model

R(y,t)

H0

φ(x, y, z, t)

z

x

y

Lx

xb
0

0

0

Ly
b(x)

H(x)

Figure 3.1: Schematic numerical wave tank. Waves are generated by a vertical piston wavemaker

oscillating horizontally at x = R(y, t) around x = 0. The depth at rest H(x) varies in space due

to the seabed topography b(x) starting at x = xb.

Water waves are often described by the Laplace equation for the velocity potential φ(x, y, z, t),

augmented by two nonlinear boundary conditions (BCs): a kinematic BC which expresses that the

boundary moves with the fluid and a dynamic BC, derived from the unsteady Bernoulli equation,

which expresses the conservation of energy. These equations describe the dynamics of the total

water depth h(x, y, t) = H(x) + η(x, y, t), where H(x) is the depth at rest and η(x, y, t) is the

surface deviation from H(x), and of the velocity potential φ(x, y, z, t) which is defined such that

the velocity field u = (ux, uy, uz) may be expressed as u = ∇φ. In this study, the nonlinear

potential-flow equations

∇2φ = 0, in Ω,

∂th+∇h · ∇φ− ∂zφ = 0, at z = h,

∂tφ+
1

2
|∇φ|2 + g(h−H) = 0, at z = h,

∂xφ− ∂yφ∂yR = ∂tR at x = R,

(3.3a)

(3.3b)

(3.3c)

(3.3d)

56 Chapter 3. Rogue-type waves in a deep-water tank

where g is the gravitational constant, are obtained from Luke’s variational principle [92] for an

inviscid fluid:

0 = δ

∫ T

0

∫
Ωx,y

∫ h(x,y,t)

0

[
∂tφ+

1

2
(∇φ)2 + g(z −H(x))

]
dz dx dy dt. (3.4)

The horizontal domain Ωx,y = {R(y, t) ≤ x ≤ Lx; 0 ≤ y ≤ Ly} is time-dependent due to the

wavemaker boundary that moves around the position x = 0 as R(y, t) (cf. Fig. 3.1). Similarly,

the upper boundary of the domain, at z = h(x, y, t), moves with the free surface η(x, y, t).

The numerical domain must therefore be discretised with a time-dependent mesh, with moving

boundaries at x = R(y, t) and z = h(x, y, t). This constraint is not only costly in terms of

computational time due to the update of the mesh at each time step, but it also requires one dealing

with an unknown boundary, since the upper free-surface boundary z = h(x, y, t) is part of the

solution. Instead, a coordinate transform similar to the one introduced by Engsig-Karup et al. [45]

is used to solve the equations on a constant domain, whose upper boundary is fixed so that no

vertical mesh movement is required. Similarly, we introduce an additional coordinate transform

in the x–direction to prevent the left boundary from moving with the wavemaker R(y, t) in the

numerical domain.

H0

ẑ

x̂

ŷ

Lx

xb
Lw0

0

0

Ly

φ(x̂, y, ẑ, t)

Figure 3.2: The fixed, computational domain as defined by Ω̂.

Chapter 3. Rogue-type waves in a deep-water tank 57

The resulting computational domain, as represented in Fig. 3.2, is defined as

Ω̂ = {0 ≤ x̂ ≤ Lx; 0 ≤ ŷ ≤ Ly; 0 ≤ ẑ ≤ H0} , (3.5)

where H0 = max
x∈Ωx,y

H(x), and is obtained from the initial domain

Ω = {R(y, t) ≤ x ≤ Lx; 0 ≤ y ≤ Ly; 0 ≤ z ≤ h(x, y, t)}

through the transformations

x → x̂ =
x−R(y, t)

Lw −R(y, t)
LwΘ(Lw − x) + xΘ(x− Lw),

y → ŷ = y,

z → ẑ = z
H0

h(x, y, t)
,

t → t̂ = t.

(3.6a)

(3.6b)

(3.6c)

(3.6d)

In Eq. (3.6a), Θ denotes the Heaviside function such that the coordinate transform is effective only

in the area x ∈ [R(y, t), Lw], where Lw is chosen to be sufficiently close to the wavemaker (about

one wavelength): in this way, one can couple the water domain with a structure without the need

to transform the structure in the x–direction away from the wavemaker. For example, in our case,

the beginning of the seabed topography is set at x = xB > Lw so that H(x̂) = H(x) since the

domain is transformed only where the topography is constant, withH(x) = H0. In the case where

xB ≤ Lw, then H(x)→ H(x̂(t)) and additional terms arising from the time derivative of H must

be considered, which complicates matters and we therefore exclude this situation. To avoid the

division of the domain into R(y, t) ≤ x ≤ Lw and Lw ≤ x ≤ L, we introduce the following

variable:

R̃(x, y, t) = R(y, t)Θ(Lw − x), (3.7)

so that Eq. (3.6a) may be written as

x→ x̂ =
x− R̃
Lw − R̃

Lw. (3.8)

Note that, due to the jump in the Heaviside function, the x–derivative of R̃ involves the Dirac

function δ:

∂xR̃ = R(y, t)δ(Lw), (3.9)

58 Chapter 3. Rogue-type waves in a deep-water tank

which vanishes once integrated over the x–domain:

∫
y

∫
x
∂xR̃ dx dy =

∫
y
R(y, t)

∫
x
δ(Lw) dx dy =

∫
y

∫
x
R(y, t) dx dy, (3.10)

since the integral of the Dirac function is equal to one. As only the weak form of the equations

of motion will be implemented, the Heaviside function involved in (3.8) will not lead to any

numerical issue. The y– and t– derivatives are also well defined, with

∂yR̃ = ∂yR Θ(Lw − x) and ∂tR̃ = ∂tR Θ(Lw − x). (3.11)

Equation (3.6c) transforms the vertical length to [0, H0] in the whole domain, thus allowing us to

expand the solutions on a constant, prescribed mesh.

The spatial and temporal derivatives of the solutions h(x, y, t) and φ(x, y, z, t) are then

transformed as follows:

∂xφ =
Lw

Lw − R̃

(
∂x̂φ̂−

ẑ

ĥ
∂x̂ĥ∂ẑφ̂

)
,

∂yφ =∂ŷφ̂−
ẑ

ĥ
∂ŷĥ∂ẑφ̂+

x̂− Lw
Lw − R̃

∂ŷR̃

(
∂x̂φ̂−

ẑ

ĥ
∂x̂ĥ∂ẑφ̂

)
,

∂zφ =
H0

ĥ
∂ẑφ̂,

∂tφ =∂tφ̂−
ẑ

ĥ
∂tĥ∂ẑφ̂+

x̂− Lw
Lw − R̃

∂tR̃

(
∂x̂φ̂−

ẑ

ĥ
∂x̂ĥ∂ẑφ̂

)
,

∂xh =
Lw

Lw − R̃
∂x̂ĥ,

∂yh =∂ŷĥ+
x̂− Lw
Lw − R̃

∂ŷR̃∂x̂ĥ,

∂th =∂tĥ+
x̂− Lw
Lw − R̃

∂tR̃∂x̂ĥ,

(3.12a)

(3.12b)

(3.12c)

(3.12d)

(3.12e)

(3.12f)

(3.12g)

where φ̂ = φ(x̂, ŷ, ẑ; t) and ĥ = h(x̂, ŷ; t). For clarity, all hats are subsequently omitted.

Substitution of the transformed coordinates into the variational principle (3.4) yields, after

Chapter 3. Rogue-type waves in a deep-water tank 59

omitting the hats,

δ

∫ T

0

∫
Ω̂

[
W (h∂tφ− z∂th∂zφ) + (x− Lw)∂tR̃ (h∂xφ− z∂xh∂zφ)

+
V

2W

(
h(∂xφ)2 +

z2

h
(∂xh)2(∂zφ)2 − 2z∂xh∂xφ∂zφ

)
+
W

2

(
h(∂yφ)2 +

z2

h
(∂yh)2(∂zφ)2 − 2z∂yh∂yφ∂zφ

)
+ U

(
h∂xφ∂yφ− z∂xh∂yφ∂zφ− z∂yh∂xφ∂zφ+

z2

h
∂xh∂yh(∂zφ)2

)
+
WH2

0

2h
(∂zφ)2 + gWh(

h

H0
z −H)

]
1

H0Lw
dz dx dy dt = 0,

(3.13)

where

U(x, y, t) = (x− Lw) ∂yR̃,

V (x, y, t) =
(
L2
w + (x− Lw)2(∂yR̃)2

)
,

W (x, y, t) =
(
Lw − R̃

)
.

(3.14a)

(3.14b)

(3.14c)

After multiplication by H0Lw and integration by parts in time of the first term, in z of the second

and fourth terms, and in x of the third term we obtain:

δ

∫ T

0

{∫
Ω̂x,y

[∫ H0

0

[
V

2W

(
h(∂xφ)2 +

z2

h
(∂xh)2(∂zφ)2 − 2z∂xh∂xφ∂zφ

)
+
W

2

(
h(∂yφ)2 +

z2

h
(∂yh)2(∂zφ)2 − 2z∂yh∂yφ∂zφ

)
+ U

(
h∂xφ∂yφ− z∂xh∂yφ∂zφ− z∂yh∂xφ∂zφ

+
z2

h
∂xh∂yh(∂zφ)2

)
+
WH2

0

2h
(∂zφ)2

]
dz

+H0

(
gWh(

1

2
h−H)− φ

(
W∂th+ (x− Lw) ∂tR̃ ∂xh

))
z=H0

]
dx dy

+

∫ Ly

0

∫ H0

0

(
Lw ∂tR̃ φ h

)
x=0

dzdy

}
dt = 0,

(3.15)

where Ω̂x,y denotes the fixed horizontal domain, that is Ω̂x,y = {0 ≤ x ≤ Lx; 0 ≤ y ≤ Ly}. The

transformed Laplace equation, the kinematic and dynamic BCs, the wavemaker and Neumann

BCs may be derived from Eq. (3.15) through variations of both h and φ, with temporal end-point

60 Chapter 3. Rogue-type waves in a deep-water tank

conditions δh(x, y, 0) = 0 and δh(x, y, T) = 0. The variations yield

δφ :

[
(x− Lw)

(
2

W
(∂yR̃)2 + ∂yyR̃

)
(z∂xh∂zφ− h∂xφ)−WH2

0

h
∂zzφ

− V

W

(
h∂xxφ+

z

h
(∂xh)2 (2∂zφ+ z∂zzφ)− z (∂zφ∂xxh+ 2∂xh∂xzφ)

)
−W

(
h∂yyφ+

z

h
(∂yh)2 (2∂zφ+ z∂zzφ)− z (∂zφ∂yyh+ 2∂yh∂yzφ)

)
− 2U

(
h∂xyφ+

z

h
∂xh∂yh (2∂zφ+ z∂zzφ)

− z (∂zφ∂xyh+ ∂xh∂yzφ+ ∂yh∂xzφ)
)]

= 0 in Ω,

(3.16a)

δφz=H0 :

[
V

W

(
H0

h
(∂xh)2∂zφ− ∂xh∂xφ

)
− (x− Lw)∂tR̃∂xh

+W

(
H0

h
(∂zφ)

(
1 +H0(∂yh)2

)
− (∂yh∂yφ+ ∂th)

)
+ U

(
−∂xh∂yφ− ∂yh∂xφ+ 2

H0

h
∂xh∂yh∂zφ

)]
= 0 at z = H0,

δhH0 :

[(
g(h−H) + ∂tφ+

1

2
(∂yφ)2 − 1

2

H2
0

h2
(∂zφ)2

(
1 + (∂yh)2

))
+

(x− Lw)

W

[
∂tR̃∂xφ+ ∂yR̃

(
∂xφ∂yφ−

H2
0

h2
∂xh∂yh(∂zφ)2

)]
+

V

2W 2

(
(∂xφ)2 − H2

0

h2
(∂xh)2(∂zφ)2

)]
= 0, at z = H0,

δφx=0 :
Lw + Lw(∂yR̃)2

W

(z
h
∂xh∂zφ− ∂xφ

)
+ ∂yR̃

(
∂yφ−

z

h
∂yh∂zφ

)
= −∂tR̃ at x = 0,

δφx=Lx : Lw (h∂xφ− z∂xh∂zφ) = 0 at x = Lx,

δφz=H0 :
WH2

0

h
∂zφ = 0 at z = 0,

δφy=0,Ly : W (z∂yh∂zφ− h∂yφ) + U (z∂xh∂zφ− h∂xφ) = 0 at y = 0, Ly.

(3.16b)

(3.16c)

(3.16d)

(3.16e)

(3.16f)

(3.16g)

As a check, shown in Appendix B.1, the same equations are obtained by transforming the initial

Laplace equation and the kinematic and dynamic boundary conditions (3.3a-d). The diagram 3.3

summarises the two ways of obtaining Eqs. (3.16).

Chapter 3. Rogue-type waves in a deep-water tank 61

Variational Principle (3.4) Transformed variational principle (3.15)

Equations 3.3 Transformed equations (3.16) and (B.9)

Scaling (3.6)

VariationsVariations
Scaling (3.6)

Figure 3.3: Diagram showing two ways (blue and pink paths) to obtain the transformed Euler

equations.

3.3 Spatial discretisation strategies

3.3.1 Updating the vertical structure

ẑ

ẑn+1 = 0

ẑ1 = H0

ẑ2

ẑi

ẑ3

ẑn

Figure 3.4: Discretised 3D fixed domain Ω̂d. The mesh contains Nx × Ny elements in the

horizontal plane, and one vertical element on which the velocity potential is expanded with high

order expansions in order to eliminate the z–dependency of the weak formulations.

To solve Eqs. (3.16), the domain and the equations must be discretised in space. The package

Firedrake [120, 9, 7, 71, 96] is used to solve the weak formulations with the finite-element method

(see, for example, [121]). This automated system discretises the equations in space internally,

62 Chapter 3. Rogue-type waves in a deep-water tank

based on user-defined settings regarding the mesh and the expansions to use. In Eq. (3.16), the

functions h and φ are updated at the surface only, through Eq. (3.16b) and Eq. (3.16c) respectively.

While h is only defined at the surface, the velocity potential φ also evolves in depth, and its

subsurface values are slaves of its surface evolution through the (transformed) Laplace equation

Eq. (3.16a). In order to update φ both at the surface and in the interior, we therefore need to

distinguish its surface and interior evaluations. For this purpose, we use the Schur-complement

method which is based on the Dirichlet-to-Neumann (DtN) operator [34] and aims to decompose

the vertical domain into non-overlapping subdomains so that the subsurface subdomains may later

be eliminated. Essentially, we discretise the 3D transformed domain Ω̂ withNx×Ny quadrilateral

elements in the horizontal plane, but only one vertical element, on which the velocity potential is

expanded with high-order (nz) expansions as

φ(x, y, z, t) = ψi(x, y, t)ϕ̃i(z), (3.18)

where the Einstein summation convention is used for repeated indices i ∈ [1, nz + 1].

Figure (3.4) illustrates the discrete mesh. Substitution of Eq. (3.18) into the variational

principle (3.15) enables us to separate z–integrals from the x– and y–integrals as follows:

δ

∫ T

0

{∫
Ω̂x,y

[
V

2W

(
h∂xψi∂xψjM̃ij +

1

h
(∂xh)2ψiψjS̃ij − 2ψi∂xh∂xψjD̃ji

)
+
W

2

(
h∂yψi∂yψjM̃ij +

1

h
(∂yh)2ψiψjS̃ij − 2ψi∂yh∂yψjD̃ji

)
+U

(
h∂xψi∂yψjM̃ij +

1

h
∂xh∂yhψiψjS̃ij

− ψi∂xh∂yψjD̃ji − ψi∂yh∂xψjD̃ji

)
+
WH2

0

2h
ψiψjÃij +H0

(
gWh(

1

2
h−H)

− ψiϕ̃i(H0) ((x− Lw)∂tR∂xh+W∂th)
)
z=H0

]
dx dy

+

∫ Ly

0

(
Lw ∂tR̃ hψi Ĩi

)
x=0

dy

}
dt = 0,

(3.19)

in which the matrices M̃ , D̃, Ã, S̃ and Ĩ are defined as

Chapter 3. Rogue-type waves in a deep-water tank 63

M̃ij =

∫ H0

0
[ϕ̃iϕ̃j] dz,

Ãij =

∫ H0

0
[dzϕ̃idzϕ̃j] dz,

Ĩi =

∫ H0

0
[ϕ̃i] dz,

(3.20a)

(3.20b)

(3.20c)

D̃ij =

∫ H0

0
[zϕ̃idzϕ̃j] dz,

S̃ij =

∫ H0

0

[
z2dzϕ̃idzϕ̃j

]
dz.

(3.20d)

(3.20e)

Equation (3.19) holds the dynamics of the evolution of h and φ in the horizontal plane, while

the vertical components of φ are considered as coefficients through the constant matrices (3.20).

These matrices are evaluated numerically with the python package Sympy [101]: more details are

given in the tutorials in Chapter 6. The next section explains what strategic indexing is used to

distinguish the surface and interior nodal evaluations of φ.

3.3.2 Expansion of subsurface velocity potential

The vertical component of the velocity potential is expanded with a Lagrange polynomial of order

nz as

ϕ̃i(z) =

nz+1∏
k=1
k 6=i

z − zk
zi − zk

, (3.21)

with zi the discrete vertical coordinate, defined for all i ∈ [1, nz + 1] as

zi =
H0

nz
(nz + 1− i). (3.22)

The value of nz must be set by the user depending on the required vertical resolution. Similarly,

the linear distribution Eq. (3.22) may be changed to non-uniform points, such as exponential

distribution. From Eq. (3.21), the polynomial ϕ̃i, with i ∈ [1, nz + 1], is defined so that

ϕ̃i(zk) = δik =


1 if k = i,

0 if k 6= i.
(3.23)

Our strategy is to set the index i = 1 at the surface, and use i′ ∈ [2, nz + 1] in the interior layers;

that is, 
z1 = H0,

0 ≤ zi′ < H0,
(3.24)

64 Chapter 3. Rogue-type waves in a deep-water tank

so that, ∀i′ ∈ [2, nz + 1],
ϕ̃i′(H0) = 0,

ϕ̃i′(zi′) = 1.
and


ϕ̃1(H0) = 1,

ϕ̃1(zi′) = 0,
(3.25)

As a consequence, the surface and interior evaluations of the velocity potential may be

distinguished through

φ(x, y, z, t) =



ψ1(x, y, t) at the surface z = z1 = H0,

ψi′(x, y, t) on the horizontal plane z = zi′ < H0,

nz+1∑
j=1

ψj(x, y, t)ϕ̃j(z) for z 6= zi, ∀i ∈ [1, nz + 1].

(3.26)

Substitution of Eq. (3.26) into the variational principle (3.19) leads to

δ

∫ T

0

{∫
Ω̂x,y

[
V

2W
h
[
(∂xψ1)2M̃11 + ∂xψi′

(
2M̃i′1∂xψ1 + M̃i′j′∂xψj′

)]
+
Wh

2

[
(∂yψ1)2M̃11 + ∂yψi′

(
2M̃i′1∂yψ1 + M̃i′j′∂yψj′

)]
+Uh

[
∂xψ1

(
∂yψ1M̃11 + ∂yψj′M̃1j′

)
+ ∂xψi′

(
∂yψ1M̃i′1 + ∂yψj′M̃i′j′

)]
+

1

h

[V
2W

(∂xh)2 +
W

2
(∂yh)2 + U∂xh∂yh

]
×
[
ψ2

1S̃11 + ψi′
(

2S̃i′1ψ1 + S̃i′j′ψj′
)]

−
[
V

W
∂xh+ U∂yh

]
×
[
∂xψ1

(
D̃11ψ1 + D̃1i′ψi′

)
+ ∂xψi′

(
D̃i′1ψ1 + D̃i′j′ψj′

)]
− [W∂yh+ U∂xh]

×
[
∂yψ1

(
D̃11ψ1 + D̃1i′ψi′

)
+ ∂yψi′

(
D̃i′1ψ1 + D̃i′j′ψj′

)]
+
WH2

0

2h

[
ψ2

1Ã11 + ψi′
(

2Ãi′1ψ1 + Ãi′j′ψj′
)]

+H0

[
gWh(

1

2
h−H)− ψ1

(
(x− Lw)∂tR̃∂xh+W∂th

)]]
dx dy

+

∫ Ly

0

(
Lw ∂tR̃ h

(
ψ1Ĩ1 + ψi′ Ĩi′

))
x=0

dy

}
dt = 0.

(3.27)

Chapter 3. Rogue-type waves in a deep-water tank 65

The technique described above to distinguish the surface and interior evaluations leads to the

variational principle (3.27) for nz + 2 unknowns: the depth h, the velocity potential at the surface

ψ1 and the velocity potential in the interior ψi′ for i′ ∈ [2, nz + 1]. The variations of (3.27) with

respect to each ψi′ will lead to nz extra equations describing the evolution of the velocity potential

on each interior layer of the domain. That way, we are able to update φ(x, y, z, t) in the three-

dimensional domain. In the next section, the finite-element method is used to expand the variables

h, ψ1 and ψi′ in the horizontal plane.

3.3.3 Finite-element method in the horizontal plane

Figure 3.5: Discrete domain for solving the transformed Euler equations with the finite-element

method. The unknowns are expanded in each horizontal plane with continuous Galerkin

expansions.

A finite-element method based on continuous Galerkin expansions is used to discretise the

variables on each horizontal layer. While h(x, y, t) and ψ1(x, y, t) evolve on the surface plane,

ψi′(x, y, t) evolves on the interior layers (cf. Fig.3.5). Each layer is discretised withNh = Nx×Ny

elements, on which the solutions are evaluated through their temporal coefficients and basis

66 Chapter 3. Rogue-type waves in a deep-water tank

functions as

hh = hk(t)ϕk(x, y),

ψ1h = ψ1k(t)ϕk(x, y),

ψi′h = ψi′k(t)ϕk(x, y),

(3.28)

where the Einstein implicit summation convention for repeated index k ∈ [1, Nh] is used.

Substitution of the finite-element expansions (3.28) into the variational principle (3.27) leads to

the space-discrete time-continuous variational principle. In matrix-tensor form it reads

δ

∫ T

0

{
hk
2

[
Λkqmψ1q

(
M̃11ψ1m + M̃i′1ψi′m

)
+ Λkmqψi′m

(
M̃i′1ψ1q + M̃i′j′ψj′q

)]
−hk

[
Γmkqψ1q

(
D̃11ψ1m + D̃1i′ψi′m

)
+ Γqkmψi′m

(
D̃i′1ψ1q + D̃i′j′ψj′q

)]
+
hlhp
2hk

Υkmqlp

[
ψ1qS̃11ψ1m + ψi′m

(
2S̃i′1ψ1q + S̃i′j′ψj′q

)]
+
H2

0

2hk
Jkmq

[
ψ1qÃ11ψ1m + 2ψi′mÃi′1ψ1q + ψi′mÃi′j′ψj′q

]
+Lwhk

[
Xkqψ1q Ĩ1 +Xkmψi′mĨi′

]
+H0

(
ghk(

1

2
hlMkl −HIk)− ψ1qNqkhk −Mkqψ1q

dhk
dt

)
z=H0

}
dt = 0,

(3.29)

where

Nqk =

∫
Ω̂x,y

[
(x− Lw)∂tR̃ϕq∂xϕk

]
dxdy,

Mkl =

∫
Ω̂x,y

[Wϕkϕl] dx dy,

Ik =

∫
Ω̂x,y

[Wϕk] dx dy,

Jkmq =

∫
Ω̂x,y

[
W

ϕk
ϕmϕq

]
dxdy,

Xkq =

∫ Ly

0

[
∂tR̃ϕkϕq

]
x=0

dy,

Γkmq = Akmq +Bkmq +Dkmq +Dkqm,

Λkmq = Akmq +Bkmq + 2Dkmq,

Υkmqlp = Ekmqlp + Fkmqlp + 2Gkmqlp,

(3.30a)

(3.30b)

(3.30c)

(3.30d)

(3.30e)

(3.30f)

(3.30g)

(3.30h)

Chapter 3. Rogue-type waves in a deep-water tank 67

with

Akmq =

∫
Ω̂x,y

[
V

W
ϕk∂xϕm∂xϕq

]
dx dy,

Bkmq =

∫
Ω̂x,y

[Wϕk∂yϕm∂yϕq] dx dy,

Dkmq =

∫
Ω̂x,y

[Uϕk∂xϕm∂yϕq] dx dy,

Ekmqlp =

∫
Ω̂x,y

[
V

W

1

ϕk
ϕmϕq∂xϕl∂xϕp

]
dx dy,

Fkmqlp =

∫
Ω̂x,y

[
W

ϕk
ϕmϕq∂yϕl∂yϕp

]
dx dy,

Gkmqlp =

∫
Ω̂x,y

[
U

1

ϕk
ϕmϕq∂xϕl∂yϕp

]
dx dy.

In the next section, the space-discrete time-continuous variational principle (3.29) is used

to derive robust time integrators. These time integrators are then applied directly to the space-

continuous variational principle (3.27) and solved using Firedrake [120, 9, 7, 71, 96], as explained

in section 3.5.

3.4 Temporal discretisation schemes

One advantage of using the variational approach is that the variational principle may be written in

Hamiltonian form, for which robust and symplectic temporal integrators exist [53]. In this section,

we write Eq. (3.29) in Hamiltonian form in order to apply two temporal integrators of first and

second order, following the method described in [53].

3.4.1 Hamiltonian dynamics

The space-discrete time-continuous variational principle (3.29) may be written in Hamiltonian

form in terms of the coordinate hk(t) and the momentum p1k = Mkq(t)ψ1q(t) as follows:

0 = δ

∫ T

0
p1k

dhk
dt
−H (h,p1,ψi′ , t) dt, (3.31)

68 Chapter 3. Rogue-type waves in a deep-water tank

with H the Hamiltonian defined as

H(h,p1,ψi′ , t) =

{
hk
2

[
ΛkqmM

−1
rq p1r

(
M̃11M

−1
smp1s + M̃1i′ψi′m

)
+ Λkmqψi′m

(
M̃i′1M

−1
rq p1r + M̃i′j′ψj′q

)]
−hk

[
M−1
rq p1rΓmkq

(
D̃11M

−1
smp1s + D̃1i′ψi′m

)
+ ψi′mΓqkm

(
D̃i′1M

−1
rq p1r + D̃i′j′ψj′q

)]
+
hlhp
2hk

Υkmqlp

[
ψi′mS̃i′j′ψj′q +M−1

rq p1r

(
S̃11M

−1
smp1s + 2ψi′mS̃i′1

)]
+
H2

0

2hk
Jkmq

[
M−1
rq p1r

(
Ã11M

−1
smp1s + 2ψi′mÃi′1

)
+ ψi′mÃi′j′ψj′q

]
+Lwhk

[
XkqM

−1
rq p1r Ĩ1 +Xkmψi′mĨi′

]
+H0

(
ghk(

1

2
hlMkl −HIk)−M−1

rq p1rNqkhk

)}
.

(3.32)

The variations of Eq. (3.31) with respect to p1, h and ψi′ lead to the following system of equations:

δpk :
dhk
dt

=
∂H(h,p1,ψi, t)

∂p1
,

δhk :
dpk
dt

= −∂H(h,p1,ψi, t)

∂h
,

δψi′m :
∂H(h,p1,ψi, t)

∂ψi′
= 0.

(3.33a)

(3.33b)

(3.33c)

The spatial discretisation strategies described in Section 3.3 lead to the extra equation (3.33c) used

to update the velocity potential ψi′ in the interior. Equation (3.33c) may be written in explicit form

as

ψj′q = −

[
hk

(
ΓkqmM̃i′j′ − ΓqkmD̃i′j′ − ΓmkqD̃j′i′

)

+
1

hk

(
hlhpΥkmqlpS̃i′j′ +H2

0JkmqÃi′j′

)]−1

×

{[
hk

(
ΓkqmM̃i′1 − ΓqkmD̃i′1 − ΓmkqD̃1i′

)

+
1

hk

(
hlhpΥkmqlpS̃i′1 +H2

0JkmqÃi′1

)]
M−1
rq p1r − hkLwXkmĨi′

}
,

(3.34)

which is a linear expression ofψi′ in terms of h, p1 andW resulting from the discretization of the

linear Laplace equation. One option is thus to eliminate the interior values of the velocity potential

Chapter 3. Rogue-type waves in a deep-water tank 69

ψi′ by substituting Eq. (3.34) into the Hamiltonian (3.32), so that the initial variational principle

Eq. (3.31) may be expressed in terms of an auxiliary Hamiltonian H̃ that depends on h, p1 and

W only:

0 = δ

∫ T

0
p1k

dhk
dt
− H̃ (h,p1,W (t)) dt. (3.35)

Variations of Eq. (3.35) with respect to h and p1 would then reduce Eqs. (3.33) to a system of two

equations:
dhk
dt

=
∂H̃

∂p1
, and

dp1k

dt
= −∂H̃

∂h
. (3.36)

However, the expression of ψi′ in Eq. (3.34) involves many terms and the resulting Hamiltonian

H̃(h,p1,W) would include many matrix products and matrix inverses. Instead, another option

is to eliminate ψi′(h,p1,W) by solving Eq. (3.33c), that is Eq. (3.34), simultaneously with

Eqs. (3.33a-b). This option is equivalent to solving the system of equations (3.36), provided that

h, p1 and W are evaluated at the same temporal evaluations in Eqn (3.34) and in the Hamiltonian

used in Eqs. (3.33a-b).

For N discontinuous time intervals [tn, tn+1], Gagarina et al. [53] discretised a variational

principle of the form

0 = δ

∫ T

0
p
dq

dt
−H(p, q) dt, (3.37)

in terms of the polynomial approximations pτ and qτ of p and q respectively, as

0 = δ

{
N−1∑
n=0

∫ tn+1

tn

(
pτ
dqτ

dt
−H(pτ , qτ)

)
dt−

N−1∑
n=−1

[[qτ]]{{pτ}}βα|tn+1

}
, (3.38)

where [[.]] and {{.}}βα denote the jump and average operators, with α + β = 1 and α, β > 0.

Gagarina et al. [53] showed that through the choice of the order of the polynomials pτ and qτ , of

the quadrature rule and of the weights α and β, various stable temporal schemes may be obtained

for the discretisation of (3.38).

In our case, the Hamiltonian H̃ admits an additional explicit time dependency through the term

W (x, y, t) = Lw−R̃(x, y, t). Bokhove and Kalogirou [20] showed that non-autonomous systems

of the form of (3.35) may be expressed as autonomous systems by introducing a new time

coordinate τ and its conjugate p, such that t = t(τ) is an auxiliary variable, with dt/dτ = 1

and t(0) = 0s. They transformed the Hamiltonian H(p1,h, t) into a so-called “Kamiltonian”

70 Chapter 3. Rogue-type waves in a deep-water tank

system, defined as K(p1,h, t, p) = H(p1,h, t) + p for which the energy is conserved and the

equations of the form (3.36) are recovered for the variables P = (p1, p) and Q = (h, t). In the

Hamiltonian H̃ , the explicit time dependency W is also involved in our momentum variable p1k,

since

p1k = Mkqψ1q =

∫
Ω̂x,y

[W (x, y, t)ϕk(x, y)ϕq(x, y)]ψ1q(t) dx dy. (3.39)

A logical choice is thus to define a new momentum P̃ as P̃ = (p1, t), and introduce the conjugate

q of t to get the corresponding coordinate Q̃ = (h, q). In order to obtain equations of the form

(3.36) in terms of P̃ and Q̃, we define an adjoint Kamiltonian as

K̃(P̃ , Q̃) := K̃(p1,h, t, q) = H̃(p1,h, t)− q. (3.40)

Through the definition of t(τ), we have

dh

dt
=
dh

dt

dt

dτ
=
dh

dτ
,

dp1
dt

=
dp1
dt

dt

dτ
=
dp1
dτ

,

(3.41a)

(3.41b)

using which the variational principle (3.35) becomes

0 =δ

∫ T

0

[
p1
dh

dτ
− q dt

dτ
− K̃(p1,h, t, q)

]
dτ

=

∫ T

0

[(
dh

dτ
− ∂K̃

∂p1

)
δp1 −

(
dp1
dτ

+
∂K̃

∂h

)
δh

−

(
dt

dτ
+
∂K̃

∂q

)
δq +

(
dq

dτ
− ∂K̃

∂t

)
δt

]
dτ,

(3.42)

where we have used that δh(0) = δh(T) = 0 and δt(0) = δt(T) = 0. Arbitrariness of δh, δp1,

δt and δq leads to the following equations:

dh

dτ
=
∂K̃

∂p1
,

dp1
dτ

= −∂K̃
∂h

,
dt

dτ
= −∂K̃

∂q
,

dq

dτ
=
∂K̃

∂t
. (3.43)

Equations. (3.43) may be combined to take the form of (3.36):

d(h, q)

dτ
=

∂K̃

∂(p1, t)
and

d(p1, t)

dτ
= − ∂K̃

∂(h, q)
(3.44)

Chapter 3. Rogue-type waves in a deep-water tank 71

⇒ dQ̃

dτ
=
∂K̃

∂P̃
and

dP̃

dτ
= −∂K̃

∂Q̃
. (3.45)

From Eqs. (3.41) and (3.40), Eqs. (3.43) are also equivalent to

dh

dt
=
∂H̃

∂p1
,

dp1
dt

= −∂H̃
∂h

,
dt

dτ
= 1,

dq

dτ
=
∂H̃

∂t
, (3.46)

in which we recover Eqs. (3.36). The temporal schemes introduced by Gagarina et al. [53] for

autonomous systems may be applied to our non-autonomous system as long as the explicit time

dependence W (x, y, t) is evaluated as our momentum variable p1. By setting p = p1, q = h,

and H(p, q) = H̃(p1,h, t) in Eq. (3.38), the following discrete variational principle is obtained

0 = δ

{
N−1∑
n=0

∫ tn+1

tn

(
pτ1
dhτ

dt
− H̃(pτ1 ,h

τ , t)

)
dt−

N−1∑
n=−1

[[hτ]]{{pτ1}}βα|tn+1

}
. (3.47)

Two examples of resulting temporal schemes are now presented; both are used in our simulations.

3.4.2 1st–order symplectic-Euler scheme

We first apply the 1st–order symplectic-Euler scheme to Eq. (3.47). To obtain a 1st–order scheme,

we approximate p1 and h with continuous constant basis functions pτ1 and hτ on each interval

[tn, tn+1], but discontinuous across the interface tn, with left and right values

(hn,−,pn,−1) and (hn,+,pn,+1), (3.48)

for n ∈ [0, N − 1]. As hτ is constant on each interval, we have

∫ tn+1

tn
pτ1
dhτ

dt
dt = 0 ∀n ∈ [0, N − 1], (3.49)

simplifying Eq. (3.47) to

0 = δ

{
N−1∑
n=0

∫ tn+1

tn
−H̃(pτ1 ,h

τ , t) dt−
N−1∑
n=−1

[[hτ]]{{pτ1}}βα|tn+1

}
. (3.50)

72 Chapter 3. Rogue-type waves in a deep-water tank

Following [53] and the conclusions from our Kamiltonian system (3.43), we set

(pτ1 ,h
τ , t) = (pn,+1 ,hn,+, tn,+) = (pn,+1 ,hn+1,−, tn,+), α = 0, β = 1, and use the

quadrature rule ∫ tn+1

tn
H̃(pτ1 ,h

τ , t) dt = ∆tH̃(pn,+1 ,hn+1,−, tn,+). (3.51)

As a consequence, the discrete variational principle becomes

0 = δ

{
N−1∑
n=0

∆tH̃
(
pn,+1 ,hn+1,−, tn,+

)
+

N−1∑
n=−1

(
hn+1,− − hn+1,+

)
pn+1,+
1

}
. (3.52)

Variations of (3.52) with respect to pτ = pn,+1 and hτ = hn+1,− lead to

0 =
N−1∑
n=0

[
∆t

∂H̃
(
pn,+1 ,hn+1,−, tn,+

)
∂pn,+1

δpn,+1 + ∆t
∂H̃

(
pn,+1 ,hn+1,−, tn,+

)
∂hn+1,− δhn+1,−

]

+
N−1∑
n=−1

[(
hn,− − hn,+

)
δpn,+1 +

(
pn+1,+
1 − pn,+1

)
δhn+1,−

]
. (3.53)

Arbitrariness of δpn,+1 and δhn+1,− then yields

δpn,+1 : hn,+ = hn,− + ∆t
∂H̃

(
pn,+1 ,hn+1,−, tn,+

)
∂pn,+1

,

δhn+1,− : pn+1,+
1 = pn,+1 −∆t

∂H̃
(
pn,+1 ,hn+1,−, tn,+

)
∂hn+1,− .

(3.54a)

(3.54b)

By construction, hn,+ = hn+1,− := hn+1, as hτ is constant over a cell. Similarly, we denote

pn1 := pn,+1 , [53], and tn := tn,+. We therefore obtain the symplectic-Euler scheme for non-

autonomous Hamiltonian system as

hn+1 = hn + ∆t
∂H̃

(
pn1,h

n+1, tn
)

∂pn1
,

pn+1
1 = pn1 −∆t

∂H̃
(
pn1,h

n+1, tn
)

∂hn+1
.

(3.55a)

(3.55b)

Chapter 3. Rogue-type waves in a deep-water tank 73

From our conclusions in section 3.4.1, solving Eq. (3.55) is equivalent to solving


hn+1 = hn + ∆t

∂H
(
pn1,h

n+1,ψ∗i′ , t
n
)

∂pn1
∂H

(
pn1,h

n+1,ψ∗i′ , t
n
)

∂ψ∗
i′

= 0, for each i′ ∈ [2, nz + 1],

pn+1
1 = pn1 −∆t

∂H
(
pn1,h

n+1,ψ∗i′t
n
)

∂hn+1
,

(3.56a)

(3.56b)

where the second Equation in (3.56a) enables us to obtain ψi′ in terms of hn+1, ψn1 and tn. Note

that Eq. (3.56b) is solved on its own since ψ∗i′ = ψi′(h
n+1,ψn1 , t

n) is known from step (3.56a).

Substituting the Hamiltonian Eq. (3.32) into Eq. (3.56a) leads to the first step of the symplectic-

Euler scheme in fully discrete form (cf. Appendix B.2, Eqs. B.18-B.19). This implicit step

updates both h at time tn+1 and ψi′ , for i′ ∈ [2, Nz] at an auxiliary time t∗ corresponding to

ψ∗i′ = ψi′(h
n+1,pn1, t

n). It is solved in a mixed system, as explained in the tutorial Chapter 6.

The second step of the symplectic-Euler scheme, which updates p1k = M−1
kq ψ1q at time tn+1, is

obtained in Eq. B.20 and is explicit for p1. For analysis purpose, such as visualising the velocity

potential in the full 3D domain, one may also update ψ̂ at time tn+1 by solving Eq. (3.34) with h,

ψ1 and t evaluated at time tn+1. The linear equation updating ψ̂n+1 is given in Appendix B.2.

3.4.3 Second-order Störmer-Verlet scheme

In order to obtain a second-order scheme, the polynomials pτ1 and hτ must be expanded with

linear basis functions. As advised in [53], we approximate hτ in terms of h at times tn,+ and

tn+1,− (trapezoidal rule), while pτ1 is approximated in terms of pn,+1 and pn+1/2
1 (mid-point rule).

We therefore define hτ and pτ1 so that they satisfy:

hτ (tn,+) = hn,+,

hτ (tn+1,−) = hn+1,−,

hτ (tn+1/2) =
1

2
(hn,+ + hn+1,−),

(3.57a)

(3.57b)

(3.57c)

pτ1(tn,+) = pn,+1 ,

pτ1(tn+1,−) = 2p
n+1/2
1 − pn,+1 ,

pτ1(tn+1/2) = p
n+1/2
1 .

(3.57d)

(3.57e)

(3.57f)

74 Chapter 3. Rogue-type waves in a deep-water tank

The following expansions, introduced by [53], satisfy the requirements (3.57):

hτ (t) =
tn+1 − t

∆t
hn,+ +

t− tn

∆t
hn+1,−,

pτ1(t) =
2(t− tn)

∆t
p
n+1/2
1 +

tn + tn+1 − 2t

∆t
pn,+1 .

(3.58a)

(3.58b)

The integral of the Hamiltonian may also be approximated in terms of pn+1/2
1 , hn,+ and hn+1,−

as [53]:

∫ tn+1

tn
H̃(hτ ,pτ1 , t) dt =

∆t

2

[
H̃(hn,+,p

n+1/2
1 , tn+1/2) + H̃(hn+1,−,p

n+1/2
1 , tn+1/2)

]
. (3.59)

Substitution of Eqs. (3.58) and (3.59) into the discrete variational principle (3.47) leads to

δL(hτ ,pτ1 , t) = δ
N−1∑
n=0

[
p
n+1/2
1

(
hn+1,− − hn,+

)
−∆t

2

(
H̃(hn,+,p

n+1/2
1 , tn+1/2) + H̃(hn+1,−,p

n+1/2
1 , tn+1/2)

)]

−δ
N−1∑
n=−1

(
2αp

n+1/2
1 − αpn,+1 + βpn+1,+

1

) (
hn+1,− − hn+1,+

)
= 0.

(3.60)

The variations with respect to pn+1/2
1 , pn,+1 , hn,+ and hn+1,−, with end-point conditions

δh0,− = 0, δp0,−
1 = 0, δhN,+ = 0 and δpN,+1 = 0 yield the following system of equations:

δpn,+1 : α(hn+1,− − hn+1,+) = β(hn,− − hn,+),

δhn,+ : p
n+1/2
1 =α(2p

n−1/2
1 − pn−1,+

1) + βpn,+1 − ∆t

2

∂H̃
(
hn,+,p

n+1/2
1 , tn+1/2

)
∂hn,+

,

δp
n+1/2
1 : 0 = (1− 2α)hn+1,− + 2αhn+1,+ − hn,+

−∆t

2

(∂H̃(hn,+,p
n+1/2
1 , tn+1/2)

∂p
n+1/2
1

+
∂H̃(hn+1,−,p

n+1/2
1 , tn+1/2)

∂p
n+1/2
1

)
,

δhn+1,− : βpn+1,+
1 = (1− 2α)p

n+1/2
1 + αpn,+1 − ∆t

2

∂H̃
(
hn+1,−,p

n+1/2
1 , tn+1/2

)
∂hn+1,− .

(3.61a)

(3.61b)

(3.61c)

(3.61d)

In section 3.4.4, we follow the method described by [53] to show that the scheme (3.61) is stable for

α ∈ [0, 0.5] and |ω∆t| ≤ 2 (with ω the maximum frequency of the discrete waves). Consequently,

Chapter 3. Rogue-type waves in a deep-water tank 75

setting α = 0 and β = 1 in the scheme (3.61) leads to:

δpn,+1 : hn,− = hn,+,

δhn,+ : p
n+1/2
1 =pn,+1 − ∆t

2

∂H̃
(
hn,+,p

n+1/2
1 , tn+1/2

)
∂hn,+

,

δp
n+1/2
1 : 0 = hn+1,− − hn,+ − ∆t

2

(∂H̃(hn,+,p
n+1/2
1 , tn+1/2)

∂p
n+1/2
1

+
∂H̃(hn+1,−,p

n+1/2
1 , tn+1/2)

∂p
n+1/2
1

)
,

δhn+1,− : pn+1,+
1 =p

n+1/2
1 − ∆t

2

∂H̃
(
hn+1,−,p

n+1/2
1 , tn+1/2

)
∂hn+1,− .

(3.62a)

(3.62b)

(3.62c)

(3.62d)

Equation (3.62) ensures continuous depth at the time interfaces, so we can sethn,+ = hn,− := hn.

Moreover, we set pn1 = {{p1}}βα|tn = pn,+1 . Substituting these notations into (3.62) results in the

adjoint Störmer-Verlet scheme:

δpn1 : [[h]]tn = 0,

δhn : p
n+1/2
1 =pn1 −

∆t

2

∂H̃
(
hn,p

n+1/2
1 , tn+1/2

)
∂hn

,

δp
n+1/2
1 : 0 = hn+1 − hn − ∆t

2

(∂H̃(hn,p
n+1/2
1 , tn+1/2)

∂p
n+1/2
1

+
∂H̃(hn+1,p

n+1/2
1 , tn+1/2)

∂p
n+1/2
1

)
,

δhn+1 : pn+1
1 =p

n+1/2
1 − ∆t

2

∂H̃
(
hn+1,p

n+1/2
1 , tn+1/2

)
∂hn+1

.

(3.63a)

(3.63b)

(3.63c)

(3.63d)

Note that this derivation yields the adjoint Störmer-Verlet scheme, in which the momentum is

evaluated at the intermediate time tn+1/2. We have made that choice rather than the usual Störmer-

Verlet scheme (as presented in detail in [53]) as this enables the evaluation of the wavemaker terms

at only tn+1/2 in every steps. If one uses the usual Störmer-Verlet scheme instead, in which h and

p1 are reversed, then the wavemaker terms need to be evaluated at times tn and tn+1 in the second

step (as would be done for p1).

76 Chapter 3. Rogue-type waves in a deep-water tank

As explained in section 3.4.1, solving Eqs. (3.63) is equivalent to solving:


0 =p

n+1/2
1 − pn1 +

∆t

2

∂H
(
hn,p

n+1/2
1 , ψ∗i′ , t

n+1/2
)

∂hn
,

0 =
∂H

(
hn,p

n+1/2
1 , ψ∗i′ , t

n+1/2
)

∂ψ∗i′
,

0 =hn+1 − hn − ∆t

2

(∂H(hn,p
n+1/2
1 , ψ∗i′ , t

n+1/2)

∂p
n+1/2
1

+
∂H(hn+1,p

n+1/2
1 , ψ∗∗i′ , t

n+1/2)

∂p
n+1/2
1

)
,

0 =
∂H(hn+1,p

n+1/2
1 , ψ∗∗i′ , t

n+1/2)

∂ψ∗∗i′
,

pn+1
1 =p

n+1/2
1 − ∆t

2

∂H
(
hn+1,p

n+1/2
1 , ψ∗∗i′ , t

n+1/2
)

∂hn+1
,

(3.64a)

(3.64b)

(3.64c)

where Eq. (3.64a) aims to eliminate ψ∗i′ = ψi′(h
n,p

n+1/2
1 , tn+1/2) while updating p1 at tn+1/2,

and Eq. (3.64b) aims to eliminate ψ∗∗i′ = ψi′(h
n+1,p

n+1/2
1 , tn+1/2) while updating h at tn+1.

Note that Eq. (3.64) is fully explicit, so ψi′ does not need to be updated simultaneously. The

detailed expression of each of these weak formulations is given in Appendix B.3.

3.4.4 Stability of the schemes

To ensure stability of the temporal schemes, the time step must be limited to certain values. To

estimate this supremum, a Fourier analysis is conducted for each scheme.

Stability of the 1st–order Symplectic-Euler scheme

To study the stability of the symplectic-Euler scheme, we consider the energy of an harmonic

oscillator, given by

H̃(p1,h) =
1

2
p2
1 +

1

2
ω2h2, (3.65)

Chapter 3. Rogue-type waves in a deep-water tank 77

where ω is the frequency of the oscillator. Substitution of this Hamiltonian into the symplectic-

Euler scheme (3.55) leads to the following system of equations

hn+1 = hn + ∆tpn1,

pn+1
1 = pn1 − ω2∆thn+1.

(3.66a)

(3.66b)

Substituting the Ansatz functions pn1 = p1λ
n and hn = hλn leads to

hλn+1 = hλn + ∆tp1λ
n,

p1λ
n+1 = p1λ

n − ω2∆thλn+1.

(3.67a)

(3.67b)

Division by λn reduces the above system of equations to

(1− λ)h = −∆tp1,

(1− λ)p1 = ω2∆thλ,

(3.68a)

(3.68b)

which in matrix form reads  (1− λ) ∆t

−ω2∆tλ (1− λ)

 h

p1

 =

0

0

 . (3.69)

The corresponding characteristic polynomial is

λ2 + (ω2∆t2 − 2)λ+ 1 = 0. (3.70)

A solution with coefficient pn1 = p1λ
n or hn = hλn can only be stable if |λ| < 1, as otherwise

the solution would blow-up with time (that is, as n→∞). In Appendix B.4, we show that |λ| < 1

if and only if

∆t ≤ 2

ω
, (3.71)

which is thus the time-step restriction ensuring stability of the symplectic-Euler scheme.

Stability of the second-order Störmer-Verlet scheme

The stability condition for the Störmer-Verlet scheme is obtained by following the method used in

[53]. First, the system of equations (3.61) is reformulated in terms of the unknowns [[p1]]|tn+1 ,

78 Chapter 3. Rogue-type waves in a deep-water tank

p
n+1/2
1 , [[h]]|tn+1 and hn+1,−:

α[[h]]|tn+1 = β[[h]]|tn ,

p
n+1/2
1 =pn,+1 + α[[p1]]|tn −

∆t

2

∂H̃
(
hn,+,p

n+1/2
1 , tn+1/2

)
∂hn,+

,

hn+1,− =hn,+ + 2α[[h]]|tn+1 +
∆t

2

(∂H̃(hn,+,p
n+1/2
1 , tn+1/2)

∂p
n+1/2
1

+
∂H̃(hn+1,−,p

n+1/2
1 , tn+1/2)

∂p
n+1/2
1

)
,

β[[p1]]|tn+1 =p
n+1/2
1 − pn,+1 +

∆t

2

∂H̃
(
hn+1,−,p

n+1/2
1 , tn+1/2

)
∂hn+1,− ,

(3.72a)

(3.72b)

(3.72c)

(3.72d)

where we used the definition of the jump [[.]]|tn+1 , that is

pn+1,+
1 = 2p

n+1/2
1 − pn,+1 − [[p1]]|tn+1 ,

hn+1,+ = hn+1,− − [[h]]|tn+1 .

(3.73a)

(3.73b)

Substitution of the Hamiltonian (3.65) into the system of equations (3.72) leads to

α[[h]]|tn+1 = β[[h]]|tn ,

p
n+1/2
1 =pn,+1 + α[[p1]]|tn −

∆t

2
ω2hn,+,

hn+1,− =hn,+ + 2α[[h]]|tn+1 + ∆tp
n+1/2
1 ,

β[[p1]]|tn+1 =p
n+1/2
1 − pn,+1 +

∆t

2
ω2hn+1,−.

(3.74a)

(3.74b)

(3.74c)

(3.74d)

The above system of equations may be written in matrix form as


[[h]]|tn+1

hn+1,+

[[p1]]|tn+1

pn+1,+
1

 = C


[[h]]|tn
hn,+

[[p1]]|tn
pn,+1

 , (3.75)

Chapter 3. Rogue-type waves in a deep-water tank 79

with C the matrix

β

α
0 0 0

β(2− 1

α
) (1− ω2∆t2

2
) α∆t ∆t

ω2∆t −ω
4∆t3

4β

α

β

(
1 +

ω2∆t2

2

)
ω2∆t2

2β

−ω2∆t
ω4∆t3

4β
− ω2∆t 2α− α

β

(
1 +

ω2∆t2

2

)
1− ω2∆t2

2β


. (3.76)

Assuming a continuous water depth across the time cells, that is [[h]]tn = 0, the first row and

column of the matrix C may be removed, to lead to
(1− ω2∆t2

2
) α∆t ∆t

−ω
4∆t3

4β

α

β

(
1 +

ω2∆t2

2

)
ω2∆t2

2β
ω4∆t3

4β
− ω2∆t 2α− α

β

(
1 +

ω2∆t2

2

)
1− ω2∆t2

2β

 . (3.77)

The characteristic polynomial of (3.77) is(
α

β
− λ

)(
1 + λ

(
ω2∆t2 − 2

)
+ λ2

)
= 0, (3.78)

and admits three solutions. The first solution is

λ =
α

β
, (3.79)

which satisfies the condition |λ| ≤ 1 if and only if α ∈ [0, 0.5] and β ∈ [0.5, 1] (with α+ β = 1).

This condition justifies the choice of α = 0 and β = 1 made in section 3.4.3 to obtain the adjoint

Störmer-Verlet scheme (3.63). The other two solutions are obtained by solving

1 +
(
ω2∆t2 − 2

)
+ λ2 = 0, (3.80)

which is the same polynomial as for the symplectic-Euler scheme in (3.70), for which the solutions

satisfy the condition |λ| ≤ 1 if and only if ∆t ≤ 2/ω. Therefore, the stability condition for the

adjoint Störmer-Verlet scheme obtained with α = 0 and β = 1 is the same as for the symplectic-

Euler scheme, that is

∆t ≤ 2

ω
. (3.81)

The estimation of the time step from this stability condition is explained next.

80 Chapter 3. Rogue-type waves in a deep-water tank

Estimation of the time step

For both the symplectic-Euler and Störmer-Verlet schemes, stability is ensured as long as

∆t ≤ 2

ω
. (3.82)

In order to estimate the largest time step that ensures stable simulations, the stability condition

may be written

∆t ≤ 2

max(ω)
. (3.83)

From the linear dispersion relation

ω =
√
gk tanh(kH0), (3.84)

so the maximal frequency is reached for short waves. Therefore, the stability condition (3.82) may

be written as

∆t ≤ 2√
gmax(k) tanh(max(k)H0)

,

⇒∆t ≤ 2√
g

2π

min(λ)
tanh(

2π

min(λ)
H0)

,
(3.85)

using the definition of the wave number k =
2π

λ
. To be able to capture the wave, we must ensure

that

∆x ≤ λ, (3.86)

where ∆x is the spatial resolution and, for 1st–order continuous expansions as used in our spatial

discretisation, the minimal distance between two nodes. Therefore,

min(λ) = ∆x, (3.87)

which leads to the time-step restriction

∆t ≤ 2√
g

2π

∆x
tanh(

2π

∆x
H0)

. (3.88)

In the next section, the implementation of the two above-mentioned schemes is explained.

Chapter 3. Rogue-type waves in a deep-water tank 81

3.5 Numerical solvers

3.5.1 Firedrake solvers

Firedrake [120, 9, 7, 71, 96] is used to solve the equations, for both the Symplectic-Euler

(Eqs. (B.18) to (B.20)) and Störmer-Verlet (Eqs. (B.22) to (B.26)) time discretisations. Firedrake

solves a nonlinear variational problem that takes the form

F (u; v) = 0, (3.89)

for the unknown u, the test function v and the weak formulation F . This variational problem may

be defined in Firedrake through the command

1 NL_problem = NonlinearVariationalProblem (F ,u)

Similarly, a linear variational problem of the form

a(u; v) = L(v), (3.90)

where a is bilinear and L is linear, may be defined numerically through the command

1 L_problem = LinearVariationalProblem (a ,L ,u)

The respective nonlinear and linear variational solvers are then defined as follows

1 # Nonlinear variational solver:

2 NL_solver = NonlinearVariationalSolver (NL_problem ,solver_parameters={})

3 # Linear variational solver:

4 L_solver = LinearVariationalSolver (L_problem ,solver_parameters={})

The solver parameters argument enables to set options such as the factorisation method, the type

of preconditioner, the convergence criteria, etc. In order to determine options required to optimise

our solvers, a performance analysis is carried out in section 3.6.

3.5.2 Firedrake discretisation

The main advantage of using Firedrake is that the spatial discretisation is made internally.

Therefore, the time-discrete space-continuous weak-formulations are implemented directly, by

82 Chapter 3. Rogue-type waves in a deep-water tank

substituting the matrices (3.30) back into Eqs. (B.18), (B.19) and (B.20) for the Symplectic-Euler

scheme and into Eqs. (B.22) to (B.26) for the Störmer-Verlet scheme. Moreover, the interior

evaluations of the velocity potential may be written in vectorial form as

ψi′ϕ̃i′ = ψ̂ϕ̂T , (3.91)

with ψ̂ and ϕ̂ two vectors of dimension (1, nz) such that ψ̂(i) = ψi+1 and ϕ̂(i) = ϕ̃i+1 for

i ∈ [1, nz]. Similarly, the z-discretised matrices (3.20) are split into four sub-matrices, constant in

space and time, as follows:

X11 = Xij [i = 1, j = 1],

X1N = X1j′ = Xij [i = 1, j = 2 : Nz],

XN1 = Xi′1 = Xij [i = 2 : Nz, j = 1],

XNN = Xi′j′ = Xij [i = 2 : Nz, j = 2 : Nz],

(3.92a)

(3.92b)

(3.92c)

(3.92d)

where X denotes any matrix among Ã, M̃ , D̃, S̃ and Ĩ . Then X11 is a scalar while X1N and

XN1 are respectively column and row vectors of dimension (nz), and XNN is a square matrix of

dimension (nz, nz). Transforming the weak formulations (B.18) and (B.20) in terms of h(x, y, t),

ψ1(x, y, t) and ψi′(x, y, t) and substituting (3.91) and (3.92) yield the space-continuous time-

discrete weak formulations in vectorial form, as implemented with Firedrake. The resulting

equations in Firedrake form are given in Appendix B.5. Similarly, the space-continuous-time-

discrete weak formulations obtained from the fully discrete Störmer-Verlet weak formulations

(B.22) to (B.26) are given in Appendix B.6.

Note that these weak formulations may also be obtained by taking the variations of the variational

principle (3.27) with respect to h, ψ1 and ψi′ (cf. Appendix B.7). However, the space-

discrete variational principle (3.29) is required to derive the temporal evaluation of the unknowns

consistently, as done in section 3.4.

Before analysing the simulations in section 3.7, an optimisation of the solvers is conducted in the

next section in order to increase the computational speed of the model.

Chapter 3. Rogue-type waves in a deep-water tank 83

3.6 Optimisation of the solvers

3.6.1 Performance analysis

We solve our system of equations with the symplectic Euler and Störmer-Verlet schemes in the

three-dimensional domain defined in Table 3.1. The wavemaker motion is set as

Domain Beach

Lx [m] Ly [m] H0 [m] H(x = Lx) [m] xB [m] sB [-]

5.5 1.0 1.0 0.5 4.0 0.2

Wavemaker

λ [m] k [rad/m] ω [rad/s] Tw [s] γ [m] Lw [m]

2.0 3.14 5.54 1.13 0.03 1.0

Resolution

∆x [m] ∆y [m] Nxy [-] Nz [-] Ntot [-] ∆t [s]

0.05 0.05 2751 9 24759 0.004

Table 3.1: Parameters used in the test case. Dimensions are given in square brackets.

R(y, t) = γ
2y − Ly
Ly

cos(ωt). (3.93)

Figure 3.6 shows the wavemaker motion (top) and velocity (red) at positions y = 0 and y = Ly.

The code runs for a total of T = 1.13s; that is, for one period of the wavemaker. The option

1 solver_parameters = {"ksp_converged_reason" :True}

enables to print the number of iterations for each solver and the reason for convergence. The

output of this command in our case is printed for Symplectic-Euler (Fig. 3.7) and Störmer-Verlet

(Fig. 3.8). For every case, convergence is reached because the tolerance threshold is satisfied, as

indicated by the parameter CONVERGED RTOL.

84 Chapter 3. Rogue-type waves in a deep-water tank

Figure 3.6: Evolution of the wavemaker motion (top) and velocity (bottom) at y = 0 (blue) and

y = Ly (red).

In the case of the Symplectic-Euler scheme (Fig. 3.7), two solvers are called at each temporal

iteration: Linear firedrake 0 and Linear firedrake 1. The first one, Linear firedrake 0, solves

Eq. (B.33) and Eq. (B.34) in a mixed system in order to update hn+1 and ψ̂∗ simultaneously. The

process of solving these nonlinear equations is split into several linear Newton steps, each calling

the linear solver Linear firedrake 0. This is why the Linear firedrake 0 is called two or three

times (depending on the first guess accuracy) at each temporal iteration. Figure 3.7 and Table 3.2

reveal that this linear solver requires hundreds to thousands of iterations before converging to

the tolerance threshold. This iteration process consumes a considerable amount of computational

time, as shown in Table 3.2. Solving the nonlinear Eqs. (B.33) and (B.34) indeed takes on average

about 8s, while solving the linear Eq. (B.35) takes only 0.05s. This last equation is solved by

calling the Linear firedrake 1 solver, which converges in only 3 iterations, and hence the short

computational time required.

Chapter 3. Rogue-type waves in a deep-water tank 85

(a)	Symplectic	Euler	

 Computational time: 39 mn 6s

	(b)	Störmer-Verlet	

 Computational time: 56 mn 8s
	

Progress: 28.22 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 396
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1237
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1148
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 3
Progress: 28.57 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 471
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 928
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1517
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 3
Progress: 28.93 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 411
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 857
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1064
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 3
Progress: 29.28 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 418
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 785
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 715
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 3

Progress: 28.22 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 244
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 960
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 468
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 906
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 1439
 Linear firedrake_2_ solve converged due to CONVERGED_RTOL iterations 3
Progress: 28.57 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 239
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1277
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 428
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 810
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 1524
 Linear firedrake_2_ solve converged due to CONVERGED_RTOL iterations 3
Progress: 28.93 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 235
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1011
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 394
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 914
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 988
 Linear firedrake_2_ solve converged due to CONVERGED_RTOL iterations 3
			

Figure 3.7: Number of iterations for convergence with the symplectic Euler scheme before any

optimisation.

The two nonlinear and the linear steps of the Störmer-Verlet scheme are solved with three solvers,

as shown in Fig. 3.8. First, Linear firedrake 0 updates the surface velocity potential ψs at the

intermediate time tn+1/2, simultaneously with the sub-surface velocity potential ψ̂∗, through

Eqs. (B.37) and (B.38). This nonlinear step is split into two linear sub-steps, each converging

after hundreds to thousands of iterations. As shown in table 3.2, this process consumes on average

about 5.5s per temporal iteration of ∆t = 0.004s, thus decreasing considerably the efficiency

of the model. Similarly, solving Eqs. (B.39) and (B.40) to update the depth hn+1 and the sub-

surface velocity potential ψ̂∗∗, consists of three linear steps calling the Linear firedrake 1 solver

and converging after hundreds to thousands of iterations. Combined, these three calls converge in

about 1500 iterations on average, which takes almost 7s per time step (cf. Table 3.2). Finally, the

surface velocity potential ψn+1 is computed when solving the linear Eq. (B.41) with the Linear

firedrake 2 solver. This linear weak formulation is solved in one call of the Linear firedrake 2

solver, after 3 iterations and 0.05s on average.

86 Chapter 3. Rogue-type waves in a deep-water tank

(a)	Symplectic	Euler	

 Computational time: 39 mn 6s

	(b)	Störmer-Verlet	

 Computational time: 56 mn 8s
	

Progress: 28.22 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 396
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1237
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1148
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 3
Progress: 28.57 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 471
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 928
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1517
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 3
Progress: 28.93 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 411
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 857
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1064
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 3
Progress: 29.28 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 418
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 785
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 715
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 3

Progress: 28.22 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 244
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 960
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 468
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 906
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 1439
 Linear firedrake_2_ solve converged due to CONVERGED_RTOL iterations 3
Progress: 28.57 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 239
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1277
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 428
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 810
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 1524
 Linear firedrake_2_ solve converged due to CONVERGED_RTOL iterations 3
Progress: 28.93 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 235
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 1011
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 394
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 914
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 988
 Linear firedrake_2_ solve converged due to CONVERGED_RTOL iterations 3
			

Figure 3.8: Number of iterations for convergence with the Störmer-Verlet scheme before any

optimisation.

Scheme Solver
Av. number Av. time for % of total

of iterations convergence [s] solving time

Symplectic Linear firedrake 0 ∼ 2400 8.21 99.34

Euler Linear firedrake 1 3 5.48×10−2 0.66

Störmer- Linear firedrake 0 ∼ 1350 5.53 44.53

Verlet Linear firedrake 1 ∼ 1500 6.84 55.07

Linear firedrake 2 3 4.93×10−2 0.40

Table 3.2: Averaged number of iterations and time for convergence for each solver of the

symplectic Euler and Störmer-Verlet schemes before any optimisation.

Chapter 3. Rogue-type waves in a deep-water tank 87

From the above analysis and Table 3.2, it is now confirmed that most of the computational time

is used to solve the nonlinear weak formulations. Calling the nonlinear variational solver to solve

the first step of the symplectic Euler scheme, i.e., Eqs. (B.33) and (B.34), indeed takes 99.22%

of the total solving time, against 0.78% for the linear Eq. (B.35). Similarly, solving the first

and second steps of the Störmer-Verlet scheme, respectively Eqs. (B.37)-(B.38) and Eqs. (B.39)-

(B.40), uses 99.60% of the total solving time (44.53% and 55.07%, for the first and second steps

respectively), against 0.40% for the linear step Eq. (B.41). More particularly, a lot of time is

lost in the internal linear steps of these nonlinear variational solvers, which aim to factorise and

precondition the system of equations. Decreasing the computational time thus involves setting

an appropriate factorisation and preconditioning method. This solution is explained in the next

section.

3.6.2 Preconditioning

Firedrake and PETSc [120, 9, 7, 71, 96] solve the linear systems with the Krylov subspace method

(see, for instance, [100, 126, 61]). By default, the Firedrake solver uses the generalized minimal

residual method (GMRES) based on an incomplete LU factorisation to precondition the problem.

As the factorization method should be chosen depending on the system characteristics, this default

solver option may be changed via the solver option solver parameters. For a mixed system

involving two unknowns, such as in our nonlinear weak formulations, Firedrake advises to use

the PETSc’s “field-split” technology, which builds preconditioners from Schur complements. As

our equations are a mixed system derived from the Schur complement approach, we choose to

follow this method to establish better preconditioning methods. This is done through the following

command,

1 solver_parameters = {"ksp_converged_reason" :True , \

2 "pc_type" : "fieldsplit" ,\

3 "pc_fieldsplit_type" : "schur" ,\

4 "pc_fieldsplit_schur_fact_type" : "upper"}

where we set the preconditioner type to “fieldsplit”, and the field-split’s type to ’schur’ (see the

documentation of Firedrake [48] and PETSc [8]). The last option, pc fieldsplit schur fact type,

88 Chapter 3. Rogue-type waves in a deep-water tank

sets the factorisation type for the Schur complement, which involves the computing of either the

full system (option FULL), the first two matrices (option lower) or the last two matrices (option

upper). The details on the Schur complement factorisation and relative definitions may be found

in the online Firedrake documentation [48] or in the PETSc’ manual [8]. After trying the three

above-mentioned options, we chose the upper option as this was the one giving the fastest results.

For the linear weak formulations, we let Firedrake and PETSc solve the system directly by

computing an LU factorisation, with the following parameters:

1 solver_parameters = {"ksp_converged_reason" :True , ’ksp_type’ : ’preonly’ ,

2 ’pc_type’ :’lu’}

With an appropriate factorisation method and preconditioning, the number of iterations has been

considerably reduced for each solver. Figure 3.9 indeed shows that with both (a) symplectic Euler

and (b) Störmer-Verlet, the nonlinear variational solvers now require 4 to 6 iterations to converge

to the tolerance threshold. This impact on the number of iterations must be analysed with caution,

as it does not imply a proportional drop of the computational time. Building the preconditioning

matrices indeed requires some additional time, that decreases the speed of each iteration. It is

therefore essential to analyse not only the number of iterations but also the convergence time.

Scheme Solver
Av. number Av. time for % of total

of iterations convergence [s] solving time

Symplectic Linear firedrake 0 4 2.93 98.29

Euler Linear firedrake 1 1 5.10×10−2 1.71

Störmer- Linear firedrake 0 6 3.68 54.66

Verlet Linear firedrake 1 4 3.00 44.56

Linear firedrake 2 1 5.25×10−2 0.78

Table 3.3: Averaged number of iterations and time for convergence for each solver of the

symplectic Euler and Störmer-Verlet schemes with appropriate preconditioning.

Table 3.3 gives additional information about the last. Despite only 4 iterations instead of 2400 on

average, the nonlinear variational solver of the symplectic Euler scheme still consumes 98.29% of

the solving time, with on average a bit less than 3s to converge. This convergence time is 2.8 times

Chapter 3. Rogue-type waves in a deep-water tank 89

(a)	Symplectic	Euler	

 Computational time: 14 mn 10s

	(b)	Störmer-Verlet	

 Computational time: 30 mn 45s
	

Progress: 28.2207485391 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_1_ solve converged due to CONVERGED_ITS iterations 1
Progress: 28.5735078959 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_1_ solve converged due to CONVERGED_ITS iterations 1
Progress: 28.9262672526 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_1_ solve converged due to CONVERGED_ITS iterations 1
Progress: 29.2790266093 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_1_ solve converged due to CONVERGED_ITS iterations 1

Progress: 28.2207485391 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 3
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 3
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_2_ solve converged due to CONVERGED_ITS iterations 1
Progress: 28.5735078959 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 3
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 3
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_2_ solve converged due to CONVERGED_ITS iterations 1
Progress: 28.9262672526 %
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 3
 Linear firedrake_0_ solve converged due to CONVERGED_RTOL iterations 3
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_1_ solve converged due to CONVERGED_RTOL iterations 2
 Linear firedrake_2_ solve converged due to CONVERGED_ITS iterations 1
			

Figure 3.9: Number of iterations for convergence for (a) Symplectic Euler and (b) Störmer-Verlet

with appropriate preconditioning.

90 Chapter 3. Rogue-type waves in a deep-water tank

faster than without preconditioning, which considerably speeds the model up. Similarly, the

nonlinear solvers of the Störmer-Verlet scheme are now 1.5 and 2.3 times faster than without

preconditioning, which consequently results in a total computational time of 30 minutes instead

of 56 minutes, thus 1.9 times faster. The linear solver used to update ψn+1
1 , both with symplectic

Euler and Störmer-Verlet, has also slightly been improved by the LU factorisation.

For a large number of elements, our Firedrake code 3D Tank.py may also be run in parallel on

several cores through a MPI call :

1 mpirun -n 16 3D_Tank .py

One advantage of Firedrake is that the code does not need to be changed for running in parallel:

the internal functions are built to support parallel runs. This feature considerably speeds up the

process. Three-dimensional simulations are shown and analysed in the next section.

3.7 Convergence analysis

Now that the solvers are optimised, their temporal and spatial accuracy may be checked. In this

section, we verifiy the temporal convergence of the solvers through the energy conservation, and

the spatial convergence through a test of convergence.

3.7.1 Energy conservation

In section 3.4, we derived the temporal schemes in a way that ensures stability and overall

energy conservation and thus in principle eliminates numerical dissipation of energy. Based

on the parameters given in Table 3.1, we compare the energy fluctuations for two time steps,

∆t1 = 0.001s and ∆t2 = 0.002s, using each temporal scheme, Symplectic-Euler and Störmer-

Verlet.

Chapter 3. Rogue-type waves in a deep-water tank 91

Symplectic Euler Störmer-Verlet

∆t1 = 0.001s Case SE1 Case SV1

∆t2 = 0.002s Case SE2 Case SV2

Table 3.4: Tests for which the energy variations are computed.

Figure 3.10: Snapshots of the free-surface elevation at t = 0.0s (top), t = 5.66s (middle) and

t = 16s (bottom), obtained with the symplectic-Euler scheme and ∆t = 0.001s.

92 Chapter 3. Rogue-type waves in a deep-water tank

Figure 3.11: Snapshots of the velocity potential at t = 0.0s (top), t = 5.66s (middle) and t = 16s

(bottom), obtained with the symplectic-Euler scheme and ∆t = 0.001s.

The wavemaker motion, defined by Eq. (3.93), is shown in Fig. B.4 at various locations in y,

together with its velocity (see in the Appendix B.8). Figures 3.10 and 3.11 show snapshots of the

water depth and velocity potential respectively, at various times. At time t = 0 (top), the water is

at rest and the wavemaker is off. We then turn it on for five wave periods, i.e., for 5.65s, which

results in free-surface motion in the basin (middle). At t = 5.65s, the wavemaker is turned off,

leading to calm water again (bottom). We stop the simulations after a total of 17s. For optimised

computational time, the code is run in parallel on 16 cores.

Chapter 3. Rogue-type waves in a deep-water tank 93

Figure 3.12 shows the energy evolution with (a) symplectic Euler (cases SE1 and SE2) and (b)

Störmer-Verlet (cases SV1 and SV2). At t = 0.0s the wavemaker is off and the water is at rest

(cf. top line in Fig. 3.10), hence there is no kinetic energy in the system and the potential energy

is offset to be zero too. When the wavemaker motion starts, energy is given to the system and

energy thus increases until t = 5.65s, when the wavemaker is turned off again. This net gain of

energy occurs because the wavemaker leads to a net energy input into the system. Indeed, due to

the wavemaker, the Hamiltonian (3.32) depends explicitly on time. As a consequence,

dH(p1,h,ψi′ , t)

dt
=
∂H

∂p1

∂p1
∂t

+
∂H

∂h

∂h

∂t
+

∂H

∂ψi′

∂ψi′

∂t
+
∂H

∂t
. (3.94)

Substituting equations (3.33) into (3.94), we obtain that

dH(p1,h,ψi′ , t)

dt
=
∂H

∂t
6= 0, (3.95)

and therefore the energy is not conserved. However, when the wavemaker is turned off, then

dH(p1,h,ψi′ , t)

dt
=
dH(p1,h,ψi′)

dt
=
∂H

∂p1

∂p1
∂t

+
∂H

∂h

∂h

∂t
+

∂H

∂ψi′

∂ψi′

∂t
= 0, (3.96)

and the overall energy is conserved. This is what is observed in Fig. 3.12, for t > 5.65s, and

in Fig. 3.10 (bottom) where waves have not been dampened despite more than 10s (≈ nine wave

periods) without any wavemaker motion. Therefore, the energy conservation in the absence of

wavemaker is verified, as no drift is observed after switching off the wavemaker.

In Fig. 3.13, we verify the consistency of the temporal schemes by focusing on the energy

variations after the wavemaker motion has been switched off (i.e., for 5.65s ≤ t ≤ 17s). The

Hamiltonian dynamics of our temporal schemes result in bounded and small amplitude energy

oscillations, which confirms that the overall energy is conserved with both (a) symplectic Euler

and (b) Störmer-Verlet. The amplitude of these oscillations depends on the time step.

94 Chapter 3. Rogue-type waves in a deep-water tank

Figure 3.12: Energy variations with (a) the 1st-order symplectic Euler scheme and (b) the 2nd-

order Störmer-Verlet scheme. The wavemaker generates the waves from t = 0.0s to t = 5.65s

and is then turned off. The simulations are computed with ∆t1 = 0.001s (full line) and ∆t2 =

2∆t1 = 0.002s (dashed line).

Chapter 3. Rogue-type waves in a deep-water tank 95

Figure 3.13: Energy variations with (a) the 1st-order symplectic Euler scheme and (b) the 2nd-

order Störmer-Verlet scheme in the absence of wavemaker motion. The full dark green lines show

variations in the cases SE1 (a) and SV1 (b), the full blue lines show variations in the cases SE2 (a)

and SV2 (b), and the dashed pink lines are respectively twice the variations of SE1 (a) and four

times the variations of SV1 (b).

With the symplectic Euler scheme, the variations ∆ESE in the case SE2 are twice larger than in

the case SE1, that is

∆ESE(∆t2) = 2∆ESE(∆t1), for ∆t2 = 2∆t1. (3.97)

This is a consequence of the order of the discretisation, which is 1st-order in the symplectic-

Euler scheme, and thus results in a linear increase of the energy oscillations with the time step.

96 Chapter 3. Rogue-type waves in a deep-water tank

However, for the 2nd-order Störmer-Verlet scheme we observe that in the case SV2 the energy

variations ∆ESV are four times larger than those in the case SV1:

∆ESV (∆t2) = 4∆ESV (∆t1), for ∆t2 = 2∆t1. (3.98)

This quadratic increase of the energy oscillations when doubling the time step is consistent with

the fact that Störmer-Verlet is a 2nd-order scheme.

Figure 3.14: Comparison of energy variations with the 1st-order symplectic-Euler scheme (pink)

and the 2nd-order Störmer-Verlet scheme (blue) with ∆t = 0.001s to highlight the higher accuracy

of the Störmer-Verler scheme.

In terms of computational time, the symplectic-Euler scheme is slighly more than twice faster than

Störmer-Verlet. On 16 cores, cases SE1 and SV1 were run in 1h47min and 3h44min respectively

(i.e., a 2.1 ratio), and cases SE2 and SV2 in 54min and 2h10min respectively (i.e., a 2.4 ratio).

Similarly, a ratio of 2.17 was obtained when running on one core in section 3.6.2 (cf. Fig. 3.9).

However, the accuracy of the Störmer-Verlet scheme is much higher than the one of the symplectic-

Euler scheme, as the error decreases quadratically with the time step. Figures 3.13 and 3.14 indeed

show that for the same time step, the energy variations obtained with Störmer-Verlet are about 100

times smaller than those obtained with symplectic-Euler (order 10−6 vs order 10−4 respectively).

As symplectic-Euler is a 1st–order scheme, the time step would need to be 100 times smaller to

Chapter 3. Rogue-type waves in a deep-water tank 97

get oscillations of order 10−6 and thus the same accuracy as with Störmer-Verlet. Consequently,

the computational time would be about 100 times longer, so the same accuracy is reached about

50 times faster with Störmer-Verlet than with symplectic Euler. One therefore needs to carefully

choose the time scheme depending on requirements. If the objective is to get fast simulations with

good-but-not-excellent accuracy, then the symplectic-Euler scheme is a better option. However, if

the objective is to minimise the error, then Störmer-Verlet is definitely the best choice.

3.7.2 Test of spatial convergence

In space, the approximation with 1st–order continuous Galerkin polynomials should be of second-

order accuracy [130]. To verify the spatial accuracy, we solve the nonlinear potential-flow

equations in a domain with dimensions given in Table 3.5, time step ∆t = 0.001s, 9 elements

in the vertical, and various horizontal spatial resolutions, as shown in Fig. 3.15.

Domain Beach

Lx [m] Ly [m] H0 [m] H(x = Lx) [m] xB [m] sB [-]

4.0 0.8 1.0 0.5 1.5 0.2

Wavemaker

λ [m] k [rad/m] ω [rad/s] Tw [s] γ [m] Lw [m]

2.0 3.14 5.54 1.13 0.02 0.8

Table 3.5: Parameters used in the test case. Dimensions are given in square brackets.

First, the spatial resolution is set to ∆y = ∆x = 0.025m and the obtained estimation of the water

depth is used as reference value hex. The error between this reference value and the depth h0.05

and h0.1, computed with resolutions ∆y = ∆x = 0.05m and ∆y = ∆x = 0.1m respectively, is

then computed as the L2– and L∞–norms of their difference, that is

errL2(hn) = ||hn(x, y)− hnex(x, y)||2 =

√∑
i

(hni − hnexi)2,

errL∞(hn) = ||hn(x, y)− hnex(x, y)||∞ = max
i
|hni − hnexi |,

(3.99)

(3.100)

98 Chapter 3. Rogue-type waves in a deep-water tank

Figure 3.15: Top view of the numerical domain at time t = 0.0s with resolutions

∆x = ∆y = 0.025m (top),∆x = ∆y = 0.05m (middle) and ∆x = ∆y = 0.1m

(bottom).

where i designates the common nodes between the three meshes, that is, the nodes of the largest

mesh. For a nth–order accuracy in space, we should get

err(h2∆x) = 2nerr(h∆x). (3.101)

As a consequence,

err(h2∆x)

err(h∆x)
= 2n

⇒ log
err(h2∆x)

err(h∆x)
= log(2n)

⇒ log (err(h2∆x))− log (err(h∆x)) = n log(2)

⇒ log (err(h2∆x))− log (err(h∆x))

log(2)
= n.

(3.102)

Moreover,

log(2) = log(
2∆x

∆x
) = log(2∆x)− log(∆x), (3.103)

Chapter 3. Rogue-type waves in a deep-water tank 99

so the order n of spatial convergence may be obtained via the ratio

n =
log (err(h2∆x))− log (err(h∆x))

log(2∆x)− log(∆x)
, (3.104)

which, by definition, is the slope of the curve of (log(err(h∆x)), log(err(h2∆x))) against

(log(∆x), log(2∆x)). We therefore compute the coefficients

βnL2 =
log(errL2(hn0.1))− log(errL2(hn0.05))

log(0.1)− log(0.05)
,

and βnL∞ =
log(errL∞(hn0.1))− log(errL∞(hn0.05))

log(0.1)− log(0.05)
,

(3.105)

(3.106)

for t ∈ [0, 7]s, and check that they both converge towards the expected order of convergence

n = 2. The left column of Fig. 3.16 shows the temporal evolution of βL∞ (top) and βL2 (bottom)

and and their convergence towards β ≈ 2. This 2nd-order spatial convergence is confirmed by

the right column of Fig. 3.16 on which the log of the L∞ (top) and L2 (bottom) errors is plotted

against the log of their respective spatial resolution, together with the curves of slope β̄L∞ and

β̄L2 , computed by averaging βL∞ and βL2 between t = 4.0s and t = 7.0s.

Figure 3.16: Temporal evolution of the slope of the regression line for symplectic Euler and

Störmer-Verlet.

100 Chapter 3. Rogue-type waves in a deep-water tank

As expected the coefficients βL2 and βL∞ converge to n ≈ 2.0, confirming the convergence rate

of 2.0. The accuracy of the solvers is thus verified in both space and time. In the next section, we

test their performance in the simulation of extreme waves.

3.8 Rogue-type wave simulations

Experiments were conducted in the shallow-water basin of MARIN (cf test case 202002 in [24]),

which includes piston wavemakers and a flat bottom, with a depth at rest H(x) = H0 = 1.0m

(cf. Fig. 3.17). Several wave groups of various steepness were generated in order to generate a

focussed wave (cf. section 3.8.2). Probes were placed at various locations x1 = 10m, x2 = 20m,

x3 = 40m, x4 = 49.5m, x5 = 50m and x6 = 54m from the wavemaker in order to measure the

free-surface elevation. These data as well as the wavemaker motion and velocity were recorded

at a frequency of 50Hz. As in [51], these measurements are used to initialise and validate our

numerical model in the vertical plane (2D).

z

1.0
0.0

0.0 195.4
x

[m]

[m]

Figure 3.17: Schematic of MARIN’s basin used for measurements. The tank is 195.4m long,

with a constant water depth at rest of 1.0m. A piston-type wavemaker moves around x = 0m to

generate the waves.

3.8.1 Import data from measurements

In order to generate the same wave spectra as those in the shallow-water basin of MARIN, the

measured wavemaker motion and velocity are interpolated to be assigned to the corresponding

numerical functions at each time step. To meet the CFL condition (3.82), the time step ∆t used in

our simulations must be smaller than the one used to record the data, ∆t data = 1/50s. To use the

measured wavemaker motion and velocity at each time step, we interpolate them with 1st–order

Chapter 3. Rogue-type waves in a deep-water tank 101

polynomials in each measured time interval [t1, t2]. Therefore, at time t, the interpolated motion

Rint(t) and velocity uint(t) of the measured motionRdat and measured velocity udat are obtained

through

Rint(t) =
(t− t1)Rdat(t2)− (t− t2)Rdat(t1)

t2 − t1
,

uint(t) =
(t− t1)udat(t2)− (t− t2)udat(t1)

t2 − t1
.

(3.107a)

(3.107b)

The interpolations (3.107) are updated with time and numerically assigned to the wavemaker

motion and velocity functions. Note that as we consider 2D vertical waves, the y–derivative of

the wavemaker is null, that is ∂yR = 0. Figure 3.18 shows that the interpolated motion and

velocity of the wavemaker indeed fits the initial measurements.

The numerical free-surface elevation resulting from this wavemaker input signal may then be saved

and compared to the experimental data. The results are analysed in the next section.

Figure 3.18: Interpolated and measured wavemaker motion (top) and velocity (bottom) in the case

of focussed wave generation.

102 Chapter 3. Rogue-type waves in a deep-water tank

3.8.2 Focussed wave: the dispersion effect

The wavemaker input is now used to simulate a focussed wave. The wavemaker starts at rest and

oscillates with various amplitudes and frequencies (cf. Fig. 3.18). Due to dispersion, the latest

generated waves, which are longer, travel faster than the first waves, so that they all interact at a

specific position to result in a focussed wave. In order to capture this focussed wave, probes are

placed around the target area, at x = 49.5m and x = 50m.

Numerically, we define a 100m long basin, with flat seabed (b(x) = 0) and water depth at rest

H(x) = H0 = 1.0m. The fast Fourier transform of the measured wave signals in Fig. B.5 (see

Appendix B.9) shows that the maximal relevant frequency is about ω ≈ 18Hz. The shortest

wavelength may thus be estimated from the linear dispersion relation

ω =

√
2π

λ
tanh(

2π

λ
H0), (3.108)

which leads to λ ≈ 0.19m. As explained in section 3.4.4, stability requires ∆x ≤ λ, so that

the full length of the wave can be captured by the mesh. However, to ensure accurate results the

wavelength should be evaluated over more than one node. To increase accuracy of the model, the

mesh resolution is set to ∆x = minλ/20 = 0.01m. As a consequence, the time step must satisfy

∆t ≤ 2√
g

2π

∆x
tanh(

2π

∆x
H0)

= 0.025s. (3.109)

To increase accuracy, we set ∆t = max ∆t/20 = 0.001s, which is also the time step used in [51].

Finally, the depth is split into 9 horizontal layers (∆z = 0.125m), meaning that the system counts

nine unknowns for the velocity (ψ1 at the surface and ψ2,..9 in depth), additionally to the depth

h. While the simulations are in the 2D vertical plane, the numerical results are expanded in the

y–direction to be observed in 3D. The measured wave elevation is compared with the one obtained

in our numerical simulations.

Chapter 3. Rogue-type waves in a deep-water tank 103

Figures 3.19 and 3.20 show snapshots of the free-surface elevation and velocity potential

respectively, obtained with the symplectic-Euler scheme. First, from t0 = 0.0s to t1 = 93.02s,

waves with increasing length and amplitude are generated. At time t2 = 105.12s, it is evident

that the waves are closer to each other than when initially generated: the dispersion effect makes

the longest waves travel faster than the shortest ones. At time t3 = 109.40s, the last waves have

caught the first ones, leading to a unique, much higher and steeper wave: a focussed wave, which

plays the role of a freak wave. Immediately after time t3, the longest, fastest waves overtake the

shortest ones (e.g. at times t4 = 113.68s and t5 = 119.98s), and the waves split again, leading to

a mirror-configuration relative to the focussed wave (e.g. compare the snapshot at time t2 with the

one at time t4).

Figure 3.19: Snapshots of the velocity potential at times t0 = 0.0s, t1 = 93.01s, t2 = 105.12s,

t3 = 109.40s, t4 = 113.68s and t5 = 119.98s. The focussed wave is captured at time

t3 = 109.40s.

104 Chapter 3. Rogue-type waves in a deep-water tank

Figure 3.20: Snapshots of the free-surface elevation (bottom), at times t0 = 0.0s, t1 = 93.01s,

t2 = 105.12s, t3 = 109.40s, t4 = 113.68s and t5 = 119.98s. The focussed wave is captured

at time t3 = 109.40s.

Figure 3.21 compares the measured (red) time evolution of the wave elevation at the probes with

the numerical evolution obtained with the 1st–order symplectic Euler scheme (dark blue) and the

2nd–order Störmer-Verlet scheme (cyan). Both schemes yield agreement with measurements with

an error of O(mm), while the wave height is of O(cm). The freak-wave phase and location agree

with the measurement, meaning that the model may be used to simulate waves in a target area up

to at least 50m from the wavemaker. Figure 3.22 shows that all the experimental frequency modes

are well captured by the numerical model.

Chapter 3. Rogue-type waves in a deep-water tank 105

Figure 3.21: Wave elevations of numerical (blue and cyan) and experimental (red) data at various

locations. The numerical results are obtained with the symplectic Euler scheme (blue full line)

and the Störmer-Verlet scheme (cyan dashed-dotted line).

106 Chapter 3. Rogue-type waves in a deep-water tank

Figure 3.22: Fast Fourier transform of the wave elevations of numerical (blue and cyan) and

experimental (red) data at various locations. The numerical results are obtained with the

symplectic Euler scheme (blue full line) and the Störmer-Verlet scheme (cyan dashed line).

Chapter 3. Rogue-type waves in a deep-water tank 107

3.9 Conclusions and extensions

3.9.1 Advantages of the present numerical wave tank

The methodology presented in this chapter has led to a three-dimensional nonlinear potential-flow

model that has overcome four main industrial and computational challenges.

First, we have checked the model accuracy through validation against existing experiments at

MARIN. The simulations not only show good agreement with the measurements but also manage

to capture the extreme freak wave elevation. The model thus enables the simulation of the

nonlinear free surface between water and air, which is required in many applications. For example,

future applications include the improvement of previous simulations of wave propagation in a

Hele-Shaw cell [79] by replacing the shallow-water waves with nonlinear potential-flow waves.

The model will also be used to accurately predict the location of a freak wave and its impact on a

marine structure that may be subsequently placed in the basin.

Second, the variational approach has ensured stability of the simulations, both in the non-

autonomous and autonomous cases. In the former, the energy of the wavemaker is accurately

transferred to the waves. In the latter, when the wavemaker is turned off, the overall-energy is

conserved, and its oscillations, resulting from the Hamiltonian system, are bounded with negligible

amplitude that decreases with the time step. This achievement allows stable simulations of extreme

waves and accurate estimation of their energy, thereby enabling a better analysis of the wave’s load

on marine structures.

Third, both the model and the discretisation methods were designed to be re-usable for various

applications, and thus to offer flexibility to the user on many aspects: the user can change the

type of finite-element expansions in the horizontal (Firedrake offers a wide range of possibilities:

Galerkin, Lagrange etc.) and in the vertical (the Lagrange interpolation (3.21) may be replaced

by any other polynomials, such as a Spline interpolation), the distribution of the vertical extension

(the linear expansion (3.22) may for example be replaced to exponential distribution), the length

of the domain to transform in x, by changing Lw, etc. Moreover, the comparison between the 1st–

order symplectic Euler and 2nd–order Störmer-Verlet time-integration schemes assists the user

in an optimal choice of temporal discretisation: while the Störmer-Verlet scheme minimizes the

108 Chapter 3. Rogue-type waves in a deep-water tank

numerical error, it is also more time-consuming than the symplectic-Euler scheme and hence

the choice should be oriented between optimised computational speed or optimised accuracy.

Other higher-order schemes, such as the third-order scheme obtained variationally in [53] may

be implemented for future extension.

Last but not least, the optimisation process has considerably increased the computational speed

through preconditioning and careful choice of diagonalisation methods. Moreover, Firedrake

codes may be run in parallel without requiring any adaptation, which, for a large number of

elements (> 10000), increases the computational speed even more. Current existing wave models

for industrial applications are based on large-scale computations that are time- and energy-

consuming; too costly to be used as frequently as required. The present model may be used to

optimise larger, industrial-scale maritime simulations, thereby saving substantial computational

resources and so enhancing the overall project efficiency and quality.

Some of the possible extensions of interest to the maritime industry are presented hereafter.

3.9.2 Extention to wave-structure interactions

In section 3.8.2, it has been possible to generate a freak wave at a specific location in the basin

using the dispersion effect. More generally, the fast computational-speed of the model enables

the tuning of the wavemaker motion in order to adjust the location of the freak wave. Placing

a maritime structure in the target area, both in the numerical and experimental wave tanks, will

enable measurement of a freak wave’s impact upon a vessel or a wind turbine in order to assist

engineers in the design of more robust structures.

The discretisation strategies were designed with future extension to wave-structure interactions in

mind. First, the restriction of the x–transform near the wavemaker allows any marine structure to

be placed in the wave tank without needing to be x–transformed, which avoids additional terms

in the equations. Two time schemes were proposed for better adaptability. With Störmer-Verlet,

the intermediate step at time tn+1/2 (yielding increased accuracy) nevertheless complicates the

extension to wave-structure coupling. The symplectic Euler scheme, slighly less accurate but

based on two full steps only, is thus an utterly viable option for wave-structure coupling.

As part of the EU Surfs-Up project, a wind turbine is currently being coupled to the present

Chapter 3. Rogue-type waves in a deep-water tank 109

model. The previous fully linear wave-beam model developed by Salwa et al. [127] is extended to

nonlinear potential-flow waves impacting upon a linearly vibrating turbine. When this extension

materialises, modelling will be undertaken of higher and steeper waves impacting the beam, thus

increasing the load and stress applied on the structure. Similarly, the wave-ship interaction model

developed by Kalogirou et al. [78] may be extended from shallow- to deep-water nonlinear

potential-flow waves to simulate higher impact on the ship.

3.9.3 Three-dimensional rogue-type wave simulation

Figure 3.23: Analytical solution of a ninefold amplification resulting from the interaction of three

solition, as derived by Baker [6]. (a): three initial soliton travel in the positive x direction, with

amplitude A0 = 0.5. (b): two-by-two soliton interactions. (c): the three solitons interact, leading

to a wave of amplitude A = 4.2 = 8.4A0. (d): the undisturbed solitons continue to propagate

with their initial angle and amplitude.

In section 3.8.2 a two-dimensional freak wave was accurately simulated using the dispersion effect.

In order to verify the ability of the present model to simulate three-dimensional Rogue-type waves,

two tests are currently explored. First, the configuration used in Chapter 2 to simulate solitary-

wave interaction with an oblique wall is extended by replacing the low-dispersion small-amplitude

model by the present nonlinear potential-flow model. This extension requires the derivation of a

soliton solution of the nonlinear potential-flow equation under the assumptions of Miles’ theory.

Another test case, based on the interaction of three solitons, is investigated (cf. Fig. 3.23). Baker

[6] derived an analytical solution that may be used as initial solution of the present potential-flow

model, to reach a nine-fold amplification.

110 Chapter 3. Rogue-type waves in a deep-water tank

3.9.4 Extension to more sophisticated wave tanks

The discretisation and implementation strategies derived and tested in this chapter may be used

to develop more sophisticated wave tanks and thus offer a wide range of applications. Some

suggestions of industrial interest are mentioned hereafter.

Flap-type wavemaker

α
Particle path

Figure 3.24: Waves generated from a flap-type wavemaker with amplitude α. The generated fluid

particles follow a circular motion.

In the linear limit, fluid particles under deep-water waves follow a circular motion, whose radius

decreases with depth. To mimic this fluid motion, many experimental wave tanks generate

the waves via flap-type wavemakers; that is, wavemakers pivoting with an angle α from the

initial vertical position (cf. Fig. 3.24). Extending the current piston wavemaker to a flap-type

wavemaker may be achieved by following the modelling strategies, discretisation techniques and

implementation method presented in this work.

Chapter 3. Rogue-type waves in a deep-water tank 111

Optimised wavemaker motions

Rx(t)
Ry(t)

Figure 3.25: Experimental tank with two wavemakers. When they both move forward, a collision

occurs in their common corner (red).

Large-scale experimental wave tanks, such as those in MARIN, sometimes contain an additional

wall with wavemakers in order to generate waves in multiple direction (cf. Fig. 3.25). Following

the methodology developed, the present model can be extended with an additional wavemaker on

the wall y = 0, to reproduce the experimental tanks and simulate waves in several directions.

The resulting configuration with two faces of wavemakers may also help the maritime industry

to avoid wavemaker collision in their common corner (x = 0, y = 0) (cf. Fig. 3.25), by

determining efficient wavemaker motions that compensate for the absence of wavemaker motion

in that corner. The optimised computational speed will save a considerable amount of time and

money as compared to large-scale simulations or repeated experiments.

112 Chapter 3. Rogue-type waves in a deep-water tank

Wave absorption at the beach

After reflection at the wall x = Lx, the waves travel back into the deep-water domain and

adversely affect the target area. With the current model, the only way to limit disturbance of the

target area by reflected wave is to increase the length of the domain so that the waves take more

time to travel back to the deep-water area. This method is of course not optimal as it increases

the computational time. A wave-absorbing boundary is thus required to reduce wave reflection

without increase of the computation time. This can and will be done by coupling the current

model to a sloping beach, partially wet and dry, with a moving dry-wet boundary, on which the

waves will break and lose energy. However, the addition of a beach and the wave breaking leads to

new implementation constraints that are explained and overcome in the next chapter. It will result

in a complete numerical wave tank simulating the generation, the dynamics and the absorption of

the waves.

113

Chapter 4

Numerical wave tank for offshore

applications: dynamics of wavemaker,

wave propagation and absorbing waves

4.1 Introduction

In Chapter 3, mathematical and numerical strategies were proposed to address key challenges in

the modelling of nonlinear deep-water waves. We are now able to cost-effectively simulate the

dynamic free surface of nonlinear dispersive waves. Among others advantages, the model is able

to accurately capture the propagation of freak waves, which constitute a great hazard to offshore

structures. Moreover, the code may be used to simulate 2D and 3D wave generation from a piston

wavemaker and may therefore be used to optimise experimental set-ups in wave tanks used by the

maritime industry, such as those at the Maritime Research Institute of Netherlands (MARIN).

Although faster than current CFD simulations used at MARIN (OceanWave3D, ReFRESCO), the

computational speed of the model could still be improved by avoiding wave reflection on the wall

opposite to the wavemaker. To this end, an absorbing boundary condition is implemented in this

chapter instead of the rigid, vertical wall used in Chapter 3. The aim is to reduce the length of the

numerical domain to the target area without disturbing the wave-structure-interaction tests with

reflected waves that would be absent in a real sea state.

114 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

Various absorbing-boundary methods already exist to dampen water waves. A commonly used

technique is the implementation of a relaxation zone (also called “forcing zone”, “damping zone”,

“absorbing layer”...), in which an analytical solution of the equations is used to compute the

reflection coefficient and absorb the incoming waves. This method was, for instance, implemented

in the open-source library Open-Foam [143] by Jacobsen et al. [74], whose method defines

the relaxation zone depending on the wavelength and on the geometry of the computational

domain. However, the methods they provide to compute reflection factors are mainly efficient

in the shallow-water regime while our numerical tank also aims to generate intermediate to deep-

water waves. Peric and Maksoud [115, 116] introduced extended methods to predict the reflection

coefficients before running the simulations and they obtained efficient results, including for deep-

water waves. These methods provide a scaling law for adjusting the damping coefficients to

the wave parameters. The relaxation method of Peric and Maksoud is, however, efficient only

when an analytical solution may be estimated, typically, for regular waves, but the method is not

yet applicable to irregular waves that cannot be predicted apriori. Our numerical tank will be

used to simulate irregular sea states with unknown wave profiles at the boundary, so the above-

mentioned relaxation method is not suitable. Duz et al. [44] provided a solution for the absorption

of both regular and irregular waves based on the boundary operator initially introduced by Higdon

[68, 69]. The extended boundary operator, computed from the dispersion relation for the solution

of the Laplace equation and based on the angle of incidence of the generated waves, is applied

on the boundary of the numerical domain through ghost cells in the mesh of the Volume-Of-

Fluid numerical method. While the comparison with reference solutions showed relatively good

agreement in absorbing the waves, the second-order absorbing boundary condition variant then

introduced in [42] showed much improved absorption of the waves. This extended boundary

operator was computed from the second-order Higdon operator to account for not only dispersive

but also directional effects of the waves. However, these operators are obtained from linear wave

theory and linearized Bernouilli equations, plus second-order weakly nonlinear corrections, and

are currently not applicable to steep nonlinear waves such as freak waves.

In order to respond to the demands of the maritime industry, such as configuring model tests of

wave-structure interactions in the basins of MARIN, we decide to dampen the water waves with

a beach. With such extension of the topography, we not only provide wave absorption through

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 115

shallow-water wave breaking but also design a numerical tank similar to the experimental tanks

used at MARIN. However, close to the swash zone, where wave breaking occurs, the potential-

flow model is not valid and the finite-element method, continuous in space, is not stable. Instead,

we model the dynamics at the beach by nonlinear shallow-water equations, which we solve with

a classical finite-volume method. These equations describe non-dispersive waves, but enable the

modelling of wave breaking as hydraulic bores, as in Kristina et al. [86], that is, as mathematical

discontinuity in depth and velocity. In addition, the dynamical waterline that travels along the

wet/dry beach is captured through the method developed by Audusse et al. [5] in order to ensure

non-negative water depth at the beach.

The location of the transition from deep to shallow water based on the wavelength, and therefore on

the wavemaker settings, is derived in Section 4.2. The potential-flow and shallow-water equations

are coupled in a variational principle from which the discrete nonlinear equations of motion are

obtained. This variational approach enables us to both derive, in Section 4.3, and implement a

stable numerical coupling, which ensures important conservation properties [53] and stability of

the numerical scheme, with bounded energy oscillations whose amplitude tends to zero when the

resolution is increased. While previous studies have led to stable coupling between deep- and

shallow-water equations (see [86] for linear Boussinesq equations coupled to nonlinear shallow-

water equations, and [82] for linear potential flow coupled to nonlinear shallow-water equations),

the model presented here is the first fully nonlinear model that couples deep- and shallow-water

equations. The nonlinear-coupling-implementation strategies are described in Section 4.4. The

resulting simulations of wave generation, wave propagation and wave absorption are shown and

analysed in Section 4.5. Conclusions on the efficiency of the present nonlinear numerical tank are

discussed in Section 4.6.

4.2 Variational coupling of deep- and shallow-water nonlinear

models

4.2.1 Definition of the domain

We simulate waves propagating in the x–direction in a two-dimensional vertical wave basin, on

one side of which a time-dependent wavemaker drives the wave motion; on the other side, a beach

116 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

is included to dampen the waves. The depth at rest is characterised by

Hr(x) = H0 − b(x), (4.4)

where the beach topography

b(x) = sB(x− xB)Θ(x− xB), (4.5)

with Θ the Heaviside function, so that the water depth is constant for x ≤ xB and decreases along

the beach with slope sB > 0 for x ≥ xB (see Fig. 4.1). For t > 0, the wavemaker oscillatory

motion

R(t) = −γ cos(ωt) (4.6)

around the position x = 0, with γ its amplitude and ω its frequency, leads to a surface deviation

η(x, t) from the depth at rest Hr(x), yielding a total depth h(x, t) = Hr(x) + η(x, t). Our goal is

to calculate the total depth h(x, t) as well as the velocity potential φ(x, z, t).

R(t) xB L
x

z

0

H0

R(t)
1

3

2

η(x, t)

φ(x, z, t)
h(x, t)

b(x)

xc xW(t)

Figure 4.1: Two-dimensional vertical domain containing a piston wavemaker on the left boundary

to generate the waves and a beach on the right boundary to limit their reflection. The basin is

divided into two subdomains: a deep-water domain À where nonlinear potential-flow equations

are solved and a shallow-water domain Á where the nonlinear shallow-water equations are solved.

At the interface Â between the two domains, coupling conditions are derived.

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 117

Figure 4.1 shows the two-dimensional vertical domain, divided into two subdomains. In the first

domain À, which includes a piston wavemaker and seabed topography and is hereafter referenced

as the “deep-water domain” ΩD = {R(t) ≤ x < xc; 0 ≤ z ≤ h(x, t)}, the wave motion

and velocity may, as shown in Chapter 3, be accurately described by the nonlinear potential-flow

equations. However, as waves travel along the beach in the domain Á, hereafter referenced as the

“shallow-water domain” ΩS = {xc < x ≤ xW (t)}, the seabed influences the wave profile and

causes the waves to break on the beach. While necessary to dampen the wave energy, the breaking

is modelled as a discontinuous phenomenon that cannot be captured by the classical continuous

finite-element method used in the deep-water domain, and thus leads to numerical instabilities

in the potential-flow model. Hence, the wave motion and velocity are instead described by the

nonlinear shallow-water equations in the shallow-water domain. These equations enable the

modelling of wave breaking as hydraulic bores, as in Kristina et al. [86], and ensure non-negative

depth at the beach through the method developed by Audusse et al. [5]. To link the solutions from

the two subdomains, a fixed coupling interface Γc between the deep- and shallow-water domains

is set in a transition zone Â in which both the potential-flow and shallow-water equations are

valid and numerically stable. Thus, the location xc of the transition from deep to shallow water

is defined so that h(xc) is between the deep-water limit h ≥ λ/2 and the shallow-water limit

h ≤ λ/20. The potential-flow and shallow-water equations are coupled in a variational principle

as described in the next section.

4.2.2 Variational approach

We aim to understand and to simulate the dynamics occurring in the deep- and shallow-water

domains including the dynamic coupling at x = xc. The evolution of the water-depth h(x, t)

and velocity potential φ(x, z, t) in the numerical basin of Fig. 4.1 are described by Luke’s [92]

variational principle for nonlinear waves

0 = δ

∫ T

0

∫ xW (t)

R(t)

∫ h(x,t)

0

{
∂tφ+

1

2
(∇φ)2 + g (z −Hr(x))

}
dx dz dt. (4.7)

As explained in section 4.2.1, the domain is split into a deep-water domain ΩD and a shallow-water

domain ΩS connected by the interface Γc at the coupling position x = xc. As a consequence, the

118 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

variational principle (4.7) may be split into the two sub-domains as

0 = δ

∫ T

0

{∫
ΩD

[
∂tφ+

1

2
(∇φ)2 + g (z −Hr(x))

]
dx dz

+

∫
ΩS

[
h∂tφ̌+

1

2
h(∂xφ̌)2 + gh

(
1

2
h−Hr(x)

)]
dx

}
dt,

(4.8)

where the velocity potential has been depth-averaged in the one-dimensional shallow-water

domain ΩS with additional simplifications as

φ̌(x, t) =
1

h

∫ h

0
φ(x, z, t) dz. (4.9)

Variations of h, φ, and φ̌ in the variational principle (4.8) with end-point conditions

δφ(0) = δφ(T) = 0 and δφ̌(0) = δφ̌(T) = 0 lead to the following:

∫ T

0

{∫ xc

R

[∫ h

0
δφ [−∂xxφ− ∂zzφ] dz

+ δh

(
g(h−Hr) + ∂tφ+

1

2
(∇φ)2

)
|z=h

− δφ (∂zφ) |z=0 + δφ (−∂th− ∂xh∂xφ+ ∂zφ) |z=h
]

dx

+

∫ xW (t)

xc

[
δh

(
∂tφ̌+

1

2
(∂xφ̌)2 + g(h−Hr)

)
+ δφ̌

(
−∂th− ∂xφ̌∂xh− h∂xxφ̌

)]
dx

+

[∫ h

0
δφ
(
Ṙ− ∂xφ

)
dz

]
x=R

+

[
δφ̌
(
h∂xφ̌− hẋW

)]
x=xW

+

[∫ h

0
δφ (∂xφ) dz

]
x=xc

−
[
δφ̌
(
h∂xφ̌

)]
x=xc

+

[
δxW

(
h∂tφ̌+

1

2
h(∂xφ̌)2 + gh

(
1

2
h−Hr(x)

))]
x=xW

}
dt = 0,

(4.10)

where (̇) denotes the time derivative. By definition, the water depth at the waterline x = xW is

h(xW , t) = 0. Therefore, the terms of Eq. (4.10) evaluated at x = xW vanish. Arbitrariness of

δφ, δh and δφ̌ in the resulting variational principle leads to the nonlinear potential-flow equations

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 119

in deep water:

δφ : ∂xxφ+ ∂zzφ = 0, in ΩD,

δh : ∂tφ+
1

2
(∇φ)2 + g(h−Hr) = 0, at z = h,

δφz=h : ∂th+ ∂xh∂xφ− ∂zφ = 0, at z = h,

δφz=0 : ∂zφ = 0, at z = 0,

δφx=R : ∂xφ = Ṙ, at x = R,

(4.11a)

(4.11b)

(4.11c)

(4.11d)

(4.11e)

as well as the nonlinear potential-flow equations in shallow water:

δφ̌ : ∂th+ ∂xh∂xφ̌+ h∂xxφ̌ = 0, in ΩS ,

δh : ∂tφ̌+
1

2
(∂xφ̌)2 + g(h−Hr) = 0, in Ωs,

(4.12a)

(4.12b)

or the equivalent nonlinear shallow-water equations in terms of h and hu = h∂xφ̌:

∂th+ ∂x(hu) = 0, in ΩS ,

∂t(hu) +
1

2
hu2 +

1

2
g∂x(h2) = g∂xHr, in Ωs.

(4.13a)

(4.13b)

In the shallow-water regime, the phase speed depends on the wave height, meaning that the crests

of the waves travel faster than their troughs (as can be shown with the dispersion relation). As

a consequence, the left and right speeds of the wave are different which leads to an increase in

the wave height: kinematic energy is transformed into potential energy. When the wave crest

reaches a critical height, the steepness of the wave becomes too large and wave breaking occurs:

energy is then lost through viscous dissipation. In this chapter, the turbulence of breaking waves is

modelled through hydraulic bores which consist in mathematical discontinuity in the fluid depth

and velocity. Depending on the left and right speeds and depths of the bore, the hydraulic jump can

evolve into a rarefaction or a shock wave, for which analytical solutions can be derived by solving

the Riemann problem. The energy lost during wave breaking can be estimated analytically in terms

of the energy density, the energy flux and the speed of the bore from the shallow-water equations

(4.13). When multiplied by the water depth h, the shallow-water equations (4.13) can indeed be

written in a form that conserves mass and momentum but in which energy is lost in the case of an

hydraulic jump (see, e.g., [119]).

120 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

The deep- and shallow-water domains are continuously connected through Γc = {x = xc}

meaning that the boundary conditions emerging from the variations at xc need to be addressed

simulatenously to yield the coupling conditions. This is done in the next section.

4.2.3 Coupling mechanisms at the interface between deep and shallow water

Since physical information is transferred bidirectionally from deep to shallow water and from

shallow to deep water, a coupling condition must be derived. Following Klaver et al. [82], setting

and substituting (
δφ̌
)
x=xc

=

(
1

h

∫ h

0
δφdz

)
x=xc

, (4.14)

into the variational principle (4.10) and using arbitrariness of δφ at x = xc lead to the coupling

boundary condition for the deep-water equations:

(h∂xφ)x=xc
=
(
h∂xφ̌

)
x=xc

= (hu)x=xc
for 0 ≤ z ≤ h and x = xc. (4.15)

On the other hand, setting and substituting

(δφ)x=xc
=
(
δφ̌
)
x=xc

, (4.16)

into the variational principle (4.10) and using the arbitrariness of δφ̌ at x = xc lead to the coupling

boundary condition for the shallow-water equations:

(
h∂xφ̌

)
x=xc

=

(∫ h

0
∂xφ dz

)
x=xc

at x = xc, (4.17)

which, in terms of h and hu, reads

(hu)x=xc
=

(∫ h

0
∂xφ

)
x=xc

dz at x = xc. (4.18)

We therefore need to solve the deep-water potential-flow equations (4.11a)-(4.11e) together with

the nonlinear shallow-water equations (4.13a)-(4.11b) and coupling conditions Eq. (4.15) and

Eq. (4.18). The next section explains the methodology used to solve and couple the two sets

of equations numerically.

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 121

4.3 Numerical coupling of deep- and shallow-water domains

In this section, numerical strategies are derived to both discretize and couple the nonlinear

potential-flow and nonlinear shallow-water equations. This numerical coupling involves

addressing several challenges, including: dealing with a moving wavemaker, free-surface and

waterline boundaries; handling the breaking waves at the beach; and, ensuring consistent and

accurate transfer of information through the nonlinear coupling interface between the deep- and

shallow-water domains. The spatial and temporal discretisation methods and the implementation

strategies used to tackle these challenges are now considered.

4.3.1 Spatial coupling strategies

Discretization of the domain

The numerical domain as defined by ΩD ∪ΩS admits three time-dependent boundary conditions:

one at the wavemaker x = R(t), one at the free surface z = h(x, t) and one at the waterline

x = xW (t). While the wavemaker motion is prescribed, the other two boundary conditions

are part of the solution and are thus not known a-priori. As a consequence, implementing a

time-dependent mesh that follows the boundaries would require an iterative process, which is a

potentially costly approach that we choose to avoid. In Chapter 3, a solution was proposed based

on the transformation of the domain in x and z as follows:

x → x̂ =
x− R̃
Lw − R̃

Lw and z → ẑ = z
H0

h(x, t)
, (4.19)

with Lw = O(λ) and

R̃(x, t) = R(t)Θ(Lw − x) =


R(t), if x ≤ Lw,

0, if x > Lw.
(4.20)

As this transformation was shown to be efficient in Chapter 3, the same method is applied to the

deep-water subdomain of the present numerical tank, which thus becomes

Ω̂D = {0 ≤ x̂ ≤ xc; 0 ≤ ẑ ≤ H0}. (4.21)

122 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

For clarity, all hats are subsequently omitted. Figure 4.2 shows the deep-water numerical domain.

In shallow water, the solutions being defined at the free surface, only the boundaries at the coupling

(x = xc) and waterline (x = xW) coordinates must be considered. While xc is fixed, the

waterline coordinate xW moves along the beach and must be estimated together with the free-

surface solution to ensure non-negative depth for x > xW (t). To avoid mesh motion following

the boundary xW (t), we set a new boundary at x = L > maxt(xW (t)) (cf. Fig. 4.1), so that the

equations are solved in a fixed numerical domain. Moreover, (4.4) and (4.5) together imply that

for x ≥ xc,

Hr(x) = H0 − sB(x− xB)

= H0 − sB(x− xc + xc − xB)

= Hr(xc)− sB(x− xc).

(4.22)

We thus introduce the shallow-water depth at rest and beach topography as

Ȟr(x) ≡ Hr(xc)− b̌(x), with b̌(x) = sB(x− xc). (4.23)

Figure 4.2 illustrates the definition of b̌(x) and Ȟr(x) in the shallow-water numerical domain.

More details on how to accommodate the discrete waterline with the Audusse method are given in

the next paragraph.

ẑ

x̂

H0

0

0 xc

Deep-water numerical domain

x
xc L

Shallow-water numerical domain

xW

Hr(xc)
Ȟr(x)

b̌(x)

Figure 4.2: Left: Fixed deep-water numerical domain (blue) as defined by Ω̂D. Right: Fixed

shallow-water numerical domain as defined by Ω̌S (bold black) and corresponding water depth at

rest Ȟ(x̌) (blue) and beach topography b̌(x̌) (orange).

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 123

Discretization methods

The numerical domain is divided into two different meshes: a transformed, fixed 2D mesh for the

deep-water domain and a fixed 1D mesh for the shallow-water domain. In the deep-water domain,

the nonlinear potential-flow equations are solved with the finite-element method. As in Chapter 3,

the domain is split into Nx elements of depth H0 and length ∆xDW that must satisfy ∆xDW < λ

to ensure that waves are consistently resolved. To distinguish the surface and interior velocity-

potential evaluations, the velocity potential φ(x, z, t) is expanded along the depth of each element

with Lagrange polynomials ϕ̃(z) of order nz , so that

φ(x, z, t) = ψi(x, t)ϕ̃i(z),

= ψ1(x, t)ϕ̃1(z) + ψi′(x, t)ϕ̃i′(z),

=


ψ1(x, t) at z = H0,

ψi′(x, t) at z = zi′ < H0,

(4.24)

with i ∈ [1, nz + 1] and i′ ∈ [2, nz + 1]. Transformation of the variational principle (4.8) with

(4.19) and substitution of the Lagrange expansions (4.24) enable us to express all of the z–integrals

within constant matrix coefficients, thereby reducing the original two-dimensional variational

principle to a one-dimensional horizontal variational principle with only x–dependent functions:

the deep-water surface and interior velocity potentials ψ1(x, t) and ψi′(x, t) respectively; the

depth-averaged shallow-water velocity potential φ̌; and, the depth h(x, t). The horizontal deep-

water coefficients ψ1(x, t), ψi′(x, t) and h(x, t) are then interpolated with first-order continuous

Galerkin expansions in the horizontal, as

ψ1(x, t) = ψ1p(t)ϕp(x),

ψi′(x, t) = ψi′p(t)ϕp(x),

h(x, t) = hp(t)ϕp(x),

(4.25)

where ϕp(x) are the basis functions on the deep-water horizontal elements, defined for x ∈ [0, xc]

and p ∈ [0, c−], with 0 the node at x = 0 and c− the coupling node at x = xc. A scheme of the

corresponding mesh is given in Fig. 4.3. Substitution of the finite element interpolations (4.25)

into the continuous horizontal variational principle leads to the discrete variational principle (4.39)

124 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

given in section 4.3.1. For clarity, the surface and interior velocity potentials are merged into ψi

with i ∈ [1, nz + 1]. In section 4.3.1, we show that variations of (4.39) with respect to ψi and h

lead to the weak formulations of the discrete, transformed potential-flow equations with a coupling

condition at x = xc.

∆xDW

z1 = H0

z2

z3

znz+1 = 0

zi′

h, ψ1

ψ2

ψ3

ψi′

ψnz+1

0 xc

x

z Deep-water mesh

xc LxW (t)
x

Shallow-water mesh

∆xSW

UkUk−1 Uk+1

zoom

xk−1/2 xk+1/2

Fk−1/2 Fk+1/2

Figure 4.3: Left: deep-water mesh which includes nz + 1 horizontal layers, each containing Nx

elements of size ∆xDW . Right: shallow-water mesh that contains Ňx volumes of length ∆xSW

and Ňx + 1 interfaces on which the inward and outward fluxes of each volume are determined.

In shallow water, near the breaking zone, the finite-element approach used in the deep-water

domain, which is based on continuous expansions, would not be stable due to the increasing

steepness of the breaking waves. Instead, we implement a Godunov finite-volume method that can

accommodate breaking waves, as in Kristina et al. [86]. To facilitate hydraulic bores, the system

of nonlinear shallow-water Eqs. (4.13a-b) is written in conservative form as

∂tU + ∂xF(U) = S, (4.26)

with the vector U, flux F(U) and supplementary term S, as follows

U = (h, hu)T , F(U) =

(
hu, hu2 +

1

2
gh2

)T
and S =

(
0, ghdxȞr

)T
. (4.27)

The spatial domain is discretised with Ňx cells Xk = [xk−1/2, xk+1/2] of length ∆xSW , on each

of which the solutions U are averaged, yielding the discrete solutions Uk defined as

Uk(t) =
1

∆xSW

∫ xk+1/2

xk−1/2

U(x, t) dx. (4.28)

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 125

Since the basis functions associated to Uk are discontinuous and only taken to be C0 as piecewise

constant within a volume and since those associated with ψi are C1 continuous across nodes and

approximated linearly between nodes,

∆xSW ∝ (∆xDW)2 . (4.29)

This ensures a consistent matching between the leading order finite-volume method and the

first order finite-element method. A particular advantage of the finite-volume method is that

it also estimates the flux at the interface between each cell, thereby allowing the modelling of

discontinuous waves. The discrete flux

Fk±1/2(t) = F(U(xk±1/2, t)), (4.30)

evaluated at the interface x = xk±1/2, is computed through the Harten-Lax-van Leer (HLL) flux

[64], which is defined in Appendix C.1. Figure 4.3 shows the mesh and indicates the corresponding

state and flux evaluations. The topographic source term S is evaluated by assuming hydrostatic

flow with u �
√
gh and a balance between momentum flux and momentum source terms (see

[5]), yielding

S = (0, ghdxȞr) =

(
0, ∂x

(
g

1

2
h2

))
.

This ensures that hydrostatic flow at rest stays at rest numerically. Integration of S over a volume

Xk yields the interpolation of the discretised source term Sk as

Sk =

(
0,

∫ xk+1/2

xk−1/2

gh(x, t)dxȞr dx

)
=

(
0,

1

2
gh2

k+1/2− −
1

2
gh2

k−1/2+

)
, (4.31)

where hk+1/2− and hk−1/2+ are obtained from the Audusse method [5] to ensure non-negative

depth at the waterline through

h(k+1/2)− = max(hk + b̌k − b̌k+1/2, 0),

h(k−1/2)+ = max(hk + b̌k − b̌k−1/2, 0),

b̌k+1/2 = max(b̌k, b̌k+1),

(4.32a)

(4.32b)

(4.32c)

with b̌k the discrete beach topography defined in (4.23). The above method developed by Audusse

et al. [5] ensures stability of the simulations despite the time-dependent waterline motion at

126 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

x = xw(t) < L. Integration of the conservative form (4.26) over one cell Xk leads to the

space-discrete nonlinear shallow-water equations given by

U̇k(t) +
1

∆xSW

(
Fk+1/2(t)− Fk−1/2(t)

)
= Sk, (4.33)

where a dot superscript denotes a time derivative. Distinguishing the first and second components

of F (U) and S(U) as 
F hk±1/2(U) = [hu]k±1/2 ,

F huk±1/2(U) =

[
(hu)2

h
+

1

2
gh2

]
k±1/2

,

and


Shk (U) = 0,

Shuk (U) =
1

2
gh2

k+1/2 −
1

2
gh2

k−1/2,

(4.34)

(4.35)

Eq. (4.33) may be split into

ḣk(t) = − 1

∆xSW

(
F hk+1/2(t)− F hk−1/2(t)

)
,

ḣuk(t) = − 1

∆xSW

(
F huk+1/2(t)− F huk−1/2(t)

)
+ Shuk .

(4.36a)

(4.36b)

Space-discrete coupled variational principle

The averaged shallow-water velocity uk satisfies

uk =
1

∆xSW

∫ xk+1/2

xk−1/2

u(x, t) dx

=
1

∆xSW

∫ xk+1/2

xk−1/2

∂xφ̌(x, t) dx

=
1

∆xSW

[
φ̌(xk+1/2, t)− φ̌(xk−1/2, t)

]
.

(4.37)

The discreteC0 shallow-water velocity may thus be expressed in terms of the discreteC1 shallow-

water velocity potential φ̌h evaluated at the cell interfaces through

φ̌h = φl(t)ϕl(x), for l ∈ [c+, c+ Ňx], (4.38)

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 127

with ϕl(x) the 1st–order basis function that satisfies ϕl(xk) = δkl. Transformation of the deep-

water domain with (4.19) and substitution of the deep-water vertical (Lagrange) and horizontal

(finite-element) expansions (4.24) and (4.25) and shallow-water expansions (4.38) lead to the

space-discrete variational principle as

0 = δ

∫ T

0

1

2H0

[
hlAlqmψiqψjmM̃ij +

hlhn
hp

ψiqS̃ijψjmEpmqln − 2AmlqhlψiqD̃ijψjm

]
+
H0

2hl
JlmqψiqÃijψjm + ghl(

1

2
hpMpl −HIl)− ψ1q

[
Nql

hl
Lw

+Mql∂thl

]
+

1

H0
∂tR h0 ψi0Ii +

[
Mkrhk∂tφr +

1

2
hkφrφsAkrs + ghk(

1

2
hrMkr − ȞIk)

]
dt,

(4.39)

with ϕl,m,n,p,q defined in [0, xc], and ϕk,r,s defined in [xc, L]. The left and right limits of node c

at x = xc are used to highlight the fact that the basis function at x = xc is either the deep-water

value ϕc− , which is not defined for x > xc, or the shallow-water value ϕc+ which is not defined for

x < xc. The spatial matrices involved in (4.39) are defined in Appendix C.2. The space-discrete

coupling conditions are derived from this variational principle in the next section.

Discrete coupling conditions

At the coupling node x = xc, the shallow-water potential is the depth-averaged deep-water

velocity potential, i.e.

φc =
1

h

∫ h

0
φ dz =

1

H0
ψicĨi. (4.40)

Therefore, the shallow-water expansions may be split into

φ = φcϕc+ + φk′ϕk′ =
1

H0
ψicĨiϕc+ + φk′ϕk′ ,

h = hcϕc+ + hk′ϕk′ ,

(4.41)

(4.42)

in which k′ ∈]c+, Ňx + c]. As the deep-water model is solved with Firedrake, in which the spatial

dependency is implemented continuously, the deep-water part of the variational principle (4.39)

is written in x–continuous form. Substitution of (4.41) leads to

128 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

δ

∫ T

0

∫ xc

0

{
1

2Υ

[
h∂xψiM̃ij∂xψj +

1

h
(∂xh)2ψiS̃ijψj − 2∂xh∂xψiD̃ijψj

]

+ Υ

[
1

2h
ψiÃijψj +

1

H0

(
gh(

1

2
h−H)− ψ1∂th

)]

− ψ1
(x− Lw)

Lw
∂tR̃∂xh

}
dx+

(
1

H0
∂tRhψiĨi

)
x=0

+
1

H0
(hcMc+c+ + hk′Mk′c+) Ĩidtψic + (hcMc+k′ + hr′Mr′k′) dtφk′

+
1

H0
φk′ Ĩiψic [hcAc+k′c+ + hk′Ak′k′c+]

+
1

2H2
0

ψicĨiψjcĨj [hcAc+c+c+) + hk′Ak′c+c+]

+ g

[
1

2
(hcMc+c+hc + hk′Mk′r′hr′)

+ hcMc+k′hk′ −H (hcIc+ + hk′Ik′)

]
dt = 0,

(4.43)

with Υ = WH0/Lw. To obtain the deep-water coupling condition, variations of (4.43) with

respect to ψ, φ and h are taken, keeping in mind that the variations of ψic in (4.41) must be

transformed with (4.19), leading to

δφ =
δψic
H0

Ĩiϕc+ −
δhc
H0hc

ψicG̃iϕc+ + φk′ϕk′ ,

δh = δhcϕc+ + δhk′ϕk′ ,

(4.44)

(4.45)

with

G̃i =

∫ H0

0
z∂zϕ̃i dz. (4.46)

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 129

The variations of (4.43) thus yield∫ T

0

∫ xc

0
δψiq

{
1

Υ

[
h∂xϕq∂xψjM̃ij +

1

h
(∂xh)2ψjϕqS̃ij

− ∂xh
(
∂xϕqD̃ijψj + ϕq∂xψjD̃ji

)]
+
δq0
H0

ϕ0∂tRh0Ĩi

+Υ

[
H0

h
ϕqψjÃij −

δi1
H0

ϕq

[
∂th+

(x− Lw)

W
∂tR̃∂xh

]]}

+δhl

{
1

2Υ

[
ϕl∂xψiM̃ij∂xψj +

(
−ϕl
h2

(∂xh)2 +
2

h
∂xh∂xϕl

)
ψiS̃ijψj

− 2∂xϕl∂xψiD̃ijψj

]
+

Υ

H0

[
ϕlg (h−H)− ψ1

(x− Lw)

W
∂tR̃∂xϕl

]

− Υ

2h2
ϕlψiÃijψj + δl0

1

H0
∂tR ψi0Ĩi +

ϕl
Lw

∂t(Wψ1)

}
dx

+

∫ L

xc

{
1

H0

[
δψicĨi −

δhc
hc

ψicG̃i

]
[−∂thϕc+ + h∂xφ∂xϕc+]

+δφk′ [−∂thϕk′ + h∂xφ∂xϕk′]

+(δhcϕc+ + δhk′ϕk′)

[
∂tφ+

1

2
(∂xφ)2 + g(h− Ȟ)

] }
dx dt = 0.

(4.47)

Arbitrariness of δψi, δφ and δh leads to the following equations in shallow water:

δφk′ : ∂th = −∂x(h∂xφ), ∀x ∈ [xc, L],

δhk′ : ∂tφ = −1

2
(∂xφ)2 − g(h−H), ∀x ∈ [xc, L].

(4.48a)

(4.48b)

On substitution of (4.48b) into (4.47), the last line vanishes. Moreover, the integral involving ϕc+

may be reduced to the integral for x ∈ [xc, xc + ∆xSW] as ϕc+ = 0 elsewhere. In that interval,

Eq. (4.48a-b) are satisfied and may thus be substituted into (4.47) to yield∫ T

0

∫ L

xc

1

H0

[
δψicĨi −

δhc
h
ψicG̃i

]
[−∂thϕc+ + h∂xφ∂xϕc+] dx dt

=

∫ T

0

∫ xc+∆xSW

xc

1

H0

[
δψicĨi −

δhc
h
ψicG̃i

]
[∂x(h∂xφ)ϕc+ + h∂xφ∂xϕc+] dx dt

=

∫ T

0

1

H0

[
δψicĨi −

δhc
h
ψicG̃i

]
[h∂xφϕc+]xc+∆xSW

xc
dt

=

∫ T

0
− 1

H0

[
δψicĨi −

δhc
h
ψicG̃i

]
[h∂xφ]x=xc

dt,

(4.49)

130 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

as ϕc+(xc + ∆xSW) = 0, thus leading to boundary terms for the deep-water domain. The

deep-water weak formulations with coupling boundary terms are thus given by

∫ xc

0
δi1

W

Lw
ϕq∂thdx =

∫ xc

0

{
1

Υ

[
h∂xϕq∂xψjM̃ij +

1

h
(∂xh)2ψjϕqS̃ij

− ∂xh
(
∂xϕqD̃ijψj + ϕq∂xψjD̃ji

)]

+Υ

[
1

h
ϕqÃijψj −

δi1
H0

ϕq
(x− Lw)

W
∂tR̃∂xh

]}
dx

+
1

H0
Ĩi

{(
h∂tR

)
x=0

−
(
hu

)
x=xc

}
,

(4.50a)

and

∫ xc

0

ϕq
Lw

∂t(Wψ1)dx = −
∫ xc

0

{
1

2Υ

[
ϕl∂xψiM̃ij∂xψj − 2∂xϕl∂xψiD̃ijψj

+

(
−ϕl
h2

(∂xh)2 +
2

h
∂xh∂xϕl

)
ψiS̃ijψj

]

+
Υ

H0

[
ϕlg (h−H)− ψ1

(x− Lw)

W
∂tR̃∂xϕl

]
− Υ

2h2
ϕlψiÃijψj

}
dx

− 1

H0

{(
∂tR ψiĨi

)
x=0

+

(
hu

h
ψiG̃i

)
x=xc

}
,

(4.50b)

where we have substituted the shallow-water velocity u = ∂xφ. The coupling term is thus imposed

weakly at the boundary x = xc. Note that Eq. (4.50a) is a system of nz + 1 equations, that is, one

for each ψi. In particular, the case i = 1 describes the evolution of h while the cases i > 1 express

the interior velocity potential ψi′ for i′ ∈ [2, nz + 1] in terms of the surface velocity potential

ψ1 and depth h (cf. Eqs. (C.49) and (C.50) in Appendix C.3). The equations resulting from the

weak formulations (4.50) are derived in Appendix C.3; they indeed are the same as the nonlinear

potential-flow equations (4.11) and boundary condition (4.15) transformed with (4.19).

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 131

In order to obtain the coupling condition for shallow water, we distinguish the coupling node c

from the other nodes in deep water by substituting into the variational principle (4.39)

ψi = ψicϕc− + ψiq′ϕq′ ,

h = hcϕc− + hq′ϕq′ ,

(4.51a)

(4.51b)

with q′ ∈ [0, c−[. Substitution of the deep-water equations (C.51) into the terms involving ϕc− in

the resulting variational principle then yields

0 =

∫ T

0

∫ L

0
δψiq′

{
1

Υ

[
h∂xϕq′∂xψjM̃ij +

1

h
(∂xh)2ψjϕq′S̃ij

− ∂xh
(
∂xϕq′D̃ijψj + ϕq′∂xψjD̃ji

)]
+
δq′0
H0

ϕ0∂tRh0Ĩi

+Υ

[
H0

h
ϕq′ψjÃij −

δi1
H0

ϕq′

[
∂th+

(x− Lw)

W
∂tR̃∂xh

]]}

+δhq′

{
1

2Υ

[
ϕq′∂xψiM̃ij∂xψj +

(
−
ϕq′

h2
(∂xh)2 +

2

h
∂xh∂xϕq′

)
ψiS̃ijψj

− 2∂xϕq′∂xψiD̃ijψj

]
− Υ

2h2
ϕq′ψiÃijψj +

ϕq′

Lw
∂t(Wψ1)

+
Υ

H0

[
ϕq′g (h−H)− ψ1

(x− Lw)

W
∂tR̃∂xϕq′

]
+ δq′0

1

H0
∂tR ψi0Ĩi

}
+δφk

[
− ∂thϕk′ + h∂xφ∂xϕk′

]
+ δhkϕk

[
∂tφ+

1

2
(∂xφ)2 + g(h− Ȟ)

]
+
δψic
H0

∫ H0

0

{
ϕ̃i [ϕ̃jhc∂xψjc − zψjc∂xhc∂zϕ̃j]x=xc

}
dz

+
δhc
H0

∫ H0

0

{
zψic∂zϕ̃i

[
z

hc
∂xhcψjc∂zϕ̃j − ϕ̃j∂xψjc

]
x=xc

}
dz dt.

(4.52)

The coupling condition (4.16) is transformed with (4.19) to lead to

δψicϕ̃i −
δhc
hc

z∂zψc = δφc, (4.53)

which, once substituted into (4.52), leads to the shallow-water equations (4.12) with boundary

condition

δφc : (hu)x=xc =
1

H0

[
hc∂xψicĨi − ψicG̃i∂xhc

]
x=xc

. (4.54)

132 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

The boundary condition (4.54) is imposed to the shallow-water domain as the flux at x = xc

through  h

hu


x=xc

=

 hc
1

H0

[
hc∂xψicĨi − ψicG̃i∂xhc

]
 . (4.55)

The spatial discretisation now completed, we temporally discretise the variational principle and

equations in the next section.

4.3.2 Temporal coupling strategies

We split the simulation time [t0, T], with t0 and T the initial and final times respectively, into

continuous time intervals [tn, tn+1] of length ∆t, with tn = t0 + n∆t. For a given initial solution(
ψ0

1 = ψ1(t0), ψ0
i′ = ψi′(t

0), h0 = h(t0), φ̌0 = φ̌(t0), ȟ0 = ȟ(t0)
)

the solutions are updated

from time tn to tn+1, with n ≥ 0, using the Symplectic-Euler scheme, which is shown to be a

robust integrator for Hamiltonian systems [53]. For a Hamiltonian system with coordinate and

momentum variables q and p respectively, the Symplectic-Euler scheme is defined as an implicit

step for the first variable, and an explicit step for the second one, that is

qn+1 = qn + ∆t
∂H(qn+1, pn)

∂pn

and pn+1 = pn −∆t
∂H(qn+1, pn)

∂qn+1
.

(4.56a)

(4.56b)

To apply the symplectic-Euler scheme (4.56) to the potential-flow and shallow-water equations,

the space-discrete variational principle (4.39) is written in Hamiltonian form, as

0 = δ

∫ T

0

[
p1
dh

dt
−H(h,pi,W)

]
+

[
p̌
dȟ

dt
− Ȟ(ȟ, p̌)

]
dt, (4.57)

with

pi = [Mlqψiq] and h = [hl] for l, q ∈ [0, c−] and i ∈ [1, nz + 1],

p̌ = [Mkrφr] and ȟ = [hk] for k, r ∈ [c+, Nl + c],

(4.58a)

(4.58b)

and H(h,pi,W) and Ȟ(ȟ, p̌) the deep- and shallow-water Hamiltonians defined

in Appendix C.4.

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 133

Setting

P = p1 + p̌,

Q = h+ ȟ,

H̄(P ,Q,pi′ ,W) = H(h,pi,W) + Ȟ(ȟ, p̌),

(4.59a)

(4.59b)

(4.59c)

with i′ ∈ [2, nz + 1], the variational principle (4.57) is equivalent to

0 = δ

∫ T

0

[
P
dQ

dt
− H̄(P ,Q,pi′ ,W)

]
dt = 0. (4.60)

Variations with respect to the unknowns P , pi′ andQ then lead to∫ T

0

[
δP

(
dQ

dt
− ∂H̄(P ,Q,pi′ ,W)

∂P

)
− δpi′

(
∂H̄(P ,Q,pi′ ,W)

∂pi′

)

−δQ
(
dP

dt
+
∂H̄(P ,Q,pi′ ,W)

∂Q

)]
dt,

(4.61)

meaning that to apply the symplectic-Euler scheme (4.56),Q and P must be evaluated as follows:

Qn+1 = Qn + ∆t
∂H̄(P n,Qn+1,p∗i′ ,W

n)

∂P n
,

P n+1 = P n −∆t
∂H̄(P n,Qn+1,p∗i′ ,W

n)

∂Qn+1
,

0 =
∂H̄(P n,Qn+1,p∗i′ ,W

n)

∂p∗i′
,

(4.62a)

(4.62b)

(4.62c)

where Eq. (4.62c) expresses pi′ in terms of P n andQn+1 (cf. Chap.3 for more details). Equations

(4.62a-c) indicate that h and ȟ must be evaluated implicitly while p1 and p̌ must be evaluated

explicitly. In order to apply the coupling conditions derived in section 4.3.1, δP and δQ are split

as

0 =

∫ T

0

[
δψ1q′

(
Mq′l

dhl
dt
− ∂H(h,pi,W)

∂(M−1
q′l p1l)

)
+ δψ1c

(
Mcl

dhl
dt
− ∂H(h,pi,W)

∂(M−1
cl p1l)

)

+δφk′

(
Mk′s

dhs
dt
− ∂Ȟ(ȟ, p̌)

∂(M−1
k′s p̌s)

)
+ δφc

(
Mck

dhk
dt
− ∂Ȟ(ȟ, p̌)

∂(M−1
ck p̌k)

)

−δψi′q′
(
∂H(h,pi,W)

∂(M−1
q′l pi′l)

)
− δψi′c

(
∂H(h,pi,W)

∂(M−1
cl pi′l)

)

−δhl′
(
dp1l′

dt
+
∂H(h,pi,W)

∂hl′

)
− δhc

(
dp1c

dt
+
∂H(h,pi,W)

∂hc

)
−δhk′

(
dp̌k′

dt
+
∂Ȟ(ȟ, p̌)

∂ȟk′

)
− δȟc

(
dp̌c
dt

+
∂Ȟ(ȟ, p̌)

∂ȟc

)]
dt,

(4.63)

134 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

with l′ ∈ [0, c−[and k′ ∈]c+, Ňx + c]. In section 4.3.1, it was shown that∫ T

0

[
δφc

(
Mck

dȟk
dt
− ∂Ȟ(ȟ, p̌)

∂(M−1
ck p̌k)

)]
dt

=

∫ T

0

[
δψ1cĨ1 + δψi′cĨi′ −

δhc
hc

ψicG̃i

]
(hc∂xφc)x=xc

dt,

(4.64)

and∫ T

0

[
δψ1c

(
Mcl

dhl
dt
− ∂H(h,pi,W)

∂(M−1
cl p1l)

)
− δψi′c

(
∂H(h,pi,W)

∂(M−1
cl pi′l)

)

−δhc
(
dp1c

dt
− ∂H(h,pi,W)

∂hc

)]
dt =

∫ T

0

δφc
H0

[
hc∂xψiĨi − ψicG̃i∂xh

]
x=xc

dt.

(4.65)

Therefore the variational principle (4.61) leads to the following system of equations:

Mql
dhl
dt

=
∂H(h,p1,pi′ ,W)

∂(M−1
ql p1l)

− δqcĨ1 (hu)x=xc
,

Mks
dȟs
dt

=
∂Ȟ(ȟ, p̌)

∂(M−1
ks p̌s)

− δkc
1

H0

[
hc∂xψiĨi − ψicG̃i∂xh

]
x=xc

,

0 =
∂H(h,p1,pi′ ,W)

∂(M−1
ql pi′l)

− δqcĨi′ (hu)x=xc
,

(4.66a)

(4.66b)

(4.66c)


dp1l

dt
= −∂H(h,p1,pi′ ,W)

∂hl
− δlc

[
ψi
h
G̃i(hu)

]
x=xc

,

dpk
dt

= −∂Ȟ(ȟ, p̌)

∂ȟk
.

(4.66d)

(4.66e)

In section 4.2 and 4.3.1, we have shown that solving Eq. (4.66b) and (4.66e) for ȟ and p̌ is

equivalent to solving Eq. (4.36) for ȟ and ȟu = ȟǔ with boundary condition (4.55). Therefore,

solving the system (4.66) is equivalent to solving



Mql
dhl
dt

=
∂H(h,p1,pi′ ,W)

∂(M−1
ql p1l)

− δqcĨ1

(
ȟu
)
x=xc

,

dȟk
dt

= − 1

∆xSW

(
F ȟk+1/2(ȟ, ȟu)− F ȟk−1/2(ȟ, ȟu)

)
+

1

∆xSW
Sȟk (ȟ, ȟu),

0 =
∂H(h,p1,pi′ ,W)

∂(M−1
ql pi′l)

− δqcĨi′
(
ȟu
)
x=xc

,

(4.67a)

(4.67b)

(4.67c)

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 135


dp1l

dt
= −∂H(h,p1,pi′ ,W)

∂hl
− δlc

[
ȟu

h
(ψ1G̃1 + ψi′G̃i′)

]
x=xc

,

dȟuk
dt

= − 1

∆xSW

(
F ȟuk+1/2(ȟ, ȟu)− F ȟuk−1/2(ȟ, ȟu)

)
+

1

∆xSW
Sȟuk (ȟ, ȟu),

(4.67d)

(4.67e)

with boundary conditions

ȟ−1/2 = hc,

ȟu−1/2 =
1

H0

[
hc∂xψiĨi − ψicG̃i∂xh

]
x=xc

,

(4.67f)

(4.67g)

for the shallow-water equations (4.67b) and (4.67e).

Solving (4.67) with the symplectic-Euler scheme is equivalent to solving (4.62). Therefore, h and

ȟmust be evaluated at time tn+1, while p1 and ȟumust be evaluated at time tn. The explicit time

dependency W being involved in p1, it is evaluated at time tn (cf. Chap.3 for more details). The

boundary term (hu)x=xc in the deep-water weak formulations (4.67a-c-d) is the HLL flux

F h−1/2(hn+1
−1/2, hu

n
−1/2) =

0, if SL = SR = 0,

(hu)n−1/2− , if SL > 0,

(hu)n−1/2+ , if SR < 0,

SR(hu)n−1/2− − SL(hu)n−1/2+ + SLSR(hn+1
−1/2+

− hn+1
−1/2−)

SR − SL
, otherwise,

(4.68)

with SL and SR the left and right speeds at the interface x = xc defined as

SL = min

(
hun−1/2−

hn+1
−1/2−

−
√
ghn+1
−1/2− ,

hun−1/2+

hn+1
−1/2+

+
√
ghn+1
−1/2+

)
,

SR = max

(
hun−1/2−

hn+1
−1/2+

+
√
ghn+1
−1/2− ,

hun−1/2+

hn+1
−1/2+

+
√
ghn+1
−1/2+

)
.

(4.69)

(4.70)

Therefore, (hu)x=xc is implicit in hn+1
−1/2± and explicit in hun−1/2± . We denote its semi-implicit

time evaluation with the subscript (hu)∗x=xc . Similarly, the interior velocity described by pi′

depends on both hn+1 and pn1, hence its semi-implicit evaluation p∗i′ . Therefore, the coupled

136 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

symplectic-Euler scheme reads

Mn
qlh

n+1
l = Mn

qlh
n
l + ∆t

∂H(hn+1,pn1 ,p
∗
i′ ,W

n)

∂(Mn−1

ql pn1l)
− δqcĨ1

(
ȟu
∗
)
x=xc

,

0 =
∂H(hn+1,pn1 ,p

∗
i′ ,W

n)

∂(Mn−1

ql p∗i′l)
− δqcĨi′

(
ȟu
∗
)
x=xc

,

hn+1
−1/2− = hn+1

c ,

hu∗−1/2− =
1

H0

[
hn+1
c

(
∂xψ

n
1 Ĩ1 + ∂xψ

∗
i′ Ĩi′
)
−
(
ψn1cG̃1 + ψ∗i′cG̃i′

)
∂xh

n+1
]
x=xc

,

hn+1
k = hnk −

∆t

∆xSW

(
F ȟk+1/2(ȟn+1, ȟu

n
)− F ȟk−1/2(ȟn+1, ȟu

n
)

− Sȟk (ȟn+1, ȟu
n
)
)
,

(4.71a)

(4.71b)

(4.71c)

(4.71d)

(4.71e)



pn+1
1l = pn1l −∆t

∂H(hn+1,pn1 ,p
∗
i′ ,W

n)

∂hn+1
l

− δlc

[
ȟu
∗

hn+1
(ψn1 G̃1 + ψ∗i′G̃i′)

]
x=xc

,

ȟu
n+1
k = ȟu

n
k −

∆t

∆xSW

(
F ȟuk+1/2(ȟn+1, ȟu

n
)− F ȟuk−1/2(ȟn+1, ȟu

n
)

− Sȟuk (ȟn+1, ȟu
n
)
)
,

(4.71f)

(4.71g)

in which (4.71a-b-c-d-e) must be solved simultaneously, as well as (4.71f-g). The next section

explains how the fully coupled system (4.71) is implemented.

4.4 Implementation of the fully-coupled system

The system (4.71) requires several iterations to deal with the implicit boundary terms, which is

computationally costly. We choose to improve the computational cost by computing the shallow-

water HLL flux F hk+1/2 explicitly, that is,

F hk+1/2 =

0, if SL = SR = 0,

(hu)nk+1/2− , if SL > 0,

(hu)nk+1/2+ , if SR < 0,

SR(hu)nk+1/2− − SL(hu)nk+1/2+ + SLSR(hnk+1/2+ − h
n
k+1/2−)

SR − SL
, otherwise,

(4.72)

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 137

with explicit left and right wave speeds

SL = min

(
hunk+1/2−

hn
k+1/2−

−
√
ghn

k+1/2− ,
hunk+1/2+

hn
k+1/2+

+
√
ghn

k+1/2+

)
,

SR = max

(
hunk+1/2−

hn
k+1/2−

+
√
ghn

k+1/2− ,
hunk+1/2+

hn
k+1/2+

+
√
ghn

k+1/2+

)
.

(4.73)

(4.74)

As a consequence, the boundary terms in (4.71a-b-f) and the fluxes in (4.71e) are explicit, thus

simplifying the coupled system (4.71) to a fully explicit coupling in which the deep- and shallow-

water equations may be solved separately through
Mn
qlh

n+1
l = Mn

qlh
n
l + ∆t

∂H(hn+1,pn1 ,p
∗
i′ ,W

n)

∂(Mn−1

ql pn1l)
− δqcĨ1

(
ȟu

n
)
x=xc

,

0 =
∂H(hn+1,pn1 ,p

∗
i′ ,W

n)

∂(Mn−1

ql p∗i′l)
− δqcĨi′

(
ȟu

n
)
x=xc

,

(4.75a)

(4.75b)

pn+1
1l = pn1l −∆t

∂H(hn+1,pn1 ,p
∗
i′ ,W

n)

∂hn+1
l

− δlc

[
ȟu

n

hn+1
(ψn1 G̃1 + ψ∗i′G̃i′)

]
x=xc

,

hn+1
−1/2− = hn+1

c ,

hu∗−1/2− =
1

H0

[
hn+1
c

(
∂xψ

n
1 Ĩ1 + ∂xψ

∗
i′ Ĩi′
)
−
(
ψn1cG̃1 + ψ∗i′cG̃i′

)
∂xh

n+1
]
x=xc

,

hn+1
k = hnk −

∆t

∆xSW

(
(hu)nk+1/2 − (hu)nk−1/2

)
,

ȟu
n+1
k = ȟu

n
k −

∆t

∆xSW

([(hu)n

hn+1
+

1

2
g(hn+1)2

]
k+1/2

−
[

(hu)n

hn+1
+

1

2
g(hn+1)2

]
k−1/2

− 1

2
g
(

(hn+1
k+1/2)2 − (hn+1

k−1/2)2
))

,

(hu)n+1)x=xc = (ȟu
n+1

)−1/2.

(4.75c)

(4.75d)

(4.75e)

(4.75f)

(4.75g)

(4.75h)

Equations (4.75a-b) must be solved simultaneously to update the deep-water depth and interior

velocity implicitly. This is done using Firedrake, in which we solve the semi-discrete weak-

formulations, that is, continuous x–integrals and discrete z– and time integrals (cf. Chapter 3

for more details). Equation (4.75c) is also solved with Firedrake semi-implicitly to update

the deep-water surface velocity potential. Equations (4.75d-e) update the boundary condition

for the shallow-water flux at x = xc. Equation (4.75f) updates the shallow-water depth fully

explicitly. Finally, hu is updated semi-explicitly in shallow water with Eq. (4.75g) and the flux

138 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

at x = xc = x−1/2 is saved as the next boundary condition for deep water. This scheme is

slightly less accurate but faster than the symplectic-Euler scheme (4.71), and still more accurate

than a fully explicit scheme such as the forward-Euler scheme. Results are discussed in the next

section.

4.5 Results

In Chapter 3, the nonlinear potential-flow equations were solved with the symplectic-Euler scheme

in the case of a domain closed by a vertical wall on the right-hand side. The results showed

good agreement with experimental data. In addition, the semi-symplectic-Euler scheme for

nonlinear shallow-water equations as implemented in (4.75) is verified against an exact solution

in Appendix C.5. In this section, we analyse the effectiveness with which the nonlinear coupling

reduces the wave reflection through energy absorption on the shallow-water beach. The effect

of the beach is first observed by comparing coupled simulations to deep-water simulations with

a vertical wall at the coupling position x = xc. The dimensions in each case, as well as the

wavemaker and topography properties, are given in Table 4.1.

Length [m]

xc L

Coupling 11.0 14.0

Wall / 11

Topography

H0 [m] xB [m] sB H(xc) [m]

1.0 3.0 0.1 0.2

1.0 3.0 0.1 0.2

wavemaker

γ [m] T [s] Lw [m]

0.02 1.13 1.0

0.02 1.13 1.0

Table 4.1: Characteristics of the coupled and wall domains, including topography and wavemaker

settings.

With a period T = 1.1339s, the wavelength of the waves based on a linear dispersion analysis for a

constant rest depthH0 is λ ≈ 2.0m. We set the deep-water resolution to ∆xDW = λ/40 = 0.05m

and the shallow-water resolution to ∆xSW = (∆xDW)2 = 0.0025m. Time runs from t = 0

to t = 110T with a time step of ∆t = 0.001s, thus satisfying the stability condition given in

Chapter 3:

∆t ≤ 2

ω
. (4.76)

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 139

Figure 4.4: Comparison of the wave propagation in a domain closed by a vertical wall and a

domain with wave absorption on the beach at different times.

Figure 4.4 compares the waves propagation in the domain with a vertical wall and in the coupled

domain. In the top sub-figure, at time t = 2.86s, the waves are neither disturbed by the wall nor

the beach as they have not yet reached the boundary. Hence, the solutions are the same in the two

models. However, when the waves have travelled past xc at, e.g., 13.6s (see middle subfigure),

the waves of the first model have reflected against the wall while those in the coupled model have

entered the shallow-water domain. As time proceeds, the effect of wall reflection increasingly

affects the deep-water waves of the first model, while no obvious reflection is noticeable in the

coupled model due to wave breaking on the beach (e.g. at time t = 36.74s). The objective of

avoiding disturbance of the deep-water domain by reflected waves has thus been achieved thanks

to the coupling to the shallow-water beach.

140 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

Figure 4.5: Energy of the deep- and shallow-water models. At time t = 0.0s, the system is at

rest. The wavemaker is turned on at t > 0.0s, leading to an increase of energy, first in deep water,

followed by an increase of energy in shallow water. The absorption of energy by the beach leads

to a conservation of the global energy. At t = 68.03s, the wavemaker is turned off, resulting in an

energy decrease that results from wave breaking on the beach.

In order to quantify the efficiency of the beach in absorbing the waves, the energies of the deep-

and shallow-water domains in the case of the coupled model are displayed in Fig. 4.5. At time

t = 0.0s, the tank is at rest and the energy is null. Immediately after switching on the wavemaker,

energy is added to the numerical domain due to the wavemaker motion. As the waves first travel

through the deep-water domain, as shown in Fig. 4.4, energy is first imparted to only the deep-

water domain. The moment when the first wave reaches the shallow-water domain is characterised

by a clear increase of energy in the shallow-water domain, as indicated by the orange arrow in

Fig. 4.5. As a consequence, the gradient of the deep-water energy decreases, confirming that some

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 141

deep-water energy is transferred into the shallow-water domain through the coupling interface.

The time tsw taken for the first wave to reach the shallow-water domain may be computed from

the fastest wave velocity as

tsw ≈ xc/
√
gH0 = 11/

√
9.81× 1.0 = 3.5s, (4.77)

where we have used the shallow-water limit to compute the velocity, as the longest waves travel

fastest. This estimation of tsw is consistent with Fig. 4.5. For t > tsw, the energy continues

to increase in the deep-water domain, meaning that the energy given by the wavemaker is still

larger than the one absorbed by the beach. However, when higher amplitude waves reach the

shallow-water domain, an equilibrium is reached between the energy given by the wavemaker

and the one absorbed by the beach, leading to a net and approximate conservation of the total

energy. This is explained by the fact that, in deep water, waves are generated by the wavemaker

while similar waves are travelling through the coupling interface, hence resulting in a net balance

between the addition and absorption of energy. In shallow water, the waves arriving from the

coupling interface are absorbed by the beach when breaking, hence the energy oscillates around a

constant value. One can however notice some long-period oscillations in the total energy, which

are due to the long-wave reflection. In Chapter 5, Fourier spectra are used to analyse these long-

wave reflections. To confirm that most of the energy is absorbed by the beach, the wavemaker

is switched off after 60 wavemaker periods, ie. at t = 68.03s (cf. green arrow in Fig. 4.5). As

expected, the energy in the deep-water domain immediately decreases with the same gradient as

its initial energy increase. Therefore, the coupling interface behaves as a transparent boundary for

the deep-water domain, confirming that the coupling is consistent. However, in the shallow-water

domain, the energy does not decrease immediately because the last waves travelling from the deep-

water domain still bring in energy. After t = 6.24s, which is the time required for the last wave

to travel from the wavemaker to the coupling interface, an increase of energy in the shallow-water

domain, resulting from the last wave entering the domain, can be seen. It takes t ≈ 1.5s for this

wave to travel to the beach before being absorbed, thereafter resulting in a decrease of the shallow-

water energy. Finally, Fig. 4.5 shows that the total energy does not decrease to its initial value of

zero, but to approximately E = 1.6mJ . This is only 1.7% of the total energy before switching

off the wavemaker, meaning that the beach absorbs about 98.3% of the energy in that case, while

142 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

100% of the energy was conserved in the case of a rigid wall in Chapter 3. The efficacy of the

beach to absorb wave energy is further explored in the next chapter and compared with validation

against experiments.

4.6 Conclusions and discussions

The numerical tank presented in this chapter is the first-ever reported fully nonlinear coupling

between deep-water (potential-flow) and shallow-water equations. The variational approach

ensures stable simulations of waves travelling through the coupling interface Γc in a smooth way,

thus simulating a real sea state. The energy variations show that the coupling interface behaves

as a transparent boundary for the deep-water waves while the beach absorbs more than 98% of

the energy. The model may therefore be used as a cost-improved alternative of the deep-water

model presented in Chapter 3, since it reduces the numerical domain and thereby saves substantial

computational resources. The choice of absorbing waves with a topographical beach makes the

numerical tank similar to the experimental tank at MARIN, where waves are generated by a piston

wavemaker and absorbed through wave breaking on the beach. Wave generation can thus first be

tested in the numerical wave tank before being used in the experimental tanks, thereby ensuring

that the wavemaker motion will by design generate the waves in the target area.

Some improvements can, however, increase the efficiency of the present numerical tank. First,

the semi-symplectic Euler scheme used for optimal computational cost may be extended to the

symplectic-Euler scheme or a higher-order scheme by conserving the implicit evaluation of the

HLL flux in shallow water, as explained in section 4.4 [54]. For instance, the second-order

Störmer-Verlet scheme implemented in Chapter 3 in deep water may be applied to the coupled

model by following the method described in section 4.3.2. Second, the implementation of the

shallow-water solver is not yet optimised and could be improved with parallel programming.

To facilitate the parallelisation of the shallow-water solver, a detailed tutorial of the code is

given in Chapter 6. Note that the deep-water solver may be compiled in parallel without any

additional modification, as it is solved within Firedrake. Third, as explained in section 4.2, the

coupling location is chosen a priori from the wavelengths, which has the advantage of being

Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves 143

fixed and prescribed but is not optimal in the case of irregular waves. Indeed, to make sure that

the vertical variations of the velocity potential are negligible at the coupling point for irregular

waves, dynamic determination of xc can be made depending on the vertical structure of the

velocity potential in the potential-flow domain, thus ensuring that the shallow-water assumption

holds at the coupling point. Another solution was proposed by Cotter and Bokhove [33] and

extended by Gagarina et al. [55], who proposed a new model that encompasses both the three-

dimensional potential-flow water-water model and the depth-averaged shallow-water model as

limiting systems. Consequently, the coupling point sets itself dynamically; both Cotter and

Bokhove [33] and Gagarina et al. [55] also derive hydraulic-jump conditions for this new model,

which conditions equal the usual shallow-water ones in the shallow-water limit. Future work

includes extension of this method to the nonlinear coupling presented herein. An extension of the

present model to a 3D tank is also part of future work. Since the 3D deep-water model is already

implemented in Chapter 3 and the surface shallow-water model is a well-known problem (see

for example [25, 102]), only the extension of the coupling interface remains as future work; the

same method as in 2D can be used and will result in extra terms involving the y–derivatives of the

solutions. Finally, the coupled model will be compared with and validated against experiments

to study its efficacy in absorbing various types of waves, including irregular, short and steep

waves. For that purpose, and for validation of future extended models, various test cases were

performed in the experimental tank of Delft University of Technology (DUT). Description of these

experiments and validation of the present numerical tank is deferred to Chapter 5.

144 Chapter 4. Numerical wave tank: wavemaker, wave propagation and absorbing waves

145

Chapter 5

Experimental validation of the

numerical wave tank

5.1 Introduction

The numerical models derived in Chapter 3 and Chapter 4 successfully showed that extreme waves

can not only be generated with our (numerical) modelling approach but also absorbed at the

shallow-water beach. In this chapter, the limits of the previously presented models are further

explored with a view towards making future improvements.

The objective of the maritime industry is to build safer ships and platforms using the simulation

of realistic sea states, in which waves have irregular frequency and amplitude. As highlighted in

the conclusions of Chapter 4, one limit of our coupling process is that the coupling interface must

be set a priori and stays static during the simulations. Indeed, the coupling interface must be set

relatively to the wavelengths and amplitudes to ensure that waves do not break in the deep-water

domain and that the velocity of the waves is depth-uniform before entering the shallow-water

domain. The coupling process might therefore not be accurate in a sea state with varying wave

frequency and amplitude, due to an inadequate location of the coupling interface. In this chapter,

the numerical simulation and absorption of irregular waves are validated against experiments in

the case of three different irregular wave profiles.

In addition, the ability of the numerical beach to absorb and partially reflect long and short waves

146 Chapter 5. Experimental validation of the numerical wave tank

is further investigated. When an ocean wave reaches a real (sand) beach, part of it is reflected

back into the ocean; the reflection factor, which is the ratio between absorbed and reflected

waves, depends on the beach slope and on the wavelengths: damping of short waves is more

efficient than damping of long waves. We thus provide experimental data of long- and short-wave

absorption/reflection from a beach with a plausible gradient of 10% and compare the experimental

reflection to the one obtained with our numerical wave tank.

The comparison of the numerical simulations of short waves with the experimental measurements

will also help the maritime industry to predict amplitude modulation resulting from the

translational motion of the piston wavemaker. As explained in the conclusions of Chapter 3,

deep-water waves, i.e., short waves relative to the depth, have a non-uniform vertical-velocity

profile and thus cannot be generated properly from a piston wavemaker with uniform height-

independent horizontal motion. This is a common issue in experimental wave tanks, as short

waves do not behave as intended when generated by a piston. By comparing the numerical and

experimental data for short waves, we aim to evaluate the ability of the numerical tank to reproduce

the disturbance of the waves due to the piston motion of the wavemaker, with a view towards

using the model as a prediction tool to determine a priori whether the waves are long enough to

be accurately generated in the experimental tanks of the maritime industry.

Finally, approaching the breaking-wave limit in the deep-water model is of interest to the maritime

industry to test impact of steeper, thus stronger, waves on marine structures. When approaching

the breaking-wave limit in the potential-flow model derived in Chapter 3, the overturning crest

of the waves cannot be captured by our continuous finite-element method, thereby leading to

numerical instabilities. In order to estimate the steepness limitation of the coupled model, waves of

various amplitudes are generated and compared to measurements. These measurements of waves

approaching the breaking-wave limit will also be available for validation of future breaking-wave

models.

To study the accuracy of our numerical wave tank for the four aforementioned challenges, we

have conducted experiments in the wave tank of the Delf University of Technology (TUD). The

experimental set-up is described in Section 5.2. Several measuring tools are installed in the tank

to record the experiments; their utilisation and precision are described in section 5.3. To study

the accuracy of the numerical wave tank to generate and absorb various types of waves, several

Chapter 5. Experimental validation of the numerical wave tank 147

wave profiles are generated in the wave tank, and specified in Section 5.4. The corresponding

experimental and numerical wavemaker inputs are computed in Section 5.5. The ability of

the numerical tank to capture and absorb irregular, long, short and steep waves is studied by

comparison with the experimental measurements in Section 5.6. Finally, the conclusions of the

above four analyses are summarised in Section 5.7.

5.2 Experimental set-up

To analyse the performance of the coupled numerical tank, a slanted beach is placed in the wave

basin of TUD, in which waves are generated from a piston wavemaker; that is, a structure moving

with translational motion in the x–direction. As shown in Fig. 5.1, an absorbing wall is installed

behind the wavemaker to absorb the back wave. The total basin is 85m-long, 2.75m-wide and

filled with 1.0m water depth.

Figure 5.1: Piston wavemaker (left) and absorbing wall (right) in the tank of TUD.

The wooden beach is installed at location xB ≈ 20m from the wavemaker, with a constant slope

of 0.1, as shown in Fig. 5.2. With xB ≈ 20m, the total length of the domain at rest is Lx ≈ 30m,

which is short enough to minimize the phase error resulting from the simulations (as shown in

Chapter 3) while leaving enough space between the wavemaker and the beach to allow the addition

of a structure, such as a wind turbine or a ship, in the deep-water area. Probes are placed adjacent to

various free-surface locations to measure the wave height: the choice of their positions is explained

in section 5.3.1.

148 Chapter 5. Experimental validation of the numerical wave tank

Figure 5.2: Experimental tank of TUD (left) and its schematic representation (right) with custom-

made beach and L–shape probes (grey).

Figure 5.3: Photo (left) and schematic (right) of the experimental beach and the supporting frame

which is weighted with lead blocks (black) to preclude unwanted bed motion.

The 1071cm beach is built using seven 153cm-wide boards, leaving enough space for the waterline

to travel along the beach. The dimensions of the beach are given in Fig. 5.3. The real slope sp

given by these dimensions is

sp =
1

3

(
112.6

1065.5
+

112.6√
10712 − 112.62

+

√
10712 − 1065.52

1065.5

)
= 0.104, (5.5)

which we have approximated by sp = 0.1. The exact position of the beach is also estimated from

Chapter 5. Experimental validation of the numerical wave tank 149

laser measurements as xB = 20.24m.

To avoid beach motion resulting from the impact of waves, the structure is pinned down against

the bottom of the tank by a total of 500kg of lead weights. As shown in Fig. 5.3, these weights

are regularly located on the beach structures; additional 90kg of blocks are placed intermittently

along the line of the tank-beach intersection, where the height of the beach is too low to place the

weights below it. An analysis is carried out in section 5.3.2 to ensure that the extra weights do not

disturb the propagation of waves.

Finally, a gap of 0.02m is allowed between the tank bottom and the start of the beach (cf. Fig 5.4)

to ensure that there is no difference in water level on both sides of the beach at x = Lx, as this

would result in additional forces on the beach structure.

Figure 5.4: Left: Start of the beach. A gap of 0.02m between the tank bottom and the start of the

beach ensures equal water level on both sides of the beach. Right: dimensions of the start of the

beach. The water depth at rest at x ≤ xB is 1.00m.

In order to admit reproduction of the wave profiles in the numerical model, the experimental

wavemaker motion and wave elevation are recorded. These measurements are detailed in the next

section.

5.3 Collection of experimental data

Several measuring instruments were installed to record the wavemaker and fluid motions in order

to reproduce and compare the experimental results to the numerical simulations of the coupled

tank. In this section, we present the instruments and estimate their precision.

150 Chapter 5. Experimental validation of the numerical wave tank

5.3.1 Measuring equipment

Wavemaker accelerometer

Figure 5.5: Accelerometer facing the piston wavemaker to measure its motion and acceleration.

Measuring both the wavemaker motion and acceleration ensures that the input signal is the

intended one. Moreover, the numerical model requires the wavemaker motion and velocity as

inputs of the simulations. Recording the wavemaker behaviour is thus necessary to reproduce

the experimental waves in the numerical wave tank. To this end, an accelerometer is installed in

front of the wavemaker to optically measure its position at a frequency of 100Hz (cf. Fig.5.5).

The measured motion and acceleration are used to compute the numerical motion and velocity

of the wavemaker in Section 5.5.2 in order to compare the calculated numerical waves to the

corresponding experimental waves.

Wave probes

To measure the free-surface elevation, wave probes are placed at various locations in the wave

tank (see Fig. 5.6). Figure 5.7 shows the two types of probes available for measuring the wave

elevation. They are set at approximately 0.3m from the tank side wall, and record the free-surface

elevation at a frequency of 100Hz with an accuracy of order O(1mm). Three probes are placed in

the deep-water area (x < xB), three above the beach (x > xB) and one at the start of the beach

(x = xB). Figure 5.6 shows the location of the probes in the experimental tank. Their targeted

locations are x1 = 15.0m, x2 = 17.0m, x3 = 19.0m, x4 = 20.0m, x5 = 21.0m, x6 = 22.0m and

x7 = 23.0m. However, the locations of the probes need to be known as precisely as possible (i.e

at a precision of at least order O(∆xDW)) to ensure a fair comparison between the experiments

Chapter 5. Experimental validation of the numerical wave tank 151

and the numerics. To minimize the error, repeated measurements of their location are conducted

with a laser and detailed in Table 5.1. Measurements 1 and 2 are made from the wavemaker to the

probes, while measurement 3 is made from probe 1 to the other probes to limit the error made on

long-distance measurements. The averaged measurements are used to set the probe locations in

the numerical model.

Figure 5.6: Wave probes in the experimental tank (left) and schematic representation of their

location (right).

Figure 5.7: Photographs of the probes used for measuring the free-surface elevation. Left: type

used for WHM1, WHM3 and WHM6. Right: type used for WHM2, WHM4, WHM5 and WHM7.

152 Chapter 5. Experimental validation of the numerical wave tank

measurement 1 measurement 2 measurement 3 average

[m] [m] [m] [m]

x1 (WHM1) 15.000 14.998 / 14.999

x2 (WHM2) 17.082 17.077 17.090 17.083

x3 (WHM3) 19.038 19.037 19.040 19.038

x4 (WHM4) 20.015 20.017 20.010 20.014

x5 (WHM5) 21.075 21.079 21.086 21.080

x6 (WHM6) 22.025 22.020 22.022 22.022

x7 (WHM7) 23.154 23.154 23.161 23.156

Table 5.1: Laser measurements of the probe locations.

Table 5.2 shows that the deviation of each measurement from the averaged value is of order

O(10−3)m. As the shortest wavelengths is of about 1.0m, the error coming from the probe location

precision is negligible.

deviation 1 deviation 2 deviation 3

[m] [m] [m]

x1 (WHM1) 0.001 0.001 /

x2 (WHM2) 0.001 0.006 0.007

x3 (WHM3) 0.002 0.003 0.0010

x4 (WHM4) 0.000 0.003 0.004

x5 (WHM5) 0.005 0.001 0.006

x6 (WHM6) 0.001 0.004 0.002

x7 (WHM7) 0.003 0.003 0.004

Average 0.002 0.003 0.004

Table 5.2: Precision of the probe-location measurements.

Chapter 5. Experimental validation of the numerical wave tank 153

Video capture of the waterline

To measure the location of the waterline, we place a gauge on the beach, as shown in Fig. 5.8.

The gauge is 0.05m high and a correction must therefore be applied to the measured position to

estimate the real waterline location.

Figure 5.8: Beach probe to estimate the location

of the waterline.

Figure 5.9: Estimation of the real waterline

position from the measured location.

To increase the precision of the waterline estimation, an additional high-speed video of the

waterline evolution is recorded at high resolution 1920 × 1080 pixels at 60 frames per second.

In order to estimate the location of the waterline from the video, a chequered board is placed on,

and perpendicular to, the beach, as shown in Fig. 5.10. Each square is 5cm ×5cm, and the exact

location of the chequered board is known (cf. Fig. 5.10). Therefore, the distance ∆xWL between

the end of the beach and the waterline may be estimated from the chequered board.

Figure 5.10: Chequered board (left) and its location relative to the beach (right).

As shown in Fig. 5.11, the coordinate xWL of the waterline may then be computed through

xWL = xB + (1.071m−∆xWL)sp. (5.6)

154 Chapter 5. Experimental validation of the numerical wave tank

The combination of the two aforementioned measurement methods enables estimation of the

waterline position.

Figure 5.11: Estimation of the waterline coordinate from the chequered board.

5.3.2 Measuring uncertainty

The measuring precision and the differences between the experimental and numerical set-up must

be taken into consideration to fairly analyse any discrepancy between experimental and numerical

results.

The first difference between the experimental and numerical models is the gap of 0.02m below

the start of the beach (cf. Fig. 5.4) in the experimental tank, while the numerical beach starts at

z = 0m. The vertical resolution in the numerical tank will thus be set larger than 0.02m at the

start of the beach.

A second difference concerns the additional weights pinning down the baseline of the beach, which

change the water height locally. The weights are placed as in the left subfigure of Fig. 5.12, that

is, on both sides and at the middle of the beach (configuration 1); this configuration is the one used

in the experiments. However, since one of the weights is close to the probe WHM4, a test is made

to estimate its effect on the wave behaviour. To this end, repeated measurements are made in this

configuration and compared with the configuration 2 pictured in the right subfigure of Fig. 5.12,

where two weights are placed at the middle of the beach width and one on the side opposite to the

probe.

Figure 5.13 shows that the difference between the two configurations is not more significant

Chapter 5. Experimental validation of the numerical wave tank 155

than between repeated tests of the same configuration. In both cases, the difference is only a

few millimetres, which is expected from the probe-measurement precision of order O(1mm).

Therefore, we can assume that the weights do not significantly disturb the wave behaviour.

Figure 5.12: Left: Configuration 1: weights are placed on both sides and in the middle of the

beach to hold it in place. Configuration 2: two weights are placed in the middle of the beach and

one on the side opposite to the probes.

Figure 5.13: Wave-height measurements at probe WHM4 with configuration 1 (left of Fig. 5.12)

(blue and orange curves for repeated measurements) and configuration 2 (right of Fig. 5.12)

(yellow and violet curves for repeated measurements) in various measurement-time intervals.

156 Chapter 5. Experimental validation of the numerical wave tank

Finally, the measurement error induced by the accuracy of the probes is minimized by both the

repetition of the measurements and a calibration carried out regularly, as explained in section 5.3.3.

5.3.3 Calibration of the wave gauges

A calibration is carried out before the measurements are made to ensure that the measured signal

corresponds to the actual water height. Probes 1, 3 and 6 can be moved up and down manually, to

change the position of their intersection with the waterline, with a precision of order O(0.001m).

To be calibrated, their position is set to the lowest height (-0.180m) in calm water (h = 1.00m).

Then, every 30s, their position is changed manually, with a step of 0.020m.

The measured heights are compared to the expected ones for each of the three probes, and the

sensitivity sk at each vertical location zk is then computed using

sk =
zk measured

zk expected
, (5.7)

and the corresponding accuracy is obtained through:

ak =
sk
sk
− 1, (5.8)

where sk is the averaged sensitivity over the probe height. Due to corrosion of the two wires (cf.

Fig. 5.7), the sensitivity of the probe is not constant along its height. Therefore, the error in the

measurements of the trough of the wave will vary slightly from the one at the crest.

To increase the accuracy of the probe measurements, the signal obtained from the amplifier may be

adjusted through a calibration factor. This calibration factor is first set to 1.0, and then multiplied

by the averaged sensitivity sk along the probe height. At the next calibration, the updated

calibration factor is obtained by multiplying the previous calibration factor with the updated

averaged sensitivity. The probes are assumed to be accurately calibrated when the sensitivity

tends to 1, with constant accuracy over the probe height; that is, when the calibration factor stays

constant from one calibration to the next.

The other four probes (WHM2, WHM4, WHM5 and WHM7) cannot be moved vertically as easily

as probes WH1, WH3 and WH6. In order to calibrate them, we generate a wave with estimated

frequency and height, and we compare the signal measured by probes WHM2, WHM4, WHM5

Chapter 5. Experimental validation of the numerical wave tank 157

and WHM7 not only to the expected height but also to the ones measured by probes WHM1,

WHM3 and WHM6 (already calibrated). Again, the ratio between the measured height and the

expected one enables adjustment of the calibration factor in order to increase the accuracy of the

measurements.

Once acceptable accuracy is obtained, the calibration is repeated only once per experimental

session, to ensure that the probes still capture the water height accurately. As the accuracy of

the probes is of the order O(1mm), the measurement error for the low-amplitude waves (i.e.,

Hs ≤ 0.1m) is more significant than for higher-amplitude waves. To limit this error, the tests are

conducted at least twice and compared.

5.4 Wave specification

The wave profiles used as input of the wave generator are defined through the wavelength λ and

height Hs of the waves. Through these two parameters, the wave frequency ω, period T , velocity

c and steepness s may be estimated by employing linear theory to be:

ω =

√
2πg

λ
tanh

[
2πH0

λ

]
, T =

2π

ω
, c =

λω

2π
, s =

Hs

λ
. (5.9)

The evolution of the free-surface deviation η from the mean depth H0 at the wavemaker is then

obtained through a sinusoidal profile as

η(R, t) =
Hs

2
sin(ωt). (5.10)

To better observe the reflection from the beach, we stop the wavemaker motion when the first

generated wave is expected to reflect at the beach surface. As shown in Fig. 5.14, the length of the

basin at rest (time t0) is Lx = 30m with WHM1 placed at x1 = 15m. If the last wave is generated

when the first wave reflects at the beach (at time t1), then there is a distance of 30m between the

first and the last waves. Therefore, the reflection of the first wave meets the last generated wave at

WHM1 (time t2). Then, the first wave is reflected at the wavemaker boundary while the last wave

reflects at the beach, and they meet again at WHM1 at t3. Subsequently, only reflected waves are

measured at the probes.

158 Chapter 5. Experimental validation of the numerical wave tank

0 15 20 30

0 15 20 30

0 15 20 30

Waves
Reflected waves from the beach

First wave
Last wave

Reflected waves from the wave-maker

0 15 20 30

t0

t1

t2

t3

x

x

x

x

Figure 5.14: Configuration of the number of waves to be generated. At time t0, water is at rest;

at time t1, the first wave reaches the beach and the wavemaker is turned off; at time t2, the last

generated wave meets the reflection of the first wave at the probe WHM1; and, at time t3, the

reflection of the last wave meets the first wave again at probe WHM1.

The maximum number N of waves to generate in order to satisfy this configuration may be

computed from the wavelength of the waves as follows:

N =
Lx
λ
. (5.11)

Various configurations, both for regular and irregular waves, are tested to approach the breaking-

and deep-water limits and answer the objectives described in the introduction. References of the

regular and irregular wave specifications are given in Tables 5.3 and 5.4 respectively. The values

of Table 5.3 are estimated from the linear wave theory, using (5.9); the characteristics of the waves

in the basin will vary from the expected ones. To obtain these regular and irregular waves in the

wave tank, the corresponding wavemaker-input signal must be computed. This is done by defining

a transfer function between the wavemaker stroke and the wave height, as explained in the next

section.

Chapter 5. Experimental validation of the numerical wave tank 159

Regular waves

Test case
Wavelength Frequency Period Velocity Wave height Steepness

λ [m] ω [rad/s] Tp [s] cp [m/s] Hs [m] [−]

1.1.1

4.00 3.76 1.67 2.39

0.050 0.0125

1.1.2 0.100 0.0250

1.1.3 0.200 0.0500

1.2.1

2.00 5.54 1.13 1.76

0.050 0.0250

1.2.2 0.070 0.0350

1.2.3 0.100 0.0500

1.3.1
1.00 7.85 0.80 1.25

0.030 0.030

1.3.2 0.050 0.050

Table 5.3: Test cases for regular waves. Three wavelengths are considered (second column).

The corresponding frequencies, periods, and velocities are estimated with Eq. (5.9). For each

wavelength, several characteristic wave heights are tested (sixth column), yielding varying

steepness (seventh column), including one approaching the breaking-wave limit (sw = 0.05).

160 Chapter 5. Experimental validation of the numerical wave tank

Test case
Hs Tp

Wave profile
[m] [s]

2.1 0.05 1.56

2.2.1

2.2 2.2.2 0.1 1.56

2.2.3

2.3 0.2 1.56

Table 5.4: Test cases for irregular waves with random frequency and amplitude.

Chapter 5. Experimental validation of the numerical wave tank 161

5.5 Wavemaker input

5.5.1 Experimental wavemaker input

In order to generate the expected waves in the basin, the wavemaker must be calibrated by

computing the transfer function; that is, the ratio between the wavemaker stroke and the resulting

wave height in the basin. The method used to estimate the transfer function is detailed in

section 5.5.1. Once the required wavemaker stroke is known, a filter is applied at the start and

at the end of the wavemaker signal to smooth out its motion and hence to reduce the generation

of additional frequencies. This is done by applying a ramp function to the signal, as explained in

section 5.5.1.

Determination of the transfer function

To calibrate the wavemaker, various prescribed input signals, expressed in volts, are sent to the

signal generator. The resulting waves are measured at two probes (WHM2 and WHM6). As the

waves are not dampened much between x2 and x6, these two probes, previously calibrated, should

measure similar wave heights. By fitting the measured signals with a sinusoidal function, the wave

amplitude and period are extracted from the records. Table 5.5 shows the measured periods and

wave amplitudes at WHM2 (x2) and WHM6 (x6), as well as the measured (Umeas) input signals

from the wavemaker, in response to various input signals Usent.

T Usent Umeas h(x2) h(x6)

[s] [V] [V] [mm] [mm]

1.13 1.1 1.09 60.66 62.1

1.67 1.5 1.48 63.7 61.6

2.0 0.50 0.49 16.20 15.99

3.0 3.0 2.96 61.8 60.35

Table 5.5: Prescribed (U sent) and measured (U meas) wavemaker inputs, measured wave

period T and amplitudes h(x2) at probe WHM2 and h(x6) at probe WHM6.

162 Chapter 5. Experimental validation of the numerical wave tank

The first thing to note from Table 5.5 is that the prescribed and measured wavemaker signals

are the same when measured to a precision of order O(10−2V). The wave height varies a few

millimetres between the two probes, which is consistent with the results from the calibration in

section 5.3.3. The transfer function RAO, in Volts/mm, is obtained from Table 5.5 by computing

the ratio between the measured wavemaker stroke and the wave amplitude for each wave period:

RAO2,6 =
Umeas
h(x2,6)

. (5.12)

Table 5.6 and Fig. 5.15 give the RAO computed from the measurements at WHM2 and WHM6

(RAO2 and RAO6 respectively) for each wave period of Table 5.5.

T RAO2 RAO6

[s] [V/mm] [V/mm]

1.13 0.0180 0.0176

1.67 0.0232 0.0240

2.0 0.0302 0.0306

3.0 0.0479 0.0490

Table 5.6: Transfer function (RAO)

computed at WHM2 and WMH6 for

various wave periods.

Figure 5.15: Transfer function (RAO) as a function of

the wave periods, obtained by interpolating the values

of Table 5.6 with a 2nd–order polynomial.

The trend line in Fig. 5.15 is a polynomial of order 2 describing the RAO

[piston[V]/amplitude[mm]] as a function of T [s] :

RAO = 0.0028T 2 + 0.0045T + 0.009 (V/mm). (5.13)

The input of the wavemaker required to obtain a specific wave height in the basin may be computed

using Eq. 5.13:

Spiston =
Hs

2

[
0.0028T 2 + 0.0045T + 0.009

]
(V). (5.14)

Chapter 5. Experimental validation of the numerical wave tank 163

Before generating the waves specified in section 5.4, Eq. 5.14 is verified. We aim to generate

a wave with period T = 1.13s and wave height Hs = 70mm. Using Eq. 5.14, the stroke of

the wavemaker should be 0.62V. The measured wave height at probes WHM2 and WHM6 are

displayed in Table 5.7.

T Expected Hs WM input Measured WM Amplitude Amplitude

[s] [mm] [V] [V] h(x2) [mm] h(x6) [mm]

1.13 70 0.62 0.61 35.78 35.77

Table 5.7: Test of the transfer function.

From Table 5.7, the probe WHM2 measures a wave height of 2 × 35.78 = 71.56mm while

WHM6 measures 2 × 35.77 = 71.54mm. The precision of the probes being of order O(1mm),

these measurements confirm that the transfer function given in Eq. 5.14 leads to the expected

wave height and may be used to translate the wave specified in section 5.4 into the corresponding

wavemaker stroke. Note that a small variation between the expected and measured wave height

would not be an issue as only the measured signals will be used and compared to the numerics.

Therefore, the transfer function is required only to approximate the intended wave profiles. Before

sending the wavemaker signal to the wave generator, the start and the end of the wavemaker motion

must be smoothed. This is done next.

Determination of the ramp function

The wavemaker must be switched on and off smoothly to reduce the generation of extra

frequencies in the wave spectrum. Several methods, such as tanh-function smoothing, may be

used to gradually turn on and off the wavemaker signal. The custom at the wave tank of the TUD

is to start the wavemaker with two identical but out-of-phase waves so that the initial signal is

actually null. By shifting progressively the phase shift, the two waves slowly add until they reach

the intended amplitude. We applied this method both at the start and at the end of our wavemaker

signal.

164 Chapter 5. Experimental validation of the numerical wave tank

To this end, a ramp time Tup during which the wavemaker is turned on or off is set. In our case, it

is set to twice the wave period, that is,

Tup = 2T. (5.15)

Then, the two input signals are defined as follows:

U1(t) =
U

2
sin(

2π

T
t) and U2(t) =

U

2
sin(

2π

T
t+ ε(t)π), (5.16)

where U is the wavemaker stroke obtained with the transfer function Eq. 5.14 and ε is the time-

dependent phase-shift between the two waves. By definition, the sum of U1 and U2 is the intended

wavemaker input when the waves are in phase (that is, when ε = 0) and is zero when U1 and U2

are out of phase (that is, when ε = 1).

Figure 5.16: Wavemaker-input signal built from U1 and U2 with the ramp function for the case

Tp = 1.67s, Hs = 0.05m.

Chapter 5. Experimental validation of the numerical wave tank 165

For a smooth start and end of the wavemaker signal, ε is defined as

ε(t) =



1− t

Tup
, if t ≤ Tup,

0, if Tup ≤ t ≤ Tstop − Tup,
t− Tstop − Tup

Tup
, if t ≥ Tstop − Tup,

(5.17)

where Tstop is the time at which the wavemaker is intended to stop. Figure 5.16 shows the shift

function ε(t), together with the two building signals U1(t) and U2(t) and the resulting wavemaker

input R(t) in the case 1.1.1, that is, for Tp = 1.67s and Hs = 0.05m (cf. Table 5.3). Since the

period of the regular waves is T = 1.67s, the ramp time is Tup = 3.34s. The final wavemaker input

also includes a zero signal before and after the wavemaker motion in order to allow time both to

start the record (before the wavemaker motion) and to let the waves propagate (after the last wave

generation) to measure the reflection from the beach, as explained in section 5.4. An example of

the full wavemaker input to generate waves of peak period Tp = 1.67s and characteristic wave

height Hs = 0.05m is given in Fig. 5.17.

Figure 5.17: Full wavemaker-input signal to generate waves with Tp = 1.67s and Hs = 0.05m.

166 Chapter 5. Experimental validation of the numerical wave tank

5.5.2 Numerical wavemaker input: extraction of the measured wavemaker motion

and velocity

In order to validate the simulations against the experiments, the measured wavemaker motion

and calculated velocity are used as input of the model. First, the measured wavemaker motion,

in millimetres, is filtered with a low-pass filter with cut-off frequency of 30Hz to remove the

measurement noise. To save some computational time, the first 3.0s of the filtered signal, during

which the wavemaker is static, are then ignored.

Figure 5.18: Example of measured and estimated wavemaker motion (top row), velocity (middle

row) and acceleration (bottom row) used as input of the numerical model.

Figure 5.18 (top row) shows the truncated measured wavemaker motion together with the truncated

filtered signal for the generation of regular waves with Tp = 1.67s and Hs = 0.05m.

Chapter 5. Experimental validation of the numerical wave tank 167

The wavemaker velocity u(t) is then computed from the filtered motion R(t) with a central-

difference scheme, as

u(t) =
R(t+ ∆t)−R(t−∆t)

2∆t
+O(∆t2), (5.18)

with the measurement time step ∆t = 0.001s. Figure 5.18 (middle row) shows the resulting

estimated velocity. A verification is made against the measured wavemaker acceleration a(t), by

applying a central difference scheme to the estimated velocity. The time derivative of the estimated

velocity and the measured acceleration are compared in Fig. 5.18 (bottom row), confirming that

the velocity estimate is accurate. The wavemaker motion and velocity are sufficient to reproduce

the measured wave dynamics in the numerical tank. The remainder of this chapter aims to validate

the obtained numerical simulations on the aforementioned aspects .

5.6 Validation of the numerical wave tank

5.6.1 Capture and absorption of irregular waves

As explained in Chapter 4, a limit of existing absorbing-boundary methods such as those

introduced by Peric and Maksoud [115, 116] is that they require an analytical solution for

the waves, and may thus be used for the absorption of prescribed, regular waves only. The

numerical tank and the coupling to the dry beach introduced in Chapter 4 respectively aim to

simulate and absorb any type of waves, including irregular waves, without requiring the a priori

estimation of the wave profiles. In this section, the numerical tank is validated against experimental

measurements of irregular wave profiles.

Irregular waves with variable frequency, amplitude and steepness are considered. Their amplitude

and frequency are computed randomly, with a peak period Tp ≈ 1.56s and characteristic wave

height Hs = 0.1m. A wave spectrum of 200s is generated from 100 equidistant frequency

components between ω1 = 3.5rad/s and ω2 = 4.5rad/s, each with an amplitude Za = Hs/2, and

a random phase εω = 2nπ where n is a random number between 0 and 1:

η(t) =

4.5∑
ω=3.5

Za sin(ωt+ εω). (5.19)

168 Chapter 5. Experimental validation of the numerical wave tank

To satisfy condition (5.11), phase angles of about nine waves are selected among the obtained

spectrum. Three phase angles are considered hereafter: case 2.2.1, case 2.2.2 and case 2.2.3 (cf.

Table 5.4). As ω ≤ ω2 = 4.5rad/s, the minimal wavelength is approximately λ ≈ 3.0m. The

deep-water spatial resolution is set to ∆xDW = 0.05m, so that the waves are discretised by at least

60 nodes. As a consequence, the shallow-water resolution is set to ∆xSW = ∆x2
DW = 0.0025m.

To satisfy the stability condition (3.71), the time step is set to ∆t = 0.001s. Finally, the coupling

point is set at xc = 28.24m, which ensures sufficient water depth to guaranty stability of the

potential-flow simulations.

First, we verify that the irregular waves are well captured by the numerical tank. To observe the

wave-frequency spectra in each case, the numerical free-surface Fourier modes are compared

to the experimental free-surface measurements in Fig 5.19 (case 2.2.1), D.7 (case 2.2.2, in

Appendix D.1) and D.8 (case 2.2.3, in Appendix D.1). As expected, most of the frequency

spectra are contained within ω1 = 3.5rad/s and ω2 = 4.5rad/s. In the three cases, all the Fourier

modes are captured by the numerical tank, thus confirming that irregular waves are accurately

simulated in the numerical basin. The amplitude variation (≤ 10%) is assumed to result from

the aforementioned discrepancies between the experimental and numerical measurements (noise

filtering, probe accuracy etc.).

To check whether the irregular waves are efficiently absorbed by the beach, the energy absorption

is computed in each case, in Fig. 5.20. Figure 5.20 shows that above 98.9% of the energy is

absorbed by the numerical beach. Therefore, the numerical tank is efficient in both the generation

and absorption of irregular-wave profiles, despite the fixed-coupling location.

Chapter 5. Experimental validation of the numerical wave tank 169

Figure 5.19: Comparison between numerical (blue) and experimental (black) Fourier modes of

irregular waves measured at probes 1 to 7 with Hs = 0.1m and Tp = 1.56s (cf. wave profile in

Table 5.4, case 2.2.1).

170 Chapter 5. Experimental validation of the numerical wave tank

Figure 5.20: Energy absorption for irregular waves with Hs = 0.1m and Tp = 1.56s. Three

wave profiles are considered: case 2.2.1 (top row), case 2.2.2 (medium row) and case 2.2.3 (bottom

row) (see Table 5.4).

Chapter 5. Experimental validation of the numerical wave tank 171

5.6.2 Capture and absorption of long waves

In order to study the long-wave reflection of the 10%-slope beach, the long-wave case 1.1.1 (cf.

Table 5.3) is repeated in the full-length tank, as shown in Fig. 5.21.

Figure 5.21: Photography (left) and schematic (right) of the experimental tank of TUD.

The objective is to compare the amplitude of the reflected waves in the tank-with-beach set-up and

in the full-length tank, in order to evaluate the ability of the beach to both absorb and reflect long

waves. In addition, simulations with ∆xDW = 0.05m, ∆xSW = 0.0025m and xc = 28.24m are

performed based on the measured wavemaker motion and velocity in the case with a beach.

Figure 5.22 compares the temporal evolution and the Fourier modes of the free-surface elevation

in the case of experiments in the full-length tank (black), repeated experiments in the “beached”

tank (purple) and simulations (blue). The top plot in Fig. 5.22 shows the temporal evolution of

the free surface at probe 1 (x1 = 15m) for the case of numerical data (blue), experimental data

in the tank with a beach (purple) and experimental data in the full-length tank (black). Overall,

the numerical waves agree with the “beach-tank” measurements, both in phase and amplitude. It

is noteworthy that the comparison is better for the troughs of the waves than for the crests. As

explained in section 5.3.3, this observation can result from a different accuracy along the probe

depth, due to corrosion of the wire. The temporal evolution of the free surface is used to estimate

the frequency components of the waves at various times.

172 Chapter 5. Experimental validation of the numerical wave tank

Figure 5.22: Wave profile at probe 1 (x1 = 15m) are used to analyse the reflection of long waves

at the beach and on a vertical wall. Top: temporal evolution of the free surface. Bottom left:

Fourier modes of the wave spectrum from 8s to 30s revealing the main-frequency components of

the spectrum. Bottom middle: Fourier modes of the wave profile from 40s to 68s to highlight

reflection of long waves on the 10%-slope beach. Bottom right: Fourier modes of the wave profile

from 80s to 115s to obtain the reflection of long waves on a vertical wall.

First, the main wave-frequency components are evaluated by computing the Fourier modes of the

measured and numerical wave profiles between t = 8s and t = 30s (blue area). In Fig. 5.22,

in which the amplitude of each frequency component is given in the bottom-left subfigure, a

regular wave spectrum with main frequency components contained between ω = 3.70rad/s and

ω = 3.99rad/s can be observed, which agrees with the intended wave frequency ω = 3.76rad/s

from Table 5.3. The time needed by the waves to travel to the end of the full-length tank (that

is, along a distance of L = 85.0m) and to be reflected back to probe 1 at x1 = 15.0m can be

calculated from the main wave frequency; waves of frequency ω = 3.70rad/s travel at speed

c = 2.42m/s, thus taking

t = (2L− x1)/c ≈ 64 s (5.20)

to travel back to probe 1. As there is a delay of approximately 5s recorded before starting the

wavemaker, only waves reflected from the beach should be measured in the time interval [40s, 68s].

Chapter 5. Experimental validation of the numerical wave tank 173

The Fourier modes of the wave signal between t = 40s and t = 68s can be observed in the

middle of the bottom subfigure of Fig. 5.22. As expected, the main frequency component of

both the numerical and experimental measurements in the case with a beach is ω = 3.81rad/s,

thus corresponding to the waves reflected on the 10%-slope beach. This observation confirms

that the beach partially reflects the long waves. By comparison with the bottom-left subfigure,

for which the length of the time interval was similar, the portion of reflected waves is less than

one tenth of the initial wave spectrum (amplitude of about 2.7 × 10−4 against 4.8 × 10−3 on the

bottom-left plot is Fig. 5.22). However, the reflection factor must be evaluated with care since the

amplitudes of the frequency components depend highly on the time interval considered. Another

major observation is that, contrary to the case with beach or to the numerical data, the amplitude of

the long-wave frequency component is negligible in the case of the full-length tank. As expected,

waves with frequency ω ≈ 3.8rad/s have not yet travelled back to probe 1, meaning that the full-

length tank still behaves as a transparent boundary during the time interval [40s,68s]. Frequencies

larger than 4.7rad/s are assumed to result from noise, as they are measured in both the full-length

and “beached” tanks. Finally, a major frequency component between 0.1 and 0.5rad/s can be

observed in the case of the full-length tank. These frequencies correspond to extremely-long waves

(λ > 40m) that require hours to be dampened. These measurements are thus assumed to result

from remaining long waves in the basin before the start of the measurements. The behaviour of

the black curve in the top subfigure of Fig. 5.22 tends to confirm this assumption: the free-surface

level decreases before any wave has reached probe 1 (for t < 10s), and the long-wave noise may

be observed all along the evolving profile.

Finally, the bottom-right subfigure of Fig. 5.22 confirms that the reflection from the beach is

negligible compared to the reflection at the end of the full-length basin. Most of the frequency

components measured in the time interval [80s,115s] in the full-length tank correspond to waves

generated with frequency ω ≈ 3.8rad/s. The deep-water part of the basin is therefore much more

disturbed by reflected waves than the tank with beach. The red area in the top figure confirms that

the reflected-wave amplitudes in the full-length tank are non-negligible compared to the initial

wave profiles, while Fig. 5.23 shows that reflected waves in the “beached” tank correspond to less

than 2% of the initial energy.

174 Chapter 5. Experimental validation of the numerical wave tank

Figure 5.23: Numerical energy in the “beached” tank for case 1.1.1 (see Table 5.3) with

Hs = 0.05m, Tp = 1.67s and xc = 28.24m.

These results confirm that the addition of a beach in the numerical domain considerably reduces

the computational time, since even in a domain of almost three times the length of the “beached”

tank (85m as opposed to 30m), reflected waves rapidly disturb the deep-water area. Figures 5.22

and 5.23 also indicate that a beach with slope 10% is particularly efficient to absorb the waves,

including long waves that are expected to partially reflect. Other, steeper, slopes could be

considered to measure the reflection of long waves.

5.6.3 Capture and absorption of short waves

In the numerical tank derived in this thesis, waves are generated from a piston wavemaker. As

explained in the conclusions of Chapter 3, the circular particle motion of deep-water waves

Chapter 5. Experimental validation of the numerical wave tank 175

may not be accurately generated from a uniform height-independent horizontally-translating

wavemaker motion. The generation of short waves with a piston wavemaker results in a

modulation of the wave amplitude, thus disturbing the expected free-surface deviation. However,

to test wave-structure interactions in experimental wave tanks, it is important for engineers and

designers to predict as accurately as possible the profile of the waves that will impact the structures

in order to avoid over- or under-estimation of the wave forces. Similarly, when studying the factors

resulting in a freak wave in a target area, one must ensure that no adverse effect will disturb the

extreme-wave generation. The incapacity of the piston wavemaker to simulate realistic short waves

thus limits the use of piston wavemakers installed in experimental tanks, which are nonetheless

expensive and sometimes difficult to replace by more accurate flap-type wavemakers. A model

that can simulate the amplitude modulation resulting from the piston motion would therefore be of

great interest to the maritime industry, and in particular to MARIN, to predict and accommodate

the disturbance caused to the free-surface deviation. The aim of this section is therefore to validate

the ability of the numerical tank to capture the dynamics of short, deep-water waves generated by

a piston wavemaker.

Waves are considered as short waves, or deep-water waves, when their wavelength is less than or

equal to twice the water depth, that is, when

λ ≤ 2H0. (5.21)

Since the water depth at rest in the flat experimental tank is H0 = 1.0m, regular waves with

Hs = 0.03m and wavelength λ ≈ 1.0m are generated (case 1.3.1 in Table 5.3), thus satisfying

the deep-water criterion (5.21). The coupling interface is set at x = 28.24m, with deep-water

resolution ∆xDW = 0.05m and ∆xSW = ∆x2
DW = 0.0025m.

To observe the amplitude modulation resulting from the piston motion, the evolving profiles of the

experimental and numerical free-surface elevations at the probes WHM1 to WHM7 are compared

in Fig. 5.24 . To reduce the measurement errors, the experimental measurements are repeated and

denoted by Exp. 1 and Exp. 2. Figure 5.24 shows that the short-wave profiles are well captured

by the deep-water model. As intended (see Table 5.3), both the experimental and numerical wave

heights are about Hs = 0.03m, thus confirming the accuracy of the transfer function computed in

section 5.5.1.

176 Chapter 5. Experimental validation of the numerical wave tank

Figure 5.24: Temporal evolution of the free surface at probes WHM1 to WHM7 in the case 1.3.1,

that is, for Tp = 0.80s and Hs = 0.03m (see Table 5.3). The coupling point is set at xc = 28.24m,

yielding a coupling-depth at rest of Hc = 0.2m.

Chapter 5. Experimental validation of the numerical wave tank 177

While the wavemaker amplitude is regular, the numerical and experimental wave profiles

have peaks of amplitude, thus confirming that the numerical tank may be used to predict the

experimental short-wave profiles and to avoid unexpected amplitude modulation. However, some

disturbances of the numerical signal can be observed after the main wave profile; while the

experimental measurements mainly consist in noise measurements, the numerical signal contains

some low-amplitude waves that can result from either an instability at the coupling point or a

partial reflection at the beach.

Figure 5.25: Temporal evolution of the deep- (black) and shallow-water (dashed blue) depths at

the coupling point xc = 28.24m for the case 1.3.1 (see Table 5.3).

To eliminate the first option (i.e., discontinuity at the coupling point resulting in some instability)

the temporal evolutions of the deep-water and shallow-water depths at x = xc are compared in

Fig. 5.25. The top subfigure shows their evolution over the whole time interval [0s, 120s], while

the second subfigure focuses on the main wave profile in which waves are higher and steeper.

The deep- and shallow-water depths at the coupling point agree during the whole time interval,

including when the short waves cross the coupling interface, thus confirming that the coupling is

continuous and stably captures the short-wave transfer from deep to shallow water. Therefore, the

reflected waves noticeable in Fig. 5.24 probably result from reflection of the main wave signal on

the beach.

178 Chapter 5. Experimental validation of the numerical wave tank

Figure 5.26: Fourier modes of the numerical (blue) and experimental (black) reflected waves

measured at probe 1 of case 1.3.1 (Hs = 0.03m and Tp = 0.8s, see Table 5.3) during the time

interval [70s, 90s]. The coupling is set at xc = 28.24m.

To confirm this assumption, the Fourier modes of the numerical free-surface elevation at probe 1

are computed for the time interval during which reflected waves are observed, that is, for

t ∈ [70s, 90s] (cf. top-right subfigure of Fig. 5.24). The results are displayed in Fig. 5.26,

together with the Fourier modes of the experimental free-surface elevation during the same time

interval. As expected, the waves measured in the time interval [70s, 90s] have a frequency of

ω = 7.84rad/s, which is the frequency of the waves initially generated by the wavemaker (cf.

Table 5.3). Therefore, these waves do not result from any instability in the tank but from partial

reflection at the beach. This observation indicates that the coupling is able to continuously and

stably transfer short waves from deep to shallow water (and vice-versa) but that improvements can

be made to the beach model so that it absorbs these short waves more accurately. The shallow-

water model accuracy is higher for shallow-water waves, that is, waves satisfying λ ≥ 20H .

In the case presented in this section, the coupling was set to xc = 28.24m, with rest depth

Chapter 5. Experimental validation of the numerical wave tank 179

H(xc) = 0.2m= λ/5, so the shallow-water limit was not satisfied. One option to increase the

efficiency of the shallow-water beach model is to shift the coupling point to shallower water.

However, one must ensure that the depth is deep enough to avoid wave breaking. Since the

breaking-wave limit for waves with λ = 1.0m is at h ≤ λ/20 = 0.05m, the depth at the coupling

point is set to H(xc) = 0.08m to ensure that h−Hs > λ/20 and hence that wave breaking in the

deep-water domain is avoided.

Figure 5.27: Numerical energy in the case 1.3.1: short waves with Hs = 0.03m and Tp = 0.8s.

Left: coupling at xc = 28.24, with H(xc) = 0.2m= λ/5. Right: coupling at xc = 29.44m, with

H(xc) = 0.08m= λ/12.5.

Figure 5.27 compares the energy of case 1.3.1 (see Table 5.3) when the coupling is

at xc = 28.24m (left) and xc = 29.44m (right). In the first simulation, with

h(xc) ≈ 0.2 m = λ/5, the beach absorbs 97.98% of the wave energy and is thus efficient

despite the partial free-surface disturbance observed in Fig. 5.24. However, as expected, the energy

absorption is increased by shifting the coupling interface in shallower water, at xc = 29.44m

where h(xc) ≈ 0.08m < λ/12. In that case, the beach absorbs 98.88% of the energy.

Figure. 5.28 compares the amplitude of the frequency modes of the two simulations with the

experimental measurements for t ∈ [70s, 90s], that is, when only reflected waves are measured.

The amplitude of the reflected waves has dropped from 8.512 × 10−7 for the deepest coupling

where h(xc) = 0.2m (red) to 5.050× 10−7 for shallower coupling where h(xc) = 0.08m (green);

180 Chapter 5. Experimental validation of the numerical wave tank

that is, a decrease of 40%. This solution can thus be used to reduce short-wave reflection by the

numerical beach, but is limited by the breaking-wave limit, which may quickly be reached for

high-amplitude waves. In section 5.6.4, we show that the beach is indeed not optimal to absorb

steep, short waves.

Figure 5.28: Experimental (black) and numerical (red and green) frequency spectra of the free

surface at probe 1 (x1 = 15m) for the case 1.3.1 (see Table 5.3) to highlight the effect of the

coupling location on the wave reflection. The case where h(xc) = 0.08m (green) reflects the

waves 40% less than the case where h(xc) = 0.2m (red).

5.6.4 Capture and absorption of steep waves

A main objective of this thesis is to enable the generation of rogue-type waves in a target area of

the experimental or numerical wave tank. Due to their great steepness, these extreme waves can

be captured only by a nonlinear model, hence the necessity to implement a nonlinear absorbing

boundary through the shallow-water beach. The numerical tank presented in Chapter 4 is the first

fully nonlinear coupled model, and should therefore be able to absorb steep, nonlinear waves. The

purpose of this section is to evaluate the ability of the numerical model to absorb steep waves

approaching the breaking-wave limit.

Chapter 5. Experimental validation of the numerical wave tank 181

The steepness of a wave is hereafter defined as the ratio between its wave height Hs and

wavelength λ, that is,

sw =
Hs

λ
. (5.22)

The blue curve in Fig. 5.29 shows the maximum wave height that the wavemaker is able to generate

in the frequency range ω ∈ [2.53, 7.91] and may be understood as the breaking-wave limit, for

which sw = 0.05. To analyse the ability of the numerical tank to simulate and absorb steep

waves, waves at the breaking-wave limit are generated in the case of three different frequencies,

denoted by the red squares in Fig. 5.29 and whose parameters are specified in Table 5.8. By

comparing these three cases of equal steepness but differing wavelength and wave amplitude, we

aim to validate the accuracy of the numerical wave tank for the simulation, the coupling and the

absorption of steep waves in various configurations.

Case number ω [rad/s] Hs [m]

1.1.3 3.76 0.2

1.2.3 5.56 0.1

1.3.2 7.85 0.05

Table 5.8: Frequencies and wave heights

of the steep-wave profiles of cases listed

in Table 5.3. Figure 5.29: Specification of steep waves from

the breaking-wave limit.

In each case, the coupling location is defined from the wavelength and amplitude. For case 1.1.3,

with wavelength λ ≈ 4.0m, the shallow-water limit, which leads to wave breaking, is reached

when h(x) = 0.2m. The coupling point is thus set to satisfy H(xc) = 0.4m, so that the minimal

depth in the deep-water domain is h(xc) ≈ H(xc)−Hs/2 ≈ 0.3m> λ/20. By the same rationale,

the coupling points in cases 1.2.3 and 1.3.2 are both set to xc = 27.24m so that H(xc) = 0.3m.

In the three cases, the deep-water resolution is set to ∆xDW = 0.05m, while the shallow-water

resolution is set to ∆xSW = 0.0025m for cases 1.2.3 and 1.3.2, and to ∆xSW = 0.004m for case

1.1.3.

182 Chapter 5. Experimental validation of the numerical wave tank

Figure 5.30: Numerical (blue) and experimental (black) evolution of the free-surface elevation at

probe 1 when generating steep waves approaching the breaking-wave limit (case 1.1.3 (top), 1.2.3

(middle) and 1.3.2 (bottom), see Table 5.3).

To validate the simulation of steep waves by the deep-water model, the temporal evolution of the

numerical and experimental free-surface elevation at probe 1 are compared in Fig. 5.30 for each

case 1.1.3 (top), 1.2.3 (middle) and 1.3.2 (bottom). In the three cases, the steep waves are well

captured by the potential-flow model, which indicates that the coupling to shallow water enables

wave-breaking to be accommodated by the shallow-water model, thus ensuring stability of the

simulations despite waves approaching the breaking-wave limit.

Chapter 5. Experimental validation of the numerical wave tank 183

Figure 5.31: Numerical (blue) and experimental (black) Fourier spectra of the free-surface

elevation at probe 1 when generating steep waves approaching the breaking-wave limit (case 1.1.3

(top), 1.2.3 (middle) and 1.3.2 (bottom), see Table 5.3).

Figure 5.31 compares the experimental (black) and numerical (blue) Fourier wave spectra in all

three cases. The agreement between the numerical and experimental frequency modes in all three

cases indicates that no extra frequency is detected in the numerical model, thus confirming that

the simulations are stable. This observation confirms the efficacy of the numerical tank in dealing

with steep waves, which was not the case for the 3D potential-flow model of Chapter 3.

In particular, the coupling process is continuous despite the steepness of the waves, as shown in

Fig. 5.32. In all three cases, the deep- and shallow-water depths are equal at the coupling point,

184 Chapter 5. Experimental validation of the numerical wave tank

and, most importantly, their evolution does not show any unstable behaviour, thus confirming the

nonlinearity of the coupling. The coupled model can therefore be used to simulate steep waves and

test rogue-wave impact on maritime structures. However, its potential for utilisation may transpire

to be limited because of the fixed coupling point, which must be set with precaution to ensure both

stability of the potential-flow model and validity of the shallow-water assumption. As shown in

Fig. 5.30, despite being well captured by the deep-water model, part of the steep waves is reflected

by the shallow-water beach for all three cases.

Figure 5.32: Deep- and shallow-water depth at the coupling point for case 1.1.3, 1.2.3 and 1.3.2

in which steep waves approaching the breaking-wave limit are simulated (see Table 5.3).

Figure 5.33 shows that this reflection is still much lower than reflection from a rigid wall. The

energy of the three cases confirms that, for a given steepness, the simulation of long waves is more

accurate than in the case of short waves. This observation is consistent since short waves require

coupling at shallow-water depth (cf. results of section 5.6.3) while steep waves require coupling

at deep-water depth so that waves do not approach the breaking-wave limit. Dealing with these

two constraints requires finding a compromise between capture (deep coupling) and absorption

(shallow coupling) of the waves.

Chapter 5. Experimental validation of the numerical wave tank 185

Figure 5.33: Numerical deep- and shallow-water energy for case 1.1.3, 1.2.3 and 1.3.2 in which

steep waves approaching the breaking-wave limit are simulated (see Table 5.3).

5.7 Conclusion

The experiments conducted at TUD have enabled the validation of the accuracy of the numerical

tank for the simulation, the coupling and the absorption of various types of waves.

First, the deep-water part of the numerical tank shows good accuracy for the simulation of

irregular, regular, long, short and steep waves, both in terms of amplitude and frequency. In

particular, it can be used by the maritime industry to predict amplitude modulation resulting from

186 Chapter 5. Experimental validation of the numerical wave tank

the translation of the piston wavemaker during the generation of short waves in the experimental

basins.

Second, the coupling process developed in Chapter 4 is continuous and stable for all types of

waves, including steep and irregular waves. The first nonlinear coupling process developed in

Chapter 4 can therefore be used to stably couple other systems of nonlinear equations with the

variational approach. In addition, by adjusting the position of the coupling interface depending

on the wavelength and amplitude, good agreement between our numerical simulations and the

experimental measurements was obtained for wave steepness up to the breaking-wave limit.

Therefore, the coupling between the finite-element method and the finite-volume method enables

the capture of waves from their generation at the wavemaker to their absorption at the beach, and,

in particular, wave propagation in deep water as well as wave breaking at a shallow-water beach.

The coupling of the two models and numerical schemes is therefore an efficient method to model

water-wave dynamics. However, an intrinsic choice of the coupling location, as in [33, 55], would

optimise the efficiency of the coupling, in particular for short waves for which the balance between

stability of the deep-water model and accuracy of the shallow-water model is very sensitive to the

wave amplitudes. The coupling location must indeed be set depending on the waves’ profiles

in order to satisfy both the deep-water assumption (that is, waves’ amplitudes are sufficiently

small relative to the water depth) and the shallow-water limit (that is, the velocity profile is depth-

independent).

Finally, the 10%-slope beach shows efficient absorption of the waves, both experimentally and

numerically. However, the experimental reflection factor of long waves with the 10%-slope

beach could not be measured because in this case the reflected waves were negligible. Another

slope should be tested, both experimentally and numerically, to develop further conclusions on

the reflection of long waves. The numerical-beach-model absorption improves considerably the

computational performance of the deep-water model of Chapter 3. Future work includes the

extention to more accurate wave-breaking and beach models, so that the numerical tank can be

used to test breaking-wave impact on structures. Measurements of the waterline and breaking

location conducted at TUD are available for validation, and potential optimisation, of future

extensions of beach models.

In addition to the experimental data recorded for the validation presented in this chapter, detailed

Chapter 5. Experimental validation of the numerical wave tank 187

tutorials of the implementation of the models are explained in Chapter 6, thus allowing not only

the use but also further extension of the present numerical tank.

188 Chapter 5. Experimental validation of the numerical wave tank

189

Chapter 6

Code tutorials

6.1 Introduction

The models derived in this thesis were built to address industrial and academical challenges. To

facilitate the use and the extension of the models, detailed tutorials on how to both use and extend

the codes are presented in this Chapter. A folder containing all the codes is made available together

with this thesis. Figure 6.1 shows the code source of the main folder, named Variational water-

wave models. This folder contains a Benney-Luke folder, in which the Benney-Luke model for

oblique intersection of solitary waves presented in Chapter 2 is implemented. Details on how to

use and to implement this code are given in section 6.2. It also contains a folder Numerical tank

in which one can choose between solving the potential-flow equations in the deep-water tank,

as presented in Chapter 3, or the coupled equations presented in Chapter 4, in the coupled tank.

The description of the implementation strategies used in both cases is given in sections 6.3 and

6.4 respectively. Finally, in section 6.5, a tutorial on how to import the data collected at Delft

University of Technology (DUT) is given in order to allow validation of future extensions of the

coupled model, as suggested in Chapter 5. Each section of this chapter contains a presentation of

the model, a description of the code source, a list of the solutions saved during the simulations, a

tutorial to run the code, and details of the code implementation. The finite-element implementation

of the models is eased by the use of Firedrake [120, 9, 7, 71, 96], that can be installed following

the instructions given in the link: https://www.firedrakeproject.org/download.

html. The mesh generator Gmsh [56] is also required to build the mesh used in section 6.2 for

190 Chapter 6. Code tutorials

Figure 6.1: Code sources

the solitary-wave simulations. You can download it on http://gmsh.info/#Download.

Finally, Paraview [3] is used for visualisation of the solutions; it can be downloaded here: https:

//www.paraview.org/download/.

6.2 Rogue-type waves in shallow water: Benney-Luke model for

oblique interaction of solitary waves

6.2.1 Introduction

In this code, we simulate extreme waves that occur due to Mach reflection through the intersection

of a solitary wave with an oblique wall. For a given range of incident angles and amplitudes, the

Mach stem wave grows linearly in length and amplitude, potentially reaching up to four times

Chapter 6. Code tutorials 191

the amplitude of the incident waves. A variational approach was used in Chapter 2 to derive

the bidirectional Benney–Luke equations, an asymptotic equivalent of the three-dimensional

potential-flow equations modelling water waves. This nonlinear and weakly dispersive model

has the advantage of allowing wave propagation in two horizontal directions, which is not

the case with the unidirectional Kadomtsev–Petviashvili (KP) equation used in most previous

studies. A variational Galerkin finite-element method is applied to solve the system numerically

in Firedrake with a second-order Störmer–Verlet temporal integration scheme, in order to obtain

stable simulations that conserve the overall mass and energy of the system. Using this approach,

we are able to get close to the fourfold amplitude amplification predicted by Miles.

6.2.2 Code source

The codes are in the folder Benney Luke, that contains two python files.

• mesh hor.py is used to define the domain characteristics, such as the length of the incident

channel and oblique wall, and the angle of incidence. Running this file will create the

horizontal.geo file, that can be opened in Gmsh.

• The main file BL soliton.py, in which the solvers are implemented and solved.

Running the file BL soliton.py creates the following solution files:

• eta.pvd is the free-surface solution; open it on Paraview and apply a “Wrap by scalar” filter

to observe the free-surface evolution;

• phi.pvd is the velocity-potential solution. Open it on Paraview to observe its evolution;

• Ampl.txt saves the time (first column), the amplitude of the stem wave (second column) and

the amplitude of the incident soliton (third column). Open it with, e.g. Matlab, to compare

the evolution of the incident and stem waves.

6.2.3 Use of the code

One first needs to define the domain characteristics with the file mesh hor.py. Running this file

will create the horizontal.geo file, that can be opened in Gmsh. Then, one must create the 2D

mesh horizontal.msh with Gmsh, by selecting mesh → 2D → save. Finally, one can run the

main file BL soliton.py, making sure that the length of the channel, the length of the oblique wall

192 Chapter 6. Code tutorials

and the angle of incidence are the same as in the mesh hor.py file. It is highly recommended to

run this file in parallel to reduce the computational time.

6.2.4 Code description

A tutorial to solve the Benney-Luke equations with the Störmer-Verlet scheme, published by

A. Kalogirou and O. Bokhove, is available in the Firedrake documentation : https://www.

firedrakeproject.org/demos/benney_luke.py.html. The extended program

used to perform the numerical simulations of Chapter 2 is archived on Zenodo (https://

zenodo.org/badge/latestdoi/79556994) and detailed hereafter.

First, firedrake and numpy are imported at the top of file benney luke.py through

1 from firedrake import ∗

2 import numpy as np

The parameters defining the domain and the initial soliton must then be defined. Details on how

to choose these parameters are given in Chapter 2. As a remainder, the domain is defined by

a horizontal channel of length Lc and width Ld, closed by the oblique wall of length Lw and

angle ψ with the x–direction. The Benney-Luke equations are based on the small-amplitude and

small-dispersion parameters, ε and µ, which must therefore be given. One must also set the initial

time and final times t and Tend respectively, and the time step ∆t.

1 """

2 **

3 * Parameters *

4 **"""

5 Lw = 500 .0 # Length of the wall

6 Lc = 5 . 0 # Length of the incident channel

7 psi = pi / 6 # Angle of the oblique wall

8 Ld = Lw∗sin (psi) # Width of the incident channel

9 ep = 0 . 1 9 # Small amplitude parameter

10 mu = 0 . 0 2 # Small dispersion parameter

11 psi_inc = 0 . 0 # angle of the initial soliton

12 dx = 0 . 4 # x-refinement in largest areas

13 dy = 1 . 5 # y-refinement in largest areas

14 dxx = 0 . 2 5 # x-refinement in finest areas

15 dyy = 0 . 2 5 # y-refinement in finest areas

Chapter 6. Code tutorials 193

16 t=0.0 # Initial time

17 t_save = t # Saving time

18 dt = 0 .0028 # Time step

19 Tend = 150 .0 # Final time

These parameters must be used to generate the mesh in mesh hor.py as well. Once the mesh file

horizontal.msh is created (cf. how to create it in section 6.2.3), it is loaded in the main file through:

1 """

2 **

3 * Mesh *

4 **"""

5 mesh = Mesh ("horizontal.msh") # Load the mesh file

6 coords = mesh .coordinates # access to coordinates

The function space is defined on the mesh, here based on second-order continuous Galerkin

expansions as defined in line 6 of the code below. Then, the solutions η, φ and q at times tn

(denoted by n0), tn+1/2 (denoted by half) and tn+1 (denoted by n1) are defined on this function

space. The linear solvers are solved for the unknowns η, φ and q that are introduced through

trial functions. Finally, the basis function is represented by v through the test function of Firedrake.

1 """

2 ***

3 * Functions *

4 ***"""

5 # -------------- Function Space -------------- #

6 V = FunctionSpace (mesh , "CG" , 2) # Vector space

7

8 # ----------- Define the functions ----------- #

9 eta_n0 = Function (V) # eta(n)

10 phi_n0 = Function (V) # phi(n)

11 q_n0 = Function (V) # q(n)

12 eta_n1 = Function (V) # eta(n+1)

13 phi_n1 = Function (V) # phi(n+1)

14 q_n1 = Function (V) # q(n+1)

15 eta_half = Function (V) # eta(n+1/2)

16 phi_half = Function (V) # phi(n+1/2)

17 q_half = Function (V) # q(n+1/2)

194 Chapter 6. Code tutorials

18

19 # ----------------- Unknowns ---------------- #

20 eta = TrialFunction (V)

21 phi = TrialFunction (V)

22 q = TrialFunction (V)

23

24 # -------------- Test function -------------- #

25 v = TestFunction (V)

The solutions are initialised by interpolating the expression of the exact soliton solutions (2.37)

derived in Chapter 2.

1 """

2 **

3 * Initial solution *

4 **"""

5 # --------------------------- Soliton’s parameters ---------------------------- #

6 A = 1 . 0 # Amplitude

7 C= 0 . 5∗ (A + tan (psi) ∗tan (psi) /ep) # Constant C

8 dist = 0 . 5 # distance(%) from the channel boundary

9 x0 = dist∗Lc # initial soliton position (x0,y0)

10 y0 = 0 . 0

11

12 # ------------------------- Expression of eta and phi ------------------------- #

13 expr_eta = Expression ("A*pow(cosh(sqrt(3*ep*A/(4*mu))*((x[0]-x0) \

14 + (x[1]-y0)*tan(psi)-(t-t0)*(1+C*ep))),-2)" , A=A , x0=x0 ,\

15 y0=y0 , psi=psi_inc , ep=ep , mu=mu , C=C , t=t , t0= 0 . 0)

16

17 expr_phi = Expression ("A*sqrt(4*mu/(3*ep*A))*(tanh(sqrt(3*ep*A/(4*mu))*((x[0]-x0)\

18 + (x[1]-y0)*tan(psi)-(t-t0)*(1+C*ep)))+1) " , A=A , x0=x0 , \

19 y0=y0 , psi=psi_inc , ep=ep , mu=mu , C=C , t=t , t0= 0 . 0)

20

21 # ------------------------------- Initialization ------------------------------ #

22 phi_n0 .interpolate (expr_phi)

23 eta_n0 .interpolate (expr_eta)

In Firedrake, the weak formulations are defined in their space-continuous-time-discrete form.

Variational problems and solvers may be called directly as follows.

Chapter 6. Code tutorials 195

1 """

2 **

3 * Weak formulations *

4 **"""

5 # --------------------------- Update phi(n+1/2) --------------------------- #

6 F_phi_half = (v∗ (phi_half - phi_n0) / (dt / 2 . 0) + v∗eta_n0 \

7 + 0 .5∗mu∗inner (grad (v) ,grad ((phi_half -phi_n0) / (dt / 2 . 0))) \

8 + 0 .5∗ep∗v∗inner (grad (phi_half) ,grad (phi_half))) ∗dx

9 phi_problem_half = NonlinearVariationalProblem (F_phi_half ,phi_half)

10 phi_solver_half = NonlinearVariationalSolver (phi_problem_half)

11

12 # ---------------------------- Update q(n+1/2) ---------------------------- #

13 a_q_half = v∗q∗dx

14 L_q_half = 2 . 0 / 3 . 0 ∗inner (grad (v) ,grad (phi_half)) ∗dx

15 q_problem_half = LinearVariationalProblem (a_q_half ,L_q_half ,q_half)

16 q_solver_half = LinearVariationalSolver (q_problem_half)

17

18 # ---------------------------- Update eta(n+1) ---------------------------- #

19 a_eta = (v∗eta /dt + 0 .5∗mu∗inner (grad (v) ,grad (eta /dt)) \

20 - 0 .5∗inner (grad (v) ,grad (phi_half)) ∗ep∗eta) ∗dx

21 L_eta = (v∗eta_n0 /dt + 0 .5∗mu∗inner (grad (v) ,grad (eta_n0) /dt) \

22 + mu∗inner (grad (v) ,grad (q_half)) \

23 + 0 .5∗inner (grad (v) ,grad (phi_half)) ∗(2+ep∗eta_n0)) ∗dx

24 eta_problem = LinearVariationalProblem (a_eta ,L_eta , eta_n1)

25 eta_solver = LinearVariationalSolver (eta_problem)

26

27 # ---------------------------- Update phi(n+1) ---------------------------- #

28 a_phi_n1 = (v∗phi / (dt / 2) + 0 .5∗mu∗inner (grad (v) ,grad (phi / (dt / 2)))) ∗dx

29 L_phi_n1 = (v∗phi_half / (dt / 2) + 0 .5∗mu∗inner (grad (v) ,grad (phi_half) / (dt / 2)) \

30 - v∗eta_n1 - 0 .5∗ep∗v∗inner (grad (phi_half) ,grad (phi_half))) ∗dx

31 phi_problem_n1 = LinearVariationalProblem (a_phi_n1 ,L_phi_n1 , phi_n1)

32 phi_solver_n1 = LinearVariationalSolver (phi_problem_n1)

The solvers are then called in the time loop to update the solutions:

1 """

2 ***

3 * Time loop *

4 ***"""

5 while (t < Tend) :

6 # -------------------------------- Save data ------------------------------- #

7 if t >= t_save :

8 with eta_n0 .dat .vec_ro as eta_v , inf_y .dat .vec_ro as inf_v :

196 Chapter 6. Code tutorials

9 _ , eta_max = eta_v .max () # stem wave’s amplitude

10 tmp = inf_v .duplicate ()

11 tmp .pointwiseMult (eta_v , inf_v)

12 _ , init_max = tmp .max () # incident wave’s amplitude

13 Ampl_file .write (’%-10s %-10s %-10s \n’ % (t , eta_max ,init_max))

14 eta_file .write (eta_n0) # Save the surface deviation solution

15 phi_file .write (phi_n0) # Save the potential flow solution

16 t_save = t_save + dt_save # Update the saving time

17 print (t /Tend) # Print progression

18

19 # ------------------------------- Update time ------------------------------ #

20 t += dt

21

22 # ----------------------- Solve the weak formulations ---------------------- #

23 phi_solver_half .solve () # Get phiˆ{n+1/2}

24 q_solver_half .solve () # Get qˆ{n+1/2}

25 eta_solver .solve () # Get etaˆ{n+1}

26 phi_solver_n1 .solve () # Get phiˆ{n+1}

27

28 # -------------------------- Update the solutions -------------------------- #

29 phi_n0 .assign (phi_n1)

30 eta_n0 .assign (eta_n1)

In the above code, the first part saves the stem wave’s amplitude, that is, the maximal free-surface

deviation, and the incident wave’s amplitude by looking for the maximal amplitude near the

upper y–boundary, y = Ld, based on the assumption that despite growing in length, the stem

wave sticks to the oblique wall and does not reach the upper y boundary (cf. the location of the

stem and incident waves in Fig. 6.1). The Heaviside function inf y is therefore equal to 1 in the

domain {0 ≤ x ≤ Lx;Ld − 4.0m ≤ y ≤ Ly} and equal to 0 elsewhere:

1 inf_y=Function (V) .interpolate (Expression ("0.5*(1+copysign(1.0,x[1]-(Ld-4.0))),Ld=Ld"))

The saving time t save is previously initialised to zero and enables to save the solutions at the time

interval dt save. The solutions η and φ in the full domain are also saved and may be observed on

Paraview. The corresponding files were created before entering the time loop through:

Chapter 6. Code tutorials 197

1 """

2 ***

3 * Saving files *

4 ***"""

5 phi_file = File (’data/phi.pvd’) # potential phi numerical solution

6 eta_file = File (’data/eta.pvd’) # surface deviation eta numerical solution

7 Ampl_file = open (’data/amplitudes.txt’ , ’w’) # Incident and stem waves’ amplitudes

The next part of the code, at line 17, updates time, meaning that we now consider t = tn+1. The

solvers are called to update the functions with the second-order Störmer-Verlet scheme. Finally,

at the end of the time loop, the solutions are updated for the next time step.

6.3 Three-dimensional wave tank with wavemaker and seabed

topography

6.3.1 Introduction

Firedrake has been used to solve nonlinear potential-flow equations in a deep-water domain with

seabed topography. Waves are generated by a piston wavemaker on the left-hand side of the basin

and reflected on a vertical wall on the right-hand side of the basin. Spatial discretisation strategies

were derived in Chapter 3 to deal with moving boundaries at the wavemaker and at the free surface,

as well as to update the vertical structure of the velocity potential. A variational approach has

been used to derive the equations, leading to Hamiltonian dynamics on which both a first-order

(symplectic-Euler) and a second-order (Stormer-Verlet) energy-conserving time schemes have

been applied, respectively, to ensure stability. This section explains to the user which parameters

must be specified and details the code to ease future extensions.

6.3.2 Code sources

The code consists four main files.

• The file Settings.py in which you need to specify the domain, time and wavemaker settings;

• The file vertical discr.py, in which the vertical discretisation is implemented. It includes

the computation of the Lagrange expansions and vertical matrix coefficients;

198 Chapter 6. Code tutorials

• The file solvers.py, which contains the weak formulations;

• The file savings.py, which contains the functions used to save the data;

• The file 3D tank.py, in which the solvers are defined and called to update the solutions.

To observe the free-surface and velocity-potential solutions, open the file waves.pvd on Paraview,

which contains the value of the velocity potential φ(x, y, t). The free-surface and the left boundary

of the domain move as h(x, y, t) = H(x) + η(x, y, t) and R(y, t) respectively. The wavemaker

motion is also saved both as a text file wm motion.txt and in a function wavemaker.pvd that can be

observed in Paraview after applying the filter “Wrap by scalar”. The energy is also saved in the

file energy.txt. Finally, a README.txt file is created at the end of the simulations to sum up the

parameters used to create the data.

6.3.3 Use of the code

In order to run the codes, you first need to set the beach, wavemaker, domain and time parameters

in the file Settings.py.

First, choose whether you create the wavemaker signal or import it from measurements. In this

tutorial, only the case with a created wavemaker signal is considered; details on how to import

measurement data are given in section 6.5. The dimension (2D or 3D) and temporal scheme

(symplectic Euler or Störmer-Verlet) must also be specified. A path to save the data is created

automatically, but may be changed in the test case() function.

1 """

2 ***

3 * Test case *

4 ***"""

5 def test_case () :

6 #_______________ Numerical Tank _______________#

7 tank = "DeepWater" # PF eq. in DW tank

8 #tank = "Coupled" # Coupling PF with SW beach

9 #________________ Kind of data ________________#

10 #input_data = "measurements" # from experiments

11 input_data = "created" # set the wavemaker

12 #______________ Temporal scheme _______________#

13 scheme = "SE"

14 # "SE": Symplectic-Euler ; "SV": Stormer-Verlet

15 #__________________ Dimension _________________#

Chapter 6. Code tutorials 199

16 dim = "2D"

17 #"2D": R(t) and b(x); "3D": R(y,t) and/or b(x,y)

18 # if input = measurements, the dim must be 2D.

19 #______ Path and name of the saved files ______#

20 save_path = tank +’/data/’ +scheme+’/’+ dim +’/’

21 return tank , input_data , scheme , dim , save_path

The dimensions of the numerical domain, including the beach parameters, are defined in the

function domain(). In this example, the seabed topography is assumed to take the form

H(x) = H0 − b(x), with


b(x ≤ xb) = 0

b(x > xb) = sbx.
(6.6)

The characteristics of the seabed topography thus include the maximal depth at rest H0, the

coordinate at which the beach starts xb and the slope sb > 0. The characteristics of the numerical

domain include the depth at the end of the domain, Hend, the length in the x–direction, Lx, the

length in the y–direction, Ly, the length on which to apply the x–transform, Lw, the resolutions

in x and y, res x and res y respectively, and the number of vertical layers nz . To avoid instability

of the numerical simulations, one must ensure non-negative depth at the end of the domain.

Moreover, our discretisation of the potential-flow model does not hold discontinuous waves such

as breaking waves, so the depth at the end of the domain must satisfy: Hend � λ/20, with λ the

wavelength, to avoid steep or breaking waves and ensure stability of the simulations. One way to

ensure stability is therefore to prescribe Hend � λ/20 and deduce the length Lx from the seabed

topography:

Lx = xb +
H0 −Hend

sb
. (6.7)

To ensure accuracy of the simulations, the spatial resolution is set to satisfy ∆x < λ/10.

1 """

2 ***

3 * Numerical domain *

4 ***"""

5 def domain () :

6 #______________________ Beach ______________________#

7 H0 = 1 . 0 # Depth at rest (flat bottom)

8 xb = 4 . 0 # Start of the beach

9 sb = 0 . 2 # Slope of the beach

200 Chapter 6. Code tutorials

10 H_expr = Expression ("H0-0.5*(1+copysign(1.0,x[0]-xb))*slope*(x[0]-xb)" ,

11 H0=H0 ,xb=xb , slope=sb)

12

13 #______________________ Basin ______________________#

14 Hend = 0 . 5 # Depth at the end of the beach

15 Lx = xb +(H0 -Hend) /sb # Length in x

16 Ly = 1 . 0 # Length in y

17 Lw = 1 . 0 # End of the x-transform

18 res_x = 0 . 0 5 # x-resolution

19 res_y = 0 . 2 # y-resolution

20 n_z = 8 # Order of the expansion

21 return H0 , xb , sb , H_expr , Hend , Lx , Ly , Lw , res_x , res_y , n_z

The function “copysign” used at line 10 is used to apply the Heaviside function resulting in (6.6).

In the example given here, the wavemaker motion is defined as

R(y, t) = γR̂(y) cos(ωt), (6.8)

with

R̂(y) =


2y − Ly
Ly

if dim = 3D,

1, if dim = 2D.
(6.9)

The characteristics of the wavemaker thus include its frequency ω, its period Tw, and its amplitude

γ. Note that ω and Tw are chosen with respect to the wavelength λ of the waves. We also define

a variable t stop in order to stop the wavemaker after some time. To limit extra frequencies due

to an abrupt stop of the wavemaker motion, we set t stop = N ∗ Tw, where N ∈ N, so that at

t = t stop the velocity of the wavemaker is null. The wavemaker characteristics, expression and

derivatives can be changed through the function wavemaker():

1 """

2 **

3 * Wavemaker *

4 **"""

5 def wavemaker (dim , H0 , Ly , Lw , t) :

6 #_____________________________ Characteristics _____________________________#

7 g = 9 . 8 1 # Gravitational constant

8 lamb = 2 . 0 # Wavelength

9 k = 2∗pi /lamb # Wave number

Chapter 6. Code tutorials 201

10 w = sqrt (g∗k∗tanh (k∗H0)) # Wave frequency

11 Tw = 2∗pi /w # Wave period

12 gamma = 0 . 0 3 # Wave amplitude

13 t_stop = 5 .0∗Tw # When to stop the wavemaker

14

15 #________________________________ Expression _______________________________#

16 if dim == "2D" :

17 WM_expr = \

18 Expression ("-0.5*(1+copysign(1.0,Lw-x[0]))*A*cos(w*t)" ,A=gamma , Lw = Lw , w=w ,

t=t)

19 elif dim == "3D" :

20 WM_expr = \

21 Expression ("-0.5*(1+copysign(1.0,Lw-x[0]))*A*(x[1]-0.5*Ly)/(0.5*Ly)*cos(w*t)" ,

A=gamma , Ly=Ly , Lw = Lw , w=w , t=t)

22

23 #_____________________________ Time derivative _____________________________#

24 if dim == "2D" :

25 dWM_dt_expr = \

26 Expression ("0.5*(1+copysign(1.0,Lw-x[0]))*A*w*sin(w*t)" ,A=gamma , Lw=Lw , w=w , t

=t)

27 elif dim == "3D" :

28 dWM_dt_expr = \

29 Expression ("0.5*(1+copysign(1.0,Lw-x[0]))*A*w*(x[1]-0.5*Ly)/(0.5*Ly)*sin(w*t)"

,A=gamma , Ly=Ly , Lw=Lw , w=w , t=t)

30 #______________________________ y-derivative _______________________________#

31 if dim == "2D" :

32 dWM_dy_expr = Expression ("0.0")

33 elif dim == "3D" :

34 dWM_dy_expr = Expression ("-0.5*(1+copysign(1.0,Lw-x[0]))*A*cos(w*t)/(0.5*Ly)" ,

A=gamma , Ly=Ly , Lw=Lw , w=w , t=t)

35

36 return g , lamb , k , w , Tw , gamma , t_stop , WM_expr , dWM_dt_expr , dWM_dy_expr

Note that the function copysign in lines 18 and 21 is used to apply the Heaviside function so that

R and its derivatives are null for x > Lw (cf. Chap.3 for more details).

Finally, define the initial and final times as well as the time step and the time interval dt save

after which the data are saved with the function set time() that depends on the wavemaker period

“WM period”:

202 Chapter 6. Code tutorials

1 """

2 ***********************************

3 * Time *

4 ***********************************"""

5 def set_time (WM_period) :

6 T0 = 0 . 0 # Initial time

7 Tend = 10∗WM_period # Final time

8 t = T0 # Temporal variable

9 dt = 0 .001 # Time-step

10 dt_save = 0 . 0 2 # Saving time step

11 return T0 , t , dt , Tend , dt_save

The main code 3D tank.py can then be run to obtain the simulations. The above settings are

sufficient to adapt the code to your needs.

6.3.4 Code description

The main file 3D tank.py, the vertical discretisation vertical discr.py and the saving strategies

savings.py are detailed next to allow further extension.

Import the settings

In the main file, the libraries and functions are imported through

1 import numpy as np

2 import os .path

3 from vertical_discr import ∗

4 from savings import ∗

5 from Settings import ∗

6 from firedrake import ∗

7 import solvers as DW_solvers

Then, the settings are applied through a call to the above mentioned functions:

1 """

2 **

3 * Settings *

4 ** """

5 input_data , scheme , dim , save_path = test_case ()

6 H0 , xb , sb , H_expr , Hend , Lx , Ly , Lw , res_x , res_y , n_z = domain ()

7 T0 , t , dt , Tend , dt_save = set_time ()

Chapter 6. Code tutorials 203

8 g , lamb , k , w , Tw , gamma , t_stop , WM_expr ,

9 dWM_dt_expr , dWM_dy_expr = wavemaker (dim , H0 , Ly , Lw , t)

Definition of the numerical functions

As explained in Chapter 3, our strategy is to solve the weak formulations in each horizontal layer,

meaning that the solutions h, ψ1 and ψi′ are z–independent and only defined in the horizontal

plane. In the case of pluri-directional waves (3D), the mesh is defined as a rectangular surface

with quadrilateral elements. However, when the wavemaker is constant in the y-direction, the

generated waves will only be x– and z–dependent and the domain may be simplified to a 2D

vertical tank to reduce the computational time. The horizontal solutions are then only dependent

on the x–coordinate, on a 1D mesh:

1 """

2 **

3 * Definition of the mesh *

4 ** """

5

6 #_________________ Vertical discretization ________________#

7 Nz = n_z+1 # Number of point in one element

8

9 #________________ Horizontal discretization _______________#

10 Nx = round (Lx /res_x) # Number of elements in x

11 Ny = round (Ly /res_y) # Number of elements in y

12

13 #___________________________ Mesh _________________________#

14 if dim=="2D" : #(x,z)-waves

15 hor_mesh = IntervalMesh (Nx ,Lx)

16 else : #(x,y,z)-waves

17 hor_mesh = RectangleMesh (Nx ,Ny ,Lx ,Ly ,quadrilateral=True)

The function spaces of the variables are then defined from the mesh. The depth h and the free-

surface velocity potential ψ1 are expanded as C0 continuous Galerkin functions, for example as

first-order polynomials. The interior velocity potential ψ̂ is a vector of nz components, each

corresponding to the expansion of the velocity potential on the corresponding horizontal layer. We

therefore introduce a specific function space for the interior velocity, through a vector of dimension

nz for which each component is expanded as C0 continuous Galerkin functions, i.e. as 1st–order

204 Chapter 6. Code tutorials

polynomials. As the equations for h and ψ̂ are solved in unison, we also introduce a mixed function

space (that is, a function space for coupled variables that are initially defined on different function

spaces) that combines the space of definition of h and the one of ψ̂.

1 """

2 ***

3 * Definition of the function spaces *

4 *** """

5 #___________________ For h and psi_1 ___________________#

6 V = FunctionSpace (hor_mesh , "CG" , 1)

7 #_____________________ For hat_psi _____________________#

8 Vec = VectorFunctionSpace (hor_mesh , "CG" , 1 , dim=n_z)

9 #_________________ Mixed function space ________________#

10 V_mixed = V∗Vec # to solve simultaneous weak formulations

The basis functions are defined on each function space as follows

1 #_______________________ Test functions _____________________#

2 delta_h = TestFunction (V) # from dH/dh

3 delta_hat_psi = TestFunction (Vec) # from dH/dhat_psi

4 w_t = TestFunction (V_mixed) # from dH/dpsi_1...

5 delta_psi , delta_hat_star = split (w_t) # ...and dH/dhat_psi

The functions involved in the symplectic-Euler and Störmer-Verlet temporal schemes are defined

on their respective space of definition, with index n0 at time tn, index star at auxiliary time t∗,

index half at time tn+1/2 and index n1 at time tn+1:

1 """

2 **

3 * Definition of the functions *

4 ** """

5 if scheme=="SE" : #_________ Symplectic-Euler scheme _________#

6 #______________________ At time tˆn _____________________#

7 h_n0 = Function (V) # hˆn

8 psi_1_n0 = Function (V) # psi_1ˆn

9 hat_psi_n0 = Function (Vec) # hat_psiˆn

10

11 #________________ At time tˆ{n+1} and tˆ* _______________#

12 psi_1_n1 = Function (V) # psi_1ˆ{n+1}

13 w_n1 = Function (V_mixed)

14 h_n1 , hat_psi_star = split (w_n1) # hˆ{n+1}, hat_psiˆ*

15 hat_psi_n1 = Function (Vec) # to visualise hat_psiˆ{n+1}

Chapter 6. Code tutorials 205

16 else : #________________ Stormer-Verlet scheme _______________#

17 #______________________ At time tˆn _____________________#

18 h_n0 = Function (V) # hˆn

19 psi_1_n0 = Function (V) # psi_1ˆn

20 hat_psi_n0 = Function (Vec) # hat_psiˆn

21

22 #_______________ At time tˆ{n+1/2} and tˆ* ______________#

23 w_half = Function (V_mixed) # to obtain psiˆ{n+1/2},

24 psi_1_half , hat_psi_star = split (w_half) # and hat_psiˆ*

25

26 #_______________ At time tˆ{n+1} and tˆ** _______________#

27 psi_1_n1 = Function (V) # psi_1ˆ{n+1}

28 w_n1 = Function (V_mixed) # to obtain hˆ{n+1},

29 h_n1 , hat_psi_aux = split (w_n1) # and hat_psiˆ{**}

30 hat_psi_n1 = Function (Vec) # to visualise hat_psiˆ{n+1}

Some of the equations are explicit updates of ψ1 or ψ̂, and may thus be solved with a linear

solver in order to reduce the computational time. We thus introduce trial functions for which the

temporarily-linear weak formulations will be solved:

1 #______________________ Trial functions _____________________#

2 psi_1 = TrialFunction (V) # psi_1ˆ{n+1} for linear solvers

3 hat_psi = TrialFunction (Vec)# hat_psiˆ{n+1} for linear solvers

The beach topography b(x), the depth at restH(x) and the wavemaker function R̃(x, y, t) are also

discretised on the function space V as follows:

1 #___________________________ Beach __________________________#

2 beach = Function (V) # b(x)

3 #_______________________ Depth at rest ______________________#

4 H = Function (V) # H(x)

5 #_________________________ Wavemaker ________________________#

6 WM = Function (V) # R(x,y;tˆn)

7 dWM_dt = Function (V) # (dR/dt)ˆn

8 dWM_dy = Function (V) # (dR/dy)ˆn

9 if scheme=="SV" : # For Stormer-Verlet:

10 WM_half = Function (V) # R(x,y;tˆ{n+1/2})

11 dWM_half_dt = Function (V) # (dR/dt)ˆ{n+1/2}

12 dWM_half_dy = Function (V) # (dR/dy)ˆ{n+1/2}

13 WM_n1 = Function (V) # R(x,y;tˆ{n+1})

14 dWM_n1_dt = Function (V) # (dR/dt)ˆ{n+1}

15 dWM_n1_dy = Function (V) # (dR/dy)ˆ{n+1}

206 Chapter 6. Code tutorials

16 #_______________________ x coordinate _______________________#

17 x_coord = Function (V) .interpolate (Expression (’x[0]’))

The last line defines the x–coordinate as a function as it is explicitly used in the weak formulations.

Now that the functions are defined in their respective function spaces, the prescribed functions are

initialised by interpolation of the corresponding expressions:

1 """

2 **

3 * Initialisation of the prescribed functions *

4 **"""

5 #____________________ Topography ___________________#

6 H .interpolate (H_expr) # Depth at rest H(x)

7 beach .interpolate (H0 -H) # Beach b(x)

8 #____________________ Wavemaker ___________________#

9 WM .interpolate (WM_expr) # \tilde{R}

10 dWM_dy .interpolate (dWM_dy_expr) # dR/dy

11 dWM_dt .interpolate (dWM_dt_expr) # dR/dt

To initialise the depth and velocity potential, we consider that at the initial time t = T0, the fluid

is at rest, meaning that h = H(x) and φ(x, y, t) = 0.0. We thus initialise the solutions as follows:

1 #_________________ Depth h(x,y,t) _________________#

2 h_n0 .assign (H) # h(x,y;t=0) = H(x)

3 w_n1 .sub (0) .assign (H) # First estimate for hˆ{n+1}

4

5 #______ Surface velocity pot. phi(x,y,z=h,t) ______#

6 psi_1_n0 .assign (0 . 0) # \psi_1(x,y;t=0) = 0

7 if scheme =="SV" :

8 w_half .sub (0) .assign (0 . 0) # \psi_1ˆ{n+1/2}

9

10 #_____ Vel. pot. in depth: phi(x,y,z<h,t) = 0 _____#

11 for i in range (0 ,n_z) :

12 hat_psi_n0 .dat .data [: , i] = 0 . 0 # psi_iˆn

13 w_n1 .sub (1) .dat .data [: , i] = 0 . 0 # psi_iˆ{*}

14 if scheme=="SV" :

15 w_half .sub (1) .dat .data [: , i]= 0 . 0 # psi_iˆ{*}

Chapter 6. Code tutorials 207

Vertical discretisation

While the horizontal discretisation is made internally with Firedrake, the vertical matrices must

be evaluated (semi-)analytically in order to be used as coefficients in the horizontal variational

principle and the resulting weak formulations. This is done in the file vertical discr.py.

As explained in Chapter 3, the domain in the z–direction is effectively and implicitly discretised

with one element on which the vertical component ϕ̃i(z) of the velocity potential is expanded

through polynomials of order nz . In this example, Lagrange polynomials are used:

ϕ̃i(z) =

nz+1∏
k=1
k 6=i

z − zk
zi − zk

. (6.10)

We use the Python library for symbolic mathematics ”Sympy” to evaluate these matrices semi-

analytically.

1 from sympy import ∗

First, we define a function varphi expr() that returns the polynomial ϕ̃i as an expression of the

coordinate z. This function requires the index i of ϕ̃, the order nz of the polynomial, and the

upper limit of the domain, here given by H0:

1 """ ***

2 * Lagrange polynomial *

3 ***

4 This function gives the expression of the Lagrange polynomial

5 varphi_i(z) of order n, for z between z=0 and z=H_0. """

6

7 def varphi_expr (i , n , H0) :

8 z=Symbol (’z’) # z-coordinate

9 k = Symbol (’k’) # index k in the product

10 z_k = H0∗ ((n -k) /n) # discrete coordinates z_k

11 sigma = lambdify (k ,z_k ,"numpy") # sigma(k) = z_k

12 varphi_z = \

13 (Product ((z -sigma (k)) / (sigma (i) -sigma (k)) , (k , 0 ,i - 1)) \

14 ∗Product ((z -sigma (k)) / (sigma (i) -sigma (k)) , (k ,i+1 ,n))) .doit ()

15 return varphi_z

In this code, we introduce the coordinate z as a symbol so that the polynomial can be evaluated

in terms of z. Similarly, we introduce the symbol k that will be used as the index of the discrete

208 Chapter 6. Code tutorials

coordinates zk. In this example, the evaluations of φ in the vertical are linearly distributed from

z = H0 to z = 0, so we define zk as

zk = H0
n− k
n

, for k = 0, 1, . . . n. (6.11)

However, if required, one may change the definition of zk to obtain non-homogeneous (such

as exponential) evaluations of φ over the depth. The variable sigma is created such that

sigma(k) returns the discrete coordinate zk. This function is called when computing the Lagrange

polynomial varphi z. Note that the product from k = 0 to k = n is split into a first product from

k = 0 to k = i − 1 and another one from k = i + 1 to k = n, to exclude the case k = i as this

would lead to zero (cf. the above definition of the Lagrange polynomial).

Similarly, we introduce the function deriv varphi expr() that returns the analytical expression of

the derivative of ϕ̃i with respect to z, that is, dzϕ̃i:

1 """ ************************************

2 * d(\varphi)/dz *

3 ************************************

4 This function returns the expression

5 of the z--derivative of the Lagrange

6 polynomial, that is d(\varphi)/dz . """

7

8 def deriv_varphi_expr (varphi_expr) :

9 z = Symbol (’z’) # coordinate z

10 deriv = diff (varphi_expr ,z)

11 return deriv # d(\varphi(z))/dz

From the two above functions, we are able to compute each of the matrices (3.20) associated with

the vertical basis functions through functions of the form Xij(i, j, n,H0) that return the (i, j)

component of matrix X , in terms of ϕ̃i(z) and ϕ̃j(z):

1 """ ***

2 * Vertical matrices *

3 *** """

4 # Mass matrix

5 def M_ij (i ,j ,n ,H0) :

6 z=Symbol (’z’)

7 expr_M = varphi_expr (i ,n ,H0) ∗varphi_expr (j ,n ,H0)

8 M = integrate (expr_M , (z , 0 ,H0))

Chapter 6. Code tutorials 209

9 return M

10

11 # Laplace matrix

12 def A_ij (i ,j ,n ,H0) :

13 z=Symbol (’z’)

14 expr_A = deriv_varphi_expr (varphi_expr (i ,n ,H0)) \

15 ∗deriv_varphi_expr (varphi_expr (j ,n ,H0))

16 A = integrate (expr_A , (z , 0 ,H0))

17 return A

18

19 def D_ij (i ,j ,n ,H0) :

20 z=Symbol (’z’)

21 expr_D = z∗varphi_expr (i ,n ,H0) \

22 ∗deriv_varphi_expr (varphi_expr (j ,n ,H0))

23 D = integrate (expr_D , (z , 0 ,H0))

24 return D

25

26 def S_ij (i ,j ,n ,H0) :

27 z=Symbol (’z’)

28 expr_S = z∗z∗deriv_varphi_expr (varphi_expr (i ,n ,H0)) \

29 ∗deriv_varphi_expr (varphi_expr (j ,n ,H0))

30 S = integrate (expr_S , (z , 0 ,H0))

31 return S

32

33 def I_i (i ,n ,H0) :

34 z=Symbol (’z’)

35 expr_I = varphi_expr (i ,n ,H0)

36 I = integrate (expr_I , (z , 0 ,H0))

37 return I

Each function is constructed the same way: first, we define the symbolic z–coordinate; then, we

define the expression to integrate by calling the functions varphi expr() and deriv varphi expr();

finally, we integrate this expression between z = 0 and z = H0 with the in-build Sympy function

integrate that leads to the exact value of the matrix X̃ at indices (i, j).

In the main file, we then initialise and fill the matrices M̃ , Ã, S̃, D̃ and Ĩ (note that in the code

we have omitted the tilde subscripts) and the corresponding submatrices used to distinguish the

surface (index 1) and interior (subscript N) nodes by calling the above functions:

210 Chapter 6. Code tutorials

1 """ ************************

2 * Compute the matrices *

3 ************************ """

4 #_______ Initialization ______#

5 A = np .eye (Nz ,Nz) ∗0 .0

6 M = np .eye (Nz ,Nz) ∗0 .0

7 D = np .eye (Nz ,Nz) ∗0 .0

8 S = np .eye (Nz ,Nz) ∗0 .0

9 Ik = np .eye (Nz , 1) ∗0 .0

10

11 #____ Filling the matrices ___#

12 for i in range (0 ,Nz) :

13 for j in range (0 ,Nz) :

14 A [i ,j]=A_ij (i ,j ,n_z ,H0)

15 M [i ,j]=M_ij (i ,j ,n_z ,H0)

16 D [i ,j]=D_ij (i ,j ,n_z ,H0)

17 S [i ,j]=S_ij (i ,j ,n_z ,H0)

18 Ik [i] = I_i (i ,n_z ,H0)

19

20 #________ Submatrices ________#

21 A11 = A [0 , 0]

22 A1N = as_tensor (A [0 , 1 :])

23 AN1 = as_tensor (A [1 : , 0])

24 ANN = as_tensor (A [1 : , 1 :])

25

26 M11 = M [0 , 0]

27 M1N = as_tensor (M [0 , 1 :])

28 MN1 = as_tensor (M [1 : , 0])

29 MNN = as_tensor (M [1 : , 1 :])

30

31 D11 = D [0 , 0]

32 D1N = as_tensor (D [0 , 1 :])

33 DN1 = as_tensor (D [1 : , 0])

34 DNN = as_tensor (D [1 : , 1 :])

35

36 S11 = S [0 , 0]

37 S1N = as_tensor (S [0 , 1 :])

38 SN1 = as_tensor (S [1 : , 0])

39 SNN = as_tensor (S [1 : , 1 :])

40

41 I1 = Ik [0 , 0]

42 IN=as_tensor (Ik [1 : , 0])

Chapter 6. Code tutorials 211

As explained in Chapter 3, an advantage of this vertical discretisation is that the above submatrices

are constant in both time and space and may thus be used as coefficients in the weak formulations

without requiring any update in time.

Weak formulations

For clarity’s sake, we only include here the weak formulations for the case of 2D waves, solved

with the symplectic-Euler scheme. As explained in Chapter 3, the first step is to update h and ψ̂

by solving simultaneously the following

hn+1 = hn −
∂H(hn+1, ψn1 , ψ

∗
i′ ,W

n)

∂ψn1
,

0 =
∂H(hn+1, ψn1 , ψ

∗
i′ ,W

n)

∂ψ∗i′
.

(6.12a)

(6.12b)

These weak formulations, defined in (B.33) and (B.34), are implemented in Firedrake form in the

file solvers.py as :

1 #--#

2 # Step 1 : Update h at time tˆ{n+1} and psi_i at time tˆ* simulataneously: #

3 #--#

4 def WF_h_SE (dim , n_z , g , H , H0 , Lw , WM , dWM_dy , dWM_dt , dt , delta_psi , delta_hat_star ,

h_n0 , h_n1 , x_coord , psi_1_n0 , hat_psi_star , M11 , M1N , MN1 , MNN , D11 , D1N , DN1 ,

DNN , S11 , SN1 , SNN , A11 , AN1 , ANN , I1 , IN) :

5

6 WF_h = (H0∗delta_psi∗ (h_n1 -h_n0) ∗ (Lw -WM) /dt - ((h_n1 / (Lw -WM)) ∗ (Lw∗Lw) ∗ (psi_1_n0 .dx

(0) ∗M11 + dot (hat_psi_star .dx (0) ,MN1)) ∗delta_psi .dx (0) - ((1 / (Lw -WM)) ∗ (Lw∗Lw) ∗h_n1 .

dx (0)) ∗ (delta_psi .dx (0) ∗ (D11∗psi_1_n0 + dot (D1N ,hat_psi_star)) +delta_psi∗ (

psi_1_n0 .dx (0) ∗D11 + dot (hat_psi_star .dx (0) ,DN1))) + (1 /h_n1) ∗ ((1 / (Lw -WM)) ∗ (Lw∗Lw) ∗ (

h_n1 .dx (0) ∗∗2)) ∗ (psi_1_n0∗S11 + dot (hat_psi_star ,SN1)) ∗delta_psi+ ((Lw -WM) ∗H0∗H0 /

h_n1) ∗ (psi_1_n0∗A11 + dot (hat_psi_star ,AN1)) ∗delta_psi -delta_psi∗H0∗ (x_coord -Lw) ∗

dWM_dt∗h_n1 .dx (0))) ∗dx - (delta_psi∗Lw∗dWM_dt∗h_n1∗I1) ∗ds (1)

7

8 WF_hat_psi_star= ((h_n1 / (Lw -WM)) ∗ (Lw∗Lw) ∗elem_mult (delta_hat_star .dx (0) , (MN1∗

psi_1_n0 .dx (0) +dot (MNN ,hat_psi_star .dx (0)))) - ((Lw∗Lw) ∗h_n1 .dx (0) / (Lw -WM)) ∗ (

elem_mult (delta_hat_star , (psi_1_n0 .dx (0) ∗D1N+ dot (DNN .T ,hat_psi_star .dx (0)))) +

elem_mult (delta_hat_star .dx (0) , (DN1∗psi_1_n0+dot (DNN ,hat_psi_star)))) + (1 . 0 /h_n1)

∗ ((Lw∗Lw) ∗ (h_n1 .dx (0) ∗∗2) / (Lw -WM)) ∗elem_mult (delta_hat_star , (SN1∗psi_1_n0+ dot (SNN

,hat_psi_star))) + ((Lw -WM) ∗H0∗H0 /h_n1) ∗elem_mult (delta_hat_star , (AN1∗psi_1_n0+dot (

ANN ,hat_psi_star))))

9

212 Chapter 6. Code tutorials

10 WF_hat_BC = (Lw∗dWM_dt∗h_n1∗elem_mult (delta_hat_star ,IN))

11 WF_h_psi = WF_h + sum ((WF_hat_psi_star [ind]) ∗dx for ind in range (0 ,n_z)) + sum ((

WF_hat_BC [ind]) ∗ds (1) for ind in range (0 ,n_z))

12

13 return WF_h_psi

Then the surface velocity potential is subsequently updated explicitly through

Wn+1ψn+1
1 = Wnψn1 +

∂H(hn+1, ψn1 , ψ
∗
i′ ,W

n)

∂hn+1
. (6.13)

This equation, defined in (B.35), is implemented through a linear Firedrake weak formulation, as

1 #--#

2 # Step 2 : Update psi_1 at time tˆ{n+1}: #

3 #__#

4 def WF_psi_SE (dim , g , H , H0 , Lw , WM , WM_n1 , dWM_dy , dWM_dt , dt , x_coord , delta_h ,

psi_1 , psi_1_n0 , hat_psi_star , h_n1 , M11 , MN1 , MNN , D11 , D1N , DN1 , DNN ,S11 , SN1 ,

SNN , A11 , AN1 , ANN , I1 , IN) :

5

6 A_psi_s = (delta_h∗ (Lw -WM_n1) ∗psi_1) ∗dx

7

8 L_psi_s = - (1 /H0) ∗ (-H0∗delta_h∗ (Lw -WM) ∗psi_1_n0 +dt∗ (delta_h∗ ((Lw∗Lw) / (2 . 0 ∗ (Lw -WM)))

∗ ((psi_1_n0 .dx (0) ∗∗2)∗M11+dot (hat_psi_star .dx (0) , (2 . 0∗MN1∗psi_1_n0 .dx (0) +dot (MNN ,

hat_psi_star .dx (0))))) - ((1 . 0 / (Lw -WM)) ∗ (Lw∗Lw) ∗delta_h .dx (0)) ∗ (psi_1_n0 .dx (0) ∗ (D11

∗psi_1_n0 + dot (D1N ,hat_psi_star)) +dot (hat_psi_star .dx (0) , (DN1∗psi_1_n0 + dot (

DNN , hat_psi_star)))) + (1 . 0 /h_n1) ∗ (delta_h .dx (0) ∗ ((1 . 0 / (Lw -WM)) ∗h_n1 .dx (0) ∗ (Lw∗Lw))

- (delta_h /h_n1) ∗ ((Lw∗Lw) ∗ (h_n1 .dx (0) ∗∗2) / (2 . 0 ∗ (Lw -WM)))) ∗ (psi_1_n0∗psi_1_n0∗S11 +

2 .0∗dot (hat_psi_star ,SN1) ∗psi_1_n0+dot (hat_psi_star ,dot (SNN ,hat_psi_star))) - (0 . 5∗

delta_h∗ (Lw -WM) ∗H0∗H0 / (h_n1∗∗2)) ∗ (psi_1_n0∗psi_1_n0∗A11 + 2 .0∗dot (hat_psi_star ,AN1

) ∗psi_1_n0 + dot (hat_psi_star ,dot (ANN ,hat_psi_star))) +H0∗g∗ (Lw -WM) ∗delta_h∗ (h_n1 -H

) - H0∗psi_1_n0∗ (x_coord -Lw) ∗dWM_dt∗delta_h .dx (0))) ∗dx - dt∗ (Lw∗dWM_dt∗delta_h∗ (

psi_1_n0∗I1 + dot (hat_psi_star ,IN)) /H0) ∗ds (1)

9

10 return A_psi_s , L_psi_s

Similar functions are defined for the ”3D” case and the Störmer-Verlet scheme. They are called in

the main file to define the appropriate weak formulations as follows:

Chapter 6. Code tutorials 213

1 """ **

2 * Weak Formulations *

3 ** """

4 if scheme=="SE" : #_____________________ Symplectic-Euler ______________________#

5 # Step 1 : Update h at time tˆ{n+1} and psi_i at time tˆ* simulataneously: #

6 WF_h_psi = DW_solvers .WF_h_SE (dim , n_z , g , H , H0 , Lw , WM , dWM_dy , dWM_dt , dt ,

delta_psi , delta_hat_star , h_n0 , h_n1 , x_coord , psi_1_n0 , hat_psi_star , M11 , M1N ,

MN1 , MNN , D11 , D1N , DN1 , DNN , S11 , SN1 , SNN , A11 , AN1 , ANN , I1 , IN)

7

8 #----------------- Step 2 : Update psi_1 at time tˆ{n+1}: -----------------#

9 A_psi_s , L_psi_s = DW_solvers .WF_psi_SE (dim , g , H , H0 , Lw , WM , WM_n1 , dWM_dy ,

dWM_dt , dt , x_coord , delta_h , psi_1 , psi_1_n0 , hat_psi_star , h_n1 , M11 , MN1 , MNN ,

D11 , D1N , DN1 , DNN ,S11 , SN1 , SNN , A11 , AN1 , ANN , I1 , IN)

10

11 #----------------- Step 3 : Update psi_i at time tˆ{n+1}: -----------------#

12 A_hat , L_hat = DW_solvers .WF_hat_psi_SE (dim , H , H0 , g , n_z , Lw , x_coord , WM ,

dWM_dt , dWM_dy , dt , delta_hat_psi , hat_psi , h_n0 , psi_1_n0 , M11 , MN1 , MNN , D11 ,

D1N , DN1 , DNN ,S11 , SN1 , SNN , A11 , AN1 , ANN , I1 , IN)

13

14 elif scheme=="SV" :#______________________ Stormer-Verlet ______________________#

15 #--------------- Step 1 : Update psi_1ˆ{n+1/2} and psi_iˆ*: ---------------#

16 WF_psi_star = DW_solvers .WF_psi_half_SV (dim , n_z , g , H , H0 , Lw , x_coord , WM ,

WM_half , dWM_dy , dWM_dt , dWM_half_dy , dWM_half_dt , dt , delta_psi , delta_hat_star ,

psi_1_n0 , psi_1_half , hat_psi_star , h_n0 , M11 , M1N , MN1 , MNN , D11 , D1N , DN1 , DNN ,

S11 , SN1 , SNN , A11 , AN1 , ANN , I1 , IN)

17

18 #----- Step 2 : Update hˆ{n+1} and psi_i at time tˆ** simulataneously: ----#

19 WF_h_psi = DW_solvers .WF_h_SV (dim , n_z , Lw , H0 , g , dt , x_coord , WM , WM_half ,

dWM_half_dy , dWM_half_dt , delta_psi , delta_hat_star , h_n0 , h_n1 , psi_1_half ,

hat_psi_star , hat_psi_aux , M11 , M1N , MN1 , MNN , D11 , D1N , DN1 , DNN , S11 , SN1 , SNN ,

A11 , AN1 , ANN , I1 , IN)

20

21 #----------------- Step 3 : Update psi_1 at time tˆ{n+1}: -----------------#

22 a_psi_1 , L_psi_1 = DW_solvers .WF_psi_n1_SV (dim , H0 , H , g , x_coord , delta_h , Lw ,

WM_n1 , WM_half , dt , psi_1_half , psi_1 , dWM_half_dt , dWM_half_dy , hat_psi_aux , h_n1

, M11 , M1N , MN1 , MNN , D11 , D1N , DN1 , DNN , S11 , SN1 , SNN , A11 , AN1 , ANN , I1 , IN)

23

24 #----------------- Step 4 : Update psi_i at time tˆ{n+1}: -----------------#

25 A_hat , L_hat = DW_solvers .WF_hat_psi_SV (dim , n_z , Lw , H0 , H , WM , x_coord , dt ,

dWM_dt , dWM_dy , delta_hat_psi , hat_psi , h_n0 , psi_1_n0 , M11 , M1N , MN1 , MNN , D11 ,

D1N , DN1 , DNN , S11 , SN1 , SNN , A11 , AN1 , ANN , I1 , IN)

214 Chapter 6. Code tutorials

Solvers

Firedrake solvers solve variational problems based on parameters specified by the user; the choice

of these parameters has been explained in Chapter 3.

1 """

2 **

3 * Define the solvers *

4 ***"""

5 #__________________________ Solvers parameters __________________________#

6 param_h={"ksp_converged_reason" :True ,"pc_type" : "fieldsplit" ,"pc_fieldsplit_type" : "

schur" ,"pc_fieldsplit_schur_fact_type" : "upper"}

7 param_psi={"ksp_converged_reason" :True ,’ksp_type’ : ’preonly’ , ’pc_type’ : ’lu’}

8 param_hat_psi={"ksp_converged_reason" :True ,’ksp_type’ : ’preonly’ , ’pc_type’ : ’lu’}

The nonlinear variational problems for a function u with basis function v take the form

F (u, v) = 0, (6.14)

where F is nonlinear, while the linear variational problems take the form

a(u, v) = L(v), (6.15)

where a is bilinear and L linear. In Firedrake, these variational problems are defined with

the NonlinearV ariationalProblem and LinearV ariationalProblem functions. The solvers

corresponding to the symplectic-Euler and Störmer-Verlet weak formulations are then defined as

follows:

1 #--#

2 # Symplectic-Euler #

3 #__#

4 if scheme=="SE" :

5 #_______________ Variational solver for h (and hat_psiˆ*) _______________#

6 h_problem = NonlinearVariationalProblem (WF_h_psi , w_n1)

7 h_solver = NonlinearVariationalSolver (h_problem , solver_parameters=param_h)

8

9 #_____________________ Variational solver for psi_1 _____________________#

10 psi_problem = LinearVariationalProblem (A_psi_s , L_psi_s , psi_1_n1)

11 psi_solver = LinearVariationalSolver (psi_problem , solver_parameters=param_psi)

12

13 #____________________ Variational solver for hat_psi ____________________#

Chapter 6. Code tutorials 215

14 hat_psi_problem = LinearVariationalProblem (A_hat , L_hat , hat_psi_n0)

15 hat_psi_solver = LinearVariationalSolver (hat_psi_problem , solver_parameters=

param_hat_psi)

16

17 #--#

18 # Stormer-Verlet #

19 #__#

20 if scheme=="SV" :

21 #_________ Variational solver for psi_1ˆ{n+1/2} (and hat_psiˆ*) _________#

22 psi_half_problem = NonlinearVariationalProblem (WF_psi_star , w_half)

23 psi_half_solver = NonlinearVariationalSolver (psi_half_problem , solver_parameters=

param_h)

24

25 #________________ Variational solver for hˆ{n+1} psi_iˆ** _______________#

26 h_problem = NonlinearVariationalProblem (WF_h_psi , w_n1)

27 h_solver = NonlinearVariationalSolver (h_problem , solver_parameters=param_h)

28

29 #__________________ Variational solver for psi_1ˆ{n+1} __________________#

30 psi_n1_problem = LinearVariationalProblem (a_psi_1 , L_psi_1 , psi_1_n1)

31 psi_n1_solver = LinearVariationalSolver (psi_n1_problem , solver_parameters=

param_psi)

32

33 #____________________ Variational solver for hat_psi ____________________#

34 hat_psi_problem = LinearVariationalProblem (A_hat , L_hat , hat_psi_n0)

35 hat_psi_solver = LinearVariationalSolver (hat_psi_problem , solver_parameters=

param_hat_psi)

Before solving the equations, files and functions are created to save the solutions. The saving

settings are made in the file savings.py detailed next.

Saving functions

All the saved files described in section 6.3.2 are defined by calling the function saving files() as

follows:

1 """

2 ***

3 * Saving Files *

4 *** """

5 def saving_files (save_path) :

6 save_waves = File (os .path .join (save_path , "waves.pvd"))

7 save_WM = File (os .path .join (save_path , "Wavemaker.pvd"))

216 Chapter 6. Code tutorials

8 WM_file = open (os .path .join (save_path , ’wm_motion.txt’) , ’w’)

9 Energy_file = open (os .path .join (save_path , ’energy.txt’) , ’w’)

10 README_file = open (os .path .join (save_path , ’README.txt’) , ’w’)

11 return save_phi , save_WM , WM_file , Energy_file , README_file

The energy is saved through the call of the function save energy() in which the energy is computed,

and saves it in the text file energy.txt. As explained in Chapter 3, the unknowns h, ψ1 and ψi′ are

defined on the horizontal plane. In order to save the velocity potential φ(x, y, z, t), which is also

a function of depth, the numerical domain on which the variables are defined must be extruded in

depth. If the initial domain is 2D, then the solutions are only x–dependent, meaning that the mesh

is 1D. As shown in Fig. 6.2, the functions are thus first expanded to a 2D horizontal mesh. Then,

the 2D horizontal mesh is extruded in depth with height H0 to obtain a 3D numerical domain with

constant depth H0, which is the transformed numerical domain defined in Chapter 3.

ψ1(x, t)

ψ2(x, t)

ψ3(x, t)

ψi(x, t)

ψi(x, t) → ψi(x, y, t) ψi(x, y, t) → φ(x, y, z, t)

h(x, t) → h(x, y, t) waves(x, y, z, t)

Figure 6.2: Mapping the x–dependent solutions to the 3D free-surface domain.

1 """

2 **

3 * Save waves in the 3D free-surface domain *

4 **"""

5 #---#

6 # Saving mesh #

7 #---#

8 if dim==’2D’ : # Extend the 1D horizontal mesh (x) to 2D horizontal mesh (x,y)

Chapter 6. Code tutorials 217

9 mesh_2D = RectangleMesh (Nx , 1 ,Lx ,Ly ,quadrilateral=True) # 2D surface mesh

10 V_2D = FunctionSpace (mesh_2D ,"CG" , 1) # 2D surface funct. space

11 Vec_2D = VectorFunctionSpace (mesh_2D ,"CG" , 1 , dim=n_z) # 2D vector funct. space

12 h_2D = Function (V_2D) # h(x,y)

13 psi_s_2D = Function (V_2D) # psi_1 (x,y)

14 psi_i_2D = Function (Vec_2D) # psi_i (x,y)

15 beach_s_2D = Function (V_2D) .interpolate (beach_expr) # b(x,y)

16 # Extend the surface mesh in depth to obtain {0<x<Lx; 0<y<Ly; 0<z<H0}

17 mesh_3D = ExtrudedMesh (mesh_2D , # horizontal mesh to extrude;

18 n_z , # number of elements in the vertical;

19 layer_height=H0 / (n_z) , # length of each element;

20 extrusion_type=’uniform’) # type of extruded coord.;

21

22 else :# If the solutions are already (x,y)-dependent, we extend the domain in depth:

23 mesh_3D = ExtrudedMesh (hor_mesh , # horizontal mesh to extrude;

24 n_z , # number of elements in the vertical;

25 layer_height=H0 / (n_z) , # length of each element;

26 extrusion_type=’uniform’) # type of extruded coord.;

The solution waves which takes the value of φ(x, y, z, t) in the 3D domain is defined as:

1 """

2 *****************************

3 * Function to save *

4 ***************************** """

5 #__________ Function Space _________#

6 V_3D = FunctionSpace (mesh_3D , "CG" , 1)

7 #____________ Functions ____________#

8 waves = Function (V_3D ,name="phi")

9 WM_3D = Function (V_3D ,name = "WM")

In order to both map each ψi to the corresponding vertical layer and transform the 3D mesh back

to the free-surface domain (for display purpose), the appropriate indices are selected as follows:

1 """

2 **

3 * Mapping and transforms *

4 **"""

5 if dim=="2D" :

6 # Indices to map h(x) and phi(x) to h(x,y) and phi(x,y) :

7 Indx = []

8 for j in range (len (hor_mesh .coordinates .dat .data [:])) :

9 Indx .append ([y for y in range (len (mesh_2D .coordinates .dat .data [: , 0])) \

218 Chapter 6. Code tutorials

10 if mesh_2D .coordinates .dat .data [y , 0] = =hor_mesh .coordinates .dat .data [j]])

11

12 # Index used to differentiate each vertical layer

13 Indz = []

14 for i in range (0 ,n_z+1) :

15 Indz .append ([zz for zz in range (len (mesh_3D .coordinates .dat .data [: , 2])) \

16 if mesh_3D .coordinates .dat .data [zz , 2] == mesh_3D .coordinates .dat .data [i , 2]])

17

18 # Index of the 3D funct. for which x<Lw. This is used to transform the 3D domain

19 # in x, to get back to the moving domain:

20 Test_x_Lw=Function (V_3D)

21 Test_x_Lw .interpolate (Expression (’0.5*(1.0+copysign(1.0,Lw-x[0]))’ ,Lw=Lw))

22 Indw = [item for item in range (len (Test_x_Lw .dat .data [:])) \

23 if Test_x_Lw .dat .data [item] != 0 . 0]

Using Indx, Indz and Indw, the solution waves is saved at each time t in 3D. First, if the

depth and velocity potential are defined on the x–plane only, the function x to xy() copies the 1D

functions h(x) and ψi(x) to the surface plane (x, y) as follows:

1 #---#

2 # Surface solutions (x,y) #

3 #---#

4 def x_to_xy (h_n0 , psi_1_n0 , hat_psi_n0 , h_2D , psi_s_2D , psi_i_2D , Indx) :

5 for i in range (len (h_n0 .dat .data [:])) :

6 h_2D .dat .data [Indx [i]] = h_n0 .dat .data [i]

7 psi_s_2D .dat .data [Indx [i]] =psi_1_n0 .dat .data [i]

8 psi_i_2D .dat .data [Indx [i] , :] = hat_psi_n0 .dat .data [i , :]

Then, Indz is used to assign the velocity-potential values to each interior layer i, through the

function phi projection():

1 #---#

2 # 3D solution (x,y,z) #

3 #---#

4 def phi_projection (i , n_z , waves , Indz , psi_s , psi_i) :

5 if i==n_z : # if i=1,

6 waves .dat .data [Indz [i]] = psi_s .dat .data [:] # phi(z_i)=psi_1

7 else : # if i>1,

8 waves .dat .data [Indz [i]] = psi_i .dat .data [: , n_z - 1 -i]# phi(z_i)=psi_i

The 3D mesh is then transformed in z and x so that it moves with the free surface and wavemaker:

Chapter 6. Code tutorials 219

1 #---#

2 # Transform the domain #

3 #---#

4

5 #__________________________________ z-transform __________________________________#

6 def z_transform (mesh_3D , n_z , h_2D , beach_2D , H0 , Indz) :

7 for i in range (0 , n_z+1) : # for each layer

8 mesh_3D .coordinates .dat .data [Indz [i] , 2]∗=h_2D .dat .data [:] / H0 # z -> z*h/H0

9 mesh_3D .coordinates .dat .data [Indz [i] , 2] + =beach_2D .dat .data [:] # z -> z+b(x)

10

11 #__________________________________ x-transform __________________________________#

12 def x_transform (mesh_3D , Lw , WM_3D , Indw) :

13 for i in range (0 ,len (Indw)) : # x -> R + x*(Lw-R)/Lw

14 mesh_3D .coordinates .dat .data [Indw [i] , 0]∗= (Lw -WM_3D .dat .data [Indw [i]]) /Lw

15 mesh_3D .coordinates .dat .data [Indw [i] , 0] + =WM_3D .dat .data [Indw [i]]

Time loop

The above functions are called in the main time loop to save the energy and waves in the free-

surface domain that moves with h(x, y, t) and R(y, t). The numerical domain is then transformed

back to the fixed coordinates in order to update the solutions by calling the solvers in the fixed

domain:

1 t_save = t

2 while t<Tend -dt :

3 """ ***

4 * SAVE FUNCTIONS *

5 *** """

6 if t_save <= t :

7 print (’Progress: ’ , 100∗t /Tend , ’ %’)

8 #---#

9 # ENERGY #

10 #---#

11 save_energy (h_n0 , psi_1_n0 , hat_psi_n0 , WM , dWM_dy , dWM_dt , H , x_coord , Lw ,

12 H0 , g , A11 , AN1 , A1N , ANN , M11 , M1N , MN1 , MNN , D11 , D1N , DN1 ,

13 DNN , S11 , S1N , SN1 , SNN , I1 , IN , Energy_file , t , dim)

14

15

16 #---#

17 # SAVE 3D FUNCTIONS #

18 #---#

220 Chapter 6. Code tutorials

19 #___________________________ Project solutions ___________________________#

20 if dim == ’2D’ :

21 # To the surface plane (x,y) :

22 x_to_xy (h_n0 , psi_1_n0 , hat_psi_n0 , h_2D , psi_s_2D , psi_i_2D , Indx)

23 # In depth (x,y,z):

24 for i in range (0 ,n_z+1) : # for each layer phi(z)=psi_i

25 phi_projection (i , n_z , waves , Indz , psi_s_2D , psi_i_2D)

26 WM_3D .dat .data [Indz [i]] = WM .dat .data [0] # WM(z) = WM

27 elif dim == ’3D’ :

28 # In depth (x,y,z):

29 for i in range (0 ,n_z+1) :

30 phi_projection (i , n_z , waves , Indz , psi_1_n0 , hat_psi_n0)

31 WM_3D .dat .data [Indz [i]] = WM .dat .data [:]

32

33 #_______________________ Save the fixed coordinates ______________________#

34 init_coord = mesh_3D .coordinates .vector () .get_local ()

35

36 #______________________________ z-transform ______________________________#

37 if dim == ’2D’ :

38 z_transform (mesh_3D , n_z , h_2D , beach_s_2D , H0 , Indz)

39 elif dim == ’3D’ :

40 z_transform (mesh_3D , n_z , h_n0 , beach , H0 , Indz)

41

42 #______________________________ x-transform ______________________________#

43 x_transform (mesh_3D , Lw , WM_3D , Indw)

44

45 #______________________________ Save waves _______________________________#

46 save_waves .write (waves)

47

48 #_______________________ Back to the initial mesh ________________________#

49 mesh_3D .coordinates .vector () .set_local (init_coord)

50

51 #____________________________ Save wavemaker _____________________________#

52 save_WM .write (WM_3D)

53

54 #__________________________ Update saving time ___________________________#

55 t_save+=dt_save

Subsequently, the time is updated. Depending on the initial settings, the wavemaker is also updated

if t < t stop. However, as soon as t > t stop the wavemaker is switched off and does not need

to be updated anymore. The parameter update wm is initialised to ’Yes’ and set to ’No’ once

Chapter 6. Code tutorials 221

the wavemaker has been switched off, so that after the wavemaker stops these transforms are not

needed every time step.

1 """ **

2 * Update time and wavemaker *

3 ** """

4 #___________________ Update time: tˆn -> tˆ{n+1} __________________#

5 t_half = t+0.5∗dt

6 t += dt

7 #________________________ Update wavemaker ________________________#

8

9 if t<=t_stop : # The wavemaker keeps moving

10 if scheme=="SV" :

11 WM_expr .t = t_half

12 dWM_dt_expr .t = t_half

13 dWM_dy_expr .t = t_half

14 WM_half .interpolate (WM_expr) # update R(x,y;t)

15 dWM_half_dt .interpolate (dWM_dt_expr) # update dR/dt

16 dWM_half_dy .interpolate (dWM_dy_expr) # update dR/dy

17 WM_expr .t = t

18 dWM_dt_expr .t = t

19 dWM_dy_expr .t = t

20 WM_n1 .interpolate (WM_expr) # update R(x,y;t)

21 dWM_n1_dt .interpolate (dWM_dt_expr) # update dR/dt

22 dWM_n1_dy .interpolate (dWM_dy_expr) # update dR/dy

23 t_aux = t

24

25 elif t>t_stop and update_wm==’Yes’ : # We stop the wavemaker motion;

26 update_wm=’No’

27 if scheme=="SV" :

28 if t_half<=t_stop :

29 t_aux = t_half

30 WM_expr .t = t_aux

31 dWM_dt_expr .t = t_aux

32 dWM_dy_expr .t = t_aux

33 WM_n1 .interpolate (WM_expr)

34 dWM_n1_dt .assign (0 . 0)

35 dWM_n1_dy .interpolate (dWM_dy_expr)

36 if scheme=="SV" :

37 WM_half .interpolate (WM_expr)

38 dWM_half_dt .assign (0 . 0)

39 dWM_half_dy .interpolate (dWM_dy_expr)

222 Chapter 6. Code tutorials

Note that for the Störmer-Verlet scheme, the wavemaker motion and derivatives also needs to be

computed at time tn+1/2. Once time is updated, the solvers are called through:

1 """ **

2 * Solve the weak formulations *

3 ** """

4 #___________________ Call the solvers ___________________#

5 if scheme=="SE" : # 1st-order SE scheme

6 h_solver .solve () # get hˆ{n+1} and hat_psiˆ*

7 psi_solver .solve () # get psiˆ{n+1}

8 elif scheme=="SV" : # 2nd-order SV scheme

9 psi_half_solver .solve ()# get psiˆ{n+1/2} and hat_psiˆ*

10 h_solver .solve () # get hˆ{n+1} and hat_psiˆ{**}

11 psi_n1_solver .solve () # get psi_1ˆ{n+1}

Finally, the functions are updated for the next time step.

1 """ ******************************

2 * Update the functions *

3 ****************************** """

4 #_____ Update the solutions _____#

5 h_out , hat_psi_out = w_n1 .split ()

6 h_n0 .assign (h_out)

7 psi_1_n0 .assign (psi_1_n1)

8 hat_psi_n0 .assign (hat_psi_out)

9

10 #_____ Update the wavemaker _____#

11 WM .assign (WM_n1)

12 dWM_dt .assign (dWM_n1_dt)

13 dWM_dy .assign (dWM_n1_dy)

All the parameters used to obtain the simulations are saved on a README file at the end of the

simulations. This file takes the form:

Chapter 6. Code tutorials 223

Summary

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−− Dimens ions o f t h e domain −−−−−−

Length Lx : 1 0 . 0 m

Length Ly : 1 . 0 m

Depth H0 : 1 . 0 m

Beach s t a r t : 3 . 0 m

Beach s l o p e : 0 . 1

−−−−−−−−−−− Mesh r e s o l u t i o n −−−−−−−−−−

In x : 0 . 0 5 m (2 0 0 . 0 e l e m e n t s)

In y : 0 . 0 5 m (2 0 . 0 e l e m e n t s)

In z : 0 .125 m (8 e l e m e n t s)

−−−−−−−−−−−−−− Wavemaker −−−−−−−−−−−−−

Ampl i tude : 0 . 0 2 m

P e r i o d : 1 . 1 3 s

Frequency : 5 .55752212389 / s

S t o p s a f t e r 5 . 0 p e r i o d s (= 5 . 6 5 s)

Lw: 1 . 0 m

−−−−−−−−−−−−−−− S o l v e r −−−−−−−−−−−−−−−

1 s t o r d e r Symplec t i c−E u l e r scheme

−−−−−−−−−−−−− F i n a l t ime −−−−−−−−−−−−−

Tend : 1 1 . 3

d t : 0 . 001

C o m p u t a t i o n a l t ime : 0 j 0 h 10 mn 36 s (=636 s)

224 Chapter 6. Code tutorials

In next section, we explain how to couple the deep-water tank to a shallow-water beach.

6.4 Numerical wave tank: coupling to shallow-water beach

6.4.1 Introduction

In Chapter 4, a coupling between the deep-water potential-flow equations and the shallow-water

equations was derived to absorb the waves on a beach. As discussed, the potential-flow equations

have been solved with the finite-element method and their implementation has been described in

section 6.3. In this section, we describe the finite-volume implementation of the shallow-water

solvers and explain how to couple these solvers to the potential-flow solvers.

6.4.2 Code source

In addition to the files used for the 3D tank (cf. section 6.3), a file NLSW beach.py is used to

define all the functions related to the nonlinear shallow-water beach implementation. Moreover,

the nonlinear potential-flow weak formulations as given in section 6.3 need to be extended

with coupling terms. A file NLDW WM.py containing the nonlinear deep-water coupled weak

formulations is thus used instead of the solvers.py file when considering the coupled tank.

The codes return several functions that can be opened in Paraview.

• The files dw waves.pvd and sw waves.pvd contain the deep-water velocity potential

φ(x, z, t) and the shallow-water velocity u(x, t) respectively, saved in the deep- and

shallow-water domains respectively. In order to observe their evolution, open the two files

in Paraview, and apply a “Gradient on unstructured dataset” filter to the dw waves.pvd.

This filter enables one to observe the spatial derivatives of φ and therefore to get the

deep-water velocity. Subsequently, choose to fill the domain with “sw u” for the function

sw waves.pvd and “Gradients X” for the function dw waves.pvd. Set the same colorbar

scale for the two variables, and play to observe the solutions. In the movies, you should

observe continuous free-surface and velocity fields throughout the coupled domain. You

can also open the file wavemaker.pvd to see the wavemaker motion.

• To observe only the free-surface evolution, open the files dw h.pvd, sw h.pvd,

dw beach.pvd and sw beach.pvd. Apply a “Wrap by scalar” filter on all variables, and

Chapter 6. Code tutorials 225

you will observe the free-surface evolution above the sea-bed topography.

• The deep-water and shallow-water energies are saved in the files dw energy.txt and

sw energy.txt respectively. Open these files in Matlab or Python for example to plot the

energy of each domain as a function of time.

• Finally, the file ”README.txt” summarizes the test parameters.

In the next section, instructions are given on how to run the coupled model.

6.4.3 Use of the code

First of all, select the input data, either using the choice “created” or “measurements” in the

function input(). In this tutorial, we only consider the case of created data. The comparison with

measurements is explained in section 6.5.

1 """

2 ***

3 * Test case *

4 ***"""

5 def input () :

6 #________________ Kind of data ________________#

7 #input_data = "measurements" # from experiments

8 input_data = "created" # set the wavemaker

9 #_________________ Test case __________________#

10 if input_data == "created" :

11 test_case = "test" # choose a folder name

12 elif input_data == "measurements" :

13 test_case = "111" # choose from table

14 return input_data , test_case

In the case of created data, the variable test case() is used to specify the folder in which the

numerical data will be saved.

In the coupled model, the domain length is increased so that the beach goes above the depth at rest;

the beach length must be set to that waves do not reach the end of the domain. In this example,

we let the beach go 20% above the rest waterline, but this length can be changed depending on

the wave amplitudes. The characteristics of the coupled model only depend on the deep-water

settings, defined through the function domain(), as explained in section 6.3. In order to be coupled

to the shallow-water model as accurately as possible, the depth at the end of the deep-water domain

226 Chapter 6. Code tutorials

Hc = H(xc) must satisfy

λ/20� Hc � λ/2, (6.16)

so make sure to define Hc so that the above criteria is satisfied. The deep-water domain

characteristics are imported into the main program as

1 #------------------------- Deep-water domain -------------------------#

2 H0 , xb , slope , H_expr , Hc , xc , Lw , res_dw , n_z = domain (input_data)

so that the coupling coordinate xc is defined at the end of the deep-water domain, where the depth

at rest is Hc = H(xc). The shallow-water domain is defined from xc to L, where L is the length

necessary for the end of the domain to lie a fraction fL, say 20%, above the maximal depth at rest

H0 = Hr(x ≤ xB) (cf. Chapter 4). The length Lsw of the shallow-water domain is thus obtained

directly from the deep-water characteristics, as Lsw = L − xc. Similarly, the resolution in the

shallow-water domain is defined as

∆xSW = ∆x2
DW , (6.17)

to account for the second-order accuracy in the deep-water domain and first-order accuracy in the

shallow water domain, as explained in Chapter 4.

The shallow-water and coupled domains lengths are therefore automatically computed in the main

file, through:

1 #---- Shallow-water domain ----#

2 Lsw = (Hc+f_L∗H0) /slope

3 res_sw = res_dw∗res_dw

4

5 #---- Total coupled domain ----#

6 L_total = xc + Lsw

Similarly to the 3D wave tank case, specify the wavemaker and time parameters in the file

Settings.py. Now we can run the main file to create a simulation.

6.4.4 Code description

In this section, we detail the extensions of the deep-water code described in section 6.3 that are

necessary to obtain the coupled simulations. In particular, we explain how the shallow-water

Chapter 6. Code tutorials 227

numerical domain is defined, how the finite-volume solvers are implemented, and how the deep-

water solvers are coupled to the shallow-water ones.

Definition of the shallow-water solutions

First, the shallow-water mesh is defined, similarly to the deep-water mesh.

1 """

2 ***

3 * Definition of the mesh *

4 *** """

5 #___________ Horizontal discretization ____________#

6 Nv_sw = round (L_sw /res_sw) # Number of volumes in x

7 #_______________ Shallow-water mesh _______________#

8 sw_mesh = IntervalMesh (Nv_sw ,L_sw) # SW mesh

Note that the shallow-water x–coordinate is shifted as x̌ = x − xc in order to start at x̌ = 0. As

explained in Chapter 4, this enables to define the shallow-water topography as

Ȟ(x) = Hc − b̌(x̌), with b̌(x̌) = sBx̌. (6.18)

The shallow-water solutions h and hu are discontinuous, so the function space is defined based on

discontinuous-Galerkin expansions, through the option “DG0”:

1 #__________ Function Space __________#

2 sw_V = FunctionSpace (sw_mesh ,"DG" , 0)

3

4 #_____________ Functions ____________#

5 h_fv = Function (sw_V , name="h_fv")

6 hu_fv = Function (sw_V , name = "hu_fv")

7 sw_beach = Function (sw_V)

As we define the finite-volume solvers by hand (ie. not using Firedrake), no trial or basis function

needs to be defined. The functions h and hu defined on the shallow-water mesh will only be

used to save the shallow-water solutions. In addition, the function hu fe is introduced to apply

the deep-water flux boundary conditions. It is defined in the deep-water function space dw V as

follows:

1 # BCs for deep-water:

2 hu_fe = Function (dw_V)

228 Chapter 6. Code tutorials

The solutions are initialised at the rest state. By definition, the discrete topography b̌k is the

averaged topography across volume Xk:

b̌k =
1

∆xSW

∫ xk+1/2

xk−1/2

b̌(x̌)dx̌, fork = 1, . . . Nvsw. (6.19)

Therefore, it is nonzero at the coupling point x = xc. In order to ensure continuity of the rest

depth accross the interface, the rest depth at the coupling x = x+
c is then defined as

H(x+
c) = H0 −H(x−c)− b̌0, (6.20)

where b̌0 is the discrete topography in the first volumeX0. The initial depth h fv is then initialised

as the rest depth, that is

hk = H(x+
c)− b̌k. (6.21)

Hence, in the code, the functions are initialised through:

1 #--------------------------- Shallow-water beach ---------------------------#

2 beach_sw_expr = Expression ("slope*x[0]" ,slope=slope) #\check{b}(\check{x})

3 H0_sw = H0 -sw_beach .dat .data [0] -dw_beach .dat .data [- 1] # H(x_cˆ+)

4 sw_beach .interpolate (beach_sw_expr)

5 #--------------------------- Shallow-water depth ---------------------------#

6 h_fv .assign (H0_sw -sw_beach) # h = H(x_cˆ+)-\check{b}(\check{x})

7 h_fv .dat .data [np .where (h_fv .vector () .get_local ()<0)]=0 # avoid negative depth

8 #------------------------- Shallow-water velocity --------------------------#

9 hu_fv .assign (0 . 0) # u(t=0)=0

Definition of the shallow-water solver

The shallow-water solver is defined in separation of Firedrake in the file NLSW beach.py and is

called at each time step. First, the Firedrake functions h fv and hu fv are copied into the two-

column array U that will be used as the solution at time tn. Similarly, the beach topography is

saved in the array bk:

1 #--------- Shallow-water solutions ---------#

2 U = 0∗np .eye (2 ,Nvol+1)

3 U [0 , 1 :Nvol+1] = h_fv .dat .data [0 :Nvol] # hˆn

4 U [1 , 1 :Nvol+1] = hu_fv .dat .data [0 :Nvol] # huˆn

5 #----------- Shallow-water beach -----------#

Chapter 6. Code tutorials 229

6 bk = 0∗np .eye (1 ,Nvol+1)

7 bk [0 , 1 :Nvol+1] = sw_beach .dat .data [:] # b(x)

Then, the boundary values for h and hu, computed from the values of the deep-water solutions

(cf. Chapter 4), are assigned to the ghost cells of the shallow-water domain:

1 #--------------- Depth ---------------#

2 U [0 , 0] =h_bc # Left: coupling

3 U [0 , - 1]=U [0 , - 2] # Right: h=0

4

5 #------------- Velocity --------------#

6 U [1 , 0] =hu_bc # Left: coupling

7 U [1 , - 1]= -U [1 , - 2] # Right: du/dx =0

8

9 #--------------- Beach ---------------#

10 bk [0 , 0] = bk [0 , 1] - (bk [0 , 2] -bk [0 , 1])

11 bk [0 , - 1] = bk [0 , - 2] - (bk [0 , - 3] -bk [0 , - 2])

The indices −1 and −2 designate the last and penultimate volumes respectively. The updated

solution is initialised in the vector U next as follows:

1 U_next=np .copy (U)

The numerical flux at the interface denoted by xk+1/2 requires the values in the adjacent cells k

and k + 1. We assign the values of Uk, Uk−1 and Uk+1 as follows:

1 k = range (1 ,Nvol - 1)

2 k_plus = range (2 ,Nvol)

3 k_minus = range (0 ,Nvol - 2)

4 Uk = np .copy (U [: , k]) # U_k

5 Uk_plus = np .copy (U [: , k_plus]) # U_{k+1}

6 Uk_minus = np .copy (U [: , k_minus]) # U_{k-1}

The left and right depths at each volume interface are then computed using the method introduced

by Audusse [5] to ensure non-negative depth (cf. Eq. 4.32 in Chapter 4 for more details):

1 #--------------------------- Non-negative depth ---------------------------#

2 bk_half_r = np .maximum (bk [0 ,k] ,bk [0 ,k_plus]) # b_{k+1/2}

3 bk_half_l = np .maximum (bk [0 ,k] ,bk [0 ,k_minus]) # b_{k-1/2}

4 h_plus_r = np .maximum (Uk_plus [0 , :] +bk [0 ,k_plus] -bk_half_r , 0) # h_{k+1/2ˆ+}

5 h_plus_l = np .maximum (Uk [0 , :] +bk [0 ,k] -bk_half_r , 0) # h_{k+1/2ˆ-}

6 h_minus_r = np .maximum (Uk [0 , :] +bk [0 ,k] -bk_half_l , 0) # h_{k-1/2ˆ+}

7 h_minus_l = np .maximum (Uk_minus [0 , :] +bk [0 ,k_minus] -bk_half_l , 0)# h_{k-1/2ˆ-}

230 Chapter 6. Code tutorials

Finally, the interface value of hu is computed and saved to the vectors U plus l (Uk+1/2−),

U plus r (Uk+1/2+), U minus l (Uk−1/2−) and U minus r (Uk−1/2+) by calling the function

U half that returns

Uk−1/2− =

 hk−1/2−

hk−1/2−uk−1

 , Uk−1/2+ =

 hk−1/2+

hk−1/2+uk

 ,

Uk+1/2− =

 hk+1/2−

hk+1/2−uk

 , Uk+1/2+ =

 hk+1/2+

hk+1/2+uk+1

 .

(6.22)

(6.23)

1 #----- Left and right values of U at the interface k+/-1/2 -----#

2 [u_plus_l ,U_plus_l] = U_half (h_plus_l , Uk) # U(k+1/2)-

3 [u_plus_r ,U_plus_r] = U_half (h_plus_r , Uk_plus) # U(k+1/2)+

4 [u_minus_l ,U_minus_l] = U_half (h_minus_l , Uk_minus) # U(k-1/2)-

5 [u_minus_r ,U_minus_r] = U_half (h_minus_r , Uk) # U(k-1/2)+

The corresponding left and right fluxes of the cell boundary xk+1/2, FL(Uk+1/2) and FR(Uk+1/2)

respectively, are then computed from the definition of the flux

F (U) =

 hu

hu2 +
1

2
gh2

 (6.24)

with the function flux half() so that

FL(Uk+1/2) =

 hk+1/2−uk

hk+1/2−u
2
k +

1

2
gh2

k+1/2−

 ,

and FR(Uk+1/2) =

 hk+1/2+uk+1

hk+1/2+u
2
k+1 +

1

2
gh2

k+1/2+

 .

(6.25)

(6.26)

They are assigned to the corresponding variables Fl plus (FL(Uk+1/2)) and Fr plus

(FR(Uk+1/2)) as follows:

1 # Left and right values of F at the interface k+1/2 #

2 Fl_plus = flux_half (U_plus_l ,g_tilde) # Fl(U_{k+1/2})

3 Fr_plus = flux_half (U_plus_r ,g_tilde) # Fr(U_{k+1/2})

As all values are assigned at once, with vectorial assignment, we also define the left and right

fluxes at the boundary xk−1/2 using

Chapter 6. Code tutorials 231

1 # Left and right values of F at the interface k-1/2 #

2 Fl_minus =flux_half (U_minus_l ,g_tilde) # Fl(U_{k-1/2})

3 Fr_minus = flux_half (U_minus_r ,g_tilde) # Fr(U_{k-1/2})

In addition, the left and right speeds at each cell boundary must be computed to estimate the HLL

flux (C.46). The wave speeds are defined as

SL(Uk±1/2) = min
(
uk±1/2− −

√
ghk±1/2− , uk±1/2+ −

√
ghk±1/2+

)
,

SR(Uk±1/2) = max
(
uk±1/2− +

√
ghk±1/2− , uk±1/2+ +

√
ghk±1/2+

)
.

(6.27a)

(6.27b)

Therefore, we define a function left wave speed() and a function right wave speed() as follows:

1 def left_wave_speed (ul , ur , hl , hr , g) :

2 Sl = np .minimum (ul - np .sqrt (g∗hl) , ur - np .sqrt (g∗hr))

3 return Sl

4

5 def right_wave_speed (ul , ur , hl , hr , g) :

6 Sr = np .maximum (ul+ np .sqrt (g∗hl) , ur+ np .sqrt (g∗hr))

7 return Sr

where uL, uR, hL, hR are the left and right limits of u and h at the considered boundary. Namely,

the left and right wave speeds of each boundary are assigned through

1 #----------- Left and right speeds at each interface of cell k ----------#

2 # Sl(U_{k-1/2}): Ul/r=U(k-1/2)-/+

3 Sl_minus=left_wave_speed (u_minus_l ,u_minus_r ,h_minus_l ,h_minus_r ,g_tilde)

4 # Sr(U_{k-1/2}): Ul/r=U(k-1/2)-/+

5 Sr_minus=right_wave_speed (u_minus_l ,u_minus_r ,h_minus_l ,h_minus_r ,g_tilde)

6 # Sl(U_{k+1/2}): Ul/r=U(k+1/2)-/+

7 Sl_plus=left_wave_speed (u_plus_l ,u_plus_r ,h_plus_l ,h_plus_r ,g_tilde)

8 # Sr(U_{k+1/2}): Ul/r=U(k+1/2)-/+

9 Sr_plus=right_wave_speed (u_plus_l ,u_plus_r ,h_plus_l ,h_plus_r ,g_tilde)

The HLL fluxes at each flux boundary Fk−1/2 and Fk+1/2 are finally assigned to their respective

variables F minus and F plus through

1 #---------------------------------- HLL fluxes ----------------------------------#

2 # F(k-1/2) = F(Fl,Fr) ; Fl = F(U(k-1/2)-) ; Fr = F(U(k-1/2)+)

3 F_minus = HLL_flux (Fl_minus , Fr_minus , Sl_minus , Sr_minus , U_minus_l , U_minus_r)

4 # F(k+1/2) = F(Fl,Fr) ; Fl = F(U(k+1/2)-) ; Fr = F(U(k+1/2)+)

5 F_plus = HLL_flux (Fl_plus , Fr_plus , Sl_plus , Sr_plus , U_plus_l , U_plus_r)

232 Chapter 6. Code tutorials

where the function HLL flux() computes the HLL flux (C.46) depending on the left and right wave

speeds and left and right fluxes.

Note that calculation of the flux (and therefore wave speed) at the boundary xk−1/2 can be avoided

by looping over the cell interfaces instead, in which case Fk−1/2 takes the value of Fk+1/2 at the

previous iteration.

The depth hk may then be updated by solving the conservation of mass shallow-water equation,

that is,

1 #-------------------------------- Update h --------------------------------#

2 U_next [0 ,k] = Uk [0 , :] - dt∗ (F_plus [0 , :] - F_minus [0 , :]) /d_x

Knowing h at time tn+1, the above steps are repeated to update hu, but this time using hn+1
k

instead of hnk , in order to obtain the symplectic-Euler scheme. After a consequent update of the

numerical fluxes and computation of the topography term through

1 #-------------------------- Topography --------------------------#

2 Sk [1 , :] = 0 . 5 ∗g_tilde∗h_next_plus_l∗∗2 - 0 .5∗g_tilde∗h_next_minus_r∗∗2

the solution huk is updated through:

1 #-------------------------------- Update hu -------------------------------#

2 U_next [1 ,k] = Uk [1 , :] - dt∗ (F_plus [1 , :] - F_minus [1 , :]) /d_x + dt∗Sk [1 , :] / d_x

The flux at x = xc is saved in the variable hu fe in order to be used as boundary condition for the

deep-water equations. In addition, the updated vector U next containing the solutions h and hu

at time tn+1 is assigned to the Firedrake functions h fv and hu fv so that they can be saved in

the main file. Finally, the shallow-water energy is computed and returned to the main file:

1 # BC for DW: flux at the left boundary

2 hu_fe .vector () .set_local (F_minus [0 , 0])

3 #-------- Update the solutions -------#

4 h_fv .vector () .set_local (U [0 , 1 :Nvol+ 1])

5 hu_fv .vector () .set_local (U [1 , 1 :Nvol+ 1])

6 #---- Compute the energy ----#

7 hu_square = 0 .0∗np .eye (1 ,Nvol)

8 h_square = 0 .0∗np .eye (1 ,Nvol)

9 kk = range (1 ,Nvol)

10 kk_minus = range (0 ,Nvol - 1)

11 huu = 0 .0∗np .eye (1 ,len (U [0 , :]))

12 [Ind] = np .where (U [0 , :]>=1e - 9)

Chapter 6. Code tutorials 233

13 huu [0 ,Ind] =U [1 ,Ind]∗U [1 ,Ind] / U [0 ,Ind]

14 hu_square [0 ,kk_minus]=huu [0 ,kk]

15 h_square [0 ,kk_minus]=U [1 ,kk]∗U [1 ,kk]

16 E_sw = d_x∗ (0 . 5∗sum (hu_square [0 , :]) + 0 .5∗g∗sum (h_square [0 , :]))

17 return h_fv , hu_fv , U , hu_fe , E_sw

In the next section, we detail the algorithm used to couple this shallow-water solver to the deep-

water one.

Coupling the deep- and shallow-water solvers

First of all, the shallow-water flux hu fe is applied at the boundary x = xc of the deep-water

weak formulations. This is done weakly by adding terms involving hu fe at the deep-water weak

formulations boundaries, as explained in Chapter 4. The weak formulations are defined in the file

NLDW WM.py and imported through

1 """

2 ***

3 * Define the deep-water solvers *

4 *** """

5 #___________________ Variational problem for h (and hat_psiˆ*) ____________________#

6 DW_VP_h = dw .VP_h (Lw , WM , p , h_n1 , h_n0 , dt , H0 , psi_s_n0 , x_coord , dWM , hat_psi_aux ,

r , w_n1 , hu_fe , A11 , A1N , AN1 , ANN , M11 , M1N , MN1 , MNN , D11 , D1N , DN1 , DNN , S11 ,

S1N , SN1 , SNN , I1 , IN , I3 , n_z)

7

8 #_________________________ Variational solver for psi_1 __________________________#

9 DW_VP_psi_s = dw .VP_psi_s (Lw , H0 , g , dt , WM , WM_n1 , dWM , v , x_coord , psi_s_n0 , h_n1 ,

psi_s_n1 , psi_s , H , hat_psi_aux , A11 , A1N , AN1 , ANN , M11 , M1N , MN1 , MNN , D11 , D1N ,

DN1 , DNN , S11 , S1N , SN1 , SNN , I1 , IN , I3 , G1 , GN , hu_fe)

The deep-water solvers are then defined as in section 6.3 through

1 """

2 ***

3 * Define the deep-water solvers *

4 *** """

5 param_h={"ksp_converged_reason" :True ,"pc_type" : "fieldsplit" ,\

6 "pc_fieldsplit_type" : "schur" ,"pc_fieldsplit_schur_fact_type" :"upper"}

7 param_psi={"ksp_converged_reason" :True}

8 param_hat_psi={"ksp_converged_reason" :True ,’ksp_type’ : ’preonly’ ,’pc_type’ :’lu’}

9

234 Chapter 6. Code tutorials

10 #___________________ Variational solver for h (and hat_psiˆ*) ____________________#

11 DW_solver_h = NonlinearVariationalSolver (DW_VP_h , solver_parameters=param_h)

12

13 #_________________________ Variational solver for psi_1 __________________________#

14 DW_solver_psi_s = LinearVariationalSolver (DW_VP_psi_s , solver_parameters=param_psi)

The algorithm as presented in Chapter 4 is then implemented as follows. After initialisation of the

solutions, including the boundary flux hu fe, the deep-water equations are solved:

1 """ **

2 * Solve the weak formulations *

3 ** """

4 #______________ Call the deep-water solvers ______________#

5 DW_solver_h .solve () # hˆ{n+1}, psi_iˆ*

6 DW_solver_psi_s .solve () # psi_1ˆ{n+1}

Then, the solutions hn+1, ψ∗i′ and ψn1 are used to compute the shallow-water boundary conditions,

derived in Chapter 4:

h bc = hn+1
x=xc

hu bc =
1

H0

[
hn+1

(
∂xψ

n
1 Ĩ1 + ∂xψi′ Ĩi′

)
− ∂xhn+1

(
G̃1ψ

n
1 + G̃i′ψi′

)]
x=xc

(6.28)

The above equations are assigned to the shallow-water boundaries through

1 #________ Update the boundary-condition solutions _______#

2 h_out , hat_psi_out = w_n1 .split ()

3

4 hu_bc = assemble ((1 / H0) ∗ (h_out∗psi_s_n0 .dx (0) ∗I1 \

5 + h_out∗dot (hat_psi_out .dx (0) ,IN) \

6 - G1∗psi_s_n0∗h_out .dx (0) \

7 - h_out .dx (0) ∗dot (GN ,hat_psi_out)) ∗ds (2))

8 h_bc = assemble ((h_out) ∗ds (2))

The shallow-water equations can then be solved by calling the shallow-water solver defined in the

previous paragraph, through

1 #______________ Call the shallow-water solver _____________#

2 h_fv , hu_fv , U , hu_fe , E_sw = sw .solve_FV (int (Nv_sw) , res_sw , dt , sw_beach , g , h_bc ,

hu_bc , h_fv , hu_fv , hu_fe)

This way, the depth and velocity have been updated in the whole domain. The flux hu fe returned

by the shallow-water solver will be used as boundary flux for the next call of the deep-water solver.

Chapter 6. Code tutorials 235

In next section, we explain how the solutions are saved to be visualised in Paraview.

Saving the shallow-water solutions

In order to visualise the free surface and the waves velocity in shallow water, the shallow-water

mesh is extruded in depth, just as the deep-water mesh described in section 6.3. The shallow-

water free surface is saved on the 1D-mesh through the function sw h, in the file sw h.pvd. The

shallow-water velocity is saved in the file sw waves.pvd, in which the shallow-water domain

evolves with the free surface h fv and is filled with the solution sw u, defined in the vertical

mesh.

1 #-------------------- Extruded vertical mesh --------------------#

2 sw_mesh_2D = ExtrudedMesh (sw_mesh , num_element , layer_height = H0 ,

3 extrusion_type=’uniform’)

4 sw_V_2D = FunctionSpace (sw_mesh_2D , "DG" , 0)

5 #---------------------- Vertical solutions ----------------------#

6 sw_u = Function (sw_V_2D , name = "sw_u")

7 sw_h = Function (sw_V , name="sw_h")

8 #------------------------- Saving files -------------------------#

9 sw_beach_file = File (os .path .join (save_path ,"sw_beach.pvd"))

10 sw_waves_file = File (os .path .join (save_path ,"sw_waves.pvd"))

11 sw_h_file = File (os .path .join (save_path ,"sw_h.pvd"))

12 E_file_sw = open (os .path .join (save_path ,"energy_sw.txt") , ’w’)

To move with the free surface, the indices of the z–coordinates to transform are accessed through

sw Indz, just as those of the deep-water domain. In addition, the x–coordinate is shifted as x →

x + xc in order to start at the coupling point x = xc, and the z–coordinate is shifted through

z → z + H0 − Hc + b̌(xc), where b̌(xc) is the discontinuous value of the shallow-water beach,

to account for the fact the the shallow-water domain starts at xc with rest depth Hc. The solutions

are thus saved as follows:

1 #------------------------------ Save h ------------------------------#

2 init_mesh = sw_mesh .coordinates .vector () .get_local ()

3 sw_mesh .coordinates .dat .data [:] + =xc

4 sw_h .assign (sw_beach .dat .data [0] +dw_beach .dat .data [- 1] + sw_beach + h_fv)

5 sw_h_file .write (sw_h)

6 sw_mesh .coordinates .vector () .set_local (init_mesh)

7 #--------------- Save u in the free-surface domain ---------------#

8 init_SW_coord = sw_mesh_3D .coordinates .vector () .get_local ()

236 Chapter 6. Code tutorials

9 #---- z transform

10 for i in range (len (h_fv .dat .data [:])) :

11 sw_waves .dat .data [i]=hu_fv .dat .data [len (h_fv .dat .data [:]) - 1 -i] / h_fv .dat .data [len (

h_fv .dat .data [:]) - 1 -i]

12 sw_mesh_3D .coordinates .dat .data [Indz_sw [i] , 2]∗=h_fv .dat .data [i]

13 sw_mesh_3D .coordinates .dat .data [Indz_sw [i] , 2] + = (sw_beach .dat .data [i]+dw_beach .dat .

data [- 1]+sw_beach .dat .data [0])

14 sw_mesh_3D .coordinates .dat .data [ii , 2] = slope∗ (L_total -xb)

15 sw_waves_file .write (sw_waves)

16 #---- transform back

17 sw_mesh_3D .coordinates .vector () .set_local (init_SW_coord)

The deep-water waves solution is saved as explained in section 6.3. The deep-water depth is also

saved in the file dw h.pvd through

1 #------------------- Save DW h --------------------#

2 dw_h_file = File (os .path .join (save_path ,"dw_h.pvd"))

3 dw_h_file .write (dw_h)

The solutions can be observed on Paraview, as explained in section 6.4.2.

6.5 Use of experimental data

6.5.1 Introduction

In this section we explain how to import measured wavemaker motion and velocity into the

numerical simulations. In particular, we explain how to import the data collected in Chapter 5

and how they are treated before being used as input of the coupled tank. We also present the

function used to compare the temporal and Fourier spectra of the numerical and experimental

data. Finally, we detail the modifications of the code necessary to take into account the measured

wavemaker.

6.5.2 Code source

The measurements may be loaded from the folder Experimental data. This folder contains

• a matlab function make input file.m, used to load and filter the measured data; the functions

toolbox bandpass.m and toolbox matfft.m, provided by MARIN, are used to filter the

Chapter 6. Code tutorials 237

measured data;

• a folder Beach tests containing all the test cases with the beach, referenced by the test case

number, as follows:

test case run numbers Period Tp [s] Wave height Hs [m]

111
124

1.67

0.05
164

112
126

0.1
150

113
128

0.2
166

121
130

1.13

0.05
152

122
132

0.07
168

123
134

0.1
170

131
132

0.8

0.03
168

132
134

0.05
170

Table 6.1: Test cases and corresponding run numbers for the generation of regular waves in the

wave tank of TUD.

• a matlab function num vs exp.m used to compare the measured and numerical data.

When running the comparison with experiments, two folders are created:

• measured data, which contains the measured wavemaker motion and velocity, as well as

probe measurements after filtering; and,

• numerical data, which contains the results of the simulations, that is, the results presented

in section 6.4.2 together with the numerical probe measurements, in text files probe1.txt to

238 Chapter 6. Code tutorials

probe7.txt.

6.5.3 Run a comparison with experiments of Chapter 5

A tutorial is given hereafter on how to compare the coupled tank to the measurements made in

Chapter 5.

Load and filter the measured wavemaker

First, you will need to load the measured wavemaker motion and estimate its velocity. Choose

a test case from the table 6.1 and run the matlab function make input file.m to create all the

piston inputs. This function loads the wavemaker motion and acceleration as well as the measured

depth at the probes. It filters all the measurements and estimates the wavemaker velocity from the

measured wavemaker motion, using a central difference scheme:

un =
dx

dt
≈ xn+1 − xn−1

2∆t
, (6.29)

where x is the measured motion and ∆t the time step at which the experiments are measured.

You can check that the results are consistent from the plotted figures. In particular, check that the

estimated acceleration (computed from the estimated velocity) matches the measured acceleration.

The piston motion, velocity, and the measured depth are saved in the folder measured data/case

111, if you chose to load the test case 111 for example.

Compute the simulations

Once the files are created, you can modify the settings of the coupled tank to import the data from

the measurements. In the file Settings.py, change the input data variable to “measurements”

and set the test case variable to the appropriate reference. You also need to adapt the domain

dimensions to the experimental settings. Then, simply run the code Coupling.py to obtain the

numerical data. The coupling code will interpolate the wavemaker input so that the motion and

velocity are known at each solving step. The depth at the probes is saved in the folder numerical

data/case 111/124 if the test case is 111.

Chapter 6. Code tutorials 239

Compare the numerical and experimental data

The Matlab function num vs exp.m loads the experimental and numerical depth measurements,

and compares their temporal evolution as well as their Fourier modes. Set the test case to the

appropriate number and run the function.

6.5.4 Import other measured data

If you want to validate the code against new measurements, place the wavemaker motion

PistonMotion.dat and velocity PistonV elocity.dat in the folder measured data/test case,

where “test case” is the name set in the Settings.py file. The data will automatically be loaded

through the function load wavemaker() defined in the file measured data.py as

1 def load_wavemaker (measurement_path) :

2 wm_motion = open (os .path .join (measurement_path , ’PistonMotion.dat’))

3 lst= []

4 for line in wm_motion :

5 lst+=[line .split ()]

6 wm_data = [float (x [1]) for x in lst] # measured motion

7

8 wm_velocity = open (os .path .join (measurement_path , ’PistonVelocity.dat’))

9 lst = []

10 for line in wm_velocity :

11 lst+=[line .split ()]

12 t_data = [float (x [0]) for x in lst] # measured time

13 wm_vel_data = [float (x [1]) for x in lst] # velocity

14 return wm_data , wm_vel_data , t_data

Then, the measured motion and velocity will automatically be interpolated by updating the time

in the wavemaker expressions defined in the function interpolate wavemaker():

1 def interpolate_wavemaker (wm_data , wm_vel_data , t_data , t , dt , Lw) :

2 WM_expr = Expression ("((wm2*(t-t1) - wm1*(t-t2))/(t2-t1))*0.5*(1.0+copysign(1.0,Lw

-x[0]))" , wm2=wm_data [1] , wm1=wm_data [0] , t1=t_data [0] , t2=t_data [1] , t=t , Lw=Lw)

3

4 dWM_expr = Expression ("((dwm2*(t-t1) - dwm1*(t-t2))/(t2-t1))*0.5*(1.0+copysign

(1.0,Lw-x[0]))" , dwm2=wm_vel_data [1] , dwm1=wm_vel_data [0] , t1=t_data [0] , t2=t_data

[1] , t=t , Lw=Lw)

You might need to change the number of probes and their positions through the function

240 Chapter 6. Code tutorials

probe location() :

1 def probe_location (res_dw) :

2 x1 = 15 .002

3 x2 = 17 .086

4 x3 = 19 .040

5 x4 = 20 .015

6 x5 = 21 .084

7 x6 = 22 .022

8 x7 = 23 .159

9

10 Ind_1 = int (x1 /res_dw)

11 Ind_2 = int (x2 /res_dw)

12 Ind_3 = int (x3 /res_dw)

13 Ind_4 = int (x4 /res_dw)

14 Ind_5 = int (x5 /res_dw)

15 Ind_6 = int (x6 /res_dw)

16 Ind_7 = int (x7 /res_dw)

17

18 return Ind_1 , Ind_2 , Ind_3 , Ind_4 , Ind_5 , Ind_6 , Ind_7

that returns the indices of the mesh coordinates corresponding to the probe locations x1 to x7. and

consequently add or remove saving files in the functions probe files() and save probes():

1 def probe_files (save_path) :

2 x1_file = open (os .path .join (save_path , ’probe1.txt’) , ’w’)

3 x2_file = open (os .path .join (save_path , ’probe2.txt’) , ’w’)

4 x3_file = open (os .path .join (save_path , ’probe3.txt’) , ’w’)

5 x4_file = open (os .path .join (save_path , ’probe4.txt’) , ’w’)

6 x5_file = open (os .path .join (save_path , ’probe5.txt’) , ’w’)

7 x6_file = open (os .path .join (save_path , ’probe6.txt’) , ’w’)

8 x7_file = open (os .path .join (save_path , ’probe7.txt’) , ’w’)

9

10 def save_probes (t , h_n0 , dw_beach , x1_file , x2_file , x3_file , x4_file , x5_file ,

x6_file , x7_file) :

11 #------------------- wave elevation probe 1 : x1 = 15m -------------------#

12 x1_file .write (’%-10s %-10s\n’

13 %(str (t) ,str (h_n0 .dat .data [Ind_1]+dw_beach .dat .data [Ind_1])))

14 #------------------- wave elevation probe 2 : x2 = 17m -------------------#

15 x2_file .write (’%-10s %-10s\n’

16 %(str (t) ,str (h_n0 .dat .data [Ind_2]+dw_beach .dat .data [Ind_2])))

17 #------------------- wave elevation probe 3 : x3 = 19m -------------------#

18 x3_file .write (’%-10s %-10s\n’

Chapter 6. Code tutorials 241

19 %(str (t) ,str (h_n0 .dat .data [Ind_3]+dw_beach .dat .data [Ind_3])))

20 #------------------- wave elevation probe 4 : x4 = 20m -------------------#

21 x4_file .write (’%-10s %-10s\n’

22 %(str (t) ,str (h_n0 .dat .data [Ind_4]+dw_beach .dat .data [Ind_4])))

23 #------------------- wave elevation probe 5 : x5 = 21m -------------------#

24 x5_file .write (’%-10s %-10s\n’

25 %(str (t) ,str (h_n0 .dat .data [Ind_5]+dw_beach .dat .data [Ind_5])))

26 #------------------- wave elevation probe 6 : x6 = 22m -------------------#

27 x6_file .write (’%-10s %-10s\n’

28 %(str (t) ,str (h_n0 .dat .data [Ind_6]+dw_beach .dat .data [Ind_6])))

29 #------------------- wave elevation probe 7 : x7 = 23m -------------------#

30 x7_file .write (’%-10s %-10s\n’

31 %(str (t) ,str (h_n0 .dat .data [Ind_7]+dw_beach .dat .data [Ind_7])))

Finally, open each file with Matlab or Python to compare the simulated free surface to the

measured one.

6.6 Conclusions

The tutorials presented in this chapter are of interest to both the maritime industry and the

academic community.

Following the instructions, one can simulate waves, including extreme waves, in customized

wave tanks. Henceforth, the maritime industry, such as MARIN, can test wave generation in

the numerical tank at low-computational cost and good accuracy, thus improving the efficiency

of experiments or large-scale simulations. Considering the high cost of experiments and the

considerable computational time of large-scale simulations, reducing the number of attempts

to reach the intended sea state, both experimentally and numerically, is of great interest to

the maritime industry. The numerical solution obtained with our numerical tank may be

used to compute a first wave-behaviour estimate, hence optimising experiments and large-scale

simulations.

Our strategies to numerically capture the fourfold amplification of a solitary wave can be used for

the simulation of ninefold solitary-wave amplification, by adapting the code of section 6.2 with

appropriate domain characteristics and initial soliton solution, obtained from the exact solution

242 Chapter 6. Code tutorials

of Baker [6]. The detailed description of our implementation strategies for the deep-water and

coupled tanks will also ease the extensions to more sofisticated wave-tank modelling, such as

those described in the conclusions of Chapter 3. In particular, a strategy to implement free-

surface models is from now on available in section 6.3, thus facilitating enhancement of research

in this field. Moreover, extension of the nonlinear coupling between the deep- and shallow-

water equations with intrinsic coupling points or second-order temporal scheme, as suggested

in conclusions of Chapter 4, is greatly eased by the descriptive tutorial of section 6.4.

Optimisation of the codes is facilitated by the detailed description of the code structures. In

particular, the shallow-water code presented in section 6.4.4 can be optimised and adapted to

be coupled within Firedrake, for example using the Firedrake library flooddrake, used for the

implementation of finite-element shallow-water codes withC0 discontinuous Galerkin expansions

that are equivalent to the finite-volume model implemented in section 6.4.4. In addition, regular

updates of Firedrake should be performed to ensure that optimised syntax is used in the codes.

Finally, by means of the detailed tutorial of section 6.5, one can access and use any measured

data for validation of future models. In particular, extensions of the present numerical tank can be

validated from the data collected in Chapter 5.

243

Chapter 7

Conclusions

7.1 Overview

As explained in Chapter 1, the design of reliable maritime structures requires the estimation of

the load and stress applied on maritime devices such as ships, wind turbines, offshore platforms

etc.. This external forcing comes mainly from waves, which have a complex structure due

to the nonlinear free surface between water and air. Some particularly destructive waves,

called rogue or freak waves, regularly cause accidents, sometimes with tragic consequences.

These gravity waves of high amplitude appear at any depth and can neither be predicted nor

avoided. Therefore, ship-design practice needs to be updated in order to build safer ships and

to ensure security of crew and passengers in anticipation of a random encounter with a rogue wave.

To cater for such industrial requirements, this thesis has encompassed both the derivation

and implementation of cost-effective models of water waves, including rogue waves, for diverse

maritime applications. The initial maritime requirements are reviewed in section 7.2. The

modelling process and achievements are then summarised in section 7.3. In order to facilitate

transfer of knowledge, several outreach activities were conducted during the SurfsUp project. A

summary of the main activities is given in section 7.5. Finally, prospective improvements of the

present models are highlighted in section 7.4 to facilitate future extensions of this thesis.

244 Chapter 7. Conclusions

7.2 Summary of thesis objectives

The update of maritime design practice requires knowledge about rogue-wave dynamics and

statistics that is currently unavailable. Field measurements, experiments and large-scale

simulations of rogue waves are moreover too costly to be used as frequently as required in maritime

engineering practice. The aim of this thesis was therefore to develop a cost-effective water-wave-

simulation tool for the optimisation or substitution of large-scale simulations and experimental

measurements. For that purpose, the models had to meet the following specifications:

• simulations must necessitate minimal computational resources and be faster than usual

large-scale simulations used at MARIN to simulate wave dynamics with the Reynolds-

averaged Navier-Stokes equations (PARNASSOS, ReFRESCO...);

• numerical integrators must ensure conservation properties, including conservation of energy,

momentum and mass;

• extreme physics of rogue waves must be stably captured in both deep and shallow water;

• water waves must be simulated in a numerical tank with a wavemaker, seabed topography

and a damping beach;

• accuracy of the models must be validated against experimental measurements.

Advanced mathematical and numerical methods were derived to tackle the aforementioned

challenges. The modelling process, achievements and direct applications are summarised in the

next section.

7.3 Achievements and applications

The industrial specifications of section 7.2 were met in four steps. First, nonlinear solvers were

derived to model rogue waves in shallow water. Second, dispersion was considered to model

a rogue wave in a deep-water tank with wavemaker and seabed topography. Third, the deep-

water model was coupled to a shallow-water beach in order to absorb the waves and reduce

the computational domain for improved cost-efficiency. Finally, experimental validation was

conducted to ensure accuracy of the models and facilitate future extensions.

Chapter 7. Conclusions 245

Rogue wave in shallow water: the Benney-Luke-type model

In Chapter 2, a first step towards the modelling of extreme waves was carried out. Using

a simplified model – shallow-water, weakly dispersive and weakly nonlinear – the numerical

methods (namely, the finite-element discretization and the 2nd–order Störmer-Verlet scheme) were

robustly tested for the simulation of extreme solitary waves. The theoretical soliton reflection

as predicted by Miles [105, 103] was extended and applied to our Benney-Luke-type system of

equations, for which an analytical soliton solution was derived by extension of the KP-soliton

initially introduced by Kodama et al. [84]. A comparison between our numerical simulations

and the predicted soliton behaviour showed good agreement for various initial wave profiles, from

regular to Mach reflection. In particular, the model was able to capture the dynamic amplification

of the initial solitary wave up to 3.6, which is the highest wave amplification captured to date in

the literature. The results from these simulations confirmed the efficiency, stability and accuracy

of the numerical scheme in the modelling of extreme, shallow-water rogue-type waves, before

proceeding to consider the extension to fully nonlinear and dispersive systems in deep water. In

addition, the Benney-Luke-type model, whose implementation is explained in Chapter 6, will help

the maritime industry to study the dynamics of rogue-wave formation in shallow-water crossing

seas, where several accidents have been reported [109].

Extension to nonlinear and dispersive waves: the 3D deep-water tank

The numerical methods were then extended to solve the potential-flow equations for the simulation

of higher, steeper nonlinear dispersive waves in a deep-water tank with seabed topography and a

wavemaker. Modelling and numerical strategies were derived in Chapter 3, not only to handle

moving boundaries at the wavemaker and at the nonlinear free surface but also to capture the

evolution of the fluid velocity both at the dynamic surface and in depth. To guarantee cost-

efficiency of the computations, optimisation of the solvers was also investigated. Consistency of

the simulations was checked via a test of spatial convergence and verification of numerical-energy

conservation. Accuracy of the model was verified with a validation of the simulations against an

experimental focussed wave, a phenomenon that combines both nonlinear and dispersive effects.

To facilitate its utilisation by the maritime industry and its extension in the research field, the model

246 Chapter 7. Conclusions

was also built to be flexible in terms of wavemaker motion, seabed profile, temporal schemes and

spatial interpolations, and a tutorial was provided in Chapter 6. Thus, an efficient solution to the

modelling of nonlinear dispersive waves, including extreme, rogue waves, in a wave tank similar

to those used at MARIN has been achieved. The strategies introduced for the three-dimensional

modelling of a fluid with a free surface can be used for many applications and in particular as a

first step in the modelling of wave-structure interactions. However, reflection of the waves against

the wall opposite to the wavemaker disturbs the target area in which wave-structure interactions

in real-sea conditions are tested. The next step was therefore to couple this deep-water model to

an absorbing-wave model in order to reduce wave reflection without increasing the length of the

computational domain.

Absorbing breaking waves with the addition of a beach: the numerical wave tank

Coupling the deep-water model to a shallow-water beach, as done in Chapter 4, had several

objectives. The first aim was to extend the numerical tank so that it matched entirely the

experimental wave tank installed at MARIN. The second objective was to enable the simulation

and absorption of waves approaching the breaking-wave limit, which was not possible with the

potential-flow model of Chapter 3. Last, but not least, the goal was to reduce disturbance of

the target area caused by reflected waves while still retaining the computational-cost efficiency

obtained in the deep-water potential-flow model. In the shallow-water domain, breaking waves

were stably modelled as hydraulic bores discretised with the finite-volume method. The method

of Audusse [5] for capturing the moving waterline enabled stable simulations of the wet/dry beach

to be computed and ensured the non-negativity of water depth. The main challenge, which was

to derive and implement a stable and accurate coupling between the deep- (potential-flow) and

shallow-water equations, was achieved by means of a variational coupling strategy resulting in the

first fully nonlinear coupling able to capture steep, nonlinear waves. Results showed consistent,

continuous and stable transfer of energy through the coupling interface from deep to shallow water

and vice versa. In addition, the ability of the numerical model to absorb wave energy was shown

to be efficient, thus optimising the computational time by keeping a relatively short computational

domain.

Chapter 7. Conclusions 247

Experimental validation of the numerical wave tank

To be operable for maritime applications, accuracy of the coupling had to be verified.

Experimental measurements were conducted at the Delft University of Technology to validate

the accuracy and test the limits of the numerical tank. Four main features were tested: the

ability to capture and absorb irregular waves; the accuracy in absorbing long waves; the ability to

capture amplitude modulation of short waves resulting from the piston motion; and, the stability,

continuity and accuracy of the coupling process in the case of steep waves. Comparisons in the

deep-water part showed good agreement for all types of waves, thus confirming the accuracy of

the deep-water potential-flow model. In addition, the free-surface depth at the coupling point was

stable and continuous in all four cases, thus confirming the efficiency of the variational-coupling

process in transferring information from deep to shallow and from shallow to deep water.

Finally, the validation showed that the beach efficiently absorbed incoming waves, but that its

accuracy can be improved, in particular for short waves that require a shallow coupling interface.

Overall, the experimental validation of the numerical tank has made the model of interest and

useful to both the maritime industry and the research community. By matching the design of

the computational domain to MARIN’s experimental tank, the numerical tank can be used by

MARIN to test waves before generating them in their basins. For example, by using the numerical

wave tank, MARIN can account for amplitude modulation resulting from the translational motion

of the piston wavemaker to adjust the experimental wavemaker input and correct the disturbance

of the wave amplitudes. Similarly, for the testing of wave impact upon a vessel or a wind turbine,

the wavemaker can be tuned to generate a rogue wave in a target area of the experimental basin.

Considering the price of model tests, reducing the number of trials before obtaining the requested

wave profile is indeed of interest for MARIN and attractive for their clients. Moreover, repeated

measurements of wave impact upon maritime structures required for the update of design practice

can be conducted in my simulations at low cost. A comparison with the large-scale simulations

used at MARIN (ReFRESCO and OceanWave3D) shows that their fastest solver requires 21 hours

to compute the focused wave presented in Chapter 3, while our program is able to accurately

capture the focussed wave in one to two hours using the same number (i.e. one) of cores. This

considerable economy of time, energy and therefore money is of great interest to MARIN,

248 Chapter 7. Conclusions

which will use the results of our simulations as either a substitute for, or a first guess of, their

large-scale simulations. The use and extension of the numerical tank is also facilitated by the

detailed code tutorials provided in Chapter 6, which effectively comprise a manual for future users.

7.4 Extensions of the present numerical models

In this section, possible improvements of the present numerical models are summarised in order

to facilitate future work in the field of water-wave modelling.

7.4.1 Extensions of the shallow-water rogue-wave model

The numerical methods used to derive and discretise the shallow-water model presented in

Chapter 2 have yielded the simulation of the highest dynamic amplification obtained in the

literature. While this result confirms the efficiency of our numerical scheme for capturing extreme

waves, some improvements could enable one to get even closer to the fourfold amplification

predicted by Miles [105, 103].

Due to limited computational resources, the spatial resolution used to simulate soliton interactions

with our Benney-Luke model is not accurate enough to allow the simulation of the fourfold

amplification. The transition from regular to Mach reflection being extremely abrupt, one must

ensure that a sufficiently high resolution is used to capture the maximal amplification. The large

computational domain relative to the soliton length implies that thousands of nodes should be

considered. Inhomogeneous meshing and parallel programming are therefore two solutions for

reducing the computational cost. In addition, an optimisation of the solvers as performed for the

potential-flow solver in Chapter 3 could improve the computational efficiency of the Benney-Luke

model.

Moreover, higher amplitude waves could be simulated using the interaction of three solitons

instead of two. To this end, the initial KP-soliton wave pattern derived by Baker [6] can be

transformed into a solution of our Benney-Luke model following the method given in Chapter 2.

Running the shallow-water model with this initial wave pattern should yield the expected eight-

to-ninefold amplified stem wave.

Chapter 7. Conclusions 249

Finally, the initial soliton profile used to simulate the fourfold amplification with the Benney-

Luke model could be transformed into a solution of the potential-flow equations, using the

transformations introduced in Chapter 2 to obtain the Benney-Luke simplification. As the

potential-flow model is more accurate than the simplified Benney-Luke model for representing

water waves, it will be interesting to assess the level of agreement between the numerical

amplification and experimental measurements or theory.

7.4.2 Extensions of the deep-water tank

The potential-flow model derived and implemented in Chapter 3 was shown to be both accurate

and cost-effective for the simulation of rogue-type waves. However, while the piston wavemaker

implemented for generating the waves is useful to predict amplitude modulation of short waves in

experimental tank, its extension to a flap-type wavemaker would allow more accurate simulations

of realistic sea states and, in particular, of deep-water waves. In terms of experimental applications,

the addition of a second wavemaker on the tangent wall would make it possible to simulate wave

propagation from several directions. As a result, wave-wave interaction could be simulated to test

stronger wave impact on structures. Finally, defining the target area from the simulations would

be eased by solving inverse problems that compute the transfer function of the wavemaker input

relative to the expected location of the rogue-type wave. This inverse problem concerns both the

simulation of rogue-type waves in one direction (e.g., by using the dispersion effect to obtain a

focussed wave) or the interaction of multidirectional waves.

7.4.3 Extensions of the coupling process

The coupling process developed in Chapter 4 and validated in Chapter 5 was shown to be both

efficient and accurate for continuously transferring information from deep to shallow water and

from shallow to deep water. However, several improvements were also highlighted.

First, the temporal scheme implemented in Chapter 4 is a simplification of the symplectic-Euler

scheme used to optimise the computational time. The proper symplectic-Euler scheme is, however,

presented in Chapter 4 and can be implemented using a fully-implicit evaluation of the water depth,

which would increase the accuracy of the temporal scheme but also require additional iterations.

250 Chapter 7. Conclusions

Following the same method, the second-order Störmer-Verlet scheme can be implemented. A

performance comparison of these schemes would improve the flexibility of the numerical tank

by giving more options to the user depending on his objective. As explained in Chapter 3, the

choice between a first- and second-order scheme must be made depending on both the accuracy

and computational speed required.

Second, extension of the coupling process to 3D would yield a fully 3D numerical tank, since the

3D potential-flow and surface shallow-water models have already been developed. In addition,

extension to an intrinsic location of the coupling interface would avoid the compromise between

deep-water stability and shallow-water accuracy highlighted in Chapter 5 for short waves. These

improvements would therefore broaden the application spectrum of the numerical tank.

7.4.4 Extensions of the shallow-water absorbing beach

The finite-volume shallow-water beach implemented for absorbing waves is an efficient way to

capture breaking waves, which was not possible with the continuous finite-element method used

to discretise the potential-flow model. However, its implementation, as detailed in Chapter 6,

and computational speed could be improved by means of an optimisation process and parallel

programming. In addition, the implementation of a finite-element solver with discontinuous

Galerkin elements, using for instance the Firedrake library Flooddrake, would facilitate the

intrinsic coupling of the deep- and shallow-water models since they would both be solved within

Firedrake. To test breaking-wave impact on structures, the hydraulic-bore model can be extended

to more realistic breaking-wave models that can then be validated with the experimental record of

the waterline and breaking location mentioned in Chapter 6.

7.5 Outreach activities

To increase people’s interest for mathematics and enhance research in the field, several outreach

activities were conducted during the project. Public fluid-wave-tank demonstrations were given,

at the University of Leeds Open Days, using the small-scale experimental set up designed by

W. Booker, J. van Alwon and T. Goodfellow [21]. The tank consists of a water channel with a

motor-driven flap-type wavemaker on one side and vertical walls on the other boundaries. Several

Chapter 7. Conclusions 251

examples of fluid-dynamics modelling applications were presented to a great number of interested

visitors; examples included the generation of standing waves, breaking waves on a beach, waves

impacting upon a wind-turbine model and the effect of the coastal design in wave reflection (cf.

Fig. 7.1). Water-wave simulations were shown and compared to the live demonstrations, which

had generated great public interest and attention, and convinced many students (and their parents)

of the importance of mathematics for solving real-world challenges.

Figure 7.1: Examples of demonstrations given at Leeds open days. More details are given in the

SurfsUp blog.

A lecture on the evolution of beliefs and knowledge about freak waves was also given in the

programme of regular talks at the well-known and well-established Café Scientifique in Leeds.

The predominantly non-scientific audience was fascinated by the story of these mysterious

waves. Our discourses were summarised in our blog (https://blogsurfsup.wordpress.com) and

Facebook page (https://www.facebook.com/surfsupeueid/), together with additional articles about

our progress (new simulations, experiments etc.). The blog was visited hundreds of times and

from more than 30 countries (cf. blog statistics in Fig. 7.2).

In addition, my presentation at the Leeds Doctoral Showcase 2017 received great interest both

from the panel and the lay audience, and was rewarded by the prize of Postgraduate Researcher

of the Year 2017 (cf. Fig. 7.3). This award considerably increased the outreach activity about

the SurfsUp project since it was shared in social media and news articles were published in the

University of Leeds website, by MARIN on their website and by the reputable French engineering

school INSA Toulouse. An example of this successful outreach communication is the Youtube

video of my presentation (https://youtu.be/6gKcWKeZ5Xs) that has been watched by almost 800

people to this day. In addition, I was named “early-stage researcher of the week” (January 2018)

252 Chapter 7. Conclusions

by the Marie Curie actions; their post about my research and the SurfsUp project was shared more

than 120 times on social media, attesting interest and further widening the impact of the research.

Figure 7.2: Geographical origin of visitors to our blog: darker colours correspond to a higher

frequency of visits.

Chapter 7. Conclusions 253

Figure 7.3: Award of Postgraduate Researcher of the year 2017 at the Leeds Doctoral Showcase.

Photo courtesy: Arththi Paathi.

254 Chapter 7. Conclusions

255

Appendices

A Rogue-type waves in shallow water: the example of solitary-wave

interactions

A.1 Time discretization of the Benney–Luke model

The Störmer–Verlet scheme (2.61) is applied to the variational principle (2.51) for Benney–Luke,

with Q =
{(

Mij +
µ

2
Aij

)
ηi

}
and P = {Φi}, leading to

0 =

∫
Ωb

(
Φ
n+1/2
i − Φn

i

) [
ϕiϕj +

µ

2
∇ϕi · ∇ϕj

]
+

∆t

2

[
ηnj ϕjϕk +

ε

2
ϕjΦ

n+1/2
i Φ

n+1/2
k ∇ϕi. · ∇ϕk

]
dΩb,

0 =

∫
Ωb

(
q
n+1/2
i ϕiϕj −

2

3
∇ϕj · ∇ϕiΦ

n+1/2
i

)
dΩb,

0 =

∫
Ωb

(
ηn+1
i ϕi − ηnj ϕj

)
ϕk +

µ

2
∇ϕk · ∇

(
ηn+1
i ϕi − ηnj ϕj

)
− ∆t

2

[(
(1 + εηni ϕi)∇ϕk · ∇ϕjΦ

n+1/2
j − µq

n+1/2
i ∇ϕi · ∇ϕk

)
+
(

(1 + εηn+1
i ϕi)∇ϕk · ∇ϕjΦ

n+1/2
j − µqn+1/2

i ∇ϕi · ∇ϕk
)]

dΩb,

0 =

∫
Ωb

(
Φn+1
i − Φn+1

i

) [
ϕiϕj +

µ

2
∇ϕi · ∇ϕj

]
+

∆t

2

[
ηn+1
j ϕjϕk +

ε

2
ϕjΦ

n+1/2
i Φ

n+1/2
k ∇ϕi. · ∇ϕk

]
dΩb.

(A.7a)

(A.7b)

(A.7c)

(A.7d)

256 Appendices

B Rogue-type waves in a deep-water tank

B.1 Transformed equations

In this section, we show how to obtain the transformed Euler equations from the transformed

variational principle. In the original system of coordinates, the Euler equations are obtained from

Luke’s variational principle (3.4) and consist of the Laplace equation augmented by a kinematic

and a dynamic boundary conditions at the free surface:

∇2φ = 0, in Ω,

∂th+∇h · ∇φ− ∂zφ = 0, at z = h,

∂tφ+
1

2
|∇φ|2 + g(h−H) = 0, at z = h,

∂xφ− ∂yφ∂yR = ∂tR at x = R.

(3.3a)

(3.3b)

(3.3c)

(3.3d)

Equation (3.3a) is the Laplace equation, while Eqn. (3.3b) and (3.3c) are the conservation of

mass and momentum boundary conditions respectively. Equation (3.3d) sets the velocity on the

left boundary to be equal to the wavemaker velocity. On the other walls, Neumann boundary

conditions are applied. Equations (3.3) may be transformed with scaling (3.6), respectively leading

to:

0 =

[
∂yyφ−

z

h
(∂yyh∂zφ+ 2∂yh∂yzφ)

+ 2
z

h2
(∂yh)2∂zφ+

z2

h2
(∂yh)2∂zzφ+

H2
0

h2
∂zzφ

]
+

[
∂xxφ−

z

h
(∂xxh∂zφ+ 2∂xh∂xzφ)

+ 2
z

h2
(∂xh)2∂zφ+

z2

h2
(∂xh)2∂zzφ

] [
L2
w

W 2
+
U2

W 2

]
+
[
∂xφ−

z

h
∂xh∂zφ

] [2U

W 2
∂yR̃+

x− Lw
W

∂yyR̃

]
+
[
∂xyφ−

z

h
(∂xyh∂zφ+ ∂xh∂yzφ+ ∂yh∂xzφ)

+ 2
z

h2
∂xh∂yh∂zφ+

z2

h2
∂xh∂yh∂zzφ

]2U

W
, in Ω̂,

(B.9a)

Appendices 257

0 =∂th+ ∂yh∂yφ− ∂zφ
H0

h

(
1 + (∂yh)2

)
+

(x− Lw)

W
∂tR̃∂xh

+
U

W

[
∂yh∂xφ+ ∂xh∂yφ− 2

H0

h
∂xh∂yh∂zφ

]
+
V

W 2

[
∂xh∂xφ−

H0

h
(∂xh)2∂zφ

]
at z = H0,

0 =∂tφ+
1

2
(∂yφ)2 + g(h−H) +

1

2

H2
0

h2
(∂zφ)2

(
1 + (∂yh)2

)
−H0

h
[∂th∂zφ+ ∂yh∂yφ∂zφ] +

(x− Lw)

W
∂tR̃

[
∂xφ−

H0

h
∂xh∂zφ

]
+
U

W

[
∂xφ∂yφ+

H2
0

h2
∂xh∂yh(∂zφ)2 − H0

h

(
∂xh∂yφ∂zφ+ ∂yh∂xφ∂zφ

)]
+

V

2W 2

[
(∂xφ)2 +

H2
0

h2
(∂xh)2(∂zφ)2 − 2

H0

h
∂xh∂xφ∂zφ

]
at z = H0,

∂tR̃ =
Lw + Lw(∂yR̃)2

W

(
∂xφ−

z

h
∂xh∂zφ

)
− ∂yR̃

(
∂yφ−

z

h
∂yh∂zφ

)
, at x = 0,

(B.9b)

(B.9c)

(B.9d)

in which we have used that

∂xxφ→
L2
w

W 2

[
∂xxφ−

z

h
(∂xxh∂zφ+ 2∂xh∂xzφ) +

z

h2
(∂xh)2 (2∂zφ+ z∂zzφ)

]
,

∂yyφ→
U2

W 2

[
∂xxφ−

z

h
(∂xxh∂zφ+ 2∂xh∂xzφ) +

z

h2
(∂xh)2 (2∂zφ+ z∂zzφ)

]
+

[
2U

W 2
(∂yR̃) +

(x− Lw)

W
∂yyR̃

] [
∂xφ−

z

h
∂xh∂zφ

]
+

2U

W

[
∂xyφ−

z

h
(∂xyh∂zφ+ ∂xh∂yzφ+ ∂yh∂xzφ) +

z

h2
∂xh∂yh (2∂zφ+ z∂zzφ)

]
+
[
∂yyφ−

z

h
(∂yyh∂zφ+ 2∂yh∂yzφ) +

z

h2
(∂yh)2 (2∂zφ+ z∂zzφ)

]
,

∂zzφ→
H2

0

h2
∂zzφ.

258 Appendices

Equation (B.9b) may be substituted into Eqn. (B.9c) so that the transformed momentum equation

becomes:

0 =∂tφ+
1

2
(∂yφ)2 + g(h−H)− 1

2

H2
0

h2
(∂zφ)2(1 + (∂yh)2) +

(x− Lw)

W
∂tR̃∂xφ

+
U

W

[
∂xφ∂yφ−

H2
0

h2
∂xh∂yh(∂zφ)2

]
+

V

2W 2

[
(∂xφ)2 − H2

0

h2
(∂xh)2(∂zφ)2

]
.

(B.11)

We now show that the same equations may be obtained from the transformed variational principle

Eqn. (3.15). Taking the variations of φ and h in Eqn. (3.15) leads to

∫ T

0

∫
Ω̂

[
V

2W

(
δh(∂xφ)2 + 2h∂xφ∂xδφ+ 2

z2

h
∂xh

(
∂xδh(∂zφ)2 + ∂xh∂zφ∂zδφ

)
− z2

h2
δh(∂xh)2(∂zφ)2 − 2z (∂xδh∂xφ∂zφ+ ∂xh∂xδφ∂zφ+ ∂xh∂xφ∂zδφ)

)
+
W

2

(
δh(∂yφ)2 + 2h∂yφ∂yδφ+ 2

z2

h
∂yh

(
∂yδh(∂zφ)2 + ∂yh∂zφ∂zδφ

)
− z2

h2
δh(∂yh)2(∂zφ)2 − 2z (∂yδh∂yφ∂zφ+ ∂yh∂yδφ∂zφ+ ∂yh∂yφ∂zδφ)

)
+U

(
δh∂xφ∂yφ+

z2

h

(
∂xδh∂yh(∂zφ)2 + ∂xh∂yδh(∂zφ)2 + 2∂xh∂yh∂zφ∂zδφ

)
+ h∂xδφ∂yφ− z∂zφ (∂xδh∂yφ+ ∂xh∂yδφ+ ∂yδh∂xφ+ ∂yh∂xδφ)

+ h∂xφ∂yδφ− z∂zδφ (∂xh∂yφ+ ∂yh∂xφ)− z2

h2
δh∂xh∂yh(∂zφ)2

)
+
WH2

0

2h

(
2∂zφ∂zδφ−

1

h
δh(∂zφ)2

)]
dz

+H0

[
W (gδh(h−H)− φ∂tδh− ∂thδφ)− (x− Lw)∂tR̃ (δφ∂xh+ φ∂xδh)

]
z=H0

dxdy

+

∫ Ly

0

∫ H0

0

[
Lw∂tR̃ (φδh+ hδφ)x=0

]
dz dy dt = 0.

Appendices 259

Integrations by part of the terms involving spatial or temporal derivatives of δφ and δh and

arbitrariness of δφ and δh lead to∫ T

0

∫
Ω̂

{
δφ

[
− V

W

(
h∂xxφ+

z

h
(∂xh)2 (2∂zφ+ z∂zzφ)− z (∂zφ∂xxh+ 2∂xh∂xzφ)

)
+

(
2U

W
(∂yR̃) + (x− Lw)∂yyR̃

)
(z∂xh∂zφ− h∂xφ)−W

(
h∂yyφ

+
z

h
(∂yh)2 (2∂zφ+ z∂zzφ)− z (∂zφ∂yyh+ 2∂yh∂yzφ) +

H2
0

h
∂zzφ

)
−2U

(
h∂xyφ+

z

h
∂xh∂yh (2∂zφ+ z∂zzφ)

− z (∂zφ∂xyh+ ∂xh∂yzφ+ ∂yh∂xzφ)
)]}

dz

+δφH0H0

[
V

W

(
H0

h
(∂xh)2∂zφ− ∂xh∂xφ

)
− (x− L)∂tR∂xh

+ U

(
−∂xh∂yφ− ∂yh∂xφ+ 2

H0

h
∂xh∂yh∂zφ

)
+W

(
H0

h
(∂zφ)

(
1 +H0(∂yh)2

)
− (∂yh∂yφ+ ∂th)

)]
z=H0

+

[
δφ

(
WH2

0

h
∂zφ

)]
z=0

dx dy

±
∫ Lx

0

∫ H0

0

[
δφ

(
W (z∂yh∂zφ− h∂yφ) + U (z∂xh∂zφ− h∂xφ)

)]
y=0,Ly

dxdz

+

∫ Ly

0

∫ H0

0

[
δφ

(
V

W
(z∂xh∂zφ− h∂xφ) + L∂yR (h∂yφ− z∂yh∂zφ) + L∂tRh

)]
x=0

+

[
δφ

(
Lw (h∂xφ− z∂xh∂zφ)

)]
x=Lx

dy dzdt = 0,

(B.12)

260 Appendices

and∫ T

0

∫
Ω̂

{
δh

[
V

2W

(
(∂xφ)2 − 2

z2

h

(
∂xxh(∂zφ)2 + ∂xh∂x(∂zφ)2

)
+
z2

h2
(∂xh)2(∂zφ)2 + z

(
∂z(∂xφ)2 + 2∂xxφ∂zφ

))
+
W

2

(
(∂yφ)2 − 2

z2

h

(
∂yyh(∂zφ)2 + ∂yh∂y(∂zφ)2

)
+
z2

h2
(∂yh)2(∂zφ)2 + z

(
∂z(∂yφ)2 + 2∂yyφ∂zφ

)
− H2

0

h2
(∂zφ)2

)
+U

(
∂xφ∂yφ−

z2

h

(
2∂xyh(∂zφ)2 + ∂xh∂y(∂zφ)2 + ∂yh∂x(∂zφ)2

)
+ z (∂xzφ∂yφ+ 2∂zφ∂xyφ+ ∂yzφ∂xφ) +

z2

h2
∂xh∂yh(∂zφ)2

)
+

(
2U

W
(∂yR) + (x− Lw)∂yyR

)(
z∂xφ∂zφ−

z2

h
∂xh(∂zφ)2

)]}
dz

+

[
δhH0W (g(h−H) + ∂tφ) + ∂tR(x− L)∂xφ

]
z=H0

±

[
δh

[
W

(
z2

h
∂yh(∂zφ)2 − z∂yφ∂zφ

)
+ U

(
z2

h
∂xh(∂zφ)2 − z∂zφ∂xφ

)]]
y=0,Ly

+

[
δh

[
V

W

(
−z

2

h
∂xh(∂zφ)2 + z∂xφ∂zφ

)

+Lw∂yR̃

(
−z∂zφ∂yφ+

z2

h
∂yh(∂zφ)2

)
+ L∂tRφ

]]
x=0

+

[
δhLw

(
2
z2

h
∂xh(∂zφ)2 − 2z∂xφ∂zφ

)]
x=Lx

dx dy dt = 0

(B.13)

Appendices 261

In Eqn. (B.12), the arbitrariness of δφ, δφH0 , δφx=0, δφx=Lx and δφy=0,Ly lead to the following

equations:

δφ :

(
2U

W
(∂yR̃) + (x− Lw)∂yyR̃

)
(z∂xh∂zφ− h∂xφ)

− V
W

(
h∂xxφ+

z

h
(∂xh)2 (2∂zφ+ z∂zzφ)− z (∂zφ∂xxh+ 2∂xh∂xzφ)

)
−W

(
h∂yyφ+

z

h
(∂yh)2 (2∂zφ+ z∂zzφ)− z (∂zφ∂yyh+ 2∂yh∂yzφ) +

H2
0

h
∂zzφ

)
−2U

(
h∂xyφ+

z

h
∂xh∂yh (2∂zφ+ z∂zzφ)

− z (∂zφ∂xyh+ ∂xh∂yzφ+ ∂yh∂xzφ)
)

= 0, in Ω,

(B.14a)

δφz=H0 : H0

[
V

W

(
H0

h
(∂xh)2∂zφ− ∂xh∂xφ

)
− (x− Lw)∂tR̃∂xh

+W

(
H0

h
(∂zφ)

(
1 +H0(∂yh)2

)
− (∂yh∂yφ+ ∂th)

)
+U

(
−∂xh∂yφ− ∂yh∂xφ+ 2

H0

h
∂xh∂yh∂zφ

)]
= 0, at z = H0,

δφx=0 :Lw

[
∂yR̃ (h∂yφ− z∂yh∂zφ) + ∂tR̃h

]
+
V

W
(z∂xh∂zφ− h∂xφ) = 0 at x = 0,

δφx=Lx :Lw (h∂xφ− z∂xh∂zφ) = 0, at x = Lx,

δφz=H0 :
WH2

0

h
∂zφ = 0, at z = 0,

δφy=0,Ly :W (z∂yh∂zφ− h∂yφ) + U (z∂xh∂zφ− h∂xφ) = 0, at y = 0, Ly.

(B.14b)

(B.14c)

(B.15a)

(B.14d)

(B.14e)

Equation (B.14a) is indeed equivalent to the transformed Laplace equation (B.9a), while

Eqn. (B.14b) is the transformed conservation of mass equation, also obtained in Eqn.(B.9b).

Equations (B.14c-f) are the transformed wavemaker and Neumann boundary conditions, also

obtained in Eqn.(B.9c-f). We now integrate by parts some terms of Eqn. (B.13) to lead to:

262 Appendices

∫ T

0

∫
Ω̂

{
δh

[
V

2W

(
4z2

h2
(∂xh)2(∂zφ)2 +

z3

h2
(∂xh)2∂z(∂zφ)2

− 2
z2

h

(
∂xxh(∂zφ)2 + ∂xh∂x(∂zφ)2

)
+ 2z∂xxφ∂zφ

)
+
W

2

(
4z2

h2
(∂yh)2(∂zφ)2 − 2

z2

h

(
∂yyh(∂zφ)2 + ∂yh∂y(∂zφ)2

)
+
z3

h2
(∂yh)2∂z(∂zφ)2 + z

(
2∂yyφ∂zφ+

H2
0

h2
∂z(∂zφ)2

))
+U

(
− z2

h

(
2∂xyh(∂zφ)2 + ∂xh∂y(∂zφ)2 + ∂yh∂x(∂zφ)2

)
+ 2z∂zφ∂xyφ+

4z2

h2
∂xh∂yh(∂zφ)2 +

z3

h2
∂xh∂yh∂z(∂zφ)2

)
+

[
2U

W
(∂yR̃) + (x− Lw)∂yyR̃

](
z∂xφ∂zφ−

z2

h
∂xh(∂zφ)2

)]}
dz

+δhH0H0

[
W

(
g(h−H) + ∂tφ+

1

2
(∂yφ)2 − 1

2

H2
0

h2
(∂zφ)2

(
1 + (∂yh)2

))
+

V

2W

(
(∂xφ)2 − H2

0

h2
(∂xh)2(∂zφ)2

)
+ ∂tR̃(x− Lw)∂xφ

+ U

(
∂xφ∂yφ−

H2
0

h2
∂xh∂yh(∂zφ)2

)]
z=H0

+δhx=0

[
V

2W

(
−2

z2

h
∂xh(∂zφ)2 + 2z∂xφ∂zφ

)

+Lw∂yR̃

(
−z∂zφ∂yφ+

z2

h
∂yh(∂zφ)2

)
+ Lw∂tR̃φ

]
x=0

±δhy=0,Ly

[
W

(
z2

h
∂yh(∂zφ)2 − z∂yφ∂zφ

)
+ U

(
z2

h
∂xh(∂zφ)2 − z∂zφ∂xφ

)]
y=0,Ly

+δhx=Lx

[
L

(
2
z2

h
∂xh(∂zφ)2 − 2z∂xφ∂zφ

)]
x=Lx

dx dy dt = 0

(B.16)

Appendices 263

After combining equation (B.16) with Eqn.(B.14), only the terms involving δhH0 remain, leading

to the following equation at the free surface:

δhH0 : H0W

[(
g(h−H) + ∂tφ+

1

2
(∂yφ)2 − 1

2

H2
0

h2
(∂zφ)2

(
1 + (∂yh)2

))
+

(x− L)

W
∂tR∂xφ+ U

(
∂xφ∂yφ−

H2
0

h2
∂xh∂yh(∂zφ)2

)
+

V

2W 2

(
(∂xφ)2 − H2

0

h2
(∂xh)2(∂zφ)2

)]
= 0, at z = H0,

(B.17)

which is indeed the transformed conservation of momentum equation, also obtained in Eqn. (B.9c).

B.2 Fully discrete symplectic-Euler scheme

Substituting the Hamiltonian Eqn. (3.32) into Eqn. (3.56a) leads to the first step of the symplectic-

Euler scheme in fully discrete form, as:

0 =
hn+1
k − hnk

∆t

−(M−1
kq)n

{
hn+1
l hn+1

p

hn+1
r

Υn
rmqlp

[
S̃11(M−1

sm)npn1s + ψ∗i′mS̃i′1

]
+
H2

0

hn+1
r

Jnrmq

[
Ã11(M−1

sm)npn1s + ψ∗i′mÃi′1

]
+hn+1

r

[
Γnrmq

(
M̃11(M−1

sm)npn1s + M̃1i′ψ
∗
i′m

)
+ LwX

n
rq Ĩ1 −H0N

n
qr

−
(
Γnmrq + Γqrm

)
D̃11(M−1

sm)npn1s +
(

ΓnmrqD̃1i′ + ΓnqrmD̃i′1

)
ψi′m

]}

−
∑
i′

hn+1
k

[
Γnkqm

(
M̃i′j′ψ

∗
j′q + M̃i′1(M−1

rq)npn1r

)
+ LwX

n
kmĨi′

−Γnqkm

(
D̃i′j′ψ

∗
j′q + D̃i′1(M−1

rq)npn1r

)
−Γnmkq

(
D̃j′i′ψ

∗
j′q + D̃1i′(M

−1
rq)npn1r

)]

+
1

hn+1
k

[
H2

0J
n
kmq

(
Ãi′j′ψ

∗
j′q + Ãi′1(M−1

rq)npn1r

)
+hn+1

l hn+1
p Υn

kmqlp

(
S̃i′j′ψ

∗
j′q + (M−1

rq)npn1r

)]
,

(B.18)

264 Appendices

to be solved simultaneously with

ψ∗i′ = ψi′(p
n
1,h

n+1, tn)

=

[
hn+1
k

(
ΓnkqmM̃i′j′ − ΓnqkmD̃i′j′ − ΓnmkqD̃j′i′

)

+
1

hn+1
k

(
hn+1
l hn+1

p Υn
kmqlpS̃i′j′ +H2

0J
n
kmqÃi′j′

)]−1

×

{[
hn+1
k

(
ΓnkqmM̃i′1 − ΓnqkmD̃i′1 − ΓnmkqD̃1i′ + LwX

n
kmĨi′

)

+
1

hn+1
k

(
hn+1
l hn+1

p Υn
kmqlpS̃i′1 +H2

0J
n
kmqÃi′1

)]
M−1
rq p

n
1r

}
,

(B.19)

for all i′ ∈ [2, nz + 1] in order to eliminate each internal layer. That way, we update both h at time

tn+1 and ψi′ , for i′ ∈ [2, Nz], at an auxiliary time t∗ corresponding to ψ∗i′ = ψi′(h
n+1,pn1, t

n).

Similarly, we obtain the second step of the Symplectic-Euler scheme to update p1k = M−1
kq ψ1q at

time tn+1 through

pn+1
1k =pn1k −∆t

{
1

2
Λnkqm(M−1

rq)npn1r

[
M̃11(M−1

sm)npn1s + M̃1i′ψ
∗
i′m

]
+

1

2
Λnkmqψ

∗
i′m

[
M̃i′1(M−1

rq)npn1r + M̃i′j′ψ
∗
j′q

]
− (M−1

rq)npn1rΓ
n
mkq

(
D̃11(M−1

sm)npn1s + D̃1i′ψ
∗
i′m

)
− ψ∗i′mΓnqkm

(
D̃i′1(M−1

rq)npn1r + D̃i′j′ψ
∗
j′q

)
+

hn+1
p

2hn+1
t

[(
Υn
tmqkp + Υn

tmqpk

)
−
hn+1
l

hn+1
k

Υn
tmqlp

]
×
[
(M−1

rq)npn1r

(
S̃11(M−1

sm)npn1s + 2ψ∗i′mS̃i′1

)
+ ψ∗i′mS̃i′j′ψ

∗
j′q

]
− H2

0

2hn+1
k hn+1

l

Jnlmq

[
(M−1

rq)npn1r

(
Ã11(M−1

sm)npn1s + 2ψ∗i′mÃi′1

)
+ ψ∗i′mÃi′j′ψ

∗
j′q

]
+H0

(
g(hn+1

l Mn
kl −HInk)− (M−1

rq)npn1rN
n
qk

)
+ Lw

[
Xn
kq(M

−1
rq)npn1r Ĩ1 +Xn

kmψ
∗
i′mĨi′

]}
.

(B.20)

As this step is explicit for pn+1
1 , a linear solver is used to solve Eqn. (B.20) (qv. Section 3.5.1).

For the purpose of visualising the velocity potential in the full 3D domain, the update of the interior

Appendices 265

velocity potential may be required. It is obtained by solving

ψn+1
i′ = ψi′(p

n+1
1 ,hn+1, tn+1)

=

[
hn+1
k

(
Γn+1
kqmM̃i′j′ − Γn+1

qkmD̃i′j′ − Γn+1
mkqD̃j′i′

)

+
1

hn+1
k

(
hn+1
l hn+1

p Υn+1
kmqlpS̃i′j′ +H2

0J
n+1
kmq Ãi′j′

)]−1

×

{[
1

hn+1
k

(
hn+1
l hn+1

p Υn+1
kmqlpS̃i′1 +H2

0J
n+1
kmq Ãi′1

)

+ hn+1
k

(
Γn+1
kqmM̃i′1 − Γn+1

qkmD̃i′1 − Γn+1
mkqD̃1i′

)]
M−1
rq p

n+1
1r + hn+1

k LwX
n+1
km Ĩi′

}
.

(B.21)

266 Appendices

B.3 Fully discrete Störmer-Verlet scheme

Substituting the Hamiltonian Eqn. (3.32) into Eqn. (3.64a) leads to the first step of the Störmer-

Verlet scheme in fully discrete form :

0 = p
n+1/2
1k − pn1k

+
∆t

2

{
1

2
Λ
n+1/2
kqm (M−1

rq)n+1/2p
n+1/2
1r

[
M̃11(M−1

sm)n+1/2p
n+1/2
1s + M̃1i′ψ

∗
i′m

]
+

1

2
Λ
n+1/2
kmq ψ∗i′m

[
M̃i′1(M−1

rq)n+1/2p
n+1/2
1r + M̃i′j′ψ

∗
j′q

]
− (M−1

rq)n+1/2p
n+1/2
1r Γ

n+1/2
mkq

(
D̃11(M−1

sm)n+1/2p
n+1/2
1s + D̃1i′ψ

∗
i′m

)
− ψ∗i′mΓ

n+1/2
qkm

(
D̃i′1(M−1

rq)n+1/2p
n+1/2
1r + D̃i′j′ψ

∗
j′q

)
+

hnp
2hnt

[
(Υtmqkp + Υtmqpk)

n+1/2 −
hnl
hnk

Υ
n+1/2
tmqlp

]
×
[
(M−1

rq)n+1/2p
n+1/2
1r

(
S̃11(M−1

sm)n+1/2p
n+1/2
1s + 2ψ∗i′mS̃i′1

)
+ ψ∗i′mS̃i′j′ψ

∗
j′q

]
− H2

0

2hnkh
n
l

J
n+1/2
lmq

[
(M−1

rq)n+1/2p
n+1/2
1r

(
Ã11(M−1

sm)n+1/2p
n+1/2
1s + 2ψ∗i′mÃi′1

)
+ ψ∗i′mÃi′j′ψ

∗
j′q

]
+H0

(
g(hnlM

n+1/2
kl −HIn+1/2

k)− (M−1
rq)n+1/2p

n+1/2
1r N

n+1/2
qk

)
+ Lw

[
X
n+1/2
kq (M−1

rq)n+1/2p
n+1/2
1r Ĩ1 +X

n+1/2
km ψ∗i′mĨi′

]}
,

(B.22)

to be solved simultaneously with

ψ∗i′ = ψi′(p
n+1/2
1 ,hn, tn+1/2)

=

[
hnk

(
Γ
n+1/2
kqm M̃i′j′ − Γ

n+1/2
qkm D̃i′j′ − Γ

n+1/2
mkq D̃j′i′

)

+
1

hnk

(
hnl h

n
pΥ

n+1/2
kmqlp S̃i′j′ +H2

0J
n+1/2
kmq Ãi′j′

)]−1

×

{[
hnk

(
Γ
n+1/2
kqm M̃i′1 − Γ

n+1/2
qkm D̃i′1 − Γ

n+1/2
mkq D̃1i′

)

+
1

hnk

(
hnl h

n
pΥ

n+1/2
kmqlp S̃i′1 +H2

0J
n+1/2
kmq Ãi′1

)]
M−1
rq p

n+1/2
1r + hnkLwX

n+1/2
km Ĩi′

}
.

(B.23)

Appendices 267

The second step, which aims to update h and ψ̂, is obtained by substituting the Hamiltonian (3.32)

into Eqn. (3.64b). Its fully discrete form is

0 =
hn+1
k − hn

k

∆t/2

−(M−1
kq)n+1/2

{
Γn+1/2
rmq

[
(hn

r + hn+1
r)M̃11(M−1

sm)n+1/2p
n+1/2
1s + M̃1i′

(
ψ∗i′mh

n
r + ψ∗∗i′mh

n+1
r

)]

−Γn+1/2
mrq

[
(hn

r + hn+1
r)D̃11(M−1

sm)n+1/2p
n+1/2
1s + D̃1i′

(
ψ∗i′mh

n
r + ψ∗∗i′mh

n+1
r

)]

−Γn+1/2
qrm

[
(hn

r + hn+1
r)D̃11(M−1

sm)n+1/2p
n+1/2
1s + D̃i′1

(
ψ∗i′mh

n
r + ψ∗∗i′mh

n+1
r

)]

+Υ
n+1/2
rmqlp

[(
hn
l h

n
p

hn
r

ψ∗i′m +
hn+1
l hn+1

p

hn+1
r

ψ∗∗i′m

)
S̃i′1

+

(
hn
l h

n
p

hn
r

+
hn+1
l hn+1

p

hn+1
r

)
S̃11(M−1

sm)n+1/2p
n+1/2
1s

]

+Jn+1/2
rmq H2

0

[(
1

hn
r

ψ∗i′m +
1

hn+1
r

ψ∗∗i′m

)
Ai′1

+

(
1

hn
r

+
1

hn+1
r

)
Ã11(M−1

sm)n+1/2p
n+1/2
1s

]

+LwX
n+1/2
rq Ĩ1

(
hn
r + hn+1

r

)
−H0N

n+1/2
qr

(
hn
r + hn+1

r

)}

−
∑
i′

{
Γ
n+1/2
kqm

[(
hn
k + hn+1

k

)
M̃i′1(M−1

rq)n+1/2p
n+1/2
1r + M̃i′j′

(
ψ∗j′qh

n
k + ψ∗∗j′qh

n+1
k

)]

−Γ
n+1/2
qkm

[(
hn
k + hn+1

k

)
D̃i′1(M−1

rq)n+1/2p
n+1/2
1r + D̃i′j′

(
ψ∗j′qh

n
k + ψ∗∗j′qh

n+1
k

)]

−Γ
n+1/2
mkq

[(
hn
k + hn+1

k

)
D̃1i′(M

−1
rq)n+1/2p

n+1/2
1r + D̃j′i′

(
ψ∗j′qh

n
k + ψ∗∗j′qh

n+1
k

)]

+H2
0J

n+1/2
kmq

[
Ãi′j′

(
1

hn
k

ψ∗j′q +
1

hn+1
k

ψ∗∗j′q

)
+

(
1

hn
+

1

hn+1

)
Ãi′1(M−1

rq)n+1/2p
n+1/2
1r

]

+Υ
n+1/2
kmqlp

[(
hn
l h

n
p

hn
k

+
hn+1
l hn+1

p

hn+1
k

)
(M−1

rq)n+1/2p
n+1/2
1r

+ S̃i′j′

(
hn
l h

n
p

hn
k

ψ∗j′q +
hn+1
l hn+1

p

hn+1
k

ψ∗∗j′q

)]
+ LwX

n+1/2
km Ĩi′

(
hn
k + hn+1

k

)}
,

(B.24)

268 Appendices

to be solved simultaneously with

ψ∗∗i′ =

[
hn+1
k

(
Γ
n+1/2
kqm M̃i′j′ − Γ

n+1/2
qkm D̃i′j′ − Γ

n+1/2
mkq D̃j′i′

)

+
1

hn+1
k

(
hn+1
l hn+1

p Υ
n+1/2
kmqlp S̃i′j′ +H2

0J
n+1/2
kmq Ãi′j′

)]−1

×

{[
hn+1
k

(
Γ
n+1/2
kqm M̃i′1 − Γ

n+1/2
qkm D̃i′1 − Γ

n+1/2
mkq D̃1i′

)

+
1

hn+1
k

(
hn+1
l hn+1

p Υ
n+1/2
kmqlp S̃i′1 +H2

0J
n+1/2
kmq Ãi′1

)]
M−1
rq p

n+1/2
1r

+ hn+1
k LwX

n+1/2
km Ĩi′

}
,

(B.25)

for all i′ ∈ [2, nz+1]. Finally, the last step aims to update p1 at time tn+1 by solving Eqn. (3.64c),

that is

pn+1
1k =p

n+1/2
1k − ∆t

2

{
1

2
Λ
n+1/2
kmq ψ∗∗i′m

[
M̃i′1(M−1

rq)n+1/2p
n+1/2
1r + M̃i′j′ψ

∗∗
j′q

]
+

1

2
Λ
n+1/2
kqm (M−1

rq)n+1/2p
n+1/2
1r

[
M̃11(M−1

sm)n+1/2p
n+1/2
1s + M̃1i′ψ

∗∗
i′m

]
− (M−1

rq)n+1/2p
n+1/2
1r Γ

n+1/2
mkq

(
D̃11(M−1

sm)n+1/2p
n+1/2
1s + D̃1i′ψ

∗∗
i′m

)
− ψ∗∗i′mΓ

n+1/2
qkm

(
D̃i′1(M−1

rq)n+1/2p
n+1/2
1r + D̃i′j′ψ

∗∗
j′q

)
+

hn+1
p

2hn+1
t

[
(Υtmqkp + Υtmqpk)

n+1/2 −
hn+1
l

hn+1
k

Υ
n+1/2
tmqlp

][
ψ∗∗i′mS̃i′j′ψ

∗∗
j′q

+ (M−1
rq)n+1/2p

n+1/2
1r

(
S̃11(M−1

sm)n+1/2p
n+1/2
1s + 2ψ∗∗i′mS̃i′1

)]
− H2

0

2hn+1
k hn+1

l

J
n+1/2
lmq

[
(M−1

rq)n+1/2p
n+1/2
1r

(
Ã11(M−1

sm)n+1/2p
n+1/2
1s + 2ψ∗∗i′mÃi′1

)
+ ψ∗∗i′mÃi′j′ψ

∗∗
j′q

]
+H0

(
g(hn+1

l M
n+1/2
kl −HIn+1/2

k)− (M−1
rq)n+1/2p

n+1/2
1r N

n+1/2
qk

)
+ Lw

[
X
n+1/2
kq (M−1

rq)n+1/2p
n+1/2
1r Ĩ1 +X

n+1/2
km ψ∗∗i′mĨi′

]}
,

(B.26)

which is explicit for pn+1
1 . As in the case of the Symplectic-Euler scheme, ψ̂ may be computed at

time tn+1 by solving Eqn. B.36.

Appendices 269

B.4 Stability criteria for the symplectic-Euler scheme

In section 3.4.4, we derived the characteristic polynomial corresponding to the symplectic-Euler

scheme as

λ2 + (ω2∆t2 − 2) + 1 = 0. (3.70)

The solution λ of the polynomial (3.70) depends on the sign of

∆ = (ω2∆t2 − 2)2 − 4. (B.27)

If ∆ > 0, then the two possible solutions λ+ and λ− are

λ+ =
−(ω2∆t2 − 2) +

√
∆

4
,

λ− =
−(ω2∆t2 − 2)−

√
∆

4
,

(B.28a)

(B.28b)

The modulus of λ− is

|λ−| =
1

2

√
2∆ + 4 + 2

√
∆(ω2∆t2 − 2). (B.29)

However,
∆ > 0⇒ ∆t2ω2 − 2 > 0

⇒ 2
√

∆(∆t2ω2 − 2) > 0

⇒
√

2D + 4 + 2
√

∆(∆t2ω2 − 2) > 2

⇒ |λ−| > 1.

Therefore, if ∆ > 0, i.e if ∆t >
ω

2
, there is at least one solution for which the symplectic-Euler

scheme would be unstable. Therefore, the case ∆t >
ω

2
does not ensure stability of the temporal

scheme.

Let’s now consider the case ∆ ≤ 0, which is satisfied when ∆t ≤ 2

ω
. In that case, the two possible

solutions λ+ and λ− of (3.70) are

λ± =
−(ω2∆t2 − 2)± i

√
∆

4
. (B.30)

In both cases, the modulus of λ is

|λ±| =
1

2

√
(ω2∆t2 − 2)2 + ∆ =

1

2

√
2∆ + 4 ≤ 1 (B.31)

from the assumption ∆ ≤ 0. Therefore, the scheme is stable if and only if ∆ ≤ 0, that is

∆t ≤ 2

ω
. (B.32)

270 Appendices

B.5 Space-continuous-time-discrete weak formulations with the Symplectic-Euler

scheme

Transforming the weak formulations (B.18), (B.19) and (B.20) in terms of h(x, y, t), ψ1(x, y, t)

and ψi′(x, y, t) and substituting (3.91) and (3.92) yield the space-continuous time-discrete weak

formulations in vectorial form, as implemented with Firedrake. The first step is to solve∫
Ω̂x,y

Wnϕqh
n+1 dx dy =

∫
Ω̂x,y

Wnϕqh
n

+∆t

{
hn+1

[V n

Wn
∂xϕq + Un∂yϕq

] [
∂xψ

n
1 M̃11 + ∂xψ̂

∗M̃N1

]
+hn+1

[
Wn∂yϕq + Un∂xϕq

] [
∂yψ

n
1 M̃11 + ∂yψ̂

∗M̃N1

]
−
[
V n

Wn
∂xh

n+1∂xϕq +W∂yh
n+1∂yϕq + Un

(
∂xh

n+1∂yϕq + ∂yh
n+1∂xϕq

)]
×
[
D̃11ψ

n
1 + D̃1N ψ̂

∗T
]

−ϕq
[
V n

Wn
∂xh

n+1 + Un∂yh
n+1

] [
∂xψ

n
1 D̃11 + ∂xψ̂

∗D̃N1

]
−ϕq

[
Wn∂yh

n+1 + Un∂xh
n+1

] [
∂yψ

n
1 D̃11 + ∂yψ̂

∗D̃N1

]
+

ϕq
hn+1

[
V n

Wn
(∂xh

n+1)2 +Wn(∂yh
n+1)2 + 2Un∂xh

n+1∂yh
n+1

] [
S̃11ψ

n
1 + ψ̂∗S̃N1

]
+
WnH2

0

hn+1
ϕq

[
ψn1 Ã11 + ψ̂∗ÃN1

]
−H0(x− Lw)∂tR̃

n∂xh
n+1ϕq

}
dx dy

+∆t

∫ Ly

0

(
Lw∂tR̃

nhn+1ϕq Ĩ1

)
x=0

dy,

(B.33)

Appendices 271

simultaneously with∫
Ω̂x,y

{
hn+1

[(
V n

Wn
∂xϕ̂+ Un∂yϕ̂

)
◦
(
M̃NN∂xψ̂

∗ + M̃N1∂xψ
n
1

)
+ (Wn∂yϕ̂+ Un∂xϕ̂) ◦

(
M̃NN∂yψ̂

∗ + M̃N1∂yψ
n
1

)]

−

[
V n

Wn
∂xh

n+1 + Un∂yh
n+1

][
∂xϕ̂

T ◦
(
D̃NN ψ̂

∗T + D̃N1ψ
n
1

)
+ ϕ̂T

(
D̃T
NN∂xψ̂

∗T + D̃T
1N∂xψ

n
1

)]

−

[
Wn∂yh

n+1 + Un∂xh
n+1

][
∂yϕ̂

T ◦
(
D̃NN ψ̂

∗T + D̃N1ψ
n
1

)
+ ϕ̂T ◦

(
D̃T
NN∂yψ̂

∗T + D̃T
1N∂yψ

n
1

)]

+
1

hn+1

[(
V n

Wn
(∂xh

n+1)2 +Wn(∂yh
n+1)2 + 2Un∂xh

n+1∂yh
n+1

)

× ϕ̂ ◦
(
S̃NN ψ̂

∗T + S̃N1ψ
n
1

)
+WnH2

0 ϕ̂ ◦
(
ÃNN ψ̂

∗T + ÃN1ψ
n
1

)]}
dx dy

+

∫ Ly

0

(
Lwh

n+1∂tR̃
n
(
ϕ̂ ◦ ĨN

))
x=0

dy = 0.

(B.34)

272 Appendices

Equation (B.34) is actually a system of nz equations, each one eliminating the velocity potential in

one of the vertical subsurface layers. Finally, the surface velocity potential ψ1 is updated through∫
Ω̂x,y

ϕkW
n+1ψn+1

1 dx dy =

∫
Ω̂x,y

ϕkW
nψn1

−∆t

{
ϕk
2

[
V n

Wn

[
(∂xψ

n
1)2M̃11 + ∂xψ̂

∗
(

2M̃N1∂xψ
n
1 + M̃NN∂xψ̂

∗T
)]

+Wn
[
(∂yψ

n
1)2M̃11 + ∂yψ̂

∗
(

2M̃N1∂yψ
n
1 + M̃NN∂yψ̂

∗T
)]

+ 2Un
(
∂xψ

n
1

(
M̃11∂yψ

n
1 + M̃T

1N∂yψ̂
∗T
)

+ ∂xψ̂
∗
(
M̃N1∂yψ

n
1 + M̃T

NN∂yψ̂
∗T
))]

−
[
V n

Wn
∂xϕk + Un∂yϕk

]
×
[
∂xψ

n
1

(
D̃11ψ

n
1 + D̃1N ψ̂

∗T
)

+ ∂xψ̂
∗
(
D̃N1ψ

n
1 + D̃NN ψ̂

∗T
)]

−
[
Wn∂yϕk + Un∂xϕk

]
×
[
∂yψ

n
1

(
D̃11ψ

n
1 + D̃1N ψ̂

∗T
)

+ ∂yψ̂
∗
(
D̃N1ψ

n
1 + D̃NN ψ̂

∗T
)]

+

[
∂xϕk

(
V n

Wn
∂xh

n+1 + Un∂yh
n+1

)
+ ∂yϕk

(
Wn∂yh

n+1 + Un∂xh
n+1
)

− ϕk
2hn+1

(
V n

Wn
(∂xh

n+1)2 +Wn(∂yh
n+1)2 + 2Un∂xh

n+1∂yh
n+1

)]
× 1

hn+1

[
(ψn1)2S̃11 + ψ̂∗

(
2S̃N1ψ

n
1 + S̃NN ψ̂

∗T
)]

− H2
0W

n

(hn+1)2
ϕk

[
(ψn1)2Ã11 + ψ̂∗

(
2ÃN1ψ

n
1 + ÃNN ψ̂

∗T
)]

+H0

[
gWnϕk(h

n+1 −H) + ψn1 (x− Lw)∂tR̃
n∂xϕk

]}
dx dy

−∆t

∫ Ly

0

(
ϕkLw∂tR̃

n
(
ψn1 Ĩ1 + ψ̂∗ĨN

))
x=0

dy.

(B.35)

Appendices 273

Finally, the interior velocity potential may be updated by solving∫
Ω̂x,y

{
hn+1

[(
V n+1

Wn+1
∂xϕ̂+ (x− Lw)∂yR̃

n+1∂yϕ̂

)
◦
(
M̃NN∂xψ̂

n+1
)

+
(
Wn+1∂yϕ̂+ (x− Lw)∂yR̃

n+1∂xϕ̂
)
◦
(
M̃NN∂yψ̂

n+1
)]

−

[
V n+1

Wn+1
∂xh

n+1 + (x− Lw)∂yR̃
n+1∂yh

n+1

]

×

[
∂xϕ̂

T ◦
(
D̃NN ψ̂

∗T
)

+ ϕ̂T
(
D̃T
NN∂xψ̂

n+1T
)]

−

[
Wn+1∂yh

n+1 + (x− Lw)∂yR̃
n+1∂xh

n+1

]

×

[
∂yϕ̂

T ◦
(
D̃NN ψ̂

n+1T
)

+ ϕ̂T ◦
(
D̃T
NN∂yψ̂

n+1T
)]

+

[
Wn+1H2

0 ϕ̂ ◦
(
ÃNN ψ̂

n+1T
)

+

(
V n+1

Wn+1
(∂xh

n+1)2 +Wn+1(∂yh
n+1)2

+2(x−Lw)∂yR̃
n+1∂xh

n+1∂yh
n+1

)
ϕ̂ ◦

(
S̃NN ψ̂

n+1T
)] 1

hn+1

}
dx dy

= −
∫

Ω̂x,y

{
hn+1

[(
V n+1

Wn+1
∂xϕ̂+ (x− Lw)∂yR̃

n+1∂yϕ̂

)
◦
(
M̃N1∂xψ

n+1
1

)
+
(
Wn+1∂yϕ̂+ (x− Lw)∂yR̃

n+1∂xϕ̂
)
◦
(
M̃N1∂yψ

n+1
1

)]

−

[
V n+1

Wn+1
∂xh

n+1 + (x− Lw)∂yR̃
n+1∂yh

n+1

]

×

[
∂xϕ̂

T ◦
(
D̃N1ψ

n+1
1

)
+ ϕ̂T

(
D̃T

1N∂xψ
n+1
1

)]

−

[
Wn+1∂yh

n+1 + (x− Lw)∂yR̃
n+1∂xh

n+1

]

×

[
∂yϕ̂

T ◦
(
D̃N1ψ

n+1
1

)
+ ϕ̂T ◦

(
D̃T

1N∂yψ
n+1
1

)]

+

[
Wn+1H2

0 ϕ̂ ◦
(
ÃN1ψ

n+1
1

)
+

(
V n+1

Wn+1
(∂xh

n+1)2 +Wn+1(∂yh
n+1)2

+2(x−Lw)∂yR̃
n+1∂xh

n+1∂yh
n+1

)
ϕ̂ ◦

(
S̃N1ψ

n+1
1

)] 1

hn+1

}
dx dy

−
∫ Ly

0

(
Lwh

n+1∂tR̃
n+1

(
ϕ̂ ◦ ĨN

))
x=0

dy.

(B.36)

274 Appendices

B.6 Space-continuous-time-discrete weak formulations with the Störmer-Verlet

scheme

As for the Symplectic-Euler scheme, Eqns. (B.22) to (B.26) may be written in space-continuous

time-discrete vectorial form. The first step is then to solve∫
Ω̂x,y

ϕk

(
Wn+1/2ψ

n+1/2
1 −Wnψn1

)
+

∆t

2

{
ϕk
2

[
V n+1/2

Wn+1/2

[
(∂xψ

n+1/2
1)2M̃11 + ∂xψ̂

∗
(

2M̃N1∂xψ
n+1/2
1 + M̃NN∂xψ̂

∗T
)]

+Wn+1/2

[
(∂yψ

n+1/2
1)2M̃11 + ∂yψ̂

∗
(

2M̃N1∂yψ
n+1/2
1 + M̃NN∂yψ̂

∗T
)]

+ 2Un+1/2

(
∂xψ

n+1/2
1

(
M̃11∂yψ

n+1/2
1 + M̃T

1N∂yψ̂
∗T
)

+ ∂xψ̂
∗
(
M̃N1∂yψ

n+1/2
1 + M̃T

NN∂yψ̂
∗T
))]

−
[
V n+1/2

Wn+1/2
∂xϕk + Un+1/2∂yϕk

][
∂xψ

n+1/2
1

(
D̃11ψ

n+1/2
1 + D̃1N ψ̂

∗T
)

+ ∂xψ̂
∗
(
D̃N1ψ

n+1/2
1 + D̃NN ψ̂

∗T
)]

−
[
Wn+1/2∂yϕk + Un+1/2∂xϕk

][
∂yψ

n+1/2
1

(
D̃11ψ

n+1/2
1 + D̃1N ψ̂

∗T
)

+ ∂yψ̂
∗
(
D̃N1ψ

n+1/2
1 + D̃NN ψ̂

∗T
)]

+

[
∂xϕk

(V n+1/2

Wn+1/2
∂xh

n + Un+1/2∂yh
n
)

+ ∂yϕk

(
Wn+1/2∂yh

n + Un+1/2∂xh
n
)

− ϕk
2hn

(
V n+1/2

Wn+1/2
(∂xh

n)2 +Wn+1/2(∂yh
n)2 + 2Un+1/2∂xh

n∂yh
n

)]
1

hn

×
[
(ψ

n+1/2
1)2S̃11 + ψ̂∗

(
2S̃N1ψ

n+1/2
1 + S̃NN ψ̂

∗T
)]

−H
2
0W

n+1/2

(hn)2
ϕk

[
(ψ

n+1/2
1)2Ã11 + ψ̂∗

(
2ÃN1ψ

n+1/2
1 + ÃNN ψ̂

∗T
)]

+H0

[
gϕk(h

n −H)Wn+1/2 + ψ
n+1/2
1 (x− Lw)∂tR̃

n+1/2∂xϕk

]}
dx dy

+
∆t

2

∫ Ly

0

[
ϕkLw∂tR̃

n+1/2
(
ψ
n+1/2
1 Ĩ1 + ψ̂∗ĨN

)]
x=0

dy = 0,

(B.37)

Appendices 275

to be solved simultaneously with∫
Ω̂x,y

{
hn

[(
V n+1/2

Wn+1/2
∂xϕ̂+ Un+1/2∂yϕ̂

)
◦
(
M̃NN∂xψ̂

∗ + M̃N1∂xψ
n+1/2
1

)

+
(
Wn+1/2∂yϕ̂+ Un+1/2∂xϕ̂

)
◦
(
M̃NN∂yψ̂

∗ + M̃N1∂yψ
n+1/2
1

)]

−

[
V n+1/2

Wn+1/2
∂xh

n + Un+1/2∂yh
n

][
∂xϕ̂

T ◦
(
D̃NN ψ̂

∗T + D̃N1ψ
n+1/2
1

)
+ ϕ̂T

(
D̃T
NN∂xψ̂

∗T + D̃T
1N∂xψ

n+1/2
1

)]

−

[
Wn+1/2∂yh

n + Un+1/2∂xh
n

][
∂yϕ̂

T ◦
(
D̃NN ψ̂

∗T + D̃N1ψ
n+1/2
1

)
+ ϕ̂T ◦

(
D̃T
NN∂yψ̂

∗T + D̃T
1N∂yψ

n+1/2
1

)]

+
1

hn

[
Wn+1/2H2

0 ϕ̂ ◦
(
ÃNN ψ̂

∗T + ÃN1ψ
n+1/2
1

)
+ ϕ̂

(
V n+1/2

Wn+1/2
(∂xh

n)2

+Wn+1/2(∂yh
n)2 + 2Un+1/2∂xh

n∂yh
n

)
◦
(
S̃NN ψ̂

∗T + S̃N1ψ
n+1/2
1

)]}
dx dy

+

∫ Ly

0

(
Lwh

n∂tR̃
n+1/2

(
ϕ̂ ◦ ĨN

))
x=0

dy = 0.

(B.38)

276 Appendices

The second step, corresponding to Eqn. B.24 is implemented as∫
Ω̂x,y

Wn+1/2ϕqh
n+1 dx dy =

∫
Ω̂x,y

Wn+1/2ϕqh
n

+
∆t

2

{[
V n+1/2

Wn+1/2
∂xϕq + Un+1/2∂yϕq

] [
hn
(
∂xψ

n+1/2
1 M̃11 + ∂xψ̂

∗M̃N1

)
+ hn+1

(
∂xψ

n+1/2
1 M̃11 + ∂xψ̂

∗∗M̃N1

)]
+
[
Wn+1/2∂yϕq + Un+1/2∂xϕq

] [
hn
(
∂yψ

n+1/2
1 M̃11 + ∂yψ̂

∗M̃N1

)
+ hn+1

(
∂yψ

n+1/2
1 M̃11 + ∂yψ̂

∗∗M̃N1

)]
−
[
V n+1/2

Wn+1/2
∂xh

n+1∂xϕq +W∂yh
n+1∂yϕq

+ Un+1/2
(
∂xh

n+1∂yϕq + ∂yh
n+1∂xϕq

)] [
D̃11ψ

n+1/2
1 + D̃1N ψ̂

∗∗T
]

−
[
V n+1/2

Wn+1/2
∂xh

n∂xϕq +W∂yh
n∂yϕq

+ Un+1/2 (∂xh
n∂yϕq + ∂yh

n∂xϕq)

] [
D̃11ψ

n+1/2
1 + D̃1N ψ̂

∗T
]

− ϕq
[
V n+1/2

Wn+1/2
∂xh

n+1 + Un+1/2∂yh
n+1

] [
∂xψ

n+1/2
1 D̃11 + ∂xψ̂

∗∗D̃N1

]
− ϕq

[
V n+1/2

Wn+1/2
∂xh

n + Un+1/2∂yh
n

] [
∂xψ

n+1/2
1 D̃11 + ∂xψ̂

∗D̃N1

]
− ϕq

[
Wn+1/2∂yh

n+1 + Un+1/2∂xh
n+1

] [
∂yψ

n+1/2
1 D̃11 + ∂yψ̂

∗∗D̃N1

]
− ϕq

[
Wn+1/2∂yh

n + Un+1/2∂xh
n

] [
∂yψ

n+1/2
1 D̃11 + ∂yψ̂

∗D̃N1

]
+

ϕq
hn+1

[
V n+1/2

Wn+1/2
(∂xh

n+1)2 +Wn+1/2(∂yh
n+1)2

+ 2Un+1/2∂xh
n+1∂yh

n+1

] [
S̃11ψ

n+1/2
1 + ψ̂∗∗S̃N1

]
+
ϕq
hn

[
V n+1/2

Wn+1/2
(∂xh

n)2 +Wn+1/2(∂yh
n)2 + 2Un+1/2∂xh

n∂yh
n

]
×
[
S̃11ψ

n+1/2
1 + ψ̂∗S̃N1

]
+ ϕq

[
1

hn+1

(
ψ
n+1/2
1 Ã11 + ψ̂∗∗ÃN1

)
+

1

hn

(
ψ
n+1/2
1 Ã11 + ψ̂∗ÃN1

)]
Wn+1/2H2

0

−H0(x− Lw)∂tR̃
n+1/2ϕq

(
∂xh

n+1 + ∂xh
n
)}

dx dy

+
∆t

2

∫ Ly

0

(
Lw∂tR̃

n+1/2ϕq Ĩ1

(
hn+1 + hn

))
x=0

dy,

(B.39)

Appendices 277

to be solved simultaneously with∫
Ω̂x,y

{
hn+1

[(
V n+1/2

Wn+1/2
∂xϕ̂+ Un+1/2∂yϕ̂

)
◦
(
M̃NN∂xψ̂

∗∗ + M̃N1∂xψ
n+1/2
1

)
+
(
Wn+1/2∂yϕ̂+ Un+1/2∂xϕ̂

)
◦
(
M̃NN∂yψ̂

∗∗ + M̃N1∂yψ
n+1/2
1

)]

−

[
V n+1/2

Wn+1/2
∂xh

n+1 + Un+1/2∂yh
n+1

][
∂xϕ̂

T ◦
(
D̃NN ψ̂

∗∗T + D̃N1ψ
n+1/2
1

)
+ ϕ̂T

(
D̃T
NN∂xψ̂

∗∗T + D̃T
1N∂xψ

n+1/2
1

)]

−

[
Wn+1/2∂yh

n+1 + Un+1/2∂xh
n+1

][
∂yϕ̂

T ◦
(
D̃NN ψ̂

∗∗T + D̃N1ψ
n+1/2
1

)
+ ϕ̂T ◦

(
D̃T
NN∂yψ̂

∗∗T + D̃T
1N∂yψ

n+1/2
1

)]

+
1

hn+1

[
Wn+1/2H2

0 ϕ̂ ◦
(
ÃNN ψ̂

∗∗T + ÃN1ψ
n+1/2
1

)
+

(
V n+1/2

Wn+1/2
(∂xh

n+1)2 +Wn+1/2(∂yh
n+1)2

+ 2Un+1/2∂xh
n+1∂yh

n+1

)
ϕ̂ ◦

(
S̃NN ψ̂

∗∗T + S̃N1ψ
n+1/2
1

)]}
dx dy

+

∫ Ly

0

(
Lwh

n+1∂tR̃
n+1/2

(
ϕ̂ ◦ ĨN

))
x=0

dy = 0.

(B.40)

278 Appendices

Finally, the last step is∫
Ω̂x,y

ϕkW
n+1ψn+1

1 dxdy =

∫
Ω̂x,y

ϕkW
n+1/2ψ

n+1/2
1

− ∆t

2

{
ϕk

2

[
V n+1/2

Wn+1/2

[
(∂xψ

n+1/2
1)2M̃11 + ∂xψ̂

∗∗
(

2M̃N1∂xψ
n+1/2
1 + M̃NN∂xψ̂

∗∗T
)]

+Wn+1/2
[
(∂yψ

n+1/2
1)2M̃11 + ∂yψ̂

∗∗
(

2M̃N1∂yψ
n+1/2
1 + M̃NN∂yψ̂

∗∗T
)]

+ 2Un+1/2

[
∂xψ

n+1/2
1

(
M̃11∂yψ

n+1/2
1 + M̃T

1N∂yψ̂
∗∗T
)

+ ∂xψ̂
∗∗
(
M̃N1∂yψ

n+1/2
1 + M̃T

NN∂yψ̂
∗∗T
)]]

−
[
V n+1/2

Wn+1/2
∂xϕk + Un+1/2∂yϕk

][
∂xψ

n+1/2
1

(
D̃11ψ

n+1/2
1 + D̃1N ψ̂

∗∗T
)

+ ∂xψ̂
∗∗
(
D̃N1ψ

n+1/2
1 + D̃NN ψ̂

∗∗T
)]

−
[
Wn+1/2∂yϕk + Un+1/2∂xϕk

][
∂yψ

n+1/2
1

(
D̃11ψ

n+1/2
1 + D̃1N ψ̂

∗∗T
)

+ ∂yψ̂
∗∗
(
D̃N1ψ

n+1/2
1 + D̃NN ψ̂

∗∗T
)]

+
1

hn+1

[
∂xϕk

(
V n+1/2

Wn+1/2
∂xh

n+1 + Un+1/2∂yh
n+1

)
+ ∂yϕk

(
Wn+1/2∂yh

n+1 + Un+1/2∂xh
n+1
)

− ϕk

2hn+1

(
V n+1/2

Wn+1/2
(∂xh

n+1)2 +Wn+1/2(∂yh
n+1)2

+ 2Un+1/2∂xh
n+1∂yh

n+1

)]
×
[
(ψ

n+1/2
1)2S̃11 + ψ̂∗∗

(
2S̃N1ψ

n+1/2
1 + S̃NN ψ̂

∗∗T
)]

− H2
0W

n+1/2

(hn+1)2
ϕk

[
(ψ

n+1/2
1)2Ã11 + ψ̂∗∗

(
2ÃN1ψ

n+1/2
1 + ÃNN ψ̂

∗∗T
)]

+H0

[
gWn+1/2ϕk(hn+1 −H) + ψ

n+1/2
1 (x− Lw)∂tR̃

n+1/2∂xϕk

]}
dxdy

− ∆t

2

∫ Ly

0

(
ϕkLw∂tR̃

n+1/2
(
ψ
n+1/2
1 Ĩ1 + ψ̂∗∗ĨN

))
x=0

dy.

(B.41)

Again, the interior velocity potential may be updated with Eqn. (B.36).

Appendices 279

B.7 Weak formulations obtained from the continuous variational principle

In this section we show that the weak formulations (B.33) to (B.35) and (B.37) to (B.41) may

be obtained from the variations of h, ψ1 and ψi′ in the variational principle (3.27). Taking the

variations of h, ψ1 and ψi′ in the variational principle (3.27) and setting respectively (δh 6=

0, δψ1 = 0, δψ̂ = 0), (δh = 0, δψ1 6= 0, δψ̂ = 0) and (δh = 0, δψ1 = 0, δψ̂ 6= 0), indeed leads

to the following weak formulations:∫
Ω̂x,y

{
δh

[
V

2W

[
(∂xψ1)2M̃11 + ∂xψ̂

(
2M̃N1∂xψ1 + M̃NN (∂xψ̂)T

)]
+
W

2

[
(∂yψ1)2M̃11 + ∂yψ̂

(
2M̃N1∂yψ1 + M̃NN (∂yψ̂)T

)]
+ U

[
∂xψ1

(
M̃11∂yψ1 + M̃1N∂yψ̂

T
)

+ ∂xψ̂
(
M̃N1∂yψ1 + M̃NN∂yψ̂

T
)]]

−
[V
W
∂xδh+ U∂yδh

][
∂xψ1

(
D̃11ψ1 + D̃1N ψ̂

T
)

+ ∂xψ̂
(
D̃N1ψ1 + D̃NN ψ̂

T
)]

− [W∂yδh+ U∂xδh]
[
∂yψ1

(
D̃11ψ1 + D̃1N ψ̂

T
)

+ ∂yψ̂
(
D̃N1ψ1 + D̃NN ψ̂

T
)]

+
1

h

[
∂xδh

(
V

W
∂xh+ ∂yhU

)
− δh

h

(V

2W
(∂xh)2 +

W

2
(∂yh)2 + U∂xh∂yh

)
+ ∂yδh (W∂yh+ U∂xh)

] [
ψ2

1S̃11 + 2ψ̂S̃N1ψ1 + ψ̂S̃NN ψ̂
T
]

−δhWH2
0

2h2

(
ψ2

1Ã11 + 2ψ̂ÃN1ψ1 + ψ̂ÃNN ψ̂
T
)

+H0

(
gWδh(h−H)− ψ1(x− Lw)∂tR̃∂xδh+ ∂t(ψ1W)δh

)
z=H0

}
dx dy

+

∫ Ly

0

(
Lw∂tR̃δh

[
ψ1Ĩ1 + ψ̂ĨN

])
x=0

dy = 0,

(B.42)

280 Appendices

∫
Ω̂x,y

{
hV

W

[
∂xψ1M̃11 + ∂xψ̂M̃N1

]
∂xδψ1 +Wh

[
∂yψ1M̃11 + ∂yψ̂M̃N1

]
∂yδψ1

+Uh

[
∂xδψ1

(
M̃11∂yψ1 + M̃1N∂yψ̂

T
)

+
(
∂xψ1M̃11 + ∂xψ̂M̃N1

)
∂yδψ1

]
−
[V
W
∂xh+ U∂yh

] [
∂xδψ1

(
D̃11ψ1 + D̃1N ψ̂

T
)

+
(
∂xψ1D̃11 + ∂xψ̂D̃N1

)
δψ1

]
− [W∂yh+ U∂xh]

[
∂yδψ1

(
D̃11ψ1 + D̃1N ψ̂

T
)

+
(
∂yψ1D̃11 + ∂yψ̂D̃N1

)
δψ1

]
+
WH2

0

h

(
ψ1Ã11 + ψ̂ÃN1

)
δψ1 − δψ1H0 ((x− Lw)∂tR∂xh+W∂th)z=H0

+
1

h

(V
W

(∂xh)2 +W (∂yh)2 + 2U∂xh∂yh
) [
ψ1S̃11 + ψ̂S̃N1

]
δψ1

}
dx dy

+

∫ Ly

0

(
δψ1Lw∂tR̃hĨ1

)
x=0

dy

}
dt = 0,

(B.43)

and∫
Ω̂x,y

{
hV

W

[
∂xδψ̂ ◦

(
M̃N1∂xψ1 + M̃NN (∂xψ̂)T

)]
+Wh

[
∂yδψ̂ ◦

(
M̃N1∂yψ1 + M̃NN (∂yψ̂)T

)]
+Uh

[
∂yδψ̂

T ◦
(
M̃N1∂xψ1 + M̃NN∂xψ̂

)
+ ∂xδψ̂

T
(
M̃N1∂yψ1 + M̃NN∂yψ̂

)]
−
[
V

W
∂xh+ U∂yh

] [
δψ̂T ◦

(
D̃T

1N∂xψ1 + D̃T
NN∂xψ̂

T
)

+ ∂xδψ̂ ◦
(
D̃N1ψ1 + D̃NN ψ̂

T
)]

− (W∂yh+ U∂xh)

[
δψ̂T ◦

(
D̃T

1N∂yψ1 + D̃T
NN∂yψ̂

T
)

+ ∂yδψ̂ ◦
(
D̃N1ψ1 + D̃NN ψ̂

T
)]

+
1

h

(V
W

(∂xh)2 +W (∂yh)2 + 2U∂xh∂yh
)
δψ̂ ◦

[
S̃N1ψ1 + S̃NN ψ̂

T
]

+
WH2

0

h
δψ̂ ◦

(
ÃN1ψ1 + ÃNN ψ̂

T
))

dx dy

+

∫ Ly

0

(
Lw∂tR̃hδψ̂ ◦ ĨN

)
x=0

}
dy dt = 0.

(B.44)

The temporal schemes obtained in sections 3.4.2 and 3.4.3 may be applied directly to the weak

formulations (B.42), (B.43) and (B.44).

Appendices 281

B.8 Wavemaker motion and velocity as used in section 3.7.1

Figure B.4: Evolution of the wavemaker motion (top) and velocity (bottom) at y = 0 (blue) and

y = Ly (red) in the test of energy conservation.

282 Appendices

B.9 Fast Fourier transform of the experimental free-surface elevation

Figure B.5: Fast Fourier transform of the measured free-surface elevation at the probes x1 = 10m,

x2 = 20m, x3 = 40m, x4 = 49.5m, x5 = 50m and x6 = 54m.

Appendices 283

C Numerical wave tank for offshore applications: dynamics of

wavemaker, wave propagation and absorbing waves

C.1 Harten-Lax-van Leer (HLL) flux for the Godunov scheme

The HLL numerical flux is computed from the left and right wave speeds SL and SR, which are

obtained from the eigenvalues of the system of equations. Setting the left and right values of the

flux Fk+1/2 at the interface xk+1/2 as [86]

FL = F(Uk+1/2−(t)) and FR = F(Uk+1/2+(t)), (C.45)

the numerical flux Fk+1/2 is computed as

Fk+1/2 =


FL if 0 < SL,

SRFL − SLFR + SLSR(UR0UL)

SR − SL
if SL ≤ 0 ≤ SR,

FR if SR < 0,

(C.46)

where SL and SR are the left and right wave speeds given by

SL(Uk+1/2) = min

(
hunk+1/2−

hn
k+1/2−

−
√
ghn

k+1/2− ,
hunk+1/2+

hn
k+1/2+

+
√
ghn

k+1/2+

)
,

SR(Uk+1/2) = max

(
hunk+1/2−

hn
k+1/2−

+
√
ghn

k+1/2− ,
hunk+1/2+

hn
k+1/2+

+
√
ghn

k+1/2+

)
.

(C.47)

(C.48)

C.2 Space-discrete matrices

In the space-discrete variational principle (4.39), the spatial matrices are defined by

Akmq =

∫ xc

0

[
Lw
W
ϕk∂xϕm∂xϕq

]
dx,

Mkl =

∫ xc

0

[
W

Lw
ϕkϕl

]
dx,

Ik =

∫ xc

0

[
W

Lw
ϕk

]
dx,

Ekmqlp =

∫ xc

0

[
Lw
W

1

ϕk
ϕmϕq∂xϕl∂xϕp

]
dx,

Nqk =

∫ xc

0

[
(x− Lw)∂tR̃ϕq∂xϕk

]
dx,

Jkmq =

∫ xc

0

[
W

Lwϕk
ϕmϕq

]
dx,

Xkq =
[
∂tR̃ϕkϕq

]
x=0

.

284 Appendices

C.3 Transformed deep-water weak formulations and equations

The deep-water weak formulations with coupling term are given in (4.50a-b). These weak

formulations describe the temporal evolution of h and ψi. In particular, (4.50a) is a system of

nz + 1 equations, that is, one for i = 1 which describes the evolution of h through

∫ xc

0
ϕq
W

Lw
∂thdx =

∫ xc

0

{
1

Υ

[
h∂xϕq∂xψjM̃1j +

1

h
(∂xh)2ψjϕqS̃1j

− ∂xh
(
∂xϕqD̃1jψj + ϕq∂xψjD̃j1

)]

+Υ

[
1

h
ϕqÃijψj −

1

H0
ϕq

(x− Lw)

W
∂tR̃∂xh

]}
dx

+
1

H0
Ĩ1

{(
h∂tR

)
x=0

−
(
hu

)
x=xc

}
,

(C.49)

and nz for i′ ∈ [2, nz + 1] that express the interior velocity potential ψi′ in terms of the surface

velocity potential ψ1 and the depth h through:

∫ xc

0

{
1

Υ

[
h∂xϕq∂xψj′M̃i′j′ +

1

h
(∂xh)2ψj′ϕqS̃i′j′

− ∂xh
(
∂xϕqD̃i′j′ψj′ + ϕq∂xψj′D̃j′i′

)]
+ Υ

1

h
ϕqÃi′j′ψj′

}
dx

= −
∫ xc

0

{
1

Υ

[
h∂xϕq∂xψ1M̃i′1 − ∂xh

(
∂xϕqD̃i′1ψ1 + ϕq∂xψ1D̃1i′

)
+

1

h
(∂xh)2ψ1ϕqS̃i′1

]
+ Υ

1

h
ϕqÃi′1ψ1

}
dx

− 1

H0
Ĩi′

{
(h∂tR)x=0 − (hu)x=xc

}
,

(C.50)

Integrations by part in space of the deep-water weak formulations lead to the transformed nonlinear

Appendices 285

potential-flow equations with coupling boundary condition at x = xc as:

W

Lw
∂th =

1

Υ

[
1

h
(∂xh)2ψjS̃ij − ∂xh∂xψjD̃ji

]
− ∂x

[
1

Υ

(
h∂xψjM̃ij − ∂xhD̃ijψj

)]

+Υ

[
1

h
Ãijψj −

δi1
H0

x− Lw
W

∂tR̃∂xh

]
, ∀x ∈ [0, xc],

1

Lw
∂t(Wψ1) = − 1

2Υ

[
∂xψiM̃ij∂xψj −

1

h2
(∂xh)2ψiS̃ijψj

]

+Υ

[
− 1

H0
g(h−H) +

1

2h2
ψiÃijψj

]
+∂x

[
1

Υ

(
−∂xψiD̃ijψj +

1

h
∂xhψiS̃ijψj

)
− Υ

H0

(
ψ1

(x− Lw)

W
∂tR̃

)]
1

H0

[
h∂xψjM̃ij − ∂xhD̃ijψj

]
=

1

H0
Ĩihu, ∀i ∈ [1, nz + 1], at x = xc,

1

H0

[
∂xψiD̃ijψj −

1

h
∂xhψiS̃ijψj

]
=

1

H0h
G̃iψihu, at x = xc,

1

H0

[
h∂xψjM̃ij − ∂xhD̃ijψj

]
=

1

H0
h∂tR, at x = 0.

(C.51a)

(C.51b)

(C.51c)

(C.51d)

(C.51e)

Note that Eqns. (C.51c) and (C.51d) are equivalent and correspond to the transform of the coupling

condition (4.15) for each unknown.

C.4 Deep- and shallow-water Hamiltonians

The space-discrete variational principle (4.39) may be written in Hamiltonian form (4.57) with the

deep-water Hamiltonian

H(h,pi,W) =
1

2H0

[
hlAlqmM

−1
qα piαM

−1
mβpjβM̃ij +

hlhn
hp

M−1
qα piαS̃ijM

−1
mβpjβEpmqln

− 2AmlqhlM
−1
qα piαD̃ijM

−1
mβpjβ

]
+
H0

2hl
JlmqM

−1
qα piαÃijM

−1
mβpjβ

+ ghl(
1

2
hpMpl −HIl)−M−1

qα p1αNql
hl
Lw

+
1

H0
∂tRh0M

−1
0α piαIi,

(C.52)

for α, β ∈ [0, c−], and the shallow-water Hamiltonian

Ȟ(ȟ, p̌) =

[
1

2
hkM

−1
rγ pγM

−1
sλ pλAkrs + ghk(

1

2
hrMkr − ȞIk)

]
, (C.53)

for γ, λ ∈ [c+, c+Nl].

286 Appendices

C.5 Verification of the nonlinear shallow-water solutions

We verify the shallow-water solutions against the exact solution of an oscillating lake in a basin

with parabolic bottom topography, as introduced e.g. in [19], [145] and [80]. This particular

configuration enables testing the stability of the finite-volume scheme for the computations of dry

regions (where non-negative depth must be ensured) and dynamic water-line boundaries. For a

parabolic lake with topography

H(x) = H0

(x
a

)2
(C.54)

the depth-solution is described by

h(x, t) = H0 −
B2

4g
− Bω

g
cos(ωt)x− cos(2ωt)

aB2

4g
−H(x), (C.55)

where g is the gravitational acceleration, H0 is the maximal depth at rest, ω is the frequency of the

oscillations, and a and B are parameters that we set as in [145], that is

a = 3000, B = 5, g = 9.81, H0 = 10 and ω =
√

2gH0/a. (C.56)

Figure C.6 shows good agreement between the exact (C.55) and numerical solutions.

Figure C.6: Comparison between the exact (red) and numerical (blue) solutions in the case of an

oscillating lake with parabolic topography (black) at different times. The numerical solution is

discretised with 600 volume cells.

Appendices 287

D Experimental validation of the numerical wave tank

D.1 Fourier modes of irregular waves

Figure D.7: Numerical (blue) and experimental (black) Fourier modes of case 2.2.2.

Figure D.8: Numerical (blue) and experimental (black) Fourier modes of case 2.2.3.

288 Appendices

289

Bibliography

[1] M. J. Ablowitz and C. W. Curtis, Conservation laws and web-solutions for the benney–luke

equation, Proc. Roy. Soc. A 469 (2013), 16 pp.

[2] T.A.A. Adcock, P.H. Taylor, S. Yan, Q.W. Ma, and P.A.E.M. Janssen, Did the Draupner

wave occur in a crossing sea ?, Proc. R. Soc. A, Math., Phys. and Eng. Sci. 467 (2011),

3004–3021.

[3] J. Ahrens, B. Geveci, and C. Law, Paraview: an end-user tool for large-data visualization,

The visualization Handbook 717 (2005), 717–731.

[4] G.B. Airy, Tides and waves, Encyclopaedia Metropolitana. Mixed Sciences 3 (1841).

[5] E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein, and B. Perthame, A fast and stable well-

balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. of Sci.

Comp. 25 (2004), 2050–2065.

[6] C. Baker, Making a splash with solitons, Master’s thesis, University of Leeds, School of

Mathematics, 2017.

[7] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,

V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman McInnes, K. Rupp,

B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc users manual, Tech. Report

ANL-95/11 - Revision 3.7, Argonne National Laboratory, 2016.

[8] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,

V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, D.A. May, L.C. McInnes, K. Rupp,

B.F. Smith, S. Zampini, and H. Zhang, PETSc Web page, http://www.mcs.anl.

gov/petsc, 2017.

[9] S. Balay, W. D. Gropp, L. Curfman McInnes, and B. F. Smith, Efficient management of

290 BIBLIOGRAPHY

parallelism in object oriented numerical software libraries, Modern Software Tools in

Scientific Computing (E. Arge, A. M. Bruaset, and H. P. Langtangen, eds.), Birkhäuser

Press, 1997, pp. 163–202.

[10] BBC, Freak wave - programme summary, 2012.

[11] M.A. Benarde, Our precarious habitat. an integrated approach to understanding man’s

effect on his environment, W. W. Norton & Company; Second edition, 1973.

[12] D.J. Benney and J.C. Luke, On the interactions of permanent waves of finite amplitude., J.

Math. Phys. 43 (1964), 309–313.

[13] H. Bishop, The night the Fitz wend down, Duluth, Minnesota: Lake Superior Port Cities

(2000).

[14] E.M. Bitner-Gregersen and O. Gramstad, Rogue waves. impact on ships and offshore

structures, DNV GL strategic research and innovation Position paper (2016), no. 05-2015.

[15] E.M. Bitner-Gregersen and Ø. Hagen, Uncertainties in data for the offshore environment,

Struct. Safety 7 (1990), 11–34.

[16] E.M. Bitner-Gregersen and A. Toffoli, Occurence of rogue sea states and consequences for

marine structures, Ocean Dyn. 64 (2014), 1457–1468.

[17] E.M. Bitner-Gregersen and A. Toffoli, Wave steepness and rogue waves in the changing

climate in the north Atlantic, Proc. ASME 2015 34th Int. Conf. on Ocean, Offshore and

Arctic Eng., OMAE 2015, 2015.

[18] E.M. Bitner-Gregersen, E. Vanem, O. Gramstad, T. Hørte, O.J. Aarnes, M. Reistad,

O. Breivik, A.K. Magnusson, and B. Natvig, Climate change and safe design of ship

structures, Ocean Eng. 149 (2018), 226–237.

[19] O. Bokhove, Flooding and drying in discontinuous Galerkin finite-element discretizations

of shallow-water equations. Part 1: one dimension., J. of Sci. Comp. 22 (2005), no. 1-3,

47–82.

[20] O. Bokhove and A. Kalogirou, Variational water wave modelling: from continuum to

experiment, Lectures on the theory of water waves (T.J. Bridges, M.D. Groves, and D.P.

Nicholls, eds.), LMS Lecture Note Series, vol. 426, Cambridge University Press, 2016,

pp. 226–260.

[21] W. Booker, T. Goodfellow, and J. Alwon, Experimental and numerical modelling of coastal

BIBLIOGRAPHY 291

process, Tech. report, University of Leeds, 2015.

[22] W.J. Broad, Rogue Giants at Sea, New York Times (11 July 2006).

[23] B. Buchner, J. Van den Berg, J. Helder, and T. Bunnik, Non-linear wave runup along

the side of ships causing green water problems: experiments and first cfd calculations,

Proc.ASME 2014 33rd Int. Conf. on Ocean, Offshore and Arctic Eng., OMAE 2014, vol.

1A: Offshore Technology, 2014.

[24] T.H.J. Bunnik, Benchmark workshop on numerical wave modelling - description of test

cases, Tech. Report 70022-1-RD, MARIN, (2010).

[25] M.J. Castro, J.A. Garcı́a-Rodriguez, J.M. González-Vida, and C. Parés, Solving shallow-

water systems in 2D domains using Finite Volume methods and multimedia SSE

instructions, J. of Comp. and App. Math. 221 (2008), 16–32.

[26] A.L. Cauchy, Mémoires de l’académie des sciences de l’institut de france - année 1823,

ch. Mémoire sur les développements des fonctions en séries périodiques, pp. 603–612,

Gauthier-Villars, 1827.

[27] L. Cavaleri, L. Bertotti, L. Torrisi, E.M. Bitner-Gregersen, M. Serio, and M. Onorato,

Rogue waves in crossing seas: the Louis Majesty accident, J. Geophys. Res. 117 (2012),

no. C00J10.

[28] A. Chabchoub, N.P. Hoffmann, and N. Akhmediev, Rogue wave observation in a water

wave tank, Phys. Rev. Letters 106 (2011), no. 204502.

[29] J. Chambarel, C. Kharif, and O. Kimmoun, Generation of two-dimensional steep water

waves on finite depth with and without wind, European J. of Mech. -B/Fluids 29 (2010),

132–142.

[30] G. Clauss, C. Schmittner, J. Hennig, C. Guedes Soares, N. Fonseca, and R. Pascoal, Bending

moments of an Fpso in rogue waves, Proc. ASME 2004 23rd Int. Conf. on Ocean, Offshore

and Arctic Eng., OMAE 2004, 2004.

[31] R.D. Cook, D.S. Malkus, M.E. Plesha, and R.J. Witt, Concepts and applications of finite

element analysis, John Wiley and Sons, Inc., 2007.

[32] Allianz Global Corporate and Specialty, Safety and Shipping Review 2017. An annual

review of trends and developments in shipping losses and safety, Tech. report, Lloyd’s List

Intelligence Casualty Statistics, 2017.

292 BIBLIOGRAPHY

[33] C. Cotter and O. Bokhove, Variational water-wave model with accurate dispersion and

vertical vorticity, J. of Eng. Math. 67 (2010), 33–54.

[34] W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys. 108

(1992), 73–83.

[35] A.D.D. Craik, The origins of water-wave theory, Annu. Rev. Fluid Mech 36 (2004), 1–28.

[36] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, Parallel distributed computing using

Python, Advances in Water Resources 34 (2011), no. 9, 1124–1139.

[37] J.K. Devlin, The millenium problems: The seven greatest unsolved mathematical puzzles of

our time, New York: Basic Books, 2002.

[38] I.I. Didenkulova, A.V. Slunyaev, E.N. Pelinovsky, and C. Kharif, Freak waves in 2005, Nat.

Hazards Earth Syst. Sci. 6 (2006), 1007–1015.

[39] L. Draper, ’freak’ ocean waves, Oceanus 10 (1964).

[40] P.G. Drazin and R.S. Johnson, Solitons, an introduction, Press Syndicate of the University

of Cambridge, 1989.

[41] K. Dysthe, H.E. Krogstard, and P. Muller, Oceanic rogue waves, Ann. Rev. Fluid Mech. 40

(2008), 287–310.

[42] B. Düz, M.J.A. Borsboom, A.E.P. Veldman, P.R. Wellens, and R.H.M. Huijsmans, An

absorbing boundary condition for free surface water waves, Computers and Fluids 156

(2017), 562 – 578, Ninth International Conference on Computational Fluid Dynamics

(ICCFD9).

[43] B. Düz, T. Bunnik, G. Kapsenberg, and G. Vaz, Numerical simulation of nonlinear free

surface water waves - Coupling of a potential flow solver to a URANS/VOF code, Proc.

ASME 2016 35th Int. Conf. on Ocean, Offshore and Arctic Eng., OMAE 2016, 2016.

[44] B. Düz, R. H. M. Huijsmans, A. E. P. Veldman, M. J. A. Borsboom, and P. R. Wellens, An

absorbing boundary condition for regular and irregular wave simulations, MARIN 2011,

IV International Conference on Computational Methods in Marine Engineering (L. Eça,

E. Oñate, J. Garca, and P. Bergan an T. Kvamsdal, eds.), Springer, 2013.

[45] A.P. Engsig-Karup, H.B. Bingham, and O. Lindberg, An efficient flexible-order model for

3D nonlinear water waves, J. of Comp. Phys. 228 (2009), 2100–2118.

[46] Mer et Marine (J.L. Venne), Endommagé par une vague scélérate, le jean nicoli en

BIBLIOGRAPHY 293

réparation à toulon, 2017.

[47] K. Fahim, Landfall in Manhattan, after a 70-foot wave, The New York Times (2005).

[48] Firedrake, Solving PDEs, 2013-2016.

[49] G.Z. Forristall, Wave crest distributions: observations and second-order theory, J. Phys.

Oceanogr. 30 (2000), 1931–1943.

[50] M. Funakoshi, Reflection of obliquely incident solitary waves, J. Phys. Soc. 49 (1980),

2371–2379.

[51] E. Gagarina, A.R. Ambati, J. van der Vegt, and O. Bokhove, Variational space-time

(dis)continuous Galerkin method for nonlinear free surface water waves, J. Com. Phys.

275 (2014), 459–483.

[52] E. Gagarina, V.R. Ambati, S. Nurijanyan, J.J.W van der Vegt, and O. Bokhove,

On variational and symplectic time integrators for Hamiltonian systems, Journal of

Computational Physics 306 (2016), 370–389.

[53] E. Gagarina, V.R. Ambati, S. Nurijanyan, J.J.W. van der Vegt, and O. Bokhove, On

variational and symplectic time integrators for Hamiltonian systems, J. of Comp. Phys.

306 (2016), 370–389.

[54] E. Gagarina, J.J.W.van der Vegt, V.R. Ambati, and O. Bokhove, A Hamiltonian Boussinesq

model with horizontally sheared currents, Proc. of the 3rd Int. Symp. on Shallow Flows.

Iowa City: IIHR, 2012, pp. 1–10.

[55] E. Gagarina, J. van der Vegt, and O. Bokhove, Horizontal circulation and jumps in

Hamiltonian wave models, Nonlinear Proc. in Geophys. 20 (2013), 483–500.

[56] C. Geuzaine and J.F. Remacle, Gmsh: a three-dimensional finite element mesh generator

with built-in pre- and post-processing facilities, International Journal for Numerical

Methods in Engineering 79 (2009), no. 11, 1309–1331.

[57] F. Gidel, O. Bokhove, and A. Kalogirou, Variational modelling of extreme waves through

oblique interaction of solitary waves: application to mach reflection, Nonlinear Proc.

Geophys. 24 (2017), 43–60.

[58] F. Gidel, O.Bokhove, and M. Kelmanson, Driven nonlinear potential flow with wave

breaking at shallow-water beaches, Proc. ASME 2017 36th Int. Conf. on Ocean, Offshore

and Arctic Eng., OMAE 2017, vol. 1, 2017.

294 BIBLIOGRAPHY

[59] N.S. Gokhale, S.S. Deshpande, and S.V. Bedekar, Practical finite element analysis, Finite

to Infinite, 2008.

[60] O. Gramstad, H. Zeng, K. Trulsen, and G.K. Pedersen, Freak waves in weakly nonlinear

unidirectional wave trains over a sloping bottom in shallow water, Phys. Fluids 25 (2013),

no. 122103.

[61] A. Greenbaum, Iterative methods for solving linear systems, SIAM, Philadelphia, 1997.

[62] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, Springer, 2006.

[63] J. Harris, Without Trace: The Last Voyages of Eight Ships, Mandarin, 1989.

[64] A. Harten, P.D. Lax, and B. Van Leer, On upstream differencing and godunov-type schemes

for hyperbolic conservation laws, SIAM Rev. 25 (1983), 35–61.

[65] S. Haver, A possible freak wave event measured at the draupner jacket january 1 1995,

Rogue waves 460 (2004), 1–8.

[66] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs,

Supercomputing ’95: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing

(CDROM) (New York), ACM Press, 1995, p. 28.

[67] J. Hennig and C.E. Schmittner, Experimental variation of focusing wave groups for the

investigation of their predictability, Proc. ASME 2009 28th Int. Conf. on Ocean, Offshore

and Arctic Eng., OMAE 2009, 2009.

[68] R. L. Higdon, Absorbing boundary conditions for difference approximations to the multi-

dimensional wave equation, Math. Compu. 47 (1986), 437–459.

[69] R. L. Higdon, Numerical absorbing boundary conditions for the wave equation, Math.

Compu. 49 (1987), 65–90.

[70] M. Hoekstra and L. Eça, PARNASSOS: an efficient method for ship stern flow calculcation,

3rd Osaka colloquium.

[71] M. Homolya and D.A. Ham, A parallel edge orientation algorithm for quadrilateral

meshes., SIAM Journal on Scientific Computing 38 (2016), S48–S61.

[72] D.V. Hutton, Fundamentals of finite element analysis, McGraw-Hill Higher Education,

2003.

[73] W. Irving, A History of the Life and Voyages of Christopher Columbus, no. vol. 1, G. & G.

Carvill, 1828.

BIBLIOGRAPHY 295

[74] N. G. Jacobsen, D. R. Fuhrman, and J. Fredsøe, A wave generation toolbox for the open-

source CFD library: OpenFoam R©, Int. J. Numer. Meth. Fluids 70 (2012), 1073–1088.

[75] I.S.F. Jones and J.E. Jones, Oceanography in the Days of Sail, p. 115, Sydney Institute of

Marine Science Ltd, 2088.

[76] B.B. Kadomtsev and V.I. Petviashvili, On the stability of solitary waves in weakly dispersive

media, Sov. Phys. Dokl. 15 (1970), 539–541.

[77] A. Kalogirou and O. Bokhove, Mathematical and numerical modelling of wave impact on

wave-energy buoys, Proc. ASME 2016 35th Int. Conf. on Ocean, Offshore and Arctic Eng.,

OMAE 2016, 2016.

[78] A. Kalogirou, O. Bokhove, and D. Ham, Modelling of nonlinear wave-buoy dynamics using

constrained variational methods, Proc. ASME 2017 36th Int. Conf. on Ocean, Offshore and

Arctic Eng., OMAE 2017, vol. 7A: Ocean Engineering, 2017.

[79] A. Kalogirou, E. E. Moulopoulou, and O. Bokhove, Variational finite element methods for

waves in a Hele-Shaw tank, Applied Mathematical Modelling 40 (2016), 7493–7503.

[80] T. Kent, An idealised fluid model of numerical weather prediction: dynamics and data

assimilation, Ph.D. thesis, University of Leeds, 2016.

[81] J.W. Kim and K.J. Bai, A finite element method for two-dimensional water-wave problems,

Numerical methods in fluids 30 (1999), 105–122.

[82] F. Klaver, Coupling of numerical models for deep and shallow water, Master’s thesis,

University of Twente, Netherlands, 2009.

[83] Y. Kodama, KP solitons in shallow water, Journal of Physics A: Mathematical and

Theoretical 43 (2010), 434–484.

[84] Y. Kodama, M. Oikawa, and H. Tsuji, Soliton solutions of the KP equation with V-shape

initial waves, J. Phys. A: Mathematical and Theoretical 42 (2009), 312–321.

[85] D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a

rectangular canal, and on a new type of long stationary waves, Philosophical Magazine

39 (1895), 422–443.

[86] W. Kristina, O. Bokhove, and E.W.C. van Groesen, Effective coastal boundary conditions

for tsunami wave run-up over sloping bathymetry, Nonlinear Proc. in Geophys. 21 (2014),

987–1005.

296 BIBLIOGRAPHY

[87] I.V. Lavrenov, The wave energy concentration at the Agulhas current off South Africa, Nat.

Hazards 17 (1998), 117–127.

[88] S. Lehner, H. Gunther, and W. Rosenthal, Extreme wave observations from radar data sets,

Ocean Waves Measurements and Analysis, 5th Int. Symp. WAVES 2005, Madrid, no. paper

69, 2005.

[89] W. Li, H. Yeh, and Y. Kodama, On the Mach reflection of a solitary wave: revisited, J. Fluid

Mech. 672 (2011), 326–357.

[90] P.C. Liu, A chronology of freaque wave encounters, Geofizika 24 (2007), 57–70.

[91] M.S. Longuet-Higgins, On the statistical distribution of the heights of sea waves, J. Mar.

Res. 11 (1952), 245–266.

[92] J.C. Luke, A variational principle for a fluid with a free surface, J. Fluid Mech. 27 (1967),

395–397.

[93] Q.W. Ma, G.X. Wu, and R. Eatock Taylor, Finite element simulation of fully nonlinear

interaction between vertical cylinders and steep waves. Part 1: Numerical results and

validation, Int. J. Numer. Methods Fluids 36 (2001), 265–285.

[94] Q.W. Ma, G.X. Wu, and R. Eatock Taylor, Finite element simulation of fully nonlinear

interaction between vertical cylinders and steep waves. Part 2: Methodology and numerical

procedure, Int. J. Numer. Methods Fluids 36 (2001), 287–308.

[95] Q.W. Ma and S. Yan, Quasi ALE finite element method for nonlinear water waves, J. of

Comp. Phys. 212 (2006), 52–72.

[96] A.T.T. MacRae, G.T. Bercea, L. Mitchell, D.A. Ham, and C. J. Cotter, Automated

generation and symbolic manipulation of tensor product finite elements, SIAM Journal on

Scientific Computing 38 (2016), 25–S47.

[97] J.K. Mallory, Abnormal waves in the south-east coast of South Africa, Int. Hydr. Rev. 51

(1974), 89–129.

[98] MARIN, Facilities and tools.

[99] The Guardian (C. McGreal), Whale-watching boat tragedy caused by freak wave, say

investigators, 2015.

[100] G.A. Meurant, Computer solution of large linear systems, Studies in mathematics and its

applications, North-Holland ; Elsevier, 1999.

BIBLIOGRAPHY 297

[101] A. Meurer, C.P. Smith, M. Paprocki, O. Čertı́k, S.B. Kirpichev, M. Rocklin, A. Kumar,

S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller,

F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, Š.

Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, SymPy: symbolic

computing in python, PeerJ Computer Science 3 (2017), e103.

[102] V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher, A well-balanced scheme for the

shallow-water equations with topography or Manning friction, J. of Comp. Phys. 335

(2017), 115–1554.

[103] J. W. Miles, Obliquely interacting solitary waves, J. Fluid Mech. 79 (1977), 157–169.

[104] J.W. Miles, On Hamilton’s principle for surface waves, J. Fluid Mech. (1977).

[105] J.W. Miles, Resonantly interacting solitary waves., J. Fluid Mech. 79 (1977), 171–179.

[106] P.A. Milewski and J.B. Keller, Three-dimensional water waves, Studies in Applied

Mathematics 97 (1996), 149–166.

[107] N. Mori, P. Liu, and T. Yasuda, Analysis of freak wave measurements in the sea of Japan,

Ocean Eng. 29 (2002), 1399–1414.

[108] B. Le Méhauté, An introduction to hydrodynamics and water waves, ch. An Introduction to

Water Waves, pp. 197–211, Springer Study Edition, 1976.

[109] I. Nikolkina and I. Didenkulova, Rogue waves in 2006-2010, Nat. Hazards Earth Syst. Sci.

11 (2011), 2913–2924.

[110] M. Olagnon and J. Kerr, Anatomie curieuse des vagues scélérates, Carnets de sciences,

2015.

[111] M. Onorato, A.R. Osborne, M. Serio, L. Cavaleri, C. Brandini, and C.T. Stansberg, Extreme

waves, modulational instability and second order theory: wave flume experiments on

irregular waves, European J. of Mech. - B/Fluids 25 (2006), 586–601, Rogue waves

European Geosciences Union Assembly.

[112] M. Onorato, D. Proment, and A. Toffoli, Triggering rogue waves in opposing currents,

Phys. Rev. Lett. 107 (2011), no. 184502.

[113] R. L. Pego and J. R. Quintero, Two-dimensional solitary waves for a Benney-Luke equation,

Physica D 132 (1999), 476–496.

[114] D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, J.

298 BIBLIOGRAPHY

Austral. Math. Soc. Ser. B 25 (1983), 16–43.

[115] R. Perić and M. Abdel-Maksoud, Reliable damping of free-surface waves in numerical

simulations, Ship Technology Research 63 (2016), no. 1, 1–13.

[116] R. Perić and M. Abdel-Maksoud, Analytical prediction of reflection coefficients for wave

absorbing layers in flow simulations of regular free-surface waves, Ocean Engineering 147

(2018), 132–147.

[117] P.H. Perroud, The solitary wave reflection along a straight vertical wall at oblique

incidence., Tech. report, University of California, Berkley, 1957.

[118] P. Peterson, T. Soomere, J. Engelbrecht, and E. van Groesen, Soliton interaction as a

possible model for extreme waves in shallow water, Nonlinear Processes in Geophysics

10 (2003), 503–510.

[119] L.J. Pratt, On inertial flow over topography, Part 1: Semigeostrophic adjustment to an

obstacle, J. Fluid Mech. 131 (1983), 195–218.

[120] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae, G. Bercea,

G. R. Markall, and P. H. J. Kelly, Firedrake: automating the finite element method by

composing abstractions, 2016.

[121] J. N. Reddy, An introduction to the Finite Element Method, McGraw-Hill, 2005.

[122] O. Reynolds, On the rate of progression of groups of waves and the rate at which energy is

transmitted by waves, Nature 16 (1877), 343–344.

[123] W. Rosenthal and S. Lehner, Rogue waves: results of the MaxWave project, J. Offshore

Mech. Arct. Eng. 130 (2008), 21006–21013.

[124] W. Rosenthal, S. Lehner, H. Dankert, H. Guenther, K. Hessner, J. Horstmann, A. Niermeier,

J.C. Nieto-Borger, J. Schulz-Stellenfleth, and K. Reichert, Detection of extreme single

waves and wave statistics, Rogue Waves: Forecast and Impact on Marine Structures, GKSS

Research Center, Geesthacht, Germany (2003).

[125] J.S. Russell, Report on waves, Report of the fourteenth meeting of the british association

for the adcancement of science (1844), 311–390.

[126] Y. Saad, Iterative methods for sparse linear systems, 2nd. ed., SIAM, 2003.

[127] T. Salwa, O. Bokhove, and M.A. Kelmanson, Variational modelling of wave-structure

interactions with an offshore wind-turbine mast, J. of Eng. Math. 107 (2017), 61–85.

BIBLIOGRAPHY 299

[128] A. Sergeeva, E. Pelinovsky, and T. Talipova, Nonlinear random wave field in shallow water:

variable Korteweg-De Vries framework, Nat. Hazards Earth Syst. Sci. 11 (2011), 323–330.

[129] C.B. Smith, Extreme waves., Washington, D.C.: Joseph Henry Press (2066), 68–69.

[130] G. D. Smith, Numerical solution of partial differential equations: Finite-difference

methods, 2nd. ed., p. 217, Clarendon Press, Oxford, 1978.

[131] G.G. Stokes, On the theory of oscillatory waves, Transactions of the Cambridge

Philosophical Society 8 (1847), 441–455.

[132] G.G. Stokes, Supplement to a paper on the theory of oscillatory waves, Cambridge

University Press 1 (1880), 214–326.

[133] M. Tanaka, Mach reflection of a large-amplitude solitary wave., J. Fluid Mech. 248 (1993),

637–661.

[134] M.A. Tayfun, Narrow-band nonlinear sea waves, J. Geophys. Res. 85 (1980), 1548–1552.

[135] A. Toffoli, E.M. Bitner-Gregersen, A.R. Osborne, M. Serio, J. Monbaliu, and M. Onorato,

Extreme waves in random crossing seas: Laboratory experiments and numerical

simulations, Geophys. Res. Lett. 38 (2011), no. L06605.

[136] A. Toffoli, L. Cavaleri, A.V. Babanin, M. Benoit, E.M. Bitner-Gregersen, J. Monbaliu,

M. Onorato, A.R. Osbone, and C.T. Stansberg, Occurence of extreme waves in three-

dimensional mechanically generated wave fields propagating over an oblique current, Nat.

Hazards Earth Syst. Sci. 11 (2011), 895–903.

[137] A. Toffoli, L. Fernandez, J. Monbaliu, M. Benoit, E. Gagnaire-renou, J.M. Lefévre,

L. Cavaleri, D. Proment, C. Pakozdi, C.T. Stansberg, T. Waseda, and M. Onorato,

Experimental evidence of the modulation of a plane wave to oblique perturbations and

generation of rogue waves in finite water depth, Phys. Fluids 25 (2013), no. 091701.

[138] K. Trulsen, J.C. Nieto Borge, O. Gramstad, L. Aouf, and J.M. Lefévre, Crossing sea state

and rogue wave probability during the Prestige accident, J. Geophys. Res.: Oceans 120

(2015), 7113–7136.

[139] K. Trulsen, H. Zeng, and O. Gramstad, Laboratory evidence of freak waves provoked by

non-uniform bathymetry, Phys. Fluids 24 (2012), no. 097101.

[140] G. Vaz, F. Jaouen, and M. Hoekstra, Free-surface viscous flow computations. validation of

URANS code FreSCo, Proc. ASME 2009 28th Int. Conf. on Ocean, Offshore and Arctic

300 BIBLIOGRAPHY

Eng., OMAE 2009, 2009.

[141] E.H. Weber and W.E. Weber, Wellenlehre auf experimente gegründet, Leipzig: Gerhardt

Fleischer, 1825.

[142] W. Weibull, A statistical distribution function of wide applicability, J. Appl. Mech. 18

(1951), 293–297.

[143] H. G. Weller and G. Tabor, A tensorial approach to computational continuum mechanics

using object-oriented techniques, Computers in Physics 12 (1998), 620.

[144] G.X. Wu and Z.Z. Hu, Simulation of nonlinear interactions between waves and floating

bodies through a finite-element-based numerical tank, Proc. R. Soc. Lond. Ser. A 460

(2004), 2797–2817.

[145] Y. Xing, X. Zhang, and C. Shu, Positivity-preserving high order well- balanced

discontinuous galerkin methods for the shallow water equations, Advances in Water

Resources 33 (2010), no. 12, 1476–1493.

[146] H. Yeh, W. Li, and Y. Kodama, Mach Reflection and KP Solitons in Shallow Water,

European Physical Journal 85 (2010), 97–111.

